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« Grimpez si vous le voulez, mais n'oubliez 

jamais que le courage et la force ne sont rien sans 

prudence [...]. N'agissez jamais à la hâte, prenez 

garde au moindre pas. Et dès le début, pensez que 

ce pourrait être la fin. » 

≈ 

« Climb if you will, but remember that courage 

and strength are nought without prudence [...]. Do 

nothing in haste; look well to each step; and from 

the beginning think what may be the end. » 

≈ 

« Klettere, wenn du willst, aber vergiss nicht, 

dass Mut und Kraft ohne Besonnenheit wertlos 

sind [...]. Übereile nichts, achte auf jeden Schritt 

und habe von Anfang an das Ende im Blick. Wir, 

die wir die Berge erklettern, wissen, dass jede 

Höhe durch geduldige und mühsame 

Anstrengung gewonnen werden muss. Wir wissen 

auch, dass ein entschlossener Wille sich den Weg 

bahnt, und wenn wir zu unseren täglichen 

Beschäftigungen zurückkehren, so sind wir für 

den Kampf des Lebens besser gerüstet und 

schöpfen aus der Erinnerung neue Kraft und 

Lebensfreudigkeit. » 

 

Edward Whymper (1840-1911), 

Mountaineer 
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KSRP  K homology splicing regulatory protein 

LDHA Lactate dehydrogenase  

LH  Luteinizing hormone 

LHR LH receptor 

LLC  Lewis lung carcinoma 

LOX  Lysyl-oxydase 

LPS  Lipopolysaccharide 

MCP-1  Monocyte-chemoattractant protein 1 

MCT4  H+/monocarboxylate transporter 4 

MEK1/2  Mitogen-activated protein kinase kinase1/2 

MET  Mesenchymal-epithelial transition 

MIP-1  Macrophage inflammatory protein 1 

miRNA  micro RNA 

MK2  p38MAPK-activated protein kinase 2 

MMP  Matrix-metalloprotease 

MR  Mineralocorticoid receptor 

MSC  Mesenchymal stem cell 

mTOR 

NES  Nuclear export sequence 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NGD No-go mRNA decay 

NLS  Nuclear localization sequence 

NMD  Nonsense-mediated mRNA decay 

NOV  Nephroblastoma overexpressed gene 

NRP1/2  Neuropilin 1/2 

NTD  N-Terminal domain 

NSAIDs  Non-steroidal anti-inflammatory drugs 

OE  Overexpression 

P-body (PB) Processing body 

p38 MAPK  p38 mitogen activated protein kinase 

PABP  Poly(A)-binding protein 

PARN  Poly(A)-specific ribonuclease 

PBS  Phosphate buffer saline 

PDGF  Platelet-derived growth factor 

PFA  Paraformaldehyde  

PHD  Prolyl-hydroxylases 

PI3K  Phosphatidylinositol 3ʼ–kinase 

PIMO  Pimonidazol 

PKA  cAMP-protein kinase A 

PKB  Protein kinase B (=AKT) 

PKC  Protein kinase C 

PLGF  Placental growth factor 

PMA  Phorbol myristyl acetate 

PP2A  Protein phosphatase 2A 

PTD  Protein transduction domain 

PTEN  Phosphatase and tensin homologue deleted on chromosome 10 

PTX3 Pentraxin 3 

PVDF  Polyvinylidene fluoride 

RB  Retinoblastoma proteins 

RBP  RNA-binding protein 

RGD  Arginine-glycine-aspartate 
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RISC  RNA-induced silencing complex 

RONS  Reactive oxygen/nitrogen species 

RPL13A  Ribosomal protein 13a 

RRM  RNA Recognition Motifs 

SDF-1  Stromal-derived factor 1 

SDS   Sodium dodecyl sulfate 

Ser (S)  Serine 

SG  Stress granule 

siRNA  Small interfering RNA 

SLBP  Stem-loop-binding protein 

SSC  Saline sodium citrate 

TAM  Tumor-associated macrophage 

TAN   Tumor-associated neutrophils 

TAT  Transcription-transactivating protein of HIV-1 

TBS  Tris buffer saline 

TCA  Tricarboxylic acid cycle (Krebs cycle) 

TGFβ  Transforming growth factor beta 

Th  T-helper cell 

Thr  threonine 

TIL  Tumor-infiltrating leukocyte 

TIMP  Tissue Inhibitor of metalloprotease  

TIS11 TPA-inducible sequence 11 

TKI Tyrosine kinase inhibitor 

TNFα Tumor necrosis factor alpha 

TPA  12-O-tetradecanoylphorbol-13-acetate 

TSP1/2  Thrombospondin 1/2 

TTP  Tristetraprolin 

TTR-BPs  Turnover and translation regulatory RNA-binding proteins 

TZF Tandem zinc finger 

Ub Ubiquitin 

uPA(R) Urokinase-type plasminogen activator (receptor) 

Y2H Yeast two hybrid 

VECAM Vascular cell adhesion protein 

VEGF  Vascular endothelial growth factor 

VEGFR  VEGF receptor 

VHL  Von Hippel Lindau factor 

VPF  Vascular permeability factor 

WST-1   4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate 

WT  Wildtype 

ZF  Zinc finger 

ZFP36 (L1/L2/L3) Zinc finger protein 36 (like 1/2/3) 
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Figure 1: Complexity of RNA decay and enzymes involved in eukaryotic cells (Stoecklin & 

Muhlemann, 2013). Among other mechanisms, ARE-mediated mRNA decay (AMD) is 

an important regulatory process of mRNA stability and is further described in this 

chapter. ENDO, endonucleolytic mRNA decay; 5ʼ-3ʼ EXO, 5ʼ-3ʼ exonucleolytic mRNA 

decay; 3ʼ-5ʼ EXO, 3ʼ-5ʼexonucleolytic mRNA decay; NGD, no-go mRNA decay; NMD, 

nonsense-mediated mRNA decay. 
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Chapter 1  Regulation of short-lived mRNA stability 

Gene expression is a tightly controlled mechanism. Beside transcription, post-

transcriptional mechanisms are also important for controlling gene expression. Multiple 

regulatory systems ensure the balance between gene products (RNA or protein) and their need 

for cellular growth, function and fate. Especially during development, the presence of certain 

transcripts during specific time windows is crucial. Protein concentration is determined by the 

cytoplasmic concentration of the corresponding mRNA, which depends on mRNA synthesis and 

decay rates, and also on post-translational modifications regulating protein stability. Post-

transcriptional regulatory mechanisms, sub-divisible into processes determining translatability of 

mRNAs and processes defining equilibrium between transcription rate and degradation of the 

transcript, gained a lot of interest during the last years. Pre-mature mRNA processing, nuclear 

mRNA export, RNA interference, mRNA sequestration, codon usage, translational repression by 

microRNAs (miRNAs) or proteins, and the control of mRNA turnover are limiting mechanisms 

for mRNA synthetic rate. Figure 1 illustrates the fascinating biology of eukaryotic ribonucleases 

and how they are involved in the mRNA life cycle (Stoecklin & Muhlemann, 2013). Although 

most mRNAs are degraded through the deadenylation-dependent decay pathway triggered either 

by RNA-binding proteins or microRNAs, deadenylation-independent mechanisms exist (Fabian 

et al., 2010; Garneauet al., 2007). For certain mRNAs, degradation is initiated by endonuclease 

cleavage within the nucleotide sequence, followed by further degradation via either the exosome 

(3’→5’ decay) or the exoribonuclease Xrn1 (5’→3’ decay). Mammalian cells have developed 

several mRNA surveillance mechanisms to clear defective transcripts and to avoid the synthesis 

of abnormal proteins. Nonsense-mediated mRNA decay (NMD) seems to be restricted to newly 

synthesized mRNAs that contain premature termination codons. The translation of these 

transcripts would lead to truncated proteins with aberrant function. No-go mRNA decay (NGD) 

induces the degradation of faulty transcripts associated with stalled ribosomes, to release 

sequestered components of the translation machinery. Transcripts lacking a stop codon are 

degraded by the non-stop mRNA decay pathway, thus preventing translation to proceed along 

the poly(A)tail of the transcript and to result in aberrant proteins.  

However, this chapter will focus on the post-transcriptional regulation of mRNA stability, in 

particular on AU-rich element-mediated control of mRNA half-life, which enables cells to 

quickly adjust transcript levels and their translational potential in response to various stimuli 

(Guhaniyogi & Brewer, 2001).   
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Figure 2: Mechanisms of deadenylation-dependent mRNA decay in eukaryotes (Planel et al., 

2014).  
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1.1. The highway to degradation: Deadenylation-dependent mRNA decay 

Eukaryotic mRNAs contain two stabilizing structures, the 5’-end 7-methylguanosine cap 

(m7G-cap) and the poly(A) tail located at the 3’-end, which are added to the pre-mature mRNA 

after transcription. These two structure elements are recognized by the cytoplasmic proteins eIF-

4F and the poly(A)-binding protein (PABP), to enhance translation initiation and to protect 

mRNAs from unspecific exonuclease activity. Translocation of the mature mRNA occurs at the 

level of cytoplasmic polysomes. In response to a still unknown signal, mRNAs are deadenylated 

and transported to processing bodies (P-bodies). In P-bodies, mRNAs can be either stored for 

return to translation or recruited to the mRNA decay machinery for degradation. P-bodies are 

dynamic, cytoplasmic foci, which harbour non-translatable mRNAs. In addition, translation 

repressors and mRNA decay factors are present in these cellular structures (Kulkarni et al., 

2010).  

The decay of the majority of eukaryotic mRNAs is initiated by a rate-limiting process called 

deadenylation, which leads to the shortening of the poly(A) tail (Figure 2). Several deadenylases, 

located in the cytoplasm of eukaryotic cells as components of P-bodies, are well characterized.  

Pan2-Pan3 is a PABP-dependent deadenylase unit, which trims the nascent poly(A) tail (Brown 

et al., 1996). Ccr4-Not is a large protein complex, which consist of nine subunits including the 

conserved canonical subunits Ccr4, three Caf proteins (Caf1/Pop2, Caf40/Not9, Caf130/Not10) 

and five Not proteins (Not1, Not2, Not3, Not4 and Not5) (Wahle & Winkler, 2013; Inada & 

Makino, 2014). In this complex, Ccr4 and Caf1 are the catalytic subunits, whereas Not1 

functions as a central scaffold. The role of the other subunits remains unknown. Deadenylation 

in eukaryotic cells seems to be a two-phase process, where Pan2-Pan3 is performing a first, 

incomplete shortening of the poly(A) tail, followed by the entire poly(A) tail degradation 

through Ccr4-Not1 deadenylase activity (Zheng et al., 2008). A third mammalian deadenylase is 

the poly(A)-specific ribonuclease (PARN), which plays an important role during embryogenesis 

(Godwin et al., 2013). PARN activity is cap-dependent and is increased by interacting with the 

5’-end m7G-cap. The naked 3’-end is further attacked by the exosome, a macromolecular 

complex of 10-11 subunits. Nine subunits form the central core of the exosome. Two other 

subunits of multi-domain polypeptides, which carry the catalytical activity of the eukaryotic 

exosome, associate with the central core depending on cellular localization, leading to mRNA 

degradation (Figure 2) (Chlebowski et al., 2013). The 5’-cap on the remaining nucleotide 

sequence is metabolized by the scavenger decapping enzyme DcpS.  
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Figure 3: Cis-elements located in 3’untranslated region (3’UTR) of mRNAs are recognized by 

specific trans-acting factors to modulate the rate of mRNA decay (Thapar & Denmon, 

2013). (A) Poly(A) tail and PABP. (B) AU-rich elements (AREs) and ARE-binding 

proteins (ARE-BP). (C) Histone stem-loop and the stem-loop-binding protein (SLBP). 

(D) Iron response elements (IREs) and the IRE-binding protein (IRE-BP). (E) MiRNAs 

targeting mRNA sequences and recruiting the RNA-induced silencing complex (RISC) 

complex. 
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Alternatively to the exosome-dependent pathway, deadenylation can be followed by removing 

the 5’-cap through the major activity of decapping enzymes Dcp1 and Dcp2 (Figure 2) (Arribas-

Layton et al., 2013). Within this complex, Dcp2 has the intrinsic decapping activity. Xrn1, a 5’ 

3’exoribonuclease, recognizes the unprotected 5’-end leading to 5’ 3’decay of the mRNA 

(Nagarajan et al., 2013). 

 

1.2. The highway code: Control of mRNA decay 

Traditionally, transcriptional regulation has been the major focus of gene expression 

studies. However, recently the important contribution of mRNA decay mechanisms has emerged 

and numerous pathways linked to this aspect were reported. Most regulatory sequences (cis-

acting elements) involved in these control mechanisms are located in the 5’ and 3’untranslated 

regions (UTR) of mRNAs, which function as platforms for association of multi-subunit 

complexes initiated by RNA-binding proteins (RBPs) and other trans-acting factors (miRNAs, 

long non-coding RNAs). Whereas the 5’UTR is more important in translational control including 

cap-dependent and internal ribosomal entry site (IRES)-mediated processes, determinants of 

mRNA stability, cellular location and translatability are predominately found in the 3’UTR 

(Moore, 2005; Pickering & Willis, 2005). Interestingly, the length of 3’UTR could act as 

determining factor of mRNA stability. Experiments have shown a positive correlation between 

length of 3’UTR and number of cis-acting elements, respectively, and mRNA half-life (Akashi et 

al., 1994). Importantly, these mechanisms are often altered during cancer development and other 

life-threatening diseases, suggesting that they might contribute to human pathologies (Vislovukh 

et al., 2014).  

The following paragraphs will describe how mRNA fate is controlled by a balance between 

stabilizing and destabilizing RNA-binding factors which recognize regulatory cis-acting 

sequences located in the 3’UTR.  

 

1.2.1. Cis-acting elements: Focus on AU-rich elements 

Several cis-acting sequences, such as the poly(A) tail, iron-responsive elements (IRE), Jun-

kinase response elements, histone stem-loop and AU-rich elements (AREs) are located in the 

3’UTR of the mRNA to determine its stability (Figure 3) (Knapinska et al., 2005; Matoulkova et 

al., 2012). Stem-loop destabilizing elements are present in mRNAs encoding for Interleukin-2/6 

or the granulocyte-stimulating factor (G-CSF). This sequence motif requires at least one stem-

loop structure to be functional. Furthermore, CU-rich regulatory elements confer instability to 

mRNAs. The poly(A)-tail promotes longer stability of transcripts and efficient translation. AREs 
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are the landmark cis-acting elements of short-lived mRNAs (Figure 3) (Matoulkova et al., 2012). 

AREs were originally identified as instability determinants (Shaw & Kamen, 1986). Shaw & 

Kamen gave the initial evidence of the destabilizing function of AREs as they demonstrated that 

the half-life of the otherwise stable β-globin mRNA was decreased when fused to the 3’UTR of 

the granulocyte macrophage-colony stimulating factor (GM-CSF) which is known to harbours 

AREs. AREs are generally conserved between species (Halees et al., 2008). Initially, it was 

estimated that 8-10 % of total mammalian mRNAs contain AREs 

(http://brp.kfshrc.edu.sa/ARED/) (Halees et al., 2008). More recently, a database elaborated for a 

comprehensive investigation of AREs reported 3 275 protein encoding genes which harbour at 

least one ARE in their 3ʼUTR, underscoring the importance of these sequences (Halees et al., 

2008; Gruber et al., 2011). By searching AREs also in the introns of human genes, 9 114 

additional genes were found, meaning that around 50 % of human genes are part of the ARE-

regulome (Halees et al., 2008). ARE appearance correlates with rapid patterns of mRNA decay 

for genes encoding for factors involved in proliferation, inflammation, transcription, immune 

response, development and signalling or proto-oncogenes (Shaw & Kamen, 1986; Shyu & 

Wilkinson, 2000). ARE-bearing mRNAs are intrinsically labile short-lived mRNAs with half-

lives of a few hours.  

AREs are 40- to 150-nt long adenylate uridylate-rich sequences with various copies of an 

AUUUA motif. UUAUUUAWW (W=A/U) is considered as the minimally functional ARE. 

Historically, AREs were categorized into three groups based on the number of the AUUUA 

pentamer (ARE length) and functional characteristics (Table 1) (Chen & Shyu, 1994). Class I 

presents several isolated AUUUA motifs flanked by U-rich sequences found in early-response-

gene mRNAs like transcription factors. Genes categorized in class II harbour clustered or 

tandem, overlapping pentamers. Representatives of this group are cytokines like the GM-CSF, 

the tumor necrosis factor α (TNFα), the Vascular endothelial growth factor (VEGF) or 

Interleukin-3 (IL-3). Class III represents U-rich sequences in absence of the AUUUA 

pentanucleotide. All three ARE-categories induce mRNA decay, but via different mechanisms 

and kinetics. Class I, such as c-fos ARE, and class III, like c-jun ARE, mediate mRNA 

degradation through a synchronous shortening of the poly(A) tail, followed by the rapid digest of 

the mRNA core molecule. In contrast, mRNAs containing class II AREs, such as GM-CSF or 

IL-3 are eliminated asynchronously – poly(A) tail is removed simultaneously to endo-

/exonuclease activity (Chen et al., 1995). Recently, an alternative classification, which takes also 

the context of the AUUUA pentamer into account, was proposed and is the basis of the ARE-

mRNA database “ARED” (Table 2) (Bakheet et al., 2003; Bakheet et al., 2006). The 
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computationally predicted 13 bp sequence WWUUAUUUAUUWW is the most consensus motif 

in labile mRNAs. Sequence variations around this core motif are the basis of ARED 

classification into five groups. Cluster I-IV contains two to five AUUUA pentanucleotides. 

Cluster V harbours only one 13 bp consensus motif. Interestingly, AREScore, a recent study 

using an algorithm to identify mRNAs containing AUUUA motifs described further potential 

ARE-regulated mRNAs, which are not listed in ARED (Spasic et al., 2012).   

 

 

Table 1: Classification of AU-rich elements according to Chen et al. (Chen et al., 1995). GM-CSF, 

Granulocyte macrophage-colony stimulating factor ; TNF, Tumor necrosis factor ; 

VEGF, Vascular endothelial growth factor; IL-3, Interleukin-3. 

 

 

Table 2: Classification of AU-rich elements according to Bakheet et al. (Bakheet et al., 2003). INF, 

Interferon ; COX-2, Cyclooxygenase 2; FGF2, Fibroblast growth factor 2; uPAR, 

Urokinase-type plasminogen activator receptor 
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1.2.2. Trans-acting factors: Focus on ARE-binding proteins 

AU-rich elements are specifically recognized by trans-acting factors, called ARE-binding 

proteins (ARE-BPs), which belong to a group of proteins, called turnover and translation 

regulatory RNA-binding proteins (TTR-BPs) (Pullmann et al., 2007). Therefore, ARE-BPs are 

involved in processing, nuclear export, cellular localization, degradation and translation of 

mRNAs. The final effect on mRNA strongly depends on the primary mRNA regulatory function 

of the bound ARE-BP. mRNA stability is determined by a balance between counteracting factors 

which compete for their binding to AREs or co-activate each other due to direct interactions 

(Cherradi et al., 2006; Hinman & Lou, 2008; Kedar et al., 2012). mRNAs are either stabilized 

and their translation is enhanced or they are tagged for degradation and translationally repressed. 

A common structure characteristic of ARE-BPs is the RNA-binding domain, which could be of 

different nature, including RNA Recognition Motifs (RRMs), K homology (KH)-domains and 

CCCH tandem zinc fingers. The N- and C-terminal part of these factors is less conserved and 

contains numerous interaction sites with other proteins. Therefore ARE-BPs are considered as 

linkers between mRNAs and the mRNA decay machinery by recruiting components of these 

protein complexes implicated in every step of mRNA degradation (Figure 4).  

 

Figure 4: Regulation of deadenylation-dependent mRNA degradation through AU-rich elements 

(AREs) recognized by ARE-binding proteins (ARE-BPs) in eukaryotes (Planel et al., 

2014). 
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To date, around twenty ARE-BPs are known, the most important are listed in Table 3. 

 

 

Table 3: Overview of important ARE-binding proteins in eukaryotes (Planel et al., 2014). 

 

 

1.2.2.1. Stabilizing ARE-binding proteins 

The best studied stabilizing ARE-BP is HuR, a ubiquitously expressed protein (Table 3). 

This protein is a member of the ELAV (embryonic-lethal abnormal visual in Drosophila 
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melanogaster) protein family, comprising the nervous-system specific members HuB, HuC and 

Hu-D (Ma et al., 1996). HuR harbours three RNA recognition motifs through which it interacts 

with ARE-containing mRNAs. HuR targets a variety of mRNAs including cytokines, proto-

oncogenes, growth factors and cell cycle regulators, leading to transcript stabilization and/or 

enhanced translation (Hinman & Lou, 2008; Lebedeva et al., 2011). Upon cell stimulation, 

nuclear HuR translocates reversibly into the cytoplasm (Fan & Steitz, 1998). The mechanism of 

mRNA stabilization remains unknown. Based on experimental observations, one could assume a 

competition between HuR and destabilizing ARE-BPs for the ARE (Cherradi et al., 2006; 

Hinman & Lou, 2008). Alternatively, HuR could interact directly or indirectly with components 

of the mRNA decay machinery, avoiding the assembly of these protein complexes, or 

strengthening the interaction of PABP to the poly(A) tail. In addition to its role in regulation of 

mRNA stability, HuR can also affect the expression of target proteins at the level of translation. 

HuR may serve as enhancer or repressor of translation. Furthermore, Hu proteins have been 

shown to influence alternative splicing and polyadenylation of the pre-mature transcript (Hinman 

& Lou, 2008).  

It is worth mentioning that HuR-triggered mRNA functions are regulated by post-translational 

modifications of HuR involving several signalling cascades (Doller et al., 2008). HuR is target 

of various kinases such as MAPKs, MAPK-activated protein kinase-2 (MK2), AMP-activated 

kinase (AMPK) or the cell-cycle checkpoint kinase 2 (Chk2) leading to the phosphorylation of 

the protein. Furthermore, methylation and acetylation as well as ubiquitination are described for 

HuR. Altogether these post-translational modification regulate HuR subcellular localization, 

impact the sequestration of HuR and HuR binding to ligand proteins (e.g. 14-3-3). However, 

detailed mechanisms are poorly understood.  

 

1.2.2.2. Destabilizing ARE-binding proteins 

The antagonists of stabilizing ARE-BPs are factors promoting mRNA decay by binding to 

AREs. Overexpression of such factors is associated with rapid degradation of ARE-containing 

mRNAs. Once bound to the ARE, destabilizing ARE-BPs function as platforms for assembly of 

protein complexes implicated in mRNA decay by interacting directly or indirectly with mRNA-

degrading proteins. In addition, ARE-BPs have been found in cellular micro-organelles, such as 

P-bodies, where mRNA decay takes place (Garneau et al., 2007). It needs to be emphasized that 

these trans-acting factors do not harbour an intrinsic nuclease activity.  

The most important and best-studied destabilizing ARE-BPs, including AUF1, K homology 

splicing regulatory protein (KSRP), RHAU and TIS11 proteins are listed in Table 3. 
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Due to alternative splicing, four isoforms (p37AUF1, p40AUF1, p42AUF1, p45AUF1) of the trans-

acting ARE-BP AUF1 with unique functions are present in mammals (White et al., 2013). AUF1 

binds with high affinity via its RRM domain to ARE-containing mRNAs of Myc, Fos and GM-

CSF. A current model suggests that p37AUF1 recognizes the ARE-containing mRNA and 

orchestrates the formation of a large multi-subunit complex, the AUF1-and-Signal Transduction-

Regulated Complex (ASTRC), composed of translation initiation factors and molecular 

chaperones. Furthermore, the ASTRC seems to recruit specific deadenylases and exosome 

components accelerating deadenylation and consequent degradation of targeted mRNAs. The 

interaction of AUF1 with either translation initiation factors or components of the mRNA decay 

machinery of the ASTRC supports the double-edged function of AUF1 as either stabilizing or 

destabilizing ARE-BP.   

The ubiquitously expressed destabilizing protein KSRP is a more general post-transcriptional 

regulator of gene expression (Briata et al., 2013). Despite other functions of KSRP during 

mRNA life-cycle, this protein can bind AREs via its KH-domains to form complexes with the 

deadenylase PARN, the exosome components and the decapping enzyme Dcp2, favouring rapid 

mRNA decay. mRNAs of c-fos, TNFα, IL-8 as well as other cytokine and growth factor mRNAs 

are part of the KSRP target-repertoire. In addition to its role in mRNA decay, KSRP serves as a 

component of the complexes Dicer and Drosha thus promoting the maturation of miRNAs 

(Trabucchi et al., 2009).  

Like KSRP, RHAU interacts with the deadenylase PARN and exosome components, thus 

inducing deadenylation and destabilization of ARE-bearing mRNAs (Tran et al., 2004). 

Tristetraprolin (TTP), TIS11b and TIS11d, classified as TIS11 protein family, are well known as 

potent mediators of ARE-mediated mRNA decay. All three proteins will be introduced in more 

detail in Chapter 2 as they are the main subject of the present work. TIS11 proteins bind through 

a tandem CCCH type zinc finger mainly to AUUUA motifs flanked by additional uridylate 

residues (Brewer et al., 2004). Mounting evidence indicates that the main function of TIS11 

proteins is to recruit the deadenylation machinery on their target mRNA thus enhancing the 

shortening of the poly(A) tail and promoting mRNA destabilization. Co-Immunoprecipitation 

experiments have demonstrated the interaction between TTP and different deadenylases (Lai et 

al., 2003; Marchese et al., 2010). Very interestingly, a recent study demonstrated the direct 

interaction of TTP and Not1, the scaffold protein of the Ccr4-Not1 deadenylation complex 

(Sandler et al., 2011; Fabian et al., 2013). In vitro, TIS11 proteins could also induce PARN 

activity, while having no impact on ARE-lacking transcripts (Lai et al., 2003). In addition, TIS11 

proteins seem to be also implicated in later steps of mRNA decay, as co-immunoprecipitation 
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experiments have identified the decapping enzyme Dcp2, the cytoplasmic 5’ 

3’exoribonuclease Xrn1 and components of the exosome as TIS11 protein interaction partners 

(Fenger-Gron et al., 2005; Lykke-Andersen & Wagner, 2005; Hau et al., 2007). Based on the 

phenotype of TTP knock out mice, which exhibit a syndrome of systemic inflammation due to 

TNFα overexpression, TNFα was identified as one of the first TTP target mRNAs in 

macrophages (Taylor et al., 1996; Carballo et al., 1998). Other important factors destabilized by 

TIS11 proteins are GM-CSF, VEGF, cyclooxygenase 2 (COX-2), IL-1, IL-8, IL-3 and hypoxia-

inducible factor-1 (HIF-1) (Stoecklin et al., 2002; Boutaud et al., 2003; Ciais et al., 2004; Chen 

et al., 2006; Marderosian et al., 2006; Essafi-Benkhadir et al., 2007; Suswam et al., 2008; Kim 

et al., 2010; Bourcier et al., 2011; Chamboredon et al., 2011). Even though mRNA 

destabilization remains their best-characterized role, TIS11 proteins seem to have alternative 

functions throughout the life of an mRNA, which will be discussed in Chapter 2. 

 

1.3. Regulation of mRNA decay by signalling pathways 

Even though mRNA decay is currently intensively investigated, the question of how 

extracellular stimuli or cell-cycle checkpoint signals are interacting with cytoplasmic mRNA 

turnover and how key players within this game are regulated remains unclear. During the last 

years, an additional level of complexity regarding the sophisticated regulation of mRNA 

turnover has appeared. Almost all ARE-BPs are targets of post-translational modifications, 

which alter their RNA-binding affinity or protein-protein interactions. Regulatory post-

translational modifications, including phosphorylation, ubiquitination and methylation have been 

described for ARE-BPs. However, the impact of these chemical modifications on ARE-BP 

functions is not well understood. Phosphorylation is one of the best studied post-translational 

modifications of ARE-BPs. Several signal transduction pathways are implicated and the most 

important ones will be briefly introduced (Thapar & Denmon, 2013). Most data derived from 

disease conditions, like cancer and inflammatory syndromes, where altered mRNA turnover due 

to unbalanced activity of ARE-BPs was observed. In most cases, phosphorylation was shown to 

repress the mRNA destabilizing activity while enhancing ARE-BP protein stability. These 

reversible post-translational modifications ensure the immediate availability of ARE-BP to allow 

cells rapid adaptation to environmental changes.  

The p38 mitogen activated protein kinase (p38 MAPK) pathway is one of the most important 

signalling cascades regulating ARE-mediated mRNA decay. Activation of p38 MAPK by 

environmental stress leads to the stabilization of class II ARE-containing mRNAs, such as 

TNFα, VEGF, Macrophage inflammatory protein 1 (MIP-1α), GM-CSF, COX-2, matrix-
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metalloprotease 1 (MMP-1) and MMP-3 (Wang et al., 1999; Dean et al., 2001; Reunanen et al., 

2002; Tebo et al., 2003; Wilson et al., 2003; Cha et al., 2011). Therefore, it is not surprising, that 

stimulation of this pathway is associated with inflammatory diseases and cancer. Among other 

ARE-BPs, TTP is the best studied target of the p38 pathway. Upon activation, the protein kinase 

2 (MK2), a downstream target of p38, phosphorylates TTP at two Serines (Ser). TTP thus loses 

its mRNA binding affinity and interacts with 14-3-3 proteins. This leads to an altered 

localization of TTP within the cell and prevents its destabilizing activity (Chrestensen et al., 

2004). The inhibition of KSRP-induced myogenin mRNA decay via its p38 phosphorylation has 

been described (Briata et al., 2012).    

The Extracellular-signal-regulated kinase (ERK or MAPK) pathway plays a central role in cell 

growth and cell cycle progression under healthy conditions as well as in uncontrolled cell 

proliferation in cancer and in inflammatory response of macrophages and eosinophils. For 

example, the ARE-BP AUF-1 induces exosome-mediated decay of GM-CSF mRNA in 

unstimulated eosinophils (Shen et al., 2005). Stimulation of the ERK signalling cascade in these 

cells ends in phosphorylated AUF-1, which dissociates from the ARE, leading to GM-CSF 

mRNA stabilization. The constitutive activity of ERK in Ras-transformed fibroblasts inhibited 

TTP-mediated destabilization of VEGF mRNA (Essafi-Benkhadir et al., 2007). Interestingly, the 

RNA-binding capacity of TTP to AREs in the VEGF 3’UTR was not changed by ERK activity. 

Furthermore, inducible TTP overexpression in melanoma cell lines with constitutive ERK 

activity revealed that ERK triggers the proteasome-dependent degradation of TTP (Bourcier et 

al., 2011).  

As another important signalling pathway, the phosphatidylinositol 3-kinase (PI3K) and its most 

important target the Ser/Thr kinase AKT (or protein kinase B) need to be mentioned. 

Downstream effectors of AKT are implicated in cell survival, metabolism, cell cycle and protein 

synthesis. Transcriptome studies of human glioblastoma cells upon PI3K inhibition revealed an 

increased mRNA degradation of around 20 genes (Graham et al., 2010). SiRNA experiments 

identified TIS11b and KSRP as ARE-BPs responsible for this effect. In addition, TIS11b has 

been described as target of AKT (Schmidlin et al., 2004). Phosphorylation by AKT facilitates the 

interaction between TIS11b and 14-3-3 proteins in the cytoplasm leading to a decrease of its 

ARE binding-affinity and a consequent mRNA stabilization. Similar observations were reported 

for KSRP (Briata et al., 2012). Phosphorylation of KSRP and consequent inhibition of this ARE-

BP increased the half-life of β-catenin and myogenin mRNAs in myoblasts. 
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In conclusion, gene expression, from transcriptional initiation to translation of a mature 

protein, is a highly controlled mechanism. In between this start- and end-point, a mRNA, as a 

part of a messenger ribonucleoprotein complex, needs to pass several key steps during its life-

cycle, including processing of the pre-mature mRNA, nuclear export, quality assessment as well 

as translational repression and de-repression. Among these processes, the regulation of mRNA 

stability is an additional key control point. This post-transcriptional regulation allows for rapid 

changes in mRNA levels during cell adaptation to extracellular stimuli.  

The majority of eukaryotic mRNAs is degraded via the deadenylation-dependent mRNA decay. 

The steady-state level of an mRNA is determined by cis-acting sequences, mainly located in the 

3’UTR, which are recognized by trans-acting factors, which are directly or indirectly bound to 

components of the translational or mRNA decay machinery. mRNA stability is determined by 

the balance between stabilizing factors, like HuR, and destabilizing factors, such as TTP, AUF1 

or KSRP, which bind to cis-acting AU-rich elements pre-dominantly located in the 3`UTR of 

mRNAs. ARE-BPs are implicated in each step of the deadenylation-dependent mRNA decay.  

ARE-BPs themselves undergo post-translational modifications, mainly phosphorylation, upon 

activation of signalling cascades, including p38 MAPK, ERK and PI3K/AKT pathway. 

Phosphorylation of ARE-BPs impairs their interaction with the mRNA decay machinery and 

increases their protein stability.  

Importantly, AREs and ARE-BPs are associated with a rapid decay of growth factor, 

inflammatory cytokine and proto-oncogene mRNAs. In addition to their phosphorylation by 

overactive signalling pathways, the altered abundance of ARE-BPs could lead to impaired half-

lives of short-lived mRNAs and has pathological consequences. It is therefore not surprising that 

several diseases, such as cancer and inflammation, are correlated with deregulated mRNA 

stability. Before discussing this emerging link, TIS11 proteins as major regulators of ARE-

mediated mRNA decay are introduced in the next chapter. 
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Chapter 2  Key player in mRNA decay: The TIS11 protein family 

During a genetic screening of murine fibroblasts (3T3 cells) treated with the tumor 

promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), Varnum et al. identified 

in the late 1980s an early response gene that they called “TPA-Inducible Sequence 11” (TIS11).  

At the same time, several other groups confirmed Varnum et al.’s observations, which led to the 

definition of the TIS11 family (Varnum et al., 1989; DuBois et al., 1990; Gomperts et al., 1990; 

Lai et al., 1990; Varnum et al., 1991; Nie et al., 1995). These proteins are nearly undetectable 

under quiescent conditions, but show a rapid, transient induction of their mRNA in response to 

external stimuli.  

TIS11 proteins are tandem CCCH zinc finger-containing RNA-binding proteins which are 

ubiquitously expressed and play a crucial role in embryonic development and mRNA decay of 

short-lived mRNAs. By targeting specific response elements (AU-rich elements) located in the 

3’UTR of mRNAs, TIS11 proteins promote mRNA degradation. In addition to this key function, 

TIS11 proteins seem to be also implicated in mRNA transcription, splicing, polyadenylation as 

well as translation of mRNAs. Even if the different members of this protein family share 

common structural characteristics and functions in vitro, each TIS11 protein holds a unique role 

in vivo. TIS11 proteins are post-translationally modified, mainly due to kinase-mediated 

phosphorylations. These modifications regulate their localization, activity and stability. 

Depletion of TIS11 proteins causes the abnormal stabilization of target short-lived mRNAs and 

is associated with cancer and systemic inflammatory diseases.  

This chapter aims at introducing the TIS11 protein family by highlighting the different members, 

their function and regulation. 



 

 36 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Phenotype of TTP-knock out (KO-PBS) mice compared to wildtype (WT) and prevention 

of this phenotype by injecting anti-TNFα antibodies (KO-Ab) (Taylor et al., 1996).  
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2.1. Members of the TIS11 protein family 

Three members of the TIS11 protein family are known in mammals: TTP, TIS11b and 

TIS11d (Lai et al., 1990). In 2005, Blackshear et al. discovered a fourth member, ZFP36L3, 

which is exclusively expressed in placenta of rodents (Blackshear et al., 2005). TIS11 proteins 

are encoded by different chromosomes and are therefore products of distinct genes. 

Nevertheless, TIS11 proteins have several common structural characteristics. All members are 

able to bind to ARE-containing mRNAs and to induce their deadenylation and degradation in 

vitro (Baou et al., 2009). By contrast, each member of the TIS11 family possesses a unique role 

in vivo as demonstrated by gene knock out-studies in mice which will be deciphered in the 

following paragraphs.   

 

2.1.1. Tristetraprolin (TTP) 

Tristetraprolin (TTP), the prototype of the tandem CCCH zinc finger TIS11 protein family, 

is also known as 12-O-tetradecanoylphorbol-13-acetate-inducible sequence (TIS11) or Zinc 

finger protein 36 (ZFP36) as well as Nup475 or G0/G1 switch regulatory gene 24 (G0S24).  

Full-length TTP was initially cloned from either insulin-, phorbolester- or serum-induced murine 

fibroblasts and further described for humans (DuBois et al., 1990; Lai et al., 1990). In addition, 

TTP expression was shown to be induced by lipopolysaccharide (LPS), cinnamon polyphenols, 

and green tea extract (Cao et al., 2004; Cao et al., 2007a; Cao et al., 2007b). TTP is localized in 

the nucleus of quiescent fibroblasts, then is phosphorylated rapidly after induction due to 

external stimuli and translocates into the cytoplasm (Taylor et al., 1995; Taylor et al., 1996). By 

contrast, TTP is exclusively localized in the cytoplasm in macrophages (Carballo et al., 1998).  

To characterize the in vivo function of TTP, a murine knock out model was generated (Taylor et 

al., 1996). These mice are viable, but lose weight and body fat several weeks after birth (Figure 

5). The TTP-KO mice exhibit furthermore growth retardation, cachexia, arthritis, inflammation 

and autoimmunity. The high similarity between the phenotype of TTP-KO mice and TNFα 

overexpressing mice led the authors to hypothesize that TNFα could be the major cause of the 

systemic inflammatory syndrome seen in TTP-deficient mice (Keffer et al., 1991). Indeed, this 

phenotype could be prevented by frequently treating TTP-KO mice with anti-TNFα antibodies 

early after birth (Taylor et al., 1996). Thus, this KO model described for the first time, a link 

between TTP and the pro-inflammatory cytokine TNFα and revealed the function of TTP in 

mRNA decay. To identify the origin of TNFα overproduction in TTP-KO mice Carballo et al. 

transplanted bone marrow of TTP-KO or TTP-WT mice in irradiated immunodeficient mice 

(Carballo et al., 1997). 
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Table 4: Identified targets of TTP (Brooks & Blackshear, 2013). 
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After several months, mice which received TTP-KO bone marrow developed TTP-KO 

phenotype, suggesting that hematopoietic progenitors are responsible for the described 

syndrome. Additional in vitro studies showed an increase in TNFα secretion by LPS-stimulated 

TTP-KO macrophages that was accompanied by an increase in TNFα mRNA levels. Finally, 

Carballo et al. demonstrated the physical interaction between TTP and the ARE located in the 

3’UTR of TNFα (Carballo et al., 1998). They concluded that TTP-KO phenotype is caused by 

an accumulation of TNFα mRNA in macrophages due to increased TNFα mRNA stability in the 

absence of TTP. These results could be further strengthened by two additional in vivo models. 

Interbreeding of TTP-KO mice with TNFα receptor-deficient mice protected the animals from 

the systemic inflammatory syndrome (Carballo & Blackshear, 2001). The same effect was 

observed in the murine TNFα-ΔARE model (Kontoyiannis et al., 1999).   

Another well-known target of TTP is the Granulocyte-macrophage colony-stimulating factor 

(GM-CSF), a growth factor for myeloid cells. GM-CSF 3ʼUTR contains AU-rich elements for 

TTP binding (Shaw & Kamen, 1986). Carballo et al. observed increased GM-CSF secretion by 

LPS-induced TTP-KO-bone marrow-derived stromal cells compared to the wildtype due to 

increased GM-CSF mRNA half-life (Carballo et al., 2000). Our laboratory identified HIF-1α 

mRNA as target of a TTP in endothelial cells submitted to hypoxia (Chamboredon et al., 2011). 

TTP directly interacts with AREs located in the 3ʼUTR of HIF-1α mRNA and induces 

destabilization of the transcript. Interleukin 2 (IL-2) (Ogilvie et al., 2005), IL-3 (Carballo et al., 

1998), IL-6 (Stoecklin et al., 2001), IL-8 (Winzen et al., 2007; Bourcier et al., 2011), IL-23 (Lee 

et al., 2013), c-fos (Raghavan et al., 2001), cyclooxygenase 2 (COX-2) (Sawaoka et al., 2003), 

c-myc (Marderosian et al., 2006), Vascular endothelial growth factor (VEGF) (Essafi-Benkhadir 

et al., 2007) and many other transcripts were also identified as TTP targets (Table 4). It is worth 

mentioning that no correlation between these potential targets and the TTP-KO model has been 

reported.  

 

2.1.2. TIS11b 

The second member of the TIS11 protein family, TIS11b or Zinc finger protein 36-like 1 

(ZFP36L1), cMG1, Butyrate Response Factor 1 (BRF1), Epidermal Growth Factor-response 

factor 1 (ERF-1) or B-cell early response gene encoding a 36-kDa protein (Berg36) was 

described by Gomperts et al. in 1990 (Gomperts et al., 1990). This study reported that growth 

factor-stimulated epithelial cells of rat intestine displayed an induced expression of an early 

response gene showing high sequence homology with TIS11. ZFP36L1 mRNA expression was 

induced by several mitogens and growth factors like EGF, Insulin, LPS, TPA, Phorbol myristyl  
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Table 5: Identified targets of TIS11b (Baou et al., 2009). 

 

 

acetate (PMA) or Angiotensin II, as already shown for TTP (Gomperts et al., 1990; Corps et al., 

1995; Cao et al., 2004; Cao & Lin, 2008). Interestingly, the kinetic of gene expression induction 

differs between TIS11b and TTP. By contrast, redundancy of TIS11b and TTP was observed in 

cell-free deadenylation assays and cell-free RNA-binding as well as transfection experiments 

(Lai et al., 2000; Lai et al., 2003).  

Less is known about the physiological role of TIS11b compared to TTP, so far. Storch et al. 

described a regulation of cardiac and hepatic TIS11b expression by the circadian rhythm 

proposing a potential role of ZFP36L1 in the circadian variability of cytokine levels in the blood 

stream (Storch et al., 2002). Stabilization of IL-3 in cells expressing a TIS11b mutant was 

observed by Stoecklin et al. (Stoecklin et al., 2002). In this study, an elegant functional approach 

based on the idea of translating mRNA stability changes into a fluorescent signal to identify 

regulators of mRNA turnover in mammalian cells was used. A reporter-gene (Green fluorescent 

protein (GFP) or β-globin) was fused to the ARE-containing 3’UTR of IL-3 and transfected in 

vitro. Cells underwent several rounds of mutagenesis, followed by subsequent analysis of the 

reporter mRNA stability. Clones showing increased GFP half-life were supposed to have a loss 

of function mutation of an ARE-binding protein and were re-transfected with a retroviral cDNA 

library. By using this strategy, TIS11b was identified as regulator of GM-CSF, TNFα, IL-2, IL-3 

and IL-6 mRNA stability (Table 5) (Stoecklin et al., 2001). Ectopic expression of TIS11b in this 

context could restore the rapid decay of these mRNAs.  

Our lab was first to demonstrate that TIS11b induction was concomitant with the decrease of the 

mRNA of the angiogenic cytokine VEGF in adrenocorticotropic hormone (ACTH)-stimulated 

adrenocortical cells (Chinn et al., 2002). A functional interaction between TIS11b and the 3'UTR 

of VEGF mRNA was observed in NIH-3T3 cells. Indeed, co-transfection of TIS11b and 
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luciferase reporter-gene fused to the 3’UTR of VEGF mRNA led to a significant decrease of 

luciferase activity and mRNA. Later on, using ribonucleoprotein complex immunoprecipitation, 

our laboratory was first to show a direct binding of TIS11b to a 75 bp-long sequence located in 

the 3’UTR of VEGF mRNA (Ciais et al., 2004). In addition, TIS11b was found to be a negative 

regulator of basal and ACTH-stimulated VEGF mRNA expression in adrenocortical cells. The 

key role of TIS11b in angiogenesis was even more strengthened by our team who discovered that 

Delta-like 4 (Dll4), another important factor in blood vessel formation, is a target of TIS11b in 

endothelial cells (Desroches-Castan et al., 2011). Surprisingly, direct interaction between 

TIS11b and AREs located near the poly(A)-site in the 3’UTR of Dll4 mRNA did not influence 

Dll4 mRNA stability. However, the binding of TIS11b modulated the 3’-end maturation of Dll4 

mRNA. These results described for the first time an alternative function of TIS11b in 

posttranscriptional regulation. Germ line deletion of TIS11b caused an intra-uterine death of 

TIS11b-/- embryos at E10.5, demonstrating a crucial role of this zinc finger protein in mouse 

early development (Stumpo et al., 2004). Stumpo et al. claimed frequent chorioallantoic fusion 

defects leading to placental insufficiency in TIS11b-/- embryos. Bell et al. confirmed these results 

and provided a more detailed analysis of the murine TIS11b KO model (Bell et al., 2006). 

Homozygous deletion of TIS11b led to extra- and intraembryonic vascular defects already 

visible at E9.5, when heart beat was still detectable in TIS11b-/- embryos (Figure 6). 

 

 

 

Figure 6: Optical projection tomography of vascular abnormalities in TIS11b-/- and TIS11b+/- 

embryos at E9.5 (Bell et al., 2006). al=allantois, ba=brachial artery, da=dorsal aorta, 

e=eye, h=heart, isv=intersomitic vessels.  
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In addition, these embryos showed cardiac abnormalities as well as neural tube formation 

defects. Given the importance of VEGF in angiogenesis and the phenotypic similarity of  

TIS11b-/- embryos with VEGF-A-overexpressing ones, Bell et al. analysed VEGF levels in 

TIS11b-/- embryos. The authors demonstrated that VEGF levels were increased mainly due to 

activation of VEGF mRNA translation (Bell et al., 2006).  

Induced TIS11b expression has been reported during mouse myoblast differentiation indicating a 

role of ZFP36L1 in myogenesis (Busse et al., 2008). The importance of TIS11b in adult tissue 

was evidenced by a conditional double TIS11b/TIS11d KO in the mouse thymus generated by 

Hodson et al. (Hodson et al., 2010). Thymus TIS11b/TIS11d-KO mice displayed defects in 

thymic development and acute lymphoblastic leukaemia six months after birth. Malignant 

transformation was not seen in conditional KOs of either TIS11b or TIS11d, suggesting 

overlapping functions of these two TIS11 proteins in vivo. Re-expression of TIS11b in primary 

tumor cells of the double KO led to death of cancer cells, supporting the physiological tumor-

suppressor role of TIS11b in vivo. In this study, the oncogenic factor Notch1 was identified as a 

target of TIS11b. More recently, our team described a TIS11b-mediated post-transcriptional 

control of the mineralocorticoid receptor (MR) in renal cortical cells (Viengchareun et al., 2014).  

 

2.1.3. TIS11d  

Nie et al. discovered in 1995 a third member of the TIS11 early response gene family, 

known as TIS11d, ZFP36L2, BRF2 or ERF-2 (Nie et al., 1995). Like TTP and TIS11b, TIS11d 

also destabilizes ARE-containing transcripts by promoting their deadenylation (Johnson & 

Blackwell, 2002; Lai et al., 2002; Lai et al., 2003). Phillips et al. have shown that TIS11d is a 

nuclear-shuttling protein like TTP and TIS11b (Phillips et al., 2002).  

To decipher the biological role of TIS11d, Ramos et al. generated a partial TIS11d knock out 

mouse by deleting 29 N-terminal amino-acids (Ramos et al., 2004). This hypomorphic mutation 

resulted in a decreased TIS11d protein level as a major component of the in vivo phenotype 

without affecting TIS11d protein activity, localization and stability (Ramos, 2012).  ΔZfp36l2 

mice were viable, but homozygous females were infertile (Ramos et al., 2004). Furthermore, 

embryos in these mice did not progress beyond the two-cell stage, maybe due to the stabilization 

of maternal mRNAs, which cause the arrest in early embryonic development. Ball et al. 

proposed recently a more detailed explanation for the observed infertility in ΔZfp36l2 mice (Ball 

et al., 2014). Indeed, they identified the Luteinizing hormone receptor (LHR) mRNA as a target 

of TIS11d in ovaries and suggested that low levels of TIS11d in mutant mice are not sufficient to 

downregulate the LHR mRNA induced by Luteinizing hormone (LH) surge, thus resulting in 



 

 43 

anovulation. In addition, TIS11d seems to be a critical modulator of definitive haematopoiesis as 

indicated by the phenotype of a complete TIS11d knock out (Stumpo et al., 2009). These mice 

are dying two weeks after birth due to haemorrhage and reduced number of hematopoietic 

progenitor cells in fetal liver. Microarray analysis of RNA derived from E14.5 WT or KO fetal 

livers demonstrated the upregulation of 239 transcripts in the KO liver. Among them are genes 

encoding for factors implicated in hematopoiesis such as Thrombospondin-1 (TSP1) and CXC-

motif chemokines like CXCL1, CXCL4 and CXCL7. As mentioned earlier for TIS11b, TIS11d 

deletion in the thymus was found to promote acute lymphoblastic leukaemia (Hodson et al., 

2010). In this study, microarray analysis of the whole thymus from wildtype and TIS11b/d KO 

mice showed a deregulated expression of more than 500 genes. Among them are genes 

implicated in lymphatic development and cancer. Iwanaga et al. reported a frame shift mutation 

of TIS11d gene in leukaemia patients (Iwanaga et al., 2011). Furthermore, TIS11d seems to be 

implicated in p53-induced apoptosis in human colorectal adenocarcinoma as suggested by 

increased TIS11d expression after p53 induction (Jackson et al., 2006). In this work, it was 

shown that TIS11d overexpression inhibits proliferation and promotes cell death. 

 

2.1.4. Zfp36l3 

More than one decade after the discovery of the TIS11 protein family, Blackshear et al. 

described a fourth member, called ZFP36L3 (Blackshear et al., 2005). ZFP36L3 shares the 

mRNA-destabilizing activity with TTP, TIS11b and TIS11d. ZFP36L3 seems to be permanently 

located in the cytoplasm possibly due to its large protein size or hydrophobic α-Helices at the C-

terminus (Frederick et al., 2008). By contrast to the other three TIS11 proteins, ZFP36L3 is 

exclusively expressed in the yolk sac and placenta of rodents (Blackshear et al., 2005). In 

addition, Wu et al. observed a low ZFP36L3 expression in murine adipocytes and macrophages 

(Wu et al., 2008). Interestingly, no orthologous was found in humans until now. Apart from the 

demonstrated ZFP36L3 expression during mouse embryogenesis and cornea maturation, the 

function of this TIS11 protein is still unclear (Wu et al., 2008).  

 

2.2. Regulation of TIS11 protein expression 

TIS11 proteins are phylogenetically highly conserved (Blackshear & Perera, 2014). 

Orthologous to mammalian TTP, TIS11b and TIS11d were found in all studied vertebrates 

except birds, as well as in rodents, amphibians and fish.  
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Induction of TIS11 protein expression 

Expression of the TIS11 protein family is rapidly induced by different mitogens, hormones and 

stress (hypoxia, hypertonicity, UV radiation) due to the presence of specific response elements 

located in their respective promoters which are recognized by transcription factors (Blackshear, 

2002; Sinha et al., 2009; Sanduja et al., 2012; Viengchareun et al., 2014). Compared to TTP, 

TIS11b and TIS11d display higher expression at the basal level, associated with a reduced 

response to stimuli. Different studies in mammals describe organ-specific expression of the three 

TIS11 proteins, indicating that the expression and regulation of these proteins is cell-type 

specific. Indeed, TTP, TIS11b and TIS11d respond differently to the same stimulus in one cell-

type (Carrick & Blackshear, 2007). This differential regulation suggests that they are involved in 

different cellular processes. It is assumed that their tissue-specific expression and regulation 

contribute to their specificity of action in physiological and pathological processes (Ciais et al., 

2004).   

As already mentioned, TIS11 genes were discovered as early-response genes, almost 

undetectable in starved cells and rapidly expressed after cell activation by insulin, TPA, serum, 

etc. To study the serum-inducibility of TTP, the 5’-flanking region and the only intron of TTP 

gene (Zfp36) were analysed. Several promoter response elements which are bound by 

transcription factors such as SP1, activator protein 2 (AP2) or EGR-1 were found in the 5ʼ-

proximal region of TTP gene. In all cases, these consensus sequences behaved as classical 

enhancer elements as they could confer serum-inducibility, when cloned upstream of non-serum-

inducible genes. Lai et al. demonstrated the requirement of the single intron for serum-induced 

TTP expression (Lai et al., 1998). In addition, the Transforming growth factor β (TGFβ) 

stimulates TTP transcription through the binding of Smad3/4 to putative response elements in 

TTP promoter (Figure 7) (Blackshear, 2002; Sanduja et al., 2012). Sequence alignments of the 

promoter region of all three TIS11 proteins revealed the presence of a cyclic AMP response 

element (CRE) located exclusively in the TIS11b promoter. This motif was absent in the TTP or 

TIS11d promoter sequence, at least 2000 bp upstream of the transcription start site, suggesting 

that TIS11b, but not TTP or TIS11d expression is cAMP-regulated. Indeed, our lab found that 

ACTH induces TIS11b expression in adrenocortical cells through the binding of CREB 

transcription factor to a cyclic AMP response element located in TIS11b proximal promoter 

(unpublished data). 
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Figure 7: Schematic presentation of TTP gene, mRNA and protein. TTP gene consists of one intron 

and two exons (Sanduja et al., 2012). 3’UTR of TTP mRNA harbours several AU-rich 

elements. TTP protein structure displays three tetra-proline (PPPP) repeats, two CCCH zinc 

finger (Zn) domains and multiple serine/threonine phosphorylation sites. 

 

 

Expression of TIS11 proteins in normal human tissues 

TIS11 proteins are detectable early in mice embryonic development as shown by the 

characterization of TIS11b KO embryos compared to the WT littermates (Stumpo et al., 2004; 

Bell et al., 2006). TIS11b is highly expressed in the chorion, yolk sac, neural tube, heart and 

brain. In human adults, Carrick & Blackshear detected an elevated mRNA level for the three 

members in lung, colon, pancreas, adrenal gland and ovaries, whereas TIS11 family mRNA 

expression was low in stomach, liver, heart and spleen (Carrick & Blackshear, 2007). It is 

mentioning that the three TIS11 proteins are not equally expressed in the same organ. For 

example, TIS11b is abundant in lung, colon, bladder, ovary, adrenal gland, pancreas and thymus, 

while weakly expressed in skeletal muscle, heart and brain. The levels of TIS11b and TIS11d are 

higher in the pancreas, adrenal gland and ovaries, compared to TTP (Carrick & Blackshear, 

2007). The highest expression of TTP was observed in uterine cervix (Carrick & Blackshear, 

2007).  Unfortunately, an equivalent study to Carrick & Blackshear on TIS11 protein levels is 

still lacking.  
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Autoregulation of TIS11 family mRNA expression 

Interestingly, mRNA of all three TIS11 proteins contains AREs in the 3ʼUTR which regulate 

their mRNA stability (Brooks et al., 2004). Immunoprecipitation experiments demonstrated that 

TTP binds to its own mRNA in human monocytes. By using a reporter-gene assay, where TTP 

3’UTR was fused to luciferase gene, it was confirmed that TTP regulates its own expression in a 

TTP 3’UTR-dependent manner. Brooks et al. identified three functional AREs in the TTP 

3’UTR. This auto-regulatory negative feedback loop allows TTP expression to return rapidly to 

basal low levels 2-4h after induction (Tchen et al., 2004). Even if not demonstrated so far, a 

cross-regulation between TIS11 proteins has been suggested by Stoecklin et al. who found 

TIS11b/d mRNAs in a TTP-associated mRNA pool (Stoecklin et al., 2008). 

 

2.3. Protein domains and truncation of TIS11 proteins 

Sequence alignments suggest a higher homology between TIS11b and TIS11d compared to 

TTP. Based on this, a specific submotif  PFAM PF04553 has been defined, pointing out the close 

relation of the N-terminal part of TIS11b and TIS11d. However, TIS11 proteins are sharing 

additional similarities regarding their structure (Figure 8).  

TIS11 proteins contain a tandem CCCH zinc fingers, which are characterized by a 18 amino 

acid-spacer, an internal CX8CX5CX3H (X = variable amino acids) motif and two highly 

conserved (R/K)YKTEL sequences. The tandem zinc finger domain (TZF), essential for mRNA-

binding and nuclear localization, is evolutionary highly conserved and was found in proteins 

from yeast to humans. To investigate how the CCCH zinc fingers of TIS11 proteins interacts 

with class II AU-rich elements (5’-UUAUUUAUU-3’), Hudson et al. determined the NMR 

structure of TIS11d TZF domain (Hudson et al., 2004). Even in the absence of an mRNA, the 

TZF domain binds to two zinc atoms to form a pair of CCCH zinc fingers leading to the 

stabilization of the folded protein structure (Figure 9). Mutation of one zinc finger or of 

conserved amino acids in the TZF domain causes the loss of TTP-mRNA binding affinity (Lai et 

al., 2002). Stoecklin et al. observed the same effect when the first cysteine residues of both zinc 

fingers were replaced by an arginine (Stoecklin et al., 2002). Each of the CCCH zinc finger binds 

to separate 5’-UAUU-3’ subsites of the ARE-containing single-strand mRNA, leading to a 

conformational change of the protein. mRNA recognition seems to be based on ARE sequence. 

Interestingly, the mRNA molecule interacts through a few nucleotides with the TIS11d TZF 

domain at one “face” of the protein, thus leaving the possibility of interactions between TIS11d 

and other factors modulating its mRNA binding affinity or activity. The protein-mRNA complex 

is further stabilized by interactions between RNA bases and conserved aromatic side chains of 
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Figure 8: Structure similarities between human TIS11 proteins (Ciais et al., 2013). 

(A) Sequence alignment of the tandem zinc finger (TZF) domain. (B) Common structural 

characteristics of the three TIS11 proteins, including the nuclear localization sequence 

(NLS) between the two zinc fingers (ZF), the nuclear export sequence (NES). See text for 

further descriptions. 

 

 

 

 

 

Figure 9: Predicted structure of human TTP tandem zinc finger (TZF) domain in a complex with 

5’-UUAUUUAUU-3’-ARE (pink) based on original structure for TIS11d TZF domain 

(Carrick et al., 2004; Hudson et al., 2004). Colours illustrate amino acid similarities 

between TTP and TIS11d TZF (blue corresponds to high similarity > green > yellow > 

orange > red indicating low amino acid similarity). 
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the protein backbone. Taking into account the high degree of homology within the TIS11 protein 

family members, Carrick et al. proposed a model of the human TTP TZF peptide bound to an 

mRNA (Figure 9) (Carrick et al., 2004). 

