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Abstract

Full waveform inversion (FWI) has attracted worldwide interest for its capacity to es-
timate the physical properties of the subsurface in details. It is often formulated as
a least-squares data-fitting procedure and routinely solved by linearized optimization
methods. However, FWI is well known to suffer from cycle skipping problem making the
final estimations strongly depend on the user-defined initial models. Reflection wave-
form inversion (RWI) is recently proposed to mitigate such cycle skipping problem by
assuming a scale separation between the background velocity and high-wavenumber re-
flectivity. It explicitly considers reflected waves such that large-wavelength variations of
deep zones can be extracted at the early stage of inversion. Yet, the large-wavelength
information of the near surface carried by transmitted waves is neglected.

In this thesis, the sensitivity of FWI and RWI to subsurface wavenumbers is revis-
ited in the frame of diffraction tomography and orthogonal decompositions. Based on
this analysis, I propose a new method, namely joint full waveform inversion (JFWI),
which combines the transmission-oriented FWI and RWI in a unified formulation for a
joint sensitivity to low wavenumbers from wide-angle arrivals and short-spread reflec-
tions. High-wavenumber components are naturally attenuated during the computation
of model updates. To meet the scale separation assumption, I also use a subsurface pa-
rameterization based on compressional velocity and acoustic impedance. The temporal
complexity of this approach is twice of FWI and the memory requirement is the same.

An integrated workflow is then proposed to build the subsurface velocity and impedance
models in an alternate way by JFWI and waveform inversion of the reflection data, re-
spectively. In the synthetic example, JFWI is applied to a streamer seismic data set
computed in the synthetic Valhall model, the large-wavelength characteristics of which
are missing in the initial 1D model. While FWI converges to a local minimum, JFWI
succeeds in building a reliable velocity macromodel. Compared with RWI, the involve-
ment of diving waves in JFWI improves the reconstruction of shallow velocities, which
translates into an improved imaging at greater depths. The smooth velocity model built
by JFWI can be subsequently taken as the initial model for conventional FWI to inject
high-wavenumber content without obvious cycle skipping problems.

The main promises and limitations of the approach are also reviewed in the real-
data application on the 2D OBC profile cross-cutting gas cloud. Several initial mod-
els and offset-driven strategies are tested with the aim to manage cycle skipping while
building subsurface models with sufficient resolution. JFWI can produce an accept-



able velocity model provided that the cycle skipping problem is mitigated and sufficient
low-wavenumber content is recovered at the early stage of inversion. Improved scattering-
angle illumination provided by 3D acquisitions would allow me to start from cruder initial
models.

vi



Résumé

L’inversion des formes d’onde (full waveform inversion, FWI) a suscité un intérêt dans
le monde entier pour sa capacité à estimer de manière précise et détaillée les propriétés
physiques du sous-sol. La FWI est généralement formulée sous la forme d’un problème
d’ajustement des données par moindres carrés et résolus par une approche linéarisée
utilisant des méthodes d’optimisation locales. Cependant, la FWI est bien connue de
souffrir du problème de saut de phase rendant les résultats fortement dépendant de la
qualité des modèles initiaux. L’inversion des formes d’ondes des arrivées réfléchies (re-
flection waveform inversion, RWI) a récemment été proposée pour atténuer ce problème
en supposant une séparation d’échelle entre le modèle de vitesse lisse et le modèle de
réflectivité à haut nombre d’onde. La formulation de RWI considère explicitement les
ondes réfléchies afin d’extraire de ces ondes une information sur les variations lisses de
vitesse des zones profondes. Cependant, la méthode néglige les ondes transmises qui
contraignant les informations lisses de vitesse en proche surface.

Dans cette thèse, une étude de la sensibilité en nombre d’ondes des méthodes de
FWI et RWI a d’abord été revisitée dans le cadre de la tomographie en diffraction et
des décompositions orthogonales. A partir de cette analyse, je propose une nouvelle
méthode, à savoir l’inversion jointe des formes d’ondes transmises et réfléchies (joint full
waveform inversion, JFWI). La méthode propose une formulation unifiée pour combiner
la FWI des transmissions et la RWI pour les réflexions, donnant naturellement une sensi-
bilité commune aux petits nombres d’onde venant des arrivées grand-angle et réfléchies.
Les composantes à hauts nombres d’onde sont naturellement atténuées par la formula-
tion. Pour satisfaire l’hypothèse de séparation d’échelle, j’utilise une paramétrisation du
sous-sol basée sur la vitesse des ondes de compression et l’impédance acoustique. La
complexité temporelle de cette approche est le double de la méthode de FWI classique
et la requête mémoire reste la même.

Une procédure d’inversion est ensuite proposée, permettant d’estimer alternativement
le modèle de la vitesse du sous-sol par JFWI et l’impédance inversion de formes d’ondes
réfléchies. Un exemple synthétique réaliste du modèle de Valhall est d’abord utilisé
avec des données de streamer et à partir d’un modèle initial très lisse. Dans ce cadre,
alors que la FWI converge vers un minimum local, la JFWI réussit à reconstruire un
modèle de vitesse lisse de bonne qualité. La prise en compte des ondes tournante par
la JFWI montre un fort intérêt pour la qualité de reconstruction superficielle, comparée
à la méthode RWI seule. Cela se traduit ensuite par une reconstruction améliorée en



profondeur. Le modèle de vitesse lisse construit par JFWI peut ensuite être considéré
comme modèle initial pour la FWI classique, afin d’injecter le contenu en haut nombres
d’onde tout en évitant le problème de saut de phase.

Les avantages et limites de l’approche de JFWI sont ensuite étudiés dans une ap-
plication sur données réelles, venant d’un profil 2D de données de fond de mer (OBC)
recoupant un nuage de gaz au dessus d’un réservoir. Plusieurs modèles initiaux et straté-
gies d’inversion sont testés afin de minimiser le problème de saut de phase, tout en con-
struisant des modèles de sous-sol avec une résolution suffisante. Sous réserve de mettre
en œuvre des stratégies limitant le problème de saut de phase, la JFWI montre qu’elle
peut produire un modèle de vitesse acceptable, injectant les bas nombres d’onde dans le
modèle de vitesse. L’amélioration de l’éclairage en angles de diffraction fournie par des
acquisitions 3D devrait permettre de pouvoir commencer l’inversion par JFWI à partir
de modèle encore moins bien définis.
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Chapter 1

Introduction

If I have seen further, it is by standing on the shoulders of giants.

— Isaac Newton, 1676

The mystery of the Earth’s interior has been revealed by earthquake seismology
to a much extent. Since the early 1900s, scientists have continuously found that our
home planet is rather stratified, with a number of materials under varying pressure
and temperature conditions. After a century of development, our knowledge about the
underground has been largely enriched, from the physical processes to the chemical
compositions, despite an increasing number of questions to be answered.

Since the late 1960s, seismology has also served to prospect the natural resources in
the subsurface: a production-oriented branch of seismology that is often termed explo-
ration seismology or simply seismics. Modern oil and gas industry has been and will
be heavily relied on seismic methods in the foreseeable future. Researches, innovations,
applications have brought a golden age of the seismic technology. Though the ideas are
similar, the scales of interest are different. While continents, tectonic plates (hundreds
of kilometers) or the whole Earth (thousands of kilometers) is the focus of seismologists,
local regions on the crust (0.1 to 10 kilometers) are prospected for industrial application.
Other differences can be found in Table 1.1, with a third type of seismology that will not
be discussed in this thesis.

