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Résumé 

L’intérêt de la télédétection appliquée aux volcans actifs et potentiellement dangereux a 

été démontré depuis longtemps dans la mesure où cette technique a participé à 

l’amélioration de la compréhension des processus éruptifs et des aléas volcaniques, 

amélioration qui permet une réduction des risques volcaniques. Nous avons entrepris 

plusieurs études volcanologiques reposant sur l’usage d’images de moyenne et haute 

résolution spatiale, qu’elles soient optiques (IKONOS, Pléiades, GeoEye, Quickbird and 

SPOT5), radar (ALOS-PALSAR) ou bien thermiques (ASTER et MODIS «hot spot»). 

Associées à l’analyse de MNTs et de photographies aériennes acquises par un drone, ces 

études ont consisté à appliquer des techniques de télédétection sur le Semeru et le 

Merapi, deux des volcans composites les plus actifs et les plus densément peuplés de l’ile 

de Java en Indonésie. Cette recherche fondée sur la télédétection a permis de mettre en 

évidence des structures géologiques et tectoniques, d’identifier, de classer et de 

cartographier des dépôts éruptifs sur les deux volcans et a servi à améliorer l’évaluation 

des risques à la suite des grandes éruptions de 2002-2003 au Semeru et de 2010 au 

Merapi. Nous avons également initié une étude afin de comprendre les interactions 

entre l’activité eruptive et le contexte sismo-tectonique régional en utilisant l’analyse 

des données MODIS avec la méthode MODVOLC. 

Nous avons remis à jour la carte géologique du volcan Semeru en y associant des 

données issues de l’interprétation d’images HSR récentes, des photographies aériennes, 

l’analyse de MNTs et des observations de terrain, notamment dans le réseau 

hydrograhique qui convoie des lahars. Nous avons décrit l’histoire éruptive postérieure 

à 2001 au Semeru en incluant la grande eruption à l’origine des écoulements 

pyroclastiques (EPs) en 2002-2003 et les éruptions effusives de 2012-2014, qui 

consituent un phénomène rarement observé sur ce volcan. Le Semeru a produit un 

volume de 2.5 ± 0.5 106m3 de coulées de lave provenant du cratère sommital entre 2010 

et 2014, ce qui peut annoncer, pour la première fois depuis 1967 ou 1941,  une 

modification profonde du style éruptif de ce volcan. Au moment de terminer cette thèse, 

le dome-coulée situé dans le cratère Jonggring-Seloko continue à croître et les coulées de 

lave dépassent 2 km de longueur dans la cicatrice majeure en pente raide sur le flanc 

SE ; leurs fronts pourraient s’effondrer et produire des EPs dont le volume moyen 
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pourrait excéder les valeurs de 3 à 6.5 million de m3 mesurées sur la période 1967-2007. 

Les écoulements futurs pourront déborder des parois de la cicatrice vers l’aval et se 

propager vers les vallées des flancs est et sud-ouest. 

L’épisode éruptif du 26 octobre au 23 novembre 2010 s’est avéré l’événement majeur de 

l’activité du Merapi depuis 1872. Notre interprétation des images HSR démontre qu’à 

l’issue des éruptions explosives, le sommet du Merapi a perdu un volume de 10 x 106 m3 

et la gorge de Gendol orientée SSE a été élargie jusqu’à mesurer 1.3 x 0.3 x 0.2 km. Le 

nouveau cratère élargi et profond inclut le dome post-2010, qui a été fracturé en 2013, 

tandis que ses parois verticales instables peuvent être fragilisées par les explosions 

mineures de 2013 et 2014. Nous avons identifié et cartographié les dépôts 

pyroclastiques et de lahar de 2010 en appliquant plusieurs méthodes de classification 

aux images optiques HSR et aux données polarisées de Radar à Synthèse d’Ouverture 

(RSO). Les résultats démontrent  la capacité de l’imagerie satellitaire HSR à capturer 

l’extension et les impacts de dépôts immédiatement après une grande éruption et avant 

tout remaniement. Cette technique met en exergue l’utilité de l’imagerie haute 

resolution et des données radar pour les volcans en activité persistante dont l’accès est 

souvent rendu impossible. Les dépôts de tephra et EPs de 2010 ont recouvert une 

surface de 26 km2 environ dans les deux bassins versants des rivières Gendol et Opak 

sur le flanc sud le plus affecté, soit 60 à 75% de la surface totale des dépôts 

pyroclastiques et un volume estimé à 45 x 106 m3. Les dépôts de retombée ont recouvert 

une surface de 1300 km2 environ avec un volume estimé entre 18 et 21 x 106 m3. Le 

débordement et l’avulsion des lahars constituent les menaces les plus graves le long des 

cours inférieurs des vallées comme la Kali Putih à l’ouest vers la ville de Magelang et la 

Gendol-Opak au sud vers le temple de Prambanan. Dans ce but, nous avons analysé une 

série de paramètres morphométriques des chenaux qui aident à déceler où et comment 

les lahars peuvent déborder du chenal principal et se propager dans des vallées 

peuplées adjacentes, qui ne sont pas directement exposées aux effets de ces 

écoulements.  En somme, l’imagerie HSR, qui pour la première fois a été utilisée en 

Indonésie, les observations de terrain, la cartographie géologique et les mesures 

géophysiques, ainsi qu’une revue des recherches récentes et des simulations 

numériques ont aidé à améliorer l’évaluation des risques sur deux des volcans les plus 

dangereux et les plus peuplés d’Indonésie. Cette méthodologie peut être appliquée, de 

manière similaire, à d’autres volcans composites dans le monde.   
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Abstract 

Remote sensing has long been recognized as a tool for analysis at active and hazardous 

volcanoes because it can augment our understanding of the processes that underlie 

volcanic activity so as enable us to apply this understanding to volcanic risk reduction. 

This thesis presents a volcanological study using High-Spatial Resolution optical images 

(IKONOS, Pléiades, GeoEye, Quickbird and SPOT5 satellites), radar data (ALOS-PALSAR 

sensor) and thermal (ASTER satellite and MODIS hot spot) images. In association with 

DEMs and low-altitude aerial photographs, remote sensing techniques have been 

applied for tracing the evolution of activity at Semeru and Merapi, two of the most active 

and densely populated volcanoes in Java, Indonesia. This remotely sensing-based study 

has unraveled structures, geological features and erupted deposits of both volcanoes 

and has improved the existing hazard assessment after their most recent eruptions. The 

thesis also presents the first advance towards deciphering possible interactions between 

regional tectonic earthquakes and renewed stages of eruptive activity of Merapi and 

Semeru volcanoes based on the analysis of volcanic hotspots detected by the MODVOLC 

technique.  

The geological map of Semeru is updated, including additional data derived from the 

interpretation of the most recent satellite images, aerial photographs, DEM analysis and 

fieldwork. The post-2001 eruptive activity at Semeru, including the large PDC-forming 

eruption in 2002-2003 and uncommon lava flow eruptions in 2010-2014 are 

investigated. The fact that Semeru has produced several lava flows from the central 

summit vent between 2010 and 2014 may herald a profound change in eruption style 

for the first time since at least 1967. At the time of writing, a dome-fed coulée in the 

Jonggring-Seloko crater continues to grow and lava flows are extending to distances of  

>2 km down Semeru's SE-scar; their fronts may collapse and produce large-volume 

pyroclastic density currents (PDCs), perhaps exceeding the average (1967-2007) 

volume range of 3 to 6.5 million m3. Future dome-collapse PDCs may travel farther down 

the main SE scar and can spill over its lowermost rims towards the southwest and 

eastward radiating drainage network. 
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The 26 October-23 November 2010 eruption was the Merapi’s largest event since 1872 

(it attained VEI=4). The interpretation of HSR images shows that due to the explosive 

eruptions, the summit area lost about 10 x 106 m3 and the SSE-trending Gendol Breach 

enlarged to reach 1.3 x 0.3 x 0.2 km in size. The new, enlarged and deep summit crater 

including the 2010 lava dome is extremely unstable having been weakened by the post-

2010 explosive events. This instability is a result of the steep Gendol Breach below the 

mouth of the crater and the steep and unstable crater walls. The 2010 Merapi 

pyroclastic and lahar deposits have been identified by applying several classification 

methods to HSR optical images and dual-polarization synthetic aperture radar (SAR) 

data. The results show the ability of remotely sensed data to capture the extent and 

impacts of pristine deposits shortly after emplacement and before any reworking, and 

highlight the purpose of using high-spatial resolution imagery and SAR data on 

persistently active volcanoes where access for field survey is often impossible. The 2010 

tephra and PDC deposits covered ca. 26 km2 in two catchments of Gendol and Opak 

Rivers on Merapi’s south flank, i.e. 60-75% of the total PDC deposit area and a total bulk 

volume of 45 x 106 m3. The tephra-fall deposit covered an area of ca. 1300 km2 with a 

volume range of 18-21 x 106 m3. Volumes of these deposits were estimated using the 

areas determined from remote sensing data and deposit thickness measured in the field. 

Lahar overspill and avulsion are the most hazardous processes acting along the 

lowermost river courses of Kali Putih towards the southwest flank of Merapi, and along 

the Gendol-Opak Rivers towards the iconic Prambanan temple. To address this problem, 

a set of morphometric characteristics of river channels has been analyzed, which 

indicate where and how lahars can spill over the principal river banks and avulse to 

otherwise unthreatened but populated valleys. Finally, HSR imagery, used here for the 

first time in Indonesia, in conjunction with field observations, geologic mapping and 

geophysical measurements, together with a review of recent surveys and flow 

simulations, have helped to improve hazard assessments at two of the most threatening 

volcanoes in Indonesia. This methodology can be applied to similar active composite 

volcanoes worldwide.   
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Sari 

Penginderaan jauh telah lama dikenal sebagai suatu alat untuk analisis di gunungapi 

aktif dan berbahaya karena dapat meningkatkan pemahaman kita tentang proses yang 

mendasari aktivitas gunung berapi sehingga memungkinkan kita untuk menerapkan 

pemahaman ini dalam pengurangan risiko erupsi gunungapi. Disertasi ini menyajikan 

studi vulkanologi menggunakan citra satelit optik resolusi tinggi (IKONOS, Pléiades, 

GeoEye, Quickbird dan SPOT5), data radar (ALOS-PALSAR sensor) dan citra termal 

(satelit ASTER dan hotspot MODIS). Dalam kaitannya dengan DEM dan foto udara, teknik 

penginderaan jauh telah diterapkan untuk melihat evolusi aktivitas di Semeru dan 

Merapi, dua gunung berapi yang paling aktif dengan kepadatan penduduk yang tinggi 

terletak di Pulau Jawa, Indonesia. Studi berbasis penginderaan jauh ini telah mengkaji 

struktur, fitur geologi dan material erupsi dari kedua gunungapi tersebut dan telah 

mempertajam penilaian bahaya yang ada setelah erupsi terkini. Disertasi ini juga 

menyajikan kemajuan awal dalam menafsirkan kemungkinan interaksi antara gempa 

tektonik regional dan aktivitas gunungapi Merapi dan Semeru berdasarkan analisis 

hotspot vulkanik yang terdeteksi oleh MODVOLC. 

Peta geologi Semeru telah diperbaharui dengan memasukkan data tambahan yang 

berasal dari interpretasi citra satelit terbaru, foto udara, analisis DEM dan data 

lapangan. Aktivitas erupsi pasca-2001 di Semeru, termasuk erupsi dengan aliran 

pirokastik (Pyroclastic Density Current/PDC) besar pada tahun 2002-2003 dan erupsi 

tidak biasa dengan aliran lava pada 2010-2014, telah dikaji. Fakta bahwa Semeru telah 

menghasilkan beberapa aliran lava dari kawah di puncak antara tahun 2010 dan 2014, 

mengindikasikan perubahan besar dalam gaya erupsi untuk pertama kalinya setidaknya 

sejak 1967. Pada saat penulisan disertasi ini, sebuah kubah lava (Coulée) di kawah 

Jonggring- Seloko terus tumbuj dan aliran lava yang memanjang hingga jarak >2 km 

arah tenggara Semeru; ujung lava kemungkinan dapat runtuh dan menghasilkan aliran 

piroklastik yang mungkin melebihi volume rata-rata (tahun 1967 hingga 2007) dalam 

kisaran 3-6.5 juta m3. Aliran piroklastik yang akan datang mungkin mengalir sepanjang 

gawir utama ke arah tenggara dan dapat menyebar melampaui lereng paling bawah ke 

arah barat daya dan ke arah timur menyebar ke jaringan drainase. 
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Erupsi yang terjadi pada 26 Oktober-23 November 2010 adalah erupsi terbesar Merapi 

(mencapai VEI 4) sejak 1872. Interpretasi citra resolusi tinggi menunjukkan bahwa 

daerah puncak kehilangan batuannya sekitar 10 juta m3 akibat erupsi eksplosif. Erupsi 

juga memperbesar “Gendol Breach” dengan orientasi tenggara menjadi berukuran 

1.3x0.3x0.2 km.  Kawah puncak yang baru,  diperbesar dan dalam, termasuk juga kubah 

lava tahun 2010 sangat tidak stabil dan telah diperlemah oleh beberapa erupsi eksplosif 

pasca-2010. Ketidakstabilan ini diakibatkan oleh curamnya Gendol Breach di bawah 

mulut kawah dan kondisi dinding kawah yang curam dan tidak stabil. Deposit 

piroklastik dan lahar diidentifikasi dengan menerapkan beberapa metode klasifikasi 

terhadap citra optik resolusi tinggi dan data dual-polarisasi Synthetic Aperture Radar 

(SAR). Hasilnya menunjukkan kemampuan data penginderaan jauh untuk merekam 

jangkauan dan dampak dari deposit murni sesaat setelah pengendapan dan sebelum 

proses erosi, serta menyoroti tujuan penggunaan citra resolusi tinggi dan data SAR di 

gunungapi sangat aktif dengan akses untuk survei lapangan sering kali tidak 

memungkinkan. Endapan tephra dan PDC menutupi area sekitar 26 km2 di dua DAS, Kali 

Gendol dan Opak, di sisi selatan Merapi, atau 60-75% dari total luas endapan PDC, dan 

total volume 45 juta m3 .  Deposit tephra jatuh menutupi area seluas sekitar 1.300 km2 

dengan volume 18-21 juta m3. Volume endapan vulkanik ini diestimasi menggunakan 

informasi luas yang ditentukan dari data penginderaan jauh dan ketebalan yang diukur 

di lapangan. Luapan lahar dan avulsi adalah proses yang paling berbahaya terjadi di 

sepanjang hilir dari Kali Putih menuju sisi barat daya Merapi, dan sepanjang Gendol-

Opak Rivers menuju Candi Prambanan. Untuk mengatasi masalah tersebut, satu set 

karakteristik morfometrik aliran sungai telah dianalisis, yang menunjukkan di mana dan 

bagaimana lahar dapat meluap ke tepi sungai dan beravulsi ke lembah yang dinyatakan 

tak terancam, namun padat penduduk. Terakhir, citra resolusi tinggi, yang digunakan 

pada studi ini untuk pertama kalinya di Indonesia, dalam hubungannya dengan 

observasi lapangan, pemetaan geologi dan pengukuran geofisika, bersama-sama dengan 

ulasan survei terbaru dan simulasi aliran, telah membantu untuk meningkatkan 

penilaian bahaya di dua gunungapi yang paling mengancam di Indonesia. Metodologi ini 

dapat diterapkan untuk gunungapi komposit aktif yang serupa di seluruh dunia. 
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Chapter 1 – Introduction: Indonesian active volcanoes and 

remote sensing 

1.1. Tectonic and volcanic background of Indonesia 

The vast Indonesian archipelago consists of 17,508 islands located at sub-equatorial 

latitudes (6°N-11°S) at the boundaries of three major tectonic plates, namely Indo-

Australia, Eurasia, and Pacific-Philippine Sea plates (Fig. 1.1A). The present-day geology 

of Indonesia is broadly the result of Cenozoic subduction and collision at this margin 

(Hall & Smyth, 2008). Western Indonesia is partly underlain by continental crust 

whereas Eastern Indonesia has a complex basement (including arc, ophiolites and 

several young ocean basins) owing to a long period of extension, subduction and 

collision (Hall, 2009). As a consequence of this complex geodynamic setting, Indonesia is 

bordered by tectonically active zones characterized by intense seismicity and volcanism 

(Fig. 1.1).     

Present-day volcanic activity in Indonesia has been interpreted as the product of four 

separate volcanic arcs (in chronological order): Sunda, Banda, Halmahera and Sangihe 

Arcs (Fig 1.1B). The wide lateral extent of the Sunda Arc, over 3000 km from NW 

Sumatra to the Banda Sea, includes 78% of Indonesian volcanoes. The Sunda arc has 

been active since the Eocene (Hamilton, 1979; Hall, 2002) and is the product of 

subduction of the Indian Ocean crust beneath the margin of Sundaland (the continental 

core of Southeast Asia). The horseshoe-shaped Banda Arc of eastern Indonesia is due to 

the subduction of an embayment within the northward-moving Indo-Australian plate 

(Hamilton, 1979; Hall, 1995, 2002; Charlton, 2000). The Banda volcanic arc has been 

active only for ~10 Ma (Honthaas et al., 1999) and developed within the collision zone 

after the Australian margin collided with the former active margin of the Sunda Arc (Hall 

& Smyth, 2008). North of Banda arc, tectonic complexity increases, with converging 

plate fragments forming multiple subduction zones, mainly oriented N-S, which in turn 

produced the Sulawesi-Sangihe volcanoes to the west and Halmahera to the east of the 

collision zone. The Halmahera and Sangihe Arcs formed during the Neogene and are the 

only intra-oceanic arcs in the world, which are currently colliding (Hall, 2009). 
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Figure 1.1. A. Seismicity in the Indonesian region between 1964 and 2013 (Source: Bulletin of 

the International Seismological Centre). The circles with three different colors indicate the 

earthquake epicenters with three different ranges of depth. B. Map of the Indonesian subduction 

zones showing the present-day tectonic boundaries and distribution of active volcanoes (yellow 

and red triangles). Red triangles indicate 69 very active volcanoes, which are monitored 

continuously by CVGHM. Some of the well-known volcano names appear in capital letters. 

Arrows indicate the direction of plate relative motions with respective convergence rates 

(Widiyantoro & Van der Hilst, 1997). 

The subduction zones are associated with seismicity extending to a depth of about 600 

km (Fig. 1.1A) and volcanoes within 250-350 km from the trench axis (Fig. 1.1B). Most 

volcanoes are located between 100 and 120 km above the descending lithospheric slabs. 

Indonesian historically active volcanoes, totaling 1250 confirmed eruptions, are second 

only to Japan with 1469 historical eruptions (Siebert et al., 2010). However, many small 

eruptions in Indonesia have not been catalogued while historical records of volcanic 

eruption in Japan are more comprehensive. There are 127 active volcanoes in Indonesia, 

and at least 77 among them have erupted since 1600. Volcanoes in Indonesia and Japan 

produce nearly one third of the reported pyroclastic density current (PDC)-producing 
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eruptions. Among the Indonesian Holocene volcanoes, 32 have records of very large 

eruptions with a volcanic explosive index (VEI) greater than 4 and 19 of these volcanoes 

have erupted within the past 200 years. The 1815 eruption of Tambora volcano, 

Sumbawa Island, caused the historical largest number of fatalities due to a single 

eruption. This eruption triggered the “year without a summer” in 1816 in the Northern 

Hemisphere, when crops withered, causing famine and population migrations 

(Harington, 1992; de Boer & Sanders, 2002). The 1257 eruption of the Samalas volcano, 

adjacent to Mt. Rinjani on Lombok Island, with an estimated magnitude of VEI 7 is also 

thought to be one of the largest Holocene eruptions. This eruption formed the 6 x 8.5-

km-wide Sagara Anak caldera and the horseshoe-shaped collapse structure that deeply 

incises the western flank of Rinjani volcano. This eruption has been identified as the 

source of the great mid-13C “mystery eruption” that is associated with the largest 

sulfate deposition within polar ice core records from the past 7000 years (Lavigne et al., 

2013). The eruption of Toba on Sumatra 74,000 years ago was even more violent 

(estimated VEI 8) and is the largest known eruption on Earth within the last 2 million 

years (Chesner, et al., 1991). 

Volcanic slopes in Indonesia typically are blessed with fertile soils, abundant amount of 

water and beautiful landscapes; hence, this country easily leads the world in population 

density around volcanoes.  About 5 million people live on the flanks (within 10 km away 

from the summit) of 77 Indonesian persistently active volcanoes and many more are at 

risk on the lower flanks and across ring plains (Siebert et al., 2010). The most densely 

populated Indonesian volcano within a radius of 30 km (Fig. 1.2A) is Tangkubanparahu 

(5.7 million people) located in West Java, followed by Merapi (4.3 million people) in 

Central Java. Indonesia has many major cities that are located within 30 km of any active 

volcano as shown in Figure 1.2B. Some cities and their populations are potentially 

exposed to hazards from more than one volcano. For example, Garut in West Java is 

located within 13, 16 and 21 km away from Guntur, Galunggung and Papandayan 

volcanoes, respectively. The combination of a densely packed population in a volcano-

rich country has led Indonesia to suffer the highest number of eruptions with fatalities 

and damage to infrastructure.  
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Figure 1.2. A. Chart showing the number of people living in the area within 5, 10 and 30 km of 

the nine Indonesian most densely populated active volcanoes. B. Virtual target chart showing 

location and distance of major cities (red circles) in Indonesia from volcanoes, with names and 

population numbers shown in parentheses. Population data based on the Indonesia 2010 census 

(BPS, 2011).  

In the 1900-2009 period, no less than 70 events occurred in Indonesia, which caused 

18,840 fatalities or 18.4% of the worldwide reported volcano mortality (Doocy et al., 

2013). Figure 1.3 shows the deadliest volcanoes in Indonesia with their total fatalities 

and maximum eruption magnitude. Fatalities due to the first two volcanoes are indirect 

results of eruptions as most of people died from starvation after the 1815 Tambora 

eruption and in the wake of the 1883 Krakatau volcanogenic tsunami. The probability 

Chapter 1

4

��������������������������������������������������������������������



that volcanic activity will result in death or injury clearly depends on a variety of factors 

including the distance from the volcano on which people live, the size of population, the 

types of relevant volcanic hazards, and the magnitude and frequency of activity. In 1920, 

the government established the Volcanological Survey of Indonesia (VSI), now known as 

the Center for Volcanology and Geological Hazard Mitigation (CVGHM), leading to much 

improved volcano monitoring and recording.  In order to monitor continuously 69 very 

active volcanoes in Indonesia (red triangles in Fig. 1.1B), a network of 76 volcano 

observatories was installed and is operated by the CVGHM. In recent decades, CVGHM 

has evacuated people living near volcanoes prior to several large eruptions, avoiding 

fatalities except for a few eruptions. For example, during the 1982 Galunggung eruption 

75,000 people were evacuated, reducing the fatalities to 68, and during the 1990 Kelud 

eruption, 60,000 people were evacuated, reducing the fatalities to 32. Another example 

that illustrates the value of carefully monitoring volcanoes is the management of the 

2010 Merapi eruption, which led to displacement of almost 400,000 people living within 

20 km from the summit for one and a half months. The 2010 Merapi eruption caused 

about 367 fatalities; however, this number is relatively small compared to the number of 

people who would have died without the evacuations, estimated to range between 

10,000 and 20,000 people (Surono et al., 2012).  

 

Figure 1.3. Number of fatalities caused by eruptions of nine Indonesian volcanoes and their 

maximum magnitude in historical records based on Blong (1984), Tanguy et al. (1998) and 

Siebert et al. (2010).  
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Figure 1.4. A. Geographic map of eastern part of the Java Island showing the location of Semeru 

and Merapi volcanoes (the base image uses Bing Aerial Maps). B. The 15 June 2012 ASTER image 

shows the Semeru composite cone and principal rivers, cities, towns, roads, and volcano 

observatories in the south and east ring plain.   
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Figure 1.4. (continued) C. The 13 June 2012 ASTER image shows the Merapi volcano including 

the principal rivers, cities, towns, roads, in the south and west ring plain and the six volcano 

observatories. 

This thesis focuses on the active and densely populated Semeru and Merapi volcanoes in 

Java Island (Fig. 1.4) using remote sensing methods. Semeru is the highest volcano in 

Java (3676 m asl) and one of the most active volcanoes on Earth. Semeru eruptive 

activity has been recorded since 1818 and daily eruptive activity has been persistent at 

least since 1967. Phreatomagmatic or Strombolian eruptions occur almost daily from 

the Jonggring-Seloko crater. Extrusion, growth and collapse of lava domes in the 

Jonggring-Seloko Crater have occurred every 5 to 7 years. Ring plain within 5, 10, and 30 

km of Semeru (Fig. 1.4B) is home to 2686, 8375 and more than 1 million inhabitants, 

respectively (Siebert et al., 2010). Another very active volcano in Indonesia is Merapi, 
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which lies about 30 km north of the major city of Yogyakarta (Fig. 1.4C).  More than 74 

eruptions were recorded at Merapi since 1548, and at least seventeen of them, including 

the one in 2010, caused fatalities. About 49,000, 185,000 and more than four million 

people live on the ring plain of Merapi volcano within a radius of 5, 10 and 30 km, 

respectively (Fig. 1.4C; Siebert et al., 2010). As Semeru and Merapi are difficult and 

dangerous to access, remote sensing methods are useful for studying these persistently 

active volcanoes.  

1.2. Tectonics and volcanism 

The majority of the most active and dangerous volcanoes in the world are explosive 

composite volcanoes that are located above subduction zones. Four profiles across the 

arc-trench systems of Sumatra, Java, Banda and Sangihe-Halmahera are displayed in 

Figure 1.5 (after Simandjuntak & Barber, 1996). Oblique (50-65°) convergence of the 

Indian Ocean and Eurasian plates produces the island of Sumatra. The subduction 

system includes an accretionary complex, exposed in the offshore islands such as Nias 

and Mentawai and a fore-arc basin (Fig. 1.5A). The Sumatran fore-arc is driven 

northwards along the Great Sumatran strike-slip fault by the movement of the Indian 

Ocean plate, and back-arc basins lie to the NE, behind the arc. In the Java region, 

convergence between the Indian Ocean and SE Asian plates is normal to the subduction 

trace in the Java Trench (Fig. 1.5B). The subduction system comprises an accretionary 

complex in the Java fore-arc ridge, fore-arc basin, Java volcanic arc and back-arc basin. 

Compression across the Java subduction system has resulted in back-arc thrusting. In 

the Banda arc, the Australian craton has been subducted beneath the accretionary and 

collision complex in the Timor Ridge (Fig. 1.5C). Subduction has ceased in this segment 

of the collision zone, but the collision complex has been driven over the volcanic arc, 

which has in turn been driven over the Banda Sea plate to the north in the earliest stages 

of subduction reversal. In the Molucca Sea region of northeastern Indonesia, the Sangihe 

and Halmahera arcs are presently in the process of colliding, the Earth’s only example of 

a collision between facing volcanic arcs (Fig. 1.5D). The Molucca Sea plate is subsiding 

between the colliding Sangihe and Halmahera fore-arcs. The Sangihe fore-arc has been 

thrust over the Halmahera fore-arc to form the Talaud Ridge. Subduction of the Sulawesi 

Sea plate has commenced only recently.  
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Figure 1.5. Schematic geologic sections across (A) Sumatra, (B) Java, (C) Banda, and (D) 

Sangihe-Halmahera volcanic arcs (after Simandjuntak & Barber, 1996). The cross profiles are 

indicated in Fig. 1.1A. 

Apparent links exist between earthquakes, volcanoes, and plate tectonics as the major 

seismic and volcanic belts concentrated along the convergent boundaries between 

plates, for example around the Indo-Pacific rims including Indonesia and the Philippines 

(Fig. 1.1). A causal relationship between large earthquakes and volcanic eruptions might 

be expected given that an eruption can be induced by a change in dynamic or static 

stresses. Seismic waves associated with the dynamic stress are large in magnitude but 

not permanent, whereas static changes are smaller but permanent (Manga & Brodsky, 

2006). Dynamic stress can cause a reduction of co-seismic crustal seismic velocity as it is 

related to the mechanical weakening of the pressurized crust (Brenguier et al., 2014). 

The stress change is also the result of the presence of a magma reservoir and/or feeding 

system-containing gas, such that the effects of a given perturbation might be 
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complicated by complex processes, among them the rectified diffusion (Brodsky et al., 

1998; Walter et al., 2007; Walter & Amelung, 2007). Rectified diffusion is a mechanism 

by which a strain wave can rapidly pump volatiles into a bubble and therefore increase 

the pressure in a closed system (Brodsky et al., 1998). Triggered eruptions may occur 

shortly in time and/or with a delay of days, month, or year after an earthquake. 

However, many large earthquakes have no immediate effect on volcanoes. 

Approximately 0.4% of explosive volcanic eruptions occur within a few days of large, 

distant earthquakes (Manga & Brodsky, 2006). Eruption triggering depends on the 

initial state of the magmatic system prior to the earthquake, i.e., on magma composition, 

state of equilibrium of magma and volatiles, magma overpressure, and the strength of 

the host rocks, and on the type, size, and distance of the earthquake (Hill et al., 2002). 

Similarly, volcanic processes are able to promote earthquakes along neighboring faults 

by increasing the Coulomb stress or by increasing fluid pore pressure (e.g. Toda et al., 

2002; Feuillet et al., 2006; Albino et al., 2010; White & McCausland, in press). Continued 

scientific studies in understanding this phenomena are fundamental to providing 

reliable information on the nature of hazards that large earthquakes and volcanic 

eruptions pose to the many population centers at risk around the world. 

1.3. Remote sensing of volcanoes 

A major goal of volcanology is to understand the processes that underlie volcanic 

activity, and to use this understanding in volcanic risk reduction. Volcanic eruptions are 

spectacular events and studying these natural phenomena can be a challenging task 

because of the diversity of activity and remote locations. Volcanoes also have footprints 

that may extend across many hundreds or thousands of square kilometers, and 

sometimes their eruption products can be scattered or dispersed over regional or global 

scales. Consequently, since direct measurements can only provide us with part of the 

picture of many volcanic processes, remote sensing is now playing an increasingly 

important role in advancing understanding of the mechanism underlying volcanic 

behavior (e.g. Mouginis-Mark et al., 2000; Sparks et al., 2012; Pyle et al., 2013, Pinel et 

al., 2014).  Remote sensing also plays an important role when ground-based volcano 

monitoring and fieldwork are not possible due to meteorological or political conditions 

(Head et al., 2012). Remote sensing is the measurement or analysis of properties of the 
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Earth's surface from a distance.  Satellite, airborne and ground-based remote sensing are 

increasingly vital tools for monitoring active or potentially active volcanoes, and 

assessing their likely real-time or time-averaged impacts (Fig. 1.6). Advances in 

instruments and techniques mean that scientists can now measure many different 

aspects of the behavior of restless or active volcanoes, including seismicity, deformation, 

geomorphic change and emissions of heat and gas. Although measurement of seismicity 

requires sensitive instruments placed close to the volcano, remote sensing techniques 

have made major contributions to each of other measurement fields.  

Figure 1.6 illustrates remote-sensing approaches using instruments operating at 

different wavelengths from the ultraviolet to microwave (c. 3 x 10-7 to 0.3 m 

wavelengths) regions of the electromagnetic spectrum, which can be used to monitor 

volcanoes, volcanic processes and volcanic products throughout an eruption cycle from 

pre-eruption repose to post-eruption relaxation. New developments in remote-sensing 

techniques have expanded the capability of scientists worldwide to monitor volcanoes 

using satellite data. Mouginis-Mark and Domergue-Schmidt (2000) describes six ways 

satellites are used for monitoring volcanic eruptions: (1) Rapid detection of an eruption 

plume to mitigate risk for civil aviation (e.g. Schneider et al., 2000); (2) Monitoring 

thermal energy emitted from a volcano (e.g. Harris et al., 1997 & 2000); 3) Large area 

mapping of surface deformation of a volcano (e.g. Massonet & Sigmundsson, 2000); (4) 

Measurement of volcano topography and topographic change to estimate the volume of 

new material erupted or the magnitude of collapse (e.g. Zebker et al., 2000; Bignami et 

al., 2013; Pallister et al., 2013); (5) The determination of the spatial distribution of ash, 

gas and aerosols produced by eruptions (e.g. Krueger et al., 2000; Yu & Rose, 2000), and; 

(6) The development of a reference remote sensing data set for each volcano for 

quantifying future changes (Mouginis-Mark et al., 2000). Beside these six ways, remote 

sensing techniques also enable to delineate and identify fresh erupted material on and 

around active volcanoes as well as to trace topographic changes due to eruptive activity 

(Solikhin, et al., 2012, 2015a, 2015b) 
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Figure 1.6. An illustration of some of the applications of remote-sensing techniques to a volcano 

during a hypothetical eruption cycle (after Pyle et al., 2013). The example data of seismic 

spectral amplitude measurement (SSAM) stems from the recorded seismic energy released at 

Merapi over the October to December 2010 period including the 2010 eruption episode (26 

October-23 November 2010). “Geomorphic change” is included in “deformation” in this figure. 

Within the remote sensing community, two categories of satellites (geostationary and 

low Earth orbit) have evolved due to the diversity in science objectives and the size and 

precision in areas to be covered. Geostationary satellites are launched in such a way that 

they follow an orbit parallel to the Equator and travel in the same direction as the 

Earth's rotation with the same period of 24 hours. A satellite following a geostationary 

orbit always views the same area of the Earth. Satellites in the geostationary orbits are 

located at a high altitude of 36,000 km from the Earth's surface and commonly are 

meteorological satellites. Through their innovation, volcanologists have been able to 

derive and use meteorological satellite data beyond their original application including 

the surveillance of volcanic thermal phenomena and eruption plumes, and mapping 

areas covered by tephra fall deposits (Oppenheimer, 1998). Meteorological satellite data 

combined with other satellite data and numerical modeling (e.g. Carn et al., 2003; 

Tupper et al., 2004; 2009) are also very useful in monitoring and forecasting volcanic 

ash dispersion for aviation safety. Coordination and dissemination information on 

atmospheric volcanic ash clouds that my endanger aviation is the responsibility of the 
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Volcanic Ash Advisory Center (VAAC), which has nine Centers located  around the world, 

and each one focusing on a particular geographical region.  

A satellite on a low-Earth orbit (<1000 km altitude) is favored to obtain high spatial or 

spectral resolution data which increases the spatial resolution and signal-to-noise ratio 

of the data for the similar set of sensor optics and detectors. Earth observation satellites 

usually follow sun synchronous orbits. A sun synchronous orbit is a near polar orbit 

whose altitude is such that the satellite will always pass over a location at given latitude 

and at the same local solar time. In this way, the same solar illumination condition 

(except for seasonal variation) can be achieved for the images of a given location taken 

by the satellite. In addition to satellite remote sensing, airborne remote sensing data is 

also used by volcanologists. In airborne remote sensing, downward or sideward looking 

sensors are mounted on an aircraft to obtain images of the Earth's surface. An advantage 

of airborne remote sensing, compared to satellite remote sensing, is the capability of 

offering very high-spatial resolution images (50 cm or less) and low-atmosphere 

detection (e.g., of low-altitude gas emissions). The disadvantages are low coverage area 

and high cost to the end user in cost per unit area of ground coverage. Airborne remote 

sensing missions are often carried out as one-time operations, whereas Earth 

observation satellites offer the possibility of continuous monitoring of the Earth. 

Each volcano has a unique history of activity and individual eruptions can evolve over 

periods ranging from hours to more than a decade, so that many volcanic hazards must 

be studied via a range of techniques. The basic description of the topography of a 

volcano is one of the most important parts of volcanic hazard evaluation, because most 

volcanic hazards are controlled by gravity and topography where volcanoes are 

topographic irregular highs, which threaten their lower surroundings through 

gravitational potential energy. At all volcanoes, including those in repose, topographic 

data can be used for the formulation of models predicting which path a pyroclastic 

density current, debris avalanche or a lahar may follow. In addition, accurate 

topographic information as Digital Elevation Models (DEMs) are required for ortho-

rectification of remotely sensed images, such that quantitative measurement of change 

is possible. Ground ‘truth’ or field observations also play a vital role in developing 

remote sensing capability by allowing verification of models and remotely sensed 

observations and in ensuring that remote sensing works in the way envisioned. Field 
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measurement and observations also provide an opportunity to develop more diverse 

and more precise models by ensuring that direct experience with the volcano occurs, 

such as determining the past eruptive history and vulnerability of populations as a 

context for forcasts. 

 

Figure 1.7. List and operation times of Indonesian satellites and remote sensing satellites that 

can be acquired by LAPAN ground stations. 

CVGHM, in charge of monitoring, hazard assessment and warning for all volcanoes in 

Indonesia, also uses remote sensing in its duties, particularly in research, observation 

during the volcanic crisis and limited use in monitoring. In using remote sensing, 

CVGHM collaborates with other institutions both foreign and domestic, one of which is 

Indonesian National Institute of Aeronautics and Space (Lembaga Penerbangan dan 

Antariksa Nasional, LAPAN). In 1984, LAPAN initiated the use of Earth observation 

satellite in Indonesia by installing the ground station in Jakarta to acquire Landsat data. 

Indonesia has launched several satellites and some are still in operation (Fig. 1.7), most 

are communication satellites except TUBSAT that is also equipped with a video recorder. 

LAPAN also operates four ground stations (in Jakarta, Bogor, Pare-pare and Biak) to 

acquire data from remote sensing satellites (Fig. 1.7). LAPAN actively provides 

information based on remote sensing satellite data related to volcanic eruptions in 
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Indonesia. Besides LAPAN, the Centre for Remote Imaging, Sensing and Processing 

(CRISP) of the National University of Singapore (NUS) also operates a satellite ground 

station that covers western and central part of Indonesia. CRISP satellite ground station 

is capable to acquire data from SPOT 1, 2, 4, 5, ERS 1, 2, Radarsat 1, SeaWiFS, MODIS, 

IKONOS, GeoEye-1, Worldview I, II, and XSAT. The U.S. Geological Survey also provides 

satellite remote sensing data to CVGHM for use in monitoring and crisis response, 

including assistance with management of the International Charter for Space and Major 

Disasters.  

1.4. Identification of the research problems 

The interest of remote sensing has long been emphasized at active volcanoes where 

ground-based monitoring and fieldwork are hazardous and impossible due to natural 

conditions (persistent eruptive activity, dense vegetation, rugged relief, etc.). Until 

recently, volcanological research focused on monitoring active volcanoes or studying a 

posteriori volcanic events and their deposits. Repose periods between eruptions can be 

decades to thousands of years long, but not for Semeru and Merapi, two persistently 

active volcanoes in Indonesia, which are the objects of this research project. For volcanic 

hazard assessment on active volcanoes, there is an obvious need to map and 

characterize the range of past deposit types to infer the range of activity that the volcano 

may exhibit. Prior to geological mapping, the description of the edifice topographic map 

is also essential for volcanic hazard evaluation. The emergence and improvement of 

various kinds of satellites that produce high-spatial resolution images (e.g. GeoEye, 

WorldView, Pléiades and IKONOS) over the first decade of the twentieth century allow 

volcanologists to conduct more detailed remote sensing studies of active volcanoes. 

However, there is always the need to assess the accuracy of the quantitative data 

retrieved from satellite imagery. 

Merapi is the best-monitored and studied volcano in Indonesia. Short-lasting return 

period of Merapi eruptions (between 2 to 8 years) in this modern era (over the past 250 

years) have allowed scientists to examine and develop their methods and monitoring 

tools in order to improve the understanding of the volcano in a wide range of disciplines. 

Merapi has been long monitored (since 1924) by CVGHM through its observatory and 

technological center in Yogyakarta (Balai Penyelidikan dan Pengembangan Teknologi 

Introduction: Indonesian active volcanoes and remote sensing

15

��������������������������������������������������������������������



Kegunungapian, BPPTK). The surveillance network includes four short-period 

permanent seismometers and five temporary broadband seismometers, eight 

continuous geodetic global positioning system (GPS), five tiltmeters and electronic 

distance measurement (EDM) measuring defomation patterns from five observation 

posts (Fig. 1.4C). In the first decade of the twentieth century, the ground-based 

monitoring system together with remote sensing imagery has proven reliable in 

detecting precursory events of Merapi eruptions, which in turn enabled warnings to the 

communities living on and around the volcano.  

Compared to Merapi, Semeru is less understood and currently monitored by a less 

complete network of five seismic stations and one tiltmeter. Data from these stations are 

transmitted to the observatory post at Gunung Sawur on the SE flank (Fig. 1.4B). Semeru 

has been in almost continuous eruption since 1967, dominated by small- to moderate-

volume Vulcanian/phreatomagmatic explosions from the summit crater as well as dome 

growth and occasional stubby lava flows. This association alternates with episodic but 

large explosive eruptions that produce pyroclastic density currents that have reached 

>12 km on the lower flanks of the volcano (Thouret et al., 2007). Semeru has also been 

reported as one of the most effective lahar producers on Earth (Lavigne & Thouret, 

2002; Lavigne & Suwa, 2004; Thouret et al., 2007, 2014). 

As the persistently activity of a composite volcano results in rapid evolution of its 

summit and flanks, hazard assessment for risk prevention and human response must be 

prepared periodically and/or immediately after the eruption. Thus, remote sensing 

methods will play a significant role to map and quantitatively study the structure, 

morphology and texture of volcanic terrains at different scales, in order to gain insights 

into eruption processes and hence to improve hazard assessment. 

1.5. Objectives, thesis outline and methodologies 

In the framework of the international collaboration between the Center for Volcanology 

and Geological Hazard Mitigation (CVGHM) in Indonesia and the Laboratoire Magmas et 

Volcans (LMV), supported by the Institut de Recherche pour le Développement and the 

French-Indonesian Institute in France, a PhD research project started in October 2011. 

The thesis aims to improve the application of remote sensing techniques to study the 
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Semeru and Merapi volcanoes. The research project has three objectives: (1) to analyze 

the geological structure of the edifices and their regional tectonic setting; (2) to analyze 

the most recent, post-2001 eruptions of Semeru and Merapi as well as their products 

(especially pyroclastic density current (PDC) deposits) in order to assess the associated 

volcanic hazards, and (3) to examine the response of Merapi and Semeru eruptive 

activity to the regional tectonic events. Consequently, the thesis encompasses seven 

chapters as follows: 

Chapter 1 (this chapter): Introduction: "Indonesian active volcanoes and remote 

sensing". The objective of this chapter is to provide a general introduction on the 

relationship between tectonics and volcanism, between remote sensing and volcanology, 

and the tools and data availability in remote sensing used for this research project.   

Chapter 2: Semeru and Merapi volcanoes: "Regional setting, geological structures 

and historical eruptions". The second chapter provides updated information on 

Semeru and Merapi region concerning: (1) the geological structure and geophysical 

background; (2) the regional tectonic setting; and (3) the geological and hazard-zone 

maps of the volcanoes. Such information is used to analyze the instability of the volcanic 

edifice and the ascent of magma, processes that are partially controlled by tectonic 

structures. In this study, remote sensing techniques using high-spatial resolution optical 

images combined with digital elevation model (DEMs) are used to define the structural 

features of the edifices and their surrounding areas. 

Chapter 3: "Geomorphological evolution and post-2001 eruptive activity of Semeru 

volcano". The third chapter illustrates the application of remote sensing techniques 

using HSR optical (IKONOS, SPOT5 and aerial photograph) and thermal (ASTER) images 

to the recent evolution of Semeru. The objectives of this chapter are to define: (1) the 

structure and trace the evolution of the Semeru composite cone; (2) the extent of 

deposits that result from different style of emplacement and their impact during the 

period between 2001 and 2014; and (3) the characteristics of two selected catchments, 

Kobokan and Lengkong Rivers, on the southeast slopes of the volcano, which currently is 

the most threatened flank in terms of pyroclastic flows and lahars.  

Chapter 4: "The deposits and impacts of the large (VEI 4) 2010 Merapi eruption". 

The objective of the fourth chapter is to assess the extent and effects of the 2010 Merapi 
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PDCs, tephra fall and subsequent lahars based on remote sensing techniques using HSR 

imagery from GeoEye1, Pléiades, IKONOS, and SPOT5 satellites and aerial photographs. 

This chapter encompasses several studies of the 2010 Merapi eruption to determine: (1) 

a new estimate of volumes of tephra fall deposits using three empirical calculation 

methods (exponential, power-law and Weibull thinning); (2) the effect of the eruption 

and structural changes on the volcano summit; (3) the extent of pyroclastic deposits in 

the Gendol-Opak catchment; (4) the origin of post-eruption lahar deposits; and (5) 

behavior of the overbank PDCs and lahars based on the analysis of geomorphometric 

indices in the river channels. 

Chapter 5: "The 2010 Merapi pyroclastic deposits map based on satellite radar 

data". Radar remote sensing provides imagery that characterizes the physical 

properties of the terrain surface and its observations are independent of cloud cover, 

light rain, smoke haze and solar illumination. Thus, it has a large potential for eruptive-

deposit-mapping at volcano in the tropics such as Merapi. The objective of chapter 5 is 

to examine the utilization of direct- and cross-polarized L-band SAR data using the 

combination of amplitude evolution with temporal decorrelation information, to 

characterize the 2010 Merapi pyroclastic deposits. This study is performed using a set of 

L-Band ALOS-PALSAR images acquired before, during and after the 2010 eruption. The 

pyroclastic deposits are classified and mapped based on (1) surface change detection 

from coherence and amplitude ratio images, and (2) supervised classification based on 

Maximum Likelihood Classification (MLC) and Support Vector Machine (SVM) methods. 

Chapter 6: "Response of Merapi and Semeru eruptive activity to regional tectonic 

events: first results". The objective of this chapter is to examine the relationships 

between the pulses of eruptive activity and the seismotectonic context of the two 

volcanoes as expressed by the recent (post-2000) earthquakes. We use the earthquake 

catalogues from the US Geological Survey National Earthquake Information Center 

(NEIC) and Indonesian Badan Meteorologi, Klimatologi dan Geofisika (BMKG). We have 

approached the volcanic activity by estimating the heat and volume fluxes using volcanic 

hot spots from the Moderate Resolution Imaging Spectrometer (MODIS) data (Harris & 

Ripepe, 2007). In order to overcome the lack or absence of MODIS data due to cloud 

cover, as this was the case in October-November 2010, we have used the seismic data of 

volcanic events. 
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Chapter 7: "Concluding remarks". In this chapter, the overall conclusions of our studies 

have been summarized as follows: (1) contributions of remote sensing applied in this 

thesis to understanding two persistently active volcanoes, Semeru and Merapi; (2) the 

limitations and methods that still need to be improved and perspectives for future 

research projects; and (3) an updated hazard assessment for the Semeru and Merapi 

volcanoes.  

1.6. Remote sensing data  

This PhD project applies remote sensing techniques using high-spatial resolution (HSR) 

optical (GeoEye, WorldView, Pléiades, IKONOS, and SPOT5), radar (ALOS-PALSAR) and 

thermal (ASTER and MODIS hot spot) images combined with digital elevation models 

(DEMs) and aerial photographs. Satellite images were acquired through the financial 

support of several research projects including the STIC ASIA « Imager le Risk » research 

and exchange project (2009-2011) and CNES projects (2010-2014) for optical and 

ASTER images, as well as Japan (RESTEC) and Indonesia (LAPAN and Geological Agency) 

collaboration and JAXA project n°1188 for ALOS-PALSAR images. Some HSR optical 

images are also provided by CRISP, National University of Singapore in the framework of 

collaborative program between LMV and CRISP. This PhD project was also partially 

supported by DOMERAPI (ANR-12-BS06-0012). The main technical specifications of 

satellite optical imagery used for this PhD project are summarized in Table 1.1. The list 

of images used in this thesis is provided in Appendix A. 

1.6.1. Optical imagery 

The following descriptions of optical satellite sensors are extracted from publications by 

the satellite data providers that are summarized on the website of Satellite Imaging 

Corporation (http://www.satimagingcorp.com/satellite-sensors)

GeoEye-1 

The GeoEye-1 satellite sensor, launched on September 6, 2008, is able to provide an 

image resolution of 0.46 meter. GeoEye-1 flies in a sun-synchronous orbit with 98° 

inclination at an altitude of about 681 km and has an average revisit less than 3 days. 

During the summer of 2013, the orbit altitude of the GeoEye-1 Satellite sensor was 
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raised to 770 km. As of 29 January 2013, GeoEye was merged into the Digital Globe 

Corporation.  Digital Globe plans to launch GeoEye-2 that will be capable of discerning 

objects as small as 34 cm on the Earth's surface in the panchromatic mode. 

WorldView-2 

DigitalGlobe’s WorldView-2 satellite sensor, launched 8 October 2009, provides 0.46 m 

panchromatic mono and stereo satellite image data. The WorldView-2 sensor also 

provides eight multispectral bands: four standard colors (red, green, blue, and near-

infrared 1) and four new bands (coastal, yellow, red edge, and near-infrared 2), full-

color images for enhanced spectral analysis, mapping and monitoring applications, land-

use planning, disaster relief, exploration, defense and intelligence, and visualization and 

simulation environments. With its improved agility, WorldView-2 is able to collect very 

large areas of multispectral imagery in a single pass of nearly 1 million km2 every day. 

The combination of WorldView-2’s increased agility and high altitude (770 km) enables 

it to typically revisit any place on earth in 1.1 days, revisit time drops below one day and 

never exceeds two days, providing the most same-day passes of any commercial high 

resolution satellite. 

Pléiades 

The Pléiades constellation is operated by the French Centre National d'Etudes Spatiales 

(CNES), and is composed of two very high-spatial resolution optical Earth-imaging 

satellites traveling in a sun-synchronous orbit at 694 km of altitude. Pléiades 

1A (launched on 17 December 2011) and Pléiades 1B (launched on 2 December 2012) 

provide the coverage of the Earth’s surface with a repeat cycle of 26 days. The Pléiades 

have a maximum theoretical acquisition capacity of one million square kilometers per 

day and per satellite with a resolution of 0.5 meter in panchromatic mode and 2 meters 

in multispectral mode.  

IKONOS 

IKONOS is the world's first commercial satellite providing very high-spatial resolution (1 

m) imagery of the Earth. Space Imaging Inc. in Denver, Colorado, USA operates the 

IKONOS satellite, which simultaneously collects one-meter resolution black-and-white 

(panchromatic) images and four-meter resolution color (multispectral) images. The 
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IKONOS satellite was launched on 24 September 1999 and travels in a sun-synchronous 

orbit with 98.1° inclination at 681 km altitude. This satellite has 1.5 to 2.9 days of off-

nadir revisit frequency at 40° latitude.  

SPOT 

The SPOT satellites are operated by the French Space Agency, Centre National d'Etudes 

Spatiales (CNES). Since 1986, SPOT satellite have acquired images of the Earth from 

SPOT 1 ( 22 February 1986 to 31 December 1990), SPOT 2 (22 January 1990 to July 

2009), SPOT 3 (26 September 1993 to 14 November 1997), SPOT 4 (24 March 1998 to 

July 2013), SPOT 5 (since 4 May 2002), SPOT 6 (since 9 September 2012) and SPOT 7 

(since 30 June 2014). The SPOT 1 to 5 satellites orbit is sun-synchronous with an 

inclination of 98.7° at an altitude of 832 km, and has 1 to 3 days of off-nadir revisit time. 

SPOT 1, 2 and 3 are identical as they have a scene size of 3600 km2 with resolutions of 

10 meters for panchromatic band and 20 meters for multispectral bands. The SPOT 4 

satellite carries on-board a low-resolution wide-coverage instrument for monitoring the 

continental biosphere and crops. The SPOT 5 satellite offers a higher resolution of 2.5 to 

5 meters in panchromatic mode and 10 meters in multispectral mode. The SPOT 6 and 7 

are more precise with image resolutions of 1.5 meter in panchromatic mode and 6 

meters in multispectral mode. 

Table 1.1. Technical characteristics of satellite sensors and images (for visible to infrared 

wavelengths) used in this PhD research project.  

Satellite sensor; 
Provider 

Spectral range* 
Spatial resolution/  

swath width (at nadir) 

GeoEye1; 
DigitalGlobe 

Pan: 450-800 nm 0.46 m / 15.2 km 

B1 (blue): 450-510 nm 1.65 m 

B2 (green): 510-580 nm 1.65 m 

B3 (red): 655-690 nm 1.65 m 

B4 (NIR): 780-920 nm 1.65 m 

WorldView-2; 
DigitalGlobe 

Pan: 450-800 nm 0.46 m / 16.4 km 

B1 (coastal): 400-450 nm 1.85 m 

B2 (blue): 450-510 nm 1.85 m 

B3 (green): 510-580 nm 1.85 m 

B4 (yellow): 585-625 nm 1.85 m 

B5 (red): 630-690 nm 1.85 m 

B6 (red edge): 705-745 nm 1.85 m 

B7 (NIR1): 770-895 nm 1.85 m 

B8 (NIR2): 860-1040 nm 1.85 m 
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Table 1.1. (Continued)  

Satellite sensor; 
Provider 

Spectral range* Spatial resolution/  
swath width (at nadir) 

Pléiades; 
CNES 

Pan: 450-800 nm 0.5 m / 20 km 

B1 (blue): 450-510 nm 2 m 

B2 (green): 510-580 nm 2 m 

B3 (red): 655-690 nm 2 m 

B4 (NIR): 780-920 nm 2 m 

IKONOS; 
DigitalGlobe 

Pan: 450-800 nm 0.82 m / 11 km 

B1 (blue): 450-510 nm 3.28 m 

B2 (green): 510-580 nm 3.28 m 

B3 (red): 655-690 nm 3.28 m 

B4 (NIR): 780-920 nm 3.28 m 

SPOT 5; 
CNES 

Pan: 480-710 nm 2.5-5 m / 60 km 

B1 (green): 500-590 nm 10 m 

B2 (red): 610-680 nm 10 m 

B3 (NIR): 780-890 nm 10 m 

B4 (SWIR): 1580-1750 nm 20 m 

SPOT 1 & 2; 
CNES 

Pan: 500-730 nm 10 m / 60 km 

B1 (green): 500-590 nm 20 m 

B2 (red): 610-680 nm 20 m 

B3 (NIR): 780-890 nm 20 m 

ASTER TIR; 
NASA's EOS 

B10: 8125-8475 nm 90 m 

B11: 8475-8825 nm 90 m 

B12: 8925-9275 nm 90 m 

B13: 10250-10950 nm 90 m 

B14: 10950-11650 nm 90 m 

* B: Band; Pan: Panchromatic; NIR: Near Infrared; SWIR: Short Wave Infrared; TIR: Thermal 

Infrared 

1.6.2. Thermal imagery 

ASTER 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

sensor is part of the National Atmospheric and Space Administration (NASA) Earth 

Observing System (EOS) Terra satellite platform that was launched on 18 December 

1999. ASTER represents a high level of sophisticated imaging instrument science to 

provide global multispectral imaging data at relatively high-spatial resolution (15– 90 

m/pixel). ASTER has the unique ability to collect multispectral data in the thermal 

infrared (TIR) region of the spectrum, with five bands in the TIR region of the spectrum 

(Table 1.1). The TIR subsystem operates in five bands in the thermal infrared region 
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using a single, fixed-position, nadir-looking telescope with a resolution of 90 m. For our 

research project, we used ASTER TIR Surface Kinetic Temperature, which is an on-

demand product of ASTER and is generated from the five thermal infrared (TIR) bands 

(acquired during either day or nighttime), between 8 and 12 μm spectral range. It 

contains surface temperatures at 90 m spatial resolution for the land areas only. The 

above description is extracted from publications by the ASTER data provider 

(http://asterweb.jpl.nasa.gov). 

MODIS 

Moderate Resolution Imaging Spectroradiometer (MODIS) is one of four instruments 

carried on-board NASA's first Earth observing System (EOS) satellite 'Terra', which was 

launched in December 1999. Another MODIS sensor was launched on the second EOS 

satellite 'Aqua' in May 2002. Terra and Aqua MODIS orbit is sun-synchronous and 

viewing the entire Earth surface every 1 to 2 days. Terra orbit around the Earth is timed 

so that is passed from north to south across the Equator in the morning, while Aqua 

passes south to north over the Equator in the afternoon. The instrument captures data in 

36 spectral bands ranging in wavelength from 0.4 μm to 14.4 μm and at varying spatial 

resolutions (2 bands at 250 m, 5 bands at 500 m and 29 bands at 1 km). The description 

of MODIS is extracted from http://modis.gsfc.nasa.gov. 

For our research project, we used output from the MODIS volcanic hot spot detection 

algorithm (MODVOLC) as given on http://hotspot.higp.hawaii.edu (Wright et al., 2002). 

MODVOLC is a non-interactive algorithm that uses low spatial resolution (1 km pixel) 

satellite data acquired by MODIS sensor to detect and map global thermal anomalies. 

MODVOLC scans the MODIS data stream searching for evidence of sub-pixel hot spots. 

These data can be used to determine the presence, radiant intensity and heat flux of 

volcano-related hot spots (e.g., Wright & Flynn, 2004; Harris & Ripepe, 2007). 

