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Introduction

L’objectif de cette thèse est l’étude de certaines familles de représentations projectives
des groupes modulaires des surfaces.

Etant donnée une surface fermée orientée Σ, son groupe modulaire Mod(Σ) est défini
comme le quotient du groupe des homéomorphismes de Σ préservant l’orientation et les
points marqués, par le sous-groupe formé par la composante connexe contenant l’identité.
En d’autres termes, il s’agit du groupe des classes d’isotopie des homéomorphismes de Σ :

Mod(Σ) := π0(Homeo+(Σ))

Nous considérerons deux familles de représentations projectives, indexées par un entier
p ≥ 2, définies sur des espaces de dimension finie :

Les représentations de Weil : πp : Mod(Σ) → PGL(Up(Σ))

Les représentations de Reshetikhin-Turaev : ρp : Mod(Σ) → PGL(Vp(Σ))

Les représentations dites de (Segal-Shale-)Weil ou représentations métaplectiques, ne
fournissent que peu d’information sur Mod(Σ).

Le premier groupe d’homologie entière H1(Σg,Z), muni de la forme d’intersection, est
un espace symplectique. Les classes d’homéomorphismes de Mod(Σg) agissent dessus en
préservant la forme d’intersection, ce qui fournit un morphisme surjectif de groupes :

f : Mod(Σg) → Sp2g(Z)

Alors que le groupe symplectique Sp2g(Z) est bien connu, le noyau de f , appelé sous-
groupe de Torelli , est encore mal compris. Les représentations de Weil agissent trivialement
sur ce sous-groupe. Elles constituent cependant l’exemple le plus simple de représentations
dites ’quantiques’ et constituent un excellent modèle pour étudier les propriétés générales
de ces représentations.

Les représentations de Weil sont apparues en 1946, dans les travaux de Kloosterman
([54]) où elles sont définies comme des transformations modulaires des fonctions theta de
Jacobi. Leur étude a été reprise par les physiciens Segal et Shale en 1962 ([78, 80]) où elles
proviennent de la quantification du tore symplectique, puis par Weil en 1964 ([88]).

La seconde famille de représentations que nous étudierons, les représentations dites de
(Witten-)Reshetikhin-Turaev ou représentations SO(3) et SU(2), au contraire détectent le
groupe de Torelli. Plus précisément, bien qu’aucune d’entre elles ne soient fidèles, la somme
directe d’une infinité d’entre elles forme une représentation fidèle de Mod(Σ) modulo son
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centre (voir [28, 3, 67]). L’image de ces représentations contient donc toute l’information
de Mod(Σ).

Ces représentations tirent leur origine dans la découverte en 1985, par Jones, d’un
invariant polynomial pour les noeuds et les entrelacs ([47]), et dans leur interprétation
tridimensionelle donnée par Witten en 1989 dans [92]. Plus précisément, Witten définit la
notion de théorie topologique quantique de champs (voir [6, 91]), ou TQFT , dans laquelle
s’inscrivent le polynôme de Jones et les représentations de Reshetikhin-Turaev.

Une TQFT est un foncteur qui associe à toute surface Σ, un C espace vectoriel V (Σ)
(et V (∅) = C), et associe à tout cobordisme M entre Σ1 et Σ2, une application linéaire
V (M) entre V (Σ1) et V (Σ2). On autorise un tel cobordisme à contenir un entrelacs en
rubans.

À une 3-variété fermée orientée, vue comme un cobordisme entre ∅ et ∅, un tel foncteur
associe une application linéaire C → C qui peut être assimilée à un nombre complexe
⟨M⟩ ∈ C, appelé l’invariant quantique de M .

Dans [92], Witten annonce l’existence de TQFTs dont l’invariant quantique d’un entre-
lacs de S3 correspond au polynôme de Jones évalué en une racine de l’unité. Un tel foncteur
fournit une représentation de Mod(Σ) sur V (Σ) dite représentation quantique. Bien que
l’heuristique donnée par Witten pour l’existence d’une telle TQFT s’appuie sur la notion
encore mal définie d’intégrales de chemins, l’auteur souligne que certaines propriétés de
chirurgies et d’écheveaux permettent un calcul algébrique explicite de ces invariants et
que les techniques de théories conformes de champs en dimension 2 permettent l’étude des
espaces V (Σ).

La première construction rigoureuse de ces TQFTs est faite par Reshetikhin et Tu-
raev en 1991 dans [75]. Cette construction utilise des représentations de certains groupes
quantiques définis par Drinfel’d et Jimbo.

Une construction plus combinatoire de ces invariants quantiques, s’appuyant sur les
travaux de Kirby et Melvin ([51]), est proposée par Lickorish dans [63]. La connaissance de
cet invariant permet de reconstruire toute la TQFT par une construction dite universelle
définie par Blanchet, Habegger, Masbaum et Vogel dans [14]. Nous suivrons cette approche
pour définir les TQFTs qui engendrent les représentations de Weil et de Reshetikhin-
Turaev.

Les principaux résultats de cette thèse concernent la décomposition des représentations
quantiques en représentations irréductibles. Décrivons brièvement le contenu de chaque
chapitre.

Chapitre 1

Le premier chapitre sert d’introduction pour définir les notions et résultats classiques
utilisés dans le reste de la thèse.

La première section sert à définir les TQFTs abéliennes, SO(3) et SU(2) en suivant
[63, 14].

On définit d’abord la notion de TQFT sans anomalies. On montre comment on peut
en extraire un invariant pour les 3 variétés fermés orientées munies d’un entrelacs et, pour
chaque surface Σ, une représentation de Mod(Σ). On explique également la construction
universelle de [14] qui permet de construir une TQFT depuis un invariant.



Introduction 9

Dans un second temps, nous étudions la notion de module d’écheveaux d’une 3 variété
ainsi que les algèbres de Temperley-Lieb et les polynômes de Jones colorés.

La troisième sous-section concerne le comportement des TQFTs vis-à-vis de la chi-
rurgie. Nous énonçons les théorèmes de Lickorish-Wallace et de Kirby, qui stipulent que
la définition d’un invariant pour les 3 variétés fermées orientées est équivalent à la don-
née d’un invariant d’entrelacs en rubans stables sous certains mouvements locaux, dits de
Kirby. Nous verrons que l’existence de TQFTs satisfaisant les propriétés d’écheveaux et
de chirurgie, comme annoncée par Witten, implique que l’invariant quantique dépend de
la signature de la 3-variété et nécessite d’étendre la catégorie de cobordismes.

Ceci nous amène, dans la quatrième sous-section, à définir une notion de TQFT avec
anomalie, en munissant les surfaces de Lagrangiens dans leur premier groupe d’homologie
rationelle, et les cobordismes de poids entiers. Avec cette définition, les propriétés d’éche-
veaux et de chirurgie définissent de manière unique les TQFTs abéliennes, SO(3) et SU(2).
Les représentations quantiques ainsi obtenues sont alors projectives.

Enfin nous étudierons les espaces associés aux surfaces et donnerons des bases ortho-
gonales pour certaines formes bilinéaires invariantes sous l’action de Mod(Σ).

La seconde section regroupe certains résultats classiques des représentations quan-
tiques.

On démontre notamment une relation, dite d’Egorov, entre l’action de Mod(Σ) d’une
part sur les espaces V (Σ), d’autre part sur les algèbres End(V (Σ)). On tire de cette relation
certaines décompositions des représentations quantiques.

D’une part on obtient que les représentations de Weil se scindent en deux sous-
représentations dites paires et impaires. On obtient également que les représentations
de Weil aux niveaux p = rn sont des sous-représentations de celles aux niveaux p = rn+2

lorsque r est un nombre premier. Enfin, en suivant [14], on démontre que si 4 divise p,
alors les représentations de Reshetikhin-Turaev au niveau p se scindent en deux.

On démontre également, en suivant [27, 60], que lorsque Σ1 � S
1 × S1, les représen-

tations de Reshetikhin-Turaev de Mod(Σ1) � SL2(Z) sont des sous-représentations des
représentations de Weil.

Nous verrons ensuite, en suivant [14], que, sous certaines conditions, lorsque l’invariant
d’une TQFT est le produit des invariants de deux autres, la représentation quantique
associée est produit tensoriel des deux autres. Nous dérivons ensuite de ce résultat deux
décompositions tensorielles. D’une part si a et b sont premiers entre eux, la représentation
de Weil au niveau ab est produit tensoriel des représentations aux niveaux a et b. D’autre
part, lorsque r est impair, la représentations de Reshetikhin-Turaev au niveau 2r est
produit tensoriel de celle au niveau r et de celle au niveau 6.

Enfin, en suivant Roberts ([76]), nous montrerons que les représentations de Reshetikhin-
Turaev aux niveaux p = r et p = 2r, avec r premier impair, sont irréductibles. Nous verrons
également que la preuve fonctionne pour r = 9.

Chapitre 2

Ce chapitre contient la version non publiée de l’article [55] intitulé ’Decomposition of
Weil representations into irreducible factors’ dans lequel on donne la décomposition en
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irréductibles des représentations de Weil.

Plus précisément, le module Up de la représentation de Weil au niveau p se décompose
ainsi :

Theorem (Théorème 2.1.1).

1. Si a et b sont premiers entre eux, alors Uab � Ua ⊗ Ub.

2. Si r est premier et n ≥ 1, alors Urn+2 � Urn ⊕ Wrn+2 où Wrn+2 désigne un autre
module.

3. Si r est premier impair, alors Ur2 � 1 ⊕Wr2 où 1 est la représentation triviale.

4. Les modules Up et Wrn avec r > 2 se scindent en deux sous-modules : Up � U−
p ⊕U+

p ,
Wrn �W+

rn ⊕W−
rn.

5. Les modules B1 ⊗ . . .⊗Bk, où les Bi sont de la forme U+
r , U

−
r , U2, U

+
4 , U

−
4 ,W

+
rn ou

W−
rn et sont associés à des entiers premiers entre eux, sont irréductibles.

Cette décomposition était connue pour les représentations de Weil en genre 1 aux
niveaux p = rn, où r est un nombre premier impair (voir [54]). Notre étude généralise
ces décompositions à tous les niveaux en genre arbitraire. On dérive de cette étude la
décomposition des représentations de Reshetikhin-Turaev en genre 1 en irréductibles.

Bien que les quatre premiers points soient déjà démontrés au Chapitre 1, nous en
donnons ici une preuve alternative plus directe en explicitant les isomorphismes utilisés.
Le dernier point du théorème, l’irréductibilité des facteurs, est démontré de deux façons
différentes.

Chapitre 3

Ce chapitre contient la version non publiée de l’article [56] intitulé ’Decomposition
of some Reshetikhin-Turaev representations into irreducible factors’, où l’on étudie la
décomposition en irréductibles des représentations de Reshetikhin-Turaev lorsque le niveau
est de la forme p = 2r1r2, p = 2r2 et p = 4r, avec r, r1, r2 des nombres premiers impairs,
modulo certaines conditions techniques. Plus précisément on démontre les deux théorèmes
suivants :

Theorem (Théorème 3.1.1).

1. Si r est premier impair, alors V4r,2 est somme de deux sous-représentations irréduc-
tibles.

2. Si r est premier impair, alors V2r2,2 est irréductible.

3. Si r1, r2 sont deux nombres premiers impairs distincts, alors V2r1r2,2 est irréductible.

A chaque niveau p = 2r ≥ 3 est associé un ensemble de nombres complexes appelés
6j-symboles. Un niveau p = 2r ≥ 3, avec r impair, sera dit générique si les 6j-symboles
associés sont tous non nuls. Lorsque r est pair, la proposition 3.3.10 exhibe deux familles
de 6j-symboles nuls. Dans ce cas, p sera dit générique s’il n’en existe pas d’autres.

Theorem (Théorème 3.1.2).

1. Si 50 est générique , alors V50,3 est irréductible.
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2. Si r ≥ 7 est premier impair, p = 4r est générique et g = 3, alors V4r,3 est somme
de deux sous-représentations irréductibles.

3. Si r1, r2 sont deux nombres premiers impairs distincts, p = 2r1r2 est générique et
2g < min(r1, r2), alors V2r1r2,g est irréductible.

La généricité d’un niveau assez petit donné peut se vérifier à l’aide d’un ordinateur.

Corollaire 0.0.1. (preuve assistée par ordinateur)
Le module V50,3 est irreductible. Les modules V28,3 et V44,3 sont sommes de deux sous-

modules irréductibles.

Chapitre 4

Ce chapitre regroupe pêle-mêle divers résultats sur les représentations quantiques.

Dans la première section, on adapte la preuve de [67] au cas abélien pour montrer que
les normes au carré des représentations de Weil convergent, au sens de la topologie de Fell,
vers la représentation homologique :

h : Mod(Σ) → GL (C[H1(Σ,Z)])

On démontre également qu’aux niveaux impairs, les représentations de Weil repré-
sentent fidèlement le groupe Sp2g(Z/pZ).

Dans la seconde section, on étudie la finitude de l’image des représentations de Reshetikhin-
Turaev lorsque le niveau est p = r ou p = 2r avec r premier impair. On retrouve notament
les résultats de [29, 23], où il est prouvé que si g ≥ 2, l’image est finie si et seulement si
r = 3. On étudie également l’infinitude des images des représentations associées au tore
percé, qui n’était connue qu’asymptotiquement dans [77].

Dans la troisième section, on exhibe des relevés linéaires explicites des représentations
de Weil. Plus précisément, on relève les représentations de Weil en représentations linéaires
de Sp2g(Z) lorsque g = 1 et lorsque g ≥ 2 et que le niveau est impair. Lorsque g ≥ 2
et que le niveau est pair, on relève les représentations de Weil en représentations d’une
extension centrale non triviale de Sp2g(Z) par Z/2Z.





Chapitre 1

Topological Quantum Field
Theories and quantum
representations

Résumé

Ce chapitre sert à définir les objets, fixer les notations et énoncer les ré-
sultats classiques dont nous aurons besoin dans la thèse. Il ne contient aucun
résultat original.

Dans la première section, nous introduisons la notion de TQFT. Il s’agit
d’un foncteur entre une catégorie de cobordismes et une catégorie de modules,
dont on peut extraire un invariant pour les 3-variétés fermées orientées munies
d’entrelacs en rubans et une famille de représentations pour les groupes mo-
dulaires des surfaces fermées orientées munies de points marqués. En suivant
[63, 14], nous définissons deux familles de TQFTs caractérisées d’une part par
une propriété dite d’écheveaux pour les entrelacs en rubans et d’autre part par
leur comportement vis-à-vis de la chirurgie.

La seconde section énonce des résultats classiques des représentations de
Weil et Reshetikhin-Turaev issues de ces deux familles de TQFTs. Cela permet-
tra de fixer les notations et préparer le terrain pour les résultats des prochains
chapitres.

Abstract

In this chapter we define the objects, fix the notations and state the classical
properties needed in the thesis. Nothing original is claimed here.

In the first section, we introduce the notion of TQFT. It is a functor be-
tween a cobordism category and a module category from which we can extract
both an invariant for closed oriented 3-manifolds with an embedded link of
ribbons, and a family of representations of the mapping class groups of closed
oriented surfaces with marked points. Following [63, 14], we define two fami-
lies of TQFTs caracterized one the one hand by a skein property for their link
invariant and on the other hand by their behavior for surgery.

In the second section, we state some classical results concerning the Weil
and Reshetikhin-Turaev representations arising from these families of TQFTs.
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It permits to fix some notations and gives the background needed in the next
chapters.

1.1 Construction of U(1) and SU(2) TQFTs

1.1.1 TQFT and universal construction

Definition of TQFTs without anomaly

A TQFT is a monoidal functor between a cobordism category and a category of k-
modules.

We first define the cobordism category Cob2+1.
The objects of Cob2+1 are marked surfaces Σ = (Σ, b), which are closed oriented

surfaces Σ with an ordering on the set of its connected components and an ordered finite
set b = ((b1, ϵ1), . . . , (bn, ϵn)) of co-oriented embedding bi of [0, 1] in Σ called bands. We
add the empty surface as an element.

A banded cobordism between two marked surfaces Σ and Σ
′ is a M = (M,L, ϕ−, ϕ+)

where M is a compact oriented 3-manifold with boundary ∂M = ∂−M
⊔
∂+M , L is a

(possibly empty) framed tangle properly embedded in M and ϕ− : −Σ → ∂−M , ϕ+ : Σ′ →
∂+M are orientation preserving homeomorphisms so that ϕ+ (resp. ϕ−), sends the bands of
Σ′ (resp. of −Σ) to L∩∂+M (resp L∩∂−M) by preserving the co-orientations. Two banded
cobordisms are said equivalent if there exists a preserving orientation homeomorphism
relatively to the boundary between the two underlying 3 manifolds which preserves the
banded links.

The set of morphisms Hom(Σ,Σ′) is the set of equivalence classes of banded cobordisms
between Σ and Σ

′. The composition between M1 ∈ Hom(Σ,Σ′) and M2 ∈ Hom(Σ′,Σ′′)
is obtained by gluing the underlying cobordisms and links along ϕ−

2 ◦ (ϕ+
1 )−1 : ∂+M1 →

∂−M2. Figure 1.1 illustrates this composition. The neutral element of Hom(Σ,Σ) is the
class of the cylinder Σ × [0, 1] where we identify −Σ × {0} and Σ × {1} with Σ using the
identity map.

The category Cob2+1 has a duality, that is a functor dual : Cob2+1 → Cob2+1 so that
dual ◦ dual = 1. It consists of changing the orientation of the surfaces and cobordisms and
links.

Eventually the category Cob2+1 has a tensor product (we say it is a strict monoidal
category), that is a functor

⊔
: Cob2+1 × Cob2+1 → Cob2+1 which takes the disjoint union

of marked surfaces and cobordisms. It verifies the axioms of a tensor product, that is:

1.
⊔

is associative for objects and morphisms.

2. There is a neutral object ∅ (the empty surface) so that:

Σ
⊔

∅ = ∅
⊔

Σ = Σ and M
⊔
id∅ = id∅

⊔
M = M

3. idΣ
⊔
idΣ′ = idΣ

⊔
Σ′

4. If f ∈ Hom(X,X ′), f ′ ∈ Hom(X ′, X ′′), g ∈ Hom(Y, Y ′), g′ ∈ Hom(Y ′, Y ′′), then:

(f ◦ f ′)
⊔

(g ◦ g′) = (f
⊔
g) ◦ (f ′⊔ g′)
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Figure 1.1: The composition of two morphisms in the cobordism category.

Let k be a commutative ring with a unit, an involution and a ring isomorphism ⟨·⟩ :
Hom(k, k) → k. The main examples will be the field of complex numbers C with the
complex conjugacy and the cyclotomic ring Z[A]

/
ϕ2p(A) with the involution sending A

to A−1.

Roughly speaking, the category of k-modules Modk is the category of free finite rank k-
modules with the usual tensor product and duality. Unfortunately, this definition prevents
the existence of functors Cob2+1 → Modk preserving tensor product. Indeed, the k-
modules (V1 ⊗ V2) ⊗ V3 and V1 ⊗ (V2 ⊗ V3) are isomorphic (with a unique isomorphism)
but not equal, whereas the banded surfaces (Σ1

⊔
Σ2)

⊔
Σ3 and Σ1

⊔
(Σ2

⊔
Σ3) are equal.

We solve the problem by defining the objects of Modk as finite (possibly empty) sequences
(V1, . . . , Vn) of free finite rank k-modules. The set Hom ((V1, . . . , Vn), (W1, . . . ,Wm)) is the
set of linear map V1 ⊗ . . .⊗Vn → W1 ⊗ . . .⊗Wm. The tensor product is the juxtaposition
of sequences and duality given by (V1, . . . , Vn)∗ = (V ∗

n , . . . , V
∗

1 ).

Note that a ring morphism ν : k1 → k2 that preserves involution, gives rise to a functor
ν∗ : Modk1 → Modk2 that preserves tensor product and duality.

We finally state the:

Definition 1.1.1. A Topological Quantum Field Theory (or simply TQFT) is a functor
V : Cob2+1 → Modk which preserves the duality and the tensor product (and the neutral
object V (∅) = k). A morphism between two TQFTs (V1, k1) and (V2, k2) is a ring morphism
ν : k1 → k2 that preserves involution, together with a natural map between ν∗ ◦ V1 :
Cob2+1 → Modk2 and V2 preserving duality and tensor product.

We may also want the framed link inside cobordisms to be oriented. We define similarly
a category Cobo

2+1 of cobordism where the objects are banded surfaces where each band bi
is equipped with a sign ϵi ∈ {−1,+1} and the morphisms are classes of banded cobordisms
where the core of each framed link is oriented in such a way that is only allowed to enter
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through a band with sign −1 and leave through a signed +1 band. A pair (U, k) with k a
ring and U a functor U : Cobo

2+1 → Modk that preserves tensor product and duality will
be called an oriented TQFT without anomaly. Figure 1.2 illustrates such a functor.

+

-
+

-

+

-

Figure 1.2: Illustration of a TQFT

Three-manifolds invariants

Let (M,L) be a closed oriented 3-manifold with an embedded link L. It defines an
element of Hom(∅, ∅). If (V, k) is a TQFT, then V (M,L) ∈ Hom(k, k) � k.

Definition 1.1.2. If (V, k) is a TQFT without anomaly, the map

⟨·⟩V : {closed oriented 3-manifolds with embedded link} /homeo+ → k

sending (M,L) to ⟨V (M,L)⟩, is the quantum invariant associated to (V,L).

This invariant satisfies the following properties:

1. ⟨∅⟩V = 1k.

2. ⟨M1
⊔
M2⟩V = ⟨M1⟩V · ⟨M2⟩V .

3. ⟨−M⟩V = ¯⟨M⟩V
An invariant that satisfies these three properties will be called a good invariant.

Mapping class group representations

Let Σ be a marked surface. We denote by Mod(Σ) the mapping class group of
orientation-preserving homeomorphisms of Σ that preserve the bands together with their
co-orientations. To ϕ ∈ Mod(Σ) we associate the cylinder C(ϕ) ∈ Hom((Σ), (Σ)) which is
the class of the cobordism Σ × [0, 1] with the link

⊔
i bi × [0, 1], where we identify Σ × {0}

with −Σ with the identity map and Σ × {1} with Σ with ϕ.

Definition 1.1.3. Let (V, k) be a TQFT without anomaly and Σ be a marked surface.
The group morphism:

ρV,Σ : Mod(Σ) → GL(V (Σ))
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defined by ρV,Σ(ϕ) = V (C(ϕ)), is called the quantum representation of Σ associated to
(V, k).

Non-degeneracy condition and the universal construction

Under certain non-degeneracy assumptions, a TQFT is completely determined by its
quantum invariant. In [14], the authors gave a method to construct a TQFT from a good
invariant.

Notation 1.1. When M is a compact oriented manifold with boundary ∂M � Σ, then M
may be seen as a banded cobordism M between ∂−M = ∅ and ∂+M = Σ. The morphism
V (M) ∈ Hom(k, V (Σ)) is completely determined by the image of the neutral element 1k
of k. We write:

Z(M) := V (M)(1k) ∈ V (Σ)

the vector associated to M .

Definition 1.1.4. A TQFT without anomaly (V, k) is non degenerate if:

1. For every marked surface Σ, the module V (Σ) is spanned by the vectors Z(M) with
M a compact oriented manifold with boundary Σ.

2. The bilinear form ⟨·, ·⟩
Σ,V : V (Σ) × V (Σ) → k defined by:

⟨Z(M1), Z(M2)⟩
Σ,V =

⟨
−M1

∪

Σ

M2

⟩

V

is non-degenerate, i.e. defines an isomorphism V (Σ) � (V (Σ))∗.

The universal construction is defined as follows. Let

I : {closed oriented 3-manifolds with embedded link} /homeo+ → k

be a good invariant. If Σ is a marked surface, we denote byNΣ the free k-module generated
by the classes of banded cobordisms M such that ∂M = Σ. We define the k-module VI(Σ)
as the quotient of NΣ by the kernel of the bilinear form:

⟨·, ·⟩
Σ,I : NΣ ×NΣ → k

defined by ⟨M1,M2⟩
Σ,I = I(M1

∪
Σ −M2).

A class of banded cobordism M ∈ Hom(Σ,Σ′) acts naturally on VI(Σ) by sending a
class [Z(X)] ∈ VI(Σ) to the class [Z(M

∪
ΣX)] ∈ VI(Σ

′). We get a functor VI : Cob2+1 →
Modk in this way.

It follows from definitions that VI is a TQFT without anomaly if and only if:

1. The modules VI(Σ) have finite rank.

2. The bilinear form ⟨·, ·⟩
Σ,VI

induces an isomorphism V (−Σ) � (V (Σ))∗.

3. The map V (Σ) ⊗ V (Σ′) → V (Σ
⊔

Σ
′) is an isomorphism.

The second point follows from the first one if k is a field.

Remark. The definition of TQFT we gave suits well for the ones we want to study in
this manuscript but is restrictive. Recent constructions involve also TQFTs with infinite
dimensional vector spaces associated to surfaces. We might also simply ask the map
V (Σ) ⊗ V (Σ′) → V (Σ

⊔
Σ) to be injective and drop the non-degeneracy assumption as

well.
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1.1.2 Skein relations and colored Jones polynomials

In this section, k is a commutative ring with an involution so that there exists an
isomorphism ⟨·⟩ : Hom(k, k) → k and a ring morphism µ : Z[A,A−1] → k with ¯µ(A) =
A−1. When no confusion is possible, we will simply denote by A the element µ(A) ∈ k.

Link invariants

Let Σ0,4 ∈ obj(Cob2+1) and Σ0
0,4 ∈ obj(Cobo

2+1) be the sphere S2 with four bands
where the signs of the bands of Σo

0,4 are −1,−1,+1 and +1. We consider the banded

cobordisms , , ∈ Hom(∅,Σ0,4) and ∈ Hom(∅, S3) and the cobordisms

, , ∈ Hom(∅,Σo
0,4) and ∈ Homo(∅, S3).

Definition 1.1.5.

An oriented TQFT U : Cobo
2+1 → Modk respects the abelian skein relations if:

– ZU ( ) = AZU ( ),

– ZU ( ) = A−1ZU ( ),

– ZU ( ) = ZU (∅).

A non-oriented TQFT V : Cob2+1 → Modk respects the Kauffman skein relations if:

– ZV ( ) = A−1ZV ( ) +AZV ( ),

– ZV ( ) = −(A2 +A−2)ZV (∅).

Recall that the linking number lk(L) of a framed oriented link is defined as the number
of positive crossing minus the number of negative ones of an arbitrary diagram representing
the link. Note that the quantum invariant of a framed link L ⊂ S3 for a TQFT which
respects the abelian skein relations is equal to Alk(L), so is related to the linking number
lk(L) modulo p.

The quantum invariant of a framed link for a TQFT which respects the Kauffman skein
relation is the Kauffman bracket as defined in [48] closely related to the Jones polynomial
([47]).

We will define two families (Up, k
′
p)p≥2 and (Vp, kp)p≥3 of non degenerate TQFTs that

respect the skein relations. They will be indexed by an integer p which specifies the order
of A ∈ k. This is motivated by the following proposition, whose proof is postponed to the
end of the subsection:

Proposition 1.1.6. If k is the ring of a non-degenerate TQFT which respects the skein
relations, then there exists an integer p, invertible in k, such that A is a primitive p-th
root of unity if p is odd in the abelian case and such that A has order 2p in the other cases.

The integer p of the previous proposition will be called the level of the TQFT.
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Skein modules and skein algebras

The skein modules were introduced independently by V. Turaev ([84]) and J. Przytycki
([44]). They are central objects in the study of TQFTs which respect skein relations.

Definition 1.1.7.

Let M be an oriented compact 3-manifold, k a commutative ring with a morphism
µ : Z[A±]. The skein modules Kk(M) and Tk(M) are the quotient of the free k-module
generated by isotopy classes of framed links in M , by the skein relations of Figure 1.3.

Figure 1.3: The skein relations defining Tk(M) on the top and Kk(M) on the bottom.

If Σ is an oriented compact surface, the skein algebras Tk(Σ) and Kk(Σ) are the k-
modules Tk(Σ × [0, 1]) and Kk(Σ × [0, 1]). The product of the classes of two links L1 and
L2 in Σ × [0, 1] is obtained by isotoping L1 in Σ × [0, 1

2) and L2 in Σ × (1
2 , 1] and then

gluing the two parts in Σ × [0, 1].

Remark. 1. The algebras Tk(Σ) are usually called quantum tori. Note that the class of
a link embedded in Σ × {1

2} in an abelian skein algebra, only depends on the integer
homology of the link. If [L1] and [L2] are the classes in H1(Σ,Z) of two links and
ω([L1], [L2]) represents the crossing number, the product in the abelian skein algebra
is then given by:

[L1] · [L2] = Aω([L1],[L2])[L1 + L2]

2. We introduce skein modules because if U and V are non-degenerate TQFTs that
respect the abelian and Kauffman relations respectively, then U(Σ) is a quotient of⊕

∂M=Σ Tk(M) and V (Σ) a quotient of
⊕

∂M=Σ Kk(M).

A multicurve in a surface Σ is a one-dimensional submanifold with no contractible
components.

Proposition 1.1.8. If Σ is an oriented compact surface, then:
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1. The module Tk(Σ) is freely generated by the elements of H1(Σ,Z).

2. The module Kk(Σ) is freely generated by the multicurves of Σ.

Proof. Any link in Σ × [0, 1] can be isotoped and projected in Σ × {1
2} to give a regular

diagram, that is an embedded graph (oriented in the abelian case) with vertices of degree

four and with the choice for each vertex of a crossing or . Using the skein
relations of Figure 1.3, we associate to the class of the link in the skein modules, a linear
combination of regular diagram without crossing nor contractile components corresponding
to multicurves. This shows that multicurves generate Kk(Σ) and that the elements of
H1(Σ,Z) generate Tk(Σ).

The fact that the abelian skein relations preserve the class of a link in H1(Σ,Z), implies
that the set of elements of H1(Σ,Z) in Tk(Σ) is free.

To show that the set of multicurves of Σ in Kk(Σ) is free, denote byK ′ the free k-module
generated by isotopy classes of multicurves and by ψ : K ′ → Kk(Σ) the map sending a
multicurve to the skein class of the corresponding framed link in Σ × {1

2} ⊂ Σ × [0, 1].
To construct its reverse map ϕ : Kk(Σ × [0, 1]) → K ′, first note that Kk(Σ × [0, 1])

is isomorphic to the free k-module generated by isotopy classes of regular diagrams, quo-
tiented by the framed Reidemeister moves of Figure 1.4 and the Kauffman skein relations
of Figure 1.3.

Figure 1.4: The three framed Reidemeister moves.

Let D be a regular diagram and V (D) be the set of its vertices. To each map c :
V (D) → {−1,+1}, we associate a multicurve Dc obtained by replacing each vertex v with

crossing by the smoothing if c(v) = +1 and by if c(v) = −1, and then
removing the contractible components. We also denote by n(c) the number of contractible
components removed and m(c) :=

∑
v∈V (D) c(v).

The map:

ϕ(D) =
∑

c

Am(c)
(
−A2 −A−2

)n(c)
Dc ∈ K ′

is invariant under the framed Reidemeister moves and the Kauffman skein relations and
gives the reverse map of ψ which is thus injective. This implies that the set of multicurves
in Kk(Σ) is free. �

The Temperley-Lieb algebras and the Jones-Wenzl idempotents

Definition 1.1.9. Given n ≥ 2, the Temperley-Lieb algebra TLn is the quotient of the
k-module generated by isotopy classes of (n, n)-tangles by the Kauffman skein relations (
Figure 1.3). The composition is given by gluing two tangle vertically whereas the horizontal
juxtaposition defines a morphism TLn ⊗ TLm → TLn+m.
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The algebra TLn has a finite presentation with generators the neutral 1n and the
elements bi, for 1 ≤ i ≤ n−1, of Figure 1.5. The relations are given by the above relations
and the fact that 1n is the neutral:

1. b2
i = −(A2 +A−2)bi, for 1 ≤ i ≤ n− 1.

2. bibi±1bi = bi , for 1 ≤ i ≤ n− 1.

3. bibj = bjbi, when |i− j| > 1.

Figure 1.5: The elements b1, b2 and b3 of TL4 .

Definition 1.1.10.

– The Chebychev polynomials Tn ∈ Z[X] are defined by T1 = 1, T2 = X and the
recursive formula:

Tn(X) = XTn−1(X) − Tn−2(X)

In particular Tn(X +X−1) = Xn−X−n

X−X−1 = Xn−1 +Xn−3 + . . .+X−n+1.
– The quantum numbers [n] ∈ k are defined by [2] := A2 +A−2 and:

[n] := Tn([2]) =
A2n −A−2n

A2 −A−2

– The Jones-Wenzl idempotents f0, . . . , fn ∈ TLn are defined by the following recursive
formula, starting with f0 = 1, and illustrated in Figure 1.6:

fn+1 = fn ⊗ 11 +
[n]

[n+ 1]
(fn ⊗ 11) (bn) (fn ⊗ 11)

Figure 1.6: The recursive formula defining the Jones-Wenzl idempotents.
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By abuse, we will identify an element u ∈ TLn with the element u ⊗ 1m ∈ TLn+m

when no confusion is possible. We thus consider f0, . . . , fn as elements of TLn.

Lemma 1.1.11. The Jones-Wenzl idempotents f0, . . . , fn ∈ TLn are characterized by the
following properties:

1. fn , 0.

2. f2
n = fn.

3. bifn = fnbi = 0, for all i ≤ n− 1.

Proof. We show by induction the following properties which imply the ones of the lemma:

(1n) (fn)2 = fn

(2n) bifn = 0,∀i ≤ n− 1

(3n) (bnfn)2 = − [n+1]
[n] bnfn

We suppose these properties hold for some n ≥ 1 and show (1n+1) :

(fn+1)2 = (fn +
[n]

[n+ 1]
fn.bn.fn)2

= fn + 2
[n]

[n+ 1]
fn.bn.fn +

(
[n]

[n+ 1]

)2

fnbnfnbnfn

= fn +
[n]

[n+ 1]
fnbn+1fn = fn+1

We show (2n+1)

bifn+1 = bi(fn +
[n]

[n+ 1]
fnbn+1fn) = 0

bnfn+1 = bnfn +
[n]

[n+ 1]
(bnfn)2 = 0

We show (3n+1)

(bn+1fn+1)2 = bn+1(fn +
[n]

[n+ 1]
fnbnfn)bn+1fn+1

= −[2]bn+1fn+1 +
[n]

[n+ 1]
bn+1fn+1

= − [n+ 2]

[n+ 1]
bn+1fn+1

Denote by ϵ0 : TLn → k the algebras morphism mapping 1n to 1 and bi to 0. It
follows from the definition of the fn that ϵ0(fn) = 1. Now suppose gn ∈ TLn satisfies
the three properties of the lemma and write xn = gn − ϵ0(gn)1n. Since g2

n = gn and
gnxn = xngn = 0 we must have ϵ0(gn) = 1 also. Now we have fngn = fn(1n + xn) = fn
and similarly gnfn = gn. Thus fn = gn and the three properties characterize fn. �
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The previous lemma implies that:

fnu = ufn = ϵn(u)fn, for all u ∈ TLn

where ϵn : TLn → k is the algebras morphism defined by ϵn (
∑
k αkbk) = αn and ϵn(1n) =

0.

Denote by Tn, Cn and Λn the elements of TLn defined by Figure 1.7 and write µn :=
ϵn(Tn) and λn := ϵn(Cn).

Figure 1.7: Three elements of TLn.

