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Introduction

L’objectif de cette these est I’étude de certaines familles de représentations projectives
des groupes modulaires des surfaces.

Etant donnée une surface fermée orientée 3, son groupe modulaire Mod(X) est défini
comme le quotient du groupe des homéomorphismes de > préservant ’orientation et les
points marqués, par le sous-groupe formé par la composante connexe contenant 1’identité.
En d’autres termes, il s’agit du groupe des classes d’isotopie des homéomorphismes de 3 :

Mod(X) := mp(Homeo™ (X))

Nous considérerons deux familles de représentations projectives, indexées par un entier
p > 2, définies sur des espaces de dimension finie :

Les représentations de Weil :  m, : Mod(X) — PGL(U,(X))
Les représentations de Reshetikhin-Turaev :  p, : Mod(X) — PGL(V, (%))

Les représentations dites de (Segal-Shale-) Weil ou représentations métaplectiques, ne
fournissent que peu d’information sur Mod(X).

Le premier groupe d’homologie entiere Hi (2,4, Z), muni de la forme d’intersection, est
un espace symplectique. Les classes d’homéomorphismes de Mod(X,) agissent dessus en
préservant la forme d’intersection, ce qui fournit un morphisme surjectif de groupes :

f:Mod(Xy) — Spay(Z)

Alors que le groupe symplectique Spa,(Z) est bien connu, le noyau de f, appelé sous-
groupe de Torelli , est encore mal compris. Les représentations de Weil agissent trivialement
sur ce sous-groupe. Elles constituent cependant I’exemple le plus simple de représentations
dites 'quantiques’ et constituent un excellent modele pour étudier les propriétés générales
de ces représentations.

Les représentations de Weil sont apparues en 1946, dans les travaux de Kloosterman
([64]) ou elles sont définies comme des transformations modulaires des fonctions theta de
Jacobi. Leur étude a été reprise par les physiciens Segal et Shale en 1962 ([78, 80]) ou elles
proviennent de la quantification du tore symplectique, puis par Weil en 1964 ([8g]).

La seconde famille de représentations que nous étudierons, les représentations dites de
(Witten- ) Reshetikhin- Turaev ou représentations SO(3) et SU(2), au contraire détectent le
groupe de Torelli. Plus précisément, bien qu’aucune d’entre elles ne soient fideles, la somme
directe d’une infinité d’entre elles forme une représentation fidele de Mod(X) modulo son
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centre (voir [28, B, 67]). L’image de ces représentations contient donc toute l'information
de Mod(X).

Ces représentations tirent leur origine dans la découverte en 1985, par Jones, d’un
invariant polynomial pour les noeuds et les entrelacs ([47]), et dans leur interprétation
tridimensionelle donnée par Witten en 1989 dans [97]. Plus précisément, Witten définit la
notion de théorie topologique quantique de champs (voir [6, 91]), ou TQFT , dans laquelle
s’inscrivent le polyndme de Jones et les représentations de Reshetikhin-Turaev.

Une TQFT est un foncteur qui associe a toute surface X, un C espace vectoriel V()
(et V(@) = C), et associe a tout cobordisme M entre X et ¥y, une application linéaire
V(M) entre V(X1) et V(32). On autorise un tel cobordisme & contenir un entrelacs en
rubans.

A une 3-variété fermée orientée, vue comme un cobordisme entre @) et @, un tel foncteur
associe une application linéaire C — C qui peut étre assimilée & un nombre complexe
(M) € C, appelé l'invariant quantique de M.

Dans [92], Witten annonce 'existence de TQFTs dont Iinvariant quantique d’un entre-
lacs de S? correspond au polynéme de Jones évalué en une racine de I'unité. Un tel foncteur
fournit une représentation de Mod(X) sur V(X) dite représentation quantique. Bien que
I’heuristique donnée par Witten pour I'existence d’'une telle TQFT s’appuie sur la notion
encore mal définie d’intégrales de chemins, 'auteur souligne que certaines propriétés de
chirurgies et d’écheveaux permettent un calcul algébrique explicite de ces invariants et
que les techniques de théories conformes de champs en dimension 2 permettent ’étude des
espaces V (X).

La premiere construction rigoureuse de ces TQFTs est faite par Reshetikhin et Tu-
raev en 1991 dans [[75]. Cette construction utilise des représentations de certains groupes
quantiques définis par Drinfel’d et Jimbo.

Une construction plus combinatoire de ces invariants quantiques, s’appuyant sur les
travaux de Kirby et Melvin ([61]), est proposée par Lickorish dans [63]. La connaissance de
cet invariant permet de reconstruire toute la TQFT par une construction dite universelle
définie par Blanchet, Habegger, Masbaum et Vogel dans [14]. Nous suivrons cette approche
pour définir les TQFTs qui engendrent les représentations de Weil et de Reshetikhin-
Turaev.

Les principaux résultats de cette these concernent la décomposition des représentations
quantiques en représentations irréductibles. Décrivons briévement le contenu de chaque
chapitre.

Chapitre 1

Le premier chapitre sert d’introduction pour définir les notions et résultats classiques
utilisés dans le reste de la these.

La premiere section sert a définir les TQFTs abéliennes, SO(3) et SU(2) en suivant
(63, 4.

On définit d’abord la notion de TQFT sans anomalies. On montre comment on peut
en extraire un invariant pour les 3 variétés fermés orientées munies d’un entrelacs et, pour
chaque surface ¥, une représentation de Mod(X). On explique également la construction
universelle de [14] qui permet de construir une TQFT depuis un invariant.
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Dans un second temps, nous étudions la notion de module d’écheveaux d’une 3 variété
ainsi que les algebres de Temperley-Lieb et les polynémes de Jones colorés.

La troisieme sous-section concerne le comportement des TQFTs vis-a-vis de la chi-
rurgie. Nous énoncons les théoremes de Lickorish-Wallace et de Kirby, qui stipulent que
la définition d’un invariant pour les 3 variétés fermées orientées est équivalent a la don-
née d’un invariant d’entrelacs en rubans stables sous certains mouvements locaux, dits de
Kirby. Nous verrons que l'existence de TQFTs satisfaisant les propriétés d’écheveaux et
de chirurgie, comme annoncée par Witten, implique que 'invariant quantique dépend de
la signature de la 3-variété et nécessite d’étendre la catégorie de cobordismes.

Ceci nous amene, dans la quatrieme sous-section, a définir une notion de TQFT avec
anomalie, en munissant les surfaces de Lagrangiens dans leur premier groupe d’homologie
rationelle, et les cobordismes de poids entiers. Avec cette définition, les propriétés d’éche-
veaux et de chirurgie définissent de manieére unique les TQFTs abéliennes, SO(3) et SU(2).
Les représentations quantiques ainsi obtenues sont alors projectives.

Enfin nous étudierons les espaces associés aux surfaces et donnerons des bases ortho-
gonales pour certaines formes bilinéaires invariantes sous I’action de Mod(X).

La seconde section regroupe certains résultats classiques des représentations quan-
tiques.

On démontre notamment une relation, dite d’Egorov, entre I'action de Mod(X) d’une
part sur les espaces V(X), d’autre part sur les algebres End(V(X)). On tire de cette relation
certaines décompositions des représentations quantiques.

D’une part on obtient que les représentations de Weil se scindent en deux sous-
représentations dites paires et impaires. On obtient également que les représentations
de Weil aux niveaux p = r™ sont des sous-représentations de celles aux niveaux p = "2
lorsque 7 est un nombre premier. Enfin, en suivant [i4], on démontre que si 4 divise p,
alors les représentations de Reshetikhin-Turaev au niveau p se scindent en deux.

On démontre également, en suivant [27, 6], que lorsque ¥; = S x S!, les représen-
tations de Reshetikhin-Turaev de Mod(31) = SLy(Z) sont des sous-représentations des
représentations de Weil.

Nous verrons ensuite, en suivant [I4], que, sous certaines conditions, lorsque l'invariant
d’'une TQFT est le produit des invariants de deux autres, la représentation quantique
associée est produit tensoriel des deux autres. Nous dérivons ensuite de ce résultat deux
décompositions tensorielles. D’une part si a et b sont premiers entre eux, la représentation
de Weil au niveau ab est produit tensoriel des représentations aux niveaux a et b. D’autre
part, lorsque r est impair, la représentations de Reshetikhin-Turaev au niveau 2r est
produit tensoriel de celle au niveau r et de celle au niveau 6.

Enfin, en suivant Roberts ([76]), nous montrerons que les représentations de Reshetikhin-
Turaev aux niveaux p = r et p = 2r, avec r premier impair, sont irréductibles. Nous verrons
également que la preuve fonctionne pour r = 9.

Chapitre 2

Ce chapitre contient la version non publiée de article [55] intitulé "Decomposition of
Weil representations into irreducible factors’ dans lequel on donne la décomposition en
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irréductibles des représentations de Weil.

Plus précisément, le module U, de la représentation de Weil au niveau p se décompose
ainsi :

Theorem (Théoréme 2171).

1. Sia etb sont premiers entre euz, alors Uy, = U, ® Uy,

2. Sir est premier et n > 1, alors Umn+2 = Upn & Wiont2 ot Wionte désigne un autre
module.

8. Sir est premier impair, alors U2 = 1 @ W2 ou 1 est la représentation triviale.

4. Les modules Uy et Wyn avec > 2 se scindent en deux sous-modules : U, = U, QU,S,
Wyn =W, & Wi,
5. Les modules B1 ® ... ® By, ou les B; sont de la forme U, U, UQ,UI, Uy, WQZ ou

W, et sont associés a des entiers premiers entre euz, sont irréductibles.

Cette décomposition était connue pour les représentations de Weil en genre 1 aux
niveaux p = 7', ol r est un nombre premier impair (voir [54]). Notre étude généralise
ces décompositions a tous les niveaux en genre arbitraire. On dérive de cette étude la
décomposition des représentations de Reshetikhin-Turaev en genre 1 en irréductibles.

Bien que les quatre premiers points soient déja démontrés au Chapitre 1, nous en
donnons ici une preuve alternative plus directe en explicitant les isomorphismes utilisés.
Le dernier point du théoréeme, I'irréductibilité des facteurs, est démontré de deux fagons
différentes.

Chapitre 3

Ce chapitre contient la version non publiée de l'article [66] intitulé 'Decomposition
of some Reshetikhin-Turaev representations into irreducible factors’, ou I'on étudie la
décomposition en irréductibles des représentations de Reshetikhin-Turaev lorsque le niveau
est de la forme p = 2ri7o, p = 212 et p = 4r, avec r,71,79 des nombres premiers impairs,
modulo certaines conditions techniques. Plus précisément on démontre les deux théoremes
suivants :

Theorem (Théoreme BI1).

1. Sir est premier impair, alors Vy,.2 est somme de deux sous-représentations irréduc-
tibles.

2. Sir est premier impair, alors Va2 o est irréductible.

3. Siry,re sont deux nombres premiers impairs distincts, alors Var,r, 2 est irréductible.

A chaque niveau p = 2r > 3 est associé un ensemble de nombres complexes appelés
67-symboles. Un niveau p = 2r > 3, avec r impair, sera dit générique si les 6j-symboles
associés sont tous non nuls. Lorsque r est pair, la proposition BZ310 exhibe deux familles
de 6j-symboles nuls. Dans ce cas, p sera dit générique s’il n’en existe pas d’autres.

Theorem (Théoreme B12).

1. Si 50 est générique , alors Vs 3 est irréductible.
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2. Sir > T est premier impair, p = 4r est générique et g = 3, alors Vy, 3 est somme
de deux sous-représentations irréductibles.

8. St ri,re sont deux nombres premiers impairs distincts, p = 2riry est générique et
2g < min(ri,re), alors Vo r, g est irréductible.

La généricité d’un niveau assez petit donné peut se vérifier a ’aide d’un ordinateur.

Corollaire 0.0.1. (preuve assistée par ordinateur)
Le module Vo 3 est irreductible. Les modules Vag 3 et Vig 3 sont sommes de deux sous-
modules irréductibles.

Chapitre 4

Ce chapitre regroupe péle-méle divers résultats sur les représentations quantiques.

Dans la premiére section, on adapte la preuve de [67] au cas abélien pour montrer que
les normes au carré des représentations de Weil convergent, au sens de la topologie de Fell,
vers la représentation homologique :

h: Mod(Y) — GL (C[H:(X, Z)))

On démontre également qu’aux niveaux impairs, les représentations de Weil repré-
sentent fidelement le groupe Spoy(Z/pZ).

Dans la seconde section, on étudie la finitude de I'image des représentations de Reshetikhin-
Turaev lorsque le niveau est p = r ou p = 2r avec r premier impair. On retrouve notament
les résultats de [29, 23], ou il est prouvé que si g > 2, I'image est finie si et seulement si
r = 3. On étudie également 'infinitude des images des représentations associées au tore
percé, qui n’était connue qu’asymptotiquement dans [[77].

Dans la troisiéme section, on exhibe des relevés linéaires explicites des représentations
de Weil. Plus précisément, on reléve les représentations de Weil en représentations linéaires
de Spay(Z) lorsque g = 1 et lorsque g > 2 et que le niveau est impair. Lorsque g > 2
et que le niveau est pair, on releve les représentations de Weil en représentations d’une
extension centrale non triviale de Spyy(Z) par Z/27.






Chapitre 1

Topological Quantum Field
Theories and quantum
representations

Résumé

Ce chapitre sert a définir les objets, fixer les notations et énoncer les ré-
sultats classiques dont nous aurons besoin dans la these. Il ne contient aucun
résultat original.

Dans la premieére section, nous introduisons la notion de TQFT. Il s’agit
d’un foncteur entre une catégorie de cobordismes et une catégorie de modules,
dont on peut extraire un invariant pour les 3-variétés fermées orientées munies
d’entrelacs en rubans et une famille de représentations pour les groupes mo-
dulaires des surfaces fermées orientées munies de points marqués. En suivant
[63, 4], nous définissons deux familles de TQFTs caractérisées d’une part par
une propriété dite d’écheveaux pour les entrelacs en rubans et d’autre part par
leur comportement vis-a-vis de la chirurgie.

La seconde section énonce des résultats classiques des représentations de
Weil et Reshetikhin-Turaev issues de ces deux familles de TQFTs. Cela permet-
tra de fixer les notations et préparer le terrain pour les résultats des prochains
chapitres.

Abstract

In this chapter we define the objects, fix the notations and state the classical
properties needed in the thesis. Nothing original is claimed here.

In the first section, we introduce the notion of TQFT. It is a functor be-
tween a cobordism category and a module category from which we can extract
both an invariant for closed oriented 3-manifolds with an embedded link of
ribbons, and a family of representations of the mapping class groups of closed
oriented surfaces with marked points. Following [63, 4], we define two fami-
lies of TQFTs caracterized one the one hand by a skein property for their link
invariant and on the other hand by their behavior for surgery.

In the second section, we state some classical results concerning the Weil
and Reshetikhin-Turaev representations arising from these families of TQFTs.



CHAPITRE 1. TOPOLOGICAL QUANTUM FIELD THEORIES AND QUANTUM
14 REPRESENTATIONS

It permits to fix some notations and gives the background needed in the next
chapters.

1.1 Construction of U(1) and SU(2) TQFTs

1.1.1 TQFT and universal construction

Definition of TQFTs without anomaly

A TQFT is a monoidal functor between a cobordism category and a category of k-
modules.

We first define the cobordism category Coboq.

The objects of Cobgy; are marked surfaces ¥ = (X,b), which are closed oriented
surfaces ¥ with an ordering on the set of its connected components and an ordered finite
set b = ((b1,¢€1),...,(bn,€,)) of co-oriented embedding b; of [0,1] in 3 called bands. We
add the empty surface as an element.

A banded cobordism between two marked surfaces X and X' isa M = (M, L, ¢_, ¢)
where M is a compact oriented 3-manifold with boundary OM = 0_M | |0+ M, L is a
(possibly empty) framed tangle properly embedded in M and ¢_ : =X — d_M, ¢4 : ¥/ —
0+ M are orientation preserving homeomorphisms so that ¢ (resp. ¢_), sends the bands of
Y/ (resp. of —=X) to LNIL M (resp LNO_ M) by preserving the co-orientations. Two banded
cobordisms are said equivalent if there exists a preserving orientation homeomorphism
relatively to the boundary between the two underlying 3 manifolds which preserves the
banded links.

The set of morphisms Hom (X, ¥') is the set of equivalence classes of banded cobordisms
between ¥ and ¥’. The composition between My € Hom(X,3¥’) and M2 € Hom(X/, ¥")
is obtained by gluing the underlying cobordisms and links along ¢5 o (¢7)~! : 04 My —
0_M>. Figure I illustrates this composition. The neutral element of Hom(X, X) is the
class of the cylinder ¥ x [0, 1] where we identify —¥ x {0} and ¥ x {1} with ¥ using the
identity map.

The category Cobsy1 has a duality, that is a functor dual : Cobay1 — Coba1 so that
dual odual = 1. It consists of changing the orientation of the surfaces and cobordisms and
links.

Eventually the category Cobgi1 has a tensor product (we say it is a strict monoidal
category), that is a functor | | : Coba41 X Cobay1 — Cobay which takes the disjoint union
of marked surfaces and cobordisms. It verifies the axioms of a tensor product, that is:

1. | is associative for objects and morphisms.

2. There is a neutral object () (the empty surface) so that:
S| |0=0| |5 =% and M| |idy = idy| | M =M

3. idy idyy = idy, |y,
4. If f € Hom(X, X'), f' € Hom(X', X"), g € Hom(Y,Y"),¢" € Hom(Y’,Y"), then:

(fo /N lgog) =(]o)o(f | ]9)
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Figure 1.1: The composition of two morphisms in the cobordism category.

Let k be a commutative ring with a unit, an involution and a ring isomorphism (-) :
Hom(k, k) — k. The main examples will be the field of complex numbers C with the

complex conjugacy and the cyclotomic ring Z[A / P2p(A) with the involution sending A
to A7L.

Roughly speaking, the category of k-modules Mody, is the category of free finite rank k-
modules with the usual tensor product and duality. Unfortunately, this definition prevents
the existence of functors Cobgoy; — Mody preserving tensor product. Indeed, the k-
modules (V; ® V2) ® V3 and Vi ® (Va2 ® V3) are isomorphic (with a unique isomorphism)
but not equal, whereas the banded surfaces (X | |¥2) [ |23 and 31 | |(Z2|]X3) are equal.
We solve the problem by defining the objects of Mody, as finite (possibly empty) sequences
(Vi,...,Vy,) of free finite rank k-modules. The set Hom ((V4,...,V,), (Wi,...,Wy,)) is the
set of linear map V1 ®...®@V, > W1 ®...® W,,. The tensor product is the juxtaposition
of sequences and duality given by (V1,..., V)" = (V.5,..., V}).

Note that a ring morphism v : k; — ko that preserves involution, gives rise to a functor
v* : Mody, — Mody, that preserves tensor product and duality.

We finally state the:

Definition 1.1.1. A Topological Quantum Field Theory (or simply TQFT) is a functor
V : Cobgt1 — Mody, which preserves the duality and the tensor product (and the neutral
object V() = k). A morphism between two TQFTs (V1, k1) and (V2, k2) is a ring morphism
v : ki — ko that preserves involution, together with a natural map between v* o V; :
Coba41 — Mody, and V5 preserving duality and tensor product.

We may also want the framed link inside cobordisms to be oriented. We define similarly
a category Cob§, ; of cobordism where the objects are banded surfaces where each band b;
is equipped with a sign ¢; € {—1,+1} and the morphisms are classes of banded cobordisms
where the core of each framed link is oriented in such a way that is only allowed to enter
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through a band with sign —1 and leave through a signed +1 band. A pair (U, k) with k a
ring and U a functor U : Cob3,; — Mody that preserves tensor product and duality will
be called an oriented TQFT without anomaly. Figure 2 illustrates such a functor.

V(My) ® V(My)* V(M)

%V O L——— V(2,)

Figure 1.2: Illustration of a TQFT

Three-manifolds invariants

Let (M, L) be a closed oriented 3-manifold with an embedded link L. It defines an
element of Hom(0, ). If (V,k) is a TQFT, then V(M, L) € Hom(k, k) = k.

Definition 1.1.2. If (V, k) is a TQFT without anomaly, the map

Oy {closed oriented 3-manifolds with embedded link} /p, .0+ — k
sending (M, L) to (V(M, L)), is the quantum invariant associated to (V, L).

This invariant satisfies the following properties:
1. (D) = 1.

2. (My M)y = (My)y - (Mz)y,

3. (=M)y = <M>V

An invariant that satisfies these three properties will be called a good invariant.

Mapping class group representations

Let ¥ be a marked surface. We denote by Mod(X) the mapping class group of
orientation-preserving homeomorphisms of 3 that preserve the bands together with their
co-orientations. To ¢ € Mod(X) we associate the cylinder C(¢) € Hom((X), (X)) which is
the class of the cobordism ¥ x [0, 1] with the link | |; b; x [0, 1], where we identify ¥ x {0}
with — with the identity map and ¥ x {1} with ¥ with ¢.

Definition 1.1.3. Let (V,k) be a TQFT without anomaly and ¥ be a marked surface.
The group morphism:
pvs : Mod(2) — GL(V (X))
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defined by pyx(¢) = V(C(9)), is called the quantum representation of 3 associated to
(Vi k).

Non-degeneracy condition and the universal construction

Under certain non-degeneracy assumptions, a TQFT is completely determined by its
quantum invariant. In [I4], the authors gave a method to construct a TQFT from a good
invariant.

Notation 1.1. When M is a compact oriented manifold with boundary OM = 33, then M
may be seen as a banded cobordism M between 0_M = () and 9. M = ¥. The morphism
V(M) € Hom(k, V(X)) is completely determined by the image of the neutral element 1
of k. We write:

Z(M):=V(M)(1y) € V(%)

the vector associated to M.

Definition 1.1.4. A TQFT without anomaly (V, k) is non degenerate if:

1. For every marked surface 3, the module V(%) is spanned by the vectors Z (M) with
M a compact oriented manifold with boundary X..

2. The bilinear form (-, )5 : V(X) x V(X) — k defined by:

(Z(My), Z(Mz))s,y = <—M1 UM2>
b

|4

is non-degenerate, i.e. defines an isomorphism V(X) = (V(X))*.

The universal construction is defined as follows. Let

I : {closed oriented 3-manifolds with embedded link} /homeot — k

be a good invariant. If 3 is a marked surface, we denote by Ny the free k-module generated
by the classes of banded cobordisms M such that 9M = 3. We define the k-module V()
as the quotient of Ny by the kernel of the bilinear form:

(‘, '>2,I : Ns: X Ny — k
defined by (M, Ma)g, ; = I(M; Uy, —Mo).

A class of banded cobordism M € Hom(X,¥’) acts naturally on V;(X) by sending a
class [Z(X)] € Vi(X) to the class [Z(M Uy, X)] € Vi(X'). We get a functor V : Cobayq —
Mody, in this way.

It follows from definitions that V; is a TQFT without anomaly if and only if:
1. The modules V;(X) have finite rank.

2. The bilinear form (-, )5, . induces an isomorphism V(-X) = (V(X))".

3. The map V(X))@ V(¥') —» V(X |J¥') is an isomorphism.

The second point follows from the first one if k is a field.

Remark. The definition of TQFT we gave suits well for the ones we want to study in
this manuscript but is restrictive. Recent constructions involve also TQFTs with infinite
dimensional vector spaces associated to surfaces. We might also simply ask the map
V(X))@ V(Y) = V(EX) to be injective and drop the non-degeneracy assumption as
well.
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1.1.2 Skein relations and colored Jones polynomials

In this section, k is a commutative ring with an involution so that there exists an
isomorphism (-) : Hom(k, k) — k and a ring morphism p : Z[A, A7 — k with p(A) =
A~!. When no confusion is possible, we will simply denote by A the element ;(A) € k.

Link invariants

Let Yo4 € obj(Cobay1) and £, € obj(Cob$, ;) be the sphere S? with four bands
where the signs of the bands of X, are —1,—1,+1 and +1. We consider the banded

cobordisms >< ,Z , ) @ € Hom((), X0 4) and @ € Hom((}, $3) and the cobordisms ><
,>< ,ﬂ ﬂ € Hom(0, ¥§ ;) and @ € Hom?(0), S3).

Definition 1.1.5.

An oriented TQFT U : Cobg,; — Mody, respects the abelian skein relations if:

) —amd ),
20—z 1,
2Oy = ).

A non-oriented TQFT V : Cobat1 — Mody respects the Kauffman skein relations if:

- Zv(>< ) = A—lZV() Q )+ AZy (=),
- ZV(Q ) = —(A*+ A7) Zv (0).

Recall that the linking number [k(L) of a framed oriented link is defined as the number
of positive crossing minus the number of negative ones of an arbitrary diagram representing
the link. Note that the quantum invariant of a framed link L C S for a TQFT which
respects the abelian skein relations is equal to A*(L) | so is related to the linking number
lk(L) modulo p.

The quantum invariant of a framed link for a TQFT which respects the Kauffman skein
relation is the Kauffman bracket as defined in [4R] closely related to the Jones polynomial

(7).

We will define two families (U, k;,)p>2 and (Vp, kp)p>3 of non degenerate TQFTs that
respect the skein relations. They will be indexed by an integer p which specifies the order
of A € k. This is motivated by the following proposition, whose proof is postponed to the
end of the subsection:

Proposition 1.1.6. If k is the ring of a non-degenerate TQFT which respects the skein
relations, then there exists an integer p, invertible in k, such that A is a primitive p-th
root of unity if p is odd in the abelian case and such that A has order 2p in the other cases.

The integer p of the previous proposition will be called the level of the TQFT.
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Skein modules and skein algebras

The skein modules were introduced independently by V. Turaev ([84]) and J. Przytycki
([#4]). They are central objects in the study of TQFTs which respect skein relations.

Definition 1.1.7.

Let M be an oriented compact 3-manifold, k& a commutative ring with a morphism
2 ZJAE]. The skein modules Kyp(M) and Tp(M) are the quotient of the free k-module
generated by isotopy classes of framed links in M, by the skein relations of Figure IZ3.

= A — A1
=0
=A +A1
= —(A?+ A7%)0

Figure 1.3: The skein relations defining 75 (M) on the top and (M) on the bottom.

If ¥ is an oriented compact surface, the skein algebras Ti(X) and Ki(X) are the k-
modules 75 (X x [0,1]) and K (X x [0,1]). The product of the classes of two links L; and
Ly in ¥ x [0,1] is obtained by isotoping L; in ¥ x [0,3) and Ly in ¥ x (3, 1] and then
gluing the two parts in ¥ x [0, 1].

Remark. 1. The algebras 7j(X) are usually called quantum tori. Note that the class of
a link embedded in X x {%} in an abelian skein algebra, only depends on the integer
homology of the link. If [L;] and [Lg] are the classes in H; (X, Z) of two links and
w([L1], [L2]) represents the crossing number, the product in the abelian skein algebra
is then given by:

[L1] - [Lo] = A¥(bIED L) 4 1]

2. We introduce skein modules because if U and V are non-degenerate TQFTs that
respect the abelian and Kauffman relations respectively, then U(X) is a quotient of
DBors—s Tr(M) and V(X) a quotient of @y/—x Ki(M).

A multicurve in a surface ¥ is a one-dimensional submanifold with no contractible
components.

Proposition 1.1.8. If 3 is an oriented compact surface, then:
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1. The module T(X) is freely generated by the elements of Hi (X, Z).
2. The module K (X) is freely generated by the multicurves of %.

Proof. Any link in ¥ x [0, 1] can be isotoped and projected in ¥ x {%} to give a regular
diagram, that is an embedded graph (oriented in the abelian case) with vertices of degree

four and with the choice for each vertex of a crossing X or >< . Using the skein
relations of Figure 3, we associate to the class of the link in the skein modules, a linear
combination of regular diagram without crossing nor contractile components corresponding

to multicurves. This shows that multicurves generate Kp(X) and that the elements of
H\(X,Z) generate T (X).

The fact that the abelian skein relations preserve the class of a link in H; (X, Z), implies
that the set of elements of Hy(X,Z) in T(X) is free.

To show that the set of multicurves of 3 in K (X) is free, denote by K’ the free k-module
generated by isotopy classes of multicurves and by ¢ : K’ — Kj(2) the map sending a
multicurve to the skein class of the corresponding framed link in ¥ x {3} € ¥ x [0, 1].

To construct its reverse map ¢ : (X x [0,1]) — K', first note that Kr(X x [0,1])
is isomorphic to the free k-module generated by isotopy classes of regular diagrams, quo-

tiented by the framed Reidemeister moves of Figure [ and the Kauffman skein relations
of Figure I=3.

ODEAIBE

Figure 1.4: The three framed Reidemeister moves.

Let D be a regular diagram and V(D) be the set of its vertices. To each map c :
V(D) — {—1,+41}, we associate a multicurve D, obtained by replacing each vertex v with

ng X iy ==
crossing by the smoothing if ¢(v) = +1 and by == if ¢(v) = —1, and then
removing the contractible components. We also denote by n(c) the number of contractible
components removed and m(c) 1= 3, cy(p) c(v)-
The map:

¢(D) _ ZAm(C) (_A2 _ A_Q)n(c) D, € K’

is invariant under the framed Reidemeister moves and the Kauffman skein relations and
gives the reverse map of ¥ which is thus injective. This implies that the set of multicurves
in K (X) is free. m]

The Temperley-Lieb algebras and the Jones-Wenzl idempotents

Definition 1.1.9. Given n > 2, the Temperley-Lieb algebra T'L,, is the quotient of the
k-module generated by isotopy classes of (n,n)-tangles by the Kauffman skein relations (
Figure I33). The composition is given by gluing two tangle vertically whereas the horizontal
juxtaposition defines a morphism T L, ® T'L.,,, = T Ly +m.



1.1. CoNsTRUCTION OF U(1) AND SU(2) TQFTSs 21

The algebra TL, has a finite presentation with generators the neutral 1, and the
elements b;, for 1 <i <n—1, of Figure IZ3. The relations are given by the above relations
and the fact that 1,, is the neutral:

L b2 =—(A2+ A b, for 1 <i<n-—1
2. bzbzilbz = bz s for 1 S 7 S n—1.
3. bzb] = bjbi, when |Z —j| > 1.

|\ o/ 1\

(A £ (N

Figure 1.5: The elements by, by and bg of T'L4 .

Definition 1.1.10.