1.6.3. Radar imagery 

ALOS-PALSAR 

The Phased Array L-Band Synthetic Aperture Radar (PALSAR), a remote sensing 

instrument, belongs to the Japanese Advanced Land Observing Satellite (ALOS), and has 

been developed by a joint project between the Japan Aerospace Exploration Agency 
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(JAXA) and the Japan Resources Observation System Organization (JAROS). ALOS-

PALSAR is an active microwave sensor using L-band frequency to achieve cloud-free and 

day-and-night land observation. ALOS, also called Daichi, was launched on 24 January 

2006 with the multiple purposes of mapping, regional observation, disaster monitoring, 

and resource surveying. Besides PALSAR, ALOS has two other remote sensing 

instruments: the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) 

for digital elevation mapping and the Advanced Visible and Near Infrared Radiometer 

type2 (AVNIR-2) for precise land coverage observation. The ALOS orbit is sun-

synchronous with an inclination of 98.16° at an altitude of 691.65 km, and has a 46 days 

repeat cycle. ALOS-PALSAR has three observation modes (fine, scanSAR and 

polarimetric) with main characteristics summarized in Table 1.2. The above description 

is extracted from publications by the ALOS-PALSAR data provider 

(http://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm). 

Data used in this study are ascending track 431 acquired with an incidence angle of 

34.3°. We utilized five dual polarization (dual-pol, Fine Beam Double Polarization 

termed FBD) data in horizontal transmit-horizontal receive (HH) and horizontal 

transmit-vertical receive (HV) polarization mode. These datasets were acquired before 

(on 13 September 2009, 16 June 2010 and 16 September 2010), during (on 1 November 

2010) and after (on 1 February 2011) the 2010 Merapi eruption. We also utilized one 

single polarization (Fine Beam Single Polarization termed FBS) data (HH) acquired after 

the eruption on 17 December 2010. 

Table 1.2. Main characteristics of ALOS PALSAR images. 

Mode Fine ScanSAR Polarimetric 

Center Frequency 1270 MHz (L-band) 

Chirp Bandwidth 
28MHz 

(FBS) 14MHz (FBD) 14MHz,28MHz 14MHz 

Polarization HH or VV HH+HV or VV+VH HH or VV HH+HV+VH+VV 

Incident angle 8 to 60° 8 to 60° 18 to 43° 8 to 30° 

Range Resolution 7 to 44 m 14 to 88 m 100 m (multi-look) 24 to 89 m 

Observation Swath 40 to 70 km 40 to 70 km 250 to 350 km 20 to 65 km 

Bit Length 5 bits 5 bits 5 bits 3 or 5bits 

Data rate 240 Mbps 240 Mbps 120 Mbps, 240Mbps 240 Mbps 
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1.6.4. Digital elevation models  

We utilized three types of digital elevation models (DEMs) as basic topographic data. 

The first DEM, called SRTM-DEM, was derived from the third Shuttle Radar Topography 

Mission (SRTM3, produced by NASA), computed at 3-arc-second (ca. 90 m) resolution. 

Accuracy of SRTM3 is mainly dependent on the altitude and the slope angles, for 

example in areas around Merapi the SRTM data satisfy a 90% confidence level for an 

elevation up to 1000 m (Gerstenecker et al., 2005). The second DEM termed TOPO-DEM 

with 15x15 m horizontal resolution and 1 m vertical resolution was produced by 

digitizing digital topographic maps that were printed at 1:25000 scale and have 12.5 m 

contour intervals. The topographic maps were published by the Indonesian agency for 

geospatial information (BIG) between 1998 and 2001. The third DEM called Airphoto-

DEM with 1x1 m horizontal and 1 m vertical resolution was generated by J.-F. Oehler 

(Altran Ouest Atlantide) from low altitude aerial photographs (taken from an ultralight 

aviation) using photogrammetric and stereo-matching techniques with an average 

accuracy of 0.2 m. The Airphoto-DEM is only available for the southern flank of Merapi 

volcano. We have also used a high resolution DEM of the south flank based on 

orthophotos taken from a drone by C. Aris (Faculty of Geodesy, UGM) in 2011. In 2014, 

we calculated a new and very high resolution (2 m pixel) by using stereo-

photogrammetry techniques (J.-F. Oehler, Altran Ouest Atlantide) applied to a stereo 

pair of Pléiades images acquired in 2012. 
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Chapter 2 – Semeru and Merapi volcanoes: Regional setting, 

geological structures and historical eruptions 

2.1. Introduction 

Semeru and Merapi are two persistently active volcanoes located in Java (Fig. 2.1), the 

most densely populated (1071 people/km2) island in Indonesia hosting 56% of the total 

population of the country (BPS, 2011). The detailed record of volcano past eruptions and 

the wide variety of studies at these two volcanoes (especially on Merapi) have started 

since the Dutch colony (1800's) and have continuously been developed by CVGHM over 

the past five decades in the effort of providing the scientific rationale for assessing likely 

future hazards, thus contributing to reduce volcanic risk. One of the critical studies 

towards this effort consists in recognizing the geological structures of volcanoes and 

their regional tectonic setting as well as delineating the past erupted deposits. "What are 

the relationships between the geological structures of the volcano and the regional 

tectonic setting?" is an important question to address as a basis to our study.  

 

Figure 2.1. Geography of Java island showing the location of Merapi and Semeru volcanoes. 

The objective of the second chapter is to provide updated information concerning the 

geophysical, geological and tectonic setting, the structure of the edifices as well as 

historical activity of Semeru and Merapi volcanoes. Such information may be useful to 

answer the above question especially related to instability of volcanic edifices and 

magma ascent, which are partially controlled by their tectonic features and to 
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implementation of methodologies for mapping and assessing volcanic hazards. In this 

chapter, we start our study by evaluating the geological, tectonic and geophysical 

backgrounds as well as the source of volcanism in Java Island based on literature and a 

synthesis of seismic data. Remote sensing techniques using high-spatial resolution 

optical images combined with digital elevation model (DEM) are applied to define the 

structural features of the edifices and their surrounding areas. The geological maps and 

volcanic hazard assessment of the volcanoes are also discussed to obtain a general 

context of eruptive activity of Semeru and Merapi volcanoes and to characterize how 

activity has evolved over time. 

In order to derive a structural map from remote sensing images, first we define the 

cumulative deformation associated with growth structures and tectonically-controlled 

topographic highs characterized by clear borders and linear, trapezoidal or irregular 

shapes at surface. A useful tool to recognize cumulative deformations consists of two 

DEMs images that highlight topographic variations. For this purpose we used SRTM- and 

TOPO- DEMs (see Chapter 1) that have a large coverage. We recognize the faults from 

optical satellite images and aerial photographs based on a series of criteria: 

juwtaposition of layers of different rock units, abrupt topographic discontinuities of 

landforms, depressions along the fault trace (sheared rock may be more easily eroded), 

scarps or cliffs, abrupt changes in vegetation patterns, and sudden shifts (at least 1 km 

long) of drainage reaches. Multiple drainage shifts along one river can be associated 

with faults. The drainage network map and the visible/optical images are used to 

distinguish and to classify inferred features as geological structures.  

2.2. Geological, seismotectonic and geophysical context of Java Island 

The island of Java is part of the Sunda Arc that outlines the subduction of the Indo-

Australian plate beneath the Eurasian plate, which extends from northwestern Sumatra 

to Flores (Fig. 1.1B in Chapter 1). The subduction is highly oblique along Sumatra, while 

it is almost perpendicular to the arc (N10°E) on the eastern part of the Sunda Arc (i.e. 

Java and small islands east of it).  The convergence rate of the Indo-Australian and 

Eurasian plates in general increases from Sumatra to the easternmost part of the Sunda 

arc (Minster & Jordan, 1978). Convergence rates across the Java trench between areas 

southwest of Java and west Java in a direction of N11°E and are about 6.7 cm/year 
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(DeMets et al., 1994; Tregoning et al., 1994). The age of the subducted plate varies 

laterally, ranging from 40 Ma beneath northern Sumatra to 110 Ma south of Java (Müller 

et al., 1997). Most of Indonesian volcanoes (about 77%) are part of the Sunda Arc, which 

represents a region with strong seismic and volcanic activity. Java itself is host to 34 

active volcanoes and 19 among them have erupted at least once since 1600.  

2.2.1. Geological context 

Java, with a backbone composed a subduction-produced volcano-plutonic arc (Fig. 2.2), 

is an example of the relationship of calc-alkaline magmatism to subduction. Subduction 

of the Indian Ocean beneath the Sunda Arc has been active since the Eocene (e.g., Van 

Bemmelen, 1970; Hamilton, 1979; Hall, 2002; Garwin et al., 2005). The western part of 

the Java Sea is a continuation of the Paleozoic to Early Mesozoic continental basement 

complexes of Sumatra and Borneo (Kalimantan). Most of Java Island appears to be 

underlaid by Late Cretaceous-Eocene age accretionary complexes and Paleogene 

volcanic arc. Outcrops of the oldest 'basement' are found in only three relatively small 

areas in central and southwest Java. It has been suggested from the composition of 

Quaternary volcanic rocks that parts of East Java may be underlain by oceanic crust 

(Verbeek & Fennema, 1896). The backbone of Java is a series of relatively young active 

volcanoes, most of them about 3000 m high and spaced about 80 km apart. An earlier 

volcanic arc in the Southern Mountains that runs the length of Java was active from the 

middle Eocene (ca. 45 Ma) to the early Miocene (ca. 20 Ma), and its activity included 

significant felsic volcanism (Hall & Smyth, 2008; Smyth et al., 2008). Subsequently arc 

volcanism resumed in the late Miocene (ca. 12–10 Ma) in the modern Sunda Arc, but in a 

position 50 km north of the older arc (Smyth et al., 2008). The more recent and active 

volcanoes of Java often overlie volcanic and/or intrusive rock units. Volcanic rock units 

are intercalated with Neogene sediments, and intrusive rocks cut these sediments. The 

non-volcanic products are represented by Lower-Middle Pleistocene sediments with 

only small amount of marine sediments. The volcanic deposits are mainly the results of 

Middle Pleistocene to Recent volcanic activities. The Quaternary sediments are exposed 

almost in all regions in Java, particularly in the middle and northern parts of the island 

(Fig 2.2). 
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Figure 2.2. The simplified geological map of Java provides the general distribution of geological 

units based on rock association and their age (Sukamto & Sukarna, 2001) as well as the 

distribution of basement and surface structures (Sribudiyani et al., 2003).   

Hall et al. (2007) delivered a new interpretation of Java's structure, in which Java has an 

apparently simple structure in which the east-west physiographic zones broadly 

correspond to structural zones. In the north is the margin of the Sunda Shelf and to the 

south of the shelf are Cenozoic volcanic arc rocks. The structural simplicity is 

complicated by structures inherited from Cretaceous subduction beneath Java, 

extension and subsidence related to development of subsequent volcanic arcs, late 

Cenozoic contraction, and by cross-arc extensional faults, which are active today. Java 

can be separated into three structural sectors of West, Central and East Java (Fig. 2.2; 

Sribudiyani et al., 2003; Hall et al., 2007). Central Java displays the deepest structural 

levels of thrusting and exposures of Cretaceous basement; in these areas the over-thrust 

volcanic arc has been largely removed by erosion. In West and East Java, the over-thrust 

volcanic arc rocks are still preserved. In West Java, the arc rocks are also thrust onto 

shelf sedimentary sequences that formed on the Sundaland continental margin. In East 

Java, the volcanic arc is thrust onto a thick volcanic/sedimentary sequence formed north 

of the arc in a flexural basin that is interpreted to have resulted mainly from volcanic arc 

loading (Hall et al., 2007; Smyth et al., 2008). 
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2.2.2. Seismotectonic pattern 

Several authors have conducted studies of seismotectonic pattern as a means to 

investigate the morphology and internal structure of the Wadati-Benioff zone (Hanuš et 

al., 1996), the active tectonic structure of lithospheric wedge (Špičák et al., 2002), and 

also the relationship of tectonism to volcanic activity (Hill et al., 2002). The Wadati-

Benioff zone is understood as a dipping planar zone of earthquakes that is produced by 

subduction of one oceanic crustal plate beneath another or the subduction of an oceanic 

plate beneath a continental plate. The Wadati-Benioff zone along the Java Island dips 

approximately 50° and extends to depths of about 600 km and a deep aseismic gap 

exists between 300 and 500 km depth. Seismic gaps are commonly identified in the 

Wadati-Beniof zone that is directly situated beneath active volcanoes. These gap likely 

represent a partially melted medium, which constitutes the main source storage areas of 

magmas that feed overlying active volcanoes (Hanuš & Vanĕk, 1988; Hanuš et al., 1996). 

Here, we study the seismotectonic pattern of Java, focusing on the investigation of the 

intermediate-depth aseismic gap within the Wadati-Benioff zones beneath Merapi and 

Semeru volcanoes to constrain the source region of magma generation beneath these 

volcanoes. We have used the earthquake hypocenter catalogue of Java region for the 

period 1964-2011 (Fig. 2.3A), which we retrieved from the International Seismological 

Centre (ISC On-line Bulletin; http://www.isc.ac.uk). We relocated earthquakes from the 

catalogue using the procedure of Engdahl et al. (1998). We also used the earthquake 

source parameters including hypocenters and centroid-moment tensor (CMT) solutions 

(Fig. 2.3B) provided by the Global CMT catalogue (www.globalcmt.org; Dziewonski et al., 

1981; Ekström et al., 2012).  

We used the narrow vertical cross-sections perpendicular to the Java trench (azimuth 

10°) to analyze regional seismic activity across Merapi and Semeru (Figs. 2.4) and to 

distinguish between events belonging to the Wadati-Benioff zone and those located in 

the overlying wedge. The problem of deep seismicity is beyond the scope of this study, 

thus we are not considering the earthquake located below 350 km depth. Figure 2.4 

shows the vertical sections of seismicity that confirm the presence of a region without 

strong (m > 4.0) intermediate-depth earthquakes in the Wadati-Beniof zone beneath 

Merapi and Semeru volcanoes.  The region that is aseismic with respect to strong 

earthquakes, is defined as a gap in the Wadati-Benioff zone (pink box in Figs. 2.4) and 
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interpreted as the location of the source region of primary magma at 150-190 km depth 

beneath Merapi volcano, and at 150-240 km depth beneath Semeru volcano.  

 

Figure 2.3. Map of (A) seismicity around Java Island based on earthquake hypocenter catalogue 

of International  Seismological Centre (ISC), and (B) centroid-moment tensor solutions collected 

from Global CMT catalogue from the period 1964-2011. Dashed rectangle boxes are the 

reference areas for vertical cross-sections across Merapi (M) and Semeru (S) volcanoes.  
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Figure 2.4. Vertical cross-sections perpendicular to the trench giving the depth distribution of 

earthquake foci in relation to the trench for Merapi (A) and Semeru (B) volcanic domains. The 

reference areas are outlined by dashed white boxes in Figure 2.3.  

More detailed distributions of hypocenter locations in the lithospheric wedge above the 

Wadati-Benioff based on local volcano monitoring networks reveal the presence of 

seismically active columns and fractures zones in the two regions of Merapi and Semeru 

(dashed blue boxes in Fig. 2.4). A CMT solution in the zone near Merapi indicates that 

one of the active faults in the zone has a strike-slip mechanism and a southwest-

northeast orientation. In the Semeru region, the most seismically active fractures are 

located north of the volcano, as indicated by several relative large (magnitude >4) 

shallow earthquakes in Fig. 2.4. The seismically active columns (blue dashed rectangle in 

Fig. 2.4) are distributed beneath and slightly north of Merapi and Semeru (and Bromo) 

volcanoes. The earthquake events in the column are mostly at a shallow depth (< 50 km) 

beneath Merapi and at deeper depths (up to 80 km) beneath Semeru and Bromo. The 

earthquake in these columns can be interpreted as events induced by magma transport 
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through the medium of the lithospheric wedge that has been subcritically pre-stressed 

by the process of plate convergence (Špičák et al., 2002).  

2.2.3. Deep and shallow structures beneath the edifice 

The geophysical background for the area around Merapi and Semeru volcanoes is 

summarized from several studies, including gravimetry (Untung & Sato, 1978) and 

seismic tomography (Koulakov et al., 2007; Widiyantoro et al., 2011, Luehr et al., 2013). 

A Bouger gravity anomaly map (Fig. 2.5A) of the eastern part of Java (Untung & Sato, 

1978) covers the areas of Merapi and Semeru volcanoes. A negative anomaly lies 

directly behind and north of the Southern Mountains and modern-day volcanic arcs. The 

negative anomaly is interpreted as an east-west oriented basin, at least 400 km long, 

called Kendeng Basin. At the west end of the Kendeng Basin a relatively abrupt change in 

the character of the anomaly is observed around the modern volcanoes of Merapi and 

the Dieng Plateau (Fig. 2.5A). The Southern Mountains Arc is marked by a strong 

positive Bouguer gravity anomaly of more than 1000 μms-2. The modern volcanic arc 

section is characterized by a positive Bouguer anomaly of gravity up to 800 μms-2. Based 

on regional scale gravity anomaly (Fig. 2.5A), Semeru region has stronger positive 

anomaly (~750 μms-2) than Merapi region (~250 μms-2), which could suggest that the 

crustacl section at Semeru is denser or older than at Merapi.  

Widiyantoro et al. (2011) applied a non-linear approach to seismic tomography in order 

to image detailed P- and S-wave speed velocity structures beneath the Sunda arc. The 

dip angle of the slab from the trench to the arc is at 10°-30° and then increase gradually 

at c. 60°-70° down to the transition zone. There is a discontinuity of the subducted slab 

in the mid upper mantle (between 250 and 450 km depth) below eastern Java, where 

Merapi and Semeru are located (Fig. 2.5B). This discontinuity or gap may be related to 

the subduction of a relatively buoyant oceanic plateau near this region at c. 8 Ma (Hall et 

al., 2009; Widiyantoro et al., 2011). Koulakov et al. (2007) and Luehr et al. (2013) 

provided a more detailed image of processes beneath the volcanic chain in central Java 

and present lines of evidence for a very strong low-velocity anomaly (Merapi Lawu 

Anomaly, MLA) in the crust just north of Sumbing, Merapi and Lawu volcanoes (Fig. 

2.5C). This anomaly is related to an area with high content of fluids and melts in the 

crust, which can play a role in feeding the active volcanoes in central Java. The migration 
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paths of fluids and partial melts from slab are also detected beneath the MLA as 

reflected by an inclined low-velocity zone. 

 

Fig 2.5. A. Bouguer gravity anomaly map of East Java (Untung & Sato, 1978) with topographic 

contours at 250 m intervals. B. Vertical section across the convergent margin and the Merapi 

and Semeru volcanoes through the P- and S-wave models plotted as velocity perturbations 

(Widiyantoro et al., 2011). C. S-wave velocity anomaly distribution beneath Merapi and the 

interpretation of the velocity structure (Koulakov et al., 2007). 
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2.3. Semeru volcano and the Tengger volcanic massif 

Semeru volcano (8°06′05″S, 112°55′E) at 3676 m, the highest mountain in Java, is the 

southernmost edifice of the Semeru–Tengger volcanic massif (Fig. 2.6). The massif area 

belongs to the Bromo-Tengger-Semeru (BTS) National Park, which is a favorite 

mountain trekking destination and the most visited tourist attraction in East Java, 

Indonesia.  

 

Figure 2.6. A. Sketch maps showing the location of the Semeru composite cone south of the 

Semeru–Tengger volcanic complex. B. The 11/08/2003 SPOT5 image, looking southwest and 

draped on a SRTM-DEM, shows the Semeru-Tengger massif.  

2.3.1. Volcanic features and geology of the massif and edifice 

The Semeru-Tengger volcanic massif with an area of about 900 km2 comprises a cluster 

of calderas and strato-cones aligned from north to south over 25 km, including: the 

Bromo-Tengger (7.942°S, 112.95°E), Jambangan (8.065°S, 112.92°E) and Ajek-Ajek 

(8.042°S, 112.92°E) calderas; the Mt. Kepolo (8.077°S, 112.92°E) lava cone; and the 

composite cone of Mt. Mahameru-Semeru (Figs. 2.6 and 2.7). The calderas formed and 

the edifices were constructed over a deeply eroded volcanic arc of Oligocene–Miocene 

age. The eruptive centers of the Semeru-Tengger massif lie on a roughly north-south-

trend that is slightly concave towards the east. The trend continues northward to Lake 

Grati (Fig. 2.6A), a maar at the foot of the Tengger massif (Van Bemmelen, 1949; 

Situmorang, 1989; Sutawidjaja et al., 1996; Carn, 1999). Van Bemmelen (1949) and 

Wahyudin (1991) contend that volcanic activity of Semeru-Jambangan-Tengger massif 

was initiated by the Jambangan, followed by the old Tengger and then Ajek-Ajek. Later, 
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the activity moved to the south crater rim of Jambangan caldera, then resumed at Mt. 

Kepolo and Mt. Mahameru, and ended with the youngest activity forming the Jonggring-

Seloko crater. The main geological features of the Semeru–Tengger massif are presented 

in Figure 2.7, based on the combined 2008 SPOT5 image and the shaded relief SRTM-

DEM at a regional scale. In this sub-section we divided the Semeru-Tengger massif into 

three parts: Bromo-Tengger complex (Fig. 2.7B), Jambangan-Ajek-ajek complex (Fig. 

2.7C) and Mahameru-Semeru volcano (Fig. 2.7D).  

The Bromo-Tengger complex 

The Tengger massif was considered as a stratovolcano whose north flank slid towards 

the Madura Strait inducing a “growing rift”. This rift is a 25 km of lateral amplitude vast 

structure corresponding to area of the slide, and a northwest slipped block, an 

anticlinorium affecting Pliocene-Pleistocene marine lands corresponding to the frontal 

area of the slide (Van Bemmelen, 1949). Mulyadi (1992) explains that the “growing rift” 

described by Van Bemmelen is a polygenetic structure corresponding to a curved 

alignment of eruptive centers that have occurred over time. These eruptive centers (in 

chronological order) are Nongkojajar located ~15 km west of the Tengger “Sand-Sea” 

caldera (Figs. 2.6B & 2.7A), Kundi-Baruklinting-Sapikerep, Ngadisari, Keciri and 

Tengger. Based on K/Ar-data, Mulyadi (1992) suggested the following chronology of 

major events: (1) formation of the Nongkojajar volcano at ca. 1.4 Ma; (2) the Ngadisari 

volcano at ca. 820 ka; (3) the Tengger volcano at ca. 265 ka; (4)  the Nongkojajar caldera 

at ca. 204 ka; (5) the Ngadisari caldera at ca. 152 ka; (6) the Cemorolawang strato-cone 

at ca. 144-100 ka; and (7) the Tengger caldera > 45 ka. The post-caldera volcanism, 

which started prior to about 1800 yr BP, is represented by six edifices arranged 

centripetally according to their age: the phreatomagmatic (andesitic) tuff rings of 

Widodaren, Kursi, Segarawedi Kidul, Segarawedi Lor, Bromo, and the Strombolian 

(basaltic) cone of Batok (Fig. 2.7B).    

The Bromo-Tengger complex consists of two main units, the pre-caldera and post-

caldera formations (van Gerven & Pichler, 1995), which was formed by at least two 

calderas, Ngadisari and Tengger (also named Sand-Sea caldera). Based on satellite 

imagery and geochemical data, Zaennudin (1990) suggests the existence of a third 

caldera (Argowulan/Cemorolawang; Fig. 2.7B) that probably formed at about 100 ka. 
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The pre-caldera formation exposed in the steep caldera walls shows a decrease in height 

above the caldera floor from 650 m in the northeast and southeast to about 400 m at the 

western flank of the pre-caldera volcano. The eastern wall of Tengger caldera 

(Cemorolawang) is the lowest part, with a height of only 100 m above the caldera floor. 

The post-caldera formation is dominated by a volcanic complex within the caldera, 

including the active crater of Bromo volcano. 

 

Figure 2.7. A. The 26/07/2008 SPOT5 image portrays the Semeru–Tengger volcanic massif, 

which comprises from north to south: B. the Bromo–Tengger complex with remarkable 

landforms: the Sapikerep outlet valley (I); the Ngadisari caldera (II); Mt. Keciri truncated by an 

amphitheater valley open to the SW (III); the Cemorolawang/Argowulan caldera (IV); and the 

Tengger ‘sand-sea’ caldera (IV) with a parasite cone, Mt. Ijo (1). The post-caldera volcanism has 

formed: the phreatomagmatic tuff rings of Widodaren (2), Kursi (3), Segarawedi Kidul (4), 

Segarawedi Lor (5), Bromo (6), and a cinder cone Mt. Batok (7). C. The Jambangan (VI) and Ajek-

Ajek (VII) calderas extend about 6 km in a northern direction. Several intra-caldera vents 

include the maar of Ranu Kumbolo (8). Mt. Kepolo strato-cone (9) is lined up with Tawonsongo, 

a youthful lava cone and flow (10). Ranu Pani (11) and Ranu Regulo (12) are maars in the 

northern part, and two small vents (13 and 14) are located on the east flank. D. The youngest 

volcano in Semeru–Tengger massif, Mahameru-Semeru volcano (15-16), including the currently 

active Jonggring-Seloko vent at the top of the principal SE-trending scar (17) in the edifice. 

Several flank vents are visible on the eastern flanks (18). 
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The Tengger caldera has a volume of about 28 km3 (Mulyadi, 1992) and a roughly 

circular shape except the northeast part where the straight wall of Cemorolawang is 

located (Fig. 2.7B). The caldera diameter is 10 km from east to west and 9 km from 

north to south. A sub-circular basin of Mt. Ijo (1.75 km in diameter) is located to the 

west of the caldera. The older Ngadisari caldera has been identified to the Northeast of 

Tengger caldera bounded by a NW-SE morphologic feature, which reflects an 

overlapping caldera structure. Ngadisari caldera continues to the east through the 2 km-

wide Sapikerep valley, which formed from the collapse of an edifice (Kundi-

Baruklinting-Sapikerep). This collapse occurred prior to the formation of Ngadisari 

caldera (Mulyadi, 1992). Mt. Keciri to the west of Tengger caldera is a large parasitic 

cone also truncated by a summit caldera 2 km in diameter, which forms an amphitheater 

valley open to the SW.  

 

Figure 2.8. Geological map of Bromo-Tengger complex published by CVGHM (Zaennudin et al., 

1995). The deposit units are divided into three groups, the activity of Sand-Sea caldera for post-

caldera formation, and the activity of Ngadisari caldera and the old Tengger for pre-caldera 

formation. 

The geological map of the Bromo-Tengger complex (Zaennudin et al., 1995; Fig. 2.8) 

divides the deposit units into three groups, namely those produced by activity of Sand-

Sea caldera, deposits from Ngadisari caldera and those from the old Tengger caldera and 

pre-caldera volcanic complex. The lithology of the old Tengger caldera walls consists of 

__________________________________________________________________________Semeru and Merapi volcanoes: Regional setting, geological structures and historical eruptions

39



 
 

alternating layers of lava flows, pyroclastic-flow, massive ash-fall, phreatic deposits, cut 

by some dykes. Three main lava types of the pre-caldera formation are basaltic, basaltic 

andesite and scarce scoriaceous basalt types (van Gerven & Pichler, 1995). The 

geological map (Fig. 2.8) shows only one partially welded ignimbrite named Sukapura 

and associated with the formation of Ngadisari caldera (Hadisantono, 1990; Zaennudin, 

1990). However, Mulyadi (1992) suggests two additional ignimbrites, which are 

associated with the formation of Tengger caldera, the Tosari and Ngadas ignimbrites. 

Both ignimbrites correspond to the Wonokitri tephra fall, Ngadas pyroclastic-flow and 

tephra fall deposits in the geological map proposed by Zaennudin et al. (1995).  

The Post-Sand-Sea caldera formation is dominated by the activity of six intra-caldera 

edifices; four are aligned in a south-north direction and apparently younger from south 

to north. These are respectively Widodaren, Segarawedi Kidul, Segarawedi Lor and 

Bromo. The other two, Kursi and Batok, lie outside the alignment. All these edifices, 

except Mt. Batok (a cinder cone), are tuff cones, essentially phreatomagmatic in origin 

with a small proportion of magmatic products of basic andesite to andesite composition. 

This tuff cones have characteristic low relief morphology with a perfectly horizontal 

crater. The largest crater and first to be generated at the caldera floor is the Widodaren 

crater with a diameter of about 1.5 km and a total ejecta volume of about 4.5 km3 (van 

Gerven, 1990). This was partly destroyed by the eruption of the Segarawedi Kidul, 

Segarawedi Lor craters and the development of Mt. Kursi. The black ash-fall deposits 

(dated at 1.81 to 1.62 ka; Zaennudin, 1990) were associated with phreatomagmatic 

deposits and with the formation of Widodaren Crater. These ash-fall deposits have a 

widespread extent outside the caldera (Fig. 2.8; Zaennudin et al., 1995). The two 

youngest eruption craters are Mt. Bromo and the Batok scoria cone, the latter likely 

being the youngest (van Gerven, 1990). This indicates that the eruption focus shifted 

back to the Bromo crater after the formation of Mt. Batok. A young lava flow is exposed 

on the caldera floor at the base between Bromo and Batok. Post-caldera formation is 

dominated by ash and lapilli-fall deposits (van Gerven and Pichler, 1995). The lava flows 

of the post-caldera formation are vesicle-rich, dark colored rocks containing large (up to 

0.5 cm) plagioclase phenocrysts.  

Since the first recorded activity of Bromo volcano in 1804, its eruptive activity was 

dominated by explosive eruptions from the central vent ejecting ash, sand, lapilli and 
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lava bombs, except the 1980 activity, which formed a lava plug at the bottom of the 

crater. During the last four decades, Bromo volcano has erupted nine times with rest 

periods between four months to eleven years. The latest eruption took place over an 

extended period (26 November 2010 – 13 June 2012) that was dominated by ash 

explosions that produced 300 to 3000 m-high columns and deposits of fine grained 

volcanic material. The 2010-2012 Bromo eruptions initiated as phreatic events, followed 

by phreatomagmatic eruptions and then by magmatic eruptions. These sequences and 

extended duration are attributed to a repeatedly supply of new basaltic andesite magma 

(Zaennudin et al., 2012).   

The Jambangan and Ajek-ajek complex 

South of Bromo-Tengger complex, the Jambangan-Ajek-ajek complex is clearly visible in 

the SPOT-5 images (Figs. 2.6B and 2.7A). The complex comprises of two calderas 

(Jambangan and Ajek-ajek), three maars (Ranu Kumbolo, Ranu Pani and Ranu Regolo) 

and a stratocone (Mt. Kepolo) (Fig. 2.7C). There is no currently active volcano in this 

complex. The nested Jambangan and Ajek-ajek calderas (VI and VII in Fig. 2.7C) extend 

about 6 km in a northern direction and are characterized by a caldera floor, caldera rims 

and older volcanic landforms (Fig. 2.7C). These calderas opened to the east are thought 

to have produced debris avalanches, which may or may not have been accompanied by 

an eruption (Carn, 1999). The southern and southeastern walls of the Jambangan 

caldera have been buried by the composite volcanoes of Mt. Mahameru and Mt. Kepolo 

(16 and 9 in Fig 2.7C). The caldera floor is covered by lava flows, pyroclastic-flow 

deposits and ash-fall deposits (Wahyudin, 1991). The Jambangan caldera rim is cut by 

the Ajek-ajek caldera, proving that the Jambangan caldera is older. Several intra-caldera 

vents were constructed including the crater lake of Ranu Kumbolo (8 in Fig 2.7C) with a 

diameter of 600 m and a deep crater that may indicate a third explosive eruption from 

the complex. The Holocene Mt. Kepolo strato-cone, located near the south rim of 

Jambangan caldera, is lined up with a youthful Tawonsongo lava cone and flow at the 

northern foot of Semeru summit. Two other maars, Ranu Pani and Ranu Legolo, are 

located in the north of Jambangan caldera. Several northwest-trending amphitheaters of 

flank erosion were formed to the west of Jambangan and Ajek-ajek calderas. 
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Figure 2.9. The geological map of the Semeru-Jambangan complex published by CVGHM 

(Sutawidjaja et al., 1996) including Jambangan, Old Tengger, Ajek-ajek, Kepolo, Mahameru and 

Semeru volcanic deposits. 

The geological map of Jambangan-Ajek-ajek complex, together with Mahameru-Semeru 

volcano (Sutawidjaja et al., 1996) is shown in Figure 2.9. Based on the lithologic 

characteristics, stratigraphic succession and eruptive source, the volcanic products of 

Semeru-Jambangan complex comprise Jambangan, Old Tengger, Ajek-ajek, Kepolo, 

Mahameru and Semeru volcanic deposits. In this map, the volcanic products are divided 

into primary deposits (pyroclastic flows, lava flows, scoria cone and pyroclastic fall) and 

secondary deposits (volcanic debris avalanches and lahars). According to Wahyudin 

(1991), the volcanic products in the Jambangan-Ajek-ajek complex are: (1) medium-K 

basalt, mafic  andesite, andesite, and dacite; (2) remnants of composit cones that consist 
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of basalt, basic andesite, acid andesite lavas and pyroclastic-flow deposits; (3) the Old 

Tengger volcanic deposits, which here consist of a series of tephra fall deposits; (4) Ajek-

ajek mafic andesite, andesite and dacite lavas; and (5) Kepolo mafic andesite lavas.  

Mahameru-Semeru volcano 

Semeru, the youngest volcano in the Semeru-Tengger massif, hosts the currently active 

Jongring Seloko vent, and has been built on, and is buttressed against the Mahameru (or 

old Semeru) to the west, and against the Jambangan caldera to the north. The Semeru 

summit cone has grown on the older edifice of Mahameru (Fig. 2.10). The Mahameru 

summit area shows three arcuate scarps, probably crater rims, suggesting that vents 

have migrated from northwest to southeast (Thouret et al., 2007). The Jonggring-Seloko 

crater with a hexagonal shape of the vent area, 500 m southeast from Mahameru 

summit, reportedly initiated in 1913 (Van Padang, 1951). The recent active vent sits at 

the top of the conspicuous SE-trending scar that cuts the steep-sided SE flank of the 

edifice. This elongated horseshoe-shaped scar, about 1.8 km long and 490 m at its widest 

point, channels rock-falls and pyroclastic flows during phases of heightened activity. 

Wahyudin (1991) and Sutawidjaja et al. (1996) outlined the lithological succession of 

the Semeru volcanic complex. Primary deposits of Semeru consist of lava flows and 

pyroclastic (fall and flow) deposits. Mount Semeru is composed of two cones, Mahameru 

(the old Semeru) and Semeru (young). The Mahameru volcanic deposits consist of 

basalt, basic andesite lavas, pyroclastic-flow and pyroclastic fall deposits, and lahar 

deposits. In the geological map (Fig. 2.8), deposit units of Semeru pyroclastic-flows 1-5, 

Semeru pyroclastic-fall 1, Semeru lahar 1, and Semeru lava flows 1 are the product of 

Mahameru (‘old’ Semeru) cone. Young Semeru products comprise all deposit units after 

Semeru lava flows 1. Semeru volcanic deposits are composed mainly of Strombolian-

Vulcanian fall deposits, pyroclastic-flow deposits, basalt, mafic andesite, andesite lava 

flows and secondary volcanic deposits such as lahars and debris avalanches. Non 

magmatic debris avalanches with more than 6 million m3 volume were emplaced on the 

east flank of Semeru in 1909 and 1981 (Siswowidjoyo et al., 1997). The rocks of young 

Semeru erupted from the central vent at the summit and at least five flank vents. The 

products generated from flank eruptions are the lava flows of Tawonsongo, Leker, 

__________________________________________________________________________Semeru and Merapi volcanoes: Regional setting, geological structures and historical eruptions

43



 
 

Wonorejo and Bantengan (1941 lava), and the Totogan Malang cinder cone deposit 

(Sutawidjaja et al., 1996).  

 

 

 

 

 

Figure 2.10. The 8 June 

2011 WorldView image of 

Semeru summit cone shows 

the Mahameru summit 

area, the Jonggring-Seloko 

vent and the SE-trending 

principal scar. 

 

Figure 2.11. Map of Semeru valleys and plains flooded by lahars (grey areas) during the 

twentieth century (Thouret et al., 2007).  
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Figure 2.12. Geological map of Semeru composite cone and ring plain map overlain on the 

TOPO-DEM (Solikhin, 2009).  
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Figure 2.12. (continued) Caption of the geological map of Semeru shows the stratigraphy of 

deposit units. 

Remote sensing methods using high-spatial resolution satellite imagery, aerial 

photographs and DEM analysis have been applied to map the geology of Semeru volcano. 

Thouret et al. (2007) have updated and simplified the geological map of Semeru 

composite cone and ring plain based on previous work (Situmorang, 1989; Wahyudin, 

1991; Simkin & Siebert, 1994; Sutawidjaja et al., 1996; Siswowidjoyo et al., 1997; Carn, 

1999), aerial photographs 1990-1991, and three SPOT 4 and 5 scenes. The map outlines 

the extent of the 29 December 2002 pyroclastic-flow and surge deposits in the Bang 

valley (see Fig. 1.4B in Chapter 1) and the scar of 1981 landslides on the east flank of 

Semeru. Thouret et al. (2007) provides a map of twentieth century lahar deposition in 

Semeru’s valley and plains (Fig. 2.11). Hyperconcentrated flows are more frequent in 

Semeru drainages than large debris flows, but the latter, including primary (hot) lahars, 

are not unusual during and after pyroclastic flows (Thouret et al., 2007).  
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Solikhin (2009) and Solikhin et al. (2012), following Thouret et al. (2007),  have updated 

the geological map of Semeru with additional data from interpretation of later satellite 

images, aerial photos, DEM analysis and fieldwork (Fig. 2.12). The DEM analysis and 

interpretation of satellite images help to better distinguish each group of deposits. 

Geology and landforms of Semeru volcano and ring plain have also been mapped semi-

automatically by Kassouk et al. (2014), who used the object-oriented classification 

(OOC) of high-spatial resolution (HSR) satellite imagery. This technique provides a map 

with more detail for geomorphic features. 

2.3.2. Regional tectonic setting of the Semeru-Tengger massif 

As previously noted, the eruption centers of the Semeru-Tengger complex occur along a 

N-S lineament that is slightly concave to the east. This N-S line probably represents a 

transverse fault or flexure. Wahyudin (1991) has defined at least four normal faults or 

structural trends in the Jambangan-Semeru complex, namely the Gunungsawur fault, 

Jambangan fault, Butak graben and Rejosari fault (Fig. 2.13). The NW-SE trending fault 

of Gunungsawur, aligned from Gunungsawur to Ranu Pani, suggests a reactivation after 

the emplacement of Jambangan lava in Ranu Pani. The NW-SE trending fault of 

Jambangan is located across Jambangan caldera, which was reactivated after formation 

of the Ajek-ajek caldera. The Butak graben is a fault collapse which crosses Mt. Ajek-ajek, 

and consists of two parallel E-W trending faults. The graben is younger than Jambangan 

lava, and it is marked by an escarpment in the lava. The NE-SW-trending Rejosari fault is 

located in the western part of Semeru volcano. It is identified by uplift, escarpment and 

crushed rock along fault line where it traverses basement (Tertiary) rocks of the 

Semeru-Tengger complex. 

The structural map of Semeru-Tengger volcanic massif (Fig. 2.13) is based on the 

interpretation of digital elevation models (DEMs) as well as of IKONOS and SPOT5 

satellite images combined with the drainage network map and the CVGHM geological 

map. This map updates the structural map of Semeru-Tengger massif in Solikhin et al. 

(2012) with a new interpretation of fault mechanism. The map in Figure 2.13 shows the 

relationship between the regional tectonic setting and the principal structures of the 

edifices. A rose diagram of faults or structural trends and a sketch portraying fault 

kinematics summarize the regional tectonic setting of the massif (Fig. 2.13). Widespread 
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and thick vegetation prevented many of these faults from being identified in the field. 

The linear features comprise long (more than 1 km), rectilinear topographic alignments 

and sharp, systematic changes in river directions.  

 

Figure 2.13. Structural map of the Semeru-Tengger volcanic massif, inferred from DEMs and 

satellite images. Rose diagram of lineaments showing the dominant NW-trending alignment and 

the sketch diagram depict the regional setting around Semeru consist four groups of faults, F1 to 

F4. The four faults defined by Wahyudin (1991) are also included in this map. 

The rose diagram of all identified linear topographic segments shows a dominant NW–

SE structure trend. Based on the rose diagram, we have identified four groups of faults 

F1 to F4: (F1) A 040°-trending group, including the Rejosari fault corresponds to normal 

faults observed on the S and the SW flank and ring plain of Semeru as well as in the ‘old’ 

(Oligocene–Miocene) volcaniclastic rocks (Fig. 2.13). (F2) A 160°-trending group 

matches the normal fault in the Tertiary volcanic deposit area SE and S of Semeru. The 
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Gunungsawur fault is part of this group. NNW–SSE trending features on the eastern part 

of Semeru and a NW–SE sinistral strike–slip fault delineate the northern limit of 

pyroclastic deposits from Semeru, as deduced from the texture of these deposits on the 

images. (F3) A 080° group contains the faults that guide the E and NNE alignments of the 

Tengger post-caldera vents and Butak graben. (F4) The last group of 105° to 140° faults 

with a prevailing trend of 120°, occur on the western side of the Semeru–Tengger 

volcanic massif including the Jembangan fault across Jembangan Caldera. Several 

amphitheaters caused by flank erosion and opened to the west are probably controlled 

by the NW–SE trending faults. This group of faults (F4) probably has two fault 

mechanisms, normal and sinistral strike-slip faults. This 120°-trending structure has 

also been mapped by Sribudiyani at al. (2003) as a basement structure in the south of 

Semeru. However, this group also offsets other groups of faults, which suggests that the 

NW–SE trending fault is probably the old fault structure that has been reactivated in the 

recent time. The structural map of the Semeru–Tengger volcanic massif shows that the 

southern area is dominated by the NNE–SSW compressional stress regime (�1) due to 

subduction process at the trench <50 km to the south. This produces the first and 

second groups of faults. The third group, located in the north sector, shares the same 

direction as the Madura basin and magmatic intrusions from older (Pleistocene) 

volcanoes such as Jambangan and Ajek-ajek.  

 

Figure 2.14. Kinematic analysis of faults at the Semeru zone (Fig. 2.3B). A. Fault planes and 

striae (n=90) showing that most of faults are vertical and follow to ESE direction. Contour 

diagram of shortening axes (B) and extension axes (C). The direction of stress axes based on 

Linked Bingham analysis are shown with the 005° principal striking axes.       

A kinematic analysis of fault data was performed using the “Faultkin” algorithm, which 

calculates P and T axes for each fault based on fault orientation, striae orientation and 

the sense of motion (Marret & Allmendinger, 1990; Allmendinger et al., 2012). As the 
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input we used the faults mechanism data from the Global CMT catalogue on the selected 

area (Semeru zone indicated in Fig. 2.3B). The diagram in Figure 2.14 helps distinguish 

three major stresses: �1 parallels the convergence trend, �2 favors opening and strike 

slip and �3 as vertical stress. The mean P and T axes approximate the infinitesimal 

shortening (�3) and extension (�1) directions, respectively, for a population of faults 

(Fig. 2.14). The principal stress axis is the N-S (005°) direction, which is related to the 

stress from the movement of Indo-Australian plate south of the Semeru Zone (Fig. 2.3B). 

The contour diagram shows the faults in the population trending along the E-W 

direction with a normal fault mechanism. 

2.3.3. Eruptive history and hazard assessment at Semeru volcano 

Semeru volcano is a very active and hazardous volcano in Indonesia. Since at least 1967, 

phreatomagmatic or Strombolian eruptions have occurred almost daily in the Jonggring-

Seloko crater. In addition, every 5 to 7 years on average, extrusion, growth and collapse 

of lava domes in Jonggring-Seloko crater feed PDCs that travel along the SE-trending 

scar and then down river valleys towards south and southeast flanks. The ring plain to a 

distance of 30 km from Semeru is home to more than one million inhabitants (Siebert et 

al., 2010). 

Eruptive history 

Data on Semeru activity have been assembled and summarized from a variety of sources 

by Wahyudin (1991) for 1818 to 1989 period, and Siebert et al., 2010 for 1818 to recent 

time. Thouret et al. (2007) provide more information of Semeru activity over the 1884-

2003 period, whereas Solikhin et al. (2012) summarized the 2002 to 2003 seismic and 

eruptive activity. Prehistoric eruptions of Semeru-Mahameru volcano took place at the 

summit (central) and five flank vents located along a lineament on the south-

southeastern and northern slopes of the Semeru cone. This Holocene activity has 

included Strombolian explosive eruptions, lava flows from the summit or from three 

flank vents and production of large lahars whose deposits extended about 34 km 

southeast from the volcano. Historical activity of Semeru volcano has been reported 

since 1818 and the present unrest period started in 1967.  
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Table 2.1. Semeru eruptive activity since March 2003 summarized from Siebert et al. (2010) 

and CVGHM reports. 

Reported date Valley, flank, direction 
and distance 

Event and 
deposits* 

Observed activity, 
magnitude and aftermath 

24 March - 11 
May 2003 

Vent area and scar; Bang 
and Kembar SSE, 1.5-3.75 

km 

Aval., Pf, Lh Explosive activity; dome 
growth and collapse 

24 January 2004 Vent area and scar; Bang 
SSE, 2.5 km 

Aval., Pf Explosive activity; dome 
growth and collapse 

7 October - 
December 2004 

Vent area and scar; Bang 
SSE, 1-3 km 

Aval., Pf Explosive activity; dome 
growth and collapse 

22 December 
2005 

Vent area and scar; Bang 
SSE, 1-2.5 km 

Aval., Pf Explosive activity; dome 
growth and collapse 

15 November 
2007  

Vent area and scar; Bang 
SSE, 1 km 

Aval., Pf Explosive activity;  

15-22 May 2008 Vent area and scar; Bang 
and Kembar SSE, 0.5-3 

km; Kobokan SE, 1-3 km 

Aval., Pf Explosive activity; dome 
growth and collapse 

25-28 February 
2010 

Vent area and scar; Bang 
and Kembar SSE, 1.7 km 

Aval., Lf Explosive activity; 1.5 km lava 
flow toward SE-trending scar 
and 50-200 m rock-falls from 
lava flow front. 

September - 
November 2010 

Vent area and scar; Bang 
SSE, 4 km 

Aval., Pf Explosive activity: 4.6 km high 
columns; 400-600 m 
incandescent avalanche; dome 
growth and collapse 

1-28 February 
2012 

Vent area and scar; 
Kembar SSE, 0.5 km; 
Kobokan SE, 3.2 km 

Aval., Lf, Pf Explosive activity; lava dome 
started to extrude in late 
2011; 400-600 m 
incandescent avalanche since 
January 2012; 2.5 km 
incandescent material on 2 
February 2012; two lava flows 
(1.9 km-long) avalanches and 
rock-falls from lava flow 
fronts. 

* Aval: Rock avalanches; Lf: Lava flow; Pf: pyroclastic flow; Lh: Lahar 

Semeru eruptive activity since 2003 to 2012 is summarized in Table 2.1. Since March 

2003 the activity with short-lived eruption columns dominated Semeru activity but at 

least 9 events of heightened activity produced larger explosions, lava flows, rock 

avalanches and pyroclastic flows associated with explosions or dome growth and 

collapse. The last episode of increased activity occurred in the beginning of 2012 and 

resulted in lava and pyroclastic flows (Wunderman, 2012). This activity began earlier 
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with the extrusion of a new lava dome in late 2011 directly over the 2010 dome. The 

2011 dome was drained by two subsequent lava flows towards the SE-trending scar, the 

longer of which extended about 1.9 km from the summit vent. Pyroclastic flows were 

generated by collapse of the steep termini of the lava flows, and their deposits extended 

to 3.2 km from the summit or 0.7 km from the lava front. In addition, the collapsing lava-

flow fronts resulted in high levels of avalanche and rockfall activity.  

Semeru volcanic hazards 

Based on the historical record of eruptive activity, hazard at and around Semeru may be 

induced by four possible forms of activity:  

1)� Strombolian to Vulcanian and phreatomagmatic explosions. Since 1967, when the 

persistent activity started, the short-lived eruption columns from phreatic (300-

1000 m-high above the crater), “cannon-like” (1-3 km-high Vulcanian columns) and 

small phreatomagmatic explosions that occurred several times a day, are the 

Semeru ‘background’ activity (Thouret et al., 2007). During the increased activity 

every 5 to 7 years, Vulcanian explosions with 3 to 7 km-high columns produce 

ballistic bombs and disperse ash fall. These explosive activities sometime coexist 

with incandescent rock avalanches from a dome plug, which are followed by small-

scale pyroclastic flows mostly towards the SE-trending scar. These explosions 

produced ejected deposits dispersed from Jonggring Seloko vent that consist of 

volcanic bombs, lapili and ash. Due to the high summit elevation, volcanic bombs can 

reach a distance as far as 8 km from the summit, whereas the dispersion of lapilli 

and ash depends on the explosion magnitude and the wind speed. 

2)� Lava dome extrusion, growth and collapse in the Jonggring-Seloko crater. These 

activities occur during the increased activity related to accelerated extrusion rates. 

Hazard during dome growth is confined to the summit area but increases to higher 

level during dome disruptions as a result of partial dome collapse accompanied by 

incandescent rock avalanches and pyroclastic flows. Block-and-ash flows induced by 

dome collapse sweep the SE-trending scar and are channeled as far as 5 to 12 km 

downstream Bang, Kembar and Kobokan valleys at about 5 years interval (e.g. 1972, 

1977, 1981, 1994, 1995, and 2002) (Thouret et al., 2007). The 3 February 1994 

pyroclastic flows with a volume of 6.8×106 m3 swept the Koboan and Lengkong 
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valleys as far as 11.5 km from the vent on the SE flank (Sadjiman et al., 1995). On 20 

July 1995, pyroclastic flows traveled 9.5 km downstream the Koboan valley (Dana et 

al., 1996). On 29 December 2002, fine-ash rich pyroclastic surges swept across the 

forest and agricultural land at the southwest edge of the Bang Valley at a distance 

between 5 and 8 km from the crater (Venzke, 2003). The 2002 block-and-ash flows, 

with a volume of 5.45 million m3, caused the evacuation of 500 people and damaged 

the forest and tilled land on the west side of the Bang Valley (Solikhin et al., 2012).  

3)� Extrusion of lava flow and formation a new parasitic vent. The eruptions of Semeru 

volcano throughout prehistoric times have been dominated by the summit extrusion 

of lava flows (Wahyudin, 1991) and have formed a lobate topography on the SW, SE, 

and east flanks of Semeru. Several parasitic cones are found on the Semeru flanks, 

and most modern flank eruptions are andesite in composition. Future parasitic 

eruptions can be controlled by lineaments or structural trends on the south-

southeastern sector of the volcano at a distance of less than 7 km from the central 

vent (Wahyudin, 1991). Lava flows at Semeru have been reported since 1832, then 

in 1895 and 1941-1942 along >1 km long fissures on the cone’s flank. For example, 

the 1941-1942 lava flow issued from a NW-SE fissure 1.3 km in length, which 

opened at the southeastern foot of the Semeru cone. Its volume amounted to 3 

million m3 in about one month. The latest lava flows in 2012 towards the SE-

trending scar extended about 1.9 km from the summit vent and was followed by 

pyroclastic flows generated by collapse of the lava-flow fronts. Although lava flows 

and parasitic eruptions are minor hazards due to relatively slow movement, 

renewed extrusion of lava flows from both summit and flank would be a higher 

threat because of the presence of villages in the probable flow path. Lava flow on 

higher and steeper slope also can collapse and produce rock avalanches and 

pyroclastic flows.  

4)� Lahars and debris flows. Semeru is known as one of the most effective lahar 

producers on Earth (Lavigne and Thouret, 2002; Thouret et al., 2007, 2014). 

Although lahar and debris flow from Semeru are secondary volcanic hazards, these 

are the most likely serious hazards. Lahars at Semeru caused more than 1000 

casualties during the 20th century, devastating more than 40 villages and 110 km2 of 

tilled land since 1884 (Thouret et al., 2007). Large-scale lahars exceeding 5 million 

m3 in volume have occurred at least five times since 1884. During the rainy season, 
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Semeru produces small to medium-scale lahars (≤0.1 million m3) every week, which 

are triggered by the remobilization of pyroclastic debris. Semeru’s lahars can travel 

runout distances 15 to 35 km as debris flows onto the ring plain below 600 m 

elevation. In the south, they end up in the coastal area after passing through several 

villages. Historical lahars occurred most frequently in the Sat and Kembar valleys 

(Fig. 2.11), where pyroclastic deposits from the summit were concentrated. Debris 

flows are even more deadly than pyroclastic flows at Semeru because they can occur 

in any year, even in the absence of an eruption. Large-volume debris flows took 

place in 1909 and 1981 sourced from the east and northeastern slopes of Semeru. 

Landslide-induced debris flows occurred in particular on the east flank drained by 

the Tengah and Tompe Rivers (Fig. 2.11).  

 

Figure 2.15. Hazard zonation map of Semeru showing three hazard zones (KRB I-III) as 

redefined after Bronto (1996). This map is used by CVGHM and local government as a guide for 

volcano disaster management. 

To assist in the planning of mitigation measures against the volcanic hazards, the 

CVGHM published a volcanic hazard map in 1986 (Surjo, 1986), revised in 1992 
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(Situmorang, 1992) and 1996 (Fig. 2.15; Bronto et al., 1996). The 1996 map has not 

been revised and is still used by CVGHM and local government. In this map, the 

hazardous areas have been divided in three hazard zones termed Kawasan Rawan 

Bencana (KRB), namely first, second and third hazard zones (KRB I, II and III).  

The first hazard zone (KRB I) is potentially affected by lahars, possible extension of 

pyroclastic and lava flows, and tephra fall. The lahar-prone zones are adjacent to the 

river channels as lahars can spill over channel banks. The area prone to heavy ballistics 

and tephra fall lies in the radius of 8 km from the Jonggring-Seloko crater. People living 

in the first hazard zone should increase their alertness during a large eruption and in 

case of heavy rainfall in the summit area. 

The second hazard zone (KRB II) is potentially affected by pyroclastic flows, lava flows, 

rockfall, rock avalanche, heavy tephra fall, ejected hot mud (from phreatic eruption), 

lahars and toxic gas. This hazard zone is located 5 km around the Jonggring-Seloko 

crater and extends as far as 20 km to several river valleys. Inhabitants in this zone must 

be alerted when there is an indication of increased activity and would be recommended 

to evacuate by CVGHM when there is an imminent threat of eruption.  

The third hazard zone (KRB II), also called forbidden zone, is the area most likely to be 

affected by pyroclastic flows, lava flows, incandescent rock avalanche and toxic gas. This 

zone lies within a radius of 5 km around the crater and along river channels as far as 12 

km from the summit. This zone is forbidden for permanent settlements or human 

activity, and will be totally closed in case of high level of activity.   

The Semeru hazard-zone map has been suggested to be revised by Siswowidjoyo et al. 

(1997) and Thouret et al. (2007). Siswowidjoyo et al. (1997) did not propose changes to 

the hazard zone related to volcanic activity, but stressed on the assessment of hazardous 

debris flows in the Tompe-Sat catchment. Some dikes were constructed after the 1909 

event to prevent any possibility of overflow into the Sat and Patuk Rivers which run to 

Lumajang city.  Additional training dikes, consolidation dams and check dams were also 

constructed since the 1980’s to 2000’s along the lahar and debris flow-prone 

catchments.  These dike and dam constructions can minimize and control the impact of 

debris flows or lahars. Thouret et al. (2007) suggested two additional hazard prone 

areas: an area to the east that would be affected by a debris avalanche in case of failure 

of the upper east flank of Semeru, and the Mujur River drainage network that is likely to 

be flooded by voluminous debris flows triggered by landslide, heavy rainfall and 
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possibly earthquakes. Related to the landslide hazard mitigation, CVGHM provided the 

landslide susceptibility zone map of Lumajang Regency (Fig. 2.16). This map consists of 

four level of susceptibility to landslide, namely very low, low, moderate and high 

landslide susceptibility zone. Noteworthy, the landslide susceptibility map also indicates 

potential areas for debris flows derived from the eastern slopes of Semeru volcano, 

Jembangan and Ajek-ajek calderas.   

 

Figure 2.16. Susceptibility to landslide zone map of Lumajang Regency, East Java Province, 

provided by CVGHM. 

2.4. Merapi volcano: geology, tectonic setting, eruptive history and hazards 

Mount Merapi or Gunung Merapi (literally “Mountain of Fire” in Indonesian/ Javanese), 

is a very active stratovolcano located on the border between Central Java and 

Yogyakarta Provinces, approximately 28 km north of the large Yogyakarta city (Fig. 

2.17). It erupts every 2 to 6 years on average (in the last 100 years; see Voight et al., 

2000 for a detailed summary) and is feared for its deadly block-and-ash flows (BAFs) - 

avalanches of hot rocks and gas that are generated when parts of lava domes 

constructed during recent eruptions in the summit crater collapse and slide down the 
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mountain's steep flanks. Like most of andesitic composite volcanoes, the history of 

Merapi has been marked by alternating episodes of effusive and explosive activity. 

Beyond the threat of disaster that can occur at any time, iconic Merapi has social and 

economic aspects which are important for more than 4 million people in the 

surrounding region. Mining erupted material support the structural development in 

Yogyakarta and Central Java Provinces, as well as the agricultural products from the 

slopes of Merapi and the development of tourism that support the growth of the local 

economy.  

