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Abstract

In this thesis, we address the problems of person detection and pose estimation in

Operating Rooms (ORs), which are key ingredients needed to develop many applications

in such environments, like surgical activity recognition, surgical skill analysis and radiation

safety monitoring. Because of the strict sterilization requirements of the OR and of the

fact that the surgical workflow should not be disrupted, cameras are currently one of

the least intrusive options that can be conveniently installed in the room to sense the

environment. Even though recent vision-based human detection and pose estimation

methods have achieved fairly promising results on standard computer vision datasets, we

show that they do not necessarily generalize well to challenging OR environments. The

main challenges are the presence of many visually similar surfaces, loose and textureless

clinical clothes, clutter, occlusions and the fact that the environment is crowded. To

address these challenges, we propose to use a set of compact RGB-D cameras installed

on the ceiling of the OR. Such cameras capture the environment by using two inherently

different sensors and therefore provide complementary information about the surfaces

present in the scene, namely their visual appearance and their distances to the camera.

In this dissertation, we propose novel approaches that take into account depth, multi-

view and temporal information to perform human detection and pose estimation. Firstly,

we introduce an energy optimization approach to consistently track body poses over

entire RGB-D sequences. Secondly, we present a novel approach to estimate the body

poses directly in 3D by relying on both color and depth images. The approach also uses

a new RGB-D body part detector. Finally, we present a multi-view approach for 3D

human pose estimation, which relies on depth data to reliably incorporate information

across all views. We also present a method to automatically model a priori information

about the OR environment for obtaining a more robust human detection model. To

evaluate our approaches, we generate several single- and multi-view datasets in operating

rooms. We demonstrate very promising results on these datasets and show that our

approaches outperform state-of-the-art methods on data acquired during real surgeries.
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A core part of the patient care system in hospitals is the surgical department. This

department is responsible for preoperative consultations, for performing surgeries and for

following up on patient treatments. In the surgical department, clinicians and clinical staff

are the main actors. They are collaborating, making decisions and performing actions to

fulfill all these responsibilities. Their main working environment is the operating room,

where they perform actions based on preoperative plans to treat patients. The actions

and the way the actions are performed directly impact the outcome of the treatments.
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Thus, it is an important research objective to perceive, model and study the activities

occurring in Operating Rooms (ORs) in order to better understand, potentially improve

and enhance the patient care system, e.g. by analyzing more objectively surgical workflows

and by providing more accurate and relevant feedback during training.

In order to achieve the aforementioned goals, localizing clinical staff as well as their

body parts is of fundamental importance. As an example, let us consider surgical workflow

models. They are needed in order to extract and analyze the statistical properties of a

surgery. These models can then be used for monitoring the progress of a surgery, detecting

anomalies and adapting the schedule of the operating room and personnel. To build

such a model, it is essential to collect a substantial amount of information from different

sources, such as tool usage data and patient’s vital signals. Automatic localization of

medical staff and of their body parts is a complementary source of information needed

to provide workflow models with crucial information about the main actors and their

interactions. Without approaches to automatically extract high level information from

the OR, workflow analysis can only be performed through tedious manual annotations.

In order to enable clinician detection and pose estimation in operating rooms, we

need to perceive the environment with a system that is not only capable of providing

suitable data for performing such tasks, but that can also be conveniently integrated

in such rooms with minimal invasiveness. In the following, we present several possible

sensing technologies available to capture operating rooms. We then describe how clinician

detection and pose estimation can contribute to the improvement of the activities taking

place in the surgical department and of the health care system in general. We also

present three state-of-the-art human pose estimation and detection methods as well as

their qualitative performance on clinical data to illustrate their limitations in the OR

environment. Finally, we discuss the contributions of this work and conclude the chapter

by providing the outline of this thesis.

1.1 Perceiving Operating Room Environments

In this section, we start by briefly describing the operating room environment. We then

present sensing technologies that could be used for human detection and/or human pose

estimation in general. We also point out some key challenges and advantages of using

these sensing technologies in operating rooms. Finally, we present the camera recording

system used in our project.

1.1.1 Description of the Operating Room Environment

An operating room, also known as an operating theater, is the unit of a hospital where

surgical operations are carried out. Operating rooms are designed and equipped to

provide safe care to patients.

Figure 1.1 shows two operating rooms. Central to the OR is the operating table,

where the patient lies. It is surrounded by the respiratory tower, a table for the surgical

instruments, and the devices monitoring the patient’s vital signs. Ceiling-mounted rails
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(a)Technical University of Munich, (b) University hospital of Strasbourg,
Klinikum rechts der Isar. Interventional Radiology Department.

Courtesy of [Belagiannis 2016].

Figure 1.1: Sample operating rooms: (a) an operating room and (b) an operating room
equipped with an intra-operative CT scanner device.

or ceiling-mounted articulated arms are often used to facilitate the positioning of medical

equipment, such as the surgical lamp and screens, in proximity of the operating table

without hampering access to the patient. In addition, some operating rooms are equipped

with intra-operative imaging devices such as an angiographic C-arm, an ultrasound device

or a computed tomography scanner.

The operating room is a sterile environment. All personnel wear similar sterilized

clothes called scrubs. In order to keep the environment free of germs, they also use masks

over their faces, surgical caps and shoe covers.

Due to the delicate process of performing physical intervention on humans and to

the safety as well as the sterilization requirements of the OR, introducing new devices

or sensors requires special care and attention to avoid adding difficulties to the existing

daily routine of the room.

1.1.2 Sensor Options

Overall, operating rooms can be sensed by using either wearable markers or cameras. On

the one hand, with wearable markers, one needs to attach active or passive markers to

the object of interest and focus on sensing these markers. Marker sensing is performed in

two ways: 1) by using regular or specially designed cameras able to capture the marker

with a contrast higher than the one of the background, e.g. infrared cameras with infrared

retro-reflective markers, and 2) by using other sensors, e.g. using ultrasonic receivers in

case of active ultrasonic markers. On the other hand, cameras can be used to perceive

the whole environment that includes both the objects of interest and the background.

Camera data however requires more sophisticated methods to analyze the scene.

Wearable markers. Radio Frequency Identification (RFID) tags can be used to identify
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the presence or absence of people in the room. Such systems cannot however be used

for localizing people. Instead, body-worn ultra-wideband transmitters are needed for

localization. In practice, the localization system based on ultra-wideband is however

very inaccurate [Bardram 2011]. More accurate person localization is possible using an

ultrasonic location system. Such a system uses an array of ceiling-mounted ultrasonic

receivers to measure the time of flight of an ultrasonic signal emitted by the transmitter

carried by the person to be localized [Medina 2013]. Estimating the 3D location of the

person requires however line of sight between a transmitter and at least three receivers.

This condition is not always easy to fulfill, especially in operating rooms with many

objects attached to the ceiling. In general, if the marker is worn over the scrub, it should

also be sterilized according to OR’s regulations. Therefore, each person has to wear a new

sterilized marker upon entrance in the room. This makes it cumbersome to regularly use

such systems in the OR. In addition, people may forget to wear the markers. Moreover,

the aforementioned localization systems cannot be used for body part localization due to

signal interferences or the line of sight requirement.

In order to estimate human poses in controlled environments, systems based on

multiple inertial sensors can be used [Wong 2015]. These sensors should be placed at

different places on the body, e.g. all body parts, to measure accelerations and orientations.

However, these measurements are subject to drift, which has limited the reliability of

such systems for capturing human poses over long durations [Wong 2015]. Infrared

retro-reflective markers, which are tightly and precisely placed all over the body, can be

used to reliably discover body part configurations. But, due to strong requirements such

as the need for a high number of infrared sensors, e.g. 16 sensors, and for line of sight

between the markers and the infrared light projectors, such systems can only be used

in controlled environments with no clutter. In general, marker-based pose estimation

systems require many more markers compared to marker-based people detection systems.

Wearing a multitude of markers upon entrance would be a very demanding and tedious

task unless a cheap and sterile surgical gown can be designed with the markers already

integrated. Furthermore, the marker positions on the body often need to be manually

registered with a 3D human body model, which is a delicate and time-consuming task to

perform.

Cameras. Cameras allow to capture the entire scene and also do not require attaching

any marker to the objects of interest. They however require robust detection methods.

They are often installed in modern operating rooms for archiving and interactive teaching

(e.g. see Figure 1.4). Soon, one can even imagine that cameras may become mandatory in

the OR, in the same way that black boxes are mandatory in airplanes [Sutherland 2006,

Kohn 2000]. One advantage of cameras is that they can be easily installed if an OR does

not possess any. Moreover, they do not affect the daily operating room workflow.

Wearable markers vs. cameras. In general, wearable markers are intrusive. This

makes them difficult to use in operating rooms. Furthermore, marker-based systems

require line of sight and manual registration between a 3D body model and the marker
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Complexity

Scale changes &
Part foreshortenings

Multi-person &
Occlusions

Clutter &
Occlusions

Illumination changes,
Multi-person & Occlusions

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Sample images of an operating room showing persons during real surgeries
and illustrating some of the challenges for clinician detection and pose estimation. The
images are ordered from left to right based on visual complexity.

positions. These requirements make such systems unsuitable for localizing body parts

of medical staff in the OR because they can not only be unreliable, but also disrupt

the clinical workflow. Cameras are currently the most practical option for perceiving

operating rooms during real surgeries, mainly due to two reasons. First, a camera

recording system is one of the least intrusive sensing systems that can be integrated into

an operating room. Second, such a system needs to be installed only once. Furthermore,

these sensors provide a rich source of information going beyond the localization of humans.

They offer the possibility to detect not only clinicians but also their activities. This

information can be used for many applications, such as post-operative video review. This

can permit to develop smart video browsing applications, for example by listing the time

intervals where a specific number of persons is present in the room, and by identifying

the time intervals during which clinicians or staff are working on the patient.

1.1.3 Visual Challenges in the Operating Room

The interpretation of the data provided by cameras is however not straightforward. In

general, visual human detection and pose estimation are challenging tasks that become

even more challenging in the OR. To describe some of the challenges, let us look at

Figure 1.2 that shows sample images recorded during real surgeries. These images are

ordered based on their complexity from left to right. In these images, clinicians and

clinical staff are wearing loose and textureless clothes (a-f) that are very similar to

the materials used to cover the other surfaces in the room. People can also appear in

various poses (a-f). In addition, body parts might be occluded due to self or object

occlusions (e). Furthermore, the appearance and dimension of a body part severely
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Figure 1.3: A pair of color and depth images captured using an Asus Xtion Pro camera.

change depending on the body shape, imaging condition, viewpoint and pose. Due to

large appearance changes (c and f) and clutter in the environment (e and f), it

is very difficult to determine which image region belongs to the body parts of a person

and which region belongs to the background. Finally, it is even more challenging to

determine body part regions in multi-person scenarios (b, c and f) where the sizes of

the persons in the image may be significantly different due to perspective projections

(c, b and f). To perform visual clinician detection and pose estimation in unconstrained

OR environments, we need to get many things right.

1.1.4 Our Camera Setup

In order to cope with the aforementioned challenges proper to the operating room, we

propose to capture the environment using recently introduced low-cost RGB-D cameras.

This type of camera allows to record an environment using both color and depth sensors

simultaneously. A color image represents the color intensity on the objects’ surfaces while

a depth image encodes surface distances with respect to the sensor. On the one hand,

the color sensor is sensitive to light in the visible wavelength range. On the other hand,

the depth sensor works in the infrared light range that is invisible to human eyes. In

cameras like the Asus Xtion Pro, the depth sensor decodes a predefined pattern that has

been projected onto a scene in infrared light to compute distances between the surfaces

in the scene and the sensor itself. Therefore, the lack of texture on the surfaces, color

similarities between the surfaces or illumination changes do not affect the depth image

computation. It is worth noting that due to technical limitations the depth resolution

degrades dramatically above 5 meter distance from the sensor and the sensor fails on

reflective surfaces. Therefore, the sensors have been mainly used in indoor environments.

In Figure 1.3, we have shown a pair of color and depth images that have been recorded

using an RGB-D sensor in an operating room. All personnel wear sterilized clothes

and gowns that cover the whole body. These clothes are often in green or blue colors

without any visible texture. In this figure, one can notice that the color image provides
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a good overall representation of the room. But, it is difficult to distinguish different

surfaces with similar colors that are close to each other in the projected image, e.g. the

arms. In contrast, the corresponding depth image provides a more visually discriminative

representation for these surfaces.

In order to collect data during real surgeries, we have installed camera recording

systems in several operating rooms in the course of this project. To benefit from the

complementary information provided by the two inherently different sensors, we have

chosen to use RGB-D cameras. We have selected Asus Xtion Pro cameras due to their

compact size, lightweight, and connection with a single cable (powered USB). These

camera systems have been used for recording all activities taking place in the room. This

enabled us to collect data covering a wide range of potential visual challenges that exist

in such environments. Figure 1.4 shows our camera setup in an operating room from

the hospital of Strasbourg. We have indicated two sets of cameras with red and yellow

boxes. The red box indicates an RGB camera that has been installed by the hospital to

capture activities taking place on the bed close to the CT scanner tunnel. The other set

of cameras shows our multi-view system, installed to capture the working environment

in the room from three different viewpoints. Our multi-view camera system is fully

calibrated using a method similar to [Ladikos 2010,Loy Rodas 2015].

In general, to install such a system in the OR, we need to take few elements into

account. First, because of the sterilization process, we cannot pass cables over the floor

and walls of the OR. Second, the cameras should be mounted on the ceiling to have a

better coverage of the environment and also to reduce the risk that one or more views

become occluded due to displacements of devices in the room. Finally, the cameras

should be placed in such a way that they do not collide with ceiling-mounted articulated

arms.

1.2 Applications of Clinician Detection and Pose Estima-

tion

People detection and pose estimation in the OR can benefit various existing applications

by providing them with location information about the persons in the room. This

information is also required in order to develop and integrate new applications into the

surgical workflow. In the following, we present two existing applications as well as two

new potential ones and explain how clinician detection and pose estimation could help.

1.2.1 Context-aware Systems

Performing a surgery is a detailed and complicated process that proceeds in progressive

stages. Context-aware systems aim at retrieving the OR context to build a full model

of the process and at using this model to track and analyze the progress of an ongoing

surgical operation. This awareness of the working context inside the operating room could

be used to automatically provide the surgical team with the important clinical information,

e.g. medical images and medical records, at the appropriate moment. The context model
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Figure 1.4: A panoramic view of an operating room at NHC Strasbourg, Interventional
Radiology Department. Camera positions are highlighted in yellow and red. Yellow boxes
indicate the positions of the RGB-D cameras that we have installed in the room to
capture the working environment from three viewpoints. The other camera is an RGB
camera that has been installed in the room for archiving. It focuses on the bed close to
the CT scanner device.

can also be used to generate a detailed medical transcription of the procedure. More

importantly, such a system can enable the identification of critical situations in order to

automatically give warnings or provide extra information for reducing medical errors. For

example, according to the Institute of Medicine’s report on human error, the occurrences

of preventable medical errors in operating rooms result in the loss of tens of thousands of

human lives in the USA per year [Makary 2016,Kohn 2000]. According to [Makary 2016]

medical errors is the third leading cause of death in the USA, which means that the

likelihood of an American to die from a medical error is higher than a death due to car

accidents or HIV infections.

During the last decade, a significant effort in the Computer Assisted Intervention

(CAI) community has focused on designing methods and algorithms in order to equip

the OR with context-aware computer-assisted systems [Lalys 2014]. Proposed meth-

ods are targeting different components required for such systems, such as surgical

tool detection and tracking [Bouget 2015, Kumar 2015], surgical phase and activity

recognition [Padoy 2009, Padoy 2012, Twinanda 2015, Tran 2016] and a combination

thereof [Twinanda 2016]. Recently, [Nara 2011,Agarwal 2007,Meißner 2014,Bardram 2011]

have investigated the problem of reconstructing the operating room’s context by using

different types of data, e.g. patient vital signals, tool detection information and the

location information of the personnel. These studies have shown that since the main
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actors in the OR environment are the clinicians and clinical staff, monitoring their

postures and the interactions among them are highly important for building the OR

context. Clinician detection and pose estimation are necessary to supply context-aware

systems with this essential information during live surgeries.

1.2.2 Surgical Skill Assessment

Designing effective methods for teaching and assessing surgical skills is crucial for hospitals

to guarantee the quality of care [Vedula 2016]. Trainees are generally learning the skills

in the classrooms and acquiring them through observing experts and reproducing the

gestures and movements on the limited number of cases available for resident training.

In [Wanzel 2002], a study on junior surgical resident training confirms that direct

supervision and personalized feedback by experts significantly improve the performance

of the residents. This study suggests that it is highly important to supervise every gesture

and movement performed by the novice in the course of a surgery in order to boost safety

and efficacy. On the one hand, following such a procedure is not practical because of

the huge costs that would be imposed to hospitals and the huge increase in the expert

surgeons’ workloads. On the other hand, considering the specific characteristics of the

problem such as repeatability and therefore the presence of many examples performed by

experts, it is clear that the problem is well-suited for computer-based analysis. Automatic

skill analysis can provide a great tool in the hands of the health care system to ensure

the optimal utilization of resources and reduce costs by eliminating the need for extensive

monitoring by expert surgeons. Such systems can also facilitate surgical skill training by

providing trainees with more opportunities to practice.

As a result, many computer-based approaches have been proposed for surgical skill

evaluation by comparing experts and trainees while performing similar tasks. Surgical

skill evaluation can be performed by comparing trajectories obtained by marker-based tool

and body part tracking [Meißner 2014] or using time to task completion during robotic

surgeries [Judkins 2008,Vedula 2016]. Reiley et al. [Reiley 2011] presented a comparative

review on surgical skill assessment methods and confirmed the common hypothesis that

skill lies in the interrelation and arrangement of body movements. In general, current

automatic skill assessment approaches have several limitations: 1) since the tracking

systems require attaching markers to the bodies of the subjects, especially to the hands,

it could affect their performance; 2) even though expert surgeons are performing many

real procedures which cover all real case scenarios, current skill analysis systems cannot

benefit from these examples due to the difficulty of installing tracking systems in the

OR; and 3) more importantly, such systems cannot be used to evaluate surgical skills

during real surgeries. Human pose estimation in the OR can serve as a fundamental step

towards addressing these limitations by removing the need for marker-based body part

tracking and enabling data collection from real surgeries.
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1.2.3 Radiation Safety Monitoring

In addition to the great benefit of clinician detection and pose estimation for a wide range

existing applications, clinician detection and pose estimation could open up possibilities

for new applications, such as radiation safety monitoring and intra-operative human-robot

collaboration that are presented below.

One of the greatest medical breakthroughs of the modern era is Minimally Invasive

Surgery (MIS). MIS is performed by accessing internal organs via small incisions. Several

types of MIS are relying on intra-operative x-ray based imaging to guide, control and

monitor the tools inserted in the patient during a procedure. But, a major disadvantage

of x-ray based procedures is that ionizing radiation is delivered both to the patient and

to the clinicians. Since the clinicians regularly use the device, the dose they receive can

be high.

To protect operating room personnel during x-ray guided surgeries, the personnel

should use lead protections. However, many parts of the body, such as the arms and

the head, are usually left unprotected. In practice, the amount of doses received by the

unprotected parts can sometimes exceed the predefined dose limit, which can lead to

serious negative effects on the body, for example cancer in the extreme [Vanhavere 2008].

Even though the personnel are currently wearing a dosimeter at chest level to measure

the radiation exposure, a recent large consortium-based study on radiation exposure of

OR personnel shows that it can vary significantly at different locations of the body [Cari-

nou 2011]. Therefore, to compute accurate estimations of the radiation exposure of the

medical staff, the exposure should be measured at different body locations, e.g. the head,

the arms and the hands. Since relying on dosimeters would require to put a multitude

of dosimeters over the bodies of the clinicians, dosimeters are not a practical option.

Therefore, a noninvasive system is required to monitor radiation exposure of the medical

staff in the OR. One practical option would be to use a radiation simulation system

such as [Ladikos 2010,Loy Rodas 2015] along with a vision-based body part localization

model. We should note that such a body part localization model needs not only to

localize body parts but also to consistently track the parts in order to correctly compute

the accumulation of the exposure over time per person and per body part. In addition,

such a system could be used to alert the medical staff during a procedure and also to

perform postoperative studies for finding the correlation between the risk and different

actions as well as poses performed in the course of a surgery.

1.2.4 Human-robot Collaboration

The current medical robotics research focuses more and more on designing semi-autonomous

robotic systems. These systems therefore need to include contextual information in order

to guarantee safe and efficient collaboration and to reduce human supervision as much

as possible. In other words, the system should be as intuitive as possible to behave as

expected, yet ensure a safe usage while used in parallel or serial with other robots or

human users. In order to enable safe and effective human-robot collaborations, the robot
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needs to not only build a precise model of its workspace, but also to localize persons

and their body parts in the workspace [Lasota 2014,Michalos 2015]. Consequently, it is

required to localize persons and their body parts in the OR in order to allow the usage

of semi-autonomous robotic systems in the room [Beyl 2015,Ladikos 2008].

One example of such a system in the OR is the robotized C-arm. Robotized C-arms

can be used to obtain either 2D images or 3D scans of different body organs. The device

constructs the 3D images by automatically performing a series of rotation and angular

movements around the body of the patient laid on the bed. Therefore, it is important to

make sure that medical staff and any other equipment do not enter the working volume

of the device to avoid potential collisions. A collision could hurt the colliding person and

damage the device. To avoid such collisions, 3D localizations of OR personnel and their

body parts are thus required for sending notifications and stopping the device if someone

accidentally enters the device’s working volume [Ladikos 2008].

1.3 Performance of State-of-the-art Methods in the Oper-

ating Room

As already discussed in Section 1.1, in order to be able to conveniently deploy our system

in the OR, we need to rely only on camera sensors for localizing the medical staff and

their body parts. Vision-based human detection and pose estimation are key problems

in computer vision, which have generated extensive literature in recent years. In general,

the proposed approaches are either part-based or holistic. In part-based approaches, the

human body is represented by a set of body parts and pose estimation is performed in two

steps: first, by detecting potential body parts in an image; then by finding a collection

(or collections) of body parts via verifying mutual spatial constraints among the parts.

On the other hand, holistic approaches are directly mapping an image representation

into person and body part positions. By having a mapping function that can access

the entire image, holistic approaches are capable of learning powerful mapping models

that can exploit the whole image context. However, such mapping models have a lot of

parameters, which requires a very large training set to learn them. They also do not

model interpart dependencies explicitly, which can lead to inconsistency in the predicted

body configuration. Instead, part-based approaches need a much smaller training set and

also provide a powerful formalism to explicitly model dependencies between body parts.

As it is difficult to obtain lots of annotated data in the OR, and also because modeling

interpart dependencies is essential due to the challenges mentioned in Section 1.1.3, we

decide to base our work on part-based approaches.

An elaborated review on vision-based human detection and pose estimation is pre-

sented in Chapter 2. In the following, we briefly introduce three dominant state-of-the-art

human pose estimation approaches in order to show their limitations in an environment

like the OR. These approaches are Flexible Mixtures of Parts (FMP) [Yang 2013], Deep-

erCut [Insafutdinov 2016] and Kinect skeleton tracker [Shotton 2012]. The first two

are part-based, and the last one is holistic. We consider the FMP approach because of
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two reasons. First, it is among the top-performing approaches for different challenging

datasets. Second, the approach serves as a basis to develop our clinician detection and

pose estimation approach. We evaluate DeeperCut since it is a state-of-the-art approach

for multi-person pose estimation. In addition, the Kinect skeleton tracker is evaluated

since it is currently the most successful commercial product for vision-based human pose

estimation.

1.3.1 Evaluated Approaches

Flexible mixtures of parts. The Flexible Mixtures of Parts (FMP) approach [Yang 2013]

is based on the Pictorial Structures (PSs) framework that is the dominant part-based

approach. FMP preserves the efficiency of the PSs model and extends the model to be

robust to the foreshortening of the body parts and also to changes in the appearance of

the parts. The FMP approach learns all model parameters automatically and jointly.

This permits the approach to elegantly use all the training data for obtaining a reliable

pose estimation model. Because of the efficiency of the FMP model, this model can be

used for both human detection and pose estimation.

DeeperCut. The DeeperCut method [Insafutdinov 2016] is a very recent part-based

approach for articulated human pose estimation in scenes with multiple persons. A very

deep Convolutional Network (ConvNet) is used to generate a set of body part detections.

Then, an elegant objective function is defined to jointly estimate the poses of all people

in the image. The objective function relies on a set of constraints defined between every

pair of detection candidates in order to jointly partition and label these candidates into

disjoint sets of body part configurations corresponding to individual persons in the scene.

These constraints are defined based on the appearance and 2D location of the detected

candidates. The objective function is optimized using a branch-and-cut algorithm.

Kinect skeleton tracker. With the introduction of low-cost RGB-D sensors, Shotton

et al. [Shotton 2012] proposed a holistic approach to estimate human poses on depth

images. The approach assumes that the foreground is segmented. Then, a Random Forest

(RF) with deep trees is used to localize body joints. The Kinect skeleton tracker uses

a commercial and extended version of this approach, which is provided with Microsoft

Kinect One sensors. The skeleton tracker shows very promising results in indoor scenes

such as living rooms.

1.3.2 Qualitative Results

In this section, we show the qualitative results of the aforementioned approaches on OR

data. These results are generated using models trained on standard computer vision

datasets in order to evaluate the generalization of these models to the OR.

To evaluate FMP, we have learned an FMP model using the public implementation

of [Yang 2013] provided by the authors. The model is trained on the Buffy dataset

[Eichner 2012b] that has been frequently used in the computer vision community and
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Figure 1.5: Qualitative evaluation results using flexible mixtures of parts [Yang 2013].
We have trained an FMP model on the Buffy dataset. We have randomly selected the
test frames from several videos recorded during real surgeries.

in [Yang 2013] as well for both training and evaluating pose estimation methods. For

DeeperCut, we use the publicly available model that has been provided by the authors

[Insafutdinov 2016]. We use the Kinect skeleton tracker that is provided with the

Microsoft Kinect cameras. Note that the Kinect tracker relies on depth and temporal

information while the two other models rely on a color image and do not use any temporal

information.

We randomly select a set of frames from several videos that have been recorded during

real surgeries performed in the operating room shown in Figure 1.4. Qualitative results

of the FMP and DeeperCut models on the selected frames are shown in Figure 1.5 and

Figure 1.6, respectively. Since the Kinect skeleton tracker cannot be evaluated off-line,

we have installed a Kinect camera in the same room and recorded the tracker during real

surgeries. A set of frames extracted from these recordings are shown in Figure 1.7. These

frames are extracted from video recordings after the first hundred frames to account for

the time required by the tracker to be initialized1.