— The Chebychev polynomials T,, € Z|X] are defined by T} = 1,7, = X and the
recursive formula:

T(X) = XTp_1(X) — T (X)

In particular T, (X + X71) = &= = Xl 4 X8 4 4 XL

— The quantum numbers [n] € k are defined by [2] := A% + A~2 and:
A2n _ A72n
[n] == Tu([2]) = A7

— The Jones- Wenzl idempotents fo, ..., fn € T L, are defined by the following recursive
formula, starting with fo = 1, and illustrated in Figure IG:

[n]
[n+ 1]

|

fn-l—l :fn®11+

fn—|—1 — fn + [n] U
a)

Figure 1.6: The recursive formula defining the Jones-Wenzl idempotents.
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By abuse, we will identify an element v € T'L, with the element u ® 1,, € TLy1m
when no confusion is possible. We thus consider fy, ..., f, as elements of T'L,.

Lemma 1.1.11. The Jones- Wenzl idempotents fo, ..., fn € T L, are characterized by the
following properties:

1. fr #0.

2. f2 = fn.

8. bifn = fub; =0, foralli <n—1.

Proof. We show by induction the following properties which imply the ones of the lemma:
(1n) (f n)2 =rn
(2,) bifn=0,Yi<n-—1

(3n) (bnfn)2 = _[n[:]l] brfn

We suppose these properties hold for some n > 1 and show (1,41) :

(]

() = (ot s b
= fot Q[n[i]l]fn.bn.fn + <[n[j—] 1])2 Frnbnfrbnfn
— ot b fo = fu
We show (2511
bibuir = il o abuifa) =0
buuit = bufot 3 0n ) =0
We show (3ns1)
Oritfo)? = boia(fo+ s Fbof b
= b forn + b
i e

Denote by ¢y : TL, — k the algebras morphism mapping 1,, to 1 and b; to 0. It
follows from the definition of the f, that €y(f,) = 1. Now suppose g, € TL, satisfies
the three properties of the lemma and write z, = ¢, — €o(gn)1ln. Since g,% = g, and
InTn = Tpgn = 0 we must have €y(g,) = 1 also. Now we have frg, = fu(lp + zn) = fn
and similarly g, fn, = gn. Thus f,, = ¢, and the three properties characterize f,. m|
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The previous lemma implies that:
fou=uf, = ey(u)fp, for all u € TL,

where €, : T'L,, — k is the algebras morphism defined by €, (3>_; arbr) = o, and €,(1,) =
0.

Denote by T),, C,, and A,, the elements of T'L,, defined by Figure [C2 and write u, :=
en(Ty) and A\, := €,(Ch).

I (L=1D )
N Al

Figure 1.7: Three elements of T'L,,.

S

Lemma 1.1.12. We have p, = (—1)" A2\ = — (A2 4 A=20040D)) and e, (A,,) =
A2n—2

Proof. Figure R shows the following three equalities:
L Ty (1 ®@T,) = —A3A 4.
2. Cp1 = AH (11 ®Cy) + (1 — AH A,
3. A1 = A%(11 ® A,) + hy, where e, (hy,) = 0.

Taking the image by ¢, we get the following system:

Hn+1 = _A3€n+1 (A1) - fin
An—l—l = Aiz)‘n + (1 - A4)6n+1(An+1)
€En+1 (AnJrl) = A2€n(An)

We conclude by induction on n.

Colored Jones polynomials

The tangles of T'L,, can be seen as braids in D? x [0,1]. When we identify D? x {0}
with D? x {1}, we obtain a framed link in D? x S*. We denote by Tr,, : TL,, — K(D?x S*')
the induced linear map and define the elements:

Up = Tr(fn) € K(D? x SY)

Let K C S2 be a framed knot. We define a map
bK : K(D* x SY) =k

by embedding D? x S' in S3 into a tubular neighborhood of K using the framing of K to
specify the gluing, and the isomorphism (-) : K(S3) — k.
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Toy1- (1T = = (ﬁ:—fﬁ’?}i
1 n 1 n 1 n
= _AgAn—i-l
_|. ] ] B |
Cny1 = LD =A0 DH |+HA o
ﬂ n lJ 1” 41[—L
El n 1 n
=1-AYA, 11+ A1 C,
i D] an[
AnJrl = =A ﬁ —|—A71
1 1 jn— 1 1 "’L_l 1- n—|1
\[ 1\/[ 1\#\{
=L
0 T T A Yt e
= A%A,, + h,

Figure 1.8: A proof for three equalities in T'L,. The integers in front of the strands
indicate the number of parallel copies we take.

Similarly if L € S? is a framed link with m components, we define a map:

b K(D? x SH®™ 5 &

Definition 1.1.13. The elements ¢ (ui,, ..., u;, ) € k, for iy, € IN, are called the colored
Jones polynomials of L.

Lemma 1.1.14. The following three facts hold:

1. We have u; = T;(u1), for alli € IN, where T; is the i-th Chebychev polynomial defined
in Definition II10.

2. If Qo C 83 is the trivial framed knot, then:
$ao (ui) = (=1)'[i + 1]
3. If H C S? denotes the Hopf link, then:
O (ui ug) = (=1)[(i +1)(j + 1)]

Proof. To prove the first point, we first derive from the recursive Definition I1T10 of the
Jones-Wenzl idempotents the following equality:

e; = TTn(fi) = TTn(fi—l & 11) + [Z [:] 1]

[0 = 1]
(2]

Try(bifi-1)

[i = 2]
[0 = 1]

= wlrp(fic1) + (Trp(bifi—2) + Try(bifi—2bi—1fi—2))
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We then remark the following two facts which can be proved using simple drawings:
Trn(bifi—2) = —(A* + A Tr(fim2)
Trp (b fi—2bi—1fi—2) = Trn(bibi—1fi—2) = Trn(fi—2)
We deduce that:
i—1]
[2]

[i—2]
[P —1]

Tro(fi) = wmTrp(fio1) — (A2+ A2+ VT (fi—2) = wiTrp(fim1) — Tra(fi—2)

This is equivalent to e; = eje;—1 — e;_2 and the result follows from the definition of
the Tchebychev polynomials.

The second point is shown by induction. Suppose it holds for some n — 1 > 1, then:
[n —1]

0
B EACEE
DR

¢Qo<un) = ¢Qo(un—1)+ ¢Qo(Trn(fn—1bnfn—1))

_ [n+1] "
=g o

= (1) +1)
To show the third point, write Tj(X) = 34 5;,X*. We have:
Sij = on(uiug) = D 8jksiA G (us)
k

— Tj(_AQ(i—‘rl) _ A_2(i+1))(—1)i[i + 1]

o A20+1)(G+1) _ A-206+1)(G+1) g2(i+1) _ 4—2(i+1)
= (=1 A20+1) — A—2(i+1) A2 — A2

= (D[ + 1)@+ 1)

Trivalent graphs, theta and tetrahedron coefficients
Definition 1.1.15.

A triple (4,7, k) of non negative integers is said admissible if:

— 1+ j + k is even,

—Ji—jl <k<i+].

If I' is a trivalent graph (the vertices have degree 3) with set of edges E(I'), an admis-
sible coloring of I is a map o : E(I') — IN so that if (e1, e2, e3) are three edges adjacent
to one vertex, then (o(ey),o(ez),0(e3)) is admissible.

If I' C M is a trivalent graph embedded in a compact 3-manifold M and ¢ a coloring,
we associate an element of K,(M), called the expansion of (I', o), by replacing each edge
e € E(T') by the idempotent f, ) and cabling three idempotents along a vertex using the
planar tangle T¢, ¢, ¢, of Figure 9.
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Figure 1.9: The link 7; ;. used to connect three idempotents f;, f; and fi. The numbers

above each three arcs denote the number of parallel copies of the arc used to define the
link.

Consider the theta graph and the tetrahedron graph in S® of Figure [0, and denote

by (a, b, c) and < é, ZB; g > the Kauffman bracket of their expansion using the colorings

of Figure II1.

o= e (2 5)-
B

Figure 1.10: The colored tetha and tetrahedron graphs.

A

The computation of these theta and tetrahedron coefficients can be made using the
recursive formula of the Jones-Wenzl idempotents (Definition ITT10). We refer to [70] for
a proof.

Proposition 1.1.16. Note i = _a‘gb+c, j= a_§+c, k= ‘”‘g_c, then we have:

gl G+ b+ N
[i + 77 + k]! + E]!

(a,b,c) = (—1)

Proposition 1.1.17. Note:

ai=(A+B+E)/2 hh=(B+C+E+F)/2
aa=(B+D+F)/2 by=(A+B+C+D)/2
a3:(C+D+E)/2 b3:(A+D+E+F)/2
ay=(A+C+F)/2

Then we have:

< A B E > _ 1 IT5 1 b — ay)! 3 (=1)*[z +1]!
D C F | [A'B)C])D]'EF)] man(a) Sagmin(bi) Ty [bi — 2] TTj1 [z — as]!
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Proof of Proposition L6

The Hopf link H C S3 defines bilinear maps ¢ : Kp(D? x S1) x Ki(D? x SY) — k
and ¢p : Te(D? x SY) x Ti.(D? x S*) — k. If V and U are non degenerate TQFTs which

respect the Kauffman skein relations and the abelian skein relations respectively, then
Ki(D* x S1) /k:emSH is a quotient of a submodule of V(3) and Te(D? x SY) /kmgH is a

quotient of a submodule of U(X). Denote by e; € Tx(D? x S!) the class of the link made
of i parrallel copies of {0} x S!. Proposition II8 follows from the following:

Lemma 1.1.18. The modules Kr(D? x S*) /k:erqu and Te(D? x S') /kGTQEH have finite

rank if and only if A% € k is a root of unity. If p denotes the order of A2, then p divides
the determinant of ¢ and ¢y in this quotient.
If p € k is invertible, then:

1. {eg,€1,...,ep—1} is a basis of77c(D2 x S /keTJ)H’
2. {uo, u, ..., up=s} is a basis Oka(DQ X Sl)/kzer(;SH, when p is even,
2

3. {uo,u2,u4, ..., up—3} is a basis oflck(D2 x S1) /kerqu; when p is odd.

Proof. The matrix T), := (QNSH(ei,ej)> = (A2ij)0<ij<p—1 is a Vandermonde ma-

0<i,j<p-—-1
trix of determinant det(7}) = [[;; (A% — A% If Te(D? x S) /kemBH has finite rank,
this determinant must vanish for some p which implies that A? is a root of unity. If p
denotes its order, then T}, is invertible but none of the 7},,;, for ¢ > 1, is invertible. This
implies that {eg,e1,...,e,—1} is a basis of Te(D? x ST) /k:erg?)H~ Now consider the matrix

s oii
1, = (A ZJ)OSi,jSp—I‘
determinant of 7T,.

A simple computation shows that TpT;c/: = pl, thus p divides the

In the non abelian case, consider the basis of Kj(D? x S!) given by the elements
Qo := 1 and
Qn = (u1 — Xo) ... (u1 — A1) € Kp(D? x SY)
, where the \;,i > 1 are given by Lemma [CTT2 and we put \g := — (A% + A72).

A simple induction shows that:

0 ,ifn #=m;

¢H(Qna Qm) = {

where o1 := > ;. A for n > 1.

Thus if Krx(D? x S1) /kerng has finite rank, then there exists n > 1 so that either

Ap =0 or A, = \,_1. Both cases imply that A? is a root of unity. We denote by p its
order.

Now recall that in Lemma [CTT4, we have computed the colored Jones polynomials of
the Hopf link and found that:

ém (i, uj) = (1) (i +1)(j +1)]

Simple computations on quantum numbers imply that in the quotient Kr(D? x S*) / kerdm
we have:
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L. Uiqp = (—1)Puy.
2. Upyi = —Up—4, if p=2n.

3. Upti = Upn—i—1,if p=2n+1.

If p = 2n, it follows that {ug, u1,...,up—4} is a generating set of Ki(D? x S /k€T¢H'
2
Denote by S), the matrix of ¢ in this family. A simple computation shows that:

(A% — A7%)%(5,)* = —p1
thus {ug, u1,...,up-a} is a basis and p divides the determinant of .Sp,.
2

If p = 2n+1, we have that {ug, ug, u4, ..., u,—3} is a generating set of Ki(D? x S /k‘erqf)H~

1 -1
Still denote by S) the matrix of ¢y in this family and note N := | ~ 11 ) A direct
computation shows that Sy, = S, ® N. Using the result in the even case, we conclude
that S, is invertible and that p divides its determinant.

O

1.1.3 Surgery

Dehn surgery

Definition 1.1.19. Let M be a compact oriented 3-manifold and K a framed knot in M.
Choose N(K) a tubular neighborhood of K in M and a homeomorphism ¢ : 9(D? x S') —
(M —N(K)). The 3-manifold (M — N (K)) U, (D?x S') is said obtained by Dehn surgery
from M along K.

The obtained manifold only depends, modulo preserving orientation homeomorphism,
of the isotopy class of ¢ in SLy(Z). Fix ([l], [m]) a basis of H;(d(D? x S1), Z) so that [m)] is
contractible in D? x S!. Fix also a basis ([L], [M]) of H1(0(N(K)),Z) so that [M] = [K] is
obtained by isotoping K on the boundary of N (K') by conserving its framing. There exists
a unique class [¢] € SLa(Z) sending [I] to [M] and [m] to [L]. We denote by M (K) the
3-manifold obtained by Dehn surgery from M along K using [¢]. This definition extends
inductively to the framed links.

A similar definition can be given in the context of 4-manifolds.

Definition 1.1.20. Let W be a compact oriented 4-manifold. A 2-handle h is a copy of
D? x D? glued to W using an embedding ¢ : (9D?) x D* — dW. The 4-manifold W {J,, h
is said to be obtained from W by adding a 2-handle.

Again W, h only depends, modulo preserving orientation homeomorphism, on the
isotopy class of ¢). The gluing data of 2-handle can be obtained from a framed knot in OW
as follows. Consider K C OW a framed knot and N(K') a tubular neighborhood of K in
OW . We define a homeomorphism ¢ : (0D?) x (0D?) — N(K) like previously, that is by
choosing [K] as a meridian of (/N (K)) and exchanging the longitudes and meridians. The
homeomorphism ¢x extends uniquely to a homeomorphism 9 : (0D?) x D? — N(K).
We denote by Wi := W Uy, h the 4-manifold obtained by adding a 2-handle to W' using
Y and extend inductively this definition to framed links.
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The 4-manifolds D4L, where L C S3 is a framed link, are called 2-handlebodies.
The two constructions are related by the following;:

Proposition 1.1.21. Let L be a framed link in M = OW, then M(K) = 0Wk.

When M = 0Wp, the homology and signature of M are related to the linking matrix
of L through the following:

Proposition 1.1.22. Let W = D} be a 2-handlebody, where L = Li||...||Ly and
M = OW. Denote by B the intersection form on Ho(W,Z). We have:
1. The module Ho(W,Z) is free of rank m and has basis the set {[L;|}1<i<m.-

2. The matriz ([Ls] ® [L;]), ; of B in this basis is equal to the linking matriz (Ik(Ls, L;))
of L. In particular they have same signature.

3. We have an isomorphism Ha(M,Z) = ker(B).
4. We have an isomorphism Hy(M,Z) = coker(B).

/L‘?j

We refer to [40] for detailed proofs of the previous two propositions. The two last
points of the last theorem follow from the exact sequence:

Hs(M,W) =0 — Ho(M) — Hy(W) = Hy(W, M) — Hy(M) — 0 = Hy(W)

We have a well defined map sending a framed link L C S2 to an oriented closed 3-
manifold S3(L). Lickorish and Wallace independently showed that this map is onto. Its
kernel has been described by Kirby.

Theorem 1.1.23 (Lickorish [61], Wallace [87]). Every oriented connected closed 3-manifold
is obtained by Dehn surgery from S* along a framed link (so is the boundary of a 2-
handlebody).

The following so-called Kirby moves where introduced in [60]. We give a slightly
modified definition following [25].

Definition 1.1.24. Two framed links L and L’ in M are related by a sequence of Kirby
moves if they differ locally by the transformations K+ and K~ of Figure L.

[T ]

Figure 1.11: The two local transformations on links defining the Kirby moves.

We easily see that if L and L' in M are related by Kirby moves, then M (L) is isomorphic
to M(L"). We have better:

Theorem 1.1.25 (Kirby [50]). Let M be a compact oriented 3-manifold and L, L' two
framed links in M. The manifolds M (L) and M(L') are homeomorphic if and only if L
and L' are related by a sequence of Kirby moves.
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As a consequence, we have a set bijection:

{ 'fraglged links } / isotopy o { oriented connected } / preserving orientation
in

Kirby moves closed 3-manifolds homeomorphisms

The surgery axioms for TQFTs

We will define two properties which, together with non degeneracy and the skein
properties, completely characterize the TQFTs we will study in this manuscript.

We denote by S? x [0, 1] and —D?3| | D3 the cobordisms of Hom(S?, 5?) with boundary
identification by the identity map. We also note D? x S' and —S! x D? the cobordisms of
Hom((), S* x S') where we identify the boundary with the identity map and the element

(? _01> € SLo(Z) respectively.

Definition 1.1.26. Let V be a TQFT with ring k. We say that V satisfies the surgery
properties if:

1. There exists an invertible element 1 € k* so that:
(S1) Zv(S* x[0,1]) = n~' Zy(-D?|J D?)

2. There exists n > 0, (ai,...,a,) € k" and (L1,. .., Ly,) framed links in D? x S!, so
that:
(S%) Zy(—S' x D?) =¥, a;Zy(D? x S1, L)

Remark. The surgery properties have immediate consequences. Suppose V in non degen-
erate and satisfies (S1) and (S52).

1. The property (S1) implies that:

(My# M)y, = 0" (My)y, (Ma)y,

where # denotes the connected sum.
Since S3#5% = §3, we must have:

= <S3>V

Remark that S? x S! is obtained from S3 by 1-surgery, i.e. by removing two balls
in $3 and gluing S? x [0, 1] on the boundary. This implies that:

($2x 8" =1
1%
2. If V also respects one of the skein relations, denote by

W = Zai (D2 X Sl,LZ’)

7
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the class in the skein module of D% x S1. If L is a framed link in S® and K a framed
link in S3(L), then:

<S3(L),K>V = (%, 6r(w,...,w)U K>V =n(or(w,...,w)UK)

where () denotes the skein bracket. Thus V is completely characterized by the
choice of the ring k, the element w in the skein module of D? x S and the element
nekx.

3. Remark that performing Dehn surgery along the trivial framed link Qy C S? gives
the manifold 52 x S'. Since (5% x S'),, = 1, we have:

7t = (o, (w))

and w determines 7.

4. Recall that if V' is a non degenerate TQFT that respects the skein relations (say e.g.
the Kauffman ones), then V(X) is the quotient of @gy;—x Kr(M) by the kernel of
the gluing form as defined in the universal construction. This module is huge, thus
the quotient is hard to study, but if V' also satisfies the surgery axioms, then we can
choose any cobordism M € Hom((), ¥), with arbitrary boundary identification, and
V(X) is the quotient of Ki(M) by the kernel of the corresponding gluing form. To
study V (%), we will choose for M a handlebody, whose skein module is described
by Proposition ICT°8.

Fix an integer p > 2 and, motivated by Proposition T8, consider the rings k, =
Z[A, 1%] / bap(A) and k:;, = Z[A, Zl,] / Dp(a) where ¢, denotes the p-th cyclotomic polyno-
mial. We will define our TQFTs on a ring in which k:; can be injected when p is odd in
the abelian case, and on which k), is injected in the other cases.

Definition 1.1.27. Given p > 2 and a, b € Z, we define the Gauss sums:
L G(a,b,p) = Xkez/pz Aak?*+bk o k;,, when p is odd.

2. G(a,b,2p) = Ypezjopz AT € k.

The computation of the Gauss sums is detailed in [{0]. For z € k,, denote by z the
involution sending A to A~'and write |z|? := zz. We will use the facts that |G(1,0,p)|? = p
when p is odd, |G(1,0,2p)|? = 2p when p is even and G(1,p,2p) = Ap<p;1)G(1,p, 2p). In
particular, the fact that p is invertible in £, and k‘; implies that the Gauss sums are
invertible too.

Denote by t the endomorphism of the skein module of D? x S! obtained by performing
a positive Dehn twist along the meridian (9D?) x {0}. Lemma [CIT2 implies that:

t(u;) = pitt;

If b is an element of the skein module of D? x S1, we denote by (u) € k, the skein bracket
of the element ¢q,(u). Lemma [CIT4 implies that

(ui) = (~1)[i + 1]
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Lemma 1.1.28.
Let

Q= > eeT(D*x S8
Then:

G(1,0,p) , if p is odd.
%G(l,O,Qp) , if p is even.

Denote also

Socicps (ui) u; € Kp(D? x SY) , when p is odd.

i eVEN

{ D o<icp=a {wi) u; € /Cp(D2 x S1) , when p is even.
Q, = <ist

Then:
A—3
a:= (t(Qy)) = WG(LP’ 2p)

Proof. In the abelian case, remark that (e;) = 1 and t(e;) = A”¢;, so:

ZAZ G(1,0,p) , if p is odd.
1G(l 0,2p) ,if pis even.

In the non abelian case, remark that €, = iZ?ﬁal (u;) u; regardless of the parity of

p. We compute:

1 2p—1
<UQ) > = 73 e <ep >
k=0
1 ] 2
— Z( 2 Z k lAk 71(A2k _Af2k)2
A~ 3
= mG(l,p, 2p)

Proposition 1.1.29. If there exists a non degenerate TQFT V, that preserves the skein
relations at level p and satisfies the surgery properties, then the following equality holds in
Vp(21):

wp = a_lﬁp

The above proposition and Remark I3 show that if there exists a non degenerate
TQFT V), on k, that satisfies the skein and surgery properties, then it is unique. Moreover
it is universal, in the sense that if Vp/ is another TQFT that also satisfies the non degen-
eracy, skein and surgery properties at level p for some other ring k:;,, then there exists a
morphism between (V), k) and (V},, k;,) as defined in Definition [T
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Proof. Remark that U,(S! x S') = Tk, (D? x S /kenﬁH in the abelian case and that

V(S x Sty = ’Ckp(DQ x S1) /ker¢H in the non abelian case. Thus Lemma ICTIR gives
explicit basis for this modules. The fact that the skein bracket of a links colored by wy,
must be invariant under the Kirby moves of Definition 124, implies that:

b (t(wp), t(b)) = (b), for all b € U,(S* x S) (resp. b€ V,(S* x S') (1.1)

Now remark that the non degeneracy property implies that the bilinear form ¢z (¢(-), ¢(+))

is non degenerate. So if w, does exist, then it is unique.

We now have to show that a1, is solution of equation (IZ0). First compute:

or(ta' ), (b)) = a ! {t(Qh))
_ a3, (e;) (t(e;b)) , in the abelian case.
- a3 (u;) (t(u;b)) , in the non abelian case.

Denote by F the endomorphism of Uy, (S x S1) (resp. V,(S! x S1)) defined by F(b) :=
> eit(esb) (resp F(b) := 3, uit(u;b)). An induction on j shows that F'(e;) = e;F'(1) (resp
F(uj) = u;F(1)). Using Lemma I"T28, we have (F(1)) = a, and:

¢n(t(a™'Qp),0) = a™ (bF(1)) = (b)

Thus w, = a_lﬁp. O

We have shown that if a TQFT satisfying the non degeneracy, skein and surgery
properties at level p, does exist, then it is unique. Conversely to show its existence, we
first have to verify that the skein class of a link colored by wy, is invariant under the Kirby
moves.

Proposition 1.1.30. Let L = Ly U ... U L,, be a framed link in S® and LT, L™ be the
links obtained from L by performing the Kirby moves K™ and K~ of Figure TI1. Then:

o+ (2,..,Q) = adr(9,..,Q)
o1, (Q, . Q) = @¢L(Q, . Q)

Moreover, denote by o1 (L) and o_(L) the number of positive and negative eigenvalues of
the linking matriz of L. Then:

o (L) =op (D) +1 o (L) = o (L)
(L) =0(L) o_(L7)=o_(L) +1
Proof. We prove the result for the Kirby move K and leave the similar proof for K~ to
the reader. Note L = Ly U...U Ly, and LT = L U... UL} UT, where T is the twisted
knot added in the operation K. Choose a tubular neighborhood N(T') of T'. The class of
L (w)U...UL} (w) in S? — N(K) = D? x S* gives an element v € V,,(S! x S') such that
D1 (21, Q) = G (v,H(Q) and (v) = (DL (H(Q) .., HQ)). So (t71(v)) = (6(%..., )
and:
Gr+(Q,.,Q) = <tt (), {(Q) >
= <t Hv)><tQ) >
= ¢r(9Q,..,0) <t(Q) >
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Finally remark that the linking matrix of L™ is bloc diagonal, with one block given by
the linking matrix of L and a 1 x 1 bloc with value +1. This implies the property on the
signature. |

The Proposition TI=30 implies that ¢r(w,...,w) is invariant under the Kirby moves
if and only if a = a = 1, which is never verified for any level. Thus:

There is no non degenerate TQFT which respects the skein relations and
the surgery axioms...without anomaly

Proposition 1230 still has a positive consequence: it shows that

(60 Q) UK)
($°(0).K) = S D@

is invariant under the Kirby moves and gives a well defined good invariant for 3-manifolds.
We can of course apply the universal construction ot this invariant but, as explained in
Remark T3, the failure of the surgery axioms makes the study of the modules V(%)
almost impossible.

The trick is to extend the cobordism category so that cobordisms carry information
that, once glued together, recover the signature of 3-manifolds. This justifies the intro-
duction of anomaly in the next subsection.

1.1.4 TQFT with anomaly and definition of U,, V,

The dependance on the signature of the 3-manifold in the formulas defining the quan-
tum invariants leads to the introduction of a so-called anomaly, that is we must change
the cobordism category by adding some structure on the surfaces and cobordisms that
permits to compute the signature by gluing such structure cobordisms. Different struc-
tures might be used such as Atiyah’s 2" framing of 3 manifold ([7]), pl-structures ([i4]),
spin-structures ([I5]). We will choose a structure defined by Walker ([86]), and further
developed by Turaev ([83]) and studied in [38], in which surfaces are equipped with a
Lagrangian in their first rational homology group, and cobordisms are equipped with an
integer.

Maslov index

Let A1, A2, A3 be three Lagrangians of some symplectic space (H,w). We define a
symplectic bilinear form (-,-) on (A1 + A2) N Az as follows. If a = a1 + az and b = by + bo
are in A3 with a1,b1 € A1 and ag, bs € Ao, then:

(a,b) := w(ag,b)

This form is well defined because the choice of a decomposition a = a1 + as may only differ
by an element of A\; N A2 annihilated by b € A\; + Ao = (A1 N )\Q)J_. This form is symmetric
for:

<a,b>— <ba>=w(az,b) —w(bz,a) =w(a,b) —w(b,a) =0
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Definition 1.1.31. The signature of (-,-) (the number of positive eigenvalues minus the
number of negative ones) is called the Maslov index (A1, A2, A3) of the three Lagrangians
)\17 )‘27 )\3'

Proposition 1.1.32. The Maslov index satisfies the following:
1. p is anti-symmetric under permutation of the Lagrangians.

2. If H and H' are two symplectic spaces, N : H — H' is a relation and A1, \a € A(H),
1, Ay € A(H') are Lagrangians, then:

(AL A2, N (AD)) + i(Na(A1), AL Ag) = pu(An, A2, N(A2)) + p(Na(A2), A, Ag)

We refer to [R4] for a proof.

TQFT with anomaly

We will consider the symplectic spaces H1 (X, Q), where ¥ is a closed oriented surface,
together with the intersection form.

A compact oriented 3-manifold M gives rise to a Lagrangian Ays of H1(0OM, Q) defined
as the kernel of the inclusion map iy : H1(0M,Q) — H1(M,Q).

The structure cobordisms category Cobs,q is defined as follows.
The objects are pairs X = (3, \) called structure surfaces, where X is a banded surface
and A\ a Lagrangian in H; (%, Q).

The morphisms of Hom(X,,X,) are pairs M = (M, w), called structure cobordisms,
where M is a banded cobordism, and w an integer called weight. Such a structure cobor-
dism defines a Lagrangian Ay of Hq(X1,Q) by setting Ay := 2511(1'22(/\2)).

If (My,w;) € Hom(Xg, X;) and (M, w2) € Hom(X;,X,), the composition is defined
by:

(Ml, wl) o (MQ,'LUQ) = (Ml Us; Ma, wi + wy — ,LL()\Ml, A, )\Mg))

where ¥; = (X1, \). Proposition II=32 ensures that this law is associative and commuta-
tive.

We endow Cob,,; with a tensor product and a duality by setting:

(3E,N)* = (=%, -\) (M,w)* := (—M,w)
(21, )\1) U(EQ,wg) = (21 |_| 22, )\1 + )\2) (Ml,wl) U(Mg,wg) = (M1 |_|M2,’U)1 + ’U}Q)

We define similarly the oriented structure cobordisms category Cob3, .

Definition 1.1.33. A TQFT with anomaly on a ring % is a functor V' : Coby,; — Mody,
(when non oriented) or U : Cobj,; — Mod, (when oriented), which respects tensor
product and duality.
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We define the morphisms between TQFTs with anomaly and the skein properties in
the same manner than in the case without anomaly. Proposition 13 still holds so we
can speak of the level of the TQFT.

A TQFT with anomaly defines a quantum invariant defined on the set of homeomor-
phisms classes of colored oriented 3-manifolds with a framed link, endowed with an integer.

If ¥ = (X,w) is a structure surface, the group of structure cylinders C(¢,w) :=
(C(¢),w) € Hom(X,X), where ¢ € Mod(X) and w € Z, will be denoted Mod(X, \). Tt
has group law given by:

C(¢1,w1) 0 Cp2,wa) = C(¢p1 0 p2, w1 + wa — pu(14(N), A, da (V)

And we have a natural exact sequence:
0—Z — Mod(X,\) - Mod(X) — 1

where the second map is defined by C(¢, w) — C(¢) whose kernel, homeomorphic to Z, is
generated by the central element C'(1,1). We can show that Mod(X, \) does not depend,
modulo isomorphism, on the choice of A.

A TQFT V with anomaly gives quantum representations py : Mod(3, A) — GL(V (X))
defined by py(C(¢,w)) = V(C(¢,w)). They define projective representations of the
mapping class group Mod(X).

Eventually we extend the notion of non degeneracy and the universal construction to
TQFTs with anomaly.

Structure surgery

Consider the structure surface S! x S with Lagrangian given by the meridian {0} x
St Note —S' x D? € Hom(, S! x S') the structure cobordism with weight w = 0 and
boundary identification with (? _01> € SLy(Z).