This thesis contributes to the community of exploration seismology, in particular, to
its sub-field related to velocity inversion in the acoustic approximation. In this prelim-
inary chapter, I shall first introduce some basic principles in seismic imaging followed
by the discussion on a group of methods, which are viewed as the starting point of the
methodology that I shall describe in Chapter 3.



INTRODUCTION

Table 1.1: Three branches of seismology adopted in different circumstances (adapted
from Yilmaz, 2005). Engineering seismology is oriented to the smallest scale with ex-
pected higher resolution by considering very high frequencies.

Scale Maximum depth Source type Max. frequency

Earthquake continental 100 – 1000 km Passive 10 Hz
seismology global
Exploration local regions 10 km Active 100 Hz
seismology
Engineering local regions 1 km Active or 1000 Hz
seismology passive

1.1 Seismic data and scale separation: a synthetic

example of marine case

Let us start from a synthetic model representative of the Valhall oilfield in the North
Sea (Figure 1.1a). The seismic waves are recorded at the surface, a typical acquisition
system among others in exploration geophysics. In this 2D setting, the x-axis measures
the lateral position of the surface and the z-axis measures the depth from the surface.
The yellow star represents one seismic shot, emitting transient mechanic energy into
the subsurface. The energy of the excitation spreads out in the space with the form
of propagating waves, carrying information of the physical properties of the medium,
and captured by a set of receivers deployed at the surface. Figure 1.1b gathers from
these grouped receivers the recorded phases (or seismic traces, events) as a function of
elapsed time t and horizontal axis x. Relatively, each trace can also be associated with
the horizontal distance between the source and receiver of that trace, i.e. the offset h.
Note that x and h can be deduced from each other by knowing the source position.
Due to the transient excitation, the phases have limited time duration. Due to the
wave propagation, we can observe lateral continuity of these phases with certain slopes.
Among them, several phases have great importance. The colored arrows identify these
phases as well as their associated raypaths connecting the source and receiver for the
following interpretation (Figure 1.1b):

1. Transmitted waves from shallow zones:

� Direct wave (green arrows). As the superficial part of the model is homoge-
neous (water column), the direct wave follows a straight path;

� Diving wave (green dashed arrows). According to Fermat’s principle, this
type of wave follows a curved path that penetrates higher velocity zones at
depth so as to arrive at the receiver with shorter time than the direct wave.
They are also known as turning wave;

2. First-order scattered waves:

2



1.1 Seismic data and scale separation
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Figure 1.1: An example of seismic data acquired at the surface. (a) Velocity model.
(b) Seismogram recorded by an array of receivers. The yellow start denotes the position
of the seismic shot. The wavefield is computed under the acoustic approximation to
illustrate only the P waves. The colored arrows identify several phases in (b) and the
associated raypaths in (a) that are interpreted in the text.

� Reflected wave. When the wave meets an interface, part of its energy is
reflected backwards to the surface, leaving a hyperbolic-like shape (normal
moveout) in the seismogram. The blue, red and magenta arrows indicate the
reflections occurred on interfaces at 1.5 km, 3 km and 5 km depth, respectively.
At far distances, these reflected waves indicated by blue and red arrows tend
to be tangent with the diving waves due to the inhomogeneity of overlaying
medium. Therefore, we can further classify the reflected waves as precritical
(or short-spread) reflection and postcritical (or supercritical) reflection based
on their different moveouts;

3. Transmitted waves from deep zones:

� Refracted waves. When the wave meets an interface, part of its energy is for-
ward transmitted to deeper layers. As long as the velocity beneath is higher,
the wavefront propagating in parallel with the interface serves as secondary
sources and generate plane waves propagating to the surface, leaving a nearly
straight shape (linear moveout) in the seismogram. This is the case for the

3



INTRODUCTION

phases indicated by the dashed red arrows, associated with the interface at
2.5 – 3 km depths, and the phases indicated by the dashed magenta arrows,
associated with the interface at 5 km depth, respectively. At very long dis-
tances, these refracted waves can arrive at the surface earlier than the diving
waves.

4. Higher-order scattered waves:

� Multiscattered waves (yellow arrows). When in contact with the sharp edges
of the embedded blue layers, the reflected wave (red arrows) serves as sec-
ondary sources and generates spherical waves that propagate to the surface,
leaving a hyperbolic-like shape in the seismogram. As the incident reflected
wave is of first-order scattering, these spherical waves are of higher orders.

� Multiples (cyan arrows). They are high-order reflected waves that are bounced
back and forth for multiple times between the surface and interfaces (surface-
related multiples), or just between different interfaces (internal multiples). In
Figure 1.1b, the absorbing surface condition is used to avoid surface-related
multiples. Because of the intrinsic energy partition between reflection and
transmission, the internal multiples have very weak amplitudes, therefore,
they are usually neglected in reflection seismic imaging.

Generally, we are interested in two types of information included in the seismic data:

1. Kinematic information: the traveltime for one phase to propagate from one source
to one receiver, which is a functional of the wavepath and velocity field;

2. Dynamic information: the amplitude of one phase which depends on the source
wavelet, the geometrical spreading factor, the dissipation of the medium, and the
reflection/transmission coefficients of the interfaces.

In seismic methods, the kinematic and dynamic information is incorporated in different
degrees. For example, ray-based tomography methods only use the kinematic property
to build a smooth velocity model. Kirchhoff migration relies more on the kinematic
than the dynamic to focus the reflector images without properly resolving the reflec-
tion/transmission coefficients. Full waveform inversion, on the contrary, simultaneously
considers both information for broadband subsurface imaging.

Conventional surface acquisition geometries, such as the streamers in the marine case,
often provide insufficient offset and/or azimuth coverage giving small-aperture data.
Consequently, the subsurface models we can build lack intermediate wavenumbers in
the Fourier domain and provide two parts of the subsurface spectrum. An illustration
on the synthetic Valhall model is given in Figure 1.2. This leads to the concept of
scale separation that distinguishes between large-scale (low wavenumbers) and small-
scale (high wavenumbers) models (Claerbout, 1985; Jannane et al., 1989; Wang et Pratt,
1997), assuming that we are unable to resolve the intermediate wavenumbers, and the
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Figure 1.2: Sketch of the scale-separation assumption (inspired by the famous picture
of Claerbout (1985), figure 1.4-3). As the variations of the subsurface (top) are sampled
by seismic waves, we are able to resolve its low-wavenumber part by velocity estimation
methods and high-wavenumber part by reflectivity imaging methods, respectively, and
this property is termed scale separation in the literature. However, these two parts
often do not overlap, leaving the intermediate wavenumbers unsolved. Fourier analysis
(bottom) confirms this point, that the true spectrum (black curve) is matched by the
reconstructed spectrum (red curve) in the low-wavenumber part (blue area) and the
high-wavenumber part (red area) with a resolution gap in the middle.

seismic model with the resolution gap can reproduce the recorded data. The high-
wavenumber part is termed reflectivity while the low-wavenumber part is termed (macro)
velocity model. Depending on the objective, seismic imaging methods can be divided into
two categories following Wapenaar (1996):

1. Reflectivity imaging (or seismic imaging, migration), which aims to image the high-
wavenumber part, or more specifically aims to resolve the reflection/transmission
coefficients of the interfaces inferred from the dynamic property of the data;

2. Velocity estimation (or velocity analysis, velocity model building), which aims to
reconstruct the low-wavenumber part inferred from the kinematic property. Here,
the term “velocity” specifically refers to the smooth velocity background.