1More examples are available at https://www.youtube.com/watch?v=iabbGSqRSgE
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Figure 1.6: Qualitative evaluation results using the DeeperCut model that was made
publicly available by the authors [Insafutdinov 2016].

1.3.3 Discussion

One can notice that the FMP model has generated many false positives and that in

spite of all the false detections, there still exist persons without any detection in all

the frames. In general, the estimated body poses are often inaccurate because body

parts are confused among different persons and false body part detections are present

on the background. The DeeperCut model performs much better than FMP and is less

subjective to false positives. It can however be seen that there still exist undetected

persons and also that the estimated skeletons are not always reliable. We believe that the

low performance of FMP and DeeperCut is due to the presence of many surfaces with

similar colors and to loose as well as textureless clinical clothes, which make the part

detection and the appearance-based pairwise constraints unreliable. Even though, the

FMP and DeeperCut methods have achieved impressive results on challenging dataset

recorded in common indoor and outdoor scenes, these results on OR data indicate that

they do not necessarily generalize well to such environments. Quantitative evaluation

results for FMP and DeeperCut approaches are provided in the following chapters.

In general, the Kinect skeleton tracker performs reasonably well in cases where

clinicians are facing the camera and located far from other persons and objects in the
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Figure 1.7: Examples of pose estimation results from Kinect skeleton tracker [Shot-
ton 2012]. These frames are extracted from video recordings of the Kinect skeleton
tracker evaluated in an operating room. We have extracted the frames after the first
hundred frames to make sure that the tracker is initialized. The segmented foregrounds
are indicated by different colors on the depth images. The estimated skeletons are overlaid
on the color images. (Picture best seen in color)

room (the frames in the left-most column of Figure 1.7). But, it should be noted that

even though arms are well localized in those cases, hip and lower body part localizations

are inaccurate. This is due to loose clinical clothes that cover whole body, which make it

difficult to discriminate between torso and lower body. The tracker often misses clinicians

and mixes the body parts of different persons. We believe that this low performance is

due to: (1) cluttered scenes that make the tracker as well as foreground estimation fail;

and (2) very different appearances of persons compared to the ones used during random

forest training, which are due to both the special clinical clothes and the top view of the

camera that has to be mounted on the ceiling. In order to address the latter one, one
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would need to retrain the forest, which is a challenging task due to the large training set

that is required.

1.4 Contributions

This thesis makes several contributions in two main areas: 1) general human detection

and pose estimation using RGB-D data; and 2) OR video analysis for applications such

as smart post-operative review.

We propose three novel part-based approaches for human pose estimation. Two

approaches are proposed to tackle the problem of human pose estimation using single-

view RGB-D images. The third approach is a multi-view approach to recover 3D human

poses by incorporating evidence across all views.

In the first approach, we propose a new method to estimate and track the upper-body

poses of clinicians in RGB-D sequences. In order to provide a temporally consistent

tracking of body parts over a sequence, which is required for applications such as radiation

safety monitoring, we present a novel method that relies on discrete Markov Random

Field (MRF) optimization. We propose an energy function that includes part detection

likelihood through a unary potential and enforces dependency constraints between body

parts using two pairwise potentials: kinematic and temporal. The kinematic potential

enforces body physical constraints. The temporal potential is used to enforce temporal

smoothness between body parts in every consecutive frame. In order to consistently track

poses over the entire sequence and also to cope with the failures of the part detector in

such a complex OR environment, we optimize the proposed energy function over the

complete sequence.

Our second contribution is the design of a robust model to leverage a pair of registered

color and depth images for performing human detection and pose estimation in visually

challenging environments such as operating rooms. Our proposed approach, referred to as

3DPS, extends pictorial structures to RGB-D data in three ways: 1) by building a more

robust and discriminative part detector that relies on both color and depth images; 2) by

constructing a more realistic deformation model that constellates parts based on their

3D distances in order to resolve the inherent ambiguity of projection from 3D to 2D; and

3) by proposing an efficient algorithm to reduce the size of the 3D state space to make

exact inference tractable. We also present a novel feature descriptor for depth images.

The descriptor encodes relative surface depth changes in a depth invariant representation.

We have evaluated the approach on several datasets recorded during real surgeries and

shown that the model generalizes well.

As a third contribution, we tackle the tasks of multiple human detection and pose

estimation in multi-view setups. The approach relies on a set of images recorded

synchronously from three RGB-D cameras to jointly detect and estimate body poses. The

multi-view multi-person pose estimation is carried out in two steps by: firstly, detecting

and generating skeleton candidates in each view; and secondly merging the skeletons across

views and refining them in 3D. We also extend our 3DPS approach to use a deep ConvNet-
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based body part detector on RGB-D images to be less subjective to false detections that

can mislead the subsequent multi-view merging and optimization methods. In addition,

we propose a random forest based prior to automatically model a priori information

about the environment and to filter spurious skeleton candidates. A novel multi-view

energy function is introduced to update 3D part positions based on multi-view cues,

which has a number of appealing properties: (1) using depth information to efficiently

and reliably estimate correspondences across views, (2) estimating reprojection costs

based on depth instead of appearance similarity, which is unreliable in OR environments

and (3) iteratively optimizing the multi-view energy function to efficiently explore a large

3D space.

As a fourth contribution, we have generated various challenging RGB-D datasets

from several days of recordings during real surgeries (see Appendix A). These datasets

have been manually annotated with ground-truth person bounding boxes and body part

locations. These datasets allow us to truly evaluate and analyze the performance of our

proposed approaches for the tasks of detecting and estimating poses of medical staff

on real OR data. To the best of our knowledge, this is the first work that presents an

evaluation on data recorded during real surgeries.

As another area of contribution of this thesis, we have used our approach to study the

room usage and moving patterns of surgical team members during different procedures.

We have also presented how our approach could be useful for several other applications

such as estimating the accumulation of radiation exposure par body part.

1.5 Outline

In this section, we briefly outline the structure of this dissertation.

Chapter 2 reviews the literature on human detection and on human pose estima-

tion. We describe the most prominent approaches related to our work and highlight

commonalities and differences focusing on both methodology and application.

Chapter 3 presents an overview of graphical models that serve as bases to build the

proposed method. We briefly describe the tree-structured as well as loopy graphical

models and inference algorithms that can be used in each case. As graphical models are

an abundant topic, we only focus on specific models that have been used to develop our

approaches.

Chapter 4 presents our approach based on discrete Markov random field for track-

ing clinician poses on single-view RGB-D sequences. This work has been published

in [Kadkhodamohammadi 2014].

Chapter 5 introduces our novel 3D pictorial structures approach on color and depth

images for human pose estimation. We also present a new descriptor on depth images that

encodes local depth level changes in a multi-scale representation. Work related to this

chapter has been presented in [Kadkhodamohammadi 2015,Kadkhodamohammadi 2017a].

Chapter 6 presents a multi-view approach to estimate clinician poses in operat-

ing rooms. This approach is based on the single-view 3D pictorial structures method
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presented in Chapter 5. Work related to this approach has been published in [Kadkho-

damohammadi 2017b].

Chapter 7 investigates the use of our approach from Chapter 6 for several applications

in operating rooms.

Chapter 8 finally concludes this work and describes possible directions for future

work.
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Human detection and pose estimation are important research objectives that have

been investigated in depth during the last few decades. This is mainly because of the

valuable information that humans detection and pose estimation can provide for a wide

range of applications, for instance, visual surveillance, activity recognition and human-

computer interaction. Human detection is defined as the process of localizing people

with 2D bounding boxes or 3D bounding cubes depending on the type of data that is

available. Human pose estimation is the process of estimating the configuration of the

body by recovering the body part positions in 2D or 3D. This process is also referred to

as body configuration recovery.

From a modeling perspective, proposed approaches for human detection and pose

estimation can be categorized into two main categories:

a. Part-based approaches. These approaches break down the problem of pose

estimation into a set of body detectors along with an inter-part dependency model.

b. Holistic approaches. Holistic approaches attempt instead to learn models that
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directly predict body part positions. In other words, these approaches are learning

a direct mapping from image pixels values or image features into person and body

part positions.

In terms of input data, existing vision-based methods can be divided into single-view or

multi-view approaches. Multi-view approaches are based on a set of images that have

been captured from different viewpoints at the same time, while single-view approaches

are only relying on input data from a single camera. Multi-view approaches have fewer

problems with occlusions, but this is achieved at the cost of a more complex system in

order to synchronize and calibrate the cameras. From another perspective, the proposed

methods can rely either on input data recorded at a single time step or on a sequence of

images recorded over time. If the body motion model is known, temporal information

can be extracted from the sequence of images to resolve detection ambiguities.

We begin this chapter by reviewing in Section 2.1 the state-of-the-art vision-based

methods for human detection and pose estimation. We then proceed by presenting

approaches that have been proposed for clinician detection and pose estimation in ORs.

This review of OR approaches will also present methods relying on other types of sensors.

We follow the same terminology as above and highlight different aspects of the

methods from both the modeling perspective and input data.

2.1 Computer Vision Methods for Human Detection and

Pose Estimation

In order to address many challenging problems associated with visual human detection

and pose estimation such as severe appearance changes (due to illumination variations,

occlusions and cluttered background) and the many degrees of freedom of the body parts,

human detection and pose estimation have been actively researched over the years. We

review RGB methods in Sections 2.1.1 and 2.1.2 depending on the number of views that

are used. We then present in Section 2.1.3 human detection and pose estimation methods

relying on RGB-D images since our proposed approaches also rely on RGB-D images.

2.1.1 Single-view Approaches

This section investigates different single-view approaches that have been proposed for

tackling human detection and human pose estimation jointly or separately.

2.1.1.1 Human Detection

In recent years, most of the approaches for human detection have focused on pedestrian

detection. Pedestrian detection has the potential to greatly impact the quality of life

through several applications in automotive safety and robotic navigation [Dollar 2012,

Benenson 2014]. However, one should note that pedestrian detection is more constrained

compared to person detection in general. Pedestrians are always appearing in upright

orientation and exhibit more regularities in pose, which make their detection more
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tractable. Pedestrian detection methods however serve as bases for most of the proposed

human detection and pose estimation approaches. We therefore proceed by first reviewing

the literature on pedestrian detection methods and then present approaches for generic

people detection.

Pedestrian detection. Early progress on pedestrian detection was made in [Gavrila 1999,

Gavrila 2000]. The authors propose exemplar-based methods that compute image edges

and then compare the edges with a hierarchy of silhouette exemplars. But, these

approaches are not applicable to realistic environments due to the highly cluttered

backgrounds and a limited number of training examples that cannot cover all possible

variations in pedestrian silhouettes. Over the last decade, great improvements have been

achieved in pedestrian detection from single monocular images using different approaches

that can be divided into three main groups:

• Sliding window detectors: These approaches scan the image using a detection

window or multiple windows over all positions as well as scales. Then, each

window is represented by a feature vector and classified independently in order

to predict the absence or presence of a pedestrian. Different representations have

been used to compute the feature vector, for example, Haar wavelet [Oren 1997,

Papageorgiou 1999], Histogram of Oriented Gradients (HOG) [Dalal 2005] and HOG

combined with motion features [Dalal 2006]. The prediction is often performed

using the Support Vector Machine (SVM) classifier [Vapnik 1995].

• Part-based models: These methods represent the person as a set of rigid parts in

combination with their spatial relationships. The parts are defined in different ways:

by relying on body part annotations [Andriluka 2009] or by mining automatically

parts based on their discriminative properties [Felzenszwalb 2010,Bourdev 2010];

• Holistic approaches: With the large increase in datasets’ sizes and computing power,

approaches are proposed to directly regress pedestrian positions from input images.

These methods are based on deep convolutional neural networks [Sermanet 2013,

Ouyang 2012,Ouyang 2013] and decision trees [Dollar 2009,Benenson 2013].

For a comparative study of recent pedestrian detection approaches on public datasets,

the reader is referred to the reviews by [Dollar 2012] and [Benenson 2014].

Generic people detection. In contrast to the vast literature on pedestrian detection,

fewer approaches are addressing the problem of generic people detection in unconstrained

environments. This is mainly due to the large pose variabilities that people can go through

compared to pedestrians. Since variations in poses change the appearance of a person

dramatically, approaches have been proposed to tackle both human pose estimation

and human detection tasks jointly. These approaches performing pose estimation are

discussed in Section 2.1.1.2.

Recently, Felzenszwalb et al. [Felzenszwalb 2010] have proposed a part-based method

to detect people in still images. The approach represents a human using a Deformable
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Part Model (DPM) that is characterized by an ensemble of rigid parts1 and their spatial

displacements. Bounding box annotations are used to learn a set of filters for the main

silhouette from HOG-based appearance representations. These filters are called root

filters. Then, a discriminative approach is used to automatically discover parts based on

the root filters. At test time, the root and part filters are deployed in a sliding window

scheme to compute part scores for every possible image position. The person likelihood

is then computed based on the scores and on an inter-part displacement model learned

from training data. The automatic part selection paradigm makes the approach suitable

for detecting different objects without the need for human experts to specify the parts.

This part-based representation also enables the approach to be robust to pose changes.

But, the approach does not explicitly consider occlusions and view-point changes that

can make some of the parts invisible.

In order to automatically mine parts by considering not only their appearance but also

their spatial configurations (i.e. body pose), an approach is proposed in [Bourdev 2009],

which relies on 3D annotations of body keypoints to construct parts. Each body annota-

tion includes 19 keypoints (full-body joints, ears, eyes and nose). The 3D annotations

and the appearance of people in the training set are mapped into a manifold in which

people with similar appearance and body configurations are close to each other. The

parts, that are called poselets, are constructed by performing clustering in this manifold.

Finally, the generalized Hough transform is used to combine poselets’ scores and localize

the person. Both DPM and poselets are using a discriminative approach to discover

the parts. Both approaches are also relying on HOG-based representations and SVM

to build part appearance models. DPM uses less than ten parts while poselets uses few

hundred parts. The poselets approach encodes occlusions and view-point changes by

relying on 3D keypoint annotations. However, the detailed annotation of 3D body pose

is a very demanding task, especially on real monocular images. The poselets approach

has been extended by using 2D body pose annotations on a large training set [Bour-

dev 2010], learning spatial relationship between poselets [Gkioxari 2014] and using deep

convolutional networks [Bourdev 2014].

2.1.1.2 Human Pose Estimation

Here we start by reviewing single-view human pose estimation methods based on the

part-based framework that is central to the work presented in this thesis. We also briefly

discuss holistic approaches.

Part-based approaches. The basic idea behind part-based models is to look for an

assembly of body parts that is feasible according to body physical constraints and that

the best fits image observations. The key ideas of the part-based model were originally

presented in [Fischler 1973]. Fischler and Elschlager proposed the Pictorial Structures

(PSs) approach that represents an object using a set of rigid parts and their spatial layout

constraints. They have discussed that the loopy dependency between parts makes exact

1Note that a part is an abstract representation and does not necessarily correspond to a specific body
part. A part can represent a set of body parts or even the whole body.
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inference intractable. In their case, where a loopy model is used, a heuristic approach is

proposed, which does not guarantee to discover the optimal solution.

Felzenswalb and Huttenlocher presented in [Felzenszwalb 2005] a computationally

efficient framework for the part-based modeling and detection of objects. This framework

is based on pictorial structures and uses a tree-structured pairwise deformation model that

encodes spatial displacement between parts. Both model learning and object detection are

cast into a probabilistic interpretation. They proposed to discriminatively and separately

learn part detectors, which are also often called appearance models. The interpart

dependency model, i.e. the pairwise deformation model, was learned by a maximum

likelihood formulation using ground-truth locations of body parts. The object matching

is then performed based on dynamic programing and belief propagation [Bishop 2006,

Felzenszwalb 2004]. In [Felzenszwalb 2004], a linear time inference algorithm based on the

generalized distance transform is proposed to find the optimal solution for tree-structured

pictorial structures. As a result, a wide variety of pictorial structures based methods

have subsequently been developed.

In [Felzenszwalb 2005], the appearance model relies on simple part templates based

on background subtraction. For that reason, the approach has only been evaluated on

images recorded in a controlled laboratory environment with clean backgrounds. In

order to address this shortcoming, Ramanan [Ramanan 2007] proposed to iteratively

parse the input image for better features. In each iteration, a soft labeling of image

pixels into region types such as background, torso, left arm, etc, is computed, which is

referred to as a parse in the paper. The initial parse is obtained from an edge-based

model. Then, color models are constructed for different regions and subsequently updated

to learn better features tuned for each image. This approach has been extended by

integrating temporal information and automatic segmentation [Ferrari 2008] and by

learning appearance models that take inter-part dependencies into account [Eichner 2009].

However, occlusions and the presence of multiple persons in close proximity of each other

can confuse these approaches.

Andriluka et al. [Andriluka 2009] have proposed to build appearance models based

on a dense shape context representation [Mikolajczyk 2005] and an AdaBoost classifier.

But, the approach does not explicitly model the occlusion or foreshortening of body

parts. Yang and Ramanan [Yang 2013] proposed Flexible Mixtures of Parts (FMP) that

encodes the body pose via a configuration of body joints instead of body parts to capture

the foreshortening of the parts. The approach also learns multiple mixtures per part to

handle appearance changes. The HOG appearance representation and SVM classifier

are used to build part appearance models, which are commonly used in the literature as

well [Yang 2013,Bourdev 2010,Gkioxari 2014].

Deep Convolutional Networks (ConvNets) have recently become popular for many

vision-based tasks including human pose estimation [Insafutdinov 2016,Tompson 2015,

Schmidhuber 2015]. Significant improvements are obtained by using deep ConvNet-based

appearance models that are capable of learning strong feature representations and of

including a wide image context through deep architectures [Chen 2014,Yang 2016]

23



Chapter 2. Related Work

In addition to the improvement of the appearance model, different approaches are

presented to construct more robust deformation models using fields of parts that incor-

porates higher-order dependencies among body parts [Kiefel 2014], adaptive pose priors

that automatically choose an image-dependent prior [Sapp 2010], stretchable models that

incorporate motion, color as well as contours [Sapp 2011], repulsive factors between left

and right body parts [Andriluka 2012a], or temporal consistency [Tokola 2013,Sapp 2011].

One should however note that these deformation models come with the penalty of ap-

proximate inference. Deep ConvNets are also used to construct image dependent pairwise

terms between body parts for models with exact [Chen 2014] and approximate [Tomp-

son 2014] inference. However, all these approaches are used in single person scenarios

while approaches such as [Yang 2013] and [Andriluka 2012a] can be used to detect poses

of several persons by sampling from the estimated pose posterior probability.

But, [Yang 2013] and [Andriluka 2012a] detect each person separately. The pictorial

structures framework has recently been extended to incorporate context when several

people in an image perform the same pose [Eichner 2012a] or complementary poses, for

example in case of dancing couples [Andriluka 2012b]. In [Pishchulin 2016], a multi-

person pose estimation approach is presented that makes no assumption about pose

dependencies among different individuals in the image. The approach first generates

a set of independent body part candidates and constructs a fully connected graph by

connecting each part candidate with all the other candidates in the set. Then, the

approach uses integer linear programing to jointly label each candidate with a unique

body part label and uniquely assign them into different individuals. However, this

optimization problem is NP-hard. The approximate inference algorithm takes about 72

hours to process a single image as reported in [Insafutdinov 2016]. [Insafutdinov 2016]

builds on [Pishchulin 2016] and proposes to use a deep ConvNet-based body part detector

and image dependent pairwise terms in conjunction with an incremental optimization

method in order to speed-up the inference. For a recent survey on part-based human

pose estimation, the reader is referred to the review presented in [Liu 2015].

Holistic approaches. Most recently, holistic approaches have become popular with the

availability of large training set and of more computing power. The approaches are often

using random forests [Shotton 2012] or ConvNets [Toshev 2014, Jain 2015,Wei 2016]

to regress for body part locations in a holistic manner. These approaches are capable

of learning strong feature representations, but, spatial body joint constraints are not

explicitly modeled. These constraints are however crucial to guarantee joint consistency

in the predicted body configuration. As a result, they may generate imperfect body pose

predictions especially in multi-person scenarios. Therefore, the current trend in human

pose estimation is to cast holistic-based approaches to the part-based paradigm to allow

for the explicit modeling of dependency constraints between body joints [Buys 2013,

Yang 2016,Tompson 2014,Chen 2014, Insafutdinov 2016].
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2.1.2 Multi-view Approaches

Rather than using data captured from one viewpoint, multi-view approaches rely on

a multi-camera system to capture a scene from different viewpoints. The multi-view

systems offer a variety of benefits. For instance, they are less subject to occlusions

and provide the possibility to recover the 3D layout of the scene. However, there still

exist challenging problems that need to be addressed in order to fully benefit from these

systems. For example, how can correspondences be established across views? How can

occlusions and incorrect correspondences be distinguished? Furthermore, estimating a

3D pose in a 3D space can be an expensive task in terms of computation cost due to both

the presence of more degrees of freedom for body parts in 3D and the larger size of the

3D state space. In the computer vision literature, various approaches have been explored

to address the aforementioned problems in order to benefit from multi-view data.

Early work on multi-view human pose estimation focused on single person scenarios

in controlled environments to reduce the ambiguity of data association [Sigal 2009].

[Gall 2010,Yao 2012,Stoll 2011] have addressed this task using 3D body models that require

to perform complex inference in a high-dimensional space of 3D body configurations.

Hofmann and Gavrila [Hofmann 2011] proposed an exemplar-based approach that recovers

3D pose exemplars per view and then relies on appearance consistency across views

and temporal smoothness for predicting 3D body configurations. All these approaches

are however relying on a constant background to reduce both false positives and the

ambiguity of the 2D to 3D back-projection process.

In order to deal with dynamic backgrounds, [Burenius 2013] proposed to use 3D

pictorial structures. But, to cope with the high complexity of exact inference in 3D and

its memory requirements, the approach uses a very coarse discretization of the 3D space

and binary pairwise constraints, which in turn limits the expressiveness of the model.

Instead, Amin et al. [Amin 2013] proposed to use the 2D PS approach of [Andriluka 2009]

per view and to perform inference in 2D using more informative multi-view pairwise

constraints. In the end, the 3D pose is reconstructed by triangulation.

In contrast to the above-cited multi-view literature, which is evaluated on single

person scenarios, multiple people pose estimation is addressed in [Mitchelson 2003] using

a hierarchical stochastic sampling scheme. The samples are ordered based on a fitness

function that relies on color, shape as well as temporal cues, and a body kinematic

model. In another work, [Huo 2012] proposed an approach to estimate occlusions in

each view based on the 2D distances among the projections of 3D silhouettes of all

persons in the scene. Then, the estimated occlusion labels and multi-view cues are used

to estimate the 3D body poses. Recently, [Belagiannis 2014a,Belagiannis 2014b] have

proposed a part-based approach that identifies part hypotheses in the views, which are

then back-projected into 3D. Finally, loopy belief propagation is used to estimate 3D body

configurations. [Amin 2014] builds on [Amin 2013] and extends the approach to perform

pose estimation in two stages. In the first stage, the approach generates multi-view body

pose hypotheses using [Amin 2013] and selects the most promising hypotheses, denoted

as key-frames. The model in [Amin 2013] is then extended to incorporate appearance
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similarities with these key-frames as an additional cue. The extended model is finally

used to predict body poses.

However, due to the inherent difficulties of acquiring multi-view input, current work

on multi-view human pose estimation is generally evaluated on scenarios recorded in

controlled laboratory environments that include people in upright poses only. Furthermore,

these approaches are proposed for multi-person scenarios in which the number of persons is

known in advance. An exception is [Joo 2015], which tackles the problems of multi-person

detection and pose tracking during social interactions over multi-view sequences in which

people exhibit a larger pose variability compared to the previously mentioned scenarios.

A panoptic studio is used to capture people. The panoptic studio requires a massive

multi-view system that consists of 480 color cameras. In this approach, FMP [Yang 2013]

is used as pose detector in each views. Body skeleton trajectories are then estimated in

3D by relying on a multi-view likelihood, body kinematic constraints and motion cues.

2.1.3 Approaches for RGB-D Data

In the last few years, the introduction of affordable RGB-D cameras (e.g. the Microsoft

Kinect One and Asus Xtion Pro) has led to many new approaches for human detection

and pose estimation. These cameras permit to simultaneously record an environment

using both color and depth images. The depth sensor captures the distance of the object

surfaces in the scene from the camera viewpoint by decoding a known pattern projected

onto the scene in infrared light. The computed depth map can serve as an important

source of information to deal with visually similar surfaces in cluttered and crowded

environments. Moreover, the depth map can be used to reconstruct the 3D layout of the

scene.

In the last few years, some methods have examined how to leverage RGB-D data

to improve pedestrian detections. In [Spinello 2011], two SVMs have been trained

separately on color and depth images. Then, the detection scores have been combined

in order to detect pedestrians. Munaro and Menegatti [Munaro 2014] have proposed

a two-stage framework to first cluster a 3D point cloud and then run an RGB-based

person detector on the clusters. Regions of interests extracted from 3D point clouds, color

and depth features as well as temporal information have also been used for pedestrian

detection [Liu 2013,Jafari 2014].

In [Shotton 2012], Shotton et al. have proposed a holistic approach for estimating

human body poses on depth images. The approach uses a Random Forest (RF) with

deep decision trees to regress for body joint locations. The approach has been trained on

a huge number of training images and successfully evaluated on foreground images of

human bodies. An extended and commercial version of this approach has been used by

the Kinect skeleton tracker. It has shown very promising results in indoor scenes such as

living rooms.

Inspired by [Shotton 2012] and its successful application in a commercial product,

Buys et al. [Buys 2013] proposed a two-step system for pose estimation. In the first

step, a RF-based body part detector is used to scan the whole depth image. Color and
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spatial consistencies between body parts are used to compute the foreground. In the last

step, the forest combined with a spatial deformation constraint is used to discover body

configurations. But, the presence of surfaces with similar color and of clutter can lead

to incorrect foreground estimation. Moreover, the approach does not take occlusions

and multi-person into account. Baak et al. [Baak 2011] proposed an exemplar-based

method to deal with self-occlusion. This approach retrieves the closest exemplar from

the database and enforces temporal smoothness to recover 3D body poses. Similarly,

Ye et al. [Ye 2011] estimate the 3D body pose from single camera in single person

scenarios by using database lookup and nonrigid registration between the exemplar and

the observation. Recently, a shallow convolutional neural network and a deep ConvNet

have been used to jointly estimate the occlusion and configuration of body parts from

a single depth image [Haque 2016]. However, these approaches are only evaluated on

single person scenarios captured in controlled laboratory environments.

Multi-view RGB-D approaches have also been proposed for human pose estimation

in single-person scenarios [Beyl 2015,Xu 2016]. The approaches have relied on multiple

RGB-D cameras to capture a person from complementary views in order to reduce the

risk of self-occlusion. However, these approaches address human pose estimation in

simple scenarios in laboratory setups and also rely on background subtraction.