Definition 1.1.34. Let M = (M, w) be a structure cobordism and K C M a framed
knot. Denote by N(K) a tubular neighborhood of K. The structure cobordism

M(K):= (M — N(K),w) o =S x D?

is said obtained from M by structure surgery along K.

By definition, M(K) = (M (K),w+w') where w’ is a Maslov index on H;(S! x S, Q).
The space of Lagrangians on this space is one dimensional, thus w’ is equal to —1,0 or
+1.

We extend inductively this definition to structure surgery on framed links.

The following theorem justifies the rather complicated and, until now, poorly motivated
notions we introduced in this subsection.
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Theorem 1.1.35 (Walker ([86])). If L is a framed link in S® and S = (S3,0), then:
S3(L) = (S°(L), 0 (L))

where o(L) = ot (L) — o~ (L) is the signature of S3(L).

We can restate the surgery proposition:

Definition 1.1.36. A TQFT (V, k) with anomaly satisfies the surgery properties if:

1. There exists an invertible element n € k*, so that:

(S1): V(8% x[0,1],0) = n~tV(=D3| | D3,0)

2. There exists n > 0, (ai,...,a,) € k" and (L1,. .., L,) framed links in D? x S!, so
that:

(S2): Z(=S'x D% ©,0) =3 a;Z(Dy x S*, L;, 0)

Remark. Let (V, k) be a TQFT with anomaly satisfying the surgery properties.

1. The space Hi(S%|]S? Q) has null dimension, thus the Maslov index involved in
doing 1-surgery is null. As a consequence, the quantum invariant satisfies:

(Mi#M3,0))y, = ((M1,0))y (M2,0))

So we recover the facts that n = ((5%,0)),, and 1 = ((S? x S1,0)),.

2. If OM = ()| | ¥, consider the composition along the empty surface: (S3,1)o (M, w) =
(M,w + 1), where the Maslov index is null. Setting:

K= <(53,1)>V n ek

we have: Z(M,w) = r"Z(M,0).

3. If V satisfies one of the skein relations, denote by w the class in the skein module of
> i a;L;. Theorem I35 implies that:

(8% 61(),0)) = w7 ($%(L),0,0)

The term x°(%) is the missing part we needed to have an element invariant under
Kirby moves.

Definition of the TQFTs U, and V,,

Rephrasing the reasoning of the previous subsection, suppose that (V,k) is a non
degenerate TQFT with anomaly that satisfies the skein and surgery properties.

The element w is still completely determined by the equality:

b (t(w), (b)) = (b, for all b € V(S* x S1)
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This time, we must take into account the Maslov index appearing when we glue the two
solid torus in ¢g(t(-),t(-)) by identifying a twisted meridian with a twisted longitude.
This index is equal to +1 and we find:

w=rkra Q

We then use the fact that doing surgery in S3 along the trivial knot twisted once
negatively Q_1, gives again 613. The Maslov index of the gluing is +1, so n = ((S%,0)),, =
(9%, Q21 (w),0)),, = nkl. Thus:

SIS

_p(p—1) . .
) ATz , in the abelian case.
- p(p+1)

A5

, in the non abelian case.

Finally, doing surgery along the trivial framed knot Qg C S® gives S2 x S! and involves
a null Maslov index. So 1 = ((5? x §1,0,0)),, = ((S3, dq,(w),0)),, = n(ka™)(aa) =
nax~!. Thus:

n = ka !

Eventually, we proved that if a non degenerate TQFT with anomaly satifies the skein
and surgery properties at some level p, then it is unique and its quantum invariant on
connected manifolds is given by the formula:

(M, K, w))y, = "Dy <or(w,.,w)UK > (1.2)
= (KYn)n” TR 1 (Q, . QUK > (1.3)

w <¢or(Q,., QUK >
= (k"n)y" ™) L aﬁagz (1.4)

where we used that oo(L) = b1 (M) is the first Betti number of M (see Proposition IT1-22).
Proposition 130 shows that this expression is invariant under Kirby moves on L, so the
invariant is well defined. We extend it multiplicatively to non connected manifolds to get
a good invariant.

Definition 1.1.37.

1 p(p— . .
Z[A;, 5] / (0anl), 2 = A5 ) i p s even.

Z[A7;,/<;]/<¢p(A)’Hz_A—p(p;”) , if p is odd.

We define the abelian TQFTs (U, k) using the universal construction on the in-
variant given by the formula (1.4), where:
- Q= Zogigp_1 €is
B a—{ ?(1,0,1)) ,%fp%s odd.
5G(1,0,2p) , if pis even.

—n=ra L

1. Let p> 2 and k, :=
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2. Let p >3 and k, := Z[A, %a K] /(@p(A), K2 — A‘“W) .
We define the TQFTs (V},, kp) using the universal construction on the invariant given
by the formula (1.4), where:
{ S ocicr=t (ui)u; € Kp(D? x S') , when p is even.
0= R

So<i<ps (ui) u; € Kp(D? x S1) | when p is odd.
i even

-3
- a= WG(LP; 2p).
—n=ra"!

To show that the above functors are indeed TQFTs, we still have to show that:
1. The modules V,(X), Up(X) have finite rank.

2. The gluings (-, )y, are non degenerate.

3. The maps V(X;) @ V(2,5) = V(X; | X,) are isomorphisms.

It will be proved in the next subsection.

Remark that we proved that if (f/p,l;: ) is a non degenerate TQFT with anomaly that
satisfies the Kauffman skein relations and surgery properties, then there exists an injective
ring morphism v : kj — k and a natural map from v*oV), to V that induces isomorphisms
on each ky-module V »(2).

In short, the TQFTs (V},, kp) and (Up, kp) are uniquely defined by the non degeneracy,
skein, level and surgery condition, modulo a change of coefficient.

1.1.5 Study of the spaces U,(X), V,(X)
The abelian case

Denote by ¥, a genus g closed oriented surface, by H, a genus g oriented handlebody
and by U, 4 the module U,(X,). Since Hy is isomorphic to the connected sum of g copies
of D? x S', the manifold H,J,; H,, glued using the identity map id : H, — 9H,
isomorphic to the connected sum of g copies of S? x S!. Since H, is a thickened g-holed
disc, Proposition I8 implies that its abelian skein module is 7,(Hy) =k, [H1(Hy, Z)] =
ko[29).

Denote by {e;, ®...® e, (i1,...,iy) € Z9} its basis given by iy parallel copies of the
k-th oriented longitude as drawn in Figure IT2. Note (-, -)f the bilinear form on 7,(H,)
induced by the gluing H, U;q H, using the identity map.

1 az as

Figure 1.12: A basis for C [H,(H3,Z)].

By construction, U, 4 is isomorphic to the quotient of 7,(Hy) by the kernel of (., -)5 .
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Lemma 1.1.38. Let €; € T,(S? x S') be the skein class of i parallel copies of {0} x S1.
Then:

2 . o e .
2 1 ) n*p ,if p divides 1;
<(S X S ;ei70)>Up - { 0 , else.

Proof. Remark that S? x S is obtained by surgery from S? along the trivial framed knot
and that the gluing (-, ->f induces a null Maslov index. We thus have:

(($2x $%,€,0)) = n{on(w,e))
Up
p—1
= *)_ (¢nuler e))
k=0
p—1 '
— Z A2ki
k=0
which permits to conclude. m|

Still denote by e;, ® ... ® e;, the class in Tp(Hy) /ker (-, >§ of the same element.

Theorem 1.1.39. The vectors of {e;; ®...®@¢;,, (i1,...,1y) € (Z/pZ)9} form a basis of
Up,g orthogonal for (-, -)5. And:

R

(e ®...®eipei ®...Qe,) =

(np)?

In particular, the (Up)p>2 are TQFTs.

Proof. Using the 1-surgery property (S1), we get:

(0 @ ®eiyey ® .. @ei )i =)0 T] (5 x 8¢, 0)),

We conclude using Lemma [T1238. |

Colored surfaces and the extended cobordisms categories

The isomorphism U (X;#32) = U(X1) ®; U(X2) no longer holds in the non abelian
case. It is replaced by a tensor formula given in Theorem [CI43 that permits to study any
modules V(X)) by cutting ¥ into elementary cobordisms. To state our formula, we need to
add objects to the cobordisms category and extend the TQFT functors to this category.
The objects added will be structure surfaces where the bands are colored by integers.

{0,1,2,...,7r—2} ,if p=2ris even.

Definition 1.1.40. Let p > 3 and [, := { {0,2,4 p—3) if p is odd

We define the extended cobordism category Cob,, at level p as follows.

The objects are couples X¢ = (X, ¢), called colored surfaces, where ¥ is a structure
surface with n bands and ¢ : {1,...,n} — I, is a coloring of the bands by integers of I,,.
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The ezpansion e(X) of a colored surface is the structure surface obtained from X by
replacing each band b; with color ¢;, by a set of ¢; bands.

If M bounds ¥, consider K,(M) the quotient of the free kj-module generated by
properly embedded framed links in M intersecting OM along the bands of e(X°) quotiented
by the Kauffman relations. The algebra T'L., ®...®T L., naturally acts on IC,(M). Define
the idempotents:

€= fo ®...Q [fe,

We call skein module of M¢ the image:

Kp(M€) == €. - Kp(M)

The set of morphisms Hom (X1, ¥5?) is the kp-module:

Hom(ztljlaz?) = @MGHom(e(&q),e(&C?))eq ’ ]CP(M) €cy

There is a monomorphism I : Cobyy; — Cob, obtained by coloring the bands of
structure surfaces with the color 1 is p is even and by p — 3 if p is odd.

The universal construction applied to Cob,, gives a functor V}, : Cob,, — Mody,, such
that V), o I is the TQFT defined in the previous subsection.

We can think of the skein module KCp,(M€) as the quotient of K,(M) where we quotient
by isotopy classes of links in M that connect two bands of the same set of ¢; bands coming

from the expansion of the same band colored by ¢;.
The module V,,(X°) is the quotient of IC,(M¢) by the kernel of the gluing form.

Definition 1.1.41. A triple (i, j, k) € (I,)? is said p-admissible if:
—li—j| <k <i+y,
— i+ j+ k is even and smaller than p — 2 if p is even and 2p — 2 if p is odd.

Lemma 1.1.42.

1. If S%(i,7) denotes the colored structured surface made of the sphere S? with two
bands colored by i and j in I,, then V,(S%(i,j)) has rank 1 if i = j and is null if
1#7.

2. If S%(i,4,k) denotes the sphere S? with three bands colored by i,j and k in I, then
V,(S2%(i, j, k) has rank one if (i,7,k) is p-admissible and is null elsewhere.

Proof. Fix a ball B3 bounded by S2.

If i # j in S%(i,5) or if (4,7, k) is not admissible in S2(i, j, k), there is no link in the
corresponding expansion which does not connect two bands coming from the expansion of
the same colored band. Thus the corresponding skein modules are null.

If i = j or if (i,7,k) is admissible, then there exists exactly one such link which is
planar. The rank of the corresponding skein module is thus equal to one.
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Consider f; € V,(52%(i, 1)) the class of the i-th Jones-Wenzl idempotent inserted in B.
Using Proposition IITT4, we get:

(fis fi)y =n(=1)"[i +1] # 0

thus V,,(S%(i,4)) has rank one generated by f;.

When (4, j, k) is admissible, consider u, € V,,(S%(i, j, k)) the class of the link T} ;. of
Figure 9 connecting three idempotents f;, f; and fj in the sphere. Then:

<u0’7u0‘>p = 77<2a]a k>

where (i, 7, k) is the corresponding theta coefficient. It follows from Proposition I 18
that this coefficient is non null if and only if (7, j, k) is p-admissible. This concludes the
proof. m|

Non abelian splitting theorem and study of V,,(X)

Let I'=T1]... T be a multicurve in ¥, so that ¥ — I'" has two connected compo-
nents X1 and Xo. If i = (i1,...,im) € (I,)™, denote by £} and % the colored surfaces
obtained by gluing to 31 and Y9 a disc with a band colored by i along each boundary
curve I'y. The following theorem justifies the introduction of colored surfaces:

Theorem 1.1.43. The gluing of colored cobordisms induces an isomorphism:

Vp(2) = @ie(fp)mvb(zil) Ok, Vp(55)

Before proving Theorem T3, we state its consequences. We fix a colored structure
surface ¥ with a handlebody H bounding ¥ and a trivalent banded graph I' properly
embedded in H so that OI' C X consists of the colored bands of ¥. We denote by col,(I")
the set of maps o : E(I') — I, so that:

— If (e1, e2, e3) are three adjacent edges, then (o(e1),o(ez2),o(es)) is p-admissible.

— If e € E(T") crosses a band of ¥ of color ¢, then o(e) = c,.

If ¥ is a torus S! x S! with no bands, we define I" to be the graph with no vertices
given by the meridian {0} x ST € D? x S1. If ¥ is a sphere with two bands, T is the graph
with one edge connecting the two bands in B3.

As explained in subsection 132, to a graph I' together with a coloring o € col,(I"), we
can associate a vector u, € Vp(X).

Theorem 1.1.44. The set of elements {us, 0 € col,(I')} forms a basis of V,,(X), orthog-
onal for the form (-, ->f. Moreover we have:

H#Hv—Fe HU < J(U) >

< Ut =TT () >
e

where v Tuns through the vertices of I', e through its edges, < o(v) > is the corresponding
theta coefficient and < o(e) >= (—1)7©[o(e) + 1].

This theorem implies that the functors V), are TQFTs.
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Proof. To each edge e € E(T'), we properly embed a disc D, in H intersecting I" once
transversely along e and we note 7, := 0D, C 3. Theorem I3 applied to ¥ with the
multicurve 7 = ||, 7. together with Lemma 142, imply that {u,,0 € col,(I')} forms
an orthogonal basis. To show the formula for (uo,ug>f , we first remark, using Lemma
2 it is true for the elementary cobordisms given by a graph with shape Y for the
three-banded spheres, a graph with shape I for the twice banded spheres and an O-shape
graph for the torus S* x S with no bands. Then remark that the formula for (u,, uo>f
stated in the theorem is unchanged when we identify two vertices of degree 2 to have
a edge. We conclude by induction on the number of elementary cobordisms in a given
decomposition of X. |

Proof of Theorem [CT-43

Fix M a colored cobordism bounding ¢ in which the curves I'; bound discs D =
D1l]...1|Dm so that, when cutting M along D, we get two cobordisms M7 and My with
M = M, Up My and OM; = 3;. As in the abelian case, we denote by (-, ->f the gluing
form obtained by gluing M with —M along the identity map to get the double of M. We
split the proof of Theorem ICT43 into two lemmas which easily imply the theorem.

Lemma 1.1.45. The gluing of cobordisms induces an isomorphism of k,-modules:

F @ie(Ip)m]Cp(Mf) Qky Kp(M3) — KCp(M)

Proof. Note A :=IC,(M), C = @ie(lp)mle(Mf) ®k, Kp(M3) and introduce the module:
B = (®ilCp (M, i) @ Kp(Ma, i) /.,

where:
— Kp(M,, i) denotes the skein module of M, with ¢ bands colored by 1.
The modules /C,,(M,1) and Kp(Ma,i) are equipped with a structure of right and
left T'L;(I") module respectively, with TL;(T") :=TL;;, ® ... ®TL;,,.
— The module B is defined as a quotient for the equivalence relation ax ® b ~ a ® xb
where a € Kp(My,1), b € Kp(Ma,i) and x € TL;(I').

A morphism f : B — A is given by gluing cobordisms along D. To construct a reverse
map f~!: A — B, choose a link L C M isotoped to be transverse to D. It intersects each
disc D,, a number i,, of times. Putting i = (i1,...,iy,) and cutting M along D, we get an
element of Cp(Mi,1) @ KCp(M2,4). The indetermination on the way we isotoped L in M
before cutting disappears in the quotient by ~.

The canonical embedding of K,(M{) in K,(M,,i) defines a morphism g : C — B.
We construct a reverse map as follows. Denote by ,7TL; the quotient of the free k-
module generated by isotopy classes of (a,b) tangles by the Kauffman skein relations (so
nT'L, =TL,). Fix n > 1, there exists elements a; €, TL; and b; €; T'L,, so that:

7
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Similarly for ¢ = (c1,...,¢m) and @ € (Ip)™, we have elements a; €. T'L(Gamma); and
b; €; TL(T'), so that:

1. = Zaieibi € TLC(F)
i
where 1. = 1., ® ... ® 1,,,. The reverse map g~1 : B — C is given by

g Nz @y) = zaie; O, by, for (z,y) € Kp(M]) @ Kp(M;)

)

We thus have defined a reverse map g o f~! for F = fog.

Lemma 1.1.46. Under the isomorphism F~' of Lemma [LI.Zd, the gluing form decom-
poses as :

R R R
<, >y @ie(lp)m < >21i Rk <, >E%

Proof. In the gluing M Us, — M, the discs D'U— D" are glued along their boundaries to give
spheres. Note S := | [, D'U— D' the disjoint union of these spheres and Y C M Uy, —M a
tubular neighborhood of S, homeomorphic to S x [0,1]. Let X denote the complementary
of Y so that MUy —M = XUSx{o} || sx{1} Y. Apply Lemma ICIT243 to this decomposition.

We get:

[l

Kp(M Us _M) @i,je(lp)pr(XiJ ® Kp(i,jy)

Die(r,)mKp(Xii) ® Kp(i,iY)

I

where X; ; is the union of spheres D, U —D,, with a band colored by i, in D,, and a band
colored by j, in —D,,. The second isomorphism states for K,(X; ;) is null if ¢ # j.

Denote by X; the gluing of X;; with ;;Y and by G : £,(M Uy —M) — &;X; the
resulting isomorphism. We conclude the proof by noticing that the following diagram
commutes:

Ko (M) % Kp(M) 2 (@i, (M) @0 Ky (:M2)) 2

~

Foo I

Kp (=M Us M) —— Dilp(Xii)
m ()p
kp

where R is induced by the gluing M = M; U Ms. |
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Fusion rules

If ' ¢ S2 is a planar trivalent graph and o € col,(I") is a p-admissible coloring, the
couple (T, o) defines an element in K, (S?) = k, which can be computed using the following:

Lemma 1.1.47. Let (i,j,k) be a p-admissible triple.
1. In V,(S%(i,i)), we have:

2. In V,(S%(i, j, k)), we have:

<i a b>
N _Ne ki) *
j ]{) <Za.77k> J k

Proof. We proved in Lemma [CIT22 that both modules V},(5%(4,4)) and V,,(S%(i, j, k)) have
rank one, so the vectors on the left and right hand side of both equalities differ by a scalar
in k,. We compute this scalar by taking the scalar product of both vectors with the vector

of the right hand side. m|

Consider the sphere S? with four bands colored by a, b, ¢ and d and a ball B3 bounded
b ¢
by S2. Using the trivalent graphs X and P >_< ¢ we get two basis of V,(S%(a, b, ¢, d)).
a d a d
They are related through the following:

Lemma 1.1.48. If

then:

(i,a,d) (i,b, c)

. i b c
a b i <Z><j d a>
c d j -

The coefficients are called recoupling coefficients or 6j-symbols . It follows

a c
d e f
from the above lemma that a 6j-symbol is null if and only if the corresponding tetahedron

coefficient is null.

If 3 represents an arbitrary colored surface bounding a handlebody H and I'{,I's
represent two trivalent graphs embedded in H, we can decompose the basis of vectors uLt
into the basis of vectors u.? using Lemma ITZ8 for I'; can be obtained from I's by a

sequence of Whitehead moves.
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b ¢
Proof. We take the scalar product of both sides of the equality with the vector X

(o G) {806 D)

b
- . )oa b 1 .
i Ve d g i

a a

L/t b c
- a b i _ <Z>< j d a >
c d j ~ {i,a,d) (i, b,c)

where we used Lemma ICT41 to get the last equality. m|

and get:

QU o

o

1.2 First properties of the quantum representations

1.2.1 Generators and central extensions
Notations

Let 3, be an oriented closed genus g (structure) surface without bands and with an
arbitrary Lagrangian. The TQFTs U, and V), define kj-modules U, , := Up(¥,) and k-
modules V), ; := V,,(X,) defined as the quotient of the free k,-module of isotopy classes of

framed links in a given handlebody H, endowed with a preserving orientation homeomor-
R

phism « : 0Hy; — X4, by the kernel of a certain bilinear form (, >p .

—~—

Denote by Mod(X,) the central extension of the mapping class group of ¥, defined
by the structure cylinders. This group acts on U, 4 and V}, ; to give the so-called quantum
representations. We note them:

The Weil representations: 74 : M(/)—d\(ig) — GL(U, 4)

—~—

The Reshetikhin-Turaev representations:  pp, 4 : Mod(X,) = GL(V},4)

)

The modules U, 4 and V,, ;, are endowed with two non degenerate bilinear forms. The
invariant form (-, -)f is induced by the gluing of H, with —H, using the identity map on
the boundary. This form is invariant under the action of Mad\(—f]g). In particular, the image
of the quantum representations are semi-simple: for any stable M(/)-d\(—flg)—submodule, its
orthogonal for the invariant form is also stable. Moreover we know orthogonal basis for
this form.

Another form called Hopf pairing and denoted (-, )117{ , is induced by an arbitrary Hee-
gaard splitting of the sphere H,Ug—H, = S for some S € Mod(3,). The matrix elements
of the Hopf pairing in a trivalent graph basis can be computed using fusion rules.
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Generators and computations

If ¢ € M(mg) is the lift of a homeomorphism of 3, that extends to H, through o,
the action of this extension on the framed links of H, passes to the quotient to give the
action of mp, 4(¢) on Uy, 4 and of p, 4(¢) on V, .

—~—

If ¢ € Mod(X,) is the lift of a homeomorphism of ¥, that extends to H, through
S o a, the action of this extension on the framed links of H, defines an operator. Its dual
compare to the Hopf pairing gives the action of ¥ by the quantum representations.

For the Weil representations, consider the Dehn twists X;, Z; ; of Figure [CI3. They
extend to Hy and their action on the basis {eq; ® ... ® eq,,a; € Z/pZ} of Uy, is easily
computed (see Figure I14. We find:

m(X) = (AiQéi,j)i,j and mp (Xi) = 18071 @ m, 1 (X) @ 18079
Tpg(Zi ) (a1 ® ... ®eq,) = A% (e, @... R eq,)

Figure 1.13: A set of Dehn twists generating the mapping class group and the symplectic
group.

1 (X) - e = — A,

Tp2(Z12) € ®ej = % — Al=3)%, ® e

Figure 1.14: The computation of the matrices associated to m,1(X) and 7 2(Z;;).

The matrix elements of the Hopf pairing are easily computed:

H H
H -2 ca;b;
(eal®...®eag,ebl®...®ebg)p = (Cay, et} "‘(eag’ebg>p =, A72 2 b

Since the Dehn twists Y; are duals of the X; for the Hopf pairing, their matrix elements
can be computed. We find:

p

G(lé?fp) (A=), 5 when p is even.

mpa(Y) =

{ G(1,0,p) (A==D%), 5 when p is odd.

Tpg(Yi) = 180V o (V)@ 1%079)



CHAPITRE 1. TOPOLOGICAL QUANTUM FIELD THEORIES AND QUANTUM
48 REPRESENTATIONS

For the Reshetikhin-Turaev representations, we choose a uni-trivalent banded graph
I' C H, on which H, retracts by deformation and consider the associated basis {uq, 0 €

—~—

col,(I')}. A Dehn twist around an edge e € E(I') can be lifted in Mod(X,) to get an
operator T, so that:

Pp,g(Te)uU = Ho(e)Uo

The matrix elements of the Hopf pairing can be computed using the fusion rules. Since

—~—

S and the T, generate Mod(X,), we can theoretically compute any matrices pp 4(¢).

Linearisation of quantum representations

Since the class of a link in an abelian skein module depends only on its integer ho-
mology class, the Weil representations act trivially on the Torelli group and factorize as
representations of a central extension of the symplectic group Spay(Z). The above com-
putations show that the image of any Dehn twist through m, ; has the same order than
A, thus has order p if p is odd and 2p if p is even. So the Weil representations also act
trivially on the congruence subgroups to give projective representations of Spay(Z/pZ) if
p is odd and of Spyy(Z/2pZ) if p is even.

In Chapter 4 we will show the following:

Proposition 1.2.1.

1. The representations mp1 can be lifted to linear representations of SLa(Z/pZ) if p is
odd and of SLa(Z./2pZ) if p is even.

2. If p is odd and g > 2, the Weil representation m,, can be lifted to a linear represen-
tation of Spagy(Z/pZ).

3. If p is even and g > 2, the Weil representation 7, cannot be lifted to a linear
representation of Spag(Z/2pZ) but represents a central extension by Z./27.

Although this proposition is well known (see [1], [31]), we will give a direct proof
by finding explicit lifts of the Weil representations. In addition we will show that these
representations are faithfull when p is odd.

Concerning the Reshetikhin-Turaev representations, in genus one we will show that
they can be lifted to linear representations of SLa(Z/pZ) when p is odd and of SLa(Z/2pZ.)
when p is even. More generally, in [38] the authors showed that the representations as-
sociated to a torus with one colored band can be lifted to linear representations of Bs.
They also showed that in higher genus, the central extension Mod(X,) corresponds to a
cohomology class which is a generator of H(Mod(X,), Z).

As we saw previously, the image of any lift of a Dehn twist through p,, , has order 2p. It
is still an open problem to know if there exists more relations, that is if the representations

—~—

Ppg : Mod(%,) /(T,?p —1) = GL(Vp)

are faithful or not when g > 2.
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1.2.2 Egorov identity and first decompositions

Egorov identity

Let L C ¥4 be a multicurve. Consider the cobordism ¥, x [0,1] with L embedded in
g x {%}, with identification of the boundary using the identity map and null weight. The
TQFTs associate to this cobordism some operators:

Addf(L) == Zy, (2 x [0,1], L,0) € End(Uy,,)
Addy (L) == Zy, (£ x [0,1], L,0) € End(V},4)

We thus define algebra representations Addg : Tp(2y) — End(U,4) and Add;,/ :
Kp(3g) — End(V,4). Usually the Addg are called Schrédinger representations repre-
sentations. It follows from the surgery properties of U, and V), that the morphisms Add,
are onto.

The following proposition gives an alternative definition of the quantum representations
based on the skein representations Add,,.

—~—

Proposition 1.2.2. For any ¢ € Mod(X,), the operators ppq(¢) and m,4(¢) are the
unique solutions, up to multiplication by an invertible scalar, of the following identity:

Tp,g(P) Addg(L)ﬂ'p,g(gb)_l = Addg(gb(L)) , for all multicurve L. (1.5)
Pp.g(P) Add;,/([/)pp,g(qﬁ)f1 = AddX(qﬁ(L)) , for all multicurve L. (1.6)

The equation I3 is called Egorov identity.

Proof. The proof is similar in the abelian and in the non abelian case, so we write it for
the Reshetikhin-Turaev representations only.

The Egorov identity is clearly satisfied for a homeomorphism that extends to the
handlebody H, through a. By duality for the Hopf pairing, it is also true for homeomor-
phisms that extends to H, through Soca. These two families of homeomorphisms generate
Mod(Xg4). We now remark that if the Egorov identity IZ3 is satisfied for two elements ¢
and ¢9, then it is also true for ¢ o ¢o. This proves that all the operators py 4(¢) are
solutions.

To prove the unicity, fix ¢ € Mod(X,) and consider the two representations of the skein
algebra s1, 52 : Kp(X4) = End(V}, 4) defined by s1(L) = Add,(L) and s2(L) = Add,(¢(L)).

The vector vg € Vj 4 corresponding to the class of the empty link in Hy, is cyclic for
both representations s; and s;. So an intertwiner © € GL(V}, 4) between s; and s (i.e.
a solution of IZ3) is completely determined by the image of vg. Moreover for any L C X,
which is contractible in H, then © - vy must be an eigenvector of Add, (L) with eigenvalue
—(A% 4+ A~2). Since )\; # Ao when i # 0, the corresponding eigenspace is one dimensional,
generated by (pp.4(¢)) tvg. This implies that © - vy is proportional to (p, 4(¢)) 1vo, thus
the space of intertwiners between s; and s is one dimensional. This proves unicity. m|
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Decompositions of quantum representations

We deduce from the Egorov identity, a family of submodules of U, , and V,, , stable

—~—

under the action of Mod(X).

Definition 1.2.3. Let b be an element of U, 1 (resp of V},1).

We define the b-colored algebra B, (b) as the subalgebra of End(U), 4) (resp of End(V}, 4))
generated by operators Add,(L(b)), where L(b) is a multicurve of 3, whose components
are colored by b.

We define the module X, (b) as the submodule of U, 4 (resp V), 4) of vectors stabilized
by every elements of B, (b).

Some decomposition of quantum representations can be deduced from the following:

—~—

Lemma 1.2.4. For any b, the submodule X, (b) is stable for the action of Mod(X,).

—~—

Proof. If v € X,,(b), ¢ € Mod(X,) and L is a multicurve in ¥4, using Egorov identity we
have:

Add,(L(D)) - (pp(d)v) = pp(d) Addp(¢71(L)<b)) v = p(p)v
thus p,(@)v € Xp(b). O

We derive two propositions from this lemma.
The following proposition was showed in [64] in the particular case where r is prime
and g = 1.

—~—

Proposition 1.2.5. If r is prime and n > 1, Upn 4 is a Mod(X)-submodule of Upni2 4.

—~—

Proof. We show that the submodule X (e,n+1) is isomorphic to U,» 4 as a Mod(3,)-module.

Consider the algebra B,n+2(e,) C End(Uyn 4) of links colored by e,. Note A := Al
the primitive r"-th root of unity if r is odd and primitive 2"*!-th root of unity if r = 2.
The product in B,x+2(e;,) is described by the skein relations for links colored by e,:

X _all Xl
Oy

Thus we have a morphism of algebras ¥ : T.n(X,) — B,n+2(e,), where we turned
Ten(3y) into a k!, algebra with the ring morphism s : k.o — k..o defined by p(A) =
AT,

The submodule X, ni2(en+1) has basis {ga; ® ... ® ga,,0; € Z/pZ} where gq, =
ZZ;%) Cr(a;+krm)-

Let @ : X(e,n+1) = Vpn 4 be the morphism defined by

P(ga; @ ... @ ga,) = €a; @ ... D €q,
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A simple computation shows that @ intertwines the two actions of T (¥X,). The
restriction to X (e,n+1) of mni2 ; satisfies the Egorov identity at level . It follows from the

—~—~—

unicity of Proposition I"22 that X (e,n+1) is isomorphic to V,» 4 as a projective Sp(2g, Z)-
module. |

We call lollipop graph of genus g a trivalent graph I' made of g loops connected by a
trivalent tree, called the trunk of I'. We denote by ay, ..., a4 the edges of I' corresponding
to the loops and by b1, ..., b, the edges of the trunk adjacent the a;. See Figure [CT3.