Lemma 1.1.12. We have µn = (−1)nAn(n+2), λn = −(A2(n+1) +A−2(n+1)) and ϵn(Λn) =
A2n−2.

Proof. Figure 1.8 shows the following three equalities:

1. Tn+1 · (11 ⊗ Tn) = −A3Λn+1.

2. Cn+1 = A−2(11 ⊗ Cn) + (1 −A4)Λn+1.

3. Λn+1 = A2(11 ⊗ Λn) + hn where ϵn(hn) = 0.

Taking the image by ϵn, we get the following system:




µn+1 = −A3ϵn+1(Λn+1) · µn
λn+1 = A−2λn + (1 −A4)ϵn+1(Λn+1)
ϵn+1(Λn+1) = A2ϵn(Λn)

We conclude by induction on n.
�

Colored Jones polynomials

The tangles of TLn can be seen as braids in D2 × [0, 1]. When we identify D2 × {0}
with D2 ×{1}, we obtain a framed link in D2 ×S1. We denote by Trn : TLn → K(D2 ×S1)
the induced linear map and define the elements:

un := Trn(fn) ∈ K(D2 × S1)

Let K ⊂ S3 be a framed knot. We define a map

ϕK : K(D2 × S1) → k

by embedding D2 ×S1 in S3 into a tubular neighborhood of K using the framing of K to
specify the gluing, and the isomorphism ⟨·⟩ : K(S3) → k.
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Figure 1.8: A proof for three equalities in TLn. The integers in front of the strands
indicate the number of parallel copies we take.

Similarly if L ⊂ S3 is a framed link with m components, we define a map:

ϕL : K(D2 × S1)⊗m → k

Definition 1.1.13. The elements ϕL(ui1 , . . . , uim) ∈ k, for ik ∈N, are called the colored
Jones polynomials of L.

Lemma 1.1.14. The following three facts hold:

1. We have ui = Ti(u1), for all i ∈N, where Ti is the i-th Chebychev polynomial defined
in Definition 1.1.10.

2. If Ω0 ⊂ S3 is the trivial framed knot, then:

ϕΩ0(ui) = (−1)i[i+ 1]

3. If H ⊂ S3 denotes the Hopf link, then:

ϕH(ui, uj) = (−1)i+j [(i+ 1)(j + 1)]

Proof. To prove the first point, we first derive from the recursive Definition 1.1.10 of the
Jones-Wenzl idempotents the following equality:

ei = Trn(fi) = Trn(fi−1 ⊗ 11) +
[i− 1]

[i]
Trn(bifi−1)

= u1Trn(fi−1) +
[i− 1]

[i]
(Trn(bifi−2) +

[i− 2]

[i− 1]
Trn(bifi−2bi−1fi−2))
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We then remark the following two facts which can be proved using simple drawings:

Trn(bifi−2) = −(A2 +A−2)Trn(fi−2)

Trn(bifi−2bi−1fi−2) = Trn(bibi−1fi−2) = Trn(fi−2)

We deduce that:

Trn(fi) = u1Trn(fi−1) − [i− 1]

[i]
(A2 +A−2 +

[i− 2]

[i− 1]
)Trn(fi−2) = u1Trn(fi−1) − Trn(fi−2)

This is equivalent to ei = e1ei−1 − ei−2 and the result follows from the definition of
the Tchebychev polynomials.

The second point is shown by induction. Suppose it holds for some n− 1 ≥ 1, then:

ϕΩ0(un) = ϕΩ0(un−1) +
[n− 1]

[n]
ϕΩ0(Trn(fn−1bnfn−1))

=
−[n][2] + [n− 1]

−[2][n]
ϕΩ0(un−1)

= − [n+ 1]

[2][n]
ϕΩ0(un−1)

= (−1)n[n+ 1]

To show the third point, write Tj(X) =
∑
k sj,kX

k. We have:

Si,j := ϕH(ui, uj) =
∑

k

sj,ksj,kλ
k
i ϕΩ0(ui)

= Tj(−A2(i+1) −A−2(i+1))(−1)i[i+ 1]

= (−1)i+j
A2(i+1)(j+1) −A−2(i+1)(j+1)

A2(i+1) −A−2(i+1)

A2(i+1) −A−2(i+1)

A2 −A−2

= (−1)i+j [(i+ 1)(j + 1)]

�

Trivalent graphs, theta and tetrahedron coefficients

Definition 1.1.15.

A triple (i, j, k) of non negative integers is said admissible if:
– i+ j + k is even,
– |i− j| ≤ k ≤ i+ j.

If Γ is a trivalent graph (the vertices have degree 3) with set of edges E(Γ), an admis-
sible coloring of Γ is a map σ : E(Γ) → N so that if (e1, e2, e3) are three edges adjacent
to one vertex, then (σ(e1), σ(e2), σ(e3)) is admissible.

If Γ ⊂ M is a trivalent graph embedded in a compact 3-manifold M and σ a coloring,
we associate an element of Kp(M), called the expansion of (Γ, σ), by replacing each edge
e ∈ E(Γ) by the idempotent fσ(e) and cabling three idempotents along a vertex using the
planar tangle Te1,e2,e3 of Figure 1.9.



26
Chapitre 1. Topological Quantum Field Theories and quantum

representations

Figure 1.9: The link Ti,j,k used to connect three idempotents fi, fj and fk. The numbers
above each three arcs denote the number of parallel copies of the arc used to define the
link.

Consider the theta graph and the tetrahedron graph in S3 of Figure 1.10, and denote

by ⟨a, b, c⟩ and

⟨
A B E
C D F

⟩
the Kauffman bracket of their expansion using the colorings

of Figure 1.10.

Figure 1.10: The colored tetha and tetrahedron graphs.

The computation of these theta and tetrahedron coefficients can be made using the
recursive formula of the Jones-Wenzl idempotents (Definition 1.1.10). We refer to [70] for
a proof.

Proposition 1.1.16. Note i = −a+b+c
2 , j = a−b+c

2 , k = a+b−c
2 , then we have:

⟨a, b, c⟩ = (−1)i+j+k
[i+ j + k + 1]![i]![j]![k]!

[i+ j]![j + k]![i+ k]!

Proposition 1.1.17. Note:

a1 = (A+B + E)/2 b1 = (B + C + E + F )/2
a2 = (B +D + F )/2 b2 = (A+B + C +D)/2
a3 = (C +D + E)/2 b3 = (A+D + E + F )/2
a4 = (A+ C + F )/2

Then we have:
⟨
A B E
D C F

⟩
:=

∏3
i=1

∏4
j=1[bi − aj ]!

[A]![B]![C]![D]![E]![F ]!

∑

max(aj)≤z≤min(bi)

(−1)z[z + 1]!
∏3
i=1[bi − z]!

∏4
j=1[z − aj ]!
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Proof of Proposition 1.1.6

The Hopf link H ⊂ S3 defines bilinear maps ϕH : Kk(D
2 × S1) × Kk(D

2 × S1) → k
and ϕ̃H : Tk(D2 × S1) × Tk(D2 × S1) → k. If V and U are non degenerate TQFTs which
respect the Kauffman skein relations and the abelian skein relations respectively, then
Kk(D

2 × S1)
/
kerϕH is a quotient of a submodule of V (Σ) and Tk(D2 × S1)

/
kerϕ̃H is a

quotient of a submodule of U(Σ). Denote by ei ∈ Tk(D2 × S1) the class of the link made
of i parrallel copies of {0} × S1. Proposition 1.1.6 follows from the following:

Lemma 1.1.18. The modules Kk(D
2 × S1)

/
kerϕH and Tk(D2 × S1)

/
kerϕ̃H have finite

rank if and only if A2 ∈ k is a root of unity. If p denotes the order of A2, then p divides
the determinant of ϕH and ϕ̃H in this quotient.

If p ∈ k is invertible, then:

1. {e0, e1, . . . , ep−1} is a basis of Tk(D2 × S1)
/
kerϕ̃H ,

2. {u0, u1, . . . , u p−4
2

} is a basis of Kk(D
2 × S1)

/
kerϕH , when p is even,

3. {u0, u2, u4, . . . , up−3} is a basis of Kk(D
2 × S1)

/
kerϕH , when p is odd.

Proof. The matrix Tp :=
(
ϕ̃H(ei, ej)

)

0≤i,j≤p−1
=
(
A2ij

)
0≤i,j≤p−1 is a Vandermonde ma-

trix of determinant det(Tp) =
∏
i<j (A2j −A2i). If Tk(D2 × S1)

/
kerϕ̃H has finite rank,

this determinant must vanish for some p which implies that A2 is a root of unity. If p
denotes its order, then Tp is invertible but none of the Tp+i, for i > 1, is invertible. This

implies that {e0, e1, . . . , ep−1} is a basis of Tk(D2 × S1)
/
kerϕ̃H . Now consider the matrix

T ′
p :=

(
A−2ij

)
0≤i,j≤p−1. A simple computation shows that TpT ′

p = p1, thus p divides the
determinant of Tp.

In the non abelian case, consider the basis of Kk(D
2 × S1) given by the elements

Q0 := 1 and
Qn := (u1 − λ0) . . . (u1 − λn−1) ∈ Kk(D

2 × S1)

, where the λi, i ≥ 1 are given by Lemma 1.1.12 and we put λ0 := −(A2 +A−2).
A simple induction shows that:

ϕH(Qn, Qm) =

{
0 , if n , m;∏

1≤i≤n (λi − λi−1)σi−1 , if n = m.

where σn−1 :=
∑
i≤n λi for n ≥ 1.

Thus if Kk(D
2 × S1)

/
kerϕH has finite rank, then there exists n ≥ 1 so that either

λn = 0 or λn = λn−1. Both cases imply that A2 is a root of unity. We denote by p its
order.

Now recall that in Lemma 1.1.14, we have computed the colored Jones polynomials of
the Hopf link and found that:

ϕH(ui, uj) = (−1)i+j [(i+ 1)(j + 1)]

Simple computations on quantum numbers imply that in the quotient Kk(D
2 × S1)

/
kerϕH ,

we have:
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1. ui+p = (−1)pup.

2. un+i = −un−i, if p = 2n.

3. un+i = un−i−1, if p = 2n+ 1.

If p = 2n, it follows that {u0, u1, . . . , u p−4
2

} is a generating set of Kk(D
2 × S1)

/
kerϕH .

Denote by Sp the matrix of ϕH in this family. A simple computation shows that:

(A2 −A−2)2(Sp)
2 = −p1

thus {u0, u1, . . . , u p−4
2

} is a basis and p divides the determinant of Sp.

If p = 2n+1, we have that {u0, u2, u4, . . . , up−3} is a generating set of Kk(D
2 × S1)

/
kerϕH .

Still denote by Sp the matrix of ϕH in this family and note N :=

(
1 −1

−1 1

)
. A direct

computation shows that S2p = Sp ⊗ N . Using the result in the even case, we conclude
that Sp is invertible and that p divides its determinant.

�

1.1.3 Surgery

Dehn surgery

Definition 1.1.19. Let M be a compact oriented 3-manifold and K a framed knot in M .
Choose N(K) a tubular neighborhood of K in M and a homeomorphism ϕ : ∂(D2 ×S1) →
∂(M−N(K)). The 3-manifold (M−N(K))

∪
ϕ(D2 ×S1) is said obtained by Dehn surgery

from M along K.

The obtained manifold only depends, modulo preserving orientation homeomorphism,
of the isotopy class of ϕ in SL2(Z). Fix ([l], [m]) a basis of H1(∂(D2×S1),Z) so that [m] is
contractible in D2 ×S1. Fix also a basis ([L], [M ]) of H1(∂(N(K)),Z) so that [M ] = [K] is
obtained by isotoping K on the boundary of N(K) by conserving its framing. There exists
a unique class [ϕ] ∈ SL2(Z) sending [l] to [M ] and [m] to [L]. We denote by M(K) the
3-manifold obtained by Dehn surgery from M along K using [ϕ]. This definition extends
inductively to the framed links.

A similar definition can be given in the context of 4-manifolds.

Definition 1.1.20. Let W be a compact oriented 4-manifold. A 2-handle h is a copy of
D2 ×D2 glued to W using an embedding ψ : (∂D2) ×D2 → ∂W . The 4-manifold W

∪
ψ h

is said to be obtained from W by adding a 2-handle.

Again W
∪
ψ h only depends, modulo preserving orientation homeomorphism, on the

isotopy class of ψ. The gluing data of 2-handle can be obtained from a framed knot in ∂W
as follows. Consider K ⊂ ∂W a framed knot and N(K) a tubular neighborhood of K in
∂W . We define a homeomorphism ϕK : (∂D2)× (∂D2) → N(K) like previously, that is by
choosing [K] as a meridian of ∂(N(K)) and exchanging the longitudes and meridians. The
homeomorphism ϕK extends uniquely to a homeomorphism ψK : (∂D2) × D2 → N(K).
We denote by WK := W

∪
ψK

h the 4-manifold obtained by adding a 2-handle to W using
ψK and extend inductively this definition to framed links.
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The 4-manifolds D4
L, where L ⊂ S3 is a framed link, are called 2-handlebodies.

The two constructions are related by the following:

Proposition 1.1.21. Let L be a framed link in M = ∂W , then M(K) � ∂WK .

When M = ∂WL, the homology and signature of M are related to the linking matrix
of L through the following:

Proposition 1.1.22. Let W = D4
L be a 2-handlebody, where L = L1

⊔
. . .
⊔
Lm and

M = ∂W . Denote by B the intersection form on H2(W,Z). We have:

1. The module H2(W,Z) is free of rank m and has basis the set {[Li]}1≤i≤m.

2. The matrix ([Li] • [Lj ])i,j of B in this basis is equal to the linking matrix (lk(Li, Lj))i,j
of L. In particular they have same signature.

3. We have an isomorphism H2(M,Z) � ker(B).

4. We have an isomorphism H1(M,Z) � coker(B).

We refer to [40] for detailed proofs of the previous two propositions. The two last
points of the last theorem follow from the exact sequence:

H3(M,W ) = 0 → H2(M) → H2(W ) → H2(W,M) → H1(M) → 0 = H1(W )

We have a well defined map sending a framed link L ⊂ S3 to an oriented closed 3-
manifold S3(L). Lickorish and Wallace independently showed that this map is onto. Its
kernel has been described by Kirby.

Theorem 1.1.23 (Lickorish [61], Wallace [87]). Every oriented connected closed 3-manifold
is obtained by Dehn surgery from S3 along a framed link (so is the boundary of a 2-
handlebody).

The following so-called Kirby moves where introduced in [50]. We give a slightly
modified definition following [25].

Definition 1.1.24. Two framed links L and L′ in M are related by a sequence of Kirby
moves if they differ locally by the transformations K+ and K− of Figure 1.11.

Figure 1.11: The two local transformations on links defining the Kirby moves.

We easily see that if L and L′ inM are related by Kirby moves, thenM(L) is isomorphic
to M(L′). We have better:

Theorem 1.1.25 (Kirby [50]). Let M be a compact oriented 3-manifold and L,L′ two
framed links in M . The manifolds M(L) and M(L′) are homeomorphic if and only if L
and L′ are related by a sequence of Kirby moves.
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As a consequence, we have a set bijection:
{

framed links
in S3

}/
isotopy
Kirby moves

↔
{

oriented connected
closed 3-manifolds

}/
preserving orientation
homeomorphisms

The surgery axioms for TQFTs

We will define two properties which, together with non degeneracy and the skein
properties, completely characterize the TQFTs we will study in this manuscript.

We denote by S2 × [0, 1] and −D3⊔D3 the cobordisms of Hom(S2, S2) with boundary
identification by the identity map. We also note D2 ×S1 and −S1 ×D2 the cobordisms of
Hom(∅, S1 × S1) where we identify the boundary with the identity map and the element(

0 −1
1 0

)
∈ SL2(Z) respectively.

Definition 1.1.26. Let V be a TQFT with ring k. We say that V satisfies the surgery
properties if:

1. There exists an invertible element η ∈ k× so that:

(S1) ZV (S2 × [0, 1]) = η−1ZV (−D3⊔D3)

2. There exists n ≥ 0, (a1, . . . , an) ∈ kn and (L1, . . . , Ln) framed links in D2 × S1, so
that:

(S2) ZV (−S1 ×D2) =
∑
i aiZV (D2 × S1, Li)

Remark. The surgery properties have immediate consequences. Suppose V in non degen-
erate and satisfies (S1) and (S2).

1. The property (S1) implies that:

⟨M1#M2⟩V = η−1 ⟨M1⟩V ⟨M2⟩V

where # denotes the connected sum.
Since S3#S3 � S3, we must have:

η =
⟨
S3
⟩

V

Remark that S2 × S1 is obtained from S3 by 1-surgery, i.e. by removing two balls
in S3 and gluing S2 × [0, 1] on the boundary. This implies that:

⟨
S2 × S1

⟩

V
= 1

2. If V also respects one of the skein relations, denote by

ω :=
∑

i

ai
(
D2 × S1, Li

)
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the class in the skein module of D2 ×S1. If L is a framed link in S3 and K a framed
link in S3(L), then:

⟨
S3(L),K

⟩

V
=
⟨
S3, ϕL(ω, . . . , ω) ∪K

⟩

V
= η ⟨ϕL(ω, . . . , ω) ∪K⟩

where ⟨·⟩ denotes the skein bracket. Thus V is completely characterized by the
choice of the ring k, the element ω in the skein module of D2 × S1 and the element
η ∈ k×.

3. Remark that performing Dehn surgery along the trivial framed link Ω0 ⊂ S3 gives
the manifold S2 × S1. Since

⟨
S2 × S1

⟩
V = 1, we have:

η−1 = ⟨ϕΩ0(ω)⟩

and ω determines η.

4. Recall that if V is a non degenerate TQFT that respects the skein relations (say e.g.
the Kauffman ones), then V (Σ) is the quotient of

⊕
∂M=Σ Kk(M) by the kernel of

the gluing form as defined in the universal construction. This module is huge, thus
the quotient is hard to study, but if V also satisfies the surgery axioms, then we can
choose any cobordism M ∈ Hom(∅,Σ), with arbitrary boundary identification, and
V (Σ) is the quotient of Kk(M) by the kernel of the corresponding gluing form. To
study V (Σ), we will choose for M a handlebody, whose skein module is described
by Proposition 1.1.8.

Fix an integer p ≥ 2 and, motivated by Proposition 1.1.6, consider the rings kp =

Z[A, 1
p ]
/
ϕ2p(A)

and k′
p = Z[A, 1

p ]
/
ϕp(A)

, where ϕp denotes the p-th cyclotomic polyno-
mial. We will define our TQFTs on a ring in which k′

p can be injected when p is odd in
the abelian case, and on which kp is injected in the other cases.

Definition 1.1.27. Given p ≥ 2 and a, b ∈ Z, we define the Gauss sums:

1. G(a, b, p) :=
∑
k∈Z/pZA

ak2+bk ∈ k′
p, when p is odd.

2. G(a, b, 2p) :=
∑
k∈Z/2pZA

ak2+bk ∈ kp.

The computation of the Gauss sums is detailed in [10]. For x ∈ kp, denote by x̄ the
involution sendingA toA−1and write |x|2 := xx̄. We will use the facts that |G(1, 0, p)|2 = p

when p is odd, |G(1, 0, 2p)|2 = 2p when p is even and G(1, p, 2p) = A
p(p−1)

2 G(1, p, 2p). In
particular, the fact that p is invertible in kp and k′

p implies that the Gauss sums are
invertible too.

Denote by t the endomorphism of the skein module of D2 ×S1 obtained by performing
a positive Dehn twist along the meridian (∂D2) × {0}. Lemma 1.1.12 implies that:

t(ui) = µiui

If b is an element of the skein module of D2 ×S1, we denote by ⟨u⟩ ∈ kp the skein bracket
of the element ϕΩ0(u). Lemma 1.1.14 implies that

⟨ui⟩ = (−1)i[i+ 1]



32
Chapitre 1. Topological Quantum Field Theories and quantum

representations

Lemma 1.1.28.

Let
Ωp :=

∑

0≤i≤p−1

ei ∈ Tp(D2 × S1)

Then:

a := ⟨t(Ωp)⟩ =

{
G(1, 0, p) , if p is odd.
1
2G(1, 0, 2p) , if p is even.

Denote also

Ωp :=





∑
0≤i≤ p−4

2
⟨ui⟩ui ∈ Kp(D

2 × S1) , when p is even.
∑

0≤i≤p−3

i even
⟨ui⟩ui ∈ Kp(D

2 × S1) , when p is odd.

Then:

a := ⟨t(Ωp)⟩ =
A−3

2(A2 −A−2)
G(1, p, 2p)

Proof. In the abelian case, remark that ⟨ei⟩ = 1 and t(ei) = Ai
2
ei, so:

⟨t(Ωp)⟩ =
∑

i

Ai
2

=

{
G(1, 0, p) , if p is odd.
1
2G(1, 0, 2p) , if p is even.

In the non abelian case, remark that Ωp = 1
4

∑2p−1
i=0 ⟨ui⟩ui regardless of the parity of

p. We compute:

< t(Ωp) > =
1

4

2p−1∑

k=0

µk < ek >
2

=
1

4

1

(A2 −A−2)2

2p−1∑

k=0

(−1)k−1Ak
2−1(A2k −A−2k)2

=
A−3

2(A2 −A−2)
G(1, p, 2p)

�

Proposition 1.1.29. If there exists a non degenerate TQFT Vp that preserves the skein
relations at level p and satisfies the surgery properties, then the following equality holds in
Vp(Σ1):

ωp = a−1Ωp

The above proposition and Remark 1.1.3 show that if there exists a non degenerate
TQFT Vp on kp that satisfies the skein and surgery properties, then it is unique. Moreover
it is universal, in the sense that if V ′

p is another TQFT that also satisfies the non degen-
eracy, skein and surgery properties at level p for some other ring k′

p, then there exists a
morphism between (Vp, kp) and (V ′

p , k
′
p) as defined in Definition 1.1.1.
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Proof. Remark that Up(S1 × S1) � Tkp(D2 × S1)
/
kerϕ̃H in the abelian case and that

Vp(S
1 × S1) � Kkp(D2 × S1)

/
kerϕH in the non abelian case. Thus Lemma 1.1.18 gives

explicit basis for this modules. The fact that the skein bracket of a links colored by ωp
must be invariant under the Kirby moves of Definition 1.1.24, implies that:

ϕH(t(ωp), t(b)) = ⟨b⟩ , for all b ∈ Up(S
1 × S1) (resp. b ∈ Vp(S

1 × S1) (1.1)

Now remark that the non degeneracy property implies that the bilinear form ϕH(t(·), t(·))
is non degenerate. So if ωp does exist, then it is unique.

We now have to show that a−1Ωp is solution of equation (1.1). First compute:

ϕH(t(a−1Ωp), t(b)) = a−1 ⟨t(Ωpb)⟩

=

{
a−1∑

i ⟨ei⟩ ⟨t(eib)⟩ , in the abelian case.
a−1∑

i ⟨ui⟩ ⟨t(uib)⟩ , in the non abelian case.

Denote by F the endomorphism of Up(S1 ×S1) (resp. Vp(S1 ×S1)) defined by F (b) :=∑
i eit(eib) (resp F (b) :=

∑
i uit(uib)). An induction on j shows that F (ej) = ejF (1) (resp

F (uj) = ujF (1)). Using Lemma 1.1.28, we have ⟨F (1)⟩ = a, and:

ϕH(t(a−1Ωp), b) = a−1 ⟨bF (1)⟩ = ⟨b⟩

Thus ωp = a−1Ωp. �

We have shown that if a TQFT satisfying the non degeneracy, skein and surgery
properties at level p, does exist, then it is unique. Conversely to show its existence, we
first have to verify that the skein class of a link colored by ωp is invariant under the Kirby
moves.

Proposition 1.1.30. Let L = L1 ∪ . . . ∪ Lm be a framed link in S3 and L+, L− be the
links obtained from L by performing the Kirby moves K+ and K− of Figure 1.11. Then:

ϕL+(Ω, ..,Ω) = aϕL(Ω, ..,Ω)

ϕL−
(Ω, ..,Ω) = āϕL(Ω, ..,Ω)

Moreover, denote by σ+(L) and σ−(L) the number of positive and negative eigenvalues of
the linking matrix of L. Then:

σ+(L+) = σ+(L) + 1 σ−(L+) = σ−(L)

σ+(L−) = σ+(L) σ−(L−) = σ−(L) + 1

Proof. We prove the result for the Kirby move K+ and leave the similar proof for K− to
the reader. Note L = L1 ∪ . . . ∪ Lm and L+ = L+

1 ∪ . . . ∪ L+
m ∪ T , where T is the twisted

knot added in the operation K+. Choose a tubular neighborhood N(T ) of T . The class of
L+

1 (ω) ∪ . . .∪L+
m(ω) in S3 −N(K) � D2 ×S1 gives an element v ∈ Vp(S

1 ×S1) such that
ϕL+(Ω, . . . ,Ω) = ϕH(v, t(Ω)) and ⟨v⟩ = ⟨ϕL(t(Ω), . . . , t(Ω)⟩. So

⟨
t−1(v)

⟩
= ⟨ϕL(Ω, . . . ,Ω)⟩

and:

ϕL+(Ω, ..,Ω) = < t(t−1(v)), t(Ω) >H

= < t−1(v) >< t(Ω) >

= ϕL(Ω, ..,Ω) < t(Ω) >
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Finally remark that the linking matrix of L+ is bloc diagonal, with one block given by
the linking matrix of L and a 1 × 1 bloc with value +1. This implies the property on the
signature. �

The Proposition 1.1.30 implies that ϕL(ω, . . . , ω) is invariant under the Kirby moves
if and only if a = ā = 1, which is never verified for any level. Thus:

There is no non degenerate TQFT which respects the skein relations and

the surgery axioms...without anomaly

Proposition 1.1.30 still has a positive consequence: it shows that
⟨
S3(L),K

⟩
:=

⟨ϕL(Ω, . . . ,Ω) ∪K⟩
aσ+(L)āσ−(L)

is invariant under the Kirby moves and gives a well defined good invariant for 3-manifolds.
We can of course apply the universal construction ot this invariant but, as explained in
Remark 1.1.3, the failure of the surgery axioms makes the study of the modules V (Σ)
almost impossible.

The trick is to extend the cobordism category so that cobordisms carry information
that, once glued together, recover the signature of 3-manifolds. This justifies the intro-
duction of anomaly in the next subsection.

1.1.4 TQFT with anomaly and definition of Up, Vp

The dependance on the signature of the 3-manifold in the formulas defining the quan-
tum invariants leads to the introduction of a so-called anomaly, that is we must change
the cobordism category by adding some structure on the surfaces and cobordisms that
permits to compute the signature by gluing such structure cobordisms. Different struc-
tures might be used such as Atiyah’s 2nd framing of 3 manifold ([7]), p1-structures ([14]),
spin-structures ([15]). We will choose a structure defined by Walker ([86]), and further
developed by Turaev ([83]) and studied in [38], in which surfaces are equipped with a
Lagrangian in their first rational homology group, and cobordisms are equipped with an
integer.

Maslov index

Let λ1, λ2, λ3 be three Lagrangians of some symplectic space (H,ω). We define a
symplectic bilinear form ⟨·, ·⟩ on (λ1 + λ2) ∩ λ3 as follows. If a = a1 + a2 and b = b1 + b2

are in λ3 with a1, b1 ∈ λ1 and a2, b2 ∈ λ2, then:

⟨a, b⟩ := ω(a2, b)

This form is well defined because the choice of a decomposition a = a1 +a2 may only differ
by an element of λ1 ∩ λ2 annihilated by b ∈ λ1 + λ2 = (λ1 ∩ λ2)⊥. This form is symmetric
for:

< a, b > − < b, a >= ω(a2, b) − ω(b2, a) = ω(a, b) − ω(b, a) = 0
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Definition 1.1.31. The signature of ⟨·, ·⟩ (the number of positive eigenvalues minus the
number of negative ones) is called the Maslov index µ(λ1, λ2, λ3) of the three Lagrangians
λ1, λ2, λ3.

Proposition 1.1.32. The Maslov index satisfies the following:

1. µ is anti-symmetric under permutation of the Lagrangians.

2. If H and H ′ are two symplectic spaces, N : H → H ′ is a relation and λ1, λ2 ∈ Λ(H),
λ′

1, λ
′
2 ∈ Λ(H ′) are Lagrangians, then:

µ(λ1, λ2, N
∗(λ′

1)) + µ(N∗(λ1), λ′
1, λ

′
2) = µ(λ1, λ2, N

∗(λ′
2)) + µ(N∗(λ2), λ′

1, λ
′
2)

We refer to [85] for a proof.

TQFT with anomaly

We will consider the symplectic spaces H1(Σ,Q), where Σ is a closed oriented surface,
together with the intersection form.

A compact oriented 3-manifold M gives rise to a Lagrangian λM of H1(∂M,Q) defined
as the kernel of the inclusion map iΣ : H1(∂M,Q) → H1(M,Q).

The structure cobordisms category Cob2+1 is defined as follows.

The objects are pairs Σ = (Σ, λ) called structure surfaces, where Σ is a banded surface
and λ a Lagrangian in H1(Σ,Q).

The morphisms of Hom(Σ1,Σ2) are pairs M = (M,w), called structure cobordisms,
where M is a banded cobordism, and w an integer called weight. Such a structure cobor-
dism defines a Lagrangian λM of H1(Σ1,Q) by setting λM := i−1

Σ1
(iΣ2(λ2)).

If (M1, w1) ∈ Hom(Σ0,Σ1) and (M2, w2) ∈ Hom(Σ1,Σ2), the composition is defined
by:

(M1, w1) ◦ (M2, w2) = (M1 ∪Σ M2, w1 + w2 − µ(λM1 , λ, λM2))

where Σ1 = (Σ1, λ). Proposition 1.1.32 ensures that this law is associative and commuta-
tive.

We endow Cob2+1 with a tensor product and a duality by setting:

(Σ, λ)∗ := (−Σ,−λ) (M,w)∗ := (−M,w)

(Σ1, λ1)
⊔

(Σ2, w2) := (Σ1

⊔
Σ2, λ1 + λ2) (M1, w1)

⊔
(M2, w2) := (M1

⊔
M2, w1 + w2)

We define similarly the oriented structure cobordisms category Cobo
2+1.

Definition 1.1.33. A TQFT with anomaly on a ring k is a functor V : Cob2+1 → Modk
(when non oriented) or U : Cobo

2+1 → Modk (when oriented), which respects tensor
product and duality.
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We define the morphisms between TQFTs with anomaly and the skein properties in
the same manner than in the case without anomaly. Proposition 1.1.6 still holds so we
can speak of the level of the TQFT.

A TQFT with anomaly defines a quantum invariant defined on the set of homeomor-
phisms classes of colored oriented 3-manifolds with a framed link, endowed with an integer.

If Σ = (Σ, w) is a structure surface, the group of structure cylinders C(ϕ,w) :=
(C(ϕ), w) ∈ Hom(Σ,Σ), where ϕ ∈ Mod(Σ) and w ∈ Z, will be denoted Mod(Σ, λ). It
has group law given by:

C(ϕ1, w1) ◦ C(ϕ2, w2) = C(ϕ1 ◦ ϕ2, w1 + w2 − µ(ϕ1∗(λ), λ, ϕ−1
2∗ (λ)))

And we have a natural exact sequence:

0 → Z→ Mod(Σ, λ) → Mod(Σ) → 1

where the second map is defined by C(ϕ,w) → C(ϕ) whose kernel, homeomorphic to Z, is
generated by the central element C(1, 1). We can show that Mod(Σ, λ) does not depend,
modulo isomorphism, on the choice of λ.

A TQFT V with anomaly gives quantum representations ρV : Mod(Σ, λ) → GL(V (Σ))
defined by ρV (C(ϕ,w)) := V (C(ϕ,w)). They define projective representations of the
mapping class group Mod(Σ).

Eventually we extend the notion of non degeneracy and the universal construction to
TQFTs with anomaly.

Structure surgery

Consider the structure surface S1 × S1 with Lagrangian given by the meridian {0} ×
S1. Note −S1 ×D2 ∈ Hom(∅, S1 × S1) the structure cobordism with weight w = 0 and

boundary identification with

(
0 −1
1 0

)
∈ SL2(Z).

Definition 1.1.34. Let M = (M, w) be a structure cobordism and K ⊂ M a framed
knot. Denote by N(K) a tubular neighborhood of K. The structure cobordism

M(K) := (M −N(K), w) ◦ −S1 ×D2

is said obtained from M by structure surgery along K.

By definition, M(K) = (M(K), w+w′) where w′ is a Maslov index on H1(S1 ×S1,Q).
The space of Lagrangians on this space is one dimensional, thus w′ is equal to −1, 0 or
+1.

We extend inductively this definition to structure surgery on framed links.

The following theorem justifies the rather complicated and, until now, poorly motivated
notions we introduced in this subsection.
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Theorem 1.1.35 (Walker ([86])). If L is a framed link in S3 and S3 = (S3, 0), then:

S3(L) = (S3(L), σ(L))

where σ(L) = σ+(L) − σ−(L) is the signature of S3(L).

We can restate the surgery proposition:

Definition 1.1.36. A TQFT (V, k) with anomaly satisfies the surgery properties if:

1. There exists an invertible element η ∈ k×, so that:

(S1) : V (S2 × [0, 1], 0) = η−1V (−D3⊔D3, 0)

2. There exists n ≥ 0, (a1, . . . , an) ∈ kn and (L1, . . . , Ln) framed links in D2 × S1, so
that:

(S2) : Z(−S1 ×D2,⊘, 0) =
∑
i aiZ(D2 × S1, Li, 0)

Remark. Let (V, k) be a TQFT with anomaly satisfying the surgery properties.

1. The space H1(S2⊔S2,Q) has null dimension, thus the Maslov index involved in
doing 1-surgery is null. As a consequence, the quantum invariant satisfies:

⟨(M1#M2, 0)⟩V = ⟨(M1, 0)⟩V ⟨(M2, 0)⟩V

So we recover the facts that η =
⟨
(S3, 0)

⟩
V and 1 =

⟨
(S2 × S1, 0)

⟩
V .

2. If ∂M = ∅⊔Σ, consider the composition along the empty surface: (S3, 1)◦(M,w) =
(M,w + 1), where the Maslov index is null. Setting:

κ :=
⟨
(S3, 1)

⟩

V
η−1 ∈ k

we have: Z(M,w) = κwZ(M, 0).

3. If V satisfies one of the skein relations, denote by ω the class in the skein module of∑
i aiLi. Theorem 1.1.35 implies that:

⟨
(S3, ϕL(ω), 0)

⟩

V
= κσ(L)

⟨
S3(L), ∅, 0

⟩

V

The term κσ(L) is the missing part we needed to have an element invariant under
Kirby moves.

Definition of the TQFTs Up and Vp

Rephrasing the reasoning of the previous subsection, suppose that (V, k) is a non
degenerate TQFT with anomaly that satisfies the skein and surgery properties.

The element ω is still completely determined by the equality:

ϕH(t(ω), t(b)) = ⟨b⟩ , for all b ∈ V (S1 × S1)
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This time, we must take into account the Maslov index appearing when we glue the two
solid torus in ϕH(t(·), t(·)) by identifying a twisted meridian with a twisted longitude.
This index is equal to +1 and we find:

ω = κa−1Ω

We then use the fact that doing surgery in S3 along the trivial knot twisted once
negatively Ω−1, gives again S3. The Maslov index of the gluing is +1, so η =

⟨
(S3, 0)

⟩
V =

κ−1
⟨
(S3,Ω−1(ω), 0)

⟩
V = ηκ āa . Thus:

κ2 =
a

ā
=




A− p(p−1)

2 , in the abelian case.

