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de l’Université de recherche Paris Sciences et Lettres

PSL Research University
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Résumé

Ce manuscrit se compose de deux parties indépendantes.

La première partie de cette thèse étudie les structures de Clifford paires. Pour une

variété riemannienne munie d’une structure de Clifford paire, nous introduisons l’espace

de twisteurs en généralisant la construction d’un tel espace dans le cas d’une variété

quaternion-hermitienne. Nous construisons une structure presque-complexe sur l’espace

de twisteurs et considérons son intégrabilité lorsque la structure de Clifford est parallèle.

Dans certains cas, nous pouvons aussi le fournir d’une métrique kählerienne ou, corre-

spondant à une structure presque-complexe alternative, d’une métrique “nearly Kähler”.

Dans un second temps, nous introduisons une structure appelée Clifford-Weyl sur une

variété conforme. Il s’agit d’une structure de Clifford paire qui est parallèle par rapport

au produit tensoriel d’une connexion métrique sur le fibré de Clifford et une connexion

de Weyl. Nous démontrons que la connexion de Weyl est fermée sauf dans certains cas

génériques de basse dimension où nous arrivons à décrire des exemples explicites où les

structures de Clifford-Weyl sont non-fermées.

La seconde partie de cette thèse étudie des résonances quantiques. Au-dessus d’une variété

assymptotiquement hyperbolique paire, nous considérons le laplacien de Lichnerowicz agis-

sant sur les sections du fibré des formes multilinéaires symétriques. Lorsqu’il s’agit de

formes bilinéaires symétriques, nous obtenons une extension méromorphe de la résolvante

dudit laplacien à l’ensemble du plan complexe si la variété est Einstein. Cela définit les

résonances quantiques pour ce laplacien. Pour les formes multinéaires symétriques en

général, une telle extension méromorphe est possible si la variété est convexe-cocompacte.

Dans les deux cas, nous devons restreindre le laplacien aux sections qui sont de trace et de

divergence nulles. Nous utilisons ce deuxième résultat afin d’établir une correspondance

classique-quantique pour les variétés hyperboliques convexes-cocompactes. La correspon-

dance identifie le spectre du flot géodésique (les résonances de Ruelle) avec les spectres des

laplaciens agissant sur les tenseurs symétriques qui sont de trace et de divergence nulles

(les résonances quantiques).
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Abstract

We study independently even Clifford structures on Riemannian manifolds and quantum

resonances on asymptotically hyperbolic manifolds.

In the first part of this thesis, we study even Clifford structures. First, we introduce

the twistor space of a Riemannian manifold with an even Clifford structure. This notion

generalises the twistor space of quaternion-Hermitian manifolds. We construct almost

complex structures on the twistor space and check their integrability when the even Clif-

ford structure is parallel. In some cases we give Kähler and nearly-Kähler metrics to

these spaces. Second, we introduce the concept of a Clifford-Weyl structure on a con-

formal manifold. This consists of an even Clifford structure parallel with respect to the

tensor product of a metric connection on the Cifford bundle and a Weyl structure on the

manifold. We show that the Weyl structure is necessarily closed except for some “generic”

low-dimensional instances, where explicit examples of non-closed Clifford-Weyl structures

are constructed.

In the second part of this thesis, we study quantum resonances. First, we consider the

Lichnerowicz Laplacian acting on symmetric 2-tensors on manifolds with an even Rie-

mannian conformally compact Einstein metric. The resolvent of the Laplacian, upon

restriction to trace-free, divergence-free tensors, is shown to have a meromorphic contin-

uation to the complex plane. This defines quantum resonances for this Laplacian. For

higher rank symmetric tensors, a similar result is proved for convex cocompact quotients

of hyperbolic space. Second, we apply this result to establish a direct classical-quantum

correspondence on convex cocompact hyperbolic manifolds. The correspondence identifies

the spectrum of the geodesic flow with the spectrum of the Laplacian acting on trace-free,

divergence-free symmetric tensors. This extends the correspondence previously obtained

for cocompact quotients.
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1. Introduction

1.1 Even Clifford Structures

The first part of this thesis considers even Clifford structures, recently introduced by Moroianu and

Semmelmann [MS11]. In this thesis, we construct a twistor space for Riemannian manifolds carrying

such a structure, this is joint work with Gerardo Arizmendi. Next, we consider the conformal nature

inherent in the original definition of even Clifford structures, this is joint work with Andrei Moroianu.

We briefly introduce the setting, with precise notions given in Chapter 2. On a Riemannian

manifold (M, g) with a (locally defined) oriented Euclidean vector bundle (E, h), an even Clifford

bundle is the added data of an algebra bundle morphism

ϕ : Cl0(E, h) ! End(TM)

from the even Clifford bundle of (E, h) into endomorphisms of the tangent bundle of the manifold.

Moreover, this Clifford morphism, is demanded to send the subbundle Λ2E ⇢ Cl0(E, h) into the

the subbundle of skew endomorphisms End−(TM). The structure is parallel if the bundle map is

parallel with respect to a metric connection rE of E coupled to the Levi-Civita connection r. The

classification of Riemannian manifolds carrying a parallel rank Clifford structure found in [MS11] is

recalled in Section 2.2.

This (parallel) structure may be considered as a generalisation of quaternion-Kähler geometry

(rather than hyper-Kähler geometry). Indeed in the general setting, if we assume E is of rank r and

denote by {ξi}1ir a local orthonormal frame for (E, h), then the bundle morphism provides locally

defined almost complex structures

Jij := ϕ(ξi · ξj) 2 End− TM, J2
ij = −1TM

where · denotes Clifford multiplication. Restricting to rank r = 3, we obtain a 3-dimensional subbun-

dle of EndTM spanned by {Jij}1i<j3 where the almost complex structures J12, J13, J23 play the

respective roles of the locally defined almost complex structures I, J,K present in almost Hermitian

geometry. The quaternion relationship I ◦J = K in this case is a consequence of the Clifford algebra,

in particular

(ξ1 · ξ2) · (ξ1 · ξ3) = −(ξ1 · ξ1) · (ξ2 · ξ3) = ξ2 · ξ3

and the fact that ϕ is an algebra morphism. That the globally defined subbundle span{I, J,K}
of EndTM be preserved by the Levi-Civita connection is precisely the condition that the Clifford

morphism be parallel with respect to a connection on E which is metric.

Even Clifford structures are in some sense dual to spin structures on manifolds. If (M, g) is a

1



Chapter 1. Introduction

Riemannian manifold with spin structure, then the spin structure provides the spinor bundle which

is a representation space for the even Clifford algebra. For even Clifford structures, it is rather the

tangent bundle that plays the role of the representation space for the Clifford algebra of the auxiliary

bundle E. A nice illustration of this duality appears in Section 4.4 when considering conformal

manifolds of dimension 8 and rank 8 Euclidean bundles.

We refer to the original article [MS11] for alternative approaches to the concept of Clifford struc-

tures on Riemannian manifolds previously considered in the literature. Since the publication of

[MS11], several articles have recently appeared on this topic. An alternative definition of even Clif-

ford structures, as structure group reductions is given by Arizmendi, Garćıa-Pulido, and Herrera

[AGH16, AH15]. These authors have considered even Clifford structures with large automorphism

groups with Santana [AHS16]. They have also obtained rigidity and vanishing results [GH16]. Mo-

roianu and Pilca have begun a classification of homogeneous even Clifford structures [MP13], and

Parton, Picinni, and Vuletescu have considered relations with symmetric spaces and the Severi vari-

eties. [PP15, PPV15].

Twistors

The notion of a twistor space was first introduced by Penrose in [Pen77]. Following the ideas of

Penrose, the twistor construction for a 4-dimensional Riemannian manifold was developed by Atiyah,

Hitchin, and Singer [AHS78]. This was later generalised for even dimensional manifolds by O’Brian

and Rawnsley [OR85]. The twistor space Z of an even dimensional Riemannian manifold M admits

a natural almost complex structure, and it is well known that such a twistor space is complex if

and only if the manifold is self-dual for dim(M) = 4 and locally conformally flat for dim(M) ≥ 6

[AHS78, OR85]. A converse theorem (the so called reverse Penrose construction) in dimension 4 has

been used to construct half-conformally flat Einstein manifolds.

Before continuing to other generalisations, we recall the twistor space construction in the setting

of an oriented Riemannian manifold (M4, g), details of which may be found in Besse [Bes08]. One

observes that the Hodge ⇤-operation acts on 2-forms as an involution and thus may be used to

decompose 2-forms into self-dual and anti-self-dual forms. The twistor space π : Z ! M is then

taken to be the unit sphere bundle of the 3-dimensional real vector bundle of anti-self-dual forms. The

fibres are thus 2-spheres. Using the metric, one identifies 2-forms and skew-adjoint endomorphisms

of the tangent bundle. Next, the Levi-Civita connection splits the tangent bundle of Z such that

TZ = V + H where V = ker(π⇤) is the tangent bundle along the fibres and H identifies, at each

point, with the tangent space on the base manifold below via π⇤. As each point of the twistor space is

a complex structure on the tangent space below, one may partly define the complex structure on H.

The remainder of the definition, defining the complex structure on V , is possible after identifying the

fibres with CP
1. Distinct from this construction is the notion that the manifold is half-conformally

flat, a condition on the decomposition of the Weyl tensor also involving the Hodge ⇤-operation. It is
under precisely this hypothesis that one may show that the almost complex structure of the twistor

space is integrable.

In another generalisation, the twistor space Z of quaternion-Kähler manifolds was defined in

[Sal82]. This is an S
2-bundle of pointwise Hermitian structures compatible with the quaternionic

structure. It is well known that this bundle admits two almost complex structures J and eJ , one of

which is always integrable and the other is never integrable [ES83]. Moreover, the manifold Z admits

two Einstein metrics h and eh such that (Z,J , h) is Kähler-Einstein [BB82, Sal82] and (Z, eJ ,eh) is

nearly Kähler [AGI98].

In [Fri01], the twistor space was defined in the context of weak Spin(9) structures on 16-dimensional

2



1.1. Even Clifford Structures

Riemannian manifolds, which correspond to rank 9 even Clifford structures [MS11]. Additionally, this

twistor construction was studied for R16, which carries a parallel flat even Clifford structure, the Cay-

ley plane F4/Spin(9), which carries a parallel non-flat even Clifford structure, and S
1 ⇥ S

15, which

carries a non-parallel even Clifford structure. In the first two cases, the twistor space admits a Kähler

metric and in the last case the twistor space is a complex manifold which does not admit a Kähler

metric.

We generalise these constructions to even Clifford structures of arbitrary rank r ≥ 3, noting that

ranks 3 and 9 constitute two of the aforementioned constructions. In this context, the S
2-fibre of

pointwise Hermitian structures present in the quaternion-Kähler setting is replaced with fGr(2, r), the

Grassmannian of oriented 2-planes in R
r. The twistor space admits an almost complex strucutre.

Indeed, the Levi-Civita connection splits the tangent bundle of the twistor space into horizontal and

vertical subbundles, and Clifford multiplication provides the action of the almost complex structure

J on the vertical subbundle. In the spirit of [BB82], we prove

Theorem 1. Let M be a Riemannian manifold of dimension n 6= 8 carrying a parallel even Clifford

structure of rank r > 4, then the almost complex structure J on Z is integrable.

Analogous to theorems in [Sal82] and [AGI98] we also prove

Theorem 2. The twistor space (Z,J ) of a Riemannian manifold of dimension n 6= 8 with a parallel

even Clifford structure of rank r > 4 and Ric > 0 admits a Kähler metric.

By appealing to the classification of parallel even Clifford structures recalled in Chapter 2, the

these theorems may be summarised by the following tables.

r M dim(M) fibre of Z type of Z

3 and 4 QK manifold 4k S
2 complex, Kähler if Ric > 0

4 M1 ⇥M2, Mi QK 4(n1 + n2) S
2 ⇥ S

2 complex, Kähler if Ric(Mi) > 0

5 QK 8 Sp(2)/U(2) complex if locally symmetric

6 Kähler 8 U(4)/U(2)⇥U(2) complex if Bochner tensor ⌘ 0

7 Spin(7) holonomy 8 fGr(2, 7) not complex

8 Riemannian 8 SO(8)/U(4) complex if Weyl tensor ⌘ 0

Table 1: Twistor spaces for low rank and dimension 8

r M dim(M) fibre of Z type of Z

5 Sp(k + 2)/(Sp(k)⇥ Sp(2)) 8k, k ≥ 2 Sp(2)/U(2) Kähler

6 SU(k + 4)/S(U(k)⇥U(4)) 8k, k ≥ 2 U(4)/U(2)⇥U(2) Kähler

8 SO(k + 8)/(SO(k)⇥ SO(8)) 8k, k ≥ 2 SO(8)/U(4) Kähler

9 F4/Spin(9) 16 fGr(2, 9) Kähler

10 E6/(Spin(10) ·U(1)) 32 fGr(2, 10) Kähler

12 E7/(Spin(12) · SU(2)) 64 fGr(2, 12) Kähler

16 E8/Spin
+(16) 128 fGr(2, 16) Kähler

arbitrary Cl0r representation drk fGr(2, r) Kähler

Table 2: Twistor spaces for higher rank

For the non-compact dual spaces of these symmetric spaces, the twistor space is only complex as

the negative curvature obstructs the construction of an appropriate metric on the fibres. Above, dr
denotes the dimension of the irreducible representations of Cl0r.

3



Chapter 1. Introduction

Finally, an observation of Nagy [Nag02] in the setting of Riemannian submersions with totally

geodesic fibres provides a slick way of defining an alternative almost complex structure which is not

integrable, and a metric providing a nearly Kähler geometry.

Theorem 3. The twistor space Z of a Riemannian manifold with a parallel even Clifford structure

of rank r ≥ 3 and Ric > 0, admits an almost complex structure eJ and a metric eh such that (Z, eJ ,eh)
is nearly Kähler.

Clifford-Weyl structures

Recall the setting of an even Clifford structure as a Riemannian manifold (M, g) carrying a (locally

defined) Euclidean vector bundle (E, h) together an algebra bundle map ϕ : Cl0(E, h) ! End(TM)

mapping Λ2E into the bundle of skew-symmetric endomorphisms End−(TM). As End−(TM) de-

pends only on the conformal structure of g, even Clifford structures may be considered more naturally

defined on conformal, rather than Riemannian, manifolds.

Studying even Clifford structures on Riemannian manifolds becomes natural when we demand

the Clifford morphism ϕ to be parallel with respect to certain connections. Indeed given a metric

connection rE on E, the Riemmanian structure of the base manifold naturally demands that ϕ be

parallel with respect to this connection coupled with the Levi-Civita connection.

On a conformal manifold, where no distinguished connection exists on the tangent bundle, we

may consider Weyl connections (which are in one-to-one correspondence with covariant derivatives

of the weight bundle of the manifold). We introduce in Defintion 4.1 the notion of a Clifford-Weyl

structure on a conformal manifold (M, c) to be the tuple (E, h, ϕ,rE , D) where (E, h, ϕ) satisfy the

conditions of an even Clifford structure and, now, the metric connection rE along with the choice

of a Weyl connection D provide the coupled connection rE ⌦D with respect to which the Clifford

morphism is parallel.

Immediately the natural question to ask is under what conditions does this problem locally reduce

to a problem in Riemannian geometry, i.e. under what conditions is D closed? We show that there

are six instances (called generic) where the presence of a Clifford-Weyl structure need not force the

Weyl connection to be closed, and that in all other cases (called non-generic), the associated Weyl

structure of a Clifford-Weyl structure is automatically closed. More precisely, in the non-generic

setting we prove

Theorem 4. Suppose a conformal manifold of dimension n carries a rank r ≥ 2 Clifford-Weyl

structure such that (n, r) is different from (2, 2), (4, 2), (4, 3), (4, 4) and (8, 8). Then the associated

Weyl connection is closed. The same conclusion holds if (n, r) = (8, 4), provided that the restriction

of the Clifford morphism ϕ to Λ2E is not injective.

The proof of this theorem is performed in three stages. The first case when r = 2 is a standard

result in Hermitian geometry. It is presented explicitly in Proposition 4.2. This proposition turns out

to be useful as it inspires the beginning of the proof of the theorem in the large rank setting r ≥ 5.

In this large rank setting, the proof shows a similarity to techniques present in the proof of [MS11,

Proposition 2.10]. (The statement of this proposition is announced in this thesis as Proposition 2.7.)

We progressively develop restrictions on the curvature of the Weyl connection until a trick using

the skew-symmetry of the Hermitian structures Jij forces the curvature to both commute and anti-

commute with these Hermitian structures. Finally one needs to deal with the remaining ranks r = 3, 4.

The rank 3 setting corresponds to Hermitian Weyl geometry where the statement is standard [Orn01].

A proof using the Kraines form may be relatively easily extended to the rank 4 setting using knowledge

of the irreducible representations of the relative Clifford algebras.

4



1.2. Asymptotically Hyperbolic Manifolds

The cases excluded by this theorem are somehow generic, and they are treated in

Theorem 5. (i) Let D be a Weyl structure on an oriented conformal manifold (M, c) of dimension

2, 4 or 8. Then (M, c) carries a Clifford-Weyl structure of rank r = 2 for n = 2, r = 3 or

r = 4 for n = 4 and r = 8 for n = 8, whose associated Weyl structure is D.

(ii) Let D be a Weyl structure on a conformal manifold (Mn, c). Then there exists a Clifford-Weyl

structure of rank 2 on (M, c) with associated Weyl structure D if and only if D preserves a

complex structure compatible with c. If n = 4, every complex structure J compatible with c is

preserved by a unique Weyl structure DJ , which is closed if and only if J is locally conformally

Kähler.

(iii) Let D be a Weyl structure on a conformal manifold (M8, c). Then there exists a Clifford-

Weyl structure of rank 4 whose Clifford morphism ϕ : Cl0(E, h) ! End(TM) is injective upon

restriction to Λ2E, if and only if D is the adapted Weyl structure of a conformal product

structure on (M, c) with 4-dimensional factors (cf. [BM11]).

The proof of this theorem, given in Section 4.4, is constructive, showing in each of these cases

that there are examples of Clifford-Weyl structures with non-closed associated Weyl structures.

1.2 Asymptotically Hyperbolic Manifolds

The second part of this thesis is principally an analysis of quantum resonances on asymptotically

hyperbolic manifolds. A consequence of this analysis is a correspondence between quantum resonances

and Ruelle resonances on convex cocompact quotients of hyperbolic space.

More generally, the mathematical study of scattering resonances encompasses several areas of

research as explained in the recent survey article by Zworski [Zwo17]. As mentioned in that article,

scattering resonances generalise eigenvalues to systems where energy can dissipate or scatter to infin-

ity. They appear under different names in a variety of settings: as quantum resonances in quantum

scattering theory; in obstacle scattering as scattering poles; in general relativity, the resonant states

associated with gravitational waves are quasi-normal modes; and as Ruelle resonances in the presence

of an Anosov flow.

Quantum resonances

The geometric setting of asymptotically hyperbolic manifolds (X, g), modelled on convex cocom-

pact quotients of hyperbolic space, dates to work of Mazzeo and Melrose [Maz88, MM87] from a

spectral-theory perspective, and to work of Fefferman and Graham [FG85] from a conformal geom-

etry perspective. Introducing a spectral parameter λ 2 C, we consider the (positive) Laplacian on

functions ∆ giving the operator

∆− n2

4 + λ2

where dim(X) = n+ 1. For Reλ > n
2 , this operator has an inverse on L2(X), written

Rλ = (∆− n2

4 + λ2)−1

and an immediate question is posed: (under what conditions) does this operator extend meromorphi-

cally beyond Reλ = n
2 and eventually to C? Such a meromorphic extension then implicitly defines

5
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quantum resonances as the poles of said extension. The meromorphic extension with finite rank poles

of the resolvent of the Laplacian on functions is obtained in [MM87] excluding certain exceptional

points in C. Precisely, the set of exceptional points is −n
2 − 1

2N. Refining the definition of asymp-

totically hyperbolic manifolds by introducing a notion of evenness, Guillarmou [Gui05] provides the

meromorphic extension to all of C and shows that for such an extension, said evenness is essential.

Indeed, in the same article, examples are given where the extension of the resolvent contains essential

singularities at the points −n
2 − 1

2 − N0. A first hint at the importance of this evenness property

appears in the work of Guillopé and Zworski [GZ95] which provides the meromorphic extension to

all of C when the geometry at infinity is strictly that of convex cocompact hyperbolic manifolds.

By shifting viewpoint and studying a Fredholm problem, rather than using Melrose’s pseudodiffer-

ential calculus on manifolds with corners, Vasy [Vas13a, Vas13b] is also able to recover the result of

[Gui05] detailing the meromorphic extension. This technique is presented in a very accessible article

of Zworski [Zwo16] in a microlocal language (non-semiclassical). This alternative method is more

appropriate when one considers vector bundles. Effectively contained in [Vas13a], the meromorphic

extension is explicitly obtained in [Vas17] for the resolvent of the Hodge Laplacian upon restriction

to coclosed forms (or excluding top forms, for closed forms). Such a restriction is natural in light of

works in a conformal setting [AG11, BG05], i.e. the boundary of the asymptotic space. In fact, from

the conformal geometry viewpoint, Vasy’s method of placing the asympotically hyperbolic manifold

in an ambient manifold equipped with a Lorentzian metric is very much in the spirit of both the

tractor calculus [BEG94] as well as the ambient metric construction [FG12].

This thesis will be interested in defining quantum resonances for symmetric tensors (of the cotan-

gent bundle), rather than functions, above the asymptotically hyperbolic space (X, g). Here the

natural operator is the Lichnerowicz Laplacian [HMS16] which differs from the rough Laplacian via

a zeroth order curvature correction. There are several reasons why such resonances are interesting.

With knowledge of the asymptotics of the resolvent of the Laplacian on functions, it is possible to

construct the Poisson operator, the Scattering operator, and study in a conformal setting, the GJMS

operators and the Q-curvature of Branson [DGH08, Chapters 5,6]. Simply from a geometric point

of view, it should be particularly interesting to extend these results and constructions to the case

of symmetric 2-cotensors above a conformal manifold which would then be related to metrics on

the extended “bulk” Poincaré-Einstein manifold. Again considering symmetric 2-cotensors, the Lich-

nerowicz Lapalcian plays a fundamental role in problems involving deformations of metrics and their

Ricci tensors [Biq00, Del99, GL91] as well as to linearised gravity [Wan09]. Spectral analysis of the

Lichnerowicz Laplacian [Del02, Del07] as well as the desire to build a scattering operator emphasise

the importance of considering this Laplacian acting on more general spaces than that of L2 sections.

From the viewpoint of gravitational waves, the recent work [BVW15] studies decay rates of solutions

to the wave equation (acting on the trivial bundle) on Minkowski space with metrics similar to the

ambient metric present in this thesis. It is very natural to consider this problem on symmetric 2-

cotensors acted upon by the Lichnerowicz d’Alembertian. These motivations will not be addressed in

this thesis. Another reason is that the meromorphic extension of the resolvent of the Laplacian acting

on symmetric tensors is a key ingredient for relating Ruelle resonances and quantum resonances in

the setting of convex cocompact hyperbolic manifolds. This correspondence will be addressed later

in this introduction.

We now turn our attention to the contents of Chapters 5 and 6. What follows is the five theorems

related to quantum resonances and an outline of their proof.

Let X be a compact manifold with boundary Y = ∂X. That (X, g) is asymptotically hyperbolic

means that, locally near Y in X, there exists a chart [0, ε)⇢ ⇥ Y such that on (0, ε) ⇥ Y , the metric

6



1.2. Asymptotically Hyperbolic Manifolds

g takes the form

g =
dρ2 + h

ρ2

where h is a family of Riemannian metrics on Y , depending smoothly on ρ 2 [0, ε). That g is even

means that h has a Taylor series about ρ = 0 in which only even powers of ρ appear. Above X, we

consider the set of symmetric cotensors of rank m, denoting this vector bundle E(m) = SymmT⇤X.

On symmetric tensors, there exist two common Laplacians. The (positive) rough Laplacian r⇤r
and the Lichnerowicz Laplacian ∆, originally defined on 2-cotensors [Lic61], but easily extendible

to arbitrary degree [HMS16]. On functions, these two Laplacians coincide, on one forms, the Lich-

nerowicz Laplacian agrees with the Hodge Laplacian, and in general, for symmetric m-cotensors, the

Lichnerowicz Laplacian differs from the rough Laplacian by a zeroth order curvature operator

∆ = r⇤r+ q(R).

We construct the Lorentzian cone M = R
+
s ⇥ X with metric η = −ds ⌦ ds + s2g (and call s the

Lorentzian scale). Pulling E(m) back to M we naturally see E(m) as a subbundle of the bundle of all

symmetric cotensors of rank m above M , this larger bundle is denoted F = SymmT⇤M . On F we

consider the Lichnerowicz d’Alembertian ⇤. Up to symmetric powers of ds
s we may identify F with

the direct sum of E(k) = SymkT⇤X for all k  m. Indeed by denoting E = ⊕m
k=0 E(k) the bundle of

all symmetric tensors above X of rank not greater than m, we are able to pull back sections of this

bundle and see them as sections of F :

π⇤
s : C1(X; E) ! C1(M ;F).

A long calculation gives the structure of the Lichnerowicz d’Alembertian with respect to this identifi-

cation. It is seen that s2 ⇤ decomposes as the Lichnerowicz Laplacian ∆ acting on each subbundle of

E(k) for 0  k  m however these fibres are coupled via off-diagonal terms consisting of the symmetric

differential d and its adjoint, the divergence δ. (There are also less important couplings due to the

trace Λ and its adjoint L.) Also present in the diagonal are terms involving s∂s and (s∂s)
2. By

conjugating by s−
n
2 +m we obtain an operator

Q = r⇤r+ (s∂s)
2 +D+G

where D is of first order consisting of the symmetric differential and the divergence, while G is a

smooth endomorphism on F . By appealing to the b-calculus of Melrose [Mel93], we can push this

operator acting on F above M to a family of operators (holomorphic in the complex variable λ)

acting on E above X of the form

Qλ = r⇤r+ λ2 +D + G

where D is of first order consisting of the symmetric differential and the divergence, while G is a

smooth endomorphism on E . Explicitly, in matrix notation writing

u =

2
664

u(m)

...

u(0)

3
775 , u 2 C1(X; E), u(k) 2 C1(X; E(k))

7



Chapter 1. Introduction

the operator Qλ takes the following form

2
66666666666664

∆+ λ2 − cm − LΛ 2bm−1 d −bm−2bm−1 L

−2bm−1 δ

−bm−2bm−1 Λ

−b0b1 L

2b0 d

−b0b1 Λ −2b0 δ ∆+ λ2 − c0 − LΛ

0

0

3
77777777777775

for constants

bk =
p
m− k, ck = n2

4 +m(n+ 2k + 1)− k(2n+ 3k − 1)

and operators: ∆ the Lichnerowicz Laplacian; δ the divergence; d the symmetric differential; Λ the

trace; L the adjoint of the trace. (The operator Qλ naively does not appear self-adjoint for λ 2 iR

since δ is the adjoint of d. The sign discrepancy is due to the Lorentzian signature of η. The operator

is indeed self-adjoint for λ 2 iR as detailed in Proposition 6.24.) This family of operators has the

following meromorphic family of inverses.

Theorem 6. Let (Xn+1, g) be even asymptotically hyperbolic. Then the inverse of

Qλ acting on L2
s(X; E)

written Q−1
λ has a meromorphic continuation from Reλ 0 1 to C,

Q−1
λ : C1

c (X; E) ! ρλ+
n
2 −m

mM

k=0

ρ−2kC1
even(X; E(k))

with finite rank poles.

In order to demonstrate Theorem 6, Vasy’s technique is to consider a slightly larger manifold Xe

as well as the ambient space Me = R
+ ⇥Xe. Using two key tricks near the boundary Y = ∂X: the

evenness property allows us to introduce the coordinate µ = ρ2 and twisting the Lorentzian scale with

the boundary defining function gives (what is termed the Euclidean scale) t = s/ρ, it is seen that the

ambient metric η may be extended non-degenerately past R+ ⇥ Y to Me. This is the main content

of Chapter 5. On SymmT⇤Me we construct analogous to Q, an operator P replacing appearances

of s by t which, on M is easily related to Q. Again the b-calculus provides a family of operators P
on ⊕m

k=0 Sym
kT⇤Xe above Xe. Section 6.5 shows precisely how this family of operators fits into a

Fredholm framework giving a meromorphic inverse, and very quickly also provides Theorem 6.

Consider u 2 C1(X; E). Although the trace operator Λ acting on each subbundle E(k) gives

a notion of u being trace-free, it is more natural to consider the ambient trace operator from F ,

denoted Λ⌘ (Subsection 6.1). Pulling u back to M , we have π⇤
su 2 C1(M ;F) and we may consider

the condition that π⇤
su 2 kerΛ⌘. Avoiding extra notation for this subbundle of E (consisting of

symmetric tensors above X which are trace-free with respect to the ambient trace operator Λ⌘) we

will simply refer to its sections using the notation

C1(X; E) \ ker(Λ⌘ ◦π⇤
s )

8



1.2. Asymptotically Hyperbolic Manifolds

On this subbundle, the operator Qλ takes the following form

2
666666666664

∆+ λ2 − c0m 2bm−1 d

−2bm−1 δ

2b0 d

−2b0 δ ∆+ λ2 − c00

0

0

3
777777777775

with the modified constants

c0k = ck − (m− k)(m− k − 1).

Note that if u = u(m) 2 C1(X; E(m)) then u 2 kerΛ if and only if π⇤
su 2 kerΛ⌘. Again, a similar

meromorphic extension of the inverse may be obtained.

Theorem 7. Let (Xn+1, g) be even asymptotically hyperbolic. Then the inverse of

Qλ acting on L2
s(X; E) \ ker(Λ⌘ ◦π⇤

s )

written Q−1
λ has a meromorphic continuation from Reλ 0 1 to C,

Q−1
λ : C1

c (X; E) \ ker(Λ⌘ ◦π⇤
s ) ! ρλ+

n
2 −m

 
mM

k=0

ρ−2kC1
even(X; E(k))

!
\ ker(Λ⌘ ◦π⇤

s )

with finite rank poles.

In order to uncouple the Lichnerowicz Laplacian acting on E(m) and obtain the desired meromor-

phic extension of the resolvent, we need to restrict further from simply trace-free tensors to trace-free

divergence-free tensors. Equivalently, we must be able to commute the Lichnerowicz Laplacian with

both the trace operator and the divergence operator. The first commutation is always possible giving

the preceding structure of Qλ however, unlike in the setting of differential forms (where the Hodge

Laplacian always commutes with the divergence), such a commutation on symmetric tensors depends

on the geometry of (X, g). For m = 2 the condition is that the Ricci tensor be parallel, while for

m ≥ 3, the manifold must be locally isomorphic to hyperbolic space.

Theorem 8. Let (Xn+1, g) be even asymptotically hyperbolic and Einstein. Then the inverse of

∆− n(n− 8)

4
+ λ2 acting on L2(X; E(2)) \ kerΛ\ ker δ

written Rλ has a meromorphic continuation from Reλ 0 1 to C,

Rλ : C1
c (X; E(2)) \ kerΛ\ ker δ ! ρλ+

n
2 −2C1

even(X; E(2)) \ kerΛ\ ker δ

with finite rank poles.

9
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Theorem 9. Let (Xn+1, g) be a convex cocompact quotient of Hn+1. Then the inverse of

∆− n2 − 4m(n+m− 2)

4
+ λ2 acting on L2(X; E(m)) \ kerΛ\ ker δ

written Rλ has a meromorphic continuation from Reλ 0 1 to C,

Rλ : C1
c (X; E(m)) \ kerΛ\ ker δ ! ρλ+

n
2 −mC1

even(X; E(m)) \ kerΛ\ ker δ

with finite rank poles.

Note that on H
n+1, the difference between the Lichnerowicz Laplacian and the rough Laplacian

is q(R) = −m(n+m− 1). Thus by introducing a spectral parameter s = λ+ n
2 (not to be confused

with the Lorentzian scale), the previous operator ∆− cm + λ2 may be equivalently written

r⇤r− s(n− s)−m

in the spirit of [DFG15].

A semiclassical analysis of this problem provides high energy estimates which are useful in the

setting of analysis of gravitational waves.

Theorem 10. Suppose that X is an even asymptotically hyperbolic manifold which is non-trapping.

Then the meromorphic continuation, written Q−1
λ of the inverse of Qλ initially acting on L2

s(X; E)
has non-trapping estimates holding in every strip |Reλ| < C, | Imλ| 0 0: for s > 1

2 + C

kρ−λ−n
2 +m Q−1

λ fkHs

|λ|−1 (X;E)  C|λ|−1kρ−λ−n
2 +m−2fkHs−1

|λ|−1 (X;E).

If X is furthermore Einstein, then restricting to symmetric 2-cotensors, the meromorphic continuation

Rλ of the inverse of

∆− n(n− 8)

4
+ λ2

initially acting on L2(X; E(2))\kerΛ\ ker δ has non-trapping estimates holding in every strip |Reλ| <
C, | Imλ| 0 0: for s > 1

2 + C

kρ−λ−n
2 +2 Rλ fkHs

|λ|−1 (X;E(2))  C|λ|−1kρ−λ−n
2 fkHs−1

|λ|−1 (X;E(2)).

Classical-Quantum correspondence

An application of these meromorphic extensions is given in Chapter 7.

On a closed hyperbolic surface, Selberg’s trace formula [Sel56] establishes a connection between

eigenvalues of the Laplacian (on functions) and closed geodesics via the Selberg zeta function. In the

convex cocompact setting this result is established by Patterson and Perry [PP01] where quantum

resonances play the role of eigenvalues. Although these results indicate a correspondence between

classical and quantum phenomena, it is the result of Faure and Tsujii [FT13, Proposition 4.1] that

establishes a direct link between eigenvalues of the Laplacian on a closed hyperbolic surface and

Ruelle resonances of the generator of the geodesic flow on the unit tangent bundle. In the convex

cocompact setting, the link between quantum resonances and Ruelle resonances has recently been

established by Guillarmou, Hilgert, and Weich [GHW16].

10
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The result of [FT13] on closed hyperbolic surfaces has been extended to closed hyperbolic man-

ifolds of arbitrary dimension by Dyatlov, Faure, and Guillarmou [DFG15]. Interestingly, in this

higher dimensional setting, the correspondence is no longer simply between Ruelle resonances and

the spectrum of the Laplacian acting on functions, but rather the spectrums of the Laplacian acting

on symmetric tensors (precisely, those tensors which are trace-free and divergence-free).