2.2 Methods for the Operating Room

In previous sections, we have presented an overview on visual human detection and

pose estimation. In this section, instead of only focusing on vision-based approaches, we

review approaches that are aiming at human detection and pose estimation in operating

rooms using any kind of sensors. These approaches are generally using visual sensors,

non-visual sensors or a combination thereof.

Recently, multi-view human pose estimation approaches have been proposed for

various applications in the operating room [Ladikos 2010,Beyl 2015,Belagiannis 2016].

In [Ladikos 2010], an approach is proposed to reconstruct and track the 3D body mesh of

a physician. The approach relies on background subtraction and shape from silhouette in

a 16 RGB camera multi-view system. The reconstructed 3D meshes are used to compute

the accumulation of the radiation exposure. As stated in the paper, this work does not

aim at applying the proposed system in the OR, see Figure 2.1(a). But, this work is

mainly motivated by the need for the radiation exposure monitoring system and wants

to identify necessary components required to tackle such an application in the OR. One

of the main components is body part localization that is required both for computing

the radiation risk that varies depending on body parts’ positions and for accumulating

the risk during an intervention.

In [Beyl 2015], a four-view RGB-D camera system is used to recover 3D body

configurations to enable safe human-robot cooperation in operating rooms. The body

pose is separately computed per view by using the OpenNI skeleton tracker, called

NiTE [OpenNI 2016]. The OpenNI skeleton tracker uses a RF-based method similar

27



Chapter 2. Related Work

(a) Courtesy of [Ladikos 2010] (b) Courtesy of [Belagiannis 2016]

Figure 2.1: (a) Results on a sequence recorded in a lab using a 16 camera multi-view
system. Images recorded from one of the viewpoints are shown in the left-most column.
Corresponding radiation exposure estimations are shown in the color-coded 3D meshes
next to the images. (b) Human pose estimation results of [Belagiannis 2016] on a dataset
recorded using five RGB cameras.

to [Shotton 2012]. However, both [Ladikos 2010] and the OpenNI tracker used in

[Beyl 2015] are relying on foreground segmentation, which is difficult to compute in real

operating rooms as they have complex dynamic backgrounds. Moreover, these approaches

have been only evaluated on single person scenarios recorded in controlled laboratory

environments.

A multi-person pose estimation approach is presented in [Belagiannis 2016]. The

approach uses a five-view RGB camera system and estimate the body poses in three steps.

First, the multi-view tracking system of [Berclaz 2011] and foreground segmentation

are used to generate person trajectories over a complete sequence. Second, given the

detection bounding boxes provided by the tracker, a deep neural network is used to

generate part hypotheses in each view for each person separately. Third, the 3D body

part pose of each individual is computed by using the 3D pictorial structures method

of [Belagiannis 2014a]. Figure 2.1 displays the five viewpoints used to record a dataset

and the 3D poses projected to all views. One should note that this dataset has been

recorded during two simulated medical procedures, which does not include all the visual

challenges occurring during live surgeries. Moreover, foreground segmentation is not a

trivial task to perform in real operating rooms.

Instead of camera sensors, [Agarwal 2007] uses RFID tags to detect the presence/ab-

sence of clinical staff and tools. This data is combined with patient monitoring signals as
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well as patient history to construct the context of surgical procedures and automatically

detect medically significant events. However, in practice, since many RFID tags are

present in the room and can be in close proximity of each other, data may get lost due

to interferences among the signals returned by the tags. Moreover, people locations

cannot be obtained using RFIDs, even though they can provide crucial information for

understanding the OR context [Meißner 2014]. In addition to the technical limitations of

RFID, it is also difficult to use this technology in operating rooms because of several

critical issues such as interferences with other signals, the tedious task of tagging all

tools ranging from pretty big to very tiny ones and more importantly the strict infection

control regulations in ORs.

In order to track 3D positions of clinical staff, [Bardram 2011] uses the Ubisense

real-time location tracking system that is capable of tracking persons who are wearing a

tag. In addition, RFID tags are used to detect tools that are used during a procedure.

The paper underscores the importance of tool detection and 3D people tracking in order

to study the workflow in the operating room. However, in addition to the difficulties

implied by the use of the RFID tags, the experimental results show that the tracking

system is very noisy and unreliable even during experiments performed in a mock-up

operating room.

In another work, an ultrasound-based location system is used to track the 3D positions

of the medical staff during neurosurgical operations in order to recognize surgical stages

and monitor surgical workflow [Nara 2011]. The 3D location estimation system consists

of ultrasonic transmitters worn by staff and an array of receivers mounted on the ceiling

of the OR. The staff’s trajectory patterns are analyzed to monitor the progress of a

procedure and also to automatically detect risky situations. This work has recently been

extended in [Nara 2015] by incorporating optical flow computed from single-view color

video recordings. The system has been evaluated in an OR at Tokyo’s Women’s Medical

University, Tokyo, Japan. The results show that the video data and 3D trajectories

obtained by the Ultrasound-based system are providing complementary information for

improving surgical phase recognition. However, to properly track people, a line of sight

between the transmitter tag and at least three receivers is required, which is challenging

to fulfill in operating rooms with low ceiling or with many articulated arms mounted

on the ceiling. Moreover, by using this type of 3D tracker, the system is limited to only

rely on the 3D locations of people, while localizing their body parts can provide a much

richer source of information as demonstrated in [Wong 2015].

2.3 Thesis Positioning

As discussed in Chapter 1, localizing people and estimating their poses are essential for

many applications in the operating room. Due to the OR’s requirements, cameras are

currently the only practical option to sense operating rooms during real surgeries. The

operating room is however a very visually challenging environment due to clutter, similar

color of clothes and equipment and occlusions. We propose to use RGB-D cameras
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to capture the environment using two complementary color and depth sensors. We

investigate different directions to make use of different types of data, namely single-view

images, temporal sequences and multi-view images for designing robust human pose

estimation models.

Our approaches are built upon the part-based framework that enables us to explicitly

model body part articulations and also to learn model parameters using a small dataset.

In this thesis, we introduce a novel single-view RGB-D approach for human detection

and pose estimation. Our approach is based on the pictorial structures framework [Fis-

chler 1973,Felzenszwalb 2005], which is the dominant part-based approach, and extends

pictorial structures in two ways:

• We extend appearance models to construct part detectors based on both color and

depth images. In contrast to [Jafari 2014,Spinello 2011] where HOG, which was

originally proposed for color images, is used on depth images, a new descriptor

is proposed to encode surface depth changes of objects on the scene. Color and

depth detectors are separately learned in [Haque 2016,Munaro 2014]. In contrast,

our appearance model jointly relies on color and depth images to benefit from the

complementary information coming from the two inherently different sensors.

• The deformation model is extended to rely on 3D constraints instead of 2D con-

straints [Insafutdinov 2016,Yang 2016,Amin 2013,Yang 2013,Felzenszwalb 2005].

[Burenius 2013] allows for exact inference in 3D. But, to make the exact inference

tractable, this approach uses a coarse discretization of the space, which leads to

the loss of appearance information, and also uses simple binary pairwise terms.

Instead, our approach keeps all appearance information and does not enforce any

constraints on pairwise terms.

To enable smooth tracking, temporal information is used in different ways in the

literature to enforce pose smoothness across frames [Baak 2011,Amin 2014,Hofmann 2011,

Sapp 2011,Tokola 2013]. In this thesis, we investigate a novel approach to estimate 3D pose

over an entire sequence. The approach encourages long-term temporal consistency across

the entire sequence, which is in contrast to [Sapp 2011,Baak 2011,Hofmann 2011] that are

only enforcing temporal consistency between consecutive frames. [Belagiannis 2016] relies

on the entire sequence to determine person trajectories, but body poses are estimated

for each frame separately. [Tokola 2013] also enforces temporal consistency over the

entire sequence by generating a set of trajectory hypotheses for each body part. A

greedy algorithm is however used to build these trajectories, which does not deal with

multi-person scenarios. By defining the smoothness terms in 3D, our approach reduces

the ambiguity of 3D to 2D projection.

In this thesis, we also propose a multi-view human pose estimation method for scenes

with multiple persons. Current multi-view approaches are proposed either for single-

person scenarios [Burenius 2013,Hofmann 2011,Amin 2014] or for multi-persons scenarios

in which the number of persons are known a priori [Luo 2010,Belagiannis 2014a]. Our

approach allows to jointly detect and estimate the poses of multiple persons in multi-view
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RGB-D setups. In order to reliably detect people and provide good candidates per

view, we propose to automatically learn a priori information about the environment and

human body kinematic constraints, which is in contrast to current approaches relying

on a body kinematic prior alone [Belagiannis 2016,Amin 2013,Burenius 2013], and also

propose to use a ConvNet-based body part detector with more informative 3D pairwise

constraints instead of 2D pairwise constraints [Amin 2014,Yang 2016,Pishchulin 2016]

or image dependent pairwise constraints [Chen 2014, Insafutdinov 2016]. Similarly

to [Belagiannis 2014b, Belagiannis 2016], our multi-view energy function drives the

body parts towards their optimal 3D locations by jointly optimizing over all views.

But, we use depth data to compute reprojection costs and to establish correspondences

across multiple views instead of relying on appearance similarity and on triangulation

[Gall 2010,Luo 2010,Amin 2014,Belagiannis 2014b,Belagiannis 2016]. To the best of

our knowledge, this is the first approach that makes use of joint RGB-D data to address

human detection and pose estimation in multi-view setups.

To the best of our knowledge, this is also the first work that addresses clinician

detection and pose estimation in real operating room using data from real surgeries.
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Probabilistic Graphical Models (PGMs), which are also called graphical models, are

a unifying framework that combines probability theory and graph theory to elegantly

represent various real-world problems. Graphical models provide a powerful formalism

to jointly capture uncertainty and dependency constraints to model and attack many

real-world problems in different scientific and engineering fields. Probabilistic graphical

modes have also become an extremely popular tool for solving computer vision problems

in the last two decades due to their flexibility as well as modeling power and to significant

improvement in inference methods for such models.

In this chapter, we present a brief overview on graphical models, which are used in

the following chapters. We assume a basic background on probability theory and begin

by describing two common types of graphical models: Bayesian Networks and Markov

Networks. Then, probabilistic inference techniques are described, which are used to

compute the probability of outcomes given observed data.

33



Chapter 3. Probabilistic Graphical Models

3.1 Bayesian Networks

A Bayesian Network (BN) is represented by a directed acyclic graph. Hence, it is also

called a directed graphical model. Let G = (V,E) denotes a graph consisting of a set of

nodes V and a set of edges E.

A Bayesian network is defined by a pair (G,Θ), where G is a directed graph in

this case and Θ is the set of model parameters. In the graph, the nodes correspond

to the variables that we want to model and the edges indicate dependencies among

the variables. More specifically, the graph illustrates the conditional independence

assumptions in the probability distribution1 represented by the BN, which are called

the Markov independence assumptions. In order to define these assumptions, we need to

introduce a few definitions on directed acyclic graphs. The parents of a node i are all

nodes that have an arrow ending at the node. The descendants of a node i are all nodes

that have a directed path in G, which begins at node i.

Definition 3.1.1 Let X,Y and Z be three sets of random variables. We say that X is

conditionally independent of Y given Z in a probability distribution P if

P (X,Y|Z) = P (X|Z)P (Y|Z),

which is denoted by (X ⊥ Y|Z). �

Definition 3.1.2 Given a BN defined over the variables X1, ..., Xn, the BN graph G

encodes the following set of conditional independence assumptions among these variables,

called Markov independence assumptions:

∀Xi

(

Xi ⊥ NonDescendants(Xi)|Parents(Xi)
)

. �

In other words, the Markov independence assumptions state that each node i (i.e.

Xi)
2 is conditionally independent of its non-descendants given its parents.

The other component of a Bayesian network Θ is the set of conditional probability

distributions for all variables in the graph. The probability distribution for each variable is

conditioned on its parent nodes in the graph. Considering the set of Markov independence

assumptions, the probability distribution over all random variables in the network is

factorized and computed by the chain rule:

P (X) =
∏

i

P
(

Xi|Parents(Xi)
)

. (3.1)

To illustrate above mentioned concepts, let us look at the example Bayesian network

shown in Figure 3.1. The graph indicates that we have five variables. The BN describes

a set of Markov independence assumptions, for examples, (A ⊥ B|∅), (C ⊥ D|{A,B})

1Since in the following chapters we only consider discrete variables, throughout this chapter we assume
that the variables are discrete.

2Since there is a one-to-one mapping between the graph nodes and the corresponding random variables,
we use node i and variable Vi interchangeably to refer to the random variable.
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A B
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1 1 0 0.8

1 1 1 0.2

(a) (b)

Figure 3.1: A Bayesian Network: (a) the directed graph encoding dependencies among
variables, (b) probability tables corresponding to the factors in the graph.

and (D ⊥ {A,C,E}|B)3. The network gives us the factorization P (A,B,C,D,E) =

P (A)P (B)P (C|A,B)P (D|B)P (E|C). Note that since the variables are binary, the full

joint distribution of P (A,B,C,D,E) requires 25 − 1 = 31 independent parameters. The

BN representation, however, needs 1 + 1 + 4 + 2 + 2 = 10 parameters. In general, this

compact representation results in fewer parameters and therefore requires less data to

learn. More importantly, this representation is crucial to make inference tractable, which

is described in Section 3.3.

3.2 Markov Networks

There exists many real-world phenomena where we cannot naturally attribute direc-

tionality to the interaction between the variables. Markov Networks are the other class

of probabilistic graphical models that offer a powerful tool to model and learn those

phenomena. Markov networks are defined over undirected graphs and are also known as

Markov Random Fields (MRFs).

Similarly to the Bayesian network, an MRF is defined by a pair (G,Ψ), where G

is an undirected graph in this case and Ψ is a set of potential functions specifying

network parameters. The edges in the graph encode affinities among variables, but do

not enforce any directionality (i.e. no parent or descendant relationships). Therefore, the

potential functions cannot be straightforwardly interpreted as probabilities or conditional

probabilities.

In order to present Markov random fields, we need to establish some notations and

introduce some concepts as well as definitions that will be useful throughout the chapter.

3Please note that these are not the complete set of Markov independence assumptions and ∅ denotes
empty set.
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Let Xi denotes the random variable corresponding to the ith node in V. We denote by

xi the instantiation of Xi, where xi takes its value from the set of all possible values Xi

called the state space of Xi (i.e. xi ∈ Xi).

Definition 3.2.1 Two nodes in a graph are adjacent if both of them are the endpoints

of the same edge. �

Definition 3.2.2 A clique is a subgraph of an undirected graph such that every two

distinct vertices in the subgraph are adjacent. �

Definition 3.2.3 Let us define the domain dom(X) of X = {X1, ..., Xn} to be the

set of all values x that can be taken from the joint state space of the variables ( i.e.

x ∈ X1 × X2 × ...× Xn). A potential function or factor ψ(X) over a set of random

variables is defined as a mapping from dom(X) to a non-negative real number:

ψ(X) : dom(X)→ ❘
+. �

In MRFs, each potential function ψ is defined over a clique. It should be noted that

it is not required to define potential functions for all cliques in the graph. But, every

potential function should be defined over a clique.

In a similar way to BN, the connectivity in the graph can be used to extract the set

of Markov independence assumptions in an MRF.

Definition 3.2.4 Given a Markov network defined over the variables X = {X1, ..., Xn},

we define the Markov blanket of a variable Xi as the set of its adjacent variables in the

graph G, denoted NG(Xi). The graph encodes the following Markov independence

assumptions: Xi is independent of the rest of the variables given its adjacent variables.

Formally:

∀Xi

(

Xi ⊥ X− {Xi} − NG(Xi)|NG(Xi)
)

. �

The set of potential functions can be used to compute the joint probability distribution

over the random variables (nodes) in an MRF:

P (X) =
1

Z

∏

c

ψc(Xc), (3.2)

where c belongs to the set of cliques contained in the graph G, ψc is the potential function

defined over the set of variable Xc in the clique c and Z is the partition function. The

partition function is defined as:

Z =
∑

x∈X

∏

c

ψc(Xc = xc). (3.3)

The partition function works as a normalization factor to make the probability sum to

one.

In summary, the Markov independence assumptions imply that a distribution in a

MRF factorizes according to the network structure. The interactions between a subset of

variables that are in a clique, can be modeled via positive potential functions.
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3.3 Inference

Both BN and MRF represent the full joint probability over a set of random variables,

where dependencies among variables are encoded by the corresponding graph. Inference

in these models corresponds to asking probabilistic queries about sets of variables. The

two most common query types are conditional probability and Maximum A-Posteriori

(MAP) queries.

In a conditional probability query, we are interested in estimating a distribution over

a subset Y of random variables in the network, denoted as target variables, given the

observed values for a subset X of the random variables in the network. In a mathematical

notation, we want to compute P (Y|X = x) = P (Y,x)
P (x) , where x is an instantiation for the

set of random variables X.

In a MAP query, we want to compute the most likely assignment to a set of

query/target variables Y conditioned on observed variables X, where both are dis-

joint subsets of variables in the network. More formally, our task is to determine

y∗ = argmaxy P (Y = y|X = x). The MAP problem can be solved by performing a con-

ditional probability query on the set of target variables and then by finding an assignment

for the target variables, which has the highest conditional probability. However, since

computing the distribution in case of a conditional probability query is computationally

expensive [Cooper 1990,Koller 2007], this is not a very satisfactory approach to solve

this inference problem. Moreover, in some cases, it is possible to directly target the MAP

problem.

[Cooper 1990] shows that probabilistic inference in graphical models is in general

NP-hard indicating that exact inference is intractable in time and in memory. As a result,

many computationally tractable inference algorithms are proposed for special cases in

order to perform exact inference [Schlesinger 2006,Felzenszwalb 2005] or approximate

inference [Komodakis 2008,Wang 2013].

In computer vision, graphical models are often used in order to label pixels/regions

of the observed image with different classes, e.g. objects, body parts and people. This

corresponds to MAP inference in graphical models. It can also be shown that any

Bayesian network can be converted into an MRF. We therefore continue this chapter by

introducing algorithms for performing MAP inference on MRF.

For the sake of notation simplicity, let us write the maximum a-posteriori inference

as:

y∗ = argmax
y∈Y

P (Y = y) (3.4)

where Y is a subset of the variables in the MRF graph and y is an instantiation of the

variables from the joint state space Y . The rest of the variables on the graph are clamped

to the observed values. Since the potential functions are positive by definition, we can

use a logarithmic transformation to define:

ec(Yc) = − lnψc(Yc), (3.5)
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where c is a clique and ec(Yc) is often called an energy function. The joint distribution

P (Y) can be represented by:

P (Y) =
1

Z
exp(−E(Y)), (3.6)

where

E(Y) =
∑

c

ec(Yc). (3.7)

E(Y) represents the energy of the MRF. MAP inference in Eq. (3.4) corresponds to the

minimization of E(Y) as follows:

y∗ = argmin
y∈Y

E(y). (3.8)

In general, this energy minimization can be solved exactly or approximately depending

on the complexity of the potential functions in polynomial time [Barber 2012,Wang 2013].

The belief propagation algorithm is commonly used to solve this optimization, which is

presented next.

3.3.1 Belief Propagation

Relying on message passing schemes, [Pearl 1988] presents the Belief Propagation (BP)

algorithm to optimize the energy of an MRF. In this algorithm, each node receives

messages from its direct neighbors and updates its current state, referred to as a belief,

accordingly. The algorithm then proceeds by propagating messages around the graph

until it converges to a consensus that all nodes agree on the messages they are sending.

In tree-structured networks, we can use BP to compute the optimal solution. The

optimal solution is computed by using root node belief and back-tracing the messages.

Therefore, to avoid repeated computations during back-tracing and also when a node

needs to send a message several times, e.g. in case of more than one parent, exact

inference algorithms have historically been obtained using dynamic programming. We

will present a variant of BP that works on a subclass of MRFs called pairwise Markov

networks. The pairwise MRF represents distributions where all potentials are over at

most two variables. One can show that any non-pairwise MRF can be expressed using a

pairwise MRF [Koller 2007].

In a pairwise Markov network, we can rewrite the energy minimization of Eq. (3.8)

as:

y∗ = argmin
y∈Y

∑

i

ei(yi) +
∑

i,j

ei,j(yi, yj), (3.9)

where ei(yi) and ei,j(yi, yj) are the energy functions defined over unary and pairwise

potentials, respectively. The optimal solution y∗ = {y1, ..., yn} corresponds to a setting
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of the variables that has the highest joint probability. We denote the message passed

from node Yj to node Yi by µj→i. In the beginning, we initialize all messages to one and

then use the following message update formula:

µj→i(yi) = argmin
yj∈Yj

(

ej(yj) + ei,j(yi, yj) +
∑

yk∈NG(Yj)\Yi

µk→j(yj)
)

(3.10)

In fact, µj→i(yi) finds the best instantiation of Yj as a function of yi according to the

information of its neighboring nodes. An estimation of current energy at node Yi = yi is

computed according to:

bi(yi) ∝ ei(yi) +
∑

yj∈Neighbors(yi)

µj→i(yi), (3.11)

where ∝ denotes proportional relationship. The current energy of bi(yi) reflects the

node’s and its neighboring node’s information, hence called a belief. In this stage, the

beliefs can be used to estimate the marginal probability distribution for each variable

if needed, e.g. in case of a conditional probability query. The above scheme is used

to iteratively update messages and beliefs. We stop updating when all messages stay

unchanged from one iteration to the next one. This algorithm can be used for both loopy

and tree-structured networks.

In case of loopy networks, BP does not guarantee to converge to the optimal so-

lution. Different scheduling schemes are used to pass messages around the network

to generate an approximate solution for the problem, which are known as loopy belief

propagation. [Bishop 2006,Barber 2012]. In practice, loopy belief propagation gives a good

approximation of the correct marginal if it converges. But, there might be oscillations in

the messages in some cases, which will produce poor results [Murphy 1999]. Therefore,

other approximation methods such as numerical stochastic sampling methods, known

as Markov Chain Monte Carlo (MCMC) [Andrieu 2003] and variational methods that

are based on deterministic approximations [Grimmer 2011] have also been proposed.

Given infinite computational resources, MCMC methods can generate exact results. In

practice, because sampling methods are extremely demanding in term of computation,

these methods are often used for small-scale problems. Instead, variational methods

analytically derive an approximation of the inference problem, which often scale well to

large applications. In Section 3.3.1.2, we briefly describe a variational technique that is

based on linear programming.

For tree-structured network, we can determine the optimal solution by performing one

round of message passing. Note that in a tree, one can define parent-child relationships,

when the root node is specified. We start by passing messages from leaf nodes upwards

to the root node in the tree. When the root node receives all message from its child

nodes, the nodes’ beliefs will not be updated anymore. Hence, the optimal solution

can be computed. This schemes can also be applied to compute marginal probability

distribution for any variable or set of variables in the tree [Barber 2012].
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(a) (b) Courtesy of [Felzenszwalb 2005].

Figure 3.2: Pictorial structures: (a) MRF model used in PSs [Felzenszwalb 2005],(b) a
body part configuration recovered using PSs.

In order to estimate the time complexity of the above mentioned inference algorithm,

let us assume that the tree consists of n nodes and the size of the state space for a

variable Vi is h (i.e. h = |dom(Vi)|, where |.| denotes the cardinality of a set). Since the

messages need to be propagated from every possible state in the child’s state space to

every state in the parent’s state space, the time complexity of passing message from

one node to its parent is O(h2). In total, the inference takes O(h2n) as it is necessary

to repeat the message passing step for every edge in the tree. [Felzenszwalb 2004] has

presented a variation of belief propagation to perform exact inference in linear time in

the size of the state space, which we describe below.

3.3.1.1 Generalized Distance Transform

Felzenszwalb and Huttenlocher [Felzenszwalb 2005, Felzenszwalb 2004] proposed an

efficient approach for inference in tree-structured Pictorial Structures (PSs), which is a

tree-structured pairwise MRF used in computer vision. Pictorial structures is a method

used to detect articulated objects. Figure 3.2 shows an example of pictorial structures

and its corresponding pairwise MRF model. The nodes in the graph represent different

components of the object (here body parts). In a similar way to Eq. (3.8), the pictorial

structures approach defines an energy E(Y) over the pairwise MRF graph. The unary

potentials capture the likelihood of parts being present at an image location. The pairwise

potentials encode body kinematic constraints.

[Felzenszwalb 2004] proposed an efficient exact inference algorithm in tree-like pairwise

MRFs using Generalized Distance Transform (GDT). The traditional distance transform

associates the distance between every point on a grid G and the closest point in a given

set B ⊆ G. More formally:

DB(p) = min
q∈B

(

d(p, q) + ✶B(q)
)

, (3.12)

where d(p, q) is a measure of distance between p and q. The function ✶B(q) indicates the
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membership of an element q in the set B, and has value zero when q ∈ B, ∞ otherwise.

The generalization of this distance transform was introduced in [Felzenszwalb 2004] by

replacing the indicator function with an arbitrary soft function f : G → ❘ over the grid

G:

Df (p) = min
q∈G

(

d(p, q) + f(q)
)

. (3.13)

Given h = |G|, [Felzenszwalb 2004] proposed a linear time algorithm to compute the

distance transform of f in O(h) time under the following conditions:

• G should be a regular grid. For example, a two dimensional grid G = {0, ...,m−

1} × {0, ..., n− 1} must be used in case of a 2D image of size m× n.

• The grid should be fully connected. In other words, the closest grid location q for

a point p could be at any location on the grid G.

• The distance measure d(., .) is restricted to be the squared Euclidean distance.

In [Felzenszwalb 2005], GDT and dynamic programming have been used to solve

efficiently the MAP problem of Eq. (3.10) where the MRF labels are the image locations

on the grid. For the MRF of pictorial structures, the inference algorithm begins by

finding the best grid location for each leaf node in the tree as a function of its parent

D
′

ei
(yj) = argmin

yj

(

ej(yj) + ei,j(yi, yj)
)

, (3.14)

where D
′

is GDT where min is replaced by argmin. Similarly to Eq. (3.10), the tree is

traversed towards its root by updating the belief for any node by D
′

e
′

i

. The function e
′

i

is simply the sum of the unary energy and the beliefs delivered by child nodes, which

are computed by dynamic programing. A detailed derivation of inference for PSs can

be found in [Felzenszwalb 2005]. One can notice that in this case, the inference runs in

O(hn) instead of O(h2n) time. It is worth mentioning that since the run time is mainly

driven by the size of the state space (i.e. h), this algorithm dramatically reduces the

computation time.