Closely to the TZF domain, a PxLxxSxSFxGxPS sequence motif was described for all three 

members (Figure 8B). The function of this domain remains largely unknown, but it contains a 

binding site for 14-3-3 proteins, at least for TTP and TIS11b (Schmidlin et al., 2004; Stoecklin et 

al., 2004). In between the two zinc fingers, a nuclear localization sequence (NLS) is present in 

all three human TIS11 proteins. On the other hand, a nuclear export sequence (NES) is located at 

the N-terminus of TTP, but present at the C-terminal end of TIS11b and TIS11d. Both NLS and 

NES are ensuring the nucleo-cytoplasmic shuttling of these proteins (Murata et al., 2002; 

Phillips et al., 2002). NLS-containing proteins are bound by nuclear import receptors like 

importin α/β and transported into the nucleus in energy-dependent manner. NES-bearing proteins 

interact with the nuclear export receptor CRM-1. This interaction is specifically inhibited by the 

anti-fungal agent leptomycin B. As shown in Figure 10, the nucleo-cytoplasmic shuttling of 

TIS11 proteins is CRM-1 dependent (Phillips et al., 2002). Overexpressed TIS11 proteins fused 

to GFP are predominantly present in the cytoplasm whereas inhibition of CRM-1 dependent 

nuclear export leads to their nuclear localization. Interestingly, the fourth member ZFP36L3 

remains cytosolic, even in the presence of leptomycin B, due to a non-functional NES and 

further modifications of the C-terminal part of the protein (Frederick et al., 2008). In general, 

subcellular localization of TIS11 proteins is cell type-dependent and regulated by external 

stimuli. For example, TTP is localized in the nucleus of starved fibroblasts and translocates into 

the cytoplasm immediately after serum stimulation (Taylor et al., 1996).  

In contrast to the highly conserved CCCH tandem zinc finger (TZF) domain, the N- and C-

terminal part differ much more between TTP, TIS11b and TIS11d, suggesting interactions with 

different partners as well as specific regulations of the family members. The only study 

describing the specific role of TIS11 protein domains in mRNA decay was performed by Lykke-

Andersen & Wagner (Lykke-Andersen & Wagner, 2005). The authors focused mainly on TTP, 

but also showed some results for TIS11b. Lykke-Andersen & Wagner generated three truncated 

protein versions of TTP either by deleting the N-terminal part (ΔNTD), or the C-terminal part 

(ΔCTD), or both to keep just the TZF. The ΔNTD mutant was expressed at similar levels as full-

length TTP whereas the ΔCTD mutant was expressed at 2- to 3-fold higher levels than full-

length TTP. All protein forms were located in the cytoplasm. Protein activity and RNA-binding 

capacity were detected for both mutants although to a lower level compared to the full-length  
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Figure 10: Subcellular localization of TTP, TIS11b (CMG1) and TIS11d (11D) in leptomycin B-

treated HEK 293 cells (Phillips et al., 2002). 

 

 

protein, indicating an important role of both the N- and the C-terminus for an optimal mRNA 

decay activity. The TZF alone was able to bind RNAs, but unable to trigger mRNA decay, 

suggesting that RNA binding and mRNA decay activation are two separate functions of TIS11 

proteins. Overexpression followed by co-immunoprecipitation experiments showed the 

interaction of the N- and the C-terminal domain of TIS11 proteins with factors implicated in 

decapping, deadenylation and exonucleolytic decay, supporting the idea that TIS11 proteins are 

linking mRNA to the RNA decay machinery (Lykke-Andersen & Wagner, 2005; Marchese et al., 

2010; Fabian et al., 2013). 

 

2.4. Functions of TIS11 proteins  

Initially thought to be transcription factors because of their nuclear localization, rapid 

induction and TZF motif, TIS11 proteins are currently well identified as potent mediators of 

ARE-dependent mRNA decay. Even though mRNA destabilization remains their best-

characterized role, TIS11 proteins seem to have alternative functions throughout the life of an 

mRNA. Keeping in mind that TIS11 proteins do not harbour intrinsic enzymatic activities, these 

proteins trigger mRNA decay via multiple protein-protein interactions (Table 6). TIS11 proteins 

could be considered as docking platforms between mRNAs and components of the mRNA decay 

machinery.  
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Table 6: TTP interaction partners (Brooks & Blackshear, 2013). IP, immunoprecipitation; KA, in 

vitro kinase assay; OE, overexpression; Y2H, yeast two hybrid; When the interacting 

domain in TTP is not indicated, this means that the full-length protein was used in the 

assays. 

 

 

2.4.1. Key players in mRNA decay  

TIS11 proteins are binding mainly to class II ARE motifs such as AUUUA flanked by 

additional uridylate residues, through a tandem CCCH type zinc finger (Brewer et al., 2004). 

Mounting evidence indicates that the main function of TIS11 proteins is the recruitment of the 

deadenylation machinery on their target mRNA, leading to enhanced shortening of the poly(A) 

tail and subsequent mRNA destabilization. Three major deadenylation complexes are implicated 

in mammalian mRNA decay: Ccr4/Caf1/Not, PARN and Pan2/Pan3. Co-Immunoprecipitation 

experiments established the interaction between TTP and different deadenylases (Lai et al., 
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2003). Marchese et al. demonstrated a phosphorylation-dependent interaction of TTP with the 

Caf1 deadenylase (Marchese et al., 2010). Very interestingly, a recent study demonstrated the 

direct interaction of TTP and Not1, the scaffold protein of the Ccr4-Not1 deadenylation complex 

(Sandler et al., 2011; Fabian et al., 2013). In vitro, TIS11 proteins could also induce PARN 

activity, while having no impact on ARE-lacking transcripts (Lai et al., 2003). However, the 

evidence of a direct interaction between TIS11 proteins and PARN is still lacking, suggesting an 

indirect recruitment of PARN via other proteins (Lai et al., 2003; Lykke-Andersen & Wagner, 

2005; Clement et al., 2011). Neither a direct interaction between TTP and Pan2/Pan3 was 

detected so far, nor did Pan2/Pan3 suppression altered TTP-induced deadenylation (Yamashita et 

al., 2005; Marchese et al., 2010). By contrast, TTP is also an important actor in this process as it 

recruits components of the exosome to the deadenylated mRNA (Chen et al., 2001). 

Alternatively, deadenylated mRNAs could be also degraded via the 5ʼ-3ʼ decay pathway, 

requiring the removal of the m7G-cap at the 5ʼ-end. Co-immunoprecipitation experiments 

identified Dcp2 and the 5ʼ-3ʼ exonuclease Xrn1 as interaction partners of TTP (Fenger-Gron et 

al., 2005; Lykke-Andersen & Wagner, 2005; Hau et al., 2007).  

 

2.4.2. Alternative functions of TIS11 proteins during mRNA lifecycle 

TIS11 proteins are regulating almost all steps of the mRNA life cycle, from biogenesis to 

degradation (Figure 11) (Ciais et al., 2013).  

 

mRNA transcription and 3ʼ-end processing 

TIS11 proteins were first thought to be transcription factors due to their TZF domain. Two 

studies support this idea which is still controversial. TTP fused to the DNA-binding domain of 

the transcription activator protein GAL4 induced transcription of a GAL4-responsive luciferase 

reporter gene (Murata et al., 2000). Experiments using truncated TTP forms suggested an N-

terminal localization of the major transactivation region. Interestingly, this TTP activity seems to 

be controlled by Protein kinase C (PKC). On the other hand, GST pull-down assays showed a 

direct interaction between TIS11b and the Hepatocyte nuclear transcription factor 1α (HNF1α) 

(Dudziak et al., 2008). Luciferase reporter assays revealed a reduction of HNF1α-mediated 

transactivation by TIS11b. 

In the 3ʼ-end mRNA processing context, binding of Cth2, a yeast homologue of TIS11 proteins, 

to AREs near the poly(A) signal of the immature mRNA resulted in 3ʼ-extended, unstable 

transcripts (Prouteau et al., 2008). Deletion mutants of Cth2 suggest that control of nuclear 

polyadenylation is predominantly restricted to the N-terminal part of the protein. A study of our 
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lab described for the first time the function of TIS11b in 3ʼ-end maturation of mammalian 

mRNAs (Desroches-Castan et al., 2011). In endothelial cells, TIS11b does not affect the 

expression of Dll4, an important angiogenesis regulator, by regulating mRNA stability. TIS11b 

binds to an ARE located in a weak poly(A) signal at the 3ʼ-end of Dll4 mRNA. This interaction 

perturbs the correct 3ʼ-end maturation and causes 3ʼ-readthrough transcripts, leading to mRNA 

degradation via nuclear surveillance processes. A recent high-throughput analysis identified a 

binding of TTP to PABPN1, a regulator of polyadenylation (Su et al., 2012). Nuclear interaction 

of the two proteins inhibited polyadenylation and further expression of well-known TTP targets, 

such as GM-CSF, TNFα and IL-10. 

 

 

 

Figure 11: Multiple functions of TIS11 proteins during mRNA life cycle have been shown (Ciais et 

al., 2013). TTP and related proteins regulate 3’-end maturation and poly(A)site selection 

in the nucleus. In some circumstances binding to ARE-containing transcript by TIS11 

proteins can take place in the nucleus, followed by translocation of the protein-mRNA-

complex into the cytoplasm via the interaction between TTP and the nuclear pore 

complex. After destabilization of the circularized mRNA, TIS11 proteins recruit 

components of the mRNA decay machinery leading to a 5’ or 3’decay of the transcript. 

TTP and related proteins are described as components of processing bodies and stress 

granules. TIS11 proteins are implicated in the formation of processing bodies and in the 

mRNA-transfer from processing bodies to stress granules via their interaction with 

transportin. TTP and related proteins modulate also AU-rich element-mediated translation 

by interacting with Cul4B or Rck/p54 helicase. 
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mRNA transport and/or subcellular localization 

Following transcription, mRNAs are released from the nucleus into the cytoplasm in order to be 

translated, stored or degraded. Discrete cytoplasmic foci, like processing bodies (P-bodies), were 

described as subcellular compartments containing mRNA decay proteins as well as TTP and 

related proteins (Kulkarni et al., 2010). Franks & Lykke-Andersen have reported that TTP and 

TIS11b can nucleate P-body formation on ARE-containing mRNAs (Figure 12) (Franks & 

Lykke-Andersen, 2007). Because mRNA decay enzymes could be limiting factors, mRNAs are 

sequestered in P-bodies to avoid their translation until they are degraded. In addition, Stoecklin et 

al. have shown a localization of TIS11 proteins in stress granules (SG) in response to stress 

(Stoecklin et al., 2004). They proposed that TIS11 proteins are transferring mRNAs from SGs to 

P-bodies for translation repression and degradation (Kedersha et al., 2005). TTP contributes to 

this dynamic trafficking via its interaction with transportin, a molecule which controls nucleo-

cytoplasmic transport of macromolecules (Chang & Tarn, 2009).  

 

 

Figure 12: Subcellular localization of mRNAs is regulated by TIS11 proteins (Franks & Lykke-

Andersen, 2007). (A) TTP and TIS11b initiate the formation of submicroscopic P-bodies 

(PB-subcomplex), when bound to their AREs. If mRNA decay enzymes are limiting, PB-

subcomplexes aggregate to form microscopically visible P-bodies. (B) When mRNA 

decay enzymes are nonlimiting, mRNAs are efficiently degraded without aggregating into 

PB. Under conditions in which mRNA degrading enzymes are limiting, PB subcomplexes 

form larger PBs to silence mRNA translation until degradation of the transcripts. 
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mRNA translation 

Several studies have tried to decipher the role of TIS11 proteins in translation. First of all, TIS11 

proteins are interacting with other ARE-BPs, such as TIA-1, TIAR-1 and HuR, all associated 

with translational control (Espel, 2005). HuR seems to replace TTP to initiate TNFα translation 

(Tiedje et al., 2012). Second, TTP and polysomes are co-localized after LPS-stimulation of 

macrophages (Rigby et al., 2005). A recent study described the association between TTP and the 

helicase RCK resulting in translational repression (Qi et al., 2012). Polyribosome fractionation 

experiments in the same study suggested that TTP shifts its mRNA targets to lighter fractions, 

thus ending in translational repression. Another report identified Cullin 4B (Cul4B), a 

scaffolding component of an ubiquitin E3 ligase complex, as potential TTP-interacting protein 

(Pfeiffer & Brooks, 2012). The stable knock down of Cul4B in macrophages led to reduced LPS-

induced TTP expression. Interestingly, even if less expressed, TTP was more active in those cells 

as indicated by shorter TNFα mRNA half-life. The authors observed less TNFα mRNA loaded 

onto polysomes in the same cellular context. In addition, a co-localization of Cul4B and TTP in 

P-bodies and exosome granules was shown. The authors conclude that Cul4B is required to 

associate TTP/TNFα-mRNA complexes with the polysome to initiate mRNA translation. 

Reduced Cul4B expression shifts TNFα-mRNA from polysomes towards mRNA decay.  

Bell et al. provided further convincing evidence for a role of TIS11 proteins in the regulation of 

translation (Bell et al., 2006). Increased VEGF in TIS11b-/--derived fibroblasts was due to 

enhanced translational efficiency rather than mRNA stabilization.  

Although, these studies indicate that TIS11 protein function in translational regulation is more 

complex than anticipated and needs further characterization. 

 

MiRNA-regulated pathways 

There is an emerging role of TTP as novel regulator of miRNA-dependent post-transcriptional 

regulation. Like TTP, miRNAs are regulating gene expression by modulating translation of 

target mRNAs or inducing their degradation. As already mentioned, 3ʼUTRs are docking sites of 

both miRNA and RNA-binding proteins. Furthermore, Jing et al. demonstrated that TTP 

cooperate with miR-16 in the control of TNFα mRNA stability (Jing et al., 2005). The authors 

hypothesize that the binding of TTP to the ARE promotes miR-16 interaction with a 3ʼUTR 

sequence outside the ARE. MiR-16 associated factors such as the endoribonuclease Argonaute 2 

(AGO2) are further mediating TTP-induced mRNA decay. In contrast to this synergistic effect of 

TTP and miR-16, Ma et al. provided a model, where TTP and miRNAs could antagonize each 

other (Ma et al., 2010). The seed sequence of miR-466l is complementary to the AUUUA 
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pentamer, which is the characteristic ARE sequence of TTP. The authors found increased 

expression of IL-10, a well-known TTP target, in miR-466l-overexpressing macrophages. The 

authors suggested that accumulation of miR-466l leads to increased assembly of the RNA-

induced silencing complex (RISC) at the ARE located in the 3ʼUTR of IL-10 mRNA, thus 

preventing the interaction of TTP with IL-10 transcript and further mRNA decay. This results in 

the stabilization of IL-10 mRNA and subsequently increased IL-10 expression. Kim et al. 

provided a novel mechanism by which TTP positively regulates the biogenesis of miRNA let-7 

by downregulating Lin28 expression (Kim et al., 2012a). Restoring TTP expression in ovarian 

cancer cells increased mature let-7 levels which inhibited the expression of let-7 target gene 

CDC34, a protein implicated in cell proliferation. Thereby TTP destabilizes Lin28 mRNA, a 

negative regulator of let-7 biogenesis, rather than interacting directly with let-7. The authors 

demonstrated the direct TTP binding to an ARE located in the 3ʼUTR of Lin28. Recently, 

Bhattachryya et al. demonstrated that TTP is implicated in miR-155 biogenesis in the context of 

cystic fibrosis (CF) (Bhattacharyya et al., 2013). In primary epithelial cells isolated from CF 

patients, high levels of miR-155 induce the overexpression of IL-8 which is a TTP target 

(Suswam et al., 2008). Restoring TTP expression in those cells caused a marked decrease of 

mature miR-155 levels. miRNA expression profiling of these TTP-overexpressing cells led to the 

identification of miR-1 induction. The positive correlation between TTP and miR-1 expression 

and the low abundance of mature miR-155 led the authors to hypothesize that TTP induces miR-

1, which further inhibits the biogenesis of miR-155 and subsequent expression of the pro-

inflammatory cytokine IL-8.   

 

2.5. Regulation of TIS11 protein activities 

TIS11 proteins are target of extensive post-translational modifications, especially 

phosphorylations (Cao et al., 2007b). Several signalling pathways target TIS11 proteins, such as 

ERK MAPK, p38 MAPK, JNK, Glycogen synthase kinase-3 β (GSK3β), cAMP-protein kinase 

A (PKA), PKB/AKT and PKC pathways. Figure 13 represents kinase signalling pathways 

regulating TTP and TIS11b protein expression, localization, degradation and activity (Ciais et 

al., 2013). In addition, ubiquitination of phosphorylated TIS11 proteins was observed (Schichl et 

al., 2011). 
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Figure 13: Signalling pathways acting on TTP and TIS11b (Ciais et al., 2013). 

 

 

2.5.1. Post-translational modifications – phosphorylation 

TIS11 proteins exhibit larger molecular weight on SDS gels than their predicted size. This effect 

is due to hyperphosphorylation of these proteins (Cao et al., 2004). Several putative 

phosphorylation sites are present within the protein sequence. They are highly conserved 

between species. Indeed, mass spectrometric and site-directed mutagenesis identified Ser66, 

Ser184, Ser186, Ser228, Thr257 and Thr271 as major phosphosites in human TTP protein, which 

correspond to Ser58, Ser176, Ser178, Ser220, Thr250 and Thr274 in mouse TTP (Cao et al., 2006). 

Very recently, a major phosphopeptide containing Ser90 and Ser93 of the human TTP protein was 

published (Cao et al., 2014). In vitro phosphorylation assays revealed that a number of protein 

kinases including ERK2, p38 MAPK, MK2, PKA, PKB/AKT and PKC directly phosphorylate 

TIS11 proteins. ERK1 and GSK3β are predicted to target TIS11 proteins based on in silico 

studies. The serine-threonine protein phosphatase (PP2A) promotes TTP dephosphorylation to 

complete the signalling circuit (Sun et al., 2007). It was initially hypothesized that 

phosphorylation of TIS11 proteins attenuates the mRNA-binding affinity of these proteins, 

leading to the stabilization of their target mRNAs. In vitro experiments confirmed that 

unphosphorylated TTP binds mRNA with a higher affinity (Hitti et al., 2006). However, several 

studies showed that mRNA binding was not impaired, when TIS11 proteins are phosphorylated 

by several kinases (Schmidlin et al., 2004; Sun et al., 2007; Maitra et al., 2008; Marchese et al., 
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2010; Clement et al., 2011). Both expression and phosphorylation of TIS11 proteins are 

influenced by p38 MAPK activity. This pathway is stabilizing both TTP mRNA and protein 

(Tchen et al., 2004; Brook et al., 2006; Hitti et al., 2006). Busse et al. reported that p38 MAPK 

activity is required for TIS11b expression during myogenesis (Busse et al., 2008). The p38 

MAPK pathway is a major regulator of ARE-mediated mRNA decay. The phosphorylation of 

TTP at Ser52 and Ser178 by the p38 MAPK and its downstream target MK2 allows TTP 

interaction with cytosolic 14-3-3 proteins which inhibits TTP-mediated mRNA decay and 

protects it from proteasomal degradation in the cytosol (Figure 14) (Chrestensen et al., 2004; 

Stoecklin et al., 2004). The same effects are achieved by PKB/AKT phosphorylation of TIS11b 

at Ser92 and Ser203 (Schmidlin et al., 2004; Benjamin et al., 2006). Furthermore, 14-3-3 binding 

to phosphorylated TTP prevents its localization in stress granules, where untranslated mRNAs 

are stored together with translation initiation factors (Stoecklin et al., 2004). In contrast, 

localization of TTP in P-bodies is phosphorylation-independent. MK2-induced phosphorylation 

of TTP is counterbalanced by the phosphatase PP2A, which is competing with 14-3-3 proteins 

for TTP binding. PP2A was shown to dephosphorylate TTP at Ser178, thus re-activating TTP-

mediated mRNA decay (Sun et al., 2007; Sandler & Stoecklin, 2008). It is worth mentioning that 

the same phosphosites regulate TIS11 protein stability and TIS11-mediated mRNA decay 

activity, revealing an unexpected link between these two processes.  

 

 

 

 

 

 

Figure 14: Central role of the p38-MAPKMK2PP2ATTP axis in the regulation of TTP protein 

activity, stability and localization (Sandler & Stoecklin, 2008). 
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Phosphorylation of TIS11 proteins alters their interaction with other proteins such as components 

of the mRNA decay machinery. It was recently shown that MK2-mediated phosphorylation of 

TTP results in an inhibition of TTP-Caf1 interaction and a consequent blockade of TTP-

mediated deadenylation of ARE-containing mRNAs (Marchese et al., 2010; Clement et al., 

2011). In contrast, Maitra et al. reported that the phosphorylation of TIS11b at Ser54, Ser92 and 

Ser203 by MK2 did not impair the recruitment of the mRNA decay factors, suggesting that post-

translational modifications of TIS11b protein occur after RNA-binding and interaction with 

components of the mRNA decay machinery (Maitra et al., 2008). Nothing is known so far 

concerning the impact of phosphorylation of TIS11b on its interaction with mRNA decay 

factors. 

A few studies investigated TIS11 protein phosphorylation by the ERK/MAPK pathway. Tan & 

Elowitz observed that TIS11b expression in mouse embryonic stem cells is ERK-dependent (Tan 

& Elowitz, 2014). Activation of ERK by Fibroblast growth factor (FGF)-treatment caused a 

cytosolic accumulation of all three TIS11 proteins. However, inhibition of MEK1/2, an upstream 

activator of ERK, led to a rapid decrease of TTP, TIS11b and TIS11d mRNA expression. While 

low TIS11b mRNA levels were maintained, TTP and TIS11d mRNA expression were recovered 

after 10 h incubation with MEK1/2 inhibitor. These changes in mRNA levels were reflected at 

the protein level. Those results suggest that the inhibition of ERK signalling pathway elicit a 

transient response of TTP and TIS11d but a sustained response of TIS11b in mouse embryonic 

stem cells. Bourcier et al. reported that ERK-mediated phosphorylation of TTP enhances its 

proteasomal degradation which leads to stabilization of CXCL8 mRNA, an important cytokine in 

angiogenesis and tumor progression (Bourcier et al., 2011). Deleault et al. showed that the 

activation of either p38 MAPK or ERK inhibits TTP-mediated destabilization of TNFα mRNA 

(Deleault et al., 2008). Interestingly, the combined activation of p38 MAPK and ERK was even 

more efficient in this context. 
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In conclusion, the TIS11 protein family is phylogenetically highly conserved and is 

expressed from yeast to humans. In mammals, three members, TTP, TIS11b and TIS11d are 

known. Under quiescent conditions, they are weakly expressed while different external stimuli 

induce rapid and transient TIS11 family gene expression. TIS11 proteins promote ARE-mediated 

mRNA decay in eukaryotic cells. In addition, emerging evidence reveals involvement of this 

protein family in other steps of the mRNA life cycle. 

Common structural properties were described for the different members. TIS11 proteins harbour 

a highly conserved tandem CCCH zinc finger domain (TZF) which enables these proteins to 

bind to AREs in the 3’UTR of target mRNAs. In addition, the nuclear-cytoplasmic shuttling of 

TIS11 proteins is regulated by a leucine-rich nuclear export sequence as well as a nuclear 

localization sequence. Studies with truncated TIS11 proteins revealed that the TZF alone is able 

to bind to mRNAs but that the mRNA-destabilizing activity is dependent on the presence of 

either the N- or C-terminal domains. TIS11 proteins function as binding platforms for enzymes 

involved in decapping, deadenylation and exonucleolytic decay.  

TIS11 proteins target and destabilize the same ARE-containing mRNAs in vitro, but play a 

unique role in vivo. Specific mouse knock out models highlighted the importance of TIS11 

proteins in inflammation, angiogenesis and cancer. Depletion of TIS11 proteins leads to the 

abnormal stabilization of short-lived mRNAs encoding for cytokines, chemokines and other key 

factors in these diseases. Among others, TNFα, GM-CSF, VEGF, c-myc, c-fos, COX-2, IL-6, 

IL-8, Dll4 and HIF-1α have been described as TIS11 protein targets. 

TIS11 protein sequences exhibit high abundance of phosphosites indicating post-translational 

regulation of these proteins. Indeed, TTP and related proteins are targets of different kinases 

which regulate their protein stability, localization and their ability to recruit components of the 

mRNA decay machinery.  A two-phase model describing the rapid adaptation of cells to external 

stimuli has been proposed: (1) Activated kinases phosphorylate TTP at critical serines, leading to 

inactive cytoplasmic TTP (in complex with 14-3-3 proteins) and cytokine mRNA stabilization, 

(2) Following this “on” phase, the phosphatase PP2A is active and dephosphorylates TTP, 

thereby resulting in the rapid degradation of target mRNAs and the shutdown of cytokine 

expression.  
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Figure 15: Different phases of tumor development (Thiery, 2002). EMT, epithelial-mesenchymal 

transition; MET, mesenchymal-epithelial transition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Hallmarks during tumor progression (Hanahan & Weinberg, 2011). 
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Chapter 3  The multi-step development of human cancer 

Tumorigenesis could be classically divided in initiation, promotion and progression 

(Barrett, 1993). It is a dynamic, multi-step process, where each step presents a genetic or 

epigenetic alteration which drives forward the progressive transformation of normal cells into 

proliferating cancer cells (Figure 15). Carcinogenesis is driven by gain-of-function mutations of 

oncogenes and loss-of-function mutations of tumor suppressor genes. However, recent 

investigations have shown the pivotal role of the tumor microenvironment within this process. 

Tissue homeostasis is normally regulated by the balance between cell division and programmed 

cell death (apoptosis). The rapid and uncontrolled proliferation can lead to benign tumors, which 

may turn malignant.  Like every normal tissue, tumors need to be connected to the blood vessel 

system to be supplied with oxygen and nutrients. During the “angiogenic switch”, cancer cells 

start to induce blood vessel formation mainly by the secretion of VEGF. Sustained angiogenesis 

enables tumor cells to disseminate after going through the epithelial-mesenchymal transition 

(EMT). A minority of circulating tumor cells could proceed towards metastasis. In order to 

develop and evolve to malignant and invasive status, cancer cells have to acquire almost all key 

features defined as “Hallmarks of cancer” by Hanahan & Weinberg (Figure 16) (Hanahan & 

Weinberg, 2011). During the course of tumor progression a permanent interaction occurs 

between cancer cells and their environment consisting of several cell types. Cancer cells are 

building their niche by inducing angiogenesis, inflammation, immune responses and metabolic 

changes in their surroundings. On the other hand, the tumor microenvironment holds the 

potential to limit cancer progression (Barcellos-Hoff et al., 2013). The complex crosstalk 

between cancer cells and the tumor microenvironment will be discussed further in this chapter. 
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3.1. The hallmarks of cancer  

To better understand and describe the complexities of cancer, Hanahan & Weinberg 

rationalize this neoplastic disease to a manageable number of underlying principles (Hanahan & 

Weinberg, 2000; Hanahan & Weinberg, 2011). The authors believe that almost all human cancer 

types are sharing the same acquired capabilities during the transformation of normal cells into 

malignant tumor cells. Cancer cells need to gain these functions to survive, proliferate and 

disseminate. Hanahan & Weinberg propose ten hallmarks: sustaining proliferative signalling 

(III), evading growth suppressors (IV), resisting cell death (V), enabling replicative immortality 

(VI), inducing angiogenesis (VII), activating invasion and metastasis (VIII), which enable tumor 

progression and metastatic dissemination. These traits are underlined by genome instability/ 

mutation (I) and tumor-promoting inflammation (II) (Figure 16). During the last years, re-

programming of cellular metabolism in tumor tissue (IX) as well as the escape of cancer cells 

from attacks and elimination by the immune system (X) appeared to be functionally important 

for cancer progression. It needs to be strengthened that these functional entities are rather distinct 

biological pathways than a complex network. Furthermore, many factors, implicated in these 

processes could act as tumor-promoting or -inhibiting agents, depending on age, immune and 

inflammatory response as well as on genetic and metabolic state of the organism.  

The mentioned hallmarks, which are essentially modified during carcinogenesis, will be briefly 

illustrated in the next paragraphs.  

 

3.1.1. Enabling hallmark: Genome instability and mutation 

Alterations of the genome are the basis of several hallmarks in cancer progression. 

Abnormal chromosome structures and numbers as well as irregular mitosis in cancer cells have 

been described long time ago.  

In normal tissue, mutations are rare because of several highly efficient and redundant cellular 

mechanisms, which detect and resolve DNA damage. Cancer cells need several mutations to 

orchestrate tumorigenesis. The “mutator hypothesis” indicates that genome instability is already 

present in precancerous lesions and drives tumor progression by accelerated spontaneous 

mutation rates. Therefore, cancer cells increase their sensitivity to mutagenic agents or induce 

changes in genome surveillance circuits that normally force DNA-damaged cells into senescence 

or apoptosis (Negrini et al., 2010). High-throughput sequencing of human cancers revealed that 

TP53 tumor suppressor (encodes p53) and mitotic DNA damage checkpoint genes, classical 

oncoproteins such as the epidermal growth factor receptor (EGFR) and the small GTPase RAS, 

or tumor suppressor proteins like cyclin dependent kinase inhibitor 2A (CDKN2A) and the 
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phosphatase and tensin homologue deleted on chromosome 10 (PTEN) were the most frequently 

mutated genes. The clonal expansion and advantageous selection of certain mutations are 

enabling the acquisition of other hallmarks and consequently are promoting tumor progression. 

Telomeres are nucleoprotein structures which protect eukaryotic chromosome ends that are 

progressively shortened during each round of DNA replication. Loss of p53 tumor suppressor 

function in cancer cells abrogates cell cycle arrest and apoptosis in case of critically short 

telomeres. Lasting DNA replication generates karyotypic instability associated with deletion of 

chromosomal segments in tumor cells (Artandi & DePinho, 2010).  

Genome instability can also be acquired through epigenetic mechanisms such as DNA 

methylation and histone modifications (Berdasco & Esteller, 2010). 

 

3.1.2. Enabling hallmark: Tumor-promoting inflammation 

In 1863, Rudolf Virchow, observed a tumor infiltration by inflammatory cells and tumor 

growth at sites of chronic inflammation (Balkwill & Mantovani, 2001). Historically, it was 

thought that the tumor-associated immune response takes place to eliminate malignant cells as 

inflammation is a normal physiological host response to tissue damage or infection. An un-

resolved inflammatory reaction can evoke chronic inflammation, which is currently accepted as 

enabling hallmark during carcinogenesis. Indeed, 25 % of cancers are associated with 

“smouldering” inflammation and in almost all tumors inflammatory cells and inflammatory 

mediators such as cytokines or chemokines are present in the tumor microenvironment 

(Mantovani et al., 2008). Initially it was thought that tumor-associated inflammation is an 

attempt of the host immune system to eradicate the tumor. During the last decades, experimental 

findings revealed a paradoxical tumor-promoting effect of immune cell infiltration of tumor 

tissue. Like genome instability, inflammation contributes to several hallmarks of cancer 

progression as it increases the risk of cancer initiation, enhances proliferation and resistance to 

apoptosis, stimulates angiogenesis and tissue remodelling as well as cell invasion and metastasis 

(Mantovani et al., 2008).  

To better describe the connection between cancer and inflammation two pathways, an intrinsic 

and an extrinsic one, are proposed (Figure 17): First, the intrinsic pathways driven by the 

activation of oncogenes, like Ras, Myc and Ret or the inactivation of tumor suppressors, such as 

the Von Hippel Lindau factor (VHL), PTEN and TGFβ, induces the production of tumor-

promoting inflammatory cytokines, chemokines and growth factors building-up an inflammatory 

tumor microenvironment to attract inflammatory cells. In pancreatic carcinoma patients, 

pancreatitis and mutations in the gene encoding K-RAS are frequently found. 
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Figure 17: The intrinsic and extrinsic pathways that describe the link between cancer and 

inflammation (Mantovani et al., 2008). 
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Indeed, Guerra et al. demonstrated the development of pancreatic carcinomas in adult mice with 

chronic pancreatitis, when the K-Ras oncogene was activated (Guerra et al., 2007). In a murine 

breast cancer model, the inactivation of type II TGFβ receptor, which inhibits TGFβ action, 

increases the production of CXCL5 and CXCL12 (Stromal-derived factor 1 (SDF-1)) 

chemokines to attract myeloid-derived suppressor cells in the tumor. These cells are known to 

suppress the immune response and to facilitate the formation of metastasis. Second, the extrinsic 

pathway that trigger chronic inflammation and path the way for cancer includes for example 

infections with Helicobacter pylori, which is associated with gastric cancer and gastric mucosal 

lymphoma (Yoshida et al., 2014).  

Various cell types are implicated in the inflammatory process, which will be discussed in more 

detail with regard to the tumor microenvironment. Briefly, inflammation activates various 

protein kinases, such as Janus-activated kinase (JAK), PI3K/AKT or MAPKs, and transcription 

factors like STAT family members, NF-κB, AP-1 or HIF-1α, leading to the secretion of 

cytokines and chemokines by immune and stromal cells. These soluble factors, forming a 

complex network, mediate cell-to-cell communication and chronic inflammation in the tumor 

stroma. The next paragraph will focus on some cytokines and chemokines known to play an 

important role in cancer. Their balance and the presence of their respective receptors are 

regulating pro- or anti-tumoral effects of the tumor environment (Zamarron & Chen, 2011). 

 

3.1.2.1. Cytokines 

TNFα, the prototypical pro-inflammatory cytokine, seems to have a double-edged role in 

cancer. High TNFα concentrations can induce an anti-tumoral effect in murine sarcomas (Havell 

et al., 1988). In contrast, low levels of this cytokine are associated with tumor induction as TNFα 

induces production of reactive oxygen and nitrogen species, which causes DNA damage and 

further mutations (Balkwill, 2006). The oncogenic Ras seems to be the switch between these two 

contradictory roles of TNFα (Cordero et al., 2010). In addition, the TNFα response depends on 

the producing-cell type in the tumor microenvironment. While high TNFα levels deriving from 

cancer-associated immune cells increase patient survival, TNFα secretion of the tumor stroma 

showed lower survival rates in lung cancer patients (Ohri et al., 2010).  

TGFβ is an immune-suppressing and anti-inflammatory cytokine, which activates SMAD-

dependent transcription (Massague, 2008). Its role in tumor development is stage-dependent. 

Early in tumorigenesis, TGFβ functions as tumor suppressor whereas in late stages, TGFβ 

induces invasion and EMT (Morrison et al., 2013). As IL-6, TGFβ promotes angiogenesis in 

cancer (Wikstrom et al., 1998).  



 

 66 

IL-6, another pro-inflammatory and tumor-promoting cytokine, acts downstream of Ras and 

induces activation of transcription factors, such as STAT3 or NF-κB (Hodge et al., 2005; 

Grivennikov & Karin, 2010). Like TNFα, IL-6 facilitates tumorigenesis by inhibiting apoptosis 

and promoting proliferation as well as angiogenesis (Hodge et al., 2005). In addition, both 

cytokines are positively contributing to the metastatic cascade (Kim et al., 2009). 

Another anti-inflammatory cytokine is IL-10 which is secreted by tumor cells as well as by 

almost all immune cells of the tumor microenvironment (Gastl et al., 1993). IL-10 has anti-

tumoral properties by inhibiting NF-κB and related pro-inflammatory cytokine expression 

(Schottelius et al., 1999). In addition, IL-10 expression in tumor cells inhibits metastasis and 

tumor angiogenesis (Thiery, 2002; Kohno et al., 2003). Via its immunosuppressive effect, IL-10 

facilitates immune surveillance escape of tumor cells (Hamidullah et al., 2012).  

Figure 18 illustrates the complex role of cytokines in carcinogenesis (Landskron et al., 2014). 

Immune response, caused by tissue injury or infection, activates expression and release of pro-

inflammatory mediators such as TNFα, IL-6 and IL-8 by immune cells. These factors are able to 

induce the breakdown of the epithelial barrier and promote immune cell infiltration (Wu et al., 

2014). Chronic inflammation and pro-inflammatory cytokines like TNFα cause production of 

free radicals. This cellular stress could initiate tumor development due to DNA damages and the 

activation of signalling pathways promoting cell survival and proliferation through AKT, 

ERK1/2 and HIF-1α. TGFβ supports EMT and therefore the malignant transformation of cancer 

cells. Other cytokines and chemokines such as IL-10, IL-17 and IFNγ are involved in 

angiogenesis and pro-tumoral macrophages polarization. Tumor growth and finally invasion of 

malignant cells is supported by pro-inflammatory cytokines and other factors, that induce 

proliferation, inhibit apoptosis and promote angiogenesis (mainly through VEGF and IL-8) as 

well as EMT. IL-10 and TGFβ aid the tumor to escape from immune surveillance. Finally, 

attracted immune cells (tumor-infiltrating leukocytes, tumor-associated macrophages and cancer-

associated fibroblasts) are contributing to further tumor growth, metastasis and the maintenance 

of an immunosuppressive tumor microenvironment.  
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Figure 18: The complex role of cytokines and chemokines during cancer initiation and progression 

(Landskron et al., 2014).  

(a) Induced expression of pro-inflammatory cytokines such as TNFα, IL-6 and IL-8 due 

to tissue injury or infection leading to the disruption of the epithelial barrier and the 

infiltration of inflammatory cells.  

(b)  Chronic inflammation and pro-inflammatory mediators such as TNFα can cause 

DNA damage through RONS, which initiates tumor formation. TGFβ activates EMT to 

induce malignant transformation. Lymphocyte-derived IFNγ, IL-10 and IL-17 promote 

further epithelial barrier disruption, transition of macrophage phenotype from M1 to M2 

and angiogenesis.  

(c) Pro-inflammatory cytokines can induce tumor growth and invasion by stimulating cell 

proliferation, reducing apoptosis, enhancing EMT and inducing angiogenesis via the 

major action of VEGF and IL-8. IL-10 and TGFβ facilitate tumor immune evasion as they 

are anti-inflammatory cytokines. 

(d) Immunosuppressive environment of the tumor is maintained by TAM-, TIL- and 

CAF-derived factors implicated in tumor growth and metastasis.  

CAF, cancer-associated fibroblast; CXCL12, CXC-motif chemokine 12 (SDF-1, stromal-

derived factor 1); HGF, hepatocyte growth factor; IFNγ, interferon γ; IL, interleukin; 

MMP, matrix-metalloprotease; M1 Mø, macrophage phenotype 1; M2 Mø, macrophage 

phenotype 2; TAM, tumor-associated macrophage; TGFβ, tumor growth factor β; Th, T-

helper cell; TIL, tumor-infiltrating leukocyte; TNFα, tumor necrosis factor α; RONS, 

reactive oxygen/nitrogen species; VEGF, vascular endothelial growth factor. 
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3.1.2.2. Chemokines  

In addition to cytokines, chemokines and their related receptors are key components in 

cancer-related inflammation (Mantovani et al., 2010). Based on their structure, chemokines are 

classified in four subfamilies: C, CC, CXC and CX3C chemokines. Chemokines by definition 

are small molecules that regulate directional migration of cells via specific G-protein coupled 

receptors. Under physiological conditions, chemokines are either controlling “homing” of 

leukocytes or are activated during the inflammatory response. In cancer, chemokines are 

especially associated with the recruitment of macrophages in the tumour tissue even though a 

broader range of function has been described more recently (Mantovani et al., 2010).  

CCL2 (Monocyte-chemoattractant protein 1 (MCP-1)), CCL5 and CCL7 are produced by the 

tumor and stromal cells. They represent major attractants of macrophages and their concentration 

correlates with metastasis and a consequent poor prognosis in breast cancer (Luboshits et al., 

1999; Ueno et al., 2000; Karnoub et al., 2007; Soria & Ben-Baruch, 2008). CCL2 also regulates 

M2 polarization and survival of TAMs. CXCR3 ligands, such as CX3CL1 (Fractalkine) or 

CXCL10 (Interferon γ-induced protein 10 (IP-10)), recruit natural killer cells and lymphocytes in 

tumor tissue and are related to anti-tumoral responses in murine lymphoma, melanoma, renal cell 

carcinoma and leukaemia models (Lavergne et al., 2003; Saudemont et al., 2005; Pan et al., 

2006; Wendel et al., 2008). 

Beside their main function as recruiters of immune cells, chemokines are also inducing 

angiogenesis through their receptors on endothelial cells (ECs) or indirectly through pro-

angiogenic factor-producing leukocytes (Figure 19) (Strieter et al., 2006; Palacios-Arreola et 

al., 2014). Pro-angiogenic chemokines such as CXCL1, CXCL2, CXCL3 (Fractalkine), CXCL5, 

CXCL6 and CXCL8 (IL-8) are promoting blood vessel formation via CXCR1 and CXCR2 on 

the membrane of ECs. For example, CXCR2 signalling induces MMP2/9 activity that increases 

the release of VEGF and FGF by degrading the extracellular matrix (Li et al., 2005). CXCL8 

(IL-8) is considered to be the most potent inducer of angiogenic processes such as chemotaxis, 

stress fibre assembly, EC proliferation and tube formation. CXCR4 and its ligand CXCL12 

(SDF-1) are promoting migration and proliferation of ECs in human ovarian cancer as well as 

tube formation and VEGF release (Kryczek et al., 2005). Anti-angiogenic chemokines such as 

CXCL4, CXCL9, CXCL10, CXCL11 and CXCL14 inhibit EC proliferation and migration via 

CXCR3 (Strieter et al., 2004). CCL2 attracts TAMs which secrete pro-angiogenic factors (Ueno 

et al., 2000; Soria & Ben-Baruch, 2008). 
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Figure 19: Involvement of chemokines in angiogenesis of breast cancer (Palacios-Arreola et al., 

2014). Chemokines bind to CXCR2 and promote (a) proliferation of ECs, (b) assembly of 

stress fibres and (c) tube formation. Anti-angiogenic chemokines act via CXCR3 and 

inhibit these processes. CCL2 induces EC proliferation and increases TAM infiltration, 

which release pro-angiogenic factors such as VEGF. CXCL12 binds to CXCR7 and 

induces EC proliferation as well as (e) VEGF expression of these cells. (f) CXCL8 

secretion by ECs is stimulated via the E2-estrogen receptor α axis.  

 

 

CXCR4 is the most frequently overexpressed chemokine receptor in cancer and is involved in 

tumor progression as well as metastasis in breast cancer (Muller et al., 2001). Therefore it is not 

surprising that the CXCL12-CXCR4 axis is the most studied one. This axis regulates processes 

including chemotaxis, migration and adhesion (Figure 20) (Mukherjee & Zhao, 2013). Recently, 

Chen et al. reported a significantly higher metastasis rate and shorter overall- and disease-free 

survival in patients with CXCR4-high-expressing triple negative breast cancer (Chen et al., 

2013). CXCL12 secreted by cancer-associated fibroblasts (CAFs) binds to CXCR4 on the 

membrane of tumor cells to initiate their proliferation and tumor growth. CXCR4-expressing 

tumor cells leave the primary tumor and migrate towards a CXCL12 gradient. CXCL12 secreted 

by potential metastatic sites attracts tumor circulating cells leading to the onset of metastasis 

formation (Figure 20) (Yang et al., 2005). 
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Figure 20: Interaction of CXCR4 with its ligand CXCL12 in primary tumor and metastasis of breast 

cancer (Mukherjee & Zhao, 2013). CXCL12 secreted by cancer-associated fibroblasts 

(CAFs) binds to CXCR4 on the membrane of tumor cells to initiate their proliferation and 

migration towards a CXCL12 gradient of metastasis sites leading to the onset of 

metastasis formation. EPC, endothelial progenitor cells. 

 

 

3.1.3. Hallmark: Sustaining proliferative signalling     

Sustained chronic proliferation is the crucial trait of cancer cells. Cell proliferation is 

tightly controlled in healthy tissue and normally induced by external stimuli, like growth factors. 

Cancer cells are able to overcome this stimuli-dependence by several alternative ways: these 

cells may produce their own growth factors and corresponding cell surface receptors resulting in 

an autocrine activation of cancer cell proliferation (Witsch et al., 2010). Alternatively, cancer 

cells may stimulate growth factor secretion of cells within the surrounding tumor stroma. In 

addition, tumor cells often show somatic mutations of proliferation stimuli-transmitting receptors 

or downstream components of the signalling pathway, leading to a constitutive activation of the 

receptor and the subsequent signalling cascade. Indeed, in 40 % of human melanomas the B-

RAF protein is mutated leading in constitutive signalling of RAF via the MAPK pathway 

(Davies & Samuels, 2010). Furthermore, the “oncogene-induced DNA replication stress model” 
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indicates that either the activation of oncogenes due to mutations positively influences cell 

growth or the loss of p53 DNA damage checkpoint function enables cancer cells to overcome 

p53-induced apoptosis or senescence leading to sustained cell proliferation (Negrini et al., 2010). 

Another example for the disruption of negative-feedback mechanisms involves PTEN 

phosphatase. Loss-of-function mutations in PTEN increase PI3K signalling and promote 

tumorigenesis (Yuan & Cantley, 2008).  

 

3.1.4. Hallmark: Evading growth suppressors 

In addition to the induction of lasting growth-stimulatory signals, cancer cells need to 

develop insensitivity against anti-growth signals to gain the capability to proliferate 

uncontrolled. Cellular growth is normally limited by growth inhibitors located in the surrounding 

environment, in the extracellular matrix or on the surface of neighbouring cells. These factors 

interrupt cell division as they cause an arrest in the interphase of the mitosis. Key players within 

this regulation are the retinoblastoma proteins (RB) and the tumor suppressor protein p53.  

The RB proteins bind mainly to E2F transcription factors altering the expression of E2F target 

genes implicated in cell cycle progression, angiogenesis, cell death and genome stability and 

functions as tumor suppressor (Burkhart & Sage, 2008). It is believed that RB proteins are 

inactivated in almost all human cancers. While RB proteins are mainly transducing external 

signals, p53 is sensitive to intracellular signals alerting for DNA damage and suboptimal growth 

conditions. p53 is able to induce cell cycle arrest to overcome these stress situations or is capable 

to promote apoptosis in case of irreparable damage. Mutations of RB protein and p53 pathways 

enable tumor cells to proliferate as they circumvent the action of these two critical gatekeepers of 

the cell cycle. 

“Contact inhibition”, normally ensuring tissue homeostasis, is abrogated in tumors. Merlin, the 

cytoplasmic NF2 gene product, is coupling cell-surface adhesion molecules such as E-Cadherin 

to transmembrane growth factor receptors like EGFR. Thus, Merlin strengthens cell-cell contacts 

and sequesters growth factor receptors signalling (Curto et al., 2007). LKB1 epithelial polarity 

protein could overcome the mitogenic effect of Myc oncogene expression. Loss of LKB1 

destabilizes epithelial integrity and enables Myc-dependent transformation of epithelial cells 

(Hezel & Bardeesy, 2008). However, it remains to be determined how frequent contact inhibition 

is altered in human cancers.  
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3.1.5. Hallmark: Resisting cell death 

Apoptosis, the programmed cell death, is a cleaning process to eliminate mutated cells in 

normal tissue. Insufficient cell survival factor and p53 signalling are also promoting apoptosis. 

During tumorigenesis or as result of anti-cancer therapy, cancer cells are exposed to multiple 

apoptosis-inducing stresses, due to elevated oncogene signalling and DNA damage caused by 

hyperproliferation (Kelly & Strasser, 2011).  

The apoptotic machinery consists of upstream regulators and downstream effectors. Extra- or 

intracellular death-inducing signals activate the caspase cascade leading to proteolysis and later 

phagocytosis of the cell. The balance between regulators and effectors is controlled by pro- and 

anti-apoptotic members of the Bcl-2 protein family. Tumor cells need to overcome this 

regulatory circuit to survive. Therefore, loss of p53 tumor suppressor function, overexpression of 

anti-apoptotic regulators or survival signals, like IL-3 or Bcl-2 and downregulation of pro-

apoptotic factors are frequent in cancer. In general, attenuated apoptotic activity correlates with 

aggressiveness of tumors and resistance to therapy.  

Necrotic cells release their content, for example IL-1α, in the tumor microenvironment, thus 

attracting potential tumor-promoting inflammatory immune cells and inducing proliferation 

(Grivennikov et al., 2010).   

Autophagy is a cell survival mechanism caused by different stress such as nutrient deficiency. 

For example, HIF-1α-induced expression of its target genes Bcl2/E1B 19 kDa-interacting protein 

3 (BNIP3L) and BNIP3-like proteins is required for hypoxia-induced autophagy (Mazure & 

Pouyssegur, 2009). The autophagic program induces the formation of intracellular vesicles 

enveloping cell organelles such as mitochondria and ribosomes, allowing the breakdown of these 

catabolite-rich cellular compartments. In this way, cancer cells are recycling metabolites to 

survive in nutrient-limited environments. In contrast, autophagy seems also to be a barrier during 

tumor progression, as mice bearing inactivated alleles of components of the autophagy 

machinery are more sensitive to cancer (White & DiPaola, 2009). Paradoxically, radiotherapy 

and certain cytotoxic drugs induce autophagy and thereby facilitate tumor survival as well as 

reversible dormancy of cancer cells pointing at the contradictory effects of these cancer 

therapies.  These mechanisms may promote the persistence and eventual relapse of some tumors 

in response to conventional anti-cancer therapies. 

 

 



 

 73 

3.1.6. Hallmark: Enabling replicative immortality 

Life-span of normal cells is limited by senescence and later cell death. Cancer cells can 

tackle this cell fate via a transition called immortalization. A main characteristic of this process 

is the re-activation of the telomerase, an enzyme which inhibits the shortening of the telomeres 

by adding telomere repeat sequences to the end of the chromosome. Telomerase activity is 

correlated with resistance of tumor cells to the induction of senescence and cell death. During the 

last years, certain studies have shown delayed telomerase activation during cancer progression 

and proposed that cancer cells first acquire tumor-promoting mutations then activate 

subsequently the telomerase to stabilize the mutant genome (Artandi & DePinho, 2010).  

 

3.1.7.  Hallmark: Inducing angiogenesis 

Vascularization of the tumor tissue is essential as it guarantees the supply with oxygen and 

nutrients which is essential for neoplastic growth. The activation of quiescent vasculature to 

form new vessels is an early event in tumorigenesis which is called the “angiogenic switch”. 

Because of the great importance of angiogenesis during cancer progression, as well as the 

already mentioned link between TIS11b protein and this process, the following paragraphs will 

introduce tumor angiogenesis in more detail.  

 

3.1.7.1. Physiological angiogenesis 

During embryogenesis, angioblasts differentiate into ECs leading to the de novo formation 

of a vascular network (vasculogenesis) followed by the differentiation into arteries and veins. 

Subsequent vessel sprouting (angiogenesis) ensures the expansion of the vasculature. 

Angiogenesis is defined as the formation of new blood vessels from pre-existing ones (Folkman, 

1971). In adults, mature vasculature becomes quiescent, but ECs retain high plasticity to keep the 

ability to sense and respond to angiogenic signals. Angiogenesis is activated during wound 

healing or menstrual cycle. The formation of new blood vessels is controlled by the balance 

between pro- and anti-angiogenic factors including growth factors, extracellular matrix proteins, 

proteases and adhesion molecules (Figure 21). Among others, the VEGF protein family and its 

related receptors plays a pivotal role in angiogenesis. In vivo mouse models demonstrated that 

the deletion of one allele as well as a modest overexpression of VEGF-A cause embryonic 

lethality due to defective vascularization (Carmeliet et al., 1996; Ferrara et al., 1996; Miquerol 

et al., 2000). This phenotype show that slight variations of VEGF-A expression leads to 

deleterious consequences during early development. 
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VEGF proteins  

The prototype of angiogenesis-promoting factors is the vascular endothelial growth/permeability 

factor (VEGF/VPF), which was discovered in 1989 (Connolly et al., 1989; Ferrara & Henzel, 

1989). Five different members of the VEGF family are known so far: VEGF-A, VEGF-B, 

VEGF-C, VEGF-D and the Placenta growth factor (PLGF). VEGF proteins form mainly 

homodimers although heterodimers of VEGF-A and PLGF exist. The different VEGF proteins 

have non-redundant roles in vivo. Due to the important biological function of VEGF proteins 

their expression is tightly controlled at all stages of gene expression (Arcondeguy et al., 2013). 

VEGF proteins exist as soluble and matrix-bound isoforms. 

 

 

 

Figure 21: A balance between pro- and anti-angiogenic factors controls angiogenesis. 
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Regulation of VEGF expression 

VEGF-A is encoded at chromosome 6 and its gene sequence contains eight exons separated by 

seven introns (Figure 22) (Vincenti et al., 1996). VEGF-A expression is tightly controlled at the 

transcriptional level. Several consensus-binding sites for transcription regulators such as AP-1 

and SP-1 are present in the promoter region of VEGF-A. These transcription factors are 

dependent on external stimuli like hormones, growth factors, inflammatory cytokines, tumor 

suppressors/oncogenes and hypoxia (Pages & Pouyssegur, 2005). Here, hypoxia is of great 

interest as it is a main driver of tumor angiogenesis. Indeed, functional hypoxia response 

elements (HRE) located in the 5’ flanking region of VEGF-A, are target of HIF-1 and HIF-2 

(Blancher et al., 2000). 

 

 

Figure 22: Regulation of VEGF-A expression by alternative splicing (Eymin et al., 2014). (a) 

Schematic illustration of the human VEGF-A gene containing eight exons spared by seven 

introns. (b) Focus on exon 8 located at the C-terminal part of the VEGF-A gene. 

Alternative splicing of exon 8 using the proximal splice site (PSS) or distal splice site 

(DSS) generates either VEGFxxx or VEGFxxxb subfamilies. (c) Overview about the 

different isoforms of VEGFxxx (pro-angiogenic) or VEGFxxxb (anti-angiogenic) 

subfamilies.  
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At the post-transcriptional level, alternative splicing and processing further increase the 

complexity of the VEGF protein family (Houck et al., 1991). Due to alternative splicing 

processes, nine splice variants for VEGF-A, denoted as VEGFxxx (VEGF111, VEGF121, VEGF145, 

VEGF148, VEGF162, VEGF165, VEGF183, VEGF189 and VEGF206), have been described so far in 

humans (Ferrara, 2004). These isoforms differ by the presence or absence of exon 6a, exon 6b 

and exon 7. Most of the cells produce VEGF121, VEGF165 and VEGF189. Due to different binding 

affinities for their cognate receptors, VEGF-A isoforms are associated with different functions. 

In addition, exon 8 contains an alternative splicing site, which generates further VEGF-A splice 

variants, namely VEGFxxxb (Bates et al., 2002; Harper & Bates, 2008). VEGFxxxa and 

VEGFxxxb display the same length on the protein level, but differ in six C-terminal amino acids. 

This difference leads to a changed tertiary structure and function of the VEGF-A protein. Indeed, 

VEGFxxxb isoforms bind to, but do not activate the VEGF receptor and are therefore described to 

act as anti-angiogenic molecules (Kawamura et al., 2008; Delcombel et al., 2013). Except the 

placenta, VEGFxxxb isoforms are assumed to form more than half of the total VEGF-A protein in 

normal non-angiogenic tissues. However, in several tumors such as melanoma, prostate, kidney 

and colon cancer, VEGFxxxb isoforms are downregulated leading to the predominant expression 

of VEGFxxx isoforms. Reduced VEGFxxxb expression is associated with metastasis formation in 

colorectal cancer (Diaz et al., 2008). For example, overexpression of VEGF165b in human 

prostate tumor cells inhibited cancer cell-mediated migration and proliferation of ECs in vitro as 

well as tumor growth in vivo (Rennel et al., 2008). However, a simultaneous increase of 

VEGFxxxb and VEGFxxx isoforms was reported for breast cancer tissue and colon cancer (here 

associated with less microvessel density) (Tayama et al., 2011; Grepin et al., 2012). However, in 

non-small lung cancer cells (NSCLC), VEGF165b protein expression is heterogeneous and high 

levels are significantly related to lymph node metastases (Eymin et al., 2014). Very interestingly, 

the same study reported elevated VEGF165b in NSCLC, treated with the anti-angiogenic 

monoclonal anti-VEGF antibody bevacizumab. This effect was even more pronounced when 

these cells were treated with the chemotherapeutic agent cisplatin. In addition, VEGF165b-

overexpressing cells were less sensitive to cisplatin- or hypoxia-induced apoptosis. SiRNA-based 

specific neutralization of VEGF165b reversed bevacizumab-mediated invasive phenotype of lung 

adenocarcinomas in mice and inhibited tumor growth. Altogether, these results indicate that the 

role of VEGFxxxb seems to be more complex than initially thought. Furthermore, post-

transcriptional control of VEGF-A expression includes the regulation of its mRNA stability. In 

normoxic conditions, VEGF-A mRNA is highly labile due to the combined action of 

destabilizing elements located in the 5’ and 3’UTR. Under hypoxia, VEGF-A transcripts are 
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stabilized. VEGF-A mRNA stability is mainly regulated by multiple AREs located in the 3’UTR 

of the mRNA (Levy et al., 1995). ARE-binding proteins such as AUF-1 and the TIS11 protein 

family bind to these sequence motifs and induce mRNA decay (Ciais et al., 2004). The action of 

destabilizing ARE-proteins is antagonized by ELAV/Hu proteins targeting either the same AREs 

or specific sequences leading to the stabilization of VEGF-A mRNA (Cherradi et al., 2006). 

VEGF-A cDNA harbours two major alternative polyadenylation sites suggesting further 

regulation of VEGF-A expression. Several mechanisms ensuring the translational control of 

VEGF-A transcript have been described. In the 5’UTR of the VEGF-A mRNA, three functional 

in-frame alternative CUG start codons and two functional internal ribosome entry sites (IRES) 

were found, indicating alternative cap-independent translation of the transcript in addition to the 

classical initiation of translation in eukaryotes (Huez et al., 1998). Finally, numerous studies 

have reported that VEGF-A is a target of miRNAs which bind to VEGF mRNA 3’UTR. 

MiRNA-regulated VEGF-A expression is often associated with translation inhibition. Dicer-KO 

mice which show impaired miRNA biogenesis died at E12.5 to E14.5 due to retarded 

development and defective angiogenesis (Yang et al., 2005).  

 

Canonical VEGFVEGF receptor signalling 

VEGF is mainly acting on endothelial cells (ECs) in a paracrine manner (Koch & Claesson-

Welsh, 2012). However, autocrine VEGF signalling is also essential for ECs survival (Lee et al., 

2007; Domigan et al., 2014).  