Chapter 7 establishes this correspondence in the convex cocompact setting (for manifolds of di-

mension at least 3). We detail this theorem and sketch its resolution.

Let X be a convex cocompact quotient of hyperbolic space of Hn+1 (with n ≥ 2) supplied with

the hyperbolic metric. Let A denote the generator of the geodesic flow (a tangent vector field on the

unit tangent bundle SX). The construction of Ruelle resonances for the operator A + λ by Faure

and Sjöstrand [FS11] when the base manifold is compact has been extended to the open setting

by Dyatlov and Guillarmou [DG16] and applies in this current setting. Specifically, for Reλ > 0,

the operator A + λ is invertible as an operator on L2 sections and admits a meromorphic extension

RA,0(λ) : C1
c (SX) ! D0(SX) with poles of finite rank. The poles being the Ruelle resonances.

So let λ0 2 C be a pole of the resolvent RA,0(λ). Necessarily, we have Reλ0  0. Due to certain

restrictions on the Poisson isomorphism of [DFG15] we impose the constraint that λ0 62 −n
2 − 1

2N0. In

this introduction we will assume for simplicity that the pole of RA,0(λ) at λ0 is simple and consider an

associated Ruelle resonant state, u 2 D0(SX). Such resonant states are characterised by the equation

(A+ λ0)u = 0 subject to a wave front condition on u detailed in Section 7.2. We write

u 2 ResA,0(λ0).

A non-trivial idea contained in [DFG15] is the construction of horosphere operators that generalise

the horocycle vector fields present for hyperbolic surfaces. Specifically, we note that the tangent

bundle TX over X may be pulled back to a bundle over SX which decomposes canonically into a

line bundle spanned by A and the perpendicular n-dimensional bundle denoted E . By [DFG15], there

exists a differential operator

d− : C1(SX; SymmE) ! C1(SX; Symm+1E)

which may be morally thought of as a symmetric differential along the negative horospheres. More-

over, this operator enjoys the commutation relation

[A, d−] = − d−

where it is easy to extend the vector field A to a first-order differential operator on the tensor bundle

E . As (tensor valued) Ruelle resonances are also restricted to Reλ  0, this commutation relation

implies the existence ofm 2 N0 such that v := (d−)mu 6= 0 and d− v = 0. Moreover, (A+λ0+m)v = 0

As the vector bundle E carries a natural metric, we have a notion of a trace operator Λ and its adjoint

L acting on SymmE . We may thus decompose v into trace-free components

v =

bm
2 cX

k=0

Lk v(m−2k), v(m−2k) 2 D0(SX; Symm−2kE) \ ker(Λ) \ ker(A+ λ0 +m).

Integrating over the fibres of SX ! X allows v(m−2k) to be pushed to a symmetric (m− 2k)-tensor

11
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on X

ϕ(m−2k) := π0⇤v
(m−2k) 2 C1(X; Symm−2kT⇤X).

and the properties of the Poisson transform imply that

ϕ(m−2k) 2 ker(r⇤r+ (λ0 +m)(n+ λ0 +m)− (m− 2k))

In fact, it is also trace-free, divergence-free, and satisfies precise asymptotics at the boundary.

Lemma 7.12 gives a classification of quantum resonant states from which we conclude that ϕ(m−2k)

is indeed a quantum resonant state associated with the resonance λ0 +m+ n. We write

ϕ(m−2k) 2 Res∆,m−2k(λ0 +m+ n).

Thanks to properties of the Poisson operator (mostly detailed in [DFG15]) this path may be

reversed and we obtain an isomorphism between quantum resonances and Ruelle resonances. Two

aspects of the proof render the isomorphism considerably labour intensive. First, one needs to deal

with inverting the horosphere operators. Second, one needs to consider the possibility that the Ruelle

resonance is not a simple pole, but rather, there may exist generalised Ruelle resonant states.

Theorem 11. Let X = Γ\Hn+1 be a smooth oriented convex cocompact hyperbolic manifold, and

λ0 2 C\(−n
2 − 1

2N0). There exists a vector space linear isomorphism between Ruelle generalised

resonant states

ResA,0(λ0)

and the following space of quantum generalised resonant states

M

m2N0

bm
2 cM

k=0

Res∆,m−2k(λ0 +m+ n).
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2. Even Clifford Structures

This chapter is structured as follows. Section 2.1 recalls the classification of even Clifford algebras.

The standard reference for such algebras is [LM89]. Section 2.2 introduces even Clifford structures

and states the classification found in [MS11].

2.1 Clifford Algebras

Consider Rr endowed with its canonical positive definite inner product, and denote by {ξi}1ir the

standard orthonormal basis. Let Clr denote the Clifford algebra. One may define this algebra as the

quotient of the tensor algebra of Rr by the ideal generated by elements of the form v ⌦ v + |v|2 for

v 2 R
r. There is then a natural embedding of Rr in Clr and the Clifford algebra is generated by all

products of the orthonormal basis subject to the relations

ξi · ξj + ξj · ξi = −2δij , for 1  i, j  r.

Here, · denotes Clifford multiplication. The Z2-grading of the tensor algebra of Rr descends to the

Clifford algebra giving it a Z2-grading and provides the even Clifford algebra denoted by Cl0r. (There

is an algebra isomorphism between Cl0r and Clr−1.) The spin group Spin(r) ⇢ Cl0r is

Spin(r) := {v1 · . . . · vk | v 2 R
r, |v| = 1, k 2 2N}

and has Lie algebra

spin(r) := span {ξi · ξj | 1  i < j  n} ' so(r) ' Λ2
R

r.

Clifford algebras may be explicitly described as matrix algebras over R, C, or H [LM89, Section

1.4]. We announce this description for even Clifford algebras. Let dr denote the dimension of an

irreducible representation of Cl0r and denote by εr the number of distinct irreducible representations.

r mod 8 Cl0r dr εr

2 C( 12dr) 2
r
2 1

3 H( 14dr) 2
r+1
2 1

4 H( 14dr)⊕H( 14dr) 2
r
2 2

5 H( 14dr) 2
r+1
2 1

6 C( 12dr) 2
r
2 1

7 R(dr) 2
r−1
2 1

8 R(dr)⊕ R(dr) 2
r−2
2 2

9 R(dr) 2
r−1
2 1
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Table 3: Representations of even Clifford algebras

An attractive and explicit realisation of such algebras which is geared toward problems involving

even Clifford structures is developed in an article by Arizmendi and Herrera [AH15]. Following

this article, we let ∆̃r denote the irreducible representations of Cl0r for r 6⌘ 0 mod 4 and by ∆̃±
r

the two inequivalent irreducible representations in the case r ⌘ 0 mod 4. The classification of

Clifford algebras implies that the representations are complex for r ⌘ 2, 6 mod 8 and quaternionic

for r ⌘ 3, 4, 5 mod 8.

In preperation of even Clifford structures on manifolds, we consider a possible embedding

ϕ :

(
spin(r) ! so(n)

ξi · ξj 7! Jij

subject to the constraint that J2
ij = −1 under the identification so(n) ' End−(Rn). We consider

separately the cases where Cl0r has one or two inequivalent irreducible representations. If r 6⌘ 0

mod 4 then the requirement that J2
ij = −1 forces the following decomposition

R
n = ⊕k∆̃r = ∆̃r ⌦ R

k

for some k 2 N. Alternatively, if r ⌘ 0 mod 4 then the requirement that J2
ij = −1 forces the following

decomposition

R
n = (∆̃+

r ⌦ R
k+)⊕ (∆̃−

r ⌦ R
k−)

for some k± 2 N0 with at least one of k± non-zero. In particular we obtain a restriction on the possible

values of n. Specifically, if r 6⌘ 0 mod 4 then n = drk and if r ⌘ 0 mod 4 then n = dr(k+ + k−).

2.2 Even Clifford Structures

Let (Mn, g) be a Riemannian manifold with Levi-Civita connection r. Consider an oriented rank

r Euclidean bundle (E, h) which provides the Clifford bundle Cl(E, h) over M . When working

locally, we denote by {ei}1in a local orthonormal frame for TM and by {ξi}1ir a local oriented

orthonormal frame for (E, h).

The definition of a Clifford structure, as defined in [MS11] but of which we will not make use,

then requires the further existence of a non-vanishing algebra bundle morphism, termed a Clifford

morphism,

ϕ : Cl(E, h) ! End(TM)

which maps E into the bundle of skew-symmetric endomorphisms End−(TM). We mention this

construction as, unlike for the even structures that are of interest in this thesis, there is a clear

requirement that E be globally defined and not merely a projective bundle.

We recall the notion of a projective bundle. We begin by remarking that isomorphism classes of

oriented Euclidean rank r vector bundles (E, h) are in one-to-one correspondence with isomorphism

classes of principal SO(k)-bundles P over M . Metric covariant derivatives on E are then identified
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with principal SO(k)-connections on P . We recall that the projective special orthogonal group is

PSO(k) :=

(
SO(k) if k is odd

SO(k)/{±Ik} if k is even

and use the preceding one-to-one correspondence to motivate

Definition 2.1. A locally defined oriented Euclidean rank r vector bundle over M is a principal

PSO(r)-bundle over M .

The terminology is justified by the fact that the structure group of a principal PSO(r)-bundle

can be reduced to SO(r) over any contractible open neighborhood U of M , and thus gives rise to an

oriented Euclidean rank r vector bundle over U .

If E is a locally defined oriented Euclidean rank r vector bundle over M and ρ : PSO(k) ! SO(N)

is a group morphism, one obtains a rankN oriented Euclidean vector bundle ρ(E) overM by enlarging

the structure group of E to SO(N) and considering the associated vector bundle. In particular,

since the even-dimensional tensor powers of the standard representation of SO(r) on R
r descend to

PSO(r), the even tensor powers of a locally defined oriented Euclidean vector bundle are globally

defined vector bundles. And in our case, such a locally defined vector bundle leads to the globally

defined even Clifford bundle Cl0(E, h).

We can give the definition of even Clifford structures on Riemannian manifolds, which have been

introduced in [MS11].

Definition 2.2. A rank r ≥ 2 even Clifford structure on a Riemannian manifold (Mn, g) is an

oriented, locally defined, rank r Euclidean bundle (E, h) over M together with a non-vanishing

algebra bundle morphism, called a Clifford morphism, ϕ : Cl0(E, h) ! End(TM) which maps

Λ2E ⇢ Cl0(E, h) to the bundle of skew-symmetric endomorphisms End−(TM).

Remark 2.3. For r even, this definition corresponds to what [MS11, Remark 2.5] terms projective

even Clifford structures.

Definition 2.4. An even Clifford structure (M, g,E, h, ϕ), is called parallel if there exists a metric

connection rE on (E, h) such that ϕ is connection preserving with respect to rE and the Levi-Civita

connection r of (M, g).

Explicitly, the even Clifford structure is parallel if, for every tangent vector X 2 TM and section

σ of Cl0(E, h), that

ϕ(rE
Xσ) = rXϕ(σ).

An alternative and natural setting is to consider homogeneous (rather than parallel) even Clifford

structures on homogeneous spaces [MP13].

Definition 2.5. A parallel even Clifford structure (E, h,rE , ϕ), is called flat if the connection rE

is flat.

These definitions contain several geometries and provides a general framework to study them. For

rank 2, an even Clifford structure provides an almost Hermitian structure (and vice versa) and it is

parallel if and only if the corresponding almost Hermitian structure establishes a Kähler structure.

For rank 3, an even Clifford structure provides a quaternion-Hermitian structure (and vice versa)
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and it is parallel if and only if the quaternion-Hermitian structure establishes a quaternion-Kähler

strucutre.

The principal result of [MS11] is a complete classification of manifolds carrying parallel even

Clifford structures. Before announcing this classification we state two preliminary results [MS11,

Lemma 2.4, Proposition 2.10] which are often appealed to in this thesis. Our convention is that h·, ·i
denotes minus the trace of the product of two endomorphisms.

Lemma 2.6. [MS11] Let (E, h, ϕ) be a rank r even Clifford structure and let {ξi}1ir be a local

orthonormal frame on E. The local endomorphisms Jij := ϕ(ξi · ξj) 2 End(TM) are skew-symmetric

for i 6= j and satisfy

8
>>>>><
>>>>>:

Jii = −1TxM for all 1  i  r,

Jij = −Jji and J2
ij = −1TxM for all i 6= j,

Jij ◦ Jik = Jjk for all i, j, k mutually distinct,

Jij ◦ Jkl = Jkl ◦ Jij for all i, j, k, l mutually distinct.

Moreover, if r 6= 4, then

hJij , Jkli = 0, unless i = j, k = l or i = k 6= j = l or i = l 6= k = j.

Proposition 2.7. [MS11] Consider a complete simply connected Riemannian manifold (Mn, g) and

suppose it carries a parellel non-flat even Clifford structure (E, h,rE , ϕ) of rank r ≥ 3. Then the

following holds:

(i) If r = 4 then (M, g) is a Riemannian product of two quaternion-Kähler manifolds.

(ii) If r 6= 4 and n 6= 8 then

(a) The curvature of rE, viewed as a map from Λ2M to End−(E) ' Λ2E is a non-zero

constant times the metric adjoint of the Clifford morphism ϕ.

(b) M is Einstein with non-vanishing scalar curvature and has irreducible holonomy.

(iii) If r 6= 4 and n = 8, then (a) implies (b).

The list of complete simply connected Riemannian manifolds M carrying a parallel rank r even

Clifford structure is given in the tables below. For the sake of simplicity, the non-compact duals of the

compact symmetric spaces have been omitted. As in the previous section, dr denotes the dimension

of the irreducible representations of Cl0r. In Table 5, the non-compact duals of the compact symmetric

spaces have been omitted.

r M dimension of M

2 Kähler 2k, k ≥ 1

3 and 4 hyper-Kähler 4k, k ≥ 1

4 reducible hyper-Kähler 4(n+ + n−), n± ≥ 1

arbitrary Cl0r representation space multiple of dr

Table 4: Manifolds with a flat even Clifford structure
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2.2. Even Clifford Structures

r M dimension of M

2 Kähler 2k, k ≥ 1

3 quaternion-Kähler (QK) 4k, k ≥ 1

4 product of two QK manifolds 4(n+ + n−), n± ≥ 1

5 QK 8

6 Kähler 8

7 Spin(7) holonomy 8

8 Riemannian 8

5 Sp(k + 2)/Sp(k)⇥ Sp(2) 8k, k ≥ 2

6 SU(k + 4)/S(U(k)⇥U(4)) 8k, k ≥ 2

8 SO(k + 8)/SO(k)⇥ SO(8) 8k, k ≥ 2

9 OP
2 = F4/Spin(9) 16

10 (C⌦O)P2 = E6/Spin(10) ·U(1) 32

12 (H⌦O)P2 = E7/Spin(12) · SU(2) 64

16 (O⌦O)P2 = E8/Spin
+(16) 128

Table 5: Manifolds with a parallel non-flat even Clifford structure
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3. Twistor Spaces

This chapter is structured as follows. Section 3.1 explains the construction of the twistor space of

Riemannian manifolds with even Clifford structures and their almost complex structures. Section 3.2

checks the integrability of the almost complex structure and constructs in the appropriate cases, a

Kähler metric on the twistor space. Section 3.3 provides an alternative almost complex structure on

the twistor space leading to a nearly Kähler structure.

3.1 Twistor Space of an Even Clifford Structure

Let (Mn, g) be a manifold with an even Clifford structure (E, h, ϕ). Given x 2 M , let {ξi}1ir be an

orthonormal basis for the fibre Ex and define Jij := ϕ(ξi · ξj) where · denotes Clifford multiplication.

For each x we consider the subspace Zx of End(TxM) where

Zx :=

8
<
:J =

X

1i<jr

aijJij

∣∣∣∣∣∣
J2 = −1TxM , aij 2 R

9
=
;

and define the twistor space of the even Clifford structure to be the disjoint union

Z :=
G

x2M

Zx.

We will denote by π the projection onto M . This is a bundle of pointwise orthogonal complex

structures. For a parallel Cl03 structure this coincides with the definition of the twistor space of a

quaternion-Kähler manifold, where the fibre is homeomorphic to S
2. It is not hard to see that for

a Cl04 structure the fibre of the twistor space is homeomorphic to S
2 ⇥ S

2, which corresponds to the

isomorphism between Spin(4) and Spin(3)⇥ Spin(3). In general the fibre at each point is isomorphic

to fGr(2, r), the Grassmannian of oriented 2-planes in R
r, as we see from

Lemma 3.1. Let A 2 spin(r) ⇢ Cl0r, then A2 = −1 if and only if there exist v1, v2 2 R
r orthonormal

vectors such that A = v1 · v2.

Proof. Let A 2 spin(r) ⇢ Cl0r and {ξi}1ir an orthornormal basis for R
r, then under a change of

basis, we can suppose that A =
Pb r

2 c
i=1 aiξ2i−1 · ξ2i. The condition A2 = −1 yields the equations

b r
2 cX

i=1

a2i = 1, aiaj = 0, (i < j).

The solutions of these equations are the r-tuples (±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . ,±1).

Therefore A = ±ξ2i−1 · ξ2i for some 1  i  b r
2c. Conversely, if A = v1 · v2 with v1 and v2
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orthonormal, then A2 = v1 · v2 · v1 · v2 = −v21v
2
2 = −1, which proves the assertion.

Remark 3.2. Another way to prove this is by using that an element A in Λ2
R

r is decomposable if

and only if A ^A = 0.

Consider fGr(2, r) as a Hermitian-symmetric space. Its complex structure can be given using

Clifford multiplication. Let z 2 fGr(2, r), which for a suitable frame can be written as z = ξ1 ^ ξ2 =

ξ1 · ξ2. The tangent space Tz
fGr(2, r) can be identified with

span {ξi · ξj | i 2 {1, 2}, j 2 {3, . . . , r}} =

(
rX

s=3

αsξ1 · ξs + βsξ2 · ξs

∣∣∣∣∣ αs,βs 2 R

)
.

The complex structure is then given by J̃z(v) := z · v.
The Levi-Civita connection on M induces a connection on Z. For each S 2 Z, the connection gives

a splitting TSZ = VS⊕HS where VS = ker(π⇤) is isomorphic to T⇡(S)
fGr(2, r), the isomorphism given

by the differential of the Clifford map, and HS , the horizontal subspace, is isomorphic to T⇡(S)M .

We recall the usual construction of almost complex structures on Z. Given U 2 VS and X 2 HS we

define

J (U +X)S := Ĵ(U) + π−1
⇤ (Sπ⇤(X))

where Ĵ(U) := ϕ⇤J̃ϕ−1
⇤ (U) = SU .

This construction is inspired by the low rank setting. Indeed for r = 4, 5 we have:

• r = 3: In this case this is the construction of the almost complex structure for quaternion-Kähler

manifolds, so (Z,J ) is a complex manifold, see [BB82, Sal82].

• r = 4: In this case the manifold is locally a product of two quaternion-Kähler manifolds [MS11].

Moreover fGr(2, 4) is isomorphic to S
2⇥S

2 as Kähler manifolds, so in this case the twistor space

is the product of the twistor spaces of two quaternion-Kähler manifolds. In particular, it is a

complex manifold.

From now on, we will suppose that (M, g) carries a parallel even Clifford structure of rank r ≥ 5.

We treat the 8-dimensional case first. In this case, the rank should be 5, 6, 7 or 8 and the following

holds:

• r = 5: In this case the manifold is known to be quaternion-Kähler in the case of positive

curvature [MS11]. The twistor space has fibre isomorphic to Sp(2)/U(2) and has been considered

in [Bur90]. The twistor space is complex exactly when M is locally symmetric, hence locally

isometric to either quaternionic projective space or to fGr(2, 6) ⇠= GrC(2, 4).

• r = 6: In this case the manifold is known to be Kähler [MS11]. The twistor space has fibre
fGr(2, 6) and has been considered in [OR85, Bur90]. The twistor is complex exactly when the

Bochner tensor of M vanishes.

• r = 7: In this case the manifold has Spin(7) holonomy. The twistor space has fiber SO(7)/SO(5)⇥
SO(2). According to [Bur90], the twistor space in this case is never complex.

• r = 8: In this case the manifold is Riemannian. The twistor fibre is isomorphic to SO(8)/U(4)

which is the usual fibre of the twistor space defined for even dimensional Riemannian manifolds.

As mentioned in the introduction, the twistor space is complex if and only if M is conformally

flat.
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3.2. Integrability of Almost Complex Structure

3.2 Integrability of Almost Complex Structure

We will now assume that n 6= 8.

Lemma 3.3. Let M be a Riemannian manifold of dimension n 6= 8 carrying a parallel even Clifford

structure of rank r > 4, then for every S 2 Z and X,Y 2 T⇡(S)M , the curvature R of the Levi-Civita

connection satisfies

[RSX,SY , S]− S[RSX,Y , S]− S[RX,SY , S]− [RX,Y , S] = 0.

Proof. It suffices to prove the proposition for S = J12. If the parallel even Clifford structure is flat

then the manifold is flat [MS11, Theorem 2.9]. So RX,Y = 0 for all X,Y 2 T⇡(S)M . If the parallel

even Clifford structure is not flat and n 6= 8, then the proof of Proposition 2.7, explicitly [MS11,

Equation (15)], implies the existence of a non-zero constant κ such that

[RX,Y , J12] = κ
X

s>2

g(Js1X,Y )Js2 − g(Js2X,Y )Js1.

Using the properties of the endomorphisms Jij in Lemma 2.6, specifically, Jij ◦ Jik = Jjk for i, j, k

mutually distinct, the result follows upon summing the following four calculations.

[RJ12X,J12Y , J12] = κ
X

s>2

−g(Js1X,Y )Js2 + g(Js2X,Y )Js1

−J12[RJ12X,Y , J12] = κ
X

s>2

−g(Js2X,Y )Js1 + g(Js1X,Y )Js2

−J12[RX,J12Y , J12] = κ
X

s>2

−g(Js2X,Y )Js1 + g(Js1X,Y )Js2

−[RX,Y , J12] = κ
X

s>2

−g(Js1X,Y )Js2 + g(Js2X,Y )Js1

Theorem 1. Let M be a Riemannian manifold of dimension n 6= 8 carrying a parallel even Clifford

structure of rank r > 4, then the almost complex structure J on Z is integrable.

Proof. We proceed as in 14.68 of [Bes08]. For an arbitrary vector field W , we let V(W ) denote the

vertical part of W and H(W ) the horizontal part of W . Let NJ be the Nijenhuis tensor of J . Let

U and V be vertical vector fields and X and Y basic horizontal vector fields.

Let us first check that NJ (U, V ) = 0. Since U and V are vertical, J (U) and J (V ) are also

vertical vector fields. Thus NJ (U, V ) = NĴ(U, V ) = 0, since Ĵ is a complex structure.

Now we will check that NJ (X,U) = 0. From the two facts that the horizontal transport of the

horizontal distribution respects Ĵ , and that [X,U ] is vertical if U is, we obtain [X,JU ] = J [X,U ].

This reduces the Nijenhuis tensor to NJ (X,U) = J ([J (X), U ]) − [J (X),J (U)]. The vertical part

of this vanishes by noting that both terms in V([J (X), J(U)]) = J (V[J(X), U ]) are tensorial in X.

Finally, for the horizontal part of NJ (X,U) observe first that π⇤([J(X), U ]) = −Uπ⇤X from which

we obtain

π⇤(J [J (X), U ]) = π⇤(JH[J (X), U ])

= π⇤(π
−1
⇤ Sπ⇤[J (X), U ])

= −SUπ⇤X
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By the same reasoning

π⇤([J (X),J (U)]) = −J (U)π⇤X

= −SUπ⇤X

and so NJ (X,U) = 0.

Finally, we check that NJ (X,Y ) = 0. This is done by considering the horizontal and vertical

components separately. For the horizontal component, we consider S in Z with π(S) = x as a section,

also denoted S, of Z about x and demand that rS = 0 at x. This gives a local almost complex

structure on a neighborhood of x which has an associated Nijenhuis tensor NS . A direct calculation

gives agreement, on the neighbourhood of x, between the two Nijenhuis tensors considered, explicitly,

π⇤(NJ (X,Y )S) = NS(π⇤(X),π⇤(Y )).

The tensor NS is then seen to vanish at x as r is torsion-free and, at x, rS vanishes. Studying the

vertical component one recalls O’Neill’s formulas for Riemannian submersions [Bes08, Chapter 9]. In

particular, V[X,Y ]⇡(S) = −[R⇡⇤X,⇡⇤Y , S], which implies V(NJ (X,Y )) = 0 precisely by Lemma 3.3.

Theorem 2. The twistor space (Z,J ) of a Riemannian manifold of dimension n 6= 8 with a parallel

even Clifford structure of rank r > 4 and Ric > 0 admits a Kähler metric.

Proof. In this case the manifold (M, g) is Einstein with Ric = κ(n/4 + 2r − 4) by Proposition 2.7.

Using the condition that Ric > 0, we choose a metric h on Z such that π is a Riemannian submersion

with totally geodesic fibres isometric to fGr(2, r) with Kähler metric and Ric = 2rκ, so that the

collection {Jij} forms a mutually orthogonal frame and kJijk2 = 1/κ. Let U and V be vertical vector

fields and X and Y basic horizontal vector fields. The theorem follows a similar argument to that

given in 14.81 of [Bes08]. We consider separately the four cases coming from (rEJ )F where E,F

may be horizontal or vertical.

First we show rUJ = 0. Restricting to its action on a vertical field, we immediately get

(rUJ )V = 0 as the fibre is Kähler and totally geodesic. In order to prove (rUJ )X = 0, it suffices

to consider only the horizontal component (again as the fibres are totally geodesic). By appropriately

choosing a local orthonormal frame for E, we may assume that S = J12 and U = λJs1 with s > 2.

The Koszul formula and the relationship between the vertical component of the Lie bracket and the

curvature mentioned in the previous proof give, at S,

2h(rUX,Y ) = −h([X,Y ], U)

= λh([R⇡⇤X,⇡⇤Y , J12], Js1).

Recalling Equation 3.2 we deduce h(rUX,Y ) = − 1
2λg(Js2π⇤X,π⇤Y ). Using this result, π⇤(rUX)S =

− 1
2λJs2π⇤X, we obtain

π⇤(JrUX)S = − 1
2J12λJs2π⇤X

= 1
2Uπ⇤X.

Similarly, one proves that

π⇤(rUJX) = 1
2Uπ⇤X,

22



3.2. Integrability of Almost Complex Structure

from which we conclude π⇤((rUJ )X) = 0.

Second, we show rXJ = 0. Recall O’Neill’s A tensor

AEF := VrHEHF +HrHEVF

where E and F are arbitrary vectors. We show, as an initial calculation, that AX(J Y ) = J (AXY )

and J (AXU) = AX(JU). In our situation we note the following decomposition into horizontal and

vertical components

rXU = VrXU +AXU

rXY = AXY +HrXY.

By [Bes08, Proposition 9.24], we haveAXY = 1
2V[X,Y ] so at S = J12, we getAXY = − 1

2 [R⇡⇤X,⇡⇤Y , J12]

and the claim that AX(J Y ) = J (AXY ) is equivalent to

[RX0,J12Y 0 , J12] = J12[RX0,Y 0 , J12]

where, for the sake of notation, we have denoted X 0 = π⇤X and Y 0 = π⇤Y . Equation 3.2 gives the

result as

J12[RX0,Y 0 , J12] = J12(κ
X

s>2

g(Js1X
0, Y 0)Js2 − g(Js2X

0, Y 0)Js1)

= κ
X

s>2

−g(Js1X
0, Y 0)Js1 − g(Js2X

0, Y 0)Js2

and similarly

[RX0,J12Y 0 , J12] = κ
X

s>2

g(Js1X
0, J12Y

0)Js2 − g(Js2X
0, J12Y

0)Js1

= κ
X

s>2

−g(Js2X
0, Y 0)Js2 − g(Js1X

0, Y 0)Js1.

For the second claim, we use the skew symmetry of A, h(AXY, U) = −h(Y,AXU) to obtain

h(JAXU, Y ) = h(U,AXJ Y )

= h(U,JAXY )

= h(AXJU, Y ).

Therefore J (AXU) = AX(JU).

We apply this result to (rXJ )U where

(rXJ )U = rX(JU)− JrXU

= VrX(JU) +AXJU − JVrXU − JAXU

= VrX(JU)− JVrXU

Taking the inner product of each term with V and studying the respective Koszul formulas gives the
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result that (rXJ )U = 0. By a similar calculation for (rXJ )Y ,

(rXJ )Y = HrX(J Y )− JHrXY.

As this is horizontal we may use a similar idea to that presented in the preceding proof. Specifically,

we consider S 2 Z with x = π(S) as a section over a neighborhood of x with rS = 0 at x. Studying

the appropriate Koszul formulas one concludes that, at x,

(rXJ )Y = (r⇡⇤XS)π⇤Y.

The result now follows since, at x,

(rXJ )Y = π−1
⇤ (r⇡⇤X(Sπ⇤Y )− Sr⇡⇤Xπ⇤Y )

= π−1
⇤ ((r⇡⇤XS)π⇤Y ) = 0.

A summary of these results is given in Tables 1 and 2 found in the introduction to this thesis.

3.3 Nearly Kähler Structure

A nearly Kähler manifold is an almost Hermitian manifold (Z, eJ ,eh) with the property that, for all

tangent vectors X, we have (erX
eJ )X = 0 where er is the Levi-Civita connection of (Z,eh).

We use the following observation of Nagy [Nag02] to construct nearly Kähler metrics on the twistor

space. Consider a Riemannian submersion with totally geodesic fibres

F ! (Z, h) ! M

and let TZ = V ⊕ H be the corresponding splitting of TZ. Suppose that Z admits a complex

structure J compatible with h and preserving V and H such that (Z,J , h) is a Kähler manifold.

Consider now the Riemannian metric on Z defined by

eh :=

(
1
2h on V ⇥ V

h on H ⇥H

The metric eh admits a compatible almost complex structure eJ given by

eJ :=

(
−J on V

J on H

The next proposition is proved in [Nag02].

Proposition 3.4. [Nag02] The manifold (Z, eJ ,eh) is nearly Kähler.

As a corollary, we obtain

Theorem 3. The twistor space Z of a Riemannian manifold with a parallel even Clifford structure

of rank r ≥ 3 and Ric > 0, admits an almost complex structure eJ and a metric eh such that (Z, eJ ,eh)
is nearly Kähler.
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In our case, using the definition of the almost complex structure, one can easily check that this

almost complex structure is never integrable.

We conclude by pointing out that even though a classification of parallel even Clifford structures

was given in [MS11], and one can try to deal with each of these cases separately, our approach does not

rely on this classification (except for dimension 8 in which the curvature condition is not automatically

satisfied). Furthermore, the constructions above can be studied in a more general context. One could

check integrability conditions of these twistor spaces for manifolds with non parallel even Clifford

structures, as in [Fri01]. In fact, in order for the twistor space to be complex, Lemma 3.3 should be

satisfied for every S in the twistor space. One nice example is given by S
1 ⇥ S

15, which admits a non

parallel Cl09 structure but its twistor space is a complex manifold which cannot be Kähler since its

first Betti number is odd.
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4. Clifford Structures on Conformal

Manifolds

The chapter is organised as follows. Section 4.1 recalls several notions of even Clifford structures,

defines Clifford-Weyl structures and introduces the required differential and algebraic objects from

differential and conformal geometry. It finishes with a toy problem from Hermitian geometry which

inspires the beginning of the proof of Theorem 4 (and provides the proof for the case n > 4, r = 2).

Section 4.2 establishes Theorem 4 for large rank r ≥ 5 structures and Section 4.3 establishes the

theorem in the remaining low rank setting. Section 4.4 considers the generic cases of Theorem 5

and shows that in each of these cases there are examples of Clifford-Weyl structures with non-closed

associated Weyl structures.

4.1 Clifford-Weyl Structures

Consider a Riemannian manifold (Mn, g) equipped with an even Clifford structure (E, h,ϕ). Recall

that the Clifford morphism ϕ : Cl0(E, h) ! End(TM) is required to send Λ2E ⇢ Cl0(E, h) to the

bundle of skew-symmetric endomorphisms End−(TM). As End−(TM) is invariant under a conformal

change of the metric g, the notion of an even Clifford structure extends directly to the setting of a

conformal manifold (M, c). In the setting of a conformal manifold, where no distinguished connection

(on the tangent bundle) is present, the condition of parallelism is transferred by considering Weyl

connections giving what we term Clifford-Weyl structures.

Definition 4.1. A rank r ≥ 2 Clifford-Weyl structure on a conformal manifold (Mn, c), is a tuple

(E, h,ϕ,rE , D) where

• (E, h) is an oriented locally defined rank r Euclidean bundle;

• ϕ : Cl0(E, h) ! End(TM) is an algebra bundle morphism sending Λ2E to End−(TM);

• rE is a metric connection on E;

• D is a Weyl connection on (M, c),

such that ϕ, seen as a section of Cl0(E, h)⇤ ⌦ End(TM), is parallel with respect to rE ⌦D.

Let (E, h,ϕ,rE , D) be a rank r Clifford-Weyl structure on a conformal manifold (Mn, c) and let

L denote the weight bundle of M (the real line bundle associated with the principal bundle of frames

via the representation | det |1/n of GL(n;R), cf. [BM11, Section 2]).

Consider a metric g in the conformal class c. Associated with g we have the Levi-Civita connection

r as well as the gauge ` (a section of L) and Lee form ✓ defined respectively by

c = g ⌦ `2, D` = ✓ ⌦ `.
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This gives the useful formula Dg = −2θ ⌦ g. Independent of the choice of metric in the conformal

class, we have the Faraday form F = d θ. The Weyl structure D is closed if and only if D is locally

the Levi-Civita connection of a metric in the conformal class. This is equivalent to F = 0.

Let {ξi}1ir be a local oriented orthonormal frame for (E, h). We introduce the collection of

connection coefficients and the curvature two-forms

rEξj =:
X

i

ηij ⌦ ξi, RE ξj =:
X

i

ωij ⌦ ξi,

(with ωij = d ηij +
P

k ηik ^ ηkj), and define endomorphisms Jij := ϕ(ξi · ξj) where · denotes Clifford
multiplication. As in the original setting of even Clifford structures, it is the fact that ϕ is an algebra

bundle morphism mapping Λ2E into End−(TM), that implies that the endomorphisms Jij are locally

defined almost Hermitian structures on M for i 6= j. Moreover, for mutually distinct indices i, j, k

we have

(ξi · ξj) · (ξi · ξk) = ξj · ξk = −(ξi · ξk) · (ξi · ξj)

and thus Jij anticommutes with Jik. In particular, this shows (similar to the final statement in

Lemma 2.6 but without the restriction on r 6= 4) that

hJij , Jiki = 0, 8 i 6= j 6= k 6= i, (4.1)

where h·, ·i denotes, as usual, minus the trace of the product of two endomorphisms.