Therefore, the pictorial structures framework serves as a basis for the development of

many articulated object detection approaches, some of which have already been discussed

in Chapter 2. However, to benefit from the linear time inference algorithm, one should

use tree-structured MRF models, where the domain of the variables are defined over a

fully-connected regular grid and the pairwise potentials are only relying on Euclidean

distances between the nodes. These constraints limit, in turn, the expressiveness of the

model for some real-world problems that require loopy dependency between variables

or more complex potential functions. Next, we present a framework that permits to

efficiently perform approximate inference on loopy MRF models, where the domains of

the variables can be any finite set of values and are not limited to regular grids anymore.
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3.3.1.2 Fast Primal-dual MRF Optimization

In [Chekuri 2001], a framework has been presented to cast the problem of MRF opti-

mization as an integer programming problem. A wide class of MRFs can be solved by

this framework as it only requires the potential functions to satisfy ψ(yi, yj) = 0 ⇐⇒

yi = yj and ψ(yi, yj) = ψ(yj , yi) > 0.

The corresponding integer programming problem is written as follows:

y∗ = argmin
y∈Y

∑

i

(

∑

yi

ei(yi)Ii(yi)
)

+
∑

i,j

(

∑

yi,yj

ei,j(yi, yj)Ii,j(yi, yj)
)

subject to
∑

yi

Ii(yi) = 1 ∀Yi ∈ Y

∑

yi

Ii,j(yi, yj) = Ij(yj) ∀yj ∈ G, (i, j) ∈ E

∑

yj

Ii,j(yi, yj) = Ii(yi) ∀yi ∈ G, (i, j) ∈ E

Ii(.), Ii,j(., .) ∈ {0, 1}

(3.15)

In a MRF, E is the set of all edges in the graph, and the grid G specifies the state space

of the variables, which is also called the label set in this formulation. The binary variables

Ii(.) and Ii,j(., .) are indicators of the label taken by the node. If all imposed linear

constraints are satisfied, one can show that the above integer programming is equivalent

to the original MRF energy minimization of Eq. (3.8) [Chekuri 2001,Komodakis 2007].

The primal-dual scheme is a very popular and powerful technique to solve integer

programing problems [Komodakis 2007,Wang 2013]. In order to apply primal-dual scheme,

[Komodakis 2007] proposed to relax the last integrality constraints (i.e. Ii(.), Ii,j(., .) ∈

{0, 1}) to the constraints Ii(.) ≥ 0, Ii,j(., .) ≥ 0. Depending on the properties of the

MRF’s potentials, different primal-dual optimization methods are proposed, which in

practice, generate nearly optimal results. In [Komodakis 2008], an algorithm called

fast-PD is proposed to solve the relaxed linear program. Fast-PD exploits information

computed based on solutions for both the primal problem and also its corresponding

dual problem to speedup the optimization. The evaluation results in [Komodakis 2008]

have shown that the algorithm yields significant speedup over other primal-dual based

techniques without making any compromises regarding the optimality of the results.

3.4 Chapter Summary

In this chapter, we present an overview of the probabilistic graphical models. We briefly

describe two types of graphical models, namely Bayesian networks and Markov random

fields. Inference in probabilistic graphical models is also discussed. An efficient version

of belief propagation is presented for solving inference in tree-structured MRFs in linear

time. We also describe the fast-PD algorithm for inference in loopy MRFs. In the

following chapters, we use these models to develop our approaches for performing human
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detection and pose estimation in real operating rooms.

For a more detailed explanation of modeling, learning and inference in probabilistic

graphical models, we refer the reader to [Barber 2012]. A review on using MRFs in

computer vision is presented in [Wang 2013].
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In this chapter, we address the problem of temporally consistent pose estimation in

Operating Rooms (ORs). A solution to this problem is required in applications that rely

on the locations of the body parts over time, such as radiation monitoring, where it is

interesting to compute the accumulation of the dose received by each body part. We

formulate the problem as a Markov Random Field (MRF) energy optimization defined

over an entire set of frames. The proposed MRF energy formulation incorporates image
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evidence along with body kinematic and temporal constraints in order to consistently

track the body parts of medical staff in short RGB-D sequences. The proposed method

is presented in Section 4.2. Evaluation results, presented 4.3, indicate that the proposed

approach can consistently track the body parts of multiple persons over an entire sequence.

4.1 Introduction

One of the applications motivating our approach is radiation monitoring. The dramatic

increase of the intra-operative usage of x-ray based imaging devices raises indeed the

exposure of medical staff to radiation. It is well known that long-term exposure to

x-ray can have negative effects on the body, which in the extreme can cause cancer

[Vanhavere 2008]. As reported in [Carinou 2011,Ladikos 2010], a correct estimation of

radiation exposure requires to compute the exposure at different body parts. Hence,

the current practice of using a single dosimeter is not enough to provide an accurate

estimation of the radiation exposure of the full body. However, it would be impractical to

ask medical staff to wear a multitude of dosimeters on a regular basis, especially on their

head and hands. Thus, there exists a need for a noninvasive radiation monitoring system

that can be implemented by combining vision-based pose estimation with radiation

simulation as in [Ladikos 2010] and [Loy Rodas 2015].

In order to accurately estimate the accumulation of radiation per body part over

time, a pose estimation approach yielding temporally consistent results during the short

bursts of emission from the x-ray device is necessary. Hence, in this chapter, we focus on

consistent upper-body tracking of medical staff present in the operating room during

such short sequences. Since the lower-body is generally less susceptible to movement

and is occluded by the apron or by the patient table, we exclude it from the tracking

approach. We use an RGB-D camera to capture the operating environment and propose

to formulate the pose estimation problem as an optimization over the entire sequence

using Markov random fields. We introduce a robust cost function that drives the body

parts towards their optimal locations by relying on part detection confidences obtained

using a body part detector. It also simultaneously enforces body kinematic and temporal

constraints over the sequence.

The part detection confidences are computed using the random forest based approach

presented in [Buys 2013]. The approach is inspired by the success of random forests

in detecting body parts on foreground images [Shotton 2012]. [Buys 2013] relies on a

pair of registered color and depth images (a sample pair is shown Figure 4.1(a,b)) and

uses random forests in combination with a clustering algorithm to eliminate the need for

background subtraction. The approach first assigns a unique label to each image pixel,

which could be either background or one of the parts. Then, the predicted labels, color

and depth are used to cluster the image pixels into a set of segments, called blobs, that

are labeled based on majority voting. Finally, the detected parts, i.e. blobs with body

part labels, are parsed using dynamic programming for body skeleton estimation. This

approach focuses on single-frame pose estimation and the estimated skeletons are often
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inconsistent between consecutive frames due to noise, motion and occlusions.

To enable smooth tracking, temporal cues and temporal dependency constraints

between body parts in consecutive frames have been used in [Sapp 2011,Amin 2014,

Ferrari 2008]. But, these works cannot guarantee long-term temporal consistency across

the entire sequence. Approaches have been proposed to leverage information across

the entire sequence for generating temporally consistent object trajectories [Butt 2013,

Berclaz 2011]. These approaches do not incorporate object articulations, which is

necessary for reliably tracking human poses. Few works address the body pose estimation

problem as an optimization over the complete sequence. In [Baak 2009], the 3D pose

estimation is refined on a complete multi-camera sequence by iteratively using action

recognition for retrieving motion priors to restrict the space of possible poses. The

evaluation results on single person scenarios show that the combination of pose estimation

and motion prior improve both tracking and pose estimation. However, the approach

relies on foreground segmentation to estimate body poses in each view, which is not easy to

obtain in cluttered and dynamic environments such as operating rooms. In [Tokola 2013],

an approach is proposed to generate a set of trajectory hypotheses for each body parts

and estimate the body pose over the complete sequence by selecting a collection of body

part trajectories. A greedy algorithm is used to build these trajectories, which does not

deal with multi-person scenarios.

In this chapter, we propose an approach to consistently track upper-body parts of

multiple persons over the entire sequence. We cast the problem as an MRF energy

optimization over the complete sequence. The body part trajectories are constructed by

using the body part detection responses in all frames in combination with the positions

for the body parts in the first and the last frames, which are provided manually. Then,

an efficient discrete optimization is used to solve the MRF optimization and drive the

parts towards their optimal locations in 3D.

4.2 Method

We define the upper-body pose of a person using the positions of 17 keypoints as shown

in figure 4.2. We follow the body kinematics to enforce dependencies between body

parts, which are defined as a tree-structured graph over these parts and rooted at the

left chest. This is the same skeleton as the one defined in [Buys 2013], but restricted to

the upper-body and rooted at the left chest instead of the neck.

Given a set of consecutive RGB-D frames and upper-body poses for the persons in the

first and last frames, our goal is to consistently track the poses of the persons over the

whole set of frames. In order to consistently estimate and track upper-body pose over a

sequence, we define the Markov random field graph G over the entire sequence. The graph

G is constructed by connecting the upper-body skeleton tree of each person in consecutive

frames, as shown in figure 4.3. G = (V,E), where V is the set of nodes representing the

upper-body parts and E is the set of edges defining the dependencies between the body

parts of each person. Two types of edges are to be considered: kinematic edges (Ek),
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(d)(c)

(b)(a)

Figure 4.1: (a,b) Example of a pair of color and depth images captured using an consumer
RGB-D camera. (c) A sample body part detector response obtained using [Buys 2013].
(d) Overlay of the estimated 3D upper-body skeletons on the reconstructed point cloud.

connecting body parts in each frame, and temporal edges (Et), connecting the same

body parts in consecutive frames. As a result, each person has a connected graph over

the sequence.

Pose estimation is then performed by iteratively optimizing an energy function defined

over the Markov random field by using discrete optimization. In order to perform the

optimization, we need to first initialize the part position (i.e. the nodes in the graph) which

is obtained using part detection responses, described below. During the optimization,

each node can take its value from a finite set of predefined values, often referred to as

the label set. In our case, the label of a node specifies a 3D displacement with respect to

the initial position of the part. Therefore, by solving this multi-label MRF optimization,

the optimal label, i.e. relative 3D displacement, for each part can be found. The final

3D positions of the body parts are computed by using these 3D displacement labels to

update the initial positions of the parts.
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Figure 4.2: Upper-body kinematic tree consisting of 17 keypoints. The root node in this
tree is the left chest.
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Figure 4.3: MRF graph with kinematic (black lines) and temporal (dashed blue lines)
edges over body parts.

4.2.1 Body Part Detection and Person Trajectory Initialization

A depth body part detector is applied to compute the initial position and also to drive

the MRF optimization. The random forest based detector of [Buys 2013] is used and

hereafter referred to as BPD (Body Part Detector). The BPD uses a random forest

model to exhaustively scan the depth image and determine the class of each pixel, which

could be either one of the body parts or background. Figure 4.1(c) shows a body part

detection response where different colors are used to indicate different classes. The

resulting detections are then clustered into blobs based on their class labels, colors

and 3D positions that are obtained by re-projecting the points into 3D by using their

corresponding depth values. This results in a list of blobs per body part and frame. We

associate a confidence value to each blob by counting the number of pixels voting for the

part within the blob and by normalizing the values with the size of the largest blob in

the frame corresponding to the same part. This gives low confidence to the small blobs

that occur frequently in noisy data.
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The blob list corresponding to left chest detections in all frames are used along with

the left chest positions in the first frame to build initial 3D trajectories for all persons

present in the video since the left chest is the root of the kinematic tree. To construct

an initial trajectory for a person, the position of the left chest of the person in the first

frame is required and provided manually or from the ground-truth data. For the rest of

the frames, the left chest blob with highest confidence in a sphere of radius θ centered

at the previous position is selected. If no left chest candidate is found in a frame, the

previous position of the left chest is considered for this frame as well. The parameter θ

is chosen to be the average 3D radius of the body trunk, so that the 3D trajectories of

different persons do not get mixed.

4.2.2 Part Position Initialization

The person trajectories mentioned in the previous section only determine the positions

of the left chests in the frames. They are used together with the list of detected body

parts in each frame to initialize the positions of all parts. In case the part detector

fails and does not provide any detection for some parts, we follow a default kinematic

model to initialize these positions accordingly. The default upper-body kinematic model

corresponds to a person standing in an upright position with the arms by the side of the

body.

Given the detected body parts and the position of the root part, two different situations

arise for each part: (1) one or more blobs are available: the blob with highest confidence

value within a neighborhood around the parent position is used to set the position. As

in the previous section, the average part size is used to define the neighborhood; (2) no

blob is available: its position is predicted relative to its parent according to the default

kinematic model. Following this procedure for each person, parts are associated in a

greedy manner and initial body part trajectories are established. Then, a novel MRF

energy function is proposed to derive the parts towards their correct positions, which is

presented next.

4.2.3 MRF Model

The Markov random field framework provides a powerful formalism to elegantly model

complex problems by jointly capturing both uncertainty and dependency constraints

[Barber 2012]. The edges in a MRF graph represent dependencies between nodes. In

this work, for obtaining smooth body part tracking over an entire sequence, we define

the Markov random field graph G = (V,E) over a complete sequence of video frames

to enforce longterm dependencies between body parts. The temporally consistent body

part tracking over this graph is formulated as a minimization over the following energy

function:

E(D) =
∑

p∈V

φp(dp) + λk
∑

(p,q)∈Ek

ψk
p,q(dp, dq) + λt

∑

(p,q)∈Et

ψt
p,q(dp, dq), (4.1)
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where D = {dp}p∈V is a global labeling indicating the displacement for each node, dp
is the 3D displacement offset for node p encoded as a discrete label, φp(.) is the unary

potentials representing the data term, ψk
pq(., .) and ψ

t
pq(., .) are the pairwise potentials

defined respectively on kinematic and temporal edges and λk and λt are weighting

coefficients. The superscripts k and t are used to indicate kinematic and temporal

edges. The kinematic and temporal terms force the body parts to follow body physical

constraints and to move smoothly along the frames. The data term incorporates the

image evidence.

Due to the large search space in 3D, two different methods are compared to sample

the search space and define the label set L: dense sampling and sparse sampling. The set

L = L(n, s) depends on two parameters: n the number of samples in each 3D direction

and s the step size. In dense sampling, we sample the whole cube, while in sparse sampling

we only sample along seven 3D directions, namely top-down, left-right, front-back and

the four main cube diagonals [Padoy 2011].

4.2.3.1 Data Term

As mentioned above, the body part detector is used to classify pixels in the depth image,

which are then clustered into body parts and background blobs. The list of these blobs

is used to define the data term:

φp(dp) =







M(C(dp)) if #
(

blobs
(

frame(p), label(p)
)

)

> 0

β otherwise
, (4.2)

where frame(p) returns the frame number of node p, label(p) is the part label associated

with the node, blobs(f, l) returns the list of blobs in frame f labelled as part l, #(.) is

the cardinality operator, C(dp) is the minimum cost defined below, β is a constant cost

for parts without detection, and M(.) is a robust error function (ROEF) chosen as

M(x) =
x2

x2 + α2
. (4.3)

The function C(dp) computes the minimum cost of a 3D displacement dp:

C(dp) = min
b∈blobs

(

frame(p),label(p)
)

‖P (dp)− Centroid(b)‖ ∗
(

γ − Conf(b)
)

, (4.4)

where P (dp) is the 3D position of node p moved by an offset dp, ‖.‖ is the ℓ2-norm, and

Centroid(b) and Conf(b) are respectively the centroid and the confidence value of blob

b. The blob confidence Conf(b) is always between 0 and 1. In practice, it is possible to

have body part blobs with confidence of one. Therefore, the value for γ has to be strictly

greater than one, i.e. γ > 1, in order to penalize larger distance to the blob centroid.

In Eq. (4.2), the cost of moving a node by a specified offset is computed according to

the part detector’s response. If no detection is available for the part, a constant cost is
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used. As a result, undetected parts are only adjusted by the kinematic and temporal

constraints.

4.2.3.2 Kinematic Term

The kinematic term is used to enforce body kinematic constraints between body parts.

Following human body skeleton, the dependency between body parts are encoded using

the tree-structure dependency graph shown in Figure 4.2. We define the pairwise

kinematic potential as:

ψk
p,q(dp, dq) = |‖P (dp)− P (dq)‖ − µpq|, (4.5)

where (p, q) ∈ Ek, |.| is the absolute value operator and µpq is the mean distance between

the parts p and q in the kinematic model. In this term, kinematic dependencies between

body parts are captured based on the relative displacement between the parts with

respect to an average kinematic model, i.e. body part lengths. It is worth mentioning

that since the part positions are expressed in 3D, the length of a body part does not

vary much across different persons. Therefore, it is not required to learn person-specific

kinematic models.

4.2.3.3 Temporal Term

The temporal dependency is established between body parts of a person in consecutive

frames as shown by the dashed blue lines in Figure 4.3 to enforce temporal smoothness.

Temporal consistency of the body parts is enforced by

ψt
p,q(dp, dq) = ‖P (dp)− P (dq)‖, (4.6)

where (p, q) ∈ Et. Here we assume that parts do not move very fast compared to the

acquisition rate of the camera. It would however be possible to incorporate other types

of dynamics if needed.

4.2.3.4 Optimization

In order to optimize the proposed energy function, we use the fast-PD algorithm [Ko-

modakis 2008]. In fast-PD, the MRF minimization problem is cast as a linear programing

problem, as described in Section 3.3.1.2. The fast-PD algorithm exploits information

computed based on solutions for both primal and its corresponding dual problems to

efficiently solve the optimization problem. At the end, the algorithm generates a set of

labels for all nodes in the MRF graph, which in our case indicates a 3D displacement for

each body part with respect to its initial position.

In practice, the initial position for some body parts might be too far from their

optimal positions due to either detection failures or inaccurate 3D reprojections because

of noisy depth values, which is common in depth images obtained from low-cost RGB-D

cameras. Hence, we perform the optimization iteratively by starting with a coarse and
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ID #Frames #Persons Misdet.(%) Room

S1 50 2 28 OR1
S2 100 2 29 OR2
S3 100 3 27 OR2
S4 110 3 32 OR2
S5 200 2 27 OR2
S6 200 2 47 OR1
S7 200 3 29 OR1

Table 4.1: Presentation of the SV-RGBD-Seq dataset (sequence IDs, number of frames,
BPD misdetection rates and room IDs).

large search space for the labels. At the end of each iteration, the size of the search space

is reduced. This is achieved by decreasing the step size s and keeping the number of

samples n constant. As results, after each iteration, we use a finer discretization of the

search space. After the first iteration, the part’s initial positions are computed using the

final displacement labels obtained in the previous iteration. During optimization, the

nodes in the first and last frames are kept constant using the provided upper-body poses

for the persons in the first and last frames.

4.3 Experimental Results

4.3.1 Experimental Setup

We have constructed a dataset, namely the SV-RGBD-Seq dataset, by recording seven

simulated medical operations in two different operating rooms. The dataset has been

recorded using an Asus Xtion Pro camera. The sequences have been recorded with a

frame rate of 15fps and each sequence has a duration between 3 and 13 seconds. Two to

three persons are present per recording. All sequences have been manually annotated to

provide ground-truth positions for the skeleton body parts. Parts that are not visible due

to occlusions have been annotated too, using positions predicted by the annotator. This

is an easy task in case of self-occlusions that occur frequently for the arms. Annotation

during inter-person occlusions was also possible in these datasets because they do not

happen for long periods. The SV-RGBD-Seq dataset is summarized in table 4.1. The

BPD misdetection rate is an indicator of the failure of the part detector. It indicates the

ratio of parts in the ground-truth skeletons, for all persons and in the complete sequence,

that cannot be associated with any part detection.

We perform three experiments to evaluate different aspect of the proposed approach.

The first experiment compares the two 3D space sampling methods described in Section

4.2.3. The second experiment quantitatively evaluates the performance of our model

for the task of 3D body part localization on the new manually-annotated dataset. The

third experiment assesses the impact of noise during trajectory initialization by randomly

drifting the parts away.
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Figure 4.4: Mean and maximum body part localization error for two sampling methods,
namely Dense Sampling (DS) and Sparse Sampling (SS), as a function of the initial step
size s. The experimental results are obtained using sequence S1. Note that the number
of samples n is selected so that the radius of the initial 3D space is around 0.8 meter,
e.g. if s = 0.15, n = 5.

In all experiments, the discrete optimization step is iterated by shrinking the sampling

step size by 20% at each iteration until the radius of the 3D search space covered by

the labels becomes smaller than 5 centimeters. The initial radius of the 3D search

space is chosen to be 60 centimeters. The parameters used in all experiments are

θ = 0.4, λk = λt = 3, β = 5, α = 0.1, γ = 1.01. They have been determined using grid

search over a complete sequence (S1). Errors and positions are expressed in meter. The

accuracy is evaluated by computing the mean and standard deviation of the 3D Euclidean

distances between the positions of the optimized body parts and their ground-truth

potions in all frames.

4.3.2 Sampling Methods

To compare and evaluate the influence of different sampling methods on body part

localization performance, we plot mean and maximum localization errors for sequence S1

as a function of initial step size. This localization errors are computed after iteratively

optimizing the energy function in Eq. (4.1) as described above. The number of discrete

labels per direction is chosen so that the initial 3D space covered has a radius of 0.8

meter. The mean localization errors for the two sampling methods are similar and after

the initial step size of 0.2 reach a plateau (see Figure 4.4). However, the lowest value

for maximum error is obtained at step size of 0.6, in case of the dense sampling method.

Both the mean and maximum errors tend to increase after 0.6. Consequently, we choose
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Figure 4.5: Average body part localization error per sequence. The average localization
errors are shown before and after optimization.

to use the dense sampling L(1, 0.6) for the experiments below. This corresponds to a set

of 27 labels.

4.3.3 3D Body Part Localization

The approach is evaluated on all annotated sequences. Figure 4.5 summarizes the

performance of our model for 3D body part localization per sequence. Mean and

standard deviation of the part localization errors are shown for each sequence before

and after optimization. The results are optimal for sequence S1 in the sense that the

parameters have been selected using grid search for this particular sequence. It can

be seen that the optimization performs equally well on the other sequences using the

same parameters. In general, the mean error has decreased by over 30 percent and the

standard deviation (STD) is lowered. Even though sequences S4 and S6 have the highest

misdetection rate (see table 4.1), the optimization still reduces their mean error and std

significantly. This implies that the optimization has correctly guided the detected and

undetected parts toward their correct positions by using the image evidence and the

kinematic and temporal constraints.

The detailed evaluation results for sequence S2 is presented in Figure 4.6. In this

figure, we report the mean error for each part before and after optimization along with

the part misdetection ratio. The results show that the optimization reduces the error

considerably. Interestingly, by leveraging long term temporal smoothness and kinematic

constraints, we are able to improve the body part localizations even for parts with high

misdetection rates, for example see the right elbow (Relbow). The figure also compares

the influence of the robust error function (ROEF) used in the data term φp. The ROEF
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Figure 4.6: Body part localization error. Localization errors (at initialization and after
optimization with and without robust error function) are reported for sequence S2 along
with BPD misdetection rate.
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Figure 4.7: The robust error function in Eq. (4.3), where α = 0.1.

largely reduces the error for parts with high misdetection rates. The ROEF is steep in

the interval [0, 2 ∗α] and is almost flat in [4 ∗α,∞], see Figure 4.7. Therefore, detections

strongly attract close nodes but have a negligible impact on far nodes. This is crucial to

avoid misleading the undetected parts, considering the high part misdetection rate in

our multi-person scenarios.

Figure 4.8 shows estimated 3D skeletons for several frames from the SV-RGBD-Seq

dataset. The estimated skeletons are overlaid on the reconstructed 3D point cloud. More

qualitative results can be found in this supplementary video1.

4.3.4 Noisy Initialization

The impact of noisy initialization is studied by adding random 3D displacements to

the initial part positions in all frames. The random displacements are sampled from

1The supplementary video is available at https://www.youtube.com/watch?v=u0vBIn h928
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Figure 4.8: Examples of pose estimation results on frames from OR1 (top row) and OR2
(bottom row). The estimated 3D poses are overlaid over the reconstructed point cloud.

a uniform distribution with a magnitude of 50 centimeters. Two cases are considered:

noise is added to a single part (the right hip) or to all parts at the same time. Table 4.2

reports the mean and std of the error before and after optimization. When noise is only

added to the right hip, the results are reported for this single part. Results are reported

on sequences S1, S2 and S3 that have little BPD noise to better identify the performance

of our approach against initial noise. The results show that the approach can recover

from a large amount of noise.

4.4 Conclusions

In this chapter, we propose an approach to track consistently the upper-body parts of

persons present in an operating room over short RGB-D sequences. Due to the inherent

visual challenges present in the operating room, the used BPD [Buys 2013] often fails to

detect the body parts in individual frames. Consequently, we propose an approach based

on optimization over the complete set of frames to recover from detection failures and

improve tracking. Our approach uses discrete optimization in an MRF framework. We

propose an energy function that incorporates both kinematic and temporal constraints

in addition to the image evidence. We evaluated this approach quantitatively on seven

manually-annotated RGB-D sequences captured in two different operating rooms. During

the evaluations, we have observed that the part tracking error is reduced in average by

half. The experiments also show robust results in the presence of multiple persons and
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Setting Sequence Error after

ID initialization optimization

Right hip S1 1.02± 0.36 0.11± 0.05
All parts S1 1.86± 1.17 0.32± 0.31

Right hip S2 0.91± 0.36 0.16± 0.14
All parts S2 1.81± 1.21 0.31± 0.33

Right hip S3 0.94± 0.38 0.13± 0.13
All parts S3 1.87± 1.25 0.36± 0.38

Table 4.2: Noisy initialization experiment. Mean error in meter with std before and after
optimization for right hip and all parts.

occlusions, even when the number of part misdetections is high.

We notice that the reduction in error for the sequences with very high misdetection

rates is relatively small. One should note that although the body part detector does

not perform well due to the inherent visual challenges of the OR, it is the state-of-the-

art approach for human pose estimation on traditional computer vision datasets and

promising performances are indeed reported for common indoor scenes, such as working

office or home. The results suggest that it is necessary to develop body part detector

methods specifically targeting the part detection problem in the operating room and

that it also also needed to train them on OR data in order to deal with the many visual

challenges present in such a complex environment. In the next chapter, we present an

approach to tackle this challenging problem of person detection and body pose estimation

in operating rooms.
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As discussed in Sections 1.3 and 4.3, state-of-the-art human pose estimation methods

do not generalize well to operating room environments because of the inherent visual

challenges present in such environments. Therefore, in this chapter, we propose an

approach to detect persons and their body part configurations in operating rooms. The

approach relies on a single RGB-D frame. We build our approach upon the pictorial

structures framework and use depth data to extend this framework in three ways. First,

we use both color and depth images jointly to construct more robust and discriminative

part detectors. We also introduce a new descriptor on depth image, called histogram

of depth differences. Second, we present 3D pairwise constraints to enforce interpart
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dependencies directly in 3D instead of 2D since 2D constraints are often ambiguous due

to perspective projection. Third, we propose an efficient algorithm for reducing the size of

the 3D state space to make exact inference tractable. The method is introduced in Section

5.2. The evaluation results on data recorded during live surgeries are presented in Section

5.3. These results indicate that 3D pairwise constraints and RGB-D part detectors are

important for reliably estimating poses of medical staff in visually challenging operating

rooms and that the model generalizes well to other operating rooms.