VEGF proteins activate several signalling pathways through their binding to VEGF receptor 

tyrosine kinases. Three VEGF receptors, named VEGFR1 (Flt1), VEGFR2 (Flk1) and VEGFR3 

(Flt4), are described (Figure 23). VEGFR1 is the most abundant in monocytes and macrophages. 

VEGFR2 is mainly expressed in vascular endothelial cells, whereas VEGFR3 is predominantly 

present on lymphatic endothelial cells.  

In general, the binding of VEGF to its cognate receptor expressed on the plasma membrane of 

the recipient cell promotes receptor homo- or heterodimerization. This conformational change 

activates the receptor and leads to the auto- or trans-phosphorylation of tyrosine residues of the 

receptor dimer itself as well as of downstream signal transducers. Finally, the activated 

signalling cascades will provoke a biological response such as EC proliferation, migration and 

organization into functional vessels. It is of note that the different properties of the VEGF 

proteins and the expression pattern of the VEGF receptors as well as the availability of co-

receptors such as Neuropilin1/2 modulate the different biological outcomes of VEGFVEGFR 
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Figure 23: The binding specificities of VEGF proteins and VEGFR signalling complexes. PLGF, 

VEGF-B, VEGF-A, VEGF-C and VEGF-D bind with different affinities to three tyrosine 

kinase receptors (VEGFR1-3). These receptors form homo- and heterodimers. 

Dimerization of VEGFR with their co-receptors Neuropilin 1/2 are not illustrated. 

Activation (Indicated phosphorylation sites are exemplary.) of VEGFR due to ligand 

binding induces intracellular signalling cascades leading to several biological responses 

such as immune cell recruitment, fatty acid uptake, and (lymph-) angiogenesis depending 

on the VEFGR subtype.  
 

 

signalling. In addition, the activation of distinct signalling pathways highly depends on which 

tyrosine residue of the VEFGRs is phosphorylated upon receptor activation. Neuropilin1/2 

(Nrp1/2) are known to form heterodimers with VEGFR modulating the biological function of 

VEGFRs. While Nrp1 seems to be the preferred co-receptor for VEGFR1/2, Nrp2 associates 

with VEGFR3 (Fuh et al., 2000). Furthermore, integrins are known to modify VEGFR 

signalling. For example, VEGFR2/integrin vβ3 interaction is crucial for active angiogenesis 

(Gluzman-Poltorak et al., 2001).  

VEGFR1 binds VEGF-A, VEGF-B and PLGF (Koch & Claesson-Welsh, 2012; Jeltsch et al., 

2013). This receptor is not essential for EC function, but inhibits VEGFR2 signalling as it 

entraps VEGF-A due to a high affinity for this ligand. Therefore VEGFR1 is a negative regulator 

of angiogenesis. On the other hand, VEGFR1 modulates indirectly EC function as it recruits 
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monocytes which secret angiogenic factors.  Furthermore, VEGFR1 is implicated in the transport 

of fatty acids. 

VEGFR2 is the predominant VEGF receptor expressed on the plasma membrane of vascular ECs 

as well as their progenitors and is crucial for ECs cell differentiation, proliferation, migration and 

tube formation as well as survival. VEGFR2-deficient mouse embryos die at E8.5 due to an early 

defect in the development of haematopoietic and endothelial cells, indicating the importance of 

this receptor during development and angiogenesis (Shalaby et al., 1995). In addition, this 

phenotype is similar to that of VEGF-A knock out mice (Carmeliet et al., 1996; Ferrara et al., 

1996). VEGFR2 binds VEGF-A (with a lower affinity than VEGFR1), VEGF-C and VEGF-D. 

VEGF-A acts as a mitogen for ECs as it induces cell proliferation through VEGFR2-activated 

RAS/RAF/ERK/MAPK pathway. Several VEGFR2-activated signalling cascades, including the 

p38 MAPK pathway, promote EC migration towards high VEGF-A concentrations. Activation 

of the VEGFR2/PI3K/PKB pathway regulates the survival of ECs. As its alternative name 

indicates, VEGF (Vascular permeability factor (VPF)) promotes vascular permeability through 

VEGFR2 activity.    

VEGFR3 is the main regulator of lymphendothelial cell function. This receptor is also involved 

in angiogenesis during embryonic development but becomes later a key regulator of 

lymphangiogenesis. VEGFR3 binds to VEGF-C and to VEGF-D. Lymphoedemas are observed 

in humans with loss-of-function VEGFR3 mutations. VEGFR3 is also present on the plasma 

membrane of macrophages.  

VEGFR signalling is followed by a rapid clearance of the activated receptor from the cell 

membrane or alternatively by dephosphorylation of the receptor tyrosine residues. For example, 

the VEGFR2-ligand complex is ubiquitinylated and internalized into endosomes, then is 

degraded in lysosomes.  

 

Mechanisms of physiological angiogenesis 

Several angiogenic mechanisms leading to the formation of new blood vessels are described. 

Intussusception, where vessels split from pre-existing ones due to the penetration of smooth 

muscle cells through the endothelial cell layer, is the most rapid angiogenic process (Burri et al., 

2004). Second, circulating bone marrow-derived endothelial precursor cells (CEPs) home to sites 

where angiogenesis is active such as tumors and support the formation of new blood vessels 

(Patenaude et al., 2010). A third mechanism, named sprouting angiogenesis, activates ECs of 

existing vessels to invade in the surrounding tissue. Sprouting angiogenesis is a multi-step 

process which could be roughly divided into an initial activation phase followed by the 
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maturation of the new vessel (Figure 24) (Carmeliet & Jain, 2011; Potente et al., 2011). During 

the activation phase, pro-angiogenic factors favour vasodilation and increase vascular 

permeability. In addition, matrix-metalloproteases degrade the perivascular basement membrane 

to allow ECs migration in response to integrin signalling. The formed “sprout” contains leading 

“tip cells” which migrate towards the pro-angiogenic factors gradient and trailing “stalk cells” 

which proliferate leading to elongation and branching of the new vessel. The degree of sprouting 

is negatively regulated by Dll4 (secreted by “tip cells”) and its receptor Notch. Notch negatively 

regulates the sprouting of ECs by repressing VEGFR2 expression in “stalk cells”, if their 

neighbours already acquired the “tip cell” phenotype. ECs continue to self-organize into tubular 

structures forming the vessel lumen. During the maturation phase, ECs stop migrating and 

proliferating (“phalanx cell” phenotype). The new vessels are stabilized by the reconstitution of 

the basement membrane and Platelet-derived growth factor (PDGF)-induced pericyte recruitment 

 

 

 

Figure 24: The multi-step process of angiogenesis including the activation phase, the sprouting and 

the maturation phase (David et al., 2009). NO, nitric oxide; VEGF, vascular endothelial 

growth factor; Ang2, angiopoietin 2; Ang1, angiopoietin 1; MMPs, matrix-

metalloproteinases; EGF, epidermal growth factor; FGF, fibroblast growth factor; TGFβ, 

tumor growth factor β; PDGF, platelet-derived growth factor; TNF, tumor necrosis 

factor .  

 



 

 81 

or their differentiation from mesenchymal progenitors. Finally, the development of tight and 

adherens junctions between ECs and/or pericytes results in vessel quiescence and establishment 

of the circulation. Pro- and anti-angiogenic factors are involved in every step of the sprouting 

angiogenesis. VEGF and FGFs stimulate the proliferation and migration of ECs. Angiopoietin 1 

(Ang1) induces vascular quiescence via the receptor Tie-2, but is antagonized by Ang2 which 

activates angiogenesis. PDGF is mainly implicated in the vessel maturation. Transforming 

growth factor β (TGFβ) is involved in ECs cell function, in the differentiation of mesenchymal 

cells and in the regeneration of the basement membrane. Although different signalling pathways 

are implicated in angiogenesis, the VEGF-VEGFR1/2 signalling as well as the Dll4-Notch 

signalling axis are the most important in this process.  

Lymphangiogenesis, the formation of lymphatic vessels from pre-existing ones, seems to 

function similarly to angiogenesis, even if the molecular mechanisms are less explored 

(Tammela & Alitalo, 2010; Stacker et al., 2014). Lymphatic vessels derive originally from veins 

where ECs start to express lymphatic markers like PROX-1. Lymphangiogenesis is induced in 

response to VEGF-C/VEGFR3 signalling. Lymphatic vessels are essential for survival in 

embryogenesis as well as in adults where they regulate tissue fluid homeostasis, immune cell 

trafficking and fatty acid uptake. Lymphangiogenesis appears concomitantly to angiogenesis in 

inflammation, wound healing and tumor metastasis (Cao, 2005). 

 

3.1.7.2. Tumor angiogenesis 

Like normal tissue, tumor cells need to be connected to the vascular network as they 

require oxygen and nutrients as well as a possibility to evacuate metabolic waste and carbon 

dioxide. The process of tumor-associated neovascularization is addressing these needs. This 

fundamental process was firstly described by Judah Folkman in 1971 (Folkman, 1971). Since 

then, extensive research on tumor angiogenesis can be recorded. 
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The angiogenic switch 

Avascular tumor growth is limited to 1-2 mm3 due to the limit of oxygen diffusion (Bergers & 

Benjamin, 2003; Carmeliet & Jain, 2011). Cancer cells induce angiogenesis, through the 

“angiogenic switch” to evolve beyond this size (Figure 25). In addition to this initial thought, 

recent data showed an early implication of this event during tumor initiation, highlighting the 

importance of this process in pre-malignant conditions (Raica et al., 2009). Finally, sustained 

angiogenesis will pave the way for the dissemination of cancer cells.  

Oncogene signalling as well as intratumoral hypoxia-induced HIF-1 expression promotes 

synthesis of a large panel of pro-angiogenic factors including molecules that regulate the 

maintenance and destruction of the perivascular milieu as well as factors which stimulate ECs 

proliferation and migration (Bergers & Benjamin, 2003; Benazzi et al., 2014). These factors are 

expressed by tumor cells, but also by several cell types of the tumor microenvironment 

(macrophages, blood cells, etc.). Some of them are briefly described below. 

 

 

Figure 25: The angiogenic switch during tumor development (Bergers & Benjamin, 2003). 
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VEGF is expressed by epithelial cells, endothelial cells, stromal cells and tumor cells as well as 

cancer stem cells, suggesting that paracrine and autocrine VEGF signalling induces tumor 

angiogenesis. QPCR studies revealed distinct expression patterns of the VEGFxxx isoforms in 

different types of tumors (Zygalaki et al., 2007). For example, VEGF165 and VEGF121 are the 

predominant VEGF isoforms in lung and colon cancer. The expression of VEGFxxxb isoforms in 

tumors is still controversial (Eymin et al., 2014). In colorectal cancer, VEGF165b suppression was 

correlated to invasion and metastases (Diaz et al., 2008). By contrast, an significant correlation 

between high levels of VEGF165b and lymph node metastases in non-small lung cancer cells was 

recently reported (Eymin et al., 2014). 

VEGFR2 is the main receptor involved in tumor angiogenesis. Millauer et al. demonstrated that 

the expression of a dominant-negative mutant of VEGFR2 in endothelial cells inhibits 

glioblastoma tumor growth and vascularization in vivo (Millauer et al., 1994). Interestingly, 

Nrp1 has been detected also on human pancreatic adenocarcinoma cells which do not express 

VEGFR2 (Gray et al., 2005). It has been postulated that VEGF may act as a bridge between 

tumor cell-expressed Nrp1 and VEGFR2 on a neighbouring EC. This so-called transactivation 

may contribute to tumor angiogenesis, in which tumor cells would provide not only VEGF but 

also Nrp1 to attract VEGFR2-expressing ECs (Soker et al., 2002). The basic fibroblast growth 

factor (bFGF) is produced by tumor cells, macrophages and other cell types of the tumor 

microenvironment. bFGF stimulates major steps of tumor angiogenesis such as ECs 

proliferation, migration, and extracellular matrix degradation. Ang2 induces together with VEGF 

host vessel permeability, microvascular dilation and vessel sprouting. Ang2 and VEGFR2 

expression remains high in late stage tumor development to maintain the angiogenic plasticity in 

tumors (Vajkoczy et al., 2002; Baeriswyl & Christofori, 2009). SDF-1 secreted by tumor cells 

attracts stromal and immune cells. Those cells create a tumor environment which favours 

angiogenesis by producing VEGF and other pro-angiogenic cytokines such as IL-8 (Squadrito & 

De Palma, 2011). Furthermore, stromal cell-derived MMPs release sequestered VEGF due to the 

remodelling of the ECM (Kessenbrock et al., 2010).  

The above described sprouting angiogenesis is the most important mechanism of tumor 

vascularization, but in contrast to normal vasculature, tumor vessels lack maturation. Other 

models of tumor blood vessel formation are summarized in Figure 26 (Zhu et al., 2011; Benazzi 

et al., 2014). Intussuception; (2) vessel co-option (mosaic vessel formation), where tumor cells 

hijack pre-existing blood vessels and integrate them into the tumor vasculature, or (3) vascular 

mimicry, when cancer cells form vessel-like structures, are described as alternatives (Paulis et 

al., 2010). In addition, (4) bone marrow-derived vascular progenitor cells are recruited to tumors 
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by different cytokines where they differentiate into pericytes or endothelial cells (Fang & 

Salven, 2011). Tumors can use all of these mechanisms to form new blood vessels, even 

simultaneously. 

 

Figure 26: Schematic representation of tumor angiogenesis including sprouting angiogenesis, 

vasculogenesis (bone marrow-derived endothelial progenitor cells are recruited to the 

tumor by different factors such as the stromal-derived factor 1 (SDF-1), the basic 

fibroblast growth factor (bFGF), IL-6 and G-CSF), intussusception and vessel co-option 

(Zhu et al., 2011). 

 

 

Tumor vasculature 

By contrast to normal tissues, tumors lose the tightly regulated balance between pro-and anti-

angiogenic factors. This balance normally induces rapid maturation and stabilization of new 

blood vessels. Tumor blood vessels fail to become mature and quiescent, thus allowing sustained 

angiogenesis in tumor tissue.  

Instead of a hierarchical organization, tumor vasculature is typically aberrant and dysfunctional 

with a chaotic, heterogeneous organization (Figure 27, 28) (Jain, 2005; Goel et al., 2011). 

Vessels are varying from large lumen to tortuous and compressed capillaries and can even have 

dead ends. Differentiation of tumor vessels into arteriols, capillaries or venules often fails. 

Normal vessels are lined with a monolayer of quiescent “phalanx” ECs, which are polarized and 

aligned in the direction of the blood flow for optimal perfusion. ECs in tumor vessels have lost 

this polarity, leading to an irregular shape and weak tight/adherens junctions between ECs.  
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Figure 27: Tumor vasculature is abnormal in their structure and function (Carmeliet & Jain, 2011). 

(a) Organization and normal vessel structure in healthy tissue. (b) Abnormal pattern and 

structure as well as function of tumor vessels lead to hypoxic regions within the tissue. 

BM, basement membrane; EC, endothelial cell; IFP, interstitial fluid pressure. 

 

 

 

 

 
Figure 28: Abnormalities of tumor microvasculature (Jain, 2005; Goel et al., 2011). Vasculature in 

human colon cancer in mice (left) versus healthy skeletal muscle (right). 

 

 

Those ECs are poorly aligned and contain multiple fenestrations. Furthermore, activated ECs in 

tumors undergo endothelial-to-mesenchymal transition and move away from their origin. 

Healthy quiescent ECs are engulfed by pericytes which stabilize the vessels. Tight contacts 

between ECs and pericytes and the embedding of both cell types in the basement membrane 

reduce vessel permeability. In tumors, pericytes are often less differentiated, leading to a loosely 
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coverage of the vasculature. In addition, the basement membrane shared by ECs and pericytes is 

either abnormally thick or thin and loosely associated to both cell types.  

All these abnormal structural characteristics cause heterogeneous perfusion of the tumor tissue as 

blood flow could be either rapid in some vessels or stagnant in others. Consequently, diffusion of 

oxygen, nutrients and drugs is highly heterogeneous within a tumor, leading to hypoxic regions 

within the tissue. Those regions could not be reached by chemotherapy as the deleterious effect 

of this treatment depends on reactive oxygen species. Furthermore, leakiness of tumor vessels 

leads to haemorrhage. The absence of functional lymphatic vessels results in increased interstitial 

pressure due to insufficient drainage of the tissue (Choi et al., 2013). The function of immune 

cells can also be impaired by the abnormal tumor vasculature. To compensate for the oxygen and 

nutrients demand, angiogenesis is further stimulated in tumor cells. Permanent secretion of pro-

angiogenic factors leads to excessive vessel branching and restarts this vicious cycle. Sustained 

angiogenesis is supported by the hypoxic and inflammatory tumor microenvironment which 

favours the selection of more aggressive tumor cells and promotes metastasis. This aspect will be 

further discussed in more detail below. Altogether, the above listed tumor vasculature 

abnormalities favour cancer progression and facilitate the formation of metastasis. Furthermore, 

structural characteristics of tumor vessels can influence responsiveness to anti-cancer therapies.   

 

3.1.8. Hallmark: Activating invasion and metastasis 

Dissemination of cancer cells was believed to be a late event in tumorigenesis. During the 

last years, several studies strengthened the observation that this process takes place very early in 

cancer development. Invasion and the formation of metastasis is a multi-step process. This 

hypoxic-driven cascade is initiated by the loss of cell-to-cell or cell-to-ECM adhesion. Cells 

locally invade and intravasate into nearby blood and lymphatic vessels, then are transferred 

through the lymphatic and blood system. By a process called extravasation, tumor cells escape 

the circulation and enter distant organs to form micrometastasis. After an adaptation of these 

invasive cells to the foreign tissue microenvironment, a process also termed colonization, 

macroscopic tumor metastasis start to grow (Nguyen et al., 2009). Two main intracellular 

processes are implicated in the described single-cell invasion-metastasis cascade: epithelial-

mesenchymal transition (EMT) and its reversion, the mesenchymal-epithelial transition (MET) 

(Figure 29). During EMT, epithelial cells acquire the ability to invade and disseminate as well as 

to resist apoptosis (Yilmaz & Christofori, 2009). This cellular program is orchestrated by the 

induced expression of various transcription factors, such as Snail, Slug, Twist and Zeb1/2. Their 

action leads to the loss of adherens junctions (translocation of β-catenin to the nucleus, 
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repression of E-Cadherin and induction of N-Cadherin) and the associated transition from a 

polygonal/epithelial to a spindly/fibroblastic morphology which confers the cell the ability to 

migrate. Within this step, extracellular matrix-degrading enzymes, mainly matrix-

metalloproteases (MMPs), are expressed and secreted to facilitate invasion by remodelling the 

ECM. Once arrived at their final destination, tumor cells need to revert EMT to become again 

non-invasive. Colonization is not a cancer cell-autonomous event. The support of stromal cells, 

which form the tissue microenvironment and cancer cell homing, is indispensable for this 

adaptation. The communication between cancer cells and stromal or immune cells in their 

surrounding is crucial for effective invasion and metastasis formation.   

 

 

Figure 29: The invasion-metastasis cascade (Thompson & Haviv, 2011). 

 

 

3.1.9. Emerging hallmark: Deregulating cellular energetics 

The high proliferation rate of tumor tissue requires important amounts of energy. The most 

striking alterations of tumor metabolism include enhanced glycolysis rate, elevated 

glutaminolytic flux, increased amino acid and lipid metabolism, induced mitochondrial 

biogenesis and elevation of pentose-phosphate pathway as well as macromolecule biosynthesis 

(Phan et al., 2014).  

In normal cells, glucose is metabolized into pyruvate which is further converted to acetyl-CoA. 

The Krebs cycle, fuelled by acetyl-CoA, generates NADH and FADH2 which provide electrons 
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to the mitochondrial respiratory chain. Normal cells prioritize glycolysis, which generates two 

ATP per glucose molecule, only in oxygen-limited conditions. In contrast, cancer cells 

metabolize glucose via glycolysis even under normoxic conditions (Warburg effect) and via 

aerobic respiration (Vazquez et al., 2010).  

Low effective glycolysis need to be compensated in highly proliferating tumor tissue. Therefore, 

cancer cells increase expression of glucose transporters such as glucose transporter 1 to 4 

(GLUT1-4) to augment cellular glucose uptake (Hsu & Sabatini, 2008). Additionally, the 

hypoxic areas and activation of tumor oncogenes within the tumor are forcing the upregulation 

of glucose transporters and the expression of enzymes involved in glycolysis. Major oncogenes 

such as Ras and Myc as well as HIF-1α are known to induce glycolysis (Jones & Thompson, 

2009). In this context, HIF-1α transcriptional activity is de-repressed due to the inactivation of 

the histone deacetylase Sirt6, a protein which is implicated in calorie restriction and longevity 

(Longo & Fontana, 2010). While c-myc activates transcription of glycolytic enzymes under 

normoxia, HIF-1α promotes expression of glycolytic genes under hypoxia. Thus, cancer cells 

drive glycolysis permanently to respond to their high energy need. p53, known to inhibit glucose 

uptake by negatively influencing expression of glucose transporters, for example, is often 

silenced in cancer (Phan et al., 2014).  

In cancer cells, most pyruvate, the end-product of glycolysis, is further processed to lactate 

instead of acetyl-CoA, mainly due to the overexpression of the lactate dehydrogenase (LDHA). 

It seems that a tumor consists in two cell subpopulations: one, which is metabolizing glucose and 

secreting lactate via the MCT4 transporter and the second which uses this lactate as a main 

carbon source for their energy metabolism (Kennedy & Dewhirst, 2010). This symbiosis enables 

cancer cells to ensure the availability of a carbon source even in the presence of restricted 

nutrient supply due to less functional and leaky tumor vasculature. Furthermore, lactate secretion 

lowers the pH in tumor surrounding tissue which further activates degradation of the 

extracellular matrix by metalloproteases, facilitating invasion and metastasis (Bonuccelli et al., 

2010; Parks et al., 2011; Parks et al., 2013). Tumor cells itself are responding to this massive 

acidosis by HIF-1 induced expression of H+/monocarboxylate transporter 4 (MCT4) and 

carbonic anhydrase IX/XII expression (Chiche et al., 2009). These two pH-regulating systems 

ensure tumor cell survival in low pH-microenvironment. Pyruvate conversion into lactate causes 

less formation of reactive oxygen species, thus protecting cancer cells from oxidative stress. 

Beside ATP as a source of energy, glycolysis provides important intermediates which serve as 

substrates for several other biosynthetic pathways. In addition to their role in the energy 
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metabolism, glycolytic enzymes are implicated in cancer survival, metastasis, invasion, 

chromatin remodelling and others (Kim & Dang, 2005).   

Cancer cells use also glutaminolysis to fuel their cellular bioenergetics demand and metabolism. 

Metabolizing glutamine into glutamate or α-ketoglutarate fuels the Krebs cycle which in turn 

provides intermediates of the Krebs cycle that could be used for the synthesis of lipids, 

cholesterol and amino acids. Glutaminolysis is often upregulated in cancer cells due to c-myc 

overexpression (Wise et al., 2008).  

 

3.1.10. Emerging hallmark: Evading immune destruction 

Historically, an infiltration of tumors by immune cells was associated with a good 

prognosis, thus supporting the importance of the immune system against tumor progression. 

Paradoxically, enhanced tumor formation was found in immunodeficient mice and mouse 

models which were lacking, either natural killer cells or CD8+ cytotoxic T lymphocytes or CD4+ 

T1h helper cells (Kim et al., 2007; Teng et al., 2008). Transplantation experiments in mice 

revealed the “immunoediting” process of cancer cells: Immunogenic cancer cell clones are 

eliminated in immunocompetent tumor-bearing mice. The remaining weakly immunogenic 

cancer cells could form secondary tumors when transplanted in immunocompetent or 

immunodeficient hosts. In contrast, cancer cells derived from primary tumors grown in 

immunodeficient mice were not edited and kept their immune-sensitive characteristics. 

Therefore, transplantation of those cells in immunocompetent recipients is rejected (Kim et al., 

2007; Teng et al., 2008). In tumors, the expression of immune-checkpoint proteins can be 

dysregulated leading to resistance to the host-immune system. Cancer cells or components of the 

tumor microenvironment overexpress inhibitory ligands and receptors that regulate T-cell 

function in normal tissue. The two immune-checkpoint receptors that have been the most studied 

in this context, are the cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) and the 

programmed cell death protein 1 (PD1) (Pardoll, 2012). Both are inhibitory receptors on T-cell 

activity. Tumors exploit the CTLA4 pathway to diminish T-cell proliferation, infiltration and 

activation. On the other hand, tumors can evade the host immune attack via the PD1 pathway. 

PD1 ligands present on the tumor cell membrane induce the PD1 pathway in T-cells leading to 

the inactivation of these immune cells. In addition, cancer cells can manipulate tumor-host 

immunological interactions for example by secreting TGFβ or other immunosuppressive factors 

to inhibit immune cells (Yang et al., 2010). This complex network will be detailed as part of the 

tumor microenvironment paragraph. Tumors are also able to attract immune cells, which will 
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form a tumor-promoting microenvironment. As the evidence for an anti-tumor immunity is still 

lacking, immunoevasion remains as an emerging hallmark in cancer progression.  

 

3.2. The cancer niche or tumor microenvironment  

In contrast to the long-lasting idea that a tumor is a relatively homogenous population of 

cancer cells, tumors are more and more recognized as complex organs containing several cell 

types as well as blood and lymphatic vessels (Figure 30). Given the intratumoral heterogeneity, 

the understanding of cancer cell molecular mechanisms alone is not sufficient anymore to treat 

this life-threatening disease efficiently. During the last decade, cancer research started to focus 

also on tumor-associated cells, which create the “tumor microenvironment”, as well as on the 

crosstalk between malignant cancer cells (epithelial parenchyma of carcinomas) and the tumor  

 

 

 

Figure 30:  Complexity of the interactions between tumor cells and cells of the tumor 

microenvironment (Hanahan & Weinberg, 2011). 
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stroma. The importance of the tumor microenvironment is strengthened by the functional 

contribution of several cell types to different hallmarks during cancer progression. In a more 

provocative way, beside cellular tumor-promoting epi-/genetic alterations, the construction of the 

cancer niche is essential for tumor cell survival, proliferation and gain of malignant potential 

(Barcellos-Hoff et al., 2013). Cells of the tumor stroma are attracted from normal tissue by 

cancer cells or derive from the bone-marrow as progenitor cells. Autocrine and paracrine signals 

between cancer cells and their surroundings lead to the reprogramming of the tumor 

microenvironment to support tumor initiation, promotion and progression (Quail & Joyce, 2013). 

On the other hand, reprogramming the capacities of the tumor microenvironment could limit 

cancer progression and could be consequently an interesting target for cancer therapy.  

Tumor stroma is composed of non-malignant cells such as cancer-associated fibroblasts (CAF), 

tumor-associated macrophages (TAM) and neutrophils (TAN) as well as mesenchymal stem 

cells and the ECM. The following paragraphs will give a brief overview about major cell types 

located in the tumor stroma and how they are influencing the biology of cancer cells.  

 

3.2.1. Cell types of the tumor microenvironment 

3.2.1.1. Cancer stem cells 

Over the last decades, the existing clonal evolution model, which assumes that each cell 

within a tumor has the same potential to form new neoplastic lesions by gaining genetic and 

epigenetic changes, was completed by another model, suggesting that just a subpopulation, 

termed cancer stem cells (CSCs), has the ability to self-renew, differentiate and regenerate 

tumors (O'Connor et al., 2014). Therefore, the discovery of CSCs and the plasticity of tumors 

suggest that a genetically homogeneous subpopulation within cancer tissue could be 

phenotypically heterogeneous due to various differentiation states of these cells. The origin of 

CSCs remains still unclear. CSCs are the driving force in carcinogenesis based on their 

capability of self-renewal and multi-lineage differentiation through symmetric or asymmetric 

cell division. To study the degree of stemness of tumor cells that drives carcinogenesis, tissue of 

a primary tumor was dissociated and cell solutions were diluted. Isolated single cancer cell were 

inoculated in immunodeficient mice and tumor appearance was monitored. By using this 

functional assay, CSCs could be identified in leukaemia as well as in several solid tumors 

(Bonnet & Dick, 1997; Al-Hajj et al., 2004). It seems that EMT-related processes are supporting 

self-renewal capabilities of CSCs to ensure their clonal expansion at distant tissue sites after 

dissemination. The threat posed by CSCs in cancer is strengthened by their chemoresistance as 
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well as by the fact that they can stay dormant to cause cancer relapse several years after 

diagnosis and successful treatment (Singh & Settleman, 2010).    

  

3.2.1.2. Immune inflammatory cells 

Infiltrating immune cells, especially tumor-associated macrophages (TAMs) and tumor-

associated neutrophils (TANs), are increasingly recognized as constituents of the tumor stroma. 

Tumor cells attract mature immune inflammatory cells very early in tumor development by 

releasing factors like the Colony-stimulating factor 1 (CSF-1) and Monocyte-chemoattractant 

protein 1 (MCP-1). In addition, tumors recruit undifferentiated myeloid progenitor cells from the 

bone marrow, which will differentiate into macrophages or neutrophils. 

To simplify, immune cells are polarized to two extreme phenotypes by tumor-derived factors and 

intratumoral hypoxia, which act in contradictory ways (either tumor-promoting or tumor-

antagonizing). Activated TANs, TAMs (M2-subtype) as well as other immune cells release 

tumor-promoting factors, like VEGF, EGF, FGF2, chemokines and cytokines (IL-1, IL-8, TNFα) 

as well as pro-invasive/angiogenic matrix-degrading enzymes (MMP-2/7/9/12, COX-2) to 

facilitate key events during tumor progression, such as proliferation, angiogenesis and invasion, 

and generate an immunosuppressive microenvironment (Mantovani et al., 2008). In contrast, M1 

macrophages are anti-tumoral and pro-inflammatory. However, the simple M1/M2 model of 

macrophages polarization seems to be more complicated than estimated. Xue et al. propose a 

“spectrum model” with at least nine distinct macrophage activation programs depending on 

environmental stimuli (Xue et al., 2014). In addition, TAMs are involved in EMT and cancer 

stem cell regulation. 

 

3.2.1.3. Cancer associated fibroblasts 

Cancer-associated fibroblasts (CAFs) are a dominant, heterogeneous cell population of the 

tumor stroma (Ostman & Augsten, 2009). Their phenotype is distinct from that of normal 

fibroblasts. Several subpopulations of CAFs are known: resident fibroblasts, bone marrow-

derived progenitor cells (myofibroblasts) and trans-differentiating fibroblasts (Zeisberg et al., 

2007; Mishra et al., 2008). Transdifferentiation of stromal fibroblasts into CAFs is mediated by 

TAM-secreted TGFβ, PDGF and bFGF (Elenbaas & Weinberg, 2001). CAFs secrete several 

extracellular matrix components, such as fibronectin, collagen as well as MMPs, and are 

therefore involved in the remodelling of the established stroma in advanced tumors (Bhowmick et 

al., 2004; Kalluri & Zeisberg, 2006; Mueller et al., 2007). In addition, CAFs themselves produce 

and secrete VEGF, MCP-1 and several growth factors, promoting angiogenesis and 
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inflammation (Sotgia et al., 2012). Consequently, appearance of CAFs in tumors is associated 

with pathological fibrosis as well as growth and invasion of tumor cells as they are initiating 

angiogenesis and the recruitment of myeloid cells. 

 

3.2.2. Heterotypic signalling coordinates cells of the tumor stroma 

Tumor cells communicate with their environment via direct cell-to-cell contacts, secreted 

paracrine-acting factors and exosomes (van Niel et al., 2006). Barcellos et al. proposed a concept 

of a dynamic and evolving cancer niche during tumorigenesis (Barcellos-Hoff et al., 2013). Co-

evolution of malignant cells and their environment by intense exchanges will result in successful 

tumor progression (Figure 31, upper part).  

Early neoplastic lesions start to recruit stromal cells to form a first tumor stroma, which responds 

reciprocally to force malignant phenotype of cancer cells. The critical signal for cancer niche 

construction are still unknown but CXCL12 (SDF-1) and TGFβ seem to be important candidates 

(Moses & Barcellos-Hoff, 2011). Cancer cells feed back signals towards the stroma to reprogram 

cells of the tumor microenvironment thus inducing angiogenesis and immune surveillance 

escape. Within this step, immune cells are recruited to expand the tumor niche (Tu et al., 2008; 

Quante et al., 2011). In addition, fibroblasts as the main source of growth factors, cytokines and 

ECM components, are contributing to this phase. The lower part of Figure 31 illustrates the 

heterotypic signalling between tumor cells and their dynamic environment and points out the 

importance of these complex interactions during cancer progression. TGFβ and CXCL12 are 

crucial in recruitment of CAFs and bone marrow-derived mesenchymal stem cells (MSCs) 

(Quante et al., 2011). Exosomes produced by the primary tumor are transferring pro-

inflammatory molecules, proteins and miRNAs to activate CAFs, recruit MSCs, alter immune 

response and prepare premetastatic sites (Szajnik et al., 2010; Webber et al., 2010; Peinado et 

al., 2012). Oncogenic alterations of cancer cells promote their ability to induce angiogenesis and 

consequently the maturation of the cancer niche. In the pancreas, for example, Myc-induced IL-

1β expression mediates VEGF-A activation and distribution from the ECM (Shchors et al., 

2006). In mammary tumors, CSF-1 induces angiogenesis in tumor tissue and thus promotes 

tumor progression. Genetic deletion of CSF1 delayed the transition of primary tumors to 

invasive, metastatic carcinomas in vivo (Lin et al., 2001). This process was reversed by 

overexpressing CSF-1. After having reached distant organs, cancer cells need to repeat 

reciprocal heterotypic signalling to change the naive, normal tissue environment in order to form 

macrometastasis (Figure 31, lower part). However, the existence of “metastatic niches” – tumor 

environments, which are susceptible for freshly seeded cancer cells – has been recently described 
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as an early event in tumor development (Peinado et al., 2011). Pre-existing hospitable stroma 

could be intrinsic to the tissue or induced by circulating factors secreted by the primary tumor. 

Tumor-promoting inflammatory cells play an important role in this process.  

In relation to the development of novel targeted cancer therapies, the comprehension of the 

dynamic crosstalk between cancer cells and components of their environment will be essential. 

 

 

 

 

 

Figure 31: Signalling network of cancer cells and the tumor microenvironment during tumorigenesis 

(Hanahan & Weinberg, 2011). 
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3.2.3. Hypoxia 

The high proliferative capacity of tumor cells moves away cancer cells from oxygen- and 

nutrient-carrying blood vessels. In addition, the abnormal tumor vasculature is inefficient to 

overcome this default. Instead of cell death, this deficient environment favours cell survival and 

migration of tumor cells through the major action of the hypoxia-inducible factor (HIF). This 

transcription factor is activated under low oxygen levels and regulates the transcription of 

various genes implicated in tumor cell metabolism, angiogenesis and EMT. Therefore, hypoxia 

signalling is involved in almost every step of tumorigenesis and impacts tumor cells and each 

cell type of the tumor microenvironment (Ruan et al., 2009; De Bock et al., 2011; Casazza et al., 

2014). 

In various but not in all cancers, hypoxia is associated with therapy resistance and disease 

progression as it favours the most invasive tumor cells.  

 

HIF-1 signalling 

HIF-1 is a dimer consisting of the oxygen-sensitive HIF-1α subunit and the constitutively 

expressed HIF-1β subunit (Figure 32) (Semenza, 2013). Under normoxic conditions, HIF-1α is 

hydroxylated by oxygen-dependent prolyl-hydroxylase domain proteins (PHD). The Von Hippel 

Lindau tumor suppressor protein (VHL) binds to hydroxylated HIF-1α which induces the further 

ubiquitination of the protein by the E3 ubiquitin ligase and targets HIF-1α for proteasomal 

degradation. In addition to oxygen, the cellular metabolic status modulates HIF-1α stability as 

PHD proteins use the TCA cycle intermediate α-ketoglutarate as substrate. Under hypoxia, 

hydroxylation of HIF-1α does not occur, leading to the stabilization of the protein. HIF-1α 

dimerize with HIF-1β enabling HIF-1 transcriptional activity and the regulation of adaptive cell 

responses to hypoxia, including cell proliferation, cellular metabolism and angiogenesis.  

Like HIF-1α, HIF-2α is also overexpressed in cancer cells (Talks et al., 2000). The 

overexpression of HIF-2α in TAMs was reported and correlated with high tumor grade and poor 

prognosis. Strikingly, HIF-1α has been shown to function as a tumor promoter in cancer 

associated fibroblasts, and as a tumor suppressor in breast cancer cells, suggesting that HIF-1α 

activity is cell-type- and compartment-specific (Chiavarina et al., 2010). 
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Figure 32: Oxygen-dependent regulation of HIF-1α stability and HIF-1 signalling (Semenza, 2013). 

Further details are explained in the text. αKG,  α-ketoglutarate; HIF-1α/β, hypoxia-

inducible factor α/β; PHD, prolyl-hydroxylase domain proteins; Ub, ubiquitin; VHL, Von 

Hippel Lindau factor. 
 

Effect of hypoxia on tumor cells 

Under hypoxia, HIF-1 induces the transcription of VEGF and other pro-angiogenic cytokines, 

thereby stimulating angiogenesis and vascular remodelling to improve oxygen delivery and 

tissue perfusion (Forsythe et al., 1996; Rey & Semenza, 2010). Moreover, HIF-1 activates 

transcription of several genes favouring glucose uptake and metabolism as well as factors 

implicated in pH regulation (Brahimi-Horn et al., 2011). Thus, HIF-1 ensures energy supply by 

enhancing glycolysis and enables cancer cells to survive in an acidic environment at the same 

time. On the other hand, HIF-1 inhibits the proliferation of cancer cells by inducing cell cycle 
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arrest. Due to HIF-1 transcriptional activity, Myc expression and its activity as driver of cell 

proliferation are repressed (Koshiji et al., 2004). HIF-1α directly blocks DNA replication via 

non-transcriptional mechanisms (Hubbi et al., 2013). Hypoxia is associated with EMT as HIF-1 

induces the expression of the E-Cadherin repressors Twist1 and Snail (Hill et al., 2009). HIF-1 

enhances also the expression of matrix remodelling enzymes such as lysyl-oxydase (LOX) and 

metalloproteases that degrade cell-matrix interactions to facilitate migration and invasion of 

cancer cells (Pouyssegur et al., 2006). In addition, HIF-1 upregulates the c-met proto-oncogene, 

the chemokine receptor CXCR4 and the autocrine motility factor (AMF), all known to be 

implicated in metastasis and invasion (Pennacchietti et al., 2003). 

 

 

Effect of hypoxia on CAFs, TAMs and TANs in tumors 

Even though the exact mechanisms underlying the CAF phenotype are still unknown, hypoxia-

induced expression of specific genes which are determining this phenotype were described. 

Indeed, Caveolin-1 is inhibited by HIF-1 signalling. Loss of Caveolin-1 induces a CAF 

phenotype of mammary fibroblasts and enhances tumor growth when these cells were co-

injected with breast cancer cells in mice (Chiavarina et al., 2010). Interestingly, HIF-1-deletion 

in fibroblasts before the onset of breast tumors accelerated tumor growth in mice (Kim et al., 

2012b). HIF-1-induced expression of TGFβ and SDF-1 alone or in combination drives a CAF 

phenotype (Toullec et al., 2010; Kim et al., 2012b).  

The infiltration of tumor tissue by myeloid cells, mainly macrophages and neutrophils, is also a 

hypoxia-driven process. Low oxygen levels induce IL-8 expression, a cytokine, which attracts 

neutrophils (Kunz et al., 1999). As tumor associated macrophages are polarized either to tumor-

suppressive M1 macrophages or tumor-promoting M2-macrophages, one can hypothesize that 

macrophages change their phenotype depending on the hypoxic status of the tumor during cancer 

progression (Mantovani et al., 2008). At early stages, when intratumoral hypoxia is low, M1-like 

phenotype promotes anti-tumor immunity. With the progressive increase of hypoxia during 

cancer evolution, macrophages acquire the pro-tumor M2 phenotype driven by cytokines of the 

tumor stroma (Saccani et al., 2006). 
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In conclusion, the hallmark concept of Hanahan & Weinberg is a useful model to describe 

and understand the complexity of cancer disease. This awareness is essential for the development 

of efficient anti-tumoral therapies in the future (Hanahan & Weinberg, 2011).  

During tumor initiation, promotion and progression, cancer cells need to acquire the following 

capabilities to survive, proliferate and finally to disseminate: sustaining proliferative signalling, 

evading growth suppressors, resisting cell death, enabling replicative immortality, inducing 

angiogenesis, activating invasion and metastasis. These traits are supported by genome 

instability/ mutation and tumor-promoting inflammation, re-programming of cellular metabolism 

in tumor tissue as well as the escape of cancer cells from elimination by the immune system. 

During the last decades, the tumor microenvironment appeared as a key driver of cancer 

progression as it paves the way for survival, proliferation and invasion of cancer cells. 

Intratumoral hypoxic conditions as well as tumor-secreted chemoattractants recruit endothelial, 

immune and stromal cells in their surroundings, which create a complex and dynamic signalling 

network to promote the disease.   

Hanahan & Weinberg propose beside the validation of defined hallmarks, to further investigate 

the mechanisms of invasion and metastasis, the role of metabolic changes (aerobic glycolysis) as 

well as the effect of immune surveillance in tumors as future directions in cancer research. 

Further understanding of the tumorigenic process will help to refine existing cancer therapies and 

to discover new molecular targets for the development of alternative therapeutic approaches. 
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Figure 33: Therapeutic targeting of cancer hallmarks (Hanahan & Weinberg, 2011). 
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Chapter 4  Therapeutic targeting of cancer and its limits 

In applying the hallmark concept in cancer medicine, targeted therapies could be 

categorized according to their respective effects on inhibition of one or several hallmarks in the 

carcinogenic process. The therapeutic success, defined as inhibition of tumor growth and 

progression, will depend on the importance of the targeted hallmark in tumor formation. A 

myriad of drugs targeting each hallmark during cancer progression have been discovered and 

(pre-) clinically tested or are currently under development (Figure 33). Due to the considerable 

number of existing therapies, we will not list all of them. Instead, the following paragraph will 

focus on anti-angiogenic and anti-inflammatory therapies as well as their limits. Furthermore, the 

emerging link between cancer and the control of mRNA stability will be presented by focusing 

on expression and functional implication of TIS11 proteins in tumorigenesis and cancer-

associated inflammation, emphasizing their potential role as tumor suppressors. 
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Figure 34: The basic concept of anti-angiogenic cancer therapies (Zetter, 2008). 

 

Table 7: Anti-angiogenic agents, their molecular targets and current indications for cancer therapy 

(Limaverde-Sousa et al., 2014). 
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4.1. Fight against cancer: Focus on anti-angiogenic and anti-inflammatory cancer  

therapies 

4.1.1. Targeting tumor vasculature: Anti-angiogenic therapies 

Nutrients and oxygen are essential for the survival of each cell, also for metabolically 

active tumor cells. Judah Folkman assumed in 1971 that starving tumors by inhibiting 

selectively intratumoral angiogenic processes could induce their death or render them “dormant” 

(Figure 34) (Folkman, 1971). With this idea, Folkman opened an intensive research on anti-

angiogenic cancer therapies. Since then, numerous therapy approaches were investigated in pre- 

and clinical trials. These strategies are briefly summarized below.  

Table 7 presents anti-angiogenic agents, their molecular targets and current indications for 

cancer therapy at a glance (Limaverde-Sousa et al., 2014). In general, anti-angiogenic therapies 

could be categorized in (1) single-target strategies, where monoclonal antibodies inhibit 

specifically one pro-angiogenic factor or receptor, (2) multi-target approaches including tyrosine 

kinase inhibitors (TKIs) and (3) broad-spectrum agents, which interfere not only endothelial cells 

(ECs) but also with tumor cells as well as components and cells of the tumor microenvironment 

such as integrins, leading to the inhibition of the downstream angiogenic phenotype.   
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Figure 35: The hypothesis of vessel normalization (Jain, 2005; Goel et al., 2011).  

(A) Abnormal tumor vasculature, which could be initially normalized by anti-angiogenic 

therapies. (B) Dynamic vessel normalization after VEGFR2 blockade in a pre-clinical 

model of human colon cancer (day 0 in the middle, day 3 on the right). Normal 

vascularization of skeletal muscle is shown on the left as reference. (C) Schematic 

illustration of changing pericyte (green) and basement membrane (blue) coverage during 

vascular normalization. (D) Phenotypic alteration of the balance between pro- and anti-

angiogenic factors through vessel normalization. 

 

 

4.1.1.1. Single-target angiogenesis inhibitors: the first generation 

As VEGF is the key player in tumor angiogenesis and is produced by several cell types in 

the tumor tissue (tumor cells, fibroblasts, macrophages, ECs), anti-VEGF therapies were 

developed and indeed, delayed tumor growth after injection of an anti-VEGF monoclonal 

antibody was initially observed in glioblastoma and human colon carcinoma (Kim et al., 1993; 

Warren et al., 1995). Encouraged by these results, Genentech developed the humanized 

monoclonal antibody bevacizumab (Avastin), which is intensively tested in numerous clinical 
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trials.   

However, the survival benefits of anti-VEGF monotherapy in phase III trials compromised the 

exciting results of the initial pre-clinical studies (Jain et al., 2006; Carmeliet & Jain, 2011). 

Interesting results were obtained in phase III clinical trials with bevacizumab combined with 

systemic chemotherapy. An improvement of patient outcome with this combinatorial approach 

instead of chemotherapy alone was observed (Hurwitz et al., 2004). Significant benefits for 

patients with metastatic colorectal cancer led the FDA to approve bevacizumab combined to 

chemotherapy as first-line treatment for this type of cancer in 2004.  

Knowing that vessel regression is induced by anti-VEGF therapies and that efficacy of 

chemotherapy is dependent on efficient tumor blood flow, the observed effects for the 

combinatorial treatment were intriguing. To elucidate this paradox, the hypothesis of “vascular 

normalization” was proposed, which assume a normalization of the aberrant tumor vasculature 

and consequently of the tumor microenvironment induced by anti-angiogenic therapies (Figure 

35) (Jain, 2001; Jain, 2005). Re-organized blood vessel network leads to a decrease of 

intratumoral hypoxia and acidosis as well as to a better sensitivity for radiotherapy and cytotoxic 

treatments, due to a uniform drug delivery. In addition, the improved organization of ECs and 

pericyte coverage of vessels reduce vessel permeability and consequently the interstitial fluid 

pressure in tumor tissue as well as the metastatic potential of the tumor. However, “vessel 

normalization” is transient and limited to a “time window” after the initiation of the therapy. 

Afterwards, normalization is lost maybe due to prolonged anti-angiogenic therapy, which causes 

resistance. 

Additionally, other monoclonal antibodies inhibiting further single targets of pro-angiogenic 

signalling pathways, such as EGFR, PLGF or the angiopoietin-TIE2 axis, another key signalling 

pathway in angiogenesis, were designed and successfully tested (Petit et al., 1997; Falcon et al., 

2009). For example, EGFR-positive A431 human epidermoid carcinoma cells are dependent on 

the pro-angiogenic factor VEGF in vivo. Petit et al. treated these cells with the C225 anti-EGFR 

neutralizing antibody in vitro and demonstrated a dose-dependent inhibition of VEGF protein 

expression. The treatment of pre-established A431 tumors led to a significant reduction of VEGF 

expression and tumor vascularization in vivo. 

Unfortunately, bevacizumab monotherapy induced rapidly a resistance to the treatment (Bergers 

& Hanahan, 2008). It is thought that inhibition of tumor angiogenesis leads to increasing 

hypoxia and further activation of alternative pro-angiogenic pathways. To overcome this 

inconvenient, a second generation of anti-angiogenic molecules was developed. 
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4.1.1.2. Second generation multi-targeted angiogenesis inhibitors: VEGF and 

related targets 

Within this second generation, the VEGF-trap or “Aflibertcept”, need to be mentioned. 

Aflibertcept functions as a “decoy” receptor for VEGF as it has a VEGF-binding domain. 

VEGF-trap prevents the interaction of VEGF-A, VEGF-B and PLGF with their respective 

receptor by sequestering these factors. 

Tyrosine kinase inhibitors (TKIs), such as sunitinib or sorafinib, are of great importance among 

the second generation angiogenesis inhibitors (Zhang et al., 2009). Due to their small molecular 

weight and hydrophobicity, TKIs are able to cross the membrane and bind directly to the 

receptors or signalling molecules. These substances compete with ATP at the catalytic binding 

site of the VEGF receptor instead of interfering with the VEGF binding domain. TKIs are 

potential multi-target inhibitors and thereby would add benefit to therapy as they are also 

inhibiting other receptors, like EGFR and PDGFR. Beside differences in the mechanism of 

action, TKIs induce the same structural changes of tumor vasculature compared to first 

generation antibodies and expose to a risk of rapid development of resistance to therapy. In 

addition, monoclonal anti-VEGF antibodies and TKIs cause side-effects maybe due to their 

impact on the normal vasculature. 

 

4.1.1.3. Broad-spectrum of angiogenesis inhibitors: the next generation 

In contrast to the first and second generation of angiogenesis inhibitors, broad-spectrum 

agents are counteracting several angiogenic processes by targeting downstream components of 

the signalling pathways independently of the stimuli. 

Angiostatin and Endostatin are two endogenous peptidic anti-angiogenic agents that inhibit 

efficiently tumor angiogenesis as well as tumor growth and metastasis (O'Reilly et al., 1997; Lee 

et al., 2009). Angiostatin is the 38 kDa C-terminal fragment of plasminogen which could interact 

with cell membrane proteins such as ATP synthase, αvβ3 integrin, c-met, annexin II, angiomotin 

and the chondroitin sulfate proteoglycan NG2. These molecules mediate the anti-angiogenic 

activity of Angiostatin in vitro, including induction of ECs apoptosis, proliferation, migration 

and tube formation, and the in vivo inhibition of tumor growth and metastasis. However, the anti-

tumoral mechanism of Angiostatin is poorly understood. Lee et al. demonstrated that Angiostatin 

targets mitochondria as it interacts with the ATP synthase. This enzyme is also present on the 

cell plasma membrane and seems to be involved in the internalization of Angiostatin in vitro. In 

the same study decreased expression of the pro-apoptotic protein Bcl-2 and increased apoptosis 

were observed when melanoma-bearing mice were treated with Angiostatin. Interestingly, in 
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these tumors a strong increase in the expression of the anti-angiogenic factor TSP-1 and a 

reduced infiltration of pro-inflammatory macrophages were observed (Lee et al., 2009).  

Endostatin is the 20 kDa amino-terminal fragment of collagen XVIII, a proteoglycan mainly 

found in the basement membrane around blood vessels. The mechanism of action of Endostatin 

is still under debate (Folkman, 2006). However, Endostatin is known to inhibit VEGF- and FGF-

induced proliferation, survival and migration of ECs. Murine models demonstrated an interaction 

of Endostatin with α5vβ1 and αvβ3 integrin and Calveolin-1 in ECs. Endostatin was also shown 

to associate with VEGFR2 and MMP2 (Limaverde-Sousa et al., 2014).  

Cilengitide, derived from fibronectin, mimics the RDG motif, which is recognized by αvβ3 and 

αvβ5 integrins. Both integrins are present on the endothelium and on tumor cells. Cilengitide 

induces cell detachment and apoptosis of ECs and glioma cells (Oliveira-Ferrer et al., 2008).  

These endogenous peptidic molecules interfere with ECs as they inhibit endothelial cell 

migration, tube formation and induce EC apoptosis, but also directly with tumor cells and cells 

of the tumor microenvironment. Thanks to their low toxicity, these compounds entered rapidly 

clinical trials. 

 

4.1.1.4. Indirect pharmacological inhibitors of angiogenesis 

Unlike the agents described so far, certain pharmacological inhibitors are indirectly 

inhibiting angiogenesis as they are targeting mainly oncogenes upstream of pro-angiogenic 

factors instead of directly affecting endothelial cells of pericytes in the tumor tissue. Therefore, it 

is not surprising that these molecules were originally designed as anti-proliferative drugs. 

Trastuzumab, a monoclonal antibody against the epidermal growth factor HER2, displays anti-

proliferative and anti-angiogenic effects (Izumi et al., 2002). Another important signalling 

pathway in tumor angiogenesis is the PI3K/AKT/mTOR-axis and its upstream regulator Ras. 

The inhibition of Ras or PI3K and mTOR simultaneously leads to vessel normalization (Schnell 

et al., 2008; Qayum et al., 2009). By inhibiting EGFR, another oncogene, using gefitinib (small 

TKI) for example, normalized vasculature was observed (Qayum et al., 2009).    

As already mentioned, anti-angiogenic therapy could be beneficial in combination with 

chemotherapy. Cytotoxic chemotherapy aims to kill tumor cells and is normally applied in high 

doses at three-week intervals. One can anticipate that chemotherapeutics could also damage 

proliferating ECs of tumor vessels. Recent data showed a more efficient anti-angiogenic effect, 

when metronomic chemotherapy (short-term low-dose chemotherapy) was performed (Maiti, 

2014). Indeed, low-dose treatment with chemotherapeutics increased intratumoral expression of 

the anti-angiogenic factor TSP-1 and promoted a subsequent shift to a normal vessel phenotype 
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(Jain, 2005). One could assume that this effect is even more pronounced in the presence of anti-

angiogenic treatment as these molecules cause vessel normalization and therefore improve drug 

diffusion.  

 

4.1.2. Targeting the wound that never heals: Anti-inflammatory therapies 

The importance of cancer-related inflammation in tumor initiation and progression is well 

established. Inflammatory cytokines and chemokines produced by tumor cells and their 

environment promote cell proliferation, survival, differentiation of recruited ECs progenitors and 

immune cells, angiogenesis as well as invasion and metastasis. Therefore chronic inflammation 

is accepted as enabling hallmark during cancer progression (Hanahan & Weinberg, 2011).  

Due to the constitutive production of pro-inflammatory factors, cancer patients develop a tumor-

driven systemic inflammation reaction, which causes symptoms like progressive loss of weight 

and reduces the quality of life for these patients (Roxburgh & McMillan, 2014). Therefore, a 

novel tendency to use non-selective cheap drugs, like corticosteroids, non-steroidal anti-

inflammatory drugs (NSAIDs) such as aspirin (inhibitors of COX-2 and subsequent 

prostaglandin synthesis) and statins (HMG-CoA reductase inhibitors with cholesterol-reducing 

and anti-inflammatory activities) to target systemic inflammation and related symptoms came up 

during the last years. 

Beside this non-specific therapy approach, enormous efforts were spent on the development of 

anti-cancer drugs targeting specific chemokines or cytokines and their respective receptors. The 

next paragraph will highlight just a few of these therapeutic strategies. Antibodies against TNFα 

(Infliximab), the prototypical pro-inflammatory cytokine, and antagonists of its receptor 

(Etanercept) demonstrated therapeutic benefit (Harrison et al., 2007). Siltuximab, a monoclonal 

anti-IL-6 antibody, is currently tested in clinical trials with first encouraging results (Mantovani 

et al., 2008).   

Depending on their phenotype, which is determined by chemokines in the tumor 

microenvironment, macrophages either act as tumor-promoting or tumor-inhibiting cells. “Re-

educating” pro-tumoral tumor-associated macrophages (TAMs) to reject malignant cells could 

be a therapeutic approach. Hagemann et al. showed that the inhibition of NF-κB in TAMs 

activated their anti-tumoral phenotype and that those TAMs became cytotoxic for cancer cells 

(Hagemann et al., 2008). The activation of the TNF receptor family member CD40 is a critical 

event in the development of tumor specific T cell immunity and may reverse the 

immunosuppressive tumor microenvironment. Recently, Beatty et al. tested an agonist CD40 

antibody in combination with gemcitabine chemotherapy in a Phase II clinical trial and observed 
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tumor regression in pancreatic ductal adenocarcinoma patients (Beatty et al., 2011). 

Interestingly, a corresponding mice model revealed that this treatment caused the rapid 

infiltration of CD40-activated TAMs, resulting in tumor shrinkage. Antibodies against CCL2 

(MCP-1), which regulates macrophages recruitment and tumor angiogenesis via its receptor 

CCR2, have shown promising effects in mice (Popivanova et al., 2009). In addition, the 

inhibition of the tumor angiogenesis-promoting chemokine CXCL8 by specific antibodies led to 

reduced angiogenesis and tumor growth in mice (Huang et al., 2002). Interestingly, Trabectedin, 

a chemotherapeutic agent, downregulates CCL2 and CXCL8 production in addition to its anti-

proliferative effect (Allavena et al., 2005). Blocking the most frequently overexpressed 

chemokine receptor in cancer, the CXCR4 receptor using, small antagonists including bicyclam 

AMD3100, led to a reduction of primary tumor size and to anti-metastatic effects (Richert et al., 

2009). 

Tumor angiogenesis and cancer-associated inflammation are related processes during tumor 

progression as both of them are regulated by pro-angiogenic and pro-inflammatory factors like 

VEGF and interleukins (Scaldaferri et al., 2009). Therefore, it is not surprising that anti-

angiogenic and anti-inflammatory therapies could positively interfere with each other. However, 

they are also sharing the same limits, which will be discussed in the next section. 
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Figure 36: Adaptive (evasive) resistance and intrinsic non-responsiveness are the two modes of 

tumor resistance to anti-angiogenic cancer therapies (Bergers & Hanahan, 2008).  

 

 
Figure 37: Mechanisms of adaptive resistance (Bergers & Hanahan, 2008). (A) Adaptive resistance 

by activation of alternative pro-angiogenic pathways. (B) Recruitment of bone marrow-

derived cells to restore angiogenesis. (C) Protection of tumor vessels by increased 

pericytes coverage. (D) Increased invasiveness of tumor cells without angiogenesis. 
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4.2. Limits of targeted cancer therapies 

Until now, most of the established hallmark-targeting cancer therapies are directed against 

specific molecular targets that are involved in one hallmark during tumor development (Figure 

33) (Hanahan & Weinberg, 2011). In principle, this specific action has been considered to be 

beneficial as it is associated with a few off-target effects and low non-specific toxicity of the 

treatment. For example, it was assumed that anti-VEGF therapies would induce low toxicity as 

angiogenesis is almost quiescent in adults. However, clinical studies documented a number of 

side-effects and transitory responses, which means that tumors are initially responding to the 

treatment and then a relapse follows due to resistance mechanisms. Consequently, multi-target 

treatments are necessary.  