Let {ei}1in denote a local orthonormal frame for (TM, g). For each Jij with i 6= j, we obtain

an associated non-degenerate two-form Ωij :

Ωij(·, ·) := g(Jij ·, ·).

(In the process of establishing (4.3), as well in the the rank r = 4 case, the calculations are simplified

by summing indiscriminately over subscripts, for this we define Ωii := 0.) Using the natural scalar

product on the bundle of exterior forms induced by g, we obtain the Lefschetz-type operators for

i 6= j,

Lij := Ωij^, Λij := L⇤
ij =

1
2

nX

a=1

Jij(ea) y ea y .

For later use, notice that by the usual identification using the metric g of Λ2(T⇤M) with End−(TM),

the Lefschetz operator Λij acting on Λ2(T⇤M) (with i 6= j) is identified with 1
2 hJij , ·i acting on

End−(TM).

We finish this section with a toy problem: That when r = 2 and n > 4, the Weyl connection is

closed. This is a standard fact in Hermitian geometry, but the proof below contains, at embryonic

state, the main ideas of the proof of Theorem 4 which for convenience we now recall.

Theorem 4. Suppose a conformal manifold of dimension n carries a rank r ≥ 2 Clifford-Weyl

structure such that (n, r) is different from (2, 2), (4, 2), (4, 3), (4, 4) and (8, 8). Then the associated

Weyl connection is closed. The same conclusion holds if (n, r) = (8, 4), provided that the restriction

of the Clifford morphism ϕ to Λ2E is not injective.

Proof. Proposition 4.2 for r = 2 and n > 4. Section 4.2 for r ≥ 5. Section 4.3 for r = 3, 4.
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Proposition 4.2. Suppose a conformal manifold of dimension n > 4 carries a Clifford-Weyl structure

of rank r = 2. Then the associated Weyl connection is closed.

Proof. With the notation established in this section, we choose as before a metric g in the conformal

class and drop the superfluous subscripts on J12 and Ω12. First, the fact that ϕ is rE ⌦D-parallel

implies

DJ = D(ϕ(ξ1 · ξ2)) = ϕ(rE(ξ1 · ξ2))

and as

rE(ξ1 · ξ2) = (η21 ⌦ ξ2) · ξ2 + ξ1 · (η12 ⌦ ξ1) = −(η12 + η21)1Cl0(E,h) = 0,

we conclude J is parallel with respect to D. Differentiating Ω with respect to the Weyl connection

(DΩ)(·, ·) = (Dg)(J ·, ·) + g(DJ ·, ·)

and using the formulae DJ = 0 and Dg = −2θ ⌦ g gives DΩ = −2θ ⌦ Ω which upon extracting the

totally antisymmetric part yields

dΩ = −2θ ^ Ω.

Differentiating this equation gives

0 = d2 Ω = −2F ^ Ω− 4θ ^ θ ^ Ω

and as Ω is non-degenerate with n > 4, the equation F ^ Ω = 0 forces F = 0.

4.2 Large Rank Clifford-Weyl Structures

For this section suppose that (E, h,ϕ,rE , D) is a rank r Clifford-Weyl structure on a conformal

manifold (Mn, c), with r ≥ 5. The structure of Cl0r forces the dimension of the manifold to be a

multiple of 8. Apart from the generic situation n = 8, r = 8, which will be treated later on, we will

show that the Weyl connection is closed.

As in the previous section, we consider an arbitrary Riemannian metric g in the conformal class

c. Then (E, h) is an even Clifford structure, and we may build Lefschetz-type operators as well as

identify Λ2(T⇤M) with End−(TM).

The connection coefficients give for all i 6= j

rE(ξi · ξj) =
X

k

ηki ⌦ (ξk · ξj) + ηkj ⌦ (ξi · ξk)

=
X

k 6=i,j

ηki ⌦ (ξk · ξj)− ηkj ⌦ (ξk · ξi)

and as the even Clifford structure is parallel,

DJij =
X

k 6=i,j

ηki ⌦ Jkj − ηkj ⌦ Jki.

29



Chapter 4. Clifford Structures on Conformal Manifolds

Differentiating Ωij with respect to the Weyl connection

(DΩij)(·, ·) = (Dg)(Jij ·, ·) + g(DJij ·, ·)

and using the previous formula as well as the fundamental formula Dg = −2θ ⌦ g provides

DΩij = −2θ ⌦ Ωij +
X

k 6=i,j

ηki ⌦ Ωkj − ηkj ⌦ Ωki.

Taking the totally antisymmetric part of this equation (and recalling Ωii := 0) gives

dΩij = −2θ ^ Ωij +
X

k

ηki ^ Ωkj − ηkj ^ Ωki.

Differentiating this equation and replacing appearances of dΩij (as well as dΩkj and dΩki) using

this same equation yields

2F ^ Ωij =
X

k

⇣
2θ ^ ηki ^ Ωkj + d ηki ^ Ωkj − ηki ^ dΩkj

⌘
− {i $ j}

=
X

k

⇣
d ηki ^ Ωkj − ηki ^

X

`

⇣
η`k ^ Ω`j − η`j ^ Ω`k

⌘⌘
− {i $ j}

=
X

k

⇣
d ηki +

X

`

ηk` ^ η`i

⌘
^ Ωkj − {i $ j}

where {i $ j} corresponds to the previously displayed term with indices i and j interchanged. The

previous equation simplifies upon introducing the curvature two-forms ωij of rE into

2F ^ Ωij =
X

k

ωki ^ Ωkj − ωkj ^ Ωki.

Writing this using the Lefschetz-type operators establishes, for all i 6= j,

2 Lij F =
X

k

Lkj ωki − Lki ωkj . (4.2)

Assuming i 6= j, we apply Λij to (4.2). Calculating Λij applied to the left hand side of (4.2) is

aided by the sl(2) structure of the Lefschetz-type operators. Specifically 2[Λij ,Lij ]F = (n− 4)F and

Lij(2Λij F ) identifies, as an endomorphism, with hJij , F iJij . In order to calculate Λij applied to the

right hand side of (4.2), we note that the sum in (4.2) may be taken over k 6= i, j and we write

Λij =
1
2

X

a

Jij(ea) y ea y

(recall that {ei}1in denotes a local orthonormal frame for (TM, g)). This gives, for k 6= i, j,

2 Λij Lkj ωki =
X

a

Jij(ea) y
⇣
Ωkj(ea) ^ ωki +Ωkj ^ ωki(ea)

⌘

The summands in the previous display consist of four terms, the first of which vanishes because of
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(4.1). Developing the remaining three terms gives

2Λij Lkj ωki =
X

a

−Ωkj(ea) ^ (ωki ◦ Jij)(ea) + (Ωkj ◦ Jij)(ea) ^ ωki(ea) + hJij ,ωkiiΩkj .

Testing against two tangent vectors shows

X

a

−Ωkj(ea) ^ (ωki ◦ Jij)(ea) = ωki(Jik·, ·) + ωki(·, Jik·)
X

a

(Ωkj ◦ Jij)(ea) ^ ωki(ea) = ωki(Jik·, ·) + ωki(·, Jik·)

which, viewed as endomorphisms via the metric, are each precisely [Jki,ωki]. Therefore, for i, j, k

distinct,

Λij Lkj ωki = [Jki,ωki] +
1
2 hJij ,ωkiiΩkj

which establishes, for i 6= j,

(n− 4)F + hJij , F iΩij =
X

k 6=i,j

[Jki,ωki] + [Jkj ,ωkj ] +
1
2 hJij ,ωkiiΩkj − 1

2 hJij ,ωkjiΩki. (4.3)

Working with (4.3), we apply 2Λij , 2Λia, 2Λab for a, b different from i, j. For 2Λij applied to

(4.3) we remark that hJij , Jiji = n while Jij is orthogonal to Jkj and Jki for i, j, k distinct hence

(2n− 4)hJij , F i =
X

k 6=i,j

hJij , [Jki,ωki]i+ hJij , [Jkj ,ωkj ]i

=
X

k 6=i,j

h[Jij , Jki],ωkii+ h[Jij , Jkj ],ωkji

establishing

(2n− 4)hJij , F i = 2
X

k 6=i,j

hJkj ,ωkii − hJki,ωkji, (4.4)

For 2Λia applied to (4.3), we remark that hJia, Jkii = −nδak for k 6= i, j and importantly, as r ≥ 5,

the terms involving hJia, Jkji vanish by Lemma 2.6. Therefore

(n− 4)hJia, F i = n
2 hJij ,ωaji+

X

k 6=i,j

h[Jia, Jki],ωkii+ h[Jia, Jkj ],ωkji

where

X

k 6=i,j

h[Jia, Jki],ωkii =
X

k 6=i,j

hJka − Jak,ωkii = 2
X

k 6=j

hJka,ωkii

and since Jia commutes with Jkj for k 6= i, j except when k = a,

X

k 6=i,j

h[Jia, Jkj ],ωkji = h[Jia, Jaj ],ωaji = −2hJij ,ωaji

31



Chapter 4. Clifford Structures on Conformal Manifolds

establishing

(n− 4)hJia, F i = (n2 − 2)hJij ,ωaji+ 2
X

k 6=j

hJka,ωkii, (4.5)

For 2Λab applied to (4.3), we again use the large rank hypothesis r ≥ 5. Indeed, due to this condition,

for k 6= i, j, terms involving hJab, Jkji and hJab, Jkii vanish. So

(n− 4)hJab, F i =
X

k 6=i,j

h[Jab, Jki],ωkii+ h[Jab, Jkj ],ωkji

=
X

k2{a,b}
h[Jab, Jki],ωkii+ h[Jab, Jkj ],ωkji

and developing the four terms from the summation in the preceding display establishes

(n− 4)hJab, F i = 2hJbi,ωaii − 2hJai,ωbii+ 2hJbj ,ωaji − 2hJaj ,ωbji. (4.6)

Armed with the preceding numbered equations, we may establish the orthogonality between Jij
and F . From (4.6), by collecting the first two terms, and collecting the second two terms, we see that

hJbi,ωaii − hJai,ωbii is independent of i so

(n− 4)hJab, F i = 4hJbi,ωaii − 4hJai,ωbii

Summing the previous display over i 6= a, b and changing the notation of indices a, b, i ! i, j, k gives

(r − 2)(n− 4)hJij , F i = 4
X

k 6=i,j

hJkj ,ωkii − hJki,ωkji.

Comparing this equation with (4.4) provides the constraint

(r − 2)(n− 4)hJij , F i = 2(2n− 4)hJij , F i

whence hJij , F i = 0 unless 4(2n − 4) = 2(r − 2)(n − 4). As r ≥ 5 and n is a multiple of 8, the only

obstructive case is the generic case n = 8, r = 8, which was excluded. Therefore

hJij , F i = 0 8 i 6= j.

Updating (4.5) and (4.6) using this orthogonality, we obtain a pair symmetry from (4.6)

hJia,ωjai = hJja,ωiai, 8 i, j, a distinct. (4.7)

which, upon switching the variables j, a in (4.5), provides

(2− n
2 )hJia,ωjai = −2hJaj ,ωaii+ 2

X

k

hJkj ,ωkii,

giving

(2− n
4 )hJia,ωjai =

X

k

hJik,ωjki, 8 i, j, a distinct. (4.8)
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Therefore if n = 8, the sum on the right hand side vanishes, while if n 6= 8, hJia,ωjai is independent
of a 6= i, j hence

(2− n
4 )hJia,ωjai = (r − 2)hJia,ωjai

and so Jia is orthogonal to ωja. It thus turns out that the sum
P

khJik,ωjki vanishes no matter what

the dimension n is.

As a penultimate result, we remark that upon summation over j 6= i (for i fixed), the final two

terms of (4.3) vanish:

X

j 6=i

0
@X

k 6=i,j

hJij ,ωkiiJkj − hJij ,ωkjiJki

1
A = 0. (4.9)

In fact, the previous display naturally splits into two collections of summations, each collection

vanishing independently as we now show. The first collection of summations in (4.9) may be written

as the sum over j, k both different from i and from each-other:

X

j 6=i

0
@X

k 6=i,j

hJij ,ωkiiJkj

1
A =

X

j,k 6=i
j 6=k

hJij ,ωkiiJkj

which thus vanishes as hJij ,ωkii is symmetric in j, k due to (4.7) while Jjk is antisymmetric in j, k.

Considering the second collection of summations in (4.9), we rearrange the summation,

X

j 6=i

0
@X

k 6=i,j

hJij ,ωkjiJki

1
A =

X

j 6=i

0
@X

k 6=i

hJij ,ωkjiJki

1
A

=
X

k 6=i

0
@X

j 6=i

hJij ,ωkji

1
A Jki

=
X

k 6=i,j

0
@X

j

hJij ,ωkji

1
A Jki

and by the remark following (4.8), the preceding display vanishes and provides (4.9).

We may now establish the result. By defining Si :=
P

k[Jki,ωki], (4.3) now reads

(n− 4)F = Si + Sj − 2[Jij ,ωij ] +
1
2

X

k 6=i,j

hJij ,ωkiiJkj − hJij ,ωkjiJki.

Keeping i fixed and summing over j 6= i, making use of (4.9), we obtain

(r − 1)(n− 4)F =
X

j 6=i

(Si + Sj − 2[Jij ,ωij ])

= (r − 4)Si +
X

j

Sj
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which implies (as r 6= 4) that Si is independent of i and proportional to F :

(r − 1)(n− 4)F = 2(r − 2)Si.

Equation (4.3) thus develops to

2(n− 4)

r − 2
F = 4[Jij ,ωij ]−

X

k 6=i,j

hJij ,ωkiiJkj − hJij ,ωkjiJki.

Commuting F with Jij we see that

2(n− 4)

r − 2
FJij = 4(JijωijJij + ωij)−

X

k 6=i,j

hJij ,ωkiiJki + hJij ,ωkjiJkj ,

2(n− 4)

r − 2
JijF = −4(ωij + JijωijJij) +

X

k 6=i,j

hJij ,ωkiiJki + hJij ,ωkjiJkj .

Therefore F anticommutes with Jij for every i 6= j. By taking some k different from both i and j we

get that F commutes with JikJjk = Jij . Hence F = 0, thus proving Theorem 4 when the rank of the

Clifford-Weyl structure is at least 5.

4.3 Low Rank Clifford-Weyl Structures

We consider now the remaining cases from Theorem 4.

That D is closed for r = 3 and n ≥ 8 is a standard result in quaternion Hermitian Weyl geometry

(or locally conformally quaternion Kähler geometry) [Orn01]. We present a proof which can also be

adapted to the case r = 4.

Define Ω := Ω2
12 + Ω2

23 + Ω2
31 to be the fundamental four-form (or Kraines form) of quaternion

Hermitian geometry. By (4.2), which continues to hold for r = 3, we obtain

Ω2
12 ^ F = 1

2Ω12 ^ Ω13 ^ ω32 − 1
2Ω12 ^ Ω23 ^ ω31

and cyclically commuting (1, 2, 3) gives two similar equations. Upon summation, cancellations give

Ω^F = 0 and, as the fundamental four-form is well-known to be non-degenerate (and n 6= 4), F = 0.

(Alternatively, if one follows the derivation of (4.2), one obtains similar equations for dΩij in terms

of the connection coefficients ηij which result in the equation dΩ = −4θ^Ω. Differentiating a second

time gives Ω ^ F = 0.)

Finally, if (E, h,rE ,ϕ) is a rank 4 Clifford-Weyl structure and n ≥ 8, let us consider A 2
End(TM) to be the image under ϕ of the volume element of E. From the properties of ϕ, A is a

symmetric involution, hence the tangent bundle splits into a direct sum TM = T+ ⊕ T− of the ±1

eigenspaces of A. If either T+ or T− are of dimension zero, then the rank 4 even Clifford structure

is effectively a rank 3 even Clifford structure and the result follows from the previous paragraph. We

may thus assume the decomposition of TM is non-trivial. In particular ϕ is injective upon restriction

to Λ2E, so we only need to consider the case n ≥ 12.

We construct quaternionic structures on T±

J±
12 := ⌥ 1

2 (J14 ± J23), J±
31 := ⌥ 1

2 (J13 ⌥ J24), J±
23 := ⌥ 1

2 (J12 ± J34)
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which vanish upon restriction to T⌥. We may thus define two four-forms Ω± 2 Λ4(T±)⇤ as in the

case of quaternion Hermitian geometry and set Ω = Ω+ + Ω−. We decompose the exterior algebra

Λ⇤M = ⊕(Λp(T+)⇤ ⊕Λq(T−)⇤) and say that elements of Λp(T+)⇤ ⊕Λq(T−)⇤ are of type (p, q). The

decomposition of Λ2M enables us to write F = F+ + Fm + F− where F+, Fm, F− are respectively

of type (2, 0), (1, 1), (0, 2). Using this we calculate Ω ^ F (whose 6 pieces are of distinct type).

Meanwhile, we remark that

Ω = 1
2

X

i<j

Ω2
ij =

1
4

X

i,j

Ω2
ij

and via (4.2), which continues to hold for r = 4,

Ω2
ij ^ F = 1

2

X

k

Ωij ^ Ωik ^ ωkj − Ωij ^ Ωjk ^ ωki

Summing over i, j the second term in the previous sum,
P

i,j,k Ωij ^Ωjk ^ωki may be written, under

a permutation i, j, k ! k, i, j, as the first term
P

i,j,k Ωij ^ Ωik ^ ωkj hence

Ω ^ F = 0.

Since they have different types, each of the six terms in the expansion of Ω ^ F also individually

vanish. As M is at least 12-dimensional with both subbundles T± being non-trivial, we deduce from

Ω− ^ F+ = 0 and Ω+ ^ F− = 0 that F± = 0. And as one of the subbundles T± has rank larger than

4 (say T+) then Fm = 0 (from Ω+ ^ Fm = 0).

This finishes the proof of Theorem 4 when the rank of the Clifford-Weyl structure is 3 or 4.

4.4 Generic Cases

In this final section we prove Theorem 5 and, in the process, show examples of Clifford-Weyl structures

with non-closed associated Weyl covariant derivatives.

Theorem 5. (i) Let D be a Weyl structure on an oriented conformal manifold (M, c) of dimension

2, 4 or 8. Then (M, c) carries a Clifford-Weyl structure of rank r = 2 for n = 2, r = 3 or

r = 4 for n = 4 and r = 8 for n = 8, whose associated Weyl structure is D.

(ii) Let D be a Weyl structure on a conformal manifold (Mn, c). Then there exists a Clifford-Weyl

structure of rank 2 on (M, c) with associated Weyl structure D if and only if D preserves a

complex structure compatible with c. If n = 4, every complex structure J compatible with c is

preserved by a unique Weyl structure DJ , which is closed if and only if J is locally conformally

Kähler.

(iii) Let D be a Weyl structure on a conformal manifold (M8, c). Then there exists a Clifford-

Weyl structure of rank 4 whose Clifford morphism ϕ : Cl0(E, h) ! End(TM) is injective upon

restriction to Λ2E, if and only if D is the adapted Weyl structure of a conformal product

structure on (M, c) with 4-dimensional factors (cf. [BM11]).

Proof. (i) If M has dimension 2, we define (E, h) to be the trivial rank 2 Euclidean vector bundle with

trivial flat connection rE , and ϕ : Λ2E ! End−(TM) by ϕ(ξ1 ^ ξ2) := J , where ξ1, ξ2 is an oriented

orthonormal frame of E and J is the rotation in TM by π/2 in the positive direction determined by

c. Since DJ = 0, (E, h,ϕ,rE , D) is a rank 2 Clifford-Weyl structure.
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If M has dimension 4, we define E := Λ+M ⌦L2 (the bundle of self-dual two-forms of conformal

weight 0), rE to be the covariant derivative induced by D on E and h to be the canonical scalar

product induced by c on E. Since Λ2M ⌦ L2 is canonically isomorphic to End−(TM), E is in

fact a rank 3 sub-bundle of the bundle of skew-symmetric endomorphisms of M . Moreover, since

E is oriented, the metric h provides an identification of Λ2E with E, and thus a map ϕ : Λ2E !
End−(TM). It is straightforward to check that this map extends to an algebra morphism from

Cl0(E, h) to End(TM) which is tautologically parallel with respect to rE ⌦D, thus defining a rank

3 Clifford-Weyl structure.

Moreover, every rank 3 Clifford-Weyl structure (E, h,rE ,ϕ, D) determines in a tautological way

a rank 4 Clifford-Weyl structure (Ẽ, h̃,rẼ , ϕ̃, D) where Ẽ = E ⊕ R with induced metric h̃ and

connection rẼ , and ϕ̃ is defined on Λ2Ẽ ' Λ2E ⊕E by ϕ̃ = ϕ on Λ2E and ϕ̃ = ϕ ◦ ⇤ on E, where ⇤
denotes the Hodge isomorphism ⇤ : E ! Λ2E.

If M has dimension 8, we define E = Σ+
0 M (the bundle of real half-spinors of conformal weight 0,

cf. [BHM+15]) and rE and h to be the covariant derivative and the scalar product induced on E by

D and c. Of course, if M is not spin, E is only locally defined, but Λ2E is always globally defined.

We consider the map ϕ : Λ2E ! End−(TM) defined by

ϕ(ψ ^ φ) := X 7! −
8X

i=1

h(`−2ei ·X ·  ,φ) ei − h( ,φ)X,

where ` is a local section of L and {ei}1in is a local frame of TM satisfying c(ei, ej) = `2δij . The

map ' is tautologically parallel with respect to rE⌦D. Moreover, ' extends to an algebra morphism

from Cl0(E, h) to End(TM). Indeed, in order to check the universality property for the even Clifford

algebra [MS11, Lemma A.1], consider local sections  , φ and ⇠ of E such that  is orthogonal to φ

and ⇠ and h( , ) = 1. Then {`−1ei · }1in is a local orthonormal basis of the zero-weight half-spin

bundle Σ−
0 M (whose metric is also denoted by h) and thus

['( ^ φ) ◦ '( ^ ⇠)](X) = −
8X

i=1

h(`−2ei ·X ·  , ⇠)'( ^ φ)(ei)

=

8X

i,j=1

h(`−2ei ·X ·  , ⇠)h(`−2ej · ei ·  ,φ) ej

=

8X

i,j=1

h(`−2X · ei ·  + 2`−2c(ei, X) , ⇠)h(`−2ei ·  , ej · φ) ej

= −
8X

j=1

h(`−2X · ⇠, ej · φ) ej

= −'(⇠ ^ φ)(X)− h(φ, ⇠)X

= '(φ ^ ⇠)(X)− h(φ, ⇠)X.

This shows that (E, h,',rE , D) is a rank 8 Clifford-Weyl structure on M .

(ii) With any Clifford-Weyl structure of rank 2 on M one can associate the image, J , of the

volume form of E through the Clifford morphism '. Clearly J is an almost complex structure on M

compatible with c and D-parallel. On the other hand, every almost complex structure preserved by

a torsion-free connection is integrable.

Conversely, if D is a Weyl structure on (M, c) and J is a D-parallel Hermitian structure, we define
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as before a rank 2 Clifford-Weyl structure on M by taking (E, h) to be the trivial rank 2 Euclidean

vector bundle with trivial flat connection rE , and ϕ : Λ2E ! End−(TM) defined by the fact that it

maps the volume form of E onto J .

For the second point, recall that on 4-dimensional conformal manifolds, every complex structure

J compatible with the conformal structure is preserved by a unique Weyl covariant derivative D (see

e.g. the proof of [BM11, Lemma 5.7]) which is closed if and only if (J, c) is locally conformally Kähler.

(iii) If (E, h,ϕ,rE , D) is a Clifford-Weyl structure of rank 4 with ϕ injective on Λ2E on an

8-dimensional conformal manifold (M, c), then the image of the volume form of E through ϕ is a D-

parallel involution of TM whose eigenbundles are 4-dimensional D-parallel distributions. By [BM11,

Theorem 4.3], (M, c) has a conformal product structure defined by these two distributions.

Conversely, every conformal product structure on (M, c) with 4-dimensional distributions T±

defines a unique Weyl connexion D (called the adapted Weyl structure in [BM11, Definition 4.4])

such that the splitting TM = T+ ⊕ T− is D-parallel. We obtain in this way a structure group

reduction from CO(8) to G := CO(8)\ (CO(4)⇥CO(4)), that is, a G-principal bundle P over M and

a connection induced by D on P . Since CO(4) = R
⇤ ⇥ (Spin(3)⇥Z/2Z Spin(3)), the projections from

R
⇤ ⇥ (Spin(3)⇥ Spin(3)) to the second and third factors respectively define group morphisms il and

ir from CO(4) to SO(3). Let E denote the (locally defined) rank 4 Euclidean vector bundle over M

associated with P via the group morphism il ⇥ ir from G to SO(3) ⇥ SO(3) = PSO(4), and let rE

denote the induced covariant derivative. By construction, Λ2E is globally defined, and isomorphic

to the weightless bundle (Λ+(T+)⌦ L−2)⊕ (Λ−(T−)⌦ L−2). The composition of this isomorphism

with the canonical inclusion in Λ+(TM) ⌦ L−2 = End−(TM) yields as before a Clifford morphism,

which is rE ⌦D-parallel by naturality of the construction.

Examples of conformal products with non-closed adapted Weyl structures can be easily con-

structed. Take (M1, g1) and (M2, g2) two 4-dimensional Riemannian manifolds and let M = M1⇥M2

with conformal class c = [efg1+g2] where f is any smooth map on M . Then the adapted Weyl struc-

ture of this conformal product structure is closed if and only if there exist functions fi on Mi such

that f = π⇤
1(f1) + π⇤

2(f2) where πi : M ! Mi are the canonical projections (see [BM11, Section 6.1]

for details).
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5. Asymptotically Hyperbolic Manifolds

This chapter is structured as follows. Section 5.1 recalls the model geometry of hyperbolic space as a

submanifold in Minkowski space. It is worth mentioning as it provides a clear geometric motivation

for the construction of the ambient space as well as the Minkowski and Euclidean scales. Section 5.2

introduces properly asymptotically hyperbolic spaces. Finally, Section 5.3 describes the construction

of the two (families of) differential operators Qλ and Pλ when considering functions. This section

does not make reference to any ambient operators however it is useful to have the primary calculations

of [Vas13b] recorded in a notation consistent with this thesis.

5.1 Model Geometry

Let R1,n+1 be Minkowski space with the Lorentzian metric

η := −dx2
0 +

n+1X

i=1

dx2
i

and set Me to be Minkowski space minus the closure of the backward light cone. The metric gives

the Minkowski distance function, denoted η2, on R
1,n+1 from the origin:

η2(x) := −x2
0 +

n+1X

i=1

x2
i .

Hyperbolic space X = H
n+1 is then identified with the (connected) hypersurface

X :=
{
x 2 R

1,n+1
∣∣ η2(x) = −1, x0 > 0

 

and is given the metric g induced by the restriction of η. The boundary at infinity of hyperbolic

space, i.e. the sphere Y = S
n, is identified with the (connected) submanifold

Y :=
{
x 2 R

1,n+1
∣∣ η2(x) = 0, x0 = 1

 

which, as an aside, inherits the standard metric, denoted h, by restriction of η. For completeness we

introduce de Sitter space dSn+1 as the hypersurface

dSn+1 :=
{
x 2 R

1,n+1
∣∣ η2(x) = 1

 
.

We define the forward light cone

M :=
{
x 2 R

1,n+1
∣∣ η2(x) < 0, x0 > 0
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and note the decomposition M = R
+
s ⇥X via the identification

R
+
s ⇥X 3 (s, x) 7! s · x 2 X.

In these coordinates, the metric η restricted to M takes the form

η = −ds⌦ ds+ s2g

and we refer to s as the Minkowski scale. We define Xe to be the subset of the (n+1)-sphere contained

in Me

Xe :=

(
x 2 R

1,n+1

∣∣∣∣∣

n+1X

i=0

x2
i = 1, x0 > −1p

2

)

and note that the ambient space Me is diffeomorphic to R
+
t ⇥Xe via the identification

R
+
t ⇥Xe 3 (t, x) 7! t · x 2 Me.

We refer to t as the Euclidean scale. The dilations induced by the Euclidean scale allow the following

identification

Xe ' X t Y t dSn+1.

5.2 Asymptotically Hyperbolic Manifolds

We now properly introduce the geometric structure of even asymptotically hyperbolic spaces. Let

(X, g) be a Riemannian manifold of dimension n+1 which is even asymptotically hyperbolic [Gui05,

Definition 1.2] with boundary at infinity denoted Y . We recall the definition of evenness.

Definition 5.1. Let (X, g) be an asymptotically hyperbolic manifold. We say that g is even if there

exists a boundary defining function ρ and a family of tensors (h2i)i2N0 on Y = ∂X such, for all N ,

one has the following decomposition of g near Y

φ⇤(ρ2g) = dr2 +

NX

i=0

h2ir
2i +O(r2N+2)

where φ is the diffeomorphism induced by the flow φr of the gradient grad⇢2g(ρ) :

φ :

(
[0, 1)⇥ Y ! φ([0, 1)⇥ Y ) ⇢ X

(r, y) 7! φr(y)

We define X2 := (X t X)/Y to be the topological double of X. (For a slicker definition, we

stray ever so slightly from the model geometry.) From the diffeomorphism φ we initially construct

a C1 atlas on X2 by noting that Y ⇢ X2 is contained in an open set U2 := (U− t U+)/Y with
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5.2. Asymptotically Hyperbolic Manifolds

U± := φ([0, 1)⇥ Y ) and we declare this set to be C1 diffeomorphic to (−1, 1)⇥ Y via

(−1, 1)⇥ Y ' U2

(t, y) 7!
(

φ−t(y) 2 U−, if t  0

φ+t(y) 2 U+, if t ≥ 0

Charts on the interior of X in X complete the atlas on X2.

We want to consider the boundary defining function ρ as a function from X2 to [−1, 1] such that

X may be identified with {ρ > 0}. Using the previous chart for U2 ' (−1, 1)⇥ Y we initially set

ρ :

(
(−1, 1)⇥ Y ! (−1, 1)

(r, y) 7! r

and extend ρ to a continuous function on X2 by demanding that ρ be constant on X2\U2. In order to

ensure smoothness at ∂U2 we deform ρ smoothly on the two subsets (−1,−1+ε)⇥Y and (1−ε, 1)⇥Y

of U2. This achieves our goal. We now define the function µ on X2 by declaring

µ : X2 ! [−1, 1] :

(
µ = −ρ2, if ρ  0

µ = ρ2 if ρ ≥ 0

Remark 5.2. Although we have performed a deformation of ρ near ∂U2 we will continue to think of

ρ and µ as coordinates for the first factor of U2 = (−1, 1) ⇥ Y (if we wanted to be correct, in what

follows we would replace (−1, 1) with (−1+ ε, 1− ε) but this is cumbersome and we prefer to free up

the variable ε). Of course, only the coordinates (µ, y) provide a smooth chart for X2 near Y .

We now weaken the atlas on X2 near Y . By the previous remark, we may think of µ as coordinates

for the first factor of U2 and we thus demand that the C1 atlas is with respect to this coordinate

rather than ρ (as was the case for the initial atlas). It is now the case that on X2, only µ (and not

ρ) is a smooth function.

Smooth functions

We define the set C1
even(X) to be the subset of functions in C1(X) which are extensible to C1(X2)

and whose extension is invariant with respect to the natural involution on X2. (For example, the

restriction of µ to X. However such an invariant extension would of course not give the function µ

previously constructed due to a sign discrepency.) We remark that Ċ1(X), the subset of functions

in C1(X) which vanish to all orders at Y , injects naturally into C1(X2) and may be identified with

the subset of C1(X2) whose elements vanish on {ρ < 0}.
Such constructions may also readily be extended to the setting of vector bundles above X by

using a local basis near Y of such a vector bundle which smoothly extends across Y .

Definition 5.3. We denote by Xe the following extension of X

Xe := {µ > −1} ⇢ X2,

by S the hypersurface {µ = − 1
2} ⇢ Xe, and by Xcs the open submanifold {µ > − 1

2} ⇢ Xe such that

∂Xcs = S.
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Chapter 5. Asymptotically Hyperbolic Manifolds

We construct two product manifolds M = R
+
s ⇥X and Me = R

+
t ⇥Xe. We supply M with the

Lorentzian cone metric

η := −ds⌦ ds+ s2g

and explain how this structure may be smoothly extended to Me.

Using the even neighbourhod at infinity U := (0, 1)µ⇥Y we remark that, on R
+
s ⇥U , the Lorentzian

metric takes the form

η = −ds⌦ ds+ s2
✓
dµ⌦ dµ

4µ2
+

h

µ

◆

where h has a smooth Taylor expansion about µ = 0 by the evenness hypothesis. Upon the change

of variables t = s/ρ with t 2 R
+, the metric, on R

+
t ⇥ U takes the form

η = −µdt⌦ dt− 1
2 t(dµ⌦ dt+ dt⌦ dµ) + t2h

or, in a slightly more attractive convention,

t−2η = −µ
2 (

dt
t )

2 − 1
2
dt
t · dµ+ h (5.1)

From this display we see that, by extending h to a family of Riemannian metrics on Y parametrised

smoothly by µ 2 (−1, 1), we can extend η smoothly onto the chart R
+
t ⇥ U2 ⇢ Me. We do this,

thus furnishing Me with a Lorentzian metric. As in the model geometry we refer to s (which is only

defined on M) as the Minkowski scale, and to t (which is defined on Me) as the Euclidean scale.

From (5.1), the measure associated with t−2η on U2 is dt
t dx where dx = 1

2dµ dvolh. On U , we

have dx = ρn+2dvolg, hence dx extends smoothly to a measure on Xe, also denoted dx, and which

agrees with dvolg on X\U .

A comment on notation in the literature

The idea of considering an ambient space is present in several works. As such, there are several

differing notations scattered throughout the literature. We note below two such notations (up to

constant factors).