2.4.1. Volcanic features and geology of Merapi volcano 

Merapi volcano is part of the volcanic front of the Sunda Arc (Fig. 1.1B in Chapter 1) and 

belongs to a cross-island range of four composite volcanoes comprising, from north to 

south, Ungaran, Telemoyo, Merbabu and Merapi, which is a regional alignment with 

165° direction (Hamilton, 1979; Fig. 2.17). These volcanoes are young from north to 

south and Merapi is the most active among them. The main structures of Merapi as 

shown in Figure 2.18 consist of several features (Camus et al., 2000) and several hills 

around Merapi summit cone (Mt. Bibi, Mt. Turgo, and Mt. Plawangan). 

 

Figure 2.17. A. Location of Merapi volcano 28 km north of the Yogyakarta City. B. ASTER image 

of the Merapi and surrounding area acquired on 13 June 2012, looking northeast and draped on 

a SRTM-DEM. Several rivers that source at Merapi are outlined. 
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Figure 2.18. Main structural features of Merapi volcano (after Camus et al., 2000) outlined on 

the 13 June 2012 ASTER image.  

Detailed stratigraphic and geochronological studies have defined the history and 

evolution of the Merapi composite cone (Bahar, 1984; del Marmol, 1989; Berthommier, 

1990; Andreastuti, 1999; Andreastuti et al., 2000; Camus et al., 2000; Newhall et al., 

2000; Gertisser et al., 2012). These studies have shown that Merapi is a very young 

volcanic complex, but age information on the older Merapi units has remained scarce 

and many aspects of the overall volcanological and structural evolution of Merapi 

continue to be controversial (Camus et al. 2000; Newhall et al. 2000). Several authors 

have published different hypotheses and age information particularly for the older 

Merapi units. Berthommier (1990) and Camus et al. (2000) suggested that the growth of 

Merapi has included four stages, termed ‘Ancient Merapi’ (40,000–14,000 yr BP), 

‘Middle Merapi’ (14,000–2200 yr BP), ‘Recent Merapi’ (2200 yr BP–1786 AD), and 

‘Modern Merapi’ (after 1786 AD). In a more simple way, Newhall et al. (2000) 

distinguished three evolutionary stages, namely ‘Proto Merapi’ (older than 9630 yr BP), 

‘Old Merapi’ (9630 yr BP – 50 AD) and ‘New Merapi’ (after 50 AD). More recently, 

Gertisser et al. (2012) suggested that the construction of the basaltic andesite composite 
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cone of Merapi began after 170 ka and retained the three Merapi stages of Newhall et al. 

(2000), but with different ages: 170 – 30 ka for ‘Proto Merapi’, 30 – 4.8 ka for ‘Old 

Merapi’ and less than 4.8 ka for ‘New Merapi’.   

In addition to differences in Merapi’s stage numbers and chronology, discrepancies in 

interpretations stem from the significance attributed by authors to geologic archives 

from Merapi growth, flank failure(s), and blast deposits. Newhall et al. (2000) suggested 

that Gunung Turgo and Plawangan, two basaltic hills in the southern sector of the 

volcano, represent the erosional remnants of a Proto Merapi cone and interpret G. Bibi 

to be a vent that erupted through the upper flank of Old Merapi. Berthommier (1990) 

and Camus et al. (2000) considered Gunung Turgo and Plawangan to be a basaltic flank 

vent of ‘Ancient Merapi’ with an age of 40±18 ka whereas the 67 ka-old Gunung Bibi was 

interpreted as an old, pre-Merapi edifice. In contrast, Gertisser et al. (2012) suggested 

that Gunung Turgo and Plawangan (138 and 135±3 ka) including Gunung Bibi (109±60 

ka) are the two earliest, Proto-Merapi volcanic edifices.  

Although all authors recognize the occurrence of at least one flank failure at Merapi, 

their interpretation of deposits, chronology and significance widely differ. Berthommier 

(1990) and Camus et al. (2000) claim that a debris-avalanche deposit to the west reflects 

a flank failure linked to an eruption between 6700 and 2200 yr BP. Newhall et al. (2000) 

suggest that Old Merapi collapsed once or several times producing debris avalanche(s) 

and leaving a somma rim high on Merapi’s eastern slope between 1600 and 1100 yr BP. 

Gertisser et al. (2012) consider the possibility of several flank failures, the latest of 

which occurred after 4.8±1.5 ka and marked the end of the ‘Old Merapi’ stage. The extent 

of pyroclastic flows, surges and blasts also became the subject of debates. A series of 

deposits record the ‘recent Merapi’ growth, such as ash- and scoria-flow deposits and 

thick Plinian and/or phreato-Plinian tephra fall deposits that mantle an area in excess of 

800 km2, especially to the south. Additional pyroclastic-surge deposits are possibly 

related to phreatomagmatic eruptions that produced the Gumuk ashfall deposit (2200–

1470 yr BP) and Sambisari ashfall deposit (600–470 yr BP) as far as 30 km from the 

Merapi summit (Berthommier, 1990; Camus et al., 2000). These authors argue that 

Sambisari ash and lahar deposits 8 m thick, which extend about 30 km on the 

Yogyakarta plain, buried the Sambisari temple at 20 km distance from the source (Fig. 

2.19A) at the start of the 15th century. Newhall et al. (2000) assume that large explosive 
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eruptions followed shortly the Old Merapi collapse, based on the occurrence of 

pyroclastic flows to the south and west on the Yogyakarta plain and in the Kaliurang 

vicinity. Newhall et al. (2000) suspect, without direct evidence, that large explosive 

eruptions followed the c. 928 AD cultural change in Central Java and may have led to the 

decentralization of the Mataram civilization (Djumarma et al., 1986; Boechair, 1976). 

The geological map of Merapi volcano and its ring plain (Fig. 2.19A) is adapted from 

previous studies (Thaden et al., 1975; Wirakusumah et al., 1989; Rahardjo et al., 1995; 

Gertisser et al., 2012) and combined with interpretation from DEMs and satellite 

imagery. This map depicts the lithological units and tectonic structures of the Merapi 

region. The basement of this area is composed of metamorphic rocks and igneous rocks 

that formed between the Late Cretaceous and Early Paleogene (Sribudiyani et al., 2003). 

In the south-eastern part, Gunung Kidul (Fig. 3A), steep mountains of volcanic rocks and 

limestone with karst landforms, are exposed. Volcanism in the Gunung Kidul area took 

place between the middle Eocene (c.45 Ma) and the early Miocene (c.20 Ma), and its 

activity included significant felsic volcanism (Smyth et al, 2008). 

The Tertiary volcanic arc in the Merapi region has been characterized by extensive 

explosive activity, and its deposits including ash, tuff, breccias, and lava flow range from 

andesite to rhyolite in composition. Our geological map of Merapi (Fig. 2.19A) is 

adapting and simplifying the geological map in Gertisser et al. (2012), which presented 

an adapted version of the geological map of Merapi (Wirakusumah et al., 1989), and 

considering stratigraphic data from Bahar (1984), del Marmol (1989), Berthommier 

(1990), Andreastuti et al. (2000), Camus et al. (2000), and Newhall et al. (2000). 

Deposits of Merapi simply divided in three units: Proto- (Late Pleistocene to 30 ka), Old 

(30 to 1.7 ka) and Young Merapi deposits (<1.7 ka). The Proto-Merapi deposits 

comprised of lava flows from Mt. Bibi, Mt. Turgo and Mt. Plawangan (Fig. 2.18). Mt. Bibi 

(109±60 ka) is a small basaltic andesite volcanic structure on Merapi’s north-east flank. 

Mt. Turgo and Mt. Plawangan (138±3 ka; 135±3 ka), two basaltic hills in the southern 

sector of the volcano, predate the Merapi cone sensu stricto. The Old Merapi deposits 

encompass the lava flows from Somma-Merapi and tephra, pyroclastic-flow and lahar 

deposits. The Young deposits include post-Somma-Merapi lava flows, recent (younger 

than 1.7 ka) tephra and PDC deposits, lahar deposits, and lava domes.  
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Figure 2.19. A. Geological and tectonic map of Merapi and surroundings including (B) a N-S 

cross section (X-Y),  inferred from SRTM3, TOPO-DEM and optical satellites images; C. Rose 

diagram showing five groups of faults with N60, N90, N115, N140, and N175 orientations (n: 

population; Max: Maximum percentage; Min: Minimum percentage; R-Mag: Resultant of the 

vector mean; C.I.: Confidence Interval); D. The sketch diagram depicts the regional tectonic 

setting around Merapi. 
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2.4.2. Regional tectonic setting of Merapi volcano 

We have mapped tectonic lineaments and inferred faults from the DEM analysis and 

based on anomalies in drainage networks from HSR satellite images (e.g. Fig. 2.18). A 

rose diagram of inferred faults (Fig. 2.19C-D) shows five groups with trends that cluster 

at 060°, 090°, 115°, 140°, and 175°. We suggest that the NE-SW trending faults are the 

oldest because they parallel basement structures (Fig. 2.2). They have been recently 

reactivated as inverse and sinistral strike-slip faults. The NW-SE-trending basement 

structures also appear to control the orientation of 115° dextral strike-slip and 140° 

trending reverse faults at the surface. Both structural orientations in the basement may 

be associated with the compressional stress regime that produced subduction at the 

Java trench (Sribudiyani et al., 2003). The 175° and the 090° trending faults appear to be 

normal faults. The 175° trending fault appear to have formed from crustal extension, 

and may act as the weak zone in which the Unggaran-Merapi volcanic range has been 

formed. The 090° trending normal faults are located mainly in the central part of the 

present volcanic arc and are interpreted as the products of N-S-directed crustal 

extension. Such extension is indicated by the presence of a deep flexural basin in Central 

Java, generated (at least in part) by the load imposed by the volcanoes in west and east 

Java (Hall et al., 2007). 

 

Figure 2.20. Kinematic analysis of fault data from Merapi zone. A. Fault planes and striae (n=90) 

showing that most of faults are vertical and strike to ESE direction. Contour diagram of 

shortening axes (B) and extension axes (C). The directions of stress axis based on Linked 

Bingham analysis are shown in figure with the principal axes following 040° direction. 

A kinematic analysis was also performed to the fault data in Merapi zone (Fig. 2.3B). The 

mean P and T axes approximate the infinitesimal shortening (�3) and extension (�1) 

directions, respectively, for a population of faults (Fig. 2.20). The diagram in Figure 2.20 
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helps distinguish the three major stresses: �1 parallels 040°-060° strike-slip faults, �2 

explains ESE-WNW thrust faults perpendicular to convergence trend, and �3 as vertical 

stress. The principal stress axis is the NE-SW (040°) direction. The contour diagram 

shows that the faults in the population are not homogenous in orientation, but many 

faults point to a prevailing ESE-WNW direction with thrust fault mechanism. 

2.4.3. Eruptive history and hazard assessment of Merapi volcano 

Eruptive history 

Tephrostratigraphic evidence (Andreastuti et al., 2000; Voight et al., 2000; Newhall et 

al., 2000) suggest that eruptions of Merapi during the 19th century were larger than 

those of the 20th century. Four large-magnitude eruptions (VEI ≥ 3) occurred during the 

19th century, as in 1672, 1822, 1849 and 1872. The 1872 event was the largest (VEI 4), 

which created a large crater and produced pyroclastic flows from column-collapse that 

travelled over 20 km from the summit of Merapi and dispersed tephra fall tens of km 

towards northeast. During the 20th century, there are only two VEI 3 eruptions that 

occurred in 1930-1931 and 1961. The 1930 VEI 3 event generated a pyroclastic flow 

over a distance of 12 km that caused 1369 casualties and displaced more than 13,000 

people. Another VEI 3 in 1961 also generated a 12 km pyroclastic flow that caused six 

casualties and resulted in the evacuation of about 6000 people. During the 20th century, 

Merapi eruptions are known for frequent, small to moderate eruptions and scores of 

mostly small pyroclastic flows produced by lava dome collapse. In the 21st century, 

Merapi volcano produced its largest and most explosive eruptions in more than a 

century in 2010. This eruption abruptly changed the usual behavior of Merapi over past 

seven decades. 

Since the beginning of the 20th century, Merapi volcano has been intensively studied 

and monitored, and its eruptive history after the 20th century was recorded in detail. 

More than 74 eruptions have been recorded at Merapi since 1548 and at least seventeen 

of them have caused fatalities. Based on the historical eruption record of Siebert et al., 

(2010), the average time interval between two eruptions is 2-6 years. Most events fall in 

the VEI 2 range, at least once per decade since 1861 (Fig. 2.21). Dome collapse events 

(VEI<3) that commonly produce 1 to 10 million m3 of deposits (Voight et al., 2000) and 

have prevailed among the past 80 year-long eruption record. Figure 2.22 shows the map 
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of observed pyroclastic flows of Merapi since 1911 together with the distance and 

direction from the summit. The figure shows a predominance of flows towards the 

western half of Merapi flank (NNW to SSE flanks). It is also clear that PDCs generated by 

the 2010 event were considerably larger than all other flows.   

 

Figure 2.21. Historical eruptions of Merapi since 1548 shown as frequency histograms of 

Volcanic Explosivity Index (VEI) divided by 10-year time intervals. Note that before AD 1700, 

the number of large eruptions is undoubtedly biased with respect to unreported small eruptions. 

 

Figure 2.22. Map of observed pyroclastic flows of Merapi volcano since 1911 (after CVGHM) 

and diagram of distance and directions of flows from the summit (after Wilson et al., 2007). 

Merapi eruptions in 1994, 1997, 2001, and 2006 were associated with small- to modest-

sized dome growth and collapse. In 1994, BAFs driven by dome collapse travelled 6.5 

km to the SSW flank (Fig. 2.22) producing about 2.5-3 million m3 of complex deposits 
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due to the accumulation of dozens of ‘nuées ardentes’ (Abdurachman et al., 2000). The 

1994 Merapi eruption was responsible for 95 casualties in the vicinity of the Boyong 

valley, at the edges of Kaliurang and Turgo villages (Shelley & Voight, 1995). Prior 1994, 

the pyroclastic flow and rockfalls had been exclusively travelled down to the southwest, 

but afterwards, some rockfalls had shifted toward the Boyong River (southern flank) as 

in 1996, 1997, and 1998. In contrast to the 1994 eruption, the 1997 pyroclastic flow was 

generated by fountain collapse and the 1998 events also suggest an explosive 

component influenced by gas-pressurization of the lava dome (Voight et al., 2000). The 

2001 eruption produced pyroclastic flows generated from a collapse of the 1998 lava 

dome and they extended 7 km in the direction of the Sat River (West flank).  

 

Figure 2.23. Graph of number of 2006 PDCs in the Boyong river drainage in the southwest flank 

and Gendol river drainage in the south flank accompanied by three SPOT5 images showing the 

shift in PDC direction from the southwest flank to the south flank.  

Although small in magnitude (VEI 2), the 2006 eruption (Fig. 2.23) contributed to the 

instability of the southern flank of Merapi, which was then affected by the larger event in 

2010. The two month-long 2006 Merapi crisis consisted of a series of block-and-ash 

flows and associated surges, generated by dome collapses, which produced a total of 

13.3 million m3 of deposits (Charbonnier and Gertisser, 2008; Lube et al., 2011). The 

__________________________________________________________________________Semeru and Merapi volcanoes: Regional setting, geological structures and historical eruptions

65



 
 

“Gegerboyo” rim wall, which formed during the 1911 eruption (Wunderman, 2007) and 

protected the south flank of Merapi for the past 100 years, failed as a result of the 27 

May 2006 Bantul earthquake (Charbonnier & Gertisser, 2008), henceforth exposing 

these areas to PDCs (Fig. 2.23). However, Ratdomopurbo et al. (2013) stated that the 

“Gegerboyo” rim was progressively eroded by repeated pyroclastic flows and block and 

ash flows, preceding and after the Bantul earthquake.  The shift from SW to SE 

overlapped the time of the earthquake on 27 May, but collapse of the rim did not take 

place until 4 June when the main passage to the Gendol was created. 

Larger in magnitude (VEI 4) and more explosive (large Vulcanian to sub-Plinian), the 

2010 eruption of Merapi differs from previous eruptions in 1994, 1997, 2001, and 2006. 

The 2010 eruption was the Merapi’s largest event (VEI 4) since 1872.  Results of detailed 

studies of this eruption have been discussed in the special issue of the Journal of 

Volcanology and Geothermal Research (JVGR 261: Jousset et al., 2013) and in other 

publications such as Solikhin et al. (2015a & 2015b) or in chapters 4 and 5 of this thesis. 

The 26 October-23 November 2010 crisis encompassed several episodes of PDC 

emplacement with deposits that covered an area about 26 km2 and a bulk volume of 

about 45 million m3 in the Gendol-Opak catchment on the south flank. The most 

voluminous PDC was deposited in the Gendol valley during the peak stage of the 

eruption on 4-5 November 2010. The tephra fall deposit covered an area of about 1300 

km2 with a volume of 18-21 million m3 (Solikhin et al., 2015b). About 2300 houses were 

destroyed and severely damaged, 376 people lost their lives and hundreds of thousands 

of people were displaced due to the 2010 Merapi event. This eruption also has an impact 

to the morphological and structural character of the volcano summit. The eruption 

formed a large (400 m x 350 m) summit crater with a 23,000 m2 lava dome in the middle 

and has lengthened and deepened the ‘Gendol Breach’ (Camus et al., 2000), a major 

southeast-trending, elongated, deep canyon towards the headwaters of Gendol River. 

Lahars also generated at Merapi during and just after the end of the eruption, and 

endangered people living close to river banks to the west, southwest and south of the 

volcano.  
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Figure 2.24. 4 September 2011 GeoEye image (left) and three photographs (right) of the Merapi 

summit crater showing the 2010 lava dome and the location of post-2010 eruption vents.The 

top and middle photographs are taken from www.oysteinlundanderson.com and the bottom 

photo is courtesy of DOMERAPI project.   

Merapi eruptions after 2010 were characterized by short explosive events that 

produced several km-high ash plumes. Eight events may be sourced from three different 

vents inside the 2010 summit crater (Fig. 2.24). The first vent, located in the northeast 

part of the crater, may be acted as a vent of the explosions on 15 July 2012 and 20 

August 2012. The vent moved 150 m to the west of the first vent during the 22 July 2013 

explosion. The third vent is located in the middle of the crater and the lava dome which 

was formed during the 2010 eruption. However, it is also possible that the first (and 

possibly second) vents are deeper level exposure of the former high-temperature near-

summit fumarole fields; whereas, the third is the main magmatic conduit. Five explosive 

events on 18 November 2013, 12 December 2013, 10 March 2014, 27 March 2014 and 

20 April 2014, were generated from the third vent. The explosions on 18 November 

2013 has broken up the 2010 dome into two main parts and left a major NW-SE 

trending fracture (Fig. 2.24). After the last eruption on 20 April 2014, this NW-SE 

fracture in the dome had widened 70 m to the west, and new material had been 
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deposited in the western part of the crater. This fracture may affect the dynamics and 

the stability of the post-2010 Merapi dome (Walter et al., 2015)    

Merapi volcanic hazards and zonation 

Merapi volcano is one of the most dangerous volcanoes of the world due to its persistent 

activity and location in a densely populated area (>4 million people within 30 km). 

Thouret et al. (2000) identified three major threats at Merapi comprising: (1) the 

collapse of the summit dome complex in the short-to mid-term, which can release large-

volume BAFs and high-energy surges towards the south–southwest sector of the 

volcano; (2) an explosive eruption, larger than any since 1930, which can produce PDCs 

that sweep all the flanks of Merapi at least once every century; and, (3) a potential 

collapse of the entire summit area, involving the fumarolic field of Gendol and part of the 

southern flank; in addition to PDCs such a collapse would result in a moderate-scale 

debris avalanche and related debris flows. Another threat, both during and after 

eruptions, stems from rain-triggered lahars. Merapi lahars have average measured 

velocities of 5–7 m/s at 1000 m elevation and they are known to inundate areas of the 

extensive ring plain below 600 m elevation as far as 30-40 km from the summit along 

each of the thirteen rivers that drain the volcano (Lavigne et al., 2000). 

A volcanic hazard map (Fig. 2.25; Sayudi et al., 2010) was created after the 2010 

eruption to update the previous hazard map (Hadisantono et al., 2002). This map was 

used by local authorities as an input for contingency. The Merapi hazard zone map 

displays three danger zones (KRB) ranked from I (low) to III (highest).   

The first hazard zone (KRB I) is potentially affected by lahars (yellow zone), heavy 

tephra fall and incandescent ejected rock fragment (the latter only within the red circle 

at a radius of 10 km from the crater). The lahar-prone zones follow river valleys that 

have sources near Merapi’s upper flanks, and they extend to include downstream river 

reaches and bends, and low river banks with frequent lahar overflows. People living in 

the first hazard zone should increase their alertness during a large eruption and/or 

heavy rainfall on the summit area. 
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Figure 2.25. Map of Merapi hazard zone (KRB) (Sayudi et al., 2010), which is used by CVGHM 

and local government as a guidence for volcano disaster management. 

The second hazard zone (KRB II) is potentially affected by pyroclastic flows, lava flows, 

lahars, ash fall, volcanic bombs and other ejected volcanic materials. The outer boundary 

of this hazard zone is determined based on historical eruptions older than a hundred 

years with VEI 3-4. Inhabitants in the second hazard zone should prepare for evacuation 

when there is an indication of increased activity in accordance with the CVGHM 

recommendation.  
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The third hazard zone (KRB III) encompasses the area most likely to be affected by 

pyroclastic flows, lava flows, rock falls and ballistics. This zone is determined based on 

study of the impacts of eruptions that occurred throughout the 20th century and take 

into account the distribution of small-volume dome-collapse driven pyroclastic flows 

together with morphological changes in the summit area that influence the direction of 

dome collapse. The hazard zones also take into account geologic structures and unstable 

sectors of the summit and the locations of the most recent eruptive activity. The third 

hazard zone is forbidden for a permanent settlement or human activity, and will be 

totally closed in case of a high level of activity.   
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Chapter 3 - Geomorphological evolution and post-2001 

eruptive activity of the Semeru volcano 

3.1. Introduction 

Remote sensing techniques can be applied to improve understanding of volcanic 

processes, to detect precursory activity to volcanic hazards and to provide key 

monitoring data during an eruptive crisis (for example in October-November 2010 at 

Merapi). Chapter 3 of the thesis illustrates the application of remote sensing techniques 

using high-spatial resolution (HSR) optical and thermal images together with digital 

elevation models (DEMs) in interpreting volcanic structures of the Tengger-Semeru 

massif and the recent evolution of Semeru volcano. So far, volcanological studies that 

have applied remote sensing and GIS techniques for mapping the Tengger-Semeru 

massif complex are limited. Recent studies include: monitoring volcanic ash cloud 

(Situmorang & Modjo, 1991; Jenkins et al., 2012), geology and landforms interpretation 

(Wahyudin, 1991; Mulyadi, 1992; Carn, 1999; Thouret et al., 2007; Solikhin et al., 2012; 

Kassouk et al., 2014), lahar behavior and erosion process (Gomez & Lavigne, 2010; 

Starheim et al., 2013; Thouret et al., 2014) and hazard mapping and assessment 

(Sutawidjaja et al., 1996; Thouret et al. 2007).  

The first objective of this chapter is to define the structure and evolution of Semeru’s 

composite cone. Composite cones commonly grow in spurts (>1-2.5 km3/kyr) and 

remain active over relative short periods (<200 ka) whereas degradation processes 

during and after eruptive activity are very fast (minutes to years): e.g. Hildreth and 

Lanphere (1994); Hora et al. (2007); Thouret (1999). The Semeru volcano is one of the 

few composite volcanoes worldwide that are persistently active. Semeru volcano and its 

summit cone are evolving rapidly (almost annually) due to continuous eruptive activity 

at least since 1967, very much like Sakurajima in Kyushu, Japan. In addition, the rapid 

alternations between effusive and explosive regimes seen at Semeru are uncommon and 

its eruptive styles are variable. The typical, daily activity encompasses phreatomagmatic 

and Vulcanian events or Strombolian eruptions, but this alternates with short episodes 

(1-3 years in durations) of lava flow production and longer episodes of lava dome 
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growth and collapse (every 5 to 7 years) that feed pyroclastic density currents (PDCs). 

The mechanism for such uncommon, persistent and alternating activity points to a rapid 

shift from open to close system at the summit cone and vent area, has not been 

determined despite limited geophysical monitoring (Nishi et al., 2007; Iguchi et al., 

2008; Nishimura et al., 2012). 

The restricted access to the Semeru summit cone requires remote sensing imagery and 

DEM analysis in order to study and follow the evolution of its volcanic landforms. 

Application of DEM analysis to volcanic terrains has been widely used to decipher 

geomorphic and structural features, especially at large-scale edifices and freshly erupted 

deposits, which cannot be readily studied or identified in the field (e.g., Socompa, Chile: 

Wadge et al., 1995; Börzsöny Mountains, Hungary: Székely & Karátson, 2004; Semeru, 

Indonesia: Thouret et al., 2007, 2014; Solikhin et al., 2012; Kassouk et al., 2014, to name 

just a few example). In this chapter, we highlight the use of optical and thermal imagery 

together with DEM analysis to pursue three objectives as outlined below. 

1)  The first objective of Chapter 3 is to define the structures and trace the evolution of 

the Semeru composite cone. Structures and volcanic landforms are interpreted based on 

DEM computing and analysis, HSR satellite images and aerial photographs along with 

analysis of river channel network. DEM analysis includes landform analysis from two- or 

three- dimensional relief images, elevation and slope distribution analysis, and cross 

sections. Spectral analysis of selected channels (e.g., Wadge et al., 1995) and availability 

of high-resolution data at different times enabled us to obtain unprecedented spatial 

resolution, which allows for mapping and following the landform evolution of the 

Semeru composite cone.  

2) The second objective of this chapter is to map the extent of deposits that result from 

different styles of emplacement and their impacts during the period 2001-2014. HSR 

images enable us to map fresh volcanic deposits and geomorphic changes that occur on 

the volcano flanks after a major volcanic eruption (Rowland et al., 1999; Mazzarani & 

Armienti, 2001; Charbonnier et al., 2013; Kassouk et al., 2014; Solikhin et al., 2015b). 

The activity of Semeru over the period of 2001 to the end of 2014 has been dominated 

by short-lived, almost daily, Vulcanian columns from the Jonggring-Seloko crater. The 

activity increased several times to produce larger explosions (VEI 3), lava flows, rock 

avalanches and PDCs associated with explosions or dome growth and collapse (see 
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Chapter 2). The last major PDC-forming eruption occurred between December 2002 and 

January 2003, where PDCs travelled down the south flank as far as 12 km away from the 

summit. Smaller PDCs were produced in 2008 and 2009-2011, while a substantial 

volume of lava flows was erupted in February 2010, January-March 2012 and July 2014. 

We mapped eruption deposits based on HSR optical images and thermal images.  

3) The third objective of Chapter 3 is to define the characteristics of two selected 

catchments, Kobokan and Lengkong Rivers, on the southeast slopes of Semeru volcano, 

which currently is the most threatened flank in terms of pyroclastic flows and lahars. 

Under certain conditions, heavy rainfall (2000 to 2800 mm per year), unconsolidated 

deposits and steep slopes all contribute to the formation and mobilization of lahars at 

the expenses of pyroclastic deposits. As the channel morphology is a governing factor in 

the formation of lahars, geometric characteristics of the river basin are useful 

information to compute the aggradation and degradation rates and sediment yields in 

the channels (e.g. Thouret et al., 2014). In order to characterize and analyze the 

geometry of the Kobokan and Lengkong catchments, we measured morphometric 

parameters of the river basins and then computed their hypsometric curves. Geometric 

characteristics of river basins are interpreted and measured based on DEM analysis 

along with interpretation of HSR satellite imagery and field-based geologic mapping.    
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3.2. Geology of the Semeru volcano interpreted from high-spatial resolution 

satellite imagery 

This section contains an article published in Geomorphology in 2012. 

Geology, tectonics, and the 2002–2003 eruption of the Semeru 

volcano, Indonesia: Interpreted from high-spatial resolution satellite 

imagery 

 
Akhmad Solikhin1,2, Jean-Claude Thouret2, Avijit Gupta3, Andy J.L. Harris2                  

and Soo Chin Liew3 

 

1 Center for Volcanology and Geological Hazard Mitigation, Jalan Diponegoro 57 Bandung 

40122, Indonesia 

2 Clermont Université, Université Blaise Pascal, Laboratorium Magmas et Volcans, UMR 

6524 CNRS et IRD R163, 5 rue Kessler, 63038 Clermont-Ferrand cedex, France 

3 Centre for Remote Imaging, Sensing and Processing, National University of Singapore, 

Lower Kent Ridge Road, 119076, Singapore 

 

Highlights: 

�� High-spatial resolution images have been used to analyze the Semeru–Tengger 

volcanoes. 

�� High resolution satellite images have tracked changes on the active Semeru's 

summit. 

�� SPOT5 images have contributed to map faults and landslide scars on the 

edifice. 

�� A map of deposits and impacts from the 2003 eruption is based on thermal 
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The paper illustrates the application of high-spatial resolution satellite images in interpreting volcanic struc-
tures and eruption impacts in the Tengger–Semeru massif in east Java, Indonesia. We use high-spatial reso-
lution images (IKONOS and SPOT 5) and aerial photos in order to analyze the structures of Semeru volcano
and map the deposits. Geological and tectonic mapping is based on two DEMs and on the interpretation of
aerial photos and four SPOT and IKONOS optical satellite images acquired between 1996 and 2002. We also
compared two thermal Surface Kinetic Temperature ASTER images before and after the 2002–2003 eruption
in order to delineate and evaluate the impacts of the pyroclastic density currents. Semeru's principal structur-
al features are probably due to the tectonic setting of the volcano. A structural map of the Tengger–Semeru
massif shows four groups of faults orientated N40, N160, N75, and N105 to N140. Conspicuous structures,
such as the SE-trending horseshoe-shaped scar on Semeru's summit cone, coincide with the N160-trending
faults. The direction of minor scars on the east flank parallels the first and second groups of faults. The Semeru
composite cone hosts the currently active Jonggring-Seloko vent. This is located on, and buttressed against,
the Mahameru edifice at the head of a large scar that may reflect a failure plane at shallow depth. Dipping
35° towards the SE, this failure plane may correspond to a weak basal layer of weathered volcaniclastic
rocks of Tertiary age. We suggest that the deformation pattern of Semeru and its large scar may be induced
by flank spreading over the weak basal layer of the volcano. It is therefore necessary to consider the potential
for flank and summit collapse in the future. The last major eruption took place in December 2002–January
2003, and involved emplacement of block-and-ash flows. We have used the 2003 ASTER Surface Kinetic Tem-
perature image to map the 2002–2003 pyroclastic density current deposits. We have also compared two
10 m-pixel images acquired before and after the event to describe the extent and impact of an estimated vol-
ume of 5.45×106 m3 of block-and-ash flow deposits. An ash-rich pyroclastic surge escaped from one of the
valley-confined block-and ash flows at 5 to 8 km distance from the crater and swept across the forest and
tilled land on the SW side of the Bang River Valley. Downvalley, the temperature of the pyroclastic surge de-
creased and a mud-rich deposit coated the banks of the Bang River Valley. Thus, hazard mitigation at Semeru
should combine: (1) continuous monitoring of the eruptive activity through an early-warning system, and
(2) continuous remote sensing of the morphological changes in the drainage system due to the impact of fre-
quent pyroclastic density currents and lahars.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Remote sensing techniques provide the opportunity to study ac-
tive and dangerous volcanoes, allowing us to safely observe morpho-
logical and structural details over a large area. This is particularly true
for Semeru, an extremely active volcano in Indonesia, where the ac-
cess to the summit cone is difficult and dangerous. Standard remote
sensing techniques using high-spatial resolution images from IKONOS

(1 m) and SPOT5 (2.5 m), as well as thermal ASTER images thus offer
a fruitful means with which to characterize the volcano's structural
features and to recognize the extent and effects of the eruptive pro-
cesses. Aerial photographs were also combined with satellite images
for tracking the morphological evolution of a persistently active vol-
cano. This study illustrates the application of such remote sensing
techniques to define: (1) structures, faults and scars of the edifice,
(2) the evolution of a persistently active composite cone, and
(3) the emplacement of deposits from pyroclastic density currents
and the morphological effects of the 2002–2003 eruption.

Semeru volcano (8°06′05″S, 112°55′E) at 3676 m the highest
mountain in Java, Indonesia, is the southernmost edifice of the
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Semeru–Tengger volcanic massif (Fig. 1). The recent composite cone
of about 60 km3 (Thouret et al., 2007) has not been dated, but
maybe Late Pleistocene to Holocene in age. The twofold edifice
(Mahameru and Young Semeru) has been superimposed on, and but-
tressed to the N, by the Jambangan complex. To the S and SE Semeru
overlies weathered volcaniclastic sediments and lava flows of the
Oligocene–Miocene ‘Tuff and Old Andesite formation’ (Sutawidjaja et
al., 1996). Its ring plain below 400 m of about 1790 km2 supports
more than one million people including the cities of Lumajang
(85,000 inhabitants) to the E and 600,000 people living in or near the
city of Malang to the W. The cone-shaped summit is bare and covered
by tephra but the volcano flanks are home to dense, evergreen forest
between 900 and 2800 m in elevation. The equatorial monsoon climate
produces as much as 2000 to 3700 mm per year on the E and SE flanks
of Semeru while 200 mm of rain can fall in 24 h every 5 years on aver-
age (Siswowidjoyo et al., 1997).

Semeru's eruptive activity has been recorded since 1818 and erup-
tions have been persistent since 1967, probably even earlier. Its activ-
ity consists of vulcanian and phreatomagmatic eruptions, which
produce short-lived eruption columns several times a day (Thouret
et al., 2007). Strombolian eruptions also occur based on the presence
of scoriae and bombs on the upper slopes. Extrusion of lava domes
take place during more intense eruptive episodes that occur every
5–7 years. Pyroclastic flows occur once every five years on average,
mostly as block-and-ash flows. Block-and-ash flows triggered by
dome collapse have travelled as far as 12 km to the SE and S

directions, following drainage networks (e.g. in 1994, 1995, and
2003). Lava flows from flank fissures or vents (e.g. in 1895 and
1941) have also been recognized as far as 9 km from the summit on
the SE flank. Semeru is known as one of the most effective lahar pro-
ducers on Earth (Lavigne and Thouret, 2002; Thouret et al., 2007).
Large-scale lahars exceeding 5 million m3 in volume have occurred
at least five times since 1884. During the rainy season, Semeru pro-
duces small to medium-scale lahars (≤0.1 million m3) every week,
which are triggered by the remobilization of pyroclastic debris.
Daily explosions deposit pyroclastic debris as far as 3 km from the
vent area.

Prior to 1999, SPOT's panchromatic band represented the highest
spatial resolution available at 10 m. These data had been shown of
utility in identifying and mapping volcanic products (e.g. Chorowicz
et al., 1992). In 1999, IKONOS was launched and provided 1 m pan-
chromatic images of the Earth surface (e.g. Zanoni and Goward,
2003). With the launch of Quick-Bird2 in 2001 (60 cm resolution)
and of SPOT5 in 2002 (2.5 m resolution), three very high-spatial-
resolution satellite datasets were available for the analysis of volcanic
terrains and eruptive phenomena. However, a limited number of
studies with such a very high-spatial-resolution have examined the
products of volcanic eruptions (e.g., Mouginis-Mark and Garbeil,
2005; Thouret et al., 2007; 2010; Miller et al., 2008; Joyce et al., 2009).

This paper will (1) review the methods used in remote sensing
and in mapping based on DEMs, (2) describe the volcanic features
of the Tengger–Semeru massif and of the Semeru edifice, (3) analyze
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the tectonic setting of the Tengger–Semeru massif, (4) examine the
evolution of the Semeru summit cone since 1923, and (5) analyze
the pyroclastic deposits emplaced by the 2002–2003 eruption and
their related effects.

2. Methodology

This study is based on combined methods: remote sensing of op-
tical and thermal imagery, field observations andmeasurements, geo-
logic mapping based on aerial photos, DEM computing and analysis
for interpreting landforms and structures, and 14C of charcoal for dat-
ing recent deposits.

The satellite images used in this study are: (1) five high-spatial
resolution (1 m) IKONOS satellite images dated 14-11-2002, 25-09-
2004, 16-06-2006, 10-04-2008 and 20-08-2009; (2) two SPOT5 im-
ages including one panchromatic (2.5 m) dated 24-10-2003 and one
multispectral (5 m) dated 26-07-2008; (3) one SPOT2 image (10 m)
dated 11-05-1996 and one SPOT1 scene (10 m) dated 08-08-1997,
both at 10 m; and (4) three AST08 or ASTER TIR Surface Kinetic Tem-
perature products (90 m) dated 16-08-2002, 12-03-2003 and 25-09-
2005. These images have their technical specifications summarized in
Table 1. The procedure is based on visual image interpretation and on
image processing techniques. The images have been locally checked
during field work and mapping carried out on the S and SE flanks
and the SE ring plain of the Semeru volcano. The IKONOS and SPOT
images were first used for mapping the structures and landforms of
Semeru, and the tectonic setting of the volcanic massif. The ASTER im-
ages were secondly used for tracking the thermal anomalies linked to
the deposits from the 2002–2003 eruption and for mapping the im-
pacts and changes in the S drainage of Semeru.

Aerial photographs used in this study were acquired during 1981,
1990, 2005 and 2008 aerial surveys. Furthermore, two Digital Eleva-
tion Models (DEMs) were also generated. The first DEM was derived
from the 30-m resolution Shuttle Radar Topography Mission
(SRTM), here called SRTM-DEM, and the second DEM from four quad-
rangles (Ranu Pane, Senduro, Pronojiwo and Pasirian) digital maps
(at a scale of 1:25,000 with a 12.5 m contour interval). It is referred
to as TOPO-DEM in the paper.

The IKONOS satellite is a high-resolution satellite operated by
GeoEye, which collects high-resolution images at 1 m (panchromatic)
and 4 m (color) spatial resolution. Its capabilities include capturing a
3.2 mmultispectral, Near-Infrared (NIR)/0.82 m panchromatic spatial
resolution at nadir. SPOT satellites have acquired images of the Earth
since 1986. Except for SPOT3 that stopped acquisition on November
1996, SPOT1, 2 and 4 formed a constellation, which was reinforced
by the launching of SPOT5 in early 2002. SPOT satellites are designed
to acquire images in such a way that the scenes acquired on different
dates can be compared with each other. The SPOT satellites (SPOT 1,
2, 4 and 5) travel in a sun-synchronous orbit with 98.7° inclination
at 832 km altitude, taking 26 days to complete one orbital cycle. The
orbital plane intersects the equatorial plane at two points along a
straight line known as the line of nodes. The SPOT satellites acquire
data during the day with a north–south descending path.

The Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer (ASTER) sensor is part of NASA's Earth Observing System
(EOS) Terra satellite platform, which was launched on 18 December
1999 (Pieri and Abrams, 2004). ASTER allows multispectral imaging
at high to moderate spatial resolution (15–90 m/pixel). The ASTER
TIR Surface Kinetic Temperature product is an on-demand ASTER
product, generated from the five thermal infrared (TIR) bands (ac-
quired either during the day or night) within 8 and 12 μm wave-
length. It contains surface temperatures at 90 m spatial resolution
for land areas only. In this product, surface kinetic temperature is de-
termined by applying Planck's Law using the emissivity values from
the Temperature-Emissivity Separation (TES) algorithm, which uses
atmospherically corrected ASTER Surface Radiance (TIR) data

(Gillespie et al., 1998). The TES algorithm first estimates emissivity
in the TIR channels using the Normalized Emissivity Method (NEM).
These estimates are then used along with Kirchoff's Law to account
for the land-leaving TIR radiance that is due to sky irradiance. This re-
sult is subtracted from TIR radiance iteratively to estimate the emit-
ted radiance from which temperature is calculated using the NEM
module.

Processing of the images is required to improve their quality and
the interpretation of the content of the image digital data. Several
processing functions have been applied to the images, such as con-
trast stretching, filtering and band-ratio using the ENVI 4.7 software
in order to enhance contrasts between features. Band ratio between
Near-Infra-red (NIR) and Red Bands and the Normalized Difference
Vegetation Index (NDVI=(NIR−Red)/(NIR+Red)) are especially
used on IKONOS and SPOT images to enhance contrasts between veg-
etation and rocks or deposits, as well as to reduce the variation of to-
pographic illumination. Most common enhancement, contrast
stretching, was applied to produce sharper and clearer images. This
expands the range of DN values to the full limits determined by
byte size in the digital data. In order to enhance contrasts locally in
the spatial domain, spatial filtering with a non-directional filter was
applied to some images. This technique explores the distribution of
pixels of varying brightness across an image. It is especially good at
detecting and sharpening boundary discontinuities between adjacent
pixels.

We have thus used seven sets of images and aerial photographs
(1981, 1990, 1996, 2002, 2003, 2004 and 2008) spread over
27 years, as a time series to track the evolution of the Semeru's sum-
mit cone. A long scar open to the SE and radial valleys on the S and SE
flanks was especially observed. Geo-referencing from satellite images
or geo-referencing based on Global Positioning System (GPS) Ground
Control Points (GCP) was used so that the images can be directly
compared with each other.

3. Volcanic features of the massif and of the edifice

The main geological features of the Semeru–Tengger massif are
presented, based on the combined 2008 SPOT5 image (Fig. 2A) and
the shaded relief SRTM-DEM (Fig. 2B) at a regional scale. The analysis
of the Semeru composite cone and its ring plain is based on the en-
hanced TOPO-DEM (box area in Fig. 2C) and on the high-spatial reso-
lution images.

The Semeru–Tengger volcanic massif with an area of about
900 km2 comprises a cluster of calderas and strato-cones including,
from north to south: the Bromo–Tengger (7.942°S, 112.95°E), Jam-
bangan (8.065°S, 112.92°E) and Ajek-Ajek (8.042°S, 112.92°E) cal-
deras; the Mt. Kepolo (Figs. 1A and 3B) (8.077°S, 112.92°E) lava
cone; and the composite cone of Mt. Mahameru–Semeru. The cal-
deras have formed and the edifices have grown over a deeply eroded
volcanic arc of Oligocene–Miocene age in south Java. The eruptive
centers of the Semeru–Tengger massif lie on a roughly north–south-
trending direction, slightly concave towards the east, which con-
tinues northward to Lake Grati (Fig. 1B), a maar at the foot of the
Tengger massif (Van Bemmelen, 1949; Situmorang, 1989; Sutawidjaja
et al., 1996; Carn, 1999).

The 16-km-wide Bromo–Tengger caldera in eastern Java is located
at the north of the volcanic massif and at the other end from Semeru
volcano. The massive Tengger volcanic complex consists of five over-
lapping composite volcanoes, each truncated by a caldera. The most
recent is the 9×10 km-wide Sandsea caldera, which formed incre-
mentally during the late Pleistocene and early Holocene (>45 ka
and ca. 33 ka: Mulyadi, 1992). An overlapping cluster of post-
caldera cones was constructed on the floor of the ‘Sandsea’ caldera
(V in Fig. 3A) within the past several thousand years. The youngest
of these is the Bromo tuff cone (Fig. 3B), one of Java's most frequently
visited and most active volcanoes, whose eruptive activity resumed
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on 26th November 2010. More than 50 mild-to-moderate explosive
eruptions have occurred since 1804, as recorded in the Global Volca-
nic Network (GVN) data base and by Sjarifudin (1990). South of
Tengger the older, nested Jambangan and Ajek-Ajek calderas (VI
and VII in Fig. 3B), which are open to the east, are thought to have
produced debris avalanches, whichmay or may not have been accom-
panied by an eruption (Carn, 1999). No hummock related to debris-
avalanche deposits has been observed on the eastern flank of these cal-
deras but we have identified at least two parasitic lava or tephra cones
in the area in the SPOT image and the DEM. Several intra-caldera vents
were formed, including the deep crater lake of Ranu Kumbolo (8 in
Fig. 3B) that may indicate the presence of a third eruption vent from
the Ajek Ajek caldera. The Holocene Mt. Kepolo strato-cone (9 in
Fig. 3B), located near the southern rim of Jambangan caldera, is aligned
up N–S with a youthful lava cone and lava flow at the foot of the
Semeru's north flank. The NE-trending eruption centers form an obli-
que, low angle alignment and are cut by NNE-oriented faults. Both are
offset by NW-trending faults that cut through the two groups of nested
calderas: Tengger with Ngadisari and Jambangan with Ajek-Ajek.

Although thick vegetation mantles large areas of the massif, the
combined 2008 SPOT5 image (Fig. 2A) and the shaded relief SRTM-
DEM (Fig. 2B) enables us to visualize the topography and interpret
the geology and landforms of the Semeru–Tengger massif on a re-
gional scale. The better spatial resolution TOPO-DEM (box area in
Fig. 2C) highlights the topography and morphology of the Semeru
composite cone and its ring plain.

Semeru, the youngest volcano in this volcanic massif, hosts the
currently active Jonggring-Seloko vent, and has been built on, and is
buttressed against the Mahameru (or old Semeru) to the West, and
against the Jambangan caldera to the North. To the south and
south-east, Semeru's eruptive deposits and associated lahars rest
against extensive outcrops of the Oligocene–Miocene ‘Tuff and Old
Andesite formation’ (Sutawidjaja et al., 1996; Thouret et al., 2007).
We suggest that the boundary between Semeru deposits and the out-
crops of the Oligocene–Miocene ‘Tuff and Old Andesite formation’ to
the east and south of Semeru is a reverse fault formed by compression
and uplift linked to the subduction process south of the volcano. This
sharp boundary may also be interpreted as a thrust fault overriding
the Tertiary formation towards the SE as a response to lateral spread-
ing of the south flank of Semeru. Several NW-trending faults can be
inferred from the 2008 SPOT5 image on the east and southeast flanks,
whereas on the south and west flanks the orientation of the faults
shifts to NE (Fig. 4).

We divided Semeru into four parts based on geologic and geomor-
phological criteria and on the visual interpretation of landforms and
deposits: (1) the cone-shaped summit covered by thick tephra fallout
above about 2500 m, (2) the steep flanks between 2500 m and 900 m,
(3) the volcaniclastic fans between 900 and 400 m, and (4) the ring
plain below 400 m (Sutawidjaja et al., 1996; Thouret et al., 2007).
Overlying the large Late Pleistocene ‘old’ Semeru (Mahameru) com-
posite volcano, the bulk of the ‘young’ Semeru cone (about 60 km3

of mafic medium-K andesites with 55–57 wt.% SiO2) is probably

Fig. 2. A. The 26/07/2008 SPOT5 image portrays the Semeru–Tengger volcanic massif. Band combination displayed in this color composite image includes R: Short-wave Infrared, G:
Near-Infrared and B: Red. The distinct colors of the image in the Bromo–Tengger caldera encompass: green for vegetation, purple for loose volcanic deposit (tephra, ash and sand),
darker for ‘old’ deposits and lighter for recent deposits. B. Shaded relief image including much of the same area generated from the 90 m/pixel SRTM-based DEM. C. Shaded relief
image of enhanced DEM (enclosed in box) obtained from 1:25,000 scale topographical maps with elevation contour interval of 12.5 m. The even surface of the N and NW summit
cone flanks due to a thick tephra cover contrasts with the rough surface and landslide scars of the eroded S, SE and SW flanks. Several topographic and geomorphic features are
indicated by arrows in C: lava cones and domes on the S and E flanks; smooth, slightly elevated surface of lava flows above the SE flank slope; regular and smooth surface of
the fans forming the SE ring plain. North of Semeru: rugged topography carved by deep ravines in the area of Ajek-Ajek and Jambangan calderas; to the NE and N of the Semeru
ring plain, the smooth topography of aprons suggests thick pyroclastic and/or lahar deposits.
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Holocene in age (Sutawidjaja et al., 1996). Volcanic deposits of Maha-
meru–Semeru consist of lava flows, pyroclastic-flow deposits and
tephra-fall deposits, debris-avalanche, and lahar deposits (Fig. 5).
Based on our 14C dating and on chronicles, the volcaniclastic deposits
in the radial valleys of the S and SE flanks of Semeru are middle–Late
Holocene andhistorical. The radial valleys such as Koboan and Lengkong
Rivers contain up to three terrace systems, the highest 8–10 m thick, the
second ca.5 m thick, and the lowest 2–3 m thick. We have used the 14C
method to date volcanic deposits forming the terraces. The pyroclastic-
flow units forming the base of the uppermost terrace b10 m thick in
the Bang River Valley near Pronojiwo yield 14C ages of 1500±30 yr BP
(Gif-12358/SacA-11577 : ∂13C=−30‰), i.e. 1351–1406 cal BP (with
95.2% confidence interval). The youngest age indicates an eruption during

the 6th or 7th Century AD. The pyroclastic-flow units forming the top of
the uppermost terrace 10 m thick in the Lengkong Valley yield 3770±
40 yr 14C BP (Gif 12290, ∂13C=−26.39‰), i.e. 3986–4283 cal yr BP
(with 95.2% confidence interval). In these valleys, while the middle
terrace is ca.5 m thick and has a mid- to Late Holocene age, the lower
terrace is 2–3 m thick and is historical in age (b2000 years).

Our geologic map (Fig. 5) depicts the historic and present-day de-
posits of Semeru's composite cone and ring plain based on previous
works (see references in Thouret et al., 2007) and on our interpreta-
tion of satellite images, aerial photos, and on fieldwork. The prehis-
toric activity of Semeru is poorly known, the oldest reported
eruption dating back to just 1818 (references in Thouret et al.,
2007). The current active period began in 1967 (Wahyudin, 1991;
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Simkin and Siebert, 1994). Since 1967, cycles of dome growth and
collapse have occurred every 5 to 7 years in the Jonggring-Seloko cra-
ter, feeding pyroclastic flows that travelled up to 12 km along the SE-

trending scar and then the drainage network towards the SE formed
by the Kembar–Bang and Koboan–Lengkong Rivers and their tribu-
taries. The last major pyroclastic-flow producing eruption occurred

Fig. 4. The 2008 SPOT5 image (left) and the interpreted map (right) portray the regional tectonic setting of Semeru Volcano and its surrounding. The faults (dashed line) were in-
ferred from the interpretation of SPOT-4 satellite images and drainage network map. Note the prevailing N130- and N15-trending faults in this area.
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in December 2002 to January 2003. On 30th December 2002, pyro-
clastic flows travelled 12 km down the Kembar and Bang Valleys
(GVN, 2003, 2004, and unpublished VSI reports, Bandung).

4. Regional tectonic setting of the Semeru–Tengger massif

Our structural map of Semeru–Tengger volcanic massif (Fig. 6A) is
based on the interpretation of our SRTM-DEM and TOPO-DEM as well
as of optical satellite images combined with the drainage network
map. This map shows the relationships between the regional tectonic
setting and the principal structures of the edifices. To obtain a map of
geological structures from satellite imagery, we specify the geometric
features at surface that reflects the topography, which is controlled by
tectonic and deformation associated with the growth structure. The
most useful tool with which to recognize cumulative deformations

consists of two merged DEMs that highlight topographic variations.
SRTM and TOPO DEMs are automatically overlaid by using georefer-
enced mosaicing procedure on ENVI software.

A rose diagram of lineaments and faults and a sketch portraying
fault kinematics summarize the regional tectonic setting of the massif
(Fig. 6A–C). Widespread and thick vegetation prevented many of
these faults from being identified in the field. The linear features com-
prise long, rectilinear topographic alignments and sudden, systematic
changes in river directions. The rose diagram of all identified linear
topographic segments (Fig. 6B) shows a prevailing NW–SE trend.
Based on the second rose diagram (Fig. 6C) in which only the long
(>1 km), rectilinear topographic segments have been selected, we
have identified four groups of faults F1 to F4: (F1) a N40-trending
group corresponding to sinistral strike–slip faults observed on the S
and the SW flank and ring plain of Semeru as well as in the ‘old’

A B

C

D

S2
S2

S1

S1

Fig. 6. A. Structural map of the Semeru–Tengger volcanic massif, inferred from SRTM-DEM, TOPO-DEM and optical satellite images. B. Rose diagram of lineaments showing the dom-
inant NW-trending alignment. C. Rose diagram of faults showing four groups of faults, F1 to F4. F4 is the youngest because offsets faults of other groups. D. The sketch diagram de-
picts the regional tectonic setting around Semeru.
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(Oligocene–Miocene) volcaniclastic rocks; (F2) a N160-trending
group matching the dextral strike–slip fault in the Tertiary volcanic
deposit area SE and S of Semeru (NNW–SSE trending features on
the eastern part of Semeru and a NW–SE sinistral strike–slip fault
delineate the northern limit of pyroclastic deposits from Semeru, as
deduced from the texture of these deposits on the images); (F3) a
N75 group containing the faults that guide the E and NNE alignments
of the Tengger post-caldera vents ; and (F4) the last group of N105 to
N140 faults with a prevailing trend of N120, occurring on the western
side of the Semeru–Tengger volcanic massif. Several amphitheaters
caused by flank erosion and open to the west are probably controlled
by these NW–SE trending faults. The fourth group of faults offsets
faults of other groups, and is obviously the youngest.

Our working hypothesis on the fault kinematics and, hence, the
tectonic fault regime is summarized in Fig. 6D. The structural map
of the Semeru–Tengger volcanic massif shows that the southern
area is dominated by the NNE–SSW compressional stress regime
due to subduction process at the trench b50 km to the south. This
produces the first and second groups of faults. The third group, locat-
ed in the north sector, shares the same direction as the Madura basin
and magmatic intrusions from older (Pleistocene) volcanoes such as
Jambangan.

5. Structures and evolution of the Semeru summit cone

Based on two IKONOS images and on the TOPO-DEM, we analyze
the structural features of the Semeru composite cone, which lead us
to highlight the relationships between deformations and the structur-
al edifice growth. The evolution of the summit cone and its SE-
trending scar stems from the comparison of a time series of drawings
and photographs since 1923, completed by satellite images since
2003.

5.1. Structures and landforms

The 10thApril 2008 and20thAugust 2009 IKONOS images (Fig. 7A–C)
show the Mahameru summit area, Semeru's active Jonggring-Seloko
vent in the youngest SE crater, and a SE-trending scar. Based on the
interpretation of both IKONOS images (Fig. 7C), we divide the summit
of the Semeru composite cone into three zones:

(1) The Semeru summit cone has grown on the older edifice of
Mahameru. A structural boundary is indicated between ‘old’
Semeru (Mahameru) and ‘young’ Semeru (Jonggring-Seloko).
Together these edifices have formed the Semeru composite
volcano. The north to southwest part of the Mahameru cone
and the northwest slope of the Semeru summit cone are cov-
ered by thick tephra fallout. The Mahameru summit area
shows three arcuate scarps, probably vent rims, suggesting
that vents have migrated from NW to SE (Thouret et al.,
2007). The three crater rims are located at the intersection of
the N40-, N70- and N130-trending fractures.

(2) The upper northeastern flank of the summit cone appears
more weathered, comprising reddish brown, unconsolidated
deposits. To the NE of Jonggring-Seloko are the scars of the
1909 and 1981 landslides and gullies. These form the catch-
ment headwall of the Besuk Sat river valley. These landslides
are still active today. The 2008 and 2009 IKONOS images
(Fig. 7 A,B) and SPOT5 image (Fig. 8C) show landslides and
gullies that cut in reddish brown deposits high on the NE
flank. We suggest that the unconsolidated, weathered deposits
are related to a previously active hydrothermal system beneath
this area.

(3) The southwestern to east part of the young Semeru cone
(Fig. 8D,E) is fractured and deeply cut by a dense network of
gullies. The summit area consists of thick ash layers that

Fig. 7. A. The 10th April 2008 IKONOS image and B. 20th August 2009 IKONOS image show the Mahameru summit area, Jonggring-Seloko and the SE-trending principal scar. Strat-
ification on the wall of the crater shows a pile of lava flows separated by pyroclastic-fall and flow deposits. Crater ring faults are visible in this image. B. Sketch map based on the
20th August IKONOS image showing the structure and geomorphic features of the Semeru summit cone.
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cover lava flows, which crop out outside the crater and scar
area. The Jonggring-Seloko crater, 500 m SE from Mahameru
summit, reportedly initiated in 1913 (Van Padang, 1951). The
2008 and 2009 IKONOS images (Fig. 7A,B) display the hexago-
nal shape of the vent area, a shape guided by N60–75 and
N150–160-trending fractures. The stratigraphy of the active
crater wall consists of a ≤500 m-thick pile of lava flows with
intercalated pyroclastic-fall and flow deposits. To the west of
Jonggring-Seloko crater, a lava tongue from a lateral flank
eruption is possibly linked to one of lava flows cropping out
in the crater wall. To the south of the vent, a lava flow is
found that originates from the crater itself. The recent active
vent sits at the top of the principal SE-trending scar that cuts
the steep-sided SE flank of the edifice. This elongated
horseshoe-shaped scar, about 1.8 km long and 490 m at its
widest point, channels rock-falls and pyroclastic flows during
phases of heightened activity. The orientation of the scar coin-
cides with a N160-trending fault, which is related to the sec-
ond group of faults (Fig. 6). Minor scars cutting the west
flank are probably controlled by NW and NNE-trending faults
or the first and second group of faults.