In general, resistance to therapy could be categorized in adaptive (acquired/evasive) resistance 

(initial response to treatment followed by tumor re-growth in the presence of therapy) and 

intrinsic resistance (non-responsiveness of the tumor to the treatment) (Figure 36) (Bergers & 

Hanahan, 2008). Four mechanisms of adaptive resistance are described until know.  

First, evasive resistance occurs when signalling pathways grouped in one hallmark are 

redundant. Inhibition of one circuit could be overcome by activation of an alternative one, 

causing tumor progression and relapse. In vitro studies revealed the important role of numerous 

other pro-angiogenic factors than VEGF, such as FGF, PDGF, angiopoietins and many more 

(Figure 37A) (Erber et al., 2004; Casanovas et al., 2005; Crawford et al., 2009; Welti et al., 

2011). In cancer therapy, TKIs already address this problem even though they are not a cure-all.  

Second, tumor vascularization could be re-initiated by hypoxia-driven infiltration of bone-

marrow derived cells (BMDCs) and pro-angiogenic monocytic cells (Figure 37B) (Ebos et al., 

2009a). BMDCs differentiate into ECs or pericytes and promote angiogenesis by physically 

incorporating into tumor vessels. Pro-angiogenic monocytes promote neovascularization by 

secreting cytokines, chemokines and growth factors (Lyden et al., 2001; Shaked et al., 2006). 

Third, increased pericyte coverage of vessels in the course of vascular normalization protects 

them from anti-angiogenic therapeutics, which are designed to target tumor-derived survival 

signals (Figure 37C) (Bergers & Hanahan, 2008). A fourth mechanism of adaptive resistance is 

that cancer cells could change their dependence on one hallmark towards another one during 

tumor progression (Figure 37D). This unexpected phenomenon was observed as consequence of 

anti-angiogenic treatment (Bergers & Hanahan, 2008; Ebos et al., 2009b; Azam et al., 2010). 

The inhibition of intratumoral vascularization heightened invasiveness and metastasis in pre-

clinical models. Similar observations with an increased number of local metastasis were made 

after anti-angiogenic treatment of human glioblastoma (Norden et al., 2008; Ellis & Reardon, 
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2009). The mechanisms that underlie the enhanced invasiveness of cancer cells in the presence 

of anti-VEGF treatment are still under investigation. However, it was shown that TKIs cause 

changes in a number of circulating factors such as G-CSF, SDF-1 and osteopontin, which are 

implicated in tumor progression (Ebos et al., 2007). Vessel integrity is crucial for the control of 

metastasis. Assuming that damage of the vasculature facilitates tumor cell extravasation from the 

primary tumor and intravasation at the metastatic site it appears plausible that anti-angiogenic 

therapy could enhance metastasis. Indeed, Cooke et al. observed in a murine breast cancer model 

that sunitinib (targets ECs and pericytes) increases the number of lung metastasis due to the 

upregulation of Twist and Snail as well as activation of the Met-receptor, all inducers of EMT 

(Cooke et al., 2012).   

To overcome the inconvenience of acquired resistance, Hanahan & Weinberg suggest either to 

intensify the inhibition of one hallmark, for example by targeting all redundant signalling 

pathways, or to co-target several hallmarks of cancer progression. An elegant strategy would be 

the inhibition of common pathways between hallmarks. 

A second mode of resistance is the pre-existing non-responsiveness of tumors to therapy.  A 

minority of patients did not even show a transitory clinical benefit, when treated with 

bevacizumab, sorafenib or sunitinib (Batchelor et al., 2007). One could assume that these 

patients had already developed an evasive mechanism of resistance in response to selective 

pressure of the tumor microenvironment before starting the therapy. Furthermore, it could be 

hypothesized that some tumors are hypovascularized, for example pancreatic ductal 

adenocarcinoma (Sofuni et al., 2005). A last possible explanation for intrinsic resistance could be 

the independence of tumor cells from sprouting angiogenesis as they could use alternative 

mechanisms, such as vessel co-option and others, which does not require the secretion of pro-

angiogenic factors (Leenders et al., 2004). 

Based on the raising importance of the tumor microenvironment and associated signalling 

crosstalk during cancer progression, tumor stroma seems to be a suitable target in cancer therapy. 

Barcellos-Hoff and colleagues propose in addition to standard cancer treatment, the therapeutic 

reversion of the cancer niche to normal tissue microenvironment as a key for long-term therapy 

success (Barcellos-Hoff et al., 2013). This approach implicates the normalization of the tumor 

extracellular matrix as its altered composition and organization limit drug penetration and 

intratumoral dissemination (Bissell & Radisky, 2001; Choi et al., 2013). This concept remains 

challenging as anti-stroma therapies failed in clinical trials, maybe due to the dynamic adaptation 

of the tumor microenvironment during carcinogenesis.  
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Given the heterogeneous clinical benefit of patients receiving especially anti-angiogenic 

therapies, there is a need for predictive biomarkers to determine the response to therapy and the 

outcome. To date, no standardized markers are available. Approaches using circulating 

angiogenic factors or imaging are emerging but need further validation (Wehland et al., 2013; 

Vasudev & Reynolds, 2014). Circulating IL-6 was proposed to be a potential biomarker for 

colorectal and lung cancer suggesting the benefit of anti-inflammatory cancer therapy (Heikkila 

et al., 2008). In addition, a recent review of clinical studies present in the literature found that IL-

6 is a potential predictive and prognostic biomarker for VEGF-targeted therapy in renal cell 

carcinoma (Funakoshi et al., 2014). 

 

4.3. Emerging link between regulation of mRNA stability and cancer  

Given the above described limitations of existing anti-cancer therapies, it seems 

worthwhile to develop novel multi-target therapy strategies. Since gene expression is altered in 

cancer due to somatic mutations as well as to epigenetic and post-transcriptional mechanisms 

and since the last two mentioned processes are genome-/transcriptome-wide regulatory 

mechanisms, one can anticipate that they represent relevant targets for the development of novel 

multi-target anti-cancer therapy approaches. Post-transcriptional control of gene expression 

implicates, among other mechanisms, the modulation of mRNA stability and/or their 

translational potential. In the cytoplasm, mRNA stability will determine the translation rate and 

regulate accordingly the final protein level and subsequent cellular response. As already 

introduced, AU-rich elements (AREs) are important cis-acting elements located in the 3’-

untranslated region of mRNAs, which are recognized by trans-acting factors (ARE-binding 

proteins) and implicated in mRNA turnover. ARE-mediated mRNA decay negatively regulates 

the expression of several key genes in cancer such as cytokines, growth and inflammatory factors 

or oncogenes. The importance of AREs in cancer is underscored by the fact that the removal of 

the ARE in the 3ʼUTR of c-fos transforms the proto-oncogene into an oncogene (Miller et al., 

1984). Most importantly, mRNA stability is often deregulated in cancer and inflammatory 

diseases, resulting in aberrant stabilization and overexpression of master mediators. Therefore, 

ARE-binding proteins, such as TIS11 proteins, may be involved in various cellular pathways of 

tumor development. Once again, most studies addressing the potential role of TIS11 proteins in 

cancer have been done for TTP, the best known member of the TIS11 protein family. The 

following section will discuss the role of this protein family in cancer. 
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4.3.1. Expression of TIS11 proteins in cancer cell lines 

Carrick & Blackshear determined the expression of all three TIS11 proteins in a large 

panel of human cancer cell lines (NCI 60) by RT-QPCR (Carrick & Blackshear, 2007). This 

screening showed a remarkable heterogeneity concerning the expression levels of the three 

members, TTP, TIS11b and TIS11d, within one normal organ as well as in different cancer cell 

lines. TTP mRNA, for example, is less abundant in MDA-MB-231 breast cancer cells compared 

to TIS11b and TIS11d. On the contrary, all three member transcripts are nearly undetectable in 

MCF 7 breast cancer cells. By contrast, Griseri et al. demonstrated a high TTP and low TIS11b 

protein level in MCF 7 breast cancer cells (Griseri et al., 2011). Nevertheless, from a general 

point of view, TIS11 proteins seem to be underexpressed in many cancers including colon 

cancer, breast cancer, malignant gliomas, cervical cancer and hepatocellular carcinoma as well as 

in tumors of lung, ovary, prostate and thyroid (Brennan et al., 2009; Sanduja et al., 2009). 

Interestingly, within a cohort of 251 breast cancer patients, Brennan et al. revealed a negative 

correlation between TTP mRNA level and tumor grade, indicating that the more advanced 

tumors showed weak TTP expression (Brennan et al., 2009). In addition, low TTP levels were 

associated with high VEGF mRNA expression in those patients. Regarding the disease outcome, 

low TTP mRNA levels indicated poor patient survival. Altogether, these correlations revealed 

TTP as a negative prognostic marker in breast cancer. 

So far, few studies have addressed the question of the mechanisms which are responsible for the 

suppressed expression of TIS11 proteins in cancer.  

First, Sohn et al. showed that epigenetic mechanisms were able to decrease TTP expression 

(Sohn et al., 2010). The methylation of one TGFβ response element located in TTP promoter 

efficiently reduced TTP expression in hepatocellular cancer cells. This epigenetic modification 

led to the same effect in hepatocellular carcinoma patients. Second, miR-29a, which is 

overexpressed in metastatic human breast cancer, reduces TTP expression post-transcriptionally 

(Gebeshuber et al., 2009). A third explanation for low TTP expression could be the degradation 

of TTP mRNA. As already mentioned, TTP mRNA contains AREs in the 3’UTR which could be 

recognized by TTP itself, thus forming an autoregulatory loop, or by other ARE-binding proteins 

(Brooks et al., 2004; Tchen et al., 2004; Pullmann et al., 2007). Fourth, Griseri et al. described a 

single nucleotide polymorphism in the TTP gene of a triple negative breast cancer cell line which 

leads to a lower translation rate of the TTP transcript due to a low abundance of TTP mRNA in 

polysomes, thus resulting in weak TTP protein levels (Griseri et al., 2011). In addition, the 

authors described a positive correlation between this genetic polymorphism and the resistance to 

Herceptin/Trastuzumab therapy of HER+ breast cancer patients. Furthermore, TTP expression 
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and activity is regulated by post-translational modifications, mainly hyperphosphorylation 

through several signalling pathways. Constitutive activation of ERK results in proteasomal TTP 

degradation in melanoma cells (Bourcier et al., 2011). On the contrary, phosphorylation of TTP 

by p38MAPK-activated protein kinase 2 (MK2) led to protein stabilization. However, this post-

translational modification reduced TTP affinity for ARE-containing mRNAs in macrophages 

(Hitti et al., 2006). In addition, suppression of TTP in head and neck cancer or its p38MAPK- 

mediated phosphorylation increases the levels of invasion-promoting factors, such as IL-6, 

MMP2 and MMP9 (Van Tubergen et al., 2011).  

The suppression of TTP protein expression in many tumors led to the hypothesis that this protein 

family could be involved in tumorigenic phenotypes. 

 

4.3.2. The impact of TIS11 proteins on cancer hallmarks  

Recent studies revealed an increasing number of TIS11 protein targets which are important 

factors in the different steps of tumor progression, supporting the idea that underexpression of 

the TIS11 protein family may lead to overexpression of tumor-promoting factors (Figure 38) 

(Ross et al., 2012). 

 

 

 

 

Figure 38: Network of TTP-mediated post-transcriptional control of mRNAs encoding oncogenic 

and tumor-promoting factors (Ross et al., 2012). 
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A negative correlation between TTP and tumor grade was found in breast cancer patients, 

suggesting that TIS11 proteins could be tumor suppressors (Brennan et al., 2009; Al-Souhibani 

et al., 2010; Griseri et al., 2011). In addition, low TTP expression is associated with 

monocytes/macrophages infiltration and correlated with poor outcome (Milke et al., 2013). 

 

Cancer-associated inflammation 

TNFα, the prototypic inflammatory cytokine and main mediator of cancer-associated 

inflammation, acts as a tumor-promoting factor and is associated with poor prognosis (Leek et 

al., 1998; Wu & Zhou, 2010). TNFα expression is tightly regulated, through ARE-mediated 

control of mRNA stability. In vitro, TTP binds to TNFα mRNA and promotes its degradation 

(Carballo et al., 1998; Lai et al., 1999). TTP-KO mice exhibit a systemic inflammatory 

syndrome due to abnormal stabilization of TNFα mRNA leading to elevated TNFα circulating 

levels (Taylor et al., 1996; Carballo et al., 1998). The cyclooxygenase 2 (COX-2), an enzyme 

involved in the synthesis of inflammation-regulating prostaglandins, is overexpressed in cancer 

(Simopoulos, 2002). Recent data suggested that loss of TTP in colon cancer promotes COX-2 

expression and could contribute to colon tumorigenesis (Young et al., 2009; Cha et al., 2011). 

Ectopic expression of TTP antagonized high COX-2 levels by targeting AREs in the 3ʼUTR of 

COX-2 mRNA, thus attenuating cell proliferation of colon cancer cells (Cha et al., 2011).  

IL-6 as well as other cytokines are survival and growth factors supporting cancer progression 

and tumor-related inflammation. Interestingly, Zhao et al. brought evidence for TTP-mediated 

IL-6 mRNA destabilization in TTP-deficient mice-derived embryonic fibroblasts (Zhao et al., 

2011). 

 

Sustained angiogenesis 

As already mentioned, sustained angiogenesis is a key event in tumor progression which is 

mainly induced by hypoxia-driven VEGF production. HIF-1α protein is stabilized by 

intratumoral hypoxia or oncogenes and is frequently overexpressed in human cancer (Semenza, 

2002). Our group has shown recently that TTP could also destabilize HIF-1α mRNA in 

endothelial cells in response to hypoxia, suggesting that HIF-1α mRNA levels are regulated by a 

negative feed-back loop aiming at preventing excessive HIF-1α protein accumulation 

(Chamboredon et al., 2011). High expression of HIF-1α mRNA was described in colorectal and 

gastric carcinomas and was associated with induced angiogenesis due to increased VEGF levels 

(Furlan et al., 2007; Ma et al., 2007). HIF-1α was therefore proposed as marker for poor disease 

outcome. In colon cancer, a negative correlation between TTP and VEGF expression was 



 

 117 

observed (Cha et al., 2011). In vivo studies performed by Essafi-Benkhadir et al. showed 

decreased vascularization in tumors derived from TTP-expressing breast cancer cells (Essafi-

Benkhadir et al., 2007; Lee et al., 2010).  

In malignant glioma cells, overexpression of TTP limited tumor growth due to TTP-induced 

destabilization of VEGF and IL-8 (Suswam et al., 2008). Interestingly, TTP expression was 

detected in both normal and malignant brain tissue, whereas hyperphosphorylated TTP was 

predominant in gliomas, suggesting that this post-translational modification via p38/MAPK 

attenuates TTP activity in these tumors. Bourcier et al. injected melanoma cells in IL-8-

immunized mice (Bourcier et al., 2011). The authors observed a delay of tumor appearance and 

a nearly 50 % reduction of tumor incidence indicating the importance of IL-8 in melanoma 

development. Additional experiments studying the molecular mechanism of this in vivo 

observation revealed that restored TTP expression in melanoma cells led to the TTP-mediated 

degradation of IL-8 mRNA in vitro. Furthermore, constitutive TTP expression inhibited 

proliferation, enhanced apoptosis and prevented autophagy in these cells. Interestingly, sorafenib 

increased TTP expression in melanoma cells. As expected a concomitant decrease of CXCL8 

mRNA was detected. These results might explain the anti-angiogenic effect of sorafenib cancer 

treatment. 

 

Tissue invasion and metastasis 

Closely connected to angiogenesis, invasion and metastasis are essential steps during cancer 

progression. TTP suppression seems to be associated with higher invasiveness of breast cancer 

cells (Gebeshuber et al., 2009). In this study, low TTP expression was associated with miR-

29a/Ras-induced repression of TTP mRNA in human breast cancer. Ectopic TTP expression 

could reduce invasion capacities of MD-MB-231 cells. Another study showed a lower expression 

of TTP in MDA-MB-231 cells, a highly metastatic breast cancer cell line, compared to MCF10, 

a non-invasive one (Al-Souhibani et al., 2010). In addition, the authors demonstrated that the 

restoration of TTP expression in MDA-MB-231 cells reduces the mRNA stability of MMP1, 

uPA and uPAR, key factors involved in invasion and metastasis, by directly interacting with the 

3ʼUTR of these mRNAs. Results from Al-Souhibani et al. further provided that the inhibition of 

miR-29a restored TTP expression and the balance between TTP and HuR in breast cancer cells. 

This led to the normalization of CXCR4 mRNA turnover, the most frequently overexpressed 

chemokine receptor in cancer (Al-Souhibani et al., 2014). Low CXCR4 expression was 

associated with reduced invasiveness of highly metastatic MDA-MB-231 cells.  
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Evasion of apoptosis 

Less data are available concerning TTP-mediated regulation of apoptosis. Based on several 

potential targets of TTP that were found by transcriptome-wide studies, one could speculate that 

TTP may influence apoptotic signalling (Stoecklin et al., 2008; Al-Souhibani et al., 2010). TTP 

expression is lost in human cervical cancer (Sanduja et al., 2009). Cervical cancer is induced by 

the infection with high-risk human papillomavirus (HPV) type 16 or 18. The expression of the 

early viral genes E6 and E7 neutralizes the tumor suppressors Rb protein and p53 protein and 

activates the telomerase enzyme via the action of the ubiquitin ligase E6-associated protein (E6-

AP). Overexpression of TTP in HPV18-transformed HeLa cervical cancer cells led to the TTP-

induced degradation of E6-AP and the further stabilization of p53 as well as inactivation of the 

telomerase. Finally, cell proliferation was inhibited due to the activation of cellular senescence 

(Sanduja et al., 2009). In a normal cellular context, Johnson et al. demonstrated that TTP 

induces apoptosis in 3T3 fibroblasts (Johnson & Blackwell, 2002). 

 

Limitless replicative potential 

Impact of TIS11 proteins on proliferation of cancer cells is sparely described. Recently, Lee et 

al. showed that TTP regulates mRNA stability of E2F1, a transcription factor involved in cell 

cycle and often highly expressed in cancer (Lee et al., 2014). Ectopic expression of TTP 

inhibited significantly the proliferation rate of prostate cancer cells by destabilizing E2F1. 

Restored TTP levels in HeLa cells reduced cell proliferation rate by 50% (Brennan et al., 2009). 

The same observations were made for MDA-MB-231 breast cancer cells (Griseri et al., 2011). 

 

First attempts using ARE-binding proteins in anti-cancer therapy  

Based on the fact that ARE-BPs are potential tumor suppressors which regulate various short-

lived mRNAs implicated in different hallmarks of cancer, some anti-cancer therapy approaches 

were pre-clinically investigated.  

Patients with non-small cell lung carcinoma develop an immune response caused by the 

abnormally high expression of the mRNA-stabilizing protein HuD (another member of HuR 

protein family). Elevated levels of anti-HuD antibodies were associated with a better prognosis 

for these patients. Interestingly, immunized mice against HuD showed a significant inhibition of 

HuD-overexpressing neuroblastoma growth and an increased intratumoral infiltration of CD3+ 

lymphocytes compared to control animals (Carpentier et al., 1998). This study provided the first 

example of treating deregulated expression of ARE-BPs by a neutralizing antibody.     
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Stoecklin et al. proposed another strategy in 2003 (Stoecklin et al., 2003). Knowing that IL-3, a 

frequently overexpressed cytokine in cancer, is a target of TTP, they hypothesized that TTP 

could downregulate IL-3 mRNA and impairs tumor growth. Indeed, restored TTP expression in 

v-H-ras-dependent mast cells led to a significant delay in tumor growth in vivo. Very 

interestingly, tumor escape after four weeks was due to loss of TTP expression. 

Ras or Raf overexpression maintains permanent activation of the ERK pathway, thus inducing 

uncontrolled proliferation of cancer cells. In vitro activation of ERK in Raf1-ER transformed 

fibroblasts induced an upregulation of TTP expression and led to VEGF mRNA destabilization 

(Essafi-Benkhadir et al., 2007). In line with Stoecklin et al. studies, implantation of these cells 

and activation of TTP expression by Doxycycline treatment inhibited tumor growth and tumor 

angiogenesis as measured by low VEGF levels and decreased microvessel density.  

Finally, our own group recently developed an anti-tumoral therapy based on the intratumoral 

injections of a cell-permeable TIS11b fusion protein (Planel et al., 2010). As VEGF is an 

important target of TIS11b, it was hypothesized that TIS11b fused to a small cell-penetrating 

peptide (9 N-terminal arginine residues (R9)) would restore low TIS11b abundance in tumor 

cells and would inhibit tumoral angiogenesis. Indeed, treatment of pre-established subcutaneous 

Lewis lung carcinoma (LLC) tumors decreased significantly tumor growth, tumor vascular 

density and VEGF expression. Antibody array analyses of tumor protein extracts revealed an 

additional inhibition of FGF-1, EGF, IL-1α, IL-6, IL-12 and TNFα in these tumors. This study 

proposes for the first time a novel multi-target cancer therapy based on an ARE-binding protein 

targeting key factors of tumor angiogenesis and cancer-associated inflammation.  
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In conclusion, during the last decades, a myriad of targeted cancer therapies were 

developed and clinically tested or are under current investigation. The seminal paper of Judah 

Folkman, showing the dependence of tumors on angiogenesis, and the work of Rudolf Virchow, 

demonstrating infiltration of tumor tissue by inflammatory cells, initiated this intensive research 

(Folkman, 1971; Balkwill & Mantovani, 2001). The entry of angiogenesis and inflammation 

inhibitors in clinical trials was a milestone in cancer therapeutics and some of these agents 

became standard-of-care therapies for certain cancer types during the last years. However, 

unexpectedly, adaptive or intrinsic therapy resistances attenuated the beneficial effects of these 

therapeutic strategies. Therefore, Hanahan & Weinberg advise combinatorial therapies targeting 

several crucial hallmarks in cancer progression, in addition to exploring novel strategies.  

During the last years, an emerging link between mRNA stability and cancer has appeared. The 

alteration of this tightly controlled post-transcriptional mechanism, mainly due to unusual ratios 

between stabilizing and destabilizing RNA-binding proteins, leads to the aberrant expression of 

tumorigenic factors. As described in this chapter, expression of mRNA destabilizing proteins, 

like members of the TIS11 family, is negatively correlated with aggressiveness of several human 

tumors. Therefore, their role as tumor suppressors makes them attractive targets in cancer 

therapy. As TIS11 proteins are involved in nearly every step of the tumorigenic process, a multi-

target effect of such a treatment could be anticipated. 
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Chapter 5 Breaking through the other side: Cell penetrating peptides 

Efficient internalization of therapeutic agents into target cells is critical for successful 

cancer treatment. However, since the plasma membrane of the cell functions as a physiological 

barrier, the application of information-rich macromolecules, such as DNA and proteins, to 

therapies has been restricted. A second restriction is the specific recognition of cancer cells for 

the delivery of therapeutic macromolecules in vivo, without affecting surrounding healthy cells.  

Various pharmaceutical carriers, like nanocapsules, nanospheres, liposomes, micelles, 

lipoproteins, cell ghosts and polymers have been generated for the delivery of diagnostic and 

therapeutic agents. These carriers remain in the circulation long enough to accumulate passively 

in tumors more than in normal tissue. This phenomenon is called Enhanced Permeability and 

Retention effect (EPR). Tumors secrete high concentrations of VEGF (also Vascular 

permeability factor) to induce angiogenesis. The new formed blood vessels are abnormal in their 

structure and function leading to a leaky vasculature allowing circulating pharmaceutical carriers 

to enter tumor tissue (Maeda et al., 2000). Unfortunately, these carriers do not deliver their cargo 

specifically to target cells or subcellular compartments. 

Another approach in drug delivery is the use of vector molecules, sugar moieties and peptides. 

Based on their active transport into target cells, these carriers could overcome the cell membrane 

barrier more efficiently resulting in intracellular delivery of their cargo. However, endocytotic 

internalization of these constructs is often restricted by insufficient endosome release, limited 

diffusion or degradation.  

The discovery of cell penetrating peptides (CPPs) or protein transduction domains (PTDs) in the 

70s of the last century was a milestone in drug delivery and paved the way for the development 

of biologically active macromolecular carriers with enhanced cellular entry properties to target 

tumor tissue and intracellular compartments. This chapter aims at briefly introducing the 

application of CPPs in cancer therapy. 
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5.1. Classes of CPPs 

In 1988, Frankel & Pabo discovered the first CPP, based on the observation of 

spontaneous internalization and nuclear translocation of the transcription-transactivating (TAT) 

protein of HIV-1 (Frankel & Pabo, 1988). Shortly after, the cellular uptake of the Drosophila 

melanogaster-derived peptide penetratin (pAntp) was demonstrated (Derossi et al., 1994). Futaki 

et al. described in 2001 the cellular uptake of proteins due to polyarginine sequences. Efficiency 

of internalization was correlated with number of arginine residues. Six to eight arginines were 

optimal. Proteins containing this CPP entered rapidly into treated cells without causing cytotoxic 

effects (Futaki et al., 2001). Since then, more than 100 peptidic sequences capable to internalize 

into cells were discovered in various species, including Transportan (chimeric peptide derived 

from the N-terminal fragment of the galenin neuropeptide fused to the mastoparan peptide), 

pVEC (peptide derived from the murine Vascular endothelial cadherin), amphipathic peptide 

(MAP), signal sequence-based peptides and synthetic arginine-enriched sequences (Table 8).  

 

 

Table 8: Examples of CPPs, their origin, structure and proposed mechanism of cellular uptake 

(Koren & Torchilin, 2012). 

 

CPPs are in general peptides of around 30 amino acids, derived from synthetic or natural 

proteins or chimeric sequences. Interestingly, peptides containing unnatural amino acids offer 

enhanced carrier stability and/or efficiency (Farrera-Sinfreu et al., 2007). Due to the obvious 

heterogeneity, a unique classification of CPPs is difficult. However, based on their origin, CPPs 

could be classified in two categories, one which requires a chemical link with the cargo and the 

second forming non-covalent, stable complexes with the cargo. While covalent conjugates with 

CPPs are recommended because of several advantages for in vivo studies, they present the risk of 

changing the biological activity of the cargo. Non-covalent complexes are based on CPPs 
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harbouring amphipathic sequences. This type of strategy, mainly developed for oligonucleotide 

delivery, was described for CPPs, such as polyarginines (Kim et al., 2006). Furthermore, 

structure characteristics of CPPs such as polycationic (clusters of polyarginine) or amphipathic 

structures serve for their classification.  

 

5.2. Different cellular uptake mechanisms of CPPs 

The mechanisms of CPP internalization are not completely understood. As sequence 

homology of proteins in which CPPs were discovered is weak, except for the CPP motif, and 

CPP uptake is not cell- or tissue-specific, one exclusive internalization pathway is not applicable. 

Historically, direct translocation of CPPs was described as a major mechanism of internalization. 

Indeed, CPPs fused to small cargos (peptides fewer than 30-40 amino acids) can enter cells 

rapidly by transduction. However, the direct translocation process cannot explain the uptake of 

CPP-cargo complexes of large sizes. Currently, CPPs are considered to be mainly associated 

with endocytosis-mediated cellular uptake, but the underlying mechanisms remain unclear. Most 

studies addressing this question used fluorescein-labelled CPPs. In addition, mechanisms 

independent of the endosome pathway involving the transmembrane potential were described 

(Thoren et al., 2003). However, the first interaction between the CPP via electrostatic 

interactions with the cell surface proteoglycans platform and the consequent actin network 

remodelling following the activation of GTPase Rho A or Rac 1 is common to all internalization 

processes. For example, the guanidine head group of polyarginines can form hydrogen bonds 

with negatively charged sulphates and phosphates on the surface of the cell membrane. This 

interaction allows also the accumulation of CPP-cargo complexes on the cell membrane. Further 

cellular uptake depends on several parameters, such as the cell type, the membrane composition, 

the nature of CPP structure as well as the type and concentration of the cargo, the nature of the 

interaction between CPP and cell membrane which is specific for each CPP. Endocytosis could 

be further distinguished in phagocytosis and pinocytosis. Whereas the first mentioned process is 

restricted to specialized cells, such as macrophages, pinocytosis occurs in each mammalian cell. 

Depending on CPP sequence and cargo, four mechanisms of endocytotic internalization were 

described so far: clathrin-dependent endocytosis, caveolae/lipid raft-mediated endocytosis or a 

mix of both of them and macropinocytosis as well as clathrin/caveolae-independent endocytosis 

(Figure 39). Cellular uptake mechanism of polyarginines remains a matter of debate. When 

conjugated to cargos, they were found in endosomes as well was free in the cytoplasm and 

nucleus indicating an endocytosis-independent translocation into the cells (Melikov & 

Chernomordik, 2005; Ter-Avetisyan et al., 2009). However, polyarginines need to pass a  
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Figure 39: Cellular uptake mechanisms and possible intracellular trafficking of CPPs (Chou et al., 

2011). 
 

 

lipophilic bilayer. Recently, a water-pore-assisted translocation mechanism has been proposed to 

further explain energy-independent internalization of polyarginines (Huang & Garcia, 2013). 

Polyarginines seem to nucleate a pore into the lipid membrane and translocate along this 

structure. Very little is known about the intracellular trafficking of CPPs. Clearly, the endosome 

escape of CPPs is a rate-limiting step before trafficking back to the cell membrane or fusing with 

lysosomes and regulates mainly bioavailability and activity of their cargos. 
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5.3. The potential of CPPs in anti-cancer drug delivery 

Bolhassani said: “Cancer could be cured if we knew how to deliver a drug intact to the 

cytosol of every cancer cell, sparing healthy cells.” (Bolhassani, 2011). 

CPPs offer several properties, such as their short sequence, low cytotoxicity and ability to carry 

cargos bigger than 500 Da, cell type-independent internalization and low immune response 

depending on the CPP. However, the major drawback of CPPs is their lack of cell specificity, 

which complicates their in vivo use. Schwarze et al. injected the TAT-β-galactosidase fusion 

protein intraperitionally in vivo and observed the delivery of this protein in almost all organs 

except the brain (Schwarze et al., 1999). It is known that CPPs can cross also the blood-brain-

barrier, thus enlarging their spectrum of applications. Since then, CPP-based drug delivery has 

been successfully used pre-clinical and clinical studies to target different diseases, including 

ischemia, apoptosis, and stimulation of cytotoxic immunity, cancer as well as other disorders 

(Fecke et al., 2009). To circumvent the “spreading” of CPP-cargo-complexes, they could be 

either locally applied, as shown in a study by our laboratory in which a R9-fusion protein 

inhibited tumor growth when intratumorally injected, or fused to molecular systems to improve 

targeting (Planel et al., 2010). In the latter study, one could take advantage of physiological and 

biological features of the targeted cell/organ, such as its enzymatic activity or microenvironment. 

In these constructs, the CPP would be first hidden, to avoid unspecific interactions while 

circulating in the organism. Once the target is reached, the CPP is fully exposed and could 

efficiently internalize its cargo. Jiang et al. provided in 2004 such a targeting system (Jiang et 

al., 2004). The authors fused a polyarginine-based CPP with an inhibitory domain of negatively 

charged residues linked together via a cleavable metalloprotease (MMP) sequence (Figure 40). 

This construct leads to the formation of a hairpin structure due to charge-based interaction of 

polyarginines and the inhibitory domain. Because levels of circulating MMPs are low, no 

cleavage of the construct occurs in the blood stream avoiding non-specific interactions of the 

CPP. Tumor cells are secreting actively MMPs in their microenvironment. In tumor tissue, MMP 

concentration is high enough to cleave the linker, followed by the dissociation of the anionic 

counterpart of the polyarginine sequence. The CPP can bind to target cells and internalize its 

covalently-bound cargo. 
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Figure 40: Activatable CPP, which is fused to an anionic inhibitory sequence via MMP-cleavable 

linker (Jiang et al., 2004). 

 

 

Sethuraman et al. propose a biodegradable pH-sensitive micelle delivery system (Sethuraman et 

al., 2008). This system consist of hydrophobic core into which drugs can be incorporated, coated 

with poly-ethylene glycol conjugated to the TAT CPP and a pH-sensitive polymer (PSD, poly 

sulfonamide) (Figure 41). In the blood system under normal pH, PSD is negatively charged and 

interacts with TAT. Due to pH decrease, for example near tumor cells, PSD loses its charge and 

dissociates from the TAT sequence, allowing the CPP to interact with target cells. 

 

 

Figure 41: Biodegradable pH-sensitive micelle delivery system (Sethuraman et al., 2008). See text 

for further explanation. 
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5.4. CTPs 

In addition to CPPs, another group of peptides, cell-targeting peptides (CTP), are 

described. These peptides recognize and bind with high affinity to receptors exclusively 

overexpressed by target cells. The best studied CTP is the RGD peptide (Gehlsen et al., 1988). 

The Arg-Gly-Asp (RGD) sequence is present in several circulating proteins and can bind to the 

αvβ3 integrin receptor, a receptor which plays an important role in angiogenesis, cell migration, 

invasion and formation of metastases. Therefore, αvβ3 integrin receptor has aroused interest as a 

target in cancer treatment. To further enhance the specific interaction of the RGD peptide and its 

target receptor, cyclization and multimerization of the peptide were investigated. Garanger et al. 

developed a cyclic decapeptide, named RAFT, on which they grafted four RGD peptides on the 

upper face for recognition of the integrin and two potential sites to link drugs on the bottom face 

(Garanger et al., 2005). RAFT(cRGD)4 was designed for the optimal binding to αvβ3 integrin 

receptor. Indeed, in vivo experiments within this study confirmed the tumor-specific delivery of 

anti-cancer drugs and imaging reagents. Therefore the RAFT(cRGD)4 is a useful tool for cancer 

treatment and imaging.  

Taking together the advantages and drawbacks of CPPs and CTPs, the ideal strategy to improve 

therapy efficiency would be the combination of both of them. While the CTP would guarantee 

specific targeting of tumor cells/tissue, the CPP would ensure cellular uptake of the drug. 

However, this approach remains challenging.  
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In conclusion, efficient and specific treatment of cancer is still a tough issue. The 

discovery of CPPs and CTPs were milestones in this challenge. Subtle utilization of both of them 

would allow the specific targeting of cancer cells or their environment and efficient drug 

delivery. The choice of which CPP/CTP will be used highly depends on the cargo, preferred 

cellular uptake mechanism and subcellular localization. Taking advantage of these useful tools, 

numerous pre-clinical trials of CPP-delivery approaches are ongoing (Bolhassani, 2011; Regberg 

et al., 2012).   
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Objectives 

Our laboratory is mainly interested in the study of physiological and tumor angiogenesis. The 

expression of vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, is 

tightly controlled at transcriptional and post-transcriptional levels. Post-transcriptionally, VEGF 

mRNA levels are regulated by stabilizing/destabilizing trans-acting factors, which bind to AU-

rich elements located in the 3’-untranslated region of VEGF mRNA. In 2004, our laboratory 

identified the zinc finger protein TIS11b as a negative regulator of VEGF mRNA stability. 

Therefore, TIS11b appeared as a new potential target in anti-angiogenic cancer therapies.  

Following this idea, our laboratory published in 2010 a novel concept in anti-angiogenic and 

anti-tumoral therapy based on the multi-target destabilization of short-lived mRNAs by TIS11b. 

Indeed, injections of purified cell-penetrating R9-TIS11b in pre-established tumors in mice 

inhibited significantly tumor growth and expression of angiogenic and inflammatory cytokines, 

with a consequent decrease in tumor vascularization. Unfortunately, the recombinant protein R9-

TIS11b was highly unstable, thus making a further characterization of the experimental therapy 

more difficult.  

In this context, the main task of my thesis was the development of a novel experimental anti-

cancer therapy based on a new generation of TIS11b proteins. Therefore, I pursued two 

complementary objectives which were: 

 

(1) The study of the impact of TIS11b phosphorylation on its function in ARE-mediated 

mRNA decay. My work focused on two phosphorylatable serines located in the distal N- 

and C-terminal domains of TIS11b, respectively. 

 

(2) The evaluation of the anti-tumoral activity of newly generated versions of TIS11b in vitro 

and in vivo. In this second part, I aimed to define whether these therapeutic proteins could 

impair major hallmarks of cancer and to identify their target transcripts in tumor tissue. 

The most promising candidate was a truncated form of TIS11b lacking the N-terminal 

domain of the full-length protein and harbouring a substitution of a C-terminal 

phosphorylatable serine by an aspartate. 
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Article 1 
____________________________________________________________________________ 

“A novel phosphorylation-dependent regulation of TIS11b stability and 

activity by cAMP-dependent protein kinase (PKA) reveals the important role 

of two conserved N- and C-terminal serines (S54 and S334)” 
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Introduction 

Paracrine acting VEGF is the key driver of physiological and pathological angiogenesis (Ferrara 

& Davis-Smyth, 1997). In addition, autocrine acting VEGF protects adult, quiescent endothelial 

cells (ECs) in concert with other angiogenic factors to maintain the existing vascular network 

(Lee et al., 2007). In vivo mouse models demonstrated that deletion of only one allele as well as 

a modest overexpression of VEGF lead to embryonic lethality due to defective vascularization 

(Carmeliet et al., 1996; Ferrara et al., 1996; Miquerol et al., 2000). Due to the biological 

importance of this pro-angiogenic factor, its expression is tightly controlled at the transcriptional 

and post-transcriptional level. Several response elements located in the promoter region of the 

VEGF gene regulate its transcription (Pages & Pouyssegur, 2005). Among other environmental 

stimuli such as hypoxia or growth factors, VEGF gene expression is induced by several 

hormones such as estrogens or progesterone. Indeed, transcriptional regulation of VEGF 

expression has been described for endocrine organs such as ovaries or endometrium. Beside its 

known action on adrenocortical steroidogenesis, the adrenocorticotropic hormone ACTH plays 

an instrumental role in the development and maintenance of the vascularization of the adrenal 

gland at least through its action on VEGF expression (Keramidas et al., 2004). In adrenocortical 

cells, ACTH acts via the melanocortin receptor 2 (MCR2). The stimulation of this seven-

transmembrane domain G-protein coupled receptor activates the adenylyl cyclase leading to 

increased intracellular cAMP levels and activation of the cAMP-dependent protein kinase A 

(PKA). Our team has previously shown that ACTH stimulates a rapid and transient increase of 

VEGF mRNA in primary bovine adrenocortical cells (BAC) which peaks around 3 h post-

stimulation (Chinn et al., 2002). It was shown that Forskolin, an activator of the adenylyl 

cyclase, was as potent as ACTH in eliciting an increase in VEGF mRNA levels (Gaillard et al., 

2000; Chinn et al., 2002). Interestingly, this mechanism is transcription-independent (Gaillard et 

al., 2000) and involves post-transcriptional regulations of VEGF mRNA stability.  

Several mechanisms control VEGF expression at the post-transcriptional level. Beside 

alternative splicing, alternative polyadenylation and translational control, VEGF mRNA stability 

is regulated by several RNA-binding proteins (RNA-BP). Theses mechanisms involve stabilizing 

RNA-BP such as HuR and destabilizing RNA-BP like TIS11b which bind to the 3’UTR of the 

VEGF transcript (Levy et al., 1998; Cherradi et al., 2006). In adrenocortical cells, ACTH 

induces the expression of TIS11b during the decay phase of VEGF mRNA (Chinn et al., 2002). 

This observation led our team to hypothesise that TIS11b is involved in the control of VEGF 

mRNA turnover. Using RNA interference strategy, it was found that indeed, TIS11b is a 

negative regulator of basal and ACTH-stimulated VEGF mRNA expression in BAC cells. 
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Furthermore, it was demonstrated that ACTH modulates the subcellular localization of HuR in 

BAC cells (Cherradi et al., 2006). HuR shuttles from the nucleus into the cytoplasm to stabilize 

VEGF mRNA. HuR and TIS11b bind to distinct but very close response elements in the 3’UTR 

of the VEGF transcript. Interestingly, co-overexpression of both proteins abrogated HuR-

induced VEGF mRNA stabilization suggesting a predominant role of TIS11b in the regulation of 

VEGF mRNA stability. Altogether, these studies led our team to propose a model in which 

ACTH first triggers VEGF mRNA stabilization through the nuclear export of HuR then 

subsequently promotes VEGF mRNA destabilization through the induction of TIS11b 

expression, thus allowing for a transient expression of VEGF in adrenocortical cells.  

TIS11 family proteins are highly phosphorylated following the activation of several signalling 

pathways. These post-translational modifications regulate expression, activity, stability and 

subcellular localization of the TIS11 proteins. In general, their phosphorylation is correlated with 

an inhibition of their mRNA-destabilizing activity. The p38 MAPK-activated Protein Kinase-2 

(MK2) phosphorylates TTP, the prototypical member of the family, thus allowing TTP 

interaction with 14-3-3 proteins (Chrestensen et al., 2004; Stoecklin et al., 2004). This 

interaction inhibits TTP-mediated degradation of AU-rich elements (ARE)-containing mRNA 

because phosphorylated TTP is unable to recruit components of the mRNA decay machinery. In 

addition, binding to the 14-3-3 proteins protected TTP from proteasomal degradation in the 

cytosol. The impact of TTP phosphorylation on its binding to ARE is still controversial 

(Schmidlin et al., 2004; Stoecklin et al., 2004). MK2-induced phosphorylation of TTP is 

counterbalanced by the phosphatase PP2A, thus re-activating TTP-mediated mRNA decay (Sun 

et al., 2007; Sandler & Stoecklin, 2008). MK2 phosphorylates TIS11b at Ser54, Ser92 and Ser203 

leading to the stabilization of TIS11b protein and the loss of its mRNA decay activity, but 

phosphorylated TIS11b can still bind ARE-containing mRNA (Maitra et al., 2008). The Protein 

Kinase B (PKB) phosphorylates the Ser92 and Ser203 of TIS11b with the same aforementioned 

effects on its activity and turnover (Benjamin et al., 2006). The phosphorylation of TTP by ERK 

enhanced its proteasomal degradation (Bourcier et al., 2011). In vitro studies by Cao & Lin 

showed that PKA phosphorylates TTP (Cao & Lin, 2008). In addition, it was demonstrated that 

PKA induces TIS11b expression in human osteoblast-like cells in response to parathyroid 

hormone treatment (Reppe et al., 2004). Unfortunately, this study did not analyse potential 

phosphorylation of TIS11b in response to PKA activation. Increasing evidence suggests that the 

phosphorylation status of TIS11 proteins also regulate their interaction with the mRNA decay 

machinery. Indeed, MK2-mediated phosphorylation of TTP impairs its activity as it prevents the 

recruitment of the Caf1 deadenylase in HeLa cells (Marchese et al., 2010; Clement et al., 2011). 
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To our knowledge, no data concerning the impact of TIS11b phosphorylation on its interaction 

with mRNA decay factors has been reported so far. 

In this context, we were interested in investigating whether TIS11b is a target of PKA in 

response to ACTH and how the phosphorylation of TIS11b could influence its mRNA-

destabilizing activity, protein stability, subcellular localization and interaction with components 

of the mRNA decay machinery.  

As this study has been started before I joined the team as a PhD student, I contributed partially 

but significantly to this work. All the results concerning the hormonal regulation of TIS11b 

expression were acquired before my arrival in the laboratory. To study the effect of TIS11b 

phosphorylation at Serine 54 or Serine 334 on the subcellular localization of TIS11b, I generated 

stable Hela tet-off cell lines, which express TIS11b phospho-mutants in response to tetracycline. 

I also studied the effect of hypoxia on endogenous TIS11b expression and phosphorylation in 

lung cancer cells. Using different approaches, I aimed to identify the kinase(s) and 

phosphatase(s) which regulate the phosphorylation of TIS11b under hypoxic conditions. 

Furthermore, I performed co-immunoprecipitation experiments to determine the effect of TIS11b 

phosphorylation on its interaction with components of the mRNA decay machinery. 
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Abstract 

TIS11b is a zinc finger protein which binds to mRNAs containing AU-rich elements (ARE) in 

their 3’-untranslated region (3’UTR) and promotes their deadenylation and rapid degradation. 

We have previously shown that VEGF mRNA expression is regulated through antagonistic 

binding of the mRNA-destabilizing TIS11b and the mRNA-stabilizing HuR to VEGF 3’UTR. 

The decay of ARE-containing mRNA is regulated by signalling pathways that have been shown 

to directly target ARE-binding proteins. In the present study, we observed that TIS11b is 

phosphorylated by the cAMP-dependent protein kinase A (PKA) in vitro and in vivo. In vitro 

kinase assays using two synthetic peptides spanning a N-terminal or a C-terminal regions of 

TIS11b as well as recombinant full-length protein suggest that PKA phosphorylates TIS11b at 

least at two distinct sites, the serine 54 (S54) and the serine 334 (S334). Western blot analyses 

using anti-phospho-specific antibodies showed that S54 and S334 are indeed phosphorylated in 

vivo, not only in a hormone-regulated cell context but also during the cellular response to 

hypoxic stress. Mutation of S54 to alanine decreased TIS11b half-life while it increased its 

mRNA-decay promoting activity. Surprisingly, mutation of S334 to alanine modestly affected 

TIS11b half-life while it impaired its function in mRNA decay. Moreover, mutation of S334 to 

aspartate strongly increased TIS11b half-life while it potentiated TIS11b mRNA-destabilizing 

activity. Co-immunoprecipitations experiments revealed that S54 is involved in the interaction of 

TIS11b with 14-3-3 proteins while S334 is involved with the interaction of TIS11b with the 

subunit of the Ccr4-Not complex CNOT1. Altogether, these results suggest that phosphorylation 

of TIS11b at S54 and S334 exert an opposite action on TIS11b function in ARE-dependent 

mRNA decay.  
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Introduction 

Besides transcription, there is now increasing evidence that post-transcriptional mechanisms 

contribute to a second level of regulation of gene expression. In particular, mRNA stability is a 

key step that has been understudied but which progressively appears as a highly regulated step. 

Importantly, this mechanism is responsive to modifications of the cellular environment (hypoxia, 

hypoglycemia, hormonal variations,…) and regulates the expression of subsets of proteins whose 

levels need to be rapidly adjusted. The regulation of mRNA stability involves cis-sequences 

located mainly in the 3’-untranslated region (3’UTR) of the target mRNA which are bound by 

trans-acting factors. The most studied cis-element is the AU-rich element (ARE) located in the 

3’-UTR of short-lived mRNAs. It has been estimated that at least 8% of the human genes code 

for ARE-containing mRNAs (Bakheet et al., 2003). These genes encode proteins such as 

cytokines, growth factors or metabolic regulators that require to be rapidly turned on or off in 

numerous transient biological processes (Chen & Shyu, 1994). A bioinformatic analysis of the 

genes involved in angiogenesis reveals that 25% of them contain AREs in their 3’-UTR 

(personal observations), thus demonstrating the importance of this type of regulatory sequences 

in such a finely tuned and rapidly-responding biological process.  

A great effort has been devoted over the last two decades to the identification of ARE-binding 

proteins and analysis of their contribution to the control of mRNA stability (Wilusz et al., 2001; 

Barreau et al., 2005). Several mRNA-stabilizing proteins have been identified such the members 

of the Hu family (HuR/HuA, HuC and HuD), as well as several mRNA-destabilizing proteins, 

including members of the TIS11 family of double zinc finger nucleo-cytoplasmic shuttling 

proteins or KSRP (Ma et al., 1996; Briata et al., 2013; Brooks & Blackshear, 2013). TIS11 

protein family is composed of four known members: TTP (Tristetraprolin/TIS11/ZFP36), 

TIS11b (ZFP36L1/BRF1), TIS11d (ZFP36L2/BRF2) and ZFP36L3 which is expressed 

exclusively in mouse placental tissue (Lai et al., 1999; Blackshear et al., 2005). The four 

members exert a destabilizing activity on short-lived mRNA by interacting with ARE sequences 

via highly conserved tandem zinc finger motives (Lai et al., 2000). In vitro, the three main 

members of TIS11 family (TTP, TIS11b and TIS11d) have been shown to interact with several 

ARE-containing mRNAs and to trigger deadenylation and degradation of the target mRNA. 

However, in vivo, TIS11 family members might have specific mRNA targets. Indeed, knock-out 

of the different TIS11 proteins in mice leads to different phenotypes (Taylor et al., 1996; Ramos 

et al., 2004; Stumpo et al., 2004; Bell et al., 2006; Stumpo et al., 2009; Hodson et al., 2010).  

TTP, the most studied member of TIS11 family, has been shown to trigger degradation of several 

transcripts including TNF-α, GM-CSF, IL-2, and IL-10 mRNA (Carballo et al., 1998; Carballo 
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et al., 2000; Ogilvie et al., 2005; Stoecklin et al., 2008). TTP is able to recruit the components of 

the mRNA decay machinery (Johnson & Blackwell, 2002; Fenger-Gron et al., 2005; Lykke-

Andersen & Wagner, 2005). We have previously shown that TIS11b destabilizes the mRNA of 

the angiogenic cytokine Vascular Endothelial Growth Factor (VEGF) (Ciais et al., 2004), via its 

interaction with two consensus ARE motives composed by a nonamer (UUAUUUAUU) and a 

pentamer (AUUUA) in VEGF mRNA 3’UTR. In endocrine cells, hormone-induced expression 

of VEGF is regulated through interplay between the mRNA-stabilizing protein HuR and the 

mRNA decay-promoting protein TIS11b (Cherradi et al., 2006). More recently, we have 

developed a preclinical anti-angiogenic and anti-tumoral therapy using the mRNA-destabilizing 

function of TIS11b (Planel et al., 2010).  

ARE-binding proteins are distal targets for signalling pathways in conveying external stimuli to 

the mRNA decay machinery. The p38 MAP Kinase (MAPK) and its downstream kinase MAPK-

activated protein kinase 2 (MK2) appear to play a pivotal role in ARE-mediated mRNA decay. 

Activation of p38 MAPK has been shown to impair the deadenylation of ARE-containing 

mRNA in vivo, leading to mRNA stabilization ((Winzen et al., 1999; Winzen et al., 2007). 

Macrophages from MK2-/- mice show severely reduced levels of TNF, IL-1, IL-6 and IFNγ 

due to decreased cytokine mRNA stability (Kotlyarov et al., 1999; Neininger et al., 2002). A 

major target of MK2 is TIS11/TTP protein which is directly phosphorylated at Serine 52 (S52) 

and Serine 178 (S178) allowing binding of 14-3-3 adaptors proteins. This interaction reduces the 

destabilizing activity of TTP (Johnson et al., 2002; Stoecklin et al., 2004). In addition, 

phosphorylation of TTP on S52 and S178 by MK2 stabilizes TTP protein by preventing TTP 

degradation by the proteasome and favours its cytoplasmic localization (Brooks et al., 2002). It 

has been suggested that MK2 is counterbalanced by protein phosphatase 2A (PP2A) which 

directly competes with 14-3-3 protein for binding to TTP. PP2A then dephosphorylates TTP at 

Ser178 (and possibly at other serine residues) and thereby activates mRNA decay. More 

recently, it has been shown that TTP phosphorylation by MK2 prevents the recruitment of the 

deadenylation machinery to the target mRNA (Clement et al., 2011).  

By contrast to the accumulating data on the impact of TTP phosphorylation on its function, few 

studies addressed the role of TIS11b phosphorylation in ARE-mediated mRNA decay.  

Phosphorylation of TIS11b by the Protein kinase B (PKB) at S92 and S203 abrogated mRNA 

decay of an IL-3 ARE-containing probe and led to TIS11b binding to 14-3-3 proteins as well as 

to TIS11b protein stabilization (Schmidlin et al., 2004; Benjamin et al., 2006). More recently, 

using in vitro kinase assays, Maitra et al. reported that phosphorylation of TIS11b by MK2 at 
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S54, together with S92 and S203 did not affect its ability to bind to ARE or to recruit mRNA 

degradation enzymes but did nonetheless inhibits its ability to destabilize ARE-containing 

mRNA (Maitra et al., 2008). The striking number of potential phosphorylation sites in TIS11b 

sequence suggests that the protein has to integrate multiples signals to provide the appropriate 

cellular response. In this study, we identified new phosphorylation sites in TIS11b and 

investigated the role of these phosphosites in the control of TIS11b activity and protein stability. 

We show that two putative Protein Kinase A (PKA) phosphorylation sites, the S54 and S334 

regulate not only the mRNA-destabilizing activity of TIS11b but also TIS11b protein stability. 

Our data indicate that in addition to the previously identified serines, S54 and S334 play a 

critical role in the control of TIS11b function. 

 

Material and Methods 

Cell culture 

Bovine adrenal glands were obtained from a local slaughterhouse. Zona fasciculata-reticularis 

cells (BAC) were prepared by enzymatic dispersion with trypsin and primary cultures were 

established as previously described in detail elsewhere (Duperray & Chambaz, 1980). BAC cells 

were cultured in Ham’s F12 medium supplemented with 10 % horse serum, 2.5 % fetal calf 

serum, 100 U/mL penicillin, 100 µg/mL streptomycin, 20 µg/mL gentamicin (Invitrogen, Saint 

Aubin, France). On day 4, 3 x 106 cells/10 cm-petri dish were stimulated with 10 nM ACTH for 

the indicated periods of time in the presence or in the absence of the PKA inhibitor H89 (5µM) 

(Sigma-Aldrich, Saint-Quentin Fallavier, France). A549 cells were purchased from ATCC and 

cultured in DMEM GlutaMAX High Glucose medium (Invitrogen) containing 10 % fetal bovine 

serum (GE Healthcare, Velizy-Villacoublay, France) and 100 U/mL of penicillin, 100 µg/mL of 

streptomycin (Invitrogen, Saint Aubin, France) and 30 µg/mL of gentamicin (Invitrogen). 7.5 x 

105 A549 cells were seeded in 35 mm-petri dishes. The day after, they were exposed to hypoxia 

(1.5 % O2) and harvested at the time point indicated for Western blot analyses. Alternatively, 

A549 cells were treated with 100 nM okadaic acid or DMSO (Sigma-Aldrich) then incubated 

under hypoxia. COS7 cells and Hela cells were cultured as described previously (Planel et al., 

2010). All cell types were grown at 37 °C in a 5 % CO2-95 % air atmosphere. 

 

Plasmids 

The plasmids pTarget-TIS11b-S54A, pTarget-TIS11b-S54D, pTarget-TIS11b-S334A, pTarget-

TIS11b-S334D, and pTarget-TIS11b-S54A-S334A were generated from pTarget-TIS11b wild 
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type (Ciais et al., 2004) by site directed mutagenesis (QuickChange XL site-directed 

mutagenesis kit, Agilent Technologies, Massy, France), using the primers indicated in 

Supplemental Table 1. pTarget-TIS11b-S54A served as a template to construct pTarget-TIS11b-

S54A-S334A. pTarget-TIS11b plasmid was also used to amplify the human TIS11b truncated 

forms by PCR using the primers indicated in Table 1. Following their amplification, the NZn 

(amino acids 1-195) and ZnC (amino acids 109-338) fragments were inserted into the pTarget 

plasmid using the T-overhangs to generate pTarget-NZn and pTarget-ZnC. For recombinant 

TIS11b, the constructs used were pET15b-Flag-TIS11b-S54A, pET15b-Flag-TIS11b-S334A, 

pET15b-Flag-NZn and pET15b-Flag-ZnC, which were constructed in the same way as pET15b-

Flag-TIS11b (Planel et al., 2010), using their respective pTarget plamid. Recombinant proteins 

were purified as previously described (Planel et al., 2010). To derive a tetracycline-regulated 

expression vector for wild type and mutant TIS11b, pTarget-TIS11b or pTarget-TIS11b mutants 

were digested with BamH1-Not1 then the fragments were inserted into the BamH1-Not1 sites of 

pTRE-Tight vector (Clontech, Saint-Germain-en-Laye, France) which harbours a tetracycline-

responsive element.  

 

Transient Transfections and Dual Luciferase Activity Assay 

1.5 x 105 COS7 cells were seeded in triplicate into 12 well-plates and transfected the day after 

using Lipofectamine (Invitrogen) according to the manufacturer’s recommendations. Ten ng of 

pTarget-TIS11 plasmids were transfected in the presence of 500 ng of pLuc-3’-UTR, and 25 ng 

of pRL-TK (Promega, Charbonnières Les Bains, France) to compensate for variations in 

transfection efficiency. Renilla and Firefly luciferase activities were measured sequentially 24 h 

after transfection using the Dual-Luciferase reporter assay system (Promega) on a LUMAT LB 

9507 luminometer (EGG-Berthold, Bad, Wildbad, Germany). Results are expressed as relative 

light units of Firefly luciferase activity over relative light units of renilla luciferase activity, and 

are represented as a percentage of the luciferase activity in control cells. Each transfection 

condition was performed in triplicate.  

 

Metabolic labelling 

BAC cells in primary culture (5 × 106 cells/10 cm-petri dish) were pre-labeled for 60 min in 

phosphate-free Ham’s F12 medium containing 200 μCi/mL [32P]-orthophosphate, before 

exposure to 10 nM of ACTH in the presence or in the absence of 10 µM H89 for the time 

indicated, at 37 °C. At the end of the stimulation period, cells were washed twice with ice-cold 

PBS and lysed in 0.5 mL ice-cold RIPA lysis buffer containing a protease inhibitor cocktail, 5 
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mM natrium fluoride, 100 nM okadaic acid, and 200 μM sodium orthovanadate (Sigma-Aldrich). 

Samples were briefly centrifuged at 10,000 × g for 15 min. Total cell lysates were pre-cleared 

with 20 μl protein A/G agarose mixture and incubated with 1 μg/mL of rabbit polyclonal anti-

TIS11b antibody at 4 °C for 12 h. The immune complex was isolated by adding 30 μl protein 

A/G mixture for 2 h at 4 °C and then centrifuging at 2 000 rpm for 5 min. The pellet was washed 

four times with RIPA buffer and analyzed by SDS PAGE and autoradiography. 

 

In vitro phosphorylation 

Recombinant Flag-TIS11b, Flag-TIS11b-S54A, Flag-TIS11b-S334A, Flag-NZn, Flag-ZnC or 

synthetic peptides were incubated with the catalytic subunit of the protein kinase A (PKA, 1 µg) 

in the presence of [γ32-P]-ATP (10 µCi), 0.2 mM of cold ATP and 15 mM of MgCl2 in Tris-HCl 

50 mM pH 7.4 for 20 min, at 30 °C in a final volume of 50 µL. Phosphorylation was stopped by 

the addition of 10 mM EDTA. The samples were analyzed by SDS-PAGE and phospho-proteins 

or phospho-peptides visualized by autoradiography. 