5
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Considering this natural separation due to insufficient acquisition coverage, in the conven-
tional seismic processing workflow, the kinematic information is extracted as the initial
step to build the large-scale velocity field, followed by seismic imaging of the small-scale
reflectivity profile involving the dynamic information. Nevertheless, we should note that
such a separation is less true nowadays, because efforts have been taken to recover in-
termediate wavenumbers by designing wide-azimuth long-offset acquisition geometries,
using high-quality broadband data, and applying high-resolution imaging methods such
as full waveform inversion (as reported by Lambaré et al., 2014).

1.2 Velocity inversion principles

Velocity estimation can be formulated as an inverse problem that “looks for a question
which can be responded by the proposed answer”. In particular, the recorded seismic
data are the proposed “answer” and the subsurface model is the “question” we want to
find. However, before solving this inverse problem, we need to know how to solve the
forward problem: given a model, how to compute the synthetic seismic data (“how to
answer a given question”). These two problems make up velocity inversion that is often
formulated in the frame of optimization theory. In this section, I shall discuss some
general principles in solving the forward and inverse problems using waveforms. The
mathmatical formulation is deferred until Chapter 2.

1.2.1 Forward problem

Because of their similar kinematic behavior, seismic waves can be treated as optic rays
based on high-frequency approximation (Červený, 2001; Chapman, 2004; Virieux et Lam-
baré, 2007). The traveltime of one phase is then computed by the integration of the
inverse of local velocities (slowness) along the raypath that connects the source-receiver
couple, which is also known as ray-tracing (Zelt et Smith, 1992; Bishop et al., 1985).
However, according to Fermat’s principle, low-velocity zones tend to be under sampled
by raypaths leading to poor resolution in complex media (Virieux et Farra, 1991). An
alternative to tracing rays consists in solving the eikonal equation, a nonlinear partial
differential equation that relates the derivatives of traveltime to local velocities (Le Meur
et al., 1997). It can be numerically solved either by the fast marching method (Popovici
et Sethian, 1998; Lelièvre et al., 2011) or by the fast sweeping method (Vidale, 1990;
Zhao, 2004; Bretaudeau et al., 2014).

Alternatively, one can consider the wave equation to honor the real physics of seis-
mic waves. The wave equation is a linear partial differential equation and can be dis-
cretized by various schemes (Kelly et al., 1976; Marfurt, 1984; Virieux, 1984; Dablain,
1986; Levander, 1988; Brossier et al., 2008). The finite-difference method (Virieux,
1984; Levander, 1988) is popular for its simplicity and scalability, but generates arti-
ficial boundary reflections that are often mitigated by considering absorbing boundary
conditions (e.g. perfectly-matching layers, smart layers, Bérenger, 1994; Métivier et al.,
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2014b). On the other hand, the finite-element method (Marfurt, 1984; Seriani et Priolo,
1994; Min et al., 2003; Dumbser et Käser, 2006; Käser et Dumbser, 2008), which is often
more computationally intensive, naturally introduce boundary conditions giving more
accurate solutions. By using tetrahedral meshes (Frey et George, 2008) the method can
almost perfectly fit complex topographies, and the mesh width can be locally adapted
to medium properties.

On the other hand, image-domain velocity inversion, as well be described later, con-
siders the reflectivity images inferred from synthetic data as the solution of its forward
problem. In other words, the forward problem for image-domain inversion consists of
forward modeling (computes synthetic data) followed by migration (computes reflectiv-
ity images). For this reason, the computational cost of image-domain inversion is often
larger than its data-domain counterpart. For overviews of migration techniques I refer
to Sava et Hill (2009) and Etgen et al. (2009). Likewise, migration can be also based
on the ray approximation (Kirchhoff migration, Schneider, 1978). The computation load
is less heavy than wave equation-based migration; however, the latter one is currently
more discussed in the literature for complex-structure imaging. A number of approaches
have been proposed. Using the approximate one-way wave equation, the wavefield at one
depth can be extrapolated to another depth, and images can be built by the coincident
time imaging condition (Claerbout, 1985; Wu, 1994; Ristow et Ruhl, 1994; Le Rousseau
et de Hoop, 2001). Alternatively, the wavefield can be computed through time marching
methods using the true two-way wave equation (reverse time migration (RTM), Baysal
et al., 1983; McMechan, 1989). Besides, true amplitude or quantitative migration aims to
resolve the reflection/transmission coefficients of interfaces, and the second-order infor-
mation can be considered (Lameloise et al., 2015). Least-squares migration is formulated
as a linear inverse problem to explicitly solve for the reflectivity (Nemeth et al., 1999).
In Chapter 3, I shall also propose an RTM-like least-squares waveform inversion to image
reflectivity in the impedance parameter.

1.2.2 Inverse problem

Without talking about other methodologies, I mention the following two ways to assess
the quality of the velocity model:

1. Data domain, which measures the data fitness to assess the velocity model. If the
observed data are well matched by the synthetic data computed in the proposed
velocity model (and other parameters such as density), then we regard the proposed
model as a reliable representation of the subsurface (i.e. true model);

2. Image domain, which measures the “coherency” of reflectivity images respectively
resolved from each source-receiver couple. If the positions of these images are
independent of the source-receiver offset (or other acquisition parameters that are
not a model attribute), then we regard the proposed velocity model as the true
model. Other “coherency” criteria have also been proposed.

7
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Therefore, any data mismatch (in the data domain) or image incoherency (in the image
domain) are attributed to velocity inaccuracies, and can be used to update the velocity
model. Usually, the relationship between the velocity model and the data match or
image coherency is nonlinear, but we still apply local optimization schemes to solve the
inversion problem due to its large size. In the following, I shall show how full waveform
inversion (FWI) and reflection waveform inversion (RWI), representatives of data-domain
methods, transform their respective data misfit into model update through the gradient
computation flow. After this, image-domain methods will also be described using an
example of common image gather (CIG).

Data domain velocity inversion: FWI case

Figure 1.3 illustrates how we build the FWI gradient based on wavefield simulation.
Suppose that we have estimated the source wavelet of the observed waves (black wiggle
in top left panel). We can simulate the propagation of the incident wavefield (blue-white-
red color scale) in the proposed model (left panels). Suppose this model is homogeneous
and isotropic, then the wavefront has a circular shape (solid arrows in left panels) with
the source position (stars) as its center. We sample the wavefield at the receiver position
(triangle) and compare it with the observed wavelet often sample by sample (blue vs red
wiggles).

This forward modeling process is followed by a back propagation process which com-
putes the adjoint field (middle panels) and the gradient (right panels) to convert the data
misfit into model update. For simplicity I take the classical L2 norm-formulated FWI
which implies the difference between modeled and observed data (i.e. the data residu-
als) to be the adjoint source of the adjoint field (black wiggle in bottom middle panel).
Based on the formulation which will be present in Section 2.2, the adjoint field should be
computed in the reverse time order as indicated by the right-most upward thick arrow.
Suppose we have two separated signals in the residuals which are associated to direct
and reflected waves, respectively, then we generate two wavefronts in the adjoint field.
The inner one comes from the direct wave while the outer one from the reflected wave.

The gradient is formed by pixel-to-pixel zero-lag cross-correlations between the in-
cident and adjoint fields. The direct wave-associated wavefront in the adjoint field in-
terferes with the incident wavefront where their wavenumber vectors (dashed and solid
arrows in right panels, respectively) make the open angle (θd) nearby 180◦. According to
the diffraction tomography principle, the magnitude of the imaging wavenumber vector
formed by such interference is inversely proportional to the cosine of θ. Consequently,
the direct wavefront and its adjoint counterpart generate several isophase elliptic zones
in the gradient map with large-wavelength variations along the direct wavepath between
the source and receiver, the inner-most of which is known as the first Fresnel zone and
others are known as secondary Fresnel zones (red and blue elliptic zones).