Our flank profiles of Semeru's summit cone are extracted from the
TOPO-DEM (Fig. 9A) and show the slope and morphology of three

zones. The slope map of the Semeru summit cone between 1800
and 3500 m (Fig. 9B) shows average slopes of 30.6° for the WNW
flank, 36.3° for the S flank, and 32.5° for the E flank. While no signif-
icant convexity is observed in theWNW flank, the S zone and E flanks
show convex–concave profiles that suggest deformation of these
flanks. The difference in slope segments and convexity in profiles
may be due to material eroded from the elongated SE-trending scar,
which accumulates mid-slope on the SE flank between 1500 and
2000 m. Slope segment and profile differences observed on the S
and SE flanks are linked to normal faults mid-slope, and thrust faults
are inferred to be the influence at the base of the summit cone flank
(Fig. 9B). These structures suggest that deformation has resulted
from the structural growth of the Semeru edifice. The Semeru com-
posite cone has been built on, and is buttressed against, the Maha-
meru edifice along a structural unconformity. This unconformity
probably acts as a semi-circular failure plane (Fig. 9C) but no geo-
physical data are available to allow us test this hypothesis. Inferred
structures such as a bulge and thrust faults at the base of the SE sum-
mit cone flank (Fig. 9C) can also result from flank spreading of the
weak-cored volcano with asymmetric deformation (e.g. Cecchi et al.,
2004). Factors that could induce volcano spreading are a weak basal
layer and a sufficiently high mass and magma influx (Borgia, 1994).
A weak basal layer is known at Semeru. Reddish brown, weathered
deposits seen in the 2008 IKONOS image crop out in the vicinity of

Fig. 8. Three IKONOS images (25-09-2004, 10-04-2008 and 20-08-2009) and two SPOT-5 images (26-09-2004 and 26-07-2008) draped on the TOPO-DEM show the Semeru edifice,
including the Jonggring-Seloko vent and SE-trending scar, and landslide scars on the East flank.

372 A. Solikhin et al. / Geomorphology 138 (2012) 364–379

__________________________________________________________________________Geomorphological evolution and post-2001 eruptive activity of the Semeru volcano

83



the volcaniclastic sediment of Tertiary age (below 1000 m asl in the
Koboan Valley on the SE flank, Figs. 4, 5). Because repeated daily ex-
plosions eject magma from an open conduit at short time intervals
(Nishi et al., 2007; Iguchi et al., 2008), and because Semeru has a rel-
atively shallow, narrow and pressurized conduit, the magma influx
and mass may be large enough to induce significant deformation es-
pecially in the summit cone of the edifice.

5.2. Evolution of the summit area: elongated SE-trending scar and deep
vent

A series of drawings and photographs shows the morphological
changes observed on the Semeru's summit since 1923 (Fig. 10). The
evolution of Semeru's summit resulted from a combination of erup-
tion processes: growth and collapse of domes in the Jonggring-
Seloko vent area, dome collapse-driven pyroclastic flows, and dome
growth- or gravity-driven rockslides. Between the intervals of height-
ened eruptive activity, the vent area remains open with a crater up to
400 m in width and at least 200 m in depth. High vulcanian columns
or violent strombolian activity produces persistent tephra fallout.
Fig. 11B shows the morphological evolution of the Jonggring-Seloko
vent area and the SE-trending scar. Although two aerial photos
(1981 and 1990) and two satellite images only are shown in
Fig. 11A, the resulting map in Fig. 11B results from the interpretation
of the two aerial photos and all SPOT5 and IKONOS satellite images
available between 2003 and 2009. Two main scarps are located to
the east and the west of the Jonggring-Seloko crater. To the west is
the remnant of an older crater, which has been modified by a land-
slide, and to the east is a landslide scar where weathered rocks have
been removed. The crater has enlarged by about 100 m from 1981
to 1990, up to a scarp towards the north, as shown on the 1981 aerial
photograph (Fig. 11). This scarp results from a large collapse within

the crater formerly occupied by a lava dome. From 1990 to 2009,
the crater has also expanded but only by a few meters to reach a
width of 400 m by 2009. The crater was filled by a lava dome in
1981 but it re-opened in 1990 with a deeper vent conduit. The 1990
aerial photograph shows that the Jonggring-Seloko crater at the
base of its headwall was roughly 200 m deep at that point, compara-
ble to the depth of the 2009 vent.

According to a 1923 aerial photograph, the SE-trending scar was
not yet established although a small channel may have been con-
cealed between two lava flows. In 1963, pyroclastic-flow deposits
along the Besuk Semut Valley on the SE flank were the result of
dome collapse. After 1977, the summit has been eroded and a
horseshoe-shaped amphitheater valley was formed, which acted as
a channel for eruption-related flows. In 1994, this structure extended
downstream and into three river heads: Besuk Kembar and Besuk
Bang towards the south and Besuk Koboan toward the SSE (Figs. 4,
5). This SE course was used again on 3rd February 1994 and 20th
July 1995 by large (5–7 million m3 each) pyroclastic flows, which
were channeled 11.5 km and 9.5 km, along the Koboan Valley and
in the upper course of Lengkong Valley respectively (Figs. 4, 5). On
29th December 2002, pyroclastic flows were channeled along the
principal SE-trending scar towards the Bang and Kembar Valleys
and traveled 11 km to the south as far as Supit, a suburb of the district
capital Pronojiwo.

The persistent eruptive activity of Semeru that began in 1967
started with continuous emission of gas from a vent in the southern
part of the Jonggring-Seloko crater. This was followed by lava extru-
sion which formed a stream-like lava flow that moved towards the
south slope. Eruptive activity continued until 1974 and was charac-
terized by extrusion of lava, which created a lava dome that grew in
the west and south area of the summit. The extrusion later shifted
to the SE but remained in the summit area. This eruptive activity

Fig. 9. A. TOPO-DEM of Semeru with blue-red color code for elevation values and flank section profiles showing convex–concave slopes. B. Slope map of Semeru analyzed from
TOPO-DEM, showing the different slope values between each segment described in Fig. 8. C. North–south and east–west cross section sketches of Semeru edifice illustrating
that the younger Semeru composite cone has been built on and is buttressed against the Mahameru edifice along an unconformity that may act as a failure plane.
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was accompanied by ash-producing explosions, lava avalanches, and
block-and-ash flows that widened the SE-trending channel. Since
1979, the rate of dome growth decreased, but the activity continued
with lava avalanches from the dome, occurrence of dome collapse-
driven block-and-ash flows, and explosions (GVN, 1980).

After 1979, the SE-trending principal scar widened rapidly. The
1981 and 1990 aerial photographs (Fig. 11) show the SE-trending
wide scar from the upstream crater rim at c.3300 m descending to
c.2600 m, over a distance of more than 1.5 km. The scar narrowed
through the upper course of the Kembar River Valley, partly branch-
ing into the Koboan River. The maximum scar width in 1981 was
about 290 m and 350 m in 1990. The eruptive 1994 activity resulted
in extension of the scar downvalley, and it extended into the Bang
River Valley. The scar width of about 490 m at its widest point in
2009 is almost twice the 1981 width (about 290 m). The SE-

trending scar has thus expanded at a rate of about 8 m/year over
the period 1981–2009. Such an evolutionary history is difficult to
reconstruct for a dangerous volcano without satellite images.

6. The most recent 2002–2003 (vei 2–3) eruption

Semeru is one of the few persistently active composite volcanoes
on Earth erupting on a daily basis. Based on chronicles, Thouret et
al. (2007) identified three eruptive styles for Semeru since 1818:
(1) persistent vulcanian and phreatomagmatic regime of short-lived
eruption columns, which occur several times a day; (2) increased ac-
tivity levels every five to seven years to produce pyroclastic density
currents (block-and-ash flows, and associated surges) from domes
growing in the Jonggring-Seloko vent; and (3) flank lava flows of an-
desitic composition and aa type, stem from parasitic lava cones and

Fig. 10. Sketches of the Semeru edifice from 1923 to 1997 portray the morphological changes of the summit cone. The SE scar was not visible in 1923. The 1963 lava dome and
pyroclastic flows are located on the SE flank between Koboan and Semut River Valleys. The 1969 lava dome and pyroclastic flows are located on the south flank. The 1977 sketch
shows a horseshoe-shaped scar towards Kembar River, which expanded much in 1985. The 1994 and 1997 sketches show the 1997 lava tongue, lava dome and an eruption column.
Sapiturang is located 12 km to the SSE, G. Sawur 12 km to the SE, and Argosuko 22, 5 km to the NW of the Jonggring-Seloko crater.
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flank eruptive vents and reached 5 to 8 km in length on the S and SE
flanks (Fig. 5). The two most recent lava flows of Semeru were
emplaced on the SE flank: the 1895 lava flow reached c.10.5 km
from the Jonggring Seloko vent area, covering an area of ~7 km2,
while the 1941–1942 lava flow from a parasitic lava cone reached
c.6.5 km and covered an area of ~2.5 km2.

Seven to eight years after the two 1994 and 1995 explosive epi-
sodes the eruptive activity moved towards the second eruptive
style, characterized by a high number of explosions and pyroclastic
flows at the end of December 2002 (GVN, 2002). The peak of the
eruptive episode occurred on 29th December 2002 when block-and-
ash flows with a total volume of 3.5 to 5 million m3 traveled
~11 km from the summit down the Besuk Bang Valley. About 500
people were evacuated from the hamlet of Supit to the district capital
Pronojiwo for about one week but no casualties were recorded.

The 2002–2003 activity, as summarized in Appendix Table 2, was
initiated by an increase in seismic activity in March 2002. This was
followed by emission of a gray plume that rose 300–400 m above
the summit. Several lava avalanches traveled 750 m down Kembar
Valley and several pyroclastic flows traveled downvalley (black area
in Fig. 5). The eruptive activity increased until August 2002, when a
slight decrease was perceived between September and December
2002 but the eruptive activity remained at a level higher than normal,
categorized at alert level 2 on a scale of 4 (Center of Volcanology and
Geologic Hazard Mitigation, CVGHM). Between 30th November and
28th December 2002, block-and-ash flows occurred several times, ex-
tended down the Bang River Valley, and attained a 5 km maximum
distance. Other flows were channeled along the Kembar Valley. Volu-
minous block-and-ash flows and hot lahars occurred on 29th and
30th December 2002 on the SSE flank. Block-and-ash flows of a vol-
ume of 3.25×106 m3 were channelled 11 km down the Bang Valley,
extending as far as the Supit suburb of Pronojiwo (Fig. 5). On 29th De-
cember 2002 trees were singed and land was covered by a muddy ash
over an area 2.2 km long and 0.5 kmwide: located along the west side

(right bank) of the Bang Valley between 1250 m and 1400 m asl
(Fig. 5; GVN, 2003). The deposit was attributed to a ‘wet’ pyroclastic
surge that decoupled from one of the flows moving down the valley
and which then swept across the Bang Valley to damage the forest
and agricultural land. The 29th December 2002 light brownish,
block-and-ash flow deposits of andesitic composition contain lithic
blocks of dome and lava blocks up to 12.5 m in diameter with a ma-
trix of coarse ash. The eruptive activity continued after this event
but at a lower intensity until the end of January 2003 when the erup-
tive episode ended (GVN, 2004).

The 2002 block-and-ash flow and lahar deposits are shown in
Fig. 5 and also in the 12th March 2003 ASTER image as color-coded
pixels indicating a thermal anomaly with respect to the image back-
ground (Fig. 12A, C). Based on the ASTER image, the thermal anomaly
occupies the 11.36-km-long channel of Bang Valley and covers an
area of about 1.65×106 m2. Based on field investigation by re-
searchers of the Volcanological Survey of Indonesia (VSI, now
CVGHM), block-and-ash flow deposits in the Bang Valley at 750 m
asl had a thickness of 4–7 m. By using these data and assuming a var-
iable thickness of deposits, depending on local topography (minimum
of 1 m and maximum of 9 m), we calculate the volume of the 2002
block-and-ash flows deposits to be about 5.45×106 m3.

Remote sensing of two ASTER thermal images provides details on
eruptive activity and related deposits that have not been identified so
far. The 16th August 2002 thermal image (Fig. 12B) shows thermal
anomaly on the SE-trending scar extending 1.4 km from the
Jonggring-Seloko Crater with the high temperature occurring in the
crater and a higher temperature hotspot being located at a distance
of 500 m from the crater. This can be related to the eruptive activity
before 16th August 2002 when most lava avalanches or pyroclastic
flows travelled about 500 m from the crater and occasionally as far
as 1.4 km. The hot spot was caused by accumulation of hot materials
(lava rockslide or pyroclastic-flow fronts) within the scar. The loca-
tion of the hot spot is related to the morphology of the SE-trending

Fig. 11. A. Aerial photographs of 1981 and 1990 and satellite images of 25/09/2004 and 20/08/2009 reveal morphological changes of the Jonggring-Seloko vent and SE-trending scar.
B. Sketch showing the evolution of the Jonggring-Seloko vent and the SE-trending scar whose width has increased from 290 m in 1981 to 490 m in 2009.

375A. Solikhin et al. / Geomorphology 138 (2012) 364–379

__________________________________________________________________________Chapter 3

86



scar (Fig. 9), where it occurs at a break in slope where deposition may
be expected. The 12th March 2003 thermal image (Fig. 12C) reveals
that the block-and-ash flows deposits retained a higher temperature
than its background for two months after deposition: this may be
due to slow cooling or the thermal characteristics of the block-and-
ash flow deposits that may absorb heat more effectively during the
day to heat up to a greater degree in the sun than the background sur-
faces. The thermal anomaly on Jonggring-Seloko Crater and its SE-
trending scar, due to persistent explosions, lava avalanches and pyro-
clastic flows, was again observed.

If we compare the 24th October 2003 SPOT 5 (Panchromatic)
image and the 14th November 2002 IKONOS image, we can recognize
four impacted areas. (1) The first area is characterized by a dark gray,
smooth surface which caps the thick block-and-ash flow deposits,
which extend 11.36 km from the SE-trending scar to Pronojiwo in
the Bang River Valley (Fig. 13A). Within weeks of the eruption end,
the top surface was already incised by small, shallow and active chan-
nels cut by runoff. The valley-confined block-and-ash flow deposits
also widened, by two- to three-fold, the pre-eruption channel bed
(Fig. 13A–C). (2) While the second area appears brownish in the
2002 IKONOS scene, it is marked by a light-grey to whitish color in
the 2003 SPOT5 images. This scorched or singed forested area be-
tween 1200 and 1500 m asl was swept by the wet pyroclastic surge
that extended 0.5–1 km from the Bang Valley channel at distances
of 5 to 7 km from the crater (Fig. 13A). (3) Along the sinuous channel
between 750 m and 1100 m, large, grey patches of deposits on banks
and valley terraces across convex and concave bends indicate over-
bank deposits of the block-and-ash flows (Fig. 13C). (4) Below
1000 m, the down-valley banks of the Bang Valley are dusted by a
thin, brownish muddy deposit. The thin, mud-rich, fine ash layer
may be due to an increase in water vapor at the time of the eruption
in rainy season and to a decrease in flow temperature at≥11 km run-
out distance. The temperature of the dry ash-rich flow front at Supit
was measured about 120 °C two days after the emplacement.

Based on Semeru's historical eruptive activity, the dome collapse-
driven block-and-ash flows witnessed in 2002–2003 occur every five
to seven years, so that the same event is likely to happen again. The
area potentially affected by avalanches and block-and-ash flows is de-
fined as a triangle-shaped area opening at 45° toward the SE with a
width of ~15 km at 12 km from the vent. At least 100,000 people
live in the lower part of this triangle-shaped area (Thouret et al.,
2007). This hazardous area and the E, SE and S valleys are also threat-
ened by syn-eruption and post-eruption lahars, which can reach the
sea 25 km away. To assess the hazard of eruptions in the future, vol-
cano monitoring is the main tool capable of providing an early warn-
ing to people who live or conduct their activities in the Semeru's
hazard zones. Other work that can be done to predict the direction
of pyroclastic flows is to monitor the evolution of the morphology
of the SE-trending scar and of the drainage network. Additional pre-
diction may be based on simulation runs of pyroclastic flows extent
and runout using numerical codes such as TITAN2D or VOLCFLOW
over up-to-date DEMs. This is one of the objectives of our ongoing re-
search project.

7. Conclusion

The objective of our work was to use high-spatial resolution im-
ages (IKONOS and SPOT5) to analyze the structures developing across
a persistently active volcanic complex and to map the deposits and
impact of the 2002–2003 eruptive activity of Semeru volcano. Based
on our results, we reach five main conclusions.

(1) The high-spatial resolution imagery enabled us to safely study
a persistently active, yet dangerous composite volcano such as
Semeru. A single SPOT5 image also allowed us to study struc-
tural and geomorphic objects a few tens of meters over
1800 km2 in the Tengger–Semeru volcanic massif. SPOT5 and
IKONOS images were merged with ASTER thermal imagery
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Fig. 12. A. The ASTER TIR surface kinetic temperature image taken on 12th March 2003 with a blue-red color code shows thermal anomalies induced by the 2002 block-and-ash
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and Digital Elevation Models to improve the interpretation of
structures, deposits and effects of volcanic flows. Despite limi-
tations such as cloud and vegetation cover, the reliable return
period of the satellite orbit makes satellite time series a power-
ful tool for mapping geological and geomorphological changes
at an active volcano when combined with ground-based obser-
vations (Thouret et al., 2010). Each of the data used in this
study was useful for the distinct purposes of structural and
geomorphic analysis. The two SRTM-DEM and TOPO-DEM
were useful for recognizing structural features and describe
the relationships between fault groups and the drainage net-
work. The IKONOS images helped to determine structures
and deposits in the summit vent area with unprecedented de-
tail. The SPOT5 image enabled us to outline deposits and struc-
tures at the regional scale of the volcanic massif. The ASTER TIR
images were useful in tracking thermal anomalies linked to re-
cent pyroclastic deposits to be mapped during and shortly after
an eruption. In addition, the high-resolution images can be
used for detailed mapping and interpretating the summit cone
and the vent area without compromising the safety of geologists.
Safety is a constant issue at a persistently active volcano such as
Semeru,which has killed several volcanologists in the recent past.

(2) Four groups of faults trending N40, N160, N75 and N120 occur
on the Semeru–Tengger volcanic massif. The first and second
groups, located mostly to the south of the massif, are related
to the compressional stress regime due to convergence at the
subduction zone >50 km south of Semeru. The third group,
which is dominant in the northern area of the Tengger–Semeru
massif, may be related to extension in the Madura basin. The
young N120 faults, which offset all other fault families, may
be related to crustal spreading caused by magmatic intrusions
from ‘older’ volcanoes such as Jambangan.

(3) Structures visible on the Semeru's summit cone may be related
to the regional tectonic setting. The SE-trending scar is partly

controlled by the N160-trending fault, which belongs to the
second tectonic group. This scar, which channels eruption-
related flows and dome-growth related rockfalls, appeared be-
tween 1969 and 1979 and widened rapidly until 2009 at a rate
of about 8 m/year. Besides the main scar, minor scars that cut
down the west flank of Semeru are likely to be controlled by
NW- and NNE-trending faults.

(4) The Semeru composite cone has been built on and is buttressed
against the Mahameru edifice. Some structures, such as sum-
mit normal faults, and thrust faults at the base of the SW to E
flank of Semeru, indicate an asymmetric deformation pattern
possibly induced by flank spreading of the weak-cored volca-
no. The existence of the weak basal layer of weathered volcani-
clastic deposits of Tertiary age beneath Semeru is a working
hypothesis to be tested. In addition, the large mass of the edi-
fice (about 60 km3) and the constant magma influx (at least
since 1967) are expected to create a significant deformation
especially in the upper part of the edifice. Deformation mea-
surements and geophysical methods should be applied, and
the possibility of flank collapse must be considered in the
future.

(5) An example of the hazards of Semeru is the 2002 block-and-
ash flows, with a volume of 5.45×106 m3, that caused the
evacuation of 500 people and damaged the forest and tilled
land on the west side of the Bang Valley. A wet, fine-ash rich
pyroclastic surge swept across the forest and agricultural land
at the edge of the Bang Valley at a distance between 5 and
8 km from the crater. The pyroclastic-flow and surge deposits
marked easily detectable morphological changes to the volca-
no surface. Detected morphological changes return to our
first point that time series of high-spatial resolution data can
be of great utility in tracking the rapid changes that occur in
the structures and morphology of a persistently active volcanic
complex.

Scorched 
area

Scorched 
areaSinged 

forest

Scorched 
forest

Singed forests
& overbanks

Thin
overbank

Meander cutoff

Thick 
block-and-ash 
flows deposit

New active
channel

New active 
channel

Thick 
block-and-ash 
flows deposit

New active
channel

(avulsion)

B C

D E

A

Fig. 13. The 14th November 2002 IKONOS image compared with 24th October 2003 SPOT-5 (panchromatic) image shows the Bang River Valley prior to and after the 29th December
2002 block-and-ash flows. The figure shows scorched and singed forests due to pyroclastic surge (B top right) and overbank (C top left). Thick block-and-ash flow deposits are char-
acterized by smooth, dark grey surface (bottom left D and right E) and by new, shallow active channels formed by runoff and lahars.
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Appendix. Tables 1 and 2

Technical characteristics of satellite sensors and images used for this study.

Satellite
sensor;
provider

Spectral range Spatial resolution/
swath width (at
nadir)

Average revisiting
time; off-track
viewing angle

IKONOS
Space Imaging
GeoEye

Panchromatic:
450–900 nm

0.81 m/11 km 2–3 days
±30°

B1 (blue):
445–516 nm

3.2 m

B2 (green):
506–595 nm

3.2 m

B3 (red):
632–698 nm

3.2 m

B4 (NIR):
757–853 nm

3.2 m

SPOT-5
SPOT Image

Panchromatic:
480–710 nm

2.5 or 5 m/60 km 2–3 days
±27°

B1 (green):
500–590 nm

10 m

B2 (red):
610–680 nm

10 m

B3 (NIR):
780–890 nm

10 m

B4 (SWIR):
1580–1750 nm

20 m

SPOT-4
SPOT Image

Monospectral:
610–680 nm

10 m/60 km 2–3 days
±27°

B1 (green):
500–590 nm

20 m

B2 (red):
610–680 nm

20 m

B3 (NIR):
780–890 nm

20 m

B4 (SWIR):
1580–1750 nm

20 m

SPOT-1
SPOT-2
SPOT image

Panchromatic:
500–730 nm

10 m/60 km 2–3 days
±27°

B1 (green):
500–590 nm

20 m

B2 (red):
610–680 nm

20 m

B3 (NIR):
780–890 nm

20

ASTER Thermal
Infra-Red
(TIR)

TIR Band10:
8125–8475 nm

90 m 16 days
±8.55°

TIR Band11:
8475–8825 nm
TIR Band12:
8925–9275 nm
TIR Band13:
10,250–10,950 nm
TIR Band14:
10,950–11,650 nm

The 2002–2003 Semeru seismic and eruptive activity summarized from Smithsonian
Institute/USGS weekly volcanic activity reports (GVN, 2002; 2003).

Date Semeru volcano activities Source

2002
3–10 March An increase in volcanic and seismic activity at Semeru VSI
8 March An emission rise ~400 m above the volcano, and two

pyroclastic flows travel S as far as 2.5 km down the
Kembar River.

VSI

11–17 March Volcanic and seismic activity remained high at Semeru;
Observations on 12, 14, and 17 March revealed that a
gray plume rose 300–400 m above the summit.

VSI

15–21 April Volcanic activity remained higher than normal at
Semeru . A small plume rose ~400 m above the summit
and a “red reflection” was occasionally visible 25 m
above the crater rim. Lava avalanches traveled 750 m to
the E down Besuk Kembar River.

VSI

17–23 June Seismic and volcanic activity were higher than normal
at Semeru. Lava avalanches were observed traveling
750 m E to the Besuk Kembar River

VSI

1–7 July Lava avalanches were sometimes observed traveling
750 m from Semeru's crater rim E toward Besuk
Kembar River.

VSI

8–14 July Lava avalanches were sometimes observed traveling
750 m from Semeru's crater rim E toward Besuk
Kembar River. Low-level ash plumes rose above the
crater

VSI

15–21 July Lava avalanches were observed traveling ~750 m from
Semeru's crater rim E toward Besuk Kembar River.
Explosions produced ash plumes reaching 300–500 m
above the crater

VSI

31 July–6
August

Activity at Semeru remained at a higher level than
normal, but thick fog obscured the view.

VSI

5–18 August Volcanic and seismic activity at Semeru remained at
higher-than-normal levels. On 6 August a lava ava-
lanche traveled ~750 m E toward Besuk Kembar River.

VSI

2–8
September

Seismicity was dominated by explosion earthquakes; on
8 September at 7:47 pm an ash explosion at Semeru was
accompanied by ejected incandescent material. The
material traveled 150 m E to the upper portion of the
Kembar River.

VSI

22–23
September

Ash clouds were observed at Semeru rising to
~7.6 km a.s.l. on 22 September at 1453 and on 23
September at 1700. The September 23rd cloud drifted
SW. Neither cloud was visible on satellite imagery due
to meteorological clouds in the area.

Darwin
VAAC

9–22
December

Volcanic and seismic activity remained above normal
levels at Semeru. Ash columns rose 400–500 m above
the volcano, and lava avalanches and pyroclastic flows
were seismically recorded.

VSI

17–30
December

Volcanic and seismic activity were relatively high at
Semeru. 49 lava avalanches, 6 pyroclastic flows, and 3
floods/lahars. Explosions sent ash plumes to 400 m
above Jonggring Seloko crater.

VSI

25 December A pyroclastic flow traveled 2.5 km into the Besuk
Kembar River

VSI

29 December Pyroclastic flow at Besuk Bang traveled ~9 km from the
summit. At 5 pm–8:15 pm, a lahar traveled along the
Besuk Kembar River relatively close to Supit village.
Early that morning the residents of Supit were
evacuated.

VSI

30 December A pyroclastic flows traveled 2 km toward the Besuk
Kembar River at 7:20 am, and at 10 am, one traveled
4 km toward Supit village.

VSI

2003
1–12 January Relatively high volcanic and seismic activity continued

at Semeru; several explosions sent ash columns to
700 m above the crater. Lava avalanches sent material
up to 750 m from the crater rim and a pyroclastic flow
traveled 1.5 km E to the Besuk Kembar River.

VSI

13–26
January

Volcanic activity remained at relatively high levels at
Semeru, with ash plumes rising 400–600 m above the
summit. On 19 and 23–24 January incandescent lava
avalanches traveled ~500 m down Besuk Kembar River.

VSI

Table 1

Table 2

378 A. Solikhin et al. / Geomorphology 138 (2012) 364–379

__________________________________________________________________________Geomorphological evolution and post-2001 eruptive activity of the Semeru volcano

89



References

Borgia, A., 1994. Dynamic basis of volcanic spreading. Journal of Geophysical Research
99, 17791–17804.

Carn, S.A., 1999. Application of synthetic aperture radar (SAR) imagery to volcanomapping in
the humid tropics: a case study in East Java. Indonesia Bulletin of Volcanology 61,
92–105.

Cecchi, E., van Wyk de Vries, B., Lavest, J.-M., 2004. Flank spreading and collapse of
weak-cord volcanoes. Bulletin of Volcanology 67, 72–91.

Chorowicz, J., Deffontaines, B., Huaman-Rodrigo, D., Guillande, R., Le Guern, F., Thouret,
J.C., 1992. SPOT Satellite monitoring of the eruption of Sabancaya volcano. Remote
Sensing of Environment 42, 43–49.

Gillespie, A.R., Matsunaga, T., Rokugawa, S., Hook, S.J., 1998. Temperature and Emissivity Sep-
aration from Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) images. IEEE Transactions on Geoscience and Remote Sensing 36, 1113–1126.

GVN, 1980. Scientific Event Alert Network Bulletin. Semeru 5 (1).
GVN, 2002. Bulletin of the Global Volcanism Network. Semeru 27 (6), 7 2; (9), 7–8; (12).
GVN, 2003. Bulletin of the Global VolcanismNetwork. Semeru 28 (4), 11–13 (7), 5; (9), 7–8;

(10), 12; (12), 7.
GVN, 2004. Bulletin of the Global Volcanism Network. Semeru 29 (6), 12–13.
Iguchi, M., Yakiwara, H., Tameguri, T., Hendrasto, M., Hirabayashi, J.-I., 2008. Mechanism of

explosive eruption revealed by geophysical observations at the Sakurajima, Suwanose-
jima and Semeru volcanoes. Journal of Volcanology and Geothermal Research 178, 1–9.

Joyce, K.E., Samsonov, S., Manville, V., Jongens, R., Graettinger, A., Cronin, S.J., 2009. Re-
mote sensing data types and techniques for lahar path detection: a case study at
Mt Ruapehu. New Zealand Remote Sensing of Environment 113 (8), 1778–1786.

Lavigne, F., Thouret, J.-C., 2002. Erosion, sédimentation et lahars sur le volcan Semeru, Java-
est, Indonésie. Geomorphology, from expert opinion to modelling. A tribute to Prof. J.-
C. Flageollet, Strasbourg: Centre Européen Recherches Géomorphologiques, pp.
193–202.

Miller, V., Ammon, Ch., Voight, B., De Angelis, S., 2008. A moving block-and-ash flow of
Merapi Volcano (Indonesia) and deposit facies as imaged by IKONOS on 16 June
2006. IAVCEI General Assembly, 18–22 August 2008, Reykjavik (Abstract).

Mouginis-Mark, P., Garbeil, H., 2005. Quality of TOPSAR topographic data for volcanol-
ogy studies at Kilauea volcano, Hawaï: an assessment using airborne lidar data. Re-
mote Sensing of Environment 96, 149–164.

Mulyadi, E. (1992). Le complexe de Bromo-Tengger, Est Java, Indonésie. Etude structur-
ale et volcanologique. (Unpublished) PhD thesis, département de géologie, univer-
sité Blaise Pascal, Clermont-Ferrand, pp 136.

Nishi, K., Hendrasto, M., Mulyana, I., Rosadi, U., Purbawinata, M.A., 2007. Micro-tilt changes
preceding summit explosions at Semeru volcano, Indonesia. Earth Planets Space 59,
151–156.

Pieri, D., Abrams, M., 2004. ASTER watches the world's volcanoes: a new paradigm for
volcanological observations from orbit. Journal of Volcanology and Geothermal Re-
search 135, 13–28.

Simkin, T., Siebert, L., 1994. Volcanoes of the world, Smithsonian Institution, 2nd edi-
tion. Geoscience Press, Tucson, Arizona, p. 349.

Siswowidjoyo, S., Sudarsono, U., Wirakusumah, A.D., 1997. The threat of hazards in the
Semeru volcano region in East Java. Indonesia Journal of Asian Earth Sciences 15,
185–194.

Situmorang, T., 1989. Lahar and pyroclasticflowhazards zoning of Semeru volcano, East Java,
Indonesia (using aerial photograph). International Symposium on Erosion and Volcanic
Debris Flow Technology. Yogyakarta, Indonesia, p. 12. July–August 1989.

Sjarifudin, M.Z., 1990. Berita Berkala Vulkanologi, Edisi Khusus No. 127 (in Indonesian).
G. Bromo, Bandung, Indonesia.

Sutawidjaja, I.S., Wahyudin, D., Kusdinar, E., 1996. Geological Map of Semeru Volcano,
East Java (1:50,000 Scale). Direktorat Vulkanologi, VSI, Bandung, Indonesia.

Thouret, J.-C., Lavigne, F., Suwa, H., Sukatja, B., Surono, 2007. Volcanic hazard at Mount
Semeru, East Java (Indonesia), with emphasis on lahars. Bulletin of Volcanology 70,
221–244.

Thouret, J.-C., Gupta, A., Lube, G., Cronin, S.J., Surono, 2010. Analysis of the 2006 erup-
tion deposits of Merapi Volcano, Java, Indonesia, using high-resolution IKONOS im-
ages and complementary ground based observations. Remote Sensing of
Environment 114, 1949–1967. doi:10.1016/j.rse.2010.03.016.

VanBemmelen, R.W., 1949. TheGeologyof Indonesia andAdjacentArchipelago.Government
Printing Office, The Hague, pp. 1–150.

Van Padang, N.M., 1951. Semeru. Catalogue of the Active Volcanoes of the World Including
Solfatara Fields. Part 1. Indonesia. International Association of Volcanology, Napoli, p.
271.

Wahyudin, D., 1991. Volcanology and petrology of Mt. Semeru volcanic complex, East
Java, Indonesia. Diploma of Applied Science (Volcanology), Victoria University of
Wellington, New Zealand, p. 126.

Zanoni, V.M., Goward, S.N., 2003. A new direction in Earth Observations from space:
IKONOS. Remote Sensing of Environment 88 (1–2), 1–2.

(continued)

Date Semeru volcano activities Source

3–9 February Volcanic activity remained at high levels at Semeru,
with ash plumes rising 300–400 m above the summit.
On 7 February a pyroclastic flow traveled 2–4 km into
the Besuk Bang River.

VSI

24 February–
2 March

Volcanism at Semeru remained at high levels. “White-
gray ash plumes” were observed rising 300–400 m
above the summit.

VSI

3–9 March Volcanism at Semeru remained at high levels. “White-
gray ash plume[s]” rose to low levels above the summit
and several “pyroclastic avalanches” traveled
200–2000 m into Besuk Kembar River.

VSI

10–16 March “White-gray ash plumes” rose to low levels and several
pyroclastic flows traveled 1.5–4 km down Bang River.

VSI

17–23 March Seismic and volcanic activity continued at relatively
high levels at Semeru, with “gray ash plumes” rising
300–400 m above the summit, and several pyroclastic
flows traveling toward Bang River to runout distances
of around 500 m.

VSI

24–30 March Seismic and volcanic activity continued at relatively
high levels at Semeru, with “gray ash plumes” rising to
low levels, pyroclastic-flow activity, and several
explosions.

VSI

27 March A pyroclastic flow travelled around 3750 m toward
Bang River.

VSI

31 March–6
April

Volcanic activity remained at relatively high levels at
Semeru; “White-gray ash plumes” rose 400–600 m
above the summit.

VSI

15 April At 10:38 am, a pilot reported seeing ash ~2.5 km above
Semeru. No ash was visible on satellite imagery.

Darwin
VAAC

12–18 May Volcanic and seismic activity at Semeru continued at
relatively high levels. Several small ash explosions rose
to low levels above the summit.

VSI

29 May At 08:38 am, plumes emitted from Semeru were visible
on satellite imagery at a height of ~6 km a.s.l. drifting
NW.

Darwin
VAAC

2 June At 0625 am, plumes emitted from Semeru were visible
on satellite imagery at a height of ~6 km a.s.l. drifting
SSE.

Darwin
VAAC

2–29 June Activity continued at high levels at Semeru. Several
explosions occurred with the highest ash plumes rising
to a height of ~600 m.

VSI

21 July At 11:16 pm, an ash cloud from Semeru was visible on
satellite imagery extending ~75 km to the WSW

Darwin
VAAC

31 July Based on information from an aircraft report, the
Darwin VAAC reported that an ash plume emitted from
Semeru rose to ~4.5 km a.s.l. at 11:20 am. No ash was
visible on satellite imagery.

Darwin
VAAC

8–9 August Thin ash plumes from Semeru were visible on satellite
imagery on 8 and 9 August. On 9 August the plume
extended ~40 km SW of the volcano.

Darwin
VAAC

13 August A faint ash plume from Semeru was visible on satellite
imagery extending ~75 km E of the summit.

Darwin
VAAC

11–17 August Volcanic activity at Semeru continued at relatively high
levels. Explosions produced ash columns that rose to
400 m above the summit.

VSI

9 September An ash plume emitted from Semeru, rose to
~7.3 km a.s.l. and drifted S. Ash was not visible on
satellite imagery.

Darwin
VAAC

1–28
September

Volcanic activity at Semeru continued at relatively high
levels. Several ash explosions produced plumes to
400–500 m above the volcano.

DVGHM
(VSI)

October Ash explosions at Semeru continued to produce low-
level plumes and seismicity was dominated by hun-
dreds of explosion earthquakes.

DVGHM
(VSI)

2 December At 5:28 pm, satellite imagery showed an ash plume
from Semeru at ~4 km a.s.l. that extended ~55 km
WSW.

Darwin
VAAC

Table 2 (continued)
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3.3. Evolution of the Semeru summit cone after 2009 

Structures and landforms of the Semeru composite cone, interpreted from IKONOS 

images acquired on 10 April 2008 and 20 August 2009, have been discussed in section 

3.2. An updated geologic and geomorphological map of Semeru volcano and its ring plain 

was proposed by Kassouk et al. (2014) based on the object-oriented classification (OOC) 

of one HSR satellite panchromatic SPOT5 image (2003) and our TOPO-DEM. The OOC 

involves segmenting image into objects or groups of pixels, and then the objects were 

classified based on their attributes. On Semeru, the objects were classified on the basis 

of spectral (panchromatic hue and textures), topographic (slope, elevation) information 

and geologic/geomorphic processes. The result has been compared to the previous 

geologic maps of Semeru and its surroundings (Sutawidjaja et al., 1996; Thouret et al., 

2007; Solikhin et al., 2012).  The new geologic and geomorphologic map delineates 20 

geologic and geomorphic units and 47 sub-units across seven volcanic and non-volcanic 

domains (Semeru and Mahameru summit cone, transitional slopes and volcano flanks, 

volcano piedmont, ring plain, drainage valleys, Tertiary hills and coastal areas). In this 

section, we provide a new interpretation and follow the evolution of the Semeru summit 

cone based on Kassouk et al. (2014) to which we have added the interpretation of three 

recent HSR (50 cm) images of WorldView-2 (8 June 2011), GeoEye (16 April 2012) and 

Pléiades (22 October 2012) satellites, as shown in Figure 3.1. We have also used ASTER 

multispectral images (2002-2014) and low-altitude or ground photographs (2010-

2014) from various sources to support the interpretation.  

3.3.1. Structures and landforms of Semeru’s summit cone 

In section 3.2 (Solikhin et al., 2012), the Semeru summit cone is divided into three zones 

based on interpretation of HSR images and DEM analysis. The Semeru summit cone is 

defined by Kassouk et al. (2014) as a domain that consists of two geologic and 

geomorphic units, based on remote sensing criteria, such as high altitude (> 2600 m), 

steep slopes (between 13% and 27%) mantled by tephra and devoid of vegetation (Fig. 

3.1), high panchromatic hue, and contrast enhancement of the 2003 panchromatic 

image. This domain has been divided into two geologic and geomorphic units, namely 

Semeru and Mahameru summit cones and the steep summit flanks. The first unit, 

Semeru and Mahameru summit cones, consists of: (i) present-day Semeru crater 
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(Jonggring-Seloko) where the current vent is located, (ii) arcuate crater rims of 

Mahameru that probably formed during historical eruptive activity of Mahameru, (iii) 

the presumed boundary of Mahameru flank failure, (iv) a scar open to the southeast (SE 

scar) including its bottom and walls, and (v) eroded vents of Mahameru filled by 

collapse deposits and covered by tephra from Semeru (Fig. 3.1B). The second unit, 

Semeru summit flanks, is divided into five sectors (termed F1 to F5 in Fig. 3.1A). In the 

Semeru summit cone classification defined by Solikhin et al. (2012), F1-F2 and F3-F4 are 

part of the first and the second zones, respectively, and F5 corresponds to the third zone.  

F1 is the Semeru west flank with Holocene to Late Pleistocene lava flows, now mantled 

by tephra cover except the recent, rugged and steep lava flows of Semeru to the 

southwest. F2 sector is the northwest summit incised flank where the uppermost slopes 

(between 2950 and 3650 m) are covered by thick (>10 m) recent tephra deposit. 

However, the distribution of tephra mantle deposits, which are incised by a dense, 

ribbon-like radial network of rills, shows that tephra dispersal does not occur often 

towards north and northwest. Contrasting F1 and F2 surface landforms show that the 

Semeru composite volcano has been built by two edifices, Mahameru (‘old’ Semeru) and 

Jonggring-Seloko (‘young’ Semeru). F3 sector corresponds to the northeast summit flank 

where 20-30 m thick tephra and ‘old’, weathered lava flows are cut by dense and deep 

gullies (> 50% of total area). Downhill slopes are incised by deep gullies that are partly 

vegetated. Gullies and two >100 m-deep ravine headwalls (Besuk Sat and Besuk Semut) 

are formed in hydrothermally altered deposits (reddish color) and may correspond to 

the location of the probable Mahameru failure scar(s). F4 sector extends on the east 

summit flank more dissected in hydrothermally altered deposits. This area consists of 

vegetation stripped ridges, locally covered by patchy ash cover, and narrow and steep 

catchment headwalls scoured by active landslides in weathered lava flows. F5 

encompasses the steepest and most unstable south and southeast summit flanks filled 

by volcanic products of past (mostly effusive) and recent (mostly explosive) Semeru 

activity. This sector shows relatively thick (>5 m) tephra deposits from recent activity 

(to the southwest), slightly dissected recent lava flows covered by tephra (<5 m, to the 

south), and old lava flows covered by thin tephra deposits (<2 m, to the southeast). The 

most conspicuous feature is the SE scar (see section 3.2) that channels lava flows (2010-

2014) and most of the PDCs towards the lowermost flanks. Based on a comparison of the 

2009 image (Fig. 7B in section 3.2) with three most recent HSR images (Fig. 3.1), no 
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significant changes occurred on the Semeru summit cone after 2009 except in the 

Jonggring-Seloko crater and SE scar. Observed changes in the Jonggring-Seloko crater 

and SE scar are likely due to eruptive activity during the period from 2009 to 2014.  

 

Figure 3.1. The Mahameru-Semeru summit area. A. 8 June 2011 WorldView image shows five 

flank sectors: the west flank with Holocene to Late Pleistocene lava flows of Mahameru (F1), the 

northwest summit incised flank (F2), the northeast summit flank (F3), the east summit flank 

with hydrothermally altered deposits (F4), and the south to southeast summit flank on steep 

lava flows deeply incised by gullies (F5). B. The 16 April 2012 GeoEye image shows the 

geomorphic units of Mahameru-Semeru summit cone (yellow circle). C. The 22 October 2012 

image shows the2012 lava flows.       
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3.3.2. Evolution of the Jonggring Seloko crater and SE scar  

We trace the evolution of the Jonggring-Seloko crater and SE scar by using the 15 meter 

resolution of ASTER multispectral imagery acquired between 2002 and 2014 (Fig. 3.2). 

The ASTER visual images are provided by the ASTER Volcano Archive (AVA) of U.S. Jet 

Propulsion Laboratory (JPL) and freely available at http://ava.jpl.nasa.gov. ASTER visual 

image is a false-color composite image generated from three ASTER Visible and Near 

Infra-Red bands (VNIR), where band 1 (520-600 nm), band 2 (630-690 nm), and band 

3N (780-860 nm) are set in the red, green and blue channels, respectively. Figure 3.2 

shows 12 ASTER visual images with less than 30% cloud cover on Semeru’s summit 

cone in 2002 to 2014, one image each year except for 2007. 

The 2002-2009 period 

The first image in Figure 3.2 was acquired on 26 October 2002 or two months before the 

main eruptive activity in December 2002–January 2003. The Jonggring-Seloko crater 

was partly filled by lava dome and accumulation of unconsolidated PDC deposits. PDC 

deposits produced from the previous June-September 2002 eruptive activity filled the 

SE scar, but most of deposits were accumulated within a distance of no more than 750 

meters from the headwall of the scar. Almost all pyroclastic deposits in the crater and 

scar were subsequently swept away and/or slid down during the December 2002 to 

January 2003 eruptions. This is reflected by a greater depth for the crater (50-100 m) 

and scar (10-30 m) as observed in the 23 June 2003 image (Fig. 3.2). In January 2004, 

PDCs flowed down through the SE scar and Bang River reaching distances of 2.5 km 

from the crater. This dome collapse and PDC episode was followed by low to moderate 

daily short-lived Vulcanian columns until September 2004. The 28 August 2004 image 

clearly shows one vent 60-80 m in diameter in the middle of the scar headwall, while the 

SE scar has been partly re-filled by PDC deposits. PDCs became more frequent in 

November and December 2004 with flow distances in the range of 1 to 3 km towards 

Bang River. Subsequently, no sizeable eruption occurred at Semeru until November 

2005. No significant change can be detected in the 3 November 2005 image compared to 

the 28 August 2004 image, except the vent that is no longer visible in the later image. 

PDC-forming eruptions then occurred on 22 December 2005 when PDCs travelled down 

toward Bang River as far as 2.5 km from the crater. A steady inflation was detected from 
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tilt measurement during a period of nearly two weeks preceded the occurrence of these 

PDCs (Nishi et al., 2007).  

 

Figure 3.2. ASTER visual images of the Semeru summit cone between 2002 and 2014 provided 

by the ASTER Volcano Archive of U.S. Jet Propulsion Laboratory (http://ava.jpl.nasa.gov). Image 

acquisition date is indicated on each image.  
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Figure 3.3. (A) Map of seismic 

stations with short-period 

seismometers that are used for 

analysis of volcanic events at 

Semeru. (B) Daily numbers of 

seismic events at Semeru during the 

period 2008-2014 including type-A 

(deep) and –B (shallow) volcano-

tectonics (VT-A and VT-B), tremor, 

rockfall and explosion/gas burst 

events. Daily statistics are reported 

in local time (GMT +7). Different 

background colors and numbers (1-

3) indicate the period of different 

eruption stages explained in the text 

at section 3.5. 

 

__________________________________________________________________________Chapter 3

96



 
 

Semeru eruptive activity between 2006 and early 2009 has been more explosive 

(Vulcanian) with significant variation in magnitude and sometime accompanied by 

dome-coulée collapse PDCs (deposits are commonly 2.5 km long, 100-200 m wide and a 

few tens of meters thick). Unfortunately, there is no clear ASTER image of the Semeru 

summit cone in 2007 to 2008 due to cloud cover. A prominent collapse event occurred 

on 15-22 May 2008 and produced a series of PDCs that travelled down the SE scar as far 

as 3 km. Effusive and collapse activity, with short repose times interspersed with 

repeated Vulcanian ash columns, stopped suddenly in March 2009, while only small 

magnitude ash puffs occurred sporadically for the following five months (Nishimura et 

al., 2012). More vigorous eruptive activity resumed in August 2009 as characterized by 

an increasing number of volcanic earthquakes recorded from four seismic stations (Fig. 

3.3A). Figure 3.3B shows daily numbers of seismic events at Semeru during the period 

2008-2014 and the period of four eruptive stages (S-1 to S-4) inferred from seismic 

events and CVGHM reports (e.g., Triastuty et al., 2012). The seismic events at Semeru 

including type-A or deep (1-20 km beneath the volcanic crater) volcano-tectonic (VT-A), 

type-B or shallow (<1 km) volcano-tectonic (VT-B), tremor, rockfall, and explosion 

together with gas burst (hembusan in Indonesian). Volcano-tectonic (VT-A and VT-B) 

events are related to brittle failure in volcanic rocks triggered by fluid movement while 

tremor event have been interpreted as due to the resonance of a fluid-filled resonator 

excited by a pressure disturbance (Kumagai, 2009).  

Changes in the characteristics of Semeru activity in between 2009 and 2011 have been 

observed by Triastuty et al. (2012) on the basis of spectral analysis of harmonic tremor 

events. We have defined four eruptive stages of Semeru the period 2008-2014 and 

discuss it in sub-section 3.5.1. Five months of low activity in 2009 (March-August) are 

referred to as the transition stage (stage 2 in Fig. 3.3B) from ‘normal’ activity 

characterized by frequent Vulcanian to Strombolian eruptions (stage 1) to more effusive 

activity or open system (stage 1). During the transition stage, seismic cata suggest that 

magma migrated from a deep reservoir to a shallow magma chamber. The transition 

stage is followed by the third stage of magma intrusion and onset of the dome growth, 

accompanied by intensive gas burst events in the period between August 2009 and 

January 2010. The clear image on 27 September 2009 (Fig. 3.2) shows that the SE scar 

was half filled by PDC deposits and a lava dome with a diameter of 120 meters observed 

in the Jonggring-Seloko crater. Starting in late February 2010, Semeru activity was 
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characterized by lava extrusion and flows (whose front collapses generated PDCs). 

These events were also accompanied by gas burst events (stage 4). The gas that 

generated gas burst event is not the result of interactions between magma and 

groundwater, but is probably derived from the separation of water vapor from magma 

in the conduit (Nishimura et al., 2012). 

The 2010-2014 period 

Prominent lava flows towards the SE scar occurred in February 2010 and February 

2012 (Figs. 3.4 & 3.5). On 25 February 2010, lava started to flow towards the SE scar and 

was accompanied by rock avalanches. Small PDCs were also generated by repeated 

collapses of the high and steep termini of the lava flow. Based on HSR images, the 2010 

lava flows reached 1.5 km, covering an area of 0.24 km2 with a volume of 1.8 ± 0.6 

million m3 (assuming the thickness of lava to reach 5 to 10 meters). A lava dome with a 

diameter of about 120 m is also observed in the 13 August 2010 ASTER visual image 

(Fig. 3.2). The lava dome and flows partially collapsed on 4 November 2010 and 

generated PDCs that travelled down as far as 4 km towards Bang River (Fig. 3.4). The 4 

November event has brought down approximately 40% of the 2010 lava, or about 0.7 

million m3, as the remnant of the 2010 lava is visible in the 12 November 2010 

photograph (Fig. 3.4). The lava dome in the Jonggring-Seloko crater kept growing 

thereafter. The lava dome grew to 200 m diameter and 10-15 m in height, as observed in 

ASTER visual image (Fig. 3.2) and photographs (Fig. 3.6) in June and August 2011, 

respectively.    

A new lava dome started to extrude in late 2011 directly over the dome formed since 

2010. In February 2012, the dome was being drained by two lava flows, both flowing the 

SE scar alongside the 2010 lava (Fig. 3.5). The first lava flow travelled down on the 

western edge of the scar as far as 1 km from the summit vent, while the second one on 

the eastern edge extended farther down to 2.7 km. The February-October 2012 lava 

flows covered an area of 0.38 km2 and we obtained an estimated volume of 2.8 ± 0.9 

million m3 by assuming the thickness of lava to be between 5 and 10 meters. This 

volume may have changed due to the additional subsequent lava flows or reduction due 

to collapse of the flow front. Lava dome in the crater continues to grow so that in 

October 2012 the volume reached 1.3 ± 0.3 million m3 (Table 3.1). Since October 2012, 
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Semeru activity has included gas bursts or small explosions and interspersed small rock 

avalanches and PDCs. However, in the Jonggring-Seloko crater, the lava dome has kept 

growing such that volume estimate had reached 2.3 million m3 by the end of May 2014. 

The weathered northeastern part of lava dome is characterized by reddish rocks 

(oxidized scoria) that appear on the May 2014 photograph (Fig. 3.6). Semeru activity 

increased at the end of June 2014 and then a new lava flow began draining the dome and 

again flowed down the eastern edge of the SE scar in July 2014 (Fig. 3.7). The lava flows 

travelled 2.7 km towards Kobokan River and 2.4 km towards Bang River. These flows 

have an area of 0.25 km2 and an estimated volume of c. 1.9 million m3. Since July 2014, 

the daily number of gas bursts increased and since September Strombolian activity was 

frequently observed in the Jonggring-Seloko crater. Estimated volumes of lava flows and 

lava domes since 2010 are summarized in Table 3.1.  

 

Figure 3.4. Photograph of volcanic activity of Semeru in 2010 showing the initial lava flows on 

26 February 2010, and PDCs generated from lava front collapses on 4 November 2010, which 

left 60% only of the lava deposit in the scar (shown in 12 November 2010 photograph). 

Photographs: courtesy of CVGHM (Hery Kuswandarto). 

__________________________________________________________________________Geomorphological evolution and post-2001 eruptive activity of the Semeru volcano

99



 
 

 

Figure 3.5. Photograph of the Semeru summit cone on 7 and 9 February 2012 showing the two 

lava flows from Jonggring-Seloko vent travelling down the SE scar. Photographs: courtesy of 

ANTARA (Indonesian news agency). 

 

Figure 3.6. Photograph of Jonggring-Seloko crater in August 2011, October 2012, May and 

September 2014, showing the growth of a lava dome. Photographs: courtesy of Aris Yanto, 

Ndeso Adventure (www.exploredesa.com). 
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Table 3.1. Geometry and volume of lava flows in the SE scar and lava domes in the Jonggring-

Seloko crater since 2010, estimated from satellite images and photographs. 

Lava flows 

Period Area (km2) Thickness (m)* Volume (m3)** 

February-November 2010 0.24 5 - 10 1.8 ± 0.6 x 106 

February-October 2012 0.38 5 - 10 2.8 ± 0.9 x 106 

July-October 2014 0.25 5 - 10 1.9 ± 0.6 x 106 
    

Lava domes 

Time Diameter (m) Area (km2) Thickness (m) Volume (m3) 

August 2011 180 0.025 ~ 10 0.3 ± 0.05 x 106 

October 2012 220 0.038 ~ 35 1.3 ± 0.3 x 106 

May 2014 240 0.045 ~ 50 2.3 ± 0.5 x 106 

September 2014 240 0.045 ~ 55 2.5 ± 0.5 x 106 

* Thickness of the lava flows and height of domes are estimates based on interpretation of satellite 
images and photographs.  

** Volume of lava flow in the SE scar may change due to additional, subsequent lava flows or 
reduction due to partial collapse. 

 

Figure 3.7. A. The 9 September 2014 ASTER visual image. B. The 12 October 2014 photograph 

of the Semeru summit cone showing the new lava flows since July 2014. Photograph: courtesy of 

CVGHM (Mukdas and Parno). 

3.4. Geometric characteristics of Kobokan and Lengkong catchments  

Semeru is one of the few persistently active composite volcanoes worldwide with a 

nearly continuous production of tephra fall and PDC deposits. Its persistent and rapidly 

alternating eruptive activity supplies steady but relatively small amounts of sediment to 
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rivers, but their cumulative effects may be greater than that of sediment produced by 

episodic large- or medium-sized eruptions. Recently, as described in the section 3.3, the 

2014 lava flows have filled the Kobokan head valley over a distance of 2.7 km from the 

Jonggring-Seloko crater (Fig. 3.7). As a result, the valley channel will become an area of 

aggradation due to PDC deposits or lava debris produced by lava front collapses, which 

will be remobilized by rain-triggered lahars during the next rainy seasons. In addition, 

Semeru is located in a low-latitude equatorial climate with a long rainy season, thus 

posing significant hazards and making it an excellent site for studying sediment storage 

and transfer.  

 

Figure 3.8. The 27 September 2009 ASTER visual image draped on a DEM showing the Semeru 

volcano-Tengger massif  looking northwest, three major watersheds across the south (Glidik and 

Rejali river basins) and east (Mujur river basin) flanks of the volcano. 

Semeru flanks are drained by three major watersheds, two to the south: Glidik and Rejali 

River valleys, and one to the east: Mujur River Valley (Fig. 3.8). The east drainage system 

conveys voluminous lahars induced by landslides during the 20th Century (1909, 1981) 

and many debris flows triggered by rainfall. The south and southeast valleys, fed by the 

Jonggring-Seloko vent and SE scar, carry lahars almost on a weekly basis during rainy 

seasons as far as 35 km to the sea across the ring plain. The Kobokan valley and its 

tributary, the Lengkong River, belong to the Rejali catchment (108.9 km2 in area; Fig. 3.8 

& 3.9). Kobokan and Lengkong Rivers, where fresh PDC deposits are located, transport 

very large volumes of sediment with an average annual sediment yield of 2.7 x 105 m3 
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km-2 (Lavigne & Suwa, 2004).  In the recent past, the Kobokan valley and to a lesser 

extent, the Lengkong valley have been partly filled by volumes of  c. 6.3 and 5.5 million 

m3 of BAF deposits emplaced during the 1994 and 1995 eruptions (Thouret et al., 2007). 

We have described and measured the geometric characteristics of both Kobokan and 

Lengkong catchments based on the analysis of Topo-DEM (Fig. 3.9), interpretation of 

HSR SPOT5 satellite images and field-based geologic mapping. This information has 

been used to trace the processes of aggradation (PDC deposits and tephra) and 

degradation (erosion due to lahars and streamflows) on Semeru volcano (e.g. Thouret et 

al., 2014). Besides studies on aggradation/degradation processes following large 

eruptions (Mount St. Helens and Pinatubo, e.g. Pierson & Major, 2014), the Semeru case 

study documents one of rare examples of aggradation/degradation processes acting on a 

persistently active volcano. 

 

Figure 3.9. Catchment of the Kobokan River and sub-catchment of the Lengkong River on the 

Semeru Topo-DEM (Solikhin et al., 2012) including valley cross sections at specific locations. The 

Kobokan and the Lengkong catchments can be divided into five and three reaches, respectively: 

proximal source (K1 and L1), two middle reaches (K2-K3 and L2-L3), and two depositional 

reaches (K4-K5).  
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Table 3.2. Geometric characteristics of the catchments and reaches of the Kobokan and the 

Lengkong Rivers. Breakdown in five reaches for the Kobokan and three reaches for the 

Lengkong (Thouret et al., 2014).  