A−6− p(p+1)
2 , in the non abelian case.

Finally, doing surgery along the trivial framed knot Ω0 ⊂ S3 gives S2 ×S1 and involves
a null Maslov index. So 1 =

⟨
(S2 × S1, ∅, 0)

⟩
V =

⟨
(S3, ϕΩ0(ω), 0)

⟩
V = η(κa−1)(aā) =

ηaκ−1. Thus:
η = κa−1

Eventually, we proved that if a non degenerate TQFT with anomaly satifies the skein
and surgery properties at some level p, then it is unique and its quantum invariant on
connected manifolds is given by the formula:

⟨(M,K,w)⟩V = κw−σ(L)η < ϕL(ω, .., ω) ∪K > (1.2)

= (κwη)ησ
++σ−+σ0κσ

+−σ−

< ϕL(Ω, ..,Ω) ∪K > (1.3)

= (κwη)ηb1(M)< ϕL(Ω, ..,Ω) ∪K >

aσ+ āσ− (1.4)

where we used that σ0(L) = b1(M) is the first Betti number of M (see Proposition 1.1.22).
Proposition 1.1.30 shows that this expression is invariant under Kirby moves on L, so the
invariant is well defined. We extend it multiplicatively to non connected manifolds to get
a good invariant.

Definition 1.1.37.

1. Let p ≥ 2 and k′
p :=





Z[A, 1
p , κ]

/(
ϕ2p(A), κ2 −A− p(p−1)

2

)
, if p is even.

Z[A, 1
p , κ]

/(
ϕp(A), κ2 −A− p(p−1)

2

)
, if p is odd.

We define the abelian TQFTs (Up, k
′
p) using the universal construction on the in-

variant given by the formula (1.4), where:
– Ω =

∑
0≤i≤p−1 ei,

– a =

{
G(1, 0, p) , if p is odd.
1
2G(1, 0, 2p) , if p is even.

– η = κa−1.
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2. Let p ≥ 3 and kp := Z[A, 1
p , κ]

/(
ϕ2p(A), κ2 −A−6− p(p+1)

2

)
.

We define the TQFTs (Vp, kp) using the universal construction on the invariant given
by the formula (1.4), where:

– Ω =





∑
0≤i≤ p−4

2
⟨ui⟩ui ∈ Kp(D

2 × S1) , when p is even.
∑

0≤i≤p−3

i even
⟨ui⟩ui ∈ Kp(D

2 × S1) , when p is odd.

– a = A−3

2(A2−A−2)
G(1, p, 2p).

– η = κa−1.

To show that the above functors are indeed TQFTs, we still have to show that:

1. The modules Vp(Σ), Up(Σ) have finite rank.

2. The gluings ⟨·, ·⟩Σ are non degenerate.

3. The maps V (Σ1) ⊗ V (Σ2) → V (Σ1

⊔
Σ2) are isomorphisms.

It will be proved in the next subsection.

Remark that we proved that if (Ṽp, k̃p) is a non degenerate TQFT with anomaly that
satisfies the Kauffman skein relations and surgery properties, then there exists an injective
ring morphism ν : kp → k̃p and a natural map from ν∗◦Vp to Ṽp that induces isomorphisms
on each k̃p-module Ṽp(Σ).

In short, the TQFTs (Vp, kp) and (Up, kp) are uniquely defined by the non degeneracy,
skein, level and surgery condition, modulo a change of coefficient.

1.1.5 Study of the spaces Up(Σ), Vp(Σ)

The abelian case

Denote by Σg a genus g closed oriented surface, by Hg a genus g oriented handlebody
and by Up,g the module Up(Σg). Since Hg is isomorphic to the connected sum of g copies
of D2 × S1, the manifold Hg

∪
idHg, glued using the identity map id : ∂Hg → ∂Hg, is

isomorphic to the connected sum of g copies of S2 × S1. Since Hg is a thickened g-holed
disc, Proposition 1.1.8 implies that its abelian skein module is Tp(Hg) � kp [H1(Hg,Z)] �
kp[Z

g].

Denote by {ei1 ⊗ . . .⊗ eig , (i1, . . . , ig) ∈ Zg} its basis given by ik parallel copies of the
k-th oriented longitude as drawn in Figure 1.12. Note ⟨·, ·⟩Rp the bilinear form on Tp(Hg)
induced by the gluing Hg ∪id Hg using the identity map.

Figure 1.12: A basis for C [H1(H3,Z)].

By construction, Up,g is isomorphic to the quotient of Tp(Hg) by the kernel of ⟨·, ·⟩Rp .
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Lemma 1.1.38. Let e′
i ∈ Tp(S2 × S1) be the skein class of i parallel copies of {0} × S1.

Then:
⟨
(S2 × S1, e′

i, 0)
⟩

Up

=

{
η2p , if p divides i;
0 , else.

Proof. Remark that S2 ×S1 is obtained by surgery from S3 along the trivial framed knot
and that the gluing ⟨·, ·⟩Rp induces a null Maslov index. We thus have:

⟨
(S2 × S1, e′

i, 0)
⟩

Up

= η ⟨ϕH(ω, ei)⟩

= η2
p−1∑

k=0

⟨ϕH(ek, ei)⟩

= η2
p−1∑

k=0

A2ki

which permits to conclude. �

Still denote by ei1 ⊗ . . .⊗ eik the class in Tp(Hg)
/
ker ⟨·, ·⟩Rp of the same element.

Theorem 1.1.39. The vectors of {ei1 ⊗ . . .⊗ eig , (i1, . . . , ig) ∈ (Z/pZ)g} form a basis of
Up,g orthogonal for ⟨·, ·⟩Rp . And:

⟨
ei1 ⊗ . . .⊗ eig , ei1 ⊗ . . .⊗ eig

⟩R
p

= (ηp)g

In particular, the (Up)p≥2 are TQFTs.

Proof. Using the 1-surgery property (S1), we get:

⟨
ei1 ⊗ . . .⊗ eig , ej1 ⊗ . . .⊗ ejg

⟩R
p

= (η)−g ∏

1≤k≤g

⟨
(S2 × S1, e′

ik−jk , 0)
⟩

Up

We conclude using Lemma 1.1.38. �

Colored surfaces and the extended cobordisms categories

The isomorphism U(Σ1#Σ2) � U(Σ1) ⊗k U(Σ2) no longer holds in the non abelian
case. It is replaced by a tensor formula given in Theorem 1.1.43 that permits to study any
modules V (Σ) by cutting Σ into elementary cobordisms. To state our formula, we need to
add objects to the cobordisms category and extend the TQFT functors to this category.
The objects added will be structure surfaces where the bands are colored by integers.

Definition 1.1.40. Let p ≥ 3 and Ip :=

{
{0, 1, 2, . . . , r − 2} , if p = 2r is even.
{0, 2, 4, . . . , p− 3} , if p is odd.

We define the extended cobordism category Cobp at level p as follows.

The objects are couples Σc = (Σ, c), called colored surfaces, where Σ is a structure
surface with n bands and c : {1, . . . , n} → Ip is a coloring of the bands by integers of Ip.
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The expansion e(Σc) of a colored surface is the structure surface obtained from Σ by
replacing each band bi with color ci, by a set of ci bands.

If M bounds Σ, consider Kp(M) the quotient of the free kp-module generated by
properly embedded framed links in M intersecting ∂M along the bands of e(Σc) quotiented
by the Kauffman relations. The algebra TLc1 ⊗. . .⊗TLcn naturally acts on Kp(M). Define
the idempotents:

ϵc := fc1 ⊗ . . .⊗ fcn

We call skein module of M c the image:

Kp(M
c) := ϵc · Kp(M)

The set of morphisms Hom(Σc1
1 ,Σ

c2
2 ) is the kp-module:

Hom(Σc1
1 ,Σ

c2
2 ) := ⊕M∈Hom(e(Σ1

c1 ),e(Σ2
c2 ))ϵc1 · Kp(M) · ϵc2

There is a monomorphism I : Cob2+1 → Cobp obtained by coloring the bands of
structure surfaces with the color 1 is p is even and by p− 3 if p is odd.

The universal construction applied to Cobp gives a functor Vp : Cobp → Modkp such
that Vp ◦ I is the TQFT defined in the previous subsection.

We can think of the skein module Kp(M
c) as the quotient of Kp(M) where we quotient

by isotopy classes of links in M that connect two bands of the same set of ci bands coming
from the expansion of the same band colored by ci.
The module Vp(Σc) is the quotient of Kp(M

c) by the kernel of the gluing form.

Definition 1.1.41. A triple (i, j, k) ∈ (Ip)
3 is said p-admissible if:

– |i− j| ≤ k ≤ i+ j,
– i+ j + k is even and smaller than p− 2 if p is even and 2p− 2 if p is odd.

Lemma 1.1.42.

1. If S2(i, j) denotes the colored structured surface made of the sphere S2 with two
bands colored by i and j in Ip, then Vp(S

2(i, j)) has rank 1 if i = j and is null if
i , j.

2. If S2(i, j, k) denotes the sphere S2 with three bands colored by i, j and k in Ip, then
Vp(S

2(i, j, k)) has rank one if (i, j, k) is p-admissible and is null elsewhere.

Proof. Fix a ball B3 bounded by S2.

If i , j in S2(i, j) or if (i, j, k) is not admissible in S2(i, j, k), there is no link in the
corresponding expansion which does not connect two bands coming from the expansion of
the same colored band. Thus the corresponding skein modules are null.

If i = j or if (i, j, k) is admissible, then there exists exactly one such link which is
planar. The rank of the corresponding skein module is thus equal to one.
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Consider fi ∈ Vp(S
2(i, i)) the class of the i-th Jones-Wenzl idempotent inserted in B3.

Using Proposition 1.1.14, we get:

⟨fi, fi⟩p = η(−1)i[i+ 1] , 0

thus Vp(S2(i, i)) has rank one generated by fi.

When (i, j, k) is admissible, consider uσ ∈ Vp(S
2(i, j, k)) the class of the link Ti,j,k of

Figure 1.9 connecting three idempotents fi, fj and fk in the sphere. Then:

⟨uσ, uσ⟩p = η ⟨i, j, k⟩

where ⟨i, j, k⟩ is the corresponding theta coefficient. It follows from Proposition 1.1.16
that this coefficient is non null if and only if (i, j, k) is p-admissible. This concludes the
proof. �

Non abelian splitting theorem and study of Vp(Σ)

Let Γ = Γ1
⊔
. . .
⊔

Γm be a multicurve in Σ, so that Σ − Γ has two connected compo-
nents Σ1 and Σ2. If i = (i1, . . . , im) ∈ (Ip)

m, denote by Σi
1 and Σi

2 the colored surfaces
obtained by gluing to Σ1 and Σ2 a disc with a band colored by ik along each boundary
curve Γk. The following theorem justifies the introduction of colored surfaces:

Theorem 1.1.43. The gluing of colored cobordisms induces an isomorphism:

Vp(Σ) � ⊕i∈(Ip)mVp(Σ
i
1) ⊗kp Vp(Σ

i
2)

Before proving Theorem 1.1.43, we state its consequences. We fix a colored structure
surface Σ with a handlebody H bounding Σ and a trivalent banded graph Γ properly
embedded in H so that ∂Γ ⊂ Σ consists of the colored bands of Σ. We denote by colp(Γ)
the set of maps σ : E(Γ) → Ip so that:

– If (e1, e2, e3) are three adjacent edges, then (σ(e1), σ(e2), σ(e3)) is p-admissible.
– If e ∈ E(Γ) crosses a band of Σ of color ce, then σ(e) = ce.

If Σ is a torus S1 × S1 with no bands, we define Γ to be the graph with no vertices
given by the meridian {0} ×S1 ∈ D2 ×S1. If Σ is a sphere with two bands, Γ is the graph
with one edge connecting the two bands in B3.

As explained in subsection 1.1.2, to a graph Γ together with a coloring σ ∈ colp(Γ), we
can associate a vector uσ ∈ Vp(Σ).

Theorem 1.1.44. The set of elements {uσ, σ ∈ colp(Γ)} forms a basis of Vp(Σ), orthog-
onal for the form ⟨·, ·⟩Rp . Moreover we have:

< uσ, uσ >p= η#v−#e

∏
v < σ(v) >∏
e< σ(e) >

where v runs through the vertices of Γ, e through its edges, < σ(v) > is the corresponding
theta coefficient and < σ(e) >= (−1)σ(e)[σ(e) + 1].

This theorem implies that the functors Vp are TQFTs.
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Proof. To each edge e ∈ E(Γ), we properly embed a disc De in H intersecting Γ once
transversely along e and we note γe := ∂De ⊂ Σ. Theorem 1.1.43 applied to Σ with the
multicurve γ =

⊔
e γe together with Lemma 1.1.42, imply that {uσ, σ ∈ colp(Γ)} forms

an orthogonal basis. To show the formula for ⟨uσ, uσ⟩Rp , we first remark, using Lemma
1.1.42, it is true for the elementary cobordisms given by a graph with shape Y for the
three-banded spheres, a graph with shape I for the twice banded spheres and an O-shape
graph for the torus S1 × S1 with no bands. Then remark that the formula for ⟨uσ, uσ⟩Rp
stated in the theorem is unchanged when we identify two vertices of degree 2 to have
a edge. We conclude by induction on the number of elementary cobordisms in a given
decomposition of Σ. �

Proof of Theorem 1.1.43

Fix M a colored cobordism bounding Σc in which the curves Γi bound discs D =
D1
⊔
. . .
⊔
Dm so that, when cutting M along D, we get two cobordisms M1 and M2 with

M � M1 ∪D M2 and ∂Mi = Σi. As in the abelian case, we denote by ⟨·, ·⟩Rp the gluing
form obtained by gluing M with −M along the identity map to get the double of M . We
split the proof of Theorem 1.1.43 into two lemmas which easily imply the theorem.

Lemma 1.1.45. The gluing of cobordisms induces an isomorphism of kp-modules:

F : ⊕i∈(Ip)mKp(M
i
1) ⊗kp Kp(M

i
2) → Kp(M)

Proof. Note A := Kp(M), C := ⊕i∈(Ip)mKp(M
i
1) ⊗kp Kp(M

i
2) and introduce the module:

B := (⊕iKp(M1, i) ⊗ Kp(M2, i)) /∼

where:
– Kp(Ma, i) denotes the skein module of Ma with i bands colored by 1.

The modules Kp(M1, i) and Kp(M2, i) are equipped with a structure of right and
left TLi(Γ) module respectively, with TLi(Γ) := TLi1 ⊗ . . .⊗ TLim .

– The module B is defined as a quotient for the equivalence relation ax ⊗ b ∼ a ⊗ xb
where a ∈ Kp(M1, i), b ∈ Kp(M2, i) and x ∈ TLi(Γ).

A morphism f : B → A is given by gluing cobordisms along D. To construct a reverse
map f−1 : A → B, choose a link L ⊂ M isotoped to be transverse to D. It intersects each
disc Dn a number in of times. Putting i = (i1, . . . , im) and cutting M along D, we get an
element of Kp(M1, i) ⊗ Kp(M2, i). The indetermination on the way we isotoped L in M
before cutting disappears in the quotient by ∼.

The canonical embedding of Kp(M
i
a) in Kp(Ma, i) defines a morphism g : C → B.

We construct a reverse map as follows. Denote by aTLb the quotient of the free kp-
module generated by isotopy classes of (a, b) tangles by the Kauffman skein relations (so
nTLn = TLn). Fix n ≥ 1, there exists elements ai ∈n TLi and bi ∈i TLn so that:

1n =
∑

i

aifibi ∈ TLn
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Similarly for c = (c1, . . . , cm) and i ∈ (Ip)
m, we have elements ai ∈c TL(Gamma)i and

bi ∈i TL(Γ)c so that:

1c =
∑

i

aiϵibi ∈ TLc(Γ)

where 1c = 1c1 ⊗ . . .⊗ 1cm . The reverse map g−1 : B → C is given by

g−1(x⊗ y) :=
∑

i

xaiϵi ⊗kp ϵibiy, for (x, y) ∈ Kp(M
i
1) ⊗ Kp(M

i
2)

We thus have defined a reverse map g−1 ◦ f−1 for F = f ◦ g.
�

Lemma 1.1.46. Under the isomorphism F−1 of Lemma 1.1.45, the gluing form decom-
poses as :

<,>RΣ∼ ⊕i∈(Ip)m <,>RΣi
1

⊗k <,>
R
Σi

2

Proof. In the gluing M∪Σ −M , the discs Di∪−Di are glued along their boundaries to give
spheres. Note S :=

⊔m
i=1D

i∪−Di the disjoint union of these spheres and Y ⊂ M∪Σ −M a
tubular neighborhood of S, homeomorphic to S× [0, 1]. Let X denote the complementary
of Y so that M ∪Σ −M � X∪S×{0}

⊔
S×{1}Y . Apply Lemma 1.1.45 to this decomposition.

We get:

Kp(M ∪Σ −M) � ⊕i,j∈(Ip)mKp(Xi,j ⊗ Kp(i,jY )

� ⊕i∈(Ip)mKp(Xi,i) ⊗ Kp(i,iY )

where Xi,j is the union of spheres Dn ∪ −Dn with a band colored by in in Dn and a band
colored by jn in −Dn. The second isomorphism states for Kp(Xi,j) is null if i , j.

Denote by Xi the gluing of Xi,i with i,iY and by G : Kp(M ∪Σ −M) → ⊕iXi the
resulting isomorphism. We conclude the proof by noticing that the following diagram
commutes:

Kp(M) × Kp(M)
F × F

∼ > (⊕iKp(M
1
i ) ⊗k Kp(iM

2))×2

Kp(−M ∪Σ M)

R
∨ G

∼ > ⊕iKp(Xi,i)

R̃
∨

kp

⟨·⟩p<
⟨·⟩p >

where R̃ is induced by the gluing M �M1 ∪M2. �
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Fusion rules

If Γ ⊂ S3 is a planar trivalent graph and σ ∈ colp(Γ) is a p-admissible coloring, the
couple (Γ, σ) defines an element in Kp(S

3) � kp which can be computed using the following:

Lemma 1.1.47. Let (i, j, k) be a p-admissible triple.

1. In Vp(S
2(i, i)), we have:

..
i

.

i

.j . k =
⟨i, j, k⟩

⟨i⟩
..i

2. In Vp(S
2(i, j, k)), we have:

..
i

.
j

.

k

.a . b.

c
=

⟨
i a b
c k j

⟩

⟨i, j, k⟩
..
i

.
j

.
k

Proof. We proved in Lemma 1.1.42 that both modules Vp(S2(i, i)) and Vp(S2(i, j, k)) have
rank one, so the vectors on the left and right hand side of both equalities differ by a scalar
in kp. We compute this scalar by taking the scalar product of both vectors with the vector
of the right hand side. �

Consider the sphere S2 with four bands colored by a, b, c and d and a ball B3 bounded

by S2. Using the trivalent graphs
...a .

b

.

c

. d
and

...a .
b

.
c

. d
we get two basis of Vp(S2(a, b, c, d)).

They are related through the following:

Lemma 1.1.48. If

..
j

.a .
b

.
c

. d
=
∑

i

{
a b i
c d j

}

..
i

.a .

b

.

c

. d

then:

{
a b i
c d j

}
=

⟨i⟩
⟨
i b c
j d a

⟩

⟨i, a, d⟩ ⟨i, b, c⟩

The coefficients

{
a b c
d e f

}
are called recoupling coefficients or 6j-symbols . It follows

from the above lemma that a 6j-symbol is null if and only if the corresponding tetahedron
coefficient is null.

If Σ represents an arbitrary colored surface bounding a handlebody H and Γ1,Γ2

represent two trivalent graphs embedded in H, we can decompose the basis of vectors uΓ1
σ

into the basis of vectors uΓ2
σ using Lemma 1.1.48 for Γ1 can be obtained from Γ2 by a

sequence of Whitehead moves.
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Proof. We take the scalar product of both sides of the equality with the vector
..

i
.a .

b

.

c

. d
and get:

⟨

..
j

.a .
b

.
c

. d
,

..
i

.a .

b

.

c

. d

⟩

p

=

{
a b i
c d j

}⟨

..
i

.a .

b

.

c

. d
,

..
i

.a .

b

.

c

. d

⟩

p

⇔ ..

a

.
b
.

c
.

d

. j. i =

{
a b i
c d j

}
..

a

.
b

.
c

.

d

.i. i

⇔
{
a b i
c d j

}
=

⟨i⟩
⟨
i b c
j d a

⟩

⟨i, a, d⟩ ⟨i, b, c⟩
where we used Lemma 1.1.47 to get the last equality. �

1.2 First properties of the quantum representations

1.2.1 Generators and central extensions

Notations

Let Σg be an oriented closed genus g (structure) surface without bands and with an
arbitrary Lagrangian. The TQFTs Up and Vp define k′

p-modules Up,g := Up(Σg) and kp-
modules Vp,g := Vp(Σg) defined as the quotient of the free kp-module of isotopy classes of
framed links in a given handlebody Hg endowed with a preserving orientation homeomor-
phism α : ∂Hg → Σg, by the kernel of a certain bilinear form ⟨, ⟩Rp .

Denote by ˜Mod(Σg) the central extension of the mapping class group of Σg, defined
by the structure cylinders. This group acts on Up,g and Vp,g to give the so-called quantum
representations. We note them:

The Weil representations: πp,g : ˜Mod(Σg) → GL(Up,g)

The Reshetikhin-Turaev representations: ρp,g : ˜Mod(Σg) → GL(Vp,g)

The modules Up,g and Vp,g are endowed with two non degenerate bilinear forms. The
invariant form ⟨·, ·⟩Rp is induced by the gluing of Hg with −Hg using the identity map on

the boundary. This form is invariant under the action of ˜Mod(Σg). In particular, the image
of the quantum representations are semi-simple: for any stable ˜Mod(Σg)-submodule, its
orthogonal for the invariant form is also stable. Moreover we know orthogonal basis for
this form.

Another form called Hopf pairing and denoted (·, ·)Hp , is induced by an arbitrary Hee-
gaard splitting of the sphere Hg∪S−Hg � S

3 for some S ∈ Mod(Σg). The matrix elements
of the Hopf pairing in a trivalent graph basis can be computed using fusion rules.
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Generators and computations

If ϕ ∈ ˜Mod(Σg) is the lift of a homeomorphism of Σg that extends to Hg through α,
the action of this extension on the framed links of Hg passes to the quotient to give the
action of πp,g(ϕ) on Up,g and of ρp,g(ϕ) on Vp,g.

If ψ ∈ ˜Mod(Σg) is the lift of a homeomorphism of Σg that extends to Hg through
S ◦ α, the action of this extension on the framed links of Hg defines an operator. Its dual
compare to the Hopf pairing gives the action of ψ by the quantum representations.

For the Weil representations, consider the Dehn twists Xi, Zi,j of Figure 1.13. They
extend to Hg and their action on the basis {ea1 ⊗ . . . ⊗ eag , ai ∈ Z/pZ} of Up,g is easily
computed (see Figure 1.14. We find:

πp,1(X) = (Ai
2
δi,j)i,j and πp,g(Xi) = 1

⊗(i−1) ⊗ πp,1(X) ⊗ 1
⊗(g−i)

πp,g(Zi,j) (ea1 ⊗ . . .⊗ eag ) = A(ai−aj)2
(ea1 ⊗ . . .⊗ eag )

Figure 1.13: A set of Dehn twists generating the mapping class group and the symplectic
group.

i

i

j

Figure 1.14: The computation of the matrices associated to πp,1(X) and πp,2(Zij).

The matrix elements of the Hopf pairing are easily computed:

(
ea1 ⊗ . . .⊗ eag , eb1 ⊗ . . .⊗ ebg

)H
p

= (ea1 , eb1)Hp . . .
(
eag , ebg

)H
p

= ηpA
−2
∑

i
aibi

Since the Dehn twists Yi are duals of the Xi for the Hopf pairing, their matrix elements
can be computed. We find:

πp,1(Y ) =





G(1,0,p)
p (A−(i−j)2

)i,j , when p is odd.
G(1,0,2p)

2p (A−(i−j)2
)i,j , when p is even.

πp,g(Yi) = 1
⊗(i−1) ⊗ πp,1(Y ) ⊗ 1

⊗(g−i)
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For the Reshetikhin-Turaev representations, we choose a uni-trivalent banded graph
Γ ⊂ Hg on which Hg retracts by deformation and consider the associated basis {uσ, σ ∈
colp(Γ)}. A Dehn twist around an edge e ∈ E(Γ) can be lifted in ˜Mod(Σg) to get an
operator Te so that:

ρp,g(Te)uσ = µσ(e)uσ

The matrix elements of the Hopf pairing can be computed using the fusion rules. Since
S and the Te generate ˜Mod(Σg), we can theoretically compute any matrices ρp,g(ϕ).

Linearisation of quantum representations

Since the class of a link in an abelian skein module depends only on its integer ho-
mology class, the Weil representations act trivially on the Torelli group and factorize as
representations of a central extension of the symplectic group ˜Sp2g(Z). The above com-
putations show that the image of any Dehn twist through πp,g has the same order than
A, thus has order p if p is odd and 2p if p is even. So the Weil representations also act
trivially on the congruence subgroups to give projective representations of Sp2g(Z/pZ) if
p is odd and of Sp2g(Z/2pZ) if p is even.

In Chapter 4 we will show the following:

Proposition 1.2.1.

1. The representations πp,1 can be lifted to linear representations of SL2(Z/pZ) if p is
odd and of SL2(Z/2pZ) if p is even.

2. If p is odd and g ≥ 2, the Weil representation πp,g can be lifted to a linear represen-
tation of Sp2g(Z/pZ).

3. If p is even and g ≥ 2, the Weil representation πp,g cannot be lifted to a linear
representation of Sp2g(Z/2pZ) but represents a central extension by Z/2Z.

Although this proposition is well known (see [1], [31]), we will give a direct proof
by finding explicit lifts of the Weil representations. In addition we will show that these
representations are faithfull when p is odd.

Concerning the Reshetikhin-Turaev representations, in genus one we will show that
they can be lifted to linear representations of SL2(Z/pZ) when p is odd and of SL2(Z/2pZ)
when p is even. More generally, in [38] the authors showed that the representations as-
sociated to a torus with one colored band can be lifted to linear representations of B3.
They also showed that in higher genus, the central extension ˜Mod(Σg) corresponds to a
cohomology class which is a generator of H2(Mod(Σg),Z).

As we saw previously, the image of any lift of a Dehn twist through ρp,g has order 2p. It
is still an open problem to know if there exists more relations, that is if the representations

ρp,g :
˜Mod(Σg)

/
(T 2p
γ − 1) → GL(Vp,g)

are faithful or not when g ≥ 2.
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1.2.2 Egorov identity and first decompositions

Egorov identity

Let L ⊂ Σg be a multicurve. Consider the cobordism Σg × [0, 1] with L embedded in
Σg ×{1

2}, with identification of the boundary using the identity map and null weight. The
TQFTs associate to this cobordism some operators:

AddUp (L) := ZUp(Σ × [0, 1], L, 0) ∈ End(Up,g)

AddVp (L) := ZVp(Σ × [0, 1], L, 0) ∈ End(Vp,g)

We thus define algebra representations AddUp : Tp(Σg) → End(Up,g) and AddVp :

Kp(Σg) → End(Vp,g). Usually the AddUp are called Schrödinger representations repre-
sentations. It follows from the surgery properties of Up and Vp that the morphisms Addp
are onto.

The following proposition gives an alternative definition of the quantum representations
based on the skein representations Addp.

Proposition 1.2.2. For any ϕ ∈ ˜Mod(Σg), the operators ρp,g(ϕ) and πp,g(ϕ) are the
unique solutions, up to multiplication by an invertible scalar, of the following identity:

πp,g(ϕ) AddUp (L)πp,g(ϕ)−1 = AddUp (ϕ(L)) , for all multicurve L. (1.5)

ρp,g(ϕ) AddVp (L)ρp,g(ϕ)−1 = AddVp (ϕ(L)) , for all multicurve L. (1.6)

The equation 1.5 is called Egorov identity.

Proof. The proof is similar in the abelian and in the non abelian case, so we write it for
the Reshetikhin-Turaev representations only.

The Egorov identity is clearly satisfied for a homeomorphism that extends to the
handlebody Hg through α. By duality for the Hopf pairing, it is also true for homeomor-
phisms that extends to Hg through S ◦α. These two families of homeomorphisms generate
Mod(Σg). We now remark that if the Egorov identity 1.5 is satisfied for two elements ϕ1

and ϕ2, then it is also true for ϕ1 ◦ ϕ2. This proves that all the operators ρp,g(ϕ) are
solutions.

To prove the unicity, fix ϕ ∈ Mod(Σg) and consider the two representations of the skein
algebra s1, s2 : Kp(Σg) → End(Vp,g) defined by s1(L) = Addp(L) and s2(L) = Addp(ϕ(L)).

The vector v0 ∈ Vp,g corresponding to the class of the empty link in Hg, is cyclic for
both representations s1 and s2. So an intertwiner Θ ∈ GL(Vp,g) between s1 and s2 (i.e.
a solution of 1.5) is completely determined by the image of v0. Moreover for any L ⊂ Σg

which is contractible in Hg, then Θ ·v0 must be an eigenvector of Addp(L) with eigenvalue
−(A2 +A−2). Since λi , λ0 when i , 0, the corresponding eigenspace is one dimensional,
generated by (ρp,g(ϕ))−1v0. This implies that Θ · v0 is proportional to (ρp,g(ϕ))−1v0, thus
the space of intertwiners between s1 and s2 is one dimensional. This proves unicity. �
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Decompositions of quantum representations

We deduce from the Egorov identity, a family of submodules of Up,g and Vp,g stable
under the action of ˜Mod(Σg).

Definition 1.2.3. Let b be an element of Up,1 (resp of Vp,1).

We define the b-colored algebra Bp(b) as the subalgebra of End(Up,g) (resp of End(Vp,g))
generated by operators Addp(L(b)), where L(b) is a multicurve of Σg whose components
are colored by b.

We define the module Xp(b) as the submodule of Up,g (resp Vp,g) of vectors stabilized
by every elements of Bp(b).

Some decomposition of quantum representations can be deduced from the following:

Lemma 1.2.4. For any b, the submodule Xp(b) is stable for the action of ˜Mod(Σg).

Proof. If v ∈ Xp(b), ϕ ∈ ˜Mod(Σg) and L is a multicurve in Σg, using Egorov identity we
have:

Addp(L(b)) · (ρp(ϕ)v) = ρp(ϕ) Addp(ϕ
−1(L)(b)) · v = ρ(ϕ)v

thus ρp(ϕ)v ∈ Xp(b). �

We derive two propositions from this lemma.
The following proposition was showed in [54] in the particular case where r is prime

and g = 1.

Proposition 1.2.5. If r is prime and n ≥ 1, Urn,g is a ˜Mod(Σg)-submodule of Urn+2,g.

Proof. We show that the submodule X(ern+1) is isomorphic to Urn,g as a ˜Mod(Σg)-module.

Consider the algebra Brn+2(er) ⊂ End(Urn,g) of links colored by er. Note Ã := A(r2)

the primitive rn-th root of unity if r is odd and primitive 2n+1-th root of unity if r = 2.
The product in Brn+2(er) is described by the skein relations for links colored by er:

= Ã = Ã−1

= ∅

Thus we have a morphism of algebras Ψ : Trn(Σg) → Brn+2(er), where we turned
Trn(Σg) into a k′

rn+2 algebra with the ring morphism µ : k′
rn → k′

rn+2 defined by µ(A) =

A(r2).

The submodule Xrn+2(ern+1) has basis {ga1 ⊗ . . . ⊗ gag , ai ∈ Z/pZ} where gai :=∑r−1
k=0 er(ai+krn).

Let Φ : X(ern+1) → Vrn,g be the morphism defined by

Φ(ga1 ⊗ . . .⊗ gag ) := ea1 ⊗ . . .⊗ eag
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A simple computation shows that Φ intertwines the two actions of Trn(Σg). The
restriction toX(ern+1) of πrn+2,g satisfies the Egorov identity at level rn. It follows from the

unicity of Proposition 1.2.2 that X(ern+1) is isomorphic to Vrn,g as a projective ˜Sp(2g,Z)-
module. �

We call lollipop graph of genus g a trivalent graph Γ made of g loops connected by a
trivalent tree, called the trunk of Γ. We denote by a1, . . . , ag the edges of Γ corresponding
to the loops and by b1, . . . , bg the edges of the trunk adjacent the ai. See Figure 1.15.

Figure 1.15: A genus 4 lollipop graph.

Note that if σ ∈ colp(Γ) then σ(e) is even for any edge e of the trunk.

Suppose p is even and write k := p−4
2 , so that Ip = {0, . . . , k}. Denote by ϵ(a, b) ∈

{−1,+1}, the element:

ϵ(a, b) :=

⟨
b a a
k a− k a− k

⟩

⟨b, a, a⟩
Note that ϵ(a, b) = ϵ(k − a, b) = ±1.

Let σ ∈ colp(Γ) and i ∈ {1, . . . , g}. The map {i} • σ : E(Γ) → Ip defined by :

{i} • σ(e) =

{
σ(e) , if e , ai,
k − σ(ai) , if e = ai

is also a p-admissible coloring of Γ. This recursively defines an action of the subsets of
{1, . . . , g} on colp(Γ).

Definition 1.2.6. Let

vσ :=
∑

X⊂{1,...,g}

(
∏

i∈X
ϵ(σ(ai), σ(bi))

)
uX•σ ∈ Vp,g

We denote by Jp,g ⊂ Vp,g the submodule spanned by the vectors vσ for σ ∈ colp(Γ) a
coloring so that σ(ai) is even for all 1 ≤ i ≤ g.
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The following decomposition was found in [14].

Proposition 1.2.7. If 4 divides p, then Jp,g is a proper sub ˜Mod(Σg)-module of Vp,g.

Proof. We show that Jp,g = Xp(uk) to conclude.

Note p = 2r, k = r − 2 and Ã := −Ar2
=

{
1 , if p ≡ 4 (mod 8)
−1 , if 8 divides p.

The product in B(uk) is given by the following skein relations satisfied by links colored
by uk:

= Ã = Ã−1

= ∅

Also two parallel framed knots colored by uk can be removed. It results that B(uk)
is isomorphic to the algebra of the group H1(Σg,Z/2Z) if p ≡ 4 (mod 8) and of the
group H1(Σg,Z/2Z) ⋊ Z/2Z if 8 divides p, where the product is given by [γ1] · [γ2] =
(−1)ω(γ1,γ2)[γ1 + γ2] with ω the mod 2 intersection form.

In particular a vector v ∈ Vp,g belongs to Jp,g if and only if Add(Xi(uk)) · v = v and
Add(Yi(uk)) · v = v for all 1 ≤ i ≤ g. Here Xi, Yi are the class in H1(Σg,Z/2Z) of the
Dehn twists of Figure 1.13.

Using Lemma 1.1.47 and 1.1.48, we get the two identities of Figure 1.16. They imply
that:

Add(Xi(uk)) · uσ = (−1)σ(ai)uσ

and:
Add(Yi(uk) · uσ = ϵ(σ(ai), σ(bi))u{i}•σ

This proves that Jp,g = Xp(uk) and we conclude using Lemma 1.2.4.

Figure 1.16: Computations derived from fusion rules to compute X(uk).