On the other hand, the reflected wave-associated wavefront in the adjoint field inter-
feres with the incident wavefront where their wavenumber vectors make the open angle
(θr) nearby 0◦. Consequently, they contribute to small-wavelength components inside
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the reflection-associated secondary Fresnel zone, in an elliptic shape with the source and
receiver as the focal points, which is also known as the migration isochrone (Tarantola,
1984; Lailly, 1984).

The gradient is stacked over all source-receiver couples (e.g. Figure 1.5a for the Val-
hall model), and is scaled to update the velocity model. The gradient consists of the
large-wavelength component, coming from the transmitted waves (direct, diving and re-
fracted waves), and the small-wavelength component, coming from the reflected waves.
As a result, in FWI, we do not assume scale separation and we are looking for a broad-
band image of the subsurface. However, because of the surface acquisition geometry, we
can only record a part of the transmitted waves that travels in a limited depth of the
subsurface, and the large-wavelength component of the gradient are concentrated in the
shallow zone of the subsurface. The small-wavelength component, on the contrary, is
distributed at all depths (they are overlaid by large wavelengths in shallow zone but we
do have the sensitivity there).

To mitigate the lack of large-wavelength component in depth, one often looks for
larger offsets to record diving waves passing through greater depths. However, this is
not efficient: an empirical relation states that the penetration depth of diving waves is
only one third to one sixth of the largest offset; we may need an acquisition length more
than twenty kilometers in order to record the diving waves that sample the targets at
the reservoir level. Using lower frequencies in another solution because it brings lower
wavenumber content from the migration isochrone. However, since the source wavelet is
band-limited we would be obstructed by the noise in the low-frequency end.

Data domain velocity inversion: RWI case

Large-wavelength updates can be extracted from reflected waves which naturally ex-
tends to great depths (Figure 1.4). This is achieved in RWI by generating reflection
wavefields during both forward and backward modeling processes using prior reflectors.
To clarify which wavefront is mentioned, I shall adopt the words “downgoing” and “up-
going” although the wavefront does not propagate only in the vertical direction.

During forward modeling, the downgoing incident field interacts with the reflector
(black line in the model) and generates the upgoing reflection field. Due to the energy
partition on the reflector, this upgoing field is weaker than the downgoing field. The
upgoing field has a semicircle wavefront that is symmetric to the wavefront of the down-
going field. Considering such symmetry, we can denote the wavenumber vector of the
upgoing wavefront (gray arrow) by assuming a virtual source (gray star) at the mirror
position of the real source (black star) with regard to the black line.

The whole incident wavefield (both downgoing and upgoing) is sampled at the re-
ceiver position (triangle). However, standard RWI only considers the contribution from
reflected waves; therefore, the direct wave residual is muted in the adjoint source (black
vs red wiggles in bottom middle panel). Similar to the incident field, the adjoint field
has also the downgoing and upgoing partition due to the presence of reflector, and the
wavenumber vector of the upgoing wavefront (dashed gray arrow) can be denoted by as-
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Figure 1.3: Time-domain FWI gradient computation animation. Incident field (left
panels) by forward simulation (top to bottom panels), adjoint field (middle panels) and
gradient (right panels) by backward propagation (bottom to top panels), plotted in the
blue-white-red color scale. Stars and triangles denote the source and receiver positions,
respectively. In the homogeneous isotropic model, the wavefronts have a circular shape
centered at the source or receiver position. Their wavenumber vectors are denoted by
arrows. Two angles are made: 1) θd between vectors of the incident wavefront and adjoint
wavefront coming from direct wave; 2) θr between vectors of the incident wavefront and
adjoint wavefront coming from reflected wave. Because of their different angle ranges,
large-wavelength Fresnel zones are formed along the direct wavepath between source
and receiver, whereas small-wavelength migration isochrone (reflection-associated Fresnel
zone) is formed in an elliptic shape with the source and receiver as the focal points. Online
animation: https://drive.google.com/open?id=0Bx0JCm2KZyuebXI5M2lYTW8tLTg
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Figure 1.4: Time-domain RWI gradient computation animation. Incident field (left
panels), adjoint field (middle panels) and gradient (right panels) same as in Figure 1.3.
Black stars and triangles denote the source and receiver positions, and gray stars and
triangles denote the mirrored positions, respectively. Direct wave is muted at receiver.
Both incident and adjoint fields are scattered due to the existence of reflector. The
wavenumber vectors associated to downgoing wavefronts are denoted by black arrows,
and the ones associated to upgoing wavefronts are denoted by gray arrows, respectively.
Two angles are made: 1) θ1 between vectors of downgoing incident wavefront and upgoing
adjoint wavefront; 2) θ2 between vectors of upgoing incident wavefront and downgoing
adjoint wavefront. Because of their large angles, large-wavelength Fresnel zones are
formed along reflection wavepath between surface and reflector. In this animation, I have
filtered out the migration isochrone that was generated by the two downgoing wavefronts.
Online animation: https://drive.google.com/open?id=0Bx0JCm2KZyueM25GMF96STJ3QWs
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Shallow
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Deep
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a) b)

Figure 1.5: FWI (a) and RWI (b) gradients stacked over surface acquisition in the Val-
hall case. Smooth initial models are used. Migration is implemented before RWI to
image reflectivity. For FWI gradient, large-wavelength components coming from trans-
mitted waves are concentrated in shallow zones, whereas small wavelengths coming from
reflected waves are distributed in the whole space. In contrast, RWI aims to build a
smooth velocity model by using reflected waves, which can remedy the large-wavelength
shortage of FWI gradient in deep zones.

suming a virtual receiver (gray triangle) at the mirror position of the real receiver (black
triangle) with regard to the black line.

In the right panels, the upgoing wavefront in the incident field interferes with the
downgoing wavefront in the adjoint field making an open angle (θ2) nearby 180◦. Simi-
larly, the downgoing wavefront in the incident field interferes with the upgoing wavefront
in the adjoint field making another open angle (θ1) also nearby 180◦ (notations to be
consistent with Section 2.3). Consequently, they contribute to large-wavelength compo-
nents inside the reflection-associated Fresnel zones along the two-way wavepath between
the surface and reflector followed by the reflected wave. Therefore, we can recover large-
wavelength variations above the deepest reflector.

On the other hand, the interference of the two downgoing wavefronts in the incident
and adjoint fields should have generated the small-wavelength migration isochrone as
shown in the FWI gradient. However, we intentionally remove this component because
the formalism of the RWI gradient does not include this component (see Chapter 2).
We can do this because we can explicitly reproduce the migration isochrone (to the first
order at least) through the FWI gradient computation process using only the reflected
wave residual and the reflector-free model. In this way, the actual computation of the
RWI gradient amounts to compute four wavefields and double time complexity of the
FWI gradient. As a result, the RWI gradient is dominated by its large-wavelength
components. The stacked gradient for the Valhall model is shown in Figure 1.5b.