Figure 1.15: A genus 4 lollipop graph.

Note that if o € col,(I') then o(e) is even for any edge e of the trunk.
Suppose p is even and write k := 251, so that I, = {0,...,k}. Denote by e(a,b) €

{—1,+1}, the element:
b a a
k a—k a—k
e(a,b) :=

(b,a,a)

Note that €(a,b) = e(k — a,b) = +1.
Let o € col,(I') and ¢ € {1,...,g}. The map {i} e o : E(I') — I,, defined by :

{i}eo(e) = { o(e) ,if e # aj,

k—o(a;) ,ife=ua;

is also a p-admissible coloring of I'. This recursively defines an action of the subsets of
{1,...,g} on col,(T).

Definition 1.2.6. Let
Vo = Z (H e(a(ai),a(bi))) Uxeor € Vpg
Xc{l,...,g} \ieX

We denote by Jp,, C V4 the submodule spanned by the vectors v, for o € col,(I') a
coloring so that o(a;) is even for all 1 <i < g.
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The following decomposition was found in [I4].

Proposition 1.2.7. If 4 divides p, then J, 4 is a proper sub M(,)E(-Z/)g)—module of Vip.g-

Proof. We show that Jp, ; = X, (ux) to conclude.

B B = 2 |1 ifp=4 (mod8)
Notep=2r,k=r—2and A:=—-A —{ 1 if 8 divides p.

The product in B(uy) is given by the following skein relations satisfied by links colored
by wug:

X oall X sl
Oy

Also two parallel framed knots colored by wj can be removed. It results that B(uy)
is isomorphic to the algebra of the group Hi(X,,Z/27Z) if p = 4 (mod 8) and of the
group Hy(¥,,7Z./27) =< Z./27Z. if 8 divides p, where the product is given by [y1] - [y2] =
(—=1)*172)[; 4 75] with w the mod 2 intersection form.

In particular a vector v € V), ; belongs to J, 4 if and only if Add(X;(ug)) - v = v and
Add(Y;(ug)) -v =wv for all 1 < i < g. Here X;,Y; are the class in Hy(3y,Z/22Z) of the
Dehn twists of Figure IT3.

Using Lemma ITT27 and TR, we get the two identities of Figure TIR. They imply
that:

Add(X;(ug)) - up = (—1)7 ey,

and:

Add(Y} (uk) Uy = 6(0'((11')7 U(bi))u{i}oa

This proves that Jp, 4 = X, (uy) and we conclude using Lemma 24,

Z .

i
_ DG (kD) i
kQ = SIS =(-1)

O rem (-

Figure 1.16: Computations derived from fusion rules to compute X (uy).

Note that the above proof also works for representations associated to surfaces with
colored bands.
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1.2.3 Relation between U, ; and V),

Denote by S = (_Ol (1)> and T' = (é _11> the two generators of SLa(Z).

Using the basis {e;,i € Z/pZ} of Uy, 1, the Weil representation in genus one is charac-
terized by the projective classes of matrices:
;2 _9i
mp(T) = (A’ 5l-,j)m p(8) = ¢ (A729),

. 3 A G(_1707p)
where ¢, 1= —— when p is even and ¢, := ——+

when p is odd.

We remark that the involution sending e; to e_; commutes with these two matrices.
Thus the SLy(Z)-projective module splits into two invariant submodules Uy, ; = U; 19U,
where U;?l := Span{e; te_;,i € Z/pZ}.

{0,1,2,...,r—2} | if p=2ris even.
{0,2,4,...,p—3} ,if pis odd.

the Reshetikhin-Turaev representations in genus one are characterized by the projective
class of the matrices:

pp(T) = (Ai(i+2)5i,j)i7j pp(S) = ¢p ((*1)i+j[(i + 1)+ 1)])1',]'

where we used Lemmas T 12 and 114

Using the basis {u;, i € I,} of V), 1, where I, := {

Theorem 1.2.8. For p > 3, the SLa(Z) projective modules U,1 and Vp,1 are projectively
equivalent.

When p is odd, the module U, 1 is defined on the ring k:;,, where A is a primitive
p-th root of unity, whereas V)1 is defined on k,, where A is a primitive 2p-th root of
unity. In the preceding theorem, we turned V, ; into a kp-module using the ring morphism
p: ky — Ky, defined by pu(A) = A4,

This theorem was shown in [27] when p is even and in [60] when p =1 (mod 4). We
will extend their proofs for arbitrary p > 3. Note that this equivalence was predicted in
the geometric quantization setting in [8] (see also [66]).

Proof. When p = 2r is even, we define an isomorphism of kj-modules ¥ : Vp,; — U, by
W(u;) = er—i—1 — ertit1. We then compute the matrices of 7, in the basis (V(u;),i =
0,1,...r—2):

- r—i—1)2
(O(wy),m, () W(w;)) = AC—=D75,
_ A(r—1)2 D A2 Ai(it2)
r—1)2
= AT (1)

(W), 7y (9)U(w)) = ¢ (4720371 _ g20=i=Dr=i=D)
= ¢, ATFD) (AfZ(iH)(jH) _A2(i+1><j+1))

= —pp(9)i,;

)
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So 7, and p, are projectively equivalent when p is even.

Then when p > 3 is odd, we turn U,; into a kp-module via the ring morphism 4 :
ky — k, defined by p(A) := A*. We define an isomorphism ¥ : V,; — U, of ky-
modules via W(u;) := ep-1-i —eprir1 . We then compute the matrices of 7, in the basis

2

(U(ui),i = 0,2,4,...p—3):

p—1—1i

(W), my (W) = (A=) 5,
= A(p_i_l)Qém‘

= (=A) pp(T)i;

—1—iy p—1—j p—1—i\ p—1—j
(W), 77 ()W) = e (u(A) 2T p(aH05)
= ¢ (A—2(p—i—1)(p—1—j) _ A2(p—i—1)(p—1—j))

= —pp(S)iy

And the proof is completed. ]

1.2.4 Tensor decompositions

Definition 1.2.9. Let Vi and V5 be two TQFTs with the same ring k. The tensor
product V; @ V3 is the TQFT defined by V; ®@ V5(X) := Vi(X) @k V2(X) and Zy, gy, (M) =
Zv, (M) ® Zy, (M).

In particular the quantum invariant and quantum representations of a tensor product
V1 ® Vs is the product and tensor product of the two quantum invariants and quantum
representations of V7 and V5.

Lemma 1.2.10. Let (Vi,k1), (Va,ka) and (Vs,k3) be three non degenerate TQFTS and
w:ky — ks, v: ke — k3 be two ring morphisms preserving the involutions. Suppose that:

1opo()y xvo()y=_{)
2. rank(V1 (X)) - rank(V5(X)) = rank(V3(X)) for any structure surface .
Then we have p V) @ v, Vo = V3,

Proof. Let ¥ be a (non empty) structure surface and Ny, denotes the set of classes of struc-
ture cobordisms bounding ¥.. From the non degeneracy condition we have an isomorphism

V3 () = k3[Ns] /k:er ()5 Consider the linear map:
f : (k3[N2]7 <'v >3) - (/‘*Vl(z) Oks V*VQ(E)MM o <'7 '>1 ®ro <'v >2)

sending an element M € Ni; to the corresponding class of M @M in p, V3 (%) = k3 [Ns] /ker (o))
and ,LL*‘/Q(E) = kB[NE] /k‘er (1/ o (.’ >2) .
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The assumption on the quantum invariants implies that f preserves the bilinear forms,
so sends the kernel of (-, -), inside the kernel of pio (-,-); ® v o (:,-), which is trivial. Thus
f induces an onto linear map:

FVB(2) = V() @k, vaVa(T)

The equality of the ranks of the modules implies that f is an isomorphism. By construc-
tion, this isomorphism induces an isomorphism between the TQFTs V3 and pu.Vi®u,Ve. 0O

We give two applications of this lemma.

Let a and b be two coprime non negative integers and u, v be such that au+bv = 1. We
define morphisms y : k, — kqp and v : ky, — kg by setting pu(A) = A and v(A) = A™,

Proposition 1.2.11. If a and b are coprime, then .Uz @ v Up = Ugy.

Proof. The abelian quantum invariants for a 3-manifold obtained by surgery along a
framed link L = L; U...U L,, C S3, has the following expression:

<S3(L)> :Ffa(L)n Z A%lk(L)z'
i=(i1,e0eyim ) E(Z ) DLY)™

where [k(L) is the linking matrix of L. Using this expression and the fact that U, , has
rank p?, we easily see that the conditions of Lemma 210 are satisfied. O

Remark.

1. The fact that the abelian invariant at level ab is the product of the ones at levels a
and b when a, b are coprime where noticed in [[71].

2. This proposition implies that the Weil representations satisfy m,, = 7, ® m, when
a,b are coprime.

Proposition 1.2.12. Ifr is odd, then Vo, =2 Vg ®@ V,.

The proof relies again on Lemma [210. We refer to [I3] for a proof.

1.2.5 Roberts’ proof for the prime cases and p = 18

In this subsection, we briefly review the result of Roberts in [76] which shows that the
Reshetikhin-Turaev representations at prime levels are irreducible. The proof also works
for p = 18.

We denote by A, , the subalgebra of End(V, 4) generated by the operators py, 4(¢) for

—~—

¢ € Mod(%,).

Remark that if K is a framed knot in ¥, and Tk the corresponding Dehn twist, the
operator p,(Tk) is equal to the operator Add,(K_;(w)) modulo an invertible scalar.
Here we denote by K_; the framed knot obtained from K by twisting once negatively.
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The vector vy € V), 4, corresponding to the class of the empty link in the handlebody
Hy, is said cyclic if Ap4-vo = V) 4.

Lemma 1.2.13. Suppose p > 3 is so that if i,j € I, then i # j implies p; # pj. Then
vo € Vp g is cyclic for every g > 1.

Proof. First when g = 1, write d = rank(V,,1) and denote by L the longitude {0} x S! in
D? x S*. We define the vectors t; € V,,1 by the formula ¢; := Add(L(w))* - vg € Ay 4 - vo.
We have:

H . i
(ti,uj), =n<j>pu;

Thus the matrix ((ti, uj)f) is the product of a diagonal matrix (n(—1)7[j + 1]4; ;),

0<i<d—1,j€l, ' J
with non null diagonal entries, with a Vandermonde matrix (“3)ZJ which is invertible for
the p; are distincts.

Since the Hopf pairing is non degenerate, the set {tg,t1,...,tq—1} is a basis of V1 and

vg is cyclic in genus one. Denote by «y, ..., aq_1 the scalars so that:

uy = Z Oéiti
7

Let g>2and L = L' U...UL™ be a framed link in the g-holed disc D,. Embedding
Lin Dy x {3} C Dy x [0,1] = Hy, we get a vector Z,(Hg, L) € V, 4 equal to:

Zy(Hy, L) = Z Oy e, Add(Ll,l(w))i1 ...Add(LTl(w))im-vo € A, 400
i=(i1,,im ) €40,....d—1}m

Lemma T8 implies that such vectors generate V), 4, so vg is cyclic. m|

Lemma 1.2.14. Suppose p > 3 is so that if i,j € I, then i # j implies p; # ;. Then the
representations pp 4 are irreducible for every g > 1.

Proof. Let (Ap4)" denote the commutant of Ay, in End(V, ), that is the subalgebra of
operators that commute with every p, 4(¢) for ¢ € Mod(3,).
Let f: (Apg) — Vp 4 be the linear map defined by f(©)

implies that f is injective.

= 0O - vg. The cyclicity of vy

Let I' C Hy be a trivalent graph and v = (Ye)ee E(r) the corresponding pants decom-
position. For each edge e € E(T"), we choose a lift T, of the Dehn twist around e. Since
Pp.g(Te)vo = o, then pp 4(Te)O-vg = O-vg for © € (A, 4)". This implies that © - vy belongs
to the intersection of eigenspaces of the operators py, 4(T¢) with the eigenvalue one. Since
i # 1 when ¢ # 0, this intersection is one dimensional generated by vy.

The injectivity of f implies that (Ap4)" is one dimensional and we conclude using the
Schiir lemma.
O
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Proposition 1.2.15. If p =1 or p = 2r with r an odd prime or r = 9, then the represen-
tations pp 4 are irreducible for every g > 1.

Proof. We simply remark that under the hypothesis of the proposition, the u; are distinct
and apply Lemma [ZT4. o






Chapter 2

Decomposition of the Weil
representations into irreducible
factors

Résumé

Ce chapitre contient la version non publiée de I'article intitulé " Decompo-
sition of the Weil representations into irreducible factors" ([65]). On y donne
une décomposition explicite des représentations de Weil en représentations ir-
réductibles. Certaines notations ont été changées pour coller avec le reste du
manuscrit. Un résultat subsidiaire de fidélité est renvoyé a la premiere section
du quatrieme chapitre.

Abstract

This chapter contains the unpublished version of the article "Decomposi-
tion of the Weil representations into irreducible factors" ([565]). We give an
explicit decomposition of the Weil representations into irreducible represen-
tations. Some notations have been changed to match with the rest of the
manuscript. A subsidiary result concerning the faithfulness of Weil represen-
tations has been postponed to the first section of the fourth chapter.

2.1 Introduction and statements

2.1.1 A brief history

The Weil representations first appeared in the work of Kloosterman in 1946 (see [54])
where they arise as modular transformations of spaces of theta functions. They were re-
discovered independently by Shale ([80]) following Segal ([78]) in 1962 when the authors
studied the Weyl quantization of the symplectic torus. Their construction has been gen-
eralized to arbitrary locally compact abelian groups by Weil in 1964 (see [88]). The ones
we consider in this paper are associated to Z/pZ. They also appeared independently in
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the work of Igusa ([45]) and Shimura ([81]) on theta functions. See also [64] for another
construction.

The generalization of the Weil representations for finite fields and g = 1 was studied
in [59] for odd characteristic, and more recently in [d1] for characteristic 2.

The mathematical physics community studied the semi-classical properties of the Weil
representations associated to finite cyclic groups when the level p tends to infinity as a
model for quantum chaotical behavior (see [I1], [68], [24], [49]).

The relation between theta functions and the quantization of the torus was clarified
through the geometrical quantization procedure of Souriau, Kostant and Kirillov (see
[82, 67, 562]) where the Hilbert space associated to the torus is the space of holomorphic
sections of a Hermitian line bundle over the torus endowed with a complex structure. This
Hilbert space is naturally isomorphic to a space of theta functions (see [2, 89, B2]) and the
symplectic group acts as monodromy operators on these sections providing a geometric
interpretation for the Weil representations.

The Weil representations fit into the framework of Topological Quantum Field The-
ories, as defined by Atiyah and Witten in [B, @1]. Their definition for even levels and
arbitrary genus first appeared in [80, BY] in relation with 3-manifold invariants which
were studied in [71] and further explored in [21] in the more general context of abelian
invariants.

The first rigorous construction of SU(2)-TQFTs was made by Reshetikhin and Turaev
in [75] using a quotient of quantum groups U,sly (see also [85] for the general construction
based on modular categories). A combinatorial construction of the SU(2)-TQFTs using
skein theory was made in [[4] using the construction in [63] of 3-manifold invariants. In
this paper, we follow [32] where the authors adapted this point of view in order to construct
the Weil representations at even levels.

2.1.2 Statements

Given two integers p > 2 and g > 1, the Weil representations are projective unitary
representations of the symplectic group Spay(Z) into a free module of rank p9 over the
ring:

, [ Z]A L] /(6p(4)), when pis odd.
P Z |A, %} /(¢2p(A)),  when p is even.

where ¢, € Z[X] represents the cyclotomic polynomial of degree p.

The main result of this paper is the decomposition into irreducible factors of the Weil
projective representations 7y, g : Spag(Z) — PGL(U?) of the symplectic group. Here U,
is a free k:;)—module of rank p and we identified U, ; with U;?g . The integer p > 2 will be
called the level of the representation. The decomposition of the Weil representation for
g=1and p =" for r an odd prime into irreducible factors was given by Kloosterman in
[64]. Our decompositions generalize his result to arbitrary genus and levels.

Let a,b > 2 be two coprime non negative integers with b odd, and let v and v be odd
integers such that au+bv = 1 in the case where a is odd and such that 2au+bv = 1 if a is
even and b is odd. We define a ring isomorphism p : k') — k., @ kj, by p(A) = (A", A%) if
a is odd and u(A) = (A", A%2%%) if g is even, which turns U®I ® Ub®g into a k/,-module.
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2F0r r prime and n > 1, we define the ring homomorphism s : k.o — kjn by p(A) =
A" which turns Uﬁg into a k/,.;».-module.

Set o(p) for the number of divisors of p including 1.

Main Theorem 2.1.1. The level p Weil representation contains o(p) irreducible submod-
ules, when p is odd and a(%), when p is even. They decompose according to the following
rules, where = denotes an isomorphism of Spag(Z) projective modules:

1. If a,b > 2 are two coprime integers, then:
Ugég ® UI()@g ~ U;X;g
2. If r is prime and n > 1, then:

US%, 2 U o WSS,
where Wiont2 s a free submodule of Upn+2.
3. If r is an odd prime, then:
Uzl =1e Wy’
where 1 denotes the trivial representation.

4. Rvery factor Ug’g, W,%g for p > 3 decomposes into two invariant submodules,
®g >~ gv+ 9,—
U,7=2U07" Uy
WS = WS @ W™

We call Ug’+ and Wrgf the even modules and UJ"™, W2~ the odd modules.

5. The application of the previous four rules decomposes any Ug@g into a direct sum
of modules of the form B, ® ...® By, with ri,...,ry distinct prime numbers and
B, € {U,?Z_’i, Wfﬁi}. These modules are all irreducible and pairwise distinct.

When g = 1 the first point of this theorem was proved by Kurlberg and Rudnick in
[6R].

For instance, when r is an odd prime we have:

U =WETeWwiHeWiLheWs,)e...e (WS @W% ) @1, if n even.

U =Watewi HeWiheowi L) e...o(WS eW% ) e (UST @ UST), if n odd.
When r = 2 we obtain:

Ul = (WS aWSh ) o (Wi oWl o...o (Wi eW{™), if n is even.

Ugd = (Wt ews e Whhows ) e...e (Wi e W ) e Uy, if nis odd.

We deduce from Theorem BZ31 the following:

Corollary 2.1.2. We have the following decomposition into irreducible modules of the
genus one SO(3) and SU(2) quantum representations at level p of SLo(Z):

V, = @ B® B ®...® B, when p is even;
BEE,B1€E),...,BLEE)
v, = b B ®...® By, when p is odd.

Bi1€E;,...,BxEE)

where p = 2"t .. .er is the factorization into primes and:
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If j is such that nj is odd, E; = {W;j_gaj, r;k_Qaj,Ué,Ua 10<a; <[%]— 1}.
J J

— If j is such that n; is even, E; = W;j,%j, T;k,zaj,]l 10<a; <[%]— 1}.
J J

~ Ifmis odd, E = {W;;n,ga, gm0, U2 | 0<a < [B] - 1}'

~ If m is even, E = {W;,za, 2_7n—2a7U2_,U4_ |10<a< %] - 1}.
with the condition that each summand BQ B1®...® By, or B1 ®...® B}, contains an odd
number of modules U, , Wn.

Remark. 1. The irreducibility of the SU(2) quantum representations in arbitrary genus
at levels 2p, for p an odd prime, was showed by Roberts in [76] and his proof
easily extends to SO(3) quantum representations at odd prime levels. This result
was generalized to representations associated to surfaces with one marked point by
Gilmer and Masbaum in [37].

2. The commutant of the C-algebra generated by the image of the genus one Weil
representations at even levels was studied by the physicists in [I7] following the
ideas of [33]. Our theorem recovers their result in a different manner and gives an
explicit basis for the commutant formed by the projectors on each irreducible factors.

When p is odd, the projective Weil representation lift to linear representation of
Spag(Z/pZ) (see [M]). In [B1], it is proved that when p is even and g > 2 the Weil
representation does not lift to a linear representation of Spay(Z/2pZ) but only of a non
trivial central extension of Spag(Z/2pZ) by Z./2Z.. For g = 1 however it is not difficult to
show that the Weil representations lift to linear representation of SLy(Z). Explicit lifts
are given in Chapter 4 section 3.

Finally, adapting the ideas of [67] to the abelian case, we will prove in Chapter 4
Theorem BT the asymptotic faithfulness of the Weil representations already showed in
[@] in a different way.

Theorem 2.1.3. Let (n;); be an unbounded sequence of integers. Then:
_J {1, -1}, when g > 2 and all the n; are even;
nKer(Wnug) = { {1}, if all n; are odd or g = 1.
g
where a represents the central element added in the central extension S};—Q;(JZ) defined in

[&1] and in Definition [-3-3.

Acknowledgements: 1 would like to thank Louis Funar, Christian Blanchet and
Julien Marché for making me discover the fascinating world of TQFT. I am in debt to
Roland Bacher who taught me the existence of the Hensel lemma and to Samuel Lelievre
for his ITpXwriting advices.

2.2 Definition of the projective Weil representations

2.2.1 Abelian skein modules

The following section closely follows the definitions from [32]. To every compact ori-
ented 3-manifold we associate a kz’j—module. The Weil representations arise by means of
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the symplectic group action on the skein module associated to a genus g-holed handlebody.

Definition 2.2.1. Let p > 2 and M be a compact oriented 3-manifold possibly with
boundary. The reduced abelian skein module 7~;(M ) is the k;—module generated by the
isotopy classes of oriented banded links of ribbons in M quotiented by the relations given
by the abelian skein relations of Figure 2711 and by the submodule generated by the links
made of p parallel copies of the same ribbon.

p times . \/

Figure 2.1: Skein relations defining the reduced abelian skein modules.

The reduced abelian skein module of the sphere S® has rank one. The class of a
link L c S? in this module is equal to the class of the empty link multiplied by A%*(L)
where [k(L) represents the self-linking number of L. This gives a natural isomorphism
To(S%) = K.

It is classic, see Proposition IR, that if M = ¥ x [0, 1] is a thickened surface, where
¥ may have a boundary, then its skein module 7,(M) is isomorphic to k,[H:1 (%, Z/pZ)].

2.2.2 Heisenberg groups and Schrodinger representations

Denote by H, the genus g handlebody. Its abelian skein module is freely generated by
the elements of Hy(Hy,Z/pZ). So, if we denote by U, the module T,(S' x D?), we have
a natural kp-isomorphism between T,(H,) and U39.

Definition 2.2.2. Let g > 1 and ¥, be a closed oriented surface of genus g.

1. The module 7,(X4 x [0,1]) has an algebra structure with product induced by super-
position.
2. The Heisenberg group Hg4 is defined as the set Hi (X4, Z) x Z with group law given
by:
(X,2)e (X' 2)=(X+ X' 2+ +w(X, X))
where w represents the intersection form.

A group morphism H, — T,(2, x [0,1]) is defined by sending a class [y] € Hy(Z,, Z)
to the skein class of the link ~y inserted in ¥4 x { %} and by sending the central element
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(0,1) € Hi(X4,2Z) x Z to the element ¢ = A-1 € T,(3, x [0,1]) product of the class
of the empty link by A € k.

3. We choose a homeomorphism ¢ : ¥, — 3, so that (3, x [0,1])U, H, = H,.
This gluing induces a linear action of the Heisenberg group on the skein module
Tp(Hy) = U;?g. This representation is called the Schrodinger representation and will
be denoted by Add, : H, — GL(UI?Q ). Up to isomorphism, this representation does
not depend on ¢.

A key ingredient in the definition of the Weil projective representations is the Stone-
Von Neumann theorem which states that the Schrédinger representation is the unique
irreducible representation of the Heisenberg group sending ¢ to the scalar operator A -1

2.2.3 The Weil representations

Every element of the mapping class group Mod(3,) acts on Hi(X4, Z) by preserving
the intersection form. Choosing a basis of H;(X4,Z) we obtain a surjective morphism
f:Mod(Xg) = Spag(Z).

Let g > 1, the mapping class group Mod(X,) acts on the set of framed links of 3, x [0, 1]
and, by passing through the quotient by the reduced skein relations, acts on the Heisenberg
group. We denote by e this action. Let ¢ € Mod(X,) and consider the representation
s Hy — GL(UY9) defined by s?(h) := Add,(¢ e h) for all h € Hy. By the Stone-Von
Neumann theorem, the representation s® is conjugate to the Schrodinger representation.
Thus there exists m,4(¢) € GL(U;Y), uniquely determined up to multiplication by an
invertible scalar, so that:

7p,g(0) Addy(h)my4(6) " = Addy(¢ e ), for any h € H, (2.1)
The equation (E0) is also called the Egorov identity.

Definition 2.2.3. We call Weil representation at level p and genus g the projective rep-
resentation m, , : Mod(Xy) — PGL(US9).

It easily follows that the Weil representation factorizes through the Torelli group and
through Spoy(Z/pZ) when p is odd and Spoy(Z/2pZ.) when p is even.

The previous definition of the Weil representations as intertwining operators is not
explicit. To manipulate it more easily, we choose the generators of Sps,(Z) consisting
of the image through f of the Dehn twists X;,Y;, Z;; of Figure B (see [67] for a proof
these Dehn twists generate the mapping class group). We define the basis {e¢q, ® ... ®
€aglar,. .., ay € Z/pZ} of UP9 as in Figure 23, that means that e,, ®...® eq, is the class
of a link made of a; parallel copies of an unframed ribbon encircling the " hole of H,
one time. To express the image of the generators in the basis, we will first need to define
Gauss sums.

Definition 2.2.4. Let p > 2 and a,b be two integers. We define the Gauss sums by the
formulas:

1. G(a,b,p) = Ypezypz A ¥ € K}, when p is odd.

2. G(a,0,2p) := Ypez/2pz Aak?+bk _ o > kez/pZ Ak +Pk k;, when p is even.
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Figure 2.2: A set of Dehn twists generating the mapping class group and the symplectic

group.
ARG
az

aq a

Figure 2.3: A basis for the abelian skein module of the genus g handlebody. Here an
integer ¢ in front of a ribbon means that we take ¢ parallel copies of it.

The computation of the Gauss sums is detailed in [10].

Proposition 2.2.5. The expression of the matrices of the Weil representation on the
generators X;,Y; and Z; j in the basis {eq; @ ...®eq,la1,...,a9 € Z/pZ} of UI‘?Q 18 given
by the projective class of the following matrices:
- T (X) = (A%°65)i5 and mpe(X) = 19070 @ m, 1 (X) @ 190970,
~ g (Zij)(ea, @ ... ®eq,) = AW (e, © ... D ey,).
GA0P) (g=(i=5)%y, . when p is odd.
mpaY) = { oo gp

G(léc;zp) ( A—(i—j)Q)

g (Vi) = 107D @ mp 1 (V) @ 190977,
These generating matrices are unitary (they verify UTU = 1 where U = (U;]) 1s defined
17_7

ij» when p is even.

by the involution of k; sending A to A™1) so are the Weil representations.

Proof. 1If ¢ € Mod(%,) can be extended to a homeomorphism & of the handlebody Hy, the
action of ® on T,(Hy) = Uy defines an operator which satisfies the Egorov identity (2.1)
so is projectively equal to gng((b). The generators X; and Z; ; are such homeomorphisms
and Figure 22 shows how we compute their action on the basis.

2

Tp1(X) e = = A ¢,

Figure 2.4: The computation of the matrices associated to m,1(X) and 7 2(Z12).

Then choose a Heegaard splitting of the sphere HyJy H, = S3 with ¢ € Mod(%,).
This splitting determines a pairing 7,(Hy) x T,(Hy) — T,(S?). The associated bilinear
pairing (-, )f 1UP9 @ U9 — ky, is called the Hopf pairing. Figure 223 shows that:

H
(eal @ ... @ €qy, €hy ®...®ebg>p _ A2, aibi
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Thus the Hopf pairing is non degenerate.

(4 ® €p, €0 @ eb/ @O _ A-2ab-2a'V

Figure 2.5: The computation of the matrix associated to the Hopf pairing when g = 2.

The dual of m, 4(X;) for (-, Y satisfies the Egorov identity (2.1), so is projectively
equal to m, (V7). If mp, 1(Y') is the dual of 7)1 (X) for (, I the previous expression of
Tpg(X;) implies that its dual for the Hopf pairing is 120~ @ 7, 1 (V) ® 199,

To compute the matrix of m,1(Y), we remark that the matrix S = (A_Qij)m of the
Hopf pairing has inverse S—! = %g = %(AQU )i,j- A direct computation gives:

ﬂ'p’l(Y) = S7Tp71(X)S_1 =

{ GL2G=1).p) _ G.0p) (A*(i*j)z)iﬁj, when p is odd;

G(172(?_i)72p) — Gﬁ;;gp) (Af(Z*])Q)z’J’

T when p is even.

O

Remark. When p is even and A = exp (——) the projective representations we defined

’U

here coincide with the ones from [30] and [89] coming from theta functions.

2.2.4 Linearization of the Weil representations

When g = 1 and p is even, to have an explicit lift of the Weil representations as linear
representation of SLy(Z/pZ), we must add the ring k, a primitive 24" root of unity, so
we change the ring to k, = Z[A, %,ﬁ}/(@p(A), ¢24(5)). An explicit lift of the genus one
WEeil representations is given by the matrices:

0 1 M(A 23, 4, if p is odd. 2.2)
7-(- .
p,1 -1 0 B 3G 102p)(A 2ij), i, if pis even.
L —1 (A 5ij)ij, if p is odd.
= 25 S 2.3
e ((0 1 )) { 5(AZ25i,j)i,j, if p is even. (2.3)

In Chapter 4 section 3, we prove that if g > 2 and p is even, the matrices 7, 4(X;), 7p 4(Yi)
and mp 4(Z; ;), defined in Proposition 2223, generate a linear unitary representation of a
non trivial extension of Spoy(Z/2pZ) by Z./27.

When g > 2 and p is odd, it is known (see [0]) that the Weil representations lift to
linear unitary representation of Spyg(Z/pZ). A direct computation similar to the one of
[51] (see Theorem B=34) shows that the matrices m, 4(X;), 7, 4(Y;) and mp 4(Z; ;) defined
in Proposition 223 define an explicit lift.