Basin 
Surface area 

(km2) 
Length (km) Slope (°) Gradient 

Perimeter 
(km) 

Kobokan (K) 108.9 37.03 5.42 
Source     
3472 m 

72.91 

Lengkong (L) 8.23 12.61 10.2 
Source     
3142 m 

24.09 

Reach 

Surface area 
(km2) | (%) 

Length     
(km) | (%) 

Slope (°) Gradient 
Perimeter 

(km) 

K L K L K L K L K L 

Source 1 
Proximal 

6.67 | 
6.13 

2.46 | 
29.44 

4.94 | 
13.33 

3.51 | 
9.51 

24.20 26.13 0.449 0.491 11.08 7.31 

Medial 2 
Storage and 
byp 

5.68 | 
5.21 

2.88 | 
34.96 

2.22 | 
6.00 

4.43 | 
11.98 

9.33 7.73 0.164 0.136 10.43 8.63 

Medial 2 
Storage and 
byp 

13.3 | 
12.21 

2.89 | 
35.10 

8.04 | 
21.71 

4.67 | 
19.43 

3.87 3.93 0.068 0.069 19.01 12.29 

Deposition and 
bypassing 4 

44.1 | 
40.51 

- 
10.5 | 
28.25 

- 1.98 - 0.035 - 27.50 - 

Deposition 5 
Distal delta 

39.1 | 
35.93 

- 
11.4 | 
30.71 

- 0.77 - 0.013 - 28.45 - 

K Kobokan, L Lengkong, byp bypassing 

Tables 3.2 and 3.3 display the characteristics of the Kobokan and the Lengkong 

catchments based on analysis of DEM (Fig. 3.9 and Thouret et al., 2014). The Kobokan 

catchment (109 km2) is 13 times larger and three times longer than its steep Lengkong 

tributary (8.2 km2). Based on geomorphic and hydrological parameters (Figs. 3.8-3.10; 

Tables 3.2 & 3.3) the catchment of Kobokan can be divided into five reaches: the steep 

source reach, K1; two middle reaches, K2 and K3, with the gradient decreasing below 

the southeast flank break-in-slope; and two gently sloping depositional reaches, K4 and 

K5, including the low delta on the coast. The Lengkong sub-catchment is 12.61-km long 

between its source at 3150 m msl. and its confluence with the Kobokan at c. 700 m msl. 

The Lengkong can be divided in three reaches: a narrow gully scouring the steep 

volcano’s summit slope, the source of the debris source reach L1; a wider bypassing 

reach L2 across the relatively steep lower SE flank and below the break-in-slope at c. 
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1000 m msl.; and a narrow, lower bypassing reach L3 on the moderately sloping 

volcaniclastic apron above the confluence. A large fan with changing geometry since 

1981 has formed at the confluence of the two rivers. The “bypassing” term is used after 

Manville et al. (2009) to describe the middle reaches, where sediment is stored 

temporarily between the upper erosional and lower depositional reaches before being 

transferred towards the confluence or the sea.  

Table 3.3. Morphometric indices of the Koboan and the Lengkong catchments. These indices 

were used to compute the hypsometric curves and break down the valley reaches (Thouret et al., 

2014). 

Morphometric parameter Kobokan Lengkong 

Area (A) 108.9 km2 8.23 km2 

Height of basin (H) 3635 m 3610 m – 725 m = 2885 m 

Height of river (h) 3472 m 3142 m – 725 m = 2417 m 

Basin length (L) 33,653.6 m 11,421.4 m 

Perimeter (P) 72.91 km 24.09 km 

Relief ratio (Rh=H/Ln) 0.108 0.253 

Relative relief (Rhp=H/p) 0.05 0.12 

Relative basin height (v=h/H) 0.955 0.838 

Relative basin area (x=a/A) 1/3 of east and southeast 

catchments 

0.076 

Length area (L=1.4 A0.6) 23.35 km 4.96 km 

Basin shape (Rf=A/Lb2) 0.1 0.06 

Basin area ratio (Ra=An/An-1) 13.23  

�L sum of channel lengths ~290 km 37.02 km 

Drainage density (D=�L/A) 2.66 4.49 

Number of drains (N) ~120 18 

Stream frequency (Fs=N/A) 1.10 2.18 

Average stream length avL=avL1RL 0-1 37,032.42 m 12,612.43 m 

Length ratio (RL=avLn/Ln+1)  0.341 

   

Breaks in the Kobokan slope appear first at 2000-2100 m between the bare steep 

summit and the forested flanks, then at ~1200 m between the volcano flanks and the 

volcaniclastic aprons, and finally at ~600 m between the aprons, hills, and low-relief 

plain surrounding the volcano. Predominant geomorphic processes are the best method 
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for identifying different reaches. Proximal reach 1 coincides with daily debris supply and 

removal on the highly dissected, bare uppermost slopes >24°. In the middle reach 2, 

lahars pass through a dense network of steep gullies on >7° of slope. In the middle reach 

3, sediment waves are stored and/or bypass through less entrenched channels across 

slopes ~3°. The distal reaches 4 and 5 are fan-like depositional areas created by wide, 

braided river floodplains. Usually, reaches upstream of reach 2 are dry outside the rainy 

seasons, whereas springs related to aquifers feed perennial streams below 1200-1000 m 

msl. between reaches 2 and 3.  

 

Figure 3.10. A. Breakdown of the longitudinal profiles of the Kobokan (K) and the Lengkong (L) 

rivers per reach, whose areas and slopes are displayed in Table 3.2. B. Hypsometric curves and 

hypsometric integral HI for the more “mature” Kobokan’s catchment (0.14) and the steeper 

Lengkong’s sub-catchment (0.3). 

Hypsometric curves (Fig. 3.10B) suggest that the Kobokan’s catchment (hypsometric 

index, HI, 0.14) is more “mature” or closer to equilibrium than the Lengkong’s sub-

catchment (HI 0.3) (Thouret et al., 2014). The Kobokan’s hypsometric curve, however, 

exhibits two convex segments (Fig. 3.10B): the upper one is the gorge between reaches 

K3 and K4, suggesting the effect of recent uplift and faulting of the Tertiary hills (Figs. 3 

& 6 in section 3.2.); the second one reflects the large and thick depositional area 

upstream of the delta. The knickpoint k is now located between the confluence and the 

wide Kobokan check dam. The steep and straight Lengkong channel responds faster to 

both large and modest sediment supply events than the long, meandering Kobokan. 

However, the Lengkong response can be complex and lahars can overlap in the middle 

reaches owing to the interference between the two tributaries at their headwall valleys 

as shown in Figure 3.8. 
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Aggradation and degradation processes at Semeru volcano, particularly in the Kobokan 

and the Lengkong catchments, have been discussed in detail by Thouret et al. (2014). 

Their computation of the linear aggradation and degradation rates and sediment yields 

takes into account the geometric characteristics of each reach as summarized in Table 

3.2. The geomorphic response of the Kobokan and the Lengkong rivers to volcanic 

sediment migration indicates that each river experiences alternating aggradation and 

degradation cycles following PDC-producing eruptions. The degradation rate in the 

Kobokan (area 109 km2) is three to eight times that measured in the Lengkong (area 8.2 

km2), suggesting that size of catchments affects how they integrate rainfall and runoff. 

Spatial patterns of aggradation and degradation are governed by geomorphic 

characteristics in all reaches. Degradation is stronger in middle reaches K2 and L2, and 

K3 and L3. Aggradation predominates in the Kobokan reaches K1, K3, and K5. In 

between these two reaches, deposition occurs at a low rate in the Kobokan reach K4 

which has been artificially modified. Aggradation apparently continues at a high rate in 

the Lengkong reach L1. 

3.5. Discussion  

3.5.1. The 2009-2014 eruptive activity of Semeru 

Semeru eruptive activity during the period 2010-2014, which produced several lava 

flows from the central vent, shows a different style of eruption for the first time least 

since 1967 or possibly since 1941, when the near-continuous eruption period began. A 

lava tongue (a few hundred meters long) derived from the central vent has been 

observed several times in the SE scar, e.g. in 1994 and 1997 (Fig. 10 in Section 3.2). 

However, the 1994 and 1997 lavas were stubby flows that can be interpreted as dome-

coulées or lava flow-domes, a hybrid form between lava flow and lava dome (Blake, 

1999; see examples at Santiaguito volcano). Historical flank lava flows have been 

erupted on the lower southeast and east flanks in 1895 and in 1941-1942 (Fig. 3.11; 

Thouret et al., 2007). The 1941 Semeru eruption occurred after 28 years of repose, 

following the previous explosive eruption in 1913. The 1941 lava flow issued from a 

NW-SE fissure 1.3 km in length, which opened at the southeastern foot of the Semeru 

cone after an initial explosion on 21 September (Van Bemmelen, 1949). The lava flow 

came to a complete standstill in February 1942 with a length of 6.9 km, covering an area 
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of 3 km2, and its volume amounted to 3 million m3 (Van Bemmelen, 1949). The lava was 

andesite in composition with 57.6-57.7 wt. % SiO2 and 1.3 wt. % K2O (Wahyudin, 1991). 

The 2010-2014 lava flows are narrow and shorter compared to the 1941 and 1895 lava 

flows. At the time of this writing (January 2015), lava flows have occupied the head of 

Kobokan River valley down to 2.7 km from the summit and the head of Kembar valley 

and Bang river down to 2.4 km from the summit. Unfortunately, the access to the current 

lava flows has prevented anyone from sampling the lava to be analyzed and compared 

with previous lava flows in order to understand whether or not the 2014 lava may be 

more mafic and less vesicular andesite. 

 
Figure 3.11. Map of Semeru lava flows erupted in 1941, 1985 and 2010-2014. 

We have defined four stages of eruptive activity at Semeru during the period from 2008 

to 2014 based on spectral analysis of the 2009-2011 harmonic tremor events (Triastuty 

et al., 2012) and is associated with statistical seismic data (Figs. 3.3 & 3.12) as follows:  

1)� The first stage (S-1) of eruptive activity before March 2009 is defined by a persistent 

Vulcanian and phreatomagmatic regime with short-lived eruption columns several 

times a day. During the explosions, the volcanic plug at the top of conduit is 

disrupted by expansion of bubbles and gas pockets, resulting in an air shock and 
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ejection of volcanic bombs and ash. During this stage, the dominant frequency of 

volcanic tremor tends to decrease, indicating less supply from the depth.  

2)� The second stage (S-2) is the transition period initiated by a high number of VT 

events that indicates new supply of magma to the reservoir. Siswowidjojo et al. 

(1995) suggested two magma reservoirs as indicated by a-seismic zones, depths of 5 

km and 20 km. During this stage, the dominant frequency of volcanic tremor was 

stable suggesting an open volcanic system. The number of explosive events had 

decreased but the magnitude for single events had increased. The transition period 

lasted for 6 months from March to August 2009.  

3)� Eruptive activity during the third stage (S-3) comprises lava dome extrusion 

accompanied by gas bursts, Strombolian and sometimes small Vulcanian eruptions. 

This stage is characterized by a wide-range frequency of volcanic tremor but less 

VT-A events indicating a relatively low rate of magma intrusion. Since September 

2009 (first S-3), Semeru was in the state of an open volcanic system, which we 

define as astate which the magma within the system is free to ascend the conduit 

towards the vent. 

4)� Lava flows occurred during the fourth stage (S-4), when dominant frequency of 

volcanic tremor and number of VT-A tended to increase. At this stage, the rate of 

magma intrusion was increasing due probably to additional supply to the upper 

magma chamber. Besides gas bursts and Strombolian eruptions, incandescent rock 

avalanches and PDC-forming eruptions also occurred during the fourth stage. PDCs 

were mostly generated from the collapse of lava fronts. Three episodes of lava flows 

during S-4 (the period of 2008-2014) occurred in February-November 2010, 

January 2012-May 2013, and July-December 2014 (Fig. 3.3).  

Given the current circumstances, at least three possibilities can lead to a significant 

change in eruptive style at Semeru. The first factor is a change in magma viscosity (e.g., 

due to a changes in composition, vesicularity and/or gas content). If the magma viscosity 

did not change, then a second possibility would be a change in conduit geometry. 

Supporting this view, Triastuty et al. (2012) suggests that the variations in dominant 

frequency of volcanic tremor are likely due to changes in the conduit width. A third 

possibility is a combination between changes in magma viscosity and conduit geometry. 
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Figure 3.12. Illustration of four eruption stages (S-1 to S-4) at Semeru during the period 2008-

2014 based on the statistical seimic data and spectral analysis of the 2009-2011 harmonic 

tremor events (Triastuty et al., 2012). This scheme adapted from the January-February 1994 

eruptions (Siswowidjojo et al., 1995). The duration of each stage is shown in Fig. 3.3. The 

illustration is not drawn to scale. 

3.5.2. Hazard assessment of recent Semeru eruptive activity 

One of the common Semeru eruption styles is lava dome collapse to produce PDCs. This 

style of eruption takes place every 5-7 years on average (Thouret et al., 2007). PDCs may 

also be generated from the collapse of lava front down the SE scar, but their magnitude 

and volume is typically smaller than PDCs generated from summit lava-dome collapse. 

Since 1884 at least six eruptions produced relatively large (>1 to 6 million m3) PDC 

events (mostly BAFs) that traveled down more than 7 km distance from the summit 

crater in 1885, 1977, 1981, 1994, 1995 and 2002-2003 (Fig. 3.13). Eruptions in 1977, 

1981, 1994 and 1995 emplaced PDC deposits with an approximate volume of c. 6.4, 6.2 

and 6.3 million m3 (references in Thouret et al. 2007; VSI reports). The most recent large 

PDC event (BAFs and wet surge) occurred on 30 December 2002, when PDCs travelled 

down the Kembar and Bang Valleys as far as 12 km distance from the crater and 

emplaced 5.5 million m3 of BAF deposits (Venzke, 2003; report by VSI, 2003; Thouret et 

al., 2007; Solikhin et al. 2012).  
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Figure 3.13.  Map of PDC deposits since 1885 with a distance in excess of 7 km away from the 

summit crater. Yellow and red lines indicate the outline of PDC inundated areas based on 

Titan2D simulations show potential inundation areas for input volumes greated than those of 

the deposits shown, i.e., 5 (yellow) and 10 (red) million m3 (Weningsulistri et al., 2014). The 

Titan2D simulations used the Topo-DEM as topographic base.   

We calculated the mobility parameter of the PDC-forming events at Semeru in 1885, 

1977, 1981, 1994, 1995 and 2002-2003, to be compared with other flows (Fig. 3.14). 

The mobility parameter (ΔH/L) is the ratio of height difference between summit crater 

and distal limit of flow deposit (ΔH) to the flow length or runout distance (L). This 

parameter captures the ability of gravity driven mass flows to move downslope (e.g., 

Hayashi & Self, 1992; Iverson, 1997). ΔH/L ratios for Semeru PDCs are similar within a 

narrow range between 0.23 and 0.26, except the 1981 PDCs that traveled shorter 

distances (higher ΔH/L ratio) than the others. We obtained ΔH/L ratios of 0.33 and 0.43 

for the 1981 PDCs that traveled towards Bang and Kobokan Rivers, respectively. In fact, 

all Semeru PDCs resemble those of the small-volume PFs of Fisher and Schmincke 
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(1984), the Unzen 1991 dome-collapse PFs (Yamamoto et al., 1993) and the Merapi 

2010 channeled PFs and surges (Charbonnier et al., 2013). The ΔH/L ratios of Semeru 

PDCs are relatively high, which suggest that the basal friction of flows flowing on 

Semeru bedrock may be high.   

 

Figure 3.14. Vertical drop (ΔH) and horizontal travel distance (L) ratios for the 1885, 1977, 

1981, 1994, 1995 and 2002-2003 PDCs of Semeru in comparison with those from Merapi, 2013 

(Charbonnier et al., 2013), 2006 (Charbonnier & Gertisser, 2011) and 1998 (Schwarzkopf et al., 

2005); Unzen, 1991 (Yamamoto et al., 1993); and other flow types (Fisher & Schmincke, 1984).  

Taking account of the current conditions, dome-coulées continue to grow and will 

probably collapse to produce large volume of PDCs (in the range of 5 to 10 million m3). 

PDC simulations using the Titan2D numerical models have been carried out by CVGHM 

(Weningsulistri et al., 2014) as a part of hazard assessment. The simulation was run 

under various scenarios, including source volumes of 5 and 10 million m3, as shown in 

Fig. 3.13. Simulation results suggest that when source volume exceed the recent PDC 

volume (in the range of 3 to 6.5 million m3), PDCs not only travel toward the southeast 

flank but also to the southwest and east flanks. We can consider that the SE scar is 

partially filled by the 2010-2014 lava flows and the fact that the dome-coulee continues 

to grow and flow at the time of writing, so the geometry of the scar has changed to a 

point that PDCs will be deflected or will spill over the scar rims. Alternatively, the 
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eruption behavior of Semeru can change and return to Vulcanian explosions. However, 

we caution that the topographic base for these simulations is the Topo-DEM, which has a 

low horizontal resolution of 15 m, thus the rough geometry of the SE scar and head 

valleys should be taken into account.  

3.6. Conclusion 

We outline the changes of Semeru eruptive behavior during the period 2009-2014 as 

concluding remarks for Chapter 3. The transition stage between March and August 2009 

was characterized by an increase in magma intrusion rate likely due to additional supply 

to the magma chamber.  This stage was followed by lava extrusion and the onset of 

dome-coulee growth. For the first time since 1967 or perhaps since 1941, lava flows 

emitted from the central vent flowed down more than 1.5 km in February 2010. A series 

of lava flows were emplaced in 2012 and 2014. This significant change in Semeru 

eruptive behavior may have been caused by the changes in magma viscosity 

(composition, vesicularity and gas content) and/or in conduit geometry. At the time of 

writing (January 2015), dome-coulée in the Jonggring-Seloko crater keeps growing. The 

most recent estimated volume of the summit dome-coulee is 2.5 ± 0.5 million m3 as of 

September 2014.  

Lava-dome collapse producing large volume of PDCs (3 to 6.5 million m3) is a common 

Semeru hazards. Semeru PDC events in 1885, 1977, 1981, 1994, 1995 and 2002-2003 

have relatively high ΔH/L ratio and are comparable with the previous small volume PFs, 

which may suggests high basal friction of flow on Semeru bedrock. However, some of 

these PDCs travelled down as far as 12 km from the crater towards the southeast flank. 

Future dome-collapse PDCs may travel farther down the SE scar and can spill over the 

rims of the scar towards southwest and east. Four eruptive scenarios may be accounted 

for the upcoming major eruption: (1) Common PDCs generated from lava dome and lava 

front collapse are channeled towards the SE scar and have a heavy impact on the 

southeast and south flanks of Semeru. (2) Unusually large PDCs may flow in and outside 

the SE scar due to the fact that the lava flows have partially filled the scar; thus the PDCs 

may be deflected or may spill over the scar rims down valley. (3) Large PDCs may flow in 

any direction if large Vulcanian occur in the upcoming eruption. (4) Lava flows may 

continue as dome coulee deposits and completely fill the SE scar. If this is the case, other 
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simulations of PDCs using a new or artificial/adapted topographic base are needed to 

determine the potentially affected areas. 
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Chapter 4 - The deposits and impacts of the large (VEI 4) 

2010 Merapi eruption 

4.1. Introduction  

The October-November 2010 eruption of Merapi volcano was the largest eruption (VEI 

4) over the past 140 years. Previously, Merapi volcano was better known for smaller 

dome-collapse eruptions every 2-6 years on average, and ‘large’ explosive episodes 

every 8-15 year (Thouret et al., 2000). The 20th Century Merapi eruptions typically 

produced summit lava domes, which collapsed to generate block-and-ash pyroclastic 

flows (BAFs), previously known as “Merapi type” “nuées ardentes”, a category of 

pyroclastic density currents (PDCs). In addition to lava domes extrusions, the 2010 

eruption also produced several powerful explosions, vertical eruption columns up to 17 

km altitude and numerous PDCs that extended into populated areas at distances as far 

as 16 km from the summit (Surono et al., 2012). On the other hand, this remarkable 

event demonstrated the effective crisis management by Indonesian authorities together 

with the involvement of international scientific cooperation. Between 26 October and 8 

November 2010, the eruptive events around Merapi caused 376 people were lost their 

lives and about 400,000 people were displaced (Mei et al. 2013), but timely forecasts 

delivered by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) and 

prompt evacuations of many tens of thousands of people saved as many as 10,000-

20,000 lives (Surono et al., 2012). The role of international collaborators was also 

critical in delivering near-real-time data and advice that complemented the extensive 

experience of CVGHM in interpreting the eruptive activity of Merapi.  

Continuous research efforts inverted on Merapi for decades have been directed at 

understanding the mechanisms of dome extrusion and subsequent collapse “Merapi-

type” eruptions and at improving eruption forecasting. In addition, the 2010 Merapi 

eruption has offered a rich set of scientific data to be analyzed and interpreted in order 

to advance in the understanding of, and ability to forecast, explosive volcanism. Such 

research studies have been carried out and published, for example in the special issue of 

the Journal of Volcanology and Geothermal Research, volume 261, in 2013 (Jousset et al., 
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2013). Published studies have covered a wide range of research fields and 

volcanological topics including the application of satellite remote sensing. During the 

2010 Merapi crisis, satellite remote sensing data have been integrated with seismic data 

for near-real time monitoring of the eruption to a point that interpretation did play role 

in decision support, especially with respect to the deleniation of exclusion zones 

(Surono et al., 2012). Measurements of SO2 emissions and maps of volcanic cloud 

dispersal from satellite remote sensing were available and useful during the most 

explosive phases of eruption. Synthetic Aperture Radar (SAR) imagery, capable of 

providing information during day or night and independent of the meteorological 

conditions, has been shown to be useful for recurrent monitoring of Merapi volcano 

during the crisis (Pallister et al., 2013), defining ground surface displacement (Saepuloh 

et al., 2013), evaluating the extent of impacts (Yulianto et al., 2013; Solikhin et al., 

2015a) and estimating deposit volume (Bignami et al., 2013). Satellite multispectral 

(optical) imagery has been used to support the field investigations and to estimate their 

volume (Cronin, et al., 2013; Komorowski et al., 2013; Charbonnier et al., 2013; Jenkins 

et al., 2013; Solikhin et al., 2015b).  

The methodological work of analysis of PDCs and other erupted materials using satellite 

imagery has a clear potential for helping the volcanological community to contribute to 

decision making process during a volcano crisis. Our study, presented in the fourth 

chapter, aims to assess the extent and effects of the 2010 Merapi PDCs, tephra-fall and 

subsequent lahars based on remote sensing techniques using HSR optical imagery. We 

used the most recent HSR imagery data sets from Pléiades, GeoEye, QuickBird and 

SPOT5 satellites and aerial photographs, acquired before and after the eruption. Among 

them Pléiades sensor has been used for the first time to identify and map pyroclastic 

deposit immediately after a large eruption. Pléiades, GeoEye, QuickBird and other HSR 

images offers unprecedented detail for mapping pyroclastic deposit on otherwise 

unaccessible active volcanoes. These data sets have enabled us to provide additional 

insight into the chronology, dynamics, and impacts of the volcanic eruption, which are 

complementary to previous detailed studies. This chapter encompasses several studies 

of the 2010 Merapi eruption including: (1) a new estimate of volumes of tephra-fall 

deposits using three empirical calculation methods (exponential, power-law and Weibull 

thinning); (2) the effects of the eruption and structural changes on the volcano summit; 

(3) the extent of pyroclastic deposits in the Gendol-Opak catchments; (4) the origin of 
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post-eruption lahar deposits; and (5) the behavior of the overbank PDCs and lahars 

based on the analysis of geomorphometric indices related to river channels. 

4.2. High-spatial resolution imagery of the 2010 Merapi Volcano eruption 

This section corresponds to an article that has been accepted for publication in the 

Bulletin of Volcanology on 6 Feburary 2015. 

High-spatial resolution imagery helps map deposits of the large (VEI 4) 

2010 Merapi Volcano eruption and their impact 

Akhmad Solikhin1, 2, Jean-Claude Thouret2, Soo Chin Liew3, Avijit Gupta3, 4,         
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High-spatial-resolution imagery helps map deposits of the large
(VEI 4) 2010 Merapi Volcano eruption and their impact
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Abstract The 26 October–23 November 2010 eruption is
Merapi’s largest event (VEI 4) over the past 140 years. We
used high-spatial-resolution (HSR) imagery from GeoEye,
Pléiades, IKONOS, and SPOT5 satellites to assess the extent
and effects of the pyroclastic density currents (PDCs) and
subsequent lahars. We have tracked the geomorphic and struc-
tural (fracturing) changes ofMerapi’s summit crater and dome
between 2008 and 2012. The 4 September 2011 GeoEye im-
age shows that due to the explosive eruption, the summit area
lost about 10×106 m3. The eruption enlarged the SSE-
trending Gendol breach to be 1.3×0.3×0.2 km. The 2010
tephra and PDC deposits covered about 26 km2 in the two
catchments of Gendol and Opak Rivers on Merapi’s south
flank, i.e., 60–75 % of the total PDC deposit area, with a total

bulk volume of 45×106 m3. The tephra-fall deposit covered an
area of about 1300 km2 with a range in volume of 18–21×
106 m3. Supervised and object-oriented classification on HSR
imagery enables us to map in detail the PDC deposits across
the Gendol-Opak catchment. We delineated 16 spectrally and/
or texturally distinct units of PDC deposits and compared
them with previously published results. They encompass
high-energy surge deposits within ca. 8 km of the summit,
valley-confined PDC deposits channeled as far as 16.5 km
in the Gendol River, and widespread overbank PDC with
ash-cloud surge deposits on valley margins.

Additional high-resolution data are provided to map and
analyze flooded areas due to lahar activity in 2011–2012 on
the south and west flanks. Subsequent overbank lahars
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impacted selective small areas in the populated ring plain,
devastating villages along the Putih River on the southeast
flank and the Gendol River. We have analyzed the morpho-
metric parameters (channel cross-sectional capacity, longitu-
dinal rate of channel confinement, and channel sinuosity) of
the Gendol-Opak River channels that govern overbank and
avulsion of lahars in the ring plain. The paper demonstrates
the potential of HSR satellite imagery to outline tephra, PDC,
and lahar deposits; map the geomorphic and structural evolu-
tion of the summit area of persistently active composite cones;
and thus improve hazard assessment for Merapi, a volcano
whose summit, slopes, and drainages have changed more
since October 2010 than at any other time since 1931.

Keywords Remote sensing .Merapi . Eruption . Pyroclastic
density current . Tephra . Lahar . Hazard

Introduction

Merapi (7° 32.5′ S and 110° 26.5′ E), located in the densely
populated province of Yogyakarta in central Java, is one of
Indonesia’s most active volcanoes (Fig. 1). More than a mil-
lion people live on its slopes and the ring plain, within a radius
of 20 km from the volcano. As many as 227,000 people live in
the three official hazard zones termed Kawasan Rawan
Bencana (KRB) I, II, and III (Fig. 1c; BAPPENAS and
BNPB 2011) among which about 23 % live in the third and

the most dangerous hazard zone (KRB III; BPS 2010). More
than 74 eruptions have been recorded at Merapi since 1548,
and at least 17 of them, including the one in 2010, have caused
fatalities. Based on the historical eruption record of Siebert
et al. (2010), the average time interval between eruptions is
1–6 years. Most events fall in the VEI 2 range, at least one per
decade since 1861 (Appendix Fig. 1). Several have been cat-
egorized as large-magnitude eruptions (VEI ≥3), as in 1672,
1822, 1846, 1849, 1872, 1930–1931, and 1961 (Voight et al.
2000; Siebert et al. 2010; Gertisser et al. 2012). Dome collapse
events (VEI <3) that commonly produce 1 to 10 million m3 of
deposits (Voight et al. 2000) have prevailed during the past
80 years.

Merapi’s summit (2978 masl prior to the 2010 eruption)
has been built up by andesitic lava domes. The volcano is well
known for its block-and-ash flows (BAF), composed of large
fraction of juvenile volcanic blocks in a matrix of volcanic ash
produced by the collapse of summit lava domes. They are
often referred to as the BMerapi-type nuées ardentes^ or
glowing avalanches (Voight et al. 2000). These are a type of
pyroclastic density current (PDC), a more general term that
refers to fast-moving mixtures of hot gas, rock fragments, and
ash, and include dense pyroclastic flows (PFs) and dilute py-
roclastic surges (Branney and Kokelaar 2002).

Thouret et al. (2000) identified three major hazardous erup-
tion scenarios at Merapi: (1) the common collapse of the sum-
mit dome complex leading to the emplacement of large-
volume BAFs and high-energy surges toward a sector of the
volcano, (2) an explosive eruption larger than any since 1930

Fig. 1 a Location of Merapi volcano. b November 15, 2010, GeoEye
panchromatic image of Merapi and its south flank. c SPOT5 image of the
Merapi-Merbabu area from 10 June 2011 draped over a SRTM-DEM.

View is to the northwest. The three Merapi hazard zones (KRB) as
redefined after the 2010 eruption (Sayudi et al. 2010) are outlined.
Black dashed line boxes indicate the locations of Fig. 9
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that would produce PDCs which can spread over all flanks of
Merapi similar to eruptions that have occurred once every
century, and (3) a potential collapse of the entire summit area,
involving the fumarolic field of Gendol and part of the south
flank, which would result in the emplacement of a moderate
volume debris avalanches and related debris flows as well as
PDCs. The B100-year^ eruption (Surono et al. 2012) in 2010
included aspects of the first (toward the south sector) and
second scenarios, but its characteristics are also reminiscent
of both the 1930–1931 explosive eruption (VEI 3) and the
explosive large vulcanian to subplinian event (VEI 4) of
1872 (Voight et al. 2000).

Rain-triggered lahars constitute an additional hazard both
during and following eruptions. Lahar is an Indonesian term
that refers to water-saturated flows originating from a volcano
and involving a mixture of rock debris and water other than
normal stream flow (Smith and Fritz 1989). Merapi lahars can
flow with average velocities of 5–7 ms−1 at 1000-m elevation
and inundate areas of the extensive ring plain below 600-m
elevation, reaching as far as 30–40 km from the summit along
each of the 13 rivers that drain the volcano (Lavigne et al.
2000). Each year, lahars with discharges between 200 and
2000 m3 s−1 are triggered during the rainy season in several
rivers that drain the west, southwest, and south flanks. In the
1900s, 17 lahars related to the eruptions killed at least 100
people, destroyed about 80 villages and 1500 houses, and
flooded several thousand hectares of tilled land (Thouret
et al. 2000).

Images of Merapi volcano and its ring plain before and
after the 2010 crisis were recorded by satellite-borne high-
spatial-resolution (HSR) optical instruments. For this study,
we have used images from the SPOT5, IKONOS, Pléiades,
and GeoEye-1 satellites (Table 1), as well as low-altitude pho-
tographs and three different digital elevation models (DEMs).
Field observations of structural damage and deposit mapping
provide ground truthing for interpretations based on remote
sensing (Thouret et al. 2010; Lube et al. 2011; Charbonnier
and Gertisser 2011; Solikhin et al. 2012). These tools have
enabled us to provide additional insights into the chronology,
dynamics, and impacts of the volcanic eruption, which are
complementary to detailed field-based study of Cronin et al.
(2013), Komorowski et al. (2013), Charbonnier et al. (2013),
and Jenkins et al. (2013). Our study illustrates the ability of
HSR optical imagery for identifying a wide range of pyroclas-
tic deposits at an active volcano immediately after a paroxys-
mal event and therefore removes the need for scientists to
perform ground surveys in unsafe conditions. We found re-
mote sensing extremely useful and effective for assessing
PDC and subsequent lahar deposits. HSR images have
allowed us to (1) map and evaluate the area covered by fresh
volcanic deposits, (2) analyze the structural setting of the sum-
mit and flank areas prior to and after the eruption with impli-
cations for better understanding the eruption processes, and

(3) analyze the effects and behavior of PDCs and subsequent
lahars on the volcano flanks travelling down to the ring plain
of the volcano.

We traced the spatial and temporal patterns of deposit ag-
gradation by the emplacement of the October–November
2010 PDCs and the subsequent remobilization by lahars in
the subsequent year and a half. Geomorphic and structural
changes on Merapi’s summit were interpreted based on the
comparison of HSR images before and after the 2010 erup-
tion. Finally, based on this investigation, we identified new
hazard-prone areas that have resulted from the eruption and
subsequent lahars.

Data acquisition and processing

Remote sensing and field data

This study is based on HSR optical imagery, DEM analysis,
and geomorphic interpretation of landforms and structures and
some ground-truth field data (deposit map and Global Posi-
tioning System survey for ground control points) in selected
key areas. The satellite images used in this study are as fol-
lows: (1) two multispectral GeoEye-1 satellite images dated 15
November 2010 (Fig. 1b) and 04 September 2011; (2) one
multispectral Pléiades satellite image dated 29 September
2012; (3) one multispectral IKONOS satellite image dated 7
July 2008; and (4) three multispectral SPOT5 images of 18
May 2008, 15 November 2010, and 10 June 2011. Table 1
summarizes the technical specifications of the images. We ap-
plied contrast stretching, filtering, band ratio, and the Normal-
ized Difference Vegetation Index (NDVI) to the HSR images
in order to enhance contrasts between features, as well as to
reduce the variations in topographic illumination. These pro-
cessing techniques have been previously applied to IKONOS
and Spot images of Semeru, another persistently active Indo-
nesian volcano (Solikhin et al. 2012; Kassouk et al. 2014).

Tephra isopachs used in this study are based on field obser-
vations carried out during the period November 2010 to May
2011 by joint teams of scientists from the Indonesian Center
for Volcanology and Geological HazardMitigation (CVGHM)
and the US Geological Survey’s Volcanic Disaster Assistance
Program (USGS/VDAP). The volume of tephra deposit from
Merapi has been determined using empirical volume calcula-
tion methods based on exponential (Pyle 1989; Fierstein and
Nathenson 1992), power-law (Bonadonna and Houghton
2005), and Weibull thinning (Bonadonna and Costa 2012).

We have used DEMs and carried out differential Global
Navigation Satellite System (GNSS) surveys to establish
ground control points and derive sediment thickness. We uti-
lized three different digital elevation models (DEMs) in com-
bination with optical satellite images and a drainage network
map in order to delineate the geomorphic features and deposits
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of the study area. The first DEM was derived from the third
Shuttle Radar Topography Mission (SRTM3, produced by
NASA), computed at 3-arc-second (ca. 90 m) resolution. Ac-
curacy of SRTM3 is mainly dependent on the elevation and
the slope angles. In areas around Merapi, the SRTM data
satisfy a 90 % confidence level for an elevation up to
1000 m (Gerstenecker et al. 2005). The second DEM called
TOPO-DEM with 15×15-m horizontal resolution and 1-m
vertical resolution was generated from 12 digital topographic
quadrangles at 1:25,000 scale and 12.5-m contour intervals.
The topographic maps were produced by the Indonesian
Agency for Geospatial Information (BIG) between 1998 and
2001. TheMerapi TOPO-DEM has height inaccuracies due to
an average shift of 5±14 m, on average, with respect to
ground control points. The third DEM called Airphoto
DEM, with 1×1-m horizontal and 1-m vertical resolution,
was generated from low-altitude aerial photographs using
photogrammetric and stereo matching techniques with an av-
erage accuracy of 0.2 m. The Airphoto DEM covers only the
southern flank of Merapi volcano along the Opak-Gendol
Valley at distances between 15 and 25 km from the summit.

Supervised and object-oriented classification

Identification of the deposits benefited from the high resolu-
tion of the images (50 cm), and mapping was conducted by

using two supervised and object-oriented methods for classi-
fication (Fig. 2). The object-oriented method comprises five
steps.

1. We utilize intensity, hue, and saturation (IHS) and geo-
morphic parameters to divide the catchment into five
reaches (Appendix Fig. 2). We then compute three

Table 1 Technical characteristics of satellite sensor and images used for this study

Satellite sensor;
provider

Spectral range
(nm)

Spatial resolution/swath
width (at nadir)

Average revisiting time;
off-track viewing angle

Acquisition date of the
imagery used

GeoEye-1; DigitalGlobe Panchromatic 450–800 0.41 m/15.2 km 1–3 days
Max±30°

November 15, 2010; 4
September 2011B1 (blue) 450–510 1.65 m

B2 (green) 510–580 1.65 m

B3 (red) 655–690 1.65 m

B4 (NIR) 780–920 1.65 m

Pléiades; Spot Image (CNES) Panchromatic 470–830 0.5/20 km 1 day
Max±45°

29 September 2012
B1 (blue) 430–550 2 m

B2 (green) 500–620 2 m

B3 (red) 590–710 2 m

B4 (NIR) 740–940 2 m

IKONOS; DigitalGlobe Panchromatic 445-900 0.82 m/11 km 1–3 days
Max±30°

07 July 2008
B1 (blue) 445–516 3.28 m

B2 (green) 506–595 3.28 m

B3 (red) 632–698 3.28 m

B4 (NIR) 757–853 3.28 m

SPOT-5; Spot Image (CNES) Panchromatic 480–710 2.5 or 5 m/60 km 1–4 days
Max±27°

18 May 2008; 15 November
2010; 10 June 2011B1 (green) 500–590 10 m

B2 (red) 610–680 10 m

B3 (NIR) 780–890 10 m

B4 (SWIR) 1580–1750 20 m

Fig. 2 Flow chart showing the classification stages of HSR satellite
images based on the object-oriented method
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spectral indices: NDVI related to vegetation, Normalized
Difference Water Index (NDWI), and Normalized Differ-
ence Soil Redness Index (NDSRI) in order to distinguish
areal units (e.g., Kassouk et al. 2014).

2. Deposit segmentation begins with the edge detection by
identifying potential boundaries between segments, based
on the assumption that two neighboring pixels with large
differences in their spectral value are members of different
segments. Then, we merge adjacent segments that have
similarities in their spatial spectral characteristics.

3. Several attributes representing both geometric character-
istics and average pixel information for each segment
were computed to create objects.

4. A supervised classification of these objects according to
attributes (form, texture, and mean spectrum) was carried
out in order to infer the deposit units.

5. Finally, we evaluate the segmentation quality by measur-
ing both topological and geometric similarities between
segmented polygons (objects) and reference polygons.

Four different issues commonly observed in HSR analysis
can lead to false identification of deposits. (1) The presence of
shadows. However, our images have no clouds except for the
summit on the 15 November 2010 GeoEye scene (Fig. 1b), so
we avoided this difficulty by using the cloud-free 4 September
2011 GeoEye image with 0.5 m pixel resolution and relatively
high incidence angle. (2) The surface of PDC deposits of the
same type can be either hot/dry or wet/water saturated depend-
ing on weather conditions, which produces different reflec-
tance characteristics and which may lead to the potentially
false interpretation that different spectral units are present.
However, very little rain fell on the pristine pyroclastic de-
posits during the waning eruptive stage before 15 November
2010. In the lower course of the Gendol River, we identified
springs or resurgence of water, ponded water, and newly
formed rills in the rectilinear valley bottom. (3) Runoff on,
and early incision of, pristine deposits can lead to misinterpre-
tation of the texture and spectral indices used for object clas-
sification. The 15 November 2010 image acquired during the
waning phase allowed recognition of pristine surface of de-
posits before runoff and the incision by rill networks and re-
mobilization by later lahars. We could even map small mud-
flows that occurred as a consequence of the 4–5 November
2010 PDC overspills across the engineered dikes and onto the
rice fields down valley. (4) Vegetation cover can mask deposit
surfaces or lead to a misinterpretation of bedrock mantled by
new deposits. The high resolution of satellite images helped to
outline and differentiate the different types of vegetation types
(grass, bush, trees) according to density, strata, and canopy
height. For example, an un-impacted forest could be identified
from the narrow strips of singed (still standing) and burnt
(blown down or snapped) forest affected by the ash-cloud
surges in the valley margins.

Identifying and mapping pyroclastic deposits from the
HSR images needs a cautionary approach because of three
factors. (1) The 0.50- to 2.50-m resolution of the satellite
images does not prevent us from misinterpreting in some cir-
cumstances the nature of deposit in complex successions or on
rugged topography for which the resolution is too low. (2) The
pyroclastic deposits were mined in the Gendol valley channel
soon after the eruption. We resolved the problem by
interpreting the pyroclastic deposits mostly from the two 15
November 2010 images, and we mapped the summit area
unaffected by human activities based on the 4 September
2011 GeoEye image. (3) Despite the high spatial resolution,
the images cannot be used to recognize the spatio-temporal
variation of lithostratigraphy that is inherent to the complex
succession of pyroclastic deposits produced by the 26-day-
long eruption over a rugged topography (Cronin et al. 2013;
Komorowski et al. 2013; Charbonnier et al. 2013). It is diffi-
cult to separate veneer PDC deposit units from reworked PDC
deposits when interpreting the image after 10 November
2010. Veneer PDC deposits consist mostly of pyroclastic
surge deposits and thin, dense PF deposits that mantle inter-
fluves with variable thicknesses. It is also impossible to dis-
tinguish spatial-temporal variations of lithofacies due to topo-
graphic obstacles in the rugged proximal zone near the sum-
mit. Komorowski et al. (2013) have described this issue in
detail. Instead, we show how the HSR imagery can comple-
ment field studies of the deposits by encompassing wide and
inaccessible areas on the volcano. We also present a method-
ology for delineating the areal extent of deposits after a large
eruption and before any erosion. Interpreting deposits from
damage on vegetation can bemisleading, but we distinguished
(1) the uppermost catchment swept by high-energy surges,
showing trees that were uprooted, knocked, and blown down
with preferential directions; (2) the narrow margins of the
valley/catchment affected by ash-cloud surges and character-
ized by broken, burnt, or singed trees without preferential
directions; and (3) ash-covered forest. The 0.5 m pixel reso-
lution thus allows for the distinction of categories of damage
in forest, on vegetation cover, and on tilled land.

Our interpretation from the satellite images was verified by
our selective field mapping of the south flank of the Merapi
volcano, low-altitude aerial photographs with 0.2-m resolu-
tion taken in January 2011 over the Gendol Valley, and other
field-based studies already published (Cronin et al. 2013;
Komorowski et al. 2013; Charbonnier et al. 2013; and Jenkins
et al. 2013). Geologic mapping based on HSR images cannot
identify the complex stratigraphic succession of the deposits
that were determined by Cronin et al. (2013); Komorowski
et al. (2013), and Charbonnier et al. (2013). However, our
maps provide a more complete spatial distribution of pyroclas-
tic (PDC and tephra) and lahar deposits from the summit to the
ring plain on the south and west flanks of the volcano (Fig. 3).
Our methodology (object-oriented and supervised
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classification), based on HSR images acquired on multiple
dates, helps to address four important issues.

1. Identification of the different types of pyroclastic and la-
har deposits on the entire volcano, in order to better un-
derstand the spatial patterns of damage and infer the pro-
cesses of emplacement and remobilization

2. Mapping volcanic deposits in inaccessible locations
3. Recording the remobilization processes of the pristine de-

posits by runoff and lahars in all catchments
4. Assessing the evolution of the new vent and dome struc-

tures in the summit area, which was disrupted during the
eruption, as well as the fractures detected across summit
lava flows and along crater rims

The 2010 VEI 4 eruption

Although small in magnitude (VEI 2), the 2006 eruption con-
tributed to the instability of the southern flank of Merapi af-
fected by the larger event in 2010. The analysis of the 2006

eruption contributed to our understanding of the behavior of
PDCs during the 2010 eruption in several ways. First, the
BGegerboyo^ rim wall, which formed during the 1911 erup-
tion (Global Volcanism Program 2007) and protected the
south flank of Merapi for the past 100 years, failed as a result
of the 27 May 2006 Bantul earthquake (Charbonnier and
Gertisser 2008), henceforth exposing these areas to PDCs.
Second, overbank and avulsion processes due to the construc-
tion of new check dams and dikes and the presence of narrow
bends in the Gendol river channel and subsequent flowage in
the hitherto protected tributaries were recognized for the first
time after this eruption (Charbonnier and Gertisser 2008,
2011; Lube et al. 2011) as the most severe hazard.

A summary of the 2010 eruption is given in Table 2 and
Fig. 4. Hundreds of thousands of people were displaced, 2300
houses were destroyed or severely damaged, and 376 people
lost their lives. Between 26 October and 8 November 2010,
the eruptive events around Merapi caused about 400,000 peo-
ple to be displaced for one and a half months (Mei et al. 2013).
The 2010 Merapi eruption was characterized by several
phases that produced numerous and voluminous PDCs at the
beginning of the rainy season (October–November). Various

Fig. 3 Map showing the 2010 PDC deposits on the southern flank of
Merapi and the tephra-fall and lahar deposits around Merapi. PDCs were
mapped using our interpretation of the 15 November 2010 GeoEye and
10 June 2011 SPOT5 images and checked at 50 localities with field
observations and GNSS ground control points. The tephra isopach map

is based on field observations carried out by a joint Indonesia (CVGHM)-
US (USGS/VDAP) team. The map of lahar deposits is based on our
interpretation of the 15 November 2010 and 10 June 2011 SPOT5
images. Black line boxes indicate the locations of Figs. 10, 11, and 12
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aspects of the eruption were discussed in detail by Surono et al.
(2012); Cronin et al. (2013); Komorowski et al. (2013);
Charbonnier et al. (2013), and Jenkins et al. (2013). Surono
et al. (2012) divided the 2010 eruption into four phases based
on radar remote sensing data combined with seismic monitor-
ing and ground-based observations. These are the following:
(1) the intrusive phase (31 October 2009–26 October 2010), (2)
the initial phreatomagmatic explosive phase (26October–1No-
vember), (3) the magmatic phase (1–7 November), and (4) the
waning phase (8–23 November 2010).

Komorowski et al. (2013) provided additional data
supporting the breakdown of the eruption into eight main
stages as follows (Fig. 4): stage 1, unrest and intrusion (31
October 2009–26 October 2010); stage 2, init ial
phreatomagmatic explosions (26–29 October 2010); stage 3,
recurrent, rapid dome growth, and destruction (29 October
2010–04 November 2010); stage 4, paroxysmal dome explo-
sion and collapse (05 November 2010); stage 5, retrogressive
summit collapse (05 November 2010); stage 6, subplinian
convective fountain collapse (05 November 2010); stage 7,
rapid dome growth with alternating effusive and explosive
activity (05–08 November 2010); and stage 8, declining ash
venting and degassing (08–23 November 2010).

The 2010 Merapi crisis produces PDCs that flowed down
the south and west flanks of the volcano. The deposits covered
an area of about 26 km2 in the Gendol-Opak catchment on the
south flank, which comprises 75 % of the total PDC deposit
area (Fig. 3). Charbonnier et al. (2013) have identified a total
of 23 PDC events in the Gendol-Opak catchment including
five main channeled flows, 15 overbank flows, and two main
surge events whose deposits totaled a bulk volume of approx-
imately 36.3 million m3. CVGHM volcano observation posts
reported PDC events on the west flank on 1, 4, 6, 7 and 8
November 2010. The PDCs traveled as far as 3–4 km toward
the Apu (northwest flank), Senowo, Lamat, Trising (west
flank), and Boyong-Bebeng Rivers (southwest flank). The
areal extent of PDC deposits in the northwest, south, and
southwest flanks (i.e., 6 km2) was inferred from the interpre-
tation of HSR images (Fig. 3), but the thickness of the deposits
remains unknown due to the lack of field measurements on the
inaccessible west summit flank. Intense rainfall events on
thick and poorly consolidated pyroclastic deposits covering
the slopes of Merapi generated lahars during and just after
the end of the eruption and endangered people living on and
close to riverbanks to the west, southwest, and south of the
volcano. The first lahars occurred on 27 October 2010 and
were channeled through the Boyong and Kuning Rivers
draining the southwest and south flanks (de Bélizal et al.
2013). Many of the lahars were confined to the channel, but
overflow breakouts 10–20 km downstream from the head wa-
ters of several large rivers damaged several villages and con-
tinue to threaten other villages near river channels more than
20 km from of the summit.T

ab
le
2

C
ha
ra
ct
er
is
tic
s
of

th
e
fo
ur

20
10

er
up
tio

n
ph
as
es

ba
se
d
on

Su
ro
no

et
al
.(
20
12
),
Pa
lli
st
er
et
al
.(
20
13
),
C
ro
ni
n
et
al
.(
20
13
),
K
om

or
ow

sk
ie
ta
l.
(2
01
3)
,C

ha
rb
on
ni
er
et
al
.(
20
13
),
C
V
G
H
M

re
po
rt
s,

an
d
ou
r
ob
se
rv
at
io
ns

Pa
ra
m
et
er

Ph
as
e
I
in
tr
us
io
n

Ph
as
e
II
in
iti
al
ex
pl
os
iv
e

Ph
as
e
II
I
m
ag
m
at
ic

Ph
as
e
IV

w
an
in
g

D
at
e

31
O
ct
ob
er

20
09
–2
6
O
ct
ob
er

20
10

26
O
ct
ob
er
–1

N
ov
em

be
r

1–
7
N
ov
em

be
r

8–
23

N
ov
em

be
r

A
ct
iv
ity

I,
Sp

D
e,
D
d,
P
D
C
,E

x,
A
pf
,S

p,
L

D
e,
D
d,
PD

C
,F

c,
E
x,
A
pf
,S

p,
L

E
x,
PD

C
,A

pf
,L

D
ef
or
m
at
io
n
(E
D
M
)

In
fl
at
io
n
ra
te
(s
ou
th

F
la
nk
)
<
10

to
>
50
0

m
m
d−

1
N
ot

de
te
ct
ed

(r
ef
le
ct
or

de
st
ro
ye
d
at

su
m
m
it)

N
ot

de
te
ct
ed

Ib
id

N
ot

de
te
ct
ed

Ib
id

Se
is
m
ic
ity

(m
ax
im

um
ev
en
ts
/d
ay
)

(m
ax
im

um
ev
en
ts
/d
ay
)

(m
ax
im

um
ev
en
ts
/d
ay
)

(m
ax
im

um
ev
en
ts
/d
ay
)

M
P
62
4

M
P
22
3

M
P
84

M
P
49

V
T
22
7

V
T
67

V
T
31

V
T
57

R
F
45
4

R
F
35
4

R
F
∞

R
F
38

M
ax
im

um
di
st
an
ce

of
PD

C
s
(f
ro
m

su
m
m
it

cr
at
er
)

–
7
km

to
w
ar
d
G
en
do
lR

iv
er

(s
ou
th

fl
an
k)

15
.5

km
al
on
g
G
en
do
lR

iv
er

(s
ou
th

fl
an
k)

~4
km

to
w
ar
d
G
en
do
lR

iv
er

(s
ou
th

fl
an
k)

M
ax
im

um
as
h
pl
um

e
he
ig
ht

–
18

km
>
15

km
7.
6
km

E
st
im

at
ed

ar
ea

co
ve
re
d
by

PD
C
de
po
si
ts

–
ca
.1
1
km

2
ca
.3
7
km

2
ca
.3

km
2

V
ic
tim

s
0

35
pe
op
le

34
1
pe
op
le

0

I
in
fl
at
io
n,

D
e
do
m
e
gr
ow

th
,
D
d
do
m
e
de
st
ru
ct
io
n,

P
D
C
py
ro
cl
as
tic

de
ns
ity

cu
rr
en
t,
F
c
fo
un
ta
in
-c
ol
la
ps
e
py
ro
cl
as
tic

fl
ow

,
E
x
ex
pl
os
io
n,

Sp
st
ea
m

pl
um

e,
A
pf

as
h
pl
um

e
an
d
te
ph
ra

fa
ll,

L
la
ha
r,
M
P

m
ul
tip

ha
se

ev
en
t,
V
T
vo
lc
an
o-
te
ct
on
ic
ev
en
t,
R
F
ro
ck
fa
ll
ev
en
t

Bull Volcanol  (2015) 77:20 Page 7 of 23  20 

��������������������������������������������������������������������������Chapter 4

124



Ash dispersed by the wind affectedmostly the west flank of
the volcano. The total thickness of tephra from several events
(among them, at least three that reached Yogyakarta) during
the 2010 eruption was plotted on a map (Fig. 3) where five
isopachs in the range 1 to 5.5 cm were contoured and one
additional 0.1-cm contour was inferred from reported ashfall
in the most distal area. A plot of the tephra thickness in a
logarithmic scale (T) against the square root of isopach area
(A1/2) shows deposit thinning rate fitted by an exponential
function with breaks-in-slope (two segments), a power-law
function, and a Weibull function (Fig. 5). The calculated bulk
volume of the tephra, derived by integrating the different func-
tions over given intervals, is shown in the inset table in Fig. 5.
Using the exponential method, we obtained a volume of 16±
2×106 m3 for single segment and 18±2×106 m3 for one and
two breaks-in-slope (two and three segments) curves. The
Weibull method yielded a tephra volume of 22±4×106 m3.
The power-law method yields both a larger volume and error,
as its integration is sensitive to the choice of the integration
limits due to a relatively low power-law coefficient (i.e.,
1.553). We used several variations with proximal and distal
boundaries to obtain volumes of 23±12×106 m3 (for

integration limit of 0.3–50 km), 32±13×106 m3 (0.3–
100 km), 22±9×106 m3 (0.5–50 km), 32±10×106 m3 (0.5–
100 km), 21±7×106 m3 (1–50 km), and 31±8×106 m3 (1–
100 km).

Impact of the 2010 eruption determined from HSR
imagery

Morphological and structural changes on the volcano summit

A comparative analysis of HSR satellite images of Merapi
before (IKONOS image of 7 July 2008; Fig. 6a, b) and after
(GeoEye-1 image as of 4 September 2011, Fig. 6c, and Pleia-
des image as of 29 September 2012, Fig. 6d) the eruption
allowed us to recognize and quantify the striking changes in
the summit morphology. The post-2010 evolution of Merapi’s
summit has not previously been imaged and interpreted in
detail, but the syn-eruptive morphological changes, eruption
deposits, and processes were discussed in detail by
Komorowski et al. (2013) and Charbonnier et al. (2013).

Fig. 4 Real-time seismic amplitude measurement (RSAM) data from
Merapi in October–November 2010. a Hourly and b 5-min RSAM data
(black histograms expanded below) associated with four phases (phases
1–4; Surono et al. 2012) and eight stages (S1–S8; Komorowski et al.

2013) of the 2010 Merapi seismic and eruptive crisis starting on
20 October and ending on 23 November. All times are in local time
(UTC +7 h)
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The eruption formed a large (400 m east–west×350 north–
south) summit crater that replaced the pre-2010 dome area and
the former remnant of the 2006 lava dome and removed the
1940 lava flows and parts of the 1954, 1956, 1957, 1992,
1997, and 1998 lava flows. The rectangular-shaped crater
walls cut down deeply (>100 m) in the thick lava dome lobes
and stubby flows that were emplaced during the twentieth
century. The south rim of the 2010 crater coincides with the
1961 crater, although the 2010 crater area is 40 % larger than
the 1961 vent. Inside the crater, a high rate (35 m3/s over 12 h)
of lava extrusion on 6 November 2010 (Pallister et al. 2013)
formed a lava dome 200 m in diameter with an area of 23,
000 m2 and a 15-m-wide central vent (Fig. 6c, d). The volume
of the lava dome may have been reduced, and the central vent
may have been enlarged, by the short explosive events taking
place since 2010 (e.g., on 18 November 2013 and 9 March
2014). The subsiding block, which might have acted as a vent
during the eruption (Pallister et al. 2013), is located on the
northwest and south of the 2010 dome (Fig. 6c, d). The north
side of the dome is occupied by a fumarolic area (Fig. 6c–e),
which acted as a source of the moderate phreatic and/or vul-
canian explosions on 22 July and 18 November 2013.

The BGendol breach^ (Camus et al. 2000), a major
southeast-trending elongated deep canyon that incises the SE
flank of Merapi toward the headwaters of the Gendol River,
was significantly lengthened (ca. 1.75 km) and deepened (ca.
250 m) (Fig. 6c–e). The Gendol breach is an unstable area
likely to be enlarged by mass wasting, given that the

northeast-facing wall, the longest and highest of the structure,
is composed of unconsolidated and hydrothermally altered
material. Moreover, the southeast portion of the crater wall
immediately above the Gendol River is formed by a promi-
nent 250-m-wide sliding lava dome that has lowered the crater
rim by at least 100 m. The extensive fracturing and loose
composition of the vertical crater walls engenders frequent
rockfalls, landslides, and undercutting.

Vegetation and soil were stripped by the 2010 PDCs down
to 1300-m elevation on the southwest, south, and southeast
flanks below the summit lava domes, which, prior to the erup-
tion, were bare only above 1800-m elevation. The lava flows
on the northeast, east, south, and southwest flanks show a
closely spaced pattern of furrows (e.g., across the 1888–
1909 and 1900 lavas, Fig. 6b, e) formed by erosive PDCs
descending from the summit area. Older pyroclastic sequences
that mantled the upper southwest and west flanks show a
pattern of closely spaced and deep gullies. This pattern most
likely resulted from scouring by surface runoff, which
remobilized tephra from the eruption during the first rainy
season.

Extent and behavior of pyroclastic deposits
in the Gendol-Opak catchments

The interpretation of the 15 November 2010 GeoEye image
reveals a complex distribution of pyroclastic deposits below
the summit, as discussed in previously published stratigraphic

Fig. 5 Semilog plot of thickness against the square root of isopach area
for the tephra fall of the 2010 Merapi eruption based on the following: a
two-segment exponential fit (Fierstein and Nathenson 1992), power-law

(Bonadonna and Houghton 2005), and Weibull (Bonadonna and Costa
2012) methods. The volume ranges of tephra-fall deposit are shown in the
inset table
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reports (Cronin et al. 2013; Komorowski et al. 2013;
Charbonnier et al. 2013). The 50-cm resolution of the 2010
GeoEye image allowed the identification of 16 spectrally or
texturally distinct areal units of PDC and tephra-fall deposits
and recorded modification of landforms and impacts to settle-
ments. In addition, we mapped lahar deposits that were
emplaced during the 10 days after the paroxysmal phase and
until a year and a half after the eruption. The geologic map
does not include all lithofacies and the complex stratigraphic
succession of the deposits as established by Cronin et al.
(2013), Komorowski et al. (2013), and Charbonnier et al.