5.1 Introduction

Despite the great success of human pose estimation methods on standard computer vision

datasets [Andriluka 2014, Insafutdinov 2016,Yang 2013,Yang 2016], our experimental

results on OR data, presented in Sections 4.3 and 5.3, show that there is still a large

margin for improvement. The main reasons for such a drop in performance in the OR

environment are occlusions, background clutter, the presence of multiple persons in close

proximity of each other and the presence of many surfaces with similar colors. Therefore,

in this chapter, we introduce a novel part-based approach that makes use of depth both

for constructing part detectors that are robust to the visual similarities present in the OR

and for assembling body part configurations in 3D. Assembling body configurations in 3D

is essential to make more reliable constellations of body parts in cluttered environments.

Our approach is based on the Pictorial Structures (PSs) framework [Felzenszwalb 2005]

that has been commonly used in the literature for two reasons: (1) its ability to generalize

to unseen data with a relatively small training set and (2) its powerful formalism

that allows to explicitly model part detection uncertainties and interpart dependencies.

The body part detector in PSs, which is also called the appearance model, relies on

color images. The PS approach encodes interpart dependencies using a tree-structured

deformation model relying on 2D displacements between body parts in order to make

exact inference tractable, as discussed in Section 3.3.1.1.

In order to deal with the inherent challenges of real ORs, our proposed approach

extends pictorial structures in three ways: by constructing robust appearance models

using both color and depth images, by enforcing pairwise dependencies in 3D, and by

proposing an efficient algorithm for reducing the size of the state space for making exact

inference tractable. We base our work on a modified version of PSs called Flexible

Mixtures of Parts (FMP) [Yang 2013]. FMP uses multiple mixtures of body joints to

capture the foreshortening of body parts and part appearance changes. However, the

approach still relies on a color-based appearance model and on a 2D deformation model.

In a visually complex environment such as the OR, color images might not always

carry enough descriptive information (see Section 1.1.4). Therefore, our approach relies

on both color and depth images to build robust and discriminative appearance models,

which is in contrast to FMP that only relies on color and to [Haque 2016,Munaro 2014]

that are learning color- and depth-based appearance models separately. We have also

introduced a new descriptor for depth images, named Histogram of Depth Differences
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(HDD), that uses depth level changes to encode different object surfaces appearing in a

depth image. The descriptor uses small convolution kernels for efficiency.

In general, in part-based methods, the image is scanned using the part detectors that

give confidence scores at every image position for every part. The set of all possible

positions for the parts is called the state space. Then, the deformation model is used

to assign connectivity weights for every connections between pairs of parts in the state

space. Finally, to recover the body configuration, an inference algorithm is used to

propagate detections scores according to the connectivity map. A state space is shown

in Figure 5.1(a). In this image, states, also called nodes, are represented by circles. The

connectivity strength between two states is shown by the thickness of the connecting

edge between these states, here estimated using 2D pixel distances. However, by relying

on 2D pixel distances, a path that is connecting two nodes lying over the same person

(α-β) can have a weight inferior to a path connecting two nodes lying over two different

persons (α-γ). Therefore, performing inference relying on such a connectivity map can

result in mixing part detections of persons who appear close to each other in a 2D image

but are not necessarily nearby in 3D. Moreover, inference can be additionally confused

by false detections on the background in case of weak part detections, which is common

in cluttered scenes such as the OR.

In this chapter, to address this limitation we propose an approach based on a

connectivity map that relies on the true 3D positions of the nodes instead of 2D ones

[Andriluka 2012a, Yang 2013, Pishchulin 2016]. In order to recover the 3D positions,

we use the depth map for back-projecting points into 3D. Figure 5.1(b) illustrates the

connectivity map for the same state space as in Figure 5.1(a), but where 3D positions

are considered. It can be noticed that the nodes lying on the same person are strongly

connected (α-β), while connections crossing person boundaries are weak (α-γ). Hence,

propagating messages across persons or across a person and the background is discouraged

by properly weighting the connections in 3D.

In terms of inference, for the tree-structured Markov random field model used in

pictorial structures, the Generalized Distance Transform (GDT) algorithm, described

in Section 3.3.1.1 for a 2D state space, can be used in 3D. It has a complexity linear in

the number of states [Felzenszwalb 2004,Felzenszwalb 2005]. However, it requires a fully

connected regular 3D grid as a state space, which makes the dynamic programming step

intractable in terms of memory [Burenius 2013]. With Np parts and a 3D state space of

size S3D, the memory complexity of dynamic programming is O(Np ∗S3D). Consequently,

to make the approach tractable, a very coarse discretization of the 3D state space would

be required as discussed in [Burenius 2013], which would degrade the performance of

the algorithm. Instead, we propose to use a smaller irregular 3D state space along

with the standard dynamic programming approach, which has quadratic complexity.

By using 3D information, the number of connections in the state space can be reduced

significantly while retaining exact inference. This is achieved by excluding connections

that are unreasonably far apart according to human body physical constraints. Although

inference still has quadratic complexity, this reduction has a huge impact on run-time.
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Figure 5.1: Two different connectivity maps for the same state space. Circles indicate
nodes in the state space and edge thickness denotes the connectivity strength between
two nodes: (a) connectivity map built using 2D pixel distances (b) the same connectivity
map when real 3D positions of the nodes are taken into account (c) corresponding depth
map used to back-project points into 3D. Note: not all edges are represented in this
picture.

Furthermore, the reduced map contains as many 3D nodes as 2D locations where the

detector is evaluated. As a result, no appearance information is lost.

To evaluate our approach, we have generated an annotated dataset, namely the

SV-RGBD-CT dataset, from seven half-day recordings using an RGB-D camera in

an operating room equipped with an intra-operative CT scanner. We have manually

generated two types of annotations: upper-body bounding boxes of all clinical staff

present in the scene to evaluate human detections and upper-body poses of clinical

staff that have at least half of their upper-body parts visible to assess human pose

estimation. In Figure 5.2 (top row), we show sample images from the SV-RGBD-CT

dataset. This dataset has been divided into disjoint subsets used for either learning

the model parameters or performing quantitative evaluation. We have also constructed

another dataset, called MV-RGBD-CArm, by recording all activities in an OR equipped

with a C-arm device by using a two-view RGB-D camera system. Sample images from this

dataset are shown in Figure 5.2 (bottom row). Since there is no annotation available for

the MV-RGBD-CArm dataset, we have only used this dataset for qualitative evaluation.

5.2 Method

In this section, we briefly present the flexible mixtures of parts model used as the basis

to develop our approach for clinician detection and pose estimation. We then introduce

our novel 3D pictorial structures approach on RGB-D data followed by a description

of the proposed feature descriptor and 3D pairwise constraints. Finally, an algorithm
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Figure 5.2: Sample images from two different datasets recorded in different operating
rooms during live surgeries. In each row, we have shown sample images from one dataset.
In the top row, sample images of the SV-RGBD-CT dataset recorded from three different
view points are shown. The bottom row shows frames from the MV-RGBD-CArm dataset
recorded using a two-view RGB-D camera system (the first two images are captured
from the same viewpoint and the right-most image is captured from the other one).

is presented to make exact inference tractable in pictorial structures with 3D pairwise

constraints.

5.2.1 Flexible Mixtures of Parts (Recap)

The FMP approach represents human body poses by a flexible configuration of body

joints [Yang 2013]. The state of a joint i is given by li = (xi, yi), where (xi, yi) represent

the joint position in image coordinates and by its joint type ti ∈ {1...T}, where T is the

number of joint types. These joint types are defined based on training data annotations,

such as joint locations or semantic annotations (a closed versus opened hand) to capture

appearance changes. The body pose estimation is broken down into a set of 2D joint

detectors combined with pairwise constraints between body joints. The model is formally

represented as an energy function defined over a tree-structured Markov random field.

Let G = (V,E) be the MRF graph whose nodes are the body joints and whose edges are

indicating dependency constraints between body joints. Given the image evidence I, the

energy function S(., ., .) is defined as:

S(I, l, t) =
∑

i∈V

wti
i .ρ(I, li) +

∑

ij∈E

w
ti,tj
ij .ψ2D(li − lj) +

∑

i∈V

btii +
∑

ij∈E

b
ti,tj
ij , (5.1)

where in a model with Np body joints, l = (l1, ..., lNp) denotes the body pose of the

person and A.B =
∑ne

i=1AiBi is the dot product of two vectors of ne dimension. The
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first term is the body joint appearance model and the second term is the deformation

model that enforces spatial pairwise dependency constraints between body joints. The

two last terms are capturing joint compatibility, where btii is the score of choosing a

particular mixture type for joint i and b
ti,tj
ij encodes the co-occurrence probability of

body joint types.

Appearance model. The appearance model, also referred to as part detector, assigns

the score of having a body joint at image location li using a part template wi that is

learned during supervised model training and a feature vector ρ(I, li). The feature vector

ρ(I, li) is extracted at image location li. FMP uses the Histogram of Oriented Gradients

(HOG) descriptor on color image [Yang 2013].

Deformation model. The spatial pairwise constraints between body joints are enforced

by wij and ψ2D(li− lj). The weights wij encode the deformations between pairs of joints

and are learned during supervised model training. ψ2D(li − lj) = [dc, dc
2
, dr, dr

2
]T

captures the relative displacement of joint i w.r.t. joint j, where [dc, dr] = [dc, dr] −

[acij , arij ], dc and dr are the displacements along the columns and rows of the image,

and acij and arij are the average kinematic distances estimated during training between

these two body joints. Note that this notation for ψ2D is slightly different from the

one in [Yang 2013] by including acij and arij to allow for better comparison with the

generalization to 3D given below.

Learning and inference. In a supervised learning paradigm, the model parameters,

namely part templates, deformation parameters and co-occurrence relations, can be

learned using a structured prediction objective function. More details can be found

in [Yang 2013]. Given an input color image and the learned model parameters, inference

corresponds to finding (l∗, t∗) = argmaxl,t S(I, l, t). For tree-structured and pixel-based

pairwise dependencies, this optimization can be solved efficiently and exactly using the

generalized distance transform (GDT) algorithm and dynamic programming.

5.2.2 3D Pictorial Structures on RGB-D Data

Given the availability of synchronous and aligned color and depth images, it is natural

to think of models that could benefit from such complementary information. This can

be achieved in the pictorial structures framework by using this information to extend

both the appearance and deformation models:

S(I,D, l, t) =
∑

i∈V

wti
i .φ(I,D, li)+

∑

ij∈E

w
ti,tj
ij .ψ3D(D, li, lj)+

∑

i∈V

btii +
∑

ij∈E

b
ti,tj
ij , (5.2)

where D is the synchronized and aligned depth image of the color image I and ψ3D models

the 3D pairwise constraints. The feature vector φ(I,D, li) is computed by concatenating

the features extracted from the color and depth images. Following common practice in

the literature, we use the HOG descriptor on intensity images (I-HOG). We compare

three descriptors on depth images, namely D-HOG (HOG applied on the depth image),
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Figure 5.3: Four different kernels that capture local level changes in depth images.

Histogram of Oriented Normal Vectors (HONV) [Tang 2013] and Histogram of Depth

Differences (HDD), defined below.

5.2.3 Histogram of Depth Differences (HDD)

A depth image encodes object surface distances with respect to the depth camera. We

therefore propose a novel descriptor on depth images to represent surfaces in the scene

based on relative surface distance changes. A related idea has been investigated earlier

in [Shotton 2012] that uses an ensemble of deep trees as body part detectors. For each

non-leaf node in the trees, a decision function is learned based on the relative surface

distances. However, training such a deep forest requires a very large training set and

the forest also needs to be retrained for each application. Instead, we present a simple

yet efficient new descriptor that captures local surface level changes. The descriptor

uses four kernels that are shown in Figure 5.3. Let Kk be one of the HDD kernels with

k ∈ {1, ..., 4}. At the image position (x, y), the normalized convolution response is defined

as:

Cku(x, y) = (Kk ∗ Pu(x, y))/Du(x, y), (5.3)

where u ∈ {1, ..., Nu} is the scale of the depth image. Pu(x, y) and Du(x, y) are respec-

tively the depth image patch and the depth value at location (x, y) for scale u. The

normalization of the response by the inverse of the depth value at the patch center

ensures that the feature is depth invariant. We have also applied the convolution over a

scale space to encode the changes in different spatial neighborhoods. In order to compute

the descriptor, we quantize the convolution responses and also divide the image into

non-overlapping windows, called cells. Then, the descriptor is built per cell by computing

a 3D histogram of kernel, scale and quantization levels.

5.2.4 3D Pairwise Constraints

In this section, we introduce novel pairwise constraints to enforce body kinematic

constraints in 3D. We define

ψ1
3D(D, li, lj) = [dx, dx

2
, dy, dy

2
, dz, dz

2
]T , (5.4)

where [dx, dy, dz] = [dx, dy, dz]− [axij , ayij , azij ], (axij , ayij , azij) are the average kine-

matic displacements in each direction between joints i and j estimated during training

and (dx, dy, dz) are the relative displacements between the two body joints in x, y and
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z directions. The pairwise constraints ψ1
3D is a natural generalization of ψ2D to 3D.

Since body part lengths, i.e. the distances between body joints, are relatively constant in

3D, we enforce these constraints explicitly by using the absolute 3D Euclidean distance

between body joints. Let ψ2
3D and ψ3

3D be defined as

ψ2
3D(D, li, lj) = [|d3D|, dx, dx

2
, dy, dy

2
, dz, dz

2
]T , (5.5)

ψ3
3D(D, li, lj) = [|d3D|, dx, dy, dz]

T , (5.6)

where |.| is the absolute value operator, d3D = ‖[dx, dy, dz]‖ − aij and aij is the average

3D Euclidean distance between body joints i and j estimated during training. ψ2
3D

enforces body kinematic constraints by using not only relative displacement directions

and magnitudes along the 3D axes, but also absolute 3D Euclidean distances between

the body joints. In ψ3
3D, the square terms are dropped in order to only rely on absolute

3D Euclidean distances
(

d3D
)

for enforcing part lengths.

In practice, since 3D positions are computed by back-projecting 2D points into 3D

using a depth image, the precision of the 3D positions are driven by the quality of the

computed depth image. In the case of low-cost RGB-D cameras, the quality of the depth

image is often degraded due to noise and the low resolution of the depth sensor, which

decreases quadratically with increasing distance to the sensor [Khoshelham 2012]. In

such cases, the 2D annotations are therefore incorrectly back-projected to 3D. During

training, these incorrect 3D points can introduce a large error to the part lengths. Thus,

we propose a pairwise model ψ4
3D that combines 2D and 3D constraints by relying both

on absolute 3D Euclidean distance and on pixel displacement consistency. As will be

shown in the experiments, the incorporation of 2D distances into the pairwise constraints

is highly beneficial to prevent the learning algorithm from being misled by incorrect 3D

positions. The combined pairwise constraints ψ4
3D is defined as:

ψ4
3D(D, li, lj) = [|d3D|, dc, dc

2
, dr, dr

2
]T . (5.7)

5.2.5 Learning and Inference

All model parameters are automatically learned using the same approach as in [Yang 2013].

To present the inference, as in [Yang 2013], we denote zi = (li, ti) for the sake of notation

clearness and re-write the optimization as

z∗ = argmax
zi

∑

i∈V

fi(I,D, zi) +
∑

ij∈E

dij(D, zi, zj), (5.8)

where z∗ = (l∗, t∗), fi(I,D, zi) = wti
i .φ(I,D, li)+b

ti
i and dij(D, zi, zj) = w

ti,tj
ij .ψ3D(D, li, lj)+

b
ti,tj
ij . For a model with a tree-structured pairwise dependency graph, we can write the
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Algorithm 5.1 Construction of the state space’s neighborhood map

1: maxDist3D ← 0.9 ⊲ Distances are in meter
2: neighbors = ∅ ⊲ 2D array to store the neighbourhood map
3: for i = 1 to L do ⊲ L: total number of the states
4: neighbors[i] = ∅ ⊲ Sorted array based on the distances
5: C = getCandidates(xi, depth[i]) ⊲ depth: array containing the depth values
6: for each xn ∈ C do

7: nodeDist = distance3D(xi, xn, depth) ⊲ Euclidean distance between xi and
xn

8: if nodeDist < maxDist3D then

9: insert(neighbors[i], (nodeDist, xn) )
10: end if

11: end for

12: end for

inference as














argmax
zr

(

fr (I,D, zr) +
∑

q∈child(r) µzq→zr

)

µzq→zp = argmax
zq

(

fq(I,D, zq) + dqp(D, zq, zp) +
∑

ch∈child(q) µzch→zq

) , (5.9)

where r stands for the root node in the tree.

We start propagating scores from the leaf nodes in the tree upward to the root node

by using dynamic programming. Once all the scores have traversed the tree and reached

the root node, pose confidence is available in the root and the corresponding body

joint configuration can be recovered by back-tracing the scores. Standard child-parent

score propagation is quadratic in the size of the state space since every combination of

child-parent nodes needs to be evaluated. Inference corresponds to the same optimization

problem as in [Yang 2013]. However, as mentioned in the introduction and in Section

3.3.1.1, to use linear time generalized distance transform, it is required to use a 3D

regular grid that makes dynamic programming intractable in memory. In our approach,

we therefore use an irregular state space and keep it as small as possible by only back-

projecting 2D states into 3D using the depth information. We rely on 3D information

to significantly reduce the number of connections in the neighborhood map of the state

space. This is achieved by removing the connections between nodes that are too far apart

in 3D according to the body physical constraints. Even though this will only reduce

the quadratic complexity of the inference by a constant value, it has a dramatic effect

during the learning stage that uses the inference intensively. In Algorithm 5.1, we present

an algorithm to efficiently construct the neighborhood map by removing the need for

comparing the distances between all states. We define maxDist3D to be the maximum

allowed part length in 3D. For a given maxDist3D and node xi at location li, only the
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2D nodes at a 2D distance maxDist2D of xi need to be inspected, where

maxDist2D = maxDist3D/ (res× depth(li)) (5.10)

and res is the resolution of a camera pixel obtained from the intrinsic parameters. Since

we can store the nodes in a 2D array, the candidate nodes can be accessed in constant

time. As the 2D criteria cannot guaranty that the corresponding 3D nodes are within

distance maxDist3D, this condition is further checked among all potential candidates.

A large distance of 0.9 meter is chosen for maxDist3D, to make sure that the global

optimum is not missed. Once the neighborhood map is constructed, it is used in Eq.

(5.9) to propagate the scores between all body parts.

5.3 Experimental results

In this section, we evaluate the proposed approach on two different datasets recorded in

different operating rooms. We demonstrate that our new approach achieves significant

improvement compared to the original flexible mixtures of parts method on the two tasks

of clinician detection and pose estimation.

5.3.1 Datasets

For evaluation, we use two RGB-D datasets, namely the SV-RGBD-CT and the MV-

RGBD-CArm datasets. Both datasets have been recorded using Asus Xtion Pro cameras.

The SV-RGBD-CT dataset has been recorded using a single RGB-D camera. In order

to capture the room from different viewpoints, the camera position is changed among

three possible locations. Three sample images from this dataset are shown in Figure 5.2

(top row), where each image shows the room from one of the three different views.

The SV-RGBD-CT dataset includes 1451 annotated frames that are evenly selected

across seven half-days of recordings, and 173 negative frames that do not contain any

human for training. This dataset contains 3023 bounding boxes annotating all surgical

team members who appear in the images. If the head or more than 50% of the upper-body

of a person is occluded, it is labeled with a difficult flag. There exist 476 persons with

difficult flag in the dataset. We have also annotated the clinical staff with ground-truth

positions for nine upper-body joints, namely neck, left and right shoulders and hips, as

well as left and right elbows and wrists, and the head that is indicated by a point at the

center of the head at the eye level. The pose annotation is only provided for staff who

have the head and more than five body joints visible. We therefore obtain 1991 persons

with pose annotations.

The MV-RGBD-CArm dataset has been also recorded during live surgeries. This

dataset has been recorded using a two-view RGB-D camera system. In Figure 5.2 (bottom

row), we show sample images from this dataset. There is no annotation for this dataset.

Both datasets cover many visual challenges, such as severe part foreshortening, clutter,

occlusion and multi-person scenarios. Since we only have ground-truth annotations for
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the SV-RGBD-CT dataset, we use this dataset both for quantitative evaluations and for

training the model parameters. In oder to construct disjoint train and test sets, we divide

the SV-RGBD-CT dataset into seven disjoint sets where each set only contains frames

that belong to the same half-day recording. A leave-one-out scheme is used during our

experiments, so that one set is used as test set and the rest as training set. We report

the average results of the seven-fold cross validation during the evaluation.

5.3.2 Experimental Setup

We compute all the descriptors using the same parameters as in [Yang 2013]. In other

words, we use the cell size of 6 × 6 pixels and six mixtures for each body parts. Also,

we similarly normalize the descriptor responses using the L2-Hys normalization scheme,

defined as a L2-norm where the maximum value is limited to 0.2. The HDD descriptor is

computed in three scales, and the convolution responses are coarsely quantized into ten

levels to be robust to noise and spatial distortions.

During training, we build the mixtures by clustering training data based on ground-

truth labels. This step can be performed either in 2D or in 3D. During the experiments,

we noticed that clustering in 3D reduces the performance (by ∼ 5% for ψ
{1−3}
3D ). We

believe that this is due to two reasons: (1) noisy depth: when the depth value for

a ground-truth point is noisy, the 3D back-projection will be inaccurate. Therefore,

noisy clusters are generated that lead to an inaccurate division of the part samples. (2)

insufficient number of samples for 3D clustering: more clusters are required to avoid

coarse clustering of the larger 3D space. However, increasing the number of clusters

results in a smaller number of samples per mixture, leading in turn to weaker part

detectors. Hereafter, we therefore report the results when the part types are generated

using 2D clustering.

At test time, in order to be robust to body part scale changes, an image pyramid

is constructed by repeatedly smoothing and subsampling the image. We then evaluate

our model on the image pyramid and perform non-maximum suppression to detect body

parts of different sizes. We have performed our experiments on an Intel i7 machine,

with six cores running at 3.20 GHz and 64 GB RAM. Our approach is implemented in

MATLAB. In average, it takes five seconds and twelve seconds to test one image using

our approach with a 2D deformation model and a 3D deformation model, respectively.

But, if we do not use Algorithm 5.1, the computation with a 3D deformation model is 15

times slower. Even though the time complexity remains quadratic in the size of the state

space, these results show that the proposed inference approach significantly speeds up

the running time.

5.3.3 Clinician Pose Estimation

Evaluation metric. Following common practice in the literature, we use the Per-

centage of Correct Keypoint (PCK) metric to evaluate human pose estimation accu-

racy [Yang 2013]. PCK measures the accuracy of localizing body joints. To compute
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ψ2D (I-HOG) ψ2D (I-HOG+HDD) ψ4

3D (I-HOG) ψ4

3D (I-HOG+HDD)

Figure 5.4: Examples of pose estimation results for two different appearance models
combined with two different pairwise constraints. (Picture best seen in color)

PCK, we calculate a matching distance τ = α.max(bbw, bbh) for each person, where bbw
and bbh are the width and height of the tight bounding box for that person, and α is 0.2

as suggested by [Yang 2013]. A body joint prediction is correct if its distance from the

corresponding ground-truth is less than the matching distance τ .

The average performance results of the seven-fold cross validation are reported in

Table 5.1. In column ‘2D’, the result for the I-HOG combined with ψ2D corresponds

to the FMP model trained on the SV-RGBD-CT dataset. As discussed in Section 1.3,

we have also trained an FMP model on the Buffy dataset, that is widely used in the

computer vision community for training and evaluating human pose estimation methods.

On the same evaluation setup, the performance of the model trained on Buffy is 32.6%

PCK, a drop of 30.7% PCK compared to the model with the same parameters trained

on the SV-RGBD-CT dataset. This drastic difference in the performance of these two

models suggests that the appearance of the people in operating room environments are

very different from what we often find in public computer vision dataset. Therefore,

training on OR data is crucial to obtain reliable models for visually challenging OR

environments. Hereafter, we consider the FMP model trained on the SV-RGBD-CT

dataset as the baseline model.

In Table 5.1 column ‘2D’, we present the results of different appearance models in

comparison with the baseline FMP model on the same evaluation setup. The results show

that the representation based on D-HOG significantly improves the performance over FMP.

Since both I-HOG and D-HOG are using the same descriptor, these results demonstrate

that the depth gradient is more reliable than the color-based one in environments with
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Descriptor 2D 3D

Color Depth ψ2D ψ1
3D ψ2

3D ψ3
3D ψ4

3D

I-HOG – 63.3* 64.8 38.0 56.0 69.3

– D-HOG 72.5 66.6 37.0 61.7 76.5

I-HOG D-HOG 75.3 73.6 58.4 66.6 79.5

– HONV 65.6 67.3 39.5 54.4 71.0

I-HOG HONV 75.4 72.9 55.0 68.8 80.1

– HDD 74.7 73.0 46.7 67.7 79.1

I-HOG HDD 76.6 76.6 70.3 72.3 81.5

Table 5.1: PCK results. Comparison of five deformation models in combination with seven
different appearance models. Each row shows the evaluation results for an appearance
model in combination with the 2D pairwise constraint ψ2D or one of the proposed 3D
pairwise constraints ψ1−4

3D as deformation model. Note(*): ψ2D with I-HOG is the FMP
model [Yang 2013], that is trained on the SV-RGBD-CT dataset.

high color similarities and illumination changes. In general, the depth-based appearance

models always outperform the color-based one and the best performance is obtained by

HDD. The HDD-based appearance model improves the performance over the baseline

by ∼ 11%. This highlights the benefit of the proposed coarse and depth invariant

representation in describing surface level changes. One can also notice that combining a

depth-based descriptor with I-HOG always leads to further improvements by building

stronger appearance models that make use of complementary information coming from

both color and depth images. For the sake of comparison, we have also built a depth

appearance model by combining all depth descriptors, namely D-HOG, HONV and HDD.

However, this model does not yield any significant improvement.

The evaluation results for the proposed 3D pairwise constraints in combination with

different appearance models are also reported in Table 5.1. In general, the performance

dose not improve when ψ
{1−3}
3D are used. We believe that this is due to the noisy depth

measurements coming from the low-cost RGB-D camera. The noisy depth leads to

inaccurate ground-truth back-projection into 3D, which in turn results in incorrect

estimations of part lengths and relative displacements
(

dx, dy, dz
)

. Moreover, this noisy

3D data will affect not only the deformation model, but also the part detectors since all

parameters are learned in a unified framework. These inaccurate part lengths have more

impact on ψ2
3D that uses both the absolute 3D Euclidean distance and the magnitudes of

relative 3D displacements between body joints along the axes.