Both FWI and RWI rely on data mismatch to update the subsurface model. How-
ever, they differ in two main aspects: 1) Unlike FWI, RWI adopts the scale-separation
assumption in which the prior reflector is fixed during inversion iterations whereas the
smooth velocity is the aim to be updated; 2) RWI relies on reflected waves to image
the long wavelengths in deep zones whereas FWI relies on diving waves to do this job
but only limited to shallow zones. In Chapter 2, I shall provide a detailed analysis and
complete explanation of the FWI and RWI gradients.
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Figure 1.6: Velocity inversion in image domain (adapted from Chauris, 2000). 3D presen-
tation of the time-domain seismic data computed in 2D Marmousi model (a), converted
to surface-offset depth-domain common image gathers (b) by prestack depth migration
using the true velocity model. A,D: prestack zero-offset common offset gather; B,E:
common midpoint gather; C,F: prestack common offset gather collected at largest offset.
Accurate velocity model results in flat images across offsets (E). Conversely, residual
moveout of migrated images can be used to update the velocity model.

Image domain velocity inversion

Image-domain methods rely on the fact that the data space is always larger than
the model space. Take the 2D geometry as an example, we want to build a 2D model
(dimensions of z and x) from a 3D data set (dimensions of t and two spatial locations
regarding the shot and receiver). Although in the case of multiparameter inversion more
2D models are simultaneously built, we still enjoy an over-determination property of the
inverse problem.2 Therefore, we can use such data redundancy to quality control the

2Note that this is not to say solving this inverse problem is easy. On the one hand, the relation be-
tween the wavefield and the propagation medium is nonlinear therefore linearized optimization methods
often converges to a local minimum. On the other hand, deep targets are insufficiently sampled (some-
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velocity model and update it.

Among different variants I shall describe the flatness criterion derived from the
surface-offset common image gathers. Figure 1.6a shows three profiles of the seismic
data computed in the Marmousi model. Profile A shows the prestack common offset
gather collected at zero offset. The continuous reflection phases (e.g. black line) indicate
a series of reflectors in the subsurface, and the scattered waves with a hyperbolic shape
(black arrows) indicate point diffractors located on reflector discontinuities. Profile B
shows the common midpoint gather collected at a surface position (fixed x). The normal
moveout of the reflected waves, i.e. the behavior of later arrivals at larger offsets, is
a typical kinematic information for velocity estimation. In the common offset gather
collected at the largest offset (Profile C), the reflection phases are recorded in a rather
short time window, hence are hard to be interpreted.

Prestack depth migration converts these time-domain data into depth-domain reflec-
tivity images (Figure 1.6b, note the different vertical axis). If the accurate velocity model
is used, the reflection phases in the common offset gathers are reshaped by migration and
should be transferred to the associated reflector positions (comparing A and D in Figure
1.6). For example, the phases (black line) arrive later than 2 s in Profile A are reshaped
to be a flat reflector image at 2500 m depth in Profile D. The flanks of the hyperbolic
scattered waves (arrows in A) are refocused on the associated reflector discontinuities
(arrows in D), indicating the fault structure at shallow depth. Similar to the FWI case,
larger offsets provides lower wavenumber components, therefore the reflectivity image in
Profile F is less sharp as the image in Profile D. By stacking over offsets, a broadband
image (including more high wavenumbers) can be built for geological interpretation.

When the proposed velocity model is inaccurate, we cannot stack over offsets due
to the destructive stack between low- and high- wavenumber images. Conversely, we
can assess the velocity model by measuring their consistency: if the velocity is accurate,
the reflectivity images should be positioned at the same depth across offset (e.g. flat
images as shown in Profile E); otherwise any depth inconsistency (i.e. residual moveout)
indicates an erroneous velocity background and thus can be used to update the velocity
model. Note that only one common midpoint gather collected at a fixed position (e.g.
Profile E) is not sufficient to update the velocity model in the whole space. Therefore,
sufficient amount of common midpoint gathers that are averagely sampled on the surface
should be considered, which inevitably causes a large consumption of the memory space.

The common midpoint gather mentioned above is one possibility of what is referred
to as common image gathers (CIGs) in image-domain methods. Other CIGs, such as
the angle-domain CIG and the subsurface-offset CIG are also proposed to reduce the
nonuniqueness of the inverse problem, and to facilitate an automatic consistency mea-
surement. A discussion will be devoted to this topic in Section 1.3.2.

Migration is implemented in both RWI and image-domain methods. They both aim
to update the smooth velocity based on the scale-separation assumption. However, they

time only by precritical reflected waves) making imaging at this depth very ill-posed. See a real-data
example in Chapter 4 that is encountered in my PhD study.
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Table 1.2: Classification of velocity inversion methods based on how the forward and
inverse problems are solved, arranged in rows and columns, respectively (adapted from
Jones, 2010). Examples are provided in each entry with full names given in the text.

Data domain Image domain

Ray based FATT, RTT Prestack migration
(purely kinematic) tomography
Waveform based Finite-frequency tomography, MVA
(kinematic + dynamic) FWI, RWI, JFWI

differ in two main aspects: 1) Unlike RWI, image-domain methods consider the image
inconsistency rather than data misfit to update the velocity model; 2) The migration
image for RWI is independent on offset whereas multiple image profiles are built for each
offset in image-domain methods. In other words, the dimension of the image for RWI is
smaller than that for image-domain methods, therefore requires less memory space and
shorter computational time.

1.2.3 Summary

Depending on how the forward and inverse problems are solved, velocity inversion meth-
ods can be classified into four categories (Table 1.2). In first arrival traveltime tomog-
raphy (FATT) and reflection traveltime tomography (RTT), seismic waves are approx-
imated as high-frequency rays and only traveltime information is used to update the
model. They cannot provide high-resolution images especially in complex media, and
the dynamic information should also be considered. Possible options include the finite-
frequency traveltime tomography that measures the time delays by cross-correlation of
waveforms, or standard FWI and RWI directly that directly computes the data misfit.
On the other hand, migration is also included in the forward problem of image-domain
methods, which can be based either on ray approximation or on wave equation. The
latter one is also known as migration velocity analysis (MVA), which is currently a hot
topic in the literature. In general, because the associated objective functions are more
convex than the waveform-based objective function associated to data-domain methods,
MVA is more robust in practice (Symes, 2008). Nevertheless, particular data domain
methods are also proposed that promise similar stability as MVA (Clément et al., 2001;
Chauris et Plessix, 2012; Chavent et al., 2014; van Leeuwen, 2010; Gao et al., 2014).

The method proposed in this thesis, namely joint full waveform inversion (JFWI),
is a waveform-based data-domain method for velocity inversion. It combines FWI and
RWI for large-wavelength imaging whereas small-wavelength contribution is suppressed.
In the next section, as a preamble of JFWI, I shall discuss on ray-based traveltime
tomography, MVA, FWI and RWI in more details. The introduction of JFWI will be
given in Chapter 3 after a theoretical analysis in Chapter 2.
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1.3 Imaging the subsurface velocity field

1.3.1 Ray-based traveltime tomography

Ray-based traveltime tomography aims to update the velocity model by using the trav-
eltimes of seismic phases. As already mentioned, the synthetic traveltimes can be com-
puted by either ray-tracing or solving the eikonal equation. On the other hand, the
observed traveltimes are often manually picked from the recorded data based on a prior
phase identification. Picking the first breaks in the seismic data, first arrival traveltime
tomography (FATT) relies on traveltimes of diving and refracted waves (Zelt et Barton,
1998; Toomey et al., 1994). This method is also widely adopted in global seismology
because the very-far acquisition systems can provide significant transmitted waves that
have passed through deep zones (Bijwaard et Spakman, 2000; Montelli et al., 2004a,b).
However, by surface acquisition deep targets are insufficiently sampled by transmitted
waves due to the limited offset range. In contrast, reflection traveltime tomography
(RTT) relies on the traveltimes of reflected waves that better sample deep targets. Sim-
ilar to reflection waveform inversion, reflectivity images should be built explicitly such
that the synthetic traveltimes of reflected waves can be computed (Bishop et al., 1985;
Sword, 1987; Farra et Madariaga, 1988; Whiting, 1998). The traveltime residuals are then
used to update both the velocity and reflector depths, introducing the dilemma between
vertical velocities and depth positions of interfaces. Nevertheless, since the transmitted
and reflected waves sample in different depth ranges and contribute to distinguished ve-
locity update, combinations of FATT and RTT have been proposed for a better velocity
modeling building (Zelt et Smith, 1992; Hobro et al., 2003; Huang et Bellefleur, 2012).