�

Note that the above proof also works for representations associated to surfaces with
colored bands.
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1.2.3 Relation between Up,1 and Vp,1

Denote by S =

(
0 1

−1 0

)
and T =

(
1 −1
0 1

)
the two generators of SL2(Z).

Using the basis {ei, i ∈ Z/pZ} of Up,1, the Weil representation in genus one is charac-
terized by the projective classes of matrices:

πp(T ) =
(
Ai

2
δi,j
)

i,j
πp(S) = cp

(
A−2ij

)
i,j

where cp := G(−1,0,2p)
2p when p is even and cp := G(−1,0,p)

p when p is odd.

We remark that the involution sending ei to e−i commutes with these two matrices.
Thus the SL2(Z)-projective module splits into two invariant submodules Up,1 � U+

p,1 ⊕U−
p,1

where U±
p,1 := Span {ei ± e−i, i ∈ Z/pZ}.

Using the basis {ui, i ∈ Ip} of Vp,1, where Ip :=

{
{0, 1, 2, . . . , r − 2} , if p = 2r is even.
{0, 2, 4, . . . , p− 3} , if p is odd.

,

the Reshetikhin-Turaev representations in genus one are characterized by the projective
class of the matrices:

ρp(T ) =
(
Ai(i+2)δi,j

)

i,j
ρp(S) = cp

(
(−1)i+j [(i+ 1)(j + 1)]

)
i,j

where we used Lemmas 1.1.12 and 1.1.14.

Theorem 1.2.8. For p ≥ 3, the SL2(Z) projective modules U−
p,1 and Vp,1 are projectively

equivalent.

When p is odd, the module Up,1 is defined on the ring k′
p, where A is a primitive

p-th root of unity, whereas Vp,1 is defined on kp, where A is a primitive 2p-th root of
unity. In the preceding theorem, we turned V −

p,1 into a kp-module using the ring morphism
µ : kp → k′

p defined by µ(A) = A4.

This theorem was shown in [27] when p is even and in [60] when p ≡ 1 (mod 4). We
will extend their proofs for arbitrary p ≥ 3. Note that this equivalence was predicted in
the geometric quantization setting in [8] (see also [66]).

Proof. When p = 2r is even, we define an isomorphism of kp-modules Ψ : Vp,1 → U−
p,1 by

Ψ(ui) = er−i−1 − er+i+1. We then compute the matrices of π−
p in the basis (Ψ(ui), i =

0, 1, . . . r − 2):
⟨
Ψ(uj), π

−
p (T )Ψ(ui)

⟩
= A(r−i−1)2

δi,j

= A(r−1)2 ·A−2ri ·Ai(i+2)

= A(r−1)2
ρp(T )i,j

⟨
Ψ(uj), π

−
p (S)Ψ(ui)

⟩
= cp

(
A−2(r−i−1)(r−j−1) −A2(r−i−1)(r−j−1)

)

= cp ·A2r(i+j)
(
A−2(i+1)(j+1) −A2(i+1)(j+1)

)

= −ρp(S)i,j
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So π−
p and ρp are projectively equivalent when p is even.

Then when p ≥ 3 is odd, we turn U−
p,1 into a kp-module via the ring morphism µ :

kp → k′
p defined by µ(A) := A4. We define an isomorphism Ψ : Vp,1 → U−

p,1 of kp-
modules via Ψ(ui) := e p−1−i

2
− e p+i+1

2
. We then compute the matrices of π−

p in the basis

(Ψ(ui), i = 0, 2, 4, . . . p− 3):

⟨
Ψ(uj), π

−
p (T )Ψ(ui)

⟩
= µ(A)(

p−1−i
2 )

2

δi,j

= A(p−i−1)2
δi,j

= (−A) · ρp(T )i,j

⟨
Ψ(uj), π

−
p (S)Ψ(ui)

⟩
= cp

(
µ(A)−2( p−1−i

2
)( p−1−j

2
) − µ(A)2( p−1−i

2
)( p−1−j

2
)
)

= cp
(
A−2(p−i−1)(p−1−j) −A2(p−i−1)(p−1−j)

)

= −ρp(S)i,j

And the proof is completed. �

1.2.4 Tensor decompositions

Definition 1.2.9. Let V1 and V2 be two TQFTs with the same ring k. The tensor
product V1 ⊗V2 is the TQFT defined by V1 ⊗V2(Σ) := V1(Σ) ⊗k V2(Σ) and ZV1⊗V2(M) :=
ZV1(M) ⊗k ZV2(M).

In particular the quantum invariant and quantum representations of a tensor product
V1 ⊗ V2 is the product and tensor product of the two quantum invariants and quantum
representations of V1 and V2.

Lemma 1.2.10. Let (V1, k1), (V2, k2) and (V3, k3) be three non degenerate TQFTs and
µ : k1 → k3, ν : k2 → k3 be two ring morphisms preserving the involutions. Suppose that:

1. µ ◦ ⟨·⟩1 × ν ◦ ⟨·⟩2 = ⟨·⟩3

2. rank(V1(Σ)) · rank(V2(Σ)) = rank(V3(Σ)) for any structure surface Σ.

Then we have µ∗V1 ⊗ ν∗V2 � V3.

Proof. Let Σ be a (non empty) structure surface and NΣ denotes the set of classes of struc-
ture cobordisms bounding Σ. From the non degeneracy condition we have an isomorphism
V3(Σ) � k3[NΣ]

/
ker ⟨·, ·⟩3

. Consider the linear map:

f : (k3[NΣ], ⟨·, ·⟩3) → (µ∗V1(Σ) ⊗k3 ν∗V2(Σ), µ ◦ ⟨·, ·⟩1 ⊗ ν ◦ ⟨·, ·⟩2)

sending an elementM ∈ NΣ to the corresponding class ofM⊗M in µ∗V1(Σ) � k3[NΣ]
/
ker (µ ◦ ⟨·, ·⟩1)

and µ∗V2(Σ) � k3[NΣ]
/
ker (ν ◦ ⟨·, ·⟩2) .
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The assumption on the quantum invariants implies that f preserves the bilinear forms,
so sends the kernel of ⟨·, ·⟩3 inside the kernel of µ ◦ ⟨·, ·⟩1 ⊗ ν ◦ ⟨·, ·⟩2 which is trivial. Thus
f induces an onto linear map:

f̃ : V3(Σ) → µ∗V1(Σ) ⊗k3 ν∗V2(Σ)

The equality of the ranks of the modules implies that f is an isomorphism. By construc-
tion, this isomorphism induces an isomorphism between the TQFTs V3 and µ∗V1⊗ν∗V2. �

We give two applications of this lemma.

Let a and b be two coprime non negative integers and u, v be such that au+bv = 1. We
define morphisms µ : ka → kab and ν : kb → kab by setting µ(A) = Abv and ν(A) = Aau.

Proposition 1.2.11. If a and b are coprime, then µ∗Ua ⊗ ν∗Ub � Uab.

Proof. The abelian quantum invariants for a 3-manifold obtained by surgery along a
framed link L = L1 ∪ . . . ∪ Lm ⊂ S3, has the following expression:

⟨
S3(L)

⟩

Up

= κ−σ(L)η
∑

i=(i1,...,im)∈(Z/pZ)m

A
tilk(L)i

where lk(L) is the linking matrix of L. Using this expression and the fact that Up,g has
rank pg, we easily see that the conditions of Lemma 1.2.10 are satisfied. �

Remark.

1. The fact that the abelian invariant at level ab is the product of the ones at levels a
and b when a, b are coprime where noticed in [71].

2. This proposition implies that the Weil representations satisfy πab � πa ⊗ πb when
a, b are coprime.

Proposition 1.2.12. If r is odd, then V2r � V6 ⊗ Vr.

The proof relies again on Lemma 1.2.10. We refer to [13] for a proof.

1.2.5 Roberts’ proof for the prime cases and p = 18

In this subsection, we briefly review the result of Roberts in [76] which shows that the
Reshetikhin-Turaev representations at prime levels are irreducible. The proof also works
for p = 18.

We denote by Ap,g the subalgebra of End(Vp,g) generated by the operators ρp,g(ϕ) for
ϕ ∈ ˜Mod(Σg).
Remark that if K is a framed knot in Σg and TK the corresponding Dehn twist, the
operator ρp,g(TK) is equal to the operator Addp(K−1(ω)) modulo an invertible scalar.
Here we denote by K−1 the framed knot obtained from K by twisting once negatively.
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The vector v0 ∈ Vp,g, corresponding to the class of the empty link in the handlebody
Hg, is said cyclic if Ap,g · v0 = Vp,g.

Lemma 1.2.13. Suppose p ≥ 3 is so that if i, j ∈ Ip then i , j implies µi , µj. Then
v0 ∈ Vp,g is cyclic for every g ≥ 1.

Proof. First when g = 1, write d = rank(Vp,1) and denote by L the longitude {0} × S1 in
D2 × S1. We define the vectors ti ∈ Vp,1 by the formula ti := Add(L(ω))i · v0 ∈ Ap,g · v0.
We have:

(ti, uj)
H
p = η < j > µij

Thus the matrix
(
(ti, uj)

H
p

)

0≤i≤d−1,j∈Ip

is the product of a diagonal matrix
(
η(−1)j [j + 1]δi,j

)
i,j

with non null diagonal entries, with a Vandermonde matrix (µij)i,j which is invertible for
the µj are distincts.

Since the Hopf pairing is non degenerate, the set {t0, t1, . . . , td−1} is a basis of Vp,1 and
v0 is cyclic in genus one. Denote by α0, . . . , αd−1 the scalars so that:

u1 =
∑

i

αiti

Let g ≥ 2 and L = L1 ∪ . . . ∪ Lm be a framed link in the g-holed disc Dg. Embedding
L in Dg × {1

2} ⊂ Dg × [0, 1] � Hg, we get a vector Zp(Hg, L) ∈ Vp,g equal to:

Zp(Hg, L) =
∑

i=(i1,...,im)∈{0,...,d−1}m

αi1 . . . αim Add(L1
−1(ω))i1 . . .Add(Lm−1(ω))im ·v0 ∈ Ap,g·v0

Lemma 1.1.8 implies that such vectors generate Vp,g, so v0 is cyclic. �

Lemma 1.2.14. Suppose p ≥ 3 is so that if i, j ∈ Ip then i , j implies µi , µj. Then the
representations ρp,g are irreducible for every g ≥ 1.

Proof. Let (Ap,g)
′ denote the commutant of Ap,g in End(Vp,g), that is the subalgebra of

operators that commute with every ρp,g(ϕ) for ϕ ∈ ˜Mod(Σg).

Let f : (Ap,g)
′ → Vp,g be the linear map defined by f(Θ) = Θ · v0. The cyclicity of v0

implies that f is injective.

Let Γ ⊂ Hg be a trivalent graph and γ = (γe)e∈E(Γ) the corresponding pants decom-
position. For each edge e ∈ E(Γ), we choose a lift Te of the Dehn twist around e. Since
ρp,g(Te)v0 = v0, then ρp,g(Te)Θ ·v0 = Θ ·v0 for Θ ∈ (Ap,g)

′. This implies that Θ ·v0 belongs
to the intersection of eigenspaces of the operators ρp,g(Te) with the eigenvalue one. Since
µi , 1 when i , 0, this intersection is one dimensional generated by v0.

The injectivity of f implies that (Ap,g)
′ is one dimensional and we conclude using the

Schür lemma.
�
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Proposition 1.2.15. If p = r or p = 2r with r an odd prime or r = 9, then the represen-
tations ρp,g are irreducible for every g ≥ 1.

Proof. We simply remark that under the hypothesis of the proposition, the µi are distinct
and apply Lemma 1.2.14. �





Chapter 2

Decomposition of the Weil
representations into irreducible
factors

Résumé

Ce chapitre contient la version non publiée de l’article intitulé " Decompo-
sition of the Weil representations into irreducible factors" ([55]). On y donne
une décomposition explicite des représentations de Weil en représentations ir-
réductibles. Certaines notations ont été changées pour coller avec le reste du
manuscrit. Un résultat subsidiaire de fidélité est renvoyé à la première section
du quatrième chapitre.

Abstract

This chapter contains the unpublished version of the article "Decomposi-
tion of the Weil representations into irreducible factors" ([55]). We give an
explicit decomposition of the Weil representations into irreducible represen-
tations. Some notations have been changed to match with the rest of the
manuscript. A subsidiary result concerning the faithfulness of Weil represen-
tations has been postponed to the first section of the fourth chapter.

2.1 Introduction and statements

2.1.1 A brief history

The Weil representations first appeared in the work of Kloosterman in 1946 (see [54])
where they arise as modular transformations of spaces of theta functions. They were re-
discovered independently by Shale ([80]) following Segal ([78]) in 1962 when the authors
studied the Weyl quantization of the symplectic torus. Their construction has been gen-
eralized to arbitrary locally compact abelian groups by Weil in 1964 (see [88]). The ones
we consider in this paper are associated to Z/pZ. They also appeared independently in
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the work of Igusa ([45]) and Shimura ([81]) on theta functions. See also [64] for another
construction.

The generalization of the Weil representations for finite fields and g = 1 was studied
in [59] for odd characteristic, and more recently in [41] for characteristic 2.

The mathematical physics community studied the semi-classical properties of the Weil
representations associated to finite cyclic groups when the level p tends to infinity as a
model for quantum chaotical behavior (see [11], [58], [24], [49]).

The relation between theta functions and the quantization of the torus was clarified
through the geometrical quantization procedure of Souriau, Kostant and Kirillov (see
[82, 57, 52]) where the Hilbert space associated to the torus is the space of holomorphic
sections of a Hermitian line bundle over the torus endowed with a complex structure. This
Hilbert space is naturally isomorphic to a space of theta functions (see [2, 89, 32]) and the
symplectic group acts as monodromy operators on these sections providing a geometric
interpretation for the Weil representations.

The Weil representations fit into the framework of Topological Quantum Field The-
ories, as defined by Atiyah and Witten in [6, 91]. Their definition for even levels and
arbitrary genus first appeared in [30, 39] in relation with 3-manifold invariants which
were studied in [71] and further explored in [21] in the more general context of abelian
invariants.

The first rigorous construction of SU(2)-TQFTs was made by Reshetikhin and Turaev
in [75] using a quotient of quantum groups Uqsl2 (see also [85] for the general construction
based on modular categories). A combinatorial construction of the SU(2)-TQFTs using
skein theory was made in [14] using the construction in [63] of 3-manifold invariants. In
this paper, we follow [32] where the authors adapted this point of view in order to construct
the Weil representations at even levels.

2.1.2 Statements

Given two integers p ≥ 2 and g ≥ 1, the Weil representations are projective unitary
representations of the symplectic group Sp2g(Z) into a free module of rank pg over the
ring:

k′
p :=




Z
[
A, 1

2p

]
/(ϕp(A)) , when p is odd.

Z
[
A, 1

p

]
/(ϕ2p(A)), when p is even.

where ϕp ∈ Z[X] represents the cyclotomic polynomial of degree p.

The main result of this paper is the decomposition into irreducible factors of the Weil
projective representations πp,g : Sp2g(Z) → PGL(U⊗g

p ) of the symplectic group. Here Up
is a free k′

p-module of rank p and we identified Up,g with U⊗g
p . The integer p ≥ 2 will be

called the level of the representation. The decomposition of the Weil representation for
g = 1 and p = rn for r an odd prime into irreducible factors was given by Kloosterman in
[54]. Our decompositions generalize his result to arbitrary genus and levels.

Let a, b ≥ 2 be two coprime non negative integers with b odd, and let u and v be odd
integers such that au+ bv = 1 in the case where a is odd and such that 2au+ bv = 1 if a is
even and b is odd. We define a ring isomorphism µ : k′

ab → k′
a⊗k′

b by µ(A) = (Avb, Aau) if
a is odd and µ(A) = (Avb, A2au) if a is even, which turns U⊗g

a ⊗ U⊗g
b into a k′

ab-module.
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For r prime and n ≥ 1, we define the ring homomorphism µ : k′
rn+2 → k′

rn by µ(A) =

Ar
2

which turns U⊗g
rn into a k′

rn+2-module.

Set σ(p) for the number of divisors of p including 1.

Main Theorem 2.1.1. The level p Weil representation contains σ(p) irreducible submod-
ules, when p is odd and σ(p2), when p is even. They decompose according to the following
rules, where � denotes an isomorphism of Sp2g(Z) projective modules:

1. If a, b ≥ 2 are two coprime integers, then:

U⊗g
a ⊗ U⊗g

b � U⊗g
ab

2. If r is prime and n ≥ 1, then:

U⊗g
rn+2 � U

⊗g
rn ⊕W⊗g

rn+2

where Wrn+2 is a free submodule of Urn+2.

3. If r is an odd prime, then:
U⊗g
r2 � 1 ⊕W⊗g

r2

where 1 denotes the trivial representation.

4. Every factor U⊗g
p ,W⊗g

rn for p ≥ 3 decomposes into two invariant submodules,

U⊗g
p � Ug,+p ⊕ Ug,−p

W⊗g
rn �W

g,+
rn ⊕W g,−

rn

We call Ug,+p and W g,+
rn the even modules and Ug,−p ,W g,−

rn the odd modules.

5. The application of the previous four rules decomposes any U⊗g
p into a direct sum

of modules of the form Br1 ⊗ . . . ⊗ Brk
with r1, . . . , rk distinct prime numbers and

Bri ∈ {Ug,±ri
, W g,±

rn
i

}. These modules are all irreducible and pairwise distinct.

When g = 1 the first point of this theorem was proved by Kurlberg and Rudnick in
[58].

For instance, when r is an odd prime we have:

U⊗g
rn � (W g,+

rn ⊕W g,−
rn ) ⊕ (W g,+

rn−2 ⊕W g,−
rn−2) ⊕ . . .⊕ (W g,+

r2 ⊕W g,−
r2 ) ⊕ 1, if n even.

U⊗g
rn � (W g,+

rn ⊕W g,−
rn ) ⊕ (W g,+

rn−2 ⊕W g,−
rn−2) ⊕ . . .⊕ (W g,+

r3 ⊕W g,−
r3 ) ⊕ (Ug,+r ⊕ Ug,−r ), if n odd.

When r = 2 we obtain:

U⊗g
2n � (W g,+

2n ⊕W g,−
2n ) ⊕ (W g,+

2n−2 ⊕W g,−
2n−2) ⊕ . . .⊕ (W g,+

4 ⊕W g,−
4 ), if n is even.

U⊗g
2n � (W g,+

2n ⊕W g,−
2n ) ⊕ (W g,+

2n−2 ⊕W g,−
2n−2) ⊕ . . .⊕ (W g,+

8 ⊕W g,−
8 ) ⊕ U⊗g

2 , if n is odd.

We deduce from Theorem 3.3.1 the following:

Corollary 2.1.2. We have the following decomposition into irreducible modules of the
genus one SO(3) and SU(2) quantum representations at level p of SL2(Z):

Vp �
⊕

B∈E,B1∈E1,...,Bk∈Ek

B ⊗B1 ⊗ . . .⊗Bk, when p is even;

Vp �
⊕

B1∈E1,...,Bk∈Ek

B1 ⊗ . . .⊗Bk, when p is odd.

where p = 2mrn1
1 . . . rnk

k is the factorization into primes and:
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– If j is such that nj is odd, Ej =

{
W+

r
nj −2aj
j

,W−
r

nk−2aj
j

, U+
rj
, U−

rj
| 0 ≤ aj ≤ ⌈nk

2

⌋− 1

}
.

– If j is such that nj is even, Ej =

{
W+

r
nj −2aj
j

,W−
r

nk−2aj
j

,1 | 0 ≤ aj ≤ ⌈nk
2

⌋− 1

}
.

– If m is odd, E =
{
W+

2m−2a ,W
−
2m−2a , U2 | 0 ≤ a ≤ ⌈

m
2

⌋− 1
}

.

– If m is even, E =
{
W+

2m−2a ,W
−
2m−2a , U

+
4 , U

−
4 | 0 ≤ a ≤ ⌈

m
2

⌋− 1
}

.
with the condition that each summand B⊗B1 ⊗ . . .⊗Bk or B1 ⊗ . . .⊗Bk contains an odd
number of modules U−

p ,W
−
rn.

Remark. 1. The irreducibility of the SU(2) quantum representations in arbitrary genus
at levels 2p, for p an odd prime, was showed by Roberts in [76] and his proof
easily extends to SO(3) quantum representations at odd prime levels. This result
was generalized to representations associated to surfaces with one marked point by
Gilmer and Masbaum in [37].

2. The commutant of the C-algebra generated by the image of the genus one Weil
representations at even levels was studied by the physicists in [17] following the
ideas of [33]. Our theorem recovers their result in a different manner and gives an
explicit basis for the commutant formed by the projectors on each irreducible factors.

When p is odd, the projective Weil representation lift to linear representation of
Sp2g(Z/pZ) (see [1]). In [31], it is proved that when p is even and g ≥ 2 the Weil
representation does not lift to a linear representation of Sp2g(Z/2pZ) but only of a non
trivial central extension of Sp2g(Z/2pZ) by Z/2Z. For g = 1 however it is not difficult to
show that the Weil representations lift to linear representation of SL2(Z). Explicit lifts
are given in Chapter 4 section 3.

Finally, adapting the ideas of [67] to the abelian case, we will prove in Chapter 4
Theorem 4.1.1 the asymptotic faithfulness of the Weil representations already showed in
[4] in a different way.

Theorem 2.1.3. Let (ni)i be an unbounded sequence of integers. Then:

∩

ni

Ker(πni,g) =

{
{1,−α.1}, when g ≥ 2 and all the ni are even;
{1}, if all ni are odd or g = 1.

where α represents the central element added in the central extension ˜Sp2g(Z) defined in
[31] and in Definition 4.3.3.

Acknowledgements: I would like to thank Louis Funar, Christian Blanchet and
Julien Marché for making me discover the fascinating world of TQFT. I am in debt to
Roland Bacher who taught me the existence of the Hensel lemma and to Samuel Lelièvre
for his LATEXwriting advices.

2.2 Definition of the projective Weil representations

2.2.1 Abelian skein modules

The following section closely follows the definitions from [32]. To every compact ori-
ented 3-manifold we associate a k′

p-module. The Weil representations arise by means of
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the symplectic group action on the skein module associated to a genus g-holed handlebody.

Definition 2.2.1. Let p ≥ 2 and M be a compact oriented 3-manifold possibly with
boundary. The reduced abelian skein module T̃p(M) is the k′

p-module generated by the
isotopy classes of oriented banded links of ribbons in M quotiented by the relations given
by the abelian skein relations of Figure 2.1 and by the submodule generated by the links
made of p parallel copies of the same ribbon.

p times

...

Figure 2.1: Skein relations defining the reduced abelian skein modules.

The reduced abelian skein module of the sphere S3 has rank one. The class of a
link L ⊂ S3 in this module is equal to the class of the empty link multiplied by Alk(L)

where lk(L) represents the self-linking number of L. This gives a natural isomorphism
T̃p(S3) � k′

p.

It is classic, see Proposition 1.1.8, that if M � Σ × [0, 1] is a thickened surface, where
Σ may have a boundary, then its skein module Tp(M) is isomorphic to k′

p[H1(Σ,Z/pZ)].

2.2.2 Heisenberg groups and Schrödinger representations

Denote by Hg the genus g handlebody. Its abelian skein module is freely generated by
the elements of H1(Hg,Z/pZ). So, if we denote by Up the module Tp(S1 ×D2), we have
a natural kp-isomorphism between T̃p(Hg) and U⊗g

p .

Definition 2.2.2. Let g ≥ 1 and Σg be a closed oriented surface of genus g.

1. The module T̃p(Σg × [0, 1]) has an algebra structure with product induced by super-
position.

2. The Heisenberg group Hg is defined as the set H1(Σg,Z) ×Z with group law given
by:

(X, z) • (X ′, z′) = (X +X ′, z + z′ + ω(X,X ′))

where ω represents the intersection form.
A group morphism Hg → T̃p(Σg× [0, 1]) is defined by sending a class [γ] ∈ H1(Σg,Z)
to the skein class of the link γ inserted in Σg×{1

2} and by sending the central element
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(0, 1) ∈ H1(Σg,Z) ×Z to the element c = A ·1 ∈ T̃p(Σg × [0, 1]) product of the class
of the empty link by A ∈ kp.

3. We choose a homeomorphism ϕ : Σg → Σg so that (Σg × [0, 1])
∪
ϕHg � Hg.

This gluing induces a linear action of the Heisenberg group on the skein module
Tp(Hg) � U

⊗g
p . This representation is called the Schrödinger representation and will

be denoted by Addp : Hg → GL(U⊗g
p ). Up to isomorphism, this representation does

not depend on ϕ.

A key ingredient in the definition of the Weil projective representations is the Stone-
Von Neumann theorem which states that the Schrödinger representation is the unique
irreducible representation of the Heisenberg group sending c to the scalar operator A · 1

2.2.3 The Weil representations

Every element of the mapping class group Mod(Σg) acts on H1(Σg,Z) by preserving
the intersection form. Choosing a basis of H1(Σg,Z) we obtain a surjective morphism
f : Mod(Σg) → Sp2g(Z).

Let g ≥ 1, the mapping class group Mod(Σg) acts on the set of framed links of Σg×[0, 1]
and, by passing through the quotient by the reduced skein relations, acts on the Heisenberg
group. We denote by • this action. Let ϕ ∈ Mod(Σg) and consider the representation
sϕ : Hg → GL(U⊗g

p ) defined by sϕ(h) := Addp(ϕ • h) for all h ∈ Hg. By the Stone-Von
Neumann theorem, the representation sϕ is conjugate to the Schrödinger representation.
Thus there exists πp,g(ϕ) ∈ GL(U⊗g

p ), uniquely determined up to multiplication by an
invertible scalar, so that:

πp,g(ϕ) Addp(h)πp,g(ϕ)−1 = Addp(ϕ • h), for any h ∈ Hg (2.1)

The equation (2.1) is also called the Egorov identity.

Definition 2.2.3. We call Weil representation at level p and genus g the projective rep-
resentation πp,g : Mod(Σg) → PGL(U⊗g

p ).

It easily follows that the Weil representation factorizes through the Torelli group and
through Sp2g(Z/pZ) when p is odd and Sp2g(Z/2pZ) when p is even.

The previous definition of the Weil representations as intertwining operators is not
explicit. To manipulate it more easily, we choose the generators of Sp2g(Z) consisting
of the image through f of the Dehn twists Xi, Yi, Zij of Figure 3.6 (see [62] for a proof
these Dehn twists generate the mapping class group). We define the basis {ea1 ⊗ . . . ⊗
eag |a1, . . . , ag ∈ Z/pZ} of U⊗g

p as in Figure 2.3, that means that ea1 ⊗ . . .⊗eag is the class
of a link made of ai parallel copies of an unframed ribbon encircling the ith hole of Hg

one time. To express the image of the generators in the basis, we will first need to define
Gauss sums.

Definition 2.2.4. Let p ≥ 2 and a, b be two integers. We define the Gauss sums by the
formulas:

1. G(a, b, p) :=
∑
k∈Z/pZA

ak2+bk ∈ k′
p when p is odd.

2. G(a, b, 2p) :=
∑
k∈Z/2pZA

ak2+bk = 2
∑
k∈Z/pZA

ak2+bk ∈ k′
p when p is even.
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Figure 2.2: A set of Dehn twists generating the mapping class group and the symplectic
group.

a a a
1 2 3

Figure 2.3: A basis for the abelian skein module of the genus g handlebody. Here an
integer i in front of a ribbon means that we take i parallel copies of it.

The computation of the Gauss sums is detailed in [10].

Proposition 2.2.5. The expression of the matrices of the Weil representation on the
generators Xi, Yi and Zi,j in the basis {ea1 ⊗ . . .⊗ eag |a1, . . . , ag ∈ Z/pZ} of U⊗g

p is given
by the projective class of the following matrices:

– πp,1(X) = (A2i2δi,j)i,j and πp,g(Xi) = 1
⊗(i−1) ⊗ πp,1(X) ⊗ 1

⊗(g−i).
– πp,g(Zi,j)(ea1 ⊗ . . .⊗ eag ) = A(ai−aj)2

(ea1 ⊗ . . .⊗ eag ).

– πp,1(Y ) =





G(1,0,p)
p (A−(i−j)2

)i,j , when p is odd.
G(1,0,2p)

2p (A−(i−j)2
)i,j , when p is even.

πp,g(Yi) = 1
⊗(i−1) ⊗ πp,1(Y ) ⊗ 1

⊗(g−i).

These generating matrices are unitary (they verify ŪTU = 1 where Ū =
(
Ūi,j

)

i,j
is defined

by the involution of k′
p sending A to A−1) so are the Weil representations.

Proof. If ϕ ∈ Mod(Σg) can be extended to a homeomorphism Φ of the handlebody Hg, the
action of Φ on Tp(Hg) � U

⊗g
p defines an operator which satisfies the Egorov identity (2.1)

so is projectively equal to πp,g(ϕ). The generators Xi and Zi,j are such homeomorphisms
and Figure 2.4 shows how we compute their action on the basis.

i

i

j

Figure 2.4: The computation of the matrices associated to πp,1(X) and πp,2(Z1,2).

Then choose a Heegaard splitting of the sphere Hg
∪
ϕHg � S3 with ϕ ∈ Mod(Σg).

This splitting determines a pairing Tp(Hg) × Tp(Hg) → Tp(S3). The associated bilinear
pairing (·, ·)Hp : U⊗g

p ⊗ U⊗g
p → k′

p is called the Hopf pairing. Figure 2.5 shows that:

(
ea1 ⊗ . . .⊗ eag , eb1 ⊗ . . .⊗ ebg

)H
p

= A−2
∑

i
aibi



66
Chapter 2. Decomposition of the Weil representations into irreducible

factors

Thus the Hopf pairing is non degenerate.

a a'

b b'

Figure 2.5: The computation of the matrix associated to the Hopf pairing when g = 2.

The dual of πp,g(Xi) for ⟨·, ·⟩H satisfies the Egorov identity (2.1), so is projectively
equal to πp,g(Yi). If πp, 1(Y ) is the dual of πp,1(X) for (·, ·)H , the previous expression of
πp,g(Xi) implies that its dual for the Hopf pairing is 1

⊗(i−1) ⊗ πp,1(Y ) ⊗ 1
⊗(g−i).

To compute the matrix of πp,1(Y ), we remark that the matrix S =
(
A−2ij

)
i,j of the

Hopf pairing has inverse S−1 = 1
p S̄ = 1

p(A2ij)i,j . A direct computation gives:

πp,1(Y ) = Sπp,1(X)S−1 =





G(1,2(j−i),p)
p = G(1,0,p)

p (A−(i−j)2
)i,j , when p is odd;

G(1,2(j−i),2p)
2p = G(1,0,2p)

2p (A−(i−j)2
)i,j , when p is even.

�

Remark. When p is even and A = exp
(
− iπ

p

)
, the projective representations we defined

here coincide with the ones from [30] and [39] coming from theta functions.

2.2.4 Linearization of the Weil representations

When g = 1 and p is even, to have an explicit lift of the Weil representations as linear
representation of SL2(Z/pZ), we must add the ring kp a primitive 24th root of unity, so
we change the ring to kp = Z[A, 1

p , β]/(ϕ2p(A), ϕ24(β)). An explicit lift of the genus one
Weil representations is given by the matrices:

πp,1

((
0 1

−1 0

))
:=





G(−1,0,p)
p (A−2ij)i,j , if p is odd.

β−3G(−1,0,2p)
2p (A−2ij)i,j , if p is even.

(2.2)

πp,1

((
1 −1
0 1

))
:=

{
(Ai

2
δi,j)i,j , if p is odd.

β(Ai
2
δi,j)i,j , if p is even.

(2.3)

In Chapter 4 section 3, we prove that if g ≥ 2 and p is even, the matrices πp,g(Xi), πp,g(Yi)
and πp,g(Zi,j), defined in Proposition 2.2.5, generate a linear unitary representation of a
non trivial extension of Sp2g(Z/2pZ) by Z/2Z.

When g ≥ 2 and p is odd, it is known (see [1]) that the Weil representations lift to
linear unitary representation of Sp2g(Z/pZ). A direct computation similar to the one of
[31] (see Theorem 4.3.4) shows that the matrices πp,g(Xi), πp,g(Yi) and πp,g(Zi,j) defined
in Proposition 2.2.5 define an explicit lift.

We will denote by ˜Sp2g(Z) the central extension of Sp2g(Z/2pZ) by Z/2Z defined in
[31]. We have the following short exact sequence:

1 > Z/2Z
i
> ˜Sp2g(Z)

j
> Sp2g(Z) → 1

We will denote by α the image of −1 by i.
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2.3 Decomposition of the Weil representations

In this section we prove the three first points of the Theorem 2.1.1. We first define:

U+,g
p := Span{ea1 ⊗ . . .⊗ eag + e−a1 ⊗ . . .⊗ e−ag |a1, . . . , ag ∈ Z/pZ}

U−,g
p := Span{ea1 ⊗ . . .⊗ eag − e−a1 ⊗ . . .⊗ e−ag |a1, . . . , ag ∈ Z/pZ}

where Span means that we consider the k′
p module generated by the elements in brackets.

Lemma 2.3.1. The submodules U+,g
p and U−,g

p are πp,g-stable.

We will note π+
p,g and π−

p,g the corresponding restrictions of πp,g and call them the even
and odd subrepresentations respectively.

Proof. A direct computation shows that the submodules Ug,+p and Ug,−p are stabilized by
πp,g(Xi), πp,g(Yi) and πp,g(Zi,j).

�

Remark. To ensure that the injection U+
p ⊕ U−

p → Up is an isomorphism of k′
p-modules,

we need 2 to be invertible in k′
p.

Let a, b ≥ 2 be two coprime non negative integers with b odd, and let u and v be odd
integers such that au+ bv = 1 in the case where a is odd and such that 2au+ bv = 1 if a is
even and b is odd. We define a ring isomorphism µ : k′

ab → k′
a ⊗ k′

b by µ(A) = (Avb, Aau)
if a is odd and µ(A) = (Avb, A2au) if a is even, which turns U⊗g

a ⊗U⊗g
b into a k′

ab-module.
We also denote by f : Z/aZ × Z/bZ → Z/abZ the bijection sending (x, y) to xv + yu
when a is odd and to xv + 2yu when a is even.