(2013). Compared to maps published by Cronin et al.
(2013), Komorowski et al. (2013), and Charbonnier et al.
(2013), our geologic map provides a new detailed areal delin-
eation and a synthetic view of the spatial distribution of PDC,
tephra-fall, and lahar deposits from the summit to the ring
plain on the southern and western flanks of Merapi. The ex-
ception to these is the more detailed distribution of high-
energy surge deposits in the proximal area mapped by
Komorowski et al. (2013). The geologic map shows how
PDC and other deposits are distributed in five reaches along
the Gendol-Opak Valley from the summit to the ring plain

Fig. 6 Merapi’s summit as interpreted from HSR images. a July 07,
2008, IKONOS image showing the structure and faults of the Merapi
summit cone and b the distribution of summit lava domes and flows
before the 2010 eruption. c September 04, 2011, GeoEye, and d
September 29, 2012, Pléiades images showing the impact of the 2010

eruption for comparison with the image in b. These images are not
georectified. e Sketch map of the Merapi summit indicating the location
of the successive crater rims since 1822 (Voight et al. 2000; Camus et al.
2000), the Gendol breach enlarged in 2010, and the dates of their
formation.
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(Figs. 7 and 8). Reach boundaries were determined on the
basis of differences in geomorphic and depositional character-
istics: slope angle and breaks-in-slope as well as landform
types including valley channel and terraces or banks, scarps,
and fans, together with drainage density and hierarchy. An-
other distinction was based onto the location of PDC deposits,
either confined to the valley channel or unconfined on valley
banks and interfluves (Fig. 7; e.g., Kassouk et al. 2014). The
topographic and geomorphic characteristics of the catchment
played a role in the emplacement processes of PDCs. The
areal extent of confined and unconfined PDC deposits appar-
ently parallels radial valleys extending SSE in the Gendol-
Opak catchment from proximal to distal sites, but the distri-
bution pattern of PDC deposits is also transverse to the
Gendol-Opak catchment. The uppermost catchment (reach
1) best illustrates the transverse areal extent of PDC deposits,
while the geological map from the interpreted image shows
how interfluves and valleys influenced the emplacement of
PDCs across the catchment. Depositional changes are related
to the breaks in slope (among other factors linked to the PDC
behavior) that support the division of the valley into five
reaches (Fig. 7). We have subdivided the first three reaches
into two segments, each according to variation in the axial,

transverse, and longitudinal distribution of deposits with re-
spect to the Gendol River. The deposit types are categorized as
HSR mapped geologic units and distinguished by color and
number (see the map caption in Fig. 8e). Under this classifi-
cation scheme (Fig. 8e), the deposits fall in four categories
based on depositional processes and facies: (1) valley-
confined PDCs, mostly BAFs; (2) overbank PDCs, produced
by valley-confined PDCs (mostly BAFs and pumice or scoria-
rich PFs) that spill over the valley banks and mantled inter-
fluves; (3) high-energy surges, in the complex, proximal up-
permost area; and (4) lahar deposits. Other non-PDC elements
have been added (Fig. 8). We use the map unit numbers from
Fig. 8 to describe selected deposits of special interest in five
reaches.

Reach 1: southeast scar, Gendol breach, and head valley

Reach 1 encompasses the proximal summit slopes within
4 km from the vent, between ca. 2200 and ca. 1400 masl
and with an area of ca. 5 km2 (Fig. 7b). This reach was dev-
astated by high-energy surges (Komorowski et al. 2013),
which destroyed the forest and left the slopes almost bare over
an area of 1.5 km2. Important erosional features were well

Fig. 6 (continued)
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displayed on the 4 September 2011 GeoEye image (Fig. 6c).
Reach 1a consists of the steep (28°–34°) summit cone and the
steeply sloping (35°–41°) 5-km-long Gendol breach between
~2250 m (source) and ~1600 masl. This erosional area is
covered by 1–4-m-thick PDC deposits, which thicken in small
tributaries of the Gendol breach. Reach 1B includes uncon-
fined pyroclastic flow and high-energy surge deposits (unit 11
and part of unit 14, Fig. 8a, e), located within 4.5 km from the
summit, which have destroyed forests and settlements on the
steep uppermost slopes (18°–21°) above 950 masl. The dense
forest was severely devastated, suggesting that these slopes
were swept by high-energy surges (units 11 and 14 of
Fig. 8) on 26 October and 6 November, as described in detail
by Komorowski et al. (2013). Channeled flows in the deep
valley of reach 1B consist of complex stacked piles of BAFs
(units 2, 3, 12, and 13, Fig. 8a). Only the late (5–6 November)
pumice and scoria-rich PDCs (Komorowski et al. 2013) were
confined to valleys and are represented by deposits with wet
top surface in the 15 November 2010 image in the uppermost
course of the Gendol and Opak River courses (units 12 and

13). A small fraction of the 4–5 November 2010 PDCs was
rerouted upon emplacement in the Opak valley and tributary
(unit 3), into which these PDCs extended as far as 8.75 km
from summit (Fig. 8a).

Reach 2: thick PDC fan

Reach 2 is a thick, triangle-shaped PDC fan covering ca.
7.5 km2 between ca. 1200 m and 750 masl. The upper part
of this reach, reach 2A, is the extensive (7.5 km2), thick, up-
permost pyroclastic fan (unit 11) that extends below the first
major break-in-slope at 1150–1200 masl between the summit
cone and the upper flanks. This 3 km×2.5 km fan extends
downslope 8 km from the summit to ~750 m in elevation
(Fig. 8a). Extensive, 1–3-m-thick PDC deposits forming this
fan have been interpreted as the products of high-energy
surges (unit 11) that covered earlier and thicker BAF deposits
on the 5 November 2010 (Komorowski et al. 2013;
Charbonnier et al. 2013). The PDC deposits (mostly high-
energy surges of the late eruption stage as seen on the 15

Fig. 7 a Oblique view of the Gendol valley from the Merapi summit to
the distal ring plain near Prambanan temple shown by the 10 June 2011
SPOT5 image draped over a SRTM-DEM. b Longitudinal profile

showing reaches 1–5 with average slope values, keyed to the text, and
depicting the principal areas of PDC and lahar deposits, keyed to the
captions of Fig. 8
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November 2010 image) devastated villages and cultivated
areas on the ~8° sloping interfluves above 750–850 masl (unit
14). Blown-down trees, devastated houses, concrete power

poles, bridges, and damaged agricultural terraces reflect the
effects of high-energy surges emplaced by the climactic 5
November 2010 eruption (Jenkins et al. 2013). Undulating

Fig. 8 Geologic map of the pyroclastic and lahar deposits from the 2010
eruption in the Gendol catchment based on our compilation from the 15
November 2010 GeoEye image and field observations. The GeoEye
image is shown separately in the panels on the right side. Location of
the area is shown in Fig. 7. a Thick PDC fan in reach 2 located in the
upper catchment. b Largest overbank BAF and associated ash-cloud

surge (ACS) deposits forming reach 3A in the upper middle river
course. c Largest overbank BAF and associated ACS deposits forming
reach 3B in the lower middle river course. d Distal valley-confined BAF
deposits and associated ACS deposits forming the reach 4 in the
lowermost river course. e Description of the mapped units
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beds of gray ash deposited on the surface in this area suggest
sandwave surge bedforms. The upper fan (units 3 and 12) has
been eroded in 2011–2012 by the currently 50–60-m-deep

Gendol River and its east tributary, which coalesce downslope
at about 950-m elevation, and also by the Opak and Tepus
valleys (Fig. 8a).

Fig. 8 (continued)

 20 Page 14 of 23 Bull Volcanol  (2015) 77:20 

��������������������������������������������������������������������������The deposits and impacts of the large (VEI 4) 2010 Merapi eruption

131



Reach 2B, the lower part of reach 2, is a wider (2.5–
3 km), 20–30-m-thick pyroclastic fan (maximum thick-
ness observed in the valley banks on top of the pre-
2010 eruption soil) whose central axis changes from
north–south to south-southeast. Its apex is located at
the confluence of Gendol River and the east tributary
near Kaliadem at 950 masl while the present-day
Gendol River has cut down its eastern edge (Fig. 8a).
The fan, 1.625 km wide near Kali Opak to the west to
1.25 km near Kali Kuning to the east, consists of ex-
tensive, thick lobes of overbank or veneer flows and
surge deposits. Starting at the confluence at 9 km from
the summit, the 120–190-m-wide and 50-m-deep

winding Gendol channel was filled with thick (20–
50 m) PDC deposits in 2010. However, in 2011, the
channel has already cut as much as 20–30 m into the
deposits and the pre-2010 bedrock. Lobes of darker,
scoria-rich BAF deposits (unit 2) were also mapped in
the Gendol channel below the confluence with the east
tributary. The dark scoria-rich deposits were identified
on the basis of the NDRSI and exhibit broad lobes with
darker hues and higher roughness than other BAF de-
posits (Fig. 8a). These lobes adjacent to the main chan-
nel are clearly different from the later lahar material that
cuts and fills the pristine overbank deposits after their
emplacement.

Fig. 8 (continued)
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Reach 3: large overbank BAF and associated ash-cloud surge
deposits

Reach 3 covers a 0.5–1.2-km-wide fan with an area of ca.
3.6 km2 that was formed on the Gendol valley margins and
the interfluves between Opak and Kuning Rivers by thick
overbank BAFs and companion ash-cloud surges between
ca. 750 m and ca. 540 masl (Figs. 7 and 8a–c). Reach 3A
consists of a 30-m-thick (observed in previous valley) and
1.2-km-wide PDC fan that begins at the second break in slope
at ~750-m elevation (SE of Kopeng village) between 7 and
11 km from the summit (Fig. 8b). This largest PDC fan on the
south flank includes a >30-m-thick pile of BAF deposits (unit
7) and darker scoria-rich flow deposits (unit 2) that spilled out
from the Gendol channel over a 3°–5° slope. The overbank
flows (unit 7) occurred where the slope angle declined from 7°
to 5° (Fig. 8b) and the channel becomes rectilinear and
shallower (30 m) and changes its orientation from SSE to
south at ~780 masl. The apex of the largest BAF fan between
Kepuharjo and Kopeng (~715 masl, Fig. 8a) starts at the lower
end of a train of meanders. From the exit of the deep (50 m)
Gendol valley near Kepuharjo, the BAFs spilled over the
banks of the 20–30-m-deep former valley and produced ve-
neer deposits (Fig. 8b). These are thicker and wider (750 m)
toward the east than the west (500 m) due to the prevailing
slope of this interfluve between Gendol and Opak Rivers to-
ward the SSE.

Reach 3B corresponds to a large (1.2 km wide) fan of PDC
deposits that becomes narrower (750 m) between 11 and 13 km
down valley from Ngepringan (Fig. 8b). In the middle course of
the Gendol Valley, BAFs spilled over the margins and left 1–3-
m-thick overbank deposits (unit 7) at a change in slope angle
from 3° to 2° (gradient from 0.1 to 0.06 m/m). This is the tran-
sition from the cone to the ring plain at elevations between 720m
and 540 masl. At a distance of about 11.5 km from the summit,
overbank flows spread out from another meander in the Gendol
River, where the orientation changes from north–south to NNW-
SSE toward Bakalan (Fig. 8c). Upstream of Bakalan at 10 km
from the summit, channeled deposits spread out toward the west
0.5 km beyond the former Gendol River where a sinuous gorge
(50 m deep and 50–75 m wide) had a higher topographic gradi-
ent in this area prior to the 2010 eruption.

A damaged forest (unit 9) is present along both sides of the
devastated valley between 8 and 13 km from the summit
downstream from Kopeng (800 masl) and is associated in
particular with overbank BAF deposits (Fig. 8a–c). HSR im-
ages identify both burnt and singed forest in two narrow (50–
100 m), pinch-and-swell strips beyond the edges of the valley.
The outer strip of singed forest, adjacent to the pristine forest,
is distinguishable from the inner strip, adjacent to the bare
overbank deposits, in which unidentified pyroclastic deposits
are thoroughly mixed with entrained anthropogenic and or-
ganic debris on gentle slopes (unit 4). Accumulation of logs

and organic debris mixed with construction debris and gar-
bage is distinguished as a separate map unit 10. This unit is
present in areas of devastated villages and their cultivated
terraces (e.g., Bakalan, Fig. 8c). Numerous houses and some
damaged buildings (black rectangles) are still standing in this
area, although some that were almost buried cannot be recog-
nized. Beyond the devastated areas, the mapped unit 15 de-
picts paddy fields or pristine forest mantled by a veil of fine-
grained ash that settled from ash-cloud surges blown toward
the west valley edge. This thin ash veil was mapped on the 15
November 2010 image before any heavy rainfall. This would
not have been possible without the HSR image.

Reach 4: valley-confined BAF deposits and associated
ash-cloud surge deposits

Reach 4 corresponds to the rectilinear lower reach of the Gendol
valley extending from 13 to 16.5 km from the summit, which
channeled the 2010 confined BAFs and 2011 lahars on a slope of
ca. 3° (Fig. 8d). The longest confined BAF deposits (unit 1)
occurred on 4–5 November 2010 (two main BAF units accord-
ing to Komorowski et al. 2013). The nearly 4-m-thick BAF
deposits extend for 14.5 km down the Gendol valley. The de-
creasing width (200–250m) of overbank deposits on each valley
edge in reach 4 is attributed to decelerating flows on a wider,
coarser riverbed and higher topographic gradient valley. In addi-
tion, it appears that check dams, road bridges, and stonewalls
contributed to constricting and obstructing the flows, leading to
deposition. Between 13.5 and 16.5 km from the summit, the
BAF deposits, which are mixed with anthropogenic and organic
debris, form distinct narrow bands that coated the dikes on the
riverbanks and small areas of overbank spill outs (unit 8). Exten-
sive embankment walls, 4 m high and up to 2.5 km long, were
erected before the eruption in the lower reach of the river valley
below 450-m elevation as far as 13 km from the summit. The
BAF deposits spilled over these embankments to mix with water
from paddy fields and to produce mud ponds and short-runout
breakout mudflows, inundating villages and additional paddy
fields,mostly along thewest valleymargin (unit 16, e.g., Bakalan
or Bronggang, Fig. 8c) and the lowermost river channel. Such
breakout lahars occurred during the waning phase of the eruption
between 6 and 15 November 2010 as inferred from the GeoEye
image of 15 November 2010. These small mudflows are distin-
guishable from later lahars that formed in the Gendol and Opak
River valley bottoms after the eruption (Fig. 8d compared to
Fig. 9).

Wet block-and-ash deposits were produced as a result of
limited reworking by runoff following rainfall after 6 Novem-
ber 2010. Based on the 15November 2010 image, they are not
mapped as lahar deposits, but PDC deposits reworked by run-
off (unit 5) as observed in the Gendol River bed. Ponded water
typically occupied ca. 20 % of the lower reach of the Gendol
River on 15November, and areas of flowing water correspond

 20 Page 16 of 23 Bull Volcanol  (2015) 77:20 

��������������������������������������������������������������������������The deposits and impacts of the large (VEI 4) 2010 Merapi eruption

133



to springs and to resurgent river runoff at the interface between
the PDC deposits and the former river bed (unit 6, Fig. 8e).
This was observed as soon as the down-valley deposits were
thoroughly mined in 2011.

Reach 5: Opak-Gendol down valley and lahar deposits
beyond the BAF front

Reach 5 downslope of the Gendol valley is the lowermost
valley reach that we mapped beyond the 2010 BAF front be-
tween 275 and 200 masl and at a distance of 16.25 to 20 km
from the summit (Fig. 9c). After the eruption, lahars deposited
sediment within the enlarged river bed of the Gendol behind
check dams between Jambon Kidul and the confluence of
Gendol and Opak rivers at 20.5 km down valley (Figs. 7 and
9c). At this distance, the Gendol river valley was able to chan-
nel hyperconcentrated stream flows and floods toward the area
of the Prambanan temples another 5 km away. In May 2011,
such flows reached the area of Sentono and Prambanan temples
25 km away from the summit (Figs. 7 and 9c).

Post-eruption lahar deposits in 2011

Voluminous lahars were frequent and voluminous on the west
flank during the first two rainy seasons after the eruption, as the
watersheds were covered by extensive, loose PDC, and ashfall
deposits (Fig. 3). As many as 240 lahars occurred during the
2010–2011 rainy season (October 2010–May 2011), damaging
860 houses and 14 check dams and destroying 21 bridges (de
Bélizal et al. 2013). A voluminous lahar (about 1.5 million m3)

occurred on 3 January 2011 and inundated an area of ca.
0.28 km2. BNPB (the Indonesian National Board for Disaster
Management) reported that the lahar destroyed 65 houses and
damaged 118 houses in Jumoyo and four neighboring villages as
well as two bridges on the main Magelang-Yogyakarta highway
(Fig. 9a). More than 2000 people were evacuated from the vil-
lages located on the banks of the Kali Putih River while minor
damage also occurred along the Kali Krasak River (Fig. 9b).

Large but less frequent lahars also occurred on the south
flank. On 1 May 2011, additional lahars (about 1 million m3)
spilled out from the lowermost, narrow, and winding Gendol
River, inundated ~0.16 km2 on the west bank of the valley
(Fig. 9c). This lahar buried Ngerdi with approximately 2 m of
mud, destroyed 40,000 m2 of crops, and damaged 51 houses
(de Bélizal et al. 2013). These overbank lahars occurred along
the most sinuous part of the river course where tributaries of
the Gendol river cross low-relief slopes (<2 %) down valley
from the confluence with the Opak river. These inundation
areas are shown in maps derived from the 15 November
2010 and 10 June 2011 SPOT5 images along the Kali Putih
and Kali Krasak Rivers (at distances of 18 and 15 km, respec-
tively) on the southwestern flank and the Gendol River
(19 km) on the southern flank of Merapi (Fig. 9).

Discussion

Instability of Merapi’s crater rims

Any given dome growth, especially if associated with intense
shallow volcanic seismicity, a regional earthquake, or

Fig. 9 Comparison between enlarged excerpts from the 15 November 2010 and 10 June 2011 SPOT5 images shows the extent of lahar deposits and
highlights the effects of the 2011 lahar events along a Putih, b Krasak, and c Opak-Gendol Rivers
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endogenous deformation of the summit area, can exert impor-
tant strain on the fragileWSWwalls of the summit crater. This
could lead to the formation of another breached crater to the
WSW, which could focus future PDCs toward the numerous
valleys at the base of the west and southwest flanks of the
volcano from Senowo to Boyong Rivers (Fig. 6). Northwest
of the crater rim, landslides occurred in eroded and hydrother-
mally altered 1888 lava flows (Fig. 6c–e). If this activity con-
tinues, the landslide growth may breach the northwest rim of
the crater. However, the most important threat for the
population is linked to the Gendol breach (Fig. 6c–e),
which is likely to act as a favored passage for future lava
flows or PDCs, although the PDCs may shift toward the
southwest, west, or northwest. The Gendol breach parallels
a N140-trending fracture and a SE-trending fault group
that cuts the southwest and northeast rims of the crater.
In addition, a N230-trending fracture parallels the 1931
and 1961 scars. The crater rims with thin peaks and
marked notches owe their very craggy shape to the

explosive eruption processes. As the older dome rocks
were destroyed by the crater, the walls showed extensive
large-scale fracturing, fumarolic activity, and hydrothermal
alterations, particularly to the west and southwest
(Fig. 6c, d).

Behavior of the overbank PDCs and lahars

The complex phenomenon of overbank PDCs and lahars in-
volves many parameters, such as flow depth, volume and
dynamics, flow grain size, source mechanism, and the topog-
raphy and geometry of the flow-confining valley (Lavigne
et al. 2000; Lube et al. 2011; Andrews and Manga 2011;
Charbonnier et al. 2013; de Bélizal et al. 2013). On Merapi’s
slopes, the construction of check dams and dikes also plays a
role, especially concerning overbank PDCs (Lube et al. 2011;
Andrews and Manga 2011). Overbank flows strongly depend
on the geometry of the confining valley. The changes in chan-
nel capacity, channel geometry, and river gradient are critical

Fig. 10 Morphometric parameters of the Gendol River channel. a
November 15, 2010, GeoEye image of the upper middle course of the
Gendol Valley near the village of Kepuharjo showing a series of cross-
sectional profiles of Kh0–Kh9. bOne example of pre-event channel cross
sections Kh1, Kh3, and Kh8 used to determine three morphometric

indices: channel capacity (C in m2; w, width of affected area, in m,
longitudinal change in channel confinement (ΔC/ΔX in m2/m), and
channel sinuosity (Δθ/ΔX in deg/m). See Lube et al. (2011) for
calculation technique
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in terms of hazard assessment for people and villages near the
river banks and down valley. We have investigated the rela-
tionships between the topography of the Gendol Valley, the
morphology of the river channel, and the overbank process of
PDCs and lahars using the deposit map (Figs. 3 and 8), the
longitudinal profile (Figs. 10, 11, and 12), and the TOPO-
DEM. Factors that favor flow overspill from the river channel
include the channel cross-sectional area or capacity (C), the
longitudinal rate of channel confinement (ΔC/Δx), and the
channel sinuosity (Δθ/Δx) where x is the travel distance
(Fig. 10b; Lube et al. 2011).

We have analyzed major changes through ten transects
(Kh0–Kh9; Fig. 10) at distances of 8 to 11 km from the sum-
mit (near the villages of Kopeng and Kepuharjo), where PDC
deposits formed a large apron of overbank and veneer deposits
in reach 3A (Fig. 10). The Kh0–Kh9 cross-sectional profiles
display deposits mostly from the 4–5 November PDCs
(Komorowski et al. 2013; Charbonnier et al. 2013). Before
the 4–5 November 2010 events, the channel between Kh0
and Kh3 was partly filled by the 3 November 2010 valley-
confined PDCs (Charbonnier et al. 2013), which reduced the
channel capacity by 5–8% compared to the pre-event capacity
if we assume the thickness of valley-confined PDCs to be 3 m.

A clear correlation exists between the channel capacity and
the width of areas characterized by overbank deposits
(Fig. 10b) for which any reduction in channel capacity would
lead to wider affected areas. The Kh3 section, where the PDC
deposits expand laterally beyond the valley, exhibits the most
negative value of longitudinal channel confinement (−4.5 m2/
m), together with the relatively high value of longitudinal
change in channel sinuosity (0.13 deg/m). Kh3 is located at
the end of the reach having both the largest channel capacity
and the most meandering river channel.

Computation of channel geomorphic parameters from the
HSR images and DEM is also useful to anticipate sites of
future lahar overspills (e.g., Fig. 9), which can be enhanced
by a decrease in channel capacity and the existence of sharp
river bends. The case study of the May 2011 lahar that moved
overbank at the village of Ngerdi for a distance of 1400 m
down the Gendol Valley (Figs. 9c and 11) allowed us to com-
pute geometric parameters for the river channel where lahars
inundated about 0.16 km2 mostly on the west bank (Fig. 11a).
Figure 11 illustrates the pre-eruption valley cross sections with
longitudinal distance at a 20-m spacing between the upper
check dam in Bangsan Village (zero point, 19 km from the
summit) and the lower check dam (end point) 100 m

Fig. 11 a Low-altitude photograph of the Gendol Valley near the village
of Ngerdi (19.5 km from Merapi summit) showing the 1 May 2011 lahar
deposits. b Three morphometric indices have been computed: channel
capacity (C in m2), longitudinal change in channel confinement (ΔC/

ΔX in m2/m), and channel sinuosity (Δθ/ΔX in deg/m). Channel
overspill sites (white arrow) occur where the channel sinuosity is high
(>1 deg/m)
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downstream the confluence of Gendol and Opak Rivers
(20 km from the summit). Figure 11a shows the mapped ex-
tent of the lahar overbank at a distance of 1210 m from the
zero point. In the lahar inundation areas (red zone in Fig. 11a),
the wetted channel cross section is always less than 210 m2,
which is defined as the critical channel capacity. However, no
overbank lahar occurred 1300 m downstream from the zero
point although the channel capacity drops below 210 m2

(Fig. 11b). This may be due to the distance factor and capacity
expansion in the upper stream that result in a decrease in lahar
volume and velocity.

Dikes were built using lahar deposits along the riverbank
from the zero point up to 450 m in distance, in order to protect
the villages. Although up to 100 m2 has been added to the
channel cross section, the engineered dikes are ineffective as
the capacity of the channel remains lower than the 210-m2

critical wetted cross section of the 1 of May 2011 lahar. The
capacity curve C (Fig. 11b) reaches its minimum at the dis-
tance of 350–450 m, where the lahar avulsion occurred
(Fig. 11a). For the channel segment with capacities less than
210 m2, the longitudinal change in channel confinement,ΔC/
ΔX, with distance (Fig. 11b) is less than 4 m2/m and mostly
less than 1 m2/m, with no significant negative minima. The
curve forΔθ/ΔX (Fig. 11b) has seven maxima where channel

sinuosity increases above 1 deg/m, three of which exceed
1.5 deg/m at distances of 450, 550, and 700 m from the zero
point. High channel sinuosity, and hence potential for flow
acceleration, in outer bends may lead to overbank/avulsion pro-
cesses. Lahars currently threaten the area of the iconic Prambanan
temple farther down the Opak River. Future lahars may travel
farther downslope getting closer to the Prambanan temples and
the Yogyakarta airport. We applied geomorphometric indices an-
alyzed in theMay 2011Ngerdi village case study to the area near
the Prambanan temples. In this area, we found three spots where
channel sinuosity exceeds 1 deg/m and channel capacity is below
210 m2 (Fig. 12). These spots are potential sites for future lahar
overbank flows if the lahar volume and velocity are equal to or
greater than the May 2011 Ngerdi event.

Volumes of the 2010 Merapi deposits

Previous studies have estimated the volumes of the Merapi
2010 erupted material, particularly the deposits in the
Gendol-Opak catchment on the south flank. Estimating the
PDC bulk volume is difficult owing to the lack of any high-
resolution pre-eruption DEM. Charbonnier et al. (2013) esti-
mated a bulk volume of about 36.3×106 m3 of PDC deposits
based on field data and HSR satellite imagery, while Bignami

Fig. 12 a Low-altitude photograph of the Opak-Gendol Valley near the
Prambanan temple (25 km fromMerapi summit) with the outlined profile
of b the three morphometric indices: channel capacity (C in m2),

longitudinal change in channel confinement (ΔC/ΔX inm2/m), and chan-
nel sinuosity (Δθ/ΔX in deg/m)
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et al. (2013) determined a volume of ca. 40×106 m3 using
synthetic aperture radar (SAR) data. Komorowski et al.
(2013) estimated using field data and HSR satellite imagery
a bulk volume of ca. 41×106 m3 for PDC deposits from stages
3 to 6 in the Gendol-Opak Rivers system to which the bulk
volume of PDC deposits of stage 2 must be added that are
included in the 6×106 m3 DRE volume of the crater formed
during stage 2 on 26 October 2010. Surono et al. (2012) de-
termined a range of bulk volumes between 20 and 40×106 m3

for the PDC deposits and between 10 and 20×106 m3 for the
tephra-fall deposits.

We calculated areas of each category of the PDC and
tephra-fall deposits on the basis of CVGHM data and our
image interpretation and field surveys, as we were not able
to measure deposit volume for each of the eight stages of the
eruption (Table 3). Using HSR (50 cm) imagery, we measured
the total area covered by PDCs as 26±2×106 m2 in the south
flank and 9±2×106 m2 for areas on the northwest, west, and
southwest flanks combined. Based on our maps and GNSS

measurements and the CVGHM estimates of thicknesses,
PDC deposits (including valley-confined, overbank, veneer
PFs, and high-energy and ash-cloud pyroclastic surge de-
posits) total a bulk volume of 45±10×106 m3 (Table 3). The
large uncertainty takes into account that the full thickness of
the valley-confined 2010 deposits is not yet exposed in all
valley reaches and considerable variations in thickness can
be observed in thin veneer or thick overbank PDC deposits
beyond the valley edges. The tephra-fall deposit covered an
area of about 1300 km2 with volumes of 18±2×106 m3, 21±
7×106 m3, and 21±4×106 m3 based on exponential (two and
three segments), power-law (1–50-km integration limit), and
Weibull methods, respectively (Fig. 5 and Table 3). However,
our calculation is biased by the lack of tephra measurements
on the summit. Overall, the Gendol-Opak catchment, which is
located SE of the tephra dispersal lobes (Figs. 3 and 6), con-
tains about 10–15 % of the total volume of the tephra-fall
deposit but encompasses as much as 65–70 % of the total
PDC bulk volume.

Conclusion

The 26 October–23 November 2010 eruption isMerapi’s larg-
est event (VEI 4) over the past 140 years. HSR images from
the GeoEye satellite, collected on 15November 2010, allowed
us to test the capability of remote sensing in identifying and
differentiating a complex spectrum of pyroclastic deposits and
also interpreting the effects of the 2010 PDCs on Merapi’s
landforms, vegetation, and settlements. We chose the
Gendol-Opak Rivers on the south flank for intensive study
because the available GeoEye images with 0.5-m resolution
show considerable detail in this region. This area of Merapi
was the most affected by the eruption and contained 60–75 %
(bulk volume) of the total volume of the 2010 PDC deposits.
The channeled PDC deposits reached a significant distance of
16.5 km and were associated with ash-cloud surges, while
unconfined PDCs and high-energy surge deposits formed a
3- to 5-km-wide apron of deposits on the upper slopes. The
15 November 2010 GeoEye image provided a snapshot dur-
ing the waning phase of the eruption, allowing us to recognize
(1) fresh landforms and deposits associated with valley-
confined and unconfined PDCs; (2) severe PDC impacts on
devastated villages and housing, cultivated terraces, and for-
ests; (3) mudflows fed by water from rice fields beyond the
river banks overrun by PDC deposits; and (4) small features
such as flow lobes, levees, tree logs, and debris strewn on the
top surface of pyroclastic flow deposits. Additional SPOT5
and GeoEye images enabled us to map lahars that travelled
down three drainages on the west and south flanks a year and
half after the eruption.

We reappraise the hazard assessment for the south flank of
Merapi (Thouret et al. 2000). The 2006 Yogyakarta

Table 3 Areal and volumetric characteristics of the 2010 PDC and
tephra-fall deposits from Merapi in the Gendol-Opak catchment

Location Deposit Surface
(× 106 m2)

Mean thickness
(m)

Bulk volume
(× 106 m3)

Reach 1 PFs 0.36 4–6 1.8

VOB 0.46 2–3 1.15

Surges 4.39 0.05–0.15 0.44

Reach 2 PFs 0.52 25–35 15.6

VOB 2.76 2–4 8.28

Surges 13.04 0.1–0.4 3.26

Reach 3 PFs 0.39 10–20 5.85

VOB 2.68 2–4 8.04

Surges 1.3 0.01–0.1 0.07

Reach 4 PFs 0.28 3–5 1.12

VOB 0.15 0.1–1 0.08

Surges 0.4 0.01–0.1 0.02

Gendol–Opak
catchment

Total

PFs 1.55 3–35 24.37

VOB 6.05 0.1–4 17.55

Surges 6.55 0.01–0.1 3.79

PDCs 26.33 45.71±10a

NW, W, and
SW flanks

PDCs 8.93 0.1–3b 7.08±4b

All T-fall ~1300 21±4c

PF valley-confined pyroclastic flow, VOB veneer and/or overbank pyro-
clastic flow, surges high-energy and ash-cloud surges, T-fall tephra fall
a PDC volume by previous study: 20–40×106 m3 (Surono et al. 2012),
36.3×106 m3 (Charbonnier et al. 2013), 40×106 m3 (Bignami et al.
2013), at least 41–50×106 m3 (Komorowski et al. 2013), and 48.62×
106 m3 (Cronin et al. 2013)
b Underestimated or overestimated due to the lack of thickness
measurements
cWeibull method
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earthquake and emplacement of the 2006 PDCs led to the
collapse of the buttressing southern rim of the summit and
deep incision of the upper part of the Gendol River (Gendol
breach) directed to the SE. However, the exceptional run-out
of PDCs in 2010 to 16.5 km was unexpected. Our new hazard
assessment indicates the following issues (areas, deposits, and
processes) at stake in the near future.

1. The new, enlarged, and deep summit crater is unstable.
Rockslides originate from either the steep inward or out-
ward facing rims. Phreatic, phreatomagmatic, or small
vulcanian events such as the 22 July 2013, 18 November
2013, and 9 March 2014 eruptions (BPPTK/Merapi Vol-
cano Observatory reports) will pose threats to visitors and
scientists around the summit area and can weaken the
already unstable rims of the summit crater.

2. The enlarged summit scar and the Gendol breach may act
as a pathway for future flows, and the high, steep, frac-
tured, and hydrothermally altered walls of the breach are
subject to rockfalls and earthquake-triggered landslides.
The voluminous unconsolidated 2010 deposits in the
breach and in the gorge down valley (reach 1A), together
with the newly exposed hydrothermally altered rocks, will
continue to feed lahars in the future.

3. Unlike the thick PDC fans on the upper slopes, where half
of the surface has been colonized by vegetation, a large
amount of sediment accumulated in all valleys is still bare
and being remobilized by lahars. In particular, the PDC
deposits channeled in the Gendol River between 8 and
11.5 km from the summit and the upper PDC fan in the
vicinity of Kaliadem (Fig. 7) and the Gendol gorge cur-
rently supply lahars to the ring plain as far as 20 km from
the summit.

4. The drainage network may transfer lahars beyond our
study area until the pyroclastic deposits have been entirely
removed within a few years. Field evidence shows that
such reworking is developing at a fast rate. Lahars derived
from the remobilization of ~45 million m3 of PDC de-
posits are less frequent on the south flank but typically
larger in volume than those on other flanks (de Bélizal
et al. 2013). However, mining extraction since 2011 has
already removed the majority of the PDC deposits within
the Gendol channel ranging from a distance of 7 km from
the summit (upstream of Kopeng, Fig. 7) to the 2010 PDC
front down valley (Jambon Kidul, Fig. 7).

5. Lahar overspill is the most hazardous process acting along
the lowermost river courses of Kali Putih toward the city
of Magelang and along the Gendol-Opak Rivers which
transport material toward the Prambanan temples and to-
ward the Yogyakarta airport. Long stretches of narrow
channels were inundated by sand-size sediment between
16.5 (Jambon Kidul) and 19.5 km (Krebet, Fig. 7) in 2011
and 2012. Lahar disasters in 2011 can be attributed to the

low topographic valley gradient (0.04 m/m) of meander-
ing rivers across the <2° ring plain and the limited capac-
ity (200–300 m2) of river channels. Lahars currently
threaten the area of the iconic Prambanan temple farther
down the Opak River. Future lahars may travel farther
downslope getting closer to the Prambanan temples and
the Yogyakarta airport. By applying geomorphometric in-
dices analyzed in the May 2011 Ngerdi village case study,
we found that three spots near the Prambanan temples are
potential sites for future lahars overbank processes.

The 50-cm resolution of the satellite images allowed iden-
tification of 16 areal units of tephra and PDC deposits, mod-
ifications of the summit area, impacts on settlements, and
mapping lahar deposits within a year and half of the eruption.
Although the remotely sensed geologic maps cannot include
the complex stratigraphic succession of the deposits (see
Charbonnier et al. 2013; Komorowski et al. 2013), the tech-
nique allows us to determine a more complete spatial distri-
bution of PDC, tephra, and lahar deposits on the entire volca-
no from the summit to the ring plain of Merapi. Remotely
sensed data enable us to trace the temporal evolution of a
pyroclastic eruptive sequence as a result of erosion, removal,
and recolonization by vegetation. Moreover, its ability to cap-
ture fresh, pristine features and extent of deposits shortly after
emplacement and before any reworking highlight the purpose
of using HSR imagery on persistently active volcanoes where
access for field surveys is often impossible.
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Chapter 5 - The 2010 Merapi pyroclastic deposits map 

based on satellite radar data 

5.1. Introduction  

The volcanology community has long recognized the advantages of synthetic aperture 

radar (SAR), a technique that allows high-resolution radar images to be created from 

data acquired by side-looking radar instruments, carried by aircraft or spacecraft 

(Curlander & McDonough, 1991). A great advantage of radar remote sensing is that its 

observations are independent of cloud cover, light rain, smoke haze and solar 

illumination due to active measurement and longer wavelength. SAR system provides 

imagery that characterizes the physical properties of the terrain surface. A SAR image 

has both an amplitude and a phase assigned to each resolution element on the ground 

illuminated by the radar. The amplitude of a SAR image can be interpreted in terms of 

backscattering properties of the Earth’s surface. The phase is not informative on its own, 

as it contains a pseudo-random phase contribution from the configuration of scatterers 

within a resolution element on the ground. However, if two observations of the same 

terrain from very similar position are available, the difference in phase between two 

images can be interpreted in terms of the change in range from the radar instrument to 

the ground. This technique is called Interferometric SAR or InSAR with a capability to 

measure signals from eruption-related surface deformation (Massonnet et al., 1995; 

Zebker et al., 1996).  

Earth observation by satellite SAR have resulted in numerous new insights into active 

volcanism, including a better understanding of subsurface magma storage and transport, 

deposition of volcanic material on the surface, and the structure and development of 

volcanic edifices (Pinel et al., 2014). During the 2010 Merapi crisis, SAR amplitude data 

have proven their interest by providing frequent and detailed images of the volcano to 

document and track changes at the summit, quantify lava dome discharge rate and 

extent of pyroclastic density currents (PDCs) (Pallister et al., 2013). This information 

was used to assist and facilitate hazard mitigation efforts that probably prevented 

extensive loss of life during the crisis (Surono et al., 2012; Pallister et al., 2013). SAR 
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interferometry was also used to define a time-series of ground surface displacement at 

Merapi (Saepuloh et al., 2013) and estimate the volume of 2010 Merapi PDC deposits 

along the Gendol River (Bignami et al., 2013). Yulianto et al. (2013) generated a map of 

2010 Merapi pyroclastic deposits and their impact based on change detection using SAR 

data.  

Our study, presented in Chapter 5, aims to characterize the 2010 Merapi pyroclastic 

deposits based on the combination of the amplitude evolution with temporal 

decorrelation information from SAR data. The most important surface characteristics 

that control the strength of SAR backscatter are moisture content, roughness, and slope. 

Surfaces that are oriented toward the radar, roughness on the scale of radar wavelength, 

and/or moisture will generally have stronger reflected returns than those that are not. 

On volcanoes, roughness and slope tend to be the most important of these factors, and 

they define much of the variation in amplitude within a radar image (Gaddis et al., 

1989). The reflected signal received by a SAR sensor is a function of the characteristics 

of the scatterers within a resolution cell on the ground. If the geometry of the scatterers 

changes between the times of two SAR acquisitions, the reflection from that resolution 

cell will not be correlated between the two images (incoherence). Changes in amplitude 

and incoherence may provide evidence of volcanic activity, including emplacement of 

new deposits and destruction of pre-existing landforms.  

Previous SAR studies on eruptive deposits were restricted so far to the use of one 

polarization and only based on the variation of the amplitude in the SAR images. Most of 

the studies utilising polarized data have dealt with lava flows; however, Saepuloh et al. 

(2012) used full polarimetric L-band ALOS data to map volcanic deposits resulting from 

explosions at Sakurajima, Japan. Therefore, the principal objective of this study is to 

examine the utilization of direct- and cross-polarized SAR data in order to identify and 

map pyroclastic deposits. This study is achieved by using a set of L-Band ALOS-PALSAR 

images acquired before, during and after the event. The pyroclastic deposits maps are 

generated based on surface change detection from coherence and amplitude ratio 

images, and supervised classification based on Maximum Likelihood Classification 

(MLC) and Support Vector Machine (SVM) methods.  
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5.2. Mapping the 2010 Merapi pyroclastic deposits using SAR data 

This section corresponds to an article published in Remote Sensing of Environment in 

2015. 

Mapping the 2010 Merapi pyroclastic deposits using dual-polarization 

Synthetic Aperture Radar (SAR) data 

Akhmad Solikhin1, 3, Virginie Pinel2, Jean Vandemeulebrouck2,                           

Jean-Claude Thouret3, Muhamad Hendrasto1  

1 Center for Volcanology and Geological Hazard Mitigation, Jalan Diponegoro 57, 

Bandung Indonesia 
2  ISTerre, Université de Savoie, IRD, CNRS, 73376 Le Bourget du Lac cedex, France 
3 PRES Clermont, Université Blaise Pascal, Laboratoire Magmas et Volcans UMR 

6524 CNRS, IRD-R163 and CLERVOLC, 5 rue Kessler, 63038, Clermont Ferrand 

cedex, France  

 

Highlights: 

�� We characterize pyroclastic deposits using co- and cross-polarized L-band 

SAR data.  

�� We use L-band ALOS-PALSAR images to classify the 2010 Merapi pyroclastic 

deposits. 

�� Changes in radar amplitude efficiently enable us to map the pyroclastic 

deposits. 

�� Maximum likelihood classification helps to map 4 main pyroclastic deposit 

units. 

�� Temporal decorrelation information has improved the classification results. 

 

Remote Sensing of Environment 158 (2015) 180-192 

Supplementary data to this article can be found in Appendix C 
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L-band ALOS-PALSAR images acquired before, during and after the 2010Merapi eruption have been used to clas-
sify and map the pyroclastic deposits emplaced during this VEI-4 event. We characterize the deposits using
direct-polarized and cross-polarized L-band SAR data and by combining the information of amplitude evolution
with temporal decorrelation. Changes in amplitude of the radar signal enable us to map the pyroclastic density
currents (PDCs) and tephra-fall deposits. Radar amplitudes in direct (HH) and cross (HV) polarizations decrease
where the valley-confined and overbank block-and-ash flow (BAF) deposits (D1) are emplaced. Rainfall- and
runoff-reworkedPDCdeposits (D2) are characterizedby an increase in ground backscattering for HHpolarization
and a decrease for HV polarization. Ground backscattering transiently increases in both polarizations after
pyroclastic surge (D3) and tephra fall (D4) deposition.We use a supervised classificationmethod based onmax-
imum likelihood to map the deposits D1–D4. The temporal decorrelation of the radar signal and the amplitude
evolution improve the quality of classification results. Classification derived from ALOS-PALSAR images using
the maximum likelihood classification provides a result with 70% classification accuracy for deposits overall.
The estimated areas of valley-confined and overbank PDC deposits (either primary or reworked by rainfall and
runoff) are consistent with the areas measured by other studies, while the large discrepancy in area estimated
for pyroclastic-surge deposits can be partly explained by the strong erosion due to intense rainfall that removed
a large part of these thin deposits.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Remote sensing has long been recognized as an essential tool to
study volcanoes and the benefit of these new techniques tomodern vol-
canology was recently highlighted (Pyle, Mather, & Biggs, 2013; Sparks,
Biggs, & Neuberg, 2012). Optical, radar and thermal satellite imageries
can be used to map structural features and eruptive deposits thus
contributing to the information required to produce hazard maps and
forecast the impact of future eruptions (e.g., Hooper, Sigmundsson, &
Prata, 2012). The interest of remote sensing is emphasized at volcanoes
where ground based monitoring and field work are hazardous or im-
possible, due to natural (eruptive activity, dense vegetation, rugged
relief, etc.) or political conditions (Head, Maclean, & Carn, 2012). Most
studies are based on optical data taking advantage of the high resolution
of GeoEye, WorldView, Quickbird and Pléaides sensors now available
with sub-metric image pixels (Solikhin, Thouret, Gupta, Harris, & Liew,

2012; Thouret et al., 2010). In contrast to optical sensors, Synthetic
Aperture Radar (SAR) data may provide information during day or
night, independent of themeteorological conditions, andmay penetrate
the vegetation canopy for longwavelengths (Saepuloh, Koike, & Omura,
2012). SAR data therefore provide useful information in humid tropical
environments where volcanoes are often densely vegetated and cov-
ered by clouds (Carn, 1999; Lu & Dzurisin, 2014).

The application of radar data to volcano deformationmeasurements
has been described in detail by Massonnet and Sigmundsson (2000).
Zebker, Amelung, and Jonsson (2000) show that, in addition to defor-
mation measurements, Interferometric SAR (InSAR) is a suitable tool
tomap deposits and track changes in topography. The radar echo is sen-
sitive to any change in the distribution of scatterers within a resolution
cell at the ground. As a result, if scatterers are moved or replaced by
a new set, as in the case of the emplacement of new lava flows, this
can easily be detected through multi-temporal SAR images. Detection
can be based, either on evolution of reflectivity, i.e. the amplitude
of the radar images, or on the temporal decorrelation of the signal.
Decorrelation of the signal has been successfully used by Zebker,
Rosen, Hensley, and Mouginis-Mark (1996) to estimate the surface
changes of an active pahoehoe lava flow at Kilauea, Hawaii and, with
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the estimated lava flow thickness, to quantify the mean effusion rate.
Dietterich et al. (2012) use the same method to map lava flows over
a period of seven years. Coherence has been also used by Wadge,
Scheuchl, and Stevens (2002) to map pyroclastic-flow deposits using
two images acquired within a 24-hour time interval, and by McAlpin
and Meyer (2013) to map lahar deposits emplaced during the 2009
eruption of Redoubt volcano, Alaska. Changes in radar amplitude have
also been largely used for mapping new erupted products and deposits
from volcanoes (Cracknell & Reading, 2014; Saepuloh, Koike, Omura,
Iguchi, & Setiawan, 2010). The changes are usually quantified by calcu-
lating the difference or the ratio between amplitudes of successive
acquisitions (Wadge et al., 2002, 2011). High-resolution amplitude im-
ages (with ground resolution of onemeter) can also be used to estimate
the eruptive deposit thickness using the radar shadowing (Wadge et al.,
2011), resulting in improved estimates of the eruption rate and its tem-
poral evolution (Wadge, Saunders, & Itikarai, 2012).

Ground backscattering depends on the local topography, soil rough-
ness and surface moisture. However, ground backscattering is also a
function of the radar wavelength and, for a given wavelength, it de-
pends on the polarization of the radar emission and reception. Surfaces
oriented towards the radar, rough at the scale of the radar wavelength
and/or moist, will have stronger reflected returns than those that are
not oriented towards the radar. Several airborne SAR systems and the
Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/
X-SAR) acquired polarized data in L, C and X bands over a few active
volcanoes. These data sets have shown that the L-band yields the best
results to map lava flows and distinguish several units (Gaddis, 1992;
MacKay & Mouginis-Mark, 1997; Schaber, Elachi, & Farr, 1980) and
the use of various polarizations significantly improves lava flow charac-
terization (Dellwig &Moore, 1966; Zebker, van Zyl, &Held, 1987). How-
ever, no general agreement exists on themost adequate polarization for
classification of volcanic deposits between direct-polarized (same po-
larization direction for transmitting and receiving) and cross-polarized
(orthogonal polarization directions for transmitting and receiving)
(Blom, Schenck, & Alley, 1987; Gaddis, 1992). Most of the studies per-
formed with polarized data deal with lava flows, however Saepuloh
et al. (2012) used full polarimetric L-band ALOS data to map volcanic
deposits resulting from explosions at Sakurajima, Japan.

The objective of this study is to identify andmap volcanic (pyroclastic)
deposits using direct-polarized and cross-polarized L-band SAR data and
to combine the information gained from amplitude evolution with tem-
poral decorrelation. The 2010 eruption of Merapi volcano, as described
in the Section 2 of this paper, is used as a case study. Section 3 describes
ALOS-PALSAR datasets processing and methodology followed in this
study. Section 4 presents the results and discussion while the last section
provides the conclusions of the study.

2. Case study: the 2010 Merapi pyroclastic deposits

Merapi (7°32.5′ S and 110°26.5′ E) is one of the most active volca-
noes in Indonesia and located in the densely populated Province of
Yogyakarta in Central Java (Fig. 1a–b). The volcano is well known for
its block-and-ash flows (BAFs) produced by repeated collapses of sum-
mit lava domes, a specific type of pyroclastic density current (PDC)
commonly associated with dome growth and collapse. BAFs refer to
ground-hugging hot avalanches and flowingmixtures of volcanic parti-
cles and gas (Branney & Kokelaar, 2002). More than 74 eruptions have
been recorded at Merapi since 1548 A.D. and at least seventeen of
them, including the 2010 one, have caused fatalities.

The 26 October–23 November 2010 eruption was the Merapi's
largest event (Volcanic Explosivity Index 4) of the last 140 years. In
order to relate the collection times of the different images to chronology
of this eruptive sequence, we use the daily seismic spectral amplitude
measurement (SSAM, Budi-Santoso et al., 2013; Syahbana, 2013) as a
representative parameter of the eruptive activity (Fig. 2). The 2010
Merapi crisis encompassed several episodes of PDCs, channeled mostly

towards theGendol–Opak catchment on the southern flank, where they
reached a distance of 16.5 km from the summit (Fig. 1c). The most
voluminous PDC was deposited during the peak phase of the eruption
on 4–5 November 2010 (Fig. 2). PDC deposits cover an area of
~22.3 km2, are composed of valley-confined and overbank deposits
(29.3% area) and surge and associated tephra-fall deposits (70.7%)
(Charbonnier et al., 2013). During the eruption, tephra fall dispersed
by thewind affectedmostly thewest flank of the volcano, totaling a vol-
ume of 21 ± 4 × 106 m3 (Solikhin et al., in revision). Since the eruption,
muchof the PDCdeposits have been partly transformed into lahars (vol-
canic mud flows) and another large part have beenmined for construc-
tion material.

Remote sensing has been largely applied to characterize the deposits
of the 2010 Merapi eruption, either based on optical data (Charbonnier
et al., 2013; Komorowski et al., 2013; Solikhin et al., in revision) or SAR
images using X-band (Bignami et al., 2013) or L-band (Saepuloh et al.,
2013; Yulianto, Sofan, Khomarudin, & Haidar, 2013). As SAR images
can be used to track lava extrusion and domegrowth at highly explosive
andesitic volcanoes, theywere essential formanaging the 2010 eruptive
crisis ofMerapi (Pallister et al., 2013). However, previous SAR studies on
eruptive deposits were restricted to the use of one polarization and only
based on the variation of the amplitude in the SAR images.

3. Data processing and methods

3.1. ALOS PALSAR dataset

We used L-band SAR data acquired by the Phased Array L-band
Synthetic Aperture Radar (PALSAR) on board of the Japanese Advanced
Land Observing Satellite (ALOS). Table 1 summarizes the details of
ALOS-PALSAR images used for this study. Data are from ascending
track 431 acquired with an incidence angle of 34.3°. We utilized five
dual polarization (dual-pol, Fine Beam Double Polarization, termed
FBD) datasets in horizontal transmit-horizontal receive (HH) and hori-
zontal transmit-vertical receive (HV) polarizationmode. These datasets
were acquired before (on 13 September 2009, 16 June 2010 and 16
September 2010; Fig. S1a), during (on 1 November 2010), and after
(on 1 February 2011) the 2010 eruption (Fig. 2). We also utilized one
single polarization (Fine Beam Single Polarization, termed FBS) dataset
(HH) acquired after the eruption (on 17 December 2010).

3.2. Amplitude and coherence extraction

First, all raw data (Level 1.0) were transformed into arrays of com-
plex numbers or Single Look Complex (SLC) data, which retains the
phase and amplitude information of the original SAR data. SLC images
were then co-registered and amplitude images were multi-looked
(eight looks in azimuth and four in range) endingwith a pixel resolution
of 28.4 m in azimuth and 33.2 m in ground range. Amplitude images
contain variations in brightness (the amplitude of the signal), which
reflects spatial variations of the physical characteristics of the ground
surface (the reflector). Georeferenced amplitude images after pyroclas-
tic deposit emplacement are shown on Fig. 3a–d for the direct (HH) and
cross-polarization (HV) data. The phase information from SAR images is
extracted by differencing two images that are separated in time. An
imagemap of coherence or the constancy of phase information is gener-
ated from standard practices that are part of the interferometric pro-
cessing. Our coherence image (Fig. 3e) is obtained when forming the
interferogram between the two HH polarization images acquired on 1
November 2010 and 17 December 2010, this pair of images having the
best baseline (temporal baseline = 45 days, perpendicular baseline =
15 m) of all pairs in our dataset. Areas with a good coherence (value
close to 1) appear as bright, whereas dark areas indicate a poor coher-
ence (value close to 0). ALOS-PALSAR data processing was performed
using ROI_PAC software (Rosen, Henley, Peltzer, & Simons, 2004).
Amplitude and coherence images were geocoded using the Shuttle
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Fig. 2.Daily data of seismic spectral amplitudemeasurement (SSAM) ofMerapi as recorded at the Plawangan (PLA) seismic station on the southernflank ofMerapi (Fig. 1c) overlain by the
acquisition date of ALOS-PALSAR images. This SSAM data shows the seismic energy release ofMerapi activity for the June 2010 to February 2011 period that comprises the 2010 eruption
episode (26 October–23 November 2010; gray box).

Fig. 1. (a) Location of Merapi volcano (Java Island) including the coverage of track 431 ALOS-PALSAR images (dashedwhite box). The Merapi summit lies 30 km north of Yogyakarta city.
(b) ALOS-PALSAR amplitude image of 1 February 2011 showing Merapi and Merbabu volcanoes and the study area (white box) (c) Shuttle Radar Topography Mission (SRTM) digital
elevation model (DEM) used to geocode the amplitude image, overlain by a map of the 2010 PDC deposits on the Merapi southern flank (Solikhin et al., in revision).
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Radar Topography Mission (SRTM) digital elevation model (DEM;
Fig. 1c) oversampled four times, and having a pixel resolution of around
23 m. The topography may have changed in the period between the
SRTM and ALOS-PALSAR data acquisitions (2000 to 2010 respectively)
but, we think, not sufficient to affect the geocoding.

3.3. Amplitude evolution

Prominent changes in the topography or radar scatterer properties,
distribution or orientation, can be detected by comparing two SAR im-
ages, either through the phase information using the coherence image
or using the temporal evolution of amplitude. Surface changes occurring
between the two SAR acquisitions induce a temporal decorrelation,
such that areas marked by these surface modifications appear as dark
pixels (low coherency) in the coherence image, whereas the bright
pixels characterize non-modified areas. Local slope, dielectric constant
of the terrain and surface roughness are the dominant factors that influ-
ence the amplitude of the return signal in radar imagery. Some ground
features appear similar in either HH or HV images, but rough surface
and inhomogeneous sub-surfaces appear brighter on HV than on
HH images due to depolarization that occurs mainly over vegetation
(black rectangles in Fig. 3a–b). Changes in amplitude can be quantified
by taking the ratio between the two amplitude images. The bright pixels
in the ratio image have stronger backscatter in the numerator (later)
scene than the denominator (earlier) scene and vice versa. When the
amplitude variation is due to surface roughness evolution, a smoother
surface will lead to a decrease in backscattering whereas a rougher
onewill lead to an increase. Pyroclastic depositsmainly affect the topog-
raphy and surface roughness inducing changes in amplitude images.
However, some changes in amplitude images are also expected in

areas not affected by the eruptive activity due to surface temperature
and water content modifications especially over paddy fields.

3.4. Supervised classification

From a variety of algorithms that were developed for supervised
classifications, we apply the Maximum Likelihood Classification (MLC)
and the Support Vector Machine (SVM) classification techniques
(Tupin, Inglada, & Mercier, 2014) in order to discriminate the 2010
Merapi pyroclastic deposits. MLC is the most common parametric
classifier, which assumes normal or near normal spectral distribution
for each class in each band. This classifier calculates the probability
that a given pixel belongs to a class specified by amean vector and a co-
variance matrix (Richards & Jia, 2006). We define training samples
(Fig. S1b) as inputs to the supervised classification and control samples
(Fig. S1c) in order to assess the classification performance. Training and
control data have been manually extracted based on visual interpreta-
tion of optical views and the radar image in the false-color composite
representation by referring to field-based data by Charbonnier et al.
(2013), Komorowski et al. (2013) and Solikhin et al. (in revision).

The training data for each class have to be well separated spectrally
in order to determine higher classification accuracies. We used the
Jeffries–Matusita (J–M) distance (Richards & Jia, 2006) to compute the
separability value between a pair of training classes before performing
the classification. The J–M distance output value ranges between 0
and 2; two classes are consideredwell separatedwhen the J–Mdistance
is above 1.90 and very poorly separatedwhen the J–Mdistance is below
1.0 (Richards & Jia, 2006). Majority filtering with 3 × 3-kernel size was
applied in post-classification analysis in order to change spurious pixels
within a large single class to that class. Another post-classification anal-
ysis used tomeasure accuracy is derived from the confusionmatrixwith
control data as the validation site.

The distribution of amplitude or coherence in radar data is not
Gaussian, even after noise reduction by multi-look processing; subse-
quently the MLC is theoretically not well adapted to these data. Thus
we also used the SVM classification method that often yields good clas-
sification results from complex and noisy data (Tupin et al., 2014). SVM
is a supervised classification method derived from statistical learning
theory that discriminates the classes with a decision surface (hyper-
plane) that maximizes the margin between the classes. The training
data used are in a multidimensional feature space and these closest to

Fig. 3.Georeferenced ALOS-PALSAR amplitude image (four-looks) of (a) HH polarization on 1 November 2010 (HH syn-eruption); (b) HV syn-eruption; (c) HH post-eruption (1 February
2011) and (d) HV post-eruption. (e) Coherence image obtained when forming the interferogram between the 1 November 2010 and 17 December 2010 images. Black rectangles in a and
b show similar ground features that appear brighter on HV than on HH images due to depolarization that occurs mainly over vegetation.

Table 1
Characteristics of ALOS-PALSAR images used for this study.