The ambient metric approach of Fefferman and Graham to conformal geometry has notations

established in [FG12]. The microlocal approach to resonances of Vasy has notations established in

[Vas17]. The in vogue style of using ρ to denote a boundary defining function has lead to the following

notational compromise for this thesis:

Thesis [FG12] [Vas17]

Conformal boundary defining function ρ r x

Projective boundary defining function µ ρ µ

Lorentzian scale s s τ

Euclidean scale t t ρ

Riemannian metric g g g

Ambient metric η eg η
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5.3 Vasy’s Construction for Functions

With the notation established from the previous section, denote by ∆ the positive Laplacian acting

on functions on the asymptotically even hyperbolic manifold (X, g). Define the operator

Qλ := ∆− n2

4 + λ2 2 Diff2(X)

for λ 2 C. We restrict our attention to the (non-even) collar neighbourhood near infinity (0, 1)⇢ ⇥
Y . On this coordinate patch, with local coordinates {yi}1in for Y , we introduce the endomor-

phism ρ−2B 2 C1
even(X; End(T⇤Y )) by setting Bdyi :=

P
jk

1
2 (h

−1)ij(ρ∂⇢hjk)dy
k so that trh B =P

ij
1
2 (h

−1)ij(ρ∂⇢hij) 2 ρ2C1
even(X). On this neighbourhood, the operator Qλ takes the following

form

Qλ = −(ρ∂⇢)
2 + (n− trh B)ρ∂⇢ + ρ2∆h − n2

4 + λ2

with ∆h the Laplacian of (Y, h) (dependent on the parameter ρ). Conjugating this operator by ρλ+
n
2

provides

ρ−λ−n
2 Qλ ρ

λ+n
2 = −(ρ∂⇢ + λ+ n

2 )
2 + (n− trh B)(ρ∂⇢ + λ+ n

2 ) + ρ2∆h − n2

4 + λ2

= −(ρ∂⇢)
2 − (trh B + 2λ)ρ∂⇢ + ρ2∆h − λ trh B.

Introducing the projective boundary defining function µ = ρ2 whence 2µ∂µ = ρ∂⇢, this conjugated

operator takes the form

µ−λ
2 −n

4 Qλ µ
λ
2 +n

4 = −4(µ∂µ)
2 − 2(trh B + 2λ)µ∂µ + µ∆h − λ trh B

and it is from this display that we may divide out (from the left) a factor of µ providing the operator

Pλ. It takes the form

Pλ := µ−λ
2 −n

4 −1 Qλ µ
λ
2 +n

4 = −4µ∂2
µ − 4λ∂µ +∆h +Aλ

where the final term is explicitly

Aλ := −4∂µ − 2 trh B∂µ − λµ−1 trh B

and this final term is (evenly) smooth on X because trh B 2 µC1
even(X).

The even structure of Pλ allows it to be extended to an operator on Xe using the extension of

the metric h described in the previous section. The operator is no longer everywhere an elliptic

operator. Indeed, on the extension Xe\X, it becomes a hyperbolic operator. Of course, this is only

the beginning of a long story; the necessary PDE analysis for this operator is performed in [Vas13b]

while the extension of such analysis pertinent to the setting of this thesis is performed in Section 6.5.
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6. Quantum Resonances for Symmetric

Tensors

The chapter is structured as follows. Section 6.1 recalls the aspects of symmetric tensors as detailed

in Appendix A and establishes several relationships between symmetric tensors when working relative

to the Lorentzian and Euclidean scales. Section 6.2 recalls standard notions from microlocal analysis

and explicits several notions from the b-calculus framework adapted to vector bundles. Section 6.3

contains the bulk of the calculations of this chapter, relating Q and Q with the Lichnerowicz Lapla-

cian. Sections 6.4 and 6.5 introduce the operators P and P and provide the desired meromorphic

inverse. Section 6.6 establishes the four theorems. Section 6.7 details the particular case of symmetric

cotensors of rank m = 2. It is useful to gain insight into this problem via this low rank setting, and it

is hoped that the presentation of this case will aid the reader particularly during Sections 6.3 and 6.6.

Finally, Section 6.8 announces the high energy estimates one would obtain if the microlocal analysis

performed in Section 6.5 was performed using semiclassical notions.

6.1 Symmetric Tensors

This section recalls the necessary algebraic aspects of symmetric tensors as detailed in Appendix A

and considers also a Lorentzian analogue.

A single fibre

Let E be a vector space of dimension n + 1 equipped with an inner product g and let {ei}0in be

an orthonormal basis for E. In this chapter we will distinguish between vectors and covectors; let

{ei}0in be the corresponding duall basis for E⇤. We denote by SymkE⇤ the k-fold symmetric tensor

product of E⇤. The symmetric product · provides a map from SymkE⇤ ⇥ Symk0

E⇤ to Symk+k0

E⇤.

The inner product takes the form g = 1
2

Pn
i=0 e

i · ei. The inner product induces an inner product

on SymkE⇤ which in this chapter will be denoted h·, ·i. For u 2 E⇤, the metric adjoint of the linear

map u · : SymkE⇤ ! Symk+1E⇤ is the contraction u y : Symk+1E⇤ ! SymkE⇤. Contraction and

multiplication with the metric g define two additional linear maps Λ : SymkE⇤ ! Symk−2E⇤ and

L : SymkE⇤ ! Symk+2E⇤. which are adjoint to each other. They are referred to as Lefschetz-type

operators. Recall the notation A
k for sequences (whose terms are integers between 0 and n) of length

k. We set eK := ek̃1 · . . . · ek̃k 2 ⌦kE⇤ for K = k̃1 . . . k̃k 2 A
k.

Let F be the vector space R⇥E equipped with the standard Lorentzian inner product −f ⌦f +g

where f is the canonical vector in R
⇤. The previous constructions have obvious counterparts on F

which will not be detailed. (For this subsection, we write h·, ·iF for the Lorentzian inner product on
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Chapter 6. Quantum Resonances for Symmetric Tensors

SymmF ⇤.) The decomposition of F provides a decomposition of SymmF ⇤:

SymmF ⇤ =

mM

k=0

ak f
m−k · SymkE⇤, ak := 1p

(m−k)!

and we write

u =

mX

k=0

ak f
m−k ·u(k), u 2 SymmF ⇤, u(k) 2 SymkE⇤.

The choice of the normalising constant ak is chosen so that hu, viF =
Pm

k=0(−1)m−khu(k), v(k)i. There
is a simple relationship between the terms u(k) in this decomposition of u when u is trace-free.

Lemma 6.1. Let ΛF and Λ denote the Lefschetz-type trace operators obtained from the inner products

on F and E respectively. For u 2 SymmF ⇤ in the kernel of ΛF , we have

Λu(k) = −bk−2bk−1u
(k−2)

where u =
Pm

k=0 akf
m−k ·u(k) for u(k) 2 SymkE⇤ and constants bk :=

p
m− k.

Proof. Beginning with ΛF fm−k = (m− k)(m− k − 1)fm−k−2 we obtain

ΛF

⇣
ak f

m−k ·u(k)
⌘
= ak+2

p
(m− k)(m− k − 1)fm−k−2 ·u(k) + ak f

m−k ·Λu(k).

Therefore, as u 2 kerΛF , equating powers of f in the resulting formula for

ΛF

 
mX

k=0

ak f
m−k ·u(k)

!

gives

akf
m−k Λu(k) + ak

p
(m− k + 2)(m− k + 1)fm−ku(k−2) = 0.

Vector bundles

These constructions are naturally extended to vector bundles above manifolds. We include this

subsection in order to announce our notations and conventions. Consider M and X (with similar

constructions for Me and Xe). We denote

F := SymmT⇤M, E(k) := SymkT⇤X, E := ⊕m
k=0 E(k).

If we want to make precise that F consists of rank m symmetric cotensors, we will write F (m). The

Minkowski scale gives the decomposition M = R
+
s ⇥X and we denote by π the projection onto the

second factor π : M ! X. (Remark that onM this gives the same map as the projection π : Me ! Xe

using the Euclidean scale Me = R
+
t ⇥Xe.) This enables E(k) to be pulled back to a bundle over M

which we will also denote by E(k).

Given u 2 C1(M ;F), we decompose u in the following way

u =

mX

k=0

ak (
ds
s )

m−k ·u(k), u(k) 2 C1(M ; E(k)) (6.1)
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where ak is the previously introduced constant ((m− k)!)−1/2. We say that such a decomposition is

relative to the Minkowski scale.

For a fixed value of s, say s0, there is an identification of the corresponding subset of M with X

via the map π|s=s0 . We will thus reuse π for the following map

πs=s0 :

(
C1(M ;F) ! C1(X; E)

u =
Pm

k=0 ak (
ds
s )

m−k ·u(k) 7!
Pm

k=0 π|s=s0u
(k)

and in order to map from C1(X; E) to C1(M ;F), taking into account the Minkowski scale, we

introduce

π⇤
s :

(
C1(X; E) ! C1(M ;F)

u =
Pm

k=0 u
(k) 7! Pm

k=0 ak (
ds
s )

m−k ·π⇤u(k)

On M we have two useful metrics. First, s−2η which takes the model form of the metric on F

introduced in the previous subsection

s−2η = − 1
2 (

ds
s )

2 + g.

Second, we have the metric η which is geometrically advantageous as it gives the Lorentzian cone

metric on M . Notationally we will distinguish the two constructions by decorating the Lefschetz-type

operators with a subscript of the particular metric used. A similar decoration will be used for the

two inner products on F . There are two useful relationships. First,

Λs−2⌘u = s4 Λ⌘ u, u 2 F (6.2)

and second,

hu, vis−2⌘ = s2mhu, vi⌘, u, v 2 F (6.3)

On X, when the metric g is used, no such decoration will be added. We can however make use of the

metric s−2η by appealing to π⇤
s . We introduce h·, ·is on C1(X; E) by declaring

hu, vis := hπ⇤
su,π

⇤
svis−2⌘, u, v 2 C1(X; E).

Note that such a definition does not depend on the value of s 2 R
+ at which point the inner product

on F is applied. With this inner product given, and the measure dvolg previously introduced, we

obtain the notion of L2 sections and define

L2
s(X; E) := L2(X, dvolg; E , h·, ·is)

whose inner product is provided by

(u, v)s :=

Z

X

hu, vis dvolg, u, v 2 C1
c (X; E).

On Xe, we define L2 sections with respect to the measure dx,

L2
t (Xe; E) := L2(Xe, dx; E , h·, ·it).
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On X, the necessary correspondences between the constructions using the Lorentzian and Euclidean

scales are given in the following lemma.

Lemma 6.2. There exists J 2 C1(X; End E) such that

π⇤
su = π⇤

t Ju, u 2 C1(X; E)

whose entries are homogeneous polynomials of degree at most m in d⇢
⇢ , upper triangular in the sense

that J(E(k0)) ⇢ ⊕m
k=k0

E(k), and whose diagonal entries are the identity. Moreover,

hu, vis = ρ2mhJu, Jvit, u, v 2 C1(X; E).

Finally,

L2
s(X; E) = ρ

n
2 −m+1J−1L2

t (X; E).

Proof. As t = s/ρ, the differentials are related by

ds
s = dt

t + d⇢
⇢

hence by the binomial expansion

ak(
ds
s )

m−k ·π⇤u(k) =
m−kX

j=0

ak+j(
dt
t )

m−k−j ·
(
m−k

j

)
ak

ak+j
(d⇢⇢ )j ·π⇤u(k).

where u(k) 2 C1(X; E(k)). This defines the endomorphism J by declaring

Ju(k) =

m−kX

j=0

(
m−k

j

)
ak

ak+j
(d⇢⇢ )j ·u(k).

The second claim is direct from s−2η = ρ−2t−2η, hence on F , where the inner product requires m

applications of the inverse metric, h·, ·is−2⌘ = ρ2mh·, ·it−2⌘. The final claim follows from the second

claim and the previously remarked correspondence, dx = ρn+2dvolg.

Smooth tensors which are even

We explicit the notion of even sections C1
even(X; E(m)). Such sections may be characterised as smooth

sections of SymmT⇤Xe (over Xe) restricted to tensors over X (using the smooth structure defined by

µ.) Near the boundary at infinity, we recall the sets U = (0, 1)µ⇥Y ⇢ X and U2 = (−1, 1)µ⇥Y ⇢ Xe.

A smooth base for T⇤Xe on U2 is given by {dµ, dyi}1in where {yi}1in are local coordinates on

Y . Now dµ = 2ρdρ so a given u 2 C1
even(X; E(m)) may be written, near ∂X, as

u =

mX

k=0

X

K2A k

uk,K(ρdρ)m−k · dyK , uk,K 2 C1
even(U).

6.2 b-Calculus and Microlocal Analysis

This section introduces the necessary b-calculus formalism on symmetric cotensors. The standard

reference is [Mel93], in particular we make much use of Chapters 2 and 5. We also recall some now
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standard ideas from microlocal analysis.

b-calculus

For convenience we will only work on M = R
+
s ⇥X rather than on both M and Me. We define M

to be the closure of M seen as a submanifold of Rs ⇥X with its usual topology. Then

M = M tX

where X is naturally identified with the boundary ∂M = {s = 0}‘.
We let {ei}0in denote a (local) holonomic frame for TX and {ei}0in its dual frame for T⇤X.

The Lie algebra of b-vector fields consists of smooth vector fields on M tangent to the boundary

X. It is thus generated by {s∂s, ei}. This provides the smooth vector bundle bTM . The dual

bundle, bT⇤M , has basis {ds
s , e

i}. This dual bundle is used to construct the b-symmetric bundle of

m-cotensors, denoted bF . On the interior of M , this bundle is canonically isomorphic to F .

An operator Q belongs to Diffp
b(M ; End bF) if, relative to a frame generated by {ds

s , e
i} the

operator Q may be written as a matrix

Q = [Qi,j ]

whose coefficients Qi,j belong to Diffp
b(M). That is, if Qi,j may be written

Qi,j =
X

k,|↵|p

qi,j,k,↵(s∂s)
k∂↵

x

for smooth functions qi,j,k,↵ 2 C1(M).

Operators in Diffp
b(M ; End bF) provide indicial families of operators belonging to Diffp(X; End E).

In order to define this mapping we recall the operator πs=s0 defined in the previous section for s0 2 R
+.

This family of maps clearly has an extension to M giving

πs=s0 : C1(M ; bF) ! C1(X; E)

where s0 2 [0,1). The indicial family mapping (with respect to the Minkowski scale s)

Is : Diffp
b(M ; End bF) ! O(C; Diffp(X; End E)).

is defined by

Is(Q,λ) (u) = πs=0

(
sλ Q s−λ (π⇤

su)
)
, u 2 C1(X; E).

When the scale s is understood, we will use the convention of removing the bold font from such an

operator and write

Q = Is(Q, ·), Qλ = Is(Q,λ).

Remark 6.3. This definition effectively does three things. First, if Q is written as a matrix, relative

to the decomposition established by the Minkowski scale (6.1), then Q will take the same form but

without the appearances of ak(
ds
s )

m−k ·. Next, the functions qi,j,k,↵ are frozen to their values at

s = 0. (These two results are due to the appearance of πs=0.) Finally, due to the conjugation by sλ,
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all appearances of s∂s in Q are replaced by the complex parameter −λ.

Remark 6.4. The choice to conjugate by s−λ is to ensure that the subsequent operators (in particular

P) acting on L2 sections, have physical domains corresponding to Reλ 0 1. If one is convinced that

the convention ought to be conjugation by sλ rather than s−λ one can kill two birds with one stone:

Considering the model geometry, which motivates the viewpoint of hyperbolic space “at infinity”

inside the forward light cone of compactified Minkowski space, it would be somewhat more natural

to introduce the coordinate s̃ = s−1 on M , then construct the closure of M as a submanifold of

Rs̃ ⇥X. The indicial family would then by constructed via a conjugation of s̃λ and appearances of

s̃∂s̃ = −s∂s would be replaced by λ. For this chapter, the aesthetics of such a choice are outweighed

by the superfluous introduction of two dual variables, one for each of s and t.

The b-operators we consider are somewhat simpler than the previous definition in that the coef-

ficients qi,j,k,↵ do not depend on s (in the correct basis).

Definition 6.5. A b-operator Q 2 Diffp
b(M ; bF) is b-trivial if, for all s0 2 R

+,

Is(Q,λ) (u) = πs=s0

(
sλ Q s−λ (π⇤

su)
)
, u 2 C1(X; E).

One advantage of this property is that self-adjointness of Q easily implies self-adjointness of Qλ

for λ 2 iR.

Lemma 6.6. Suppose Q is b-trivial and formally self-adjoint relative to the inner product

(u, v)s−2⌘ =

Z

M

hu, vis−2⌘
ds
s dvolg, u, v 2 C1

c (M ;F).

Then, the indicial family Q is, upon restriction to λ 2 iR, formally self-adjoint relative to the inner

product

(u, v)s =

Z

X

hu, vis dvolg, u, v 2 C1
c (X; E).

Moreover, for all λ, Q⇤
λ = Q−λ̄.

Proof. We prove only the first claim. That Q⇤
λ = Q−λ̄ for all λ follows by the same reasoning making

the obvious changes in the second display provided below. Let ψ be a smooth function on R
+
s with

compact support (away from s = 0) and with unit mass
R
R+ ψ ds

s = 1. Let u, v 2 C1
c (X; E). The

b-triviality provides

(Qλ u, v)s =

Z

R+

(Qλ u, v)s ψ
ds
s

= (sλ Q s−λπ⇤
su,ψπ

⇤
sv)s−2⌘

For λ 2 iR this develops as

(Qλ u, v)s = (π⇤
su, s

λ Q s−λψπ⇤
sv)s−2⌘

= (π⇤
su,ψs

λ Q s−λπ⇤
sv)s−2⌘ + (π⇤

su, [s
λ Q s−λ,ψ]π⇤

sv)s−2⌘

= (u,Qλ v)s + (π⇤
su, [s

λ Q s−λ,ψ]π⇤
sv)s−2⌘
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where the last line has again used the b-triviality. Thus we require

(π⇤
su, [s

λ Q s−λ,ψ]π⇤
sv)s−2⌘ = 0 (6.4)

Consider Q as a matrix Q = [Qi,j ] with respect to a basis in which

Qi,j =
X

k,|↵|p

qi,j,k,↵(s∂s)
k∂↵

x

for qi,j,k,↵ 2 C1(X). The key is to note that we may write

[sλ Qi,j s
−λ,ψ] =

X

k,|↵|p−1

κi,j,k,↵(s∂s)
k∂↵

x (6.5)

for smooth functions (which depend on λ) κi,j,k,↵ 2 C1(X) such that every term in each κi,j,k,↵ is

smoothly divisible by some non-zero integer s∂s-derivative of ψ. Factoring out these appearances and

integrating over R
+ in (6.4) causes, by the fundamental theorem of calculus, the problematic term

to vanish. The factorisation claim involving the functions κi,j,k,↵ follows directly from the following

calculation. First

[sλ Qi,j s
−λ,ψ] =

X

k,|↵|p

qi,j,k,↵[(s∂s − λ)k∂↵
x ,ψ]

=
X

k,|↵|p
k≥1

qi,j,k,↵[(s∂s − λ)k,ψ]∂↵
x

and for k > 1,

[(s∂s − λ)k,ψ] =

kX

`=1

(
k
`

)
(−λ)k−`[(s∂s)

`,ψ]

=

kX

`=1

X̀

m=1

(
k
`

)
(−λ)k−`

(
`
m

)
((s∂s)

mψ)(s∂s)
`−m

which, due to the appearance of (s∂s)
mψ gives (6.5) with the desired structure.

Remark 6.7. The use of dvolg is unimportant, the result holds for any measure on X given such a

measure also appears as dvolg does in the inner product on M .

We finish this subsection by remarking the effect that the scale (Minkowski or Euclidean) has on

the indicial family.

Lemma 6.8. For Q 2 Diffp
b(M ; bF), the indicial families obtained using the scales s and t are related

by

Is(Q,λ) = ρλJ−1 It(Q,λ)Jρ−λ

with J presented in Lemma 6.2.

Proof. Lemma 6.2 provides π⇤
s = π⇤

t ◦ J . Dual to this equation, πs=0 = J−1 ◦ πt=0. Combining these
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observations gives the result

Is(Q,λ) (u) = πs=0

(
sλ Q s−λ (π⇤

su)
)

= J−1πt=0

(
ρλtλ Q t−λρ−λ (π⇤

t Ju)
)

= ρλJ−1 It(Q,λ)(Jρ−λu).

Microlocal analysis

We recall standard objects in microlocal analysis (the necessary information is given in [Zwo16] for

pseudodifferential operators acting on the trivial bundle, here we merely indicate the small changes

that occur when acting on a vector bundle). Using the open manifold Xcs, we will assume that

L2
t (Xe; E) provides a notion of sections above Xcs with Sobolev regularity s, denoted Hs(Xcs; E),

with norm k · kHs (see Subsection 6.5 for subtleties arising due to the boundary S) . Let ζ denote the

coefficients of a covector relative to some local base for T⇤Xcs such that we may define the Japanese

bracket hζi. We denote by

Ψ
p
scal(Xcs; End E) ⇢ Ψ

p(Xcs; End E)

the space of properly supported pseudo-differential operators of order p acting on E and which have

scalar principal symbol. For A 2 Ψ
a
scal(Xcs; End E) such a symbol is written

σ(A) 2 Sa(T⇤Xcs\0)/Sa−1(T⇤Xcs\0; End E).

For such operators, it continues to hold that, for B 2 Ψ
b
scal(Xcs; End E),

σ(AB) = σ(A)σ(B) 2 Sa+b(T⇤Xcs\0)/Sa+b−1(T⇤Xcs\0; End E)

however now, as lower order terms are not required to be diagonal,

σ([A,B]) 2 Sa+b−1(T⇤Xcs\0; End E)/Sa+b−2(T⇤Xcs\0; End E)

In the case that A 2 Ψ
a(Xcs) ⇢ Ψ

a
scal(Xcs; End E) we get σ( 1

2i [A,B]) = 1
2Hσ(B)(σ(A)) where Hσ(B) is

the Hamiltonian vector field associated with σ(B). Exactly as in the case that E is the trivial bundle,

associated with the operator A are the notions of the wave front set WF(A) and the characteristic

variety Char(A).

There are two radial estimates used in the analysis of P (the family of operators introduced in

Section 6.4) in order to prove Proposition 6.35. The analysis is performed in [Vas13a, Section 2.4] for

functions with an alternative description given in [DZ16, E.5.2]. We will follow the second approach

and translate the results into a (non semiclassical) setting adapted to vector bundles. For this, and to

follow closely the referenced works, we introduce [DZ16, Subsection E.1.2] the radially compactified

cotangent bundle T⇤Xcs and projection map κ : T⇤Xcs\0 ! ∂T⇤Xcs. Consider P 2 Ψ
p
scal(Xcs; End E)

with real principal symbol σ(P ) and Hamiltonian vector field Hσ(P ). Write P in the following way

P = ReP + i ImP

for

ReP =
P + P ⇤

2
2 Ψ

p
scal(Xcs; End E), ImP =

P − P ⇤

2i
2 Ψ

p−1(Xcs; End E).
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In the sense of [DZ16, Definition E.52], let Γ+ and Γ− be a source and a sink of σ(P ) respectively.

Suppose that hζi1−pHσ(P ) vanishes on Γ±. Then

Lemma 6.9. Let s satisfy the following threshold condition on Γ+ that

hζi1−p(σ(ImP ) + (s+ 1−p
2 )Hσ(P ) loghζi) is negative definite.

Then for all B1 2 Ψ
0(Xcs) with WF(I−B1)\Γ+ = ∅, there exists A 2 Ψ

0(Xcs) with Char(A)\Γ+ =

∅ such that for any u 2 C1
c (Xcs; E) (and any N large enough)

kAukHs  C(kB1PukHs−p+1 + kukH−N ).

Lemma 6.10. Let s satisfy the following threshold condition on Γ−

hζi1−p(σ(ImP ) + (s+ 1−p
2 )Hσ(P ) loghζi) is negative definite.

Then for all B1 2 Ψ
0(Xcs) with WF(I −B1) \ Γ− = ∅, there exists A,B 2 Ψ

0(Xcs) with Char(A) \
Γ− = ∅ and WF(B) \ Γ− = ∅ such that for any u 2 C1

c (Xcs; E) (and any N large enough)

kAukHs  C(kBukHs + kB1PukHs−p+1 + kukH−N ).

Remark 6.11. There are two trivial but important points to make. First, a source for P is a sink for−P

(and similarly a sink for P is a source for −P ). Second, we have assumed P has real principal symbol

therefore, when considering its adjoint P ⇤, we have Hσ(P⇤) = Hσ(P ). Less trivially, by approximation

[DZ16, Lemma E.47], these results do not need to assume u 2 C1
c (Xcs; E). In Lemma 6.9, if s > s̃

with s̃ satisfying the threshold condition and u 2 H s̃(Xcs; E) then the inequality holds (on the

condition that the right hand side is finite). Similarly in Lemma 6.10, if u is a distribution such

that the right hand side of the inequality is well defined, then so too is the left hand side, and the

inequality holds.

6.3 The Laplacian, the d’Alembertian and the Operator Q

This section shows the relationship between the Laplacian on (X, g) and the d’Alembertian on (M, η).

We first recall several differential operators as detailed in Appendix A using the Levi-Civita

connection r of g extended to all associated vector bundles associated with the principal orthonormal

frame bundle. The symmetrisation of the covariant derivative is the symmetric differential

d : C1(X; E(k)) ! C1(X; E(k+1))

and its formal adjoint is the divergence

δ : C1(X; E(k)) ! C1(X; E(k−1)).

The rough Laplacian on this space is

r⇤r : C1(X; E(k)) ! C1(X; E(k))

where r⇤ is the formal adjoint of r : C1(X; E(k)) ! C1(X; T⇤X⌦E(k)). Recall r⇤r = − tr ◦r◦r
where tr is a trace operator on T⇤X⌦T⇤X obtained from g and extended to T⇤X⌦T⇤X⌦E(k). The
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Lichnerowicz Laplacian uses the Riemann curvature tensor R giving the curvature endomorphism

q(R) : E(k) ! E(k)

The Lichnerowicz Laplacian, hereafter simply referred to as the Laplacian, is

∆ :

(
C1(X; E(k)) ! C1(X; E(k))

u 7! (r⇤r+ q(R))u

We decompose symmetric k-cotensors using the symmetrised basis elements:

u =
X

K2A k

uKeK , u 2 C1(X; E(k)), uK 2 C1(X).

Useful formulae for the preceding operators thus far introduced are given in

Lemma 6.12. Let u 2 C1(X; E(k)). At a point in X about which {ei}0in are normal coordinates

and which give dual coordinates {ei}0in, the trace is

Λu =
X

K2A k

X

kr2K

X

kp2{kr!}K
gkrkpuKe{kp!,kr!}K ,

the symmetric differential is

du =
X

K2A k

nX

i=0

eiuKe{!i}K ,

the divergence is

δ u = −
X

K2A k

X

kr2K

nX

i=0

gikreiuKe{kr!}K ,

the rough Laplacian is

r⇤ru =
X

K2A k

nX

i,j=0

 
−gijeiejuKeK +

X

kr2K

nX

`=0

gi`uK(re`Γ
kr

ij )e
{kr!j}K

!

where the connection coefficients are given locally by reie
k = −Pn

j=0 Γ
k
ije

j. Finally, (at a point

using normal coordinates), the Riemann curvature takes the form

Rei,ej e
` = −

nX

k=0

R `
ij ke

k, R `
ij k = reiΓ

`
jk −rejΓ

`
ik.

Similar in vein to the commutations relations of (A.1) we have the following two useful results,

the second of which originates from [Lic61, Section 10].

Lemma 6.13. Let u 2 C1(X, E(k)) The Laplacian commutes with the Lefschetz-type trace operator

[Λ,∆]u = 0
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6.3. The Laplacian, the d’Alembertian and the Operator Q

and commutes with the divergence under the following conditions

[δ,∆]u = 0 if

8
><
>:

k = 0, 1,

k = 2 and X is Ricci parallel,

k ≥ 3 and X is locally isomorphic to H
n+1.

Proof. The first result is very standard. As the metric is parallel, the Riemann curvature tensor

(acting as a derivation on E(k)) commutes with L hence

[L, q(R)]u =

nX

i,j=0

(L ej y ei y−ej y ei yL) Rei,ej u

and developing the second term with the aid of the commutation formula [ei y,L] = 2ei · provides

[L, q(R)]u =

nX

i,j=0

−2(ej · ei y+ej y ei · ) Rei,ej u

=

nX

i,j=0

−2(ej · ei y+δij + ei · ej y) Rei,ej u

which vanishes due to the skew-symmetry of the Riemann curvature tensor. By duality, [Λ, q(R)] =

0. Now using the commutation relations (A.1) and the following characterisation of the Laplacian

[HMS16, Proposition 6.2]

∆ = δ d− d δ+2q(R)

provides the commutation of Λ with ∆.

The second result is more involved as a demonstration via a direct calculation (however as these

statements are well known, we only sketch said calculations). For k = 0, 1 the Laplacian and diver-

gence agree with Hodge Laplacian and the adjoint of the exterior derivative. We will thus assume

X is Ricci parallel (and k ≥ 2). We break the calculation into two parts studying [δ,r⇤r] and

[δ, q(R)]. As usual, we use a frame {ei}0in for TX with dual frame {ei}0in and calculate at a

point about which the connection coefficients vanish. We act on u = uKeK 2 C1(X; E(k)). That

the Ricci tensor is parallel implies, by the (second) Bianchi identity,
P

` re`R
`

ij k = 0. This ob-

servation is repeatedly used. Also, the Ricci endomorphism may be written
P

i,j Ric
j
i e

i ⌦ ej with

Ricji =
P

k,` g
k`(reiΓ

j
k` −rekΓ

j
`i).

Consider [δ,r⇤r]. Calculating simply δr⇤r gives

δr⇤r = −P
k e

k
yrek(− tr

P
i,j e

i ⌦rei(e
j ⌦rej ))

=
P

i,j,k g
ijek yrekreirej −

P
i,j,k,` g

i`(rekΓ
j
i`) e

k
yrej

with a similar calculation for r⇤r δ. Combining these results and commuting rek with reirej gives

[δ,r⇤r] =
P

i,j,k g
ijek y[rek ,reirej ]−

P
i(Ric e

i) yrei

= −P
i,j,k g

ijek y{rei ,Rej ,ek} −
P

i(Ric e
i) yrei
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where {·, ·} is the anticommutator. After a tedious calculation, we obtain

[δ,r⇤r]u =
X

i

(Ric ei) yreiu+ 2(R,r, u) (6.6)

where (R,r, u) is shorthand for the unwieldy term

(R,r, u) =
X

i,j

X

kr2K

X

kp2{kr!}K
R

ikrkp

j(reiuK)e{kp!j,kr!}K .

For completeness we outline this calculation

−P
i,j,` g

ije` y{rei ,Rej ,e`}u = −P
i,j,`

P
kr2K({rei ,R

ikr

` j}uK)e` y e{kr!j}K

= −2
P

i,j,`

P
kr2K R ikr

` j(reiuK)e` y e{kr!j}K

where the anticommutator has been removed using
P

` re`R
`

ij k = 0. Developing the final term in

the preceding display gives

e` y e{kr!j}K = gj`e{kr!}K +
P

kp2{kr!}K gkp`e{kp!j,kr!}K

which after a little rearrangement of dummy indices and using the algebraic symmetries of the Rie-

mann curvature tensor gives

−
P

i,j,` g
ije` y{rei ,Rej ,e`}u = 2

P
i(Ric e

i) yreiu+ 2(R,r, u)

upon subtraction of
P

i(Ric e
i) yreiu, this provides (6.6).

Consider [δ, q(R)]. Similar to the previous calculations we obtain

[δ, q(R)] =
P

i,j,k −ek y ej · ei yrek Rei,ej +ej · ei yRei,ej (e
k
yrek)

=
P

i,j,k e
j · ei y ek y[Rei,ej ,rek ]− gjkei yrek Rei,ej +ej · ei y(Rei,ej e

k) yrek

After an even more tedious calculation treating each of the three terms in the previous display, we

obtain

[δ, q(R)]u = −[δ,r⇤r]u− (r,R, u) (6.7)

where (r,R, u) represents the even more unwieldy term

(r,R, u) =
X

i,j,`

X

kr2K
kp2{kr!}K

ks2{kp!,kr!}K

g`ks(re` R
krkp

i j)uKe{ks!i,kp!j,kr!}K .

Again, we sketch the calculation. One of the three terms is easy to calculate directly giving

P
i,j,k e

j · ei y(Rei,ej e
k) yreku = −(R,r, u).

Another term is also relatively easy, again using the trick that
P

` re`R
`

ij k = 0,

−P
i,j,k g

jkei yrek Rei,ej u = −P
i(Ric e

i) yreiu− (R,r, u)
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The involved step is treating
P

i,j,k e
j · ei y ek y[Rei,ej ,rek ]. We first obtain

P
i,j,` e

j · ei y e` y[Rei,ej ,re` ]u =
P

i,k,`,m

P
kr2K([R kr

ji m,re` ]uK) ej · ei y e` y e{kr!m}K

and it is important to realise that whenever the index ` contracts with m (or i or j), the resulting

sum vanishes (as
P

` re`R
`

ij k = 0). Similarly, if i and m are contracted then, as Ricci is parallel, the

resulting sum vanishes. Expanding the final part of the previous display (and letting terms(g`m, gim)

denote any terms involving g`m or gim) gives

ej · ei y e` y e{kr!m}K =
X

kp2{kr!}K
g`kpej · ei y e{kp!m,kr!}K + terms(g`m)

=
X

kp2{kr!}K
ks2{kp!,kr!}K

g`kpgikse{ks!j,kp!m,kr!}K + terms(g`m, gim)

and after a little rearrangement of dummy indices, this gives

P
i,j,` e

j · ei y e` y[Rei,ej ,re` ]u = −(r,R, u)

whence (6.7) is obtained.

Combining (6.6) with (6.7) gives [δ,∆]u = −(r,R, u). For symmetric tensors of rank two, such a

summation (over kr, kp, ks) does not arrive so such a term instantly vanishes and the result follows.

For tensors of higher rank, one needs the Riemann curvature to be parallel. This is assured in the

constant curvature setting of Hn+1.

The objects thus far introduced in this section all have natural analogues in the Lorentzian setting

on (M, ⌘). We denote by Mr the Levi-Civita connection of ⌘ extended to all associated vector bundles

and MR the Riemann curvature tensor of ⌘. We let d⌘ and δ⌘ denote the symmetric differential and

the divergence with respect to ⌘. Finally we let Mr⇤Mr denote the rough d’Alembertian and ⇤ the

(Lichnerowicz) d’Alembertian both constructed with respect to the metric ⌘.

Minkowski scale and the operator Q

We define the first of our two main operators.

Definition 6.14. The second-order differential operator Q 2 Diff2(M ; EndF) is the following con-

jugation of the d’Alembertian:

Q :

(
C1(M ;F) ! C1(M ;F)

u 7! s
n
2 −m+2

⇤ s−
n
2 +m u

Lemma 6.15. The differential operator Q is formally self-adjoint with respect to the inner product

(u, v)s−2⌘ =

Z

M

hu, vis−2⌘
ds
s dvolg, u, v 2 C1

c (M ;F).