The best performance is always achieved by the model using ψ4
3D, which significantly

improves the performance over the model with 2D pairwise constraints using the same

descriptor. We observe a significant performance gain (+6%) for the appearance model

that only relies on color and does not use any depth information. In the case of the

color-based appearance model, the part detector provides noisy detections due to the high

color similarity in the images. The 2D deformation model is also not able to resolve the
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Figure 5.5: Examples of pose estimation results obtained with the proposed 3D pictorial
structures approach using ψ4

3D with I-HOG+HDD. (Picture best seen in color)

uncertainty caused by these weak detections, contrary to the proposed 3D deformation

model. These results indicate that by using more reliable pairwise dependencies, the

PS model can better resolve the uncertainty of the part detector. These improvements

achieved by ψ4
3D also demonstrate that this pairwise term provides an elegant way to

benefit from the 3D distances to learn a more reliable deformation model and to use the

2D positions to be more robust to the noise present in the back-projected 3D positions.
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Body parts I-HOG I-HOG+HDD

ψ2D ψ4
3D ψ2D ψ4

3D

Head 84.1 92.3 92.8 96.4

Shoulder 72.7 80.5 84.1 87.7

Elbow 57.0 59.7 71.1 76.6

Wrist 56.5 64.4 71.6 76.8

Hip 45.9 52.6 63.6 69.9

Average 63.3 69.3 76.6 81.5

Table 5.2: PCK evaluation results per body part. Part detection for three variants of
our approach compared with baseline FMP (I-HOG+ψ2D) [Yang 2013] on the same
experimental setup.

Figure 5.4 shows the estimated poses using ψ2D with I-HOG (i.e. the baseline FMP

model), ψ2D with I-HOG+HDD, ψ4
3D with I-HOG and ψ4

3D with I-HOG+HDD. We

observe that 2D PS is often confused by false detections on the background and also mixes

up detections between persons. The last row shows cases where the 3D PS approach does

not localize the arms correctly, although the heads and shoulders are correctly estimated.

It is either due to weak part detection responses, occlusions or side view poses. Figure 5.5

shows more qualitative results obtained by the proposed 3D pictorial structures that

relies on I-HOG+HDD and ψ4
3D. In summary, the use of 3D information always improves

the performance, when used in the appearance model alone, in the deformation model

alone or in both. The best results are obtained when 3D information is used in both

models.

In Table 5.2, we report the detailed performance results per body part. The results

are presented for ψ2D and ψ4
3D as well as for the I-HOG and I-HOG+HDD appearance

models. It is important to point out that 2D pictorial structures uses exact inference and

that these results are therefore the best possible using these appearance models. These

results are remarkably improved when the proposed 3D deformation model is used. We

therefore show that a reliable 3D deformation model permits to efficiently deploy PS

on RGB-D data, while the experiments suggest that 2D-based deformation models are

limited by their unreliable pixel-based distance metric.

5.3.4 Clinician Detection

We detect clinician and clinical staff in the operating room using our clinician pose

estimation approach. Given a pair of RGB-D images, our clinician pose estimation

returns a set of body part configurations. To estimate detection windows from a set

of estimated poses, we fit a tight bounding box around each estimated body pose.

We compare our approach with deformable part models (DPM) [Felzenszwalb 2010],

which has achieved competitive results on challenging datasets for human and object

detection. Similarly to FMP, the DPM model is a part-based approach, which also uses
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Appearance model DPM PS(ψ2D) PS(ψ4
3D)

N N+D N N+D N N+D

I-HOG 75.5 70.0 68.8 64.0 77.3 72.0
I-HOG+HDD 80.3 75.1 86.8 79.1 89.7 80.8

Table 5.3: Person detection results using AP score. Two variants of our approach are
compared with DPM on the same appearance models. N indicates a set of annotated
staff who have at least half of their upper-body visible in the view. N+D contains all
annotated staff appearing in the view.

multiple mixtures. But, in DPM, parts are automatically discovered using a discriminative

approach given a bounding box annotation for each person. Person detection is performed

using an energy function similar to FMP, which also consists of three terms: appearance

model, deformation model and co-occurrence compatibility score. To build a stronger

baseline, we have also extended the appearance model in DPM to use both color and

depth images. However, since the parts in DPM are specified with bounding boxes that

can include both foreground and background, it is not straightforward to extend the

deformation model to 3D.

Evaluation metric. To evaluate clinician detection, we use the Average Precision (AP)

score that is commonly used for object and human detection in the literature as well

as in [Felzenszwalb 2010]. A detection box is considered as true positive if the overlap

between this box and a ground-truth bounding box is more than 50%. Multiple detections

are penalized, i.e. if more than one detection for a ground-truth occur, one detection will

be accepted as a true positive and the rest are false positives. This criteria is used to

compute a precision-recall curve and AP is the area under the curve.

Table 5.3 shows clinician detection results. In this table, the results are reported for

two appearance models: I-HOG that is used in both FMP [Yang 2013] and DPM [Felzen-

szwalb 2010], and I-HOG+HDD that was the best appearance model according to our

experiments for clinician pose estimation. Following the same reasoning, we also use the

two pairwise constraints ψ2D and ψ4
3D. For clinician detection, we consider two cases:

(1) Normal staff: we compute the true/false positives and negatives only for staff that

are labeled as normal, indicated by N in the table. The first detection for a difficult staff

is not considered as false positive. If a staff with difficult flag does not have a detection,

it is not considered as a false negative. (2) Normal and Difficult staff: Missing detection

of any staff is considered as false negative, indicated by N+D in the table.

We observe that using the I-HOG+HDD representation improves the performance of

the original DPM (I-HOG) by ∼ 5%. These consistent improvements indicate that the

jointly learned appearance model is highly beneficial in visually challenging environments

for both task of human pose estimation and detection. Figure 5.6 shows clinician detection

results on normal staff using precision-recall curves computed on the first fold. The

increase in the precision and recall of the approaches based on the proposed I-HOG+HDD

representation indicates the benefits of this representation in building more reliable and
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Figure 5.6: Precision-recall curves computed for the detection of normal staff in the first
fold of the cross validation. Results for DPM, ψ2D and ψ4

3D in combination with the
I-HOG and I-HOG+HDD representations.

discriminative models. Furthermore, this representation enables all models, namely DPM,

ψ2D and ψ4
3D to obtain a similar maximum recall value. The high precision for ψ4

3D also

highlights the advantages of the 3D deformation model in pruning false positives.

The original DPM (I-HOG) outperforms the baseline FMP model on clinician detection

for two reasons. First, since the number of bounding box annotations is much higher

than the number of pose annotations, a larger training set is used to learn DPM models.

Second, DPM clusters the training data based on box sizes to learn different mixtures.

Since the box sizes are normally changing according to the distance of the person to the

camera, this enables DPM to learn different mixtures for people at different distances.

However, it can be seen that by using the I-HOG+HDD representation, which can encode

3D information, our clinician detection approach consistently outperforms DPM. The

best clinician detection result is achieved by using our clinician detection approach with

deformation model ψ4
3D. These results further highlight the advantages of 3D pairwise

constraints for human detection in cluttered and crowded scenes.

5.3.5 Qualitative Evaluation on the MV-RGBD-CArm Dataset

In order to evaluate the generalization of our model to other operating rooms, a 3D

pictorial structures model that uses I-HOG+HDD and ψ4
3D, is trained on the SV-RGBD-

CT dataset and evaluated on the MV-RGBD-CArm dataset. Figure 5.7 shows qualitative

results obtained by the pre-trained model for several frames in the MV-RGBD-CArm
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Figure 5.7: Examples of pose estimation results of a model trained on the SV-RGBD-CT
dataset and tested on the MV-RGBD-CArm dataset.

dataset. Note that different viewpoints are used to capture the MV-RGBD-CArm dataset.

In general, our model often detects all clinical team members and generates very few

false positive detections. For detected people, wrist localization is not very precise. This

could be due to occlusions and severe foreshortening of the forearms. But, torso and the

arms are correctly localized for most of the detected persons. These results shows that

our model generalize well to unseen OR data.

5.4 Conclusions

In this chapter, we propose a novel approach based on pictorial structures for human

pose estimation and detection in operating rooms. We extend pictorial structures to 3D

on RGB-D data by designing appearance models based on both color and depth images

as well as deformation models based on 3D pairwise constraints. We also introduce a new

feature descriptor for depth images, the histogram of depth differences, which encodes

surface level changes in a coarse, multi-scale and depth invariant representation. Finally,

we quantitatively evaluate the approach on a novel and challenging dataset generated

from several days of recordings during live surgeries. Different combinations of the

proposed appearance and deformation models are compared to state-of-the-art methods

for human pose estimation [Yang 2013] and human detection [Felzenszwalb 2010].

Experimental results demonstrate the strength of the proposed appearance model,

where the best performance is always obtained by I-HOG+HDD, supporting our hy-

pothesis that color and depth images are complementary. Furthermore, the results

demonstrate how the 3D pairwise constraints significantly improve the performances

for both clinician detection and pose estimation in a cluttered and busy environment

like the OR. Key to this improvement is the use of 3D information to (1) construct 3D

nodes; (2) reduce the number of edges in the connectivity map of the state space; and

(3) propagate information in the state space by considering 3D distances between the

nodes, while retaining an exact solution. To the best of our knowledge, this is the first
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time that an approach for articulated clinician detection is proposed and evaluated on a

large dataset recorded during real surgeries.

In multi-person and cluttered environments such as ORs, the likelihood of having

occluded body parts is quite high due to both inter-person and object occlusions. Cap-

turing the environment using a multi-view system can significantly reduce the likelihood

of such occlusions. In the next chapter, we therefore extend our approach to multiple

views in order to further improve the results in such environments.
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In cluttered and multi-person environments like operating rooms, the risk of body

part or even person occlusions is very high. These occlusions can dramatically degrade

the reliability of the person detection and pose estimation methods. In order to reduce

the risk of occlusion, we propose to capture the environment using a multi-view camera

system. We introduce an approach for multi-view human pose estimation from RGB-D

images and demonstrate the benefits of using the additional depth channel for pose

refinement, beyond its mere use for the generation of improved features. The proposed

method permits the joint detection and estimation of the poses without knowing a priori

the number of persons present in the scene. We evaluate this approach on a novel multi-

view RGB-D dataset acquired during live surgeries and annotated with ground-truth 3D
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Figure 6.1: Synchronized pairs of color and depth images from a novel multi-view dataset,
called the MV-RGBD-CT dataset. The images are recorded during live surgeries using a
three-view RGB-D camera system.

poses.

6.1 Introduction

In Chapter 5, we demonstrate that the combination of color and depth information

along with the use of depth information to model 3D constraints between neighboring

body parts greatly improves the pose estimation results. However, occlusions that occur

often in such a crowded and cluttered environment, can degrade the performance of the

method. We argue that in the operating room, where the working volume is known

a priori, multi-view systems can be used to capture the environment from different

viewpoints for reducing the risk of occlusions. Following our findings in Chapter 5, we

propose in this chapter to use a multi-view RGB-D system to capture the environment

from three complementary views. We introduce a novel approach to leverage a priori

information about the room for making more reliable predictions and to incorporate

evidence across all views for localizing body parts. We show that the advantages of

using depth maps in such a multi-view approach go beyond the generation of improved

appearance features.

In a multi-view RGB system, correspondences across views are traditionally established

by relying on appearance similarity and triangulation [Belagiannis 2014b, Gall 2010,

Amin 2014,Belagiannis 2016], which is unreliable in OR environments containing many

surfaces that are visually similar (see Figure 6.1). Instead, the depth data enables us to

back-project points to 3D. It is also not affected by the visual appearance of the surfaces

in the scene. It further enables us to back-project points that are only visible in one

view, while in multi-view RGB systems, points should be visible in at least two views.
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Current multi-view human pose estimation approaches have been proposed either

for single-person scenarios [Gall 2010,Burenius 2013,Hofmann 2011,Amin 2014] or for

multi-person scenarios in which the number of persons is known in advance [Luo 2010,

Belagiannis 2014b,Belagiannis 2016]. The approach proposed in this chapter makes no

assumption about the number of persons in the scene. To this end, our approach first

processes each view separately to detect putative skeletons. Next, a priori information

about the environment, modeled using random forests, is applied to filter spurious

skeletons. The resulting skeletons are then merged across views1. Finally, a novel

energy function is optimized to incorporate evidence across views and update initial part

positions directly in 3D.

Our single-view RGB-D pose estimation approach extends 3D Pictorial Structures

(3DPS) presented in Chapter 5 by incorporating Convolutional Neural Networks (Con-

vNets) for the part detection [Insafutdinov 2016]. ConvNets have recently enjoyed a

great success in solving many vision-based tasks including human pose estimation [To-

shev 2014,Tompson 2015,Schmidhuber 2015, Insafutdinov 2016,Pishchulin 2016]. They

are capable of learning strong detectors that can incorporate a wide image context through

deep network architectures with large receptive fields [Wei 2016]. Having access to a wide

image context makes the ConvNet-based detectors less subject to false detections, as can

be seen in Figure 6.4. This is important for the subsequent multi-view skeleton estimation

algorithm to avoid being misled by false detections. However, mutual spatial constraints

among body parts are not explicitly modeled, even though they are essential to guarantee

joint consistency in the predicted body configuration, especially in multi-person and

cluttered environments such as ORs. Therefore, we use a deep ConvNet-based part

detector constructed for RGB-D data in conjunction with a 3D pairwise dependency

model to enforce body kinematic constraints directly in 3D. This is in contrast to current

methods that rely on 2D displacements [Yang 2016,Jain 2014,Tompson 2014] or visual

similarities [Insafutdinov 2016] among body joints. As shown in Chapter 5, enforcing

body kinematic constraints in 3D is crucial to reliably estimate body part configurations

of different individuals who are close to each other in the projected 2D image and are

visually similar.

Incorrect detections and occlusions can however result in spurious skeleton candidates

in each view that can mislead the multi-view merging algorithm. We argue that in a

specific environment like the operating room, a priori information about the room should

be leveraged to identify spurious candidates. Therefore, we also propose a method to

learn a prior on the 3D body kinematic and room layout constraints. This prior, based

on random forests, is used to recognize and remove skeletons with unlikely 3D shapes or

positions. Relying directly on high level 3D skeleton information enables the model to

better explore the a priori information of the OR and to build a stronger prior compared

to traditional pose priors that are based on the displacement or visual similarity among

parts [Yang 2016, Insafutdinov 2016,Kadkhodamohammadi 2017a].

Single-view skeleton candidates are then merged using a multi-view fusion algorithm

1We assume that the extrinsic parameters of the cameras are known.
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to generate a set of initial multi-view skeletons. We use our novel multi-view energy

function to drive body parts towards their optimal locations by leveraging depth data and

reasoning across all views. We use the depth data not only to establish correspondences

but also to a compute reprojection cost that is otherwise often computed based on

appearance similarity and triangulation [Amin 2014,Belagiannis 2016,Burenius 2013].

We have generated a multi-view dataset, called MV-RGBD-CT, from several days of

recordings. We have manually annotated the dataset for both 2D and 3D positions of

upper-body skeletons. The dataset has been used for evaluating our approach and also

for performing comparisons with several state-of-the-art methods.

6.2 Method

We start this section by recapitulating the 3D Pictorial Structures (3DPS) of Chapter 5

and then present the different components that lead to our multi-view RGB-D approach.

6.2.1 Single-view Body Pose Estimator

The 3DPS model represents the body as a set of Np joints and learns multiple mixtures

of parts to capture appearance changes. This model uses ten body joints to indicate

upper-body poses, since lower body parts are often occluded in operating rooms. A body

configuration is specified by a pair (l, t), where l =
{

l1...lNp

}

indicates the 2D positions

of the body joints and ti belongs to a set of T possible mixture types t =
{

t1...tNp

}

for each body joint. The pose estimation is defined as an energy minimization over a

tree-structured graph G = (V,E), whose nodes are the body joints and whose edges

indicate dependencies between joints. The body joint dependencies are defined following

the human body skeleton. Given a pair of aligned color and depth images denoted by I

and D, respectively, the score associated with a body configuration (l, t) is defined as:

S(I,D, l, t) =
∑

i∈V

φ(I,D, li) +
∑

ij∈E

w
ti,tj
ij .ψ(D, li, lj) +

∑

i∈V

btii +
∑

ij∈E

b
ti,tj
ij , (6.1)

where, similarly to 3DPS in (6.1), the first term is the appearance model (or the

part detector), and the second term is the deformation model that enforces pairwise

dependencies between body joints and the last two terms are part type compatibility

score functions.

The part detector assigns a confidence score for placing the body joint i at image

location li. 3DPS relies on handcrafted features, namely Histogram of Oriented Gradients

(HOG) and Histogram of Depth Differences (HDD). Here, we compute the part detection

scores using the deep ConvNet model presented in Section 6.2.2.

We follow the 3DPS formulation presented in Section 4.2 to construct the last three

terms. The part detector is learned using the method presented next, but other model

parameters, namely compatibility score functions and w
ti,tj
ij , are learned using a structured

support vector machine formulation similar to 3DPS. The inference is also performed

using the algorithm presented in Section 5.2.5.
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6.2.2 ConvNet-based RGB-D body part detector

Motivated by the great success of deep convolutional neural networks in recent years

[Schmidhuber 2015,He 2015,Tompson 2015, Insafutdinov 2016,Newell 2016], we propose

to use RGB-D body part detectors based on deep ConvNets in order to automatically

learn feature representations instead of relying on engineered feature representations such

as HOG or HDD. To this end, we build on the very deep residual network [He 2015], which

has recently been used for part detection and shown promising results [Insafutdinov 2016].

The body part detection is formulated as a multi-label classification problem, where a set

of n scores is generated at each image location to denote the probability of part presence.

The scores are obtained by using sigmoid activation functions on the output neurons.

We adapt the network to learn body part detectors for pairs of color and depth images.

We change the input layer to accept four dimensional data (i.e. three color channels and

depth channel). We also change the res3d pose layer to generate part score maps for

ten upper-body parts instead of the fourteen full body parts. During pose estimation,

we use the ConvNet-based body part detector to predict confidence scores for all parts

at every image locations. Hereafter, we refer to this human pose estimation model as

Deep3DPS.

Fine-tuning. We initialize the network from the pre-trained model of [Insafutdinov 2016],

which is trained on the MPII Human Pose dataset. We fine-tune the network on the

SV-RGBD-CT dataset from Chapter 5 using the Caffe framework [Jia 2014]. We scale

the images down to 85% and use a batch size of two. Similarly to [Insafutdinov 2016], we

generate target training score maps for all body joints by assigning the positive label 1

for all image locations within 15 pixels to the ground-truth locations and negative label

0 otherwise. During training, we use all positive samples and keep at most three times

more negative samples. The network is trained with cross entropy loss and stochastic

gradient descent for 50k iterations. The initial learning rate is set to 5× 10−5 for the

adapted layers and 5× 10−6 for the rest. This yields the best results in our experiments.

In [Insafutdinov 2016], the network is trained for three tasks: body part detection,

location refinement, which is the relative row and column displacement from a scoremap

location to the ground-truth, and regression to other parts. However, training for the

last two tasks did not yield any performance improvement during our experiments. We

therefore only train for the body part detection task.

6.2.3 Random Forests Based Prior

To design a robust method, we believe that it is essential to include priors specific

to the environment. Even though a general body kinematic prior is included in the

pose estimation model through pairwise constraints, it cannot be guaranteed that these

constraints are always properly enforced due to the high complexity of the pose estimation

model that predicts human poses directly from image pixel values. In addition, this prior

only captures body kinematic constraints and does not incorporate a priori information

about the environment. In an environment like the OR, constraints such as possible
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human poses and possible locations can also be used to improve the reliability of the

method. Such constraints cannot be easily handcrafted. Furthermore, including them in

the pose estimation model would need higher-order dependency terms. Adding such terms

would increase the number of model parameters and, more importantly, dramatically

increase the complexity of the inference algorithm. We therefore propose to automatically

learn the prior, which we formulate as a binary classification problem that takes a

skeleton estimated by the single-view detector as input and outputs whether this skeleton

corresponds to a spurious detection or not.

We base our approach on Random Forests (RF), which are an ensemble of decision

trees consisting of two types of nodes: split and leaf nodes. In each split node, a decision

function is implemented to forward samples to one of the branches until they finally

reach a leaf node containing a prediction function. In our case, we use RF with binary

trees and the mean over all predictions to aggregate the votes across all trees. The

trees are learned automatically given a labeled training set, which we construct using

the skeletons estimated by our single-view pose estimator on a set of images for which

ground-truth is available. The detected skeletons are compared to the ground-truth

using the probability of correct keypoints (PCK) metric, which is commonly used for

evaluation in multiple-person pose estimation [Yang 2013,Pishchulin 2016]. We label a

detected skeleton as positive if the head, neck, and left and right shoulders are correctly

localized according to PCK.

For RF training, we propose to combine various features computed from the 3D

skeletons, which are all expressed in the common room reference frame. The reference

coordinate system is chosen w.r.t. the operating table in default position, which makes

the prior generalizable to other ORs. This enables our prior to encode two types of

information: room layout and possible clinician poses. Certain parts of the room, such

as the floor or the ceiling, are for instance not expected to have clinicians or certain body

parts. Thus, as first set of features, we use the positions of the 3D body parts to enable

the RF to build an internal representation of their spatial occupancy probability. To

capture the set of possible human poses in the OR, we include a second set of features,

namely the relative 3D displacements between all pairs of body joints. The prior also

serves to verify 3D part lengths and exclude incorrect skeletons that may occur due to

weak detections and foreground/background confusions. As third feature, we include

the detection score of the individual skeleton to incorporate detection confidence. To

enable our prior to better encode high-level information, we use the RF method in a

multi-layer scheme, referred to as auto-context in the machine learning literature. A

multi-layer model is learned, where the first RF layer is constructed using only the three

aforementioned types of features, while the other layers use another extra feature that is

the classification confidence generated by the previous RF layer.
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6.2.4 Multi-view Human Pose Estimation

6.2.4.1 Multi-view fusion

The objective of the multi-view fusion is to combine the 3D skeletons across all views.

For a given frame, defined as a set of RGB-D images recorded from all cameras at the

same time step, detections from all views are first put in a set. The two closest skeletons

that do not originate from the same view are then merged. This procedure is iterated

until no pair of merging candidates is left in the set, where the condition for merging two

skeletons is that the distance between their heads and the distance between their necks

are both smaller than a constant Ts. Since the left/right side labels of the individual

detections are not always reliable, to ensure a consistent merging of the 3D joints we

use the 3D positions of the shoulders to find the correct association between the two

skeletons. Finally, for all skeletons resulting from a merging step, the left and right side

labels are set based on a majority vote among the supporting skeletons. If a merged

skeleton originates from only two supporting skeletons, which do not agree on the side

label, we set the side according to the skeleton with highest confidence.

As a result, we obtain a set of initial 3D skeletons generated from skeletons coming

from one or more views. Then, a new multi-view energy function, presented next, is used

to drive the body parts towards their optimal 3D locations by jointly optimizing over all

views.

6.2.4.2 Multi-view RGB-D Optimization

We formulate our multi-view RGB-D approach as an energy minimization over the same

graph G as in Section 6.2.1 and define the energy function E(∆) over the graph as:

E(∆) =
∑

i∈V

(

λ1.Φ
conf (δi) + λ2.Φ

depth(δi)
)

+
∑

(i,j)∈E

Ψi,j(δi, δj), (6.2)

where λ1 and λ2 are weighting coefficients, ∆ = {δ1...δn} is a set of displacement labels for

all body parts, δi ∈ ❘
3 is a 3D displacement offset for part i, Φ(.) are the unary potentials

and Ψi,j(δi, δj) is a pairwise dependency term enforcing body physical constraints.

The first term in (6.2) incorporates part detection confidence scores computed by the

ConvNet part detector. Given the list of all views views, we define:

Φconf (δi) =
∑

v∈views

conf
(

proj
(

P (δi), v
)

)

, (6.3)

where P (δi) is the 3D position of part i displaced by an offset δi and proj(p3D, v) projects

the 3D point p3D. In order to provide a smooth cost function, we compute the distance

transforms of the deep ConvNet score maps using the generalized distance transform

algorithm [Felzenszwalb 2005]. We find that this transformation is necessary to avoid

local minima. conf(p2D) ∈ [0..1] is the value of the distance transform of the score map
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of part i at location p2D. The second term is defined as:

Φdepth(δi) =
∑

v∈views

∣

∣

∣
D
(

proj(P (δi), v)
)

− Z(P (δi), v)
∣

∣

∣
, (6.4)

where D(p2D) is the depth value at image location p2D, Z(p3D, v) is the z value of the 3D

point p3D in the coordinate system of the view and |.| is the absolute value operator. To

reduce the effect of the noise present in the depth image, we smooth the depth image with

a median filter of size 7×7px. This term quantifies the distance between the displaced

3D joint and the surfaces captured by the depth cameras. Therefore, it can help to avoid

placing parts in ghost 3D locations that do not correspond to any surface in the scene.

These two unary terms incorporate multi-view cues, where the RGB-D ConvNet is used

to include image evidence and depth is used to integrate a reprojection cost across all

views.

The pairwise term is used to enforce kinematic constraints, namely body part lengths

between pairs of joints. Let Ψi,j be defined as:

Ψi,j(δi, δj) = |‖P (δi)− P (δj)‖ − µi,j |, (6.5)

where ‖.‖ is L2-norm and µi,j is the average distance between joints i and j, i.e. average

part length. The average part lengths are computed over the entire training dataset.

Note that since the body part lengths are relatively constant in 3D, it is here not needed

to learn person-specific average part lengths.

Inference. In order to recover 3D body part configurations, we need to perform inference

in 3D. This problem corresponds to optimizing the energy function in Eq. (6.2). Note

that using the optimization algorithm of 3DPS would require to construct a 3D state

space that includes all 2D positions back-projected to 3D (amounting to the number

of views multiplied by the size of the images) augmented with extra neighboring nodes

for each back-projected node to account for occlusions. Such a large state space would

degenerate the performance and slow down the inference. Similarly, the inference approach

from [Burenius 2013] would limit us to use simple binary pairwise terms. Instead, we

perform discrete optimization using the fast-PD algorithm [Komodakis 2008], which casts

the optimization problem in an integer programming framework and exploits solutions

from both primal and dual problems for efficiency. To perform the optimization, we

define a set of discrete displacement labels L for each body joint by sampling densely

from a cube centered at the initial joint position. The sampling function is parametrized

by (n, s), where n is the number of samples along each 3D direction and s is the step size

between the samples. We perform the optimization iteratively by starting with a coarse

label set with a large step size to cover a large 3D space. At the end of each iteration,

we update the part positions based on the displacement labels and then generate a finer

label set for the next iteration.
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Figure 6.2: Annotation tool. Three views and the 3D point cloud (bottom right) are
shown in the window. Right side body parts are indicated in green color. Occluded body
parts are denoted by crosses. The annotator can move points in either 2D or 3D. The
correctness of an annotated skeleton can be verified using both the 3D point cloud and
its reprojection to the views.