 

Generation of TIS11b/TIS11d phospho-specific antibodies 

Polyclonal, phospho-specific antibodies against TIS11b-phospho-S54 and TIS11b-phospho-S334 

were generated by injection of the synthetic KLH-conjugated peptides CAGGGFPRRH(Sp)VTL 

or RRLPIFSRL(Sp)ISD, respectively, into rabbits (CovalAb, Lyon, France). Sera were affinity-

purified using the same peptide, and non-phospho-specific antibodies were depleted by affinity 

purification using peptides containing unmodified serines. Due to the conservation of these 

sequences between TIS11b and TIS11d, the anti-phospho-serines antibodies recognize both 

phospho-proteins. 

 

Northern blot  

RNA extraction and Northern blot analysis have been described previously (Planel et al., 2010).  

 

Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) 

Total RNA was extracted using the Nucleospin RNA kit according to the manufacturer’s 

recommendations (Macherey-Nagel, Hoerdt, France). 1 µg of total RNA was reverse-transcribed 

with the iScript System (BioRad, Marnes-la-Coquette, France) according to the manufacturer’s 

guidelines and random primers from Invitrogen. cDNAs were diluted in a 50 µL final volume. 

Quantitative PCR was performed using the GoTaq qPCR Master Mix (Promega) and 2 µL-

aliquots of the RT reaction. Amplification of VEGF was carried out in a final volume of 20 µL 
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using a CFX96 Real-Time System thermocycler (Bio-Rad, Marnes-la-Coquette, France) with the 

following program: Initial denaturation at 95 °C for 5 min followed by 40 cycles of denaturation 

at 95 °C for 10 sec and annealing at 60 °C for 30 sec. Amplification of human VEGF mRNA 

was performed using the forward 5’-AAG GAG GAG GGC AGA ATC AT-3’ and reverse 5’-

ATC TGC ATG GTG ATG TTG GA-3’ primers. The size of the amplified fragment was 226-bp 

for the VEGF transcript. The primers for HPRT amplification were as follows:  5’-ATG GAC 

AGG ACT GAA CGT CTT GCT-3’ and 5’-TTG AGC ACA CAG AGG GCT ACA ATG-3’. 

This primer pair sequence amplifies a 80-bp fragment.  

 

Western Blot 

Western blotting was performed as described previously (Planel et al., 2010). In addition to the 

anti-phospho-TIS11b antibodies, the following antibodies were used: rabbit anti-TIS11b/TIS11d 

(BRF1/BRF2) and anti-TIS11b (BRF1) (Dr C Moroni, University of Basel), rabbit polyclonal 

anti-human VEGF-A (Santa Cruz Biotechnology, Heidelberg, Germany), mouse monoclonal 

anti-Actin (Sigma-Aldrich), rabbit polyclonal anti-pan-14-3-3 (K-19, Santa Cruz Biotechnology, 

Heidelberg, Germany), rabbit polyclonal anti-human CNOT1 (Proteintech, Manchester, UK). 

 

Measurement of the half-life of wild type and mutant TIS11b  

1.5 x 105 COS7 cells were were seeded into 12 well-plates and transfected the day after with 10 

ng of pTarget-TIS11b plasmids (pTarget-WT, pTarget-TIS11b-S54A, pTarget-TIS11b-S54D, 

pTarget-TIS11b-S334A, pTarget-TIS11b-S334D, and pTarget-TIS11b-S54A-S334A) using 

Lipofectamine (Invitrogen, Saint Aubin, France) according to the manufacturer’s 

recommendations. 48 hours post-transfection, cycloheximide (10 µg/mL) was added to each well 

for various periods of time. Cells were washed with cold PBS then lysed in RIPA buffer on ice 

as described above. Protein extracts were centrifuged at 10 000 x g for 15 min at 4 °C then 

protein concentration was determined using Micro BCA Protein Assay Kit (Thermo Fisher, 

Illkirch, France) according to the manufacturers' instructions. Samples were subsequently 

analyzed by western blot. 

  

Generation of stable Hela Tet-off cells expressing wild type TIS11b and TIS11b mutants 

Human Hela tet-off cells (2 x 106 cells) (Clontech) in DMEM/10 % fetal bovine serum (Tet 

System approved FBS, Clontech) at 50 % confluency in 100-mm diameter plate were transfected 

in the presence of 100 ng/mL doxycycline, using Lipofectamine 2000 (Invitrogen), with 2 µg of 

pTRE-Tight-TIS11b, pTRE-Tight-TIS11b-S54A, pTRE-Tight-TIS11b-S54D, pTRE-Tight-
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TIS11b-S334A or pTRE-Tight-TIS11b-S334D, and Linear Hygromycin Marker (100 ng, 

Clontech). Clones stably expressing TIS11b constructs were selected in the presence of 400 

µg/mL G418 (Invitrogen) and 100 µg/mL Hygromycin (Clontech) according to the 

manufacturer’s recommendations. A Transcriptional pulse from TIS11b or TIS11b mutant 

plasmids was initiated by washing the cells twice with phosphate buffer saline and feeding with 

DMEM/10 % serum containing no doxycycline.  

 

Immunofluorescence 

2.0 x 104 stably transfected Hela tet-off cells were plated on an eight-chamber Lab-Tek 

Coverglass plate (Thermo Fisher, Illkirch, France) and cultured overnight in growth medium 

containing doxycycline (1 µg/mL). The day after, medium was removed and growth medium 

without doxycycline was added to the cells to induce TIS11b expression. Forty eight hours after 

induction, cell culture medium was removed and cells were washed three times (5 min) with 

PBS. Cells were fixed for 20 min using 4 % Paraformaldehyde (PFA) and washed twice (5 min) 

with PBS then permeabilized during a 5 min-incubation with 0.2 % Triton X 100 in PBS. After 

three 5 min-washes with PBS, cells were then sequentially incubated for 1 hour in PBS buffer 

containing 0.5 % BSA and for 2 h with of rabbit anti-human TIS11b/BRF1 antiserum (1:200 

dilution; generous gift of Dr. C Moroni, University of Basel). After three washes of 5 min in 

PBS buffer containing 0.5 % BSA, cells were incubated for 1 h with 3 µg/mL donkey anti-rabbit 

Alexa 488 (Jackson Immuno Research, Marseille, France). Then, cells were washed three times 

(5 min) with PBS buffer containing 0.5 % BSA prior to the addition of 1 ng/mL Hoechst 33258 

(Invitrogen) for 3 min to stain nuclei. Intracellular localization of TIS11b was assessed by laser 

confocal microscopy (Leica, TCS-SP2). 

 

Immunoprecipitation assays 

COS7 cells cultured in 6-well plates were transfected with 50 ng of pTarget-TIS11b or pTarget-

TIS11b mutants. HEK 293 cells cultured in 10-cm petri dishes (4.5 x 106 cells / dish) were 

transfected with 250 ng of pTarget-TIS11b or pTarget-TIS11b mutants. Total cell lysates of each 

cell line was cleared by centrifugation for 15 min at 12,000 x g at 4° C. A mixture of rabbit anti-

N-terminal and anti-C-terminal peptide fragments of TIS11b (1 µg/mL) (Planel et al., 2010) as 

well as anti-TIS11b/TIS11d (BRF1/BRF2) polyclonal antibody (1/200 dilution; Ozyme, 

Montigny-le-Bretonneux, France) was added to whole supernatants, which were then gently 

rocked overnight at 4° C, before being incubated for 2 h with Rabbit IgG TrueBlot® beads 

(Tebu-Bio, Le Perray En Yvelines, France). Immunoprecipitates were pelleted, washed four 
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times with RIPA buffer, analyzed by SDS-PAGE and transferred to PVDF membranes. Blots 

were probed with anti-14-3-3 (Santa Cruz Biotechnologies, Heidelberg, Germany) or anti-

CNOT1 (Proteintech, Manchester, UK) antibodies. The membranes were thoroughly washed 

with TBS containing 0.1 % Tween20 then incubated for 1 h with HRP-conjugated IgG fraction 

monoclonal mouse anti-rabbit IgG, light chain specific antibodies (Jackson Immuno Research, 

Marseille, France). 

 

Results 

PKA signalling pathway regulates TIS11b expression and phosphorylation  

We have previously shown that the cAMP-mobilizing hormone adrenocorticotropin (ACTH) 

increases TIS11b protein expression in adrenocortical cells and that TIS11b-mRNA destabilizing 

activity is involved in the decay phase of ACTH-increased VEGF mRNA levels (Chinn et al., 

2002; Cherradi et al., 2006). In addition, activation of the cAMP signalling pathway induced a 

broad series of 38-50 kDa TIS11b bands which collapsed into a single band after λ-phosphatase 

treatment, indicating that the slower mobility species arose because of phosphorylation (Duan et 

al., 2009). To investigate the potential role of the protein kinase A (PKA) in hormone-elicited 

increase in TIS11b protein levels, bovine adrenocortical (BAC) cells in primary culture were 

stimulated by ACTH for various periods of time in the absence or in the presence of H89, a PKA 

specific inhibitor. The hormone induced a marked time-dependent increase in TIS11b protein 

levels (Fig. 1A and 1B) which was accompanied by a shift towards high molecular weight 

species (Fig. 1A). In contrast, VEGF mRNA and protein expression peaked at 3 h and 2 h, 

respectively, then decreased towards basal levels (Fig. 1A and 1B). Interestingly, the high 

induction of TIS11b at 6 h after the addition of ACTH was correlated to low VEGF mRNA and 

protein levels. In the presence of H89, the stimulation of TIS11b expression by ACTH was 

significantly reduced with changes in TIS11b electrophoretic mobility (Fig. 1A and 1B), while 

VEGF mRNA and protein induction was completely prevented (Fig. 1A and 1B). Note that the 

remaining TIS11b protein was still phosphorylated, suggesting an additional role for kinases 

other than PKA.  

To examine whether ACTH affects indeed TIS11b phosphorylation, TIS11b was 

immunoprecipitated from 32P-labeled adrenocortical cells. A basal phosphorylation level of 

TIS11b was detected in control cells while ACTH induced a robust and time-dependent increase 

of 32P incorporation into TIS11b which was markedly impaired in the presence of the H89 (Fig. 
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1C). We next performed in vitro phosphorylation experiments to determine whether TIS11b is a 

direct substrate of PKA. Purified recombinant GST-TIS11b was incubated in the presence of the 

catalytic subunit of PKA and 32P-labeled orthophosphate. As shown in Fig. 1D, TIS11b proved 

to be efficiently phosphorylated by PKA in vitro. In addition, the protein was detected as a 

doublet, probably corresponding to different phosphorylation states. Altogether, these results 

suggest that TIS11b expression and phosphorylation are positively regulated by PKA in 

endocrine adrenocortical cells.   

 

Identification of PKA target sites within TIS11b sequence: conserved S54 and S334 are 

phosphorylated in vitro 

TTP, TIS11b and TIS11d each consist of an RNA-binding zinc finger domain (Zn) flanked by 

N-terminal (NTD) and C-terminal (CTD) domains which can activate mRNA decay (Lykke-

Andersen & Wagner, 2005). Inspection of the coding sequence of TIS11b (SwissProt, accession 

number Q07352) using the Phosphorylation Site Predictor DISPHOS 1.3 

(http://www.dabi.temple.edu/disphos/) revealed that the CTD of TIS11b harbours a majority of 

putative phosphorylatable serine residues as compared to the NTD (Supplementary Fig. 1). By 

contrast, analysis of TTP sequence showed that putative phosphorylatable serines were almost 

equally distributed between the NTD and the CTD of TTP. Interestingly, TIS11d displayed a 

similar profile of putative phosphorylatable serines in its distal CTD to that of TIS11b, while an 

additional phosphorylation hotspot was predicted close to TIS11d zinc finger domain 

(Supplementary Fig. 1). We next wished to test which regions of TIS11b were responsible for 

the observed PKA-mediated phosphorylation. Because of the high instability of GST-TIS11b 

fusion proteins, we generated novel Flag-tagged constructs encoding full-length TIS11b, NZn 

(NTD + Zn) or ZnC (CTD + Zn) domains (Fig. 2A). Each construct was expressed in E. coli and 

purified using anti-Flag affinity chromatography. Recombinant proteins were tested as substrates 

for PKA in vitro. As shown in Fig. 2B (left panel), the ZnC domain (25 kD) was heavily 

phosphorylated as compared to the NZn (21 kD). However, it is worth mentioning that the 

apparent low phosphorylation of the NZn was due to the low purification yield of this fragment 

(Fig. 2B, silver stained gel). Indeed, quantification of independent experiments taking into 

account the purification yield revealed that the NZn domain was potently phosphorylated by 

PKA in vitro (Figure 2B, right panel).  

In order to identify putative PKA phosphorylation sites within TIS11b, we used NetPhosK 

(http://www.cbs.dtu.dk/services/NetPhos/) software. Four motives corresponding to PKA 

http://www.dabi.temple.edu/disphos/
http://www.cbs.dtu.dk/services/NetPhos/
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consensus phosphorylation sites (RXS or RRXS), including Serine 54 (S54), Serine 92 (S92), 

serine192 (S192) and serine 334 (S334) were found. As S54 and S334 presented the highest 

predictive score and as they were highly conserved not only between the three TTP family 

members TTP, TIS11b and TIS11d, but also between species (Fig. 2C), we focused on both 

serines. Interestingly, S54 has been reported previously as a target of MAPK-activated kinase 

kinase-2 (MK2) in vitro (Maitra et al., 2008). This could be due to the similarity between MK2 

and PKA consensus phosphorylation sites (RXXS and RRXS, respectively). We first tested 

whether TIS11b peptides spanning either S54 (amino acids 50 to 60) or S334 (amino acids 330 

to 338) were phosphorylated by PKA in vitro.  SDS-PAGE analysis and autoradiography 

revealed a heavy dose-dependent phosphorylation of the S54-bearing peptide while PKA also 

phosphorylated the S334-bearing peptide by but to a lesser extent (Fig. 2D). To determine 

whether S54 and S334 were directly targeted by PKA, we generated Flag-tagged TIS11b 

mutants in which S54 or S334 were replaced by an alanine to prevent phosphorylation (S54A or 

S334A). Purified wild-type (WT) or mutant proteins were incubated in vitro with PKA. As 

shown in Fig 2E, phosphorylation of TIS11b S54A mutant was markedly impaired when 

compared to that of WT TIS11b, suggesting that S54 is a major target of PKA. By contrast, 

phosphorylation of TIS11b S334A mutant was modestly although significantly affected, 

suggesting that S334 is a minor PKA phosphorylation site.  

To determine whether S54 and S334 were phosphorylated in vivo, we generated phospho-S54- 

and phospho-S334-specific antibodies in rabbits immunized with a phosphopeptide spanning 

S54 (CAGGGFPRRH(Sp)VTL) or a phosphopeptide spanning S334 (RRLPIFSRL(Sp)ISD). The 

specificity of the sera was characterized using the non-phosphorylatable TIS11b mutants (S54A 

or S334A). Wild-type or TIS11b mutants were overexpressed in COS7 cells then cells extracts 

were probed for phospho-S54- or phospho-S334-specific signals. A strong signal was obtained 

with the WT protein but no phosphorylation could be detected with the mutants (Fig. 2F and G), 

thus demonstrating the specificity of the newly raised antibodies.  

 

TIS11b is phosphorylated at S54 and S334 in vivo 

To assess whether TIS11b is phosphorylated at S54 and S334 in vivo, BAC cells were 

challenged with ACTH for various periods of time (Fig. 3A). Cell lysates were probed either 

with anti-total TIS11b/TIS11d or with anti-phospho-S54 or anti-phospho-S334 antibodies. It is 

worth mentioning that TIS11d expression was variable between primary cultures of BAC cells. 

In this experiment, TIS11d was detected at the basal level and slightly decreased at 6 hours post-
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stimulation while TIS11b which was nearly undetectable at (t=0 h) and markedly increased by 

ACTH treatment. ACTH induced an increase in phospho-S54 signal which paralleled the 

hormone-induced increase in total TIS11b protein levels. Interestingly, TIS11d was heavily 

labelled with the anti-phospho-S54 due to the conservation of the RRHS motif (S57 in TIS11d) 

between TIS11b and TIS11d. No anti-phospho-S334 signal was detected for TIS11b before 6 h 

of stimulation by the hormone, suggesting a delayed phosphorylation of this residue by ACTH 

(Fig. 3A). The single band detected belongs to the high molecular weight species of TIS11b. As 

observed with the anti-phospho-S54, TIS11d was markedly labelled with the anti-phospho-S334 

antibodies (S490 in TIS11d). Again, this result is likely due to the perfect conservation of the 

antigenic C-Terminal peptide between TIS11b and TIS11d. Importantly, co-treatment of BAC 

with ACTH and the PKA inhibitor H89 abrogated TIS11b induction as well as TIS11b 

phosphorylation at S54 and S334.  

In parallel with these experiments, we sought to evaluate whether phosphorylation of S54 and 

S334 could be observed in another cellular context. Besides hormones, hypoxia is another 

regulator of TTP protein family expression (Sinha et al., 2009; Kim et al., 2010). In particular, 

TIS11b expression was shown to be increased in VHL-expressing renal cell carcinoma in 

response to hypoxia (Sinha et al., 2009). We choose the A549 lung carcinoma cell line where 

low levels of TIS11b mRNA have been reported (Carrick & Blackshear, 2007). To examine 

whether hypoxia could modulate TIS11b expression and/or phosphorylation at the S54 and S334 

residues, A549 cells were exposed to normoxia or hypoxia (1.5 % O2) for 2 to 8 h then total cell 

extracts were analyzed by western blot. A transient but robust increase in TIS11b levels was 

observed in A549 cells under hypoxia, peaking between 2 h and 4 h of exposure and declining at 

8 h (Fig. 3B). This increase in total protein level was accompanied by an increase in the quantity 

of phosphorylated TIS11b at the S54 and S334 residues. Interestingly, as observed for TIS11b, 

TIS11d was heavily labelled with anti-phospho-S54-antibodies in response to hypoxia. By 

contrast, TIS11d was labelled with anti-phospho-S334-antibodies (S490 in TIS11d) in both 

normoxic and hypoxic conditions.  

As the phosphorylation status of TIS11b protein family depends on dynamic equilibrium of 

kinase and phosphatase activities (Benjamin et al., 2006; Brook et al., 2006; Sun et al., 2007), 

we sought to determine whether inhibition of Serine/Threonine phosphatases could impact the 

level of hypoxia-induced phosphorylation of S54 and S334 within TIS11b. Therefore, A549 cells 

were exposed to normoxia or hypoxia for 8 h in the absence or in the presence of okadaic acid 

(OA), a potent inhibitor of protein phosphatases PP1 and PP2A. As shown in Fig. 3C, treatment 

of normoxic A549 cells by OA led to a dramatic increase in total TIS11b protein levels in 
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normoxia and this upregulation was even more pronounced in response to hypoxia. In addition, 

OA caused accumulation of low mobility bands of TIS11b that were shifted upward under 

hypoxia (Fig. 3C). OA-induced TIS11b protein levels in normoxia were highly phosphorylated 

at S54 (Fig. 3C). Under hypoxia, OA led to a disappearance of TIS11b high-mobility bands, 

presumably corresponding to hypophosphorylated forms of the protein. Importantly, OA-induced 

TIS11b under hypoxia was heavily phosphorylated at S334 with appearance of low mobility-

forms of the protein (Fig. 3C).   

Altogether, these observations demonstrate that the S54 and S334 residues of TIS11b as well as 

their counterparts in TIS11d are phosphorylation target sites. Moreover, these sites are regulated 

under different physiological conditions and in different cell types, suggesting that they may play 

a wide biological role in the function of TIS11b.   

 

S54 and S334 regulate TIS11b mRNA-destabilizing activity  

Like TTP, TIS11b is a direct substrate of the kinases PKB (Serines 90/92/203) (Schmidlin et al., 

2004; Benjamin et al., 2006) and MK2 (Serines 54/92/203) (Maitra et al., 2008). PKB- and 

MK2-induced phosphorylation of TIS11b at Serines 90/92/203 was reported to exert an 

inhibitory on TIS11b-mediated ARE mRNA decay (Schmidlin et al., 2004; Stoecklin et al., 

2004; Benjamin et al., 2006). To determine the role of S54 and S334 in TIS11b function, we 

constructed different mutants by replacing S54 and S334 by either an alanine, to block 

phosphorylation, or by an aspartate, to mimic phosphorylation. The mRNA-destabilizing activity 

of wild type TIS11b (WT), TIS11b S54A, TIS11b S54D, TIS11b S334A, TIS11b S334D and 

TIS11b S54A/S334A mutants was assessed using a Luciferase-VEGF 3'UTR fusion construct 

(Ciais et al., 2004) of which activity is driven by ARE-containing VEGF 3’UTR. As shown in 

Fig. 4A, overexpression of WT TIS11b decreased luciferase activity to 60 % of controls while 

substitution of S54 by an alanine (S54A) decreased luciferase activity to 40 %. By contrast, the 

activity of the mutant S54D was not statistically different from that of the WT. Interestingly, 

when the S334 was replaced by an alanine (S334A), luciferase activity was modestly decreased 

(78 % of controls). Replacing S334 by an aspartate (S334D) decreased luciferase activity to ~ 

60%, as observed for the WT. The double mutant (S54A/S334A) displayed a luciferase activity 

to 70 % of control. However, the low activity of this mutant was correlated to its consistent low 

expression level when compared to the single mutants. We next examined the effect of TIS11b 

mutant expression on endogenous VEGF mRNA steady state levels. Overexpression of each 

mutant followed by northern blot analysis revealed that both S54A and S334D mutants were 
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more efficient in decreasing VEGF mRNA than the WT (Fig. 4B and 4C) whereas the mutant 

S334A was less active. Interestingly, while the activity of the mutant S334D was not 

significantly different from that of the WT in reporter gene assays (Fig. 4A), this mutant 

appeared more active in decreasing endogenous VEGF mRNA. Altogether, these results indicate 

that the S54A mutant is more efficient in triggering mRNA decay than the WT and therefore that 

phosphorylation on S54 negatively modulates TIS11b mRNA-destabilizing activity. By contrast, 

the S334A mutant is less active than the WT suggesting that phosphorylation of the residue S334 

potentiates TIS11b function.  

 

TIS11b protein stability is regulated by S54 and S334  

Importantly, TIS11b protein turnover and mRNA decay activity were shown to be regulated by 

PKB at the same phosphorylation sites (Benjamin et al., 2006). We therefore investigated 

whether S54 and S334 were involved the regulation of TIS11b protein half-life. COS7 cells were 

transfected with wild type TIS11b, (S54A), (S54D), (S334A), (S334D) or (S54A/S334A) 

mutants then translation was arrested by cycloheximide at the time points indicated.  Western 

blot analyses of total cell extracts from independent experiments showed that the half-life of the 

WT TIS11b was of 4 ± 0.6 h (Fig. 5A). Notably, the slower-migrating bands corresponding to 

more highly phosphorylated forms of TIS11b appear to decay less rapidly. The mutant (S54A) 

displayed a shorter half-life of 2 ± 0.8 h while the (S54D) mutant half-life was similar to that of 

the WT (4.1 ± 0.4). The S334A mutant was less stable (3.5 ± 0.5 h) than the WT. By contrast, 

TIS11b protein stability was strikingly increased when the S334 was replaced by an aspartate 

(S334D), with a half-life around 7.7 ± 0.3 h. Interestingly, the half-life of the double mutant 

(54A/S334A) was in between the half-lives of (S54A) and (S334A) mutants (3.0 ± 0.6 h). These 

results demonstrate that in addition to their regulatory role in TIS11b-mediated mRNA decay, 

S54 or S334 are critical residues in the control TIS11b turnover. 

 

S54 and S334 modulate the proteasome-dependent degradation of TIS11b  

TIS11b degradation has been previously shown to proceed through the proteasome (Benjamin et 

al., 2006). Our observation that (S54A) and (S334A) mutants are rapidly degraded suggests that 

these serines are key residues in the regulation of TIS11b protein stability. To examine the 

molecular mechanisms of TIS11b and TIS11b mutant degradation, we assessed their stability in 
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the presence of the proteasome inhibitor MG132 in COS7 cells in overexpression experiments. 

With the exception of the mutant (S334D), WT TIS11b as well as the other phosphorylation 

mutants accumulated within the cells, indicating that their degradation is mediated, at least 

partially, by the proteasome (Fig. 5B). The S334D mutant was less sensitive to MG132-mediated 

blockade suggesting that this highly stable mutant might be degraded by an alternative 

degradation pathway. 

 

Mimicking a phosphorylation at S54 changes TIS11b subcellular localization 

TIS11b and related proteins are nucleocytoplasmic shuttling proteins. They all contain a specific 

nuclear localization sequence (NLS) located between the two zinc fingers. In addition to these 

import sequences, nuclear export signals (NES) are present in the N-terminus of TTP or in the C-

termini of both TIS11b and TIS11d. Importantly, the S334 residue is located in the NES of 

TIS11b. As the function of TTP family members in mRNA decay is known to occur in the 

cytoplasm, we hypothesized that changes in the subcellular distribution of TIS11b mutants could 

explain the differential regulation of VEGF mRNA decay by these mutants (Fig. 4A and 4C), in 

particular for the mutant (S334A) (Fig. 4). We therefore generated Hela-tet-off cells stably 

expressing WT or mutant TIS11b. Transcription of TIS11b was controlled by a tetracycline 

regulatory promoter, which allows for gene expression when Hela cells were cultured in the 

absence of the doxycycline.  Immunofluorescence analyses using an antibody recognizing 

specifically TIS11b (and not TIS11d) revealed that WT TIS11b was distributed throughout the 

cytoplasm and the nucleus of Hela cells (Fig. 6). The mutants (54A), (334A) and (334D) 

displayed a similar pattern of subcellular localization to that of the WT. Of note, (334D) mutant 

was expressed at higher levels than the WT or the other mutants, possibly due to its enhanced 

protein stability (Fig. 6). Interestingly, the expression of the mutant (54D) was restricted to the 

cytoplasm, suggesting that this mutant was not able to translocate to the nuclear compartment or 

is sequestered in the cytoplasm. Altogether, these observations indicate that the differences that 

we observed in the mRNA-destabilizing activities of TIS11b mutants compared to the WT are 

unlikely related to a distinct subcellular localization. 
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Mimicking a phosphorylation at S54 promotes the binding of TIS11b to endogenous 14-3-3 

proteins 

Serines S90, S92 and S203 were previously shown to be important for phosphorylation-

dependent binding of TIS11b to 14-3-3 proteins (Benjamin et al., 2006). Mutation of all these 

three sites to alanine abolished TIS11b-14-3-3 interaction. In addition, the triple mutant 

(S54A/S92A/S203A) failed to interact with 14-3-3. We investigated the role of S54 and S334 

alone or in conjunction with each other in the interaction of TIS11b with 14-3-3 proteins 

(Fig.7A). Transfection experiments followed by TIS11b immunoprecipitation and western blot 

analysis of 14-3-3 proteins showed that a weak basal interaction of WT TIS11b with a 14-3-3 

protein doublet (~30 kD) was detected in COS7 cells, suggesting a basal activity of an 

unidentified kinase. The level of immunoprecipitated 14-3-3 was markedly increased for the 

S54D mutant, indicating that phosphorylation of this serine is involved in TIS11b/14-3-3 protein 

interaction. However, the mutant (S54A) also interacts with 14-3-3, thus confirming that other 

phosphorylated serine residues within TIS11b sequence are implicated in TIS11b/14-3-3 

interaction. Both (S334A) and (334D) mutants interact with 14-3-3 with an enhanced binding to 

the higher molecular weight species. Remarkably, this enhanced selective interaction was 

impaired in the presence of the double mutant (S54A/334A). These results suggest that S54 

regulates the binding of TIS11b to 14-3-3 and that S334 does not play a major role in this 

process. The preferential localization of the (S54D) mutant in the cytoplasm (Fig. 6) is likely due 

to its sequestration by 14-3-3 proteins. 

 

TIS11b interacts with endogenous CNOT1 

TTP, the prototypical member of TIS family as well as TIS11b were shown to activate mRNA 

decay by recruiting the deadenylase complex including Ccr4, Caf1a as well as the decapping 

enzyme Dcp2 and the exonuclease Xrn1 (Lykke-Andersen & Wagner, 2005; Marchese et al., 

2010; Clement et al., 2011; Sandler et al., 2011; Fabian et al., 2013). However, there is some 

controversy regarding the location of the domain of interaction within TTP. While some studies 

concluded that the Ccr4-NOT complex interacts with the N-terminal part of TTP (Lykke-

Andersen & Wagner, 2005), a more recent data reported interactions with the C-terminal domain 

of TPP (Sandler et al., 2011; Fabian et al., 2013). Recently, a crystal structure of the NOT1 

subunit associated with a C-terminal peptide of TTP identified a TTP-Ccr4-NOT interaction 

motif (TTP-CIM, Fig. 7B). TTP-CIM is highly conserved between TTP family members and 
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comprises the S334 residue (S323 in TTP, Fig. 7A). To investigate whether TIS11b interacts 

with CNOT and whether S344 is an important residue in this interaction, we transfected HEK 

293 cells with WT TIS11b or with the S334A or S334D mutants and performed co-

immunoprecipitation assays. Fig. 7C shows that TIS11b exists in complex with endogenous 

CNOT1 in cell extracts. In addition, the mutants S334A and S3334D also interact with CNOT1. 

However, we observed in independent experiments that mimicking phosphorylation at S334 

caused reduced association with CNOT1. These results indicate that the S334 residue is involved 

in the interaction of TIS11b with CNOT1, thus confirming the importance of this highly 

conserved serine among TIS11 family members.  

 

Discussion 

Upon hormone stimulation, adrenocortical cells exhibit a transient induction of VEGF mRNA 

mainly through post-transcriptional mechanisms. These regulations involve antagonistic roles of 

the mRNA-stabilizing protein HuR and the mRNA-destabilizing protein TIS11b 

(BRF1/ZFP36L1) which both, bind to AU-rich elements in the 3’-untranslated region of VEGF 

mRNA (Ciais et al., 2004; Cherradi et al., 2006). TIS11 proteins are targets of several kinases 

which modulate their mRNA-decay promoting activity as well as their protein stability (Brooks 

et al., 2004; Baou et al., 2009; Brooks & Blackshear, 2013). In this report, we provide evidence 

that hormone-stimulated expression of VEGF mRNA is accompanied by a PKA-dependent 

phosphorylation of the N-terminal serine 54 in the early phase of stimulation while a 

phosphorylation of the C-terminal serine 334 occurs in the late phase. We subsequently focused 

on both serines and demonstrated that mimicking or preventing their phosphorylation impact 

TIS11b function in mRNA decay as well as TIS11b protein turnover. Unexpectedly, while 

MAPK-activated protein kinase-2 (MK2)- and protein kinase B (PKB)-mediated 

phosphorylations of TIS11b at specific serines were reported to inhibit its mRNA-destabilizing 

activity (Stoecklin et al., 2002; Schmidlin et al., 2004; Benjamin et al., 2006; Maitra et al., 

2008), we found that mimicking a phosphorylation at serine 334 potentiates TIS11b function, 

suggesting that the regulatory role of TIS11b phosphorylation in mRNA decay may be more 

complex than anticipated.  

In adrenocortical endocrine cells, ACTH is a major physiological agonist which mainly activates 

the cAMP messenger system and the protein kinase A to induce steroid hormone biosynthesis. 

We have previously shown that ACTH triggers a transient increase in VEGF mRNA levels 

which involves TIS11b in the decay phase of VEGF mRNA expression (Chinn et al., 2002; 
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Cherradi et al., 2006). Our data in vivo show that the hormone also induces a rapid 

phosphorylation of TIS11b which is significantly impaired in the presence of H89. We 

subsequently used prediction software to identify putative PKA phosphorylation sites. As 

previous studies have reported that the N-terminal and the C-terminal domains of TIS11 proteins 

family might have different functions in the recruitment of the mRNA decay machinery (Lykke-

Andersen & Wagner, 2005; Sandler et al., 2011), we focused our attention on S54 and S334 

which are located in the N-terminal and the C-terminal domains of TIS11b, respectively. Using 

peptides fragments containing each of S54 and S334 residues, we found that these sites are 

indeed phosphorylated by PKA in vitro, although to a lesser extent at S334.  Substitution of S54 

or S334 by an alanine in recombinant proteins expressed in E. coli prevented PKA-mediated 

phosphorylation, thus confirming that they are PKA target sites. Recently, mass spectrometric 

analyses revealed that S54 was phosphorylated by MK2 in vitro in conjunction with S92 and 

S203 (Maitra et al., 2008). Interestingly, as the PKA consensus phosphorylation site RXXS is 

embedded within the MK2 consensus site (HyXRXXSXX, where X is any amino acid and Hy is 

any hydrophobic amino acid), a phosphorylation of this serine residue by both kinases is not 

surprising. Nevertheless, the role of S54 alone in the regulation of TIS11b-dependent mRNA 

decay has not been investigated. Importantly, using anti-phospho-specific antibodies, we 

demonstrate that S54 and S334 are phosphorylated in vivo not only in hormonally-regulated 

cellular context but also during cancer cell response to hypoxic stress. These observations 

suggest that both serines may play an important role in the regulation of TIS11b-dependent 

mRNA decay. Remarkably, phosphorylation at S334 occurs in the late phase of TIS11b 

induction by ACTH which is associated with decreased levels of VEGF mRNA, suggesting that 

S334 is a regulatory phosphosite which is required for the destabilization of VEGF mRNA by 

TIS11b. The kinase(s) involved in the phosphorylation of S54 and S334 in response to hypoxia 

remains to be identified. Nevertheless, we observed that inhibition of phosphatase PP2A by 

okadaic acid increased the phosphorylation of both serines. These data are in agreement with 

previous studies showing that PP2A inhibition increased TTP phosphorylation in macrophages 

(Sun et al., 2007) and indicate that the phosphorylation status of TIS11 proteins depends on 

dynamic equilibrium of kinase and phosphatase activities. It is worth mentioning that the role of 

S334 in the regulation of TIS11b function has not been previously addressed. A recent study 

reporting the mammalian target of rapamycin (mTOR)-regulated phosphoproteome identified 

S334 as target residue in TIS11b (Hsu et al., 2011).   

Phosphorylation of TIS11b by the protein kinase B (PKB) at Ser92 and Ser203 abrogated mRNA 

decay of an IL-3 ARE-containing probe and led to TIS11b binding to 14-3-3 proteins as well as 
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to TIS11b protein stabilization (Schmidlin et al., 2004; Benjamin et al., 2006). More recently, 

using in vitro kinase assays, Maitra et al reported that phosphorylation of TIS11b by MK2 

together at Serine 54, Serine 92 and Serine 203 did not affect its ability to bind to ARE or to 

recruit mRNA degradation enzymes but did nonetheless inhibits its ability to destabilize ARE-

containing mRNA (Maitra et al., 2008). We therefore investigated the role of PKA phosphosites 

in TIS11b-mediated VEGF mRNA decay by replacing Serine 54 and Serine 334 by an alanine. 

We found that substitution of S54 potentiates TIS11b activity in VEGF-3’UTR-driven luciferase 

activity as well as in northern blot analyses of endogenous VEGF mRNA, suggesting that 

phosphorylation of S54 negatively regulates TIS11b function. This result is in agreement with 

studies by Maitra et al (Maitra et al., 2008), reporting that phosphorylation of S54 is likely 

necessary for the inhibition of TIS11b-dependent mRNA decay. By contrast, we show for the 

first time that preventing phosphorylation of S334 through its alanine substitution impairs 

TIS11b function. Intriguingly, the mutant TIS11b-S334D even proved to be more active than 

wild type TIS11b in triggering VEGF mRNA degradation. Given the striking number of 

phosphorylatable serines in TIS11b (49 out of 338 amino acids), in particular in the C-terminal 

domain of the protein (Supplementary figure 1), we hypothesize that TIS11b function in ARE-

mediated mRNA decay could be modulated by antagonistic phosphorylation events. 

We tested the impact of S54 and S334 mutations on a second aspect of TIS11b biology, namely 

the phosphorylation-dependent regulation of TIS11b turnover. We determined the half-life of 

TIS11b which is about 4 h. These results are similar to those obtained by Benjamin et al., even 

though the half-life of TIS11b in their experiments was slightly shorter (around 3h) (Benjamin et 

al., 2006). Although highly unstable compared to the wild type TIS11b, the mutant TIS11b-

S54A displayed the highest mRNA-destabilizing activity, suggesting that its intrinsic activity is 

probably higher than the one measured in transfection experiments. The substitution of S334 by 

an alanine did not change significantly TIS11b half-life, indicating that the altered activity of 

TIS11b-S334A is not due to protein instability. Importantly, the mutant TIS11b-S334D 

displayed a markedly enhanced stability when compared to TIS11b suggesting that the S334A 

mutation would favour a long-lasting action of the protein. In agreement with previous studies 

(Benjamin et al., 2006), proteasome blockade with the specific inhibitor MG-132 led to 

stabilization of pre-existing TIS11b, indicating that TIS11b undergoes degradation through the 

proteasome pathway. On the other hand, all the mutants bearing an alanine substitution (S54A, 

S334A and S54A/S334) were highly stabilized when the proteasome was blocked. These data 

are in line with their short half-lives. By contrast, the mutant S334D was resistant to proteasome 
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blockade, suggesting that its degradation might occur through alternative mechanisms, such as 

the lysosomal pathway. 

The recruitment of Ccr4-Not deadenylase complexes by TIS11 proteins is emerging as a major 

mechanism in ARE-mediated mRNA decay. Phosphorylation of TTP by MK2 impairs its 

activity by preventing deadenylase recruitment (Marchese et al., 2010; Clement et al., 2011).  In 

addition, phosphorylated TTP and TIS11b are sequestered by the 14-3-3 adaptor proteins 

(Chrestensen et al., 2004; Schmidlin et al., 2004; Stoecklin et al., 2004; Benjamin et al., 2006; 

Sun et al., 2007). Phosphorylation of serine 92 and serine 203 has been shown to protect TIS11b 

from dephosphorylation, promote cytoplasmic localization and protects TIS11b from 

proteasomal degradation. Interestingly, we observed that mimicking phosphorylation at S54 

(TIS11b-S54D) retained TIS11b in the cytoplasm and increased its association with 14-3-3 

proteins. These results are in line with previous studies by others and point at S54 as an 

additional regulatory site in TIS11b/14-3-3 protein interaction. In attempts to identify the role of 

S334 in TIS11b-mediated mRNA decay, we conducted co-immunoprecipitations experiments of 

TIS11b and components of the Ccr4-Not complex. Very interestingly, Fabian et al. reported 

recently a high-resolution crystal structure of the TTP-CNOT1 complex in which they identified 

the serine 323 of TTP (Serine 334 in TIS11b) as a critical serine for the interaction of TIS11b 

with CNOT1 (Fabian et al., 2013). It was postulated that phosphorylation of this serine would 

probably impair TTP-CNOT1 binding. Our results showing that the association of the mutant 

TIS11b-S334D with CNOT1 is decreased as compared to that of the wild type TIS11b confirm 

this hypothesis. However, this perturbed association is not correlated to a decrease in TIS11b-

mediated mRNA decay as we observed that TIS11b-S334D mutant is highly active in decreasing 

VEGF-3’UTR-driven luciferase activity as well as endogenous VEGF mRNA steady state levels. 

Therefore, we hypothesize that recruitment of other untested mRNA decay enzymes is increased 

upon phosphorylation of serine 334. Alternatively, unknown additional critical factors may 

regulate the activity of the mRNA decay machinery.  

Altogether, our results led us to propose a model for TIS11b function in cAMP-regulated VEGF 

mRNA expression (figure 8). Upon activation of cAMP signalling pathway, TIS11b protein is 

induced and is concomitantly phosphorylated at S54 by PKA, binds to 14-3-3 proteins and is 

prevented from participating to VEGF mRNA decay, in addition to be protected from 

degradation. This allows HuR-triggered stabilization of VEGF mRNA (Cherradi et al., 2006). 

At the end of the stabilizing signal, TIS11b undergoes concomitant dephosphorylation at S54 

and phosphorylation at S334 and is active in promoting the decay of VEGF mRNA.  
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Legends of the figures 

Figure 1: ACTH induces a cAMP-dependent expression and phosphorylation of TIS11b.  

(A) Primary cultures of BAC cells were treated with 10 nM ACTH in the absence or in the presence 

of 5 µM H89 for the indicated periods of time. TIS11b and VEGF protein levels of whole cell 

extracts (20 g) were analysed by Western blot. The blot was subsequently probed with an anti--

Actin to assess equal loading of samples. 

 (B)  Quantification of TIS11b, VEGF mRNA and protein levels from independent experiments (n=3-

5, means ± s.e.m). Protein level values were normalized to actin values and are expressed as 

percentage of control values at time 0 (unstimulated cells).  

(C)  Time-course of TIS11b phosphorylation in BAC cells stimulated with 10 nM ACTH in the 

presence of 32P-orthophosphate and in the presence or absence of H89. TIS11b was 

immunoprecipitated from cell extracts and resolved by SDS-PAGE then visualized by 

autoradiography. One representative experiment of four is shown. 

(D)  Phosphorylation of recombinant TIS11b by the catalytic subunit of PKA. Purified GST-TIS11b 

fusion protein was produced as described previously (Ciais et al, 2004). Increasing doses of GST-

TIS11b were subjected to in vitro phosphorylation as described in Material and Methods. Vect: 

30 µg of protein extract from E. coli transformed with empty vector (pGEX) were used as control 

in the phosphorylation assay. *, degradation product consistently detected in purified GST-

TIS11b samples.  

 

Figure 2: The serines S54 and S334 are PKA-target sites in vitro.  

(A) Schematic representation of full length (FL) TIS11b and TIS11b truncated forms used in in vitro 

phosphorylation experiments (NZn and ZnC). The tandem zinc fingers are shown in gray.  

(B)  Dose-dependent phosphorylation of FL TIS11b, NZn and ZnC by the catalytic subunit of PKA. 

Recombinant purified proteins were used in kinase assay and resolved by SDS-PAGE. Protein 

labelling was visualized by autoradiography (upper panel). The low molecular weight bands 

migrating in TIS11b samples are degradation products of the protein (Planel et al., 2010). The 

lower panel is the corresponding silver stained gel showing that the NZn truncated protein is less 

abundant than the FL and the ZnC. Shown on the right is the quantification of three independent 

experiments. Relative ratios of the band intensity of phosphorylated protein/total purified protein 

are reported (n=3, mean ± s.e.m).  

(C) Sequence alignment of conserved amino acid within the N-terminus and the C-terminus between 

TIS11b, TIS11d and TTP showing PKA consensus motives (highlighted in red, RRHS and RLS). 

These motives are also conserved between species in TIS11b sequence and harbour the serine 54 
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and the serine 334 (hs, homo sapiens; Bt, bos taurus; Rt, rattus norvegicus; mm, mus musculus; 

xl, xenopus laevis).  

(D) Dose-dependent in vitro phosphorylation of synthetic N-terminal and C-terminal peptides of 

TIS11b by the catalytic subunit of PKA. Both peptides contain the PKA consensus motives 

RRHS or RLS (S54 and S334 are shown in bold). Phosphorylated peptides were resolved by 

SDS-PAGE (15 %) and visualized by autoradiography.  

(E)  In vitro phosphorylation of recombinant WT TIS11b and TIS11b mutants (S54A) and (S334A). 

Protein extracts from E. coli transformed with empty vector (pET15b) served as control (Vect). 

The lower panel shows a western blot analysis of TIS11b and its mutants in the phosphorylated 

fractions using an anti-Flag antibody. PKA-mediated phosphorylation of TIS11b was 

significantly impaired when S54 was replaced by an alanine while it was altered to a lesser extent 

for the S334A mutant (right panel, n=3, mean ± s.e.m, ** and ***, significantly different from the 

WT with p<0.01 and p<0.001, respectively).  

(F) COS7 cells were transfected with pTarget-TIS11b, pTarget-TIS11b (S54A) or pTarget-TIS11b 

(S334A) plasmids. To assess the specificity of the anti-phospho-TIS11b antibodies, cell lysates 

were analyzed by western blot using the anti-phospho-S54- or anti-phospho-S334-TIS11b 

antibodies. 

 

Figure 3: TIS11b is phosphorylated at serine 54 and serine 334 in vivo.  

(A) BAC cells were stimulated with ACTH in the presence or in the absence of H89 for the indicated 

periods of time. Total cell extracts were probed for total TIS11b/TIS11d, phospho-S54- and 

phospho-S334-TIS11b. Due to the conserved PKA consensus motives (RRHS and RHS, see Fig. 

2) within TIS11b and TIS11d sequences, both phosphoproteins were detected. Note the shift of 

TIS11b towards high molecular weight species. The asterisk * indicates the phospho-(S334)-

TIS11b species appearing at 6 h post-stimulation by ACTH. 

 (B)  A549 lung carcinoma cells were exposed to normoxia (0h) or hypoxia for 2, 4, and 8 hours.  In 

the left panels, cells extracts were probed by western blot as described in (A). In the right panels, 

A549 cells were exposed to normoxia or hypoxia for 8 hours in the absence or in the presence of 

okadaic acid, an inhibitor of the phosphatases PP2A/PP1. Note the phospho-(S334)-TIS11b 

species appearing under hypoxia in the presence of OA (indicated by *). Blots were subsequently 

probed with an anti--Actin to assess equal loading of samples. 

 

Figure 4: Serine 54 and Serine 334 regulate TIS11b ARE-mediated mRNA decay.  

(A) COS7 cells were co-transfected with pLuc-3’UTR and pTarget plasmids encoding wild type 

TIS11b (WT), TIS11b (S54A), TIS11b (S54D), TIS11b (S334A), TIS11b (S334D) or TIS11b 

(S54A/S334A) mutants as described in Material and Methods. Firefly/Renilla luciferase activities 
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of cell lysates were measured as described in Material and Methods. Results are expressed as 

relative light units of Firefly luciferase activity over relative light units of Renilla luciferase 

activity, and are represented as a percentage of the luciferase activity in control cells transfected 

with empty pTarget plasmid. Luciferase activity is inversely proportional to TIS11b mRNA-

destabilizing activity. Transfections were performed in triplicate and values are means ± s.e.m. 

from 5 to 7 independent experiments. Values of luciferase measured for TIS11b mutants were 

compared to the value of WT TIS11b. *, significantly different from WT with p<0.05; ns: no 

significant difference when compared to the WT. The lower panel is a representative western blot 

analysis of overexpressed TIS11b proteins showing that equivalent amounts of TIS11b were 

recovered except for the double mutant S54A/S334A which is consistently less expressed.  

(B) Northern blot analysis of VEGF mRNA in COS7 cells transfected as in (A).  

(C) Quantification of VEGF mRNA steady state levels in 3 independent experiments. Note that 

TIS11b VEGF mRNA-destabilizing activity is potentiated when the S54 residue was replaced by 

an alanine while it was altered when the serine S334 was replaced by an alanine. *, **, 

significantly different from WT with p<0.05 and p<0.01, respectively; ns: no significant 

difference when compared to the WT. 

 

Figure 5: Serine 54 and Serine 334 regulate TIS11b protein stability.  

(A) COS7 cells were co-transfected with 10 ng of pTarget plasmids encoding wild type TIS11b (WT), 

TIS11b (S54A), TIS11b (S54D), TIS11b (S334A), TIS11b (S334D) or TIS11b (S54A/S334A) 

mutants. The half-life of the different forms of TIS11b was determined in the presence of the 

translation inhibitor cycloheximide as reported in Material and Methods. The graphs are 

quantification of the western blots shown on the left. TIS11b protein levels were normalized to 

Actin levels and plotted as a percentage of the initial value against time. The numbers on the right 

indicate the half-lives calculated from 4 independent experiments. The most unstable TIS11b 

protein is the S54A mutant.  

(B) WT TIS11b and TIS11b phosphorylation mutants are differentially stabilized in the presence of 

the proteasome inhibitor MG-132. COS7 cells were transfected with 10 ng of pTarget plasmids 

encoding wild type or mutant TIS11b. 24h post-transfection, cells were incubated with the 

proteasome inhibitor MG-132 (10 µM) for 3h and cell lysates were analyzed by western blot. 

 

Figure 6: Serine 54 but not Serine 334 regulates TIS11b subcellular localization.  

Laser confocal microscopy analysis of Hela-tet-off cells expressing WT or mutant TIS11b. TIS11b 

expression was induced in the absence of Doxycycline. Immunofluorescence labelling was performed 

using antibodies recognizing only TIS11b and not TIS11d as described in Material and Methods. Control 

cells were transfected with empty pTRE-Tight vector. Note that the S54D mutant localized exclusively to 
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the cytoplasm. Nuclei were stained with Hoechst. Scale bar, 20 µm. Embedded images are of higher 

magnification. 

 

Figure 7: Serine 54 is involved in the interaction of TIS11b with 14-3-3 proteins while S334 is  

involved in the interaction with CNOT1.  

(A) Western blot showing co-immunoprecipitation assays. Transiently expressed WT or mutant 

TIS11b were immunoprecipitated from HEK 293 cell extracts and precipitates were probed for 

the presence of TIS11b and endogenous 14-3-3 proteins. IgG: immunoprecipitation reaction using 

normal rabbit serum in place of TIS11b antibodies.  

(B) Sequence alignment of the distal C-terminus of TTP family members showing that the TTP-

CCR4-NOT interaction motif is highly conserved between TTP family members (Fabian et al., 

2013).  

(C) Western blot showing co-immunoprecipitation assays performed as described in A. Transiently 

expressed WT or mutant TIS11b were immunoprecipitated from HEK 293 cell extracts and 

precipitates were probed for the presence of TIS11b and endogenous CNOT1. Input: 5% total cell 

extract. The western blot is representative of 3 independent experiments. 

 

Figure 8: Model for TIS11b function in cAMP-regulated VEGF mRNA decay.  

We identified two putative protein kinase A (PKA) phosphorylation sites, S54 and S334, in TIS11b 

protein sequence with important roles in protein activity and stability. ACTH stimulation increases 

intracellular cAMP levels through the action of the G protein Gs and the Adenylyl cyclase (AC). This 

leads to activation of PKA. (1) Phosphorylation of TIS11b at S54 by PKA does not alter significantly 

protein  stability, but inhibits protein activity. We hypothesize that TIS11b-phospho-S54 is sequestered in 

the cytoplasm due to enhanced interaction with 14-3-3 proteins. This mechanism would promote VEGF 

mRNA induction. (2) To turn off VEGF production, phosphorylation of TIS11b at S334 by PKA 

increases protein stability and activity. Dephosphorylation of both serines by the phosphatase PP2A leads 

to degradation of TIS11b via the proteasome. 

 

Supplementary Figure 1: Phosphorylation Site Predictions in TTP family members according to 

DISPHOS 1.3 software. S is serine and T threonine. Zn: zinc finger. Note 

that the N-terminal domain of TTP is enriched in putative 

phosphorylation sites while the N-terminal domain of TIS11b and Tis11d 

harbours few putative phosphorylation sites 
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FIGURE 1 

 

 

 

 

 

 

 

 

 



 

 176 

 FIGURE 2  



 

 177 

FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 



 

 182 

FIGURE 8 
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SUPPLEMENTARY FIGURE 1 
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SUPPLEMENTARY TABLE 1 

Mutant Forward primer Reverse primer 

TIS11b-S54A 5'-CCCTCGGAGGCACGCAGTCACCCTGCCCAGC-3' 5'-

GCTGGGCAGGGTGACTGCGTGCCTCCGA

GGG-3' 

TIS11b-S54D 5'-CCTCGGAGGCACGACGTCACCCTGCCGAGC-3' 5'-

CTGGGGAGGGTGACGTCGTGCCTCCGAG

GG-3' 

TIS11b-S334A 5-

'GCCCATCTTCAGCAGACTTGCCATCTCAGATGAC

TAAGCGGC-3' 

5'-

GCCGCTTAGTCATCTGAGATGGCAAGTCT

GCTGAAGATGGGC-3' 

TIS11b-S334D 5'-

CTGCCCATCTTCAGCAGACTTGACATCTCAGATG

ACTAAGCG-3' 

5’-

GCCGCTTAGTCATCTGAGATGTCAAGTCT

GCTGAAGATGGGCAG-3’  

TIS11b-

S54A/S334A 

5'-CCCTCGGAGGCACGCAGTCACCCTGCCCAGC-3' 5'-

GCCGCTTAGTCATCTGAGATGGCAAGTCT

GCTGAAGATGGGC-3' 
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“Targeting AU-rich element-mediated mRNA decay using a mutant version of 

ZFP36L1/TIS11b zinc finger protein impairs major hallmarks of 
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Introduction 

Gene expression is highly dysregulated in many types of cancer. It has appeared that modifications 

of mRNA stability are significantly contributing to these deregulations (Griseri and Pages, 2014; Han et 

al., 2013; Srikantan et al., 2012; Sanduja et al., 2012; Benjamin & Moroni, 2007). Messenger RNA 

stability is regulated in part through the binding of stabilizing or destabilizing proteins to AU-

rich elements (AREs) within the 3’-untranslated region (3’UTR) of target mRNAs. Destabilizing 

ARE-binding proteins enhance the decay of their targets through their association with the 

mRNA decay machinery. Therefore, mRNA decay-promoting ARE-binding proteins, such as 

TIS11 proteins, may be involved in various cellular pathways of multi-step tumor development 

(Ross et al., 2012). Indeed, TIS11 proteins are generally underexpressed in many different types 

of cancer, suggesting their potential role as tumor suppressors (Brennan et al., 2009; Sanduja et 

al., 2012).  

The TIS11 (TPA-Inducible Sequence 11) protein family consists of three members, including 

TTP, TIS11b and TIS11d in mammals. The three members share structural similarities (two 

CCCH-type zinc fingers) and mechanisms of action. However, these proteins may have specific 

mRNA targets in vivo as suggested by their gene invalidations in vivo, which results in 

dramatically distinct phenotypes (Taylor et al., 1996; Ramos et al., 2004; Stumpo et al., 2004; 

Bell et al., 2006; Hodson et al., 2010). Our team was first to show that TIS11b inhibits VEGF 

expression by destabilizing its mRNA and to identify the molecular mechanisms which are 

implicated in this regulation (Ciais et al., 2004). Our observations were confirmed by the fact 

that TIS11b-deficient mouse embryos show deleterious vascular defects related to high VEGF 

concentrations (Bell et al., 2006). These embryos die in utero. Furthermore, other pro-

inflammatory and pro-angiogenic mRNAs such as those encoding GM-CSF, TNFα, IL-6 and 

pre-messenger mRNA of Dll4, were described as TIS11b mRNA targets in vitro (Baou et al., 

2009; Desroches-Castan et al., 2011). 

Tumor growth is highly dependent on the supply of nutrients and oxygen from blood vessels. 

Above a size of 2-3 mm3, tumors induce their own vascularisation through the “angiogenic 

switch” (Folkman, 1971; Bergers & Benjamin, 2003; Carmeliet & Jain, 2011). Among other 

pro-angiogenic factors, VEGF is a key player in the initiation of tumor angiogenesis and 

therefore provides an attractive target for anti-cancer therapies. Promising results using 

antibodies targeting VEGF (bevacizumab/Avastin, Genentech/Roche) or tyrosine kinase 

inhibitors affecting VEGF receptors’ activity combined with chemotherapy could be obtained in 

http://www.ncbi.nlm.nih.gov/pubmed?term=Han%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24516048
http://www.ncbi.nlm.nih.gov/pubmed?term=Han%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24516048
http://www.ncbi.nlm.nih.gov/pubmed?term=Srikantan%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22201738
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several types of cancer (Limaverde-Sousa et al., 2014). However, during the last years, mounting 

evidence of resistance to these anti-angiogenic strategies appeared (Bergers & Hanahan, 2008).  

Resistances seem to occur either through the selection of a hypoxia-resistant subpopulation of 

tumor cells, or the redundancy of pro-angiogenic factors apart VEGF (e.g. FGF, IL-6, IL-8 etc).  

Since TIS11b inhibits VEGF expression differently from bevacizumab and since this protein 

targets also various inflammatory and pro-angiogenic cytokines in vitro, we hypothesized that 

TIS11b could be an innovative multi-target anti-angiogenic and anti-tumoral molecule. To set up 

this novel anti-cancer strategy, TIS11b was fused to a cell-penetrating peptide (polyarginine R9). 

Our team reported recently that purified R9-TIS11b efficiently enters living cells and reduces 

VEGF mRNA and protein levels in vitro (Planel et al., 2010). A single-dose injection of R9-

TIS11b markedly decreased VEGF expression in the mouse adrenal gland in vivo. Furthermore, 

intratumoral injection of R9-TIS11b protein into pre-established tumors (Lewis Lung carcinoma) 

in mice reduced tumor growth and dramatically decreased the expression of several angiogenic 

and inflammatory cytokines including VEGF, TNFα, IL-1β and IL-6, with a concomitant 

obliteration of tumor vascularization. Unfortunately, this study was limited by the instability of 

the purified R9-TIS11 protein.  

Therefore, the main objective of my PhD thesis was the optimization of the TIS11b protein 

stability and activity for our experimental therapeutic purposes taking advantage of the results 

presented in article 1, followed by the evaluation of the multi-target anti-tumoral and anti-

angiogenic activity and of the newly generated TIS11b protein constructs in vitro and in vivo.  

The results that we obtained in vitro are reported in the following manuscript “Targeting AU-

rich element-mediated mRNA decay using a mutant version of ZFP36L1/TIS11b zinc finger 

protein impairs major hallmarks of tumorigenesis”. Unfortunately, we faced unpredictable 

difficulties in our in vivo studies. Indeed, the weak reproducibility due to the spontaneous 

regression of tumors in control animals complicated the analysis of our preclinical models. 