Lemma 2.3.2. The isomorphism of k′
ab-modules ψ : U⊗g

a ⊗ U⊗g
b → U⊗g

ab defined by

ψ((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg )) = ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg)

makes the following diagram commute for all ϕ ∈ Sp2g(Z) (resp for all ϕ ∈ ˜Sp2g(Z) when
a is even):

U⊗g
a ⊗ U⊗g

b

ψ
> U⊗g

ab

U⊗g
a ⊗ U⊗g

b

πg,a(ϕ)⊗πg,b(ϕ)

∧

ψ
> U⊗g

ab

πg,ab(ϕ)
∧

Proof. We note (A1, A2) := (Avb, Aau) when a and b are odd and (A1, A2) = (Avb, A2au)
when a is even. It is enough to show the commutativity of the diagram for ϕ = Xi, Yi and
Zi,j . For ϕ = Xi, we compute:

ψ
(
πa,g(Xi) ⊗ πb,g(Xi)((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg ))

)
=

ψ

(
A
a2

i
1 A

b2
i

2 ((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg ))

)
=

Af(ai,bi)
2
(ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg))
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Then for ϕ = Yi, we note cp = G(1,0,p)
p when p is odd and cp = G(1,0,2p)

2p when p is even:

ψ
(
πa,g(Yi) ⊗ πb,g(Yi)((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg ))

)

= ψ


cacb

∑

k∈Z/aZ

l∈Z/bZ

A
−(ai−k)2

1 A
−(bi−l)2

2 ((ea1 ⊗ . . .⊗ ek ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ el ⊗ . . .⊗ ebg ))




= ψ(cacb)
∑

m∈Z/abZ
A−(f(ai,bi)−m)2

(ef(a1,b1) ⊗ . . .⊗ em ⊗ . . .⊗ ef(ag ,bg))

where we made the change of variable m = f(k, l) to pass to the last line. It remains
to show that ψ(cacb) = cab which is equivalent to show that ψ(G(1, 0, a)G(1, 0, b)) =
G(1, 0, ab) when a is odd and ψ(G(1, 0, 2a)G(1, 0, b)) = G(1, 0, 2ab) when a is even. When
a is even:

ψ(G(1, 0, 2a)G(1, 0, b))/2 =
∑

(x,y)∈Z/aZ×Z/bZ
Ax

2

1 A
y2

2

=
∑

(x,y)

Avx
2+2uy2

=
∑

z∈Z/abZ
Az

2
= G(1, 0, 2ab)/2

Finally for ϕ = Zi,j :

ψ
(
πa,g(Zi,j) ⊗ πb,g(Zi,j)((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg ))

)

= ψ

(
A

(ai−aj)2

1 A
(bi−bj)2

2 ((ea1 ⊗ . . .⊗ eag ) ⊗ (eb1 ⊗ . . .⊗ ebg ))

)

= Af(ai,bi)
2
(ef(a1,b1) ⊗ . . .⊗ ef(ag ,bg))

�

Remark. This lemma also follows from ([71], Proposition 2.3) where it is showed that the
3-manifold invariant coming from the abelian TQFT at level ab, with a coprime to b, is
the product of the ones in level a and b.

Let r be a prime number and n ≥ 0 if r is odd or n ≥ 1 if r = 2. Let Ū⊗g
rn be the

submodule of U⊗g
rn+2 spanned by the vectors ga1 ⊗ . . .⊗gag where gi :=

∑
0≤k≤r−1 er(i+krn).

Lemma 2.3.3. The submodule Ū⊗g
rn is stabilized by πrn+2,g. Moreover the isomorphism of

k′
rn+2-modules ψ : U⊗g

rn → Ū⊗g
rn sending ea1 ⊗ . . .⊗eag to ga1 ⊗ . . .⊗gag makes the following

diagram commute for all ϕ ∈ Sp2g(Z) ( for all ϕ ∈ ˜Sp2g(Z) when r = 2 respectively):

GL(U⊗g
rn+2)Ū

⊗g
rn

πrn+2,g(ϕ)
> GL(U⊗g

rn+2)Ū
⊗g
rn

GL(U⊗g
rn )

∪

∧

πrn,g(ϕ)
> GL(U⊗g

rn )

∪

∧
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Proof. We generalize an argument of [19] to arbitrary genus to show that Ū⊗g
rn is πrn+2,g-

stable. Denote by I the principal ideal I := rn+1H1(Σg,Z/rn+2Z) of H1(Σg,Z/rn+2Z)
and by D the subgroup D := (I × I, 0) of Hrn+2,g. Since I2 = {0} and I is an ideal, D
is a subgroup of Hrn+2,g stable under the action of Sp2g(Z). We deduce from the Egorov
identity that the space {v ∈ U⊗g

rn+2 | Addp(ϕ)v = v,∀ϕ ∈ D} is preserved by πrn+2,g. We
now easily show that this space is Ū⊗g

rn .

We then verify the commutativity of the diagram for ϕ = Xi, Yi and Zi,j . When ϕ = Xi

we have:

πrn+2,g(Xi)(ga1 ⊗ . . .⊗ gag ) = A(ri)2
(ga1 ⊗ . . .⊗ gag ) = µ(A)i

2
(ga1 ⊗ . . .⊗ gag )

When ϕ = Yi we have:

πrn+2,g(Yi)(ga1⊗. . .⊗gag ) = crn+2

∑

x∈Z/rn+2

∑

k∈Z/rZ
A−(r(ai+kr

n)−x)2
ga1 ⊗ . . .⊗ ex ⊗ . . .⊗ eag

= crn+2

∑

x∈Z/rn+2

A−x2−xrai−r2a2
i




∑

k∈Z/rZ
(A2r(n+1)x)k


 ga1 ⊗ . . .⊗ ex ⊗ . . .⊗ gag

= rcrn+2

∑

y∈Z/rn+1Z

(Ar
2
)−(y−ai)

2
ga1 ⊗ . . .⊗ ery ⊗ . . .⊗ gag

= rcrn+2(µ(A))−(z−ai)
2 ∑

z∈Z/rnZ

ga1 ⊗ . . .⊗ gz ⊗ . . .⊗ gak

We verify that µ(crn) = rcrn+2 to conclude in this case. Finally when ϕ = Zi,j :

πrn+2,g(Zi,j)(ga1 ⊗ . . .⊗ gag )

=
∑

k,l∈Z/pZ
A(r(ai+kr

n)−p(aj+lrn))2
(ga1 ⊗ . . . er(ai+krn) ⊗ . . .⊗ er(aj+lrn) ⊗ . . .⊗ gag )

=
∑

k,l∈Z/pZ
(Ar

2
)(ai−aj)2

(ga1 ⊗ . . . er(ai+krn) ⊗ . . .⊗ er(aj+lrn) ⊗ . . .⊗ gag )

= (µ(A)(ai−aj)2
(ga1 ⊗ . . .⊗ gag )

�

LetWrn+2 be the submodule of Urn orthogonal for the invariant form turning {e0, . . . , ern+2−1}
into an orthogonal basis. It is freely generated by the vectors ei when r does not divide i
and by the vectors eri−r(i+k+rn) for i ∈ {0, . . . , rn − 1} and k ∈ {1, . . . , r − 1}.

The orthogonal of Ū⊗g
rn in U⊗g

rn+2 is isomorphic to W⊗g
rn+2 and is stabilized by πrn+2,g.

So are the two submodules W g,±
rn+2 := W⊗g

rn+2

∩
Ug,±rn+2 .

2.4 Irreducibility of the factors

2.4.1 The genus one cases

The irreducibility of the factors U−
r , for r prime, has already been shown by Roberts

in [76] by computing the commutator of the associated group algebra. The irreducibility
of the factors U±

rn and W 1,±
rn , for r an odd prime, was proved by Kloosterman in [54].
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When g = 1 the strategy for the proof lies on the computation of the sums:

Sp := 1
|SL2(Z/pZ)|

∑
ϕ∈SL2(Z/pZ) | Tr(πp(ϕ))|2, when p is odd. (2.4)

S2p := 1
|SL2(Z/2pZ)|

∑
ϕ∈SL2(Z/2pZ) | Tr(πp(ϕ))|2, when p is even. (2.5)

It is a classical fact that if this sum is equal to the number of component in a decomposition
of πp then each factors appearing in this decomposition is irreducible and they are pairwise
distinct (see [79], chapter 2).

Lemma 2.4.1. If a is prime to b then Sab = Sa×Sb if they are both odd and S2ab = S2a×Sb
if a is even.

Proof. This follows from the fact that we have a group isomorphism SL2(Z/abZ) �
SL2(Z/aZ) × SL2(Z/bZ) together with Proposition 2.3.2. �

In [54] Kloosterman showed that for an odd prime r and n ≥ 1 then Srn = n + 1.
Thus, to complete the proof of Theorem 2.1.1 it remains to show the following:

Proposition 2.4.2. For n ≥ 1, we have:

S2n = n− 1

Since the summand | Tr(π2n(ϕ))|2 only depends on the conjugacy class of ϕ we will first
make a complete study of the conjugacy classes of SL2(Z/2nZ). Then we will compute
the characters of the Weil representations on representatives of each conjugacy classes.

Conjugacy classes of SL2(Z/2nZ)

We begin by defining three invariants of the conjugacy classes which almost classify
the conjugacy classes:

Definition 2.4.3. For A ∈ SL2(Z/2nZ) there exists a unique integer l ∈ {0, . . . , n} and
x ∈ {0, . . . , 2l − 1} such that:

A ≡ x1 + 2lU1 (mod 2n)

for some matrix U1 whose reduction modulo 2 is neither the identity, nor the null matrix.
We define a third integer

τ :=

{
Tr(A) ∈ Z/2nZ, when l = 0.
det(U1) ∈ Z/2n−lZ, when l ≥ 1.

Note that det(U) = 1(mod 2n) implies that x2 = 1(mod 2l) hence if l = 1 then x = 1,
when l = 2 then x = 1 or 3, when l ≥ 3 we have four choices: x = 1, 2l − 1, 2l−1 + 1 or
2l−1 − 1.

Let us denote by C(x, l, τ) the set of matrices of SL2(Z/2nZ) having x, l and τ as
invariants. Clearly C(−1, l, τ) = −C(1, l, τ) and C(2l−1 −1, l, τ) = −C(2l−1 +1, l, τ), thus
we only need to study the conjugacy classes of C(x, l, τ) when x = 1 or x = 2l−1 + 1.

As example, the matrices with l = 0 are the matrices which are not equal to the
identity matrix modulo 2 whereas those with l = n are the four scalar matrices.
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Definition 2.4.4. We define the following representatives of C(x, l, τ), where c1 will
denote an odd number:

– l = 0, A0(τ, c1) :=

(
1 c−1

1 (τ − 2)
c1 τ − 1

)
.

– l ≥ 1, x = 1, Al(τ, c1) :=

(
1 c−1

1 2lτ
c12l 1 + 2lτ

)
.

– l ≥ 3, x = 1+2l−1, Bl(τ, c1) :=

(
1 + 2l−1 −c−1

1 2lτ
2lc1 1 + 2l−1 − (1 + 2l−1)−1(2l + 22l−2 + 22lτ)

)
.

Similar representative for x = −1 and x = 2l−1 − 1 are given by taking −Al and −Bl.

Proposition 2.4.5. Each set C(x, l, τ) contains 1, 2 or 4 conjugacy classes each contain-
ing a matrix ±Al(τ, c1) or ±Bl(τ, c1) for a suitable choice of c1. The following table gives
for every l, x, τ a set of 1, 2 or 4 representatives and the cardinal m(A) of the corresponding
conjugacy classes:

l and x τ Representatives of C(x, l, τ) m(A)

l = 0 Tr(U) = τ is odd A0(τ, 1) 22n−1

Tr(U) = τ = 2 (mod 4) A0(τ, 1), A0(τ, 3), A0(τ, 5), A0(τ, 7) 3 · 22n−4

Tr(U) = τ = 0 (mod 4) A0(τ, 1), A0(τ, 3) 3 · 22n−3

l = 1
and x = 1

τ = 1 (mod 8) A1(τ, 1), A1(τ, 3), A1(τ, 5), A1(τ, 7) 3 · 22n−6

τ = 3, 5, 7 (mod 8) A1(τ, 1), A1(τ, τ) 3 · 22n−5

τ = 2, 4, 6 (mod 8) A1(τ, 1), A1(τ, 3) 3 · 22n−5

τ = 0 (mod 8) A1(τ, 1), A1(τ, 3), A1(τ, 5), A1(τ, 7) 3 · 22n−6

2 ≤ l ≤ n−
3 and x = 1

τ = 1, 4, 5 (mod 8) Al(τ, 1), Al(τ, 3) 3 · 22n−2l−3

τ = 3, 7 (mod 8) Al(τ, 1) 3 · 22n−2l−2

τ = 2 (mod 8) Al(τ, 1), Al(τ, 5) 3 · 22n−2l−3

τ = 0 (mod 8) Al(τ, 1), Al(τ, 3), Al(τ, 5), Al(τ, 7) 3 · 22n−2l−4

l = n− 2
and x = 1

τ = 0, 1 (mod 4) An−2(τ, 1), An−2(τ, 3) 6

τ = 2, 3 (mod 4) An−2(τ, 1) 12

l = n− 1
and x = 1

τ = 0 (mod 2) An−1(0, 1) 3

τ = 1 (mod 2) An−1(1, 1) 3

3 ≤ l ≤ n−
1
and
x = 1+2l−1

τ odd Bl(τ, 1) 22n−2l−1

τ even Bl(τ, 1) 3 · 22n−2l−1

l = n 1,−1, (2n−1 + 1)1 and (2n−1 − 1)1 1

Proposition 2.4.5 gives the complete description of the conjugacy classes of SL2(Z/2nZ).
The exact information needed for computing S2n is summarized in the following:

Corollary 2.4.6. For A ∈ SL2(Z/2nZ) we define s(A) ∈ {2l, . . . , l+n} to be the maximal
s for which 2s−l divides τ . Let N(l, x), resp N(l, x, s), be the number of matrices having
l, x (resp s) as invariants. We deduce from Theorem 2.4.5 the following:
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1. N(0, 1, 0) = 23n−2.

2. For 1 ≤ s ≤ n− 1, N(0, 1, s) = 3 · 23n−s−3.

3. N(0, 1, n) = 3 · 22n−2.

4. For l ≥ 1, N(l, 1, s) = 3.23n−l−s−3 if s , l + n and N(l, 1, n+ l) = 3 · 22n−2l−2.

5. For l ≥ 2, N(l,−1) = 3 · 23n−3l−2.

6. For l ≥ 3, N(l, 1 + 2l−1) = N(l, 2l−1 − 1) = 23n−3l.

7. N(n, x) = 1.

The proof of Proposition 2.4.5 will be deduced from the following:

Lemma 2.4.7. Let U =

(
a b
c d

)
and U ′ =

(
a′ b′

c′ d′

)
be two matrices of C(x, l, τ). If

l = 0, we suppose that c and c′ are odd. If l ≥ 1, writing U = x1 +

(
a1 b1

c1 d1

)
we suppose

that c1 and c′
1 are odd. Note that each conjugacy class contains an element satisfying these

conditions. We define EU,U ′ the following equation:

c1x
2 + (a1 − d1)xy − b1y

2 ≡ c′
1 (mod 2n−l), when l ≥ 1;

cx2 + (a− d)xy − by2 ≡ c′ (mod 2n), when l = 0.

Then we have the two following properties:

1. The matrix U is conjugate to U ′ if and only if EU,U ′ has solutions.

2. If k is the number of solutions of EU,U then the conjugacy class of U has m(U) =
1
k3 · 23n−3l−2 elements.

Once this Lemma proved, the proof of Theorem 2.4.5 will follow from the study of
the equations EU,U ′ . We will need the Hensel’s Lemma (see [18], section 3.2) which states
that if n ≥ 1, x0 ∈ Z/2nZ and P ∈ Z[x] is a polynomial such that P (x0) ≡ 0 (mod 2n)
and P ′(x0) is odd, then there exists a unique element x̃0 ∈ Z/2n+1Z such that x̃0 ≡ x0

(mod 2n)) and P (x̃0) ≡ 0 (mod 2n+1).

Lemma 2.4.8. Let A ∈ SL2(Z/2nZ), then there exists exactly 8 matrices Ã ∈ SL2(Z/2n+1Z)
such that Ã ≡ A (mod 2n).

Proof. Let A =

(
a b
c d

)
. Then at least one entry of A must be odd. Suppose c is odd.

There are exactly 8 ways to lift a, c and d into elements ã, c̃, d̃ in Z/2n+1Z. Using Hensel’s
Lemma to the polynomial P (b) := −c̃b + ãd̃ − 1 we show that for each of this 8 choices,
there is exactly one way to lift b in Z/2n+1Z such that the corresponding matrix Ã lies
in SL2(Z/2n+1Z). �

Note that this lemma easily implies by induction that the cardinal of SL2(Z/2nZ) is
3 · 23n−2.
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Proof of Lemma 2.4.7. Suppose thatX =

(
x1 y1

x2 y2

)
∈ SL2(Z/2nZ) is such thatXUX−1 =

U ′. A simple computation shows thatXUX−1 has the formXUX−1 =

(
∗ ∗

cy2
2 + (a− d)x2y2 − bx2

2 ∗

)
.

Thus (y2, x2) is solution of EU,U ′ .

Conversely, let (y2, x2) be solution of EU,U ′ . The equality XU = U ′X is equivalent to
the following equations:

x1a+ cy1 = a′x1 + b′x2 (2.6)

x1b+ y1d = a′y1 + b′y2 (2.7)

x2a+ cy2 = c′x1 + d′x2 (2.8)

x2b+ dy2 = c′y1 + d′y2 (2.9)

The equations (2.8) and (2.9) completely determine the values of x1 and y1, so of X,
modulo 2n−l. Direct computations show that this X is in SL2(Z/2n−lZ) and verifies
(2.6) and (2.7).

Thus an element X in the stabilisator Stab(U) of U is completely determined modulo
2n−l by a solution of EU,U . Using Lemma 2.4.8, we see that there are exactly 23l ways
to lift such a matrix in SL2(Z/2nZ). So, if k is the number of solutions of EU,U then
| Stab(U)| = k23l. The class formula concludes the proof.

�

It remains to compute the number of solutions of the equations EU,U ′ .

Lemma 2.4.9. Let n ≥ 1 and A,B,C,D four integers so that ABD is odd. Let En be
the following equation:

Ax2 +Bxy + Cy2 ≡ D (mod 2n)

Then En has 2n−1 solutions if C is even and 3 · 2n−1 solutions if C is odd.

Proof. We show the result by induction on n using Hensel’s Lemma.
�

Lemma 2.4.10. Let n ≥ 1 and A,B,C,D be integers such that A and D are odd. Let
(E) be the following equation with variables (x, y) both in SL2(Z/pZ) :

Ax2 + 2Bxy + Cy2 ≡ D (mod 2n)

We note ∆ := AC −B2. Then:
(1) If n = 1, (E) has 2 solutions.
(2) If n = 2, when ∆ ≡ 2, 3 (mod 4) then (E) has 4 solutions. When ∆ ≡ 0, 1

(mod 4) then (E) has 8 solutions if AD ≡ 1 (mod 4) and 0 otherwise.
(3) If n ≥ 3, we have the following cases:
– (a) If ∆ ≡ 0 (mod 8) then (E) has 2n+2 solutions if AD ≡ 1 (mod 8) and 0

otherwise.
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– (b) If ∆ ≡ 2, 4, 6 (mod 8) then (E) has 2n+1 solutions if AD ≡ 1 (mod 8) or
AD ≡ 1 + ∆ (mod 8) and 0 otherwise.

– (c) If ∆ ≡ 1, 5 (mod 8) then (E) has 2n+1 solutions if AD ≡ 1 (mod 8) or AD ≡ 5
(mod 8) and 0 otherwise.

– (a) If ∆ ≡ 3, 7 (mod 8) then (E) has 2n solutions.

Proof. First we put z = Ax+By. The map from Z/2nZ×Z/2nZ to itself sending (x, y)
to (z, y) is bijective as A is odd and we remark that (x, y) is solution of (E) if and only if
(z, y) is solution of the following equation, say (E′):

z2 + ∆y2 ≡ AD (mod 2n)

Thus (E) and (E′) have the same number of solutions. The number of solutions of (E′) is
easily computed using the fact (see [22], proposition 5.13) that if a is an odd number and
n ≥ 3, then the equation x2 ≡ a (mod 2n) has 4 solutions modulo 2n if a ≡ 1 (mod 8)
and 0 otherwise.

�

End of the Proof of Proposition 2.4.5. We fix three invariants l, x and τ and study the
conjugacy classes of C(l, x, τ). Let us take two matrices U,U ′ ∈ C(l, x, τ). We can always
conjugate them so that they verify the hypothesis of Lemma 2.4.7. These two matrices
are conjugate if and only if the set of solutions of EU,U ′ is not empty and the number of
elements in the conjugacy class of U is computed by using Lemmas 2.4.7, 2.4.10 and 2.4.9.

�

Computation of the characters

Proposition 2.4.11. Let A ∈ SL2(Z/2nZ) and x, l, s be its associated invariants. The
definition of s has been given in Corollary 2.4.6 and will make sense now. The trace
Tr(π2n−1(A)) is given by:

1. If l = 0, | Tr(π2n−1(A))|2 = 2s if 0 ≤ s ≤ n − 2, Tr(π2n−1(A)) = 0 if s = n − 1 and
| Tr(π2n−1(A))|2 = 2n−1 if s = n.

2. If 1 ≤ l ≤ n − 2 and x = 1 then | Tr(π2n−1(A))|2 = 2s when 2l ≤ s ≤ n + l − 2,
Tr(π2n−1(A)) = 0 when s = n+ l − 1 and | Tr(π2n−1(A))|2 = 2n+l−1 if s = n+ l.

3. If l = n− 1 and x = 1 then Tr(π2n−1(A)) = 0.

4. If l = n and x = 1 (A = I2) then | Tr(π2n−1(A))|2 = 22n−2.

5. If 2 ≤ l ≤ n and x = −1 then | Tr(π2n−1(A))|2 = 4.

6. If 3 ≤ l ≤ n and x = 2l−1 + 1 then | Tr(π2n−1(A))|2 = 22l−2.

7. If 3 ≤ l ≤ n and x = 2l−1 − 1 then | Tr(π2n−1(A))|2 = 4.

Lemma 2.4.12. Let a be an odd integer and Da :=

(
a 0
0 a−1

)
∈ SL2(Z/2nZ). Then we

have π2n−1(Da) = ϵ(δai,j)i,j where ϵ is a scalar such that |ϵ|2 = 1.
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Proof. It is proved by a direct computation using the fact that Da = T−aST−a−1
ST−aS .

�

Proof of Proposition 2.4.11. First when l = 0 or when x = 1, we can suppose that A =(
1 b
c 1 + bc

)
= ST cS−1T−b with b = 2s−lb1, c = 2lc1 where b1 and c1 are odd.

A simple computation gives:

π2n−1(A) = β±3+xG(−1, 0, 2n)2

22n

(
∑

k

Ack
2+2(j−i)k−bj2

)

i,j

So:

| Tr(π2n−1(A))| =

∣∣∣∣∣

(
G(−1, 0, 2n)

2n

)2 G(c, 0, 2n)

2

G(−b, 0, 2n)

2

∣∣∣∣∣

We conclude by using the fact that, if x is odd and s ∈ {0, . . . , n} then (see [10]):

|G(x2s, 0, 2n)|2 =





2s+n, when s ≤ n− 2;
0, when s = n− 1;
2n, when s = n.

Then when x = −1 we can suppose A = −
(

1 b
c 1 + bc

)
= S−1T cS−1T−b with b =

2s−lb1, c = 2lc1 where b1 and c1 are odd. A similar computation gives:

π2n−1(A)i,i = ϵ

(
G(−1, 0, 2n)

2n

)2

A−bi2G(c, 4i, 2n)

2

where ϵ = βc−b−6 is a norm one scalar. The Gauss sum G(c, 4i, 2n) is not null if and only
if i ∈ {0, 2n−2} when l = n, 2n−3 divides i and 2n−2 does not when l = n − 1 and 2l−1

divdes i when 2 ≤ l ≤ n− 3.

We conclude by summing π2n−1(A)i,i over these i.

Now to compute the traces when x = 2l−1 ± 1, we write A =

(
a b
c d

)
with a odd and

c = 2lc1 with c1 odd. We use the decomposition A = ST ca
−1
SD−aT−a−1b and Lemma

2.4.12 to find that:

(π2n−1(A))i,i = ϵ′
(
G(−1, 0, 2n)

2n

)2 G(ca−1, 2(a−1 − 1)i, 2n)

2
Aa

−1bi2

where ϵ′ is a norm one scalar. We conclude by summing π2n−2(A)i,i over every i and
taking the norm. �
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The computation of the sum S2n

Proof of Proposition 2.4.2. Set S(x, l) :=
∑
A∈C(x,l) |T (A)|2 and S(l) :=

∑
A∈C(l) |T (A)|2.

By using Propositions 2.4.6 and 2.4.11 together, we compute the following sums:

1. S(0) = 23n−2 + 3 · 23n−3(n− 1).

2. S(1, l) = 3 · 23n−l−3(n− l) if 1 ≤ l ≤ n− 2.

3. S(−1, l) = 3 · 23n−3l if 2 ≤ l ≤ n− 1.

4. S(1 + 2l−1, l) = 23n−l−2 if 3 ≤ l ≤ n− 1.

5. S(−1 + 2l−1, l) = 23n−3l+2 if 3 ≤ l ≤ n− 1.

6. S(1) = S(1, 1) = 3 · 23n−4(n− 1).

7. S(2) = S(1, 2) + S(−1, 2) = 3 · 23n−5(n− 2) + 3 · 23n−6.

8. S(l) = 3 · 23n−l−3(n− l) + 3 · 23n−3l + 23n−l−2 + 23n−3l+2 if 3 ≤ l ≤ n− 2.

9. S(n− 1) = 3 · 23 + 25 + 22n−1.

10. S(n) = 23 + 22n−1.

And we conclude by computing:

|SL2(Z/2nZ)|S2n = S(0) + S(1) + S(2) +
n−2∑

l=3

S(l) + S(n− 1) + S(n)

= 3 · 23n−2(n− 1) = |SL2(Z/2nZ)| × (n− 1)

�

2.4.2 Higher genus factors

Theorem 2.4.13. If r is prime, the modules Ug,±r and W g,±
rn are irreducible.

Proof. First let us handle the Ug,±r modules, when r is prime. Denote by A the k′
r-

subalgebra of End(Ur) generated by the operators πr(ϕ) for ϕ ∈ SL2(Z) and by B the
k′
r-subalgebra of End(U⊗g

r ) generated by the operators πr,g(ϕ) for ϕ ∈ Sp2g(Z), when r is
odd, and ϕ ∈ ˜Sp2g(Z), when r is even.

We denote by A′ and B′ their commutant in End(Ur) and End(U⊗g
r ) respectively. We

know from the genus one study that A′ is generated by 1 and the symmetry θ ∈ GL(Ur)
sending ei to e−i. There is a natural injection i : A ⊗ . . . ⊗ A ֒→ B. Now using the fact
that the commutant of a tensor product is the tensor product of the commutant we get:

B′ ⊂ i((A ⊗ . . .⊗ A))′ = i(A′ ⊗ . . .⊗ A′)

Note that when r = 2 then θ = 1 so B′ consists of scalar elements and π2,g = π+
2;g is

irreducible. We can thus suppose that r is odd.

A generic element of i(A′ ⊗ . . .⊗ A′) has the form:

C =
∑

i∈I
λiai1 ⊗ . . .⊗ aig , with I ⊂ {1, . . . , p}g and aik = 1 or θ

To conclude we must show that B′ is generated by 1⊗ . . .⊗1 and θ⊗ . . .⊗ θ, that is show
that if C ∈ B′ then aiu = aiv for all i ∈ I and u , v.
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Let us choose u, v and set e := e1 ⊗ . . .⊗ e1. We compute the commutator:

[C, πr,g(Zu,v)](e) =
∑

i∈I
λi(A

4ϵi − 1)(ai1 ⊗ . . .⊗ aig )(e)

where ϵi = 0 if aiu = aiv and ϵi = 1 elsewhere. Since A4 , 1 and the family {(ai1 ⊗ . . .⊗
aig )(e), i ∈ I} is free, the fact that C is in the commutant of B implies that ϵi = 0 for all
i so the two eigenspaces of θ ⊗ . . .⊗ θ are irreducible.

Denote by C the k′
rn-subalgebra of End(Urn) generated by the operators πr(ϕ) for

ϕ ∈ SL2(Z) and by the k′
rn-subalgebra of End(U⊗g

rn ) generated by the operators πr,g(ϕ)

for ϕ ∈ Sp2g(Z), when r is odd, and ϕ ∈ ˜Sp2g(Z), when r is even.

We denote by C′ and D′ their commutant in End(Urn) and End(U⊗g
rn ) respectively. We

know from the genus one study that A′ is generated by 1 and θ. The natural injection
i : C ⊗ . . .⊗ C ֒→ D implies that:

D′ ⊂ i((C ⊗ . . .⊗ C)′) = i(C′ ⊗ . . .⊗ C′)

Again we choose a generic element C =
∑
i∈I λiai1 ⊗ . . .⊗ aig ∈ i(C′ ⊗ . . . ⊗ C′) with

I ⊂ {1, . . . , pn}g and aik = 1 or θ and suppose that C ∈ B′. Now remember that Wrn is
defined as the orthogonal of Ūrn−2 = Span(gi) in Urn and since e1 is orthogonal to all gi we
deduce that e = e1 ⊗ . . .⊗e1 ∈ W⊗g

rn . So the fact that the commutator [C, πrn+2,g(Zu,v)](e)
is null if and only if C is a linear combination of 1 ⊗ . . .⊗ 1 and θ⊗ . . .⊗ θ permits us to
conclude. �

Finally the irreducibility of the factors coming from the decomposition at composite
levels p = rn1

1 . . . rnk
k follows, using the decomposition (1) from Theorem 2.1.1, exactly as

in the genus one case:

Corollary 2.4.14. All the modules of the form Br1 ⊗ . . . ⊗ Brk
with r1, . . . , rk distinct

prime and Bri = Ug,±ri
or W g,±

rn
i

, are irreducible and pairwise distinct.

Proof. Let p = 2αrn1
1 . . . rnk

k with ri some distinct odd primes. There is a group isomor-

phism between ˜Sp2g(Z/2pZ) and ˜Sp2g(Z/2α+1Z)×Sp2g(Z/r
n1
1 Z)× . . .×Sp2g(Z/r

nk
k Z),

if p is even, and between Sp2g(Z/pZ) and Sp2g(Z/r
n1
1 Z) × . . . × Sp2g(Z/r

nk
k Z), if p is

odd.

Denote by Ap,g the subalgebra of End(U⊗g
p ) generated by the operators πp,g(ϕ). Using

the first point of Theorem 2.1.1, we get an algebra isomorphism:

Ap,g � A2α,g ⊗ Ar
n1
1 ,g ⊗ . . .⊗ Ar

nk
k
,g

We conclude using the fact that the commutant of a tensor product is the tensor
product of the commutant and use Theorem 2.4.13.

�
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2.4.3 An alternative proof

We give an alternative proof to show the irreducibility of the factors arising in the
decomposition of the Weil representations. The proof is a generalization of the arguments
of the physicists Capelli, Itzykson and Zuber in [16] inspired by the work of Qiu and Gepner
in [33]. Denote by (Ap,g)

′ the commutant in End(U⊗g
p ) of the k′

p-algebra generated by the
operators πp,g(ϕ).

Proposition 2.4.15. The dimension of (Ap,g)
′ is at most σ(p) when p is odd and σ(p2)

when p is even.

Since the dimension of (Ap,g)
′ is equal to the number of irreducible subfactors of U⊗g

p ,
the previous proposition implies the irreducibility of the factors arising in the decomposi-
tion of Theorem 2.1.1.

Lemma 2.4.16. The action • of Sp2g(Z) on (Z/pZ)2g by matrix multiplication con-
tains σ(p) orbits. A set of representatives is given by the classes Cδ of the elements
(0, δ, 0, δ, . . . , 0, δ) where δ runs through the divisors of p.

Proof. First remark that if δ1 and δ2 are two divisors of p such that there exists ϕ ∈
Sp2g(Z) so that ϕ • (0, δ1, . . . , 0, δ1) = (0, δ2, . . . , 0, δ2) then δ1 divides δ2. Since we can
exchange δ1 and δ2 in the argument, then δ1 = δ2 and the classes Cδ are pairwise distinct.

Suppose g = 1 and let a, b ≥ 1. Choose u, v ∈ Z so that ua+ vb = g.c.d(a,b). Remark

that

(
b

g.c.d(a,b) − a
g.c.d(a,b)

u v

)
∈ SL2(Z) and we have:

(
b

g.c.d(a,b) − a
g.c.d(a,b)

u v

)(
a
b

)
=

(
0

g.c.d(a,b)

)

So (a, b) lies in the same orbit that (0, g.c.d(a,b)).

Next choose d a divisor of p and x so that g.c.d(x,p) = 1. Then (0, d) and (0, dx) lies
in the same orbit for, if xx′ = 1 (mod p) then:

(
x′ 0
0 x

)(
0
d

)
=

(
0
dx

)

So any element (a, b) is in the orbit of (0, g.c.d(a,b,p)) and we have proved the lemma
when g = 1.

When g ≥ 2, using the injection of SL2(Z)g in Sp2g(Z) by diagonal blocks, we deduce
from the previous study that any element of (Z/pZ)2g lies in the orbit of an element
(0, δ1, . . . , 0, δg), where the δk are divisors of p. We now show that when g = 2, the
element (0, δ1, 0, δ2) is in the same orbit that (0, g.c.d(δ1, δ2), 0, g.c.d.(δ1, δ2)). The proof
of the lemma will follow by induction on g using a suitable injection of Sp4(Z) in Sp2g(Z).

Choose four integers u, v, α, β such that:

uδ1 + vδ2 = g.c.d(δ1, δ2)

αu− β
δ2

g.c.d(δ1, δ2)
= 1
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Let X :=

(
α δ2

g.c.d(δ1,δ2)

β u

)
and Y :=

(
0 − δ1

g.c.d(δ1,δ2)

− δ1
g.c.d(δ1,δ2) v

)
. The matrix X has de-

terminant 1 and Y is symmetric so ϕ :=

(
X Y
0 (X−1)T

)
∈ Sp2g(Z). A direct computation

shows that ϕ • (0, δ1, 0, δ2) lies in the same orbit that (0, g.c.d(δ1, δ2), 0, δ2). Using the

action of the matrix

(
0 1

−1 0

)
, we conclude. �

Proof of Proposition 2.4.15. Fix a basis {x1, y1, . . . , xg, yg} of H1(Σg,Z/pZ) so that the
intersection form verifies ω(xi, yj) = δi,j . This induces an isomorphism f : H1(Σg,Z/pZ) →
(Z/pZ)2. The family {Addp(γ, 0)|γ ∈ H1(Σg,Z/pZ)}, where Addp denotes the Schrödinger
representation, is a basis of End(U⊗g

p ). Thus any element Θ ∈ End(U⊗g
p ) has a unique

expression:
Θ =

∑

γ∈H1(Σg ,Z/pZ)

Θγ Addp(γ, 0)

Now using the Egorov identity, we have:

Θ ∈ (Ap,g)
′ ⇔ πp,g(ϕ)−1Θπp,g(ϕ) = Θ, for all ϕ ∈ Sp2g(Z)

⇔
∑

γ∈H1(Σg ,Z/pZ)

Θγ Addp(γ, 0) =
∑

γ∈H1(Σg ,Z/pZ)

Θγ Addp(ϕ • γ, 0),

for all ϕ ∈ Sp2g(Z)

⇔ Θϕ•γ = Θγ , for all ϕ ∈ Sp2g(Z) and γ ∈ H1(Σg,Z/pZ)

Lemma 2.4.16 implies that dim((Ap,g)
′) ≤ σ(p) and the proof is completed when p is

odd, for Θ is completely determined by the σ(p) coefficients Θf−1(0,δ,...,0,δ), where δ/p.

When p is even, we will prove that Θf−1(0,δ,...,0,δ) = 0 when δ is odd. This will imply
that Θ ∈ (Ap,g)

′ is determined by the σ(p2) coefficients Θf−1(0,δ,...,0,δ) where δ/p and δ is
even.