6.3 Experimental Results

Datasets. We have generated a multi-view RGB-D dataset, illustrated in Figure 6.1,

by recording all activities in an operating room for four days. This dataset is called

MV-RGBD-CT. For quantitative analysis, the 3D upper-body poses of 1378 clinicians

have been manually annotated in 741 multi-view frames that are evenly distributed

across the dataset. All clinicians who have more than 50% of their upper-body parts

visible in at least one view have been annotated in these frames. The annotations are

performed using a tool that displays a 3D point cloud reconstructed from all three views

as well as the corresponding individual 2D images. This tool allows the user to move the

body joints either in the 2D views or in the 3D point cloud. The annotator often starts

by annotating 2D positions for all body parts in all views. For each person, an average

3D skeleton is computed by back-projecting 2D annotations into 3D using the depth

map. Whenever a joint is moved in 2D, the 3D position of the corresponding joint in

the average 3D skeleton is updated. However, noisy depth and side-view of a person can

lead to inaccurate average 3D skeletons. Therefore, to ensure the correctness of the 3D

skeletons, the annotator verifies the reprojection of the average 3D skeletons to all views

and move joints directly in 3D. Figure 6.2 shows a snapshot from the annotation tool

developed by our group. All 2D images and the reconstructed 3D point cloud (bottom

right window) are shown simultaneously. The annotator can check the correctness of the
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Figure 6.3: Multi-view examples illustrating the results of the RF-based prior. Accepted
skeletons are shown in orange and rejected skeletons in purple.

Figure 6.4: Part detection score maps. These score maps are generated using Deep3DPS
(RGB-D) and overlaid over the corresponding color images

reprojections and move joints in 2D or 3D.

In order to have enough data for ConvNet training and disjoint test set, we use

the SV-RGBD-CT dataset presented in Chapter 5 to train all 3DPS single-view pose

estimation models and for fine-tuning the network. For all models, evaluation is performed

on the MV-RGBD-CT dataset. As the MV-RGBD-CT dataset is used for random forest

training, to evaluate the model, a 4-fold leave-one-out cross-validation is performed,

where three folds are used for training and the rest for testing. The evaluation reports

the average results of the cross-validation.

6.3.1 Single-view Pose Estimation

Table 6.1 reports the performance of different models on the MV-RGBD-CT dataset

using the PCK metric [Yang 2013, Insafutdinov 2016]. All 3DPS models have been

trained on the SV-RGBD-CT dataset used in Chapter 5. The 3DPS method using
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Setting Head Shld Elbow Wrist Hip Avg

Deep3DPS (DeeperNet) 89.6 56.5 50.6 54.3 42.9 58.8
Deep3DPS (RGB) 93.7 74.9 69.6 71.8 66.6 75.3
Deep3DPS (Depth) 91.0 75.0 69.1 68.0 63.2 73.2
Deep3DPS (RGBD) 93.4 77.0 71.5 73.7 69.1 76.9

+Auxiliary tasks 91.4 72.1 64.9 68.4 63.5 72.1

3DPS (IHOG+HDD) 90.8 74.2 62.2 63.4 57.5 69.6

Insafutdinov et al. [Insafutdinov 2016]2 91.1 53.7 47.5 50.1 38.4 56.2
Yang and Ramanan [Yang 2013]3 30.4 35.2 19.6 24.3 16.7 25.2

Table 6.1: Pose estimation results of several single-view approaches using PCK metric.

the pre-trained network of [Insafutdinov 2016] as body part detector, referred to as

DeeperNet, achieves a better performance compared to the full DeeperCut approach

from [Insafutdinov 2016] that estimates the body poses via a joint optimization across

all people. These results indicate that in an environment with many visually similar

surfaces, a 3D deformation model, even with tree-structured graph, is more reliable than

a fully connected deformation model which relies on appearance and 2D displacement

constraints. Fine-tuning the network on the SV-RGBD-CT dataset significantly improves

the results (Deep3DPS (RGB): 75.3% vs. 58.8% PCK), as it allows the network to adapt

its representation for learning a better encoder for such an environment. We have also

trained the network to detect body parts using only depth data, Deep3DPS (Depth),

which achieves competitive results. The best performance is obtained when the network

relies on both color and depth images: the resulting model, called Deep3DPS (RGB-D), is

therefore used as single-view pose estimator during the rest of the experiments. Exemplary

score maps generated by Deep3DPS (RGB-D) are shown in Figure 6.4. It can be seen

that the detector generates very few false detections, which is crucial for the multi-view

merging method that relies on these detections (Φconf ). But, we observe that on this

data, training the network for the auxiliary tasks suggested in [Insafutdinov 2016], namely

location refinement and regressing to other parts, degrades the performance. We believe

that this is due to both a much smaller training set and to the strong foreshortening of

the body parts because of the top views of the cameras.

As baseline, we report the results of the 3DPS model from Chapter 5, which relies on

a 3D pairwise deformation model similar to our approach, but with handcrafted color

and depth features. Our best model improves the performance over this baseline by

∼7% on the same experimental setup. This highlights the benefits of deep ConvNets in

constructing more discriminative body part detectors by automatically learning feature

representations and also incorporating a wider context. Evaluation of state-of-the-art

RGB models [Insafutdinov 2016,Yang 2013] trained on common computer vision datasets

shows that they do not generalize to the OR environment due to both loose clinical

clothes and the presence of many visually similar surfaces4.

4Note that the Kinect tracker [Shotton 2012] cannot be evaluated quantitatively, as it is not available
off-line and cannot be run on individual frames. Qualitative results for the Kinect skeleton tracker, and
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Figure 6.5: Examples of multi-view pose estimation results. Each row shows a multi-view
frame. The 3D skeletons obtained after multi-view energy optimization are projected to
the views.

6.3.2 Random Forest Based Prior

The Deep3DPS (RGB-D) model is applied to detect skeletons in each view of the MV-

RGBD-CT dataset separately. The skeletons are back-projected into 3D and transformed

into a common reference frame. We use these 3D skeletons to train our prior, as explained

in section 6.2.3. We also augment the data by flipping the skeletons to exchange the

left-right body parts. Due to the small size of the training set, we learn 100 shallow

trees with a maximum depth of 10. Figure 6.6(a) shows the detection accuracy of

the methods [Yang 2013] and [Insafutdinov 2016] are presented in Chapter 1.
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6.3. Experimental Results

Part
name

One view Two views Three views

initial after opt. opt.-Φdepth initial after opt. opt.-Φdepth initial after opt. opt.-Φdepth

Head 7± 4 7± 4 7± 4 6± 3 6± 3 6± 3 5± 2 5± 2 5± 2
Neck 7± 4 7± 4 7± 4 5± 3 5± 3 5± 3 4± 2 4± 2 4± 2
Shld 25± 25 19± 16 21± 18 22± 16 15± 10 19± 13 14± 14 10± 7 12± 9
Hip 28± 22 27± 19 28± 20 24± 13 23± 13 24± 14 18± 10 17± 9 18± 10
Elbow 31± 22 27± 19 30± 21 30± 18 23± 15 27± 18 19± 14 16± 11 18± 14
Wrist 42± 34 32± 21 35± 24 34± 22 25± 16 28± 18 24± 18 18± 13 20± 15

avg† 32± 26 26± 19 29± 21 28± 17 22± 14 25± 16 19± 14 15± 10 17± 12

Table 6.2: Mean and standard deviation of 3D part localization error in centimeter. The
results are presented as a function of the number of supporting views used to generate
the initial 3D skeletons (distribution: 1 view: 30%; 2 views: 43%; 3 views: 27%). † The
average is computed for all parts except the head and neck since they are not included
in the optimization. See Section 6.3.3 for details.
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Figure 6.6: (a) Accuracy of the RF-based prior in detecting spurious skeletons. (b)
Precision-recall curves for 3D clinician detections.

the RF-based method in distinguishing spurious detections. The results show that the

method always detects valid skeletons with an accuracy superior to 84%. One observes

that augmenting the training set by flipping the skeletons consistently improves the

results by enabling the forest to learn a richer prior model that is not confused by the

noisy side detections. The results show that auto-context enhances the performance up

to the fourth iteration and then tends to overfit. We therefore use the output of the RF

trained on the augmented training set at the fourth layer to identify spurious skeletons

during the remaining evaluations. Figure 6.3 illustrates the results of the approach

on sample frames from the MV-RGBD-CT dataset and also on a few frames from the

MV-RGBD-CArm dataset, which has been recorded in a different room from totally

different viewpoints. It can be seen that the method has correctly identified spurious

skeletons in both datasets and generalizes well. The proper generalization is due to the

fact that the reference frame is defined on the floor at the center of the operating table,

the main element in any operating room.
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6.3.3 Multi-view 3D Person Detection and Pose Estimation

We set Ts to 30 cm to avoid merging skeletons across persons who are close to each

other. We evaluate 3D clinician detection using the precision-recall curves. We accept a

detection as a true positive if the distance between the ground-truth and the detection

is below 30 cm for both the head and neck. We use the fusion algorithm described

in Section 6.2.4.1 to generate a set of 3D skeleton candidate per frame. Figure 6.6(b)

shows the 3D clinician detection results after multi-view fusion with and without the

RF-based prior. The high precision obtained by our method when the OR prior is used

indicates the high quality of the retrieved skeletons. To optimize part positions based on

multi-view cues, we generate four label sets {(n, s) : (3, 50), (5, 10), (7, 2), (7, 1)}, where

the step sizes are in centimeter. We solve the optimization in four iterations by going

from a large and coarse search space towards a small and fine search space, which allows

us to more efficiently explore the 3D space. The parameters used in all experiments are

λ1 = 2 and λ2 = 0.5, that are selected using grid search over a set of 50 frames from the

MV-RGBD-CT dataset. The mean and standard deviation (STD) of the 3D Euclidean

distances between the predicted body part positions and the ground-truth positions are

used to evaluate 3D body part localizations.

In Table 6.2, we present the evaluation results for multi-view body part localization

as a function of the number of supporting views. Please note that since the head and

neck localization errors are close to the expected error in low-cost RGB-D cameras, we

do not update these two joints during our optimization. This table presents localization

errors for the initial 3D skeletons obtained by the fusion algorithm and the error after

performing the multi-view optimization. One can notice that the proposed multi-view

fusion method correctly associates skeletons across views by consistently reducing the

localization errors as the number of supporting views increases. However, we observe

that if we ignore the left and right labels of the detections and assign the label based

on shoulder distances with ground-truth, the localization errors decrease by ∼10 cm for

skeletons with one or two supporting views and ∼3 cm for skeletons with three supporting

views. These results indicate that the side detection in individual views is not very

reliable. But, if a person is detected in all views, the proposed voting algorithm can

make a more reliable prediction. The multi-view optimization significantly reduces the

localization error for skeletons with any number of supporting views. Interestingly, the

optimization improves the results even for skeletons with one supporting view by properly

incorporating the depth-based reprojection costs and detection confidences. The deep

RGB-D part detector is the main driver of the optimization. To evaluate the effect of

the depth-based reprojection cost, we also report the results without this term in column

‘opt.-Φdepth’. The drop in performance highlights its importance. The 2D projections

of 3D poses obtained using the proposed multi-view optimization are shown for a few

frames in Figure 6.5.
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6.4 Conclusions

In this chapter, we propose a multi-view RGB-D approach for detecting and estimating

the body part positions of medical staff in 3D. A ConvNet-based body part detector

combined with a 3D pairwise deformation model is used to recover body poses in each

view. A method based on multi-layer random forests is then proposed to automatically

learn a priori information about the OR and remove spurious detections per view,

which allows us to reliably detect the body poses of persons in the scene. Then, these

detections are back-projected to 3D and merged across views. Finally, a novel optimization

function is introduced to update the part positions by relying jointly on the body part

confidence maps, depth data and multi-view cues. The method has been quantitatively

evaluated on a new multi-view dataset acquired during live surgeries. Experimental

results show significant improvements over state-of-the-art methods for the task of single-

view pose estimation in multi-person scenarios, indicating the benefit of combining deep

part detectors and 3D pairwise constraints in building robust models. The multi-view

formulation also achieves very promising results showing the benefit of the deep ConvNet

detector and of depth data for correctly driving parts towards their optimal locations.
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In this chapter, we demonstrate how human detection and pose estimation can be

used to address several applications for the operating room. To detect and estimate the

poses of the clinical staff, we use our multi-view model presented in Chapter 6. Then, the

estimated 3D body poses are applied to develop solutions for several applications, namely

room occupancy analysis, smart video browsing and radiation exposure estimation. For

all these applications, we use a fully calibrated multi-view RGB-D camera system to

capture the operating room from complementary views during real surgeries.

7.1 Room Occupancy Analysis

We apply the multi-view model of Chapter 6 to extract room occupancy maps per

surgery, hypothesizing that the spatial room usage patterns vary among different types of

procedures and are similar for different instances of the same type. To this end, with the

help of our clinical partner, we have selected three types of fluoroscopy-guided surgical

interventions, namely vertebroplasty, drainage and lung biopsy. These interventions are

chosen because they are frequently performed in the interventional radiology department

of the University Hospital of Strasbourg and their time durations, which are usually about

one hour, are similar. We have recorded three instances of each kind in an operating room

that is equipped with an inter-operative CT scanner device and a mobile C-arm device.
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Vertebroplasty Drainage Lung biopsy

Figure 7.1: Room occupancy heat maps for three instances of three types of surgeries:
Vertebroplasties, Drainages and Lung biopsies. The horizontal dashed boxes indicate the
CT scanner device and the vertical ones indicate the operating table.

We apply our multi-view model to detect clinical staff at 1 fps. The 3D positions of the

heads in the detected skeletons are used to indicate the staff’s locations in the room.

The floor is then discretized into squares of 30× 30 cm. We accumulate the number of

persons detected in each square across the entire surgery, to form a room occupancy

heat map. Figure 7.1 shows the heat maps for the recorded surgical interventions. The

heat maps are normalized across all surgeries. Figure 7.2 shows a sample image for each

sequence that is used to compute the heat maps.

One can notice that even with this coarse representation, it is possible to identify

a common pattern of room usage for the same kind of procedure and to distinguish

different types of surgeries. One observes that clinicians and staff are mainly located

at one side of the operating table and that they are often moving in a small area. In

vertebroplasties and drainages, we observe that medical staff are using both side of the

table. This is because the mobile C-arm device is used during these procedures, which

requires at least one nurse at the other side of the operating table to manually adjust

the device. In vertebroplasties, the nurse is more often present at the other side of the

table, since the C-arm device is used more frequently compared to drainages.
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Vertebroplasty Drainage Lung biopsy

Figure 7.2: Samples images from the sequences used to compute the room occupancy
heat maps that are presented in Figure 7.1. Images are shown in the same order as the
heat maps.
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Figure 7.3: Video player tool. The tool shows a bar graph to indicate the number of
persons per minute. The bar graph is aligned with the video progress bar, such that
the advancement of the progress bar denotes the average number of persons at the
corresponding time step.
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7.2 Smart Video Browsing

Nowadays, camera recording systems are commonly used in operating rooms to record

the performed procedures, mostly for archiving and educational purposes. The recordings

are often stored per day, which makes it difficult to browse through the generated files.

In order to facilitate browsing though these lengthy videos, we propose to apply our

clinician detector to collect statistics about the number of persons present in the room,

which is highly informative of the activities taking place.

Figure 7.3 shows a video player tool that can be designed to facilitate browsing

through lengthy OR video files. Such a player can allow the user to browse through a

video while simultaneously showing a bar graph for indicating the average number of

persons in the room. To compute the bar graph, the number of persons per frame can

be detected using our clinician detection model from Chapter 6 or Chapter 5 depending

on the number of views. The bar graph can then be aligned with the video progress bar,

such that the advancement of the progress bar indicates the average number of persons at

the corresponding time step. For example, the bar graph shown in Figure 7.3 is computed

for a full day recording that was captured using a calibrated multi-view camera system

at 20 fps. Each bar in this graph represents the average number of persons per minute.

The knowledge of the number of persons per minute allows the user to identify time

intervals when the room is empty. This information can also help the user to locate

in the video certain types of surgeries and actions efficiently. For example, during a

vertebroplasty surgery, at least two medical staff are required (one clinician and one

helping nurse operating the C-arm device); and transferring the patient from the gurney

to the operating table requires more than two persons. In Figure 7.3, one can observe

that no patient is brought to the operating room on a gurney during the last few hours

of the day as the number of persons in the room remains below two.

7.3 Radiation Exposure Estimation

As mentioned in Sections 1.2.3 and 4.1, during fluoroscopy-guided surgeries medical staff

are regularly exposed to harmful ionizing radiation. Longterm exposure can lead to

serious negative effects on the body [Vanhavere 2008]. Currently, medical staff are wearing

dosimeters to measure the accumulation of the exposure over time. As each person in the

OR wears a single dosimeter at the chest level and the radiation risk varies at different

parts of the body, the estimation of the amount of radiation absorbed at different parts of

the body is required to correctly assess full-body exposure [Carinou 2011,Loy Rodas 2015].

To that end, we use our multi-view model for estimating 3D body poses of medical staff

in combination with the radiation simulation system of [Loy Rodas 2015] for computing

the amount of x-ray doses received by each body part.

Figure 7.4(a) shows images from a recording sequence that has been captured during

a fluoroscopy-guided surgery. The rows show images from the beginning, the middle and

the end of the sequence. To estimate the radiation exposure, we use the simulation model

of [Loy Rodas 2015]. Since in our case we do not have the parameters of the C-arm
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(a) (b)

Figure 7.4: Estimation of the radiation exposure for frames in the beginning (top row),
the middle (middle row) and the end (bottom row) of a sequence: (a) the detected
upper-body poses and (b) the estimated radiation exposure per body parts. Each sphere
represents a body part and its color denotes the amount of received dose. A clinician
mesh in a default posture is shown in each image as a reference. Note that the values
are normalized across all frames (red indicates higher dose).

device, we use the model with default parameters. Given parts’ 3D positions, this model

is used to estimate the amount of doses received by each body part. These values are

then normalized across the sequence to bring all values into the range of [0,1], because

the simulation model estimates relative radiation exposure up to a scale factor. Figure

7.4 (b) shows the estimated exposure for the selected frames. The exposure is shown for
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Figure 7.5: Accumulation of radiation exposure. We show a color-coded radiation
exposure per body part, which is accumulated over the entire sequence. A clinician mesh
in a default posture is shown as a reference.

each body part and a clinician mesh in a default posture is shown as a reference. Note

that we estimate the radiation risk for all body parts including the left and right knees

as well as ankles although our pose estimation model only predicts upper-body poses.

We estimate the positions for the knees and ankles based on the 3D positions of the left

and right hips and on an average model that indicates body part lengths in 3D. This is

possible for clinical staff because they are always standing and the plane coordinate of

the floor can be obtained from the predefined room reference frame.

To compute the accumulation of the radiation exposure over time, we construct a

trajectory for the clinician shown in Figure 7.4. The trajectory of the clinician is built

by using a greedy algorithm that relies on 3D distances between the heads in consecutive

frames. The accumulation of radiation exposure over the entire sequence is presented in

Figure 7.5. The accumulation of radiation doses is separately computed for each body

part. The left side of the body of the physician is exposed more to the radiation as it is

closer to the radiation source.

7.4 Chapter Summary

In this chapter, we apply our approach from Chapter 6 to tackle several applications for

the operating room. The results show that detecting clinical staff and estimating their

poses can provide important information for different applications. In addition, since our

model only relies on camera sensors, it permits us to show these applications on data

from real surgeries without disrupting OR workflows.
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In this chapter, we conclude by briefly summarizing the contributions of this disserta-

tion. We also discuss the current limitations and possible directions to overcome them.

In addition, we outline possible directions for future work on human detection and pose

estimation.

8.1 Summary

One of the principal goals of this work was to develop the methods and algorithms

necessary for detecting persons in operating rooms and recovering their body part

configurations. Even though vision-based people detection and pose estimation are

challenging tasks in such an environment, other approaches such as the ones using body-

worn markers are not practical options for real surgeries. We have developed our methods

for clinician detection and pose estimation by relying on compact RGB-D camera sensors

(Asus Xtion Pro). Such cameras can be conveniently installed in the OR to record real

surgeries. Furthermore, the complementary information provided by the color and depth

images enables us to tackle the visual challenges present in the OR.

We introduced in Chapter 4 a new Markov random field energy optimization in order

to consistently track upper-body poses in an RGB-D sequence. We used [Buys 2013] as a

body part detector to detect body parts in each frame separately. Then, an MRF energy

optimization was used to incorporate part detection confidences along with kinematic

and temporal smoothness constraints for estimating temporally consistent poses over the
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complete sequence. The evaluation results showed that the proposed method is robust to

occlusions, presence of multiple persons and failures of the detector that often occur in

visually challenging ORs.

In Chapter 5, building on the pictorial structures framework [Felzenszwalb 2005], we

presented a novel method for human pose estimation on a pair of aligned color and depth

images. We proposed to construct a robust model by using a body part detector based on

both color and depth images, and by using 3D pairwise constraints. We also introduced

an efficient algorithm to reduce the size of 3D state space and make exact inference

tractable. In addition, a new descriptor was proposed for depth images. We showed that

the RGB-D detector and the 3D pairwise constraints are essential for detecting people

and estimating their poses in cluttered and crowded environments such as ORs. We also

demonstrated that the proposed model significantly improves the results for both the

tasks of human detection and pose estimation over the dominant approaches [Yang 2013]

and [Felzenszwalb 2010].

In Chapter 6, we introduced a multi-view approach for people detection and pose

estimation. We revisited the single-view 3DPS model from Chapter 5 and extended it to

use a deep convolutional network part detector in order to take a wider image context

into account for part detection. The model was called Deep3DPS. An approach was also

presented to automatically model a priori information about the environment. Finally, a

multi-view energy optimization approach was proposed to estimate 3D body poses by

incorporating body part detection confidences and depth data across all views. We solved

the optimization iteratively to efficiently explore the 3D space. We demonstrated that

the Deep3DPS model achieves significant improvements over state-of-the-art methods

[Yang 2013] and [Insafutdinov 2016] for single-view pose estimation. We also showed that

the proposed multi-view approach reliably detects people and estimates their 3D poses.

Finally, in Chapter 7, we presented the use of our multi-view approach described in

Chapter 6 for several applications in the operating room. The applications were room

occupancy analysis, smart video browsing and estimation of the accumulation of radiation

exposure per body parts.

This is the first work that addresses the problem of human detection and pose

estimation on data recorded during real surgeries. We explored different directions

to exploit different types of data, namely single-view images, multi-view images and

temporal sequences for obtaining robust models. This allowed us to propose approaches

with interesting properties and to achieve impressive results on real data. However, due

to time constraints, we could not explore all the ideas that have emerged during this

work. We would like to discuss some of these ideas in the following section in the hope of

coming back to them in future work.

8.2 Discussion and Future Work

Joint multi-person pose estimation. The proposed approaches estimate body poses

of each person separately and rely on 3D pairwise constraints to resolve potential
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ambiguities among detections belonging to different individuals. It will however be

interesting to jointly estimate the body poses of all individuals in the scene. An elegant

model has been presented in [Pishchulin 2016] to address this problem, but optimizing

such a model is NP-hard and even the approximate optimization for one image takes

around 72 hours, which makes it infeasible for a practical application. Their follow-up

work in DeeperCut [Insafutdinov 2016] significantly reduces the optimization time. As

the approach uses appearance to filter part detection candidates and also to speed up the

optimization, it does not generalize well to complex and visually similar environments

such as ORs. The 3D information provided by the depth data can be leveraged to

generate a better candidate set and also to further speed up the optimization. We

envision that a robust and efficient model for joint pose estimation of multiple persons

could significantly improve results in crowded ORs.

Body part detection in 3D. In Chapters 5 and 6, we have shown that using depth

data always improves the performance of the part detector. However, the depth image is

currently treated similarly to the color channels in the body part detectors. It will be

interesting to use the depth data to reconstruct the 3D point cloud and develop 3D body

part detection models especially in multi-view setups. We envision that such models

will have less problems with the foreshortening of the parts and will also speed up the

run-time by removing the need for multi-scale part detection.

Context-aware pose estimation. In Chapter 6, we have demonstrated that a priori

information about the environment could be used to build robust models. We envision

that in modern ORs, signals available from different OR tools and systems could provide

information about the context and similarly improve human pose estimation methods.

Therefore, we believe that it is an interesting research direction to build human pose

estimation methods that incorporate these signals. This will allow to develop context-

aware multi-modal pose estimation methods.

Joint training. Our best performance for single-view pose estimation has been obtained

using the 3DPS approach with the ConvNet-based body part detector. The deformation

model and the body part detector have been trained separately. It would be interesting

to learn all parameters jointly. This will allow to have interactions between the part

detection and the deformation models to ultimately build a richer model.

Deep deformation model. The impressive results of deep ConvNets for learning

robust body part models [Chen 2014,Yang 2016, Insafutdinov 2016] indicate that such a

learning paradigm is able to effectively explore training data for building stronger models.

Similarly, we envision that current deformation model can be automatically learned and

improved by using deep learning.

Human pose estimation combined with other human understanding tasks. In

general, human pose estimation is typically studied in isolation from other tasks such

as human activity recognition, human behavior analysis and social interaction analysis.

But, in practice, there is a high correlation between human body poses and other ways
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to study and understand humans. Human pose estimation is often used in the process

of building models to perform these tasks. However, improving human pose estimation

using the higher-level information from these tasks remains largely unaddressed. For

example, the knowledge of the performed surgical action can impose a strong prior on

the set of possible body poses. Future research should therefore focus on closing the loop

between human pose estimation and other human understanding tasks in a joint manner.

Training data. Current research on human pose estimation is mainly focused on

developing supervised approaches to address this problem. However, the ability of the

supervised methods are bounded by the quality and the availability of labeled data.

Collecting a large amount of data and generating manual annotations are very tedious

tasks. The emergence of Amazon Mechanical Turk (AMT) has allowed to distribute the

task among many people across the globe. We should however note that preparing the

data as well as the annotation tool and ensuring the quality of the annotations are still very

demanding tasks to perform. More importantly, in the case of OR data, due to privacy

regulations it is not always possible to use AMT. We envision two directions to tackle

the problem of shortage of labeled data: synthetic data generation and semi-supervised

learning.

Synthetic data generation. With the availability of many 3D body shape models and

powerful rendering algorithms, it is possible to generate a substantial number of synthetic

images to cover various poses. In order to ensure proper generalizations of models trained

on synthetic data to real data, the synthetic data generation process should respect both

the range of possible body poses and their appearance in the environment. As shown

in [Shotton 2012], such synthetic data can be used to learn robust pose estimation models.