Proof. The d’Alembertian is self-adjoint with respect to the following inner product

(u, v)⌘ =

Z

M

hu, vi⌘ dvol⌘, u, v 2 C1
c (M ;F).
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The two inner products on F are related via (6.3). Tracking the effects of the conjugations by

powers of s on ⇤ as well as the multiplication by s2 in order to obtain Q implies self-adjointness

when using the inner product h·, ·is−2⌘ with the measure s−(n+2)dvol⌘ which gives the result as

dvol⌘ = sn+2 ds
s dvolg.

Lemma 6.16. The operator Q commutes with the Lefschetz-type trace operator s−2Λs−2⌘.

[s−2Λs−2⌘,Q]u = 0, u 2 C1(M ;F).

Proof. The Lorentzian analogue of Lemma 6.13 is that the d’Alembertian commutes with Λ⌘

[Λ⌘,⇤] = 0.

This operator is related to our standard Lefschetz-type operator Λs−2⌘ via (6.2). The result is now

a direct calculation. For clarity we denote differential operators with a superscript (m) to indicate

that they act on symmetric cotensors of rank m. In particular, on C1(M ;F) we have

s−2Λs−2⌘ Q
(m) = s2 Λ⌘ s

n
2 −m+2

⇤
(m) s−

n
2 +m

= s2s
n
2 −m+2

⇤
(m−2) s−

n
2 +m Λ⌘

= s
n
2 −(m−2)+2

⇤
(m−2) s−

n
2 +(m−2)s2 Λ⌘

= Q(m−2) s−2Λs−2⌘.

The rest of this subsection is dedicated to proving

Proposition 6.17. For u 2 C1(M ;F) decomposed relative to the Minkowski scale (6.1), the conju-

gated d’Alembertian Q is given by

ak+2 (
ds
s )

m−k−2 ·
(
− bkbk+1 L

)
u(k)+

ak+1 (
ds
s )

m−k−1 ·
(
2bk d

)
u(k)+

Q ak (
ds
s )

m−k ·u(k) = ak (dss )
m−k ·

(
∆+ (s∂s)

2 − ck − LΛ
)
u(k)+

ak−1 (
ds
s )

m−k+1 ·
(
− 2bk−1 δ

)
u(k)+

ak−2 (
ds
s )

m−k+2 ·
(
− bk−2bk−1 Λ

)
u(k)

with constants

ak = ((m− k)!)−1/2,

bk =
p
m− k,

ck = n2

4 +m(n+ 2k + 1)− k(2n+ 3k − 1).

Consequently, relative to this scale, there exist D 2 Diff1(M ; EndF) and G 2 C1(M ; EndF) inde-

pendent of s such that

Q = r⇤r+ (s∂s)
2 +D+G

Proof. The result will follow from Lemmas 6.19 and 6.20. The conjugation by s−
n
2 +m is chosen so

that the term (s∂s +
n
2 −m)2 in Lemma 6.19 becomes simply (s∂s)

2.
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Proposition 6.17 is a direct calculation which we present in the rest of this subsection. To begin

we announce the following lemma whose proof need not be detailed.

Lemma 6.18. In the Minkowski scale, with {ei}0in a local holonomic frame on (X, g) with dual

frame {ei}0in such that g =
P

i,j gije
i ⌦ ej, the connection Mr acts in the following manner:

Mrs@s

ds
s = −ds

s ,
Mrei

ds
s = −Pn

j=0 gije
j ,

Mrs@s
ei = −ei, Mreie

j = δ
j
i
ds
s +reie

j .

This lemma provides the following two important formulae for the symmetrised basis

Mrs@s
(dss )

m−k · eK = −m(dss )
m−k · eK (6.8)

and

(dss )
m−k−1 ·

⇣
−(m− k)gije

{!j}K
⌘
+

Mrei(
ds
s )

m−k · eK = (dss )
m−k ·

⇣
−P

kr2K Γkr

ij e
{kr!j}K

⌘
+ (6.9)

(dss )
m−k+1 ·

⇣P
kr2K δkr

i e{kr!}K
⌘

where the second result is a consequence of

Mreie
K =

X

kr2K

δkr

i
ds
s · e{kr!}K +reje

K

and we recall that the connection coefficients were introduced in Lemma 6.12. We split the calculation

of the d’Alembertian into two calculations, treating the rough d’Alembertian separately from the

curvature endomorphism.

Lemma 6.19. For u 2 C1(M ;F) decomposed relative to the Minkowski scale (6.1), the rough

d’Alembertian is given by

ak+2 (
ds
s )

m−k−2 ·
(
− bkbk+1 L

)
u(k)+

ak+1 (
ds
s )

m−k−1 ·
(
2bk d

)
u(k)+

s2 Mr⇤Mr ak (
ds
s )

m−k ·u(k) = ak (dss )
m−k ·

(
r⇤r+ (s∂s +

n
2 −m)2 − c̃k

)
u(k)+

ak−1 (
ds
s )

m−k+1 ·
(
− 2bk−1 δ

)
u(k)+

ak−2 (
ds
s )

m−k+2 ·
(
− bk−2bk−1 Λ

)
u(k)

with modified constants

c̃k = n2

4 +m(n+ 2k + 1)− k(n+ 2k).

Proof. It suffices to consider a single term uK(dss )
m−k · eK and we will ignore the normalising con-
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stants ak until the final step. Upon a first application of Mr we obtain a section of T⇤M ⌦F

MruK(dss )
m−k · eK = s∂suK

ds
s ⌦ (dss )

m−k · eK

+ uK
ds
s ⌦ Mrs@s

(
(dss )

m−k · eK
)

+
P

i eiuKei ⌦ (dss )
m−k · eK

+
P

i uKei ⌦ Mrei

(
(dss )

m−k · eK
)
.

Using (6.8) and (6.9) to develop the terms involving Mrs@s
and Mrei we group the result in terms

of symmetric powers of ds
s . In order to handle the equations we write

MruK(dss )
m−k · eK = 1 + 2 + 3 + 4 (6.10)

where

1 = −(m− k)
P

i,j uKgije
i ⌦ (dss )

m−k−1 · e{!j}K ,

2 = (s∂s −m)uK
ds
s ⌦ (dss )

m−k · eK ,

3 =
P

i eiuKei ⌦ (dss )
m−k · eK −P

i,j uKei ⌦ (dss )
m−k ·Pkr2K Γkr

ij e
{kr!j}K ,

4 = −P
i uKei ⌦ (dss )

m−k+1 ·Pkr2K δkr

i e{kr!}K .

Taking the second derivative, we calculate at a point about which {ei}0in are normal coordinates.

Of course, we only need to keep track of terms which are not subsequently killed upon applying the

trace tr⌘ (which, as the notation suggests, is the trace map on T⇤M ⌦ T⇤M built using the metric

η).

1 . Considering the first term in (6.10), applying Mrs@s
provides only terms in the kernel of tr⌘

and applying Mrei gives

P
` e

` ⌦ Mre` 1 = −(m− k)
P

i,j,` e`uKgije
` ⌦ ei ⌦ (dss )

m−k−1 · e{!j}K

− (m− k)
P

i,j,` uKgije
` ⌦ ei ⌦ Mre`

(
(dss )

m−k−1 · e{!j}K)+ ker tr⌘

and we immediately apply tr⌘ to get

−s2(tr⌘ ◦Mr) 1 = (m− k)(dss )
m−k−1 ·

(P
i eiuKe{!i}K)

+ (m− k)uK

P
j
Mrej

(
(dss )

m−k−1 · e{!j}K) .

The first term of the preceding display reduces to the symmetric differential (m−k)(dss )
m−k−1 · d(uKeK)

by Lemma 6.12. The second term of the preceding display is calculated with the aid of (6.9) and

remembering that the connection coefficients cancel at the point of interest. Specifically

Mrej

⇣
(dss )

m−k−1 · e{!j}K
⌘

= (dss )
m−k−2 ·

(
−
P

i(m− k − 1)gije
{!i,!j}K)+

(dss )
m−k ·

⇣
δ
j
je

K +
P

kr2K δkr

j e{!j,kr!}K
⌘
.

Observe that
P

j

P
kr2K δkr

j e{!j,kr!}K = keK . Using Lemma 6.12 again this time to recover L, the
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result is

(dss )
m−k−2 · (−(m− k)(m− k − 1) L)uKeK+

(dss )
m−k−1 · ((m− k) d)uKeK+

−s2(tr⌘ ◦Mr) 1 = (dss )
m−k · (−(m− k)(n+ 1 + k))uKeK .

2 . Considering the second term in (6.10) is much simpler. A second application of Mr provides

Mr 2 = (s∂s −m− 1)(s∂s −m))uK
ds
s ⌦ ds

s ⌦ (dss )
m−k · eK

− (s∂s −m)uK

X

i,j

gije
i ⌦ ej ⌦ (dss )

m−k · eK + ker tr⌘ .

and the desired result is

−s2(tr⌘ ◦Mr) 2 = (dss )
m−k · ((s∂s −m+ n)(s∂s −m))uKeK ,

3 . Considering the third term in (6.10) is somewhat similar to the first term in that Mrs@s

provides only terms in the kernel of tr⌘. Remembering that at the point of interest, the connection

coefficients vanish, applying Mrej gives

P
j e

j ⌦ Mrej 3 =
P

i,j ejeiuKej ⌦ ei ⌦ (dss )
m−k · eK

+
P

i,j eiuKej ⌦ ei ⌦ Mrej

(
(dss )

m−k · eK
)

−
P

i,j,` uKe` ⌦ ei ⌦ (dss )
m−k ·

P
kr2K

⇣
re`Γ

kr

ij

⌘
e{kr!j}K + ker tr⌘

and we immediately apply tr⌘ to recover the rough Laplacian from the first and third terms in the

previous display

−s2(tr⌘ ◦Mr) 3 = (dss )
m−k · r⇤r(uKeK)

−P
i,j g

ijeiuK
Mrej

(
(dss )

m−k · eK
)

while the second term in the previous display is first treated using (6.9) and then Lemma 6.12 to

recover the symmetric differential and the divergence

−P
i,j g

ijeiuK
Mrej

(
(dss )

m−k · eK
)
=
P

i,j,` g
ijeiuK(m− k)(dss )

m−k−1 · g`je{!`}K

+
P

i,j,` g
ijeiuK(dss )

m−k+1 ·
P

kr2K δkr

j e{kr!}K

= (m− k)(dss )
m−k−1 · d(uKeK)

− (dss )
m−k+1 · δ(uKeK).

The result is

(dss )
m−k−1 · ((m− k) d)uKeK+

−s2(tr⌘ ◦Mr) 3 = (dss )
m−k · (r⇤r)uKeK+

(dss )
m−k+1 · (− δ)uKeK .

4 . Considering finally the fourth term in (6.10) we immediately remove the sum over i using the
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Kronecker delta. Again Mrs@s
provides only terms in the kernel of tr⌘ and applying Mrei gives

P
i e

i ⌦ Mrei 4 = −P
i

P
kr2K eiuKei ⌦ ekr ⌦ (dss )

m−k+1 · e{kr!}K

−
P

i

P
kr2K uKei ⌦ ekr ⌦ Mrei

(
(dss )

m−k+1 · e{kr!}K)+ ker tr⌘ .

and we immediately apply tr⌘ to get

−s2(tr⌘ ◦Mr) 4 = (dss )
m−k+1 ·

(P
i

P
kr2K gikreiuKe{kr!}K)

+
P

i

P
kr2K gikruK

Mrei

(
(dss )

m−k+1 · e{kr!}K)

The first term provides the divergence −(dss )
m−k+1 · δ(uKeK) while the second term is treated using

(6.9) and then Lemma 6.12 to recover a multiple of uKeK and a term involving Λ

P
i

P
kr2K gikruK

Mrei

⇣
(dss )

m−k+1 · e{kr!}K
⌘

= −(m− k + 1)(dss )
m−k ·Pi,j

P
kr2K gikrgije

{!j,kr!}K

− (dss )
m−k+2 ·

P
kr2K

P
kp2{kr!}K gkrkpe{kp!,kr!}K

= −k(m− k + 1)(dss )
m−k ·uKeK

− (dss )
m−k+2 ·Λ(uKeK).

The result is

−s2(tr⌘ ◦Mr) 4 = (dss )
m−k · (−k(m− k + 1))uKeK+

(dss )
m−k+1 · (− δ)uKeK+

(dss )
m−k+2 · (−Λ)uKeK .

Upon summation of these four terms coming from (6.10) we obtain

(dss )
m−k−2 · (−(m− k)(m− k − 1) L)u(k)+

(dss )
m−k−1 · (2(m− k) d)u(k)+

s2 Mr⇤Mr(dss )
m−k ·u(k) = (dss )

m−k ·
(
r⇤r+ (s∂s +

n
2 −m)2 − c̃k

)
u(k)+

(dss )
m−k+1 · (−2k δ)u(k)+

(dss )
m−k+2 · (−k(k − 1)Λ)u(k)

with constant c̃k as announced in the proposition. The final step is to reintroduce the normalisation

constants ak. Treating, for example, the term containing (dss )
m−k−1 amounts to observing

a−1
k+1(m− k)ak =

p
(m− k)

This completes the demonstration.

Lemma 6.20. For u 2 C1(M ;F) decomposed relative to the Minkowski scale (6.1), the curvature

endomorphism acts diagonally with respect to the Minkowski scale and is given by

s2q(MR)u(k) = (q(R) + k(n+ k − 1)− LΛ)u(k).

Proof. We need only concern ourselves with the effect of q(MR) on (dss )
m−k · eK . It is easy to see from
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Lemma 6.18 that MRs@s,ei is the zero endomorphism, that MRei,ej
ds
s = 0, and that η(MRei,eje

⇤
k,

ds
s ) =

0. Therefore we need only calculate the effect of q(MR) on eK . The non-trivial information of MR is

encoded in the following equation:

MR
k

ij ` = gj`δ
k
i − gi`δ

k
j +R k

ij ` .

We extend MRei,ej to E(k) giving

MRei,eje
K = Rei,ej e

K +
X

kr2K

⇣
δkr

j gi` − δkr

i gj`

⌘
e{kr!`}K

Calculating the interior product requires the metric, in particular

s2ei y⌘
MRei,ej = ei yMRei,ej

where y⌘ uses the metric η to identify TM with T⇤M . Consequently calculating

X

i

(
s2ei y⌘

MRei,eje
K − ei yRei,ej e

K
)

gives

X

i

X

kr2K

⇣
δkr

j gi` − δkr

i gj`

⌘
0
@gi`e{kr!}K +

X

kp2{kr!}K
gikpe{kp!,kr!`}K

1
A .

Applying
P

j e
j · to the preceding display provides s2q(MR) − q(R). Splitting the calculation into

four terms, the results are

P
i,j

P
kr2K ej · δkr

j gi`g
i`e{kr!}K = k(n+ 1)eK ,

−P
i,j

P
kr2K ej · δkr

i gj`g
i`e{kr!}K = −keK ,

P
i,j

P
kr2K

P
kp2{kr!}K ej · δkr

j gi`g
ikpe{kp!,kr!`}K = k(k − 1)eK ,

−
P

i,j

P
kr2K

P
kp2{kr!}K ej · δkr

i gj`g
ikpe{kp!,kr!`}K = −LΛ eK .

Upon summation of these four terms, the proof is complete.

Proposition 6.21. Suppose u 2 C1(M ;F), decomposed relative to the Minkowski scale (6.1), is

trace-free with respect to the trace operator Λs−2⌘. Then the conjugated d’Alembertian Q is given by

ak+1 (
ds
s )

m−k−1 ·
(
2bk d

)
u(k)+

Q ak (
ds
s )

m−k ·u(k) = ak (dss )
m−k ·

(
∆+ (s∂s)

2 − c0k
)
u(k)+

ak−1 (
ds
s )

m−k+1 ·
(
− 2bk−1 δ

)
u(k)

with constants ak, bk announced in Proposition 6.17 and the modified constants

c0k = ck − (m− k)(m− k − 1).

Proof. This follows directly from the structure of Q given in Proposition 6.17 and the condition that

Λu(k) = −bk−2bk−1u
(k−2) coming from Lemma 6.1.
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The indicial family of Q

Definition 6.22. Denote by Q the indicial family of the operator Q 2 Diff2
b(M ;F) relative to the

Minkowski scale s.

Q = Is(Q;λ) 2 Diff2(X; E).

The previous section introduced Q as a differential operator on F above M however, from the

structure of Q given as announced in Proposition 6.17, it is clear that the operator extends to M .

Moreover by the same proposition we immediately get the structure of Q.

Proposition 6.23. For u =
Pm

k=0 u
(k) 2 C1(X; E), the operator Q is given by

(
− bkbk+1 L

)
u(k)+

(
2bk d

)
u(k)+

Qλ u
(k) =

(
∆+ λ2 − ck − LΛ

)
u(k)+

(
− 2bk−1 δ

)
u(k)+

(
− bk−2bk−1 Λ

)
u(k)

with constants

bk =
p
m− k, ck = n2

4 +m(n+ 2k + 1)− k(2n+ 3k − 1).

Consequently, there exist D 2 Diff1(X; End E) and G 2 C1(X; End E) independent of λ such that

Qλ = r⇤r+ λ2 +D + G

Proposition 6.24. The family of differential operators Q is, upon restriction to λ 2 iR, a family of

formally self-adjoint operators with respect to the inner product

(u, v)s =

Z

X

mX

k=0

(−1)m−khu(k), v(k)i dvolg

where u =
Pm

k=0 u
(k), v =

Pm
k=0 v

(k) for u(k), v(k) 2 C1
c (X; E(k)). Moreover, for all λ, Q⇤

λ = Q−λ̄.

Proof. Lemmas 6.6 and 6.15.

The operator Q preserves the subbundle F\kerΛs−2⌘ by Lemma 6.16. As π⇤
s is algebraic, we may

consider it as a map from E overX to F overM . We thus obtain the subbundle E\ker(Λs−2⌘◦π⇤
s ) over

X; symmetric tensors above X which are trace-free with respect to the ambient trace operator Λs−2⌘.

It thus follows that Q may also be considered a family of differential operators on this subbundle and

we obtain

Proposition 6.25. For u =
Pm

k=0 u
(k) 2 C1(X; E) \ ker(Λs−2⌘ ◦ π⇤

s ), the operator Q is given by

(
2bk d

)
u(k)+

Qλ u
(k) =

(
∆+ λ2 − c0k

)
u(k)+

(
− 2bk−1 δ

)
u(k).
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6.4 The Operator P and its Indicial Family

This section introduces the operator P on Me and its indicial family P on Xe and similar results

to those presented for Q and Q are given. The relationship between these two constructions is also

detailed.

Euclidean scale

The manifold Me = R
+
t ⇥Xe has been equipped with the Lorentzian metric η which agrees with the

Lorentzian cone metric put on M . Recalling the smooth chart U = (0, 1)µ⇥Y ⇢ X ⇢ Xe the metric,

on R
+
t ⇥ U takes the form of (5.1) and we may assume that this is the form of η on the larger chart

R
+
t ⇥ U2 where U2 = (−1, 1)µ ⇥ Y . For later use we record the behaviour of Mer.

Lemma 6.26. On the chart R+
t ⇥ (−1, 1)µ ⇥ Y with {ei}1in a local holonomic frame on Y with

dual frame {ei}1in such that h =
P

i,j hije
i⌦ej, the connection Mer acts in the following manner:

Mert@t

dt
t = 0, Mer@µ

dt
t = 0,

Mert@t
dµ = −dµ, Mer@µ

dµ = −dt
t ,

Mert@t
ei = −ei, Mer@µ

ei = − 1
2h

ij(∂µhjk)e
k,

and

Merei
dt
t = −(∂µhij)e

j ,
Mereidµ = −2((1− µ∂µ)hij)e

j ,
Mereie

j = −δ
j
i
dt
t − 1

2h
jk(∂µhik)dµ+ Y reie

j .

Motivated by the structure of Q from the previous section we define the second of a our two main

operators

Definition 6.27. The second-order differential operator P 2 Diff2(Me;F) is the following conjuga-

tion of the d’Alembertian:

P :

(
C1(M ;F) ! C1(Me;F)

u 7! t
n
2 −m+2

⇤ t−
n
2 +m u

Note that on M ⇢ Me there is a trivial correspondence between P and Q,

P = ρ−
n
2 +m−2 Q ρ

n
2 −m

and that, since ρ = 1 on X\U , we have equality P = Q on M\(R+ ⇥ U).

Lemma 6.28. The operator P 2 Diff2(Me;F) naturally extends to an operator P 2 Diff2
b(Me;

bF)

and is b-trivial.

Proof. The important point is to verify that at µ = 0, P fits into the b-calculus framework. This

is reasonably clear from Lemma 6.26. Indeed, the Lie algebra of b-vector fields is generated by

{t∂t, ∂µ, ei} where {ei}1in is a local holonomic frame on Y , while the b-cotangent bundle has

basis {dt
t , dµ, e

i} with {ei}1in the dual frame on T⇤Y . Lemma 6.26 thus shows that Mer is a

b-connection. Taking the trace using η and then multiplying by t2 is equivalent to taking the trace
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with t−2η whose structure (5.1) indicates it is a b-metric. Therefore t2 Mer⇤Mer is a b-differential

operator. That t2 Mer⇤Mer is b-trivial is also immediate from Lemma 6.26 and the structure of

t−2η. A similar line of reasoning for q(MeR) (which uses one application of the inverse of the metric

η) shows that t2 ⇤ is also a b-differential operator. The final conjugation by powers of t preserves

the b-structure (and its b-triviality) as it merely conjugates appearances of t∂t. This implies the

result.

Lemma 6.29. The differential operator P is formally self-adjoint with respect to the inner product

(u, v)t−2⌘ =

Z

Me

hu, vit−2⌘
dt
t dx, u, v 2 C1

c (Me;F).

Proof. By the correspondence between P and Q on M\(R+⇥U) and Lemma 6.15, it suffices to verify

this claim when u, v are supported on R
+
t ⇥U2. The d’Alembertian is self-adjoint with respect to the

following inner product

(u, v)⌘ =

Z

Me

hu, vi⌘ dvol⌘, u, v 2 C1
c (R+

t ⇥ U2;F).

The two inner products on the fibres of F are related via the Euclidean scale analog of (6.3). Tracking

the effects of the conjugations by powers of t on ⇤ as well as the multiplication by t2 in order to

obtain P implies self-adjointness when using the inner product h·, ·it−2⌘ with the measure t−n−2dvol⌘.

As det η = − 1
4 t

2n+2 deth we have

t−n−2dvol⌘ = 1
2
dt
t dµ dvolh.

The indicial family of P

Definition 6.30. Denote by P the indicial family of the operator P 2 Diff2
b(Me;

bF) relative to the

Euclidean scale t.

Pλ = It(P;λ) 2 Diff2(Xe; E).

Lemma 6.8 gives the following proposition (whose final statement follows as ρ is constant on

X\U).

Proposition 6.31. On X ⇢ Xe the indicial family operators P and Q are related by

Pλ = ρ−λ−n
2 +m−2J Qλ J

−1ρλ+
n
2 −m

with J presented in Lemma 6.2. Moreover, on X\U , we have equality P = Q.

Proposition 6.32. The family of differential operators P is, upon restriction to λ 2 iR, a family of

formally self-adjoint operators with respect to the inner product

(u, v)t =

Z

Xe

hu, vit dx, u, v 2 C1
c (Xe; E).

Moreover, for all λ, P⇤
λ = P−λ̄.
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6.5 Microlocal Analysis

This section constructs an inverse to the family P introduced in the preceding section. This is done

by first showing that the family is a family of Fredholm operators and then by considering a Cauchy

problem which provides an inverse for Reλ 0 1. In [Vas13b, Zwo16], the procedure is described for

functions, rather than symmetric tensors. We are required to alter only minor details in order to

apply the technique to symmetric tensors.

Function spaces

From Subsection 6.1, we have the space of L2 sections L2
t (Xe; E). This defines Hs

loc(Xe; E), the space

of (locally) Hs sections for s 2 R. For all notions of Sobolev regularity, we will only use the Euclidean

scale; we thus need not decorate these spaces with a subscript t.

As is standard, we denote by Ċ1(Xcs; E) the set of smooth sections which are extensible to smooth

sections over Xe and whose support is contained in Xcs. And by C1(Xcs; E) all smooth sections

which are smoothly extensible to Xe.

Following [Hör07, Appendix B.2] we obtain, for s 2 R, the Sobolev spaces

Ḣs(Xcs; E) and Hs(Xcs; E)

which are, respectively, the set of elements in Hs
loc(Xe; E) supported by Xcs and the space of re-

strictions to Xcs of Hs
loc(Xe; E). Then Ḣs(Xcs; E) gets its norm directly from that of Hs

loc(Xe; E)
while the norm of an element in Hs(Xcs; E) is that obtained by taking the infimum of the norms of

all permissible extensions of the element which have compact support in Xe. (Such norms will be

denoted, for simplicity, by k · kḢs and k · kHs . Furthermore, if an object is supported away from S,

these norms correspond and we may simply write k · kHs .)

The inner product h·, ·it gives the L2 pairing

(·, ·)t : Ċ1(Xcs; E)⇥ C1(Xcs; E) ! C

which extends by density [Hör07, Theorem B.2.1] to a pairing between the spaces Ḣ−s(Xcs; E) and
Hs(Xcs; E) providing the identification of dual spaces

(Hs(Xcs; E))⇤ ' Ḣ−s(Xcs; E), s 2 R. (6.11)

Definition 6.33. For s 2 R, let X s and Ys be the following two spaces

Ys = Hs(Xcs; E),
X s = {u : u 2 Ys,P u 2 Ys−1}

These spaces come with the standard norms, in particular,

kukX s = kukYs + kP ukYs−1 , u 2 X s.

Remark 6.34. It will be seen that λ does not appear in the principal symbol of P, it is thus unim-

portant to explicit with respect to what value of λ the preceding norm is taken as all such norms are

equivalent.

When restricting to U2 ⇢ Xe we will let {ei}1in denote an orthonormal frame for (Y, h) (which
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depends on µ 2 (−1, 1)) and by {ei}1in its dual frame. The frames are completed to frames for

TU2 and T⇤U2 by including ∂µ and dµ respectively. A dual vector will take the notation

ξdµ+
nX

i=0

ηie
i 2 T⇤U2. (6.12)

The following subsection proves the following two propositions.

Proposition 6.35. For fixed s, the family of operators

P : X s ! Ys−1

is Fredholm for Reλ > 1
2 − s.

Proof. Lemmas 6.38 and 6.39.

Proposition 6.36. For fixed s, the Fredholm operator Pλ : X s ! Ys−1 are Fredholm of index 0 for

Reλ > m+ 1
2 − s and it has a meromorphic inverse

P−1 : Ys−1 ! X s

with poles of finite rank.

Proof. Lemmas 6.40 and 6.41.

Proofs of Propositions 6.35 and 6.36

On R
+
t ⇥ U2, the inverse of the metric η takes the form

t2η−1 = −2t∂t · ∂µ + 2µ∂µ · ∂µ + h−1

which implies to highest order for t2 Mer⇤Mer, that

t2 Mer⇤Mer = −4µ∂2
µ + 4t∂t∂µ +∆h +Diff1(R+

t ⇥ U2; EndF)

where ∆h may be considered the rough Laplacian on (Y, h). Considering P, conjugation by t−
n
2 +m

replaces t∂t by (t∂t− n
2 +m) and we can absorb the newly created term 4(−n

2 +m)∂µ into Diff1(R+
t ⇥

U2; EndF). Also, the curvature term is of order zero so

P = −4µ∂2
µ + 4t∂t∂µ +∆h +A

for some A 2 Diff1(R+
t ⇥ U2; EndF). This structure of P immediately gives the structure of P to

highest order. Keeping track of the term 4t∂t∂µ for the moment, we write

Pλ = −4µ∂2
µ − 4λ∂µ +∆h +Aλ. (6.13)

where Aλ 2 Diff1(U2; End E) is the indicial family of A. The most obvious conclusion we draw from

such a presentation of P is that P is a family of elliptic operators on U2 \ {µ > 0} and a family of

strictly hyperbolic operators for {µ < 0} (with respect to the level sets {µ = constant}). Of course
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the ellipticity extends to all of X. The principal symbol on U2 is also immediately recognisable as

σ(P) = 4µξ2 + |η|2

using the notation from (6.12) and |η|2 =
Pn

i=1 η
2
i . And on U2, the Hamiltonian vector field associated

with σ(P) is

Hσ(P) = 8µξ∂µ − 4ξ2∂⇠ +H|⌘|2 .

The strategy to obtain a Fredholm problem is to combine standard results for elliptic and hyper-

bolic operators with some analysis performed at the junction Y = {µ = 0}. The analysis was first

presented in [Vas13a, Section 4.4]. It turns out the dynamics of interest are those of radial sources

and sinks [DZ16, Definition E.52]. The original radial estimates of Melrose [Mel94] on asymptoti-

cally Euclidean spaces have been adapted to functions on asymptotically hyperbolic spaces by Vasy

[Vas13a]. Indeed, to see that such dynamics are relevant for P, consider σ(P) and Hσ(P) given in

the preceding displays. Define the characteristic variety Σ ⇢ T⇤Xcs\0 which is contained in T⇤U . As

(µ, y, 0, η) 62 Σ, we may split Σ = Σ+ t Σ− given by Σ± = Σ \ {±ξ > 0}. At Y remark that

Σ \ T⇤
Y U = {(0, y, ξ, 0) : ξ 6= 0} ⇢ N⇤Y

and recalling the projection κ : T⇤U\0 ! ∂T⇤U define

Γ+ = κ(Σ+ \ Y ), Γ− = κ(Σ− \ Y ).

In [Vas13b, Section 3.2], it is shown that Γ± are respectively a source and a sink for σ(P). In order

to apply Lemmas 6.9 and 6.10, we introduce the principal symbol of the imaginary part of P. By

Remark 6.11, Hσ(P) = Hσ(P⇤) and by Proposition 6.32, P⇤
λ = P−λ̄ hence σ(ImP) = −σ(ImP⇤).

Also, by a direct calculation using the structure of Hσ(P),

hξ + ηi−1Hσ(P) loghξ + ηi = ⌥4, on Γ±. (6.14)

In fact Proposition 6.32 along with (6.13) gives more precisely

ImPλ =
Pλ −P⇤

λ

2i
= 4i(Reλ)∂µ +

Aλ −A−λ̄

2i

however as A is first order, Aλ may be written as the sum of a first order operator independent of λ

and a zeroth order operator (which may depend on λ). Therefore

σ(ImPλ) = −4Reλ ξ. (6.15)

Bringing this altogether in preparation for the proof of Proposition 6.35 we have

Lemma 6.37. For P, Γ+ is a source, while Γ− is a source for −P. In both situations, the threshold

condition, when working on Hs(Xcs; E), is satisfied if

s > −Reλ+ 1
2 .

For P⇤, Γ− is a sink, while Γ+ is a sink for −P⇤. In both situations, the threshold condition, when
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working on H s̃(Xcs; E), is satisfied if

s̃ < Reλ+ 1
2 .

Proof. We explain the first result, all others are similar after taking into account Remark 6.11. On

Γ+, by (6.14) and (6.15),

hξ + ηi−1(σ(ImP) + (s− 1
2 )Hσ(P) loghξ + ηi) = −4(Reλ+ s− 1

2 ).

For this to be negative definite requires precisely that s > −Reλ+ 1
2 .

Lemma 6.38. Restricting to s > −Reλ+ 1
2 , the operators Pλ : X s ! Ys−1 have finite dimensional

kernels.

Proof. It suffices to obtain an estimate, for u 2 X s, of the form

kukHs  C (kPλ ukHs−1 + kψukH−N ) .

for some ψ supported on {µ > − 1
2} and such that ψ = 1 near {µ > − 1

2 + ε}. This is done by writing

u = (ψ− + ψ0 + ψ+)u with the supports of ψ−,ψ0,ψ+ respectively contained in {µ < −ε}, {|µ| <
2ε}, {µ > ε}. The estimate for ψ+u is due to ellipticity of P. The estimate for ψ−u is due to

hyperbolicity which allows us to reduce to the estimate for ψ0u:

kψ−ukHs  C (kPλ ukHs−1 + kψ0ukHs) .

The estimate for ψ0u is obtained by microlocalising. Away from Σ, ellipticity gives the result, while

near Σ, propagation of singularities implies that the norms can be controlled by Γ±. The high

regularity results for Γ+ and Γ− from Lemma 6.9 are applicable as these are sources for P and −P
respectively. Lemma 6.37 ensures that the threshold conditions are satisfied (by hypothesis of this

proposition). The desired estimate is obtained.

Lemma 6.39. Restricting to s > −Reλ+ 1
2 , the operators Pλ : X s ! Ys−1 have finite dimensional

cokernels.

Proof. To show that the range is of finite codimension we study the adjoint operator P⇤. By (6.11)

the dual space of Hs−1(Xcs; E) is Ḣ1−s(Xcs; E) and the dimension of the kernel of P⇤ equals the

dimension of the cokernel of P. It suffices to obtain an estimate of the form

v 2 Ḣ1−s(Xcs; E) \ kerP⇤ =) kvkḢ1−s  CkψvkH−N

with ψ as defined in the previous proof. Again, we use the partition v = (ψ−+ψ0+ψ+)v. Again, the

estimate for ψ+v is due to ellipticity of P⇤. This time, the estimates for ψ−v are immediate due to

hyperbolicity and the requirement at S that v vanish to all orders which implies that v = 0 on {µ < 0}.
The estimate for ψ0v is obtained by microlocalising. (Away from Char(P ), the result is obtained by

ellipticity.) The low regularity results for Γ− and Γ+ from Lemma 6.10 are applicable as these are

sinks for P⇤ and −P⇤ respectively. Lemma 6.37 ensures that the threshold conditions are satisfied.

Therefore there exists A,B 2 Ψ
0(Xcs) with Char(A) \ Γ± = ∅ and WF(B) \ Γ± = ∅ such that

kAψ0vkH1−s  C(kBψ0vkH1−s +kψvkH−N ). As v = 0 on {µ < 0} and is smooth (by ellipticity of P⇤)

on {µ > 0}, we have WF(Bψ0v)\Char(P⇤) = ∅ so microellipticty gives kBψ0vkH1−s  CkψvkH−N .

The desired estimate is obtained.
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Lemma 6.40. For Pλ with λ 2 R acting on Hs(Xcs; E), the kernel of Pλ is trivial for λ 0 1.

Proof. Consider u 2 kerPλ. By the estimate obtained in Lemma 6.38, u 2 C1(Xcs; E). Restricting

our attention to {µ > 0}, Proposition 6.31 gives

ρ−λ−n
2 +m−2J Qλ J

−1ρλ+
n
2 −mu = 0

so defining ũ = J−1ρλ+
n
2 −mu we get Qλ ũ = 0. Or by Proposition 6.23,

(r⇤r+ λ2 +D + G)ũ = 0.