We first suppose that g = 1. Let ∆p := ker (SL2(Z/2pZ) → SL2(Z/pZ)). This
subgroup contains the following eight elements:

∆p =

{(
1 + αp βp
γp 1 + αp

)
;α, β, γ ∈ Z/2Z

}

Now if Θ ∈ (Ap,1)′ we have:

Θ =
1

|∆p|
∑

ϕ∈∆p

πp(ϕ)−1Θπp(ϕ)

=
∑

a,b

Θxayb

1

8

∑

α,β,γ∈Z/2Z

Addp(x
(1+αp)a+βpbyγpa+(1+αp)b)

=
∑

a,b

Θxayb


1

8

∑

α,β,γ∈Z/2Z

(−1)γi+βj


Addp(x

ayb)

Where we used the fact that Addp(x) and Addp(y) have order p. Now we simply remark
that:

1

8

∑

α,β,γ∈Z/2Z

(−1)γi+βj =

{
1 , when i, j are both even.
0 , elsewhere.
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And the proof is completed when g = 1. To handle the genus g ≥ 2 cases, we choose an
injection i : SL2(Z) ֒→ Sp2g(Z) sending SL2(Z) in a diagonal block and completing by the
identity matrix. A similar computation shows that Θ = 1

|i(∆p)|
∑
ϕ∈i(∆p) πp,g(ϕ)−1Θπp,g(ϕ)

implies that Θf−1(0,δ,...,0,δ) = 0, when δ is odd. �

Remark. The proof of Proposition 2.4.15 shows that the operators:

Ωδ,p :=
∑

ϕ∈Sp2g(Z)

Addp(ϕ • f−1(0, δ, . . . , 0, δ), 0)

form a generating set for (Ap,g)
′. It is not difficult to deduce the decomposition of the Weil

representations by showing that they form a free family and then study their eigenspaces.
The relation between this basis of (Ap,g)

′ and the decomposition of Theorem 2.1.1 is
summarized in the following:

1. If a and b are coprime and δ1/a, δ2/b then Ωδ1δ1,ab � Ωδ1,a ⊗ Ωδ2,b.

2. If r is prime, n ≥ 2 and k ≤ n
2 then Ωrk,rn is the projector on the submodule

U⊗g
rn−2k ⊂ U⊗g

rn . The operator Ωrn−k,rn is the composition of Ωrk,rn with the symmetry
sending ei ⊗ . . .⊗ ei to e−i ⊗ . . .⊗ e−i.



Chapter 3

Decomposition of some
Reshetikhin-Turaev
representations into irreducible
factors

Résumé

Ce chapitre contient la version non publiée de l’article intitulé " Decom-
position of some Reshetikhin-Turaev representations into irreducible factors"
([56]). Le résultat principal est la décomposition en facteurs irréductibles des
représentations de Reshetikhin-Turaev lorsque le niveau est de la forme p = 4r,
p = 2r2 ou p = 2r1r2 avec r, r1, r2 des nombres premiers impairs, modulo cer-
taines hypothèses.

Abstract

This chapter contains the unpublished version of the article " Decom-
position of some Reshetikhin-Turaev representations into irreducible factors"
([56]). The main result is the decomposition into irreducible factors of the
Reshetikhin-Turaev representations when the level is p = 4r, p = 2r2 or
p = 2r1r2 with r, r1, r2 odd primes, under certain technical assumptions.

3.1 Introduction

Witten gave in [92] convincing arguments for the existence of Topological Field Theo-
ries, as defined in [6, 91], giving a three dimensional interpretation of the Jones polynomial
when the gauge group is SU(2). Each of these TQFTs gives a family of projective finite di-
mensional representations of the mapping class group Mod(Σg) of a genus g closed oriented
surface Σg. Reshetikhin and Turaev gave a rigorous construction of these TQFTs [75] us-
ing representations of quantum groups. In this paper we will follow the skein theoretical
construction of [63, 14] to define these representations.
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We can lift these projective representations to linear representations of some central
extension ˜Mod(Σg) of Mod(Σg) noted:

ρp,g : ˜Mod(Σg) → GL(Vp,g).

Here p = 2(k + 2) ≥ 3 is an even integer indexing the representations and Vp,g is a finite
dimensional complex vector space. These representations are equipped with an invariant
scalar product ⟨, ⟩p,g with respect to which they are unitary.

The goal of this paper is to decompose some of these representations into irreducible
factors. Only few results are known concerning their decomposition. In [14], an explicit
proper submodule of Vp,g is given whenever 4 divides p. In [76] it is shown that Vp,g is
irreducible when p

2 is an odd prime. Robert’s proof extends word-by-word to show that
the modules V18,g are also irreducible. In [5] the authors showed that for p = 24, 36, 60
then Vp,g contains at least three invariant submodules. Finally we gave in [55] an explicit
decomposition into irreducible factors of the modules Vp,1 for arbitrary level p ≥ 3.

The main results of this paper are summarized in the two following theorems:

Theorem 3.1.1.

1. If r is an odd prime, then V4r,2 is the sum of two irreducible subrepresentations.

2. If r is an odd prime, then V2r2,2 is irreducible.

3. If r1, r2 are two distinct odd primes, then V2r1r2,2 is irreducible.

Given a level p = 2r ≥ 3, there exists a set of complex numbers called 6j-symbols at
level p which will be defined in the next section. If r is odd, we call generic a level for
which none of the level p 6j-symbols is null. When r is even, we exhibit in Proposition
3.3.10 two families of vanishing 6j-symbols at level p. We call such a p generic if no other
6j-symbols vanish. Numerical computations suggest that every levels are generic.

Theorem 3.1.2.

1. The modules V18,g are irreducible for arbitrary g ≥ 2.

2. If 50 is generic then the module V50,3 is irreducible.

3. If r is an odd prime, p = 4r is generic and g = 3, then V4r,3 is sum of two irreducible
subrepresentations.

4. If r1, r2 are two distinct odd primes, p = 2r1r2 is generic and 2g < min(r1, r2),
then V2r1r2,g is irreducible.

The generecity of a given level p can be checked by numerical computations. This
leads us to the following:

Corollary 3.1.3. (Computer assisted proof)
The module V50,3 is irreducible. The modules V28,3, V44,3 are sum of two irreducible

submodules.

Remark. In [14] some representations ρp,g are also defined when p is odd. They verify
ρ2p,g � ρp,g ⊗ ρ6,g. In particular if an odd level r is such that V2r,g is irreducible, then so
is Vr,g. This extends the two previous theorems to the SO(3) cases as well.

Acknowledgements: The author is thankful to his advisor Louis Funar and Francesco
Costantino for useful discussions. He acknowledges support from the grant ANR 2011 BS
0102001 ModGroup and the GEAR Network.
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3.2 Skein construction of the Reshetikhin-Turaev represen-
tations

Following [14], we will briefly define the representations ρp,g and fix some notations.

3.2.1 The spaces Vp,g

Given an even integer p ≥ 6, we denote by A ∈ C an arbitrary primitive 2p− th root
of unity. Using the Kauffman skein relation of Figure 3.1, we associate to any framed link
L ⊂ S3 an invariant ⟨L⟩p ∈ C.

A A
-1

A A( )
2 -2

Figure 3.1: Skein relations defining the framed link invariants.

Choose g ≥ 1 and denote by Cg the set of isotopy classes of framed links (including the
empty link) in an oriented genus g handlebody Hg. We fix a genus g Heegaard splitting
of the sphere, i.e. an element S ∈ Mod(Σg) and two handlebodies so that :

H1
g

∪

S:∂H1
g →∂H2

g

H2
g � S

3

Take L1, L2 ∈ Cg and embed L1 in H1
g and L2 in H2

g . The above gluing defines a link
L1
∪
S L2 ⊂ S3. We call Hopf pairing the bilinear form:

(·, ·)Hg,p : C[Cg] × C[Cg] → C

defined by

(L1, L2)Hp,g :=

⟨
L1

∪

S

L2

⟩

p

Eventually we define the spaces Vp,g as the quotients:

Vp,g := C[Cg]
/
ker

(
(·, ·)Hg,p

)

The vector spaces Vp,g are finite dimensional ([14]) and we can find explicit basis
as follows. Let g ≥ 2, choose a trivalent graph Γ ⊂ Hg so that Hg retracts on Γ by
deformation. If g = 1, Γ represents the circle S1 × {0} ⊂ S1 × D2 � H1. We denote by
E(Γ) the set of its edges.

A triple (i, j, k) ∈
{

0, . . . , p−4
2

}3
is said p-admissible if:

1. |i− j| ≤ k ≤ i+ j,

2. i+ j + k is even and is smaller or equal to p− 4.
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A map σ : E(Γ) → {0, . . . , p−4
2 } is a p-admissible coloring of Γ if for every three edges

e1, e2, e3 ∈ E(Γ) adjacent to a vertex, the triple (σ(e1), σ(e2), σ(e3)) is p-admissible.

In [46, 90] the authors defined some idempotents {f0, . . . , f p−4
2

} of the Temperley-Lieb

algebra with coefficient in Q(A) called Jones-Wenzl idempotents . To σ a p-admissible
coloring of Γ we associate a vector uσ ∈ Vp,g as follows. We replace each edge e ∈ E(Γ)
by the Jones-Wenzl idempotent fσ(e). If (e1, e2, e3) are three edges adjacent to a vertex of
Γ, we connect the idempotents using the link Tσ(e1),σ(e2),σ(e3) defined in Figure 3.2.

Figure 3.2: The link Ti,j,k used to connect three idempotents fi, fj and fk. The numbers
above each three arcs denotes the number of parallel copies of the arc used to define the
link.

Theorem 1.1.44 asserts that the elements uσ, for σ a p-admissible coloring of Γ, form a
basis of Vp,g. Moreover there exists a non-degenerate bilinear form ⟨, ⟩p,g on Vp,g invariant

under the action of ˜Mod(Σg), for which the vectors uσ are pairwise orthogonal.

The basis uσ depends on the choice of the trivalent graph. We can transform a trivalent
graph into one another by a sequence of Whitehead moves. Suppose that Γ1 and Γ2 are
two trivalent graphs of genus g ≥ 2, which only differ by a single Whitehead move, inside
a ball B3, as drawn in Figure 3.3.

a b

c d

i
j

ba

c d

Figure 3.3: The two graphs Γ1 on the left and Γ2 on the right differ by a local Whitehead
move.

Fix a p-admissible coloring of the graphs outside B3 and denote by
..
σ(i) (resp.

..
σ(j) ) the vector associated to the coloration of Γ1 (resp of Γ2) with the edge i col-

ored by σ(i) (resp with the edge j colored by σ(j)).
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Then the vectors
..

i belong to the subspace spanned by the vectors
..

j and de-

compose using the so-called ’fusion rules’ formula (Lemma 1.1.48) :

..
i =

∑

j

{
a b j
c d i

}

..
j (3.1)

where the sum runs through p-admissible colorings and the coefficient

{
a b j
c d i

}
only

depends on the colors of the edges a, b, c, d, i and j and is called recoupling coefficient or
6j-symbol in literature. The computation of 6j-symbols follows from Lemma 1.1.48 and
Proposition 1.1.17.

3.2.2 The Reshetikhin-Turaev representations

We fix an orientation preserving homeomorphism

α : Σg → ∂Hg

Choose a class ϕ ∈ Mod(Σg) associated to a homeomorphism which extends to Hg

through α. Then ϕ acts on Cg and preserves the kernel of the Hopf pairing so acts on Vp,g
by passing to the quotient. Denote by ρ̃p,g(ϕ) ∈ GL(Vp,g) the resulting operator.

Now choose ϕ ∈ Mod(Σg) so that the corresponding homeomorphisms extend to Hg

through α ◦ S. This extension also defines, by quotient, an operator on Vp,g. We denote
by ρ̃p,g(ϕ) the dual of this operator for the Hopf pairing.

The elements of Mod(Σg) which extend to Hg either through α or through α ◦ S,
generate the whole group Mod(Σg). It is a non trivial fact that the associated operators
ρ̃p,g(ϕ) generate a projective representation:

ρ̃p,g : Mod(Σg) → PGL(Vp,g)

We consider a central extension ˜Mod(Σg) of Mod(Σg) that lifts the above projective
representations to linear ones (see [69, 38]):

ρp,g : ˜Mod(Σg) → GL(Vp,g)

These are the so-called Reshetikhin-Turaev representations.

Now to each edge e ∈ E(Γ), choose a disc De, properly embedded in Hg, that intersects
Γ transversely once in e. Note that the set of boundary curves γe := ∂De ⊂ ∂Hg

α−→ Σg

forms a pants decomposition of Σg.

A classical property of the Jones-Wenzl idempotents (Lemma 1.1.12) asserts that, if
Te ∈ Mod(Σg) denotes the Dehn twist along γe, then:

ρ̃p,g(Te) · uσ = µσ(e)uσ

where µi := (−1)iAi(i+2).

We fix the lift of Te in ˜Mod(Σg), still denoted Te, so that ρp,g(Te) · uσ = µσ(e)uσ.
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We also fix the lift S ∈ ˜Mod(Σg) so that the matrix of ρp,g(S) is the matrix of the Hopf

pairing (·, ·)Hp,g multiplied by an element η ∈ C which verifies |η| = |A2−A−2|√
p . We refer to

[14], where η represents the quantum invariant of S3, for a detailed discussion on η.

Since S and the {Te}e∈E(Γ) generate ˜Mod(Σg) for some trivalent graphs, we have an
explicit description of ρp,g.

3.3 Cyclicity of the vacuum vector

Denote by Ap,g the subalgebra of End(Vp,g) generated by the operators ρp,g(ϕ) for
ϕ ∈ ˜Mod(Σg). The key ingredient to prove Theorem 3.1.1 is to show that the vacuum
vector v0 ∈ Vp,g, associated to the class of the empty link, is cyclic, i.e. that Ap,g ·v0 = Vp,g.

3.3.1 The genus one case

In [55] we gave an explicit decomposition of the Weil representations into irreducible
factors (Theorem 2.1.1) . An easy generalization of the arguments of the proof of Lemma
3 of [27] leads to an explicit isomorphism of SL2(Z)-modules between Vp,1 and the odd
submodule of the Weil representation at level p (see Theorem 3.3.1) . Proving that v0 ∈ Vp,1
is cyclic reduces to show that its projection on each irreducible submodule of Vp,1 is not
null.

Denote by
{
u0, . . . , u p−4

2

}
the basis of Vp,1 where ui is the class of the closure of the

i − th Jones-Wenzl idempotent along a longitude in H1. Also denote by {ei, i ∈ Z/pZ}
the basis of the Weil SL2(Z)-module Up at level p as described in [55].

In this basis, the Weil projective representations in genus one are defined by the ma-
trices:

πp(S) =
1√
p

(
A−ij

)

i,j∈Z/pZ

πp(T ) =
(
Ai

2
δi,j
)

i,j∈Z/pZ

Here the level is an integer p ≥ 2 not necessary even. When p is even, we take A to be
a primitive 2p− th root of unity. When p is odd, A is a primitive p− th root of unity.

The vectors
{
e−
i := ei − e−i, i ∈ {1, . . . , p−2

2 }
}

span a submodule U−
p ⊂ Up.

Lemma 3.3.1. Let p = 2r ≥ 6 be an even integer. Then the following map:

Ψ :

{
U−
p → Vp,1

e−
i 7−→ ui+r−1

is an isomorphism of SL2(Z)-projective modules.

Proof. We compute the matrix elements:

⟨
ψ(e−

j ), ρp,1(S)ψ(e−
i )
⟩

=
η · (−1)i+j

A2 −A−2

(
A2(i+r)(j+r) −A−2(i+r)(j+r)

)

=
η · (−1)r

√
p

A2 −A−2

⟨
e−
j , πp(S)e−

i

⟩
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where the scalar η·(−1)r √
p

A2−A−2 has norm one.

⟨
ψ(e−

j ), ρp,1(T )ψ(e−
i )
⟩

= (−1)i+r−1A(i+r−1)(i+r+1)δi,j

= (−1)r−1A−1
⟨
e−
j , πp(T )e−

i

⟩

�

The decomposition into irreducible submodules of Up is described by the following:

Proposition 3.3.2 ([55]). We have the following decompositions where � denotes an
isomorphism of SL2(Z)-modules:

1. If a and b are coprime, then Uab � Ua ⊗ Ub.

2. If r is prime and n ≥ 1, then Urn+2 � Urn ⊕ Wrn+2 where Wrn+2 denotes another
module.

3. If r is an odd prime, then Ur2 � 1 ⊕Wr2 where 1 is the trivial representation.

4. The modules Up for r > 2 and Wrn split into two submodules: Up � U−
p ⊕ U+

p ,
Wrn �W+

rn ⊕W−
rn.

5. The modules B1 ⊗ . . .⊗Bk, where the Bi have the form U+
r , U

−
r , U2, U

+
4 , U

−
4 ,W

+
rn or

W−
rn and have pairwise coprime levels, are irreducible.

We can now prove:

Proposition 3.3.3. Let p ≥ 6 be an even integer. Then the vacuum vector v0 ∈ Vp,1 is
cyclic if and only if one of the following three cases holds:

– p = 2r1 . . . rk with ri distinct odd primes.
– p = 2r2 with r prime.
– p = 4r with r prime.

Proof. We will use Proposition 3.3.2 and the explicit isomorphisms given in the main
theorem of [55] to study whether the vector

v := ψ−1(v0) = e p−2
2

− e p+2
2

∈ U−
p

has non trivial projection on each submodule of U−
p or not.

Given two integers x and n, we will denote by [x]n ∈ Z/nZ the class of x modulo n.
We write

v = e[x]p − e[−x]p ∈ U−
p

with x = p−2
2 .

First, when p = 2r2, with r prime, the module U−
p is irreducible so the vector is cyclic.

When p = 4r, with r an odd prime, the module decomposes into two irreducible
submodules:

U−
4r � U

−
4 ⊗ U+

r ⊕ U+
4 ⊗ U−

r
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The vector v decomposes as follows:

v = e[x]4 ⊗ e[x]r + e[−x]4 ⊗ e[−x]r

=

(
1

2
(e[x]4 − e[−x]4) ⊗ (e[x]r + e[−x]r )

)

+

(
1

2
(e[x]4 + e[−x]4) ⊗ (e[x]r − e[−x]r )

)

Where the first term lies in U−
4 ⊗ U+

r and the second in U+
4 ⊗ U−

r .
Since x = 2r − 1, neither 4 nor r divide x, so [x]4 , [x]4 and [x]r , [x]r and the two

projections are not null.

When p = 2r1 . . . rk, with ri distinct odd primes, we have the following decomposition:

U−
p �

⊕

ϵ=(ϵi)i∈{−1,+1}k

Xϵ

where
Xϵ := U2 ⊗ U ϵ1r1

⊗ . . .⊗ U ϵkrk

Let us fix ϵ and denote:

eϵ := e[x]2 ⊗ eϵ1[x]r1
⊗ . . .⊗ eϵk[x]rk

∈ Xϵ

where we used the notation e±
i := ei ± e−i. By using the facts that ⟨ei, eϵi⟩ = 1 and

⟨e−i, eϵi⟩ = (−1)
1−ϵ

2 , we compute:

⟨v, eϵ⟩ =
⟨
e[x]2 ⊗ e[x]r1

⊗ . . .⊗ e[x]rk
, eϵ1[x]r1

⊗ . . .⊗ eϵk[x]rk

⟩

−
⟨
e[x]2 ⊗ e[−x]r1

⊗ . . .⊗ e[−x]rk
, eϵ1[x]r1

⊗ . . .⊗ eϵk[x]rk

⟩

= 1 − (−1)
∑

i

1−ϵi
2 = 2 , 0

So the projection of v on each irreducible submodule Xϵ is not null.

Now suppose that p = 2rn1
1 . . . rnk

k with k ≥ 2, ri distinct primes and n1 ≥ 2. Since r1

does not divide x, the vector v has a null projection on the submodule:



U+

r
n1−2
1

⊗ U−
2r

n2
2 ...r

nk
k

, if r1 , 2,

U+
2n1−1 ⊗ U−

r
n2
2 ...r

nk
k

, if r1 = 2

Next if p = 2rn, with r an odd prime and n ≥ 2, the projection of v on U2 ⊗ U−
rn−2 is

null.
Finally if p = 2n, with n ≥ 3, the projection of v on U−

2n−2 is null. �

3.3.2 Cyclicity in higher genus

We will denote by Zp,g the subspace of Vp,g defined by:

Zp,g := Span{uσ, so that (uσ, v0)H , 0}

The goal of this subsection is to prove the following:
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Proposition 3.3.4. When g ≥ 2, we have:

1. When p = 4r with r an odd prime and if g = 2 or if p is generic and g < r − 2.

2. When p = 2r2 with r an odd prime and g = 2 or if p = 50 is generic and g = 3,
then the vacuum vector v0 ∈ Vp,g is cyclic.

3. When p = 2r1r2 with r1, r2 distinct odd primes and g = 2 or if p is generic and
2g < min(r1, r2), then the vacuum vector v0 ∈ Vp,g is cyclic.

4. When p = 4r with r an odd prime and if g = 2 or if p is generic , and g < r − 2,
then Zp,g is included in the cyclic subspace generated by v0.

Fix a trivalent graph Γ ⊂ Hg as in section 2. Two p-admissible colorings σ1, σ2 of Γ
will be said equivalent if:

(−1)σ1(e)Aσ1(e)(σ1(e)+2) = (−1)σ2(e)Aσ2(e)(σ2(e)+2), for all e ∈ E(Γ)

We denote by colp(Γ) the set of equivalence classes of colorings for this relation.
To [σ] ∈ colp(Γ), we associate the subspace:

W[σ] := Span{uσ′ , σ′ ∈ [σ]} ⊂ Vp,g

Lemma 3.3.5. If X ⊂ Vp,g is a ˜Mod(Σg)-submodule, then:

X =
⊕

[σ]∈colp(Γ)

X ∩W[σ]

Proof. The matrices ρp,g(Te), for e ∈ E(Γ), generate a commutative subalgebra of Ap,g.
The set colp(Γ) indexes its characters and the spaces W[σ] are the associated common
eigenspaces of the ρp,g(Te). The orthogonal projector onX must commute with the ρp,g(Te)
and thus preserves the subspaces W[σ]. �

The strategy to prove Proposition 3.3.4 is to apply Lemma 3.3.5 to

X := (Ap,g · v0)⊥

the orthogonal (for the invariant form) of the cyclic space generated by the vacuum vector.

Definition 3.3.6.

1. We call Γg a fly eyes graph of genus g if it is a trivalent graph obtained by the
following inductive method:

– Γ2 is the Theta graph . .

– A graph Γg+1 is obtained from a Γg by choosing arbitrary a vertex and inserting
a triangle as drawn on the left-hand side of Figure 3.4.

The right-hand side gives an example of a genus 8 fly eyes graph.

2. The genus 3 fly eyes graph is unique and is called the tetrahedron graph. We say
that a level of the form p = 2r, with r odd, is generic if for any coloring σ of Γ3, we
have:

(uσ, v0)Hp,3 , 0



90
Chapter 3. Decomposition of some Reshetikhin-Turaev representations

into irreducible factors

(a) (b)

Figure 3.4: On the left: the operation transforming a fly eyes graph of genus g into a one
of genus g + 1. On the right: an example of genus 8 fly eye graph.

The complex numbers (uσ, v0)Hp,3 are called tetrahedron coefficients in literature and
are related to the 6j-symbols defined in the previous section. In particular it is equivalent
to say that the 6j-symbols or the tetrahedron coefficients are not null for a level p. It
follows from fusion-rules (equation (3.1)) that if p is generic , then for any g ≥ 3, for any
fly eyes graph Γg and for any p-admissible coloring σ of Γg, we have:

(uσ, v0)Hp,3 , 0

Fix g ≥ 2 and embed a fly eyes graph Γg in S3. Denote by Hg the embedded handle-
body

Hg := S3\V (Γg)

where V (Γg) denotes a tubular neighborhood of Γg. For each edge e ∈ E(Γg), fix a curve
γe ⊂ Hg which bounds a disc intersecting Γg only once along e.

We construct a map:
w :NE(Γg) → Vp,g

as follows. To f : E(Γg) → N we associate the class in Vp,g of the link made of f(e)
parallel copies of γe for each edge e ∈ E(Γg).

When g = 2, we will note wa,b,c ∈ Vp,2 the class of the link made of a parallel copies of
γ1, b copies of γ2 and c of γ3.

Figure 3.5 shows the curves γe when g = 2 and g = 3.

g

g

g1

3

2

Figure 3.5: The curves γe defining the map w are drawn when g = 2 and g = 3.
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Lemma 3.3.7. If p = 4r, with r an odd prime, or if p = 2r1r2, with r1, r2 two distinct
odd primes, then:

wa,b,c ∈ Ap,2 · v0, for any a, b, c ∈ {0, 1}

Proof. The cyclicity of the vacuum vector v0 ∈ Vp,1 in genus one, implies that the vectors

..
i
. 0.

j

and ..i .0 . i of Vp,2 belong to the cyclic space generated by v0 ∈ Vp,2.

It remains to show that w1,1,1 ∈ Ap,2 · v0. It follows from the definition of Jones-Wenzl
idempotents that:

w1,1,1 = ..2 .2 . 2 + w2,0,0 + w0,2,0 + (A2 +A−2)v0

Thus we just have to show that ..2 .2 . 2 ∈ Ap,2 · v0.

Using Lemma 1.1.48, we have that:

..2 .0 . 2 =
∑

k=0,2,4

{
2 2 k
2 2 0

}
..
2
. k.

2

ρp,2(Te) · ..2 .0 . 2 =
∑

k=0,2,4

{
2 2 k
2 2 0

}
µk ..

2
. k.

2

where Te is (a lift of) the Dehn twist around the middle edge of the Theta graph (labeled
0).

The recoupling coefficients

{
2 2 2
2 2 0

}
and

{
2 2 4
2 2 0

}
are rational fraction in non

null theta coefficients, thus are not null. Using the fact that µ2 , 1, we obtain that the

family





..
2
. 0.

2
, ..2 .0 . 2 , ρp,2(Te) · ..2 .0 . 2





, made of vectors in Ap, 2 · v0,

is free. Thus these three vectors generate the same subspace than the vectors ..
2
. i.

2

for i = 0, 2, 4. Since ..2 .2 . 2 belongs to this space, it belongs to the cyclic space

generated by the vacuum vector. So does w1,1,1. �

Lemma 3.3.8. When p = 2r2, with r an odd prime, then

wa,b,c ∈ Ap,2 · v0, for all 0 ≤ a, b, c ≤ r − 3

2

.

Moreover, if σ is a p-admissible coloring of Γ = . such that:

σ(e) . −1 (mod r), for all e ∈ E(Γ)
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then uσ ∈ Ap,2 · v0.

Proof. Note first that i, j ∈
{

0, . . . p−4
2

}
are such that:

– µi = µj ,
– i , j,

if and only if i ≡ j ≡ −1 (mod r) and i and j have same parity (and are distinct). Thus
when σ satisfies the condition of the lemma, the subspace W[σ] is one-dimensional. Lemma
3.3.5 implies that this subspace is either in Ap,2 · v0, or in its orthogonal. Now note that
the Hopf pairing (uσ, v0)Hp,2 is not zero for it is equal to a 3j-symbol. This prove the second
part of the lemma.

In particular, we just proved that:

Span


 ..u .v . w , 0 ≤ u, v, w ≤ r − 2


 ⊂ Ap,2 · v0

We finish the proof by noticing that the vector wa,b,c belongs to this space whenever
we have: 




a+ c ≤ r − 2
b+ c ≤ r − 2
a+ b ≤ r − 2

�

Lemma 3.3.9. The vector wf belongs to Ap,g · v0 for f ∈ {0, 1}E(Γg) when p is generic
and:

– p = 4r with r an odd prime such that g ≤ r − 2.
– p = 2r1r2 with r1, r2 distinct odd primes and 2g ≤ min(r1, r2).
– p = 50 and g = 3.

Proof. We proceed like in the proof of Lemma 3.3.8: first we note that if f ∈ {0, 1}E(Γg)

then:
wf ∈ Span (uσ, 0 ≤ σ(e) ≤ g for all e ∈ E(Γg))

Then we note that if σ is such that 0 ≤ σ(e) ≤ g for all e ∈ Γg, then W[σ] is one-
dimensional so is included in Ap,g · v0 for (uσ, v0)Hp,g , 0 by assumption. The fact that
these W[σ] are one-dimensional is deduced from the following two facts:

1. When p = 4r, and i, j ∈ {0, . . . p−4
2 }, then µi = µj if and only if:

– i = j,
– or i = p−4

2 − j and i is even.

2. When p = 2r1r2, and i, j ∈ {0, . . . p−4
2 }, then µi = µj if and only if:

– i = j,
– or j is the only element satisfying{

i ≡ j (mod 2r1)
i ≡ −j − 2 (mod r2)

or

{
i ≡ j (mod 2r2)

i ≡ −j − 2 (mod r1)

�
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Proof of Proposition 3.3.4. Fix a fly eyes graph Γ, a class [σ] ∈ colp(Γ), and choose a
vector

v =
∑

σ′∈[σ]

ασ′uσ′ ∈ W[σ]

∩
(Ap,g · v0)⊥

By Lemma 3.3.5, we must show that v = 0 to conclude. We will find dim
(
W[σ]

)
indepen-

dent equations verified by the coefficients ασ′ .

Note F ⊂NE(Γ) the set of functions f so that:
– f(e) ∈ {0, 1},∀e ∈ E(Γ), if p = 4r of p = 2r1r2,
– f(e) ∈

{
0, . . . , r−3

2

}
,∀e ∈ E(Γ), if p = 2r2.

Using Lemmas 3.3.7, 3.3.8 and 3.3.9, we know that

wf ∈ Ap,g · v0, for all f ∈ F

By definition of wf , we have that:

(wf , v0)Hp,g = 0, for all f ∈ F (3.2)

⇔ ∑
σ′∈[σ]

(∏
e∈E(Γ) λ

f(e)
σ′(e)

)
ασ′ (uσ′ , v0)Hp,g = 0, for all f ∈ F (3.3)

where λi = −
(
A2(i+1) +A−2(i+1)

)
.

Since the complex numbers (uσ′ , v0)Hp,g are non null when p = 2r2 or p = 2r1r2 is
generic or when p = 4r and uσ ∈ Zp,g, it is enough to show that the matrix:

M :=




∏

e∈E(Γ)

λ
f(e)
σ′(e)



σ′∈[σ]
f∈F

has independent lines to conclude the proof.

We now define an invertible square matrix M̃ such that M is obtained from M̃ by
removing some lines.

When i ∈
{

0, . . . , p−4
2

}
we define the set:

ω(i) :=

{
j ∈

{
0, . . . ,

p− 4

2

}
, so that µi = µj

}

And the Vandermonde matrix:

N [i] :=
(
λnj

)
j∈ω(i)

0≤n≤#ω(i)−1

Since λa , λb when a , b ∈ ω(i), the matrix N [i] is invertible.

Now note E(Γ) = {e1, . . . , e3g−3} and choose σ ∈ [σ] arbitrary. The matrix

M̃ := N(e1) ⊗ . . .⊗N(e3g−3)

is clearly invertible and M is obtained from M̃ by removing the lines corresponding to
non p-admissible colorings of Γ. �
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3.3.3 Null 6j-symbols when 4 divides p

When p = 2r with r odd, numerical computations suggest that there is no null 6j-
symbols at level p. On the contrary, when 4 divides p, we have two families of 6j-symbols
that vanish at level p:

Proposition 3.3.10. Suppose 4 divides p ≥ 8 and write p = 2(k + 2), with k an even
integer. Then the following tetrahedron coefficients vanish:

1. Type I:

⟨
..

k
2

.k
2

. k
2

.

a

.

b

.

c

⟩
= 0

when a+ b+ c ≡ 2 (mod 4).

2. Type II:

⟨
..

k
2

.a .k-a.

b

.

c

.

b

⟩
= 0

when a+ c+k
2 ≡ 1 (mod 2).

Definition 3.3.11. If 4 divides p ≥ 8, we say that p is generic if the only vanishing
6j-symbols at level p are the ones given in Proposition 3.3.10

Numerical computations shows us that every level p ≤ 50 is generic . We conjecture
that every level is generic .

Lemma 3.3.12. Let a, b be two integers such that (a, k − a, b) is p-admissible. Set

F (a, b) :=

⟨
..

a

.k .k-a.

k-a

.

b

.

a

⟩
< a >

⟨
..k-a .a . b

⟩

Then we have F (a, b) = (−1)
b+k

2
+a.

Proof. A straightforward computation using the formulas of [70] gives:

F (a, b) =
f(a)

g(b)
, where f(a) = (−1)a[a+ 1]![k − a]!

g(b) = (−1)
k+b

2

[
k − b

2

]
!

[
k + b

2
+ 1

]
!
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We now remark that
f(a+ 1)

f(a)
= − [a+ 2]

[k − a]
= −1

and
g(b+ 2)

g(b)
= −

[
k+b

2 + 2
]

[
k−b

2

] = −1

We conclude using the fact that F (k2 , 2) = −1. �

Lemma 3.3.13. If (a, b, c) is a p-admissible triple, then we have:

< k − a >< k − b >

⟨
..

a

.k . b.

k-a

.

c

.

k-b

⟩

⟨
..k-a .k-b . c

⟩ ·

⟨
..

k-a

.k .k-b.

a

.

c

.

b

⟩

⟨
..a .k-b . c

⟩ = 1

Proof. We use the fact that adding a trivial ribbon colored by k does not change the class
of a vector. We work in the space associated to the sphere with three punctures colored
by a, b and c:

..

a

.

b

.

c

= ..

a

.

b

.

c

.

k

= < k − a >< k − b > ..a . b.

k

.

k

.
k − a

.
k − b

.

a

.

b

.

c

= < k − a >< k − b >

⟨
..

a

.k . b.

k-a

.

c

.

k-b

⟩

⟨
..k-a .k-b . c

⟩ ·

⟨
..

k-a

.k .k-b.

a

.

c

.

b

⟩

⟨
..a .k-b . c

⟩ ..

a

.

b

.

c
We conclude by identifying both vectors. �

Proof of Proposition 3.3.10. We use the fact that the Kauffman bracket of a link in S3

does not change if we add a trivial ribbon colored by k. First when σ is of type I, we use
the fusion rules 1.1.48 and Lemma 3.3.12 to compute:
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..

k
2

.k
2

. k
2

.

a

.

b

.

c

.
k

=
⟨
k
2

⟩3 ..

b

.
a

.
c

.
k
2

.
k
2

.k.

k
2

.

k
2

.
k
2 .

k
2.

k

.

k

.

k
2

.

k
2

.

k
2

= F
(
k
2 , a

)
F
(
k
2 , b
)
F
(
k
2 , c
)

..

k
2

.k
2

. k
2

.

a

.

b

.

c

= − ..

k
2

.k
2

. k
2

.

a

.

b

.

c

Thus

⟨
..

k
2

.k
2

. k
2

.

a

.

b

.

c

⟩
= 0.

When σ is of type II, a similar computation using Lemmas 3.3.12 and 3.3.13 gives:

..

k
2

.a . k-a.

b

.

c

.

b

.
k

=
⟨
k
2

⟩
⟨a⟩ ⟨k − a⟩ ..

c

.
b

.
b

.
a

.
k − a

.k.
k-a

.
a

.
a

. k-a.

k

.

k

.

k
2

.

k
2

.

k
2

= F (a, c) ·




⟨
k
2

⟩
< k − a >

⟨
..

k
2

.k . a.
k
2

.

b

.

k − a

⟩

⟨
..k − a .k

2
. b

⟩ ·

⟨
..

k
2

.k .k-a.
k
2

.

b

.

a

⟩

⟨
..k − a .k

2
. b

⟩




..

k
2

.a .k-a.

b

.

c

.

b

= − ..

k
2

.a .k-a.

b

.

c

.

b
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Thus

⟨
..

k
2

.a .k-a.

b

.

c

.

b

⟩
= 0. �

The rest of this subsection is devoted to the proof of the following:

Proposition 3.3.14. If p = 4r, with r ≤ 7 an odd prime, is generic then the vacuum
vector v0 ∈ Vp,3 is cyclic in genus 3.