We believe that combining small annotated datasets with a large and diverse synthetic

dataset is a promising direction to improve pose estimation results. A challenging

problem would however be to construct a proper model for loose clinical clothes in order

to generate realistic images.

Semi-supervised learning. Semi-supervised learning is a class of learning techniques

that makes use of unlabeled and labeled data to build models. Semi-supervised learn-

ing has recently enjoyed a great success in the field of rigid object detection [Vijaya-

narasimhan 2014,Caicedo 2015], while it has remained largely unexplored in the context

of human pose estimation. Thus, in the future, we would like to explore this direction

to obtain more robust models by relying on a small amount of labeled data and a large

amount of unlabeled data recorded using our camera recording system.
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A Datasets

Throughout this work, we have generated several datasets, namely SV-RGBD-Seq, SV-

RGBD-CT and MV-RGBD-CT. Next, we summarize the statistics about these datasets

and show sample frames for each one.

109



Appendix A. Datasets

A.1 SV-RGBD-Seq Dataset

This dataset includes seven RGB-D sequences that have been recorded using an Asus

Xtion Pro camera. We have captured different simulated medical operations in two

different operating rooms. All sequences have been manually annotated to provide

ground-truth positions for upper-body skeletons. This dataset has been used to perform

the evaluation in Chapter 4.

ID #Frames #Persons Room

S1 50 2 OR1
S2 100 2 OR2
S3 100 3 OR2
S4 110 3 OR2
S5 200 2 OR2
S6 200 2 OR1
S7 200 3 OR1

Table A.1: Presentation of the SV-RGBD-Seq dataset (sequence IDs, number of frames
and room IDs).
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Figure A.1: Sample RGB-D frames from the SV-RGBD-Seq dataset. A sample frame is
shown for each sequence. The top three rows show frames from sequences recorded in
OR1, and the rest of the frames are recorded in OR2.

112



A.2. SV-RGBD-CT Dataset

A.2 SV-RGBD-CT Dataset

We have recorded all activities in an operating room containing an inter-operative CT

scanner using an Asus Xtion Pro camera. The camera position has been changed among

three possible locations to capture the room from different viewpoints. From a set of

seven half-day recordings, we have constructed a dataset by manually annotating every

500th frame. Two types of annotations have been provided. First, we have annotated

all clinical staff with bounding box annotations for the upper-body. A bounding box is

also labeled with a difficult flag if the head or more than 50% of the upper-body of the

person is occluded. Second, we have annotated upper-body poses for clinical staff whose

head and more than five upper-body joints are visible. The upper-body joints are the

neck, left and right shoulders and hips, as well as left and right elbows and wrists. This

dataset has been used to learn model parameters in Chapters 5 and 6. Evaluation in

Chapter 5 has also been performed using this dataset.

Half-day View-id #Frames
Annotations

#Poses
#Bounding boxes

Normal Difficult

1 1 131 216 258 22
2 1 255 306 347 78
3 2 173 277 505 127
4 2 221 278 633 103
5 3 242 349 454 33
6 3 291 350 320 37
7 3 138 215 506 76

1451 1991 3023 476

Table A.2: Presentation of the SV-RGBD-CT dataset. The dataset includes bounding
box and upper-body pose annotations.
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View 1 View 2 View 3

Figure A.2: Sample RGB-D frames from the SV-RGBD-CT dataset. Each column shows
images from one of the three possible viewpoints used to capture this dataset.
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A.3 MV-RGBD-CT Dataset

We have recorded all activities in an operating room for four days using a multi-view

camera system. The camera system consists of three Asus Xtion Pro RGB-D cameras

and has been fully calibrated using a method similar to [Loy Rodas 2015]. Ground-truth

annotations have been provided for the upper-body poses of all members of the clinical

team. This dataset has been used in Chapter 6.

Fold no # Frames
# of persons

Visible in 1 view Visible in 2 views Visible in 3 views

1 157 124 111 153
2 255 99 166 95
3 235 57 118 145
4 124 46 139 125

741 326 534 518

Table A.3: Presentation of the MV-RGBD-CT dataset recorded using a calibrated multi-
view camera system. The dataset has been annotated for the upper-body poses of clinical
staff.
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View 1 View 2 View 3

Figure A.3: Sample RGB-D frames from the MV-RGBD-CT dataset. This dataset has
been recorded using a three-view RGBD system.
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B Résumé en français

B.1 Contexte

Le service de chirurgie joue un rôle essentiel dans le soin des patients au sein d’un hôpital.

Il est chargé des consultations préopératoires, des chirurgies et du suivi postopératoire.

Les acteurs principaux de ce service sont les chirurgiens et le personnel médical qui

collaborent entre eux, prennent des décisions et exécutent les actions nécessaires pour

accomplir ces tâches. La salle opératoire est ainsi leur environnement principal de travail,

où les procédures qui sont nécessaires au soin des patients sont réalisées à partir de

plans préopératoires. Les actions qui sont exécutées ainsi que la façon avec laquelle elles

sont exécutées ont un impact direct sur le résultat des traitements. Par conséquent,

la modélisation, l’étude et l’amélioration des activités qui se déroulent au sein de la

salle opératoire constituent des sujets de recherche importants. Ainsi, des applications

comme l’analyse automatique du flux de travail lors d’une chirurgie et des compétences

des chirurgiens, permettront l’amélioration du soin des patients et le développement de

systèmes intelligents réactifs au contexte pour la salle opératoire.

Localiser le personnel médical ainsi que leurs parties corporelles est fondamental pour

accomplir les objectifs mentionnés ci-dessus. Dans le reste ce document, la localisation

des cliniciens et la localisation des parties de leurs corps seront respectivement appelées

LC et LPC.

Le LC et LPC peuvent fournir des informations très importantes comme l’emplacement
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Figure B.1: Vue panoramique d’une salle opératoire au département de radiologie
interventionnelle, Nouvel Hôpital civil de Strasbourg. Les positions des caméras sont
indiquées en jaune et en rouge. Les bôıtes jaunes indiquent les positions des caméras
RGB-D que nous avons installé dans la salle pour capturer l’environnement de travail de
trois points de vue différents. L’autre est une caméra RGB qui a été installée dans la
salle pour de la documentation. Elle se concentre sur le lit près du scanner.

des chirurgiens et du personnel dans la salle, qui est essentiel pour des applications comme

l’analyse des activités chirurgicales [Padoy 2009,Twinanda 2016,Bouget 2015], la détection

du contexte de la salle opératoire [Meißner 2014,Agarwal 2007] et l’étude du flux de travail

d’une intervention [Nara 2015,Agarwal 2007]. De même, d’autres applications comme la

collaboration homme-robot [Beyl 2015] et l’analyse automatique des compétences des

chirurgiens peuvent y bénéficier [Wanzel 2002,Vedula 2016]. Ces informations peuvent

aussi contribuer à l’amélioration de l’analyse des compétences des équipes chirurgicales,

en fournissant des informations sur les interactions entre les membres de l’équipe pendant

des différentes chirurgies [Reiley 2011].

La détection et l’estimation de la pose des cliniciens dans la salle opératoire nécessite la

perception de l’environnement d’une façon qui, non seulement puisse fournir les données

nécessaires, mais aussi qui puisse être applicable dans cet environnement si particulier.

Deux types de capteurs sont aujourd’hui utilisés pour percevoir l’environnement. D’une

part, des capteurs basés sur les caméras infrarouges qui détectent des marqueurs passifs

réfléchissants posés sur l’objet d’intérêt. D’autre part, des capteurs basés sur les caméras

qui ne nécessitent pas de marqueurs pour percevoir l’environnement ainsi que les objets

d’intérêt et le contexte.

Les systèmes à marqueurs peuvent être invasifs et leur installation et utilisation dans
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Complexity
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Figure B.2: Exemples d’images d’une salle d’opération montrant des personnes au cours
de chirurgies et illustrant certains des défis pour la détection de cliniciens et l’estimation de
leurs poses. Les images sont ordonnées de gauche à droite en fonction de leur complexité
visuelle.

une salle opératoire difficile. De plus, les processus de stérilisation peuvent compliquer

d’avantage la pose des marqueurs. Cependant, des caméras conventionnelles sont souvent

déjà installées dans les salles opératoires modernes pour documenter les procédures.

Dans le cas contraire, elles peuvent être facilement installées sur le plafond. Les données

acquises par ce type de capteur représentent une source d’information riche pour la

perception automatique de l’environnement puisqu’elles fournissent une représentation de

l’apparence visuelle des objets dans la scène. Dans ce travail, des systèmes d’acquisition

multi-capteurs ont été installés dans plusieurs salles opératoires et utilisés pour enregistrer

plusieurs chirurgies. La figure B.1 montre notre système d’enregistrement multi-caméras

qui est installé dans la salle munie d’un scanner CT au nouvel l’Hôpital Civil de Strasbourg.

Ceci nous a permis d’évaluer nos méthodes sur des données provenant de vraies chirurgies.

L’interprétation des données fournies par les caméras n’est toutefois pas simple. En

général, la détection humaine et l’estimation de la pose basée sur la vision sont des tâches

difficiles qui deviennent encore plus difficiles dans les salles opératoires. Pour illustrer

quelques-uns de ces défis, examinons la figure B.2 qui montre des exemples d’images

enregistrées lors d’une chirurgie. Ainsi, l’intensité des sources lumineuses qui change au

cours de l’opération, l’importante ressemblance entre les couleurs des vêtements et des

équipements, les limitations au niveau de l’emplacement des caméras dans la salle et les

occlusions auxquelles ces dernières peuvent être soumises font partie de ces contraintes.

Nous proposons d’utiliser des caméras de type RGB-D [Shotton 2012] et de développer

des méthodes pour des données RGB-D. Ainsi, ce type de capteurs a plusieurs avantages

119



Appendix B. Résumé en français

Figure B.3: Une paire d’images de couleur et de profondeur capturées à l’aide d’une
caméra Asus Xtion Pro.

utiles pour le problème qui est considéré ici. Puisqu’ils combinent une caméra couleur

avec une caméra capable d’acquérir des cartes de profondeur, ils fournissent deux sources

d’informations qui sont complémentaires entre elles. Ceci permet de développer des

nouvelles méthodes tout en profitant des progrès récents qui ont été faits dans les

approches basées sur des cartes de profondeur. Enfin, l’utilisation des caméras RGB-D

facilite aussi la reconstruction 3D de la scène grâce à la fusion des données couleur et

profondeur. Dans la figure 3, nous montrons une paire d’images de couleur et profondeur

enregistrées avec ce type de capteur.

La détection visuelle des personnes ainsi que l’estimation de leur pose sont des

problèmes clefs en Vision par Ordinateur, qui ont été beaucoup abordés dans la littérature

ces dernières années [Ramanan 2007, Felzenszwalb 2005, Andriluka 2014, Yang 2013].

Généralement, deux types de méthodes sont proposées. Dans le premier, le corps humain

est représenté par un ensemble de parties et l’estimation de la pose est réalisée en

deux temps : d’abord, des potentielles parties du corps sont détectées dans l’image,

puis, une collection (ou des collections) de parties est trouvée par la vérification de

contraintes spatiales entre elles [Kiefel 2014, Insafutdinov 2016, Pishchulin 2016]. Un

deuxième type de méthode, les méthodes holistiques, cherchent une correspondance directe

entre une image et la position d’une personne et des parties de son corps [Wei 2016,

Toshev 2014, Shotton 2012]. Une fonction de correspondance qui peut lire l’image en

entier, permet à ce type de méthodes d’apprendre des modèles puissants qui peuvent

exploiter le contexte de l’image. Néanmoins, ces modèles font intervenir une large

quantité de paramètres et nécessitent alors un jeu de données important pour leur

apprentissage. Aussi, elles ne modélisent pas les interdépendances entre les différentes

parties de façon explicite, ce qui peut causer des erreurs dans la prédiction de la

configuration du corps [Insafutdinov 2016,Yang 2016]. Au contraire, les méthodes basées

sur la représentation par parties du corps, nécessitent un jeu de donnés d’entrainement

plus petit et peuvent aussi fournir un formalisme puissant pour modéliser de façon
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explicite les dépendances entre les différentes parties du corps. Pour ces raisons là, dans

ce travail un nouveau modèle basé sur une représentation par parties est proposé pour la

détection de cliniciens et pour l’estimation de leur pose.

B.2 Méthodes proposées

Même si les poses des cliniciens peuvent être une source précieuse d’information pour des

nombreuses applications dans la salle opératoire, aucun travail n’a encore considéré ce

problème clinique. Pour ainsi le faire, trois méthodes sont ici proposées : premièrement,

nous présentons une méthode qui utilise un détecteur holistique de parties du corps

dans une fonction d’énergie de type champ de Markov, défini sur un ensemble d’images

RGB-D pour ainsi obtenir des poses de cliniciens temporellement cohérentes dans des

séquences courtes [Kadkhodamohammadi 2014] ; deuxièmement, nous présentons une

méthode basée sur des structures pictorielles sur des données RGB-D qui permettent

l’entrâınement de détecteurs spécifiques à la salle opératoire et aussi d’effectuer l’ Esti-

mation de Pose d’un Humain (EPH) par image. Cette méthode utilise des images en

couleur et des cartes de profondeur pour développer des détecteurs robustes et aussi

pour construire un modèle de déformation plus fiable [Kadkhodamohammadi 2015,Kad-

khodamohammadi 2017a] ; troisièmement, nous présentons une approche multi-vue

pour l’estimation de la pose de cliniciens, qui incorpore des informations a priori sur

l’environnement et optimise les positions des parties en intégrant l’information sur toutes

les vues [Kadkhodamohammadi 2017b].

B.2.1 Estimation de pose 3D temporellement cohérente

Le problème du suivi des parties du corps dans la salle opératoire est ici considéré

pour la première fois. Ceci peut contribuer à des applications comme la reconnaissance

automatique d’activités du personnel médical, l’analyse des compétences des chirurgiens

et le suivi de l’exposition aux radiations ionisantes. Dans ce travail, une méthode de

classification de parties du corps basée sur des forêts d’arbres décisionnels, inspirée

de [Shotton 2012], est utilisée comme détecteur de parties corporelles. Ce détecteur

trouve des correspondances entre des caractéristiques visuelles dans la carte de pro-

fondeur et des classes de parties du corps. Nous proposons aussi une méthode pour

le suivi des parties supérieures du corps dans de séquences courtes, qui applique une

optimisation discrète de type champs aléatoire de Markov dans une séquence entière.

Les caractéristiques visuelles sont incorporées dans l’optimisation par un terme unaire.

La fonction d’énergie proposée impose la cinématique du corps ainsi que des contraintes

temporelles afin de rendre la méthode robuste aux ambigüıtés naturelles du suivi et aux

possibles erreurs du détecteur dans un environnement si complexe. Ce travail a été publié

dans [Kadkhodamohammadi 2014].

La méthode a été évaluée quantitativement sur sept séquences enregistrées dans deux

salles opératoires différentes. La figure B.4 résume les performances de notre modèle pour
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S1 S2 S3 S4 S5 S6 S7

0

0.1

0.2

0.3

0.4

0.5

0.6

Video sequences

E
rr

o
r(

m
)

Before optimization

After optimization

Figure B.4: Erreur moyenne de localisation des parties du corps par séquence. Les erreurs
sont affichées avant et après l’optimisation.

la localisation des parties du corps en 3D par séquence. La moyenne et l’écart-type des

erreurs de localisation des parties du corps sont indiquées pour chaque séquence avant et

après l’optimisation.

Les contraintes cinématiques et temporelles proposées ont diminué l’erreur de façon

importante. La diminution de l’erreur dans les séquences où le détecteur des parties du

corps échoue est plutôt faible. Mais, même si ce détecteur n’est pas si performant à cause

des difficultés visuelles propres à la salle opératoire, il s’agit d’une méthode qui est l’état

de l’art pour EPH. Ainsi, des performances prometteuses ont été réussies dans des scènes

plus contrôlées comme le bureau ou le salon. Afin d’exploiter au maximum les capacités

du détecteur basé sur des forêts aléatoires, il est nécessaire de l’entrâıner avec des données

réelles provenant de la salle opératoire. Ces données doivent être représentatives des

possible variations dans les couleurs des vêtements des cliniciens ainsi que des possibles

points de vue dans la salle. Par contre, sa capture est difficile à cause de la quantité

importante de données nécessaires à l’entrainement de ce type de méthodes et à cause

des régulations d’une salle opératoire. La méthode nécessite en plus des annotations

par pixel des parties du corps, ce qui peut être une tâche assez ennuyante à réaliser.

En revanche, les méthodes basées sur des structures pictorielles, comme celle qui est

introduite ci-dessous, présentent des performances qui sont à l’état de l’art, tout en

nécessitant moins de données d’entrâınement que les méthodes holistiques. De plus,

des annotations des articulations du corps sont nécessaires uniquement et donc aucune

annotation par pixel doit être faite.
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Figure B.5: Exemples de résultats d’estimation de pose obtenus avec l’approche proposée
des structures pictorielles 3D. (Image mieux appréciée en couleur)

B.2.2 Structures pictorielles sur des données RGB-D

L’approche par structure pictorielles formule le problème de l’estimation de la pose d’une

personne comme une fonction d’énergie définie sur un graphe à structure arborescente qui

consiste de termes unaires et binaires. Les sommets de ce graphe représentent les parties
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du corps et les arrêtes indiquent les dépendances par paires qui peuvent exister entre elles.

Le terme unaire de la fonction d’énergie incorpore les résultats de la détection de parties

du corps et le terme binaire sert à définir un modèle de déformation qui incorpore des

contraintes cinématiques du corps [Fischler 1973]. Après les travaux de Felzenswalb et

Huttenlocher [Felzenszwalb 2005,Felzenszwalb 2004] en structures pictorielles pour EPH,

plusieurs approches ont été proposés afin d’améliorer le détecteur de parties du corps ou le

modèle de déformation. La méthode des ensembles flexibles de parties [Yang 2013] (FMP

pour ses sigles en anglais) est basée sur des structures pictorielles et obtient des résultats

satisfaisants en EPH. Elle figure parmi les méthodes les plus performantes sur plusieurs

jeux de données connus et difficiles. FMP étend la méthode de structures pictorielles par

l’utilisation de plusieurs ensembles de parties et un modèle de déformation qui apprend

les dépendances par paires entre les ensembles.

Afin d’affronter les difficultés propres à la salle opératoire et d’exploiter les bénéfices

des données RGB-D, nous proposons deux extensions à la méthode FMP : tout d’abord,

des détecteurs de parties du corps robustes et discriminatives sont proposés [Kadkho-

damohammadi 2015] ; puis, un modèle de déformation plus fiable a été développé [Kad-

khodamohammadi 2017a].

La combinaison de données des modalités couleur et profondeur afin de développer des

détecteurs de parties du corps plus performants est ici proposée. Ainsi, l’histogramme de

gradient orienté (HOG) est utilisé comme descripteur pour les images en couleur. Pour

les cartes de profondeur, trois descripteurs sont utilisés : 1) HOG : le descripteur HOG

est souvent utilisé dans des images en couleur et il est ici aussi appliqué à des images

de profondeur pour comparer les performances ; 2) Histogramme de vecteurs normaux

orientés (HONV) : HONV a été originalement proposé pour la détection d’objets dans

des images de profondeur [Tang 2013] ; 3) Histogramme de différences de profondeur

(HDD) : ce descripteur innovant introduit dans [Kadkhodamohammadi 2015], encode

des changements locaux de profondeur. Il utilise un ensemble de noyaux de convolution

afin de capturer des changements relatifs de profondeur et de normaliser les réponses des

convolutions pour qu’elles soient invariantes à la profondeur. De plus, les convolutions

sont appliquées dans une représentation d’espace échelle et sont discrétisées de façon à

que le descripteur soit robuste aux distorsions géométriques et au bruit. Ce travail a été

publié dans [Kadkhodamohammadi 2015].

De même, le modèle de déformation des structures pictorielles est étendu pour qu’il

puisse inclure des contraintes de plus de deux dimensions [Kadkhodamohammadi 2017a].

Afin de pouvoir effecteur des inférences efficaces et précises dans les structures pictorielles,

les conditions suivantes doivent être satisfaites : un graphe cinématique à structure

arborescente pour la dépendance par paires, des contraintes de dépendance par paires qui

dépendent uniquement de la position, et une évaluation des déformations entre des paires

de parties du corps dans l’espace d’état qui s’étend le long d’une grille régulière entièrement

connectée. La première condition peut être satisfaite en évitant d’avoir des boucles

dans la dépendance entre les parties. Pour remplir les autres conditions, les contraintes
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par paires sont définies en se basant sur la distance 2D entre les pixels de l’image

dans le cas où il s’agit d’une image 2D. Cependant, ces distances ne sont pas toujours

précises à cause du processus de projection 2D. En effet, toutes les méthodes basées

sur des structures pictorielles en 2D sont limitées par cette métrique. Contrairement,

les approches en 3D requièrent une discrétisation grossière de la grille régulière 3D

pour que les exigences de mémoire soient gérables, ce qui a un impact négatif sur leur

performance. Dans [Kadkhodamohammadi 2017a], nous proposons une extension 3D aux

structures pictorielles en utilisant des données RGB-D. Une méthode capable d’inférer

de façon exacte et à basse complexité est présentée. Ceci permet de forcer de contraintes

spatiales par paires et d’utiliser une métrique de distance 3D plus réaliste à la place

de celle en 2D qui est peu fiable. Cette approche utilise un espace d’état de même

taille que celle en 2D, donc, aucune discrétisation est nécessaire. Ce travail a été publié

dans [Kadkhodamohammadi 2017a].

Afin d’évaluer notre méthode, un jeu de données manuellement annoté a été généré

en enregistrant des chirurgies avec des capteurs RGB-D. Les résultats de l’évaluation

montrent que les détecteurs de parties du corps utilisant la profondeur sont beaucoup

plus performants que ceux qui utilisent la couleur. La combinaison de deux permet

d’améliorer encore plus les résultats. De plus, l’utilisation de l’information de profondeur

pour définir des contraintes par paires en 3D améliore les performances dans tous les

cas, c’est-à-dire quand le modèle d’apparence dépend uniquement des détecteurs basés

couleur, de ceux qui sont basés profondeur et de la combinaison des deux. Les meilleurs

résultats sont obtenus quand le détecteur de parties du corps combine HOG sur les

données couleur, le descripteur HDD sur les données profondeur et les contraintes par

paires en 3D. En conclusion, l’incorporation des informations de profondeur dans les

structures pictorielles améliore significativement les performances. La figure B.5 montre

des résultats qualitatifs obtenus par l’approche proposée. Les poses estimées du haut du

corps sont superposées sur les images originales. Une évaluation extensive de ceci est

présentée en [Kadkhodamohammadi 2017a].

B.2.3 Approche RGB-D multi-vue pour l’estimation de pose d’un corps

articulé

Dans des environnements encombrés et où évoluent plusieurs personnes comme les salles

opératoires, le risque d’occlusion des parties du corps ou même d’une personne en entier

est très élevé. Ces occlusions peuvent considérablement dégrader la fiabilité de la détection

de la personne et poser des difficultés aux méthodes d’estimation. Nous considérons

que dans une salle opératoire, où le volume de travail est connu a priori, les systèmes

multi-vues peuvent être utilisés pour percevoir l’environnement à partir de différents

points de vue pour ainsi réduire le risque d’occlusions. Suite à nos conclusions à la

section B.2.2, nous proposons d’utiliser un système RGB-D multi-vue pour percevoir

l’environnement à partir de trois vues complémentaires. Nous introduisons une approche

innovante pour profiter des informations a priori sur l’environnement et ainsi faire des
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Figure B.6: Paires synchronisées d’images de couleur et de profondeur à partir d’un jeu
de données multi-vues. Les images sont enregistrées au cours de chirurgies en direct à
l’aide d’un système de multiples caméras RGB-D ayant des vues différentes.

prédictions plus fiables et intégrer des informations provenant de toutes les vues pour

localiser les parties du corps. Nous montrons que les avantages d’utiliser de cartes

de profondeur dans l’approche multi-vue proposée vont au-delà du fait de fournir des

caractéristiques d’apparence améliorées.

L’estimation de pose multi-personne à plusieurs vues est réalisée en deux étapes :

premièrement, la détection et la génération de candidats de squelette dans chaque vue
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Figure B.7: Exemples de résultats d’estimation de pose multi-vues. Chaque rangée
montre un cadre à vues multiples. Les squelettes 3D obtenus après l’optimisation de la
fonction d’énergie multi-vue sont projetés sur chaque vue.

; et deuxièmement, la fusion des squelettes à travers les vues et leur raffinement en

3D. Nous étendons également notre approche 3DPS pour utiliser un réseau neuronal

convolutif profond comme détecteur des parties du corps sur les images RGB-D pour

être moins sensible aux fausses détections qui peuvent introduire des erreurs sur les

méthodes de fusion et d’optimisation multi-vues ultérieures. De plus, nous proposons

une forêt aléatoire afin de modéliser automatiquement les informations a priori sur

l’environnement et de filtrer les fausses détections de squelettes. Une nouvelle fonction

d’énergie à vues multiples est introduite pour mettre à jour des positions de pièces 3D

basées sur des indices multi-vues, qui a un certain nombre de propriétés intéressantes:
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1) l’utilisation d’informations de profondeur pour une estimation plus efficace et fiable

des correspondances entre les vues, 2) estimer les coûts de reprojection en fonction de

la profondeur plutôt que de la similitude d’apparence, ce qui n’est pas fiable dans les

environnements et 3) l’optimisation itérative de la fonction d’énergie multi-vue pour

explorer efficacement un espace large en 3D.

Les méthodes de détection de cliniciens et de parties de leur corps en 3D ont été

évaluées quantitativement dans un jeu de données multi-vues capturé pendant des

chirurgies. Un exemple de ce jeu de données est donné dans la figure B.6. Nous avons

évalué quantitativement l’approche proposée pour les tâches de détection humaine mono-

vue ainsi que pour l’estimation de pose et pour la localisation multi-vues de parties de

corps en 3D. Notre approche obtient des meilleurs résultats que les méthodes les plus

avancées sur ce jeu de données difficile pour la tâche de l’estimation de la pose humaine

mono-vue. L’approche atteint des résultats prometteurs pour la localisation 3D de la

partie du corps. La figure B.7 montre des projections 2D des poses 3D obtenues en

utilisant l’optimisation multi-vues proposée pour quelques images. Une évaluation plus

détaillée est présentée dans [Kadkhodamohammadi 2017b].

B.3 Perspectives

A ce stade, nous avons introduit des méthodes pour l’estimation de la pose de personnes

dans une ou plusieurs vues RGB-D. Le travail futur va se concentrer à l’utilisation de ces

méthodes pour des applications dans la salle opératoire comme le suivi de l’exposition

corporelle des cliniciens aux radiations ionisantes pendant les interventions guidées par

rayons X, la modélisation du contexte de la salle et le parcours intelligent de vidéos.
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