Now D may be bounded (up to a constant) by r (and G by a constant as the curvature is bounded

on X) so we can find C independent of λ such that

|(Qλ ũ, ũ)s| ≥ C−1krũk2s + (λ2 − C)kũk2s

and taking λ 0
p
C shows ũ = 0 on {ρ > 0}. By smoothness, u vanishes on {µ ≥ 0} (and so too do

all its derivates on Y ). Standard hyperbolic estimates give the desired result u = 0 if we can show a

type of unique continuation result that u = 0 on {µ > −ε}.
To this end we work on U2 and consider P written in the following form

Pλ = −µ∂2
µ +∆h + Bλ

for Bλ = −4λ∂µ+Aλ 2 Diff1(U2; End E). Let h·, ·ih,t on T⇤Y ⌦E denote the coupling of the metrics h

on T⇤Y with h·, ·it on E . For ease of presentation, we will assume throughout this demonstration that

all objects are real-valued. Consider u, v 2 C1
c (U2, E) (and we may assume suppu ⇢ (−1, 0] ⇥ Y )

then we have the following formula

hY ru, Y rvih,t = h∆hu, vit + div

where div denotes any term which is of divergence nature on Y , hence vanishes upon integrating over

Y (using dvolh). Indeed such an equation is obtained by considering f 2 C1(Y ) and calculating, at

some value µ,

Z

Y

hY ru, Y rvih,tfdvolh =

Z

Y

hY ru, Y r(fv)ih,t − hY ru, Y rf ⌦ vih,t dvolh

=

Z

Y

(h∆hu, vit + div)f dvolh

where the second term was dealt with in the following way:

Z

Y

hY ru, Y rf ⌦ vih,t dvolh =

Z

Y

X

i

hY reiu, vit trh(ei ⌦ Y rf) dvolh

=

Z

Y

Y r⇤(
X

i

hY reiu, vitei)f dvolh.

With this formula established we define, for given u,

H(µ) = |µ|h∂µu, ∂µuit + hY ru, Y ruih,t + hu, uit
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and on {µ < 0} (using v = ∂µu in the previously established formula)

−∂µH = −2hP u, ∂µuit + h(2Bλ − ∂µ)u, ∂µuit + div− H̃.

where H̃ has the same structure as H but with appearances of h (used to construct the various inner

products) replaced by its Lie derivative, L@µ
h. Recall that suppu ⇢ (−1, 0] ⇥ Y and u is smooth,

hence ∂N
µ u = 0 at {µ = 0} for all N . Continuing to work on {µ < 0},

−∂µ(|µ|−NH) + |µ|−Ndiv

= −N |µ|−N−1H− 2|µ|−N RehPλ u, ∂µuit + |µ|−N h(2Bλ − ∂λ)u, ∂µuit − |µ|−NH̃.

Now suppose that u 2 kerPλ. Fix δ > 0 small and let 0 < ε < δ. We take the previous display and

insert it into the operator
R −"

−δ

R
Y
. . . dµ dvolh. The first term on the left hand side of the previous

display is treated with the fundamental theorem of calculus, the second term vanishes due to the

appearance of
R
Y
div dvolh. We claim the right hand side is negative for large N . Indeed the second

term vanishes as u is assumed in the kernel of Pλ. Considering the third term, h(2Bλ − ∂λ)u, ∂µuit
is quadratic in u, Y ru, and ∂µu hence for N large enough, it may be bounded by N |µ|−1H, thus

the third term’s potential positivity may be absorbed by the negativity of the first term. The fourth

term may be treated in a similar manner upon consideration of the Taylor expansion of h at Y . We

obtain

δ−N

Z

Y

H(−δ) dvolh  ε−N

Z

Y

H(−ε) dvolh.

As u is smooth and vanishes to all orders at µ = 0, we may bound
R
Y
H(−ε) dvolh by C|µ|K on

[−ε, 0] for arbitrarily large K. We can obtain a similar bound for
R
Y
H(−ε) dvolh. In particular, for

K > N . This produces

δ−N

Z

Y

H(−δ) dvolh  Cε−N+K

and letting ε ! 0+ shows
R
Y
H(−δ) dvolh = 0 hence H(−δ) = 0. Doing this for all δ less than the

original δ gives H = 0 near 0. Hence ∂µu and rY u vanish and u = 0 near 0. This suffices to conclude

the proof.

Lemma 6.41. For P⇤
λ with λ 2 R acting on Ḣ1−s(Xcs; E), the kernel of P⇤

λ is trivial for λ 0 1.

Proof. Take λ satisfying the threshold condition and consider v 2 kerP⇤
λ. Hyperbolicity, as used

in Lemma 6.39, implies v = 0 on {µ  0}, and that v is smooth on X due to ellipticity. The

strategy given in Lemma 6.39 implies v 2 Ḣ s̃(Xcs; E) for all s̃ < λ + 1
2 which with λ 0 n implies v

is continuous. By the same logic, again by taking λ sufficiently large, we may assume v is regular

enough to conclude ∂N
µ v|Y = 0 for N  1

2λ. Equivalently, v|X 2 ρ2NC1
even(X; E). Meanwhile, direct

calculations on C1(X; E) give

ρNr⇤rρ−N = r⇤r−N2 −N(∆ log ρ) + 2Nr⇢@⇢
,

ρN d ρ−N = d−N d⇢
⇢ ·,

ρN δ ρ−N = δ+N d⇢
⇢ y
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where ∆ log ρ = n− ( 12
P

ij h
ijρ∂⇢hij) 2 n− ρ2C1

even(X; E). Also for ũ 2 C1
c (X; E) we have

|(2Nr⇢@⇢
ũ, ũ)s| = |N

Z

X

kuk2s∂⇢
⇣

d⇢ dvolh
⇢n

⌘
|  CNkuk2s.

So consider the difference operator (Qλ −N2 + 2Nr⇢@⇢
)− ρN Qλ ρ

−N acting on ũ 2 C1
c (X; E). All

terms are of order N and of differential order 0. Similar to the previous proof (and using the preceding

remark in order to treat the term involving Nr⇢@⇢
) we may obtain

|(ρN Qλ ρ
−N ũ, ũ)s| ≥ C−1krũk2s + (λ2 −N2 − CN)kũk2s

and provided N 0 C, the final term in the preceding display may be written with coefficient λ2−2N2.

Set N = b 1
2λc with λ 0 2C. So that

|(ρN Qλ ρ
−N ũ, ũ)s| ≥ C−1krũk2s + 1

2λ
2kũk2s.

Considering the Hilbert space {w 2 L2
s(X; E) : B(w,w) < 1} with B(w,w) = kρN Qλ ρ

−Nwk2s < 1,

the previous inequality shows that w 7! (w, f̃)s is a linear functional for f̃ 2 L2
s(X; E) so by the Riesz

representation theorem, there exists ũ 2 L2
s(X; E) with (ρN Qλ ρ

−Nw, ũ)s = (w, f̃)s for all w. To

show v vanishes on X, it suffices to show (f, v)t = 0 for all f 2 C1
c (X; E). Let f 2 C1

c (X; E) and

f̃ = ρλ+
n
2 −m+2J−1ρ−Nf 2 C1

c (X; E)

Then the preceding argument gives ũ 2 L2
s(X; E) such that ρ−N Qλ ρ

N ũ = f̃ hence Pλ u = f where

u = Jρ−λ−n
2 +mρN ũ 2 ρ−

1
2λ+1L2

t (X; E)

(the inclusion is a consequence of Lemma 6.2). This gives u enough regularity to perform the following

pairing which provides the desired result

(f, v)t = (Pλ u, v)t = (u,P⇤
λ v)t = (u, 0)t = 0.

6.6 Proofs of Theorems 6, 7, 8, and 9

Theorem 6. Let (Xn+1, g) be even asymptotically hyperbolic. Then the inverse of

Qλ acting on L2
s(X; E)

written Q−1
λ has a meromorphic continuation from Reλ 0 1 to C,

Q−1
λ : C1

c (X; E) ! ρλ+
n
2 −m

mM

k=0

ρ−2kC1
even(X; E(k))

with finite rank poles.

Proof. Proposition 6.31 gives

Qλ = J−1ρλ+
n
2 −m+2 Pλ ρ

−λ−n
2 +mJ

By Propositions 6.35 and 6.36, there is a meromorphic family P−1 on C mapping Ċ1(X; E) to
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C1(Xcs; E). Hence an extension of Q−1 from Reλ 0 1 to all of C as a meromorphic family is given

by

Q−1
λ = J−1ρλ+

n
2 −mrX P−1

λ ρ−λ−n
2 +m−2J

where rX is the restriction of sections above Xcs to sections above X. The previous display implies

Q−1
λ : Ċ1(X; E) ! ρλ+

n
2 −mJ−1C1

even(X; E)

and for f 2 Ċ1(X; E), we may write near ∂X

Q−1
λ f |U = µ

λ
2 +n

4 −m
2 J−1

mX

k=0

kX

`=0

(dµ)k−` · ũ(`), ũ(`) 2 C1
even([0, 1)⇥ Y ; Sym`T⇤Y )

The proof of Lemma 6.2 shows that the part of J (or J−1) which sends E(k) to E(k+p) for 0  p  m−k

is, up to a constant, (dµµ )p. Therefore,

Q−1
λ f |U 2 µ

λ
2 +n

4 −m
2

mM

k=0

m−kM

p=0

(dµµ )p ·
kM

`=0

(dµ)k−` ·C1
even([0, 1)⇥ Y ; Sym`T⇤Y )

hence on X,

Q−1
λ f 2 ρλ+

n
2 −m

mM

k=0

m−kM

p=0

ρ−2pC1
even(X; E(k+p))

which is contained in ρλ+
n
2 −m

Lm
k=0 ρ

−2kC1
even(X; E(k)).

Remark 6.42. Suppose that, for f 2 Ċ1(X; E), it were possible to write in the preceeding proof that

near ∂X

Q−1
λ f |U = ρλ+

n
2 −mJ−1ũ(m), ũ(m) 2 C1

even(U ; E(m))

then as J−1 acts as the identity upon restriction to E(m), we would obtain

Q−1
λ f 2 ρλ+

n
2 −mC1

even(X; E(m))

This will be useful for the asymptotics given in Theorems 8 and 9.

Theorem 7. Let (Xn+1, g) be even asymptotically hyperbolic. Then the inverse of

Qλ acting on L2
s(X; E) \ ker(Λ⌘ ◦π⇤

s )

written Q−1
λ has a meromorphic continuation from Reλ 0 1 to C,

Q−1
λ : C1

c (X; E) \ ker(Λ⌘ ◦π⇤
s ) ! ρλ+

n
2 −m

 
mM

k=0

ρ−2kC1
even(X; E(k))

!
\ ker(Λ⌘ ◦π⇤

s )

with finite rank poles.
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Proof. The meromorphic inverse of Qλ is precisely that given in the preceding proof

Q−1
λ = J−1ρλ+

n
2 −mrX P−1

λ ρ−λ−n
2 +m−2J.

All we must check is, given f 2 Ċ1(X; E) \ ker(Λs−2⌘ ◦ π⇤
s ), that the resulting section u = Q−1

λ f is

indeed trace-free with respect to the ambient trace operator. To this end, we first lift the equation

Qλ u = f to an equation on M involving Q giving

sλ Q s−λ (π⇤
su) = π⇤

sf.

We apply Λs−2⌘ to obtain an equation on F (m−2). Using the hypothesis Λs−2⌘π
⇤
sf = 0 and Lemma 6.16

to commute s−2Λs−2⌘ with Q gives

s2sλ Q s−λs−2Λs−2⌘ (π
⇤
su) = 0.

Freezing this differential equation at s = 0 with πs=0 to obtain the indicial family of Q provides the

equation

Is(Q,λ+ 2)πs=0Λs−2⌘ (π
⇤
su) = 0.

Section 6.5 ensures that for Reλ 0 1, this operator has trival kernel hence

πs=0Λs−2⌘ (π
⇤
su) = 0

and u 2 ker(Λs−2⌘ ◦ π⇤
s ) as required.

We are finally in a position to consider the original problem of proving Theorems 8 and 9. We

prove these theorems simulaneously.

Theorem 8. Let (Xn+1, g) be even asymptotically hyperbolic and Einstein. Then the inverse of

∆− n(n− 8)

4
+ λ2 acting on L2(X; E(2)) \ kerΛ\ ker δ

written Rλ has a meromorphic continuation from Reλ 0 1 to C,

Rλ : C1
c (X; E(2)) \ kerΛ\ ker δ ! ρλ+

n
2 −2C1

even(X; E(2)) \ kerΛ\ ker δ

with finite rank poles.

Theorem 9. Let (Xn+1, g) be a convex cocompact quotient of Hn+1. Then the inverse of

∆− n2 − 4m(n+m− 2)

4
+ λ2 acting on L2(X; E(m)) \ kerΛ\ ker δ

written Rλ has a meromorphic continuation from Reλ 0 1 to C,

Rλ : C1
c (X; E(m)) \ kerΛ\ ker δ ! ρλ+

n
2 −mC1

even(X; E(m)) \ kerΛ\ ker δ

with finite rank poles.
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Proof. Let

f 2 Ċ1(X; E(m)) \ kerΛ\ ker δ

and define, using Theorem 6,

u =

mX

k=0

u(k) = Q−1
λ f, u(k) 2 ρλ+

n
2 −m−2kC1

even(X; E(k)).

Note that the growth near ∂X of u(k) and δ u(k) may be controlled by the size of Reλ hence for

Reλ 0 1 we may assume that they are sections of L2
s(X; E(k)) and L2

s(X; E(k−1)) respectively. We

claim, for Reλ 0 1 and | Imλ| ⌧ 1, that

u = u(m) 2 ρλ+
n
2 −mC1

even(X; E(k)) \ kerΛ\ ker δ

at which point the equation Qλ u = f decouples giving

(∆ + λ2 − cm)u = f

and by uniqueness of the L2 inverse of the Laplacian, we have the formula, for Reλ 0 1 and

| Imλ| ⌧ 1,

(∆ + λ2 − cm)−1 = J−1ρλ+
n
2 −mrX P−1

λ ρ−λ−n
2 +m−2J.

with the right hand side giving the meromorphic extension of the resolvent announced in the theorems.

To this end take Reλ 0 1 and | Imλ| ⌧ 1. By Theorem 7, we deduce u is trace-free with respect

to the ambient trace operator thus Qλ takes the form detailed in Proposition 6.25. We begin by

remarking, that while working on L2
s(X; E(k)) if R(k)

λ is any operator of the form (∆+ λ2 +O(1))−1

(which has order O(|λ|−2), then the operator dR(k)
λ δ has norm of order O(1). We define R(0)

λ =

(∆+ λ2 − c00)
−1 and for 0 < k < m,

R(k)
λ =

⇣
∆+ λ2 − c0k + 4(m− k + 1) dR(k−1)

λ δ
⌘−1

.

The component of Qλ u = f in E(0) reads,

(∆ + λ2 − c00)u
(0) = 2

p
m δ u(1)

hence u(0) = 2
p
mR(0)

λ δ u(1). The component of Qλ u = f in E(1) now reads,

(∆ + λ2 − c01 + 4m dR(0)
λ δ)u(1) = 2

p
m− 1 δ u(2)

hence u(1) = 2
p
m− 1R(1)

λ δ u(2). Continuing, we obtain on E(m),

(∆ + λ2 − cm + 4dR(m−1)
λ δ)u(m) = f.

Applying the divergence, we recall Lemma 6.13. For this, we must assume that if m = 2 then X has
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parallel Ricci curvature, and if m ≥ 3 then X is locally isomorphic to H
n+1. We obtain,

(∆ + λ2 − cm + 4 δ dR(m−1)
λ ) δ u(m) = 0.

Again, δ dR(m−1)
λ has norm of order O(1) so we may invert this equation and deduce that δ u(m) = 0.

This implies, for all k < m,

u(k) = 2
p
m− kR(k)

λ δ uk+1 = 0.

Therefore u = u(m). By Remark 6.42, u 2 ρλ+
n
2 −mC1

even(X; E(m)). By Theorem 7, u 2 kerΛ. And

as previously mentioned u 2 ker δ. This completes the proof.

6.7 Symmetric Cotensors of Rank 2

This section details the results announced in Sections 6.3 and 6.6 for rank 2 symmetric cotensors. In

this low rank, writing the action of the d’Alembertian, or its conjugation Q, on F = Sym2T⇤M is

tractable.

The operator Q for 2-cotensors

Using the decomposition given by the Minkowksi scale, we write

u =
h
1 ds

s · 1p
2
(dss )

2
i
2
64

u(2)

u(1)

u(0)

3
75 , u 2 C1(M ;F), u(k) 2 C1(M ; E(k))

The change of basis matrix J takes the form

J =

2
64

1 d⇢
⇢ · 1p

2
(d⇢⇢ )2

0 1
p
2d⇢

⇢ ·
0 0 1

3
75 .

Propositions 6.17 and 6.21 become

Proposition 6.43. For u 2 C1(M ;F) decomposed relative to the Minkowski scale (6.1), the conju-

gated d’Alembertian Q is given by

Qu =
h
1 ds

s · 1p
2
(dss )

2
i
2
64

∆+ (s∂s)
2 − c2 − LΛ 2d −

p
2L

−2 δ ∆+ (s∂s)
2 − c1 2

p
2 d

−
p
2Λ −2

p
2 δ ∆+ (s∂s)

2 − c0

3
75

2
64

u(2)

u(1)

u(0)

3
75

with constants

c2 = 1
4n(n− 8), c1 = 1

4 (n
2 + 16), c0 = 1

4 (n
2 + 8n+ 8).
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If, furthermore, u is trace-free with respect to the trace operator Λs−2⌘, then Λu(2) = −
p
2u(0), and

Qu =
h
1 ds

s · 1p
2
(dss )

2
i
2
64

∆+ (s∂s)
2 − c02 2 d 0

−2 δ ∆+ (s∂s)
2 − c01 2

p
2 d

0 −2
p
2 δ ∆+ (s∂s)

2 − c00

3
75

2
64

u(2)

u(1)

u(0)

3
75

with modified constants

c02 = c2, c01 = c1, c00 = 1
4 (n

2 + 8n).

The indicial family of Q for 2-cotensors

Propositions 6.23 and 6.25 become

Proposition 6.44. For u =
P2

k=0 u
(k) 2 C1(X; E) the operator Q is given by

Qλ u =

2
64

∆+ λ2 − c2 − LΛ 2d −
p
2L

−2 δ ∆+ λ2 − c1 2
p
2 d

−
p
2Λ −2

p
2 δ ∆+ λ2 − c0

3
75

2
64

u(2)

u(1)

u(0)

3
75

and if, furthermore, u 2 ker(Λs−2⌘ ◦ π⇤
s ) then

Qλ u =

2
64

∆+ λ2 − c02 2 d 0

−2 δ ∆+ λ2 − c01 2
p
2 d

0 −2
p
2 δ ∆+ λ2 − c00

3
75

2
64

u(2)

u(1)

u(0)

3
75

with previously announced constants.

Illustration of proof for 2-cotensors

Let f 2 Ċ1(X; E(2)) \ kerΛ\ ker δ and define

2
64

u(2)

u(1)

u(0)

3
75 = J−1ρλ+

n
2 −2rX P−1 ρ−λ−n

2 J

2
64

f

0

0

3
75

Take Reλ 0 1 and | Imλ| ⌧ 1. By Theorem 6

u(k) 2 ρλ+
n
2 −2−2kC1

even(X; E(k))

and by Proposition 6.31, Qλ u = f . Theorem 7 forces

Λs−2⌘

⇣
u(2) + ds

s ·u(1) + 1p
2
(dss )

2.u(0)
⌘
= 0

hence Λu(2) = −
p
2u(0). And Qλ u = f reads explicitly

2
64

∆+ λ2 − c2 2 d 0

−2 δ ∆+ λ2 − c1 2
p
2 d

0 −2
p
2 δ ∆+ λ2 − c00

3
75

2
64

u(2)

u(1)

u(0)

3
75 =

2
64

f

0

0

3
75
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Introducing the resolvents R(0)
λ and R(1)

λ provides

2
64

∆+ λ2 − c2 + 4dR(1)
λ δ 0 0

−2 δ ∆+ λ2 − c1 + 8dR(0)
λ δ 0

0 −2
p
2 δ ∆+ λ2 − c00

3
75

2
64

u(2)

u(1)

u(0)

3
75 =

2
64

f

0

0

3
75

and applying δ assuming that X is Einstein provides the homogeneous equation

2
64

∆+ λ2 − c2 + 4 δ dR(1)
λ 0 0

−2 δ ∆+ λ2 − c1 + 8 δ dR(0)
λ 0

0 −2
p
2 δ ∆+ λ2 − c00

3
75

2
64

δ u(2)

δ u(1)

δ u(0)

3
75 =

2
64

0

0

0

3
75 .

The lower triangular nature of this system implies δ u(k) = 0 for all k. Hence the system Qλ u = f

collapses. So u(0) and u(1) vanish and by Remark 6.42,

u = u(2) 2 ρλ+
n
2 −2C1

even(X; E(k))

giving (∆ + λ2 − c2)u = f .

6.8 High Energy Estimates of Theorem 10

This chapter shows the meromorphic continuation of the resolvent of the Laplacian on symmetric ten-

sors using microlocal techniques. This direction means one does not talk about introducing complex

absorbers but rather studies the problem on a manifold with boundary. If one were to follow more

closely the track established by Vasy, one obtains semiclassical estimates. We state these estimates.

On X, whose smooth structure at infinity is the even structure given by µ rather than ρ, we have

the semiclassical spaces Hs
|λ|−1(X; E).

Theorem 10. Suppose that X is an even asymptotically hyperbolic manifold which is non-trapping.

Then the meromorphic continuation, written Q−1
λ of the inverse of Qλ initially acting on L2

s(X; E)
has non-trapping estimates holding in every strip |Reλ| < C, | Imλ| 0 0: for s > 1

2 + C

kρ−λ−n
2 +m Q−1

λ fkHs

|λ|−1 (X;E)  C|λ|−1kρ−λ−n
2 +m−2fkHs−1

|λ|−1 (X;E).

If X is furthermore Einstein, then restricting to symmetric 2-cotensors, the meromorphic continuation

Rλ of the inverse of

∆− n(n− 8)

4
+ λ2

initially acting on L2(X; E(2))\kerΛ\ ker δ has non-trapping estimates holding in every strip |Reλ| <
C, | Imλ| 0 0: for s > 1

2 + C

kρ−λ−n
2 +2 Rλ fkHs

|λ|−1 (X;E(2))  C|λ|−1kρ−λ−n
2 fkHs−1

|λ|−1 (X;E(2)).
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7. A Quantum-Classical Correspondence

This chapter is structured as follows. Section 7.1 reconsiders hyperbolic space. As this chapter

considers strictly the constant curvature case, we introduce numerous objects not present in the

setting of asymptotically hyperbolic manifolds, in particular its isometry group. All these objects are

present in the original article showing a quantum-classical correspondence [DFG15] however notation

has been significantly altered to be consistent both with this thesis and with a more Lie theoretic

notation. Section 7.2 recalls a key result providing a definition of Ruelle resonances in open systems

[DG16]. It also recalls the band structure of Ruelle resonances due to the Lie algebra commutation

relations. Section 7.3 reproves a result on inversion of horosphere operators present in [DFG15,

Lemma 4.2]. Proposition 7.10 restates this inversion emphasising the polynomial structure which

allows the inversion result to be used in the presence of Jordan blocks. Section 7.4 defines quantum

resonances as poles of the meromorphic inverse of the Laplacian obtained in the preceding chapter.

Crucially, this section characterises in Lemma 7.12 the asymptotic structure of generalised quantum

resonant states. It is an adaption of [GHW16, Proposition 4.1] however it also requires a subtle

application of the structure of the operator Qλ introduced in the previous chapter in order to deal

with issues surrounding the divergence-free requirement of tensor valued resonant states. Section 7.5

introduces the appropriate boundary distributions and shows that the Poisson operator remains an

isomorphism in the convex cocompact setting. Finally, Section 7.6 provides the proof of Theorem 11.

7.1 Hyperbolic Space

We recall the hyperbolic space as a submanifold of Minkowski space, introducing structures present

in this constant curvature case. Enumerate the canonical basis of R1,n+1 by e0, . . . en+1 and provide

R
1,n+1 with the indefinite inner product

hx, yi := −x0y0 +

n+1X

i=1

xiyi.

Hyperbolic space, Hn+1, a submanifold of R1,n+1, is

H
n+1 :=

{
x 2 R

1,n+1
∣∣ hx, xi = −1, x0 > 0

 

supplied with the Riemannian metric, g, induced from restriction of h·, ·i and Levi-Civita connection

r. The unit tangent bundle is

SHn+1 :=
{
(x, ξ)

∣∣x 2 H
n+1, ξ 2 R

1,n+1, hξ, ξi = 1, hx, ξi = 0
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Define the projection

πS : SHn+1 ! H
n+1 : (x, ξ) 7! x

and denote by

ϕt :

(
SHn+1 ! SHn+1

(x, ξ) 7! (x cosh t+ ξ sinh t, x sinh t+ ξ cosh t)

the geodesic flow for t 2 R with generator denoted A. That is,

A(x,⇠) := (ξ, x).

The tangent space TSHn+1 at (x, ξ) may be written

T(x,⇠)SH
n+1 :=

{
(vx, v⇠) 2 (R1,n+1)2

∣∣ hx, vxi = hξ, v⇠i = hx, v⇠i+ hξ, vxi = 0
 
.

It has a smooth decomposition, invariant under ϕt⇤

TSHn+1 = En ⊕ Es ⊕ Eu

where

En
(x,⇠) := { (vx, v⇠) | (vx, v⇠) 2 span{(ξ, x)}} ,

Es
(x,⇠) := { (v,−v) | hx, vi = hξ, vi = 0} ,

Eu
(x,⇠) := { (v, v) | hx, vi = hξ, vi = 0}

are respectively called the neutral, stable, unstable bundles (of ϕt⇤). (The latter two also being

tangent to the positive and negative horospheres.) The dual space has a similar decomposition

T⇤SHn+1 = E⇤n ⊕ E⇤s ⊕ E⇤u

where E⇤n, E⇤s, E⇤u are respectively the dual spaces to En, Eu, Es. (They are the neutral, stable,

unstable bundles of ϕ⇤
−t.) Explicitly

E⇤n
(x,⇠) := { (vx, v⇠) | (vx, v⇠) 2 span{(ξ, x)}} ,

E⇤s
(x,⇠) := { (v, v) | hx, vi = hξ, vi = 0} ,

E⇤u
(x,⇠) := { (v,−v) | hx, vi = hξ, vi = 0}

so we have canonical identifications

En⇤ ' En ' span{A}, E⇤s ' Eu, E⇤u ' Es.

Consider the pullback bundle π⇤
STH

n+1 ! SHn+1 equipped with the pullback metric, also denoted

g. Define

E :=
{
(x, ξ, v) 2 SHn+1 ⇥ TxH

n+1
∣∣ hξ, vi = 0
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and

F :=
{
(x, ξ, v) 2 SHn+1 ⇥ TxH

n+1
∣∣ v 2 span{ξ}

 

so that

π⇤
STH

n+1 = E ⊕ F .

Appealing to Appendix A, we obtain the bundles SymmE⇤ above SHn+1 and Lefschetz-type operators

L,Λ.

There are canonical identifications from E to both Es and Eu, which we denote by θ±:

θ+ : E ! Es :

θ− : E ! Eu :
θ±(x,⇠)(v) := (v,⌥v).

Isometry group

The group SO(1, n+ 1) of linear transformations of R1,n+1 preserving h·, ·i provides the group

G := SO0(1, n+ 1),

the connected component in SO(1, n+1) of the identity. Denote by γ ·x, multiplication of x 2 R
1,n+1

by γ 2 G. Denote by Eij is the elementary matrix such that Eijek = eiδjk and define the following

matrices

Rij := Eij − Eji, Pk := E0k + Ek0

for 1  i, j, k  n+ 1. The Lie algebra, g, of G is then identified with

g = k+ p

where

k := span{Rij}1i,jn+1 ' son+1, p := span{Pk}1kn+1.

An alternative description of g may be obtained by defining

A := Pn+1, N±
k := Pk ±Rn+1,k

for 1  k  n. Then

g = m+ a+ n+ + n−

where a := span{A} and

m := span{Rij}1i,jn ' son, n± := span{N±
k }1kn.

The matrices introduced enjoy the following commutator relations, for 1  i, j  n

[A,N±
i ] = ±N±

i , [N±
i , N±

j ] = 0, [N+
i , N−

j ] = 2Aδij + 2Rij ,
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while

[Rij , A] = 0, [Rij , N
±
k ] = N±

i δjk −N±
j δik.

Remark 7.1. If we define a? := p/a whence a? ' {Pk}1kn then we may obtain identifications

θ± : a? ! n± : Pk 7! N±
k .

Elements of the Lie algebra g are identified with left invariant vector fields on G. The Lie algebras

k,m give Lie groups K, M considered subgroups of G. Now G acts transitively on both H
n+1 and

SHn+1 and the respective isotropy groups, for e0 2 H
n+1 and (e0, en+1) 2 SHn+1, are precisely K

and M . Define projections

πK : G ! H
n+1 : γ 7! γ · e0,

πM : G ! SHn+1 : γ 7! (γ · e0, γ · en+1).

As A commutes with M , it descends to a vector field on SHn+1 via πM⇤. It agrees with the generator

of the geodesic flow justifying the notation. Similarly, the spans of {N+
k }1kn and {N−

k }1kn are

each stable under commutation with M and via πM⇤ are respectively identified with the stable and

unstable subbundles Es, Eu

Equivariant sections

It is clear that distributions on SHn+1 may be considered as distributions on G which are annihilated

by M . We denote such distributions

D0(G)/m := {u 2 D0(G) | Riju = 0, 1  i, j  n} .

This is true for more general sections, in particular we have

Lemma 7.2. Sections D0(SHn+1; SymmE⇤) are equivalent to equivariant sections

D0(G; Symm
R

n)/m :=

(
X

K2A m

uKeK

∣∣∣∣∣ RijuK =

kX

`=1

(
u{k`!i}Kδjk`

− u{k`!j}Kδik`

)
, 1  i, j  n

)
.

Proof. It suffices to consider the case m = 1. Demanding that u =
Pn

k=1 ukek corresponds to a

section of E⇤ requires precisely that

0 = Riju =

nX

k=1

(Rijuk)ek + uk(Rijek)

=

nX

k=1

(Rijuk)ek + uk(eiδjk − ejδik)

for 1  i, j  n. Applying ek y to this equation recovers Rijuk = uiδjk − ujδik.

A similar statement may be made for other (not necessarily symmetric) tensor bundles of E .
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Differential operators on E

We introduce several operators on (sections of tensor bundles of) E . As E may be viewed as a

subbundle of R1,n+1 above SHn+1, let rflat denote the induced connection (upon projection onto E
of the flat connection on R

1,n+1). Now

rflat : D0(SHn+1; E⇤) ! D0(SHn+1; T⇤SHn+1 ⌦ E⇤)

however if we restrict to differentiating in either only the stable or only the unstable bundles Es, Eu,

via composition with θ±, we obtain horosphere operators r± := rflat
θ±

and in general we obtain

r± : D0(SHn+1;⌦mE⇤) ! D0(SHn+1;⌦m+1E⇤).

Symmetrising this operator we get the (positive and negative) horosphere symmetric derivatives and

their divergences

d± : D0(SHn+1; SymmE⇤) ! D0(SHn+1; Symm+1E⇤),

δ± : D0(SHn+1; Symm+1E⇤) ! D0(SHn+1; SymmE⇤),

as well as the horophere Laplacians ∆± := [δ±, d±].

Considering these operators acting on equivariant sections of the corresponding vector bundles we

have

r± =

nX

i=1

ek ⌦ LN±
k
: D0(G;⌦m

R
n)/m ! D0(G;⌦m+1

R
n)/m

where L is the Lie derivative. (The appearance of merely the Lie derivative is because r± uses rflat

and N±
i ej = −(e0 + en+1)δij 62 R

n for 1  i, j  n.) Similarly

d± =

nX

k=1

ek · LN±
k
, δ± = −

nX

k=1

ek yLN±
k
, ∆± = −

nX

k=1

LN±
k
LN±

k

on D0(G; Symm
R

n)/m.

Continuing to consider equivariant sections we note that LA acts as a first order differential

operator D0(G; Symm
R

n)/m due to the commutator relations (A commutes with M). As Aei = 0,

there will be no ambiguity in denoting this operator simply A. From the perspective of sections

directly on SymmE we have

A := (π⇤
Sr)A : D0(SHn+1; SymmE⇤) ! D0(SHn+1; SymmE⇤)

since πS⇤A = ξ at (x, ξ) 2 SHn+1.

There are numerous useful relations between these operators. On D0(SHn+1) the operators (r±)m

and (d±)m agree since [N±
i , N±

j ] = 0. As in Appendix A, there are commutation relations with the

Lefschetz-type operators

[Λ, δ±] = 0 = [L, d±], [Λ, d±] = −2 δ±, [L, δ±] = 2 d± .
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Moreover, these operators have simple commutation relations with A

[A, d±] = ± d±, [A, δ±] = ± δ±, [A,∆±] = ±2∆±.

Several operators on hyperbolic space

The metric on THn+1 allows the standard constructions from Appendix A. We obtain the rough

Laplacian

r⇤r : C1(Hn+1; SymmT⇤
H

n+1) ! C1(Hn+1; SymmT⇤
H

n+1)

which will be more convenient in this chapter than the Lichnerowicz Laplacian, however we record

that on H
n+1, the curvature operator takes the constant value q(R) = −m(n+m−1). The divergence

is

δ : C1(Hn+1; SymmT⇤
H

n+1) ! C1(Hn+1; Symm−1T⇤
H

n+1)

and we continue to use the notation L,Λ for the Lefschetz-type operators.

Conformal boundary

Hyperbolic space is projectively compact, and we identify the boundary of its compactification with

the forward light cone

{
(t, ty)

∣∣ t 2 R
+, y 2 S

n
 
⇢ R

1,n+1.

Now x± ξ belongs to this light cone for (x, ξ) 2 SHn+1 and this defines maps

Φ± : SHn+1 ! R
+, B± : SHn+1 ! S

n,

by declaring

x± ξ = Φ±(x, ξ)(1, B±(x, ξ)).