However, picking the reflection traveltimes in the observed data is often difficult.
For example, early reflection phases with large slopes could interfere with late ones
with small slopes at far offsets, therefore makes the late phase picking troublesome. To
overcome this issue, stereotomography is promoted to pick locally coherent seismic events
characterized by their slope which is done in a semi-automatic way (Billette et Lambaré,
1998; Billette et al., 2003; Lambaré et al., 2004; Lambaré, 2008). Moreover, because the
slope is a kind of kinematic information that is independent of traveltimes, it provides
additional constraints for velocity model building. At the beginning, the method was
applied to reflected waves, but extensions to converted waves (Alerini et al., 2007; Nag
et al., 2010) and transmitted waves (Gosselet et al., 2005; Prieux et al., 2013c) have also
been proposed.

The development of ray-based traveltime tomography is reviewed by Woodward et al.
(2008) and Lambaré et al. (2014). Among all efforts, the main is the hunting for high
resolution. Waveform inversion could be a substitute of traveltime tomography for this
purpose. However, as the relation between waveform and velocity is highly nonlinear,
waveform inversion is generally less stable in practice. Therefore, combing tomography
and waveform inversion is more robust to reach the high resolution. One possibility is
to build the large wavelengths of the velocity model by traveltime tomography before
imaging fine structures by waveform inversions (e.g. Prieux et al., 2013c; Vigh et al., 2016;
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Gorszczyk et al., 2016). Another possibility is to perform tomography and waveform
inversion simultaneously (e.g. Zhang et al., 2014; Treister et Haber, 2016). The weights
between the two should be tunable by the user to emphasize one method over another.

The principle that local slopes can be used to update the velocity model is not lim-
ited to stereotomography; a connection of stereotomography with differential semblance
optimization (an MVA method) has been highlighted by Symes (2008); Chauris et Noble
(2001). In parallel with tomography, MVA has served as an alternative approach for
velocity model building, which is discussed as follows.

1.3.2 Migration velocity analysis (MVA)

Migration velocity analysis relies on the data redundancy to build the velocity model.
Prestack migration is performed to generate a certain common image gather (CIG) such
that the quality of velocity model can be assessed. As shown in Figure 1.6, surface-offset
CIG (SOCIG) is built by gathering migration images from each source-receiver offset.
The flatness of images is conventionally quantified by the stacking power condition (or
semblance criterion Al-Yahya, 1989; Plessix et al., 2000; Soubaras et Gratacos, 2007),
which sums the image across offset. Although it attributes a maximum power to the cor-
rect model, the objective function is highly oscillatory due to the constructive interference
of unrelated images at different offsets, leading to anomalously high powers for incorrect
velocities (Chauris et Noble, 2001). This is a similar case with conventional FWI that
the inversion can be easily trapped into local minima of the non-convex L2 norm-based
misfit function (See Section 1.3.3). To overcome this issue, Symes et Carazzone (1991)
propose to locally measure the derivative of image with respect to the offset in an au-
tomated way (differential semblance optimization, DSO), and they are able to show, in
the 1D case, the DSO objective function is essentially quadratic, a very good property
for local optimization method to find the global minimum (Symes, 1999). Extensions to
2D case have been performed by Chauris et Noble (2001); Mulder et Ten Kroode (2002);
Shen (2004); Albertin et al. (2006); Shen et Symes (2008). Their successes confirm that
this property still holds in realistic applications.

One shortage of SOCIG is that, when the velocity model is inaccurate, the gather may
not preserve all the reflection energy after migration, especially when the offset range
is limited. One solution is to extend the image space such that unfocused energy can
be preserved in the non-physical dimensions of the extended image (the so-called depth-
oriented CIG), and then penalize this energy to update the velocity model. Remind that
in wave equation-based migration the image is computed by the pixel-to-pixel zero-lag
cross-correlation between the source and receiver wavefields (Claerbout, 1985), cross-
correlation with temporal lag and/or spatial shift can be used to compute the extended
images (Rickett et Sava, 2002; Sava et Biondi, 2004; Sava et Fomel, 2006; Yang et Sava,
2011; Sava et Vasconcelos, 2011). Using the temporal lag consumes a small amount of
memory space, whereas using the spatial shift is more consuming as it can be associated
to both vertical and lateral directions. However, because it can bring information from
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the local slope of events, the lateral shift is often considered in practice leading to the
so-called subsurface-offset CIG (SSCIG, Shen et Symes, 2008; Lameloise et al., 2015).

Alternatively, depth-oriented CIG can be formulated in the angle domain (ADCIG),
which relates the images to the open angle between the wavenumber vectors of source and
receiver wavefronts (Xu et al., 2001; Chauris et al., 2002; Brandsberg-Dahl et al., 1999;
Sava et Fomel, 2003; Biondi et Symes, 2004; Biondi et Tisserant, 2004). Therefore, the
velocity update is computed by flattening the images across angles. Although both aim
to flatten the images, ADCIG is superior to SOCIG because it can uniquely determine
the velocity field (private communication with Pengliang Yang, Stolk et de Hoop, 2005).
On the other hand, Shen et Symes (2008) prefers SSCIG to ADCIG from a numerical-
condition point of view. Constructing ADCIG by ray-based migration is straightforward,
as the angle can be easily deduced from the ray parameter that is evaluated during
migration (Chauris et al., 2002). However, in order to tackle complex media the wave
equation-based migration should be applied, and the resulting SOCIG or SSCIG can be
converted to ADCIG via the Radon transform (Sava et Fomel, 2003; Silvestrov et al.,
2016, etc).

While successful applications have been reported, MVA suffers from biases in the
objective function and gradient artifacts caused by limited acquisition geometry and
complex structures (Fei et Williamson, 2010; Mulder, 2014). Proposed strategies to
compensate for this illumination issue include Shen et al. (2011); Yang et al. (2013) etc.
Lameloise et al. (2015) propose quantitative migration by introducing Hessian matrix
to mitigate the gradient artifacts. Recent advances of MVA deal with combining trans-
mitted waves in MVA for more constraints on near-surface velocities (Lameloise, 2015),
using multiples for higher resolution (Berkhout et al., 2015; Cocher et al., 2015), and re-
placing the migration process by linearized inversion (inversion velocity analysis) which
can also mitigate the gradient artifacts for the velocity update (Liu et al., 2014b; Chauris
et al., 2015).

Compared with FWI, the main advantage of MVA is its stable convergence to reliable
velocity models. On the other hand, FWI has its reputation of high-resolution results.
Nonetheless, researchers have investigated the possibility to combine two methods, hop-
ing to reach high resolution in a robust way (e.g. Biondi et Almomin, 2013; Fleury et
Perrone, 2012; Allemand et Lambaré, 2015; Santos et al., 2016). Among them, Biondi
et Almomin (2013, 2014) proposed an objective function which combines the L2 norms
of data difference (FWI-related) and image unfocusing in SSCIG (MVA-related), such
that the true velocity model can be built even if a poor initial model is used.