We will denote by S];—QR/Z) the central extension of Spyy(Z/2pZ) by Z./27. defined in
[81]. We have the following short exact sequence:

1 —> Z)2Z 5 Spag(Z) > Spag(Z) — 1

We will denote by « the image of —1 by 1.
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2.3 Decomposition of the Weil representations

In this section we prove the three first points of the Theorem P11, We first define:

U9 :=Span{eq, ® ... Q@ €q, +€_a, @ ... @ €_g,la1,...,a9 € Z/pZ}
U, 9 :=Span{es, ®...®eq, —€q, ®@...® € g la1,...,a4 € Z/pZ}

where Span means that we consider the k:;, module generated by the elements in brackets.

Lemma 2.3.1. The submodules U]f’g and Up_’g are m, 4-stable.

+

We will note 7, , and 7, , the corresponding restrictions of 7, ; and call them the even

and odd subrepresentations respectively.

Proof. A direct computation shows that the submodules Ug’+ and UJ™ are stabilized by
Tp,g(Xi), Tp,g(Yi) and mp(Zi ;).
O

Remark. To ensure that the injection U; ® U, — Uy is an isomorphism of k:;,—modules,
we need 2 to be invertible in .

Let a,b > 2 be two coprime non negative integers with b odd, and let © and v be odd
integers such that au+bv = 1 in the case where a is odd and such that 2au+bv =1 if a is
even and b is odd. We define a ring isomorphism 1 : K, — ki, @ kj by p(A) = (A%, A%)
if a is odd and p(A) = (A", A2%) if q is even, which turns U2Y ® U into a k/,-module.
We also denote by f : Z/aZ x Z/bZ — Z./]abZ. the bijection sending (z,y) to zv + yu
when a is odd and to zv 4+ 2yu when a is even.

Lemma 2.3.2. The isomorphism of k,-modules ¢ : UP9 @ Ub®g — Ugg defined by

P((ea ® ... ®eq,) @ (en, ® ... @ €p,)) = €f(a1by) @+ @ €f(ayb,)

—~—

makes the following diagram commute for all ¢ € Spag(Z) (resp for all ¢ € Spag(Z) when
a is even):

Y

UM @UY ——>Uy?

7r97a(¢)®7rg,b(¢;r Tﬁg,ab(@
(0

UM @ U ——>Uy?

Proof. We note (Aj, Ag) := (A"", A%) when a and b are odd and (Aj, Ag) = (A, A%2%v)
when a is even. It is enough to show the commutativity of the diagram for ¢ = X;,Y; and
Z; j. For ¢ = X;, we compute:

¥ (Ma g (Xi) @ g (Xi) (€0, ® . @ €a,) ® (€0, ... D y,))) =
1 (AT?AZ?((eal ®...Q¢q)R (e ®...0 ebg))) =

ai,bi)?
Af( ) (ef(al,bl) ® e ® ef(agvbg))
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1 1,02 .
w G(éi%p) when p is even:

Then for ¢ =Y;, we note ¢, = when p is odd and ¢, =

¥ (Tag (V) © T g (Vi) (€0, © - @ e0,) @ (e, @ .. @ e,)) )

lai—k)2 . —(bi—])2
= |cacy Y Al(l 2 AQ(”’ D (e, ®..0€e®...Q€q,)R(ep @...06R...0€,))

keZ/aZ
1€Z,/vZ.

— a;,0;)—Mm 2
= 1p(cqcp) Z A~ (f(aibi)—m) (ef(al,ln) ®---®€m®---®€f(ag,bg))
meZ/abZ

where we made the change of variable m = f(k,[) to pass to the last line. It remains
to show that ¥(cqcp) = cqp which is equivalent to show that ¢ (G(1,0,a)G(1,0,0)) =
G(1,0, ab) when a is odd and ¥(G(1,0,2a)G(1,0,b)) = G(1,0,2ab) when a is even. When

a is even:

W(G(1,0,20)G(1,0,b))/2 = S avay
(z,y)EZ/aZXZ][bZ

_ ZAv:c2+2uy2: Z AZQ:G(1,0,2ab)/2
(z,y) z€Z./abZ

Finally for ¢ = Z; ;:

0 (Tag(Zig) @ Mg (Zij) (0, @ . @ ea,) @ (1, @ .. @ c1,)))
®..

a;—a; 2 i — 0y 2
—y (A§ AP (0w @ @ ay) @ (e,
:Af(ai,bi)2(

.®ebg))>

€f(ar,br) @ - @ €f(ayby))

O

Remark. This lemma also follows from ([I71], Proposition 2.3) where it is showed that the
3-manifold invariant coming from the abelian TQFT at level ab, with a coprime to b, is
the product of the ones in level a and b.

Let r be a prime number and n > 0 if r is odd or n > 1 if r = 2. Let Uf%g be the

submodule of Uf?ﬂg spanned by the vectors gq ®...® ga, Where g; := > g<p<p_1 €pr(iphrn)-

Lemma 2.3.3. The submodule Uﬁf’ is stabilized by mun+2 5. Moreover the isomorphism of
k! 2 -modules 1) : Uf%g — Uf?lg sending e, @ ...Qe€q, 10 gay @ ... R ga, makes the following

diagram commute for all ¢ € Spag(Z) ( for all ¢ € Spag(Z) when r = 2 respectively):

GLues,)r Tl qp e o

1 i

aLwzs) —29 s arwgs)
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Proof. We generalize an argument of [I9] to arbitrary genus to show that Uf%g IS Tpnt2 o=
stable. Denote by I the principal ideal I := r"* Hy (%9, Z/r"2Z) of H{(X9,Z/r""2Z)
and by D the subgroup D := (I x I,0) of H,nt2 4. Since I? = {0} and I is an ideal, D
is a subgroup of H,n+2 , stable under the action of Spa,(Z). We deduce from the Egorov
identity that the space {v € Ugﬁﬂ Add,(¢)v = v,V € D} is preserved by mni2 . We
now casily show that this space is US?.

We then verify the commutativity of the diagram for ¢ = X;,Y; and Z; ;. When ¢ = X;
we have:

7:2

Tont2,g (X)) (Gay @ -+ @ gay) = A (goy @ ... ® ga,) = (A (g ® - .. ® ga,)

When ¢ = Y; we have:

77Tn+2’g(yvi)(ga1®' . .®gag) = Cpn+2 Z Z A—(T’(ai-i-krn)_w)Zgal ®.. . ®e®...0 a,
z€Z/r" 2 keZ/rZ

= Cpnte Z A*$27$7'ai*r2a12 Z (A2r(n+1)x)k 0, ® ... ®ez®...® Ja
xE€Z[r+2 keZ/rZ

= rCpm+2 Z (AT‘2)*(y*ai)2ga1®---®€ry®~--®gag
yeZ/rnt1Z

—(r—q:)2
= repnre (u(A)) %) Z 0o, ... ®G: R ... R ga,
2€Z[r"Z

We verify that ji(c,n) = rem+2 to conclude in this case. Finally when ¢ = Z; ;:

7Tr"+2,g(Zi7j)(ga1 ®...0 gag)
_ A(r(aiJrkr")fp(aj«HT”))z
Z (ga1 ® ... Cr(a;+krm) ®... Cr(aj+irm) ®...® gag)

kl€Z/pZ.
= Y (A9 (g @ ep(ap k) © - ® Epfayrirm) @ -+ © Gay )
kl€Z/pZ
= (WA (o, © ... © ga,)
O
Let W,n+2 be the submodule of U,» orthogonal for the invariant form turning {eq, ..., €n+2_;}

into an orthogonal basis. It is freely generated by the vectors e; when r does not divide ¢
and by the vectors e;_ iy for i € {0,...,7" =1} and k € {1,...,r — 1}.

The orthogonal of U,%g in UﬁﬂQ is isomorphic to Wgﬂg and is stabilized by mn+2
So are the two submodules Wf,;i = WS}L N Uf;iz.

g

2.4 Irreducibility of the factors

2.4.1 The genus one cases

The irreducibility of the factors U, , for r prime, has already been shown by Roberts

in [76] by computing the commutator of the associated group algebra. The irreducibility

of the factors Uﬁ and erﬁi, for r an odd prime, was proved by Kloosterman in [54].
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When g = 1 the strategy for the proof lies on the computation of the sums:

Sy = sz Leestazpz) | Tr(mp(9)?, when p is odd. (2.4)
Sop = Wl/%z)l > 6eSLa(Z/2pZ) | Tr(my(4))|%,  when p is even. (2.5)

It is a classical fact that if this sum is equal to the number of component in a decomposition
of 7, then each factors appearing in this decomposition is irreducible and they are pairwise
distinct (see [[79], chapter 2).

Lemma 2.4.1. Ifa is prime to b then Sy, = S % Sy if they are both odd and Soqp = Soqa X Sp
if a is even.

Proof. This follows from the fact that we have a group isomorphism SL9(Z/abZ)
SLy(Z/aZ) x SLy(Z/bZ) together with Proposition 22372

O I

In [54] Kloosterman showed that for an odd prime r and n > 1 then S;» = n + 1.
Thus, to complete the proof of Theorem P11 it remains to show the following:

Proposition 2.4.2. Forn > 1, we have:
Sgn =N — 1

Since the summand | Tr(man (¢))|? only depends on the conjugacy class of ¢ we will first
make a complete study of the conjugacy classes of SLy(Z/2"Z). Then we will compute
the characters of the Weil representations on representatives of each conjugacy classes.

Conjugacy classes of SLy(Z/2"Z)

We begin by defining three invariants of the conjugacy classes which almost classify
the conjugacy classes:

Definition 2.4.3. For A € SLy(Z/2"Z) there exists a unique integer | € {0,...,n} and
z € {0,...,2" — 1} such that:

A=z1+2'U;  (mod 27)

for some matrix U; whose reduction modulo 2 is neither the identity, nor the null matrix.
We define a third integer

) Tr(A) e Z/2"Z, when | = 0.
T det(th) € /27,  when | > 1.

Note that det(U) = 1(mod 2") implies that 22 = 1(mod 2') hence if [ = 1 then z = 1,
when | = 2 then = 1 or 3, when [ > 3 we have four choices: z = 1,2 — 1,271 + 1 or
271 — 1.

Let us denote by C(x,l,7) the set of matrices of SLy(Z/2"Z) having x,l and T as
invariants. Clearly C(—1,1,7) = —C(1,l,7) and C(2"=1 —1,1,7) = —C(2"=1 41,1, 7), thus
we only need to study the conjugacy classes of C(z,l,7) when z =1 or x = 2!=1 + 1.

As example, the matrices with [ = 0 are the matrices which are not equal to the
identity matrix modulo 2 whereas those with [ = n are the four scalar matrices.
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Definition 2.4.4. We define the following representatives of C(z,l,7), where ¢; will
denote an odd number:

-1l = 0, Ao(T,Cl) =

- l21,$:1, Al(T,Cl) = (

c1 T—1

C1 2l

1 oM — 2))

1 61_12l7
1427 )

_ 14271 —clolr
~1>3,z=1+2"1B = ! ,
>3,z + , Bi(T, c1) 2y 1491 (1+ 21—1)—1(2z 49202 4 22l7.)
Similar representative for z = —1 and « = 2/~! — 1 are given by taking —A; and —B;.

Proposition 2.4.5. Fach set C(x,l,T) contains 1,2 or 4 conjugacy classes each contain-
ing a matriz £A;(1,c1) or £By(,c1) for a suitable choice of ¢1. The following table gives
for every l,z, T a set of 1,2 or 4 representatives and the cardinal m(A) of the corresponding
conjugacy classes:

[ and x T Representatives of C(x,l,T) m(A)
=0 Tr(U) =7 is odd Ap(T,1) 22n—1
Tr(U) =7 =2 (mod 4) | Ay(r,1), Ao(7,3), Ao(7,5), Ag(7,7) | 3-27"71
Tr(U) =7 =0 (mod 4) Ao(1,1), Ap(T, 3) 3.22n73
o =1 (mod 8) A1(m,1), A1 (7,3), Ay (7,5), Ar(7,7) | 322070
7=3,5,7 (mod 8) Aq(7,1), Ar (7, 7) 3.2
T=2,4,6 (mod 8) Ai(r,1), A1(7,3) 32775
7 =0 (mod 8) Ai(1,1), Ay (7, 3), AL (7,5), A1 (7,7) | 3-2277F
g ?nldi 1_1 7=1,4,5 (mod 8) Ay(r, 1), Ay(7,3) 3. 2n—2=3
7=3,7 (mod 8) Ay(r,1) 3. 2n-2=2
T =2 (mod 8) Ay(1,1), Ay(7,5) 3. 2mMm=2=3
7 =0 (mod 8) Ay(r,1), Ay(7,3), Ai(7,5), Ay(7,7) | 3-22n~ 21
mn2 r=0,1 (mod 4) Ana(7,1), An_(7,3) 6
7 =2,3 (mod 4) Ap—2(7,1) 12
igd’;_:ll 7=0 (mod 2) An_1(0,1) 3
7=1 (mod 2) An—1(1,1) 3
3<I<n-—
(1md T odd By(t,1) 92n—2l-1
z=142"1
T even Bl(T, 1) 3. 92n—20-T
l=n 1,-1,2" '+ 1)1 and (2" 1 - 1)1 | 1

Proposition 2273 gives the complete description of the conjugacy classes of SLy(Z/2"Z.).
The exact information needed for computing Son is summarized in the following:

Corollary 2.4.6. For A € SLy(Z/2"Z) we define s(A) € {2l,...,l+n} to be the mazimal
s for which 257" divides 7. Let N(I,z), resp N(I,z,s), be the number of matrices having
l,x (resp s) as invariants. We deduce from Theorem the following:
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N(0,1,0) = 23772,

For1<s<n-—1, N(0,1,8) = 3-237573,

N(0,1,n) = 3-2%"2,

Forl>1, N(I,1,s) = 3231753 if s % |+ n and N(I,1,n+1) = 3. 2222,
For1>2, N(I,—1) = 3.23n=31=2,

Forl>3, N(I,1+2"1) = N(1,21-1 —1) = 23n3L,

N(n,x) = 1.

NS G v =~

The proof of Proposition 22473 will be deduced from the following:

Lemma 2.4.7. Let U = <CCL b

/ /
d) and U' = <Z, 2,) be two matrices of C(z,l, 7). If

1 =0, we suppose that ¢ and ¢’ are odd. If 1 > 1, writing U = x1 + Zl dl

1 a1
that ¢ and ¢} are odd. Note that each conjugacy class contains an element satisfying these
conditions. We define Eyyy the following equation:

we suppose

ax? + (a1 —dy)xy — by’ = ) (mod 2"7Y),  when 1> 1;
e’ + (a —d)zy — by = ¢ (mod 2™),  when 1=0.

Then we have the two following properties:
1. The matriz U is conjugate to U’ if and only if Eyyr has solutions.

2. If k is the number of solutions of Eyy then the conjugacy class of U has m(U) =
%3 - 233122 glements.

Once this Lemma proved, the proof of Theorem EZZ73 will follow from the study of
the equations Ey 7. We will need the Hensel’s Lemma (see [T8], section 3.2) which states
that if n > 1, 29 € Z/2"Z and P € Z]z] is a polynomial such that P(z9) =0 (mod 2")
and P’(zg) is odd, then there exists a unique element 7y € Z/ 2"+t17Z such that 7y = zo
(mod 2")) and P(7p) =0 (mod 27+1).

Lemma 2.4.8. Let A € SLy(Z/2"Z), then there exists exactly 8 matrices A€ SLy(Z)2"17)
such that A=A (mod 2").

a b
Proof. Let A = (C J

There are exactly 8 ways to lift a, ¢ and d into elements @, ¢, d in Z /2" 7. Using Hensel’s
Lemma to the polynomial P(b) := —¢éb + ad — 1 we show that for each of this 8 choices,
there is exactly one way to lift b in Z,/2""1Z such that the corresponding matrix A lies
in SLy(Z/2"17). O

). Then at least one entry of A must be odd. Suppose ¢ is odd.

Note that this lemma easily implies by induction that the cardinal of SLy(Z/2"Z) is
3. 2371—2.
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T

Proof of Lemma BZ-1. Suppose that X = <x
2

zl> € SLy(Z/2"Z) is such that XUX 1 =
2

U’. A simple computation shows that XU X ~! has the form XU X! = 9 * 9 ).
cys + (a — d)xays — bxrs  *

Thus (y2,z2) is solution of Ey .

Conversely, let (y2,x2) be solution of Ey . The equality XU = U’X is equivalent to
the following equations:

ria+cy = dxp+ba (2.6)
zib+yd = ady +Vy (2.7)
xoa+cys = cdxp+das (2.8)
xob+dys = iy +dys (2.9)

The equations (2.8) and (2.9) completely determine the values of z; and y;, so of X,
modulo 2"~!. Direct computations show that this X is in SLo(Z/2"'Z) and verifies
(2.6) and (2.7).

Thus an element X in the stabilisator Stab(U) of U is completely determined modulo
27~ by a solution of Eyp. Using Lemma 2ZZ78, we see that there are exactly 23! ways
to lift such a matrix in SLy(Z/2"Z). So, if k is the number of solutions of Eyy then
| Stab(U)| = k23!, The class formula concludes the proof.

O

It remains to compute the number of solutions of the equations E .

Lemma 2.4.9. Let n > 1 and A, B,C, D four integers so that ABD is odd. Let E, be
the following equation:

Az’ + Bxy +Cy =D  (mod 2")

Then E,, has 2"~ solutions if C is even and 3 - 2"~' solutions if C is odd.

Proof. We show the result by induction on n using Hensel’s Lemma.

Lemma 2.4.10. Let n > 1 and A, B,C, D be integers such that A and D are odd. Let
(E) be the following equation with variables (x,y) both in SLa(Z/pZ) :

Az? +2Bxy+Cy* =D  (mod 2")

We note A := AC — B2. Then:
(1) If n =1, (E) has 2 solutions.
(2) If n = 2, when A = 2,3 (mod 4) then (E) has 4 solutions. When A = 0,1
(mod 4) then (E) has 8 solutions if AD =1 (mod 4) and 0 otherwise.
(3) If n > 3, we have the following cases:
~ (a) If A = 0 (mod 8) then (E) has 2"2 solutions if AD = 1 (mod 8) and 0
otherwise.
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~ (b) If A = 2,4,6 (mod 8) then (E) has 2" solutions if AD = 1 (mod 8) or
AD =1+ A (mod 8) and 0 otherwise.

~ (c) If A =1,5 (mod 8) then (E) has 2"+ solutions if AD =1 (mod 8) or AD =5
(mod 8) and 0 otherwise.

— (a) If A =3,7 (mod 8) then (E) has 2™ solutions.

Proof. First we put z = Ax + By. The map from Z/2"Z x Z./2"Z. to itself sending (x,y)
to (z,y) is bijective as A is odd and we remark that (z,y) is solution of (E) if and only if
(z,y) is solution of the following equation, say (E’):

224+ Ay = AD  (mod 2")

Thus (F) and (E’) have the same number of solutions. The number of solutions of (E’) is
easily computed using the fact (see [22], proposition 5.13) that if a is an odd number and
n > 3, then the equation 22 = a (mod 2") has 4 solutions modulo 2" if a = 1 (mod 8)
and 0 otherwise.

O

End of the Proof of Proposition 2.Z.3. We fix three invariants [,z and 7 and study the
conjugacy classes of C'(I,z, 7). Let us take two matrices U, U’ € C(l,x, 7). We can always
conjugate them so that they verify the hypothesis of Lemma PEZA77. These two matrices
are conjugate if and only if the set of solutions of Ef; v is not empty and the number of
elements in the conjugacy class of U is computed by using Lemmas 2477, 2410 and 2279

O

Computation of the characters

Proposition 2.4.11. Let A € SLy(Z/2"Z) and z,l,s be its associated invariants. The
definition of s has been given in Corollary 48 and will make sense nmow. The trace
Tr(mgn-1(A)) is given by:

1. Ifl =0, | Tr(mgn-1(A))? =2° if 0 < s < n—2, Tr(mgn-1(A)) =0 if s=n —1 and
| Tr(mgn-1(A))]?2 =271 if s = n.

2.If1 <1 <n—2andx =1 then | Tr(mgn-1(A))|> = 2° when 2l < s < n+1—2,
Tr(mgn-1(A)) =0 when s =n+1—1 and | Tr(mgn-1(A))|? = 2" if s =n + 1.

Ifl=n—1 and x =1 then Tr(myn-1(A)) = 0.

Ifl=nand x =1 (A= I3) then | Tr(mgn-1(A))|? = 22772,
If2<1<n and x = —1 then | Tr(mon-1(A))|> = 4.
If3<1<nandx=2"14+1 then | Tr(mon—1(A))> = 2272,
If3<1<nandx=2""1—1 then | Tr(mon-1(A))|> = 4.

N N R

a O
0 a!

have mon-1(Dy) = €(84i7)i; where € is a scalar such that |e|* = 1.

Lemma 2.4.12. Let a be an odd integer and D, := ( ) € SLy(Z)27Z). Then we
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Proof. 1t is proved by a direct computation using the fact that D, = T—*ST —aTlgrag
O

Proof of Proposition 2ZZ411. First when [ = 0 or when z = 1, we can suppose that A =

(1 1 —fbc) = ST°S~ 1T with b = 257!y, ¢ = 2'¢; where by and ¢; are odd.

A simple computation gives:

G(~1,0,2")? el
7r2n,1(A) = 6i3+x(2271) <ZA k2+2(j—i)k b]2>
k

1,J

So:

_ n 2 c n _ n
| Tt (mn—1 (A))| = |(G( 12210’2 )) G( ,;),2 ) G( b,20,2 )

We conclude by using the fact that, if z is odd and s € {0,...,n} then (see [10]):

25%1 when s < n — 2;

|G(x2°%,0,2™)> = ¢ 0, when s =n — 1;
AR when s = n.
1 b e a—lg—b
Then when z = —1 we can suppose A = — = S¢S T7° with b =
¢ 1+bc

2s_lb1, ¢ = 2l¢; where by and ¢ are odd. A similar computation gives:

— n 2 4 Con
Wanl(A)iﬂ‘ — € (G(]'2’n072)> AleG(C’Z;’Q)

where € = 8776 is a norm one scalar. The Gauss sum G (c,4i,2™) is not null if and only
if i € {0,272} when [ = n, 273 divides i and 2”2 does not when [ = n — 1 and 2/~!
divdes 7 when 2 <[ <n — 3.

We conclude by summing mon-1(A); ; over these i.

d

¢ = 2l¢; with ¢; odd. We use the decomposition A = ST 'SD_,T~% "% and Lemma
22172 to find that:

Now to compute the traces when z = 2= £ 1, we write A = <Ccl b) with a odd and

G(—1,0,2")>2 Glea™,2(a™" — 1)i,2") Jq-10:2

(mon-1(A))i;i =€ ( on 2

where € is a norm one scalar. We conclude by summing myn—2(A);; over every i and
taking the norm. |
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The computation of the sum Son

Proof of Proposition EZ-2. Set S(z,1) 1= 3 scc(ay) |T(A)? and S(I) := > Aec() |T(A)2.
By using Propositions 48 and 22711 together, we compute the following sums:

S(0) = 2372 4+ 3.23n3(n — 1).

S(1,1)=3-25""13(n ) if 1 <l <n—2.
S(—1,1)=3-23""3if2 < <n—1.

(1427 ) =232 §f 3 < <n—1.

(1421 =23n=342§f 3 <[ <p — 1.

S(1) =S(1,1) = 3-23""4(n - 1).

(2) =8(1,2) + S(—1,2) =3 - 23"75(n — 2) + 3. 2376,

(1) =3-23n71=3(n — ) +3.23n730 4 23n=1=2 4 93n=3424f 3 < | < pp — 2.
S(n—1) =323 +2% 4221,

10. S(n) = 23 4 22771,

And we conclude by computing:

S

w0

SOQO.\].@.U‘P.W!\D'.—‘
w2 wn

|SLy(Z)2"Z)|San = S(0)+S(1 +Zs ) +8S(n—1)+S(n)

= 3.9 2%(n - ):|SL2(Z/2"Z)| (n—1)

2.4.2 Higher genus factors

Theorem 2.4.13. If r is prime, the modules U%* and W,,gﬁi are irreducible.

Proof. First let us handle the U%* modules, when r is prime. Denote by A the k’-
subalgebra of End(U,) generated by the operators m,.(¢) for ¢ € SLo(Z) and by B the
k|-subalgebra of End(U7) generated by the operators 7, 4(¢) for ¢ € Spag(Z), when r is

odd, and ¢ € S];;(/Z), when r is even.

We denote by A" and B’ their commutant in End(U,.) and End(U®9) respectively. We
know from the genus one study that A" is generated by 1 and the symmetry 6 € GL(U,)
sending e; to e_;. There is a natural injection i : A® ... ® A — B. Now using the fact
that the commutant of a tensor product is the tensor product of the commutant we get:

BCcil(lA®...0A) =iA ... 4"

Note that when r = 2 then § = 1 so B’ consists of scalar elements and m , = 7'(';;9 is
irreducible. We can thus suppose that r is odd.
A generic element of (A’ ® ... ® A’) has the form:
C:Z/\Z-ail ®...®a;, with I C {1,...,p}Y and a;, =1 or 0
el

To conclude we must show that B’ is generated by 1®...®1 and § ® ... ® 6, that is show
that if C' € B’ then a;, = a;, for all i € [ and u # v.
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Let us choose u,v and set e :=e1 ® ... ® e;. We compute the commutator:

(C, T g(Zuw)l(€e) = Z (A — 1) (e, ®...® ai,)(e)
icl

where ¢; = 0 if a;, = a;, and ¢; = 1 elsewhere. Since A* # 1 and the family {(a;; ® ... ®
a;,)(e),i € I} is free, the fact that C is in the commutant of B implies that ¢; = 0 for all
1 so the two eigenspaces of # ® ... ® 0 are irreducible.

Denote by C the kl.-subalgebra of End(U,n) generated by the operators m,(¢) for
¢ € SLy(Z) and by the k..-subalgebra of End(U5Y) generated by the operators Tr.g(®)

for ¢ € Spag(Z), when r is odd, and ¢ € Spay(Z), when 7 is even.

We denote by €’ and D’ their commutant in End(U,») and End(US?) respectively. We
know from the genus one study that A’ is generated by 1 and 6. The natural injection
1:C®...®C — D implies that:

DcCcif(C®...00))=ilC®...®C)

Again we choose a generic element C' = Y ..y Nia;;, ® ... ®a;, € i(C’' ® ... ®C') with
Ic{l,...,p"}9 and a;, = 1 or 6 and suppose that C' € B’. Now remember that W,n is
defined as the orthogonal of U,n—2 = Span(g;) in U,» and since e; is orthogonal to all g; we
deduce that e = €1 ®...®e; € W59, So the fact that the commutator [C, Ttz (Zuw)](e)
is null if and only if C is a linear combination of 1 ® ... ® 1 and § ® ... ® # permits us to
conclude. |

Finally the irreducibility of the factors coming from the decomposition at composite
levels p = r{'* ...r.* follows, using the decomposition (1) from Theorem P11, exactly as
in the genus one case:

Corollary 2.4.14. All the modules of the form B, ® ...® B,, with r,...,r distinct

prime and B,, = Uﬂi’i or W%, are irreducible and pairwise distinct.
K2

Proof. Let p = 2% ...r* with r; some distinct odd primes. There is a group isomor-

—~—— —~—

phism between Spag(Z/2pZ) and Spag(Z /29 Z) X Spag(Z)r{* Z) X ... X Spag(Z[r,* Z),
if p is even, and between Spay(Z/pZ) and Spag(Z/r'Z) x ... x Spag(Z)r*Z), if p is
odd.

Denote by A, 4 the subalgebra of End(Uﬁg ) generated by the operators 7, 4(¢). Using
the first point of Theorem P11, we get an algebra isomorphism:

.Apy = A2a,g ® Ar?lg ®...Q Aer,g
We conclude using the fact that the commutant of a tensor product is the tensor

product of the commutant and use Theorem 22713.
O
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2.4.3 An alternative proof

We give an alternative proof to show the irreducibility of the factors arising in the
decomposition of the Weil representations. The proof is a generalization of the arguments
of the physicists Capelli, Itzykson and Zuber in [I6] inspired by the work of Qiu and Gepner
n [33]. Denote by (A,4)" the commutant in End(U;*) of the kj-algebra generated by the
operators 7y 4(¢).

Proposition 2.4.15. The dimension of (Ap4)" is at most o(p) when p is odd and o(%)
when p is even.

Since the dimension of (A, )" is equal to the number of irreducible subfactors of U,
the previous proposition implies the irreducibility of the factors arising in the decomposi-
tion of Theorem P

Lemma 2.4.16. The action e of Spay(Z) on (Z/pZ)* by matriz multiplication con-
tains o(p) orbits. A set of representatives is given by the classes Cs of the elements
(0,0,0,9,...,0,9) where § runs through the divisors of p.

Proof. First remark that if ; and Jo are two divisors of p such that there exists ¢ €
Spag(Z) so that ¢ e (0,61,...,0,81) = (0,02,...,0,02) then §; divides 2. Since we can
exchange 1 and ds in the argument, then §; = J9 and the classes Cjs are pairwise distinct.

Suppose g = 1 and let a,b > 1. Choose u,v € Z so that ua+vb = g.c.d(a,b). Remark

b _ a
that <g'°'d(a’b) g'c'd(a’b)> € SLy(Z) and we have:
v

u
b a
g.cd(a,b) ~ g.c.d(a,b) a — 0
u v b g.c.d(a,b)

So (a,b) lies in the same orbit that (0,g.c.d(a,b)).

Next choose d a divisor of p and z so that g.c.d(x,p) = 1. Then (0,d) and (0, dz) lies
in the same orbit for, if zz’ =1 (mod p) then:

£ 0-0)

So any element (a,b) is in the orbit of (0,g.c.d(a,b,p)) and we have proved the lemma
when g = 1.

When g > 2, using the injection of SLy(Z)? in Spey(Z) by diagonal blocks, we deduce
from the previous study that any element of (Z/pZ)?9 lies in the orbit of an element
(0,61,...,0,84), where the & are divisors of p. We now show that when g = 2, the
element (0,01,0,d2) is in the same orbit that (0,g.c.d(d1,02),0,g.c.d.(d1,02)). The proof
of the lemma will follow by induction on g using a suitable injection of Sp4(Z) in Spay(Z).