Therefore, the preliminary but promising data that we have obtained in vivo were not integrated 

in the manuscript but are presented as supplementary results after the article. We plan to perform 

further in vivo studies and to include our observations before the submission of the article for 

publication.  
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Abstract 

Alterations in mRNA stability can lead to various diseases including cancer and chronic 

inflammation.  A considerable number of mRNAs encoding for cytokines, growth factors, 

transcription factors and oncogenes are abnormally stabilized in tumorigenic processes, 

including angiogenesis, inflammation and invasion/metastasis. Therefore, therapeutic 

interventions that aim at controlling aberrant mRNA stability are needed. The RNA-binding 

protein family TIS11 (TPA-Inducible Sequence 11) mediate mRNA decay through their binding 

to AU-rich elements in mRNA 3’UTR and subsequent recruitment of the mRNA degradation 

machinery. We have previously reported that the cell-permeable R9-TIS11b fusion protein 

displays an anti-angiogenic and anti-tumoral activities in vivo. The aim of the present study was 

to produce a new generation of more stable versions of TIS11b to improve our existing anti-

tumoral strategy. We demonstrate that the deletion mutant lacking the N-terminal domain of 

TIS11b (ZnC) as well as its phosphorylation mutant ZnCS334D are more stable and highly active 

in vitro. Fusion of both proteins to the R9 (polyarginine) cell-penetrating peptide induced 

efficient cellular uptake and destabilizing activity of VEGF mRNA. In vitro studies using the 

murine breast cancer cell line 4T1 revealed that VEGF expression was significantly reduced in 

the presence of R9-ZnC while it was completely obliterated in the presence of R9-ZnCS334D. 

Analysis of the effect of both recombinant proteins on several hallmarks of tumorigenesis 

showed that R9-ZnCS334D inhibits 4T1 cell proliferation, migration, invasion and anchorage-

independent growth while the non-mutated R9-ZnC only impedes 4T1 cell invasion. 

Furthermore, the mRNA expression of Snail and Twist, two markers of epithelial-mesenchymal 

transition, was reduced in the presence of R9-ZnCS334D. Finally, angiogenesis assays revealed 

that the ability of HUVEC endothelial cells to form tube-like structures was impaired in the 

presence of R9-ZnC and R9-ZnCS334D. Altogether, our results indicate that R9-ZnC and R9-

ZnCS334D not only alter angiogenesis but also reduce breast cancer cells aggressiveness, and 

suggest that these novel proteins are potential innovative multi-target agents in cancer therapy. 
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Introduction 

Gene expression is a tightly controlled mechanism in eukaryotic cells. Various regulatory 

mechanisms control the amount of gene products, which results in part from a balance between 

mRNA synthesis and degradation rates. Besides transcription, post-transcriptional regulatory 

mechanisms, such as pre-mature mRNA processing, nuclear mRNA export, RNA interference, 

mRNA sequestration, codon usage, translational repression by miRNAs or proteins and the 

control of mRNA turnover have emerged as key steps in the regulation of gene expression.  

mRNA stability is controlled by both cis-acting elements, located in the 3’untranslated region 

(3’UTR) of the mRNA, and trans-acting factors. Among regulatory sequences, AU-rich 

elements (AREs) are present in 8-10 % of total mammalian mRNAs (Bakheet et al., 2006). 

AREs were initially discovered as instability determinants (Shaw & Kamen, 1986). Their 

presence correlates with patterns of rapid mRNA decay for genes encoding cytokines, 

chemokines or proto-oncogenes (Shaw & Kamen, 1986). AREs are 40- to 150-nt long adenylate- 

and uridylate-rich sequences harbouring various copies of an AUUUA motif. Trans-acting 

factors such as ARE-binding proteins induce either stabilization of the transcript or mRNA 

degradation. The TIS11 protein family is a key player in ARE-mediated mRNA decay. This 

family of tandem CCCH zinc finger-containing RNA-binding proteins consists of three members 

in humans: TTP (ZFP36), TIS11b (ZFP36L1) and TIS11d (ZFP36L2) (Lai et al., 1990). All 

members share common structural characteristics. TIS11 proteins comprise three protein 

domains: the N-terminal domain, the tandem zinc finger domain and the C-terminal domain. 

While the tandem zinc finger domain, which is essential for RNA-binding, is highly conserved, 

the N- and C-terminal parts of the three proteins differ more strongly in their amino acid 

sequences. TIS11 proteins act by recruiting multiple factors implicated in the mRNA decay 

machinery via protein-protein interactions. Post-translational modifications, mainly 

phosphorylations, modulate TIS11 protein activity, stability and subcellular localization (Ciais et 

al., 2013). In vitro, TIS11 proteins bind to ARE-containing mRNA targets and induce their 

degradation (Baou et al., 2009). By contrast, TIS11 proteins have unique roles in vivo as 

demonstrated by their respective murine knock out models (Taylor et al., 1996; Ramos et al., 

2004; Stumpo et al., 2004; Bell et al., 2006; Hodson et al., 2010). Homozygous TIS11b deletion 

is embryonic lethal because of abnormal placentation and vascular defects related to high VEGF-

A levels (Stumpo et al., 2004; Bell et al., 2006). Thymus-specific double knock out of 

TIS11b/TIS11d in mice led to the development of leukaemia six months after birth (Hodson et 

al., 2010).  
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Tumorigenesis is a dynamic, multi-step process comprising several hallmarks such as genome 

instability and mutation, uncontrolled proliferation, sustained angiogenesis, tumor-promoting 

inflammation, and activation of migration/invasion as well as the subsequent activation of 

metastasis (Hanahan & Weinberg, 2011). Most tumors are heterogeneous and contain multiple 

cell types, which communicate through heterotypic signalling. Beside tumor cells, endothelial 

cells, cancer-associated fibroblasts and tumor-associated immune cells create and maintain the 

pro-tumoral cancer niche and promote tumor progression (Barcellos-Hoff et al., 2013). 

Over the last decade, a tight link between mRNA stability and cancer has emerged (Benjamin & 

Moroni, 2007). mRNA stability is often deregulated in cancer and inflammatory diseases leading 

to the abnormal stabilization of transcripts implicated in these pathologies. TIS11 proteins are 

underexpressed in many types of cancers and their expression is negatively correlated with tumor 

aggressiveness (Carrick & Blackshear, 2007; Brennan et al., 2009; Griseri et al., 2011; Sanduja 

et al., 2012). In addition, low TTP expression is associated with monocyte/macrophage 

infiltration and correlates with poor clinical outcome (Milke et al., 2013). Indeed, the repertoire 

of TIS11 protein family mRNA targets that includes cytokines and chemokines such as VEGF, 

GM-CSF, TNFα and IL-6, is associated with inflammation, angiogenesis and cancer, thus 

supporting the potential role of TIS11 proteins as tumor suppressors (Ciais et al., 2004; Baou et 

al., 2009; Desroches-Castan et al., 2011; Ross et al., 2012).  

We have previously shown that intratumoral injections of a cell-permeable TIS11b fusion 

protein significantly decreased tumor growth, tumor vascularization and VEGF expression 

(Planel et al., 2010). However, this study was limited by the instability of the purified 

recombinant TIS11b protein under storage. In the present work, we generated truncations of the 

TIS11b protein by deleting either the N-terminal or C-terminal part of the protein. The deletion 

mutant ZnC, containing the zinc finger and the C-terminal domains proved to be the most stable 

truncated form of TIS11b. In addition, substitution of the distal C-terminal serine 334 by an 

aspartate residue increased ZnC protein stability. We demonstrate that ZnC and ZnCS334D are still 

active as they induce ARE-mediated mRNA-decay. Truncated TIS11b proteins fused to the R9 

cell-penetrating peptide (R9-ZnC, R9-ZnCS334D) were efficiently internalized into murine breast 

cancer 4T1 cells and induced the degradation of endogenous VEGF mRNA with a concomitant 

decrease in VEGF protein secretion. Furthermore, purified R9-ZnCS334D inhibited proliferation, 

migration, invasion and anchorage-independent cell growth of 4T1 cells.  The expression of 

different markers implicated in the epithelial-mesenchymal transition such as SNAIL and 

TWIST was also reduced upon treatment of 4T1 cells with purified R9-ZnCS334D protein. Finally, 
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we observed an inhibition of endothelial cell organization into pseudo-capillaries in the presence 

of R9-ZnC and R9-ZnCS334D, suggesting that our novel protein constructs could target not only 

tumor cells but also the tumor endothelium.  

 

Material and Methods 

Cell culture 

COS7 cells were purchased from ATCC and cultured in DMEM GlutaMAX High Glucose 

medium (Invitrogen, Saint Aubin, France) containing 10 % fetal bovine serum (GE Healthcare, 

Velizy-Villacoublay, France) as previously described (Planel et al., 2010). Luciferase-expressing 

4T1 cells (4T1-luc) were a generous gift from Dr. Jean-Luc Coll (Albert Bonniot Institute, 

Grenoble, France). They were cultured in RPMI 1640 GlutaMAX medium (Invitrogen, Saint 

Aubin, France) containing 10 % fetal bovine serum (GE Healthcare, Velizy-Villacoublay, 

France) and 200 µg/ml of G418 (Invitrogen, Saint Aubin, France). HUVEC cells were purchased 

from Lonza and cultured in EGM-2MV medium containing 5 % fetal bovine serum (Lonza, 

Levallois-Perret, France). All cell culture media were supplemented with 100 U/ml of penicillin, 

100 µg/ml of streptomycin (Invitrogen, Saint Aubin, France) and 30 µg/ml gentamicin 

(Invitrogen, Saint Aubin, France). 

 

Cloning of TIS11b deletion mutants 

pTarget-NZn, pTarget-Zn and pTarget-ZnC plasmids: 

pTarget-TIS11b plasmid (Ciais et al., 2004) was used to amplify the human TIS11b truncated 

forms by PCR using the forward 5’-CCA GAC AGG AGA GGC TGC G-3’ and the reverse 5’-G 

ACG GTC AGC GGA GAG TCA CC-3’ primers for NZn (671 bp-fragment including the ATG 

codon of TIS11b), the forward 5’-ATG CCC ACC CAG AAG CAG CCC-3’ and the reverse 5’-

G ACG GTC AGC GGA GAG TCA CC-3’ primers for Zn (292 bp-primers including the ATG 

and stop codons), the forward 5’-AT GGT CAA CTC CAG CCG CTA-3’ and the reverse 5’-

TGC AGG GTA GGG GCT GGA G-3’ primers for ZnC (740 bp-fragment including the stop 

codon of TIS11b). Following their amplification, the NZn-, Zn- or ZnC-fragments were inserted 

into the pTarget plasmid using the T-overhangs to generate pTarget-NZn, pTarget-Zn and 

pTarget-ZnC plasmids. 

pTarget-Flag-R9, pTarget-Flag-R9-ZnC and pTarget-Flag-R9-ZnCS334D plasmids: 
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The construction of the mammalian expression vector pTarget-Flag-R9-TIS11b was previously 

described (Planel et al., 2010). pTarget-Flag-R9-TIS11b plasmid was digested by Kpn1 to 

generate the pTarget-Flag-R9 control plasmid. pTarget-ZnC plasmid was used to amplify ZnC 

(744 bp-fragment) flanked by Kpn1 and Sal1 restriction sites using the forward 5’-TT GGT ACC 

GTC AAC TCC AGC CGC TAC-3’ and the reverse 5’-AA GTC GAC TT GCA GGG TAG 

GGG CTG-3’ primers. ZnC was inserted in pTarget vector between Kpn1 and Sal1 restriction 

site downstream of Flag-R9 to generate pTarget-Flag-R9-ZnC plasmid. The pTarget-Flag-R9-

ZnCS334D was obtained by a site-directed mutagenesis of the pTarget-Flag-R9-ZnC plasmid using 

the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies, Massy, France) 

according to the manufacturer’s instructions with the forward 5’-CTG CCC ATC TTC AGC 

AGA CTT GAC ATC TCA GAT GAC TAA GCG-3’ and the reverse 5’-GCC GCT TAG TCA 

TCT GAG ATG TCA AGT CTG CTG AAG ATG GGC AG-3’ primers to replace the serine 334 

by an aspartate. 

 

pET15b-Flag-ZnC, pET15b-Flag-ZnCS334D, pET15b-Flag-R9-ZnC and pET15b-Flag-R9-

ZnCS334D plasmids: 

The prokaryotic expression vectors pET15b-Flag-TIS11b and pET15b-Flag-R9-TIS11b were 

previously described (Planel et al., 2010). ZnC or ZnCS334D fragments were inserted in the 

bacterial expression vectors pET15b-Flag or pET15b-Flag-R9 between the KpnI and NotI 

restriction sites downstream of Flag-R9 to generate the pET15b-Flag-ZnC and pET15b-Flag-R9-

ZnC as well as pET15b-Flag-ZnCS334D and pET15b-Flag-R9-ZnCS334D plasmids.  

All constructs were verified by sequencing analyses (GATC, Mulhouse, France). 

 

pLuc-3’UTR reporter gene plasmid and pRL-TK plasmid: 

The plasmid pLuc-3’UTR containing the Firefly luciferase cDNA cloned upstream of the rat 

VEGF 3’-UTR was described previously (Ciais et al., 2004; Planel et al., 2010). pRL-TK 

plasmid encoding Renilla luciferase was obtained from Promega Corp (Charbonnières, France).   

 

Transient Transfections and Dual Luciferase Activity Assay 

COS7 cells were grown in DMEM medium (Invitrogen, Saint Aubin, France) supplemented with 

10 % fetal bovine serum, 100 U/ml penicillin and 100 mg/ml streptomycin. 1.0-1.5 x 105 cells 

were seeded in duplicates or triplicate into 12-well plates and transfected the day after, using 

Lipofectamine (Invitrogen, Saint Aubin, France) according to the manufacturer’s 
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recommendations. 1 ng, 10 ng or 25 ng of TIS11b, NZn, Zn or ZnC pTarget plasmids or 100 ng 

of Flag-R9-empty, Flag-R9-TIS11b, Flag-R9-ZnC, Flag-R9-ZnCS334D pTarget plasmids were 

transfected together with 500 ng of pLuc-3’UTR (Firefly luciferase) and 25 ng of pRL-TK 

(Renilla luciferase). Activities of Firefly and Renilla luciferase were measured sequentially 24 h 

post-transfection using the Dual-Luciferase reporter assay system (Promega, Charbonnières, 

France) on a LUMAT LB 9507 luminometer (EGG-Berthold). Results are presented as relative 

light units of Firefly luciferase activity over relative light units of Renilla luciferase activity to 

compensate for variations in transfection efficiency, and are represented as a percentage of the 

luciferase activity in control cells. 

 

Northern blot 

2.0 x 105 COS7 cells per well were transfected in 6-well plates with 250 ng Flag-R9-empty, 

Flag-R9-TIS11b, Flag-R9-ZnC or Flag-R9-ZnCS334D pTarget plasmids using Lipofectamine 

(Invitrogen, Saint Aubin, France) according to the manufacturer’s recommendations. Cells were 

washed with PBS and total RNA was extracted from triplicate samples using the NucleoSpin 

RNA kit (Macherey-Nagel, Hoerdt, France) according to the instructions of the manufacturer. 20 

µg of RNA were size-fractionated on a 1 % formaldehyde agarose gel, vacuum-transferred onto 

Hybond-N+ membranes (GE Healthcare, Velizy-Villacoublay, France) and fixed by UV cross-

linking. Northern blots were pre-hybridized in Rapid Hybridization Buffer (GE Healthcare, 

Velizy-Villacoublay, France) at 65 °C for 30 min. [α-32P]dCTP-labelled VEGF 3’UTR cDNA 

probe (2 x 106 cpm / ng DNA, Rediprime random primer labelling kit, GE Healthcare, Velizy-

Villacoublay, France) was then added and the incubation was continued for 2 h at 65 °C. Blots 

were washed for 5 min and 15 min successively at room temperature in 2 x saline sodium citrate 

(SSC), 0.1 % SDS, and then for 15 min in 1 x SSC, 0.1 % SDS. The final wash was performed at 

65 °C for 15 min in 0.5 x SSC, 0.1 % SDS. RNA-cDNA hybrids were visualized on phosphor 

screen (Molecular Dynamics) after a 12- to 24-h exposure period. Blots were stripped and 

reprobed with 18S cDNA probe to assess RNA loading. Quantitation of autoradiograms was 

performed using phosphorimager and QuantityOne software. 

 

SDS-PAGE 

SDS-polyacrylamide gel electrophoresis was performed according to Laemmli (Laemmli, 1970). 

Total proteins extracts or purified proteins were solubilized in sample buffer (60 mM Tris-HCl, 

pH 6.8, 2 % SDS, 5 % β-mercaptoethanol, 10 % glycerol, 0.0 1% bromophenol blue), boiled for 
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5 min and loaded onto a 12 % SDS-PAGE minigel (Mini Protean II System, BioRad, Marnes-la-

Coquette, France) or NuPAGE 4-12 % Bis-Tris gel (Invitrogen, Saint Aubin, France). 

Electrophoresis was performed at 100 V for 30 min and afterwards at 150 V for 1-2 h. 

 

Western blot 

SDS-PAGE-resolved proteins were electrophoretically transferred onto a polyvinylidene fluoride 

(PVDF) membrane as previously described (Towbin et al., 1979). Following transfer, the 

membrane was incubated in a blocking buffer (Tris-buffer saline (TBS) containing 0.1 % Tween 

20 and 5 % non-fat dry milk) for 1 h at room temperature. The blots were probed with 

monoclonal mouse anti-Actin (1:5000, Sigma-Aldrich, Saint-Quentin Fallavier, France), rabbit 

anti-BRF1/2 (1:1000, Ozyme, Montigny-le-Bretonneux, France), mouse anti-E-Cadherin 

(1:2500, Becton Dickinson, Le Pont de Claix, France), mouse anti-FLAG M2-HRP (1:1000, 

Sigma-Aldrich, Saint-Quentin Fallavier, France), mouse anti-N-Cadherin (1:2500, Becton 

Dickinson, Le Pont de Claix, France), mouse anti-Tubulin (1:40000, kindly provided by Dr. A. 

Andrieux (Grenoble Institute of Neuroscience, Grenoble, France)) or monoclonal mouse IgM 

isotype anti-Vimentin (1:1000, Sigma-Aldrich, Saint-Quentin Fallavier, France) for 2 h at room 

temperature or overnight at 4 °C in TBS containing 0.1 % Tween. The membrane was 

thoroughly washed with the same buffer (3 x 10 min), then incubated for 1 hour with either 

horseradish peroxidase (HRP)-labelled goat anti-mouse IgG (1:5000, Thermo Fisher, Illkirch, 

France), HRP-labelled goat anti-mouse IgM (1:5000, Invitrogen, Saint Aubin, France), HRP-

labelled goat anti-rabbit IgG (1:3000, Thermo Fisher, Illkirch, France) or HRP-labelled goat anti-

rat IgG (1:3000, Jackson Immuno Research, Marseille, France). The PVDF sheet was washed as 

above and the antigen-antibody complex revealed by Enhanced Chemiluminescence, using the 

Western blotting detection kit from Perkin Elmer and BioMax Kodak films (Sigma-Aldrich, 

Saint-Quentin Fallavier, France) or the ChemidocTM MP imaging system (BioRad, Marnes-la-

Coquette, France). Quantification of the hybridization signals in pixel density was either 

performed using ImageJ software for BioMax Kodak films or by ImageLab Version 4.0.1 

software (BioRad, Marnes-la-Coquette, France) when the ChemidocTM MP imaging system was 

used. Protein levels were normalized to Actin or Tubulin to compensate for protein loading 

variations. Values are presented relative to protein content of control samples. 
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Determination of protein half-life 

COS7 cells were grown in DMEM medium (Invitrogen, Saint Aubin, France) supplemented with 

10 % bovine calf serum, 100 U/ml penicillin and 100 mg/ml streptomycin. 1.0 x 105 cells were 

seeded in into 12-well plates and transfected the day after with 100 ng of R9-empty, R9-TIS11b, 

R9-ZnC or R9-ZnCS334D pTarget plasmids, using Lipofectamine (Invitrogen, Saint Aubin, 

France) according to the manufacturer’s recommendations. 24 h post-transfection, cells were 

treated with the translation inhibitor Cycloheximide (CHX) (10 µg/ml) and harvested at the time-

point indicated using RIPA buffer (10 mM Tris HCl, pH 7.4, 150 mM NaCl, 0.1 % SDS, 0.5 % 

Na deoxycholate, 1 mM EDTA, 1 % Triton X100, and protease inhibitor cocktail (Sigma-

Aldrich, Saint-Quentin Fallavier, France)). Total protein extracts were analysed by Western blot. 

Results are represented as a percentage of the protein level at time 0 h of CHX treatment. 

 

Semi-quantitative RT-PCR and Quantitative real-time PCR 

COS7 cell total RNA was extracted using the Qiagen RNeasy Mini kit (Qiagen, Courtaboeuf, 

France) according to the manufacturer’s instructions. For semi-quantitative PCR analysis of full-

length or truncated TIS11b or HPRT (hypoxantin phosphoribosyl transferase), 1 µg of total RNA 

was reverse-transcribed with ImProm II reverse transcriptase (Promega, Charbonnieres, France) 

and PCR-amplified using Taq-polymerase (MP Biomedicals, Illkirch-Graffenstaden, France). 

The forward 5’-CGG AGC TGT GCC GCC CCT TTG-3’ and reverse 5‘-GGG CAC GGC GCT 

CTT CAG CGT TGT-3’ primers were used to amplify a 200 bp-long internal region containing 

the tandem zinc finger domain of TIS11b. The amplification conditions were as follows: 94 °C 

for 5 min followed by 28 amplification cycles, each consisting of 94 °C for 1 min, 63 °C for 1 

min, 72 °C for 1 min, and 72 °C for 5 min for final extension. The primers for HPRT 

amplification were as follows:  5’-GCC ATC ACA TTG TAG CCC TCT-3’ and 5’-TGC GAC 

CTT GAC CAT CTT TGG-3’. This primer pair amplifies a 305-bp fragment. The amplification 

conditions were as follows: 94 °C for 5 min followed by 30 amplification cycles, each consisting 

of 94 °C for 1 min, 51 °C for 1 min, 72 °C for 1 min, and 72 °C for 5 min for final extension.  

Total RNA from 4T1-luc cells was extracted using the Nucleospin RNA kit (Macherey-Nagel, 

Hoerdt, France) according to the manufacturer’s instructions. For quantitative real-time PCR 

analysis of Snail, Twist, VEGF, or RPL13A (ribosomal protein 13a) gene expression, 1 µg of 

total RNA was reverse-transcribed using the iScript cDNA synthesis kit (BioRad, Marnes-la-

Coquette, France). The cDNAs were PCR-amplified using GoTaq polymerase and the master 

mix kit from Promega (Charbonnieres, France). Amplification of mouse Snail mRNA was 
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performed using the forward 5’-TGT GTG GAG TTC ACC TTC CAG-3’ and reverse 5’-AGA 

GAG TCC CAG ATG AGG GT-3’ primers. The size of the amplified fragment was 116-bp. 

Amplification of mouse Twist mRNA was performed using the forward 5’-ACC ATC CTC 

ACA CCT CTG CAT TCT-3’ and reverse 5’-TTC CTT TCA GTG GCT GAT TGG CAC-3’ 

primers. The size of the amplified fragment was 143-bp. Amplification of mouse VEGF mRNA 

was performed using the forward 5’-AAT GAT GAA GCC CTG GAG TGC-3’ and reverse 5’-C 

TTT CGT TTT TGA CCC TTT CCC-3’ primers. The size of the amplified fragment was 201-

bp. Amplification of mouse RPL13A mRNA was performed using the forward 5’-CCC TCC 

ACC CTA TGA CAA GA-3’ and reverse 5’-TTC TCC TCC AGA GTG GCT GT-3’. The size 

of the amplified fragment was 153-bp for the RPL13A transcript. The amplification conditions 

for all tested genes were as follows: 95 °C for 2 min followed by 40 amplification cycles, each 

consisting of 95 °C for 3 sec and 60 °C for 30 sec for extension.  

 

Protein overexpression and purification 

High expression BL21 (DE3) Escherichia coli codon+-competent cells (Agilent Technologies, 

Massy, France) were transformed with pET15b plasmids encoding either Flag-ZnC, Flag-R9-

ZnC or Flag-R9-ZnCS334D constructs and were grown in LB Broth medium in the presence of 

ampicillin (100 µg/ml) and chloramphenicol (50 µg/ml).  

Protein expression was induced by adding isopropyl-1-thio-β-D-galactopyranoside (IPTG) 

concentrations (0.1 mM) at 30 °C for 4 h. When starter cultures reached an optimal absorbance 

of 0.6, bacterial cell pellets were harvested by centrifugation (3500 x g at 4 °C for 30 min). The 

pellets were re-suspended with 50 mM Tris-HCl pH 7.4 buffer containing 500 mM NaCl, 2% 

Triton X-100, 4 M urea and 100 µM ZnCl2, then incubated for 5 min in the presence of 0.1 

mg/ml lysozyme, and a protease inhibitor cocktail (Sigma-Aldrich, Saint-Quentin Fallavier, 

France). Cells were lysed by repeated 10 freeze/thawing cycles. Homogenates were further 

sonicated then centrifuged at 13000 x g for 10 min at 4 °C. Supernatants were diluted to achieve 

concentrations of 150 mM NaCl and 1 M urea. Anti-Flag M2 affinity resin (Sigma-Aldrich, 

Saint-Quentin Fallavier, France) was prepared according to the manufacturer’s instructions.  

Ready-to-use resin was incubated with cell lysate for 1 h at 4 °C under overhead shaking then 

loaded on empty columns. Then the column was washed with TBS and elution performed with 1 

M Arg-HCl pH 7. Purity of Flag-ZnC, Flag-R9-ZnC or Flag-R9-ZnCS334D proteins was examined 

by Coomassie blue staining following SDS-PAGE analysis. Purified proteins used for further 

analyses were dialyzed against phosphate-buffer saline (PBS) using 7K or 10K Slide-A-Lyzer 
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dialysis cassettes (Thermo Fisher, Illkirch, Franc). Protein concentration was determined using a 

Micro BCA protein Assay Kit (Thermo Fisher, Illkirch, France) using bovine serum albumin as a 

standard. 

 

Determination of protein stability under storage 

Equal amounts of purified R9-TIS11b, R9-ZnC and R9-ZnCS334D were stored at either -20 °C, 4 

°C or 37 °C up to five days. Remaining protein was quantified by Western blot using Flag-tag 

antibodies. Results are represented as a percentage of protein level in the control sample that was 

kept at -20 °C. 

 

Cellular internalization of recombinant proteins 

Purified and dialyzed Flag-ZnC, Flag-R9-ZnC and Flag-R9-ZnCS334D proteins were first 

lyophilized then re-suspended in PBS to reach the required protein concentration. The proteins 

were labelled using the Alexa Fluor 488 Protein Labelling kit (Invitrogen, Saint Aubin, France) 

according to the manufacturer’s instructions with slight modifications. An optimal labelling was 

obtained with a 4 h co-incubation of Alexa Fluor 488 with fusion proteins at room temperature. 

Labelled proteins were dialyzed against PBS overnight at 4 °C to remove free dye. ZnC-, R9-

ZnC- and R9-ZnCS334D-labelled proteins were aliquoted and stored at -20 °C until used. 3 x 104 

4T1-luc cells were plated on an eight-chamber Lab-Tek Coverglass plate (Thermo Fisher, 

Illkirch, France) and cultured overnight in RPMI 1640 medium containing 10% fetal bovine 

serum, 100 U/ml of penicillin and 100 µg/ml of streptomycin. The day after, medium was 

removed and RPMI 1640 containing 2 % fetal bovine serum and 50 ng of Alexa 488-labeled 

proteins were added to cells for 16 h at 37 °C. Then cells were washed twice (5 min) with PBS 

prior to the addition of Hoechst 33342 30 min to stain nuclei and Alexa Fluor 594 wheat germ 

agglutinin (Invitrogen, Saint Aubin, France) for 10 min to label cell plasma membrane. After two 

5 min-final washes in PBS, cells were fixed for 15 min in 4 % paraformaldehyde (PFA). Uptake 

and intracellular localization of labelled proteins were assessed by inverted fluorescence 

microscopy (Zeiss, Imager Z1) as well as laser confocal microscopy (Leica, TCS-SP2). For 

deconvolution fluorescence microscopy, image scans were acquired in series by a CCD camera. 

All data sets were subjected to deconvolution and subsequently used for image reconstructions. 

Stacking each of the individual sections produces a 3-dimensional image on a 2-dimensional 

background, resulting in an image projection.  
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In experiments designed to determine the effect of R9-ZnC and R9-ZnCS334D fusion proteins on 

VEGF expression levels, 4T1-luc cells were cultured for 24 h in 24-well plates (1.5 x 105 cells 

/well) as described in ”Cell culture” section. Purified fusion proteins were added at a final 

concentration of 100 nM in serum-free RPMI 1640 for 24 h. At the end of the incubation period, 

the culture medium was collected to measure secreted VEGF and cells were lysed to isolate total 

RNA or for further Western blot analyses. 

 

Enzyme-linked immunosorbent assay 

For VEGF protein measurement, 4T1-luc cells were incubated with 100 nM of purified 

recombinant R9-ZnC and R9-ZnCS334D proteins. Culture medium was collected after 24 h. VEGF 

(splice variants VEGF-165 and VEGF-121) content of the supernatants (100 µl) was measured 

using an enzyme-linked immunosorbent assay (ELISA) kit (Peprotech, Neuilly-sur-Seine, 

France) with horseradish peroxidase detection in accordance with the manufacturer’s 

instructions. The absorption was read at 405 and 650 nm (reference) in a microplate reader 

(Mulitiskan EX, Thermo Labsystems). In each assay, the recombinant human VEGF was used to 

generate the standard curve. Standards as well as samples were assayed as duplicates. The 

minimum limit of detection was 16 pg/ml. Results are represented as pg/ml. 

 

Proliferation assay (WST-1) 

Cell proliferation was measured using the WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-

tetrazolio]-1, 3-benzene disulfonate) (Roche, Meylan, France) colorimetric assay. 1.0 x 104 4T1-

luc cells per well were seeded in a 96-well microplates in a final volume of 100 µl of appropriate 

growth medium. Cells were starved overnight using 100 µl/well of serum-free culture medium. 

Before starting the proliferation experiment, culture medium was replaced by fresh complete 

growth medium (RPMI 1640 + 10 % fetal bovine serum) containing 12.5, 25 or 50 nM of 

recombinant proteins, respectively. Cells were allowed to proliferate over time and the 

experiment was terminated after 24 h and 48 h by adding 10 µl per well of WST-1 (Roche, 

Meylan, France). After 2 h incubation at 37 °C, the absorbance of each well was measured at 450 

nm. All experiments were performed in duplicates.  
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Wound healing migration assay 

4T1-luc cells were seeded in 12-well plates and incubated until confluence. The cell monolayer 

was scratched and the wound healing process was pursued in the presence of growth medium 

containing the cell proliferation inhibitor mitomycin (2 µg/ml) and 50 nM of recombinant 

proteins. Wound closure was monitored by phase-contrast microscopy at t=0 h and t=16 h. At 

each time point, the distance between the wound edges was measured. 

 

Matrigel invasion assay 

For the Matrigel invasion assay, 5 x 104 4T1-luc cells in growth medium supplemented with 2 % 

serum were seeded in the upper chamber of the transwell inserts containing MatrigelTM (24-well 

plate; 8 µm pore size; Becton Dickinson, Le Pont de Claix, France). Culture medium containing 

15 % serum was added to the lower chamber as chemoattractant. Cells were incubated for 24 h 

(for luciferase measurement) or 48 h (for Crystal Violet staining) at 37°C, 5% CO2 in the 

presence of 50 nM final concentration of R9-ZnC and R9-ZnCS334D. Cells that did not invade 

through the pores were removed using a cotton swab. Invaded cells were either stained with 

crystal violet (Sigma-Aldrich, Saint-Quentin Fallavier, France) or lysed for Firefly luciferase 

measurement using the luciferase reporter assay system (Promega, Charbonnieres, France) on a 

LUMAT LB 9507 luminometer (EGG-Berthold). Results are represented as a percentage of the 

luciferase activity of control cells. 

 

Soft agar colony formation assay 

Anchorage-independent cell growth of 4T1-luc cells was assayed in 12-well plates coated with 

0.6 % soft agar (Becton Dickinson, Le Pont de Claix, France) in growth medium as the bottom 

layer. 1.5 x 104 4T1-luc cells per well were re-suspended in 0.3 % soft agar in growth medium 

supplemented with 50 nM of recombinant proteins or PBS respectively, and plated as a top layer. 

250 µl of growth medium were added once a week. Colony formation was monitored over a 

period of 14 days. For colony counting, growth medium was replaced by 500 µl of 0.0001 % 

crystal violet in 10 % ethanol. After 2 h, the staining solution was removed and each well was 

carefully rinsed several times with tap water until the soft agar became nearly transparent. The 

total number of colonies above 6 µm was then counted.     
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HUVEC tubulogenesis assay 

48-well plates were coated with 150 µl of diluted MatrigelTM (85 % MatrigelTM (Becton 

Dickinson, Le Pont de Claix, France) and 15 % EGM-2 medium (Lonza, Levallois-Perret, 

France) per well and left for 30 min at 37 °C to allow matrigel polymerization. 3 x 105 HUVEC 

cells per well were seeded then treated with 50 nM of purified recombinant R9-ZnC and R9-

ZnCS334D proteins immediately after cell attachment. Formation of capillary-like structures was 

observed by phase-contrast microscopy at 24 h post-treatment. The cell-covered area was 

measured using ImageJ software and the results are presented as a percentage of the control. 

Statistical analyses 

Results are expressed as means ± s.e.m. The mean values were compared by ANOVA using 

Dunnett’s or Bonferroni’s multiple comparison test. Statistical significance is indicated as * for P 

≤ 0.05; ** for P ≤ 0.01; *** for P ≤ 0.001.  

 

Results 

The N- and C-terminal domains of TIS11b are active in mRNA decay   

The TIS11b protein consists of three domains: the N-terminal domain, the tandem zinc finger 

domain and the C-terminal domain. To determine the minimal active domain of TIS11b, we 

generated different truncated versions of the protein. We either kept the N-terminal domain 

(NZn(1-195)) or the C-terminal domain (ZnC(109-339)), each associated to the two zinc fingers, or 

just the tandem zinc finger domain (Zn(99-195))  (Supplementary figure 1A). Previous studies 

using transfection of TIS11b expression vector and reporter gene construct in which the Firefly 

luciferase coding sequence was cloned upstream of the 3’UTR of VEGF mRNA (Luc-3’UTR) 

allowed us to show a TIS11b-mediated decrease in luciferase activity which was accompanied 

by a destabilization of the chimeric Luc-3’UTR transcript (Ciais et al., 2004; Planel et al., 

2010). To analyse the activity of the truncated TIS11b protein constructs, COS7 cells were co-

transfected with increasing doses of eukaryotic expression vectors and Luc-3’UTR plasmid. 

Supplementary figure 1B shows that full-length TIS11b and ZnC were the most active proteins 

when compared to NZn and Zn truncated forms. The expression levels of our protein constructs 

were checked by RT-PCR. All constructs were expressed in a dose-dependent manner 

(Supplementary figure 1C), indicating that the observed differences in luciferase activity were 



 

 205 

not biased by different expression levels. As ZnC was the most active truncated form of TIS11b, 

we performed our further studies with this construct.   

 

R9-ZnC and R9-ZnCS334D fusion proteins reduce luciferase reporter gene activity through 

VEGF-3’UTR  

We have previously reported that substitution of serine 334 (S334) by an aspartate (D) in the 

TIS11b sequence markedly increases TIS11b protein stability (Rataj et al., submitted, Article 1). 

We therefore generated the fusion constructs R9-ZnC and R9-ZnCS334D (Figure 1A) and tested 

their activity in luciferase assays (Figure 1B). Luciferase activity was significantly reduced by 

R9-TIS11b (30 ± 2.5 % of control), R9-ZnC (42 ± 2.3 % of control) and R9-ZnCS334D (34 ± 4.4 

% of control). No significant difference between R9-ZnC and R9-ZnCS334D-mediated luciferase 

activity was observed. Western blot analyses of COS7 cell lysates confirmed equal expression 

level of each construct (Figure 1B). Multiple bands correspond to different phosphorylation 

levels of the proteins as reported previously (Cao & Lin, 2008). Due to deletion of the N-

terminal part of TIS11b, R9-ZnC/ R9-ZnCS334D fusion proteins were detected at 38 kDa. To 

further confirm the mRNA-destabilizing activity of our constructs, we analysed the effect of R9-

TIS11b, R9-ZnC and R9-ZnCS334D on endogenous VEGF mRNA by Northern blot (Figure 1C). 

All three fusion proteins reduced VEGF mRNA steady state levels compared to the control level. 

The truncated proteins of TIS11b fused to R9 were more active than the full-length TIS11b 

fusion protein. This effect was even more pronounced for the truncated mutant R9-ZnCS334D. 

Altogether, these data indicate that the function of TIS11b in ARE-mediated decay is neither 

impaired by truncating the protein, nor by replacing the S334 residue by an aspartate. 

 

Deletion of the N-terminal domain of TIS11b doubles protein half-life in cellulo 

R9-TIS11b fusion protein was shown to be rather unstable. We next evaluated the effect of the 

N-terminal deletion of R9-TIS11b on protein stability in cellulo. COS7 cells were transfected 

with R9-TIS11b, R9-ZnC or R9-ZnCS334D expression constructs then treated with cycloheximide 

(CHX) for various periods of time. Protein levels were assessed in cell lysates by Western blot at 

different times. Figure 1D shows representative results of several independent experiments. The 

half-life of full-length TIS11b (4 hours) was doubled following the deletion of its amino-terminal 

domain and the exchange of S334 by an aspartate to mimick a permanent phosphorylation of the 

protein by this residue. However, already the truncation of TIS11b (R9-ZnC) seems to have a 
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stabilizing effect as the slope of the protein degradation curve is less abrupt compared to TIS11b 

full-length protein. These results led us to overexpress and purify these truncated fusion proteins.   

 

R9-ZnC and R9-ZnCS334D protein overexpression and purification  

We generated prokaryotic expression vectors for R9-TIS11b, R9-ZnC and R9-ZnCS334D 

containing a Flag-tag. Recombinant proteins were produced and purified using affinity 

chromatography as described in Material and Methods.  Figure 2 illustrates the different steps of 

the purification process as well as Western blot analyses of eluted recombinant proteins. Due to 

the absence of serine/threonine protein kinases in bacteria, purified proteins were expected at 38 

kDa for R9-TIS11b and 29 kDa for R9-ZnC and R9-ZnCS334D. By contrast, R9-TIS11b, R9-ZnC 

and R9-ZnCS334D were detected in mammalian cells at 51 kDa and 38 kDa, respectively (Figure 

1B). 

  

Deletion of the N-terminal domain of TIS11b increases the stability of the purified protein under 

storage 

We next evaluated the effect of TIS11b truncation on the protein stability under storage. Equal 

amounts of purified recombinant R9-TIS11b, R9-ZnC and R9-ZnCS334D were incubated at 4 °C 

or 37 °C up to five days, then analysed by Western blot. The same amounts of protein were 

stored at -20 °C as controls. A five-day incubation of the three recombinant proteins at 4 °C led 

to a degradation of about 40 % R9-TIS11b, whereas truncated TIS11b forms remained intact 

(Figure 3A). Around 50 % of R9-TIS11b full-length protein was lost after a one day-incubation 

at 37 °C (Figure 3A). In contrast, truncated proteins displayed an increased stability compared to 

R9-TIS11b. R9-ZnC protein was stable for at least two days at 37 °C then a decrease of 40 % 

was observed after a five days-incubation. Interestingly, R9-ZnCS334D protein was almost totally 

preserved after five days-incubation at 37 °C, indicating that the stabilizing effect was more 

pronounced when the S334 residue was replaced by an aspartate. Taking advantage of the 

significantly improved protein stability, further in vitro studies focused on R9-ZnC and R9-

ZnCS334D. 
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R9-ZnC and R9-ZnCS334D are efficiently internalized into living cells 

Internalization of recombinant Alexa-Fluor 488-labelled R9-TIS11b has been previously 

demonstrated (Planel et al., 2010). We thus tested the cellular uptake of the novel truncated 

recombinant R9-ZnC and R9-ZnCS334D proteins in living luciferase-expressing murine breast 

cancer cells (4T1-luc). Alexa Fluor 488-labelled ZnC without R9 cell-penetrating peptide was 

used as a negative non-penetrating control. Fluorescence microscopy analysis showed efficient 

cellular internalization of Alexa Fluor 488-labelled R9-ZnC or R9-ZnCS334D (green fluorescent 

signal) compared to the non-permeable form Alexa Fluor 488-labelled ZnC (Figure 3B upper 

panel). These results confirm the efficient cellular uptake in the presence of the cell-penetrating 

peptide R9. Both proteins were predominantly dispersed throughout the cytoplasm with a 

punctate appearance. The intracellular localization of labelled recombinant proteins was checked 

using confocal microscopy. Deconvolution of these images along the z axis indicated a 

cytoplasmic localization of Alexa Fluor 488-labelled R9-ZnC or R9-ZnCS334D (Figure 3B lower 

panel). In line with protein stability experiments, fluorescence signal of Alexa Fluor 488-labelled 

R9-ZnC or R9-ZnCS334D was still detectable in 4T1-luc cells 4 days after treatment (data not 

shown). These results led us to further evaluate the effect of R9-ZnC and R9-ZnCS334D on the 

tumorigenic phenotype of 4T1-luc cells. 

 

Purified R9-ZnC and R9-ZnCS334D proteins decrease VEGF mRNA and protein expression  

Tumor angiogenesis is mainly driven by the pro-angiogenic factor VEGF. In order to investigate 

the destabilizing-activity of purified R9-ZnC and R9-ZnCS334D proteins on endogenous VEGF 

mRNA as well as on VEGF protein levels in living cells, 4T1-luc cells were treated with 100 nM 

of recombinant protein for 24 h in serum-free medium. R9-ZnC and R9-ZnCS334D decreased 

VEGF mRNA level by 55 and 82 %, respectively, compared to the control (Figure 4A).  

The observed effect on the mRNA level was correlated to VEGF protein level (Figure 4B). A 35 

% decrease in secreted VEGF was detected in the presence of R9-ZnC compared to the control. 

Interestingly, VEGF protein was undetectable upon R9-ZnCS334D treatment. These data suggest 

that our novel protein constructs are potent inhibitors of VEGF expression in 4T1-luc cells. 
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R9-ZnCS334D inhibits proliferation and migration of breast cancer cells in vitro 

To examine the effect of R9-ZnC and R9-ZnCS334D on the proliferation of cancer cells, 4T1-luc 

cells were treated up to 48 h with 12.5, 25 or 50 nM of recombinant protein. Cell proliferation 

was measured at t=0 h, t=24 h and t=48 h of treatment. The highest proliferation rate was 

observed the controls (Figure 5A). 4T1-luc cell proliferation was reduced by 30 % in the 

presence of R9-ZnC for 48 h compared to control. This effect was dose-independent. 

Interestingly, we observed a 50 %-inhibition of cell proliferation in the presence of 25 or 50 nM 

of R9-ZnCS334D.  

4T1-luc cells are known to be highly aggressive and to form spontaneous metastasis in vivo (Lou 

et al., 2008). These cells are the murine equivalent of the triple negative human breast cancer cell 

lines (Pulaski & Ostrand-Rosenberg, 2001; Tao et al., 2008). Migration of cancer cells is an 

initial event during the formation of metastasis. Therefore, we tested the effect of 50 nM of R9-

ZnC and R9-ZnCS334D on the migration capacities of 4T1-luc cells using the wound healing 

assay. A significant inhibition of wound closure was observed at 16 h post-treatment in the 

presence of R9-ZnCS334D compared to the control whereas R9-ZnC had no significant effect 

(Figure 5B). 

Altogether, these results suggest that the proliferation and migration of 4T1 breast cancer cells 

was impaired only by the R9-ZnCS334D mutant.  

 

R9-ZnC and R9-ZnCS334D reduce cancer cell invasion and anchorage-independent cell growth 

To further investigate the anti-tumoral effect of R9-ZnC and R9-ZnCS334D, invasion and 

anchorage-independent growth assays were performed using 4T1-luc cells. As shown in Figure 

6A, cell invasion in a matrigel-coated Boyden chamber assay was significantly reduced by 56.1 

± 8.2 % and by 52.9 ± 14.4 % in the presence of either R9-ZnC or R9-ZnCS334D, respectively, 

compared to the control. No significant difference was observed between R9-ZnC and the 

truncation mutant R9-ZnCS334D. On the other hand, soft-agar colony formation assays revealed 

that R9-ZnC did not alter 4T1-luc-triggered colony formation while a marked decrease of the 

total 4T1 colony number was observed upon R9-ZnCS334D treatment. (Figure 6B). These data 

indicate that both R9-ZnC and R9-ZnCS334D inhibit cancer cell invasion. Nevertheless, 

anchorage-independent growth appears to be specifically impaired by R9-ZnCS334D.  
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R9-ZnC and R9-ZnCS334D downregulate the expression of EMT-markers 

The inhibitory effect of R9-ZnC and R9-ZnCS334D on 4T1-luc cell invasion led us to analyse the 

expression of epithelial-mesenchymal transition (EMT) markers, as EMT is a crucial cellular 

process which enables cancer cells to invade. The effect of R9-ZnC and R9-ZnCS334D on the 

expression of the EMT upstream regulators Twist and Snail was determined by QPCR analysis 

(Figure 7A). We detected a decrease of Twist mRNA level in R9-ZnCS334D-treated cells, whereas 

R9-ZnC showed no effect. By contrast, both proteins reduced Snail mRNA level. Based on these 

results, we analysed the expression of E-Cadherin, N-Cadherin and Vimentin as they are 

downstream targets of the transcription factor Twist and Snail. Figure 7B shows that N-Cadherin 

and Vimentin were decreased by 20 to 30 % after treatment of 4T1-luc cells with 100 nM 

recombinant R9-ZnCS334D protein whereas E-Cadherin expression was not affected (Figure 7B). 

These results, which remain to be confirmed, suggest that R9-ZnC and R9-ZnCS334D proteins 

negatively regulate the expression of certain EMT markers and identify this novel TIS11b-

derivatives as potential repressors of 4T1 cell aggressiveness. 

 

R9-ZnC and R9-ZnCS334D impair the formation of pseudo capillaries by endothelial cells 

The formation of new blood vessels under physiological and pathological conditions requires the 

migration and reorganization of endothelial cells to form a vascular network. To test if R9-ZnC 

and R9-ZnCS334D, as potential anti-angiogenic agents, impair endothelial cell organization into 

pseudo-capillaries, HUVEC cells were plated at high density (confluence) on matrigel then 

treated with either 50 nM of recombinant R9-ZnC or R9-ZnCS334D. As shown in Figure 8, tube 

formation was inhibited in both conditions when compared to the control. A delayed 

organization of endothelial cells was already observed 6 h post-treatment (data not shown). 

Control cells were observed to orient and elongate while R9-ZnC or R9-ZnCS334D-treated cells 

remained rounded and show little orientation. Quantification of the pseudo-capillary network 

revealed that the endothelial cell-occupied area remained 50 % larger upon treatment with R9-

ZnC or R9-ZnCS334D than in their absence (control), confirming that the truncated forms of 

TIS11b proteins are able to disrupt the functional organization of endothelial cells.  
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Discussion 

During the last decade, evidence has accumulated that the control of mRNA stability plays a 

critical role in cellular homeostasis. The functional relevance of post-transcriptional gene 

regulation is highlighted by several pathologies which are associated with a dysregulation of 

mRNA stability, including chronic inflammation and cancer (Benjamin and Moroni, 2007). We 

have previously brought the proof of concept of an anti-angiogenic and anti-tumoral therapy 

based on destabilization of short-lived mRNAs by the zinc finger protein TIS11b (Planel et al., 

2010). Because the stability of proteins is paramount for their therapeutic use and thus, a major 

challenge for protein engineering, we aimed at improving the stability and activity of our 

therapeutic molecule. We integrated N-terminal truncation and C-terminal mutation of a specific 

serine as a novel TIS11b engineering strategy and demonstrated that these novel proteins are 

indeed potent inhibitors of several tumorigenesis hallmarks in breast cancer cells.   

Like the two other members of the TIS11 family (TTP and TIS11d), TIS11b protein structure 

consists of three domains: the N-terminal domain, the tandem zinc finger domain and the C-

terminal domain. The tandem zinc finger domain is crucial for the binding of TIS11b to the ARE 

located in the 3’untranslated region of the target mRNAs (Lai et al., 2002), but cannot induce 

mRNA decay by itself (Rigby et al., 2005). The N-terminal and C-terminal domain of TIS11b 

have been suggested to function as binding platforms for components of the mRNA decay 

machinery (Lykke-Andersen & Wagner, 2005). To determine the minimal active domain of 

TIS11b, we generated three truncated protein versions (NZn, Zn and ZnC) and tested their ability 

to induce ARE-mediated decay of a luciferase reporter gene mRNA fused to VEGF mRNA 

3’UTR (Luc-3’UTR). Importantly the activity of the ZnC deletion mutant was comparable to 

that of the full-length TIS11b while the NZn mutant was significantly less active as measured by 

VEGF-3’UTR-driven luciferase activity. These results are in agreement with those reported by 

others (Lykke-Andersen & Wagner, 2005). Indeed, tethered N-terminal domain of TIS11b was 

shown to be less efficient than the C-terminal domain in the activation of -globin reporter 

mRNA decay. The differences between NZn- and ZnC-induced mRNA destabilization suggest 

that these TIS11b protein domains interact with distinct components of the mRNA-decay 

machinery.  

TIS11 proteins are target of several kinases and therefore hyperphosphorylated proteins (Cao & 

Lin, 2008). These post-translational modifications modulate their activity, stability and 

subcellular localization. Unpublished data of our team demonstrated the importance of the 

phosphorylatable C-terminal serine 334 (S334) in the control of TIS11b protein stability and 
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activity (Rataj, et al., submitted, Article 1). We thus replaced the S334 by an aspartate (D) to 

mimic a permanent phosphorylation at this residue in order to potentiate the stabilizing effect of 

the N-terminal domain deletion of TIS11b. Both truncated proteins ZnC and ZnCS334D were 

successfully fused to the cell-penetrating peptide R9, composed of nine arginine residues, for 

their subsequent intracellular delivery.  

Overexpression experiments as well as purified protein storage analyses demonstrated that the 

protein half-life in living cells and the stability of the purified truncated protein R9-ZnC at 37° C 

were indeed enhanced when compared to the full-length TIS11b. These effects were even more 

pronounced for the R9-ZnCS334D mutant. In addition, transduction experiments showed that our 

novel protein constructs were stable for several days in living cells (data not shown). It remains 

to be determined whether the stabilizing effect of TIS11b truncation/mutation is due to resistance 

to proteasomal degradation or to interaction with stabilizing factors, as both processes are 

involved in TIS11b protein turnover (Benjamin et al, 2006). Although degradative ubiquitination 

of the TIS11 protein family is not well described so far, the fact that the N-terminal domain of 

proteins is used as the ubiquitination acceptor site might explain the stabilization of R9-ZnC 

(Ciechanover & Ben-Saadon, 2004). Benjamin et al. demonstrated that phosphorylation-

dependent interaction between 14-3-3 protein and TIS11b prevents its proteasomal degradation 

(Benjamin et al., 2006). In addition, it was shown very recently that TTP is degraded through 

ubiquitin-independent and proteasome-dependent mechanisms (Vo Ngoc et al., 2014). The 

authors detected intrinsically disordered regions in the primary sequence of all three TIS11 

proteins. These sequences do not harbour stable 3-D structures and could serve as proteasome 

recognition motifs (Tompa et al., 2008). One could assume that deletion of intrinsically 

disordered regions located in the N-terminal domain of TIS11b increases protein stability.    

As the fusion of cell-penetrating peptides to their cargo may alter the biological activity of the 

cargo, we checked the ability of R9-ZnC and R9-ZnCS334D to induce degradation of Luc-3’UTR 

reporter gene when overexpressed in vitro. Both protein constructs were as active as the full-

length TIS11b protein, thus excluding an inhibitory effect of R9. Efficient cellular uptake of 

purified R9-TIS11b protein in living cells was demonstrated in our previous study (Planel et al., 

2010). Here, we showed that our novel protein constructs R9-ZnC and R9-ZnCS334D were also 

efficiently delivered into murine breast cancer cells.  

We were first to identify the angiogenic cytokine VEGF as a direct target of TIS11b (Ciais et al., 

2004). We further demonstrated that TIS11b inhibits VEGF expression in Lewis Lung carcinoma 

cells and the development of vascularized tumors in mice (Planel et al, 2010). On the other hand, 
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TTP was shown to decrease RasVal12-dependent VEGF expression in breast cancer cells 

(Essafi-Benkhadir et al., 2007). In the present study, we bring evidence that the truncated form 

of TIS11b, R9-ZnC strongly reduced VEGF expression in breast cancer cells while R9-ZnCS334D 

completely obliterated VEGF expression, thus confirming the initially observed anti-angiogenic 

activity of the full-length TIS11b. TTP was shown to target, at least in vitro, multiple factors 

implicated in almost every step of tumor development (Ross et al., 2012; Sanduja et al., 2012). 

By contrast, a few studies have addressed the link between TIS11b and tumorigenesis (Hodson 

DJ et al., 2010; Planel et al., 2010). We tested the effect of our novel protein constructs on 

several hallmarks of tumorigenesis using the highly tumorigenic and invasive cell line 4T1-luc. 

R9-ZnCS334D appeared more efficient in the inhibition of 4T1-luc VEGF expression, 

proliferation, migration and anchorage-independent growth when compared to the non-mutated 

R9-ZnC. These observations suggest that R9-ZnCS334D is the most-promising candidate for 

therapeutic purposes. It is worth mentioning that the effects of both mutants were observed at 

low concentrations of purified proteins (50-100 nM). 

There is increasing evidence that TIS11 protein family members negatively regulate cell 

proliferation. Indeed, depletion of TTP in non-invasive human breast cancer cells accelerates 

significantly their proliferation (Milke et al., 2013). Treatment of PC3 human prostate cancer 

cells with siRNA against TTP increased their proliferation (Lee et al., 2014). It was shown 

subsequently shown that TTP acts through suppression of E2F1, a transcription factor involved 

in G1 to S transition. TTP also promotes mouse embryonic fibroblast cell-cycle arrest by 

targeting the cyclin-dependent kinase inhibitor p21 (Al-Hajj et al., 2004).  On the other hand, 

restoring TTP levels by protein overexpression inhibited significantly human cervix or breast 

cancer cell proliferation in vitro (Brennan et al., 2009; Griseri et al., 2011). Our results show 

that the TIS11b-derived mutant R9-ZnCS334D decreases 4T1-luc cell proliferation. Nevertheless, 

target mRNAs of R9-ZnCS334D in this context remain to be identified.   

Al-Souhibani et al. demonstrated that induction of TTP expression in human MDA-MB-231 

breast cancer cells significantly reduced the migration abilities of these cells in vitro (Al-

Souhibani et al., 2014). In addition, the authors reported that the restoration of TTP expression in 

MDA-MB-231 cells reduces the mRNA stability of MMP1, uPA and uPAR, three key factors 

involved in invasion and metastasis, by directly interacting with the 3ʼUTR of these mRNAs (Al-

Souhibani et al., 2010). These results are in line with our observations showing that R9-ZnCS334D 

inhibits migration and invasion capacities of 4T1-luc cells and support the idea that TIS11 

protein family underexpression promotes the aggressive phenotype of cancer cells. 
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In contrast to normal adherent cells, tumor cells have the capacity to grow without binding to a 

substrate. Anchorage-independent proliferation is a hallmark of tumor cell malignancy. 

Interestingly, we observed a significant decrease of colony growth in the presence of R9-

ZnCS334D and not with R9-ZnC. This result suggests that R9-ZnCS334D may have additional 

mRNA targets that are involved in the malignant phenotype of 4T1-luc cells. In the same line, 

epithelial-to-mesenchymal transition is the main underlying mechanism of migration, invasion 

and further formation of metastasis by cancer cells. EMT is a morphologic conversion process 

which is initiated by transcription factors such as Snail or Twist. Their activation alters 

dramatically the gene expression profile of cancer cells including the repression of the epithelial 

cell adhesion molecule E-Cadherin and the induction of mesenchymal markers such as N-

Cadherin and Vimentin. These factors promote remodelling of the cytoskeleton, loss of epithelial 

cell polarity and cell-cell contacts leading to a migratory cell phenotype (Lamouille et al., 2014). 

We report for the first time the inhibitory effect of a TIS11b-derived truncation (R9-ZnCS334D) on 

the expression of EMT-markers such as Twist, Snail and N-Cadherin. These observations 

suggest that this novel protein construct could favour the epithelial, non-metastatic phenotype of 

cancer cells. These data further corroborate the observed negative effects of R9-ZnCS334D on 

migration, invasion and anchorage-independent growth of 4T1-luc cells. However, the observed 

effects were rather modest at 24h post-treatment and additional experiments using longer 

incubation- periods in the presence of recombinant proteins are required. As TIS11b induces 

mRNA destabilization through the binding of AREs located in the 3’UTR of target mRNAs, we 

used the database AREsite to predict the presence of AREs in the tested EMT markers (Gruber 

et al., 2011). Indeed, AUUUA pentamers are abundant in all transcripts tested (E-Cadherin, N-

Cadherin, Snail, Twist and Vimentin) (data not shown), indicating their potential to be post-

transcriptionally regulated by TIS11b. However, the direct interaction of TIS11b and its 

derivatives with these mRNAs needs to be confirmed. In contrast to the current paradigm, we did 

not observe an increase of E-Cadherin expression concomitant to the decrease of N-Cadherin. 

Lou et al. characterized the expression of EMT markers in several 4T1-luc cell clones which 

differ in their invasiveness (Lou et al., 2008). Interestingly, the authors also observed E-Cadherin 

expression in metastatic 4T1-luc cells. Gebeshuber et al. demonstrated that downregulation of 

TTP promotes epithelial-to-mesenchymal transition and metastasis in Ras-transformed 

mammary epithelial cells. Conversely, restored expression of TTP increased E-Cadherin 

expression and reduced Vimentin mRNA and protein levels (Gebeshuber et al., 2009).  

Since R9-TIS11b-treated Lewis lung carcinoma tumors were significantly less vascularized than 

non-treated tumors (Planel et al., 2010), we investigated the effect of the truncated R9-ZnC and 
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R9-ZnCS334D proteins on endothelial cell function in vitro. We show that the ability of human 

endothelial cells (HUVEC) to form tube-like structures was impaired in the presence of R9-ZnC 

and R9-ZnCS334D, thus strengthening the anti-angiogenic effect of TIS11b. Furthermore, these 

results indicate that R9-ZnC and R9-ZnCS334D can potentially target several cell types within a 

tumor. Indeed, we have previously demonstrated that TTP targets HIF-1 in endothelial cells 

exposed to hypoxia, leading to downregulation of the major HIF-1 downstream target CAIX, a 

cancer-related enzyme involved in the regulation of pH homeostasis, cell proliferation and 

adhesion (Chamboredon et al., 2011). The endothelial mRNA targets of our truncated forms of 

TIS11b remain to be identified. 