1.3.3 Full waveform inversion (FWI)

Full waveform inversion was first introduced by A. Tarantola and P. Lailly in 1980s
(Tarantola, 1984; Lailly, 1984; Tarantola, 1986). They showed that the first iteration of
FWI resembles a migration process that produces reflectivity images (Devaney, 1984; Wu
et Toksöz, 1987; Mora, 1989). Due to the restriction to very short offsets at that time,
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however, they were unable to update the long wavelengths of the model (Gauthier et al.,
1986; Mora, 1988; Jannane et al., 1989; Crase et al., 1990; Pica et al., 1990). In 1990s,
the computational load of FWI was reduced by Pratt’s group (Pratt et Worthington,
1990; Pratt et al., 1998; Pratt, 1999) by reformulating FWI in the frequency domain.
They pointed out that a reduced set of frequencies is already sufficient to provide a non-
biased image of the subsurface (Sirgue et Pratt, 2004; Sirgue, 2006). For robustness, they
applied FWI to cross-well data to favor transmitted waves (Pratt et al., 1996; Pratt et
Shipp, 1999). With the development of wide-aperture/long-offset acquisition geometries,
intermediate wavenumbers of the subsurface can be imaged (Neves et Singh, 1996; Shipp
et Singh, 2002; Sirgue et al., 2007; Wang et al., 2015), making this method unlike others:
in principle, it does not assume scale separation between velocity background and high-
wavenumber reflectivity. On the other hand, as the dense arrays of receivers provide
much larger data volumes than ever, the automatic misfit evaluation in FWI outstrips
the cumbersome picking step in traveltime tomography. Thanks to the development of
computational infrastructures, we can implement more large-size FWI jobs on clusters,
and since 2006 we have witnessed a rapid growth in the number of citations in the
literature (Figure 1.7), from geophysical prospecting (e.g. Ravaut et al., 2004; Malinowski
et Operto, 2008; Plessix, 2009; Sears et al., 2010; Vigh et al., 2010; Prieux et al., 2011;
Plessix et al., 2012; Etienne et al., 2012; Brossier et al., 2013; Gholami et al., 2013a;
Warner et al., 2013; Vigh et al., 2014; Operto et al., 2015; Amestoy et al., 2015; Wellington
et al., 2015) to crustal and lithospheric seismology (e.g. Operto et al., 2006; Brenders et
Pratt, 2007; Fichtner et al., 2010; Beller et al., 2014). For a nice overview of FWI in
exploration geophysics, I refer to Virieux et Operto (2009).

FWI can be implemented either in the time domain or in the frequency domain. In
the time domain, the elapsed time is reduced by distributing all shot gathers over the
processors of parallel computers. A second level of parallelism can be used for domain
decomposition of the computational mesh (Etienne et al., 2010). Nonetheless, such cost
can be reduced, at the expense of convergence rate and quality of results, by limiting
the number of shots with random selection during FWI iterations (van Leeuwen et Her-
rmann, 2012; Warner et al., 2013), or deterministic or stochastic source encoding (Vigh
et Starr, 2008; Krebs et al., 2009; Ben Hadj Ali et al., 2011; Bansal et al., 2013; Castel-
lanos et al., 2015). Alternatively, FWI can be performed in the frequency domain, in
which case the computational cost is proportional to the number of discrete frequencies
involved in the inversion. The wave equation transfers to the Helmholtz equation in the
frequency domain, which can be solved by direct or iterative solvers (Demmel, 1997).
The drawbacks of direct solvers, i.e. the poor scalability and significant in-core memory
requirement, can be mitigated by new numerical methods such as block low-rank approx-
imation (Amestoy et al., 2015). However, as we move to 3D geometries, the direct solver
becomes very resource demanding and we have to apply iterative solvers (Erlangga et
Herrmann, 2008; Plessix, 2009; Li et al., 2014; Hamitou et al., 2015). Hybrid approaches
are also promoted to reduce the cost, in which the discrete frequencies are extracted
from time-domain seismograms via discrete Fourier transform (Nihei et Li, 2007; Sirgue
et al., 2008; Brossier et al., 2014). These three strategies have been recently reviewed by
Pajot et al. (2014), who point out the scalability issue remains for the direct and iterative
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Figure 1.7: Increasing citations of FWI in the literature (from Google Scholar, keyword
“full waveform inversion”, 13/05/2016). The numbers include publications, presentations,
reports etc., hence give an upper limit of published works in each year. Proposed in 1984,
FWI was not widely accepted until 2006, over 200 citations was reached thanks to the
upgraded computing hardware. The curve has increased for five times after 9 years. By
the end of 2016, a number around 1300 could be anticipated.

solvers. Brossier et al. (2014) compare time-domain FWI and frequency-domain FWI
based on time-domain modeling, and show a same temporal complexity for the gradient
computation embedded in the two methods.

Successful applications rely on how we simulate the wavefield propagation in the
medium. Acoustic modeling is firstly tried because the acoustic approximation makes
the cost of forward problem affordable and allows to focus the inversion on the estima-
tion of the P-wave velocity (i.e., the first-order parameter in seismic imaging, Gauthier
et al., 1986; Pica et al., 1990; Mulder et Plessix, 2008). However, elastic FWI is more
desirable for applications that detect fluids, gasses, high velocity contrasts (Barnes et
Charara, 2009) with the capacity to probably model the AVO effect, converted waves
etc. Plessix et Pérez Solano (2015) also highlighted the artifacts generated by the acous-
tic approximation in the presence of carbonate layers. Shipp et Singh (2002) reconstruct
P-wave velocity while S-wave velocity is deduced via an empirical relation, and Sears
et al. (2008, 2010) used multi-component data to reconstruct both parameters. Based
on Born and Rytov approximations, Gélis et al. (2007) highlight the dramatic footprint
of the surface waves and thus they only involve body waves of short offsets in the early
stage of inversion. Another issue for elastic FWI is the cycle skipping problem related
to S waves. Because the wavelengths of S waves are shorter than P waves, a good initial
model for acoustic FWI may be not accurate enough for elastic FWI to properly match
the S waves (Brossier et al., 2009b). To mitigate this problem, Masoni et al. (2014) and
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Pérez Solano et al. (2014) measure the data misfit in alternative domains (ω-p or ω-k)
for more convex misfit functions. Nevertheless, acoustic FWI is more considered in 3D
geometries mainly for a lower computational price (Sirgue et al., 2008; Ben Hadj Ali
et al., 2008; Vigh et Starr, 2008; Warner et al., 2008; Operto et al., 2015).

Recently, more researchers have taken attenuation into consideration as it can provide
invaluable inferences on reservoir properties as porosity and fluid saturation (Ribodetti et
Hanyga, 2004; Plessix, 2006a; Malinowski et al., 2011; Prieux et al., 2011; Kunert et al.,
2016; Plessix, 2016; Yang et al., 2016). In a synthetic case, Kurzmann et al. (2013) show
that neglecting attenuation can lead to unreliable reconstructions of the velocity model.
Belahi et al. (2016) point out that a smooth attenuation background is only sufficient
for inverting long-offset refracted waves. The data at intermediate offsets, close to the
critical angle, depends very much on the attenuation contrast in the models. In this
situation, it is necessary to update both the velocity and attenuation models to properly
account for critical reflections.