Choose four integers u, v, a, 8 such that:

ud1 + vdg = g.c.d(él, 52)
92

au—f——F>——=1
Bg.c.d(él,ég)
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__ 0 0 S B
Let X := <a g'C'd(élv‘;?)) and Y := < 5y g‘c’d(él"s?)). The matrix X has de-
s u " g.c.d(01,02) v
. . . X Y . .
terminant 1 and Y is symmetric so ¢ := 0 (X~1)T € Spag(Z). A direct computation

shows that ¢ e (0,01,0,02) lies in the same orbit that (0,g.c.d(d1,02),0,02). Using the

action of the matrix (_O]l g), we conclude. m|
Proof of Proposition Z413. Fix a basis {x1,y1,...,%4,yg} of Hi(Xy,Z/pZ) so that the
intersection form verifies w(z;,y;) = 0; ;. This induces an isomorphism f : Hy(X4, Z/pZ) —
(Z/pZ)?. The family {Add,(y,0)|y € H1(3,, Z/pZ)}, where Add, denotes the Schrodinger
representation, is a basis of End(U9). Thus any element © € End(U;9) has a unique
expression:

0= > 0, Add,(,0)
YEH1(29,Z/pZ)

Now using the Egorov identity, we have:

O € (Apy) & mpg(d) 'Om,4(¢) =0, for all ¢ € Spay(Z)
o= > 0, Add,(v,0) = > 0, Add,(¢ e 7,0),
~EH:1(Sq,Z/pZ) VEH(39.Z/pZ)
for all ¢ € Spoy(Z)
& Opey =0, forall ¢ € Spay(Z) and v € H1(Xy, Z/pZ)

Lemma P24 implies that dim((Apg)") < o(p) and the proof is completed when p is
odd, for © is completely determined by the o(p) coefficients Of-1(0,,..0,5), Where 0/p.

When p is even, we will prove that © ;-1(g5.. 0,5 = 0 when ¢ is odd. This will imply
that © € (A,,) is determined by the o(§) coefficients © -1 5 o) where 6/p and § is
even.

We first suppose that g = 1. Let A, := ker (SL2(Z/2pZ) — SLo(Z/pZ)). This
subgroup contains the following eight elements:

1+ap Bp
A, = ; Z./27.
D {( ,_Yp 1+ap>7047/87/7€ / }

Now if © € (Ap 1) we have:

= L T “lor
0 = |Ap| Z p(¢) @P(¢)

pEA,

1
= Y Oupg 3 Addy(alltenetitymetten)
a,b a,B,7€2/27.

1 % j a
= Z@xayb (8 Z (—1)7 +5]) Add,,(z%?)
a,b

a,B,7€2/27.

Where we used the fact that Add,(«) and Add,(y) have order p. Now we simply remark
that:
1 Z (—1)Vi+Pi = { 1 , when ¢, j are both even.

0 , elsewhere.
o,B,7€Z/2Z
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And the proof is completed when g = 1. To handle the genus g > 2 cases, we choose an
injection i : SLy(Z) — Spag(Z) sending SLo(Z) in a diagonal block and completing by the
identity matrix. A similar computation shows that © = m D oei(A,) Tp,g () 10T, 4 (0)
implies that ©-1(95.. 0,5 = 0, when ¢ is odd. O

Remark. The proof of Proposition 22713 shows that the operators:

Qsp:i= > Addp(¢ef1(0,4,...,0,0),0)
OESp2y(Z)

form a generating set for (A, ;). It is not difficult to deduce the decomposition of the Weil
representations by showing that they form a free family and then study their eigenspaces.
The relation between this basis of (Ap )" and the decomposition of Theorem I is
summarized in the following:
1. If a and b are coprime and d1/a, d2/b then Q5,5 ap = Q5,4 @ s, b-
2. If r is prime, n > 2 and k < 3 then .« ,» is the projector on the submodule
Sfi% - Uﬁg . The operator ,n—k ,.n is the composition of .« ,» with the symmetry
sending e; ®...Re; toe_; ®...Re_;.



Chapter 3

Decomposition of some
Reshetikhin-Turaev
representations into irreducible
factors

Résumé

Ce chapitre contient la version non publiée de I'article intitulé " Decom-
position of some Reshetikhin-Turaev representations into irreducible factors"
([66]). Le résultat principal est la décomposition en facteurs irréductibles des
représentations de Reshetikhin-Turaev lorsque le niveau est de la forme p = 4r,
p = 2r2 ou p = 2ryry avec 1,71,y des nombres premiers impairs, modulo cer-
taines hypotheses.

Abstract

This chapter contains the unpublished version of the article " Decom-
position of some Reshetikhin-Turaev representations into irreducible factors"
([66]). The main result is the decomposition into irreducible factors of the
Reshetikhin-Turaev representations when the level is p = 4r, p = 2r? or
p = 2r1re with r,r1, 79 odd primes, under certain technical assumptions.

3.1 Introduction

Witten gave in [92] convincing arguments for the existence of Topological Field Theo-
ries, as defined in [B, @1], giving a three dimensional interpretation of the Jones polynomial
when the gauge group is SU(2). Each of these TQFTs gives a family of projective finite di-
mensional representations of the mapping class group Mod(3,) of a genus g closed oriented
surface ¥,. Reshetikhin and Turaev gave a rigorous construction of these TQFTs [75] us-
ing representations of quantum groups. In this paper we will follow the skein theoretical
construction of [63, 4] to define these representations.
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We can 1/i_ft\_t/hese projective representations to linear representations of some central
extension Mod(2,) of Mod(3,) noted:
Ppg  Mod(2g) = GL(Vp,g).
Here p = 2(k +2) > 3 is an even integer indexing the representations and V}, 4 is a finite
dimensional complex vector space. These representations are equipped with an invariant
scalar product (, >p7 , With respect to which they are unitary.

The goal of this paper is to decompose some of these representations into irreducible
factors. Only few results are known concerning their decomposition. In [{4], an explicit
proper submodule of V}, , is given whenever 4 divides p. In [[76] it is shown that V}, 4 is
irreducible when £ is an odd prime. Robert’s proof extends word-by-word to show that
the modules Vig 4 are also irreducible. In [6] the authors showed that for p = 24,36, 60
then V,, 4 contains at least three invariant submodules. Finally we gave in [65] an explicit

decomposition into irreducible factors of the modules V,, 1 for arbitrary level p > 3.

The main results of this paper are summarized in the two following theorems:

Theorem 3.1.1.
1. If r is an odd prime, then Vi, o is the sum of two irreducible subrepresentations.
2. If r is an odd prime, then Vy,2 o is irreducible.

3. If r1, 72 are two distinct odd primes, then Vo ,, 2 is irreducible.

Given a level p = 2r > 3, there exists a set of complex numbers called 6j-symbols at
level p which will be defined in the next section. If r is odd, we call generic a level for
which none of the level p 6j-symbols is null. When 7 is even, we exhibit in Proposition
B30 two families of vanishing 6j-symbols at level p. We call such a p generic if no other
6j-symbols vanish. Numerical computations suggest that every levels are generic.

Theorem 3.1.2.
1. The modules Vig 4 are irreducible for arbitrary g > 2.
2. If 50 s generic then the module Vsg 3 is irreducible.
3. Ifr is an odd prime, p = 4r is generic and g = 3, then Vi, 3 is sum of two irreducible
subrepresentations.
4. If r1,7m9 are two distinct odd primes, p = 2riro is generic and 2g < min(ry,r2),
then Vop v, g 18 irreducible.

The generecity of a given level p can be checked by numerical computations. This
leads us to the following:

Corollary 3.1.3. (Computer assisted proof)
The module Vso 3 is irreducible. The modules Vag 3, Viaz are sum of two irreducible
submodules.

Remark. In [4] some representations p,, are also defined when p is odd. They verify
P2p.g = Ppg @ pe,g- In particular if an odd level r is such that V3, 4 is irreducible, then so
is V;. 4. This extends the two previous theorems to the SO(3) cases as well.

Acknowledgements: The author is thankful to his advisor Louis Funar and Francesco
Costantino for useful discussions. He acknowledges support from the grant ANR 2011 BS
0102001 ModGroup and the GEAR Network.
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3.2 Skein construction of the Reshetikhin-Turaev represen-
tations

Following (4], we will briefly define the representations p, ; and fix some notations.

3.2.1 The spaces V,,

Given an even integer p > 6, we denote by A € C an arbitrary primitive 2p — th root
of unity. Using the Kauffman skein relation of Figure BT, we associate to any framed link
L C S? an invariant (L), € C.

—=A +A1X

(= -(A+A) D

Figure 3.1: Skein relations defining the framed link invariants.

Choose g > 1 and denote by C, the set of isotopy classes of framed links (including the
empty link) in an oriented genus g handlebody H,. We fix a genus g Heegaard splitting
of the sphere, i.e. an element S € Mod(%,) and two handlebodies so that :

1 2 o a3
H |J Hj=S
S:0Hl—0H?

Take L1, L2 € Cy and embed L in H gl and Ly in H g2 . The above gluing defines a link
L1 Ug Ly C S3. We call Hopf pairing the bilinear form:

(-, -)gfp : C[C,] x C[C,] — C
defined by

(Ll, Lg)gg = <L1 U L2>
S

p

Eventually we define the spaces V}, ; as the quotients:
= C C H
‘/;;7‘9 : [ g] /k‘er ((’ .)g7p)

The vector spaces V)4 are finite dimensional ([I4]) and we can find explicit basis
as follows. Let g > 2, choose a trivalent graph I' C H, so that H, retracts on I' by
deformation. If g = 1, T represents the circle S' x {0} C S! x D? = H;. We denote by
E(T") the set of its edges.

3
A triple (i,7, k) € {0, e, E} is said p-admissible if:
1 [i—j|<k<i+j,

2. 1+ 7+ k is even and is smaller or equal to p — 4.
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Amapo: E(T)—{0,..., %} is a p-admissible coloring of T" if for every three edges
e1, ez, ez € E(I') adjacent to a vertex, the triple (o(ey),o(e2),0(es)) is p-admissible.
In [46, 00] the authors defined some idempotents { fo, ..., fp-4 } of the Temperley-Lieb
2

algebra with coefficient in Q(A) called Jones-Wenzl idempotents . To ¢ a p-admissible
coloring of I" we associate a vector u, € V)4 as follows. We replace each edge e € E(T)
by the Jones-Wenzl idempotent f,(. If (e1, ea, e3) are three edges adjacent to a vertex of
I', we connect the idempotents using the link 7, (c,) 5(es),0(e;) defined in Figure B2

Figure 3.2: The link T; ;5 used to connect three idempotents f;, f; and f. The numbers

above each three arcs denotes the number of parallel copies of the arc used to define the
link.

Theorem ITI24 asserts that the elements u,, for o a p-admissible coloring of I', form a
basis of V}, ;. Moreover there exists a non-degenerate bilinear form (,)

p,g
—~—

under the action of Mod(X,), for which the vectors u, are pairwise orthogonal.

on V) 4 invariant

The basis u, depends on the choice of the trivalent graph. We can transform a trivalent
graph into one another by a sequence of Whitehead moves. Suppose that I'y and I's are
two trivalent graphs of genus ¢ > 2, which only differ by a single Whitehead move, inside
a ball B3, as drawn in Figure B3.

a b

c d

Figure 3.3: The two graphs I'y on the left and I's on the right differ by a local Whitehead
move.

Fix a p-admissible coloring of the graphs outside B?® and denote by g&i)< (resp.

o(j) ) the vector associated to the coloration of I'; (resp of I's) with the edge i col-

ored by o(i) (resp with the edge j colored by o(j)).
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Then the vectors >L< belong to the subspace spanned by the vectors X and de-

compose using the so-called ’fusion rules’ formula (Lemma ICT4R) :

yic=x{e A )

J

b Jj
d
depends on the colors of the edges a, b, c,d,i and j and is called recoupling coefficient or
6j-symbol in literature. The computation of 6j-symbols follows from Lemma ICTZY and
Proposition ITT4.

where the sum runs through p-admissible colorings and the coefficient only

3.2.2 The Reshetikhin-Turaev representations

We fix an orientation preserving homeomorphism
a:X,— 0H,

Choose a class ¢ € Mod(X,) associated to a homeomorphism which extends to H,
through a. Then ¢ acts on Cy and preserves the kernel of the Hopf pairing so acts on V4
by passing to the quotient. Denote by pp 4(¢) € GL(V,4) the resulting operator.

Now choose ¢ € Mod(X,) so that the corresponding homeomorphisms extend to Hy
through o o S. This extension also defines, by quotient, an operator on V,, ;. We denote
by pp,g(¢) the dual of this operator for the Hopf pairing.

The elements of Mod(¥,) which extend to H, either through a or through a o S,
generate the whole group Mod(2,). It is a non trivial fact that the associated operators
Ppg(¢) generate a projective representation:

Pp.g : Mod(2,) = PGL(V},4)

—~—

We consider a central extension Mod(X,) of Mod(3,) that lifts the above projective
representations to linear ones (see [69, BY]):

—~—

Pp.g s Mod(Xg) — GL(V, 4)

These are the so-called Reshetikhin-Turaev representations.

Now to each edge e € E(I'), choose a disc D, properly embedded in H, that intersects
I' transversely once in e. Note that the set of boundary curves v, := 0D, C 0H, e Xy
forms a pants decomposition of ¥,.

A classical property of the Jones-Wenzl idempotents (Lemma ITTT9) asserts that, if
T. € Mod(X,) denotes the Dehn twist along ., then:

Ppg(Te) - ug = Ho(e)Uo

where ji; := (—1)7A*+2),
We fix the lift of T, in Mad\(ig), still denoted T, so that pp 4(T¢) - v = Mo (e) Uo-
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We also fix the lift S € M(f)-d\(-f]g) so that the matrix of p, 4(5) is the matrix of the Hopf
pairing (-, -)gg multiplied by an element n € C which verifies |n| = %. We refer to

[[4], where 7 represents the quantum invariant of S3, for a detailed discussion on 7.

Since S and the {T¢}.cpr) generate Mod(X,) for some trivalent graphs, we have an
explicit description of p, 4.

3.3 Cyclicity of the vacuum vector

Denote by A, , the subalgebra of End(V, ) generated by the operators py 4(¢) for

—~—

¢ € Mod(X,). The key ingredient to prove Theorem B is to show that the vacuum
vector vy € V) 4, associated to the class of the empty link, is cyclic, i.e. that A, ;-v9 =V} 4.

3.3.1 The genus one case

In [65] we gave an explicit decomposition of the Weil representations into irreducible
factors (Theorem EZIT) . An easy generalization of the arguments of the proof of Lemma
3 of [27] leads to an explicit isomorphism of SLy(Z)-modules between V1 and the odd
submodule of the Weil representation at level p (see Theorem B=3) . Proving that vy € V)1
is cyclic reduces to show that its projection on each irreducible submodule of V1 is not
null.

Denote by {uo, . ,UL;;} the basis of V},1 where u; is the class of the closure of the

i — th Jones-Wenzl idempotent along a longitude in H;. Also denote by {e;,i € Z/pZ}
the basis of the Weil SLy(Z)-module U, at level p as described in [55].

In this basis, the Weil projective representations in genus one are defined by the ma-
trices:

1,
m(S) = %(A ])i,jEZ/pZ

(1) = (AiQ 5”) LjEZ/DZ

Here the level is an integer p > 2 not necessary even. When p is even, we take A to be
a primitive 2p — th root of unity. When p is odd, A is a primitive p — th root of unity.

The vectors {e; =e —e_;,i€{l,..., %}} span a submodule U,” C Up.

Lemma 3.3.1. Let p = 2r > 6 be an even integer. Then the following map:

\I’:{Up = Vn

€; = Ujyr—1

is an isomorphism of SLy(Z)-projective modules.

Proof. We compute the matrix elements:

<¢(6;)app,1(5)¢(e;)> = 7 (A2(i+r)(j+r) B A—2(i+r)(j+r))
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(=1)"
where the scalar % has norm one.

<1/)(e;),pp71(T)¢(e;)> = (1)HrLAGE DG g
= (A (g m(T)er )

The decomposition into irreducible submodules of U, is described by the following:

Proposition 3.3.2 ([64]). We have the following decompositions where = denotes an
isomorphism of SLo(Z)-modules:

1. If a and b are coprime, then Uy, = U, @ Uy.

2. If r is prime and n > 1, then Utz = Upn @ Wiont2 where Wint2 denotes another
module.

3. If r is an odd prime, then U2 = 1 @& W,2 where 1 is the trivial representation.

4. The modules Uy, for r > 2 and Wy split into two submodules: U, = U, ® UJ,
W = WEHLeW..

5. The modules By ®...® By, where the B; have the form U;F, U, Us, Uj, Uy, W;; or
W n and have pairwise coprime levels, are irreducible.

We can now prove:

Proposition 3.3.3. Let p > 6 be an even integer. Then the vacuum vector vy € V)1 is
cyclic if and only if one of the following three cases holds:

- p=2ry...r, with r; distinct odd primes.

— p = 2r2 with r prime.

— p =4r with r prime.

Proof. We will use Proposition BZ32 and the explicit isomorphisms given in the main
theorem of [65] to study whether the vector

v =Y (vg) = ep—2 — epr2 € U,
2 2

has non trivial projection on each submodule of U, or not.

Given two integers x and n, we will denote by [z], € Z/nZ the class of x modulo n.
We write
V= €, ~ €al, € Up

93]17

p=2

with z = 7 -

First, when p = 212, with r prime, the module U, is irreducible so the vector is cyclic.

When p = 4r, with » an odd prime, the module decomposes into two irreducible
submodules:

U,z2U; oUteUf U,
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The vector v decomposes as follows:
U= Claa @l T €y B €[-a],
= (;(%4 ~ €l-ala) @ (€, + 6[—3:}7-))

1
+ (2(%}4 +ef-als) @ (Efal, — 6[—x}r)>

Where the first term lies in U;” ® U, and the second in U}” ® U,
Since x = 2r — 1, neither 4 nor r divide z, so [z]4 # [z]4 and [z], # [z], and the two

projections are not null.
When p = 2r; ... 7, with r; distinct odd primes, we have the following decomposition:

U, = & Xe

e=(e;)i€{—1,+1}F

where
Xe=UU] ®...0UF

Let us fix € and denote:

Ce 1= €[], ® 62]7«1 R...Q ef:]m e X,

where we used the notation e?E := ¢; + e_;. By using the facts that (e;,ef) = 1 and

(e—i, €5) = (—1)%, we compute:

(v,e.) = <e[m]2 ® ela],, ® - B €]y, » ea]rl ®R...® eij’;}%>

— <e[z]2 @€y, &...0 €[~a],, » GE}TI ... Gaf}rk>

1—e¢,;

1_(_1)Zi 2 =2#0

So the projection of v on each irreducible submodule X, is not null.
% with & > 2, r; distinct primes and nq > 2. Since 71

Now suppose that p = 2r(" ...}
does not divide x, the vector v has a null projection on the submodule:

+ 7 .
U72€172 ® U2r;2,..r‘:"" ifre #2,
U ® Ur_nz r’nk, if 7’1 = 2

2 "k

ony—1

Next if p = 2r", with r an odd prime and n > 2, the projection of v on U @ U, _, is

null.
Finally if p = 2", with n > 3, the projection of v on U,,_, is null. |

3.3.2 Cyeclicity in higher genus

We will denote by Z, , the subspace of V,, ; defined by:
Zp.4 := Span{u,, so that (u,,wvo) # 0}

The goal of this subsection is to prove the following:
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Proposition 3.3.4. When g > 2, we have:
1. When p = 4r with r an odd prime and if g =2 or if p is generic and g < r — 2.

2. When p = 2r? with r an odd prime and g = 2 or if p = 50 is generic and g = 3,
then the vacuum vector vog € V), 4 is cyclic.

3. When p = 2rire with 1,79 distinct odd primes and g = 2 or if p s generic and
2g < min(ri,re), then the vacuum vector vg € V, 4 is cyclic.

4. When p = 4r with v an odd prime and if g = 2 or if p is generic , and g < r — 2,
then Z, 4 is included in the cyclic subspace generated by vg.

Fix a trivalent graph I' C H, as in section 2. Two p-admissible colorings 1,09 of I'
will be said equivalent if:

(_1)01(6)A01(€)(01(€)+2) - (—1)"2(6)A"2(e)("2(6)+2), for all e € E(T)

We denote by col,(T") the set of equivalence classes of colorings for this relation.
To [o] € col,(T"), we associate the subspace:

Wi, := Span{ugr, 0’ € [0]} C Vg4

—~—

Lemma 3.3.5. If X C V, 4 is a Mod(X,)-submodule, then:

X = @ XN W[U}
lolecol, (T)

Proof. The matrices pp4(Te), for e € E(I"), generate a commutative subalgebra of A 4.
The set col,(I') indexes its characters and the spaces W, are the associated common
eigenspaces of the p, ¢(T¢). The orthogonal projector on X must commute with the p, 4(7¢)
and thus preserves the subspaces Wi,). |

The strategy to prove Proposition B=34 is to apply Lemma B=33 to
X = (Apy- UO)J—
the orthogonal (for the invariant form) of the cyclic space generated by the vacuum vector.

Definition 3.3.6.

1. We call I'y a fly eyes graph of genus g if it is a trivalent graph obtained by the
following inductive method:

— I'g is the Theta graph

— A graph I'y4 is obtained from a I'y by choosing arbitrary a vertex and inserting
a triangle as drawn on the left-hand side of Figure B4.
The right-hand side gives an example of a genus 8 fly eyes graph.

2. The genus 3 fly eyes graph is unique and is called the tetrahedron graph. We say
that a level of the form p = 2r, with r odd, is generic if for any coloring o of I's, we
have:

(Ug, v0)£3 #0
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VY-

Figure 3.4: On the left: the operation transforming a fly eyes graph of genus ¢ into a one
of genus g + 1. On the right: an example of genus 8 fly eye graph.

The complex numbers (ug,vo)g 3 are called tetrahedron coefficients in literature and
are related to the 6j-symbols defined in the previous section. In particular it is equivalent
to say that the 6j-symbols or the tetrahedron coefficients are not null for a level p. It
follows from fusion-rules (equation (3.1)) that if p is generic , then for any g > 3, for any
fly eyes graph I'y and for any p-admissible coloring o of I'y, we have:

(Uo-, ’UO);){,S * O

Fix g > 2 and embed a fly eyes graph I'; in S3. Denote by H, the embedded handle-
body
Hy := SP\V(Iy)

where V(I'y) denotes a tubular neighborhood of I'y. For each edge e € E(I'y), fix a curve
e C Hy which bounds a disc intersecting I'y only once along e.

We construct a map:
w:NETD) v

as follows. To f : F(I'y) — IN we associate the class in V, 4 of the link made of f(e)
parallel copies of ~. for each edge e € E(T'y).

When g = 2, we will note wg . € Vp 2 the class of the link made of a parallel copies of
1, b copies of v5 and ¢ of 3.

Figure B3 shows the curves v, when g = 2 and g = 3.

{3

S\
—~

Figure 3.5: The curves ~,. defining the map w are drawn when g = 2 and g = 3.
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Lemma 3.3.7. If p = 4r, with r an odd prime, or if p = 2rire, with r1,re two distinct
odd primes, then:
Wabe € Ap2 - vo, for any a,b,c € {0,1}

Proof. The cyclicity of the vacuum vector vg € V,,1 in genus one, implies that the vectors
i J

QLQ and i @ i of V, 2 belong to the cyclic space generated by vy € V2.

It remains to show that wq 11 € Ap2-vg. It follows from the definition of Jones-Wenzl
idempotents that:

w111 = 2 @ 2 + w20,0+ wo20+ (A2 + Aiz)vo
Thus we just have to show that 2 @ 2 € Apa - vp.

Using Lemma T8, we have that:

2 2
2 2 k Ckc
26>2 - k024{2 2 0}

2 2
2 2 k k
pp2(Te) - 26>2 = kom{z 9 0}“’“0—@

where T is (a lift of) the Dehn twist around the middle edge of the Theta graph (labeled
0).

2 2

. : 2 . L
The recoupling coefficients and are rational fraction in non

2 2
2 20 2 20
null theta coefficients, thus are not null. Using the fact that pus # 1, we obtain that the

2 2
family QLO7 2 @ 2, pp2(Te) - 2 @ 2 ¢, made of vectors in Ap,2 - vy,

2 2
is free. Thus these three vectors generate the same subspace than the vectors %

for © = 0,2,4. Since 2 2 belongs to this space, it belongs to the cyclic space

generated by the vacuum vector. So does w1 1. O

Lemma 3.3.8. When p = 2r2, with r an odd prime, then

-3
Wape € Ap2 - vo, for all 0 < a,b,c < TT

Moreover, if o is a p-admissible coloring of I' = <D such that:

o(e) #—1 (modr), foralle e E(T)
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then us € Apo - vg.

Proof. Note first that i, j € {O, . %} are such that:

- Wi =y,

-1 F j7
if and only if i = j = —1 (mod r) and 7 and j have same parity (and are distinct). Thus
when o satisfies the condition of the lemma, the subspace W, is one-dimensional. Lemma
B33 implies that this subspace is either in 4,2 - vg, or in its orthogonal. Now note that
the Hopf pairing (u,, Uo)ﬁ 5 is not zero for it is equal to a 3j-symbol. This prove the second
part of the lemma.

In particular, we just proved that:

Span(u@w,ogu,v,wgr—2> C Ap2-vo

We finish the proof by noticing that the vector wgyp . belongs to this space whenever
we have:

at+c < r—2
b+c < r-2
a+b < r—2

O

Lemma 3.3.9. The vector wy belongs to Ay, 4 - vo for f € {0, 1}E(F9) when p is generic
and:

— p =4r with r an odd prime such that g < r — 2.

— p = 2rire with r1,re distinct odd primes and 2g < min(ry,r2).

- p=2>50 and g = 3.

Proof. We proceed like in the proof of Lemma BZ8: first we note that if f € {0,1}* (T'g)
then:

wy € Span (us,0 < o(e) < g forall e € E(I'y))

Then we note that if o is such that 0 < o(e) < g for all e € T'y, then W, is one-
dimensional so is included in Ay, - vo for (ug,vg)gg # 0 by assumption. The fact that
these W, are one-dimensional is deduced from the following two facts:

1. When p =4r, and i,5 € {0,... %}, then p; = p; if and only if:

- t=17
- ori:%‘l—jandiiseven.

2. When p = 2ri79, and 4, j € {0,. .. %}, then p; = pj if and only if:

1= j7
— or j is the only element satisfying
1= (mod 27) or 1= (mod 273)
j=—j—2 (mod ry) 1 =—j—2 (mod rq)
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Proof of Proposition B334. Fix a fly eyes graph I', a class [o] € col,(T'), and choose a
vector

v = Z QgilUg! € W[o_} ﬂ (Ap,g . ’UO)L

o’ €lo]

By Lemma BZ33, we must show that v = 0 to conclude. We will find dim (W[UO indepen-
dent equations verified by the coefficients a.

Note F ¢ NE(M) the set of functions f so that:
— f(e) €{0,1},Ve € E(T), if p = 4r of p = 2179,
—- fle) € {0, ce %3} ,Ve € E(I), if p = 2r2.

Using Lemmas B=37, 238 and B339, we know that
wy € Apg - vo, forall feF

By definition of wy, we have that:

(wf,vo)gg =0, forall f € F (3.2)
& Yoreto] (Teenmy M) ) @or (e, w0)st, =0, forall f € F (3.3)

where \; = — (A2(i+1) + A—2(i+1))‘

Since the complex numbers (uaf,vo)f , are non null when p = 2r2 or p = 2riry is
generic or when p = 4r and u, € Z) 4, it is enough to show that the matrix:

- f(e)
M._< 11 )\0,(6))
ecE(I) o'€lo]

fer
has independent lines to conclude the proof.

We now define an invertible square matrix M such that M is obtained from M by
removing some lines.

When i € {0, el 5’%4} we define the set:

—4
w(i) :== {j € {0,...,1)2}, so that p; :Hj}
And the Vandermonde matrix:

M= (A?>o<njée§¢(ui<)i>1

Since A # A\p when a # b € w(i), the matrix N[i] is invertible.
Now note E(I') = {e1,...,e3g—3} and choose o € [o] arbitrary. The matrix

M = N(61)®...®N(egg_3)

is clearly invertible and M is obtained from M by removing the lines corresponding to
non p-admissible colorings of I'. m|
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3.3.3 Null 6j-symbols when 4 divides p

When p = 2r with r odd, numerical computations suggest that there is no null 6;-
symbols at level p. On the contrary, when 4 divides p, we have two families of 6j-symbols
that vanish at level p:

Proposition 3.3.10. Suppose 4 divides p > 8 and write p = 2(k + 2), with k an even
integer. Then the following tetrahedron coefficients vanish:

1. Type I:
< > =0
a c

(IR

when a + b+ c=2 (mod 4).
2. Type II:

NS

when a + < =1 (mod 2).

Definition 3.3.11. If 4 divides p > 8, we say that p is generic if the only vanishing
6j-symbols at level p are the ones given in Proposition B2310

Numerical computations shows us that every level p < 50 is generic . We conjecture
that every level is generic .

Lemma 3.3.12. Let a, b be two integers such that (a,k — a,b) is p-admissible. Set

b+k

Then we have F(a,b) = (—1)z 12

Proof. A straightforward computation using the formulas of [[70] gives:

F(a,b) = fla) , where  f(a) = (—1)%a + 1]k — a!

g9(b)
(1) {kz2b}! [k:;b

+1]!
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We now remark that

=— =1

f(a) [k —a]

and
k+b
gb+2) P2 ,
= =

g(b) | 55]

We conclude using the fact that F (%, 2)=—1. O

Lemma 3.3.13. If (a,b,c) is a p-admissible triple, then we have:

a k-a
<b!'II'Lb> <!III'L>
. =1
Proof. We use the fact that adding a trivial ribbon colored by k£ does not change the class
of a vector. We work in the space associated to the sphere with three punctures colored

<k—a><k—-b>

by a, b and c:
a b a k b
¢ ¢
= <k—-a><k—-0b>
a k-a
k- k-b a b
= <k—-a><k—-b> 2 .
c

We conclude by identifying both vectors. |

Proof of Proposition Z-310. We use the fact that the Kauffman bracket of a link in S3
does not change if we add a trivial ribbon colored by k. First when o is of type I, we use
the fusion rules CTZR and Lemma B312 to compute:
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[

S
o

[y

(SlE

Thus < > =0.
a c

When o is of type I1, a similar computation using Lemmas B=312 and BZ313 gives:

S
S

[y

= F(a,c) -

SR
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Thus < > =0. O
b b

The rest of this subsection is devoted to the proof of the following:

(SlE

Proposition 3.3.14. If p = 4r, with r < 7 an odd prime, is generic then the vacuum
vector v € V), 3 is cyclic in genus 3.

We already know from Proposition B=34 that Z), 3 is included in the cyclic subspace
generated by the vacuum vector. When p is generic , its orthogonal is spanned by vectors
U, with o a coloration of the Tetahedron graph of type I or Il given in Proposition
B33TM0. We must show that these vectors also belong to the cyclic space generated by vg
to conclude.