We already know from Proposition 3.3.4 that Zp,3 is included in the cyclic subspace
generated by the vacuum vector. When p is generic , its orthogonal is spanned by vectors
uσ with σ a coloration of the Tetahedron graph of type I or II given in Proposition
3.3.10. We must show that these vectors also belong to the cyclic space generated by v0

to conclude.
We split the proof into four lemmas which, together, imply Proposition 3.3.14.

Lemma 3.3.15. Suppose p = 4r with r ≥ 7 an odd prime. Let σ be a coloration of the
Tetrahedron graph of type I, as defined in Proposition 3.3.10, such that a , k

2 and b , k
2 .

Then uσ belongs to the cyclic space generated by v0.

Proof. The proof relies on the following remark: embeded a colored Tetahedron graph in
H3, choose two opposite edges of the graph and perform two Whitehead moves on these
edges as in the fusion rule 1.1.48. You get this way another embedding of the Tetahedron
graph inside H3. While choosing the edges colored by b and its opposite colored by k

2 in
a type I coloration of the Tetahedron graph, we get:

..

k
2

.k
2

. k
2

.

a

.

b

.

c

=
∑

i,j

αi,j ..

j

.
a

. k
2

.
b

.
i

.

k
2

where αi,j =

⟨
..

a

.i . k
2

.

b

.
k
2

.
k
2

⟩⟨
..

k
2

.j . k
2

.

b

.

c

.

a

⟩
ci,j with ci,j , 0.

When i = k
2 , we have αi,j = 0 by Proposition 3.3.10. When i , k

2 , the vector

..

j

.
a

. k
2

.
b

.
i

.

k
2

belongs to Zp,3 and thus to the cyclic space generated by v0 by Proposition

3.3.4. This concludes the proof.
�
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Lemma 3.3.16. Suppose p = 4r with r ≥ 7 an odd prime. Let σ be a coloration of the
Tetrahedron graph of type I, as defined in Proposition 3.3.10, such that a = b = k

2 . Then
uσ belongs to the cyclic space generated by v0.

Proof. Using fusion rule 1.1.48, we get:

va := ..

k
2

.a . k
2

.
k
2

.
k
2

.
k
2

=

⟨
..k

2
.k

2
. k

2

⟩
..

0

.

a

.k
2

. k
2

+ v′

, where v′ is a vector orthogonal to the first one.
Now according to Proposition 3.3.4, we have that the vacuum vector is cyclic in genus

2. This implies that the vector ..

0

.

a

.k
2

. k
2

belongs to the cyclic space generated

by the vacuum vector in genus 3.

When a = k
2 , then W[va] is one dimensional, so according to Lemma 3.3.5, either v k

2

belongs the cyclic space generated by v0 or it belongs to its orthogonal. But its scalar

product with the vector ..

0

.

a

.k
2

. k
2

is a non null 3j-symbol. Thus va ∈ Ap,3 · v0.

When a , k
2 , then W[va] is two dimensional generated by va and vk−a. If v = α1va +

α2vk−a belongs to the orthogonal of the cyclic space generated by v0, then v is orthogonal

to both vectors ..

0

.

a

.k
2

. k
2

and ..

0

.

k − a

.k
2

. k
2

. This implies that v = 0

so W[va] is included in the cyclic space of the vacuum vector.
�

Lemma 3.3.17. Suppose p = 4r with r ≥ 7 an odd prime. Let σ be a coloration of the
Tetrahedron graph of type II, as defined in Proposition 3.3.10, such that either we have
a , b and a , k − b, or we have c ≡ k

2 (mod 4). Then uσ belongs to the cyclic space
generated by v0.

Proof. The proof is similar to the proof of Lemma 3.3.15. Using fusion rules 1.1.48 twice,
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we get:

..

k
2

.a .k-a.

b

.

c

.

b

=
∑

i,j

αi,j ..

i

.
a

.
k-a

.
b

.
j

.
b

where αi,j =

⟨
..

i

.b . b.

a

.

c

.

k-a

⟩⟨
..

j

.b . a.

b

.
k
2

.

k-a

⟩
ci,j with ci,j , 0.

When i = k
2 , we have αi,j = 0 by Proposition 3.3.10. When i , k

2 , using the fact that

either a , b and a , k− b, or c ≡ k
2 (mod 4), we see that the vector ..

j

.
a

. k
2

.
b

.
i

.

k
2

belongs

to Zp,3 and thus to the cyclic space generated by v0 by Proposition 3.3.4. This concludes
the proof. �

Lemma 3.3.18. Suppose p = 4r with r ≥ 7 an odd prime. Let σ be a coloration of the
Tetrahedron graph of type II, as defined in Proposition 3.3.10, such that we have a = b or
a = k − b and c ≡ k

2 + 2 (mod 4). Then uσ belongs to the cyclic space generated by v0.

Proof. Using Lemma 1.1.48, we get:

..

k
2

.a .k-a.

a

.

c

.

a

=
∑

i

{
a a k

2
k − a a i

}
..

i

.
a

.
k-a

.a .

c

. a

Let T ∈ ˜Mod(Σg) represent a lift of the Dehn twist around the edge colored by i in
the above graph. We have:

ρp,3(T ) · ..

k
2

.a .k-a.

a

.

c

.

a

=
∑

i

{
a a k

2
k − a a i

}
(−1)iAi(i+2) ..

i

.
a

.
k-a

.a .

c

. a

In particular, ρp,3(T ) · uσ belongs to the space generated by the vectors of the form

..

j

.a .k-a.

a

.

c

.

a

. Whenever j , k
2 , these generating vectors belong to Zp,3 and thus to the

cyclic space generated by the vacuum vector. Denote by β the scalar product ⟨uσ, ρp,3(T )uσ⟩.
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If β = 0, then ρp,3(T ) · uσ belongs to the cyclic space generated by v0, so does uσ for
ρp,3(T ) is invertible.

If β , 0, then the operator a := β · 1 +

{
a a k

2

k − a a k
2

}
ρp,3(T ) ∈ Ap,3 is invertible

since ρp,3(T ) has finite order. Since a · uσ belongs to the cyclic space generated by the
vacuum vector, so does uσ. �

3.4 Decomposition into irreducible factors

In this section, we will prove Theorems 3.1.1 and 3.1.2. Denote by (Ap,g)
′ the commu-

tant of the algebra Ap,g, i.e. the subspace of End(Vp,g) of operators commuting with all
the ρp,g(ϕ) for ϕ ∈ ˜Mod(Σg).

The dimension of (Ap,g)
′ is equal to the number of irreducible submodules of Vp,g. We

thus have to show that dim ((Ap,g)
′) is one if p = 2r2 and p = 2r1r2 and is two when

p = 4r with the additional assumptions of the two theorems.
Consider the following linear map:

f :

{
(Ap,g)

′ ֒→ Vp,g
θ 7−→ θ · v0

The cyclicity of v0 (Proposition 3.3.4) implies that f is injective. Moreover if ϕ ∈
˜Mod(Σg) is the lift of a homeomorphism of Σg that extends to Hg through α : Σg → ∂Hg,

then:
ρp,g(ϕ) · v0 = v0

Denote by ˜Mod(Hg) ⊂ ˜Mod(Σg) the subgroup generated by these ϕ. By definition, we
have:

Range(f) ⊂
{
v ∈ Vp,g so that ρp,g(ϕ) · v = v, for all ϕ ∈ ˜Mod(Hg)

}

In particular, for any trivalent graph Γ, we have Range(f) ⊂ W[0](Γ) where [0] is the
class of the coloring sending every edges of Γ to 0. As an immediate consequence, we get
the:

Proof of Theorems 3.1.1 and 3.1.2 when p = 2r2. When p = 2r2, with r an odd prime,
then W[0] is one-dimensional, generated by v0 for µi , 1 when i , 0. Thus Range(f) = {v0}
and (A2r2,g)

′ = {1}. The Schur lemma implies that the module V2r2,g is irreducible. �

Remark. When p = 18, we remark that the numbers µ0, µ1, . . . , µ23 are pairwise distinct.
The proof of Roberts [76] applies word-by-word in this case to show that V18,g is irreducible.
Indeed the fact that the µi are distinct implies that the null vector v0 ∈ V18,1 is cyclic
for the action of the group generated by the Dehn twist along the longitude of H1. This
easily implies that v0 ∈ V18,g is cyclic for the action of ˜Mod(Σg) for arbitrary g ≥ 1 and
we conclude as above by noticing that W[0] is one dimensional generated by v0.
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3.4.1 The case where p = 4r

Let p ≥ 3 be such that p ≡ 4 (mod 8). Consider a link L ⊂ Σg × {1
2} inside the

cylinder Σg × [0, 1] and color L by p parallel copies of ω or, equivalently, by the
(
p−4

2

)
− th

Jones-Wenzl idempotent. The gluing of the above cobordism on Hg induces an operator
acting on Vp,g. In [14] it is shown that this operator only depends the homology class of L
in H1 (Σg,Z/2Z) and we get this way a morphism of algebras, whose injectivity is easily
checked:

i : C [H1 (Σg,Z/2Z)] ֒→ Ap,g

Its action on v0 gives the space W[0] � C [H1 (Hg,Z/2Z)].

We denote by P the projector of Vp,g on the subspace of vectors fixed by the operators
of i(C [H1 (Σg,Z/2Z)]). Clearly P ∈ (Ap,g)

′.

Note xi, yi ∈ H1 (Σg,Z/2Z) the meridian and longitude around the i − th hole and
note:

Θi :=
1√
2

(−1 + xi + yi + xiyi) ∈ C [H1 (Σg,Z/2Z)]

The Θi’s are symmetries which pairwise commute and

P =
1

2g

(√
2(Θ1 + . . .+ Θg) + g + 1

)

The symmetric group σg acts by permutation on the generators of C[Θ1, . . . ,Θg]. We
note Wg ⊂ i (C [H1 (Σg,Z/2Z)]) the subalgebra of C[Θ1, . . . ,Θg] of elements fixed by σg.

Finally we denote by I ⊂ i (C [H1 (Σg,Z/2Z)]) the ideal generated by the elements
(xi − 1) for 1 ≤ i ≤ g. We have:

C [H1 (Σg,Z/2Z)] /I � C [H1 (Hg,Z/2Z)] �W[0]

Lemma 3.4.1. Consider the action of Sp (2g,Z/2Z) on i (C [H1 (Σg,Z/2Z)]). Then:

1. The vectors fixed by this action are the ones of Span(1, P ).

2. For every w ∈ Wg and ϕ ∈ Sp (2g,Z/2Z) we have:

ϕ · w − w ∈ I

Proof. The first point follows from the fact that the action of Sp (2g,Z/2Z) onH1 (Σg,Z/2Z)
has two orbits: the singleton containing the neutral element and the set containing the
other elements. Indeed by taking an appropriate Z/2Z-basis of H1 (Σg,Z/2Z), this ac-
tion is described by the usual Birman generators of Sp(2g,Z) ([12]) passed to the quotient
in Sp (2g,Z/2Z), that is the 2g × 2g matrices:

(
A 0g
0g A∗

)
,

(
1g B
0g 1g

)
and

(
0g 1g
1g 0g

)

where A ∈ GL(g,Z/2Z) and B is symmetric. We just have to remark that the commutant
of the algebra generated by these matrices consists of the scalar matrices to conclude.

To prove the second point, denote byXi, Yi, Zi,j for 1 ≤ i, j ≤ g the class inH1 (Σg,Z/2Z)
of the Dehn twists of Figure 3.6 generating H1 (Σg,Z/2Z). First note that the operators
Θi are invariant under the action of the Xi and Yi and that the element of the algebra Wg
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X22X1Y Y Y1

Z Z
12 23

X3
3

Figure 3.6: Some Dehn twists generating Sp (2g,Z/2Z) when g = 3 by passing to the
quotient.

are invariant under permutation of the handles. We are reduced to show that for w ∈ Wg,
we have Z1,2 · w − w ∈ I.

First note that Z1,2 · Θi = Θi when i < {1, 2}. Then we compute:

Z1,2 · Θ1 − Θ1 =
1√
2

(y1 + x1y1)(x2 − 1) ∈ I

Z1,2 · Θ2 − Θ1 =
1√
2

(y2 + x2y2)(x1 − 1) ∈ I

Z1,2 · (Θ1Θ2) − (Θ1Θ2) =
1

2
((x1x2 − 1)(x1y1 + y1)(x2y2 + y2)

+(x2 − 1)(y1x1 + y1)(−1 + x2)

+(x1 − 1)(x2y2 + y2)(−1 + x1)) ∈ I

�

The case p = 4r of Theorems 3.1.1 and 3.1.2 are easily deduced from the:

Proposition 3.4.2. If p ≡ 4 (mod 8) and v0 ∈ Vp,g is cyclic, then

f−1 (C [H1 (Hg,Z/2Z)]) = Span (1, P )

Proof. Let Θ ∈ (Ap,g)
′. Since Θ · v0 lies in W[0] and is invariant under permutation of the

handles, there exists an element w ∈ Wg such that w · v0 = Θ · v0. Now if ϕ ∈ ˜Mod(Σg),
then:

Θ ◦ ρp,g(ϕ) · v0 = ρp,g(ϕ) ◦ Θ · v0 = ρp,g(ϕ) ◦ w · v0 = w ◦ ρp,g(ϕ) · v0

where we used the second point of Lemma 3.4.1 in the last equality. Using the cyclicity
of v0 we get that Θ = w ∈ Wg. We conclude using the first point of Lemma 3.4.1. �

3.4.2 The case where p = 2r1r2

In this subsection, we suppose that p = 2r1r2 with r1, r2 distinct odd primes.

In this case, there exists an unique integer x ∈ {1, . . . , r1r2 − 2} such that µx = 1. This
integer is even and verifies either{
x ≡ −2 (mod r1)
x ≡ 0 (mod r2)

or

{
x ≡ 0 (mod r1)
x ≡ −2 (mod r2)

.

We begin by stating a technical lemma whose proof will be the subject of the next
subsection:

Lemma 3.4.3. If (x, x, x) is p-admissible, then we have the following:
{
x x 2
x x 0

}{
x x 4
x x x

}
,

{
x x 4
x x 0

}{
x x 2
x x x

}
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Lemma 3.4.4. Let p ≥ 3 be such that (x, x, x) is p-admissible. Let Γ1,Γ2 be two trivalent
graphs which only differ by a single Whitehead move inside a ball B3 as drawn in Figure
3.3. Then:

W[0](Γ1) ∩W[0](Γ2) ⊂ Span
(
uΓ1
σ , such that σ(a)σ(b)σ(c)σ(d) = 0

)

Proof. Let σ1, σ2 be two p-admissible colorings of Γ1, with colors 0 or x, such that:

σ1(e) = σ2(e),∀e ∈ E(Γ1) − {i}

and with σi(a) = σi(b) = σi(c) = σi(d) = x and σ1(i) = 0, σ2(i) = x.

Suppose there exists (α, β) ∈ C2 so that:

v := αuσ1 + βuσ2 ∈ W[0](Γ2)

We must show that α = β = 0 to conclude. Using the fusion rule equation (3.1) of section
2.1, we get:

v =

(
α

{
x x 2
x x 0

}
+ β

{
x x 2
x x x

})

..
2

+

(
α

{
x x 4
x x 0

}
+ β

{
x x 4
x x x

})

..
4 + v′

where
..

2 and
..

4 represent the vectors associated to colorations of Γ2 by the same

colors that σ1, σ2 outside the ball B3 and with the edge j colored respectively by 2 and 4.

The vector v′ is orthogonal to the two previous ones.

Now since v ∈ W[0](Γ2), we have the following system:




{
x x 2
x x 0

} {
x x 2
x x x

}

{
x x 4
x x 0

} {
x x 4
x x x

}




·
(
α
β

)
=

(
0
0

)

We conclude using Lemma 3.4.3 �

If i ∈ {1, . . . , g}, we note bi ∈ Vp,g the vector representing a single ribbon colored by x
around the i− th hole.

Lemma 3.4.5. If Gg represents the set of all trivalent graph of genus g, then:

∩

Γ∈Gg

W[0](Γ) = Span (v0, bi, 1 ≤ i ≤ g)

Proof. Let σ be a coloring of the graph of Figure 3.7 such that:

1. σ(e) ∈ {0, x}, for all e ∈ E(Γ),

2. There exists i < j with σ(ai) = σ(bi) = σ(aj) = σ(bj) = x.
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...

bbbb

a a a ag

g

1

1

2

2

3

3

Figure 3.7: A trivalent graph of genus g.

We can suppose that for every i < k < j, then σ(ak)σ(bk) = 0.
Using Lemma 3.4.4 with a = ai, b = aj , c = bi and d = bj , we have that the projection of
uσ on

∩
Γ∈Gg W[0](Γ) is null.

We conclude by noticing that if σ is a coloring of Γ, with colors in {0, x}, that does
not satisfies 2, then uσ = bi for some i ∈ {1, . . . , g} or uσ = v0. �

Denote by ui ∈ Vp,1 the class of the closure of the ith Jones-Wenzl idempotent inside
the longitude {0} × S1 of D2 × S1.

Lemma 3.4.6. There exists an element a ∈ A2r1r2,1 so that:
{
a · u0 = ux
a · ux = u0

Proof. It is enough to show that there exists a symmetry ψ ∈ (A2r1r2,1)′ so that:

ψ · u0 = ux and ψ · ux = u0

Indeed, the cyclicity of u0 (Proposition 3.3.3) implies the existence of a ∈ A2r1r2,1 so
that

a · u0 = ux

If such a ψ does exist, we then have:

a · ux = a ◦ ψ · u0 = ψ ◦ a · u0 = u0

The symmetry ψ is defined as follows: choose i ∈ {0, . . . , r1r2 − 2}, then only one of
the following two cases occurs:

– Either there exists j ∈ {0, . . . , r1r2 − 2} so that
{

j ≡ i (mod 2r1)
j ≡ −i− 2 (mod r2)

and we put ψ(ui) := +uj .
– Or there exists j ∈ {0, . . . , r1r2 − 2} so that

{
j ≡ i (mod 2r2)

j ≡ −i− 2 (mod r1)

and we put ψ(ui) := −uj .
A straightforward computation shows that ψ commutes with ρp,1(T ) and ρp,1(S) and either
ψ or −ψ sends u0 to ux. �
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The proof of Theorems 3.1.1 and 3.1.2 when p = 2r1r2 follows from the following:

Proposition 3.4.7. Let r1, r2 be two distinct odd primes, p = 2r1r2 and g ≥ 2 be such
that v0 ∈ Vp,g is cyclic. Then Vp,g is irreducible.

Proof. Using Lemma 3.4.5 and the fact that the vectors of Range(f) must be invariant
under permutation of the handles, we have that:

Range(f) ⊂ Span (v0, b1 + . . .+ bg)

By contradiction, suppose there exists Θ ∈ (Ap,g)
′ so that:

Θ · v0 = b1 + . . .+ bg

= (a⊗ 1 ⊗ . . .⊗ 1 + . . .+ 1 ⊗ . . .⊗ 1 ⊗ a) · v0

where a ⊗ 1 ⊗ . . . ⊗ 1 denotes the embedding of the element a ∈ Ap,1, seen as a linear
combination of ω-colored link in Σ1 × [0, 1], in the first handle of Σg × [0, 1]. Note that
this operator belongs to Ap,g, so commutes with Θ.

Now we have:

Θ2 · v0 = (a⊗ 1 ⊗ . . .⊗ 1 + . . .+ 1 ⊗ . . .⊗ 1 ⊗ a)2 · v0

= gv0 + (a⊗ a⊗ 1 ⊗ . . .⊗ 1) · v0 + . . .+ (1 ⊗ . . .⊗ 1 ⊗ a⊗ a) · v0

We see that Θ2 · v0 does not belong to
∩

Γ∈Gg W[0](Γ) which contradicts the fact that
Θ2 ∈ (Ap,g)

′. �

3.4.3 Proof of Lemma 3.4.3

In this subsection we put p = 2r1r2, with r1, r2 two distinct odd primes. We suppose
there exists x ∈ {1, . . . , r1r2 − 2} so that (x, x, x) is p-admissible and so that

{
x ≡ 0 (mod 2r1)
x ≡ −2 (mod r2)

We also choose A1 and A2 some primitive r1 − th and r2 − th roots of unity, so that
A2 = A1A2. In particular we have A2x = A−2

2 .

The goal of this subsection is to show that:

D :=

{
x x 2
x x 0

}{
x x 4
x x x

}
−
{
x x 4
x x 0

}{
x x 2
x x x

}
, 0

A straightforward computation, using the formula of the recoupling coefficients ([70]),
gives:

D = (−1)
x
2

+1
[3][5]![x]

[
3
2x+ 1

]
!(
[
x
2

]
!)3

[2][x+ 3]!([x+ 2]!)2[x+ 3]
[
x
2 + 1

]
([

x

2
− 1

]2 [x
2

]2 [x
2

+ 1

]

−[2]2
[
x

2

]3 [3

2
+ 2

] [
x

2
+ 1

]
+

[
x

2
− 1

] [
x

2

] [
x

2
+ 1

] [
x

2
+ 2

] [
x

2
+ 3

]

+[x− 1][x+ 3]

[
x

2

]2 [x
2

+ 1

]
− [x− 1]

[
3

2
x+ 2

]
[x+ 3]

)

= (−1)
x
2

+1
[3][5]![x]

[
3
2x+ 1

]
!(
[
x
2

]
!)3

[2][x+ 3]!([x+ 2]!)2[x+ 3]
[
x
2 + 1

]
(A2 −A−2)7A10

1 A
9
2

· P (A1, A2)
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where we put:

P (x, y) := x20y16 − x17y17 − x16y18 + x19y13 − 4x18y14 + 3x17y15 + 2x15y17 − x19y11

− 5x17y13 − 4x15y15 + 4x14y16 − 2x13y17 − x18y10 + 2x17y11 + 6x16y12 + 2x15y13

− x14y14 + 2x13y15 + x11y17 + 2x15y11 + x14y12 + x13y13 − 6x12y14 + x10y16

+ x17y7 + 4x16y8 − x15y9 − 4x14y10 + 4x12y12 + x15y7 + x13y9 − 4x12y10 + x11y11

+ 4x10y12 − 4x8y14 − x7y15 − 2x15y5 − 6x14y6 − 4x13y7 + 2x12y8 − 8x11y9 − 6x10y10

− 6x9y11 − x7y13 + x13y5 + 6x11y7 + 6x10y8 + 8x9y9 − 2x8y10 + 4x7y11 + 6x6y12 + 2x5y13

+x13y3+4x12y4−4x10y6−x9y7+4x8y8−x7y9−x5y11−4x8y6+4x6y8+x5y9−4x4y10−x3y11

−x10y2+6x8y4−x7y5−x6y6−2x5y7−x9y−2x7y3+x6y4−2x5y5−6x4y6−2x3y7+x2y8+2x7y

− 4x6y2 + 4x5y3 + 5x3y5 + xy7 − 2x5y − 3x3y3 + 4x2y4 − xy5 + x4 + x3y − y2

Note that P (x, y) does not depend on r1, r2 or x. The proof reduces to show that
P (A1, A2) , 0 for A1, A2 any primitive r1 − th and r2 − th roots of unity.

Consider the following algebraic curves in C2:

C :=
{

(z1, z2) ∈ C2 so that P (z1, z2) = 0
}

T :=
{

(z1, z2) ∈ C2 so that |z1|2 = |z2|2 = 1
}

Note that T is a torus, has degree 3 and that these two curves share no irreducible
components in common. The Bézout theorem (see [42] Chap I Corollary 7.8) implies that:

#(C ∩ T ) ≤ deg(C) · deg(T ) = 108

Now suppose there exist A1 and A2 some primitive r1 and r2 roots of unity so that
P (A1, A2) = 0. Since P (x, y) ∈ Z[x, y], the equality P (A1, A2) = 0 must hold for every r1

and r2 roots of unity. Thus we have:

r1 · r2 ≤ #(C ∩ T ) ≤ deg(C) · deg(T ) = 108

So we just have the following possible cases:

{r1, r2} ∈ {{3, 5}, {5, 7}, {3, 11}, {5, 11}, {7, 11}, {3, 13}, {5, 13}, {7, 13}}

First if {r1, r2} = {3, 5}, {5, 7}, {3, 11} or {5, 13}, then x = 10, 28, 22 and 50 respec-
tively and we see that (x, x, x) is not 2r1r2-admissible.

We handle the four remaining cases by checking that P (e
2iπ

5 , e
2iπ
11 ) , 0, P (e

2iπ
7 , e

2iπ
11 ) ,

0, P (e
2iπ

3 , e
2iπ
13 ) , 0 and P (e

2iπ
7 , e

2iπ
13 ) , 0.

This concludes the proof of Lemma 3.4.3.
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3.4.4 Maple code to test generecity

Here is the Maple code used to test genericity of small levels. Here the level is p = 2r.
The fraction q(n) = [n] ∈ Z(x) represents the quantum number n seen as a rational frac-
tion in x = A2, the fraction qfac(n) = [n]! ∈ Z(x) represents the quantum factorial and

sixj(a, b, c, d, e, f) =

{
a b c
d e f

}
∈ Z(x) is (a renormalized version of) the 6j symbol.

The loop tests for each 6-uplet of colors whether the associated coloration of the Tetra-
hedron graph is 2r-admissible or not. If it is, it checks if the 2r-th cyclotomic polynomial
divides the corresponding 6j-symbol. If so, the coloration is added to some list L. At the
end of the loop, the list L contains every null 6j-symbols at level 2r modulo symmetry of
the Tetrahedron graph.

Figure 3.8:





Chapter 4

Other results

Résumé

Ce chapitre contient des résultats subsidiaires concernant les représenta-
tions quantiques.

La première section contient le dernier chapitre de l’article "Decomposition
of the Weil representations into irreducible factors", où l’on prouve d’une part
que les representations de Weil aux niveaux impairs sont des représentations fi-
dèles de Sp2g(Z/pZ) et d’autre part que les représentations de Weil convergent
vers la représentation homologique du groupe symplectique lorsque le niveau
tend vers l’infini.

Dans la seconde section on donne un critère pour déterminer quelles repré-
sentations de Reshetikhin-Turaev sont d’image finie lorsque le niveau est de
la forme p = r ou p = 2r avec r premier impair. La réponse à cette question
pour les représentations associées aux surfaces fermées était donnée dans [29]
lorsque (p, g) , (20, 2) et [23] pour le cas p = 20 et g = 2. En plus de donner
une démonstration alternative très simple de ces résultats, notre critère per-
met d’étudier la finitude des représentations associées au tore percé qui n’était
connue que asymptotiquement dans [77].

Dans la troisième section, on exhibe des relevés explicites des représen-
tations de Weil comme représentations de Sp2g(Z) lorsque g = 1 et lorsque
g ≥ 2 et que le niveau est impair. Lorsque g ≥ 2 et p est pair, on relève les
représentations de Weil en représentations linéaires d’une extension centrale
de Sp2g(Z) par Z/2Z.

Abstract

This chapter contains some subsidiary results concerning quantum repre-
sentations.

The first section contains the last chapter of the article ”Decomposition
of the Weil representations into irreducible factors”, where we prove one the
one hand that the Weil representations at odd levels faithfully represents
Sp2g(Z/pZ), and on the other that the Weil representations converge, in the
Fell topology, towards the homological representation of the symplectic group
when the level goes to infinity.
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In the second section, we give a criterion to detect which Reshetikhin-
Turaev representations have finite image, when the level has the form p = r or
p = 2r with r an odd prime. The answer was known for the representations
associated to a surface without marked points (see [29] when (g, p) , (2, 10) and
[23] when (g, p) = (2, 10)). Our criterion gives an alternative proof of these
results and permit us to study the infiniteness of quantum representations
associated to a one-holed torus, which was known only asymptotically ([77]).

In the third section, we give explicit lifts of the Weil representations as linear
representations of Sp2g(Z) when g = 1 and when g ≥ 2 and p is odd. When
g ≥ 2 and p is even, we lift the Weil representations to linear representations
of a central extension of Sp2g(Z) by Z/2Z.

4.1 Faithfulness and asymptotic of the Weil representations

The natural action of Sp2g(Z) on H1(Σg,Z) induces a faithful representation ρ :
Sp2g(Z) → GL(C[H1(Σg,Z)]). For each p ≥ 2, we choose a particular primitive root of
unity A ∈ C turning πp,g into a complex representation on U⊗g

p ⊗k′
p
C.

In this section we show that the linear representations πp,g ⊗ (πp,g)
∗ : Sp2g(Z) →

GL(U⊗g
p ⊗ (U⊗g

p )∗) converge to ρ in the Fell topology, where (πp,g)
∗ is the dual represen-

tation of πp,g for the Hopf pairing. We deduce the asymptotic faithfulness of the Weil
representations already showed in [4] in a different way. The proof is an adaptation of the
proof of [67] to the abelian case.

We independently show that the Weil representations of Sp2g(Z/pZ) at odd level are
faithful. The proof was suggested to us by L.Funar and is based on a classification made
by Klingenberg ([53]) of the subgroups of Sp2g(Z/r

nZ) for r an odd primes. It gives an
alternative simpler proof for the asymptotic faithfulness in the odd case.

Theorem 4.1.1. Let (xp)p be a sequence of integers converging to +∞ when p → ∞.
Then the representations (πxp,g ⊗ (πxp,g)

∗)p converge to ρ in the Fell topology when p goes
to +∞. As a consequence:

∩

p≥2

Ker(πxp,g) =

{
{1,−α.1} , when g ≥ 2 and all the xp are even.
{1} , if all xpare odd or if g = 1.

where α represents the central element added in the central extension ˜Sp2g(Z).

Lemma 4.1.2. There exist on C[H1(Σg,Z)] and on U⊗g
p ⊗ (U⊗g

p )∗ some non degenerate
hermitian forms, denoted ⟨, ⟩ and ⟨, ⟩p respectively, together with a Sp2g(Z)-equivariant
linear map ϕp : C[H1(Σg,Z)] → U⊗g

p ⊗ (U⊗g
p )∗ so that:

⟨ϕxp(x), ϕxp(y)⟩xp −−−−→
p→+∞

⟨x, y⟩ , for all x, y ∈ C[H1(Σg,Z)]

Proof of Theorem 4.1.1. It follows from the definition of the Fell topology (see [9], ap-
pendix C) that Lemma 4.1.2 implies the convergence of πxp ⊗πxp

∗ towards ρ. To show the
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asymptotic faithfulness, choose any two elements ϕ1, ϕ2 ∈ Sp2g(Z) with ϕ1 , ϕ2 . There
exists a couple (x, y) ∈ C[H1(Σg,Z)]2 so that

⟨x, ρ(ϕ1 − ϕ2)y⟩ , 0

By Lemma 4.1.2 there exists a rank p0 ≥ 0 so that p ≥ p0 implies
⟨
ϕxp(x), (πxp ⊗ π∗

xp
)(ϕ1 − ϕ2)ϕxp(y)

⟩

xp

, 0

so πxp(ϕ1) , πxp(ϕ2) for p ≥ p0

�

Remark. Given a topological group G, the collection C of isomorphism classes of unitary
representations of G on a Hilbert space, is not a set so we cannot define the Fell topology on
C. It is customary to pass through this problem by defining the Fell topology on a suitable
set in C such as the set of irreducible representations or the set of cyclic representations.
Here, by Fell topology, we mean that we have chosen an arbitrary set in C containing ρ
and the πp. We refer the reader to the appendix F of [9] for a discussion on this subtlety.

We now define the hermitian forms ⟨·, ·⟩ and ⟨·, ·⟩p and the morphism ϕp of Lemma
4.1.2:

The group law onH1(Σg,Z) induces a structure of commutative algebra on C[H1(Σg,Z)] �
C[x±1

1 , . . . , x±1
g , y±1

1 , . . . , y±1
g ] which is spanned by the meridians xi and longitudes yi, to-

gether with their inverse. An involutive anti-linear map ∗ : C[H1(Σg,Z)] → C[H1(Σg,Z)]
is defined by 1∗ := 1, (xni )∗ := x−n

i and (yni )∗ := y−n
i . We define a morphism of alge-

bras Tr : C[H1(Σg,Z)] → C with Tr(1) := 1, Tr(xi) = Tr(yi) = 0. The non degenerate
hermitian form ⟨·, ·⟩ of Lemma 4.1.2 is defined by:

⟨x, y⟩ := Tr(xy∗) , for all x, y ∈ C[H1(Σg,Z)]

The vector space U⊗g
p ⊗(U⊗g

p )∗ is naturally identified with C[H1(Σg,Z/pZ)] � Tp(Σg×
[0, 1]) via the linear isomorphism Ψ : U⊗g

p ⊗ (U⊗g
p )∗ → C[H1(Σg,Z/pZ)] sending xi ⊗ 1 to

[xi] and 1 ⊗ (xi)
∗ to [yi]. The Egorov identity implies that Ψ is Sp2g(Z)-equivariant.

The composition C[H1(Σg,Z)]
prp→ C[H1(Σg,Z/pZ)]

Ψ→ U⊗g
p ⊗(U⊗g

p )∗ gives the Sp2g(Z)-
equivariant morphism ϕp of Lemma 4.1.2. We denoted by prp the quotient map.

Finally C[H1(Σg,Z/pZ)] has an unique antilinear involution such that prp preserves
the involutions. We define a trace Trp : C[H1(Σg,Z/pZ)] → C with:

Trp(x) :=
1

pg
Tr(Addp(x, 0)), for all x ∈ C[H1(Σg,Z/pZ)]

where Addp is the Schrödinger representation and (x, 0) ∈ Hp,g. The non degenerate
hermitian form on C[H1(Σg,Z/pZ)] is defined by:

⟨x, y⟩p := Trp(xy
∗) , for all x, y ∈ C[H1(Σg,Z/pZ)]

gives, via Ψ, the hermitian form ⟨·, ·⟩p on U⊗g
p ⊗ (U⊗g

p )∗ of Lemma 4.1.2.
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Proof of Lemma 4.1.2. Since ϕp preserves the involution, we just have to show that:

Trxp(ϕxp(x)) −−−→
p→∞ Tr(x) , for all x ∈ C[H1(Σg,Z)]

First:
Trxp(ϕxp(1)) =

1

xpg
Tr(1xp

g ) = 1 = Tr(1)

Then choosing a couple (n,m) , (0, 0) and i ∈ {1, . . . , g} we compute:

Addxp(xni y
m
i ) = 1

⊗(i−1) ⊗
(
A2nu2

δu,v+m

)

u,v
⊗ 1

⊗(g−i)

So:

Trxp(ϕxp(xni y
m
i )) =





G(2,0,xp)
xp

, if xp is odd and divides m;
G(1,0,xp)

xp
, if xp is even and divides m;

0 , elsewhere.

so lim
p→∞ Trxp(ϕxp(xni y

m
i )) = 0 = Tr(xni y

m
i ).