The Poisson kernel is

P :

(
H

n+1 ⇥ S
n ! R

+

(x, y) 7! −hx, e0 + yi−1

which permits the definition of

ξ± :

(
H

n+1 ⇥ S
n ! SHn+1

(x, y) 7! (x,⌥x± P (x, y)(e0 + y))

This gives an inverse to B±(x, ·) in the sense that B±(x, ξ±(x, ν)) = ν (implying that B± is a

submersion). Moreover,

Φ±(x, ξ±(x, y)) = P (x, y)
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The isometry group G acts on conformal infinity. There are maps

T : G⇥ S
n ! R

+, U : G⇥ S
n ! S

n,

defined by

γ · (1, y) = Tγ(y)(1, Uγ(y)).

Useful formulae are

A ◦ Φ± = ±Φ±, N±
k (Φ± ◦ πM ) = 0, B± = lim

t!±1
πS ◦ ϕt,

and

B±(γ · (x, ξ)) = Uγ(B±(x, ξ)), Φ±(γ · (x, ξ)) = Tγ(B±(x, ξ))Φ±(x, ξ).

We introduce the map

τ± :

(
E(x,⇠) ! Ty:=B±(x,⇠)S

n

v 7! v + hv, e0ie0 − hv, yiy

which isometrically identifies E(x,⇠) with TB±(x,⇠)S
n. It has an inverse

τ±
−1 :

(
TB±(x,⇠)S

n ! E(x,⇠)
ζ 7! ζ + hζ, xi(x± ξ)

and the adjoint of τ± is denoted τ±⇤. Restricting our attention to τ− we note the following equivari-

ance under G

⇣
τ−γ·(x,⇠)

⌘−1 ⇣
Uγ⇤|B−(x,⇠)(ζ)

⌘
=

1

Tγ(B−(x, ξ))
γ ·

✓⇣
τ−(x,⇠)

⌘−1

(ζ)

◆

for ζ 2 TB±(x,⇠)S
n. The identification offered by τ− permits a second important identification of

distributions in the kernel of both A and r− with boundary distributions. Define the operator

Q− :

(
D0(Sn;⌦mT⇤

S
n) ! D0(SHn+1;⌦mE⇤)

ω 7! (⌦m(τ⇤−)).ω ◦B−

which restricts to a linear isomorphism

Q− : D0(Sn; Symm
0 T⇤

S
n) ! D0(SHn+1; Symm

0 E⇤) \ kerA \ kerr−.

Moreover, suppose we define

u := (Φ−)
λQ−ω, λ 2 C,ω 2 D0(Sn; Symm

0 T⇤
S
n),

then u enjoys the following equivariance property for γ 2 G

(
γ⇤(Φ−)

λQ−ω
)
(x,⇠)

(η1, . . . , ηm) = (Φ−)
λ
(x,⇠)

(
(Tγ)

λ+mU⇤
γω

)
B−(x,⇠)

(τ−η1, . . . , τ−ηm)
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where ηi 2 E(x,⇠). So γ⇤u = u if and only if, for y 2 S
n,

U⇤
γω(y) = Tγ(y)

−λ−mω(y).

Upper half-space model

Hyperbolic space is diffeomorphic to the upper half-space model Un+1 := R
+ ⇥ R

n. We take its

closure Un+1 by considering U
n+1 ⇢ R

n+1. Using coordinates x = (ρ, y) for ρ 2 R
+, y 2 R

n the

metric takes the form

g =
dρ2 + h

ρ2

where h is now the standard metric on R
n.

In this model of hyperbolic space, the map τ−1
− has been explicitly calculated in [GMP10,

Appendix A] under the guise of parallel transport in the 0-calculus of Melrose. For y0 2 R
n,

x = (ρ, y) 2 U
n+1, we write ξ− := ξ−(x, y0) and r := y − y0. Then

τ−1
− :

(
Ty0R

n ! E(x,⇠−)

∂yi
7! ρ

⇣
−2⇢2rj
⇢2+r2

d⇢
⇢ +

Pn
j=1

⇣
δij − 2rirj

⇢2+r2

⌘
∂yj

⌘

Therefore τ⇤−dyi = ρ−1dyi if r = 0 and in general, for fixed y0 and variable x,

τ⇤−dyi = ρ−1

0
@b ρdρ+

nX

j=1

bijdyj

1
A (7.1)

for b, bij 2 C1
even(U

n+1).

The Poisson kernel reads (continuing to use the notation from the previous paragraph)

P (x, y0) =
ρ

ρ2 + r2
(1 + |y|2)

and so ρ−1P (x, y0) is even in ρ and, for fixed y0, is smooth on Un+1 away from x = (0, y0).

Convex cocompact quotients

Consider a discrete subgroup Γ of G = SO0(1, n+1) which does not contain elliptic elements. Denote

by KΓ the limit set of Γ. Via the compactification Hn+1 = H
n+1 t S

n, the limit set is the the set

of accumulation points of an arbitrary Γ-orbit, and is a closed subset of Sn. The hyperbolic convex

hull of all geodesics in H
n+1 whose two endpoints both belong to KΓ is termed the convex hull. The

quotient of the convex hull by Γ gives the convex core of Γ\Hn+1, that is, the smallest convex subset

of Γ\Hn+1 containing all closed geodesics of Γ\Hn+1. The group Γ is called convex cocompact if its

associated convex core is compact.

Let Γ be convex cocompact and define X := Γ\Hn+1 denoting the canonical projection by πΓ :

H
n+1 ! X. Then SX = Γ\SHn+1 (with canonical projection also denoted by πΓ). The constructions

of the previous subsections descend to constructions on X and SX.

Furthermore, denote by ΩΓ ⇢ S
n the discontinuity set of Γ. Then ΩΓ = S

n\KΓ and X =

Γ\(Hn+1 t ΩΓ). Denote by δΓ the Hausdorff dimension of the limit set KΓ.
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We introduce the outgoing tail K+ ⇢ SX as

K+ := πΓ

(
B−1

− (KΓ)
)

and remark that this may be interpreted as the set of points (x, ξ) 2 SX such that πS(ϕt(x, ξ)) does

not tend to ∂X as t ! −1.

Using the outgoing tail, we define the following restriction of the unstable dual bundle

E⇤
+ := E⇤u|K+

.

7.2 Ruelle Resonances

The operator A acts on SymmE⇤ above SX. For λ 2 C with Reλ > 0, the operator (A+ λ) has an

inverse acting on L2(SX; SymmE⇤). By [DG16], this inverse admits a meromorphic extension to C

as a family of bounded operators

RA,m(λ) : C1
c (SX; SymmE⇤) ! D0(SX; SymmE⇤).

Near a pole λ0, called a Ruelle resonance (of tensor order m), the resolvent may be expressed as

RA,m(λ) = RHol
A,m(λ) +

J(λ0)X

j=1

(−1)j−1(A+ λ0)
j−1

Qλ0

A,m

(λ− λ0)−j

where the image of the finite rank projector
Qλ0

A,m is called the space of generalised Ruelle resonant

states (of tensor order m). It is denoted

ResA,m(λ0) := Im
⇣Qλ0

A,m

⌘

=
n
u 2 D0(SX; SymmE⇤)

∣∣∣ supp(u) ⇢ K+, WF(u) ⇢ E⇤
+, (A+ λ0)

J(λ0)u = 0
o

We filter this space by declaring

ResjA,m(λ0) :=
{
u 2 ResA,m(λ0)

∣∣ (A+ λ0)
ju = 0

 

saying that such states are of Jordan order (at most) j. Then

ResA,m(λ0) = [j≥1Res
j
A,m(λ0)

and the space of Ruelle resonant states is Res1A,m(λ0).

Band structure

Consider now A acting on Sym0E⇤. Let λ0 be a Ruelle resonance (of tensor order 0) and consider

(a non-zero) u 2 ResA,0(λ0). As Ruelle resonances (of arbitrary tensor order) are contained in

{λ 2 C | Reλ  0}, the commutator relation [A, d−] = − d− implies that there exists m 2 N0 such

that (d−)mu 6= 0 and (d−)m+1u = 0. We say that u is in the mth band. Precisely, we define

V j
m(λ0) :=

n
u 2 ResjA,0(λ0)

∣∣∣ u 2 ker(d−)
m+1

o
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The mth band may then be considered the quotient V j
m(λ0)/V

j
m−1(λ0) whence

ResjA,0(λ0) =
M

m2N0

⇣
V j
m(λ0)/V

j
m−1(λ0)

⌘
. (7.2)

The extent to which this band may be identified with Ruelle resonances of tensor order m is contained

in

Proposition 7.3. Consider λ0 2 C, a Ruelle resonance with Reλ0  −1. Consider also m 2 N such

that Reλ0 +m  0. Further, exclude the case m even with λ0 +m = 0. Under these assumptions,

we obtain the following short exact sequence

0 −! V j
m−1(λ0) −! V j

m(λ0)
(d−)m−−−−! ResjA,m(λ0 +m) \ kerr− −! 0

Proof. Denote by W j
m(λ0 +m) the third space in the sequence ResjA,m(λ0 +m) \ kerr−. The non-

trivial step is showing surjectivity of (d−)m. We decompose W j
m(λ0 +m) into eigenspaces of LΛ. In

particular we denote

W j
m,k(λ0 +m) := W j

m(λ+m) \ ker(LΛ−2k(n+ 2m− 2k − 2))

(An element of this space may be written Lk u(m−2k) for u(m−2k) 2 W j
m−2k(λ0 +m) \ kerΛ.) There

exist differential operators (linear of order m)

Kk : W j
m,k(λ+m) ! V j

m(λ0)

such that (d−)m ◦Kk = Pm−2k,k(A) where Pm−2k,k = Pr,k is the polynomial from Proposition 7.10

Pr,k(A) = 2k+rm!(r!)2
kY

j=1

(A+ r + j − 1)(−2A+ (n− 2j))

rY

j=1

(A− n− j + 2)

As W j
m,k(λ0 +m) is finite dimensional, it suffices to show injectivity of (d−)m ◦Kk which we do by

induction on j. Consider j = 1 in which case (d−)m ◦Kk = Pm−2k,k(−(λ0 +m)) on W 1
m,k(λ0 +m)

which is non-zero by the conditions imposed on λ0 and by Corollary 7.11. Consider now

u 2 W j
m,k(λ0 +m) \ ker((d−)

m ◦Kk).

By considering again a decomposition of the form u =
Pbm

2 c
k=0 Lk u(m−2k), then the fact that (d−)m◦Kk

is a polynomial in A, implies that it commutes with (A+ λ0 +m) hence

(A+ λ0 +m)u(m−2k) 2 W j−1
m−2k(λ0 +m) \ kerΛ\ ker((d−)

m ◦Kk)

which by the inductive hypothesis forces u 2 ker(A + λ0 + m) and the case j = 1 now implies

u = 0.

Proposition 7.4. Consider λ0 2 −2N\(−n
2 − 1

2N0), a Ruelle resonance and set m := −λ0. Then

ResjA,m(0) \ kerr− = 0

so in this case also, there is trivially a short exact sequence as in Proposition 7.3.
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Proof. It suffices to prove the statement for j = 1. Suppose u 2 Res1A,m(0) \ kerr− non-zero and

decompose u =: Lk u(m−2k) for u(m−2k) 2 ResjA,m−2k(0)\ kerΛ\ kerr−. Consider first u(0). This is

a Ruelle resonant state (of tensor order 0) on SX but by [DG16] the real part of a Ruelle resonance

of tensor order 0 is not greater than δΓ − n < 0. Considering the other components of u, define

ϕ(m−2k) := π0⇤u(m−2k) for m− 2k 6= 0. By Proposition 7.15 this is an isomorphism

π0⇤ : Res1A,m−2k(0) \ kerΛ\ kerr− ! Res1∆,m−2k(n).

From [DS10, Lemma 8.2] and the discussion preceding [DFG15, Lemma 6.1] the L2 spectrum of

r⇤r acting on Symm−2k
0 T⇤X (for m − 2k 6= 0) is bounded below by (n + m − 2k − 1). However

ϕ(m−2k) 2 ker(r⇤r− (m− 2k)) and by Lemma 7.12, ϕ(m−2k) 2 L2(X; Symm−2k
0 T⇤X) so this forces

ϕ(m−2k) = 0 as m− 2k < n+m− 2k − 1.

To finish this section, we consider the decomposition of the set of vector-valued generalised reso-

nant states considered in this subsection into eigenspaces of LΛ. Then

ResjA,m(λ0 +m) \ kerr− =

bm
2 cM

k=0

Lk
⇣
ResjA,m−2k(λ0 +m) \ kerΛ\ kerr−

⌘
(7.3)

as A commutes with the Lefschetz-type operators, and the condition kerr− is conserved (which may

be concluded from considering the form of r− acting on D0(G; Symm
R

n)/m).

7.3 Inverting Horosphere Operators

This section recalculates in notation consistent with this thesis the result of [DFG15, Subsection 4.3].

The key result is the polynomial A presented in Proposition 7.10 which has been used in the proof

of Proposition 7.3.

In this chapter all appearances of A,Rij , N
±
k are to be interpreted as Lie derivatives. Define

R :=
P

ij ei · ej yRij so that on D0(SHn+1; SymmE) we have R = m(n +m − 2) − LΛ. As a warm

up exercise, we have

Lemma 7.5. On D0(SHn+1; Symm
0 E) \ kerr− we have

d− δ+ = 2m(A− n−m+ 2)

Proof. Performing the calculation on D0(G; Symm
0 R

n) subject to the necessary conditions,

d− δ+ =
X

i,j

(ei ·N−
i )(−ej yN

+
j )

=
X

i,j

ei · ej y(−N+
j N−

i + 2Aδij − 2Rij)

= (2A
X

i

ei · ei y)− 2R

= 2m(A− n−m+ 2).

Developing this calculation into a more useful result, we have
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Lemma 7.6. On D0(SHn+1; Symm
0 E) \ kerr− we have, for 1  k  m

d−(δ+)
k = 2k(m− k + 1)(δ+)

k−1(A− n−m+ k + 1)

Proof. We perform the calculation on u =
P

M uMeM 2 D0(G; Symm
0 R

n) subject to the necessary

conditions. First,

d−(δ+)
ku =

X

i2A ,M2A m

(ei ·N−
i )

kY

`=1

X

j`2A

(−ej` yN
+
j`
)uMeM

= (−1)k
X

i2A ,J2A k,M2A m

(N−
i N+

J uM )ei · eJ y eM

= (−1)k
m!

(m− k)!

X

i2A ,I2A m−k,J2A k

(N−
i N+

J uIJ)eiI

and similarly (to obtain the final equation displayed in this proof)

(δ+)
k−1u = (−1)k−1 m!

(m− k + 1)!

X

i2A ,I2A m−k,C2A k−1

(N+
C uiIC)eiI

Continuing the antepreceding display, we commute N−
i past N+

J (note N−
i uIJ = 0 since u 2 kerr−)

X

J2A k

N−
i N+

J uiJ =
X

0↵<k
↵+1+β:=k

X

A2A ↵,j2A ,B2A β

N+
A [N−

i , N+
j ]N+

BuIAjB

and with [N−
i , N+

j ] = −2Aδij+2Rij we develop in two steps the preceding display. For terms involving

A, we use the relation [A,N+
b ] = N+

b to commute A to the right. The commutation relation implies

[A,N+
B ] = βN+

B hence

AδijN
+
BuIAjB = N+

B (A+ β)δijuIAjB

For terms involving Rij we again commute Rij to the right

X

j2A ,B2A β

RijN
+
BuIAjB =

X

j2A ,B2A β

 
N+

BRij +

βX

`=1

N+
b1...b`−1

[Rij , N
+
b`
]N+

b`+1...bβ

!
uIAjB

=
X

j2A ,B2A β

 
N+

BRij +

βX

`=1

N+
b1...b`−1

(δjb`N
+
i − δib`N

+
j )N+

b`+1...bβ

!
uIAjB

=
X

B2A β

N+
B (Rij − βδij)uIAjB

where the final line is obtained by remarking
P

j,b`
δjb`uIAjB = 0 as u 2 kerΛ, and by switching

indices j, b` in the summation of the term involving δib`N
+
j . We also note here that, as u 2 kerΛ we

may write

X

j2A ,D2A m−1

RijujD = (n+m− 2)
X

D2A m−1

uiD

which is used in obtaining the third line in the following display. The principal calculation thus
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continues (using also that
P

0↵<k 2(k − 1− α) = k(k − 1) in order to obtain the third line)

d−(δ+)
ku = (−1)k−1 m!

(m− k)!

X

0↵<k
↵+1+β:=k

X

i,j2A ,I2A
m−k,

A2A
↵,B2A

β

N+
AB (2(A+ 2β)δij − 2Rij)uIAjBeiI

= (−1)k−1 m!

(m− k)!

X

0↵<k

X

i,j2A

I2A
m−k,C2A

k−1

2N+
C ((A+ 2(k − 1− α))δij −Rij)ujICeiI

= (−1)k−1 m!

(m− k)!

X

i2A ,

I2A
m−k,C2A

k−1

2kN+
C (A+ (k − 1)− (n+m− 2))uiICeiI

= 2k(m− k)(δ+)
k−1(A− n−m+ k + 1)u.

The previous lemma provides upon induction

Lemma 7.7. On D0(SHn+1; Symm
0 E) \ kerr− we have

(d−)
m(δ+)

m = 2m(m!)2
mY

j=1

(A− n− j + 2)

In order to treat symmetric tensors which are not purely trace-free we include

Lemma 7.8. On D0(SHn+1) \ ker(r− ◦ (d−)r) we have,

(d−)
r+2∆+ = (r + 2)(r + 1)L

⇣
2(A+ r)(−2A+ n− 2)− LΛ

⌘
(d−)

r

Proof. We perform the calculation on u 2 D0(G) subject to the necessary conditions (in particular

Riju = 0) and reproduce verbatim the beginning of [DFG15, Lemma 4.4]. First,

(d−)
r+2∆+u = −

X

i2A ,K2A r+2

(N−
KN+

ii u)eK

= −
X

i2A ,K2A r+2

([[N−
K , N+

i ], N+
i ]u)eK

since [N−
K , N+

i ]u = 0 as u 2 ker(r− ◦ (d−)r). We now calculate [N−
K , N+

i ] precisely as in [DFG15,

Lemma 4.4] however we take this opportunity to introduce a notation which will be advantageous for

the presentation of this proof. We write

N−
k1...k`−1

[N−
k`
, N+

i ]N−
k`+1...kr+2

=: N−
K

∣∣
N

−
k`

![N−
k`

,N+
i ]
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with the natural extension to other situations. The calculation now reads

−[N−
K , N+

i ] = 2
r+2X

`=1

N−
K

∣∣
N−

k`
!Aδk`i

−Rk`i

= 2

r+2X

`=1

✓
N−

{k`!}K(A+ `− r − 2)δk`i − N−
K

∣∣
N−

k`
!Rk`i

◆

= 2
r+2X

`=1

 
N−

{k`!}K((A+ `− r − 2)δk`i −Rk`i)−
r+2X

s=`+1

N−
{k`!}K

∣∣∣
N−

ks
!δiksN

−
k`

−δk`ksN
−
i

!

= 2

r+2X

`=1

 
N−

{k`!}K((A+ `− r − 2)δk`i −Rk`i)−
r+2X

s=`+1

δiks
N−

{ks!}K − δk`ks
N−

{k`!,ks!i}K

!

= 2
r+2X

`=1

 
N−

{k`!}K((A− (r + 1))δk`i −Rk`i) +
r+2X

s=`+1

δk`ks
N−

i{k`!,ks!}K

!

and

X

i2A

[(A− (r + 1))δk`i −Rk`i, N
+
i ] = −(n− 2)N+

k`

So, upon setting v := (A− (r + 1)− (n− 2))u, the principal calculation reads

(d−)
r+2∆+u = 2

X

K2A r+2

r+2X

`=1

 
[N−

{k`!}K , N+
k`
]v +

X

i2A

r+2X

s=`+1

δk`ks
[N−

i{k`!,ks!}K , N+
i ]u

!
eK

and we calculate in two steps considering separately terms involving u, v. For v,

2
X

K2A r+2

r+2X

`=1

[N−
{k`!}K , N+

k`
]veK = 2

X

K2A r+2

r+2X

`=1

r+2X

s=1
s 6=`

N−
{k`!}K

∣∣∣
N−

ks
!−2Aδksk`

+2Rksk`

veK

considering terms involving A and Rksk`
seperately. We shift A to the left (and use the observation

that r(r + 1) = r
Pr+2

s=1,s 6=` 1 )

2
X

K2A r+2

r+2X

`,s=1
s 6=`

N−
{k`!}K

∣∣∣
N−

ks
!−2Aδksk`

veK = −2(2A+ r)
X

K2A r+2

r+2X

`,s=1
s 6=`

δksk`
N−

{k`!,ks!}KveK

= (r + 2)(r + 1)L(−2)(2A+ r)
X

R2A r

N−
R veR

= (r + 2)(r + 1)L(−2)(2A+ r)(d−)
rv
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We shift Rksk`
to the right

X

K2A r+2

r+2X

`,s=1
s 6=`

N−
{k`!}K

∣∣∣
N−

ks
!Rksk`

veK =
X

K2A r+2

r+2X

`,s=1
s 6=`

r+2X

p=s+1
p 6=`

N−
{k`!,ks!}K

∣∣∣
N−

kp
!N−

ks
δk`kp−N−

k`
δkskp

veK

=
X

K2A r+2

r+2X

`,s=1
s 6=`

r+2X

p=s+1
p 6=`

⇣
N−

{k`!,kp!}Kδk`kp
−N−

{ks!,kp!}Kδkskp

⌘
veK

=

r+2X

`,s=1
s 6=`

r+2X

p=s+1
p 6=`

(1− 1) L(d−)
rv

= 0

Ultimately, shifting the appearances of A in the definition of v to the left,

2
X

K2A r+2

r+2X

`=1

[N−
{k`!}K , N+

k`
]veK = (r + 2)(r + 1)L(−2)(2A+ r)(d−)

rv

= (r + 2)(r + 1)L
⇣
(−2)(2A+ r)(A− n+ 1)

⌘
(d−)

ru

Considering the term not involving v in (d−)r+2∆+u we have

2
X

i2A ,K2A r+2

r+2X

`,s=1
s>`

δk`ks
[N−

i{k`!,ks!}K , N+
i ]ueK = (r + 2)(r + 1)L

X

i2A ,R2A r

[N−
iR, N

+
i ]ueR

and we split the calculation of
P

R[N
−
iR, N

+
i ]ueR into three parts:

X

i2A ,R2A r

[N−
iR, N

+
i ]ueR = −2nA(d−)

ru+

rX

`=1

N−
iR

∣∣
N−

r`
!−2δr`iA+2Rr`i

ueR

Moving A to the left

X

i2A ,R2A r

rX

`=1

N−
iR

∣∣
N−

r`
!−2δr`iA

ueR = −2

rX

`=1

X

R2A r

(A+ `)N−
R eR

= −r(2A+ r + 1)(d−)
ru
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Moving Rr`i to the right

X

i2A ,R2A r

rX

`=1

N−
iR

∣∣
N−

r`
!2Rr`i

ueR = 2
X

i2A ,R2A r

rX

`,s=1
s>`

N−
i{r`!}R

∣∣∣
N−

rs![Rr`i
,N−

rs ]
ueR

= 2
X

i2A ,R2A r

rX

`,s=1
s>`

N−
i{r`!}R

∣∣∣
N−

rs!N−
r`

δirs−N−
i δr`rs

ueR

= r(r − 1)(d−)
ru− 2

X

i2A ,R2A r

rX

`,s=1
s>`

N−
ii{r`!,rs!}Rδr`rsueR

= r(r − 1)(d−)
ru+ L r(r − 1)∆−(d−)

r−2u

= r(r − 1)(d−)
ru− LΛ(d−)

ru

where in the last line we use

Λ(d−)
ru =

X

i2A ,R2R

ei y ei yN
−
R ueR

=
X

i2A ,R2A r

rX

`=1

ei yN
−
i{r`!}Rue{r`!}R

=
X

i2A ,R2A r

rX

`,s=1
s 6=`

N−
ii{r`!,rs!}Rue{r`!,rs!}R

= −r(r − 1)∆−(d−)
r−2u

Ultimately, the term not involving v in (d−)r+2∆+u reads

2
X

i2A ,K2A r+2

r+2X

`,s=1
s>`

δk`ks
[N−

i{k`!,ks!}K , N+
i ]ueK

= (r + 2)(r + 1)L
⇣
− 2nA− r(2A+ r + 1) + r(r − 1)− LΛ

⌘
(d−)

ru

= (r + 2)(r + 1)L
⇣
− 2A(n+ r)− r − LΛ

⌘
(d−)

ru

The principal calculation thus terminates

(d−)
r+2∆+u = (r + 2)(r + 1)L

⇣
(−2)(2A+ r)(A− n+ 1)− 2A(n+ r)− r − LΛ

⌘
(d−)

ru

= (r + 2)(r + 1)L
⇣
2(A+ r)(−2A+ n− 2)− LΛ

⌘
(d−)

ru

The previous lemma provides upon induction using [Λ,L] = 2n+ 4deg.

Lemma 7.9. On D0(SHn+1) \ ker(Λ ◦(d−)r+2k) \ ker(r− ◦ (d−)r+2k) we have,

(d−)
r+2k(∆+)

k = 2k(r + 2k)! Lk
kY

j=1

(A+ r + j − 1)(−2A+ (n− 2j))(d−)
r

with the interpretation that the product takes the value 1 if k = 0.
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Applying first Lemma 7.7 and second Lemma 7.9 provides

Proposition 7.10. Consider u 2 D0(SHn+1; SymmE)\ker(r−) decomposed such that u =
P

k L
k u(k)

for u(k) 2 D0(SHn+1; Symr
0E) \ ker(r−) with r := m− 2k. On u(k),

(d−)
r+2k(∆+)

k(δ+)
r = Lk Pr,k(A)

where Pr,k(A) is the following polynomial

Pr,k(A) = 2k+rm!(r!)2
kY

j=1

(A+ r + j − 1)(−2A+ (n− 2j))

rY

j=1

(A− n− j + 2)

The following corollary is slightly weaker than what one could say by distinguishing cases depen-

dent on the parity of n however it is sufficient for the correspondence.

Corollary 7.11. Consider λ 2 C with λ 62 −n
2 − 1

2N0 and Reλ  −1. Consider also m 2 N such that

Reλ+m  0. Then for r, k 2 N0 such that m = r + 2k, the value of the polynomial Pr,k(−(λ+m))

is non zero except in the single situation m 2 2N, r = 0, k = m
2 , λ+m = 0.

Proof. We need to ensure that λ+m does not belong to any of the following sets

S1 :={r, r + 1, . . . , r + k − 1},
S2 :={−n

2 + 1,−n
2 + 2, . . . ,−n

2 + k},
S3 :={−n− r + 2,−n− r + 3, . . . ,−n+ 1}.

So if Imλ 6= 0 then such an exclusion is guaranteed hence the only possible problematic situations are

when λ 2 {−n
2 + 1

2 ,−n
2 + 1, . . . ,−1}. Considering S1, as λ+m  0, the only problematic situation

is the one announced in the corollary when λ+m = r = 0 (forcing m to be even). The set S2 poses

no problem as λ > −n
2 and m > k. Similarly S3 poses no problem as λ > −n.

7.4 Quantum Resonances

The rough Laplacian r⇤r acts on SymmT⇤X. For s 2 C with s 0 1, the operator r⇤r−s(n−s)−m

has an inverse acting on L2(X; SymmT⇤X). We introduce the short-hand

As := (r⇤r− s(n− s)−m).

Note that r⇤r commutes with both the trace Λ and divergence δ operators. By Theorem 9, the

inverse of r⇤r − s(n − s) −m, written R∆,m(s), admits, upon restriction to the kernels of both Λ

and δ, a meromorphic extension from Re s 0 1 to C as a family of bounded operators

R∆,m(s) : C1
c (X; Symm

0 T⇤X) \ ker δ ! ρs−mC1
even(X; Symm

0 T⇤X) \ ker δ .

(Here ρ is an even boundary defining function providing the conformal compactification X.) Near a

pole s0, called a quantum resonance, the resolvent may be written

R∆,m(s) = RHol
∆,m(s) +

J(λ0)X

j=1

(r⇤r− s0(n− s0)−m)j−1
Qs0

∆,m

(s(n− s)− s0(n− s0))j
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where the image of the finite rank projector
Qλ0

∆,m is called the space of generalised quantum resonant

states (of tensor order m)

Res∆,m(s0) := Im
⇣Qs0

∆,m

⌘
.

We filter this space by declaring

Resj∆,m(s0) :=
{
ϕ 2 Res∆,m(s0)

∣∣ (r⇤r− s0(n− s0)−m)jϕ = 0
 

saying that such states are of Jordan order (at most) j. Then

Res∆,m(s0) = [j≥1Res
j
∆,m(s0)

and the space of quantum resonant states is Res1∆,m(s0).

Vasy’s operator

We require an asymptotic description of states in Res∆,m(s0). For this we use aspects of the con-

struction of the meromorphic continuation of the resolvent. To this end, we recall several aspects of

its proof given in the previous chapter.

Consider the Lorentzian cone M := R
+
s ⇥X with Lorentzian metric η = −ds⌦ ds+ s2g. (In our

setting where X is a quotient of hyperbolic space, this cone is Minkowski space locally.) Symmetric

tensors decompose

SymmT⇤M =

mM

k=0

ak (
ds
s )

m−k · SymkT⇤X, ak := 1p
(m−k)!

and the (Lichnerowicz) d’Alembertian ⇤ acts on symmetric m-tensors. A particular conjugation by

s of s2 ⇤ behaves nicely relative to the preceding decomposition giving the operator

Q := s
n
2 −m+2

⇤ s−
n
2 +m = r⇤r+ (s∂s)

2 +D+G

for a first order differential operator D+G on SymmT⇤M . (Above s∂s is considered a Lie derivative

and, along with r⇤r, acts diagonally on each factor
(
ds
s

)m−k · SymkT⇤X.) The b-calculus of Melrose

permits this operator to be pushed to a family of operators, denoted Qλ, (holomorphic in the complex

variable λ) acting on ⊕m
k=0Sym

kT⇤X above X which takes the form

Qλ = r⇤r+ λ2 +D + G

for a first order differential operator D+G. (A more precise description of D+G will be given shortly.

Also, we will ultimately set s := λ+ n
2 to return to the conventions present in this chapter.)

Convex cocompact quotients of hyperbolic space are asymptotically even hyperbolic. So consider

a boundary defining function, ρ, for the conformal compactification X. Near Y := ∂X, say on

U := (0, 1)⇢ ⇥ Y , the metric may be written

g =
dρ2 + h

ρ2

where h is a family of Riemannian metrics on Y smoothly parametrised by ρ 2 [0, 1) whose Taylor
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7.4. Quantum Resonances

expansion at ρ = 0 contains only even powers of ρ. Again consider the Lorentzian cone M = R
+
s ⇥X

with metric η. The metric η degenerates at ρ = 0 however under the change of coordinates

t := s/ρ, µ := ρ2

the metric takes the following form on R
+
t ⇥ (0, ε2)µ ⇥ Y

η = −µdt⌦ dt− 1
2 t(dµ⌦ dt+ dt⌦ dµ) + t2h.

We extend the manifold X to a slightly larger manifold Xe := ((−1, 0]µ⇥Y )tX and use µ to provide

a smooth structure explained precisely in Section 5.2. Moreover η is extended to Me := R
+
t ⇥ Xe

by extending h to a family of Riemannian metrics on Y smoothly parametrised by µ 2 (−1, 1). We

now follow the recipe given in the preceding paragraph. The Lichnerowicz d’Alembertian ⇤ acts on

symmetric m-tensors above Me. Conjugating t2 ⇤ provides

P := t
n
2 −m+2

⇤ t−
n
2 +m

The b-calculus pushes this operator to a family of operators (holomorphic in the complex variable

λ), termed “Vasy’s operator” and denoted

Pλ 2 Diff2(Xe;⊕m
k=0Sym

kT⇤Xe).

On U , the two families are related

Pλ = ρ−λ−n
2 +m−2J Qλ J

−1ρλ+
n
2 −m

for J 2 C1(X; End(⊕m
k=0Sym

kT⇤X)) whose entries are homogeneous polynomials in d⇢
⇢ ·, upper

triangular in the sense that J(Symk0T⇤X) ⇢ ⊕m
k=k0

SymkT⇤X, and whose diagonal entries are the

identity.

There are meromorphic inverses for the operators Pλ and Qλ. We denote respectively these

meromorphic inverses by

RP,m(λ) : C1
c (Xe;⊕m

k=0Sym
kT⇤Xe) ! C1(Xe;⊕m

k=0Sym
kT⇤Xe)

and

RQ,m(λ) : C1
c (X;⊕m

k=0Sym
kT⇤X) ! ρλ+

n
2 −m ⊕m

k=0 ρ
−2kC1

even(X; SymkT⇤X).

We do not need a complete description of the precise form of Qλ. With respect to the extent to

which we require a precise description, we note its form upon restriction to Symm
0 T⇤X.

Qλ|Symm
0 T⇤X =

"
r⇤r+ λ2 − n2

4 −m

−2 δ

#
: C1(X; Symm

0 T⇤X) ! C1(X;⊕m
k=m−1Sym

k
0T

⇤X)

which upon setting s := λ+ n
2 provides

Qs−n
2

∣∣
Symm

0 T⇤X
=

"
r⇤r− s(n− s)−m

−2 δ

#
.
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In a similar spirit we record that

J |⊕m
k=m−1Sym

k
0T

⇤X =

"
1 d⇢

⇢ ·
0 1

#
.

Lemma 7.12. For s0 2 C with s0 6= n
2 , generalised quantum resonant states Resj∆,m(s0) are precisely

identified with

(
ϕ 2

j−1M

k=0

ρs0−m(log ρ)k C1
even(X; Symm

0 T⇤X)

∣∣∣∣∣ ϕ 2 ker(r⇤r− s0(n− s0)−m)j \ ker δ

)
.

Proof. That a generalised resonant state has the prescribed form is reasonably direct. Indeed given

ϕ 2 Im
⇣Qs0

∆,m

⌘
there exists ψ 2 C1

c (X; Symm
0 T⇤X) (which is divergence-free) such that ϕ =

Ress0(R∆,m(s)ψ). By Theorem 9, we may write

R∆,m(s)ψ =: ρs−m
Ψs 2 ker δ

for Ψ a meromorphic family taking values in C1
even(X; Symm

0 T⇤X). Supposing the specific Jordan

order of ϕ to be j  J(s0), equivalently Aj−1
s0 ϕ 6= 0 and ϕ 2 kerAj

s0 , implies Ψ has a pole of order j

at s0. Expanding ρs−m and Ψs in Taylor and Laurent series about s0 respectively gives

R∆,m(s)ψ =

 
ρs0−m

j−1X

k=0

(log ρ)k
(s− s0)

k

k!
+O((s− s0)

j)

! 
Ψ

Hol
s +

jX

k=0

Ψ
(k)

(s− s0)k

!

with Ψ
Hol (a holomorphic family) and Ψ

(k) taking values in C1
even(X; Symm

0 T⇤X). Extracting the

residue gives the result that

ϕ 2
⇣
⊕j−1

k=0 ρ
s0−m(log ρ)k C1

even(X; Symm
0 T⇤X)

⌘
\ ker δ .