Acquisition date Time (UTC) Polarization

13–06–2009 15:31 HH + HV
16–06–2010 15:30 HH + HV
16–09–2010 15:29 HH + HV
01–11–2010 15:28 HH + HV
17–12–2010 15:28 HH
01–02–2011 15:27 HH + HV

Data are from ascending track 431 (Fig. 1a) acquired with an incidence angle of 34.3°.
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the hyper plane are the so-called support vectors (Vapnik, 1998). In this
work, the SVM is applied using the radial basis kernel. Results obtained
are then compared with the results derived from MLC.

4. Results and discussion

4.1. Surface change detection

4.1.1. Coherence image
Fig. 3e shows the coherence image for the interferogram obtained

with images acquired on 1 November and 17 December 2010 over
Merapi volcano. As the vegetation quickly recolonizes devastated
areas on the slopes of Merapi, a rapid decorrelation occurs. This pair of
images is the only one for which the coherence is fairly good, such
that the decorrelation due to the pyroclastic deposits emplaced after 1
November 2010, can be clearly identified. The acquisition obtained on
17 December 2010 is the first one available after the eruptive period.
Despite being noisy, this coherence image can help in distinguishing
the areas covered by pyroclastic deposits, which are characterized by
a strong decorrelation (dark pixels). The dark areas of low phase coher-
ence at the summit and on the western and the southern flanks of the
volcano correspond to pyroclastic deposits emplaced during the erup-
tion after 1 November 2010. The bright (white) areas of high phase
coherence indicate infrastructure (houses, building, road, etc.), which
did not change between the acquisition dates. The unstable natural ele-
ments like vegetation or fields appear as gray areas in the coherence
image.

4.1.2. Ratio of amplitude image
Fig. 3 shows georeferenced amplitude images of Merapi acquired

from an ascending pass during the eruptive crisis on 1 November
2010 (a and b) and two months after the end of the eruption on 1
February 2011 (c and d) with HH and HV polarizations respectively.
Due to the radar acquisition geometry, the west-facing slope of Merapi
volcano is affected by foreshortening effects, whereas some parts of the
east-facing slope are in the shadow. Visually, we can distinguish the
areas covered by eruption deposits when we compare the amplitude
image of syn- or post-eruption (i.e. 1 November 2010 and 1 February
2011) with the pre-eruption image (Fig. S1a). However, this visual esti-
mation is not sufficient due to a large amount of dark and bright pixels,
which are not associated with pyroclastic deposits. In the following
paragraphs, we discuss the changes in a qualitative manner and illus-
trate some of them through images created by combining post- and
pre-eruption images. A view of change detection involving ratio images
is shown in Fig. 4.

Fig. 4e shows an image ratio of the amplitude image acquired on
17 December 2010 (post-eruption) divided by the amplitude image
acquired on 16 September 2010 (pre-eruption), both with HH polariza-
tion. In this figure, the changes indicated by dark pixels along the
Gendol catchment are due to the emplacement of valley-confined and
overbank PDC deposits with thickness varying from a few meters to
a few tens of meters from field surveys (Charbonnier et al., 2013;
Komorowski et al., 2013). The bright-tone change occurring on the
Gendol channel is due to the PDC deposits remobilized by runoff and
incised by the new drainage, termed reworked PDC. The bright-tone
change in the southern flank that envelops the dark area is due to the
emplacement of dilute PDCs (pyroclastic-surge deposits) and associated
impact zones (singe zone). Other bright-tone change scattered in the
western flank of Merapi corresponds to tephra-fall deposits. The false-
color composite images in Fig. 4a–d and f are obtained using pairs of
ALOS-PALSAR amplitude images for HH (a, b and c) and HV (d and
f) polarizations. In these images, red color indicates the surface where
amplitude decreased in the post-eruption image (smoother if the
change can be attributed to roughness decrease), blue color indicates
the surface where amplitude increased in the post-eruption image

(rougher if the change can be attributed to roughness increase) and
yellow color for the surfaces where amplitude did not change.

Changes observed in Fig. 4a and d are due to eruptive activity of
the Merapi Volcano between 26 October and 1 November 2010, which
correspond to the initial explosive phase and the beginning of the
magmatic phase as defined by Surono et al. (2012). During this period,
several explosive eruptions occurred on 26 and 31 October, removing
the 2006 lava dome, enlarging and deepening the summit crater
(Pallister et al., 2013; Surono et al., 2012) while several PDC events
were recognized. Valley-confined and overbank PDCs reached ~7 km
down-valley towards Gendol River as well as associated ash-cloud
surges forming the singe zone (Charbonnier et al., 2013). Merapi erup-
tions after 1 November 2010, including the climactic eruption on 5
November 2010, produced ash columns up to 17 km in height and
BAFs that traveled as far as 16 km down Gendol River valley (Surono
et al., 2012). Changes due to eruption including pyroclastic deposits
are also shown in the false-color composite images of 17 December
2010 (HH only, Fig. 4b) and 1 February 2011 (HH and HV, Fig. 4c
and f) as post-eruption images. Changes in the summit crater and
southeast-trending Gendol breach are recognized in Fig. 4, not only in
HH polarization but also in HV polarization. During this eruption, the
summit crater expanded from 0.048 km2 (on 1 November 2010) to
0.093 km2 (on 1 February 2011), which is similar to the result based
on optical satellite images (0.11 km2; Solikhin et al., in revision). Crater
expansionwas also followed by geomorphological changes of the dome
surface, from an area of 0.0135 km2 on 1 November 2010 to 0.0432 km2

on 1 February 2011 (Saepuloh et al., 2013).
The 2010Merapi pyroclastic deposits were emplaced over the south

flank of volcano (mostly vegetation and village on slopes N5°) that was
previously characterized by small-scale topographic variations (10–
20 m range) and can be considered as rough on amplitude images.
Tens of meter-thick valley-confined and overbank BAF deposits have
buried forest and villages resulting in a smoother surface on the scale
of the L-band wavelength of red areas in false-color composite images.
Radar backscattering decreases by about 6 decibels (dB) in both polari-
zations after valley-confined and overbank BAF deposit emplacement.
Pyroclastic-surge deposits aremuch thinner (a few centimeters to deci-
meters; Charbonnier et al., 2013; Komorowski et al., 2013) than valley-
confined and overbank BAF deposits, therefore the effects of these pyro-
clastic deposits did not greatly alter the surface roughness but resulted
in destruction and burning of forests and villages. Such pyroclastic-
surge deposits appear as light blue areas in false-color composite images
of HHpolarization. In HV polarization, these deposits are represented as
red areas with the color intensity lower than the red color of valley-
confined and overbank BAF deposits (Fig. 4f). An interpretation is that
the destruction of vegetation increased the backscattering by about
3 dB for HH polarization and by about 1 dB for HV polarization. Explo-
sive eruptions produced 2–7 cm-thick tephra-fall deposits in the south-
west flank of Merapi, which are identified by light blue areas but with
lower color intensity than the light blue of pyroclastic-surge deposits.
Radar amplitude of tephra-fall deposits increased by about 2 and 1 dB
for HH and HV polarizations respectively. We observe that this is not
related to deposit type but surface texture (roughness) as tephra-fall
and pyroclastic-surge deposits are both fine-grained (ash-rich) and
relatively thin (b1 m), whereas BAFs are coarser boulder-rich and
thicker (m to tens m).

The post-eruption images used in Fig. 4c and f were acquired about
46 days after the one used in Fig. 4b and three months after deposit
emplacement. As a result, pyroclastic deposits have undergone changes
due to remobilization or transformation into PDC deposits reworked by
runoff and lahars and to surface erosion by rain and runoff. Beside
changes observed in surface roughness and topography, reworked
PDC deposits have a higher water content, which consequently in-
creases radar backscatter amplitude of about 4.5 dB for HH polarization
and decrease that of about 3 dB for HV polarization. Reworked PDC
deposits appear in HH polarization indicated by blue areas inside the
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Fig. 4. ALOS-PALSAR amplitude change images of theMerapi area and its south flank. The false-color composite (R: first/earlier image; G: second/later image; B: ratio of the second image
divided by the first image) images are obtained using pairs of amplitude images of (a) 16 September 2010 and 1 November 2010 for HH polarization; (b) 16 September 2010 and 17
December 2010 for HH polarization; (c) 16 September 2010 and 1 February 2011 for HH polarization; (d) 16 September 2010 and 1 November 2010 for HV polarization (f) 16 September
2010 and 1 February 2011 for HV polarization. (e) Ratio image of the amplitude image on 17 December 2010 divided by the amplitude image acquired on16 September 2010 for
HH polarization. Annotations of deposit type are defined based on our field data and observations and previous studies (e.g. Charbonnier et al., 2013; Komorowski et al., 2013) on
Merapi.
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channel while in HV polarization they are indicated by dark red areas.
The erosion induces a slight decrease in amplitude of HH-polarized
radar for pyroclastic-surge (and singe zone), valley-confined and
overbank BAF deposits and a decrease in amplitude for tephra-fall
deposits. The change over timeof tephra-fall deposits ismore significant
than that of the pyroclastic-surge deposits because the tephra-fall de-
posits are thinner and their emplacement did not result in significant
destruction of the vegetation. The change over time of pyroclastic-
surge deposits is due to vegetation that quickly recolonized the forest
margins near the valley channel. This evolution is clearly shown by
the comparison of Fig. 4b–c obtained for post-eruption images acquired
with a 46 daytime interval.

Changes are also detected in areas thatwere not affected by the2010
Merapi eruptions (e.g. the southern part in Fig. 4). These areas include
bare soil and dynamic areas of agricultural land, which have changed
over time depending on the plants, soil moisture and weather condi-
tions. Radar backscatter amplitude of dry bare soils is lower than that
of cultivated land or vegetation, but the amplitude can increase when
the surfaces change from dry to wet.

4.2. Deposit classification

The supervised classification based on MLC and SVM has been ap-
plied to ALOS-PALSAR data in order to create a map of the 2010Merapi
pyroclastic deposits in a semi-automatic way. This classification aims to
categorize all pixels in the radar image into one of several pre-defined
deposit or land cover classes. We define a set of training samples
(Fig. S1b) characterizing seven deposit classes (D1 to D7) and five
‘non-deposit’ classes (O1 to O5). Four classes of valley-confined and
overbank BAF (D1), reworked PDC (D2), pyroclastic-surge (D3) and
tephra-fall (D4) deposits are defined from the post-eruption image
acquired on the 1 February 2011. D2 are limited to tephra-fall deposits

that cover vegetation, whereas tephra-fall deposits that cover bare soil
or older deposits will resemble pyroclastic-surge deposit in the ampli-
tude image. D5, D6 and D7 classes, the early stages of D1, D3 and D4
respectively, are defined from the syn-eruption image acquired on the
1 November 2010. Early stage deposits (D5 to D7) were emplaced
between 26 October to 1 November 2010, while D1 to D4 are deposits
produced during the entire eruption episode (26 October to 23 Novem-
ber 2010). We have combined the valley-confined and overbank PDC
deposits into one class (D1) as both have a similar pattern in the ampli-
tude image and are therefore difficult to distinguish. The ‘non deposit’
classes consist of vegetation (O1), agriculture/farm (O2), settlements
and villages (O3), bright pixels corresponding to foreshortening effect
(O4) and shadowed areas (O5).

Fig. 5 shows the evolution of the average backscattering amplitude
of D1–D7 and O1 training samples over six different acquisition times
on 13 June 2009, 16 June 2010, 16 September 2010, 1 November
2010, 17 December 2013 (HH polarization only) and 1 February 2011.
The average amplitudes of all classes were normalized by dividing
them by the mean amplitude of class O1, as a reference area that did
not change significantly. This normalization aims to avoid or reduce
the variation of calibration coefficients that are expected to occur
through space and time. Before the eruption, there was no significant
change for all classes in HH polarization, while in HV polarization
changes only occur for D2 class. Such changes before the eruption can
be explained by the location of these deposits, generally inside the
river valley, where deposit morphology was constantly evolving due
to lahars and mining. After the eruption, radar amplitude of D1 and
D5 decreased in both polarizations. D2 deposits are characterized by
increasing radar amplitude for HH polarization and decreasing ampli-
tude for HV polarization. Radar amplitude is increasing transiently in
both HH and HV polarizations for D3, D4, D6 and D7. The transient
increase in the amplitude of D3 for HV polarization is not apparent in

Fig. 5. The plot of normalized average amplitude and its standard deviation (error bar) of D1–D7 and O1 training samples over seven different times of acquisition as of 13 June 2009,
16 June 2010, 16 September 2010, 1 November 2010, 17 December 2011 (only for HH polarization) and 1 February 2011. The average amplitude was normalized by dividing by the
mean amplitude of class O1. For each class, the backscattering evolution corresponding to products deposition is indicated in decibels (20 log10 (amplitude after deposition/amplitude
before deposition)).
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Fig. 5 as it was followed by an erosion process that resulted in a rapid
decrease of the amplitude. This analysis is consistent with the state-
ments given in the change detection section (Section 4.1).

Separability values between pairs of training classes were computed
using J–M distance with varying inputs from two to seven bands
(Table 2). The deposit classes (D1–D4) are generally well separated
(N1.9), but some have moderate (1.5–1.9), low (1–1.5) and very low
(b1) separability. The D3–D4 pair shows a very low separability be-
tween two bands of HH polarization, but a low separability between

two bands of HV polarization. Low separability (1–1.5) of deposit
classes is also observed for the D1–D2 pair when using two bands of
HV polarization as input. By using four bands or more as input, we
always obtain an acceptable separability (N1) either for deposit classes
or ‘non-deposit’ classes. The separability between different deposit clas-
ses and between deposit classes and other classes always increases
when a larger number of bands are used, that is when information is
added by taking advantage of both polarization and using the coherence
information (Table 2).

Table 2
Separability of Jeffries–Matusita distance (J–M) calculated using a various sets of amplitude images and one coherence image with two to seven bands of inputs.

Input Training class D1 D2 D3 D4 D5 D6 D7 O1 O2 O3 O4 O5

2 bands
(HH polarization)

D1 – 1.916 1.983 1.949 – – – 1.729 1.134 1.824 1.994 1.943
D2 hs – 1.598 1.7 – – – 1.555 1.262 1.789 1.975 1.334
D3 hs ms – 0.381 – – – 1.074 1.469 1.724 1.973 1.999
D4 hs ms ps – – – – 1.06 1.427 1.562 1.955 1.996
O1 ms ms ls ls – – – – 0.832 1.689 1.983 1.917
O2 ls ls ls ls – – – ps – 1.511 1.972 1.873
O3 ms ms ms ms – – – ms ms – 1.594 1.936
O4 hs hs hs hs – – – hs hs ms – 1.997
O5 hs ls hs hs – – – hs ms hs hs –

2 bands
(HV polarization)

D1 – 1.167 1.81 1.964 – – – 1.889 1.232 1.636 1.978 1.528
D2 ls – 1.721 1.936 – – – 1.693 0.362 1.311 1.978 0.311
D3 ms ms – 1.054 – – – 0.04 1.013 0.186 1.836 1.862
D4 hs hs ls – – – – 0.963 1.755 0.835 1.309 1.962
O1 ms ms ps ps – – – – 1.035 0.151 1.818 1.817
O2 ls ps ls ms – – – ls – 0.747 1.948 0.747
O3 ms ls ps ps – – – ps ps – 1.743 1.506
O4 hs hs ms ls – – – ms hs ms – 1.985
O5 ms ps ms hs – – – ms ps ms hs –

4 bands
(HH and HV polarizations)

D1 – 1.937 1.994 1.994 – – – 1.963 1.644 1.95 1.999 1.976
D2 hs – 1.916 1.973 – – – 1.905 1.451 1.904 1.997 1.459
D3 hs hs – 1.139 – – – 1.184 1.629 1.762 1.989 1.999
D4 hs hs ls – – – – 1.281 1.856 1.83 1.974 1.998
O1 hs hs ls ls – – – – 1.449 1.76 1.993 1.952
O2 ms ms ms ms – – – ls – 1.625 1.993 1.899
O3 hs hs ms ms – – – ms ms – 1.867 1.977
O4 hs hs hs hs – – – hs hs ms – 1.999
O5 hs ls hs hs – – – hs ms hs hs –

5 bands
(HH and HV polarizations + coherence image)

D1 – 1.938 1.994 1.994 – – – 1.967 1.813 1.991 1.999 1.977
D2 hs – 1.919 1.974 – – – 1.913 1.683 1.978 1.997 1.473
D3 hs hs – 1.227 – – – 1.272 1.738 1.941 1.991 1.999
D4 hs hs ls – – – – 1.404 1.901 1.963 1.974 1.998
O1 hs hs ls ls – – – – 1.502 1.897 1.994 1.954
O2 ms ms ms hs – – – ms – 1.737 1.996 1.933
O3 hs hs hs hs – – – ms ms – 1.992 1.993
O4 hs hs hs hs – – – hs hs hs – 1.999
O5 hs ls hs hs – – – hs hs hs hs –

6 bands
(HH and HV polarization)

D1 – 1.965 1.995 1.996 1.989 1.791 1.99 1.97 1.852 1.972 1.999 1.994
D2 hs – 1.944 1.979 1.786 1.801 1.994 1.933 1.64 1.957 1.999 1.535
D3 hs hs – 1.191 1.999 1.55 1.533 1.212 1.727 1.883 1.998 1.999
D4 hs hs ls – 1.995 1.79 1.478 1.356 1.895 1.913 1.995 1.999
D5 hs ms hs hs – 1.939 1.999 1.989 1.653 1.952 1.999 1.931
D6 ms ms ms ms hs – 1.497 1.559 1.561 1.722 1.984 1.963
D7 hs hs ms ls hs ls – 1.157 1.561 1.876 1.998 1.999
O1 hs hs ls ls hs ms ls – 1.525 1.864 1.999 1.975
O2 ms ms ms ms ms ms ms ms – 1.76 1.998 1.942
O3 hs hs ms hs hs ms ms ms ms – 1.923 1.993
O4 hs hs hs hs hs hs hs hs hs hs – 1.999
O5 hs ms hs hs hs hs hs hs hs hs hs –

7 bands
(HH and HV polarization + coherence image)

D1 – 1.966 1.995 1.996 1.99 1.833 1.99 1.975 1.933 1.996 1.999 1.995
D2 hs – 1.945 1.979 1.791 1.847 1.994 1.938 1.771 1.99 1.999 1.548
D3 hs hs – 1.275 1.999 1.666 1.546 1.295 1.8 1.968 1.999 1.999
D4 hs hs ls – 1.995 1.873 1.485 1.447 1.923 1.979 1.995 1.999
D5 hs ms hs hs – 1.955 1.999 1.99 1.8 1.991 1.999 1.933
D6 ms ms ms ms hs – 1.583 1.594 1.625 1.859 1.993 1.97
D7 hs hs ms ls hs ms – 1.271 1.879 1.967 1.998 1.999
O1 hs hs ls ls hs ms ls – 1.57 1.94 1.999 1.976
O2 hs ms ms hs ms ms ms ms – 1.827 1.999 1.96
O3 hs hs hs hs hs ms hs hs ms – 1.996 1.998
O4 hs hs hs hs hs hs hs hs hs hs – 1.999
O5 hs ms hs hs hs hs hs hs hs hs hs –

The2 and 4 band inputs are using amplitude images acquired on16September 2010 and 1 February2011, the 6 band input coupledwith the images acquired on 1November 2010, and the
coherence image is added for the 5 and 7 band inputs. Separability value is shown in the upper right half of the table and the ranges of separability in the lower left half of the table. hs: high
(good) separability (N1.9); ms: moderate separability (1.5–1.9); ls: low separability (1–1.5); ps: very low (poor) separability (b1).
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The map of 2010 Merapi deposits based on MLC using various sets
of 16 September 2010 and 1 February 2011 images and nine classes
(D1–D4 and O1-O5) of training data is shown in Fig. 6. The correspond-
ing result obtained with the SVM classification is presented in Fig. S2.
Classification using only two images (acquired before and after the
eruption) of HH polarization (Fig. 6a) produces better results than
using HV polarization images (Fig. 6b), whatever the MLC and SVM
methods used. However, the pyroclastic deposits on the south flank,
as well as tephra-fall deposits on the west flank of the volcano seem
slightly better imaged using HV polarization. We have also performed
a classification using seven images: six amplitude images for three dif-
ferent dates of acquisition (16 September 2010, 1 November 2010 and
1 February 2011) with HH and HV polarizations and one coherence
image (Fig. 7). The false-color composite images (Fig. 7a–b) and classi-
fication result (Fig. 7c) can be used as amap of the 2010Merapi deposits
at various times, which compares the 26 October to 1 November 2010
deposits with the deposits of the entire eruption episode. The classifica-
tion always produces better results when combining both HH and HV
images (Fig. 6c) and even better when adding the coherence image
(Figs. 6d and 7c) as input. The quality of the resulting classification
can be directly related to the separability between the training classes
as expressed in Table 2.

4.3. Accuracy assessment

We compared the results obtained on the radar images byMLC clas-
sification (Fig. 8b and d) with the GeoEye-1 optical image acquired just
before the end of the eruption on the 15 November 2010 (Fig. 8a and c).
Comparison was also made between the deposit map produced from
high-resolution satellite imagery and field-based data by Charbonnier

et al. (2013), Komorowski et al. (2013) and Solikhin et al. (in
revision). The results derived from radar data are in good agreement
with optical andfield information obtained on the south flank ofMerapi
characterized by a gentle slope at elevations less than 1300 m asl
(Fig. 1c) particularly for D1 and D2. The deposit classes D3 and D4 cor-
respond to thin and easily eroded deposits, whose texture is expected to
have changed between the time of emplacement and that of radar
image acquisition. Field conditions after emplacement of 4-5 November
2010 PDCs, in the Gendol valley at a distance of 10.5 km from Merapi
summit, are schematically illustrated in Fig. 8e. At this location in the
valley alongside the channel, D1 deposits (1–3 meter thick) containing
boulders, smaller clasts and coarse tephra have progressively smoothed
the irregular pre-event topography. D2 deposits are mostly located in-
side the channel, where they were transported from the upper reaches
of the valley by lahars that occurred immediately after the eruption. D3
deposits,which represent the ash-cloud surge associatedwith overbank
flows that burned the surrounding vegetation and deposited a few cm-
thick layer of ash, are located on both edges of BAF area away from the
channel.

Accuracy assessment of the classification has been quantitatively
performed by comparing the results of MLC and SVM classification ob-
tained using five input images with control data (Fig. S1c) from four
deposit classes (D1–D4). This comparison is summarized in a confusion
matrix (Tables 3 and S1). MLC provides better overall classification
accuracy (70.03%) than SVM (63.97%). SVM is less accurate than MLC
in classifying D3 (27.29%), where most of its control data (52.84%) are
classified into O1. Despite the low separabitily between D3, D4 and O1
(1.2–1.4; see Table 2), MLC is still capable of classifying themwith fairly
good accuracy (55%–58%). We measured the area of the deposits from
the MLC classification results and compared it with the area measured

Fig. 6. Themap of 2010Merapi pyroclastic deposits based on themaximum likelihood classification (MLC) using images acquired on 16 September 2010 (before the eruption) and on the
1 February 2011 (after the eruption) for (a) HH polarization only (two images have been used for this purpose); (b) HV polarization only (two images); (c) HH and HV polarizations
(four images); and (d) HH and HV polarizations and additional coherence image (five images).
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by Charbonnier et al. (2013). We obtained an area of 4.44 km2 for D1,
2.22 km2 for D2 and 4.92 km2 for D3, while Charbonnier et al. (2013)
provided an area of 6.53 km2 for D1+D2 and 15.77 km2 for D3. The es-
timate of D1 + D2 is consistent with previous results, while the large
discrepancy in area estimation for D3 can be partly explained by strong
erosion having affected the thin deposits after rainfall and runoff.

The change in amplitude images due to PDC deposition observed in
L-band radar images (ALOS-PALSAR, used here) is now compared to the
change detected in X-band radar image (TerraSAR-X) used at Soufriere
Hills Volcano (SHV) Montserrat by Wadge et al. (2011) as summarized
in Table 4. At SHV, for HH polarized data only, the fresh BAF deposits
increase X-band backscattering, which is in contrast with the pattern
observed on the L-band radar image at Merapi in the summit area at
early stage, i.e. less than 7 km from the summit (see Fig. 4a) and then
at larger distances further downstream of the Gendol River (Fig. 4b–c).
In addition, the 2010 Merapi eruption produced high-energy surges

that severely devastated thedense forest, increasing L-bandbackscatter-
ing while the pyroclastic-surge deposits at SHV tend to reduce it.

At SHV (Wadge et al., 2011), the effect of erosion has led to a
decrease of the radar backscattering in the central incised part (BAF
deposits) and to a relative increase on the valley flank (pyroclastic-
surge deposits), which was interpreted as a reversal change in rough-
ness. On the contrary, at Merapi erosion of the surge deposits tend to
decrease the radar backscattering (Fig. 4b–c). Additionally, when BAF
deposits are reworked by lahars the radar backscattering tends to
increase. This comparison has to be taken with caution as the nature
and structure of deposits, and the characteristics of erosion processes
might be different on these two volcanoes. For example, the 2010
Merapi pyroclastic-flow deposits are observed to be coarser and more
poorly sorted than the SHV deposits (Charbonnier et al., 2013), which
may lead to differences in the pattern of the radar image. However,
the different behavior observed by X-band radar at SHV and L-band

Fig. 7. False-color composite images obtained using amplitude images at three different dates, before (in the red channel), during (green channel) and after (blue channel) the eruption, on
16 September 2010, 1November 2010 and 1 February 2011 for (a)HHpolarization and (b)HVpolarization. (c)Mapof the 2010Merapi pyroclastic deposits based onMLC using amplitude
for HH and HV polarizations at these three acquisition dates together with the coherence image represented on Fig. 3e (seven images have been used for this purpose).
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radar at Merapi, may be due to the different wavelengths of the radar
data.

5. Conclusion

The 2010 Merapi eruption produced numerous and voluminous
pyroclastic density currents (PDCs) at the beginning of the rainy season
(26 October–23 November). The ability of L-band radar data of ALOS-
PALSAR to classify and map the pyroclastic deposits emplaced during
this event has been highlighted by the use of direct-polarized and
cross-polarized radar data, and by the combination of amplitude evolu-
tion with temporal decorrelation. Changes in amplitude quantified by

taking the ratio between the two amplitude images are useful to map
pyroclastic deposits. The deposition of valley-confined and overbank
BAF products reduces the radar amplitude in direct (HH) and cross
(HV) polarizations. This is likely due to a decrease in ground roughness
at the scale of the L-band wavelength. PDC deposits reworked and
remobilized by runoff are characterized by an increase in ground-
backscattering for HH polarization, probably related to an increase in
the ground moisture. Deposits of pyroclastic-surge and tephra-fall
result in a transient amplitude increase in HH polarization due to the
increasingly rough surface, and in HV polarization due to the increasing
depolarization over partially damaged vegetation. The increase in the
amplitude after pyroclastic-surge deposits in HH polarization is higher
than after tephra-fall deposits, but is lower in HV polarization.

Sevendeposit classes andfive ‘non-deposit’ classes have been success-
fully defined from radar data with acceptable separability between each
class. The classification produces better outcomes when combining both
HH and HV images and when adding the coherence image as input. The
resulting classification based on MLC and SVM, using only two images

Fig. 8. (a) The 15 November 2010 GeoEye-1 image in false-color composite (R: band 3; G: band 4; B: band 1); (b) MLC results as shown in Fig. 7d for the same area with (a). (c) Zoom in
view of the dashedwhite box in (a) and (d) of the dashed black box in (b). (e) Schematic cross section through X1-X2 transect in (c) and (d) to illustrate the field condition in the Gendol
valley, which was partly covered by PDC deposits.

Table 3
Cross-validated confusion matrix for Maximum Likelihood Classification (SVM)
method.The bold font indicates the percentage of correctly classified pixels of each deposit
class.

Class Control data (%)

D1 D2 D3 D4

D1 86.43 10.38 1.87 0.13
D2 1.79 76.77 1.87 0.40
D3 1.62 3.42 58.48 30.61
D4 0.00 0.12 2.85 55.47
O1 0.67 0.24 26.33 10.72
O2 9.14 4.48 6.93 0.68
O3 0.08 0.00 1.50 1.31
O4 0.27 0.47 0.17 0.45
O5 0.02 4.13 0.00 0.23

Table 4
Comparison of the change due to PDC deposition observed in L-band radar images (ALOS-
PALSAR, used here at Merapi volcano) and in X-band radar image (TerraSAR-X) used at
Soufriere Hills Volcano (SHV) Montserrat (Wadge et al., 2011).

Deposit L-band in Merapi X-band in SHV

Block-and-ash flow Decrease Increase
Pyroclastic-surge Increase Decrease

190 A. Solikhin et al. / Remote Sensing of Environment 158 (2015) 180–192

��������������������������������������������������������������������������Chapter 5

154



(acquired before and after the eruption) of HH polarization is better than
using theHVpolarization images. However, the pyroclastic depositsman-
tling the Merapi southern flank, and the 2 to 7 cm thick tephra-fall de-
posits on the western flank are better imaged using HV polarization.
When comparing the classification results with control samples based
on high-spatial-resolution satellite imagery and field-based studies, MLC
provides a better classification accuracy (70%) than SVM (64%).

Our classification of the 2010 Merapi deposits is based on change
detection and semi-automated (supervised) classification methods
applied to ALOS-PALSAR dual polarization data. It can also be utilized
for other active volcanoes with new pyroclastic deposits. Moreover,
the ability of SAR data to possibly provide information during day or
night, independently from themeteorological conditions, and penetrate
the vegetation canopy, highlights the value of using ALOS-PALSAR dual
polarization data at the active volcanoes during or shortly after eruption
for hazard mitigation.
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Chapter 6 - Responses of Merapi and Semeru eruptive 

activity to regional tectonic events: first results 

6.1. Introduction 

The initiating mechanisms of volcanic eruptions commonly include magma influx from 

deeper reservoirs and an increase in the magma/gas pressure in the plumbing system 

towards the edifice. The main importance in understanding how and why a volcano 

erupts is to determine factors that drive changes in volcanic activity. Volcanoes are 

systems that may interact with their environment at different scales, and with different 

modes and processes. Fluctuations in volcanic activity may be influenced by external 

factors such as Earth tides (e.g., Johnston & Mauk, 1972; Sparks, 1981), daily variations 

in atmospheric pressure and temperature (e.g., Neuberg, 2000), changes in sea level 

(e.g., McGuire et al., 1997), and surface load variations (e.g., Pinel & Jaupart, 2000, 2005; 

Albino et al., 2010). In addition, seismotectonic activities have been widely discussed as 

a key process and event external to volcanoes that are able to affect volcanic activity.  

Stress changes associated with a large (above magnitude 7) earthquake are capable of 

triggering volcanic unrest and possibly even triggering eruptions in special situations. 

Triggering of volcanic unrest (e.g., as earthquake swarms) may take place over a wide 

range of distances (a few kilometers to several hundreds of kilometers). Times delays 

depend on the mechanism and range from a few minutes for dynamic triggering to 

several days, weeks, months or years for static triggering. Such eruption triggering 

occurs under the right circumstances, which depends on the earthquake parameters 

(magnitude, distance to the epicenter, and orientation of the earthquake focal 

mechanism), as well as on the initial state of the magmatic system prior to the 

earthquake, i.e. on state of equilibrium of magma and volatiles, magma overpressure, 

and the strength of the host rocks (Hill et al., 2002). Interaction between earthquake and 

eruptive activity may occur at short distances by static stress diffusion (Walter & 

Amelung, 2007) and at distance of several hundred kilometers or more by dynamic 

stress transfer (Hill et al., 2002; Manga & Brodsky, 2006). Static stress change is the 

difference in the stress field from just before an earthquake to shortly after the seismic 

157



 
 

waves have decayed, while dynamic stresses are induced by the seismic waves from a 

large earthquake (Hill et al., 2002). Volcano response to the earthquake depends on the 

magnitude and distance of the earthquake as well as the fault orientation in relation to 

the location of the volcano (Delle Donne et al., 2010). Triggering of volcanic eruptions by 

regional earthquakes has been observed or proposed for both effusive and explosive 

eruptions, for example the November 1975 Kilauea eruption was a small basalt eruption 

that took place along a local fault that transected intersected shallow magma (Tilling et 

al., 1976), the 1991 Pinatubo eruption is thought by some workers to have been favored 

by static stress changes from an earthquake in northern Luzon a year before (Bautista et 

al., 1996), and the 1960 Cordón Caulle rift eruption (Lara et al., 2004) is one of the few 

clear cases of eruption triggering. This eruption took place 38 hours after the M 9.5 Chile 

earthquake and is clearly related to the tensional response of the crust to the 

earthquake. A global study found a statistically significant increase in the number of 

eruptions following large earthquakes (e.g., Linde & Sacks, 1998). However, regional 

earthquake events are not always able to trigger an eruption itself, but do have sufficient 

influence to modify the rhythm of activity at on-going eruptions (Harris & Ripepe, 2007; 

Walter et al., 2007; Delle Donne et al., 2010). 

 

Figure 6.1. Shaded relief map of central and eastern part of Java showing Merapi and Semeru 

volcanoes (triangles) with epicenters of the 2001 and 2006 earthquakes (circles). Earthquake 

data and focal mechanisms after the global Centroid-Moment-Tensor (CMT) catalogue 

(www.globalcmt.org). Regional structural map of Semeru and Merapi volcano can be seen in 

Chapter 2 (Fig. 2.13 and 2.19) 
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Geology and structural maps of Semeru and Merapi volcanoes show that the structural 

features of the edifices are linked to its regional tectonic setting (see Figs. 2.13 and 2.19 

in Chapter 2). The structural pattern of the edifice and its surroundings raises the 

possibility that Semeru and Merapi will respond to tectonic events with a potentially 

increased activity due to additional stress under the volcano. In this chapter, we discuss 

the interactions between regional tectonic earthquakes in Java and the volcanic activity 

of two persistently active volcanoes, Semeru and Merapi. Past evidence lies with two 

Mw 6.3 Java earthquakes in 2001 and 2006, which Walter et al. (2007) suggested led to 

an increase in activity at Merapi. Moreover, it has been suggested that the 2006 

earthquake not only affected the Merapi activity but also activity at Semeru, ~260 km 

from Merapi (Harris & Ripepe, 2007). One of the earthquakes took place at a horizontal 

distance of ~50 km southwest of Merapi (Fig. 6.1), and at ~130 km in depth associated 

with the activity of the subducting slab under the region. Merapi was already in a phase 

of higher activity when the tectonic earthquake struck, and a sudden increase of about 

30° C in fumarole temperature at a site about 200 m southeast of the Merapi crater 

coincided with the 25 May 2001 earthquake (Walter et al., 2007). Merapi and Semeru 

volcanoes were also in a phase of higher activity when the 27 May 2006 (local time) 

earthquake took place. The earthquake was produced by motion on a crustal fault 

located ~50 km south of Merapi and ~280 km west of Semeru (Fig. 6.1). Both volcanoes 

experienced an increase in thermal and eruptive volume flux beginning 3 days after the 

earthquake while this response lasted 9 days at both volcanoes (Harris & Ripepe, 2007).  

The objective of this chapter is to show some insight in the interactions between 

regional earthquakes and volcanic activity of Merapi and Semeru, over the period 2000-

2014. Then, the results can be followed up in further study in order to find a clear 

correlation between the response of persistently active volcano to the occurrence of 

regional earthquakes. This chapter also aims to examine the advantage of satellite 

infrared data to approach the eruptive activity of the two volcanoes. In this case, we 

used infrared data from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors. 

��������������������������������������������������������������������������Responses of Merapi and Semeru eruptive activity to regional tectonic events: first results

159



 
 

6.2. Method 

Infrared observations have particular utility in the study of active volcanoes by virtue 

the very nature of volcanism, which is associated with the transfer of heat to the surface 

(Oppenheimer, 1998). The thermal emittance of a volcanic surface relates to its activity 

at a specific time, which may consist of an active lava flow, lava lake or lava dome, a 

system of fumaroles or a more subtly radiant surface heated by shallow magma 

intrusions. As a result, infrared observations may indicate impending changes in activity, 

or may simply provide information as to a particular volcano activity status. Various 

satellite instruments, which have infrared observational functionality and are able to 

provide global and regional volcanic hotspots on an hourly to daily basis, have been 

widely used for monitoring the eruptive state of active volcanoes (e.g., Harris et al, 2000; 

Wright et al., 2004; Blackett, 2013; Jay et al., 2013).  

We followed Harris and Ripepe (2007) methodology in estimating the heat and volume 

fluxes to approach the activity of Merapi and Semeru volcanoes. The fluxes are 

estimated by using the radiance data from MODVOLC, the MODIS volcanic hot spot 

detection algorithm (Wright et al., 2002). The MODIS sensors are onboard the Terra and 

Aqua satellites platforms that belong to the US National Aeronautic and Space 

Administration (NASA). The sensors on these two satellites pass over every point on the 

planet four times a day. MODVOLC is a non-interactive algorithm that allows automated 

global hotspot detection in MODIS data and provides a global inventory for volcanic 

hotspots dating back to February 2000 and available at http://hotspot.higp.hawaii.edu 

(Wright et al., 2004). This algorithm computes a normalized thermal index to detect the 

volcanic hot spots, which are calculated on the basis of the middle infrared and thermal 

infrared radiances measured in the MODIS bands 21 or 22, and 32, respectively (Wright 

et al., 2002; 2004). However, MODVOLC is not intended to detect low intensity activity 

(open vent degassing, fumarolic activity and Strombolian activity) and is unable to 

quantify the influence of clouds and eruption plume, thus its database does not provide 

complete information for all aspects of volcanic activity. Therefore we use seismic data 

to be compared with available heat and volume fluxes data as well as to cover the lack of 

MODVOLC data due to the limitations described above.  

We combined thermal infrared data with seismic data to evaluate the activity of Merapi 

and Semeru volcanoes and potential relationships to regional earthquakes. The use of 
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seismological observations in the monitoring and forecasting of volcanic eruptions is 

justified because almost all volcanic eruptions have been accompanied by some sort of 

seismic anomaly. Seismic activity on volcanoes is generally considered to be an 

indication of their internal state of activity. When magma and volcanic gases or fluids 

move, they will either cause rocks to break or cracks to vibrate. Then, crack vibration 

may trigger a continuous shaking associated with the resonance of a fluid-filled 

resonator called volcanic tremor. In addition, superficial volcanic activities such as 

explosive events, pyroclastic density currents (PDCs) and rockfalls also can be detected 

by seismometers. For this study, our seismic dataset consists of the daily and monthly 

number of classified volcanic events at Merapi and Semeru volcanoes, for a period 

spanning 2000 to the end of 2014. This statistical data of seismic events are taken from 

several seismic stations with short-period seismometer around each of the two 

volcanoes (Fig. 6.2), and the signals are recorded continuously in digital as well as in 

analog on paper drums at the observatories. Paper seismograms are examined every 

day to record the number and the magnitude of various seismic events. It relies on 

routine manual counting and classification of events based on waveform shape. In 

addition, up to six broadband seismometers were installed on Merapi, but they were 

only operated temporarily between July 2009 and February 2010 (Budi-Santoso et al., 

2013). Therefore, we use only the short-period seismic data, which continuously and 

consistently covers the period of our study. In addition, due to limited seismic data, our 

study only applied a simple analysis based on the number of volcanic events and an 

estimation of the energy of events.   

The classification of seismic signal types and other events at Merapi includes deep (>2 

km beneath the summit) volcano-tectonic (VT-A or “type A”), shallow (<2 km) volcano-

tectonic (VT-B or “type-B”), multiphase (MP), low frequency (LF), rockfall, pyroclastic 

density current (PDC), and gas burst events (Ratdomopurbo & Poupinet, 2000). At 

Semeru, seismically expressed volcanic events are classified into five types of events: 

deep (1-20 km beneath the volcanic crater) volcano-tectonic (VT-A or “type-A”), shallow 

(<1 km) volcano-tectonic (VT-B or “type-B”), tremor, rockfall, and explosion with 

associated gas burst (hembusan in Indonesian). The LF and MV events are not classified 

at Semeru. The classification refers to, and adopts the terminology of seismic events 

proposed by Minakami (1974). Volcano-tectonic (VT-A and VT-B) events are related to 

brittle failure in volcanic rocks triggered by fluid movement while LF and tremor events 
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have been interpreted as due to the resonance of a fluid-filled resonator excited by a 

pressure disturbance (Kumagai, 2009). A multiphase (MP) event is related to magma 

flow in the upper conduit and to dome growth (Ratdomopurbo & Poupinet, 2000). 

Rockfall and PDC events have a similar seismic signal pattern to MP events, but PDC 

signals have a longer duration (up to tens of minutes) and larger amplitude (Budi-

Santoso et al., 2013). Gas burst and explosive (vulcanian or phreatic) events that have a 

similar signal pattern are differentiated by their amplitude and range frequency, after 

which explosive events have a larger amplitude and wider  range of frequency (the 

explosive events tend to include higher frequencies). Seismic energy for volcanic events 

is calculated using the Guttenberg-Richter equation  

log E = 11.8 + 1.5M      (Gutenberg & Richter, 1956),    (1) 

where E is energy (in ergs.) and M is the magnitude calculated using the local magnitude 

definition of Richter (1958). In addition, real-time seismic amplitude measurement 

(RSAM) and seismic spectral amplitude measurement (SSAM) are applied to digital 

seismic data recorded from the stations Plawangan (PLA) at Merapi and Leker (LEK) at 

Semeru (Fig. 6.2). RSAM is a robust tool for monitoring volcanic activity that provides a 

simple indicator of the level of released seismic energy (Endo & Murray, 1991).  

 

Figure 6.2. Map of seismic stations with short-period seismometer that are used for analysis of 

volcanic event at (A) Merapi and (B) Semeru volcanoes. The real-time seismic amplitude 

measurement (RSAM) and seismic spectral amplitude measurement (SSAM) are performed 

using seismic data recorded from two stations, Plawangan (PLA) at Merapi and Leker (LEK) at 

Semeru.  
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In this chapter we have inventoried earthquake events that might be expected to alter 

the volcanic activity at Semeru and Merapi during the period 2000-2014. We limited our 

study to the earthquakes occurring at less than 1000 km from the volcanoes. The 

reported earthquakes can be derived from activities of subduction zone (Java 

megathrust), deep intraplate, and crustal faulting. However, we do not restrict this study 

to the large tectonic earthquakes (magnitude ≥ 6) but also include relatively small 

events (magnitude 3 to 5) occurring closer to the volcanoes. We used two earthquake 

catalogues, i.e. the US Geological Survey National Earthquake Information Center (NEIC) 

and Indonesian Badan Meteorologi, Klimatologi dan Geofisika (BMKG). NEIC provides 

earthquakes with a magnitude greater than 4 and uses the moment magnitude (Mw) for 

each earthquake. BMKG provides earthquakes that are not recorded by NEIC, mostly 

small magnitude events. However, BMKG uses the local magnitude (ML) or sometimes 

the body-wave magnitude (mb) for each recorded earthquake. We homogenize the 

earthquake magnitude into Mw by converting mb based on the formula of Scordilis 

(2006) and ML based on Irsyam et al. (2010). Several earthquakes (mostly greater than 

Mw 5) have focal mechanism information, as given by the Harvard Centroid Moment 

Tensor Project (http://www.globalcmt.org), which helped us to determine the 

earthquake focal mechanism. Each earthquake was cross-checked with the time series of 

volcanic heat flux and seismic events searching for a change in volcanic activity 

immediately following each event.  

6.3. Seismic and thermal radiance data for Merapi and Semeru 

6.3.1. Seismicity 

History of the seismic activity at Merapi and Semeru volcanoes during the period 2000-

2014 is shown in Figures 6.3 and 6.4, respectively. During this period of 15 years, 

Merapi has erupted in 2001, 2006 and 2010. Eruptions at Merapi are generally preceded 

by VT and MP seismicity varying in time scale from weeks to months as a manifestation 

of magma intrusion and formation of lava domes (Ratdomopurbo & Poupinet, 2000; 

Budi-Santoso et al., 2013). PDCs and/or glowing rock avalanches are generated from 

lava dome collapse due to gravitational instability or lava dome destruction due to an 

explosion. After dome collapse and PDC-producing eruptions, the unstable volcanic 

rocks of the dome and vertical crater rims trigger rockfalls for as long as one or two 
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years. The general pattern of seismic activity mentioned above occurred during the 

2001 and 2006 eruptions of Merapi, as shown in seismic event number on a daily basis 

in Figure 6.3. Compared with the previous two eruptions based on seismic data, the 

2010 eruption had a larger magnitude and a different pattern of eruption stages (Surono 

et al., 2012; Budi-Santoso et al., 2013). VT and MV seismicity started to increase 6, 10 

and 12 months before the 2001, 2006 and 2010 eruptions, respectively (Fig. 6.3). 

However in 2010, a significant increase in VT and MP events occurred 1.5 months only 

prior to the eruption. The number of PDC events in 2010 was smaller than in 2006 but 

these flows had larger magnitude and were preceded by more VT and MP events. After 

the 2010 eruption, explosion events associated with phreatic eruptions and gas bursts 

were frequently observed at Merapi and had relatively small magnitudes seismic 

signatures.  

Volcanic-related seismicity at Semeru is dominated by explosive (gas burst, Strombolian 

and vulcanian) events with 2500 events per month or 90-100 events per day on average. 

Each eruption produces volcanic plumes rising a few hundred to a few thousand meters 

(Nishi et al. 2007; Thouret et al., 2007). Since 1967, small Strombolian-vulcanian 

eruptions have occurred at intervals of 5–60 min, accompanied by ash clouds rising to 

less than 1 km (Iguchi et al., 2008). At Semeru, rockfalls are generated mostly from the 

unconsolidated ejected and tephra products in the Jonggring Seloko crater and 

pyroclastic deposits in the scar. This is different from Merapi, where rockfalls are 

generated mostly from dome collapse. Since at least 1990, VT-A events in Semeru show 

a long-term variation every 7 to 8 years with maxima at the ends of 2000 and 2008 (Fig. 

6.4). This apparent ‘cycle’ may be followed by an increase in Semeru activity that 

produced several kilometer-high eruption columns, ballistic bombs and thick tephra fall 

as described by Thouret et al. (2007). In addition, one to two years after the intensive 

VT-A events, PDC-producing eruptions occurred at Semeru, such as during the 

December 2002-January 2003 and November 2010 eruptions. Since early 2009, 

eruption behavior of Semeru has changed. This change began with a gradual decrease in 

number of explosions over about six months. Since 2010, Semeru explosions have been 

dominated by gas burst events in which the rapid effusion of steam is accompanied by 

explosive sounds and white plumes (Nishimura et al., 2012). This activity is typically 

followed by intensive volcanic tremor, thought to be related to magma migration from 
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depth to the upper part of conduit. Since 2010, Semeru eruptions have become mainly 

effusive with lava flows and dome-coulées erupted from a central vent. 

 

Figure 6.3. Daily numbers of seismic events at Merapi during the period 2000-2014 including 

type-A and -B volcano-tectonics (VT-A and VT-B), multiphase (MP), low frequency (LF), 

explosion / gas burst, rockfall and PDC events. Daily seismic events are reported in local time 

(GMT +7). Gray boxes indicate the period of major eruptions in 2001, 2006 and 2010. 

��������������������������������������������������������������������������Responses of Merapi and Semeru eruptive activity to regional tectonic events: first results

165



 
 

 

Figure 6.4. Monthly numbers of seismic events at Semeru during the period 2000-2014 include 

type A and B volcano-tectonics (VT-A and VT-B), tremor, rockfall, explosions/gas burst events. 

Dark gray boxes indicate the period of PDC-producing eruption and light gray box (2010-2014) 

indicate period of lava flow production and dome-coulée growth. 

Monthly number of VT events in Semeru show seasonal variations, with frequency 

increasing during rainy seasons (October to March) compared to dry seasons (Fig. 6.4). 

This variation not only occurred during the period 2000-2014, but also in previous 

years since at least 1990, as reported by the Indonesia Center for Volcanology and 

Geological Hazard Mitigation (CVGHM). In addition, during the period 1997-2007, 

explosive events at Semeru also show seasonal variations with enhanced activity 

between September and January (Mason et al., 2004). However, explosive events do not 

always show seasonal variations during the later period of 2000-2014 (Fig. 6.4). The 

seasonality in seismicity may be correlated with environmental fluctuations associated 

with deformation of the Earth in response to the annual hydrological cycle including 

falls in sea level and regional atmospheric pressure (Mason et al., 2004), and 
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groundwater recharge (Saar & Manga, 2003). The annual rainfall on Semeru varies 

temporally and spatially but ranges between 2000 and 2800 mm, while monthly rainfall 

during the rainy season (in 2000) ranged from 350 to 570 mm (Lavigne & Suwa, 2004). 

The most likely cause of seasonality in VT events is stress changes caused by changes in 

groundwater recharge rate, which can be the result of variations in precipitation. The 

stress changes caused by hydrological loading are typically 10-3-10-1 MPa, which may be 

larger than stress changes caused by solid Earth (10-3) and Ocean (10-2) tides (Manga & 

Brodsky, 2006). Unfortunately, information on subsurface volcanic structures as well as 

the location of VT events at Semeru is poorly known. In addition, the availability of 

continuous long-term data on rainfall and hydrology at Semeru and its surroundings is 

also poor. Therefore, the relationship between the variations of VT events with seasonal 

effect was not studied in detail in this thesis, except to the degree that it constitutes the 

background variation for analysis of potential effects of tectonic earthquakes on volcanic 

unrest and eruption rates.  

6.3.2. MODIS-derived radiance data 

During 2000-2014, MODVOLC detected hot spots at Merapi during 217 Terra and Aqua 

overpasses and at Semeru during 1644 overpasses (Fig. 6.5). One overpass could detect 

more than one hot spot (pixel). The maximum pixel counts are 4 and 6 pixels for Merapi 

and Semeru, respectively (Fig. 6.5A). Given a total of 21,552 overpasses by Terra and 

Aqua during the 5388-day-long period (1 March 2000 to 30 November 2014), 1% and 

8% of the overpasses detected hot spots at Merapi and Semeru, respectively. Fewer hot 

spots were detected by MODVOLC due to low intensity of volcanic activity and/or cloud 

cover that prevented hot spot detection. Impact of cloud cover on hot spot detection is 

well illustrated by the 26 October-23 November 2010 Merapi eruption, when only one 

overpass could detect hotspot during this one month-long VEI-4 eruption (Fig. 6.5). 

Cloud cover also affected seasonal variations in detection of hot spots at Semeru, as 

more hot spots were detected during the dry season than during the rainy season (Fig. 

6.5). MODIS detected thermal anomalies are associated with surface volcanic activity 

and seismic signals associated with PDC events (mostly at Merapi), and explosion events 

(vulcanian and strombolian eruption at Semeru), and probably glowing rock avalanches 

at both volcanoes. 
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Thermal radiance data for each detected hot spot were converted to heat flux (in units of 

joules per second) and volume flux (in m3 per second), following the method and 

computing technique of Harris and Ripepe (2007) (Fig. 6.6A). During the period 2000-

2014, we obtain heat fluxes from detected hot spots for Merapi in the range of 0.3 to 

49.8 x 108 J/s. These convert to volume fluxes in the range 0.03 to 4.9 m3/s, with a mean 

of 1.1 m3/s. While at Semeru, we obtain heat fluxes in the range 0.04 to 58.6 x 108 J/s 

and volume fluxes in the range 0.004 to 5.8 m3/s, with a mean of 0.8 m3/s. Total power 

and volume for a certain period of time during high volcanic activity can be obtained by 

integrating the heat and volume flux through the time interval. 

6.4. Results 

In this section, we express the heat and volume fluxes data within a shorter period for a 

better and more detailed view of variations in the activity of Merapi and Semeru based 

on thermal satellite data. Related seismic data are also displayed to be compared with 

the heat and volume fluxes data or to substitute them when not available. We record 

every earthquake that may drive changes in activity of each volcano, either an increase 

or decrease in activity, and summarize them in Table 6.1 for Merapi and Table 6.2 for 

Semeru.  

6.4.1.  Merapi volcano response to regional earthquakes  

January – June 2001 

In early 2001, Merapi shows a high level of activity with lava dome onset and growth 

following by dome collapse resulting in PDCs and hot lava avalanches starting on 14 

January 2001. Over the period from18 January to 18 February 2001, approximately 25 

PDCs occurred daily (Fig. 6.7A) and moved down to the flanks to the Sat, Bebeng, and 

Senowo Rivers (Fig. 6.2) to the southwest, southwest and west of Merapi, respectively. 

Larger eruptions occurred on 28 January 2001 with 72 PDCs per day and pyroclastic 

flows reached a maximum runout distance of 4.5 km from the crater in the Sat River 

drainage (Fig. 6.2). A major eruptive episode on 10 February 2001 generated PDCs that 

extended as far as 7 km from Merapi in the direction of the Sat River and 4.5 km in the 

direction of the Lamat River (Fig. 6.2), and an ash plume that spread out 60 km towards 

the east. After the 18 February eruption, volcanic activity, including lava avalanches and 
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PDCs, continued but decreased in number and intensity. Earthquakes related to rockfall, 

ash emissions and fumaroles dominated the seismicity, though they continued to 

decrease in number and amplitude over time. Activity at Merapi increased during 23-29 

April and 2-8 May to produce several medium-sized of PDCs (Wunderman, 2001). 

 

Figure 6.7. Merapi activity and regional tectonic earthquakes during the period from January to 

June 2001 are shown in: (A) daily numbers of PDC events, (B) envelope of cumulative power 

and volume (gray zone) from the integration of heat and volume fluxes given in Figure 6.6. Black 

dots indicate the mean values for cumulative power and volume. The mean values for heat and 

volume fluxes for the certain periods (dashed red lines and numbers 1 to 9) are indicated in the 

inset box. (C) Regional tectonic earthquakes time distribution and their distance to Merapi. 

��������������������������������������������������������������������������Responses of Merapi and Semeru eruptive activity to regional tectonic events: first results

171



 
 

Figure 6.7 shows Merapi activity represented by PDC-related seismic events and 

cumulated power and volume based on MODVOLC data, as well as the distribution of 

regional tectonic earthquakes during the period January to June 2001. Unfortunately, 

cloud cover prevented hot spot detection for about 98% of the Terra and Aqua 

overpasses during this period, and most of hot spots were detected in May 2001 (Fig. 

6.7B). We compute heat fluxes for Merapi during the period between January and May 

2001 in the range of 0.6 to 46.4 x 108 J/s or equivalent to volume fluxes in the range of 

0.05 to 4.6 m3/s. The total power during the high activity of Merapi (14 January to 13 

March 2001) was 5.96 ± 1.8 x 1015 J or equivalent to a total extruded volume of 5.3 ± 2.4 

x 106 m3. This volume is overestimated when compared to a ground-based estimation of 

the 2001 lava dome, which amounted to a volume of 1.4 x 106 m3 (Wunderman, 2001). 

However, the 2001 PDC-producing eruption of Merapi was not only derived from the 

fresh (2001) lava dome but also involved the collapse of the 1998 lava dome 

(Wunderman, 2001). 

Several regional earthquakes during the period from January to June 2001 may have 

triggered a response at Merapi as expressed by increased activity. The Mw 5.4 

earthquake located 214 km southwest of Merapi occurred 7 days before the first PDC-

producing eruption. The daily number of PDC-seismic events doubled one day following 

the Mw 6.0 earthquake on 16 February 2001, located 768 km to the east of Merapi. 

Based on stress field modeling this earthquake caused a fluctuation of compression and 

decompression change at >1 Hz, with the peak-to-peak pressure change of about 10 kPa 

(Walter et al., 2007). Dynamic changes of stress caused by the 25 May 2001 earthquake 

with Mw 6.3 increased by about 30°C in the temperature of fumaroles located 200 m 

southeast of the Merapi crater (Walter et al., 2007). This earthquake did not produce a 

change in the cumulative power and volume data (Fig. 6.7B), possibly because 

MODVOLC was unable to detect fumarolic activity. However, the 25 May 2001 

earthquake was followed by a small-volume PDC the following day (Fig. 6.7B).  

During January to June 2001, at least two relatively small earthquakes likely triggered a 

response from Merapi by producing PDCs two days after the event. The first earthquake 

on 5 April 2001 with (mb 3.5) was located 31 km WNW of Merapi at a depth of 33 km, 

and the second one (mb 3.7) on 10 May 2001 was located 68 km north of Merapi at a 

depth of 100 km. Stress field model of Walter et al., (2007) also suggested that inflation 
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of Merapi during the crisis could have increased the static stress at proximal 

seismogenic faults. Therefore, these small earthquakes may be triggered by the 

deformation or intrusion at Merapi during the 2001 eruption. This also could be similar 

to the hypothesis for distal VT events proposed by White and McCausland (in review). 

10 May - 14 June 2006  

Harris and Ripepe (2007) published results that indicate the Mw 6.3 earthquake on 26 

May 2006 induced a response from Merapi that was characterized by an increase in the 

heat and volume flux, which began three days after the event and lasted nine days (Fig. 

6.8A). Three phases of Merapi activity during the period 10 May to 14 June 2006 were 

identified on the basis of heat and volume flux (Fig. 6.8A). They suggested that the three 

days lag time between the event and Merapi response reflected the time it took for the 

change felt by magma residing at deeper level to be transmitted to the surface. In this 

2006 case, change in the static and/or dynamic stress (the effect of the earthquake) and 

the increase in erupted volume flux was transient and short-lived (nine days).  