Now using the fact that Trxp(xn1
1 ym1

1 . . . x
ng
g y

mg
g ) = Trxp(xn1

1 ym1
1 ) . . .Trxp(x

ng
g y

mg
g ) we

complete the proof. �

Remark. The involutive algebra C[H1(Σg,Z)] together with the hermitian form ⟨·, ·⟩ have

a natural geometrical (or classical) interpretation. Let M(Σg) := H1(Σg,R)
/
H1(Σg,Z) �

T2g be the 2g-dimensional torus and H(Σg) be the algebra of regular functions on M(Σg).
The action of the symplectic group on M(Σg) induces an action on H(Σg) via ϕ • f(x) =
f(ϕ−1 • x). We define a Sp2g(Z)-equivariant isomorphism of involutive algebras

f : C[H1(Σg,Z)]
�→ H(Σg)

by sending xi to the projection on the ith coordinate of M(Σg) and yi to the projection
on the (i+ g)th one.

We verify that:

Tr(x) =

∫

M(Σg)
fxdV

where dV = dx1 ∧ . . . ∧ dxg ∧ dy1 ∧ . . . ∧ dyg is the natural volume form such that M(Σg)
has volume 1.

As a consequence ⟨x, y⟩ =
∫

M(Σg) fxf̄ydV has now a geometrical interpretation. The
algebra H(Σg) is the algebra of classical observables on the symplectic torus and the
morphism Oppp := ϕp ◦ f−1 : H(Σg) → End(U⊗g

p ) is a quantization operator. In this
setting the asymptotic:

⟨
Oppp(f),Oppp(g)

⟩

p
−−−→
p→∞

∫

M(Σg)
fḡdV

is classic in semi-classical analysis.

An alternative proof for the asymptotic faithfulness has been suggested to us by L.
Funar; using a theorem of [53] we can show the stronger result:

Theorem 4.1.3. The Weil representation πp,g at odd level p ≥ 3, is a faithful represen-
tation of Sp2g(Z/pZ).
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The asymptotic faithfulness for (xp)p a sequence of odd integers converging to +∞
follows for if ϕ , 1 is an element in Sp2g(Z), there exists an p ≥ 1 so that the class[ϕ] , [1]
in Sp2g(Z/xpZ) and Theorem 4.1.3 implies that ϕ < ker(πxp,g). Thus we have that:

∩

p

Ker(πxp,g) = {1}

The proof is based on the following fact proved (see [53]): Let r be an odd prime and
n, k ≥ 2 with k < n. Denote

ψk : Sp2g(Z/r
nZ) → Sp2g(Z/r

kZ)

the quotient map. We note Gk := ψ−1
k ({−1,+1}) and Sk := ker(ψk) the two proper nor-

mal subgroups of Sp2g(Z/r
nZ). Then the only normal proper subgroups of Sp2g(Z/r

nZ)
are the Gk and Sk for 1 ≤ k ≤ n− 1.

Proof of Theorem 4.1.3. First using the first point of Theorem 2.1.1 and the group isomor-
phism between Sp2g(Z/aZ) × Sp2g(Z/bZ) and Sp2g(Z/abZ) when a and b are coprime,
we see that we only need to prove Theorem 4.1.3 for p = rn with p an odd prime.

For 1 ≤ k ≤ n− 1, the matrix πrn,g(Xi)
(rn−k) is not the identity so the kernel of πrn,g

cannot be Gk or Sk. It results from Klingenberg’s proposition, and the fact that πrn,g is
not trivial, that this kernel must be {1} when p is odd. �

4.2 Infiniteness of the image of Reshetikhin-Turaev repre-
sentations

4.2.1 Finiteness of the image of Reshetikhin-Turaev representations

The Weil representations factor through congruence subgroups, thus their images are
finite. Since in genus one the Reshetikhin-Turaev representations are subrepresentations
of the Weil ones, they also have finite image. This fact was known in the conformal field
theory community (see [20] and references herein) and has been proved independently by
Gilmer in [35]. In higher genus, the Reshetikhin-Turaev representations have finite image
at level 3 and 6 (see [93]) and 4 (it is the trivial representation). In any other cases, they
have infinite image. It was proved by Funar in [29] when (g, p) , (2, 10) (see also [68] for
a proof that they contain an element of infinite order). The last remaining case g = 2,
p = 10 was treated in [23]. Concerning the representation associated to a one holed torus,
it was shown in [77] that they have infinite image for high enough level.

In this subsection, we develop a simple criterion to check whether a given Reshetikhin-
Turaev representation has infinite image or not. Unfortunately, this criterion only works
when p = r or p = 2r for r an odd prime. It permits us to recover the above results in
these cases, and to study the finiteness of the representations associated to a one-holed
torus, which could not be derived from previous papers.
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4.2.2 Complete positivity

Let Σ be a colored surface and p ≥ 3. The associated representations ρp act on a
finite rank kp-module Vp(Σ) where kp = Z[A, 1

p , κ] quotiented by ϕ2p(A) = 0 and κ6 =

A−6− p(p+1)
2 . A choice of a 2p primitive root of unity A and a compatible complex κ gives

a complex vector space V A,κ
p (Σ) = Vp(Σ) ⊗ C and complex representations ρA,κp whose

actions are preserved by non-degenerate hermitian forms ⟨·, ·⟩A,κp . Note that in the other
chapters, we considered the invariant form as bilinear instead of hermitian.

Definition 4.2.1. We say that Vp(Σ) is completely positive if for any choice of A ∈ µ(2p)

and compatible κ ∈ C, the hermitian form (V A,κ
p (Σ), ⟨·, ·⟩A,κp ) is positive definite or negative

definite.

The only effect of a change of κ is eventually to change the eigenvalues of the hermitian
form to its opposite so complete positivity only means that all eigenvalues have the same
sign for a given κ and all A.

Proposition 4.2.2. Let r be an odd prime number and p = r or p = 2r and let Σ be
a colored surface. Then (Vp(Σ), ⟨·, ·⟩p) is completely positive if and only if ρp has finite
image.

If ρp( ˜Mod(Σg)) is finite, the following lemma, together with Roberts’ results ([76], or
Proposition 1.2.15), imply that Vp(Σ) must be completely positive.

Lemma 4.2.3. Let ρ : G → GL(V ) be an irreducible group representation on a finite
dimensional complex vector space V equipped with a non degenerate invariant hermitian
form ⟨·, ·⟩0. If ρ(G) is finite, then ⟨·, ·⟩0 is either definite positive or negative.

Proof. If ρ(G) is finite, the hermitian form on V defined by

⟨u, v⟩1 :=
1

#ρ(G)

∑

ρ(g)∈ρ(G)

⟨ρ(g)u, ρ(g)v⟩

is definite positive and invariant under the action of G. Here ⟨, ⟩ denotes an arbitrary
scalar product on V .

If t ∈ [0, 1], we define the invariant hermitian form

⟨u, v⟩t := t ⟨u, v⟩0 + (1 − t) ⟨u, v⟩1

Suppose there exists v0 ∈ V so that ⟨v0, v0⟩0 < 0. Since ⟨v0, v0⟩1 > 0, there exists
t0 ∈ (0, 1) so that ⟨v0, v0⟩t0 = 0. The invariance of ⟨, ⟩t0 under the action of G, implies
that ⟨ρ(g)v0, ρ(g)v0⟩t0 = 0 for all g ∈ G. Since ρ is irreducible, the vector v0 is cyclic so
⟨·, ·⟩t0 = 0 and ⟨·, ·⟩0 = t0−1

t0
⟨·, ·⟩1 is definite negative. �

Conversely, when p = r or p = 2r with r an odd prime, we note αp :=

{
p , if p ≡ 3 (mod 4)
4r , if p ≡ 1, 2 (mod 4)

and Op := .Z[A]
/
ϕαp(A) .
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It was showed in [36, 74] that Vp(Σ) contains a free Op lattice of maximal rank preserved
by ˜Mod(Σg).

We denote by µ(αp) = {q1, . . . , qϕ(αp)} the set of primitive αp-th roots of unity and by
ϕ(αp) = #µ(αp) the Euler characteristic.

Lemma 4.2.4. Let p = r or p = 2r with r an odd prime. Then the injective linear map

Ψ : Op → Cϕ(αp)

sending An to (qn1 , . . . , q
n
αp

), has a discrete image.

Proof. We endow Cϕ(αp) with the norm:

∥∥∥(z1, . . . , zϕ(αp))
∥∥∥

2
:=

1

ϕ(αp)

∑

i

|zi|2

where |z|2 represents the Euclidian norm in C.

If P (X) =
∑
i niX

i ∈ Op, then:

∥Ψ(P )∥2 =
1

ϕ(αp)

∑

q∈µ(αp)

∑

i,j

ninjq
i−j

=
∑

i

n2
i +

∑

i,j

ninj


 1

ϕ(αp)

∑

q∈µ(αp)

qi−j




=

{ ∑
i n

2
i , if p is prime.∑

i n
2
i − 2

∑
|i−j|=2r ninj , if p = 2r.

Thus we have ∥Ψ(Op)∥2 ∈N, so Ψ(Op) is discrete in Cϕ(αp). �

Proof of Proposition 4.2.2. If ρp( ˜Mod(Σg)) is finite, then the irreducibility of ρp (Propo-
sition 1.2.15) together with Lemma 4.2.3, imply that every invariant forms ⟨·, ·⟩A,κp must
be either positive or negative, so Vp(Σ) is completely positive.

Conversely, if Vp(Σ) is completely positive, using the Op lattice of [36, 74], we have
an injective group morphism from ρp(G) to the group of matrices with coefficients in Op.
Once composed with the map Ψ of Lemma 4.2.4, we get an injective group morphism
Ψ̃ : ρ(G) → GLd(C) × . . .× GLd(C), where d := dim(Vp(Σ)). Lemma 4.2.4 implies that Ψ̃
has a discrete image, and the complete positivity of Vp(Σ) implies that the image lies in the
compact product of r − 1 unitary groups. This implies the finiteness of ρp( ˜Mod(Σg)). �
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4.2.3 (In)finiteness of the one holed torus representations

Theorem 4.2.5. Let r be an odd prime and p = r or p = 2r. Denote by ρcp the Reshetikhin-
Turaev representation associated to a torus T c equipped with a band colored by 2c ∈ Ip.
We have:

1. If 2c = r − 3, then ρc2r has finite image.

2. If c ≡ 1 (mod 3) and r , 3, 5, then ρc2r has infinite image.

3. If c = 1 and r , 3, 5, then ρcr has infinite image.

4. If (c = 3[5] and r = 2[5] or r = 3[5]) or (c = 1[5] and r = 3[5]) or (c = 2[5] and
r = 2[5]), then ρc2r has infinite image.

5. If c ≤ r−7
3 , then ρc2r has infinite image.

Proof. For 0 ≤ i ≤ r − 2 − 2c, denote by uci ∈ Vp(T c) the vector associated to a lollipop
graph whose stick is colored by 2c and loop colored by i+ c, that is:

uci := ..2c .

i+c

Using Theorem 1.1.44, we have:

⟨
uci+1, u

c
i+1

⟩R
p

⟨uci , uci ⟩Rp
=

[2c+ i+ 2][i+ 1]

[c+ i+ 2][c+ i+ 1]
⟨
uci+2, u

c
i+2

⟩R
p

⟨uci , uci ⟩Rp
=

[2c+ i+ 3][2c+ i+ 2][i+ 2][i+ 1]

[c+ i+ 1][c+ i+ 3][c+ i+ 2]2

Proposition 4.2.2 states that ρcp has infinite image if and only if there exists A ∈ µ(2p)
so that one of the above numbers is negative.

When 2c = r − 3, choose A = exp
(
iπk
r

)
with g.c.d.(k, 2r) = 1. The vectors {uc0, uc1}

form a basis of Vp(T c) and we have:

⟨uc1, uc1⟩Rp
⟨uc0, uc0⟩Rp

=
sin( r−1

r πk) sin(πkr )

sin( r+1
2r πk) sin( r−1

2r πk)

This product appears to be always positive for every k: indeed sin( r−1
r πk) and sin(πkr )

are both positive if k < r and both negative elsewhere whereas sin( r+1
2r πk) and sin( r−1

2r πk)

are both positive if k−1
2 is even and both negative elsewhere. Thus ρcp has finite image.

When c ≡ 1 (mod 3), we take k =

{
2r+1

3 , if r ≡ 1 (mod 3)
2r−1

3 , if r ≡ 2 (mod 3)
and we have

⟨uc
2,u

c
2⟩R

p

⟨uc
0,u

c
0⟩R

p

<

0.

If r ≡ 2 (mod 5), we put k = 2r+1
5 and we have

⟨uc
2,u

c
2⟩R

p

⟨uc
0,u

c
0⟩R

p

< 0.
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If r ≡ 3 (mod 5), we put k = 2r−1
5 and we have

⟨uc
2,u

c
2⟩R

p

⟨uc
0,u

c
0⟩R

p

< 0 when c ≡ 1, 3 (mod 5).

When c = 1, then
⟨uc

3,u
c
3⟩R

p

⟨uc
0,u

c
0⟩R

p

= [6]
[2] =

sin( 2πk
r )

sin( 4πk
r )

is negative if r
12 < k < r

6 . Such a k exists

when r ≥ 12.

For r = 1 or 7, we take k = 1 and for r = 13, 17, we take k = 2, and find again
⟨uc

3,u
c
3⟩R

p

⟨uc
0,u

c
0⟩R

p

< 0.

Finally, note that if there exist 0 ≤ i ≤ r − 3 and an odd k < r so that r
2c+i+2 <

k < r
c+i+2 then

⟨uc
i+1,u

c
i+1⟩R

p

⟨uc
i ,u

c
i⟩R

p

< 0 for A = exp
(
iπk
r

)
. Then we can find such a i for k = 3

whenever 3 ∈ ∪r−3−2c
i=0 [ r

2c+i+2 ,
r

c+i+2 ] = [ r
r−1 ,

r
c+2 ], i.e. when c ≤ r−7

3 . �

Remark. We could have recovered the finiteness in this case by using a theorem of For-
manek (see [26]) which states that the only 2-dimensional irreducible representations of
B3 are conjugate to one of the χ(y) ⊗ β3(q) where χ(y) is the character which sends both
generators to y ∈ C∗ and β3(q) is the reduced Burau representation in q. Since the eigen-
values of ρp(t1) are µc and µc+1 we must have y = −µc and q = Ar or y = −µc+1 and
q = A−r so q is a 4 − th primitive root of unitity and β3(q) appears to have finite image
(see [27] for a detailed discussion of finiteness of reduced Burau representations at roots
of unity).

4.2.4 (In)finiteness of Reshetikhin-Turaev representations associated to
closed surfaces

The following theorem results from [35, 29, 93, 23]. We derive another proof from
Proposition 4.2.2.

Theorem 4.2.6. Let g ≥ 1 and p = r or p = 2r with r an odd prime. Then ρp,g has finite
image if and only if g = 1 or r = 3.

Proof. If g = 1, then
⟨ui+1,ui+1⟩R

p

⟨ui,ui⟩R
p

= 1 for all i, so ρp,1 is completely positive.

If p = 3, since I3 = {0} then V3(Σg) is one dimensional so is completely positive. If
p = 6, we have I6 = {0, 1} and (1, 1, 1) is not 6-admissible so, if Γ is a trivalent graph
and σ ∈ colp(Γ), then uσ is a union of disjoint circles, say n ones, colored by 1. Thus
⟨uσ, uσ⟩R6 = 1 and V6(Σg) is completely positive.

Now consider the case when r = 5 and g = 2. Take Γ = . and consider the

associated vectors ua,b,c for (a, b, c) a p-admissible triple.

If p = 5, then ⟨u2,2,2,u2,2,2⟩R
5

⟨u0,0,0,u0,0,0⟩R
5

= [4]
[2]2[3]2

has the sign of [4] which is negative for A =

exp
(

3iπ
5

)
.



118 Chapter 4. Other results

If p = 10, then ⟨u2,1,1,u2,1,1⟩R
10

⟨u0,0,0,u0,0,0⟩R
10

= ⟨2,1,1⟩
⟨1⟩2⟨2⟩ has the sign of ⟨2⟩ = [3] which is negative for

A = exp
(

3iπ
10

)
.

Now the fact that Vp(Σ2) is not completely positive for r = 5 implies that Vp(Σg) is
not completely positive when g ≥ 3 as well, for we can embed the Theta graph into a
genus g ≥ 3 graph and define vectors ua,b,c ∈ Vp(Σg), with same norm as in genus 2, by
coloring by 0 the complementary of the embedding.

Finally, if r , 3, 5 and g ≥ 2, we isolate one handle of Σg and write Σg � Σ1
∪
S1 Σg−1.

Then using Theorem 1.1.43, we have:

Vp(Σg) � ⊕c∈IpVp(T c) ⊗ Vp(Σ
c
g−1)

So the fact that Vp(T 1) is not completely positive (Theorem 4.2.5) implies that Vp(Σg)
is not as well for g ≥ 2. We conclude using Proposition 4.2.2. �

4.3 Explicit lifts for the Weil representations

When g = 1, the Weil representations can be lifted to linear representations of SL2(Z).
When g ≥ 2 only the Weil representation at odd levels can be lifted to linear representa-
tions of Sp2g(Z). At even levels in genus g ≥ 2, they can only be lifted to a representation
of a central extension of Sp2g(Z) by Z/2Z. This facts are well known and can be proved
by elementary arguments. The goal of this subsection is to exhibit explicit lifts of the Weil
representations. Note that when g ≥ 3 and p is even, a different lift was given in [31] also.
In [38] an explicit lift of the odd subrepresentations in genus one at even level of the Weil
representations was also given.

4.3.1 The genus one case

Note S :=

(
0 1

−1 0

)
and T :=

(
1 −1
0 1

)
. It is well known that the group SL2(Z) is

generated by S and T with relations S4 = I2 and (ST )3 = S2. In order to lift the Weil
representations in genus one at even levels, we must add a primitive 24-th root of unity
to the ring, thus we look at kp = Z[A, 1

p , β]/(ϕ2p(A), ϕ24(β)).

Theorem 4.3.1. An explicit lift of the genus one Weil representations is given by the
matrices:

πp(S) :=





G(−1,0,p)
p (A−2ij)i,j , if p is odd.

β−3G(−1,0,2p)
2p (A−2ij)i,j , if p is even.

(4.1)

πp(T ) :=

{
(Ai

2
δi,j)i,j , if p is odd.

β(Ai
2
δi,j)i,j , if p is even.

(4.2)
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Proof. We check the two relations:

πp(S)2 =





(
G(−1,0,p)

p

)2
p(δi+j,0)i,j , when p is odd.

α−6
(
G(−1,0,2p)2

4p

)
(δi+j,0)i,j , when p is even.

πp(S)4 =





(
G(−1,0,p)

p

)4
p2.1 = 1 , when p is odd.

α−12
(
G(−1,0,2p)

2

)4
1
p21 = 1 , when p is even.

πp(S)πp(T ) =





G(−1,0,p)
p (Aj(j−2i))i,j , when p is odd.

α−2
(
G(−1,0,2p)

2p

)
(A−2ij+j2

)i,j , when p is even.

(πp(S)πp(T ))2 =





(
G(−1,0,p)

p

)2 (∑
k∈Z/pZA

k(k−2i)Aj(j−2k)
)

i,j
, when p is odd.

α−4
(
G(−1,0,2p)

2p

)2
(Aj

2
G(1,−2(i+ j), 2p))i,j , when p is even.

=





(
G(−1,0,p)

p

)
(A−i(i+2j))i,j , when p is odd.

α−4G(−1,0,2p)
2p (A−2ij−i2)i,j , when p is even.

(πp(S)πp(T ))3 =





(
G(−1,0,p)2

p2

) (∑
k A

−i(i+2k)Aj(j−2k)
)

i,j
, when p is odd.

α−6
(
G(−1,0,2p)

2p

)2
(Aj

2−i2pδi+j,0)i,j , when p is even.

=





(
G(−1,0,p)2

p

)
(δi+j,0)i,j , when p is odd.

α−6
(
G(−1,0,2p)2

4p

)
(δi+j,0)i,j , when p is even.

= πp(S)2

�

4.3.2 Presentation of the symplectic group and central extension

In order to give explicit lifts in higher genus, we define a finite presentation of Sp2g(Z)
with generators the Dehn twists Xi, Yi, Zij of Figure 3.6. This presentation will come from
a presentation of the mapping class group of a closed oriented genus g surface, made by
Gervais in [34] that we will pass to quotient through the Torelli group. Note that other
presentations of Sp2g(Z) are known since the work of Birman [12] and Powell [72] (see
also [65]).

Theorem 4.3.2. The symplectic group Sp2g(Z) has presentation with generators Xi, Yj , Zi,j,
1 ≤ i, j ≤ g and relations:

Zi,i = 1 (4.3)

Braids

[Xi, Xj ] = [Yi, Yj ] = [Xi, Yj ] = 0 for i , j. (4.4)

XiYiXi = YiXiYi. (4.5)

[Zi,j , Xk] = 0. (4.6)

[Zi,j , Yk] = 0 for i , k, j , k. (4.7)

Zi,jYiZi,j = YiZi,jYi for i , j. (4.8)
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Stars

Zi,jZj,kZk,i = (Zi,1Zj,1Zk,1Y1)3 for 2 ≤ i, j, k ≤ g. (4.9)

Zi,jXiXj = (Zi,1Zj,1X1Y1)3 for 2 ≤ i , j ≤ g. (4.10)

XiXjZi,j = (Zi,1X1Zj,1Y1)3 for 2 ≤ i , j ≤ g. (4.11)

XiZi,jXj = (X1Zi,1Zj,1Y1)3 for 2 ≤ i , j ≤ g. (4.12)

X2
i = (Zi,1X

2
1Y1)3 for 2 ≤ i ≤ g. (4.13)

1 = (X3
1Y1)3. (4.14)

Proof. In [34], Gervais made a presentation of the mapping class group with some genera-
tors αi, βi and γi,j shown in Figure 4.1 and relations called ’Handles’, ’Braids’ and ’Stars’.
To pass Gervais’ presentation to the quotient through the Torelli group, we use the fact,
proved by Birman [12] and Powell [72] (see also Putman [73] and Hatcher, Margalit [43] for
more recent proofs) that the Torelli group is generated by the Dehn twists along separating
curves and elements Tγ1T

−1
γ2

where γ1, γ2 are two homologous curves not isotopic.

j
ij

a b
g

b

2i

a
2i+1

Figure 4.1: The curves defining the Dehn twists of Gervais’ presentation of the mapping
class group.

Let us now denote by f : Mod(Σg) → Sp2g(Z) the quotient map by the Torelli group.
The image of Gervais’ generators are:

– f(γ2i+1,2j+1) = 1 for all i, j: these are the separating twists of the Torelli group.
– f(β) = Y1 , f(βi) = Yi+1, 2 ≤ i ≤ g.
– f(γ2i,2j) = Zi,j , 2 ≤ i, j ≤ g.
– f(α2i) = Z1,i, 2 ≤ i ≤ g.
– f(γ2i,2j+1) = Xi, 2 ≤ i ≤ g, 0 ≤ j ≤ g as the homology class of γ2i,2j+1 doesn’t

depend on j.
and we just verify that passing Gervais’ relations of type ’Handles’, ’Braids’ and ’Stars’

through this quotient map gives the ones stated in the theorem. �

Using this presentation, we define a central extension of Sp2g(Z) by Z/2Z by modi-
fying the stars relations γi,jγj,kγk,i = (αiαjαkβ)3 in Gervais’ presentation by γi,jγj,kγk,i =
−(αiαjαkβ)3:
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Definition 4.3.3. Let ˜Sp2g(Z) be the group generated by the elements Xi, Yj , Zi,j , 1 ≤
i, j ≤ g together with an element α and relations given by:

– The relations (4.3) and the Braids relations (4.4), (4.5), (4.6), (4.7), (4.8).
– α is central and α2 = 1.
– The modified stars relations:

αZi,jZj,kZk,i = (Zi,1Zj,1Zk,1Y1)3 for 2 ≤ i, j, k ≤ g. (4.15)

αZi,jXiXj = (Zi,1Zj,1X1Y1)3 for 2 ≤ i , j ≤ g. (4.16)

αXiXjZi,j = (Zi,1X1Zj,1Y1)3 for 2 ≤ i , j ≤ g. (4.17)

αXiZi,jXj = (X1Zi,1Zj,1Y1)3 for 2 ≤ i , j ≤ g. (4.18)

αX2
i = (Zi,1X

2
1Y1)3 for 2 ≤ i ≤ g. (4.19)

α = (X3
1Y1)3. (4.20)

We have the following short exact sequence:

1 > Z/2Z
i
> ˜Sp2g(Z)

j
> Sp2g(Z) → 1

where i sends 1 to α and j sends Xi, Yj , Zi,j to the generators with same name.

Note that in genus one the groups Sp2(Z) and ˜Sp2g(Z) are the same since there is no
stars relation.

We will show that the Weil representations at even levels are linear representations of
this central extension and that, when g ≥ 2, they cannot be lifted as linear representations
of Sp2g(Z). We will hence show that this extension is non trivial when g ≥ 2.

4.3.3 Explicit lifts in higher genus

Theorem 4.3.4. The following matrices define explicit lifts of the Weil representations
in genus g ≥ 2 to linear representation of Sp2g(Z) when p is odd, and of ˜Sp2g(Z) when p
is even.

– πp,1(X) = (A2i2δi,j)i,j and πp,g(Xi) = 1
⊗(i−1) ⊗ πp,1(X) ⊗ 1

⊗(g−i).
– πp,g(Zi,j)(ea1 ⊗ . . .⊗ eag ) = A(ai−aj)2

(ea1 ⊗ . . .⊗ eag ).

– πp,1(Y ) =





G(1,0,p)
p (A−(i−j)2

)i,j , when p is odd.
G(1,0,2p)

2p (A−(i−j)2
)i,j , when p is even.

πp,g(Yi) = 1
⊗(i−1) ⊗ π1

p(Y ) ⊗ 1
⊗(g−i).

Proof. We will show that the matrices πp,g(Xi), πp,g(Yi), πp,g(Zi,j) satisfy the relations of
the presentations of Sp2g(Z) of Theorem 4.3.2 in the odd case and of ˜Sp2g(Z) of Definition
4.3.3 in the even case. As the computations are quite similar, we will perform them in the
even case only.

The relations (4.3), (4.4), (4.6) and (4.7) are clear from definition. For (4.5) we just
have to prove that πp(X)πp(Y )πp(X) = πp(Y )πp(X)πp(Y ):

πp(X)πp(Y )πp(X)ei =
G(1, 0, 2p)

2p

∑

k

Ak
2+i2−(i−k)2

ek =
G(1, 0, 2p)

2p

∑

k

A2ikek
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πp(Y )πp(X)πp(Y )ei =

(
G(1, 0, 2p)

2p

)2∑

k,l

A−k2+2k(l+i)−i2−l2el

=

(
G(1, 0, 2p)

2p

)2 G(−1, 0, 2p)

2

∑

l

A2ilel = πp(x)πp(y)πp(x)ei

Now we must check (4.8) : Zi,jYiZi,j = YiZi,jYi for i , j.

πp,g(Yi)πp,g(Zi,j)πp,g(Yi)(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)2∑

k,l

A−(ai−k)2+(k−aj)2−(k−l)2
ea1 ⊗ . . .⊗ el ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)
A2aj(aj−ai)

∑

l

A2(ai−aj)lea1 ⊗ . . .⊗ el ⊗ . . .⊗ eag

πp,g(Zi,j)πp,g(Yi)πp,g(Zi,j)(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)∑

k

A−(ai−k)2+(k−aj)2+(ai−aj)2
ea1 ⊗ . . .⊗ ek ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)
A2a2

j −2aiaj
∑

k

A2(ai−aj)kea1 ⊗ . . .⊗ ek ⊗ . . .⊗ eag

= πp,g(Yi)πp,g(Zi,j)πp,g(Yi)(ea1 ⊗ . . .⊗ eag )

Let us now check the (modified) stars relations. First (4.15) : Zi,jZj,kZk,i = −(Zi,1Zj,1Zk,1Y1)3

for 2 ≤ i, j, k ≤ g:

πp,g(Zi,j)πp,g(Zj,k)πp,g(Zk,i)(ea1 ⊗ . . .⊗ eag )

= A(ai−aj)2+(aj−ak)2+(ak−ai)
2
(ea1 ⊗ . . .⊗ eag )

= A2(a2
i +a2

j +a2
k−aiaj−ajak−aiak)(ea1 ⊗ . . .⊗ eag )

(πp,g(Zi,1)πp,g(Zj,1)πp,g(Zk,1)πp,g(Y1))3(ea1 ⊗ . . .⊗ eag ) =

(
G(1, 0, 2p)

2p

)3

×
∑

u,v,w

Au
2+v2+2w2−a2

1+3(i2+j2+k2)+2(ua1+uv+wv−u(i+j+k)−v(i+j+k)−w(i+j+k)ew ⊗ ea2 ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)3 G(1, 0, 2p)

2
A−a2

1+3(i2+j2+k2)×

∑

w

(
∑

v

A2v(w−a1)

)
A−(a1−i−j−k)2−2w(i+j+k)+2w2

ew ⊗ ea2 ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2

)4 1

p2
A2(a2

i +a2
j +a2

k−aiaj−ajak−aiak)(ea1 ⊗ . . .⊗ eag )

= −πp,g(Zi,j)πp,g(Zj,k)πp,g(Zk,i)(ea1 ⊗ . . .⊗ eag )
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Now let us look at (4.16) : Zi,jXiXj = −(Zi,1Zj,1X1Y1)3 for 2 ≤ i , j ≤ g, we leave
the similar cases (4.17), (4.18) to the reader.

πp,g(Zi,j)πp,g(Xi)πp,g(Yj)(ea1 ⊗ . . . ⊗ eag ) = A2(a2
i +a2

j −aiaj (ea1 ⊗ . . . ⊗ eag )

πp,g(Zi,1)πp,g(Zj,1)πp,g(X1)πp,g(Y1)(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)∑

u

A(ai−u)2+(aj−u)2+u2−(u−a1)2
eu ⊗ ea2 ⊗ . . .⊗ eag

(πp,g(Zi,1)πp,g(Zj,1)πp,g(X1)πp,g(Y1))2(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)2∑

u,v

A(ai−u)2+(aj−u)2+u2−(u−a1)2−(u−v)2+v2+(aj−v)2+(ai−v)2
ev ⊗ ea2 ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)2 G(1, 0, 2p)

2

∑

v

Av
2−2va1+(a2

i +a2
j −2a2

1+2a1ai+2a1aj−2aiajev ⊗ ea2 ⊗ . . .⊗ eag

(πp,g(Zi,1)πp,g(Zj,1)πp,g(X1)πp,g(Y1))3(ea1 ⊗ . . .⊗ eag ) =

(
G(1, 0, 2p)

2

)4 1

p3
×

∑

w

(
∑

v

A2(w−a1)v

)
A(w−ai)

2+(w−aj)2+(a2
i +a2

j −2a2
1+2(a1ai+a1aj−aiaj))ew ⊗ ea2 ⊗ . . .⊗ eag

= −A2(a2
i +a2

j −aiaj (ea1 ⊗ . . .⊗ eag )

= −πp,g(Zi,j)πp,g(Xi)πp,g(Yj)(ea1 ⊗ . . .⊗ eag )

The relations (4.19) reads X2
i = −(Zi,1X

2
1Y1)3 for 2 ≤ i ≤ g so we compute:

πp,g(Zi,1)πp,g(X1)2πp,g(Y1)(ea1⊗. . .⊗eag ) =

(
G(1, 0, 2p)

2p

)∑

u

A−(a1−u)2+2u2+(ai−u)2
eu ⊗ . . .⊗ eag

(πp,g(Zi,1)πp,g(X1)2πp,g(Y1))2(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)2∑

v

(
∑

u

Au
2+2u(a1−ai+v))A2v2−2vai+2a2

i −a2
1ev ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)2 G(1, 0, 2p)

2
Aa

2
i −2a2

1+2a1ai
∑

v

Av
2−2va1ev ⊗ . . .⊗ eag

(πp,g(Zi,1)πp,g(X1)2πp,g(Y1))3(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2

)4 1

p3
Aa

2
i −2a2

1+2a1ai
∑

w

(
∑

v

A2v(w−a1))A2w2−2aiw+a2
i ew ⊗ . . .⊗ eag

= −A2a2
i ea1 ⊗ . . .⊗ eag = −πp,g(Xi)

2(ea1 ⊗ . . .⊗ eag )
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Finally we check the last relation (4.20) : −1 = (X3
1Y1)3.

(πp,g(X1)3πp,g(Y1))3(ea1 ⊗ . . .⊗ eag )

=

(
G(1, 0, 2p)

2p

)3 ∑

u,v,w

A−(u−a1)2+3u2−(u−v)2+3v2−(v−w)2+3w2
ew ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2p

)3 G(1, 0, 2p)

2

∑

w,v

A−(a1+v)2−a2
1+2v2−(v−w)2+3w2

ew ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2

)4 1

p3

∑

w

(
∑

v

A2v(w−a1))A−2a2
1+2w2

ew ⊗ . . .⊗ eag

=

(
G(1, 0, 2p)

2

)4 1

p2
(ea1 ⊗ . . .⊗ eag ) = −(ea1 ⊗ . . .⊗ eag )

And that completes the proof. �

Corollary 4.3.5. When g ≥ 2 and p is even, the Weil representations cannot be lifted to
linear representations of Sp2g(Z).

Proof. Suppose that such a lift π̃p,g exists and is defined by π̃p,g(Xi) = αiπp,g(Xi),
π̃p,g(Yi) = βiπp,g(Yi) and π̃p,g(Zi,j) = γi,jπp,g(Zi,j) with αi, βi and γi,j some invertible
scalars of kp. Then the braid relation (4.5) implies that αi = βi for all i. The braid
relation (4.8) implies that γi,j = βi for all i , j. Hence the scalars αi = βi = γi,j = c are
independent of i and j. Now the modified star relation (4.20) implies c12 = −1 whereas
the modified star relation (4.19) gives c2 = −c12 and we have a contradiction. �
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List of Symbols

Σg Closed oriented surface of genus g

Hg Closed oriented handlebody of genus g

Mod(Σ) Mapping class group of Σ

˜Mod(Σg) Central extension of Mod(Σg)

Sp2g(Z) Symplectic group

˜Sp2g(Z) Central extension of Sp2g(Z)

πp,g Weil representation at level p of a genus g closed surface

ρp,g Reshetikhin-Turaev representation at level p of a genus g closed surface

Add (Schrödinger)-representation of the skein algebra induced by TQFT

Tk(M) Abelian skein module of M on the ring k

Kk(M) Kauffman skein module of M on the ring k

Up Abelian TQFT at level p

Vp Reshetikhin-Turaev TQFT at level p

V (Σ) Module associated to a closed oriented surface by the TQFT V

ZV (M) Vector associated to a closed oriented 3-manifold M by the TQFT V

⟨M⟩V Quantum invariant of M associated to the TQFT V

⟨·, ·⟩RV Invariant form associated to the TQFT V

(·, ·)HV Hopf pairing associated to the TQFT V

TLn Temperley-Lieb algebra with n strands

fn n-th Jones Wenzl idempotent

[n] Quantum number [n] = A2n−A−2n

A2−A−2

G(a, b, c) A Gauss sum

Span(X) Free module generated by the elements of X

colp(Γ) Set of p-admissible colorings of the graph Γ

colp(Γ) Set of equivalence class of p-admissible colorings of the graph Γ

uσ Vector associated to a coloring σ of a graph

σ(L) Signature of a link L
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M(L) 3-manifold obtained by surgery on M along the framed link L

Cob2+1 Cobordism category of banded cobordisms

Cobo
2+1 Cobordism category of oriented banded cobordisms

Cob2+1 Cobordism category of structure cobordisms

Cobo
2+1 Cobordism category of oriented structure cobordisms

Cobp Cobordism category of colored structure cobordisms
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