For the converse statement we initially follow [GHW16, Proposition 4.1]. Suppose ϕ 2 kerAj
s0

trace-free, divergence-free, and takes the required asymptotic form. We may suppose Aj−1
s0 ϕ 6= 0.

Set

ϕ(1) := Aj−1
s0 ϕ 2 ρs0−mC1

even(X; Symm
0 T⇤X) \ ker δ .

For k 2 {2, . . . , j}, there exist polynomials pk,l such that upon defining

ϕ(k) := (n− 2s0)
k−1 A(j−k)

s0 ϕ+

k−1X

`=1

pk,l(n− 2s0)A(j−k+`)
s0 ϕ 2 kerΛ\ ker δ

we satisfy the condition, for k 2 {1, . . . , j},

As0 ϕ
(k) − (n− 2s0)ϕ

(k−1) + ϕ(k−2) = 0 (7.4)

(with the understanding that ϕ(0) = ϕ(−1) = 0). Note that such a condition appears upon demanding

As ϕs = O((s− s0)
j), ϕs :=

jX

k=1

ϕ(k)(s− s0)
k−1
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Define

Φs :=

jX

k=1

Φ
(k)(s− s0)

k−1, Φ
(k) := ρ−s0+m

k−1X

`=0

(− log ⇢)`

`! ϕ(k−`).

We claim that

Φ
(k) 2 C1

even(X; Symm
0 T⇤X).

As Φ(k) a priori belongs in the space ⊕k−1
`=0 (log ρ)` C1

even(X; Symm
0 T⇤X), it suffices to observe that

Ps0−n
2
Φ

(k) 2 C1
even(X;⊕m

k=m−1 Sym
kT⇤X)

where

ρ2 Ps0−n
2
Φ

(k) =

"
1 d⇢

⇢ ·
0 1

#
ρ−s0+m

"
As0

−2 δ

#
ρs0−m

Φ
(k).

We perform the required calculation in the collar neighbourhood U = (0, 1)⇢⇥Y where the metric is of

the form g = ρ−2(dρ2+h) and with a frame {dyi}1in for T⇤Y . Define ρ−2B 2 C1
even(X; End(T⇤Y ))

by Bdyi :=
P

jk
1
2 (h

−1)ij(ρ∂⇢hjk)dy
k and extend it to ρ−2B 2 C1

even(X; End(T⇤X)) as a derivation

with Bdρ := 0. The Laplacian, on functions, takes the form

∆ = −(ρ∂⇢)
2 + ρ2∆h + (n− trh B)ρ∂⇢. (7.5)

We calculate ρ2 Ps0−n
2
Φ

(k). The first tedious step is

ρ−s0+m As0 ρ
s0−m

Φ
(k)

= ρ−s0+m (∆− s0(n− s0)−m)

k−1X

`=0

(− log ρ)`

`!
'(k−`)

= ⇢−s0+m
k−1X

`=0

1

`!

⇣
(− log ⇢)` As0 '

(k−`) − 2 trg

⇣
r(− log ⇢)` ⌦r'(k−`)

⌘
+ (∆(− log ⇢)`)'(k−`)

⌘

= ⇢−s0+m
k−1X

`=0

1

`!

⇣
(− log ⇢)` As0 '

(k−`) − 2 trg

⇣
r(− log ⇢)` ⌦r'(k−`)

⌘
+
(
∆(− log ⇢)`

)
'(k−`)

⌘

and we split this calculation up further into three parts. Treating the first part with (7.4),

⇢−s0+m
k−1X

`=0

(− log ⇢)`

`!
As0 '

(k−`)

= ⇢−s0+m
k−1X

`=0

(− log ⇢)`

`!

⇣
(n− 2s0)'

(k−1−`) − '(k−2−`)
⌘

= (n− 2s0)Φ
(k−1) − Φ

(k−2).
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Treating the second part directly

ρ−s0+m
k−1X

`=0

1

`!

⇣
−2 trg

⇣
r(− log ⇢)` ⌦r'(k−`)

⌘⌘

= ⇢−s0+m
k−1X

`=0

(− log ⇢)`−1

(`− 1)!

⇣
2r⇢@⇢

'(k−`)
⌘

= ⇢−s0+m
k−1X

`=0

2r⇢@⇢

✓
(− log ⇢)`−1

(`− 1)!
'(k−`)

◆
− 2

✓
r⇢@⇢

(− log ⇢)`−1

(`− 1)!

◆
'(k−`)

= 2⇢−s0+mr⇢@⇢

⇣
⇢s0−m

Φ
(k−1)

⌘
+ 2Φ(k−2)

= 2⇢mr⇢@⇢

⇣
⇢−m

Φ
(k−1)

⌘
+ 2s0Φ

(k−1) + 2Φ(k−2).

Treating the third part with (7.5)

⇢−s0+m
k−1X

`=0

1

`!

(
∆(− log ⇢)`

)
'(k−`)

= ⇢−s0+m
k−1X

`=0

1

`!

(
−`(`− 1)(− log ⇢)`−2 + (trh B − n)`(− log ⇢)`−1

)
'(k−`)

= (trh B − n)Φ(k−1) − Φ
(k−2).

Combining these calculations provides

⇢−s0+m As0 ⇢
s0−m

Φ
(k) = (trh B + 2⇢mr⇢@⇢

⇢−m)Φ(k−1).

The second tedious step in calculating ⇢2 Ps0−n
2
Φ

(k) is (recall '(k−`) 2 ker δ)

⇢−s0+m(−2 δ)⇢s0+m
Φ

(k)

= ⇢−s0+m
k−1X

`=0

2

`!
trg

⇣
r(− log ⇢)` ⌦ '(k−`)

⌘

= ⇢−s0+m
k−1X

`=0

(− log ⇢)`−1

(`− 1)!

⇣
−2d⇢

⇢ y'(k−`)
⌘

= −2d⇢
⇢ yΦ

(k−1)

Combing the two previous calculations provides

⇢2 Ps0−n
2
Φ

(k) =

"
1 d⇢

⇢ ·
0 1

#"
2⇢mr⇢@⇢

⇢−m + trh B

−2d⇢
⇢ y

#
Φ

(k−1)

which may be developed upon analysing the following term

⇣
⇢mr⇢@⇢

⇢−m − d⇢
⇢ · d⇢

⇢ y

⌘
Φ

(k−1).

Recall the asymptotic structure of tensors which are evenly smooth at infinity described at the end
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of Subsection 6.1. Writing

Φ
(k−1) =

mX

`=0

X

L2A `

Φ
(k−1)
`,L (ρdρ)m−`dyL, Φ

(k−1)
`,L 2 C1(X),

and remarking r⇢@⇢
ρdρ = 2ρdρ and r⇢@⇢

dy` = (1 +B)dy` gives

⇣
ρmr⇢@⇢

ρ−m − d⇢
⇢ · d⇢

⇢ y

⌘
Φ

(k−1)

= (−m+ ρ∂⇢ + 2(m− `) + (`+B)− (m− `))
X

L2A `

Φ
(k−1)
`,L (⇢d⇢)m−`dyL

= (⇢@⇢ +B)Φ(k−1)

where ⇢@⇢ is to be interpreted as a Lie derivative. This finally establishes that

⇢2 Ps0 Φ
(k) =

"
2⇢@⇢ + 2B + trh B

−2d⇢
⇢ ·

#
Φ

(k−1)

which by induction on k produces the desired claim that Φ(k) 2 C1
even(X; SymmT⇤X).

We extend Φ
(k) smoothly onto compactly supported sections over Xe and apply RP,m(s− n

2 ) to

Ps−n
2
Φs. On X,

Φs = RP,m(s− n
2 )Ps−n

2
Φs

= ⇢−s+mJRQ,m(s− n
2 )

"
As

−2 δ

#
⇢s−m

Φs

whence upon unpacking the definition of Φs and the expansion of ⇢s+m in s about s0 implies

's +O((s− s0)
j) = RQ,m(s− n

2 )(s− s0)
j s

for  a holomorphic family taking values in C1
even(X;⊕m

k=m−1 Sym
mT⇤X). Considering the term at

order (s− s0)
j−1 provides that '(j) is in the image of

Qs0−n
2

Q,m . As '(j) 2 C1(X; Symm
0 T⇤X) \ ker δ

and

Im
⇣Qs0

∆,m

⌘
= Im

⇣Qs0−n
2

Q,m

⌘
\ C1(X; Symm

0 T⇤X) \ ker δ

we deduce that '(j) is in the image of
Qs0

∆,m. Therefore Ak
s0 '

(j) is also in said image for k  j

whence the definition of '(k) provides the desired result that ' is in the image of
Qs0

∆,m.

7.5 Boundary Distributions and the Poisson Operator

Define Bdm(λ) to be the following set of boundary distributions

Bdm(λ) :=
{
! 2 D0(Sn; Symm

0 T⇤
S
n)

∣∣ supp(w) ⇢ KΓ, U
⇤
γ!(y) = Tγ(y)

−λ−m!(y) for γ 2 Γ, y 2 S
n
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Then for λ0 2 C a resonance,

π⇤
Γ

(
Res1A,m(λ0) \ kerΛ\ kerr−

)
= (Φ−)

λ0Q− (Bdm(λ0)) .

The Poisson operator is defined via integration of the fibres of πS : SHn+1 ! H
n+1. For u 2

D0(SHn+1;⌦mE⇤) we define, for x 2 H
n+1,

(π0⇤u)(x) :=

Z

SxH
n+1

u(x, ξ)dS(ξ)

where integration of elements of ⌦mE⇤ is performed by embedding them in ⌦mT⇤
H

n+1. For λ 2 C,

the Poisson operator may be now defined as

Pλ :

(
D0(Sn; Symm

0 T⇤
S
n) ! C1(Hn+1; Symm

0 T⇤
H

n+1)

ω 7! π0⇤
(
(Φ−)λQ−ω

)

There is a useful change of variables which allows the integral to be performed on the boundary S
n.

Specifically, upon introducing the Poisson kernel, we may write

Pλ ω(x) =

Z

Sn

P (x, y)n+λ
⇣
⌦mτ−

⇤
(x,⇠−)

⌘
ω(y) dS(y) (7.6)

for ξ− = ξ−(x, y).

Asymptotics of the Poisson operator

We start by recalling a weak expansion detailed in [DFG15, Lemma 6.8]. For this we appeal to the

diffeomorphism φ used in Defintion 5.1. That is, take ρ an even boundary defining function and

giving φ : [0, ε)⇥ S
n ! Hn+1 the diffeomorphism induced by the flow of the gradient grad⇢2g(ρ). By

implicitly using φ we identify a neighbourhood of the boundary of Hn+1 with [0, ε)⇢ ⇥ S
n. Given

Ψ 2 C1(Sn; SymmTSn) we define for ρ small

ψ(ρ, y) := (⌦mτ−(x,⇠−))Ψ(y)

for x = (ρ, y) and ξ− = ξ−(x, y).

Lemma 7.13. [DFG15] Let ω 2 D0(Sn; SymmT⇤
S
n) and λ 2 C\(−n

2 − 1
2N0). For each y 2 S

n, there

exists a neighbourhood Uy ⇢ Hn+1 of y and an even boundary defining function ρ such that for any

Ψ 2 C1(Sn; SymmTSn) with support contained in Uy\S
n and giving ψ 2 C1((0, ε)⇥S

n; SymmTSn)

as above, there exists F± 2 C1
even([0, ε)) such that

Z

Sn

((Pλ ω)(ρ, y),ψ(ρ, y)) dS(y) =

(
ρ−λF−(ρ) + ρn+λF+(ρ), λ 62 −n

2 + N;

ρ−λF−(ρ) + ρn+λ log(ρ)F+(ρ), λ 2 −n
2 + N,

where dS is the measure obtained from the metric ρ2g restricted to S
n. Moreover, if ω and Ψ have

disjoint supports, then the expansion may be written

(
ρn+λF+(ρ), λ 62 −n

2 + N;

ρn+λ(log(ρ)F+(ρ) + F 0
+(ρ)), λ 2 −n

2 + N,
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for F 0
+ 2 C1

even([0, ε)).

Remark 7.14. The evenness is a consequence of the even expansions of the Bessel functions appearing

in the proof. The additional conclusion when ω andΨ have distinct supports is due to Equation 6.31 in

the proof as well as the final equation displayed in the proof. In particular, the differential operators

(rather than pseudo-differential operators) which appear do not enlarge the supports of ω and Ψ.

Finally, if ω and Ψ have supports with non-trivial intersection, then F−(0) 6= 0.

Proposition 7.15. For λ 2 C\(−n
2 − 1

2N0), the pushforward map π0⇤ : D0(SX; SymmE⇤) !
D0(X; SymmT⇤X) restricts to a linear isomorphism of complex vector spaces

π0⇤ : ResjA,m(λ0) \ kerΛ\ kerr− ! Resj∆,m(λ0 + n).

Proof. Consider u(k) 2 ReskA,m(λ0) \ kerΛ\ kerr− for 1  k  j such that (A+ λ0)u
(k) = −u(k−1)

and (A + λ0)u
(1) = 0. We may suppose that u(k) 6= 0. We lift these generalised resonant states to

ũ(k) := π⇤
Γu

(k) whose supports are contained in π−1
Γ (K+). Define

ϕ̃(k) := π0⇤ũ
(k),

ϕ(k) := π0⇤u
(k).

Now ϕ(1) is a quantum resonance. Indeed, the distribution v(1) := (Φ−)−λ0 ũ(1) is annihilated

by A (as well as both Λ and r−) so there exists ω(1) 2 Bdm(λ0) such that ũ(1) = (Φ−)λ0Q−w(1).

The properties of the Poisson transformation imply that ϕ̃(1) = Pλ0 ũ
(1) is trace-free, divergence-

free and in the kernel of (∆ − s0(n − s0) − m) for s0 := λ0 + n. The same statement is true for

ϕ(1). Considering the alternative definition for the Poisson operator (7.6), as well as the upper half-

space model, we recall the structure of ⌦mτ−⇤ from (7.1) and that ρ−1P (x, y) is smooth except at

x = (0, y). Since ω(1) has support contained in KΓ disjoint from ΩΓ (and X = Γ\(X t ΩΓ)) we

conclude that ϕ(1) 2 ρs0−mC1
even(X; SymmT⇤X). This is the characterisation of quantum resonances

given in Lemma 7.12. Therefore, as claimed, ϕ(1) is a quantum resonance.

We now show that ϕ(k) is a generalised quantum resonant. Define

v(k) := (Φ−)
−λ0

kX

`=1

(− logΦ−)k−`

(k − `)!
ũ(`).

Then a direct calculation shows Aṽ(k) = 0 and, since d− Φ− = 0, it also follows that r−ṽ(k) = 0.

So let !(k) 2 D0(Sn; Symm
0 T⇤

S
n) with Q−!(k) := v(k) and note supp(w(k)) ⇢ KΓ. Rewriting ũ(k) in

terms of ṽ(k),

ũ(k) = (Φ−)
λ0

kX

`=1

(logΦ−)k−`

(k − `)!
ṽ(`)

and observing that

@
(k−`)
λ Pλ0 !

(`) = ⇡0⇤
⇣
(Φ−)

λ0(logΦ−)
k−`Q−w

(`)
⌘
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we obtain

ϕ̃(k) = π0⇤ũ
(k) =

kX

`=1

∂
(k−`)
λ Pλ0

w(`)

(k − `)!
.

Taylor expanding (∆+ λ(n+ λ)−m)Pλ(w
(k−`)) = 0 about λ0 implies

(∆+ λ0(n+ λ0)−m)
@
(`)
λ Pλ0

w(k−`)

`!
+ (2λ0 + n)

@
(`−1)
λ Pλ0

w(k−`)

(`− 1)!
+
@
(`−2)
λ Pλ0

w(k−`)

(`− 2)!
= 0.

By introducing (again) s0 := λ0 + n, we deduce that

(∆− s0(n− s0)−m)'̃(k) = −(2s0 − n)'̃(k−1) − '̃(k−2)

with the interpretation that '̃(0) = '̃(−1) = 0. By injectivity of the Poisson operator, '(k) 6= 0. A

similar expansion for δPλ(w
(k−`)) = 0 implies δ '̃(k) = 0. Recalling the definition of the Poisson

operator involving the Poisson kernel, we have @kλP (x, y)n+λ0 = P (x, y)s0(logP (x, y))k and so, as

with the case of '(1), we conclude

'(k) 2 ⊕k−1
`=0 ⇢

s0−m(log ⇢)` C1
even(X; Symm

0 T⇤X).

and so it is a generalised quantum resonance '(k) 2 Resk∆,m(λ0 + n) by Lemma 7.12.

In order to show surjectivity of ⇡0⇤, consider '(j) 2 Resj∆,m(s0) for s0 := λ0+n and define '(k) for

1  k < j by '(k) := Aj−k
s0 '(j) 2 Resk∆,m(λ0 +n) (recalling the definition As := (∆− s(n− s)−m)).

We may assume '(1) 6= 0. By modifying '(k) via linear terms in '(`) with 1  ` < k, we may assume

(∆− s0(n− s0)−m)'(k) = −(2s0 − n)'(k−1) − '(k−2).

We lift these modified states from SX to SHn+1 defining '̃(k) := ⇡⇤
Γ'

(k) which also satisfy the

preceding display.

We now prove by induction on 1  k  j that there exist !(k) 2 D0(Sn; Symm
0 T⇤

S
n) with

supp(!(k)) ⇢ KΓ such that

'̃(k) =

kX

`=1

@
(k−`)
λ Pλ0

!(`)

(k − `)!
and U⇤

γ!
(k) = (Tγ)

−λ0−m
kX

`=1

(− log Tγ)
k−`

(k − `)!
!(`).

For k = 1, this states that for '(1) 2 Res1∆,m(s0), there exists !(1) 2 Bdm(λ0) with ⇡
⇤
Γ'

(1) = Pλ0
!.

To demonstrate this statement we remark that '̃(1) is tempered on H
n+1, (the proof follows ad

verbum [GHW16, Lemma 4.2]), so the surjectivity of the Poisson transform [DFG15, Corollary 7.6]

provides !(1) 2 D0(Sn; Symm
0 T⇤

S
n) such that '̃(1) = Pλ0

!(1). The equivariance property demanded

of !(1) under Γ is satisfied as '̃(1) = ⇡⇤
Γ'

(1). It remains to confirm that supp(!(1)) ⇢ KΓ. By

Lemma 7.12, we have the asymptotics '(1) 2 ⇢s0−mC1
even(X; SymmT⇤X) and so, by Remark 7.14, it

is only possible for the weak expansion of Lemma 7.13 to hold for arbitrary Ψ 2 C1(ΩΓ; Sym
mT⇤

S
n)

if supp(!(1)) ⇢ KΓ.

For the general situation k > 1 consider

 (k) := '̃(k) −
k−1X

`=1

@
(k−`)
λ Pλ0 !

(`)

(k − `)!
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which is in the kernel of As0 by a direct calculation. This gives, by the usual argument, a ω(k) 2
D0(Sn; Symm

0 T⇤
S
n) with supp(ω(k)) ⇢ KΓ such that ψ(k) = Pλ0

ω(k) and establishes the first desired

equation. Now consider (γ⇤ − 1)ψ(k). As (γ⇤ − 1)ϕ̃(k) = 0 and γ⇤ ◦ Pλ = Pλ ◦((Tγ)
λ+mU⇤

γ ), the

induction hypothesis gives

(γ⇤ − 1)ψ(k) = −Pλ0

 
(Tγ)

λ0+m
k−1X

`=1

(log Tγ)
k−`

(k − `)!
U⇤
γ!

k−`

!

alternatively as  (k) = Pλ0
!(k), the equivariance of Pλ implies

(γ⇤ − 1) (k) = Pλ0(((Tγ)
λ0+mU⇤

γ − 1)!(k)).

From these two equations and the injectivity of the Poisson operator, we obtain the desired equivari-

ance property for U⇤
γ!

(k).

We now may reproduce in reverse the beginning of the injectivity direction of this proof. Consider

the following elements of D0(SHn+1; Symm
0 E⇤)

v(k) := Q−!
(k) and ũ(k) := (Φ−)

λ0

kX

`=1

(logΦ−)k−`

(k − `)!
ṽ(`).

Then ũ(k) is annihilated by r−. The equivariance property of !(k) implies that (A + λ0)ũ
(k) =

−ũ(k−1), that (A + λ0)ũ
(1) = 0, and that γ⇤ũ(k) = ũ(k). So these distributions project down giving

u(k) 2 D0(SX; Symm
0 E⇤). By the support properties of !(k), the support of u(k) is contained in K+.

Finally, elliptic regularity implies that the wave front sets of u(k) are contained in the annihilators

of both En and Eu hence in E⇤u|K+
= E⇤

+. This is the characterisation of Ruelle resonances so the

equality ⇡0⇤u(k) = '(k) implies surjectivity of the Poisson operator.

7.6 Proof of Theorem 11

Theorem 11. Let X = Γ\Hn+1 be a smooth oriented convex cocompact hyperbolic manifold, and

λ0 2 C\(−n
2 − 1

2N0). There exists a vector space linear isomorphism between Ruelle generalised

resonant states

ResA,0(λ0)

and the following space of quantum generalised resonant states

M

m2N0

bm
2 cM

k=0

Res∆,m−2k(λ0 +m+ n).

Proof. Generalised Ruelle resonant states are filtered by Jordan order

ResA(λ0) =

J(λ0)M

j=1

⇣
ResjA,0(λ0)/Res

j−1
A,0 (λ0)

⌘

=

J(λ0)[

j=1

ResjA,0(λ0).
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Generalised Ruelle resonant states of Jordan order j, are filtered into bands via (7.2)

ResjA,0(λ0) =
M

m2N0

⇣
V

j
A,m(λ0)/V

j
A,m−1(λ0)

⌘
.

Each band m of Jordan order j is identified via Proposition 7.3 (and Proposition 7.4) with vector-

valued generalised resonant states for the geodesic flow which are in the kernel of the unstable horo-

sphere operator.

(d−)
m : V j

A,m(λ0)/V
j
A,m−1(λ0) ! ResjA,m(λ0 +m) \ kerr−.

These generalised resonant states are decomposed via (7.3) according to their trace

ResjA,m(λ0 +m) \ kerr− =

bm
2 cM

k=0

Lk
⇣
ResjA,m−2k(λ0 +m) \ kerΛ\ kerr−

⌘
.

Generalised resonant states of the geodesic flow which are in the kernels of the unstable horosphere

operator and the trace operator are identified via Proposition 7.15 with generalised resonant states

of the Laplacian acting on symmetric tensors

π0⇤ : Resj−X,m−2k(λ0 +m) \ kerΛ\ kerr− ! Resj∆,m−2k(λ0 +m+ n).

Remark 7.16. As the proof of Theorem 11 shows, the isomorphism restricts to isomorphisms respect-

ing the Jordan order of the generalised resonant states.
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A. Symmetric Tensors

This appendix recalls some conventions for symmetric tensors on a vector space and some differential

operators on Riemannian manifolds. It follows conventions established in [HMS16].

A.1 Linear Algebra

Let E be a vector space of dimension n + 1 equipped with an inner product g. Use g to identify

E with its dual space. Let {ei}0in be an orthonormal basis. We denote by SymmE the m-fold

symmetric tensor product of E. Elements are symmetrised tensor products

u1 · . . . ·um :=
X

σ2Πm

uσ(1) ⌦ . . .⌦ uσ(m), ui 2 E

where Πm is the permutation group of {1, . . . ,m}. By linearity, this extends the operation · to a map

from SymmE ⇥ Symm0

E to Symm+m0

E. Define SymE :=
L

m2N0
SymmE and introduce the map

deg : SymE ! SymE by declaring deg u = mu for u 2 SymmE.

Some notation for finite sequences will be necessary for many calculations presented in this thesis.

For a fixed positive integerm, denote by A
m the space of all sequencesK = k1 . . . km with 0  kr  n.

We write {kr ! j}K for the result of replacing the rth element of K by j. If j is not present, this

implies we remove the rth element from K, while if kr is not present, this implies we add j to K to

obtain the sequence jK. This notation extends to replacing multiple indices at once. For example,

{kp !, kr !}K indicates we first remove the rth element from K and then remove the pth element

from {kr !}K. We set

eK := ek1
· . . . · ekm

2 SymmE, K = k1 . . . km 2 A
m.

The inner product takes the form g = 1
2

Pn
i=0 ei · ei, equivalently g = 1

2

Pn
i=0 eii. For u 2 E we

write um to denote the symmetric product of m copies of u. The inner product induces an inner

product on SymmE, also denoted by g, defined by

g(u1 · . . . ·um, v1 · . . . · vm) :=
X

σ2Πm

g(u1, vσ(1)) . . . g(um, vσ(m)), ui, vi 2 E.

For u 2 E, the metric adjoint of the linear map u · : SymmE ! Symm+1E is the contraction

u y : Symm+1E ! SymmE defined by

(u y v)(w1, . . . , wm) := v(u,w1, . . . , wm), u, wi 2 E, v 2 SymmE.
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Contraction and multiplication with the metric g define two additional linear maps:

Λ :

(
SymmE ! Symm−2E

u 7!
Pn

i=0 ei y ei yu

and

L :

(
SymmE ! Symm+2E

u 7!
Pn

i=0 ei · ei ·u

which are adjoint to each other. As the notation is motivated by standard notation from complex

geometry, we will refer to these two operators as Lefschetz-type operators. Denote by

Symm
0 E := ker

(
Λ : SymmE ! Symm−2E

)

the space of trace-free symmetric tensors of degree m.

There are several algebraic commutator relations between the operators thus far introduced:

[Λ,L] = 2(n+ 1) + 4deg, [deg,L] = 2L, [deg,Λ] = −2Λ .

and for u 2 E,

[u y,Λ] = 0 = [u ·,L], [u y,L] = 2u ·, [u ·,Λ] = −2u y .

Also, deg =
Pn

i=0 ei · ei y.

We have the decomposition

SymmE =

bm
2 cM

k=0

Lk(Symm−2k
0 E)

and the operator LΛ preserves this decomposition. Indeed for u 2 Symm−2k
0 E,

LΛLk u =
kX

`=1

L`−1[L,Λ] Lk−` u

=
kX

`=1

L`(2(n+ 1) + 4deg) Lk−` u

=

 
kX

`=1

2(n+ 1) + 4(m− 2`)

!
Lk u

= 2k(n+ 2m− 2k − 1) Lk u

Therefore on SymmE we have the identification

Lk Symm−2k
0 E = ker (LΛ−2k(n+ 2m− 2k − 1) : SymmE ! SymmE) .
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An alternative dimension for the vector space

If the dimension of the vector space is n, then our convention is that an orthonormal basis is {ei}1in

(it is enumerated from i = 1 rather than i = 0). Of course, this implies that when considering

sequences, A
m denotes the space of all sequences K = k1 . . . km with 1  kr  n.

Homogeneous polynomials

Symmetric tensors may be identified with homogeneous polynomials via the metric. Denote by

Polm(E) the space of homogeneous polynomials of degreem on E and define Pol(E) :=
L

m2N0
Polm(E).

To a given u 2 Symm(E), we associate a homogeneous polynomial Pu such that

Pu(x) := g(u, xm), x =
nX

i=1

xiei.

Let ∂xi
denote the partial derivative in the direction ei and by ∆Pol(E) := −Pn

i=1 ∂
2
xi

the flat

Laplacian. Then as ei y = ∂xi
◦ P , we have

Λ = −∆Pol(E) ◦ P.

In conclusion, symmetric tensors of degree m which are trace-free correspond to polynomials homo-

geneous of degree m which are harmonic.

A.2 Differential Geometry

Let (X, g) be a Riemannian manifold of dimension n + 1 and denote by r the Levi-Civita connec-

tion. Identify the tangent bundle TX with the cotangent bundle T⇤X and let {ei}0in be a local

orthonormal frame.

Let the symmetrisation of the covariant derivative, called the symmetric differential, be denoted

d:

d :

(
C1(X; SymmTX) ! C1(X; Symm+1TX)

u 7! Pn
i=0 ei · reiu

and, by δ, its formal adjoint, called the divergence:

δ :

(
C1(X; Symm+1TX) ! C1(X; SymmTX)

u 7! −
Pn

i=0 ei yreiu

The two first-order operators behave nicely with L and Λ giving the following commutation relations

[HMS16, Equation 8]:

[Λ, δ] = 0 = [L, d], [Λ, d] = −2 δ, [L, δ] = 2 d . (A.1)

The rough Laplacian is denoted by r⇤r:

r⇤r :

(
C1(X; SymmTX) ! C1(X; SymmTX)

u 7! r⇤ru
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where r⇤ is the formal adjoint of r : C1(X; SymmTX) ! C1(X; TX ⌦ SymmTX). Equivalently

r⇤ru = (− tr ◦r ◦ r)(u), u 2 C1(X; SymmTX)

where tr : C1(X; TX⌦TX) ! C1(X) is a trace operator obtained from g by declaring tr(ei⌦ej) =

δij and is then extended to tr : C1(X; TX ⌦ TX ⌦ SymmTX) ! C1(X; SymmTX). For the

Lichnerowicz Laplacian, we introduce the Riemann curvature tensor which will be denoted by R:

Ru,v w = [ru,rv]w −r[u,v]w, u, v, w 2 C1(X; TX)

and is extended to all tensor bundles as a derivation. On SymmTX we introduce the following

curvature endomorphism which is denoted by q(R):

q(R)u =

nX

i,j=0

ej · ei yRei,ej u, u 2 SymmTX.

The Lichnerowicz Laplacian is denoted by ∆:

∆ :

(
C1(X; SymmTX) ! C1(X; SymmTX)

u 7! (r⇤r+ q(R))u

For local computations, we decompose symmetric m-tensors using the symmetrised basis elements:

u =
X

K2A m

uKeK , u 2 C1(X; SymmTX), uK 2 C1(X).
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Résumé
Ce manuscrit se compose de deux parties indépendantes.

La première partie de cette thèse étudie les structures de

Clifford paires. Pour une variété riemannienne munie d’une

structure de Clifford paire, nous introduisons l’espace de twisteurs

en généralisant la construction d’un tel espace dans le cas d’une

variété quaternion-hermitienne. Nous construisons une struc-

ture presque-complexe sur l’espace de twisteurs et considérons

son intégrabilité lorsque la structure de Clifford est parallèle.

Dans certains cas, nous pouvons aussi le fournir d’une métrique

kählerienne ou, correspondant à une structure presque-complexe

alternative, d’une métrique “nearly Kähler”. Dans un second

temps, nous introduisons une structure appelée Clifford-Weyl sur

une variété conforme. Il s’agit d’une structure de Clifford paire

qui est parallèle par rapport au produit tensoriel d’une connex-

ion métrique sur le fibré de Clifford et une connexion de Weyl.

Nous démontrons que la connexion de Weyl est fermée sauf dans

certains cas génériques de basse dimension où nous arrivons à

décrire des exemples explicites où les structures de Clifford-Weyl

sont non-fermées.

La seconde partie de cette thèse étudie des résonances quan-

tiques. Au-dessus d’une variété assymptotiquement hyperbolique

paire, nous considérons le laplacien de Lichnerowicz agissant

sur les sections du fibré des formes multilinéaires symétriques.

Lorsqu’il s’agit de formes bilinéaires symétriques, nous obtenons

une extension méromorphe de la résolvante dudit laplacien à

l’ensemble du plan complexe si la variété est Einstein. Cela

définit les résonances quantiques pour ce laplacien. Pour les

formes multinéaires symétriques en général, une telle extension

méromorphe est possible si la variété est convexe-cocompacte.

Dans les deux cas, nous devons restreindre le laplacien aux sec-

tions qui sont de trace et de divergence nulles. Nous util-

isons ce deuxième résultat afin d’établir une correspondance

classique-quantique pour les variétés hyperboliques convexes-

cocompactes. La correspondance identifie le spectre du flot

géodésique (les résonances de Ruelle) avec les spectres des lapla-

ciens agissant sur les tenseurs symétriques qui sont de trace et

de divergence nulles (les résonances quantiques).

Abstract
We study independently even Clifford structures on Riemannian

manifolds and quantum resonances on asymptotically hyperbolic

manifolds.

In the first part of this thesis, we study even Clifford struc-

tures. First, we introduce the twistor space of a Riemannian

manifold with an even Clifford structure. This notion generalises

the twistor space of quaternion-Hermitian manifolds. We con-

struct almost complex structures on the twistor space and check

their integrability when the even Clifford structure is parallel. In

some cases we give Kähler and nearly-Kähler metrics to these

spaces. Second, we introduce the concept of a Clifford-Weyl

structure on a conformal manifold. This consists of an even

Clifford structure parallel with respect to the tensor product of

a metric connection on the Cifford bundle and a Weyl structure

on the manifold. We show that the Weyl structure is necessar-

ily closed except for some “generic” low-dimensional instances,

where explicit examples of non-closed Clifford-Weyl structures

are constructed.

In the second part of this thesis, we study quantum reso-

nances. First, we consider the Lichnerowicz Laplacian acting on

symmetric 2-tensors on manifolds with an even Riemannian con-

formally compact Einstein metric. The resolvent of the Lapla-

cian, upon restriction to trace-free, divergence-free tensors, is

shown to have a meromorphic continuation to the complex plane.

This defines quantum resonances for this Laplacian. For higher

rank symmetric tensors, a similar result is proved for convex co-

compact quotients of hyperbolic space. Second, we apply this

result to establish a direct classical-quantum correspondence on

convex cocompact hyperbolic manifolds. The correspondence

identifies the spectrum of the geodesic flow with the spectrum

of the Laplacian acting on trace-free, divergence-free symmetric

tensors. This extends the correspondence previously obtained for

cocompact quotients.

Mots clés
Structures de Clifford paires, Espaces de twisteurs, Connexions

de Weyl, Variétés assymptotiquement hyperboliques, Laplacien

de Lichnerowicz, Résonances quantiques et de Ruelle
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Even Clifford Structures, Twistor Spaces, Weyl Connections,

Assymptotically Hyperbolic Manifolds, Lichnerowicz Laplacian,

Quantum and Ruelle Resonances,
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