Altogether, our findings provide further evidence that mRNA stability regulators such as 

TIS11b, in addition to well described transcription factors, regulate tumorigenic processes.  

Based on our results, R9-ZnC and R9-ZnCS334D appear as anti-tumoral agents which inhibit 

several hallmarks of cancer progression and need to be evaluated in in vivo studies. 
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Legends of the figures 

Figure 1: Characterization of the novel TIS11b truncated forms R9-ZnC and R9-ZnCS334D  

(A) Schematic representation of R9-ZnC and R9-ZnCS334D fusion proteins.  

(B) Inhibitory effect of overexpressed R9-TIS11b, R9-ZnC and R9-ZnCS334D on VEGF mRNA 

3’UTR fused to luciferase reporter gene. COS7 cells showed significantly decreased luciferase 

activity when transfected with 100 ng of R9-TIS11b, R9-ZnC and R9-ZnCS334D pTarget-vectors. 

pTarget-R9-empty plasmid was used as control. Upper panel: Reporter gene activity was 

determined 24 h post-transfection as described in Material and Methods. Results are presented as 

relative light units of Firefly luciferase and are represented as a percentage of luciferase activity 

in control cells. In the presence of R9-TIS11b, R9-ZnC and R9-ZnCS334D Firefly luciferase 

activity was 30.2 ± 2.5 % for R9-TIS11b, 42.2 ± 2.3 % for R9-ZnC and 34 ± 4.4 % for R9-

ZnCS334D of controls (n = 4-7).Transfections were performed in duplicates or triplicate and results 

are means ± s.e.m. Each value was compared to control using One-way ANOVA with 

Bonferroni’s multiple comparison post-test. ***, significantly different from control with P < 

0.001. Lower panel: Western blot analysis using anti-TIS11b antibodies confirmed equal 

expression of R9-TIS11b, R9-ZnC and R9-ZnCS334D pTarget-plasmids. Due to truncation of the 

full-length R9-TIS11b fusion protein (51 kDa), ZnC and ZnCS334D were detected at 38 kDa. 

(C) COS7 cells were transfected with R9-TIS11b, R9-ZnC or R9-ZnCS334D pTarget-vectors. 24 h 

post-transfection, cells were lysed and total RNA was extracted for Northern blot analyses. Upper 

panel: The membrane was hybridized with a radiolabelled VEGF 3’UTR probe and re-hybridized 

for 18S RNA detection. Shown is a representative Northern blot of two independent experiments. 

Lower panel: Quantification of VEGF mRNA signal intensities in this particular experiment. 

VEGF mRNA values were normalized to 18S RNA values and plotted as a percentage of VEGF 

mRNA level in control cells.  

 (D) COS7 cells were transfected with 100 ng of R9-TIS11b, R9-ZnC or R9-ZnCS334D pTarget-vectors. 

Twenty four hours post-transfection, the half-life for each fusion protein was determined in time-

course experiments by treating the cells with the translation inhibitor Cycloheximide (CHX) (10 

µg/ml). Left panel: Remaining protein was analysed by Western blot using anti-TIS11b 

antibodies. The membrane was re-probed with anti-Actin antibodies. Protein level was quantified 

using ImageJ software and normalized to Actin protein values. Right panel: Protein half-life of 

R9-TIS11b, R9-ZnC and R9-ZnCS334D is plotted as a percentage of the initial value over time. 

Data are representative of three independent experiments. Protein half-life was t1/2 ≈ 4 h for R9-

TIS11b, t1/2 ≈ 6 h for R9-ZnC and t1/2 = 8 h for R9-ZnCS334D. 
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Figure 2: Overexpression and purification of recombinant R9-ZnC proteins in Escherichia 

coli. 

(A) R9-ZnC protein expression was induced in E.coli by IPTG (β-D-1-thiogalactopyranoside) (NI, 

non-induced; I, induced) and purified by anti-Flag affinity-based chromatography (FT, flow 

through; W1/W10, washing step 1 or 10). The same procedure was used for R9-TIS11b, R9-ZnC 

and R9-ZnCS334D purification. 

(B) Purified R9-TIS11b, R9-ZnC and R9-ZnCS334D were analysed by SDS-PAGE and visualized by 

Coomassie Brilliant Blue staining. The apparent molecular weight of the recombinant proteins 

was slightly higher than the predicted one (40 kD for R9-TIS11b and 30 kD for R9-ZnC/R9-

ZnCS334D).  

(C) Specificity of eluted proteins was further validated by Western blot using anti-Flag antibody.  

 

Figure 3: Increased stability under storage and efficient cellular uptake of purified R9-ZnC 

proteins. 

(A) Left panel: Equal amounts of purified R9-TIS11b, R9-ZnC, R9-ZnCS334D recombinant proteins 

were stored at either 4 °C or 37 °C up to five days. Samples kept at -20 °C were used as 

reference. Remaining protein was quantified by Western blot using the Flag-tag antibody. Arrows 

indicate purified R9-TIS11b, R9-ZnC, R9-ZnCS334D. Bands below are products of protein 

degradation. Results are representative of two independent experiments. Right panel: Protein 

level was quantified using ImageJ software and normalized to -20 °C control samples. The data 

are percentage of respective controls for both temperature conditions. After five days-incubation 

at 4 °C, 63  ± 9.5 % of R9-TIS11b, 88  ± 16.0 % of R9-ZnC and 92  ± 3.2 % of R9-ZnCS334D 

initial protein quantity were detected (n = 2-3). Following five day-storage at 37 °C, 47  ± 5.2 % 

of R9-TIS11b, 56  ± 14.0 % of R9-ZnC and 79  ± 2.2 % of R9-ZnCS334D initial protein quantity 

were detected (n = 2-3). 

(B) 4T1-luc cells were incubated for 16 h in the presence of 50 ng Alexa 488-labeled purified ZnC, 

R9-ZnC or R9-ZnCS334D followed, by the addition of Hoechst 33342 for 30 min to stain nuclei 

and Alexa Fluor 594 wheat germ agglutinin for 10 min to label cell plasma membrane. Laser 

confocal microscopy visualized internalization of ZnC (non-penetrating control), R9-ZnC or R9-

ZnCS334D (upper panel). Deconvolution of laser confocal microscopy images along the x-y axes 

(central), x-z axes (bottom) and y-z axes (right) confirmed internalization of Alexa 488-labeled 

ZnC, R9-ZnC or R9-ZnCS334D (lower panel). White lines mark axes along which deconvolution 
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was done. Green fluorescence signal along the z-axis indicates efficient cellular uptake of labelled 

proteins. Scale bar, 37.5 µm. 

 

Figure 4: Inhibitory effect of R9-ZnC and R9-ZnCS334D on VEGF expression in 4T1-luc breast 

cancer cells. 

2.0 x 105 4T1-luc cells were seeded in a 12-well plate and incubated for 24 h in the presence of 100 nM 

purified R9-ZnC or R9-ZnCS334D protein. 

(A) Quantitative real time-PCR analysis of VEGF mRNA in treated cells. RPL13A was used as 

housekeeping gene and results are normalized to control. Results are means ± SD of two 

independent experiments. VEGF mRNA expression was 58.2 ± 8.8 % of control for R9-ZnC and 

27.4 ± 8.5 % of control for R9-ZnCS334D.  

(B) Culture media of the same experiments were used to determine VEGF protein content using 

ELISA. 215 pg VEGF/ml and 142 pg/ml were measured in control and R9-ZnC-treated cells, 

whereas VEGF protein was undetectable after R9-ZnCS334D treatment. Presented results are means 

± SD of duplicates. 

 

Figure 5: R9-ZnCS334D inhibits proliferation and migration of 4T1-luc tumor cells. 

(A) To perform proliferation assays, 1.0 x 104 4T1-luc cells were plated in 96-well plates and treated 

for 48 h with 12.5, 25 or 50 nM of R9-ZnC or R9-ZnCS334D in complete growth medium. Equal 

amount of vehicle served as control. At t = 0 h, t = 24 h and t = 48 h, WST-1 was added and 

absorbance at 450 nm was determined after 2 h incubation at 37 °C. The highest proliferation 

activity was observed for control. Shown is a representative experiment of n = 3 independent 

ones. 

(B) 4T1-luc cells were seeded in 12-well plates and incubated until confluence then the monolayer 

was scratched. Wound healing was monitored over 16 h in the presence of 50 nM of R9-ZnC, R9-

ZnCS334D or vehicle. Distance between wound edges was measured at t= 0 h and t= 16 h. Light 

microscopy acquisitions on the left side are representative of three independent experiments. Data 

on the right are percentages of wound closure 16 h post-treatment normalized to t= 0 h. While no 

effect of R9-ZnC was observed, migration of 4T1-luc cells was significantly inhibited by 30 % 

compared to control. Results are means ± s.e.m. of three independent experiments. Each value 

was compared to control using One-way ANOVA with Bonferroni’s multiple comparison post-

test. *, significantly different from control with P < 0.05. Scale bar, 200 µm. 
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Figure 6: Both R9-ZnC and R9-ZnCS334D inhibits invasion whereas anchorage-independent 

growth of tumor cells is impaired by R9-ZnCS334D only. 

(A) Invasive properties of 4T1-luc cells were analysed using the Boyden chamber matrigel invasion 

assay as described in Material and Methods. Upper panel: 4T1-luc cells were treated for 48 h with 

50 nM of recombinant proteins using the transwell system. Invaded cells were stained with 

Crystal Violet and cell occupied area was measured using ImageJ software. Images represent the 

whole transwell surface (scale bar, 1 mm). Lower panel: Invaded cells were lysed in appropriate 

assay buffer and Firefly luciferase was measured. Results are presented as percentage of control. 

In the presence of R9-ZnC and R9-ZnCS334D, Firefly luciferase activity was 43.9 ± 8.2 % of 

control for R9-ZnC and 47.1 ± 14.4% of control for R9-ZnCS334D. Results are means ± s.e.m. of 

three independent experiments. Each value was compared to control using One-way ANOVA 

with Bonferroni’s multiple comparison post-test. *, significantly different from control with P < 

0.05.  

(B) Effect of R9-ZnC and R9-ZnCS334D on anchorage-independent growth of 4T1-luc cells. Soft agar 

colony formation assay was performed as described in Material and Methods. Colonies were 

stained with Crystal Violet 14 d after plating and were counted. The graphs illustrate the total 

number of counted colonies (> 6 µm) of the whole agar surface for the experiment shown. Two 

independent experiments showed similar results. Scale bar, 0.2 mm. 

 

Figure 7:  Effect of R9-ZnC and R9-ZnCS334D proteins on EMT-markers in 4T1-luc breast 

cancer cells. 

 (A) Quantitative real-time PCR analysis of Snail and Twist mRNA in treated 4T1-luc cells. A 

decrease of Twist mRNA level was detected in the presence of R9-ZnCS334D only, whereas both 

R9-ZnC or R9-ZnCS334D reduced Snail mRNA level. RPL13A was used as housekeeping gene 

and results are normalized to control. Presented results are means ± SD of duplicates.  

(B) Western Blot analysis using anti-E-Cadherin, anti-N-Cadherin and anti-Vimentin antibodies 

showed a decreased Vimentin and N-Cadherin expression after treatment of 4T1-luc cells with 

100 nM recombinant R9-ZnC or R9-ZnCS334D proteins. Protein level values were quantified using 

Chemidoc ImageLab software and normalized to Tubulin protein values. Results are presented as 

normalized values against control and are means ± SD of two independent experiments. 
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Figure 8: Effect of purified R9-ZnC and R9-ZnCS344D proteins on endothelial cells. 

Formation of a pseudo-capillary network using HUVEC endothelial cells was performed as described in 

Material and Methods. Images are representative of three independent experiments. Cell-occupied area 

was determined using ImageJ software. The area covered by HUVEC was 56 ± 14 % and 54 ± 7 % higher 

in the presence of R9-ZnC and R9-ZnCS344D, respectively, than that covered by non-treated cells. Results 

are means ± s.e.m. of three independent experiments. Each value was compared to control using One-way 

ANOVA with Bonferroni’s multiple comparison post-test. *, significantly different from control with P < 

0.05. 

 

Supplementary figure 1: Truncation of TIS11b does not impair its mRNA-destabilizing 

activity   

(A) Schematic representation of truncated TIS11b proteins NZn(1-195), Zn(99-195) and ZnC(109-339).  

(B) Effect of overexpressed TIS11b and its truncated forms NZn, Zn and ZnC on the luciferase 

activity of a luciferase reporter gene fused to the 3’UTR of VEGF mRNA. pTarget-R9-empty 

plasmid was used as control. Reporter gene activity was determined 24 h post-transfection as 

described in Material and Methods. COS7 cells showed a significant, dose-dependent decrease in 

luciferase activity in the presence of TIS11b and ZnC. The NZn domain of TIS11b is less active 

than the ZnC while the Zn domain displays the lowest activity. Results are presented as relative 

light units of Firefly luciferase over Renilla luciferase and normalized against the control pTarget-

empty plasmid. Transfections were performed in triplicates and results are means ± s.e.m. of two 

to three independent experiments. Each value was compared to control using One-way ANOVA 

with Dunnett’s multiple comparison post-test. *, significantly different from control with P < 

0.05; **, significantly different from control with P < 0.01. All values were compared to each 

other using One-way ANOVA with Bonferroni’s multiple comparison post-test. #, Zn 

significantly different from full-length TIS11b P < 0.05. 

(C) RT-PCR confirmed a dose-dependent expression of TIS11b, NZn, Zn and ZnC in COS7 cells. 

HPRT was used as housekeeping gene.  
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 

 



 

 230 

FIGURE 8 
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SUPPLEMENTARY FIGURE 1 
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Supplementary data: In vivo characterization of R9-ZnC and R9-ZnCS334D as novel 

anti-tumoral agents 
Introduction 

Encouraged by the previously described in vitro results which suggested an inhibitory effect of 

R9-ZnC and R9-ZnCS334D purified protein on several cancer cell characteristics, we performed in 

vivo studies using mouse preclinical models. The aims of these experiments were to determine 

the effect of R9-ZnC and R9-ZnCS334D on several hallmarks of tumor progression including 

tumor growth, tumor vascularization and tumor invasion capacities as well as to identify their 

potential mRNA targets.  

We decided to use the syngeneic mouse 4T1 breast tumor model for several reasons (Pulaski & 

Ostrand-Rosenberg, 2001). The 4T1 mammary carcinoma cell line was initially isolated by Fred 

Miller and colleagues from a spontaneously grown mammary tumor in a BALB/c mouse (Dexter 

et al., 1978; Aslakson & Miller, 1992). 4T1 cells are highly tumorigenic and invasive and give 

rise to palpable tumors within a short period. When orthotopically injected into the fat pad of the 

mammary gland of immunocompetent mice, these cells are able to form both a primary tumor 

and spontaneous metastases in several distant organs, such as lung, bone, brain, liver and lymph 

nodes. This model is very similar to that of human breast cancer and mimics late stage triple 

negative human breast cancer. 4T1 tumors were described to be hypoxic as a high expression of 

carbonic anhydrase (CAIX), a HIF-1 downstream target was detected in these tumors (Lou et 

al., 2008). 4T1 tumors are also highly vascularized, thus representing a good model to explore 

the therapeutic potential of novel anti-angiogenic therapies in vivo. Indeed, among other studies, 

Welti et al. have described recently the unexpected effect of the tyrosine kinase inhibitor 

sunitinib on 4T1 lung metastases (Welti et al., 2012). Sunitinib increased the number of 

pulmonary metastases due to the reduced pericyte coverage of lung vessels which enhanced the 

extravasation of 4T1 cells and formation of metastatic lesions. By contrast, the synthetic tyrosine 

kinase inhibitor 194-A suppressed 4T1 metastasis due to the inhibition of VEGFRs/FGFRs 

signalling (Chien et al., 2013). In addition, the 4T1 model has been used to explore several 

chemotherapeutic treatments. Among others, Paclitaxel was intensively studied during the last 

years (Jiang et al., 2010; Ho et al., 2012; Meyer-Losic et al., 2013; Sharma et al., 2013). Given 

the importance of the tumor environment in cancer cell behaviour, the syngeneic 4T1 model was 

also used to investigate the involvement of the immune system in cancer progression and to 

evaluate anti-tumor immunotherapeutics. For example, a very recent study demonstrated that the 

blockade of the cytokine Oncostatin M and the chemokine Eotaxin by neutralizing antibodies 
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reduced the content of tumor-promoting M2-macrophages in 4T1 tumors, leading to tumor 

regression and decreased intratumoral vascularization (Tripathi et al., 2014).  

 

Background 

Taking the advantage of the murine 4T1 model, we initially injected luciferase-expressing 4T1-

luc cells in the fat pad of the mammary gland. These studies were limited by the fast orthotopic 

tumor growth and the restricted accessibility of tumors for size measurements with caliper. The 

monitoring of tumor development was performed exclusively by bioluminescence in vivo 

imaging and we have faced an important heterogeneity in tumor development within the 

different groups.  

Based on previous successful in vivo studies of our laboratory, in which pre-established 

subcutaneous Lewis lung cancer tumors (LLC) in nude mice were treated by intratumoral 

injections of the cell-permeable R9-TIS11b fusion protein, we decided to continue our in vivo 

studies by implanting 4T1-luc cells subcutaneously (Planel et al., 2010). Overall, the major 

drawback of our 4T1-luc in vivo experiments was the spontaneous regression of pre-established 

tumors. Strikingly, this regression was more frequent in the control group. Tao et al. 

demonstrated a biphasic growth of 4T1-luc tumors with a rapid growth during the first two 

weeks post-implantation then a regression between week 2 and 4, and a re-growth in weeks 5 

and 6 (Tao et al., 2008). The authors revealed a correlation between the observed tumor 

regression and a host-immune response as they observed necrosis and leukocyte infiltration. This 

correlation was further strengthened by the absence of the biphasic tumor growth of 4T1-luc 

cells in athymic nude or SCID BALB/c mice. In addition, antibodies directed against 4T1 

antigens were found in the serum of tumor-bearing mice at week 6. DuPré et al. reported that 40-

50 % of the 4T1 tumor mass were immune cells, underlining the importance of the host immune 

system in this murine tumor model (DuPre et al., 2007). 4T1 tumors seem to be heterogeneous 

as highly invasive and non-metastatic clones could be obtained from the same tumor (Tao et al., 

2008).  

In the present work, we illustrate and describe a part of the results of a pilot study, which was 

performed to determine the best dose of our novel protein constructs for the treatment. In this 

experiment, we tested the anti-tumoral effect of three concentrations (50 ng, 100 ng and 200 ng) 

of R9-ZnC or R9-ZnCS334D. We observed that a dose of 200 ng of purified R9-ZnC or R9-

ZnCS334D/injection decreased tumor volume and impaired several hallmarks of tumorigenesis. 

Although the results presented here are rather encouraging, the data need to be confirmed in 

future experiments using a statistically significant number of animals. 



 

 235 

Results & Discussion 

Intratumoral injection of R9-ZnC or R9-ZnCS334D inhibits 4T1 luc tumor growth 

To evaluate the anti-tumoral effect of our novel protein constructs R9-ZnC/ R9-ZnCS334D in vivo, 

luciferase-expressing 4T1-luc cells were subcutaneously injected into immunocompetent female 

BALB/c mice. Based on our in vitro studies on the protein half-life and protein stability of 

purified R9-ZnC or R9-ZnCS334D proteins, pre-established tumors (minimal size 50 mm3) were 

treated every other day by intratumoral injections of either 200 ng of R9-ZnC or R9-ZnCS334D or 

vehicle as control. As shown in Figure 2-1 A, tumor volume was decreased by 18 % (R9-ZnC) or 

56 % (R9-ZnCS334D) after 34 days of treatment compared to the control, indicating that tumor 

growth inhibition was more pronounced in the presence of R9-ZnCS334D. In vivo 

bioluminescence imaging, which detects the luciferase activity of living 4T1-luc cells, confirmed 

this inhibitory effect (8.8 x 108 photons/s for R9-ZnCS334D-treated tumor versus 2.7 x 109 

photons/s for control tumor). At day 34 of treatment, no significant difference was observed 

between the luciferase activity of R9-ZnC-treated tumors and the control. However, differences 

in tumor weight correlated with differences in tumor volume (Figure 2-1 B). We observed an 

important macroscopic necrosis of R9-ZnC and R9-ZnCS334D-treated tumors (Figure 2-1 B). 

Even if ulceration is described as a characteristic of the 4T1 breast cancer model, necrosis 

appeared earlier during tumor progression in the presence of our novel protein constructs. During 

tumor dissection, the centre of the treated tumors was filled with a viscous liquid, whereas tissue 

control tumors remained compact. Furthermore, the R9-ZnCS334D-treated tumor appeared to be 

paler than the control, suggesting weaker intratumoral vascularization.  



 

 236 

 

Figure 2-1: R9-ZnC or R9-ZnCS334D inhibits 4T1-luc tumor growth, tumor vascularization and 

VEGF expression as well as tumor hypoxia. 

4T1-luc cells were subcutaneously implanted into immunocompetent BALB/c mice (n=1 

per group). Pre-established tumors were treated by injecting 200 ng of R9-ZnC, R9-

ZnCS334D or vehicle directly into the tumor every other day.  
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(A) Tumor growth was monitored by either sequential determination of tumor volume using caliper or 

measurement of emitted bioluminescence at day 0 and 34 of treatment. Tumor volume is as 

percentage of tumor volume at the first day of treatment. Bioluminescence signals of in vivo 

imaging are expressed as photons/sec/cm2/sr.  

(B) Tumor weight confirmed in vivo imaging signals at day 34 of treatment and tumor volume 

measurements. Scale bar, 1 cm. Images in the lower panel illustrate macroscopic ulceration and 

necrosis observed for R9-ZnC-treated tumors. 

(C) Histochemical hematoxylin/eosin staining and immunohistochemical detection of intratumoral 

VEGF expression, hypoxic areas (PIMO, Pimonidazole hydrochloride) and tumor vascularization 

(CD31) after 34 days of treatment. The insets on the left lower corner present antibody negative 

control to exclude nonspecific immunohistochemical staining. The graph represents 

quantification of microvessel density (MDV) in several stained tumor sections of control, R9-ZnC 

and R9-ZnCS334D-treated mice. Results are means ± SD. Each value was compared to control 

using One-way Kruskal-Wallis test and Dunnett’s Multiple comparison post-test.*, significantly 

different from control with P < 0.05. Scale bar, 200 µm. 

 

R9-ZnC or R9-ZnCS334D-treatment of 4T1-luc tumors decreases VEGF expression and 

microvessel density as well as hypoxic areas  

To further analyse the inhibitory effect of R9-ZnC or R9-ZnCS334D on tumor growth in vivo, we 

performed immunohistochemical analyses (Figure 2-1 C). Macroscopic necrosis was confirmed 

by Haematoxylin & Eosin staining of tumor sections which indicated a necrotic centre of the 

tumor (pink staining) due to eosinophilic structures and a peripheral rim of living tumor cells 

(blue staining). Compared to the control tumor, R9-ZnC- or R9-ZnCS334D-treated tumors showed 

a completely disorganized intratumoral tissue structure. In addition, fibrin-like structures as 

another indicator of necrosis were present in R9-ZnC- or R9-ZnCS334D-treated tumors. 

To investigate the effect of R9-ZnC or R9-ZnCS334D on tumor vasculature, tumor sections were 

stained for CD31, a marker of blood vessels (Figure 2-1 C).The microvessel density (brown 

staining) was markedly reduced as compared to the control, even though the inhibitory effect 

was more pronounced in the presence of R9-ZnCS334D. We quantified a mean of 115 ± 14 (R9-

ZnC) and 100 ± 12 (R9-ZnCS334D) versus 160 ± 28 (control) microvessels per tumor section.  

As VEGF is the key factor in the formation of new blood vessels, we further determined the 

effect of our novel protein constructs on intratumoral VEGF expression. Immunohistochemical 

staining demonstrated decreased VEGF protein levels (brown staining) in R9-ZnC- or R9-

ZnCS334D-treated tumors as compared to the control (Figure 2-1 C). Again, R9-ZnCS334D was 

more effective in the inhibition of VEGF expression than R9-ZnC. These results are in 
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agreement with those reported previously by our lab and showing that full-length R9-TIS11b 

also decreases LLC tumor vascularization in nude mice (Planel et al., 2010). 

As hypoxia is a major stimulus inducing angiogenesis, we evaluated the presence of hypoxic 

areas in R9-ZnC- or R9-ZnCS334D-treated tumors. Pimonidazole hydrochloride (PIMO) was 

injected intraperitoneally before sacrifying the animals. Pimonidazole hydrochloride is reduced 

and activated in hypoxic cells and forms covalent adducts with thiol groups of proteins, peptides 

and amino acids. Immunohistochemical detection of these adducts (brown staining) 

demonstrated a dramatically decreased intratumoral hypoxia upon R9-ZnCS334D-treatment in vivo 

as compared to the control (Figure 2-1 C). Staining of hypoxic areas and VEGF shows that they 

were co-localized confirming that hypoxia is a major inducer of tumor angiogenesis. 

Interestingly, treatment of tumors with R9-ZnC did not alter the level of tumor hypoxia. If we 

succeed in confirming these observations in our future experiments, this could be of great 

interest. Indeed, hypoxia regulates transcription of various genes implicated in tumor cell 

metabolism, angiogenesis and EMT through the major action of HIF-1 (Ruan et al., 2009; De 

Bock et al., 2011; Casazza et al., 2014). Therefore, hypoxia signalling is involved in almost 

every step of tumorigenesis and impacts tumor cells as well as other cell types of the tumor 

microenvironment. In addition, hypoxia is associated with therapy resistance and disease 

progression as it favours the most invasive tumor cells in various cancers. Our laboratory 

identified HIF-1α mRNA as a target of TTP in endothelial cells (Chamboredon et al., 2011). In 

this study, TIS11b was also able to destabilize HIF-1α mRNA in vitro. One can hypothesize that 

intratumoral injection of R9-ZnCS334D mimics the in vitro action of TIS11b on HIF-1α. This 

question remained to be answered in further investigations.  
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Decreased expression of several angiogenic and inflammatory cytokines upon R9-ZnC- or R9-

ZnCS334D treatment in vivo  

The results of the immunohistochemical analyses led us to further dissect the anti-tumoral effect 

of R9-ZnC or R9-ZnCS334D using a mouse angiogenesis antibody array. The expressions of 53 

angiogenesis-related proteins in tissue lysates of the control, R9-ZnC and R9-ZnCS334D tumors 

were simultaneously detected (Figure 2-2 A). We observed the highest detection for the 

Coagulation Factor III, CXCL16, Endostatin, Insulin Growth Factor Binding Protein 3 (IGFBP-

3), Interleukin-1α (IL-1α), CXCL1, Matrix-metalloprotease 3 (MMP-3), MMP-9, Osteopontin, 

Platelet Factor 4, Placental Growth Factor 2 (PIGF-2), Serpin E1 and Thrombospondin-2. No 

expression was detected for the following proteins: Angiopoietin-3 (Ang-3), Epidermal Growth 

Factor (EGF), Keratinocyte Growth Factor (KGF), Granulocyte Macrophage Colony-Stimulating 

Factor (GM-CSF), IL-1β, IL-10, Platelet-Derived Endothelial Cell Growth Factor (PD-ECGF), 

Prolactin and Tissue inhibitor of metalloprotease 4 (TIMP-4). In contrast to our previously 

described in vitro analyses of VEGF expression in 4T1-luc cells at the mRNA and protein level 

and our immunohistochemical analysis of VEGF in 4T1 tumors in vivo, VEGF and VEGF-b 

were undetectable using antibody arrays. It is worth mentioning that during the quantification of 

soluble VEGF using ELISA, we noticed a low basal VEGF secretion by 4T1-luc cells as 

compared to another tumor cell line such as MDA-MB-231 human breast cancer cells.  
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Figure 2-2: Multi-target action of ZnC proteins on tumor angiogenesis factors in vivo. 

(A) Mouse angiogenesis antibody array analysis of control and R9-ZnC/ R9-ZnCS334D-treated tumors 

mice (n=1 per group). The table on the right side indicates arrangement of tested antibodies as 

well as expression level of detected proteins compared to control.  

(B) Representation of the expression level of angiogenic proteins normalized against control. 

Antibody arrays illustrated in (A) were scanned and pixel density was quantified using ImageJ 

software. The embedded graph in the right upper corner depicts angiogenic factors which were 

detected just in one of the three tissue extracts.   

 



 

 241 

es Protein 
Expression-fold relative to 

control [%] 

      R9-ZnC R9-ZnC
S334D

  

A5,A6 ADAMTS1   ne 38,97 
A7,A8 Amphiregulin   10,16 -27,77 
A9,A10 Angiogenin   99,72 12,87 
A11,A12 Ang-1   47,19 27,55 
A13,A14 Ang-3   ne ne 
A15,A16 Coagulation Factor III   -2,75 -3,38 
A17,A18 CXCL16   1,67 2,34 
B3,B4 Cyr61/CCN1   -38,20 -24,15 
B5,B6 Dll4   * * 
B7,B8 DPPIV   -9,10 -36,32 
B9,B10 EGF   ne ne 
B11,B12 Endoglin   -18,43 -40,84 
B13,B14 Endostatin   -3,95 -2,92 
B15,B16 Endothelin-1   -10,86 -25,70 
B17,B18 FGFa   -4,79 15,25 
B19,B20 FGFb   -39,37 -20,14 
C3,C4 KGF   ne ne 
C5,C6 Fractalkine   -40,02 -64,25 
C7,C8 GM-CSF   ne ne 
C9,C10 HB-EGF   -11,62 -16,74 
C11,C12 HGF   35,78 5,86 
C13,C14 IGFBP-1   * * 
C15,C16 IGFBP-2   -11,92 -27,41 
C17,C18 IGFBP-3   0,16 -0,01 
C19,20 IL-1α   -3,48 -1,36 
C21,C22 IL-1β   ne ne 
D3,D4 IL-10   ne ne 
D5,D6 IP-10   90,34 -27,93 
D7,D8 KC/CXCL1   0,03 -8,31 
D9,D10 Leptin   ** ne 
D11, D12 MCP-1   -26,88 -54,37 
D13,D14 MIP-1α   106,48 2,73 
D15,D16 MMP-3   0,16 0,19 
D17,D18 MMP-8   -1,65 -13,28 
D19,D20 MMP-9   -0,03 -0,03 
D21,D22 NOV/CCN3   -73,73 -64,03 
E3,E4 Osteopontin   0,43 0,23 
E5,E6 PD-ECGF   ne ne 
E7,E8 PDGF-AA   -29,44 -33,22 
E9,E10 PDGF-AB/-BB   ** ne 
E11,12 Pentraxin-3   * * 
E13,E14 Platelet Factor 4   -2,22 -3,21 
E15,E16 PIGF-2   -0,17 1,08 
E17,E18 Prolactin   ne ne 
E19,E20 Proliferin   -37,61 14,72 
F3,F4 SDF-1   -58,96 -50,84 
F5,F6 Serpin E1   -0,90 0,41 
F7,F8 Serpin F1   -29,44 -38,47 
F9,F10 Thrombospondin-2   17,28 -3,99 
F11,12 TIMP-1   9,51 -52,38 
F13,F14 TIMP-4   ne ne 
F15,F16 VEGF   ne ne 
F17,F18 VEGF-b   ne ne 
A1,A2 reference spots 

 A21,A22 reference spots 
 F1,F2 reference spots 
 F19,F20 negative control 
  

Table 2-1: Mouse angiogenesis antibody array analysis of control and R9-ZnC- or R9-ZnCS334D-

treated tumor tissue extracts.  

This table indicates arrangement of tested antibodies as well as expression fold of 

detected proteins compared to control (con). ne, not expressed; *, only expressed in 

control; ** only expressed in R9-ZnC-treated tumor extract. 
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With few exceptions, the overall expression of the tested angiogenic factors was repressed in R9-

ZnC- or R9-ZnCS334D-treated tumors compared to the control (Figure 2-2 B; Table 2-1). 

Unexpectedly, for some genes, an antagonistic effect was observed between R9-ZnC and R9-

ZnCS334D (e.g. Amphiregulin, IP-10, Proliferin, TIMP-1) with R9-ZnC promoting and R9-

ZnCS334D repressing mRNA and/or protein expression. These observations suggest that the 

mutation of the Serine 334 might either extend the TIS11b target mRNA-target repertoire or 

potentiate TIS11b function. For further discussion, we will concentrate on Fractalkine 

(CX3CL1), Monocyte chemoattractant protein 1 (MCP-1/CCL2), nephroblastoma overexpressed 

(NOV/CCN3), Pentraxin 3 (PTX3), Stromal-derived factor 1 (SDF-1/CXCL12) and Tissue 

inhibitor of metalloprotease 1 (TIMP-1) as these factors were inhibited by more than 50 % upon 

R9-ZnC- or R9-ZnCS334D-treatment in vivo (Figure 2-2 B; Table 2-1).  

Fractalkine (CX3CL1) is the only member of the CX3C chemokine family known so far 

(Ferretti et al., 2014). The membrane-anchored form of this chemokine acts as an adhesion 

molecule to maintain leukocytes adhesion to endothelial cells. Soluble fractalkine efficiently 

attracts mainly T and B lymphocytes, natural killer cells and monocytes via the activation of the 

CX3C receptor (CX3CR). Fractalkine expression has been reported for several cell types such as 

endothelial and epithelial cells, lymphocytes, neurons, microglial cells and osteoblasts. In cancer, 

fractalkine harbours a dual function as chemoattractant for leukocytes and adhesion molecule for 

tumor cells. However, the function of this chemokine in cancer is controversial. The pro- or anti-

tumoral function of fractalkine highly depends on the type of cancer and the cell type within 

tumor tissue. In breast cancer, CX3CR expression is induced, allowing tumor cells to migrate 

towards high fractalkine concentrations released by bone stromal cells and neurons to form brain 

and skeleton metastasis. Less skeletal dissemination of human breast cancer cells was 

demonstrated in CX3CL1-/- mice (Jamieson-Gladney et al., 2011). Reed et al. reported that the 

inhibition of the fractalkine-CX3CRaxis decreases macrophage infiltration and angiogenesis in 

the mammary cancer cells in vivo (Reed et al., 2012). By contrast, Park et al. reported a 

correlation of high fractalkine levels and good prognosis in breast cancer patients as this 

chemokine induced a strong immune response (Park et al., 2012).  

MCP-1 (CCL2) is overexpressed in the primary tumor or metastatic sites of human breast 

cancer (Soria & Ben-Baruch, 2008). This inflammatory cytokine play causative roles in breast 

cancer and is associated with tumor progression as well as cancer cell aggressiveness. MCP-1 

released by tumor cells promotes tissue remodelling and activates their migratory phenotype. In 

addition, tumor cell-derived MCP-1 attracts monocytes and promotes their differentiation into 
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pro-tumoral tumor-associated macrophages (TAMs). MCP-1 produced by several cell types of 

the tumor microenvironment, such as TAMs or cancer-associated fibroblasts, create a milieu 

favouring angiogenesis and suppressing immunity. Indeed, Ueno et al. reported a correlation 

between MCP-1 and angiogenic factors, such as IL-8, TNF and VEGF in human breast cancer 

(Ueno et al., 2000). Furthermore, MCP-1 release is involved in the osteoclastogenesis at bone 

metastatic sites facilitating the colonization of disseminated cancer cells. A recent study, using 

the 4T1 breast cancer model aimed to investigate the role of stromal-derived MCP-1 in tumor 

progression (Yoshimura et al., 2013). 4T1 cells were injected in wild type and MCP-1 deficient 

mice. Although tumor size was unaffected, early necrosis and larger necrotic areas as well as 

reduced macrophage infiltration and reduced angiogenesis was observed in tumors of MCP-1 

deficient mice. As already described, we observed an important macroscopic necrosis in our R9-

ZnC- and R9-ZnCS334D-treated 4T1-luc tumors (Figure 2-1 B). Furthermore, Yoshimura et al. 

observed reduced spontaneous lung metastasis in the absence of stroma-derived MCP-1. In 

addition, MCP-1 mRNA in 4T1 cells was nearly undetectable in vitro supporting the hypothesis 

that stromal cells are the major source of MCP-1 in those tumors. Interestingly, Sadri et al. 

observed elevated MCP-1 mRNA and protein levels in AUF1-deficient mice (Sadri & Schneider, 

2009).  

NOV (CCN3) was originally identified in myeoloblastosis-associated virus-induced 

nephroblastoma due to its overexpression (Joliot et al., 1992). High NOV levels are associated 

with fast proliferating tumors, metastasis and poor outcome in renal cell carcinoma (Bleau et al., 

2005). Ouellet et al. demonstrated the role of NOV in the formation of bone-metastasis using the 

4T1 tumor model (Ouellet et al., 2011). Overexpression of NOV in weakly bone metastatic 

breast cancer cells enhances their potential to form bone metastasis. In addition, NOV favoured 

osteoclast differentiation facilitating the growth of cancer cells in bone environment. Due to 

multiple protein domains, NOV is interacting with several factors present in the extracellular 

matrix regulating cell adhesion and migration. NOV was postulated as angiogenic inducer as it 

promotes endothelial cell adhesion by interacting with integrin receptors, endothelial cell 

survival and migration (Bleau et al., 2005). Recently, Chen et al. observed that prostate cancer 

cell-derived NOV recruits macrophages, induces their differentiation into TAMs and induces 

tumor angiogenesis in vivo (Chen et al., 2014). Lopéz-Silanes et al. described the binding of the 

mRNA-stabilizing protein HuR to the 3’UTR of NOV mRNA in a human colorectal carcinoma  

cell line (Lopez de Silanes et al., 2004). However, the pro- or anti-tumoral role of NOV is 

controversially discussed and seems to be cancer type-dependent.  



 

 244 

Pentraxin (PTX3) is a modulator of tumor-associated inflammation. PTX3 is mainly expressed 

by vascular endothelium and smooth muscle cells, but is also synthesized by myeloid dendritic 

cells, mononuclear macrophages/phagocytes, fibroblasts, adipocytes and other cell types (Cieslik 

& Hrycek, 2012). Its expression is under the control of several mediators, including the pro-

inflammatory cytokine TNF. In addition to its role in inflammation, PTX3 is involved in 

angiogenesis and tissue remodelling (Presta et al., 2007). For example, a recent study 

demonstrated that TNF-induced PTX3 expression in human bone metastatic breast cancer cells 

stimulated the differentiation and activation of osteoclasts facilitating the formation of bone 

metastasis (Choi et al., 2014). In addition, the authors observed an enhanced migratory potential 

of human breast cancer cells and of macrophages towards high levels of PTX3. Furthermore, 

high levels of PTX3 expression were detected in bone metastasis samples of breast cancer 

patients. A positive correlation between high PTX3 expression in primary tumors and poor 

survival was determined. Moreover, high PTX3 levels are associated with advanced clinical 

stages of lung cancer, glioma, prostate carcinoma and pancreatic cancer (Ravenna et al., 2009; 

Diamandis et al., 2011; Kondo et al., 2013; Locatelli et al., 2013).  

SDF-1 (CXCL12) acts via CXCR4, the most frequently overexpressed receptor in cancer 

(Domanska et al., 2013). Stromal cells in the tumor microenvironment constitutively express 

CXCL12, which promotes the growth and survival of CXCR4-expressing tumor cells via 

paracrine signalling. Furthermore, CXCR4-positive tumor cells migrate towards high CXCL12 

levels in distant organs to eventually form metastasis. A human breast cancer mouse model 

demonstrated increased infiltration of CXCR4-expressing inflammatory, vascular and stromal 

cells into the tumor due to high CXCL12 expression of cancer cells and tumor-associated 

stromal cells (Orimo et al., 2005). Tumor cells benefit from their CXCR4 expression to enter 

CXCL12-rich bone marrow microenvironment leading to chemotherapy resistance. In tumors, 

CXCL12-CXCR4‒axis promotes VEGF-mediated angiogenesis via AKT signalling (Liang et al., 

2007). Indeed, inhibition of CXCR4 led to dramatically reduced VEGF expression in a breast 

cancer mouse model (Hassan et al., 2011). CXCR4-positive bone marrow-derived progenitor 

cells are recruited to hypoxic tumor tissue by the local high CXCL12 level, thus promoting 

tumor angiogenesis (Aghi et al., 2006).  
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TIMP-1 regulates the activity of metalloproteases which are critical for tissue remodelling and 

further invasion of cancer cells. The classical consideration of TIMP-1 as tumor suppressor has 

changed during the last years, because further MMP-independent functions of TIMP-1 were 

discovered including signal transduction, adhesion and proliferation of tumor cells. Indeed, 

TIMP-1 overexpression is associated with poor prognosis in human breast cancer (Wurtz et al., 

2008). Besides its MMP-inhibitory activity, TIMP-1 induces epithelial-mesenchymal transition 

in human breast epithelial cells (D'Angelo et al., 2014). In this study, TIMP-1 interaction with 

the CD36/integrin signalling complex induced the expression of Twist, a key transcription factor 

in EMT, leading to a fibroblast-like cell shape of breast epithelial cells. Hekmat et al. performed 

proteomic studies of high or low TIMP-1-expressing breast cancer cells and observed dramatic 

changes in the protein expression profile (Hekmat et al., 2013). This study aimed at getting a 

molecular insight in TIMP-1-associated resistance to chemotherapy (topoisomerase inhibitors). 

Indeed, hyper-phosphorylation of the major DNA topoisomerases was detected in TIMP-1 

overexpressing cells, which showed decreased sensitivity to topoisomerase inhibitors in vitro.  

Nevertheless, it need to be mentioned that the expression of certain angiogenic factors, such as 

Angiogenin, Angiopoietin 1 (Ang-1), Interferon gamma-induced protein 10 (IP-10/CXCL10) 

and Macrophage inflammatory protein 1α (MIP-1α/CCL3), was induced in vivo upon R9-ZnC-

treatment compared with control (Figure 2-2 B; Table 2-1). Very interestingly, IP-10 was 

increased by R9-ZnC and decreased by R9-ZnCS334D while MIP-1 was not changed by R9-

ZnCS334D. Briefly, Ang-1 is an anti-angiogenic factor that is involved in the recruitment of 

pericytes during blood vessel maturation. IP-10 (CXCL10) is angiostatic and anti-tumoral via its 

receptor CXCR3 as it inhibits endothelial cell proliferation and motility. Stromal-derived IP-10 

attracts natural killer cells in a mouse model of acute myeloid leukaemia inducing anti-tumoral 

immunity (Saudemont et al., 2005). Angiogenin is described as a secreted pro-angiogenic factor, 

which promotes tumor progression. As we did not find any ARE in the 3’UTR of the Angiogenin 

mRNA, which is essential for TIS11b-mediated mRNA decay, the mechanism of induction of 

Angiogenin remains to be elucidated. 

Indeed, as TIS11b and its truncated forms R9-ZnC and R9-ZnCS334D promote AU-rich element-

mediated mRNA decay, we searched for occurrence of AREs in the mRNA of tested angiogenic 

factors which could explain the inhibitory effect of our proteins constructs. We used the AREsite 

database to determine the abundance of AU-rich motifs located in the 3ʼUTR of human 

Fractalkine, MCP-1, NOV, Pentraxin 3, SDF-1 and TIMP-1 mRNA (Table 2-2) (Gruber et al., 

2011). ARE motif conservation is indicated as we used murine 4T1-luc cells. Except for TIMP-
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1, all of these angiogenic and/or inflammatory factors harbour AREs in their 3ʼUTR, suggesting 

a potential post-transcriptional regulation of these transcripts by ARE-binding proteins. To the 

best of our knowledge, nothing is known so far concerning the interaction between TIS11b and 

these factors. The inhibition of TIMP-1 in the absence of ARE motifs could be due to alternative 

functions of TIS11b-truncated forms or to a secondary effect through their action on an upstream 

regulator of TIMP-1.  

The role of the TIS11 protein family in the mRNA stability regulation of key factors involved in 

angiogenesis and inflammation is well-established in the literature (Benjamin & Moroni, 2007; 

Baou et al., 2009). Overall, our results demonstrate a significant inhibitory effect of the novel 

R9-ZnC and R9-ZnCS334D protein constructs on major factors implicated in angiogenesis and 

inflammation. These novel data deserve further confirmation in additional in vivo experiments. 

 

 

Table 2-2: AREsite database prediction of the abundance of ARE motifs in the 3’UTR of factors 

implicated in tumor angiogenesis and inflammation such as Angiogenin, Fractalkine 

(CX3CL1), Interferon gamma-induced protein 10 (IP-10), Monocyte chemoattractant 

protein 1 (MCP-1/CCL2), Macrophage inflammatory protein 1α (MIP-1), 

nephroblastoma overexpressed (NOV/CCN3), Pentraxin-3 (PTX3), Stromal-derived 

factor 1 (SDF-1/CXCL12) and Tissue inhibitor of metalloprotease 1 (TIMP-1).  

conserved motif in Mus musculus (Gruber et al., 2011). 
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R9-ZnC and R9-ZnCS334D reduces expression of EMT-markers in vivo 

The inhibitory effect of R9-ZnC and R9-ZnCS334D on several chemokines implicated in tumor 

progression and formation of metastasis as identified by the above antibody array experiments, 

led us to hypothesize that our novel protein constructs could have an effect on key factors of the 

epithelial-mesenchymal transition (EMT), an early event of the metastatic cascade. In addition, 

we already observed a decrease in N-Cadherin and Vimentin expression upon R9-ZnC or R9-

ZnCS334D-treatment of 4T1-luc cells in vitro (Rataj et al., Article 2).  

As gene expression can differ between in vitro and in vivo conditions, we determined the protein 

expression of E-Cadherin, N-Cadherin, Vimentin, Snail and Twist in 4T1-luc tumor tissue 

lysates (Figure 2-3). In line with our in vitro results, E-Cadherin expression levels were not 

changed upon R9-ZnC or R9-ZnCS334D treatments when compared to controls.  The maintenance 

of E-Cadherin expression was already described in pre-clinical metastatic breast cancer models 

including 4T1 cells (Lou et al., 2008; Erin et al., 2013). In addition, this epithelial marker is 

present in tumors of breast cancer patients. These results suggest that cancer cells may maintain 

epithelial characteristics, while simultaneously acquiring the invasive phenotype to better control 

the reversible EMT-MET processes. Furthermore, these results underline the heterogeneity of 

tumors. Interestingly, a recent study confirmed further functions of E-Cadherin beyond its role as 

cell-adhesion molecule (Chu et al., 2013). This study revealed that E-Cadherin expression was 

required for 4T1 tumor growth in vivo.  
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Figure 2-3: Effect of R9-ZnC and R9-ZnCS334D proteins on EMT-markers in 4T1-luc breast 

tumors in vivo. 

 Western Blot analysis using anti-E-Cadherin, anti-N-Cadherin, anti-Vimentin, anti-Snail 

and anti-Twist antibodies showed a decreased N-Cadherin, Vimentin and Snail 

expression after treatment of 4T1-luc tumors in vivo with 200 ng of recombinant R9-ZnC- 

or R9-ZnCS334D protein mice (n=1 per group). E-Cadherin and Twist protein expression 

remained unchanged. Protein level was quantified as pixel densities using Chemidoc 

ImageLab software and normalized to Actin protein values detected on the same 

membrane to compensate for protein loading differences.  
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The levels of N-Cadherin in our tumor lysates were 41 % of control for R9-ZnC and 60 % of 

control for R9-ZnCS334D, thus confirming our in vitro data. This mesenchymal cell marker 

promotes human breast cancer cell migration, invasion and metastasis, independently of E-

Cadherin expression (Nieman et al., 1999).  

Furthermore, in agreement with our in vitro data, we observed that Vimentin expression was of 

46 % and 56 % of control for R9-ZnC and R9-ZnCS334D, respectively. Vimentin is considered as 

a canonical mesenchymal marker of EMT as it increases migration and invasion of breast cancer 

cells (Korsching et al., 2005; Satelli & Li, 2011). Its expression is induced by transcription 

factors other than Snail and Twist. One could hypothesize that TIS11b targets transcription 

factors such as Slug (Snail2), resulting in decreased Vimentin expression (Vuoriluoto et al., 

2011; Lamouille et al., 2014).  

Indeed, changes in gene expression that contribute to the phenotypic alterations during EMT 

include early activated transcription factors such as Snail and Twist. We detected 60 % and 47 % 

of control Snail expression in R9-ZnC and R9-ZnCS334D-treated tumors, respectively. Snail 

induces N-Cadherin expression. Thus, the observed decrease in N-Cadherin expression could be 

due to the loss of the activating transcription factor Snail upon treatment with our novel protein 

constructs. We detected almost unaltered Twist protein expression (104 % and 87 % of control 

Twist expression for R9-ZnC for R9-ZnCS334D, respectively). In cancer cells, Twist represses E-

Cadherin transcription and enhances N-Cadherin expression independently of Snail. 

Interestingly, the transcription of Snail and Twist is induced by HIF-1α (Yang & Wu, 2008; Yang 

et al., 2008).  

During the last years, several post-transcriptional mechanisms have emerged as critical steps in 

the control of EMT in cancer. RNA-binding proteins regulate EMT via different processes, 

including mRNA maturation as well as mRNA export, turnover, localization and translation. 

Therefore, we used again the AREsite database to determine the presence of ARE motifs located 

in the 3’UTR of human E-Cadherin, N-Cadherin, Vimentin, Snail and Twist mRNA (Table  2-3) 

(Gruber et al., 2011). Importantly, for all tested EMT proteins, ARE motifs were predicted in 

their 3’UTR, suggesting a potential post-transcriptional control of these transcripts by ARE-

binding proteins. As far as we know, no data concerning the effect of TIS11b on these EMT 

markers is available. Gebeshuber et al. demonstrated that the overexpression of TTP in Ras-

expressing mammary epithelial cells increased E-Cadherin expression, reduced Vimentin 

mRNA/protein levels as well as lung metastases in vivo (Gebeshuber et al., 2009). Snail mRNA 

was described as target of HuR (Dong et al., 2007). In this study, Snail mRNA stability was 
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increased by HuR in response to hydrogen peroxide, leading to enhanced cell migration due to 

repressed E-Cadherin expression.  

 

 

 

Table 2-3: AREsite database prediction of the abundance of ARE motifs in the 3’UTR of factors 

implicated in epithelial-mesenchymal transition (EMT) such as E-Cadherin, N-Cadherin, 

Vimentin, Snail and Twist.  conserved motif in Mus musculus (Gruber et al., 2011). 

 

In summary, we observed a 50 % decrease of the mesenchymal markers N-Cadherin and 

Vimentin as well as of the EMT-inducing transcription factor Snail upon treatment of 4T1-luc 

tumors with our novel protein constructs R9-ZnC or R9-ZnCS334D (Figure 2-3). It remains to be 

confirmed in additional experiments whether these results are statistically significant. The 

observed simultaneous expression of epithelial and mesenchymal markers suggests an 

intermediate phenotype of 4T1-luc cancer cells and indicates intratumoral heterogeneity in vivo. 

If N-Cadherin, Snail and Vimentin are direct or indirect targets of TIS11b deserves further 

investigations as these factors are also regulated by several other cellular processes (Lamouille et 

al., 2014). 

 

Conclusion 

In the present pilot study, using the syngeneic 4T1-luc breast cancer model, we demonstrated 

reduced tumor growth upon intratumoral injections of our novel protein constructs R9-ZnC and 

R9-ZnCS334D. Immunohistochemical analyses confirmed the macroscopically observed necrosis 

and revealed reduced intratumoral VEGF expression as well as microvessel density. 

Furthermore, we detected an important decrease of intratumoral hypoxia upon R9-ZnCS334D 

treatment. Given the deleterious effects of tumor hypoxia, one could speculate that this novel 

protein construct could have a therapeutic potential. Protein profiling of R9-ZnC- or R9-

ZnCS334D-treated tumors using antibody arrays demonstrated the inhibition of various angiogenic 
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or inflammatory cytokines and pro-metastatic chemokines, among which are Fractalkine, MCP-

1, NOV, SDF-1, Pentraxin and TIMP-1. In addition, we show for the first time a link between 

EMT markers and TIS11b, which is supported by the presence of AU-rich elements in the 

3’UTR of these EMT-marker transcripts. However, a direct interaction of TIS11b or its truncated 

forms with these mRNAs remains to be demonstrated.  

Even though these data need further confirmation, R9-ZnC and R9-ZnCS334D seem to have an 

anti-tumoral multi-target effect on tumor progression in vivo based on our antibody array results 

and immunohistochemical analyses. The diversity of the affected key steps in tumorigenesis 

suggests that R9-ZnC and R9-ZnCS334D could impact several cell types including tumor cells, 

endothelial cells, immune cells and other components of the tumor microenvironment. A further 

anti-metastatic action of our novel cell-permeable fusion proteins could be hypothesised. It is 

worth-mentioning that most of the anti-tumoral effects that we observed in vitro and in vivo 

were more pronounced with the mutant R9-ZnCS334D, indicating that phosphorylation of 

the Serine 334 within TIS11b potentiate its mRNA-destabilizing activity. In this respect, we 

believe it is appropriate to use both proteins in parallel in our in vitro and in vivo approaches. 

 

Material & Methods  

Cell culture, SDS-PAGE, Western Blot and Protein overexpression and purification  

All these methods were performed as previously described in Article 2 (Rataj et al., Article 2). In 

addition, blots were probed with rat anti-Snail (1:1000, Ozyme, Montigny-le-Bretonneux, 

France) and rabbit anti-Twist (1:500, Santa Cruz, Heidelberg, Germany). 

 

In vivo experiments 

In vivo experiment protocols were approved by the institutional guidelines and the European 

Community for the Use of Experimental Animals. 6-weeks-old female BALB/c mice were 

purchased from Janvier Labs and maintained in the Animal Resources Centre of our department. 

5.0 x 105 4T1-luc cells were re-suspended in 50 µl of growth medium and mixed with 50 µl of 

Matrigel (Becton Dickinson, Le Pont de Claix, France). The cell suspension was then 

subcutaneously injected into the hind flank of the animals. Tumors appeared 5 to 8 days after 

implantation. Tumor growth was recorded by either sequential determination of tumor volume 

using caliper or measurement of emitted bioluminescence at day 1 and 34 of treatment. Tumor 
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volume was calculated according to the formula V = 0.5ab² (a, largest diameter; b, smallest 

diameter). Results are illustrated as percentage of the tumor volume at the first day of treatment. 

In addition, tumor growth was followed by non-invasive in vivo imaging. Animals were 

subcutaneously injected with 150 mg of D-Luciferin/kg bodyweight (Perkin Elmer, Courtaboeuf, 

France) and acquisitions were performed 15 min post-injection (IVIS Lumina II, Xenogen, 

Caliper Life Science). Data were analysed using Xenogen Living Image software version 3.0. 

Bioluminescence signals, which reflect the number of living tumor cells, are presented as 

photons/sec/cm2/sr. When tumor volume reached 50 mm³, animals were randomly divided into 

three groups. In vivo treatment of pre-established tumors was performed by intratumoral 

injection of 200 ng of R9-ZnC or R9-ZnCS334D in a final volume of 10 µl every other day. 

Control mice were injected with 10 µl of vehicle. Mice were sacrifying after 34 days of 

treatment through cervical dislocation. A maximal tumor volume of 1 cm³ was our end point 

criterion. Twenty minutes before death, 1.5 mg of Pimonidazole hydrochloride (Hypoxyprobe) 

was intraperitoneally injected for tumor hypoxia analyses. Tumors were collected carefully, 

weighted and either fixed overnight in 4 % paraformaldehyde (PFA) or formalin-free fixation 

solution (FFF) (Sigma-Aldrich, Saint-Quentin Fallavier, France) and embedded in paraffin, or 

conserved at -80 °C for total RNA and protein isolation.   

 

Immunohistochemistry  

For H & E staining, 5-µm-thick paraffin sections of PFA-fixed tumors were deparaffinised and 

rehydrated. Nuclei were stained with haematoxylin and eosinophilic structures with eosin 

(Sigma-Aldrich, Saint-Quentin Fallavier, France). Sections were rapidly dehydrated and 

mounted.   

For VEGF immunodetection, 5-µm-thick paraffin sections of PFA-fixed tumors were 

deparaffinised, rehydrated and microwaved in 10 mM citrate buffer pH 6 at 800 W for 2 x 5 min. 

Endogenous peroxidase activity was blocked by incubating sections with 1 % H2O2 in methanol 

for 20 min. Slides were then sequentially incubated for 10 min in TBS buffer containing 0.1 % 

Tween 20, for 20 min in TBS buffer containing 5 % goat serum (DAKO A/S, Les Ulis, France) 

and 2 % BSA, and for 1 h with 4 µg/ml of rabbit polyclonal anti-human VEGF antiserum which 

recognizes the N-terminus of VEGF-121, VEGF-165 and VEGF-189 isoforms (Santa Cruz 

Biotechnology, Heidelberg, Germany). After two washes of 5 min in TBS containing 0.1 % 

Tween 20, sections were sequentially incubated for 1 h with biotinylated goat anti-rabbit 

secondary antibodies and for 45 min with an avidin/biotinylated horseradish peroxidase complex 
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(DAKO A/S, Les Ulis, France). Peroxidase activity was revealed using diaminobenzidine 

tetrachloride as a chromogen (DAKO A/S, Les Ulis, France). Sections were briefly 

counterstained with haematoxylin (Sigma-Aldrich, Saint-Quentin Fallavier, France), dehydrated 

and mounted. 

For CD31 immunodetection, 5-µm-thick paraffin sections of FFF-fixed tumors were 

deparaffinised, rehydrated and incubated with a 1 mg/ml aqueous trypsin solution (Sigma-

Aldrich, Saint-Quentin Fallavier, France) for 10 min at 37 °C. Endogenous peroxidase activity 

was blocked by incubating sections with 1 % H2O2 in methanol for 20 min. Slides were then 

sequentially incubated for 10 min in TBS buffer containing 0.1 % Tween 20, for 20 min in TBS 

buffer containing 5 % rabbit serum (DAKO A/S, Les Ulis, France) and 2 % BSA, and for 1 h 

with 156 ng/ml of rat anti-mouse CD31 antibodies (Becton Dickinson, Le Pont de Claix, 

France). After two washes of 5 min in TBS containing 0.1 % Tween 20, sections were 

sequentially incubated for 1 h with biotinylated rabbit anti-rat secondary antibodies and for 45 

min with an avidin/biotinylated horseradish peroxidase complex (DAKO A/S, Les Ulis, France). 