We compare the heat and volume flux of Merapi with daily numbers of PDCs recorded 

by seismometers (Fig. 6.8). We also identify three phases of Merapi activity based on 

daily numbers of PDC events and a sudden increase in seismic data shortly after the 

earthquake (Fig. 6.8B). Before the earthquake, the average number of PDC was 35 

events per day, but one day after the earthquake, this number increased to 159 events 

per day (Fig. 6.8B). The number of PDCs decreased over the two following days and then 

increased again during the second phase beginning four days after the earthquake. High 

number of PDC during the second phase reached 115 events per day on average and 

lasted for ten days. The number of PDC decreased during the third phase to a lower 

activity with an average of 26 events per day. 
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Figure 6.8. (A) Envelope of cumulative power and volume (gray zone) for Merapi (Harris & 

Ripepe, 2007) compared with (B) daily numbers of PDC events during the period 10 May to 14 

June 2006.  

January 2009 – March 2011  

The 2010 eruption is the first large (VEI 4) explosive eruption of Merapi that has been 

instrumentally observed.  The precursory unrest preceding the 2010 eruption was 

marked by VT swarms detected on 31 October 2009, 6 December 2009, 1 February 

2010, and 10 June 2010 (Surono et al., 2012; Budi-Santoso et al., 2013). The level of 

seismicity began to increase in early September 2010, one and half months before the 

first eruption on 26 October 2010. The eruption process and deposits have been 

discussed in previous studies (e.g., the special issue of the 2010 Merapi eruption in 

Journal of Volcanology and Geothermal Research, volume 261, in 2013) as well as 

Chapters 4 and 5 of this thesis. 
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Figure 6.9. A. Daily data of seismic spectral amplitude measurement (SSAM) of Merapi in the 

frequency range of 0.3-25 Hz, during the period from January 2009 to March 2011. Note that 

maximum amplitude during the climactic eruption on 5 November 2010 is 5124 arbitrary units 

(A.U.). B. Time distribution of regional tectonic earthquakes and their distance to Merapi. 

Heavy cloud cover during the 2010 eruption prevented hot spot detection by Terra and 

Aqua satellites, so only four hot spots are detected by an overpass of Aqua on 29 October 

2010. We used the seismic data represented in SSAM values to see the variations of 

Merapi activity during the period January 2009 to March 2011 (Fig. 6.9). SSAM 

calculates the amplitude of every recorded seismic event in the frequency range of 0.3 to 

25 Hz, including deep, shallow and surface volcanic activities as well as tectonic 

earthquakes. Some identified tectonic earthquakes have affected the activity of Merapi 

based on SSAM, with a lag time in the range of 1 to 7 days. More details (in shorter 

period of time) of SSAM data, cumulative energy of VT and MP events are shown in 

Figure 6.10, together with the relatively large (≥ Mw 5.0) earthquakes and smaller but 

closes to the volcano (< 100 km). Based on this data set, large earthquakes do not 

systematically influence Merapi behavior, for example there is no significant change of 

SSAM after the Mw 7.0 earthquake on 2 September 2009 (number 1 in Fig. 6.10A). 

Proximal small earthquakes sometimes seems to increased Merapi seismicity, such as 
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the ML 3.9 earthquake on 4 July 2010 and ML 2.5 earthquake on 25 October 2010 

(number 15 and 23, respectively, in Fig. 6.10B-C). However, these small earthquake may 

also associated with distal VT’s produced by changes in stress along nearby faults as a 

consequence of intrusion (White & McCausland, in review) 

 

Figure 6.10. Daily SSAM data of Merapi in the frequency range of 0.3-25 Hz (blue bars) and 

cumulative energy of VT and MP events (red solid line) overlain by the occurrence date of 

regional tectonic earthquakes marked by their focal mechanism (for ≥ Mw 5.0) or gray stars 

(any magnitude but located <100 km to the volcano), over the period of August-October 2009 

(A), May-July 2010 (B), and September-December 2010 (C). The earthquake parameters 

(magnitude, depth, distance) are indicated to the right hand side of the graphs.  

As noted above, large earthquake are not systematically followed by an increase in 

Merapi activity. SSAM of Merapi decreased 3 and 7 days before the occurrence of two 
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large earthquakes. The first earthquake with Mw 5.7, located 593 km ESE of Merapi at a 

depth of 70.1 km (number 3 in Fig. 6.10A), was associated with activity in the 

subduction zone south of Java. The second one is the intraplate earthquake with Mw 5.9 

located 269 km SW of Merapi at a depth of 100.4 km. It is unclear, if any correlation 

exists or if these decreases are a coincidence. As mentioned earlier, interaction between 

tectonic earthquake and volcanic activity can also work inversely; an earthquake can be 

triggered by the eruptive activity. Very high activity of Merapi during the 2010 crisis 

(end of October to mid-November) probably induced stress change at the crustal faults 

around the volcano. This is indicated by the occurrence of several proximal small 

earthquakes at shallow depth (< 20 km) during the crisis period (Fig. 6.10C).  

January 2012 – May 2014 

 

Figure 6.11. Daily numbers of explosions or gas burst events (black bars) during the period 

from January 2012 to June 2014 overlain by the occurrence of short explosive (phreatic) events 

(red solid line) and tectonic earthquakes (gray dashed lines with focal mechanism or stars). The 

earthquake parameters (magnitude, depth, distance) are indicated below the graph.  

Merapi eruptions after the 2010 were characterized by short, low magnitude (VEI 1-2) 

explosive events producing a few hundred meters to several km-high ash plumes. As 

many as eight major explosive events occurred on 15 July 2012, 20 August 2012, 22 July 

2013, 18 November 2013, 12 December 2013, 10 March 2014, 27 March 2014 and 20 
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April 2014. Six explosions were preceded by regional tectonic earthquakes that occurred 

a few hours to two days earlier (Fig 6.11). Some earthquakes also indicated to increase 

number of gas bursts one day later. There are no specific earthquake parameters that 

indicated the potential to trigger explosion. Merapi volcano observatory (MVO) reported 

that eruptive activity consists of phreatic eruptions or gas burst from fumaroles and did 

not involve juvenile magma at depth. This indicates that during the period between 

January 2012 and May 2014, seismic waves from the earthquake disproportionately 

affected and increased the stress in the Merapi hydrothermal system rather than the 

magma chamber, and/or the magma chamber was in a state of “relaxation” after the VEI 

4 eruption in 2010, as >70 Mm3 of material were erupted (Solikhin et al., 2015b). 

Table 6.1. List of tectonic earthquakes during the period 2000-2014 inferred to have exerted 

some influence to the activity at Merapi volcano. 

Time 
(UTC) 

Magnitude 
Depth    
in km 

Distance to 
Merapi in km 

(direction) 

Focal 
mechanism 

Volcano response 

07/01/20
01 (12:55) 

Mw 5.4  33.0 214 (SW) 

 First PDC of the Merapi 2001 
eruption occurred 7 days after 
the earthquake. 

16/02/20
01 (05:59) 

Mw 6.0  515.0 768 (E) 

 The daily number of PDC-seismic 
events has doubled one day after 
the earthquake. 

05/04/20
01 (20:51) 

mb 3.5  
~Mw 4.0 

33.0 31 (WNW) - 
A PDC occurred two days after 
the earthquake. 

10/05/20
01 (13:17) 

mb 3.5  
~Mw 4.0 

100.0 68 (N) - 
Two PDCs occurred two days 
after the earthquake. 

25/05/20
01 (05:06) 

Mw 6.3 131.3 50 (SW) 

 

~30°C increase in the fumaroles 
temperature (Walter et al., 2007). 

26/05/20
06 (22:54) 

Mw 6.4 21.7 48 (SSE) 

 

Increases in the heat and volume 
fluxes beginning 3 days after the 
earthquake, and lasted 9 days 
(Harris & Ripepe, 2007). 

18/09/20
09 (23:06) 

Mw 5.7 70.1 593 (SE) 

 

Preceded by a decrease in SSAM 3 
days before the earthquake and 
then 6 days later SSAM increased 
and lasted for 9 days. 

16/10/20
09 (09:52) 

Mw 6.1 45.2 585 (W) 

 SSAM increase (~250%) began 3 
days after the earthquake and 
lasted for 2 days. 

26/10/20
09 (09:57) 

ML 3.3 
~Mw 4.1 

10.0 61 (S) - 

Increase in energy of VT and MP 
events began 4 days after the 
earthquake. 
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Table 6.1. (continued) 

Time 
(UTC) 

Magnitude 
Depth    
in km 

Distance to 
Merapi in km 
(direction)* 

Focal 
mechanism 

Volcano response 

04/06/20
10 (15:12) 

MW 5.1  13.7 341 (SW) 

 Increase in energy of VT and MP 
events began 4 days after the 
earthquake. 

26/06/20
10 (09:50) 

MW 5.9  100.4 269 (WSW) 

 Preceded by a decrease of SSAM 4 
days before the earthquake and 
then SSAM increased 2 days later. 

04/07/20
10 (05:13) 

ML 3.9 
~Mw 4.3 

64.0 75 (S) - 
SSAM increase (~200%) began 2 
days after the earthquake. 

01/10/20
10 (01:24) 

MW 5.3 13.1 526 (SE) 

 SSAM increase (~150%) began 2 
days after the earthquake and 
lasted for 4 days. 

25/10/20
10 (07:39) 

ML 2.5 
~Mw 3.9 

15.0 39 (SSE) - 

The earthquake occurred one day 
before the first eruption of the 
2010 Merapi crisis. 

02/11/20
10 (08:30) 

ML 3.0 
~Mw 4.0 

13.0 38 (SSE) - 

After the earthquake, activity of 
Merapi increased and reached the 
climactic stage of the 2010 
eruption on 5 November 2010. 

07/11/20
10 (16:08) 

ML 3.8 
~Mw 4.3 

10.0 57 (S) - 
SSAM of Merapi increased one day 
after the earthquake. 

12/12/20
10 (15:59) 

Mw 5.4  16.6 818 (NE) 

 SSAM increase (~200%) began 3 
days after the earthquake and 
lasted for 8 days. 

13/07/20
12 (17:57) 

Mw 4.9  71.1 182 (SW) 

 

Earthquake followed by a phreatic 
eruption at Merapi 2 days later. 

20/08/20
12 (08:52) 

mb 4.5  
~Mw 4.9 

236.0 175 (WNW) - 

Earthquake followed by a phreatic 
eruption at Merapi a few hours 
later. 

18/07/20
13 (15:43) 

Mw 4.9  28.5 740 (WSW) 

 

Earthquake followed by a phreatic 
eruption at Merapi 2 days later. 

17/11/20
03 (21:41) 

mb 4.7  
~Mw 5.0 

38.0 175 (SW) - 

Earthquake followed by a phreatic 
eruption at Merapi a few hours 
later. 

11/12/20
13 (18:23) 

Mw 4.9  14.6 479 (SW) 

 Earthquake followed by a phreatic 
eruption at Merapi a few hours 
later. 

09/03/20
14 (13:42) 

Mw 5.2  76.4 328 (SE) 

 

Earthquake followed by a phreatic 
eruption at Merapi 11 hours later. 
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6.4.2.  Semeru volcano response to regional earthquakes 

February 2002 – January 2003 

 

Figure 6.12. (A) Heat and volume flux ranges, where maximum (black circle) and minimum 

(gray circle) bounds are placed on the heat or volume flux through application of cold and hot 

models. (B) Envelope of cumulative power and volume (gray zone) from integration of heat and 

volume fluxes. The mean values for heat and volume fluxes for two certain periods (dashed red 

lines) are also indicated. (C) Time distribution of tectonic earthquakes and their distance to 

Semeru during the period February 2002 to January 2003. 
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During the period February 2002 to January 2003, MODVOLC detected hot spots at 

Semeru during 369 Terra and Aqua overpasses, which corresponds to about 12% of 

total overpasses. However, only a few hot spots were detected during the major 

eruption in December 2002-January 2003 (Fig. 6.12). Prior to the major eruption (from 

May to November 2002) the average heat flux of Semeru was ~0.18 GJ/s that is 

equivalent with the volume flux of ~ 0.46 m3/s. By integrating the heat flux through 

time, we obtain a total power released by Semeru for a year of 1.42 ± 0.44 x 1016 J. This 

converts to a total extruded volume for the same period of 12.56 ± 5.82 x 106 m3. During 

this period some earthquakes (summarized in Table 6.2) appear to have affected the 

Semeru activity.  

January 2004 – December2005 

The Mw 9.3 Sumatra-Andaman earthquake on 26 December 2004 was located ~2300 

km away from Semeru volcano. Following this large earthquake, the heat flux generated 

by global volcanic activity, which was already at relatively high level since April 2004, 

underwent a 300% increase (Delle Donne et al., 2010). During the year 2004 and 2005, 

MODVOLC detected hot spots in 17 and 21%, respectively, of the total Terra and Aqua 

overpasses (Fig. 6.13). During the year 2004, we obtain heat fluxes for Semeru in the 

range of 0.6 to 41.5 x 108 J/s, equivalent to volume fluxes in the range 0.04 to 4.12 m3/s, 

with a mean of 0.64 m3/s. In 2005, Semeru showed a wider range of heat fluxes of 0.15 

to 58.6 x 108 J/s, equivalent to volume fluxes in the range of 0.01 to 5.82 m3/s and with a 

mean of 0.72 m3/s. We also obtained total power released by Semeru for one year 

periods of 1.94 ± 0.6 x 1016 J for 2004 and 2.13 ± 0.66 x 1016 J for 2005. This converts to 

a total extruded volume of 17.23 ± 8 x 106 m3 and 18.89 ± 8.8 x 106 m3 for 2004 and 

2005, respectively. Indeed, there is an increase in the average volume fluxes for Semeru 

during the year following the Sumatra-Andaman earthquake; however, there is no 

abrupt change in the power distribution associated with the time of the earthquake (Fig. 

6.13). In evaluating these data we must also consider the cloud cover that prevented hot 

spot detection during a large number of days during the two years in question. 
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Figure 6.13. (A) Heat and volume flux ranges, where maximum (black circle) and minimum 

(gray circle) bounds are placed on the heat or volume flux through application of cold and hot 

models. (B) Envelope of cumulative power and volume (gray zone) from integration heat and 

volume fluxes. The mean values for heat and volume fluxes for certain periods (dashed red lines 

are also indicated. (C) Time distribution of tectonic earthquakes and their distance to Semeru 

during the two years period 2004-2005. Red star and dashed line indicate the occurrence time of 

Mw 9.3 Sumatra-Andaman earthquake (26 December 2004). 

May - July 2006 

As for Merapi during the 2006 Merapi eruption and Java earthquake, we compare the 

heat and volume fluxes of Semeru (Fig. 6.14A; Harris & Ripepe, 2007) with seismic data, 

in this case together with daily numbers of explosive events (Fig. 6.14B). The number of 
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explosive events at Semeru does not seem to have been affected by the Mw 6.3 

earthquake on 26 May 2006 (UTC). There is no important variation in the eruptive 

activity after the earthquake. However, it cannot be concluded that the heat and volume 

fluxes data are not in accordance with the actual Semeru activity, because each explosive 

event has a different magnitude. Unfortunately, we do not have information on the 

magnitude or energy of the explosive events.    

 
Figure 6.14. (A) Envelope of cumulative power and volume (gray zone) for Semeru (Harris & 

Ripepe, 2007) compared with (B) daily numbers of explosion and gasburst events during the 

period 10 May to 14 June 2006. (C) Envelope of cumulative power and volume (gray zone) for 

Semeru during the period 1 July-6 August 2006. The position of Mw 7.7 earthquake and three 

eruption phases are marked in the graph. 
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In 2006, another large earthquake (Mw 7.7) on 17 July was located offshore near the 

trench of the Sunda subduction zone south of Java, ~610 km southwest of Semeru 

volcano. There was no ground motion damage from the earthquake, but there was 

extensive damage and loss of life from the tsunami along 250 km of the southern coasts 

of West Java and Central Java.  Increases in heat and volume fluxes at Semeru were first 

recorded 5 days after the earthquake on 22 July and lasted 5 days (Fig. 6.14C). As in the 

case of May-June 2006 (Harris & Ripepe, 2007), we also identified three phases of 

Semeru activity on the basis of heat and volume flux for the period 1 July to 6 August 

2006. The first phase spanned 3–21 July and was characterized by relatively low heat 

fluxes of ~2.3 x 108 J/s in average. The second phase began on 22 July and was 

characterized by higher fluxes of ~8.4 x 108 J/s or almost fourfold the first phase. During 

this phase calculated heat and volume fluxes increased by a factor of 3.2, which is almost 

similar to the increased factor after the 26 May 2006 earthquake. The third phase was 

marked by a return to lower fluxes of ~1.9 x 108 J/s after 27 July.  

June – December 2014 

The most recent eruptive state of Semeru has been described in chapter 3 of this thesis: 

essentially lava flows, and dome-coulee and collapse from lava flow fronts characterize 

the Semeru eruptive activity since 2010. Unfortunately, only a few hot spots were 

detected by MODVOLC from early 2009 to mid-2014. Since July 2014, the daily number 

of gas bursts has increased and since September, Strombolian activity associated to lava 

extrusion was frequently observed in the Jonggring-Seloko crater. During the period 

June to December 2014, MODVOLC detected hot spots at Semeru during 226 Terra and 

Aqua overpasses or about 26% of total overpasses (Fig. 6.15). During the period of 

August to mid-November 2014, Semeru showed an almost constant heat flux of 1.15 

GJ/s and a volume flux of 1.02 m3/s on average. Tectonic earthquakes that could have 

influenced Semeru activity during this period are summarized in Table 6.2. The 

relatively constant heat flux suggest that these smaller (all < M6) earthquake either had 

no affect on the heat flux, or their effects were too small and/or short in duration to be 

detected, given the low temporal resolution of the MODVOLC observations. 
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Figure 6.15. (A) Heat and volume flux ranges, (B) envelope of cumulative power and volume 

(gray zone) from integration heat and volume fluxes, and (C) tectonic earthquakes time 

distribution and their distance to Semeru during the period June to December 2014 
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Table 6.2. List of tectonic earthquakes during the period 2000-2014 inferred to have exerted 

some influence to the eruptive activity at Semeru volcano. 

Time 
(UTC) 

Magnitude 
Depth    
in km 

Distance to 
Semeru in km 

(direction) 

Focal 
mechanism 

Volcano response 

21/06/20
02 (05:07) 

Mw 5.1 45.5 195 (NNE) 

 

Heat and volume fluxes in 
Semeru increased (~220%) 1 day 
after the earthquake and lasted 
for 5 days. 

26/08/20
02 (17:36) 

Mw 5.6 15.1 198 (N) 

 

Heat and volume fluxes in 
Semeru increased (~198%) 1 day 
after the earthquake and lasted 
for 6 days. 

03/10/20
02 (19:05) 

Mw 6.0  316.7 308 (ENE) 

 

Heat and volume fluxes in 
Semeru increased (~172%) 4 
days after the earthquake and 
lasted for 7 days. 

28/05/20
03 (01:34) 

Mw 5.2  86.3 70 (SW) 

 

Heat and volume fluxes in 
Semeru increased (~150%) 3 
days after the earthquake and 
lasted for 6 days. 

08/09/20
03 (06:26) 

Mw 5.9  15.0 205 (SW) 

 

Heat and volume fluxes in 
Semeru suddenly increased 
(~300%) a few hours after the 
earthquake. 

09/05/20
04 (22:25) 

Mw 5.1  54.6 758 (SW) 

 

Heat and volume fluxes in 
Semeru increased (~153%) 2 
days after the earthquake and 
lasted for 4 days. 

27/10/20
04 (09:45) 

ML 4.4 
~Mw 4.6 

148.9 54 (S) - 

Heat and volume fluxes in 
Semeru increased (~120%) 3 
days after the earthquake and 
lasted for 4 days. 

08/04/20
05 (18:38) 

ML 4.8 
~Mw 4.9 

33.0 66 (NE) - 

Heat and volume fluxes in 
Semeru increased (~163%) 1 day 
after the earthquake and lasted 
for 2 days. 

10/05/20
05 (02:32) 

ML 4.6 
~Mw 4.7 

128.5 74 (SW) - 

Heat and volume fluxes in 
Semeru increased (~171%) 3 
days after the earthquake and 
lasted for 5 days. 

26/05/20
06 (22:54) 

Mw 6.4 21.7 285 (W)  

 

Increases in heat and volume 
fluxes began 3 days after the 
earthquake, and lasted for 9 days 
(Harris & Ripepe, 2007). 

17/07/20
06 (08:20) 

Mw 7.7 20.0 630 (WSW) 

 Increases in heat and volume 
fluxes began 5 days after the 
earthquake, and lasted for 5 days.  
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Table 6.2.  (Continued) 

Time 
(UTC) 

Magnitude 
Depth    
in km 

Distance to 
Semeru in km 

(direction) 

Focal 
mechanism 

Volcano response 

27/04/20
08 (05:02) 

Mw 5.0 68.2 557 (W) 

 

Heat and volume fluxes in 
Semeru increased (~315%) 5 
days after the earthquake and 
lasted for 9 days. 

31/07/20
14 (03:34) 

ML 4.0 
~Mw 4.4 

10.0 93 (S) - 

Heat and volume fluxes in 
Semeru increased (~220%) 1 
days after the earthquake and 
lasted for 7 days. 

6.5. Discussion: MODVOLC data for volcano monitoring 

This thesis focuses on the application of remote imaging data to assess the volcano 

activity and products. For this reason, we highlight the use of MODVOLC thermal 

radiance data converted into heat and volume fluxes, combined with limited seismic 

data, in approaching temporal variations of the eruptive activity. MODIS with its two 

sensors (Terra and Aqua) provides four hot-spot observations per day (morning, 

afternoon, evening and night). In addition, the detection and publishing of the location of 

volcanic hot-spot by MODVOLC is rapid, within 12 to 24 hours after data acquisition. 

Under appropriate conditions (e.g., limited cloud cover), this permits dynamic 

monitoring of volcanic phenomenon such as active lava flows (Wright et al., 2004). The 

reliance of MODVOLC on a fixed, globally applicable threshold is adequate to prevent 

many false alarms but, unfortunately, also results in a lack of sensitivity, which may 

prevent the detection of low intensity volcanic phenomena. This insensitivity is also a 

result of the poor spatial resolution of MODIS itself (Vaughan & Hook, 2006). Another 

limitation is the impact of volcanic ash or meteorological clouds on MODVOLC radiance 

time-series.  

Despite these limitations, for particularly active volcanic phenomena, MODVOLC has 

provided some useful observations. Wright and Flynn (2003) utilized MODVOLC to 

acquire a two-year time series of quantitative observations of activity at Nyiragonggo 

(Democratic Republic of Congo) prior to, during and following a 2002 eruptive event. Jay 

et al. (2013) also used MODVOLC data to examine 150 volcanoes and geothermal areas 

in the central, southern and austral Andes for thermal anomalies between the years 
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2000 and 2010. MODVOLC data was also used to produce heat and volume flux time 

series and obtain a total extruded volume at Merapi that can be compared to ground-

based estimates of lava dome volumes. In this study, using the methodology of Harris 

and Ripepe (2007), we find that MODVOLC data enable monitoring of activity at Merapi 

and Semeru especially in periods with less cloud cover and during eruptions. It should 

be noted that the methodology of Harris and Ripepe (2007) was developed and tested 

for application to lava domes and lava (basaltic and silicic) flows. The methodology is 

suited for Merapi volcano but not entirely appropriate for Semeru, as its eruptive 

activity dominated by explosive events rather than lava dome construction, except for 

the most recent period (2010-2014) of the eruption. Unfortunately, we do not have 

comparable data from ground-based or other measurements to validate our result at 

Semeru. Therefore, caution must be applied to values of heat and volume fluxes at 

Semeru, although their first order variations and trends may be reliable.    

6.6. Conclusion and perspectives 

The use of MODVOLC thermal radiance data converted into heat and volume fluxes, 

combined with limited seismic data, has been highlighted in approaching temporal 

variations of the eruptive activity. In this study, we show that MODVOLC data together 

with the methodology of Harris and Ripepe (2007) used to evaluate the activity of 

Merapi and Semeru especially in periods with less cloud cover and during an eruption. 

The method is best suited for Merapi, but also appears to be appropriate for Semeru, 

especially during the 2010-2014 eruptive activity.  

In this study we propose correlations between several large magnitude (>Mw6) tectonic 

earthquakes and increases in thermal flux during ongoing eruptions at Merapi and 

Semeru. In addition, some smaller (Mw4-5) events at Merapi may have induced changes.  

However, at both volcanoes both larger (e.g., the Mw 9.3 Sumatra-Andaman earthquake 

and many smaller (Mw <5) regional tectonic earthquakes had little if any effect. Manga 

and Brodsky (2006) suggested approximately 0.4% of explosive volcanic eruptions 

occur within a few days of large, distant earthquakes. Given a total of 2450 examined 

tectonic earthquakes in catalog, we observe 36 events that could have influenced activity 

of Merapi and Semeru during the period 2000-2014, i.e., 1.5% of the catalog. 
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Building up on this preliminary study, several points can be emphasized for future 

research as follows: 

1.� The process behind seasonal variations of Semeru activity, which in this case are 

expressed by the VT events, need to be studied in more detail and in a quantitative 

manner. One of many ways is by modeling the influence of groundwater mass 

variations in the magmatic and/or hydrothermal system at Semeru. Future work 

will require the additional information on rainfall, hydrothermal system, and 

subsurface volcanic structures at Semeru.  

2.� The mechanism of increased volcanic activity triggered by regional earthquakes is 

still not clearly defined. Future research to be carried out may include modeling the 

stress changes induced by earthquakes. A clearer correlation between the 

parameters of earthquakes (e.g. magnitude, distance, fault orientation, etc.) and the 

response of the volcano also needs to be improved.  

3.� Small and proximal earthquakes during high activity of the volcano and a decline of 

SSAM preceded a given earthquake need to be scrutinized as to whether they are 

associated with regional tectonic deformation or stress propagation forced by 

localized magmatic activity. Additional evidence from other volcanoes and 

accompanied by modeling could help to better understand these phenomena. 
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Chapter 7 – Concluding remarks 

The significance of remote sensing has long been emphasized at active and hazardous 

volcanoes in order to understand the processes that underlie volcanic activity and to use 

this understanding in volcanic risk reduction. Indonesia, a tropical country which hosts 

127 active volcanoes and approximately 5 million people living on the flanks of 77 

persistently active and high risk volcanoes, provides multiple challenges for the value of 

remote sensing to contribute to volcanic hazard assessment. This thesis presents several 

studies undertaken using HSR optical (IKONOS, Pleriades, GeoEye, Quickbird and 

SPOT5), radar (ALOS-PALSAR) and thermal (ASTER and MODIS hot spot) images in 

association with DEMs and aerial photographs to apply remote sensing techniques for 

studying two of the most active and densely populated volcanoes in Indonesia, Semeru 

and Merapi. This research has underlined the importance of remote sensing to perform 

long-term observations and statistical studies spanning several years by taking 

advantage of satellite imagery that are available with the same level of noise over all 

periods of time. This remote sensing study has helped unravel structures, geological 

features and erupted deposits at both volcanoes and has helped assess hazards from 

their most recent (post-2001) eruptions. In addition, this research provides a first step 

toward understanding the possible interactions between regional tectonic earthquakes 

and the eruptive activity of Merapi and Semeru volcanoes. In sum, this is a summary of 

the contributions, limitations and perspectives of the results together with a new hazard 

assessment for both volcanoes. 

7.1. Remote sensing contributions 

The geophysical, geological and tectonic setting of Java Island, as well as the structure of 

the edifice and historical activity at Semeru and Merapi volcanoes, are described in 

Chapter 2. Seismotectonic study of Java shows that the source region of magma 

interpreted from the aseismic gap in the Wadati-Benioff zone is located at 150-190 km 

in depth beneath Merapi volcano and at 150-240 km in depth beneath Semeru volcano. 

The seismically active columns or clusters of earthquake beneath active volcanoes, are 

observed with a majority of shallow depth (<50 km) earthquakes beneath Merapi and 
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with deeper (down to 80 km) earthquakes beneath Semeru. A Bouguer gravity anomaly 

map (Untung & Sato, 1978) shows that the Semeru region has a stronger positive 

anomaly, which suggests that the Semeru edifice is denser and/or may be older than 

Merapi. A very strong low-velocity (S-wave) anomaly related to an area with a  high 

content of fluids and melts in the crust has been evidenced for the Merapi region just 

north of Sumbing, Merapi and Lawu volcanoes (Koulakov et al., 2007).  

7.1.1. Semeru Volcano 

Mount Semeru is composed of two cones, Mahameru (old Semeru) and young Semeru, 

which belongs to the Semeru-Tengger volcanic massif, whose eruptive centers lie on a 

roughly north-south-trending arc. Kinematic analysis of fault data suggests that the 

principal compressive stress direction in the Semeru region is 005°, which is related to 

the northward movement of the Indo-Australian plate south of the Semeru edifice. A 

new structural map of the Semeru-Tengger volcanic massif, based on the interpretation 

of DEMs, HSR satellite images combined with the drainage network map, the CVGHM 

geological maps (Zaennudin et al., 1995; Sutawidjaja et al., 1996), and the analysis of 

earthquake focal mechanisms is presented in Chapters 2 and 3. This map shows four 

groups of faults orientated 040°, 160°, 075°, and 105° to 140°. Conspicuous structures of 

the Semeru summit cone may be related to the regional tectonic setting such as the SE-

trending horseshoe-shaped scar with boundaries that parallel 160°-trending faults. The 

Semeru composite cone hosts the currently active Jonggring-Seloko vent. The summit 

cone is located on, and buttressed against the Mahameru edifice at the head of a large 

scar, which may reflect a failure plane at shallow depth. This feature suggests that the 

deformation pattern of Semeru and its large scar may be induced by flank spreading 

over the weak basal layer of the volcano. It is therefore necessary to consider the 

potential for flank and summit collapse in the future. 

An updated geological map of Semeru based on additional data derived from 

interpretation of the most recent satellite images, aerial photographs, DEM analysis and 

fieldwork is presented in Chapter 2. The post-2001 eruptive activity at Semeru, 

including the larger eruption in 2002-2003 and the uncommon effusive eruptions in 

2010-2014, has been described. The 2003 ASTER Surface Kinetic Temperature image 

combined with two 10 m-pixel images acquired before and after the event has enabled 
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mapping of the 2002–2003 PDC deposits and assessment of the extent and impact of an 

estimated volume of 5.45 × 106 m3 of block-and-ash flow and surge deposits. Activity at 

Semeru during the period 2010-2014, produced several lava flows from the central vent, 

showing a change in eruption style for the first time since at least 1967 or perhaps since 

1941. This significant change in Semeru eruptive behavior may have been caused by 

changes in conduit geometry and/or in magma composition and physical properties 

(e.g., vesicularity, volatile content). One of the common Semeru hazards is lava-dome 

collapse producing relatively large volume of PDCs (3 to 6.5 million m3). Since at least 

1977, PDCs dominantly traveled from the crater towards the south and southeast flanks 

of Semeru, reaching as far as the city of Pronojiwo (12 km from the summit). The 2010-

2014 eruptions also involved the growth of a dome-coulée, with an estimated volume of 

2.5 ± 0.5 million m3 as of September 2014. At the time of writing, a dome-coulee in the 

Jonggring-Seloko crater continues to grow and will probably collapse to produce large 

volume PDCs, perhaps exceeding the average (1967-2007) volume range of 3 to 6.5 

million m3. 

7.1.2. Merapi Volcano 

Merapi volcano belongs to a cross-island range of four composite volcanoes comprising, 

from north to south, Ungaran, Telemoyo, Merbabu and Merapi, aligned along a regional 

165°-trending tectonic lineament. Several studies (see subsection 2.4.1 in Chapter 2) 

have shown that Merapi is a very young polygenetic edifice, but age information on the 

older Merapi units has remained scarce and many aspects of the overall volcanological 

and structural evolution of Merapi continue to be controversial. In addition to 

differences in the classification of Merapi’s stages of growth and chronology, 

discrepancies in interpretations stem from the significance attributed by authors to 

geologic deposits and their relation to growth, flank failure(s), and blasts or high-energy 

surges. Although all authors recognize the occurrence of at least one flank failure at 

Merapi, their interpretations of the details of deposits, chronology and significance vary, 

as do interpretations of the extents of past pyroclastic flows, surges and blasts. Thus, 

this work has focused on the application of remote sensing to better elucidate tectonic 

structures, summit evolution, and identification of the most recent pyroclastic deposits. 
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 On the basis of previous studies, analysis of DEMs and interpretation of satellite 

imagery, a geological map of Merapi and its ring plain has been drawn to depict the 

lithological units and tectonic structures of the region. This map defines five groups of 

inferred faults with trending clusters at 060°, 090°, 115°, 140°, and 175°. The NW-SE-

trending basement structures also appear to control the orientation of 115° dextral 

strike-slip and 140°-trending reverse faults at the surface. The 175°-trending faults 

appear to have formed from crustal extension and may act as a weak zone in which the 

Unggaran-Merapi volcanic range has been formed.  The kinematic analysis of fault data 

in Merapi region reveals that the NE-SW (040°) direction is the principal compressive 

stress axis.  

More than 74 eruptions have been recorded at Merapi since 1548 and at least seventeen 

of them have caused fatalities. Most events fall within the VEI 2 range, at least once per 

decade since 1861. Larger in magnitude and more explosive (large Vulcanian to sub-

Plinian), the 2010 eruption of Merapi differs from previous eruptions in 1994, 1997, 

2001 and 2006. The 26 October-23 November 2010 eruption is Merapi’s largest event 

(VEI 4) in the past 140 years. The interpretation of HSR images shows that due to the 

explosive eruption, the summit area lost about 10 x 106 m3. The eruption enlarged the 

SSE-trending Gendol Breach to be 1.3x0.3x0.2 km. The 2010 tephra and pyroclastic 

density current (PDC) deposits covered about 26 km2 in the two catchments of Gendol 

and Opak Rivers on Merapi’s south flank, i.e. 60-75% of the total PDC deposit area and a 

total bulk volume of 45 x 106 m3. The volume of tephra fall deposit from Merapi has been 

determined using empirical volume calculation methods based on exponential, power-

law, and Weibull thinning. The tephra fall deposit covered an area of about 1300 km2 

with a range in volume of 18-21 x 106 m3. Additional high spatial-resolution data are 

provided to delineate and analyze flooded areas due to lahar activity in 2011-2012 on 

the south and west flanks. Subsequent overbank lahars impacted selective small areas in 

the populated ring plain, devastating villages along the Putih River on the southwest 

flank and along the Gendol-Opak River on the south flank. For the first time, the analysis 

of geomorphological parameters (channel capacity, longitudinal change in channel 

confinement, and channel sinuosity) has pointed out where and how lahars can spill 

over the principal river banks and avulse towards otherwise un-threatened but 

populated valleys.  

��������������������������������������������������������������������������Chapter 7

194



 
 

7.1.3. Remote sensing-based mapping of pyroclastic deposits 

The existence of satellite images of an active volcano acquired before, during and 

immediately after a paroxysmal event, allowed for mapping and evaluating the area 

covered by fresh volcanic deposits. The 2010 Merapi pyroclastic and lahar deposits have 

been identified by applying several methods to high-spatial resolution satellite optical 

images and synthetic aperture radar (SAR) data. The results show that the ability of 

remotely sensed data to capture fresh, pristine features and extent of deposits shortly 

after emplacement and before any reworking, highlights the purpose of using high-

spatial resolution imagery and SAR data on persistently active volcanoes, where access 

for field surveys is often impossible. A comparison of tools and methods for the 

classification of pyroclastic and lahar deposits is summarized in Table 7.1.  

Table 7.1. Comparison of tools and methods for the classification of pyroclastic and lahar 

deposits 

Tools and Methods 
Criteria value 

Good Fair Poor 
    

Classification using 

GeoEye image: 

�� High-spatial 

resolution (<1 m) 
 �� Cloud cover  

Supervised and 

object-oriented 

classification 

�� Provides detailed 

map 

�� 16 distinct deposit 

units 

 �� Illumination effect  

    

Classification using 

ALOS-PALSAR 

dataset: 

�� No cloud 

�� Differentiates: 

reflectivity & 

roughness 

��Lower resolution   

(23 m) 

�� Foreshortening, 

lengthening, 

shadow-ing & 

layover  effect  

�� Single polarization  
��Distinguish well two 

to four deposit units 
 

�� Dual polarization  

��Distinguish well up 

to seven deposit 

units 

 

Identification of pyroclastic deposits, for the first time ever in Indonesia, benefited from 

the 50-cm resolution of the HSR satellite images, and mapping was conducted by using 

two supervised and object-oriented methods for classification. Supervised and object-
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oriented classification carried out on HSR imagery has enabled detailed mapping of the 

PDC deposits across the Gendol-Opak catchment. We have delineated sixteen spectrally 

and/or texturally distinct units of PDC deposits and they compared favorably with 

previously published results of field studies. In addition, due ti the timing of acquisition, 

some of the HSR images, they provide a snapshot during the waning phase of the 

eruption, allowing recognition of: (1) pristine (pre-erosion) landforms and deposits 

associated with valley-confined and unconfined PDCs, (2) severe PDC impacts on 

devastated villages and housing, cultivated terraces and forests, (3) mudflows fed by 

water from rice fields beyond the river banks overrun by PDC deposits, and (4) small 

features such as flow lobes, levees, tree logs and debris strewn on the top surface of 

pyroclastic-flow deposits. 

For the first time again, pyroclastic deposits have been characterized by using direct-

polarized and cross-polarized SAR data and combining the information of amplitude 

evolution with temporal decorrelation. Changes in amplitude of the radar signal enabled 

accurate mapping of the pyroclastic density currents (PDCs) and tephra fall deposits. 

Radar amplitudes in direct (HH) and cross (HV) polarizations decrease where the valley-

confined and overbank block-and-ash flow (BAF) deposits are emplaced. Rainfall- and 

runoff-reworked PDC deposits are characterized by an increase in ground 

backscattering for HH polarization and a decrease for HV polarization. Ground 

backscattering transiently increases in both polarizations after pyroclastic surge and 

tephra fall deposition. We have utilized a supervised classification method based on 

maximum likelihood to map the deposits. The temporal decorrelation of the radar signal 

and the amplitude evolution improve the quality of classification results. Classification 

derived from ALOS-PALSAR images provides a result with 70% classification accuracy 

for deposits overall. The estimated areas of valley-confined and overbank PDC deposits 

(either primary or reworked by rainfall and runoff) are consistent with the areas 

measured by other studies, while the large discrepancy in area estimated for 

pyroclastic-surge deposits can be partly explained by the strong erosion due to intense 

rainfall that removed a large part of these thin deposits.  
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7.1.4. Earthquake-volcano interactions 

Chapter 6 of this thesis presents preliminary results that provided some insight into the 

interactions between regional earthquakes and volcanic activity of Merapi and Semeru, 

over the period 2000-2014. This work highlights the use of MODVOLC thermal radiance 

data converted into heat and volume fluxes, combined with limited seismic data, in 

evaluation of temporal variations of the eruptive activity. Each regional tectonic 

earthquake within a radius of 1000 km from the volcano was cross-checked with the 

time series of volcanic heat flux and seismic events searching for a change in volcanic 

activity following each event. An inventory has been produced which includes events 

inferred to have triggered a response in the eruptive activity at Merapi and Semeru with 

various time delays and response duration. Approximately 1.5% of regional tectonic 

earthquakes during the period 2000-2014 have influenced eruptive activity of Merapi 

and Semeru. The inventory dataset was then examined in order to determine if there is a 

clear correlation between the response(s) of volcanoes to the occurrence of regional 

earthquakes. The volcano response to the regional earthquake is mostly shown by an 

increase in eruptive activity caused by static and/or dynamic changes in stress field 

induced by the earthquake. The absence of strong correlation between the response 

ratio and the distance from the earthquake epicenter to the responding volcano suggests 

that most of the earthquake-volcano interactions in the data inventory likely involve 

dynamic stress change rather than static stress change.   

7.2. Limitation and research perspectives 

In general, remote sensing provides many advantages that can be used for research 

purposes. However, in order to obtain valid results, remote sensing data should be 

integrated together with ground-based observations and near real-time measurements. 

Besides contributions of this research to understanding persistently active volcanoes 

such as Semeru and Merapi, there remain limitations to be solved, methods to be 

improved and perspectives for future research projects. 

1.� The location of the source region of magma and the area of high content of fluids and 

melts in the crust beneath Merapi and Semeru volcanoes have been interpreted 

based on previous studies of seismotectonics, seismic tomography and gravimetry. 
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However, the link between the shallow plumbing system and reservoirs beneath the 

two volcanoes remains ambiguous. Information on geometry of any reservoir at 

shallow depth (<10 km) beneath Merapi and Semeru are poorly known. A dense 

seismic network around Merapi volcano would allow a better knowledge of the 

plumbing system beneath the volcano. For example using such a network, a “small” 

shallow magma reservoir was detected at 1.5-2.5 km in depth as indicated by an 

aseismic zone (Ratdomopurbo & Poupinet, 2000; confirmed by Budi-Santoso et al., 

2013). At Semeru, the lack of a dense seismic network prevents us from linking the 

surface tectonic faults, the main geologic features of Semeru (the SE scar) and the 

complex behavior as expressed by repeated dome growth and collapse, open system 

vulcanian-Stombolian explosions and lava flows. A petrological analysis of the 

tephra, PDC deposits and lava flow will likely become a significant asset towards 

understanding the complex eruptive behaviour of Semeru.   

2.� The origin of the Jonggring-Seloko SE-trending scar is not fully understood. Although 

this scar coincides with one of regional faults, it may be a transient volcanic structure 

and landform that can be rapidly filled by lava flows as shown by an aerial 

photograph in 1923 (Fig. 10 in Solikhin et al., 2012). Deformation data are required 

to understand the structures of the Semeru edifice as well as to support the working 

hypothesis presented in this thesis concerning an asymmetric deformation pattern 

induced by flank spreading at Semeru.  

3.� The eruptive behavior of Semeru may have changed in 2010, as it produced several 

lava flows from the central vent for the first time since 1967 or 1941. As yet, it has 

not been possible to ascertain the cause of this change and it remains unclear as to 

whether the 2010-2014 events herald a major change in behavior of the Semeru 

system. To better understand this change, the composition and physical 

characteristics of the new lava flows should be analyzed and a geophysical analysis of 

Semeru sub-surface structures should be carried out.  

4.� Radar images that can be acquired at night and in cloudy conditions can complement 

the HSR multispectral images in the classification of pyroclastic deposits. However, 

limitations of radar imagery, such as the effects of foreshortening, lengthening, 

shadowing and layover on steep slopes may reduce the accuracy of classification. 

This problem may be partly overcome by combining both ascending and descending 

images. The classification of the 2010 Merapi deposits presented in this thesis is 
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based on change detection and semi-automated (supervised) classification methods 

applied to ALOS-PALSAR dual polarization data. It can also be utilized for other 

active volcanoes with fresh pyroclastic deposits. However, caution should be 

exercised when applying these methods to other radar data with different 

wavelengths. It has been shown that the change in amplitude images due to PDC 

deposition observed in L-band radar images is different from the amplitude change 

detected in X-band radar images (Solikhin et al., 2015a).  

5.� The use of MODVOLC thermal radiance data converted into heat and volume fluxes, 

combined with limited seismic data, has been highlighted in approaching temporal 

variations of the eruptive activity. This study highlights that MODVOLC data together 

with the methodology of Harris and Ripepe (2007) are reliable to approach the 

activity of Merapi and Semeru especially in periods with less cloud cover and during 

an eruption. The methods was developed and tested for application to lava domes 

and lava flows, thus, it is suited for Merapi and may be appropriate for Semeru, 

especially during the 2010-2014 eruptive activity. However, additional data from 

ground-based or remotely sensed measurements are required to validate the result 

of the methodology at Semeru volcano. 

6.� Many questions remain after this study related to the response of Semeru and 

Merapi volcanoes to external factors, especially tectonic earthquakes. First, the 

process behind the seasonal variations of Semeru activity, as expressed by the VT 

event variations, is still unknown. This may be solved by modeling the influence of 

groundwater mass variation on the magmatic and/or hydrothermal system at 

Semeru. Second, the mechanism of increased volcanic activity triggered by regional 

earthquakes is still not clearly defined. Future research to be carried out requires 

modeling the stress changes induced by earthquakes. Third, small and proximal 

earthquakes during heightened activity of the volcano need to be scrutinized as to 

whether or not they are associated with inflation or stress propagation forced by 

magmatic activity. 

7.3. Hazard assessment 

On the basis of the eruptive behavior of Semeru since 2010, this thesis provides a new 

hazard assessment for the near future, as follows: (1) the fact that the SE scar has been 
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partially filled by the 2010, 2012 and 2014 lava flows should be taken into account for 

hazard mitigation during upcoming eruptions. Future PDCs may not travel only farther 

down the SE scar but during Vulcanian eruptions, or were the SE-scar to be filled, PDC 

flows could also spill over its rims towards the southwest and east flanks. (2) Time 

series of HSR imagery can be of great utility in tracking the rapid changes that occur on 

summit and flank structures and landforms of persistently active volcanic edifices. This 

should be continuously applied at Semeru as rapid morphological changes occur 

especially at the summit vent and in the drainage system due to the impact of frequent 

PDCs and lahars. (3) The Semeru hazard-zone map currently used by CVGHM was 

published in 1996. It is suggested that this map be updated, considering several studies 

that have been carried out (Thouret et al., 2007; Solikhin et al., 2012), recent conditions 

outlined in this thesis, and the results of numerical simulations of PDCs and lahars (e.g., 

Weningsulistri et al., 2014), or preferably, using new modeling using a new, higher 

resolution and accurate DEM and integrated with existing and additional detailed 

geologic field studies.   

This study has reappraised the hazard assessment for the south flank of Merapi 

(Thouret et al., 2000). This new hazard assessment of Merapi volcano after the 2010 

eruption indicates the following issues (areas, deposits and processes) at stake in the 

near future : (1) The new, enlarged and deep summit crater is unstable. Phreatic, 

phreatomagmatic, or small vulcanian events such as the 22 July 2013, 18 November 

2013 and 9 March 2014 eruptions will pose threats to visitors and scientists around the 

summit area and can weaken the already unstable rims of the summit crater. In addition, 

the 18 November 2013 explosion divided the 2010 dome into two main parts and left a 

major NW-SE trending fracture; this may affect the dynamics and the stability of the 

post-2010 Merapi dome (Walter et al., 2015). (2) The enlarged summit scar and Gendol 

Breach will act as pathways for future flows, and the high, steep, fractured and 

hydrothermally altered walls of the Breach are subject to rockfalls and earthquake-

triggered landslides. (3) A large amount of sediment accumulated in radial valleys is still 

susceptible to remobilization by lahars. Field evidence shows that such remobilization is 

developing at a fast rate. However, mining activity since 2011 has already removed the 

majority of the PDC deposits within the Gendol channel from distance of 6 km from the 

summit to the PDC front, located 16 km down valley. (4) Lahar overspill is the most 

hazardous process acting along the lowermost river courses of Kali Putih towards the 
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city of Magelang, and along the Gendol-Opak Rivers, which transport material towards 

the Prambanan temples and the Yogyakarta airport. Lahars currently threaten the area 

of the iconic Prambanan temple farther down the Opak River. This study pinpoints three 

locations near the Prambanan temples that are potential for future lahar overbank 

processes, by applying geometric indices.  
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Appendix A 
List of satellite images 

Optical images 

Satellite 
sensor;     

image type 

Spatial 
resolution 

Acquisition 
date 

Coverage 
area 

Sources 
(courtesy of: ) 

Used in: 

GeoEye1; 

panchromatic 
0.41 m 15/11/2010 Merapi CRISP Chap. 4 

GeoEye1; 

multispectral 
1.65 m 

15/11/2010 

04/09/2011 

16/04/2012 

Merapi 

Merapi 

Semeru 

CRISP 

CRISP 

Chaps. 2; 4; 

5 

Chaps. 2; 4 

Chap. 3  

WorldView-2; 

multispectral 
1.84 m 08/06/2011 Semeru CRISP Chaps. 2; 3 

Pléiades; 

panchromatic & 

multispectral 

0.5 m & 

2 m 

29/09/2012 

22/10/2012 

Merapi 

Semeru 

CNES 

CNES 

Chap. 4 

Chap. 3 

IKONOS; 

multispectral 
3.2 m 

14/11/2002 

25/09/2004 

16/06/2006 

10/04/2008 

07/07/2008 

20/08/2009 

Semeru 

Semeru 

Semeru 

Semeru 

Merapi 

Semeru 

CRISP; STIC-ASIA 

CRISP; STIC-ASIA 

CRISP; STIC-ASIA 

CRISP; STIC-ASIA 

CRISP; STIC-ASIA 

CRISP; STIC-ASIA 

Chap. 3 

Chap. 3 

Chap. 3 

Chaps. 2; 3 

Chaps. 2; 4 

Chaps. 2; 3 

SPOT 5; 

panchromatic 
2.5 m 

24/10/2003 

26/09/2004 

Semeru 

Semeru 

CRISP; STIC-ASIA 

CRISP 

Chap. 3 

Chap. 2 

SPOT 5; 

multispectral 
10 m 

11/08/2003 

16/05/2006 

06/06/2006 

26/06/2006 

18/05/2008 

26/07/2008 

15/11/2010 

10/06/2011 

Semeru 

Merapi 

Merapi 

Merapi 

Merapi 

Semeru 

Merapi 

Merapi 

CRISP; STIC-ASIA 

CRISP 

CRISP 

CRISP 

CRISP 

CRISP; STIC-ASIA 

CNES 

CNES 

Chap. 2  

Chap. 2  

Chap. 2  

Chap. 2  

Chap. 2; 4  

Chaps. 2; 3 

Chaps. 2; 4  

Chaps. 2; 4 

SPOT 2; 

multispectral 
20 m 11/05/1996 Semeru CRISP; STIC-ASIA Chap. 3 

SPOT 1; 

multispectral 
20 m 08/08/1997 Semeru CRISP; STIC-ASIA Chap. 3 
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(continued)      

Satellite 
sensor;     

image type 

Spatial 
resolution 

Acquisition 
date 

Coverage 
area 

Sources 
(courtesy of: ) 

Used in: 

ASTER; 

multispectral 
15 m 

26/10/2002 

23/06/2003 

28/08/2004 

03/11/2005 

30/05/2006 

06/07/2008 

27/09/2009 

13/08/2010 

13/06/2011 

13/06/2012 

15/06/2012 

20/07/2013 

05/06/2014 

09/09/2014 

Semeru 

Semeru 

Semeru 

Semeru 

Semeru 

Semeru 

Semeru 

Semeru 

Semeru 

Merapi 

Semeru 

Semeru 

Semeru 

Semeru 

http://ava.jpl.nasa.gov 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chap. 3 

Chaps. 1; 2 

Chaps. 1; 3 

Chap. 3 

Chap. 3 

Chap. 3 

Thermal images 

Satellite sensor;     
image type 

Spatial 
resolution 

Acquisition date 
Coverage 

area 
Used in: 

ASTER;  

TIR Surface Kinetic 

Temperature 

90 m 

08/07/2002 

08/02/2003 

25/09/2003 

Semeru Chap. 3  

Radar images 

Satellite sensor;   
image type 

Spatial 
resolution 

Acquisition 
date 

Coverage 
area 

Sources 
(courtesy of: ) 

Used in: 

ALOS-PALSAR; 

 

FBD (HH + HV) 

 

28.4 m in 

azimuth; 

33.2 m in 

ground 

range. 

13/09/2009 

16/06/2010 

16/09/2010 

01/11/2010 

01/02/2011 
Merapi 

��Cooperation RESTEC 
(Japan) -LAPAN and 
Geological Agency 
(Indonesia) 

��JAXA project no. 
1188 

Chap. 5 

FBS (HH) 17/12/2010 
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Appendix B 
Supplementary data to the article of Solikhin et al. (2015b) in Chapter 4 

High-spatial resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi 

Volcano eruption and their impact 

Akhmad Solikhin, Jean-Claude Thouret, Soo Chin Liew, Avijit Gupta, Dewi Sri Sayudi, Jean-

François Oehler, Zeineb Kassouk 

Supplementary Material 

Appendix Figure 1. Historical eruptions of Merapi since 1548 shown as frequency 

histograms of Volcanic Explosivity Index (VEI) divided by 10-year time intervals. Note that 

before AD 1700, the number of large eruptions is probably biased with respect to unreported 

small eruptions. 
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Appendix C 
Supplementary data to the article of Solikhin et al. (2015a) in Chapter 5 

Mapping the 2010 Merapi pyroclastic deposits using dual-polarization Synthetic 

Aperture Radar (SAR) data 

Akhmad Solikhin, Virginie Pinel, Jean Vandemeulebrouck, Jean-Claude Thouret,                    

and Muhamad Hendrasto 

Supplementary Data 

Training and control data for supervised classification 

We characterize the 2010 Merapi deposits using direct-polarized and cross-polarized L-

band SAR data and by combining the information of amplitude evolution with temporal 

decorrelation. Changes in amplitude of the radar signal enable us to map the pyroclastic 

density currents (PDCs) and tephra-fall deposits. Changes in amplitude can be quantified 

by taking the ratio between the two amplitude images acquired after and before the 

emplacement of deposits (Fig. S1). We also use a supervised classification method based 

on Maximum Likelihood Classification (MLC) and the Support Vector Machine (SVM) 

classification techniques to map four types of deposit. The four deposits are valley-

confined and overbank block-and-ash flow (D1), rainfall- runoff- reworked PDC deposits 

(D2), pyroclastic surge (D3), and tephra fall (D4) deposits. 

Training samples and control data play an important role in the supervised classification 

process of remotely sensed images. Its quality is an important factor affecting the 

accuracy of image classification. We define training samples based on visual 

interpretation of optical views and the radar image in the false-color composite 

representation by referring to field-based data. A set of training samples characterizing 

seven deposit classes (D1 to D7) and five ‘non-deposit’ classes (O1 to O5) shown in 

Figure S1b. The ‘non deposit’ classes consist of vegetation (O1), agriculture/farm (O2), 

229



 
 

settlements and villages (O3), bright pixels corresponding to foreshortening effect (O4) 

and shadowed areas (O5). We assess the quality of training data before performing the 

classification by computing the separability value between a pair of training classes 

using based on Jeffries-Matusita (J-M) distance. Accuracy assessment of the classification 

is quantitatively performed by comparing the results of MLC and SVM classification with 

control data (Fig. S1c).  

 
Figure. S1. Georeferenced ALOS-PALSAR amplitude image (four looks) for HH polarization 

acquired (a) before eruption (16 September 2010) and (b) after the eruption (17 December 

2010) overlain by map of training data and (c) map of control data. 
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Support Vector Machine classification result 

In addition to Maximum Likelihood Classification (MLC), the supervised classification 

based on Support Vector Machine (SVM) has been applied to ALOS-PALSAR data in 

order to create a map of the 2010 Merapi pyroclastic deposits in a semi-automatic way. 

This classification aims to categorize all pixels in the radar image into one of several pre-

defined deposit or land cover classes. SVM is a supervised classification method derived 

from statistical learning theory that discriminates the classes with a decision surface 

(hyperplane) that maximizes the margin between the classes. In this work, the SVM is 

applied using the radial basis kernel.  

 
Figure S2. Map of the 2010 Merapi pyroclastic deposits based on the support vector machine 

(SVM) classification method and using amplitude images acquired before (16 September 2010) 

and after the eruption (1 February 2011) for (a) HH polarization only (two images have been 

used for this purpose); (b) HV polarization only (two images); (c) HH and HV polarizations (four 

images); and (d) HH and HV polarizations dates together with the coherence image represented 

in Fig. 3e (five images).  

The map of 2010 Merapi deposits based on SVM using various sets of 16 September 

2010 and 1 February 2011 images and nine classes (D1-D4 and O1-O5) of training data 
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is shown in Figure S2. Similar to MLC result, the SVM result shows that classification 

using only two images (acquired before and after the eruption) of HH polarization (Fig. 

S2a) produces better results than using HV polarization images (Fig. S2b). The 

classification always produces better results when combining both HH and HV images 

(Fig. 6c) and even better when adding the coherence image (Figs. 6d and 7c) as input. 

Accuracy assessment of four deposit classes (D1-D3) from the SVM classification is 

summarized in a confusion matrix (Tables S1). SVM provides 63.97% overall 

classification accuracy, where 89.83% of D1, 74.41% of D2, 27.29 % of D3 and 54.67% of 

D4 are correctly classified. SVM is slightly better than MLC in classifying D1 (89.83%) 

with ~3% different. We also measured the area of the deposits from the SVM and 

obtained an area of 4.14 km2 for D1, 1.19 km2 for D2 and 4.75 km2 for D3.  

Table S1 
Cross-validated confusion matrix for Support Vector Machine (SVM) method. 

Class 
Control Data (%) 

D1 D2 D3 D4 

D1 89.83 8.49 2.55 0.08 

D2 2.39 74.41 2.51 0.35 

D3 0.15 2.12 27.29 24.66 

D4 0.00 0.00 4.11 54.67 

O1 0.87 0.47 52.84 19.01 

O2 6.37 4.25 10.06 1.05 

O3 0.00 0.00 0.65 0.03 

O4 0.00 0.00 0.00 0.00 

O5 0.38 10.26 0.00 0.15 

The bold font indicates the percentage of correctly classified pixels of each deposit class. 
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