We split the proof into four lemmas which, together, imply Proposition B=314.

Lemma 3.3.15. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the
Tetrahedron graph of type I, as defined in Proposition B=3110, such that a # g and b # %
Then u, belongs to the cyclic space generated by vg.

Proof. The proof relies on the following remark: embeded a colored Tetahedron graph in
Hj3, choose two opposite edges of the graph and perform two Whitehead moves on these
edges as in the fusion rule ITZ8. You get this way another embedding of the Tetahedron
graph inside H3. While choosing the edges colored by b and its opposite colored by % in
a type I coloration of the Tetahedron graph, we get:

k
2
k
b )
=2
a c 4,J
J

where «a; ; = < > < >Ci’j with ¢; ; # 0.
k
2 b a

b
When i = g, we have «;; = 0 by Proposition B310. When 7 # %,
b 3
belongs to Z, 3 and thus to the cyclic space generated by vg by Proposition

IR

the vector

J
B334. This concludes the proof.
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Lemma 3.3.16. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the
Tetrahedron graph of type I, as defined in Proposition B=310, such that a = b = g Then
uy belongs to the cyclic space generated by vg.

Proof. Using fusion rule 2R, we get:

k
2 0
_ _ k k k k /
= (8- Q_ O
k k
2 2 a

, where v’ is a vector orthogonal to the first one.
Now according to Proposition B=34, we have that the vacuum vector is cyclic in genus

2. This implies that the vector Q/Q E belongs to the cyclic space generated

by the vacuum vector in genus 3

When a = 5, then W,,) is one dimensional, so according to Lemma B35, either vx

2
belongs the cyclic space generated by vy or it belongs to its orthogonal. But its scalar
0.

Q/Q g is a non null 3j-symbol. Thus v, € A, 3 - vo.

a

product with the vector

[SIES

When a # %, then W, is two dimensional generated by v, and vg—q. If v = 10, +
aoUE_, belongs to the orthogonal of the cyclic space generated by vg, then v is orthogonal

to both vectors g Q/() % and % Q/() % . This implies that v = 0
a k—a

so W) is included in the cyclic space of the vacuum vector.

Lemma 3.3.17. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the
Tetrahedron graph of type I1, as defined in Proposition B3 10, such that either we have
a#banda # k—0b, or we have ¢ = % (mod 4). Then u, belongs to the cyclic space
generated by vg.

Proof. The proof is similar to the proof of Lemma BZ3TA. Using fusion rules 128 twice,
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we get:

k

2

b b
=D i A
b b .3
i
i J
where Oém‘ = < > < >Ci,j with C@j # 0.
a k-a b k-a
When i = % , we have o; j = 0 by Proposition BZ3T0. When ¢ # g, using the fact that
b >
cither a #band a # k — b, or ¢ = & (mod 4), we see that the vector belongs
J

to Zp, 3 and thus to the cyclic space generated by vy by Proposition BZ34. This concludes
the proof. O

Lemma 3.3.18. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the
Tetrahedron graph of type 11, as defined in Proposition B3 11, such that we have a = b or
a=k—"bandc= % + 2 (mod 4). Then u, belongs to the cyclic space generated by vg.

Proof. Using Lemma ICT4X, we get:

k
2
_Z aa%a ‘ a
—~ | k—a a 1
a a 0

—~—

Let T € Mod(X,) represent a lift of the Dehn twist around the edge colored by ¢ in
the above graph. We have:

ST

SN S S

a a 4

In particular, pp3(7T") - u, belongs to the space generated by the vectors of the form
J

. Whenever j # %, these generating vectors belong to Z, 3 and thus to the
a a

cyclic space generated by the vacuum vector. Denote by 3 the scalar product (us, pp3(T)ts).
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If 8 =0, then p,3(T) - u, belongs to the cyclic space generated by v, so does u, for
pp3(T) is invertible.

If B # 0, then the operator ¢ := -1 + @ “ pp3(T) € Apg is invertible

k—a a

N[ Z 0| 7

since p,3(T") has finite order. Since a - u, belongs to the cyclic space generated by the
vacuum vector, so does u,. m|

3.4 Decomposition into irreducible factors

In this section, we will prove Theorems BT and BT2. Denote by (A 4)" the commu-
tant of the algebra A, 4, i.e. the subspace of End(V},4) of operators commuting with all

—~—

the pp4(¢) for ¢ € Mod(X,).

The dimension of (A 4)’ is equal to the number of irreducible submodules of V}, ;. We
thus have to show that dim ((A,,)’) is one if p = 2r? and p = 2779 and is two when
p = 4r with the additional assumptions of the two theorems.

Consider the following linear map:

f . { (Apvg)/ — ‘/;)79
' 0 — 0 Vo

The cyclicity of vy (Proposition B334) implies that f is injective. Moreover if ¢ €

Mod(X,) is the lift of a homeomorphism of ¥, that extends to Hy through o : ¥, — 0H,,
then:

Pp,g(¢) * Vo = o

—~— o~

Denote by Mod(H,) C Mod(X,) the subgroup generated by these ¢. By definition, we
have:

Range(f) C {v € Vg so that p, 4(¢) - v =0, for all ¢ € M&Rﬁlg)}

In particular, for any trivalent graph I', we have Range(f) C Wiy (T') where [0] is the
class of the coloring sending every edges of I' to 0. As an immediate consequence, we get
the:

Proof of Theorems B and B2 when p = 2r2. When p = 2r%, with » an odd prime,
then W[g is one-dimensional, generated by vg for y1; # 1 when i # 0. Thus Range(f) = {vo}
and (Ag2 ;)" = {1}. The Schur lemma implies that the module V5,2 , is irreducible. O

Remark. When p = 18, we remark that the numbers ug, 1, . - -, o3 are pairwise distinct.
The proof of Roberts [76] applies word-by-word in this case to show that Vg 4 is irreducible.
Indeed the fact that the p; are distinct implies that the null vector vy € Vig is cyclic
for the action of the group generated by the Dehn twist along the longitude of H;. This
easily implies that vy € Vig 4 is cyclic for the action of Mod(X,) for arbitrary g > 1 and
we conclude as above by noticing that Wg is one dimensional generated by vo.
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3.4.1 The case where p = 4r

Let p > 3 be such that p = 4 (mod 8). Consider a link L C X, x {3} inside the

cylinder ¥, x [0,1] and color L by p parallel copies of w or, equivalently, by the (%) —th
Jones-Wenzl idempotent. The gluing of the above cobordism on H, induces an operator
acting on V), 4. In [[[4] it is shown that this operator only depends the homology class of L
in Hy (X4,7/27) and we get this way a morphism of algebras, whose injectivity is easily
checked:
i:C[Hi (Xy,Z/2Z)] — Apg

Its action on vy gives the space Wy = C [H1 (Hy, Z/27Z)].

We denote by P the projector of V,, ; on the subspace of vectors fixed by the operators
of i(C[Hy (X4,2/2Z))). Clearly P € (Ap,)'.

Note z;,y; € Hi(Xy,7Z/27Z) the meridian and longitude around the i — th hole and
note:

1
O, = % (—1 +x; +y; + aiiyi) eC [H1 (EQ,Z/QZ)]

The ©;’s are symmetries which pairwise commute and

1
pP= 2—9(\@(91+...+@g)+g+1)
The symmetric group o4 acts by permutation on the generators of C[O1,...,0,]. We

note Wy C i (C[H1 (X4,2Z/227))) the subalgebra of C[O1,...,0,] of elements fixed by oy.

Finally we denote by I C i(C[H (X4,Z/27)]) the ideal generated by the elements
(x; — 1) for 1 <i < g. We have:

ClH: (%, Z2/2Z)] |1 = C[H, (Hy, Z/2Z)) = W)

Lemma 3.4.1. Consider the action of Sp(2g,2./2Z.) on i (C[Hy (£4,Z/27)]). Then:
1. The vectors fized by this action are the ones of Span(1, P).
2. For every w € Wy and ¢ € Sp(2g,2/2Z.) we have:

o-w—wel

Proof. The first point follows from the fact that the action of Sp (2¢9,7Z./2Z) on Hy (¥4, 2./27)
has two orbits: the singleton containing the neutral element and the set containing the
other elements. Indeed by taking an appropriate Z/2Z-basis of Hy (X4, Z/2Z), this ac-
tion is described by the usual Birman generators of Sp(2g,Z) ([(2]) passed to the quotient
in Sp (2g9,7Z./27Z), that is the 2g x 2g matrices:

A 0,\ (1, B 0y 1y
(()g A*)’(Og 1g> and (19 0y

where A € GL(g,Z/2Z) and B is symmetric. We just have to remark that the commutant
of the algebra generated by these matrices consists of the scalar matrices to conclude.

To prove the second point, denote by X;,Y;, Z; ; for 1 <, j < gthe classin Hy (¥4, Z/27.)
of the Dehn twists of Figure B8 generating H; (X4, Z/2Z). First note that the operators
©; are invariant under the action of the X; and Y; and that the element of the algebra W,
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Figure 3.6: Some Dehn twists generating Sp (2g,Z/27Z) when g = 3 by passing to the
quotient.

are invariant under permutation of the handles. We are reduced to show that for w € W,
we have Z1o-w —w € I.

First note that Z; 2 - ©; = ©; when i ¢ {1,2}. Then we compute:
Z12-01 -0 = (y1 +x) (2 —1) €1

21202 -0 = (y2 +xoy2)(x1 — 1) €1

Sl §l-

Z12-(©102) — (0102) = (129 — 1) (2191 + 1) (T2Y2 + Y2)

(
(2 — 1) (121 +y1)(—1 + 22)
+(z1 )(x2y2+y2)(—1+x1)) el

—|—l\.’>\r—t

The case p = 4r of Theorems Bl and B2 are easily deduced from the:
Proposition 3.4.2. If p=4 (mod 8) and vy € V), 4 is cyclic, then
fH(C[Hy (Hy, 2/2Z))) = Span (L, P)

Proof. Let © € (A, 4)’. Since O - vy lies in W|g) and is invariant under permutation of the

handles, there exists an element w € W, such that w-vg = © - vg. Now if ¢ € Mmg),
then:

©o pp,g(¢) "V = pp,g(d)) 00 vy = pp,g(d)) CwW:- Vg =wo Pp,g((b) * Vo

where we used the second point of Lemma B2 in the last equality. Using the cyclicity
of vp we get that © = w € W,. We conclude using the first point of Lemma BZ. |

3.4.2 The case where p = 2riry

In this subsection, we suppose that p = 2r;ry with rq, rs distinct odd primes.

In this case, there exists an unique integer x € {1,...,rire — 2} such that pu, = 1. This
integer is even and verifies either

{ x=-2 (mod 1) or { x=0  (mod 1)

=0 (mod r9) r=-2 (modrg)

We begin by stating a technical lemma whose proof will be the subject of the next
subsection:

Lemma 3.4.3. If (z,z,x) is p-admissible, then we have the following:

z xr 2 r = 4 r x 4 r x 2
+
zr x 0 r T T z z O r T x
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Lemma 3.4.4. Let p > 3 be such that (x,x,x) is p-admissible. Let T'1,T's be two trivalent
graphs which only differ by a single Whitehead move inside a ball B® as drawn in Figure
B3. Then:

Wig(T'1) N Wig(T'2) C Span (ugl, such that o(a)o(b)o(c)o(d) = o)
Proof. Let 01,092 be two p-admissible colorings of I'y, with colors 0 or «x, such that:
01(6) = Ug(@),VC S E(Fl) — {2}

and with o;(a) = 0;(b) = 0i(c) = 04(d) = z and 01(i) = 0, 02(i) = =.

Suppose there exists (o, 3) € C? so that:
V= g, + Bug, € Wig(T2)

We must show that o = 8 = 0 to conclude. Using the fusion rule equation (3.1) of section

2.1, we get:
x x 2 T x 2
v <a{x x 0}+B{x x x})%
+<a{x T 4}+6{x x 4})%“‘”/
z z 0 Tz
where % and XL represent the vectors associated to colorations of I's by the same

colors that oy, o9 outside the ball B3 and with the edge j colored respectively by 2 and 4.

The vector v’ is orthogonal to the two previous ones.

Now since v € Wg)(I'2), we have the following system:

x x 2 r x 2

x 0 T x T a\ (0

z x 4 r x 4 g) \0

z x 0 r T x
We conclude using Lemma BZ=3 a
Ifi e {1,..., 9}, we note b; € V, 4 the vector representing a single ribbon colored by x

around the ¢ — th hole.

Lemma 3.4.5. If G9 represents the set of all trivalent graph of genus g, then:

[ Wig(T') = Span (vo, bi, 1 < i < g)
regy
Proof. Let o be a coloring of the graph of Figure B2 such that:
1. o(e) € {0,z}, for all e € E(T),
2. There exists ¢ < j with o(a;) = o(b;) = 0(a;) = o(b;j) = .
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a, a, as ag
b b, b3 by

Figure 3.7: A trivalent graph of genus g.

We can suppose that for every i < k < j, then o(ax)o(by) = 0.
Using Lemma B2 with a = a;, b = a;, ¢ = b; and d = b;, we have that the projection of
Ug on (pegs Wigy(I') is null.

We conclude by noticing that if o is a coloring of I', with colors in {0,z}, that does
not satisfies B, then u, = b; for some i € {1,...,g} or u, = vp. ]

Denote by u; € V1 the class of the closure of the ith Jones-Wenzl idempotent inside
the longitude {0} x St of D? x S*.

Lemma 3.4.6. There exists an element a € Aoy ry1 S0 that:
a- Uy = Uy
a - Uz = U

Proof. 1t is enough to show that there exists a symmetry ¢ € (A r, 1) so that:
P -ug = uz and ¥ - uy = ug

Indeed, the cyclicity of ug (Proposition B3333) implies the existence of a € Agyp,ry1 SO
that
a-uy = Uy

If such a v does exist, we then have:

a-Uz=a0y- -uy=1Yoa-uy=u

The symmetry v is defined as follows: choose i € {0,...,r1ry — 2}, then only one of
the following two cases occurs:
— Either there exists j € {0,...,r1r2 — 2} so that

j=1 (mod 2r7)
j=—i—2 (mod 72)

and we put ¢ (u;) 1= +u;.
— Or there exists j € {0,...,r17m2 — 2} so that

j=1 (mod 2r3)
j=—-i—2 (mod 71)

and we put ¢ (u;) == —u;.
A straightforward computation shows that 1) commutes with p, 1 (T") and pj1(S) and either
1 or — sends ug to ug. m|
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The proof of Theorems BT and BT when p = 2ry79 follows from the following;:

Proposition 3.4.7. Let r1,79 be two distinct odd primes, p = 2rire and g > 2 be such
that vo € V), 4 is cyclic. Then V), 4 is irreducible.

Proof. Using Lemma BZH and the fact that the vectors of Range(f) must be invariant
under permutation of the handles, we have that:

Range(f) C Span (vo, b1 + ... + by)
By contradiction, suppose there exists © € (A, 4)" so that:
O vy = bl+...+bg
@R1®..01+..+1®...91®a)- vy

where a ® 1 ® ... ® 1 denotes the embedding of the element a € A1, seen as a linear
combination of w-colored link in ¥; x [0, 1], in the first handle of ¥, x [0,1]. Note that
this operator belongs to A, 4, so commutes with ©.

Now we have:

0%y = @R1®..01+...+1®...01®a)*- v
= g+ (@®e®l®...01) - vw+...+(1®..81®a®a)- v

We see that ©% - vy does not belong to Npegs Wig)(I') which contradicts the fact that
0% € (A,,). O

3.4.3 Proof of Lemma 3243

In this subsection we put p = 2rire, with r1,re two distinct odd primes. We suppose

there exists z € {1,...,r1ry — 2} so that (z,z,x) is p-admissible and so that
z=0 (mod 2r7)
r=-2 (mod 79)

We also choose A; and Ay some primitive vy — th and ro — th roots of unity, so that
The goal of this subsection is to show that:

A? = A1 A,. In particular we have A%* = A;Q.
D.— r x 2 r x 4 oz 4 T 2 40
z x 0 r T x z x 0 x x

A straightforward computation, using the formula of the recoupling coefficients ([[70]),
gives:

: x [5]D)° T z1° [z
v :(”ﬁﬂmuﬁmmim?ﬂ %é u(k‘41ﬂ2{+@
- |

8 8

.
e [5G+« G- Bl ] o
+lx — 1][z + 3] { ] { } [ —1] [237—5-2] ])
. [3](5]![2] 3= +1]1([5)1)
= OV B s A Al e ] 2 Ayapay A
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where we put:

P(z,y) = a2y — ZVTylT — 16918 4 219,18 _ 401814 | 317,15 4 915,17 _ 419, 11

—5plTyls 4 loyls 4 4 14y16 _ 9413,17 _ 218,10 4 91T 11 4 g,16,12 4 9,15,13
gl op18y15 4 1117 | 9p 15,11 | 14,12 4 (13,18 6,12, 14 4 410,16
ol TyT 4 A16yB — 15y — 4gt4yl0 441212 4 1507 | 1809 | 412,10 4 11,10
4 4gt0y12 g Byld g Ty15 941505 | Galdy 6 418, | 94128 | gally9 ;10,10
— 6% — 2Ty13 21345 4 621y T 4 6210y8 + 8220 — 22810 + 42Tyt + 625¢12 4 225913
B3y 1 4p 2yt 4108 50T 1 48y — g Ty — Pyt — 4aByS 4 4aSyB 4 aBy® —dayl0 g3yl
1002 1 68yt 1 TyP — 2848 25y T Oy 22 TyB 4+ 28yt — 20595 — 6y’ — 223y +22yB 22Ty
— 4$6y2 + 4x5y3 + 5x3y5 + xy7 — 2m5y — 3:U3y3 + 43023/4 — xy5 + 2t 4 :U3y — y2

Note that P(x,y) does not depend on 71,72 or x. The proof reduces to show that
P(A;, Ag) # 0 for A, Ay any primitive 71 — th and ro — th roots of unity.

Consider the following algebraic curves in C2:
C = {(zl,zg) e C? so that P(z1,29) = 0}
T = {(e1.2) € € so that |21 = [0 = 1)

Note that 7 is a torus, has degree 3 and that these two curves share no irreducible
components in common. The Bézout theorem (see [d2] Chap I Corollary 7.8) implies that:

#(CNT) <deg(C)-deg(T) =108

Now suppose there exist A; and As some primitive 1 and 79 roots of unity so that
P(Ay, A2) = 0. Since P(z,y) € Z[z,y], the equality P(A;, A2) = 0 must hold for every r;
and 79 roots of unity. Thus we have:

riors < #(CNT) < deg(C) - deg(T) = 108

So we just have the following possible cases:

{ri,m} € {{3,5},{5,7},{3,11},{5,11},{7,11},{3,13},{5,13},{7,13}}

First if {ry,ro} = {3,5},{5,7},{3,11} or {5,13}, then = 10,28,22 and 50 respec-

tively and we see that (z,z,x) is not 2rjre-admissible.

We handle the four remaining cases by checking that P(e%, e%) #0, P(ey, e%) *
29 29T 21T
T ,e13) #0.

0, P(e’5,e13) # 0 and P(e
This concludes the proof of Lemma BZ23.
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3.4.4 Maple code to test generecity

Here is the Maple code used to test genericity of small levels. Here the level is p = 2r.
The fraction g(n) = [n] € Z(z) represents the quantum number n seen as a rational frac-
tion in @ = A2, the fraction gfac(n) = [n]! € Z(x) represents the quantum factorial and
a b c
d e f
The loop tests for each 6-uplet of colors whether the associated coloration of the Tetra-
hedron graph is 2r-admissible or not. If it is, it checks if the 2r-th cyclotomic polynomial
divides the corresponding 6j-symbol. If so, the coloration is added to some list L. At the
end of the loop, the list L contains every null 6j-symbols at level 2r modulo symmetry of
the Tetrahedron graph.

sizj(a,b,c,d,e, f) = € Z(x) is (a renormalized version of) the 6; symbol.

restay,

¥i= 7T
77 1)
(x"—w ™)
gr=n-+
it
it B
i 1 2)
i
H
gfac = n —=prodict(gii), i=1 n); gfacio) = 1;
¥
ra-x-an'!
i=1
& 3
. =
Tic = (AL A2 A3 A4 BL B2, B3)—sum (-1} gfaciz +1)

z=max(AZ AZ A3 Ad) miniB?
\ gfac(Bl — z)-gfaciB2 — z)-gffac(B3 — 2| -gfaciz — AlL)-gfaciz — A2)-gfaciz — A3)-gfac(z — Ad)” T ’

B2, B3 |
‘ mini 34, 32 B

(-1 gfaciz+1)
Al A2 A3, A4, BE, B2, B3)— 4
bt z:mu.A;AzAggq. gfac(Bi— z) gfaciB2 — z) gfac(B3 — 2) graciz — Al) gfaclz — A2) gfaciz — A3) gfac(z — Ad) w

= (A B CDEF — Tmc’ |A+B+E]J 1B+D+F}J [C+D+E\J |A+C+F|‘ 1B+ C+E+F) (A+B+C+D) (A+D+E+F) \|3
L

2 2 2 2 E 2 2 2 )
e[ tavlteylegla il lepleo, i, lel o Lo lplpg Lo 1o 1ol 1 1o 11,41
(A B CDEF) Tmc2A+2B+2E,QB+2D+2E2C+2D+2E2A+2C+2Fj234—2C+2E+2FJ2A+2B+2C+2DJ2A+2D {5)
1 Aba
—E+ = F
e
Witk mumtheory)
el = cyclotonae (2.8, 1)
Tt i el i e R e B e e S e e e el e e e e A N N el e i6)
Le=1{}:
for ¢ from O te ¥—2 do
for b from ate »—2 do
for ¢ from 0 to ¥ — 2 do
for d from ate ¥—2 do
for ¢ from 2to ¥—2 do
for f from O to »—2 do

fla—bl<e=a+b anda+b+e =< 2r—4 and fypela+ b+ g even)
and (a—cl= f£ a+c and g+ c+ F= 2 y—4 and Hpeid+ o+ f even)
and (- d< Ff< bd+4 and 7+ d+ < 2v—4 and pe(f+ 4+ 2 avan)
and e—cl= d<e+c ande+c+d = 2r—4 and typeie+ c+ d even)
then

it dhvidge(vuimer(sagia & o 4 ¢ 7)), cucl) then
L:=Lunion {[q & ¢ dc I}

fi; fi;

od; od; od ;od; od ; od; 7;
L

Figure 3.8:






Chapter 4

Other results

Résumé

Ce chapitre contient des résultats subsidiaires concernant les représenta-
tions quantiques.

La premiére section contient le dernier chapitre de 'article "Decomposition
of the Weil representations into irreducible factors", ou I’on prouve d’une part
que les representations de Weil aux niveaux impairs sont des représentations fi-
deles de Spay(Z/pZ) et d’autre part que les représentations de Weil convergent
vers la représentation homologique du groupe symplectique lorsque le niveau
tend vers l'infini.

Dans la seconde section on donne un critere pour déterminer quelles repré-
sentations de Reshetikhin-Turaev sont d’image finie lorsque le niveau est de
la forme p = r ou p = 2r avec r premier impair. La réponse a cette question
pour les représentations associées aux surfaces fermées était donnée dans [29]
lorsque (p,g) # (20,2) et [23] pour le cas p = 20 et g = 2. En plus de donner
une démonstration alternative tres simple de ces résultats, notre critere per-
met d’étudier la finitude des représentations associées au tore percé qui n’était
connue que asymptotiquement dans [[77].

Dans la troisiéme section, on exhibe des relevés explicites des représen-
tations de Weil comme représentations de Spay(Z) lorsque g = 1 et lorsque
g > 2 et que le niveau est impair. Lorsque g > 2 et p est pair, on releve les
représentations de Weil en représentations linéaires d’une extension centrale
de Spoy(Z) par Z/27.

Abstract

This chapter contains some subsidiary results concerning quantum repre-
sentations.

The first section contains the last chapter of the article "Decomposition
of the Weil representations into irreducible factors”, where we prove one the
one hand that the Weil representations at odd levels faithfully represents
Spag(Z./pZ), and on the other that the Weil representations converge, in the
Fell topology, towards the homological representation of the symplectic group
when the level goes to infinity.
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In the second section, we give a criterion to detect which Reshetikhin-
Turaev representations have finite image, when the level has the form p = r or
p = 2r with 7 an odd prime. The answer was known for the representations
associated to a surface without marked points (see [29] when (g, p) # (2,10) and
[23] when (g,p) = (2,10)). Our criterion gives an alternative proof of these
results and permit us to study the infiniteness of quantum representations
associated to a one-holed torus, which was known only asymptotically ([77]).

In the third section, we give explicit lifts of the Weil representations as linear
representations of Spay(Z) when g = 1 and when g > 2 and p is odd. When
g > 2 and p is even, we lift the Weil representations to linear representations
of a central extension of Spyy(Z) by Z/27.

4.1 Faithfulness and asymptotic of the Weil representations

The natural action of Spyy(Z) on Hi(X,,Z) induces a faithful representation p :
Spag(Z) — GL(C[H1(Xg4,Z)]). For each p > 2, we choose a particular primitive root of
unity A € C turning 7, , into a complex representation on ng)g Oy, C.

In this section we show that the linear representations m,, ® (mpq)* @ Spag(Z) —
GL(U @ (US9)*) converge to p in the Fell topology, where (m,4)* is the dual represen-
tation of m,, for the Hopf pairing. We deduce the asymptotic faithfulness of the Weil
representations already showed in [d] in a different way. The proof is an adaptation of the
proof of [67] to the abelian case.

We independently show that the Weil representations of Spay(Z/pZ) at odd level are
faithful. The proof was suggested to us by L.Funar and is based on a classification made
by Klingenberg ([63]) of the subgroups of Spay(Z/r"Z) for r an odd primes. It gives an
alternative simpler proof for the asymptotic faithfulness in the odd case.

Theorem 4.1.1. Let (xp), be a sequence of integers converging to +00 when p — o0.
Then the representations (T, g ® (Tz,,4)*)p converge to p in the Fell topology when p goes
to +00. As a consequence:

ﬂ Ker(my, ) =

p>2

{1, —a.1} , when g > 2 and all the x), are even.
{1} , if all xpare odd or if g = 1.

—~——

where a represents the central element added in the central extension Spag(Z).

Lemma 4.1.2. There exist on C[H1(Xy, Z)] and on U9 @ (UP9)* some non degenerate
hermitian forms, denoted (,) and <,>p respectively, together with a Spag(Z)-equivariant
linear map ¢p : C[Hy (g, Z)] — U9 @ (UP9)* so that:

<¢xp (33), ¢xp(y)>rp — <x7y> ’ for all X,y € C[H1(2g7z)]

p——+00

Proof of Theorem g-1-1. It follows from the definition of the Fell topology (see [d], ap-
pendix C') that Lemma ET2 implies the convergence of 7., ® 7, * towards p. To show the
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asymptotic faithfulness, choose any two elements ¢1, 2 € Spag(Z) with ¢1 # ¢ . There
exists a couple (z,y) € C[H1(Z,, Z)]? so that

(z,p(d1 — p2)y) #0

By Lemma BT there exists a rank pg > 0 so that p > pg implies
(62,(x), (M, @ 72 ) (61 = $2) i, (y))  #0
p

SO T, (1) # Ta, (2) for p > po

Remark. Given a topological group G, the collection C of isomorphism classes of unitary
representations of G on a Hilbert space, is not a set so we cannot define the Fell topology on
C. Tt is customary to pass through this problem by defining the Fell topology on a suitable
set in C such as the set of irreducible representations or the set of cyclic representations.
Here, by Fell topology, we mean that we have chosen an arbitrary set in C containing p
and the m,. We refer the reader to the appendix F' of [d] for a discussion on this subtlety.

We now define the hermitian forms (-,-) and (-,-), and the morphism ¢, of Lemma
2T

The group law on H; (X4, Z) induces a structure of commutative algebra on C[H; (2, Z)] =

C[x{cl, e ,:Ugd, yfl, . ,y;]ﬂ] which is spanned by the meridians x; and longitudes y;, to-

gether with their inverse. An involutive anti-linear map * : C[H,(X,, Z)] — C[H1(2,, Z)]
is defined by 1* := 1, ()" := x;" and (y}')* := y; ". We define a morphism of alge-
bras Tr : C[H(X4,Z)] — C with Tr(1) := 1, Tr(x;) = Tr(y;) = 0. The non degenerate
hermitian form (-, ) of Lemma B-12 is defined by:

(x,y) = Tr(zy") , for all x,y € C[H{(Xq, Z)]

The vector space U9 ® (U9)* is naturally identified with C[Hy (g, Z/pZ.)] = Tp(2X4 X
[0,1]) via the linear isomorphism W : U9 @ (UP9)* — C[H1(X,, Z/pZ)] sending z; ® 1 to
[z;] and 1 ® (z;)* to [y;]. The Egorov identity implies that ¥ is Spog(Z)-equivariant.

The composition C[H1 (X, Z)] 2 C[H\(Xy,Z/pZ)] 5 U9@(U29)* gives the Spag(Z)-
equivariant morphism ¢, of Lemma E-T2. We denoted by pr, the quotient map.

Finally C[H1(Xy,Z/pZ)] has an unique antilinear involution such that pr, preserves
the involutions. We define a trace Try, : C[H1(X,, Z/pZ)] — C with:

Try(2) = plgTr(Addp(:c, 0)), for all x € C[H, (S, Z/pZ)]

where Add, is the Schrodinger representation and (x,0) € Hp4. The non degenerate
hermitian form on C[H1(X,,Z/pZ)] is defined by:

(z,y), = Trp(zy") , for all x,y € C[H1(X,, Z/pZ)]

gives, via W, the hermitian form (-,-), on Uy @ (Up*9)* of Lemma B12.
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Proof of Lemma BET2. Since ¢, preserves the involution, we just have to show that:

Try, (¢z, (7)) P Tr(z) , for all x € C[Hy (X4, Z)]

First:

Tra, (60, (1)) = x; Tr(1,,0) = 1 = Tx(1)

Then choosing a couple (n,m) # (0,0) and ¢ € {1,..., g} we compute:

Addy, (a'y") = 190D @ (4205, p) @100

)

So:
64(2%7(;@1,) , if 2, is odd and divides m;
Try, (¢u, (279")) = (;(13,67(29013) , if @), is even and divides m;
0 , elsewhere.