Peroxidase activity was revealed using diaminobenzidine tetrachloride as a chromogen (DAKO 

A/S, Les Ulis, France). Sections were briefly counterstained with haematoxylin (Sigma-Aldrich, 

Saint-Quentin Fallavier, France), dehydrated and mounted. To determine microvessel density, 

CD31-stained vessels of three to five random fields (x 5) per tumor section were counted and 

illustrated as microvessel density per field.  

For hypoxia immunodetection, 5-µm-thick paraffin sections of PFA-fixed tumors were 

deparaffinised, rehydrated and microwaved in 10 mM citrate buffer pH 6 at 800 W for 2 x 5 min. 

Endogenous peroxidase activity was blocked by incubating sections with 1 % H2O2 in methanol 

for 20 min. Slides were then sequentially incubated for 10 min in TBS buffer containing 0.1 % 

Tween 20, for 20 min in TBS buffer containing 5 % goat serum (DAKO A/S, Les Ulis, France) 

and 2 % BSA, and for 1 h with 1.2 µg/ml of mouse monoclonal anti-Pimonidazol hydrochloride 

antibodies (Hypoxyprobe, Burlington, Massachusetts, USA). After two washes of 5 min in TBS 

containing 0.1% Tween 20, sections were sequentially incubated for 1 h with biotinylated goat 

anti-mouse secondary antibodies and for 45 min with an avidin/biotinylated horseradish 

peroxidase complex (DAKO A/S, Les Ulis, France). Peroxidase activity was revealed using 

diaminobenzidine tetrachloride as a chromogen (DAKO A/S, Les Ulis, France). Sections were 

briefly counterstained with haematoxylin (Sigma-Aldrich, Saint-Quentin Fallavier, France), 

dehydrated and mounted. 
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Angiogenesis antibody array 

Tissue fragments of control and R9-ZnC- or R9-ZnCS334D-treated tumors were lysed in PBS 

containing protease inhibitor cocktail (Sigma-Aldrich, Saint-Quentin Fallavier, France) and 1 % 

Triton X-100 according to the manufacturer instructions (R&D Systems, Lille, France).  

Membranes of the Proteome Profiler Mouse Angiogenesis Array Kit (R&D Systems, Lille, 

France) were hybridized using 300 µg of total protein extracts according to the manufacturer 

guidelines. The arrays were imaged together and BioMax Kodak films (Sigma-Aldrich, Saint-

Quentin Fallavier, France) were scanned afterwards to quantify hybridization signals as pixel 

densities using ImageJ software. Values of duplicate spots representing one angiogenic protein 

were averaged and the background signal was subtracted. Interarray comparability was verified 

by measuring equal pixel intensity of positive control spots on each array. Results are illustrated 

as protein expression level compared to the control [%].  
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Gene expression is a tightly controlled mechanism in eukaryotic cells. Transcriptional 

and post-transcriptional processes maintain the balance between the synthesis and the 

degradation rate of a gene product, thereby determining its final amount within the cell. Post-

transcriptional mechanisms such as pre-mature mRNA processing, nuclear mRNA export, RNA 

interference, mRNA sequestration, codon usage, translational repression by miRNAs or proteins 

and the control of mRNA turnover have emerged as key steps in the regulation of gene 

expression.  

mRNA stability is controlled by cis-acting sequences located in the 3’untranslated region 

(3’UTR) of the mRNA and trans-acting factors which recognize these motifs. Among others, 

AU-rich elements (ARE) are cis-acting sequences of great importance as they are highly 

abundant in the mammalian transcriptome (Gruber et al., 2011). AREs are recognized by either 

stabilizing RNA-binding proteins (ARE-BPs) or destabilizing ARE-BPs. The TIS11 protein 

family plays a key role in ARE-mediated mRNA decay. Three members of this CCCH tandem 

zinc-finger protein family are known in humans: TTP, TIS11b and TIS11d. Although these 

proteins showed redundancy in vitro as they could target the same ARE-containing mRNAs, 

murine knock out models demonstrated their unique role in vivo (Taylor et al., 1996; Carballo et 

al., 1998; Stumpo et al., 2004; Bell et al., 2006; Hodson et al., 2010). The repertoire of mRNAs 

targeted by the TIS11 protein family includes factors such as TNF, VEGF and multiple 

transcripts involved in inflammation, angiogenesis and cancer. During the last years, an 

important link between the deregulation of mRNA turnover and cancer has appeared (Benjamin 

& Moroni, 2007). In many types of cancer, TIS11 protein family is underexpressed while tumor-

promoting transcripts are highly stabilized suggesting a potential tumor suppressor role of these 

proteins (Brennan et al., 2009). TIS11 proteins harbour several serine residues and are, indeed, 

hyperphosphorylated. Upon several stimuli, these proteins are target of different kinases such as 

the p38MAPK kinase-activated MK2, ERK and PKB/AKT. These post-translational 

modifications modulate the expression, activity, stability and subcellular localization of the 

TIS11 protein family. Our team was first to show that TIS11b is a physiological regulator of 

VEGF mRNA in adrenocortical cells challenged with the cAMP-mobilizing hormone ACTH 

(Gaillard et al., 2000).  

 

VEGF is known to be the key driver of physiological and pathological angiogenesis 

(Ferrara & Davis-Smyth, 1997). On the other hand, TIS11b-deficient mice die at E10.5 due to 

major vascular defects caused by high VEGF levels (Stumpo et al., 2004; Bell et al., 2006). The 

in vivo TIS11b-KO model confirmed our previous in vitro results demonstrating that VEGF  
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Figure 42: Multi-target effect of truncated/mutated TIS11b fusion proteins on cancer hallmarks. First 

generation full-length TIS11b protein fused to the cell-penetrating peptide R9 (not 

illustrated) was truncated by the deletion of the N-terminal protein domain to improve 

TIS11b protein stability (R9-ZnC, second generation proteins). Increasing colour 

intensity corresponds to enhanced protein stability. As phosphorylation at serine 334 

improves TIS11b protein stability, we generated a truncation mutant R9-ZnCS334D in 

which we mimicked a permanent phosphorylation at S334. Both second generation 

proteins R9-ZnC and R9-ZnCS334D were shown to inhibit different hallmarks of tumor 

progression in vitro and in vivo including cancer cell proliferation, tumor angiogenesis, 

tumor-promoting inflammation and invasion/metastasis formation in a murine breast 

cancer model. Further key events in tumorigenesis (transparent colour) were not studied. 

Dotted lines indicate that the listed factors favour different hallmarks in cancer 

progression. 
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mRNA is a direct target of TIS11b-mediated mRNA destabilization (Ciais et al., 2004). The fact 

that VEGF is a direct target of TIS11b is of great interest as tumors produce high amounts of this 

pro-angiogenic factor to induce the formation of new blood vessels in their surrounding tissue 

(Bergers & Benjamin, 2003; Bell et al., 2006). Due to the increasingly reported resistance of 

tumors to existing anti-angiogenic therapies, the development of new strategies to overcome this 

phenomenon is urgently needed (Bergers & Hanahan, 2008; Vasudev & Reynolds, 2014). Our 

group has developed a promising experimental anti-angiogenic and anti-tumoral cancer therapy 

which was based on TIS11b-induced degradation of VEGF and other short-lived mRNAs 

(Planel et al., 2010). However, the instability of the purified recombinant R9-TIS11b fusion 

protein was a limiting factor for the continuation of this study. We therefore hypothesized that 

genetic engineering of alternative variants of TIS11b protein might improve its protein stability. 

As mentioned in Article 1, the phosphorylation at Serine 334 of TIS11b primary sequence plays 

an important role in the stabilization of the protein (Rataj et al., submitted, Article 1).  

In the present work, we show that deletion of the first hundred amino acids of the N-

terminal domain of TIS11b which is 338 amino acids long, highly increases TIS11b protein 

stability without affecting its activity. This mutant was called ZnC. The stabilizing effect was 

even more pronounced when a permanent phosphorylation was mimicked at Serine 334 in the C-

terminal domain of TIS11b (ZnCS334D). As we have determined the minimal domain required for 

protein activity and improved the stability of our proteins, other protein engineering strategies to 

improve protein robustness would be a further step. The usage of uncommon amino acids which 

could not be recognized by mammalian proteases might address this question. 

Both purified fusion proteins R9-ZnC and R9-ZnCS334D efficiently transduced living cells. To 

characterize the effect of our novel protein constructs, we used the 4T1-luc murine breast cancer 

cell line as it is considered as a clinical relevant model (Pulaski & Ostrand-Rosenberg, 2001). In 

vitro and in vivo studies indicate a multi-target anti-angiogenic and anti-tumoral effect of both 

R9-ZnC and R9-ZnCS334D as summarized in Figure 42. However, it is worth-mentioning that 

most of the anti-tumoral effects that we observed in vitro and in vivo were more 

pronounced with the mutant R9-ZnCS334D, suggesting that phosphorylation of Serine 334 

within TIS11b potentiate its function in mRNA decay. 

We detected a significant decrease of VEGF expression in cancer cells and an inhibition of the 

organization of endothelial cells into pseudo-capillaries in the presence of R9-ZnC and R9-

ZnCS334D in vitro. In addition, we observed reduced VEGF expression and less vascularization in 

our in vivo tumor model upon treatment indicating an anti-angiogenic effect of our proteins. 

However, VEGF was still present in R9-ZnC-treated tumors. Alternative splicing VEGFxxxb 



 

 260 

isoforms have been described and reported to act as anti-angiogenic and anti-tumoral isoforms of 

VEGF (Bates et al., 2002; Rennel et al., 2008; Merdzhanova et al., 2010; Delcombel et al., 

2013). Catena et al. demonstrated that VEGFxxx and VEGFxxxb protein levels were significantly 

higher in breast cancer tumors compared to normal human breast tissue, suggesting the co-

expression of both VEGF isoforms in these tumors (Catena et al., 2010). The antibodies and 

QPCR primers used in our study do not distinguish between VEGFxxx and VEGFxxxb isoforms. 

One could hypothesize that anti-tumoral VEGFxxxb isoforms are expressed in R9-ZnC-treated 

tumors thus explaining VEGF detection even though tumor vascularization and growth were 

inhibited. However, AREs located in the 3’UTR of VEGF are identical for both isoforms. To our 

knowledge, nothing is known about the destabilizing effect of TIS11b protein on VEGFxxxb 

mRNA so far.  

Interestingly, decreased VEGF expression was accompanied by a concomitant decrease of 

intratumoral hypoxic areas in R9-ZnCS334D-treated tumors in vivo. Hypoxia signalling is involved 

in almost every step of tumorigenesis and impacts tumor cells as well as cells of the tumor 

microenvironment. The anti-tumoral effect of our novel protein construct might also proceed 

through alteration of these mechanisms. In addition, in various but not in all cancers, hypoxia is 

associated with therapy resistance and disease progression as it favours the most invasive tumor 

cells. It would be therefore interesting to test in our preclinical models whether R9-ZnCS334D 

improve the response to chemotherapeutic agents such as paclitaxel or others anti-cancer agents. 

In addition to the inhibitory effect on tumor angiogenesis, R9-ZnCS334D impaired other major 

hallmarks of cancer progression as it reduced the proliferation, the migration, the invasion and 

the anchorage-independent growth of murine breast cancer cells in vitro. In vivo, we 

demonstrated that tumor growth was delayed when pre-established murine breast cancer tumors 

were treated R9-ZnCS334D. Strikingly, while the effect of R9-ZnC was less significant in vitro 

and in vivo, the expression of several pro-angiogenic and pro-inflammatory cytokines such as 

Fractalkine, MCP-1, NOV, SDF-1, Pentraxin and TIMP-1 was altered upon both R9-ZnC and 

R9-ZnCS334D treatments. On the other hand, we found that few angiogenic factors were 

exclusively upregulated by R9-ZnC. This observation may help to understand why this mutant is 

less efficient in the inhibition of tumor growth. In this context, it would be exciting to investigate 

the molecular mechanisms used by R9-ZnC and R9-ZnCS334D to mediate mRNA decay and how 

they could be specific for certain mRNA targets. 

Fractalkine, MCP-1, NOV, SDF-1, Pentraxin and TIMP-1 are produced by several cell types of 

the primary tumor such as tumor cells, endothelial cells, cancer-associated fibroblasts or tumor-



 

 261 

associated macrophages, thereby creating a tumor microenvironment which favours 

angiogenesis, suppresses immunity and facilitates tumor cell invasion. We believe that further 

analyses of the effect of our novel proteins on the tumor microenvironment as well as on tumor’s 

acquired capability to evade destruction by the host immune system would be of high interest 

and could be addressed in future studies.   

As Fractalkine, MCP-1, NOV, SDF-1, Pentraxin also favour metastasis formation by either 

attracting tumor cells or facilitating the colonization of circulating cancer cells in distant organs, 

their inhibited expression in our in vivo study indicate a potential anti-metastatic effect of R9-

ZnC and R9-ZnCS334D. Our in vitro data demonstrating the negative effect of our proteins on 

tumor cell invasiveness and anchorage-dependent cell growth support this hypothesis. In 

addition, expression of N-Cadherin, Vimentin and Snail, which are markers of the mesenchymal 

cancer cell phenotype and associated with the formation of metastasis, was reduced in vitro and 

in vivo. Based on this data, it would be interesting to further investigate the anti-metastatic effect 

of our novel protein constructs using appropriate in vivo murine models. As we have started our 

study with 4T1 cells which are known to be highly metastatic when transplanted into the 

mammary fat pad, these cells might be a good preclinical model. High expression of factors such 

as CXCL12 and TIMP-1 are associated with resistance to chemotherapy (Hekmat et al., 2013). 

Both factors were markedly reduced upon treatment with R9-ZnC or R9-ZnCS334D in vivo. Even 

though the combination of chemotherapy and anti-angiogenic therapies is still controversially 

discussed, it would be interesting to test how R9-ZnC or R9-ZnCS334D would impair tumor 

progression in combination with chemotherapeutics in these settings. Finally, as TIS11 proteins 

might impair other hallmarks of cancer progression than those that we have tested, it would be of 

high interest to determine how R9-ZnC and R9-ZnCS334D might influence tumor metabolism or 

the resistance to apoptosis for example (Ross et al., 2012).  

The major drawback of our therapeutic approach so far is the failure to target exclusively cancer 

cells and components of the tumor microenvironment. The fusion of  R9-ZnC and R9-ZnCS334D 

to the RAFT(cRGD)4 vector might solve this inconvenience as this molecule binds to the αvβ3 

integrin receptor which plays an important role in angiogenesis, cell migration, invasion and 

formation of metastases (Garanger et al., 2005).  The αvβ3 integrin receptor is expressed on 

tumor cells and other cell types (including endothelial cells). Alternatively, ZnC and ZnCS334D 

fused to the positively charged R9 cell penetrating peptide could be further linked to an anionic 

inhibitory sequence via an MMP-cleavable linker (Jiang et al., 2004). As MMPs are highly 

abundant in tumor stroma, the linker sequence would be specifically cleaved in this tissue 

leading to the dissociation of the anionic inhibitory sequence and the internalization of R9-ZnC 
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and R9-ZnCS334D. Hence, the vectorization of our novel proteins would allow their systemic or 

intraperitoneal injection in vivo. This step opens challenging prospects for the future.     

Of course, our data need to be confirmed in pre-clinical studies using highly invasive human 

breast cancer cells such as MDA-MB-231 cells to exclude phylogenetic differences between 

human and mouse. Nevertheless, our promising results identify R9-ZnC and R9-ZnCS334D as 

novel multi-target anti-tumoral agents. Our data support the emerging link between 

mRNA stability and cancer and provide novel concepts for the development of innovative 

anti-cancer therapies.  
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Abstract Angiogenesis is a finely tuned process that is tightly regulated in time 
and space by environmental factors (oxygen levels, extracellular matrix, diffusible 
growth factors, and cytokines). Expression of angiogenesis effectors and regulators 
is coordinately regulated at both transcriptional and posttranscriptional levels. 
Accumulating evidence suggests that regulation of mRNA stability plays a pivotal 
role in this process. Many AU-rich mRNAs encoding cytokines, growth factors, 
transcriptional factors, and receptors are involved in cancer and inflammation. 
Overexpression of these mRNAs in tumors is often correlated with deregulation in 
their mRNA stability. mRNA decay is regulated by cis-regulatory elements repre-
sented by the AU-rich elements (AREs) present in the 3′-UTR of target mRNAs and 
trans-acting ARE-binding proteins (ARE-BPs) that control mRNA degradation by 
diverse ribonucleases. Competition between ARE-BPs will finally determine 
whether an mRNA is degraded or stabilized. Regulation of mRNA stability is fur-
thermore controlled by signaling pathways that are often overactive in cancer and 
impact the function of stabilizing or destabilizing factors. In this review, we present 
examples of angiogenesis genes regulated through ARE-directed mRNA decay 
with focus on deregulation of these processes in tumor angiogenesis. We finally 
comment on the modulation of ARE-BP expression and activity as a potential future 
application in anti-angiogenic and anti-tumorigenic therapies.
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17.1  Introduction

Gene expression is a temporally and spatially tightly controlled process that 
begins with transcriptional initiation and ends with translation of a mature 
mRNA into protein. In between these two steps, a series of regulatory events 
that include pre- mRNA processing and splicing, mRNA export from the nucleus 
to the cytoplasm, quality control assessment, and mRNA decay and/or stabiliza-
tion coordinately contribute to this finely regulated process. Regulation of 
mRNA stability is a critical control point of gene expression, particularly for 
short-lived mRNAs that encode growth factors, angiogenic and inflammatory 
cytokines, and proto-oncogenes. This regulation involves both cis elements, 
mainly located in the 3′-untranslated regions (3′-UTR) of mRNAs and trans-
acting factors. The latter include several RNA- binding proteins that specifically 
recognize the cis elements and bind to them in multimolecular complexes that 
allow or prevent the recruitment of components of the mRNA deadenylation 
and mRNA degradation machineries (Stoecklin and Muhlemann 2013). 
Adenosine and uridine (AU)-rich elements are the best characterized cis ele-
ments that target rapid mRNA decay and control translation. They are most 
often arranged as repeated pentamers of AUUUA sequences that can eventually 
overlap (Barreau et al. 2005; Hitti and Khabar 2012). Their frequency is esti-
mated at approximately 8 % of the human transcriptome (Halees et al. 2008). 
Dysregulation of these mRNA stability control processes, caused either by 
mutations in the cis-regulatory elements or by changes in expression of the 
trans-acting proteins binding to these elements, is observed in various patholo-
gies including human cancer (Dixon et al. 2001; Lopez de Silanes et al. 2007; 
Mayr and Bartel 2009; Misquitta et al. 2001). Whether they cause the disease or 
contribute to it as a result of genomic or genetic alterations is still a matter of 
debate. Nevertheless, this has prompted several research teams to investigate 
whether interference with these processes could represent a novel multitarget 
therapeutic approach (Eberhardt et al. 2007; Essafi-Benkhadir et al. 2007; 
Planel et al. 2010; Stoecklin et al. 2003).

17.2  The Regulation of mRNA Stability

Various facets of mRNA decay processes have been previously reviewed (Belasco 
2010; Garneau et al. 2007; Wilusz et al. 2001). Here, our main goal is to summarize 
the relation between AU-rich-mediated mRNA decay and posttranscriptional regu-
lation of angiogenic genes.
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17.2.1  Cis-Acting Elements: Adenylate-Uridylate-Rich 
Elements

AU-rich elements (AREs) were originally identified as instability determinants in 
mRNA encoding proteins implicated in the inflammatory response (Caput et al. 1986). 
Several ARE-containing mRNAs are commonly involved in angiogenesis and cancer. 
These genes include cytokines, chemokines, growth factors, transcriptional factors, 
RNA-binding proteins, and others. AREs are found in the 3′-UTR of short-lived 
mRNAs, characteristic of early and transient regulatory responses, and serve as bind-
ing sites for a variety of trans-acting factors that modulate mRNA half- life and transla-
tion. They were first divided into three classes based on their sequence characteristics 
and functional properties. Class I and class II AREs contain various copies of an 
AUUUA motif, whereas class III AREs do not bear this pentanucleotide. AREs clas-
sified as class I are mostly found in early-response-gene mRNAs that encode nuclear 
transcription factors (Chen and Shyu 1994; Chen et al. 1995). They contain one to 
three copies of dispersed AUUUA motifs coupled with nearby U-rich sequences or U 
stretches. All AREs assigned to class II are present in cytokine mRNAs, e.g., the 
granulocyte-macrophage colony-stimulating factor (GM-CSF), tumor necrosis 
factor-α (TNF-α), VEGF, and IL-3, and are present as multiple copies of AUUUA that 
cluster together. The three different classes of ARE appear to direct rapid mRNA 
decay with distinct kinetics (Xu et al. 1997). The GM-CSF ARE, a representative of 
the class II AREs, directs asynchronous cytoplasmic deadenylation, while class I 
AREs, such as the c-fos ARE, and class III AREs, such as the c-jun ARE, mediate 
synchronous poly(A) shortening followed by the decay of the mRNA body. More 
recently, an alternative classification based on a computationally derived 13-base-pair 
motif WWUUAUUUAUUWW (W = A/U) further clustered ARE-mRNAs into five 
groups depending on the number of motifs in the ARE stretch. Groups 1–4 contain 
five, four, three, and two pentameric (AUUUA) repeats, respectively, while Group 5 
contains only one repeat within the 13-bp pattern (Bakheet et al. 2003). An AU-rich 
element database (ARED) has been created and upgraded several times (Bakheet et al. 
2003, 2006). More than 6,000 human ARE-mRNAs have been listed in the latest ver-
sion (http://brp.kfshrc.edu.sa/ARED/AREDInteg_notes.htm). To date, the physiologi-
cal importance of AREs has been evaluated in vivo only for very few mRNAs. 
Surprisingly, although TNF-α
posttranscriptional control of this gene in cellular models (Kontoyiannis et al. 1999), 
in vivo deletion of the c-myc ARE (class I) did not alter c-myc mRNA metabolism in 
healthy transgenic mice (Langa et al. 2001). These observations indicate that class II 
AREs, characterized by clustered copies of the UUAUUUAUU nonamer, are domi-
nant instability determinants, whereas class I AREs do not necessarily induce mRNA 
instability. Further complexity in the regulation of mRNA stability via AREs stems 
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from the fact that, in addition to primary structures, secondary structural changes in 
the 3′-UTR are required for the correct assembly of ARE-binding proteins (ARE-
BPs) (Bevilacqua et al. 2003). For example, the formation of hairpin- like structures by 

by hypoxia-induced ARE-BPs and is crucial for the regulation of VEGF expression 
under hypoxic conditions (Claffey et al. 1998).

17.2.2  Trans-Acting Elements: ARE-Binding Proteins

ARE-BPs may alter mRNA stability either by tagging an mRNA for rapid deadenyl-
ation and degradation or by protecting it from nucleases. Competition between sta-
bilizing and destabilizing factors will ultimately determine the overall amount of 
protein produced by one mRNA. Around 20 ARE-BPs have been identified so far. 
In this review, we will focus on the best known (Table 17.1).

17.2.2.1  Stabilizing Proteins

The best characterized mRNA-stabilizing protein is the human antigen R (HuR). 
HuR was first identified as a tumor antigen in lung carcinoma of individuals with 
paraneoplastic neurologic disorder (Dalmau et al. 1990). It is a member of the 
mammalian homologs of the embryonic lethal abnormal vision (ELAV) RNA-
binding proteins first described in Drosophila (Ma et al. 1996). HuR is ubiqui-
tously expressed. It possesses three RNA recognition motifs through which it 
binds to target mRNAs bearing AU- or U-rich sequences and subsequently modi-
fies their expression by altering their stability, translation, or both (Brennan and 
Steitz 2001; Simone and Keene 2013). HuR is predominantly localized in the 
nucleus of most unstimulated cells, but it can translocate to the cytoplasm upon 
cell stimulation (Fan and Steitz 1998). The repertoire of HuR target mRNAs is 
large as demonstrated by profiling of transcripts that are bound to HuR, which 
includes many cytokines, growth factors, and cell cycle regulators (Lebedeva et al. 
2011; Lopez de Silanes et al. 2004). It is worth mentioning that cytoplasmic local-
ization rather than a significant overall increase in HuR expression is important in 
increasing the stability and translation of ARE-containing mRNAs. The mecha-
nism of stabilization is unknown but is suggested to compete with destabilizing 
ARE-BPs for the AREs (Cherradi et al. 2006; Lal et al. 2004; Linker et al. 2005).

17.2.2.2  Destabilizing Proteins

Tristetraprolin (TTP, also named ZFP36, TIS11, NUP475) is the founding member 
of a family of tandem CCCH-class zinc finger proteins that comprises three mem-
bers expressed in all mammals (TTP, ZFP36L1 also named TIS11b or BRF1 and 
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ZFP36L2 also named TIS11d or BRF2) and a fourth member only present in rodents 
(ZFP36L3). All four proteins bind and destabilize ARE-containing mRNAs in vitro 
(Baou et al. 2009). However, gene knockout (KO) studies in mice have provided 
evidence for their unique role in vivo (Carballo et al. 1998; Stumpo et al. 2009; 
Stumpo et al. 2004). The most convincing demonstration came from the phenotype 
of the TTP-deficient mice, where TNF-α mRNA was significantly stabilized in 
macrophages, leading to a dramatic increase in circulating TNF-α and a consequent 
systemic inflammatory syndrome (Carballo et al. 1998). Since the initial description 
of TNF-α and GM-CSF as physiological TTP targets, numerous other mRNAs have 
been proposed and, to some degree, validated as targets of TTP (reviewed by Brooks 
and Blackshear (2013)). TIS11b/BRF1 plays a crucial role in development since its 

-
cular defects. This probably arises from a failure to repress the expression of vascu-
lar endothelial growth factor (VEGF) during a critical phase of vascular development 
(Bell et al. 2006; Stumpo et al. 2004). Reported mRNA targets of TIS11b/BRF1 
include IL-3, VEGF, c-IAP2, Ier3, and StAR (Ciais et al. 2004; Duan et al. 2009; 
Lai et al. 2006; Lee et al. 2005; Stoecklin et al. 2002). Deletion of the 29 N-terminal 
amino acids of TIS11d/BRF2 results in female infertility, whereas the complete 
invalidation of the gene induces lethality within 2 weeks after birth due to a defec-
tive definitive hematopoiesis (Ramos et al. 2004; Stumpo et al. 2009). The central 
zinc finger domains of these three proteins interact with AREs within the mRNA 
3′-UTR, while the N- and C-terminal domains recruit enzymes involved in the 
mRNA degradation pathway. A crystal structure shows that the TIS11d tandem zinc 
finger domains directly bind to UAUU motifs (Hudson et al. 2004).

KSRP (KH-splicing regulatory protein) is a multifunctional ARE-BP that modu-
lates many steps of RNA fate including pre-mRNA splicing, ARE-mediated mRNA 
decay, and maturation of selected miRNAs from precursors (reviewed in Briata 
et al. (2011)). Studies based on cell and animal models revealed that KSRP is essen-
tial for the control of cell proliferation and differentiation and the response to DNA 
damage. KSRP was also identified as a key regulator of human iNOS mRNA turn-
over (Linker et al. 2005). AUF1, also known as hnRNP D, was one of the first ARE- 
BPs identified (Brewer 1991). AUF1 also binds selected ARE with high affinity and 
has a destabilizing effect on many ARE-mRNAs (reviewed in White et al. (2013)). 
Differential splicing of AUF1 transcripts yields different mRNAs encoding four dif-
ferent isoforms (p37, p40, p42, p45) with unique individual properties. The mRNA- 
destabilizing activities of AUF1 are often counteracted by HuR-dependent 
stabilizing effects (Blaxall et al. 2002; Lal et al. 2004).

17.2.3  mRNA Decay Pathways

All eukaryotic mRNAs contain a 7-methyl guanosine cap (m7G-cap) structure 
at their 5′
makes the mRNA resistant to 5′to 3′ exonucleases. At the 3′ end of mRNAs, a 
poly(A) tail along with the poly(A) binding protein (PABP) protects the mRNA 
from 3′to 5′ ribonuclease attack (Mangus and van Hoof 2003). Moreover, the 
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5′-m7G-cap/ cap- binding complex and the 3′ poly(A)/PABP complex can interact 
with each other to form a closed loop that enhances translation initiation and pro-
tects mRNA ends from nuclease attack (Jacobson 1996). Following transport of 
mRNAs to the cytoplasm, eukaryotic mRNAs undergo decay by a pathway that is 
initiated by poly(A)-tail shortening, a process termed deadenylation (Brawerman 
1981). Deadenylation impacts mRNAs by reducing their translatability and/or 

-
gering mRNA decay in eukaryotic cells. Studies using the c-fos promoter-driven 
transcriptional pulsing system showed that AREs induce rapid deadenylation fol-
lowed by decay of the RNA body (Shyu et al. 1991; Wilson and Treisman 1988). 
Following deadenylation, either the 5′-cap is removed by a process known as 
decapping, which allows the mRNA body to be degraded in the 5′ → 3′ direction by 
the Xrn1 exoribonuclease, or the unprotected 3′ end is attacked by a large complex 
of 3′ → 5′ exonucleases known as the exosome (Fig. 17.1). These two pathways 
are not mutually exclusive, and the relative contribution of each mechanism 
remains a matter of debate. In the past decade, some ARE-BPs including TTP 
were found to associate with the exosome complex and/or with the decapping 

m7G

m7G

m7G AAAAAAAA

Pan2-Pan3
Ccr4-Not
or PARN

AA
A AA

5´UTR ORF 3´UTR
ARE

ARE

ARE

ARE-BP

Deadenylation

ARE-BP

Exosome

ARE
ARE-BP

Decapping

ARE

ARE-BP

Exosome

Scavenger
decapping

DcpS

Dcp2
m7G

m7G

Xrn1

5´Æ 3´ decay

3´Æ 5´ decay5´Æ 3´ decay

ARE-BP

Dcp1

Dcp2

Dcp1

Cap PolyA

ARE

Fig. 17.1 Mechanisms of ARE-binding protein-mediated mRNA decay. The 5′ and 3′ ends of a 
mature transcript are protected by a 7-methylguanosine cap and a polyA tail, respectively. Most 
mRNAs undergo decay by the deadenylation-dependent pathway. ARE-binding proteins bind to 
the ARE sequences in the 3′-UTR and recruit deadenylases either directly (Pan2-Pan3 and Ccr4- 
Not complexes) or indirectly (PARN). Following deadenylation, two mechanisms can degrade 
the mRNA: either decapping by the enzymes Dcp1/Dcp2 followed by 5′ → 3′ degradation by the 
exoribonuclease Xrn1 or 3′ → 5′ decay triggered by the exosome complex in the presence of the 
cap structure. In the latter case, the remaining cap structure is hydrolyzed by the scavenger- 
decapping enzyme DcpS. Dotted arrows represent recruitment of decay enzymes by ARE-
binding proteins
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Table 17.2 Non-exhaustive list of ARE genes involved in both cancer and inflammation

Cellular process

mRNA target ARE 
cluster FunctionSymbol Name

Angiogenesis BAI3 Brain-specific  
angiogenesis inhibitor-3

V Angiogenesis 
inhibitor

THBS1 Thrombospondin-1 IV Angiogenesis 
inhibitor

THBS2 Thrombospondin-2 IV Angiogenesis 
inhibitor

VASH1 Vasohibin IV Angiogenesis 
inhibitor

VEGF Vascular endothelial  
growth factor A

IV Angiogenic factor

ANGPT1 Angiopoietin 1 V Angiogenic factor
ANGPTL7 Angiopoietin-related  

protein 7
V Angiogenic factor

FGF2 Fibroblast growth  
factor-2 (basic)

IV Angiogenic factor

EREG Epiregulin IV Angiogenic factor
CSF1 Colony-stimulating factor 1 IV Growth factor
PDGFB Platelet-derived growth  

factor, beta polypeptide
IV Growth factor

CYR61 Cysteine-rich angiogenic 
inducer 61

V Growth factor

CTGF Connective tissue  
growth factor

V Growth factor

KDR Vascular endothelial growth 
factor receptor 2

V Growth factor 
receptor

FGFRL1 Fibroblast growth factor 
receptor-like 1

V Growth factor 
receptor

(continued)

complex (Chen et al. 2001; Fenger-Gron et al. 2005; Stoecklin et al. 2006). More 
recently, it has been shown that TTP recruits the multi-subunit CCR4-NOT dead-
enylase complex to the mRNA (Fabian et al. 2013).

17.3  Angiogenesis mRNAs Regulated Through AREs

A number of important ARE genes are commonly involved in angiogenesis. 
Whereas ARE-mRNAs represent around 8 % of the human transcriptome, a bioin-
formatic analysis of the angiogenesis-related mRNAs reveals that 25 % of them 
possess AREs in their 3′-UTR. A non-exhaustive list that includes angiogenic and 
angiostatic factors, growth factor receptors, ECM components, ECM-degrading 
enzymes, and specific transcription factors, such as HIF1-α, is presented in 
Table 17.2. A more extensive screening can be performed using the ARED 3.0 
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Cellular process

mRNA target ARE 
cluster FunctionSymbol Name

JAG1 Jagged 1 III Receptor
DLL4 Delta-like 4 IV Receptor
ITGB3 Integrin-ß3 V Receptor
ITGAV Integrin-αv V Receptor
FZD4 Frizzled homolog 4 III Receptor
EPHB4 Eph receptor B4 V Receptor
EPHA2 Eph receptor A2 IV Receptor
ESM1 Endothelial cell-specific 

molecule 1 (endocan)
IV ECM protein

MMP13 Matrix metalloproteinase  
13 (collagenase 3)

IV ECM protease

HPSE Heparanase I ECM protease
SERPINE1 Plasminogen activator  

inhibitor 1
V Protease inhibitor

SERPINB2 Plasminogen activator  
inhibitor 2

V Protease inhibitor

HIF1A Hypoxia-inducible factor  
1-α subunit

III Hypoxic response

Inflammation IL-1 Interleukin 1ß II Cytokine
IL-2 Interleukin 2 III Cytokine
IL-3 Interleukin 3 V Cytokine
IL-6 Interleukin 6/interferon-ß2 IV Cytokine
IL-8 Interleukin 8 II Cytokine
IL-10 Interleukin 10 V Cytokine
IL-15 Interleukin 15 V Cytokine
TNF Tumor necrosis factor-α III Cytokine
IFNG Interferon-γ IV Cytokine
CSF1 Macrophage colony- 

stimulating factor 1
IV Cytokine

CSF2 Granulocyte-macrophage 
colony-stimulating factor

I Cytokine

CXCL1 Chemokine (C-X-C motif) 
ligand 1

II Cytokine

CXCL2 Chemokine (C-X-C motif) 
ligand 2

I Cytokine

CXCL3 Chemokine (C-X-C motif) 
ligand 3

III Cytokine

CXCL12 Chemokine (C-X-C motif) 
ligand 12

V Cytokine

CX3CL1 Chemokine (C-X3-C motif)
ligand 1

IV Cytokine

CSF1 Colony-stimulating factor 1 IV Cytokine
CTGF Connective tissue growth  

factor
V Growth factor

TNFRSF12A Tumor necrosis factor  
receptor superfamily 
member 12A

V Cytokine receptor

PTGS2 Cyclooxygenase 2 (COX2) III Enzyme

ARE clusters are based on ARED Database bioinformatic clustering (http://brp.kfshrc.edu.sa/
AredOrg/)

Table 17.2 (continued)
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database (Bakheet et al. 2006). VEGF-A, the canonical member of the VEGF 
 family, belongs to this list, whereas the related members VEGF-B, VEGF-C, and 
PlGF do not. A number of in vitro experiments conducted in various cell types have 
established that VEGF-A mRNA stability is decreased in the presence of members 
of the tristetraprolin family (Brennan et al. 2009; Cherradi et al. 2006; Ciais et al. 
2004) and stabilized in the presence of HuR and PAIP2 (Cherradi et al. 2006; Levy 

ZFP36-L1/TIS11b in vivo since genetic invalidation of the latter gene in mice 
results in embryonic lethality due to angiogenesis defects and VEGF protein over-
expression (Bell et al. 2006). However, careful analysis of mouse embryonic fibro-
blasts derived from TIS11b knockout mice revealed that VEGF upregulation 
appeared to result from increased translation efficiency rather than from changes in 
mRNA stability (Bell et al. 2006).

 frequently concomitant during tumor growth. Interestingly, as shown in Table 17.2, 
a number of proinflammatory cytokines and inflammation mediators are also 
encoded by ARE-mRNAs. These include in particular TNF-α, GM-CSF, and sev-
eral interleukins.

17.4  Signaling Pathways Regulating Angiogenesis  
mRNA Stability

Several stimuli regulate mRNA stability and their number keeps increasing. 
Cytokines, growth factors, cellular stress inducers, hormones, as well as environ-
mental factors converge to well-known signaling cascades which both regulate the 
abundance of ARE-BPs and induce their posttranslational modifications. Both 
events impact the RNA-binding properties and/or the recruitment of the mRNA 
decay machinery by ARE-BPs. However, whereas a substantial amount of data 
links ARE-BP expression and/or phosphorylation to the regulation of inflammatory 
cytokine mRNA stability, little is known on the impact of these modifications on the 
stability of angiogenic mRNAs. At least three signaling pathways have been shown 
to regulate ARE-dependent mRNA stability of angiogenic genes, namely, the MAP 
kinase (MAPK), the AMP kinase (AMPK), and the protein kinase A (PKA) signal-
ing cascades.

In the CCL39 fibroblastic cell line, it was demonstrated that VEGF mRNA sta-
bility was increased by anisomycin, a strong activator of stress-activated protein 
kinases JNK and p38 MAPK (Pages et al. 2000). Such regulation is mediated 
through an AU-rich region of the VEGF mRNA 3′-UTR located within a stable 
hairpin structure that binds unknown proteins that are specifically induced by aniso-
mycin treatment. Later on, the same group reported that the regulation of basal 
VEGF mRNA turnover in normal cells is dependent on the ARE-BP TTP (Essafi- 
Benkhadir et al. 2007). In addition, the constitutive activation of the ERK pathway 
in tumor cells was shown to increase VEGF mRNA stability and to induce the 
expression and the phosphorylation of TTP (Essafi-Benkhadir et al. 2007).
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In line with these observations, activation of the p38 MAPK and its downstream 
kinase MAPK-activated protein kinase 2 (MK2) has been shown to impair the dead-
enylation of ARE-containing mRNAs in vivo, leading to mRNA stabilization 
(Winzen et al. 1999; Winzen et al. 2007). Macrophages from MK2-/- mice show 
severely reduced levels of TNF-α, IL-1, IL-6, and IFN-γ due to decreased cytokine 

MK2 is the TTP protein, which is directly phosphorylated at serine 52 (Ser52) and 
serine 178 (Ser178), allowing binding of 14-3-3 adaptor proteins. This interaction 
reduces the destabilizing activity of TTP (Johnson et al. 2002; Stoecklin et al. 2004). 
In addition, phosphorylation of TTP on Ser52 and Ser178 by MK2 stabilizes TTP 
protein by preventing TTP degradation by the proteasome and favors its cytoplas-
mic localization (Brooks et al. 2002). More recently, it has been shown that TTP 
phosphorylation by MK2 prevents the recruitment of the deadenylation machinery 
to the target mRNA (Clement et al. 2011). These studies and others provide strong 
evidence for p38 MAPK regulation of ARE-containing mRNA stability. The p38 
MAPK may also phosphorylate ARE-stabilizing proteins such as HuR, which could 
compete with the destabilizing proteins for the regulation of VEGF mRNA stability. 
It has been shown that p38 MAPK regulates HuR localization and subsequently the 
stability of HuR mRNA targets (Lafarga et al. 2009; Tran et al. 2003).

Glucose deprivation has been shown to induce an increase in VEGF mRNA 
 stability in different carcinoma cell lines, which is mediated by AMP-activated 
kinase (AMPK) activation, indicating a critical role of AMPK in tumor angiogenesis 
(Yun et al. 2005). A study in C2C12 myoblasts showed that the AMPK-elicited 
increase in VEGF expression was mainly due to an increase in VEGF mRNA stability, 
which may be important for an accelerated angiogenic repair after ischemic damage 
(Ouchi et al. 2005). Ouchi et al demonstrated that the induction of VEGF expression 
by AMPK activators in myoblasts depends on p38 MAPK, which is a target of 
AMPK. Unfortunately, the ARE-binding proteins involved in this regulation were 
not identified in these studies (Ouchi et al. 2005).

In adrenocortical cells, the pituitary hormone ACTH induces a cAMP-depen-
dent and transcription-independent increase in VEGF mRNA expression (Chinn 
et al. 2002). It was further established that the early ACTH-induced nucleocyto-
plasmic translocation of HuR triggers VEGF mRNA stabilization, whereas 
TIS11b, which is induced later by ACTH, participates in the downregulation of 
VEGF mRNA (Cherradi et al. 2006). The increase in TIS11b mRNA was accom-
panied by an increase in multi-phosphorylated forms of TIS11b protein (Cherradi 
et al. 2006). At least three products of different mobility are apparent in adrenocor-
tical cells. These products correspond to phosphorylated forms, as evidenced by 
their conversion to a single, more mobile product after phosphatase treatment of 
the cell extracts (Duan et al. 2009). Protein kinase A is predicted to phosphorylate 
serine or threonine residues in TIS11b, but these potential phosphosites remain to 
be determined. TIS11b phosphorylations at Ser92 and Ser203 by protein kinase B 
and p38 MAPK have been established through removal of mobility changes by 
S/A substitutions (Maitra et al. 2008; Schmidlin et al. 2004). These phosphoryla-
tions attenuate TIS11b activity in part through directing sequestration by cytoplas-
mic 14-3-3 anchor proteins.
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17.5  Implication of ARE-BPs in Tumor Angiogenesis

Hypoxia in the tumor environment controls the expression of the transcription fac-
tor HIF1-α through both transcriptional and posttranscriptional mechanisms. 
Whereas hypoxia stabilizes the HIF1-α protein through enzymatic inhibition of its 
prolyl-hydroxylation and its proteasomal degradation, it also destabilizes the 
HIF1-α mRNA in a delayed manner through TTP binding onto its ARE-containing 
3′-UTR (Chamboredon et al. 2011). This accounts for the transient induction of 
HIF1-α  protein that peaks 3 h after the onset of hypoxia and decreases thereafter. 
Interestingly, a number of HIF1-α transcriptional targets are also ARE-mRNAs and 
are thereby also regulated at the posttranscriptional level. These include VEGF-A, 
carbonic anhydrase IX, the glucose transporter GLUT-1, and plasminogen activator 
inhibitor- 1, indicating that transcriptional and posttranscriptional mechanisms coor-
dinately control the time frame of expression of the angiogenic gene repertoire.  
In renal carcinomas, the loss of von Hippel-Lindau (VHL) tumor suppressor gene 
expression is directly responsible for the accumulation of HIF1-α protein. VHL has 
an E3 ubiquitin-ligase activity that binds to the hydroxyproline residues of HIF1-α 
and earmarks it with an ubiquitin tag for targeting to and degradation by the protea-
some. Interestingly, under normoxia, VHL also decreases TIS11b mRNA levels 
through the action of the micro-RNA miR-29b (Sinha et al. 2009). In contrast, under 
hypoxia, VHL does not affect miR-29b expression but increases TIS11b mRNA 
stability and TIS11b protein expression. There is thus a clear interplay between the 
VHL status and the hypoxic status of renal carcinoma cells to control the levels of 
TIS11b target gene products, including VEGF.

From a more general point of view, it appears that mutations in AREs have been 
very rarely described in cancer, whereas dysregulation of ARE-binding protein 
expression is common (Kanies et al. 2008; Mendell and Dietz 2001). Several recent 
studies have reported a decreased expression of TTP family members in human can-
cer cell lines and tumors (Brennan et al. 2009; Rounbehler et al. 2012; Young et al. 
2009), and this appears to be an early event in tumor progression. Concomitant eleva-
tion of the expression level of the mRNA-stabilizing protein HuR is also observed in 
early stages of colorectal cancer progression (Young et al. 2009). In Myc-expressing 
B cell lymphomas, Myc was shown to directly suppress transcription of TTP, and 
restoring TTP was able to reverse Myc-induced lymphomagenesis (Rounbehler et al. 
2012). This clearly indicates that TTP functions as a tumor suppressor.

Griseri et al. recently reported that TTP mRNA levels were quite variable among 
breast cancer cell lines and did not correlate with protein levels (Griseri et al. 2011). 
Interestingly, they identified a synonymous polymorphism (rs3746083) in one 
allele of the TTP gene that is more frequent in patients with HER2-positive breast 
cancer and appears significantly correlated with a lack of response to Herceptin/
trastuzumab treatment. Although this polymorphism did not modify the encoded 
protein sequence, it appeared to strongly decrease the mRNA translation efficiency 
of the variant allele. Similarly, a monoallelic frameshift mutation (I373fsX91) in 
the TIS11d gene was observed in leukemic cells from a patient with acute myeloid 
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leukemia (Hurwitz et al. 2004). The mutant TIS11d protein showed a reduced 
inhibitory effect on HeLa cell proliferation that seemed to correlate with p21 
downregulation.

In addition to these mechanisms, it has been shown that the loss of TTP 
expression may also occur in breast carcinomas as a consequence of variations in 
micro- RNA expression. MiR-29a was shown to suppress TTP expression in breast 
epithelial cells and to be inversely correlated with TTP levels in human breast 
 carcinoma specimens (Gebeshuber et al. 2009). Evidence of increased DNA meth-
ylation of the TTP gene promoter has also recently been shown in hepatocellular 
carcinoma, where TTP expression appeared to be dependent upon a single CpG 
methylation site (Sohn et al. 2010).

HuR has been linked to carcinogenesis through its ability to stabilize mRNAs 
like VEGF, IL-8, TNF-α, β-catenin, c-myc, and cyclooxygenase-2 (Cherradi et al. 
2006; Dixon et al. 2001; Levy et al. 1998; Nabors et al. 2001; Szabo et al. 1991). 
AUF1 has been shown to bind transcripts encoding immune regulators such as the 
interleukins IL-1β, IL-2, IL-3, and IL-6, TNF-α, and many other mRNAs which 
might indirectly affect angiogenesis (Gratacos and Brewer 2010).

17.6  Therapeutic Use of AUBP Functions  
in Cancer Treatment

The observation that ARE-binding proteins target and regulate the levels of a number 
of short-lived mRNAs involved in angiogenesis, inflammation, and tumorigenesis 
has incited some research teams to exploit these properties for anticancer therapy.  
A first attempt was published in 1998 in which the authors immunized mice against 
the mRNA-stabilizing protein HuD (ELAVL4), which is highly expressed in non-
small cell lung carcinoma and neuroblastoma tumors (Carpentier et al. 1998). When 
compared to controls, mice immunized against HuD showed significant 
 neuroblastoma growth inhibition and increased intratumoral CD3+ lymphocytic 
infiltrates. Although no transcriptomic analysis was performed in these tumors, this 
was the first demonstration that the neutralization of an mRNA-stabilizing protein 
could have beneficial antitumoral activity. Later on, Stoecklin et al. tested an 
 opposite strategy by overexpressing the mRNA-destabilizing protein TTP in a 
 v-H-Ras-dependent mast cell tumor model (Stoecklin et al. 2003). These cells 
express abnormally stable IL-3 mRNA as part of an oncogenic autocrine loop. 
When TTP-expressing cells were transplanted in mice, tumor growth was delayed 
by 4 weeks, and late-appearing tumors appeared to escape tumor suppression by 
loss of TTP. Decreased IL-3 mRNA levels were observed in TTP-expressing tumors, 
but, unfortunately, the expression levels of other candidate target mRNAs were not 
analyzed in this study.

Essafi-Benkhadir et al. contributed complementary information using Raf1-
ER- transformed Chinese hamster fibroblasts (Essafi-Benkhadir et al. 2007).  
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They observed that activation of the MAP kinase pathway by Raf results in 
upregulation of TTP expression and that overexpression of TTP in these cells 
reduced the half- life of VEGF-A mRNA. They transformed these cells by 
 overexpression of Ras- val12 and generated inducible TTP expression using a 
tetracycline-dependent expression vector. These cells were then implanted sub-
cutaneously into nude mice, and their growth and vascularization were analyzed. 
Doxycycline-induced expression of TTP resulted in a marked reduction of tumor 
growth, tumor VEGF levels, and tumor vascularization. Interestingly, this effect 
lasted for at least 35 days without tumor escape to doxycycline treatment. 
Whether other TTP target mRNAs were modified simultaneously to VEGF 
mRNA was not evaluated in this study.

More recently, we attempted to develop a therapeutic strategy based on the use 
of a cell-permeant variant of TIS11b/ZFP36L1 (Planel et al. 2010). Since TIS11b 
interacts intracellularly with VEGF mRNA 3′-UTR and favors its degradation by 
the exosome machinery (Ciais et al. 2004), we reasoned that addition of a protein 
transduction domain (a short peptidic tag that allows proteins to translocate through 
the plasma membrane of eukaryotic cells) to this protein would make it possible to 

on its intracellular target mRNAs. Among several possibilities tested, we found that 
an (Arg)9 N-terminal tag was most efficient for favoring intracellular translocation 

-
ous LLC (Lewis lung carcinoma) tumors, we observed a significant decrease in the 
tumor growth rate, in the tumor vascular density, and in the tumor VEGF expression 
level (Fig. 17.2). We also evaluated the effects of this treatment on the expression of 
a dozen growth factors and cytokines using antibody arrays. Very interestingly, not 
only VEGF but also FGF-1, EGF, IL-1α, IL-6, IL-12, and TNF-α protein levels 
were significantly decreased in R9-TTP-treated tumors. This work was the first to 
establish that treatment of cancerous tumors with an ARE-binding protein can be a 
novel multitarget therapy that simultaneously targets several important factors 
involved in angiogenesis and inflammation.

17.7  Perspectives

As an important step of tumor progression, tumor angiogenesis has been identified 
as a valuable target for cancer therapies. Several anti-angiogenic drugs have been 
developed during the last decade, and some of them, including anti-VEGF antibod-
ies (bevacizumab) and tyrosine-kinase inhibitors (sunitinib, sorafenib, pazopanib, 
etc.), have reached the pharmaceutical market. However, none of these drugs cures 
cancer, and, despite initial enthusiasm, it is now well established that patients 
develop resistance to anti-angiogenic treatments over time, which limits their ben-
eficial effect. Second-line treatments targeting tumor angiogenesis through different 
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Fig. 17.2 Antitumoral therapy using the mRNA-destabilizing properties of TIS11b. (a) Fusing a 
polyarginine (R9) tag to the tristetraprolin family member TIS11b allows it to pass the plasma 
membrane and bind to AU-rich sequences (ARE) located in the 3′-untranslated region of target 
mRNAs. This allows deadenylases and exosome RNases to degrade the mRNA. As many ARE-
containing genes contribute to angiogenesis and inflammation, the expected effect is an inhibition 
of these two processes. (b
Lewis lung carcinoma cells. On day 6, once the tumors had reached a size of 50 mm3, R9-TIS11b 

reveals a twofold reduction in tumor size in the R9-TIS11b-treated mice. (c) Immunohistochemical 
analysis of the control and R9-TIS11b-treated tumors reveals a decreased VEGF expression and a 
decreased vascularization (assessed by CD31 staining). (d) Quantification of the protein levels of 
various angiogenic and inflammatory cytokines in control and R9-TIS11b-treated tumors using 
antibody arrays reveals a multitarget action of R9-TIS11b (The data shown in (b–d) were pub-
lished in Planel et al. (2010))

mechanisms are therefore urgently needed to bypass these resistance problems and 
to maintain therapeutic pressure on the development of the tumoral vasculature.  
As reviewed in this article, exploiting the biological mechanisms that control 
mRNA stability/decay of the master genes of angiogenesis and inflammation 
 represents an original strategy that fits these requirements and certainly deserves 
further investigation.
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Nouvelle thérapie anti-tumorale multi-cibles basée sur la degradation des ARNms à demi-vie courte 

La formation de nouveaux vaisseaux sanguins ou angiogenèse soutient la croissance tumorale en fournissant l’oxygène et 

les nutriments qui lui sont nécessaires. Le rôle clé du facteur de croissance de l’endothélium  vasculaire VEGF dans ce 

processus a suscité le développement de stratégies anti-angiogéniques pour le traitement du cancer. Cependant, des 

travaux précliniques et des données cliniques suggèrent l’émergence de résistances aux anti-angiogéniques, en raison 

notamment de la redondance des facteurs de croissance pro-angiogéniques. Il est donc nécessaire de développer des 

stratégies alternatives plus efficaces. En 2010, notre laboratoire a apporté la preuve de concept d’une thérapie anti-

tumorale et anti-angiogénique innovante basée la dégradation des ARNm à demi-vie courte par la protéine à doigts de zinc 

TIS11b. Néanmoins, l’instabilité de la protéine thérapeutique a entravé la caractérisation plus détaillée de cette stratégie. 

Dans ce contexte, l’objectif majeur de ma thèse était l’optimisation de la stabilité et de l’activité de TIS11b et l’évaluation 

de son efficacité thérapeutique. Pour cela, nous avons généré une nouvelle protéine TIS11b génétiquement modifiée sur la 

base d’études biochimiques et moléculaires. Notamment, nous avons observé que la phosphorylation de la sérine 334 

située dans le domaine C-terminal de TIS11b augmente de façon très significative la stabilité de la protéine et potentialise 

son activité déstabilisatrice de l’ARNm du VEGF. De plus, la délétion du domaine N-terminal augmente également la 

stabilité de TIS11b sans altérer son activité. Nous avons alors généré deux nouvelles protéines thérapeutiques, la protéine 

ZnC et la protéine  ZnC
334D 

pour laquelle la troncation du domaine N-terminal et la substitution de la sérine S334 par un 

aspartate mimant une phosphorylation ont été combinées. Les nouvelles protéines ont été fusionnées à une étiquette 

polyarginine R9 leur permettant de traverser les membranes cellulaires (R9-ZnC et R9-ZnC
S334D

). Nous avons montré que 

R9-ZnC et R9-ZnC
S334D

 inhibent l’expression de VEGF in vitro dans la lignée de cancer du sein murin 4T1. De plus, R9-

ZnC
S334D

 exerce une activité anti-proliférative, anti-migratoire et anti-invasive dans ces cellules. In vivo, l’injection intra-

tumorale de R9-ZnC
S334D

 dans des tumeurs 4T1 préétablies inhibe significativement l’expression du VEGF, la croissance 

et la vascularisation tumorales. De façon remarquable, l’analyse des extraits tumoraux indique que le traitement diminue 

l’expression de chimiokines clés dans les processus d’angiogenèse, d’inflammation et d’invasion (Fractalkine, MCP-1, 

NOV, SDF-1, Pentraxin…). Enfin, R9-ZnC et R9-ZnC
S334D

 inhibent l’expression de marqueurs de la transition épithélio-

mésenchymateuse, un processus impliqué dans la dissémination métastatique. L’ensemble de ces travaux indique que R9-

ZnC et R9-ZnC
S334D

 sont des molécules anti-tumorales multi-cibles, qui inhibent plusieurs étapes clés de la progression 

tumorale. Cette étude confirme que le ciblage de la stabilité des ARNm est une stratégie prometteuse et novatrice pour le 

développement de nouvelles thérapies anti-cancéreuses. 

Mots Clés : thérapie multi-cible, angiogènese tumorale, TIS11b (ZFP36L1/BRF1), dégradation des ARNm,  

ingénierie des protéines, phosphorylation, Tristetraprolin 

A novel multi-target cancer therapy based on destabilization of short-lived mRNAs 

One of the innovative aspects of anti-cancer therapies is the possibility of preventing tumor growth by blocking blood 

supply. Cancer cells induce the formation of their own blood vessels from pre-existing vasculature, a process called 

angiogenesis. One of the most important proangiogenic factors is vascular endothelial growth factor (VEGF). The success 

of bevacizumab (a humanized anti-VEGF monoclonal antibody) combined to chemotherapy for the treatment of human 

metastatic cancers has validated VEGF as an efficient target. However, despite the initial enthusiasm, resistance to these 

anti-angiogenic treatments resulting from compensatory mechanisms occurs upon time. For this reason, there is a real need 

for new anti-angiogenic drugs that will target the angiogenic process through distinct mechanisms. In 2010, our laboratory 

has successfully developed an anti-angiogenic and anti-tumoral therapy based on destabilization of short-lived mRNAs by 

the zinc finger protein TIS11b. However, the therapeutic protein was highly unstable, thus making it difficult to further 

characterize the experimental therapy. In this context, the main task of my thesis was the optimization of TIS11b stability 

and activity followed by the evaluation of the multi-target action of our novel protein on tumor development. In a first part 

of this work, biochemical and molecular approaches allowed us to demonstrate that phosphorylation of the C-terminal 

serine S334 in TIS11b protein markedly increases its stability. In addition, deletion of the N-terminal domain of TIS11b 

highly increases its protein stability without affecting its activity. Therefore, we integrated N-terminal truncation (ZnC) 

and C-terminal substitution of S334 by an aspartate to mimic a permanent phosphorylation at S334 (ZnC
S334D

) as a novel 

TIS11b engineering strategy. Both proteins were fused subsequently to a cell-penetrating peptide polyarginine (R9). In 

vitro studies revealed that R9-ZnC and R9-ZnC
S334D

 inhibit VEGF expression in the murine breast cancer cells 4T1. In 

addition, R9-ZnC
S334D

 impaired proliferation, migration, invasion and anchorage-independent growth of 4T1 cells. In vivo, 

intra-tumoral injection of either protein significantly reduced VEGF expression and tumor vascularization. Strikingly, 

antibody array analyses of tumor extracts demonstrated a reduced expression of several chemokines such as Fractalkine, 

MCP-1, NOV, SDF-1 and Pentraxin upon R9-ZnC or R9-ZnC
S334D

 treatment. These factors, which are produced by 

several cell types within tumor tissue, are key drivers of tumor angiogenesis, tumor-promoting inflammation and invasion. 

Furthermore, the expression of markers of the epithelial-to-mesenchymal transition was also significantly reduced, 

suggesting an anti-invasive effect of R9-ZnC and R9-ZnC
S334D

. Thus, we provide R9-ZnC and R9-ZnC
S334D

 as potential 

novel multi-target agents which inhibit key hallmarks of cancer progression. This work supports the emerging link 

between mRNA stability and cancer and proposes novel concepts for the development of innovative anti-cancer therapies. 

Key words: multi-target therapy, tumor angiogenesis, TIS11b (ZFP36L1/BRF1), ARE-mediated mRNA decay, 

phosphorylation, protein engineering, Tristetraprolin 
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