S0 pli_)rgo Try, (¢o, (7)) = 0 = Tr(x}y™).

ni, mi

Now using the fact that Try (279" ... 2¢%yg"?) = Try (27 y!™) ... Try, (z%yg"?) we
complete the proof. O

Remark. The involutive algebra C[H{(X,,Z)] together with the herm1t1an form ( ) have
a natural geometrical (or classical) interpretation. Let M(%,) := / H| (X =
T?9 be the 2g-dimensional torus and H(X,) be the algebra of regular functlons on M(E ).

)=

The action of the symplectic group on M(E ) induces an action on H(X,) via ¢ e f(z
f(¢~ e x). We define a Spayy(Z)-equivariant isomorphism of involutive algebras

I+ CH(Sg, Z)] = H(Zy)

by sending z; to the projection on the i** coordinate of M(X,) and y; to the projection
on the (i + g)*" one
We verify that:

@)= [ gV

where dV = dz! A... Adx9 Ady' A ... Ady? is the natural volume form such that M(Z,)
has volume 1.

As a consequence (z,y) = fM(Zg) fzfydV has now a geometrical interpretation. The
algebra H(X,) is the algebra of classical observables on the symplectic torus and the
morphism Opp,, := ¢, o 1 H(E,) — End(Ug&") is a quantization operator. In this
setting the asymptotic:

(Opp,(£). Opp,(9)) —— fav

P Poo JM(Sg)
is classic in semi-classical analysis.
An alternative proof for the asymptotic faithfulness has been suggested to us by L
Funar; using a theorem of [53] we can show the stronger result:

Theorem 4.1.3. The Weil representation w4 at odd level p > 3, is a faithful represen-
tation of Spagy(Z/pZ.).
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The asymptotic faithfulness for (z,), a sequence of odd integers converging to +oo
follows for if ¢ # 1 is an element in Spa,(Z), there exists an p > 1 so that the class|¢]| # [1]
in Spay(Z/x,2Z) and Theorem ET3 implies that ¢ ¢ ker(m,, ). Thus we have that:

ﬂ Ker(ng, ) = {1}

The proof is based on the following fact proved (see [63]): Let r be an odd prime and
n,k > 2 with £ < n. Denote

i 2 Spag(Z)r"Z) — SpQQ(Z/rkZ)

the quotient map. We note G, := wk_l({—]l, +1}) and Sy := ker(y) the two proper nor-
mal subgroups of Spyy(Z/r"Z). Then the only normal proper subgroups of Spay(Z/r"Z)
are the G, and Si for 1 <k <n— 1.

Proof of Theorem BE13. First using the first point of Theorem P11 and the group isomor-
phism between Spo(Z/aZl) x Spay(Z./bZ) and Spay(Z./abZ) when a and b are coprime,
we see that we only need to prove Theorem B3 for p = " with p an odd prime.

For 1 < k <n —1, the matrix wrn7g(Xi)(”"n7k) is not the identity so the kernel of mn 4
cannot be Gy, or Si. It results from Klingenberg’s proposition, and the fact that mmn 4 is
not trivial, that this kernel must be {1} when p is odd. O

4.2 Infiniteness of the image of Reshetikhin-Turaev repre-
sentations

4.2.1 Finiteness of the image of Reshetikhin-Turaev representations

The Weil representations factor through congruence subgroups, thus their images are
finite. Since in genus one the Reshetikhin-Turaev representations are subrepresentations
of the Weil ones, they also have finite image. This fact was known in the conformal field
theory community (see [20] and references herein) and has been proved independently by
Gilmer in [85]. In higher genus, the Reshetikhin-Turaev representations have finite image
at level 3 and 6 (see [93]) and 4 (it is the trivial representation). In any other cases, they
have infinite image. It was proved by Funar in [29] when (g,p) # (2,10) (see also [68] for
a proof that they contain an element of infinite order). The last remaining case g = 2,
p = 10 was treated in [23]. Concerning the representation associated to a one holed torus,
it was shown in [77] that they have infinite image for high enough level.

In this subsection, we develop a simple criterion to check whether a given Reshetikhin-
Turaev representation has infinite image or not. Unfortunately, this criterion only works
when p = r or p = 2r for r an odd prime. It permits us to recover the above results in
these cases, and to study the finiteness of the representations associated to a one-holed
torus, which could not be derived from previous papers.
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4.2.2 Complete positivity

Let 3 be a colored surface and p > 3. The associated representations p, act on a
finite rank kj,-module V,(X) where k, = Z[A, %,/@} quotiented by ¢9,(A) = 0 and k6 =
A . A choice of a 2p primitive root of unity A and a compatible complex k gives
a complex vector space V;)A”‘(E) = V,(¥) ® C and complex representations pg‘”‘ whose

actions are preserved by non-degenerate hermitian forms (-, ~>;‘”’” . Note that in the other
chapters, we considered the invariant form as bilinear instead of hermitian.

(p+1)
,6,%

Definition 4.2.1. We say that V,,(X) is completely positive if for any choice of A € u(2p)
and compatible k € C, the hermitian form (Y/I')A’”(Z), (-, ) ﬁ ™) is positive definite or negative
definite.

The only effect of a change of k is eventually to change the eigenvalues of the hermitian
form to its opposite so complete positivity only means that all eigenvalues have the same
sign for a given k and all A.

Proposition 4.2.2. Let r be an odd prime number and p = r or p = 2r and let X be
a colored surface. Then (V,(2), <-,->p) is completely positive if and only if p, has finite
image.

If pp(Mgd\(_X/]g)) is finite, the following lemma, together with Roberts’ results ([[76], or
Proposition I"ZT1H), imply that V},(X) must be completely positive.

Lemma 4.2.3. Let p : G — GL(V) be an irreducible group representation on a finite
dimensional complex vector space V' equipped with a non degenerate invariant hermitian
form (-,-)y. If p(G) is finite, then (-,-), is either definite positive or negative.

Proof. 1If p(G) is finite, the hermitian form on V' defined by

1
(wv)y = ) M%«;) (p(g)u, p(g)v)

is definite positive and invariant under the action of G. Here (,) denotes an arbitrary
scalar product on V.

If t € [0, 1], we define the invariant hermitian form
<U, U>t =t <U, /U>0 + (1 - t) <’U,, U>1

Suppose there exists vg € V so that (vg,v9), < 0. Since (vg,vg); > 0, there exists
to € (0,1) so that (vo,v);,, = 0. The invariance of (,), under the action of G, implies
that (p(g)vo, p(g)vo);, = 0 for all g € G. Since p is irreducible, the vector v is cyclic so

(- .>t0 =0 and (-, .>0 = % (-, ->1 is definite negative. |

p ,if

p=3 (mod 4)
4r Jifp=1

,2 (mod 4)

Conversely, when p = 7 or p = 27 with  an odd prime, we note oy, := {

and O, := Z[A] /¢ap(A).
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It was showed in [B6, [74] that V},(X) contains a free Oy, lattice of maximal rank preserved

—~—

by Mod(Z,).

We denote by u(ap) = {q1,- - -, ¢4(a,)} the set of primitive a,-th roots of unity and by
#(op) = #p1(0yp) the Euler characteristic.

Lemma 4.2.4. Let p=1r or p=2r with r an odd prime. Then the injective linear map
U0, — o)

sending A™ to (q7,. .. ,qu), has a discrete image.

Proof. We endow C%(®») with the norm:

H(zl, e ,z¢(ap))H2 = ¢(;p) zz: |2

where |z|? represents the Euclidian norm in C.

If P(X) =73 ,n,X"€ O, then:

1 .
P = S X Y
P7 qepn(ap) i
1 .
= an -l-anj (gb(a ) Z qu)
i i#] P gep(ap)

_ .n? , if p is prime.

N ;n?— 23 )i jlmar minj , if p = 2r.
Thus we have |¥(0,)||> € N, so ¥(0,) is discrete in C*(*r). m]

—~—

Proof of Proposition G-2Z3. If p,(Mod(X,)) is finite, then the irreducibility of p, (Propo-
sition T213) together with Lemma B=23, imply that every invariant forms (-, ) ;‘ " must
be either positive or negative, so V,(X) is completely positive.

Conversely, if V,,(X) is completely positive, using the O, lattice of [36, [74], we have
an injective group morphism from p,(G) to the group of matrices with coefficients in O,.
Once composed with the map ¥ of Lemma B2, we get an injective group morphism
T : p(G) — GLg(C) % ... x GLg(C), where d := dim(V,(¥)). Lemma =22 implies that 0
has a discrete image, and the complete positivity of V},(3) implies that the image lies in the

—~—

compact product of r — 1 unitary groups. This implies the finiteness of p,(Mod(X,)). O
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4.2.3 (In)finiteness of the one holed torus representations

Theorem 4.2.5. Letr be an odd prime andp = r orp = 2r. Denote by p;, the Reshetikhin-
Turaev representation associated to a torus T equipped with a band colored by 2c € I,.
We have:

1. If 2c =r — 3, then p5, has finite image.

2. Ifc=1 (mod 3) and r # 3,5, then pS, has infinite image.
3. Ifc=1and r # 3,5, then pS has infinite image.
4

. If (¢ = 3[5] and r = 2[5] or r = 3[5]) or (c = 1[5] and r = 3[5]) or (c = 2[5] and
r = 2[5]), then pS, has infinite image.

5. Ifc < %7, then p5, has infinite image.

Proof. For 0 < i <r —2—2c, denote by u§ € V,(7°) the vector associated to a lollipop
graph whose stick is colored by 2c¢ and loop colored by ¢ + ¢, that is:

i+c
Using Theorem 124, we have:
(& C R . .
(U1, Uz’+1>p  [2e+i+2)[i + 1]
(ug, ug) ¥ [c+i+2[c+i+1]
R
Uiy Uia), e+ 3][2c+i+2)[i+2)[i+ 1]
(ug, ug) ¥ [c+i+1)[c+i+3]cti+ 22

Proposition 2277 states that pg has infinite image if and only if there exists A € 1(2p)
so that one of the above numbers is negative.

When 2¢ = r — 3, choose A = exp (#) with g.c.d.(k,2r) = 1. The vectors {uf, u§}
form a basis of V,,(7¢) and we have:

sin(“Lrk) sin(”?k)

C C
1, U1
i u8>5 sin( k) sin(Zt k)

This product appears to be always positive for every k: indeed sin(%wk) and sin(”?k)
are both positive if k¥ < r and both negative elsewhere whereas sin(%27k) and sin(%27k)
are both positive if % is even and both negative elsewhere. Thus pf, has finite image.

rrl ifr =1 (mod 3) (ug.ug)
= — 3 ’ P
When ¢ =1 (mod 3), we take k { 221 i =2 (mod 3) and we have <u87u8>: <
0.
(us us),)
If r =2 (mod 5), we put k = 2 and we have -——% < 0.
(ugug)
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R
(us.us)!

If r =3 (mod 5), we put k = 221 and we have — % <0 when c=1,3 (mod 5).
u07u0 »
When ¢ = 1, then <u§u§>: _ fo =m0 is negative if 75 < k < %. Such a k exists
T Gy BT () B 2 &

when r > 12.
For r = 1 or 7, we take £k = 1 and for r = 13,17, we take k = 2, and find again

R
<u§,u§>p
(ugug),
Finally, note that if there exist 0 < ¢ < r — 3 and an odd k£ < r so that

e eV ,
<uz<+1’u2?3>p < 0 for A = exp (#) Then we can find such a i for k = 3
u.uf
W7 p

whenever 3 € (J[_3 72|

< 0.

r
2¢c+1+2 <

T
k< P then

r _r — [_Tr T : r—"7
2ct+i+2? c+i+2] = [ma CTQ]» i.e. when ¢ < 3 - O

Remark. We could have recovered the finiteness in this case by using a theorem of For-
manek (see [26]) which states that the only 2-dimensional irreducible representations of
Bs are conjugate to one of the x(y) ® 83(q) where x(y) is the character which sends both
generators to y € C* and f3(q) is the reduced Burau representation in ¢. Since the eigen-
values of p,(t1) are p. and fie41 we must have y = —p. and ¢ = A" or y = —pc41 and
g = A" 80 qis a 4 — th primitive root of unitity and 3(q) appears to have finite image
(see [27] for a detailed discussion of finiteness of reduced Burau representations at roots
of unity).

4.2.4 (In)finiteness of Reshetikhin-Turaev representations associated to
closed surfaces

The following theorem results from [35, 29, 93, 23]. We derive another proof from
Proposition B272.

Theorem 4.2.6. Let g > 1 and p = r or p = 2r with r an odd prime. Then py, 4 has finite
image if and only if g =1 or r = 3.

Y
Proof. If g =1, then % =1 for all 7, so p,1 is completely positive.
1y P
If p = 3, since I3 = {0} then V3(X,) is one dimensional so is completely positive. If
p = 6, we have Iz = {0,1} and (1,1,1) is not 6-admissible so, if I" is a trivalent graph
and o € col,(I'), then u, is a union of disjoint circles, say n ones, colored by 1. Thus
(U, ug>g2 =1 and V(%) is completely positive.

Now consider the case when r = 5 and ¢ = 2. Take I' = (D and consider the

associated vectors uqp . for (a,b, c) a p-admissible triple.
R

If p = 5, then <u2’2’2’u2’2’2>5R = [2][24[]3]2 has the sign of [4] which is negative for A =

(10,0,0,20,0,0)5
exp (3%>
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R
If p = 10, then 211t2Lile _ (21D

(10,0,0,20,0,0)1 (1)7°(2)
A =exp (312—3)

Now the fact that V,(X2) is not completely positive for » = 5 implies that V,,(3,) is
not completely positive when g > 3 as well, for we can embed the Theta graph into a
genus g > 3 graph and define vectors u,p . € Vp(X,), with same norm as in genus 2, by
coloring by 0 the complementary of the embedding.

has the sign of (2) = [3] which is negative for

Finally, if r # 3,5 and g > 2, we isolate one handle of 3, and write 3, = 31 Jg1 Xg_1.
Then using Theorem [CT43, we have:

Vo(Xg) = @eer, Vp(T7) @ Vp(¥5-1)

So the fact that V,(7?) is not completely positive (Theorem B275) implies that V},(3,)
is not as well for g > 2. We conclude using Proposition BZ22. m|

4.3 Explicit lifts for the Weil representations

When g = 1, the Weil representations can be lifted to linear representations of S Lo (Z).
When g > 2 only the Weil representation at odd levels can be lifted to linear representa-
tions of Spag(Z). At even levels in genus g > 2, they can only be lifted to a representation
of a central extension of Spag(Z) by Z/2Z. This facts are well known and can be proved
by elementary arguments. The goal of this subsection is to exhibit explicit lifts of the Weil
representations. Note that when g > 3 and p is even, a different lift was given in [31] also.
In [38] an explicit lift of the odd subrepresentations in genus one at even level of the Weil
representations was also given.

4.3.1 The genus one case

-1 0 0 1

generated by S and T with relations S* = I and (ST)3 = S2%. In order to lift the Weil
representations in genus one at even levels, we must add a primitive 24-th root of unity

to the ring, thus we look at k, = Z[A, %, B/ (P2p(A), p24(B)).

Note § := ( 0 1) and T := L - . It is well known that the group SLy(Z) is

Theorem 4.3.1. An explicit lift of the genus one Weil representations is given by the
matrices:

G(—1,0,p) A—2i5)Y. . , ‘s odd.
mS) = ey AP (w1)
B #(A Nij, if p is even.

(A6, 3)i ,  ifp is odd.
T):= 25 4.2
() { 5(142251',]')1',]‘, if p is even. (4.2)
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Proof. We check the two relations:

— 2 )
7, (S)? = { (W) P(0i15,0)i , when p is odd.

—¢6 (G(—1,0,2p)? .
6 ((Tp)) (0i+4,0)i,j » when p is even.

4
(W) pPPl=1 , when p is odd.

4
m(9)" = 4
12 (M) 11 =1 , when pis even.

2

W(Aj(j_%))i,j , when p is odd.
p(S)mp(T) = a2 (M) (A—2¢j+j2)ij

5 , when p is even.

G(= ,,p>) (ZkzeZ/ZA (k—2i) 43(i— %))ij , when p is odd.

a4 <G( 1, 02p)) (A G(1, —2(i +7),2p))i; , when p is even.
(G( 1,0,p z(z+2j))
a

(WP(S)WP(T))B = {

ij > when pis odd.
4G(7 (A2~ )ij , when p is even.

G( (z A-ili+2k) 456~ 2k>) o+ when p is odd.

,p)

0
2p
—1,0
p?
(M) (Aj —i p5i+j,0)i,j , when p is even.
Yo .
P z+] O)i,j , when p is odd.
G

(#
(G

1,0,2 .
701@) (0i+4,0)i,j » when p is even.

4.3.2 Presentation of the symplectic group and central extension

In order to give explicit lifts in higher genus, we define a finite presentation of Spy,(Z)
with generators the Dehn twists X;,Y;, Z;; of Figure B8. This presentation will come from
a presentation of the mapping class group of a closed oriented genus g surface, made by
Gervais in [34] that we will pass to quotient through the Torelli group. Note that other
presentations of Spag(Z) are known since the work of Birman [2] and Powell [72] (see
also [BA]).

Theorem 4.3.2. The symplectic group Spag(Z) has presentation with generators X;,Y;, Z; ;,
1 <i,5 <g and relations:

Zii=1 (4.3)
Braids
[Xi,Xj] = [Y;,}/J] = [XZ,YJ] =0 fOTi * j (4.4)
XY, X; = VX,V (4.5)
(Zi j, Xk] = 0. (4.6)
[Zi;, Ye] =0 fori#k,j+k. (4.7)
Zi,jYéZi’j = YiZl’]Y; fO’f‘i * j (48)
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Stars
Zii 25k Zhi = (Zin Zin Zea1)®  for2 <i,j,k <g. (4.9)
Z; ;i X; X5 = (Zl-yle;leYl)3 for2<i+#j<g. (4.10)
XZ‘XjZZ‘J' = (ZZ"lezj,lYi)g f07’ 2 < ) ij < g. (4.11)
Xz‘ZiJ‘Xj = (X1ZZ‘71Z]‘711/1)3 fOT 2 < 7 ij < g. (4.12)
X? = (Zi X2 for2<i<y. (4.13)
1= (XN (4.14)

Proof. In [34], Gervais made a presentation of the mapping class group with some genera-
tors oy, 3; and +; j shown in Figure BTl and relations called "Handles’, "Braids’ and ’Stars’.
To pass Gervais’ presentation to the quotient through the Torelli group, we use the fact,
proved by Birman [12] and Powell [72] (see also Putman [73] and Hatcher, Margalit [43] for
more recent proofs) that the Torelli group is generated by the Dehn twists along separating

curves and elements T’ TWZ1 where 71,72 are two homologous curves not isotopic.

Figure 4.1: The curves defining the Dehn twists of Gervais’ presentation of the mapping
class group.

Let us now denote by f : Mod(3,) — Sp24(Z) the quotient map by the Torelli group.
The image of Gervais’ generators are:

— f(y2i41,2j+1) = 1 for all 4, j: these are the separating twists of the Torelli group.

—fB)=Y1, f(Bi) =Yiy1,2< i< g.

= f(v2i2j) = Zij,2<4,j < g

— flag) =214,2<i<g.

— f(y2i2j+1) = Xi, 2 <1 < g, 0 < j < g as the homology class of 79; 211 doesn’t

depend on j.
and we just verify that passing Gervais’ relations of type "Handles’, 'Braids’ and ’Stars’
through this quotient map gives the ones stated in the theorem. m|

Using this presentation, we define a central extension of Spyy(Z) by Z/2Z by modi-
fying the stars relations v; ;jvj vk = (icajouB)® in Gervais’ presentation by i j7vj k Vi =
—(Oél'OéjOzkﬁ)gi
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Definition 4.3.3. Let S;t;-g;(-/Z) be the group generated by the elements X;,Y;, Z; ;,1 <
1,7 < g together with an element o and relations given by:

— The relations (4.3) and the Braids relations (4.4), (4.5), (4.6), (4.7), (4.8).

— « is central and o? = 1.

— The modified stars relations:

aZ;;ZikZri = (ZinZja ZgaY1)?  for 2 <i,jk <g. (4.15)
aZ; ; XiX; = (Zi1Z;1X1V1)? for2<iz#j<g. (4.16)
aX;X;Zi; = (Zin X1Zj11)®? for2<i#j<g. (4.17)
aX;ZijX; = (X1Z:1Z;111)® for2<i#j<g. (4.18)

aX? = (Z;1Xiv1)? for 2 <i <g. (4.19)
a = (X3v)3. (4.20)

We have the following short exact sequence:

| —> Z)2Z 5 Spag(Z) > Spg(Z) — 1

where 7 sends 1 to o and j sends X;, Y}, Z; ; to the generators with same name.

Note that in genus one the groups Spa(Z) and 5’1;29\(/2) are the same since there is no
stars relation.

We will show that the Weil representations at even levels are linear representations of
this central extension and that, when g > 2, they cannot be lifted as linear representations
of Spag(Z). We will hence show that this extension is non trivial when g > 2.

4.3.3 Explicit lifts in higher genus

Theorem 4.3.4. The following matrices define explicit lifts of the Weil representations
in genus g > 2 to linear representation of Spag(Z.) when p is odd, and of Spag(Z) when p
is even.

— (X)) = (A2°6; )i and mp (X)) = 180D @ 1,1 (X) @ 120970,

-~ Tpg(Zij)(ea @ ... @ eq,) = AWTG (e, © ... D ey,).
@(A*(i*jﬁ)i,j, when p is odd.
GL02p) (A-(i=4)%),

2p Zaj7
mpg(Yi) = 1207V @ m(Y) © 19079,

- mpa(Y) = .
when p is even.

Proof. We will show that the matrices mp 4(X;), 7p¢(Y3), Tp.g(Zi ;) satisfy the relations of
the presentations of Spay(Z) of Theorem @ in the odd case and of S pgg( ) of Definition
B33 in the even case. As the computations are quite similar, we will perform them in the
even case only.

The relations (4.3),(4.4), (4.6) and (4.7) are clear from definition. For (4.5) we just
have to prove that m,(X)m,(Y)m,(X) = mp(Y) 7y (X)mp(Y):

G(1, 0 2p 2 2 (i G(1, o 2p ;
T (X)mp(V)mp(X)e; = ZA’“ - = ZA2 )
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7 (V)10 (X ) (V )es — (G (1,0,2p) > Z k2+2k(l+i)7i2—lzel
|

k
2
:( (12?9 2p)) “ 0 20) ZAM@ 1 = mp(@)Tp(y)mp(2)e;

Now we must check (4.8) : Z; ;Y;Z; j = Y;Z; ;Y; for i # j.

Wp,g(Yi)an(Zij)ng( i)(€a; ® -®eag)
(1,0,2p)\ 2
:<G 0, p> Z —(a;—k)?+(k—a;)?— (k_l)2€a1®--.®61®-..®6a9
Kl

(G(LO )) AQ(LJ(aJ*az)ZA2 a;—aj)l €a; ®--~®€l®~-®ea9

Tp.g(Zij)Tpg(Yi)Tpg(Zij)(eay @ ... ® eaq)
= <G 1 0 2]9 > ZA (a;—k)?+(k— aj)2+(ai—a]-)26al ® .. ®en® ... ®6ag

G(1,0,2p) a?—2a;a,; o —as
—(2p>A2J 2 JZAQ('L J)kea1®...®€k®...®eag

= Tp,g(Yi)Tp,g(Zij)mpg(Yi)(€a, ® ... @ €q,)

Let us now check the (modified) stars relations. First (4.15) : Z; ;7;  Z; = —(Zi7lZ’71Zk71Y1)3
for 2 <i, 5,k <g:

Tpg(Zij)p.g(Zj ) Tp,g(Z1i) (€ay @ ... @ €q,)
_ A(ai*a]‘)2+(a‘j7ak)2+(ak7ai)2 (eal Q...® eag)

24,2, 2 )
_ A2(ai +aj+ak7aiajfajak7azak)(eal R...® eag)

G(1,0,2p)\°
T (Zi V0 (231 (Zi1 g (V1)) (Car © ... © ) = ((2]3))

Z Au2+v2+2w2—af+3(i2+j2+k2)+2(ua1+uv+wv—u(i+j+k)—v(i+j+k)—w(i+j+k)ew ® g, ® ® e,
. & .. 9

UV,W

_ (G(17O7 2]?))3 G(17072p)A—a%+3(i2+j2+k2)X
2p 2

Z <Z A2v(wa1)> A*(al*i*j*k)2*2w(i+j+k)+2wzew XeEgy ®... & €ay

w v

_ (G(L;]an)) 1)12142( 2+a2+ak ala] CLJCLk (lzak)(eal ® . ® eag)
= —Tp,g(Zij)Tp.g(Zj k) p,g(Z1i) (€a, ® ... @ €q,)
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Now let us look at (4.16) : Z; ; X;X; = —(ZZ-71Z]-71X1Y1)3 for 2 < i # j < g, we leave
the similar cases (4.17), (4.18) to the reader.

2, 2
7Tp,g(Zm')ﬂ'p,g(Xi)ﬂp7g(1/}')(€al ® ... ® eag) = A2((li+aj azay(eal R ... & €ag)

Wp,g(Zi,l)Trp,g(Zj,l)ﬂp,g(Xl)Wp,g(Yl)(€a1 ®...0 eag)

G(17072p) a;—u)?+(aj—u)?+u?—(u—aq)?
:< 2p >ZU:A(Z P 1)6“®ea2®--'®€a9

(7Tp7g(Z7‘71)7Tpvg(Z]71)Wp’g(Xl)vag(Yi))Q(eal ® R ® 6afg)
2
_ (G(17207 2p)> Z A(aru)2+(aj—u)2+u2*(u7a1)2*(u—v)2+v2+(ajfv)2+(arv)26v ® €ay @ ... @ eq,
p u,v

2
_ (G(LQ(;’ 2p)> G(1;207 217) Z Av2—2va1+(a?+a]2.—2a%+2a1ai+2a1aj—Qaiajev ® €ay R...8 6ag

v

41X
p3

Z (Z AQ(w—al)U> A(w—ai)2+(w—aj)2-&-(03+a?—2a%+2(a1ai+alaj—lliaj))ew ® €ay ® ... R eq,
w v

G(l,;), 2p)>

(Wp,g(Zi,l)Wp,g(Zj,l)ﬂp,g(Xl)Wp,g(Yl))3(ea1 ®...® eag) = (

2(a?24a2—a;a;
E—} (Cl7,+aj aaj(ea1®'-‘®6ag)

= —Tpg(Zij)7pg(Xi)mpg(Yj)(€a, ® ... ® eag)

The relations (4.19) reads X? = —(Z; 1 X7Y1)? for 2 < i < g so we compute:

G(1,0,2p)

o (231 g (30 (¥1) (0 . 900,) = (2

> Z A—(al—u)2+2u2+(ai_u)2eu R...Q eag
u

(Wp,g(Zi,l)Wp,g(Xl)QWp,g(Yl))2(6(11 ®...0 6ag)
G(1,0,2p)\?
_ ( ( 72p7 P)) Z (Z Au2+2u(a17ai+v))A2u272vai+2a§fa%ev ®...0eq,
v u

B (G(1,0,2p>>2 G(1,0,2p)
N 2p 2

2_ 9.2 . 2_
A% 2ai+2a1a; Z AV 2vaq ey @ ... eag
v

(an(Zi,l)Wp,g(Xl)%Tp,g(Yl))g(eal ®...0 eag)

G(1,0,2p\* 1 .o | _ _2a;
_ ((M) ?Aa? 2a§+2a1a12(2142v(w a) A2 -iwtele @ e,

p w v
2
— _ A2 €a; ® ... e, = —7r/},7g(Xz-)2(e,l1 ®...Q eq,)

2
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Finally we check the last relation (4.20) : —1 = (X7Y7)3.

(Wp,g(Xl)?)Wp,g(Yl))g(@al D...® eag)

G(]-a 07 2p) ’ —(u—a1)243u?—(u—0)2430v2 — (v—w)?+3w?

(G(l, 0, 2p>>3 Gl1,0,20) §~ - (orro a0t (u-w)+30?
2p 2

ew®...®ea9

w,v

:<G(1 ) %Z ZA2’U’LU al)A 2a+2w ®~-®eag

(G(l 0,2p)

5 ) p2(6a1®...®e%):—(ea1®...®eag)

And that completes the proof. o

Corollary 4.3.5. When g > 2 and p is even, the Weil representations cannot be lifted to
linear representations of Spag(Z).

Proof. Suppose that such a lift 7, , exists and is defined by 7, 4(X;) = a;mpq(Xi),
Tpg(Yi) = Bimpg(Yi) and 7p o(Zij) = vijmp,e(Zij) with oy, ; and 7;; some invertible
scalars of k,. Then the braid relation (4.5) implies that «; = §; for all . The braid
relation (4.8) implies that v; ; = f; for all ¢ # j. Hence the scalars a; = f3; = ;; = c are
independent of 7 and j. Now the modified star relation (4.20) implies ¢!? = —1 whereas

the modified star relation (4.19) gives ¢ = —c'? and we have a contradiction. |
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List of Symbols

Xy Closed oriented surface of genus g

H, Closed oriented handlebody of genus g

Mod(¥) Mapping class group of ¥

M(/)—(Ri]g) Central extension of Mod(%)

Spag(Z) Symplectic group

S}ggg\(/Z) Central extension of Spay(Z)

Tpg  Weil representation at level p of a genus g closed surface

ppg  Reshetikhin-Turaev representation at level p of a genus g closed surface
Add  (Schrédinger)-representation of the skein algebra induced by TQFT
Ti(M) Abelian skein module of M on the ring k

Kr(M) Kauffman skein module of M on the ring k

Up Abelian TQFT at level p

Vo Reshetikhin-Turaev TQFT at level p

V(3) Module associated to a closed oriented surface by the TQFT V

Invariant form associated to the TQFT V

Hopf pairing associated to the TQFT V'

TL, Temperley-Lieb algebra with n strands

fn n-th Jones Wenzl idempotent

[n] Quantum number [n] = %

G(a,b,c) A Gauss sum

Span(X) Free module generated by the elements of X

col,(I') Set of p-admissible colorings of the graph I'

col,(T") Set of equivalence class of p-admissible colorings of the graph T’

Uy Vector associated to a coloring o of a graph

o(L) Signature of a link L
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M (L) 3-manifold obtained by surgery on M along the framed link L
Cobayy Cobordism category of banded cobordisms

Cob3,; Cobordism category of oriented banded cobordisms

Coby,; Cobordism category of structure cobordisms

Cobj,; Cobordism category of oriented structure cobordisms

Cob,, Cobordism category of colored structure cobordisms
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