Multiparameter FWI can significantly improve the data fit; however, this may be
achieved by an inappropriate mapping from one parameter update into another: the
trade-off issue between different classes of parameters. An example is given in Figure 1.8,
which illustrates the trade-offs between P-wave velocity and anisotropic parameter. Be-
fore implementing inversion, potential trade-offs can be revealed by analyzing the radi-
ation pattern (or diffraction pattern in some studies). Besides, the singular value de-
composition of the Hessian matrix also brings information for trade-off analysis (Operto
et al., 2013). From the methodological point of view, an optimal set of parameters should
be defined before inversion such that the trade-offsets are kept under control at the same
time the imaging resolution is preserved. In the acoustic VTI case, a parameterization
of NMO velocity and anisotropic parameter η (or vertical and horizontal velocities) are
often chosen to have better decoupling due to their distinguished influences on reflected
waves and diving waves, respectively. Then, the anisotropic parameter δ is used as a sec-
ondary parameter to compensate for the shortcomings that the true earth is represented
by the acoustic model (the so-called “garbage parameter”, Plessix et Cao, 2011; Gholami
et al., 2013b,a; Alkhalifah et Plessix, 2014; Stopin et al., 2014). This parameterization
seems to be still useful for elastic FWI as the S-wave velocity has a minor influence on
the P-wave velocity inversion, especially in the marine case (Prieux et al., 2013b; Alkhal-
ifah et Guitton, 2016). In contrast, attenuation has a strong trade-off with the velocity
parameters when the dispersion is not taken into account (Hak et Mulder, 2010). In this
case, we can simultaneous reconstruct the two parameters (Plessix, 2016) to avoid over-
fitting of the data caused by monoparameter inversion, and the second-order Hessian
matrix may be required to decouple the parameters.

Perhaps the most severe problem in FWI is the cycle skipping of observed and mod-
eled data (Figure 1.9). Many efforts have been taken to attack this problem. Multiscale
FWI is investigated (Bunks et al., 1995; Sirgue et Pratt, 2004), the idea of which is
to start by inverting lower frequencies and progressively introduce higher frequencies in
the inversion (Kolb et al., 1986; Virieux et al., 2011). However, current acquisition tech-
niques still do not allow to access very low frequencies (typically below 2 Hz), and prevent
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Figure 1.8: Synthetic example of trade-off for acoustic VTI multiparameter FWI
(adapted from Gholami et al., 2013b). (a) Diffraction angle-dependent amplitudes of
scattered waves with respect to a single diffractor in the medium caused by inclusions
of vertical P-wave velocity VP0 , anisotropic Thomsen parameters ε and δ, respectively
(scaled amplitudes for ε and δ scattering), carried out in the frame of ray+Born ap-
proximation (Forgues et Lambaré, 1997). The pattern reveals the trade-off between VP0

and ε for large angles (gray area). (b) Homogeneous true models except a ball-shape
anomaly in the ε parameter. Starting from homogeneous models, multiparameter FWI
creates heterogeneity in all three parameters (c-e). The vertical sections (f-h) of true
models (black lines) and recovered models (red lines) at 1 km distance shows the trade-
off between ε and VP0 . Note how the true ε perturbation (g) is translated to VP0 (f),
leading to erroneous reconstructions. Due to negligible sensitivity to δ perturbation in
this parameterization (a), the δ heterogeneity in (e,h) is very weak.
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multiscale inversion from using poor initial models. Alternatively, Laplace-domain and
Laplace-Fourier domain inversions are proposed to boost the low frequencies or early
arrivals to make the inversion more robust (Shin et Cha, 2008, 2009; Pyun et al., 2008,
2011). Meanwhile, researchers also try to modify the gradient expression to enhance the
low-wavenumber components in the gradient, by different approaches such as wavefield
decomposition (Wang et al., 2013a; Tang et al., 2013; Wu et Alkhalifah, 2016) and scat-
tering angle-based filtering (Alkhalifah, 2015). On the other hand, many investigations
are also devoted to reducing the nonlinearity in a more automatic way. A number of
misfit functionals are proposed, such as those based L1 or Huber norm (Brossier et al.,
2009a; Ha et al., 2009; Brossier et al., 2010), cross-correlation (Luo et Schuster, 1991; van
Leeuwen et Mulder, 2010; Choi et Alkhalifah, 2016), deconvolution (Luo et Sava, 2011;
Warner et Guasch, 2014; Guasch et Warner, 2014; Warner et Guasch, 2015), envelope of
wavelets (Fichtner et al., 2008; Bŏzdag et al., 2011; Luo et Wu, 2015), unwrapped phase
(Alkhalifah et Choi, 2012), dynamic image warping (Ma et Hale, 2013), registration-
guided norm (Baek et al., 2014) and optimal transport (Métivier et al., 2015). Using
alternative misfit functionals is still a vivid topic and new ideas are continuously intro-
duced to the literature. Nevertheless, as Plessix (2012) has pointed out, an automatic
and also robust FWI strategy relies on a common effort in both acquisition innovation
and methodological development.

1.3.4 Reflection waveform inversion (RWI)

As depicted in Figure 1.3, the FWI gradient lacks large-wavelength components in deep
zones. To build the smooth velocity model, reflection waveform inversion was proposed
to carry out the transmission kernels from reflected waves by considering the migrated
images explicitly (Figure 1.4). Moreover, the separation of scales in the model description
allows to adjust the depths of migrated images, such that the reflected waves at near-zero
offsets are perfectly matched during velocity update (Zhou et al., 2012; Xu et al., 2012)3.
Consequently, the associated misfit function has less number of local minima than that
of FWI. An example will be given in Section 2.2.

Adjusting the image depths can be achieved by re-performing migration in smooth
models, which leads to a cycle workflow that alternates between migration and RWI
velocity update. However, the workflow could take a long time to converge, because
the temporal complexity of migration is non negligible, especially when true-amplitude
migration is used for perfect data match at near offsets. To mitigate this issue, Brossier
et al. (2015) suggests to adjust the depths based on the vertical time-depth relation
(Plessix, 2013), such that the depths are automatically adjusted according to the velocity
update without repetition of the migration process.

RWI is inspired by the idea of migration-based traveltime (MBTT) inversion (Chavent
et al., 1994; Chavent, 1996; Plessix et al., 1999; Clément et al., 2001; Tcheverda et al.,

3At that time the name of this method was “Reflection FWI”. But later the letter “F” was abandoned
as R.-É. Plessix argued that the transmitted waves are not included: it’s not full waveform.
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Figure 1.9: Sketch to explain cycle skipping phenomena. (a) No cycle skipping problem:
the initial velocity model is accurate enough in terms of kinematics such that the modeled
wavelet is within half cycle of the observed wavelet. However, it is often not the case in
practice (b)-(d). When the modeled wavelet is slightly out of half cycle of the observed
one, the inversion could reshape the wavelet such that the amplitude-related misfit is
reduced, which is often interpreted as a dynamic error (b). When the modeled wavelet
departs further from the observed one, their side slopes may constructively correlated
corresponding to a local minimum of the misfit function (c). In (d), the modeled wavelet
has a large time shift from the observed one. The inversion often cannot recognize their
relationship and would be lost its direction in the local plateau of the misfit function.

2016) that also uses migrated images for velocity inversion. On the other hand, RWI
shares some similarities with MVA (Xu et al., 2012) and promises higher resolution
(Alkhalifah et Wu, 2015). Liu et al. (2014a) combine RWI and MVA such that addi-
tional velocity update can be gained from extended images. Wang et al. (2013b) refor-
mulate RWI in the frequency domain and illustrate the importance of low frequencies
– a similar property to FWI. While Staal (2015) and Guo et Alkhalifah (2016) extend
RWI to multiple reflections and elastic case, respectively, Wu et Alkhalifah (2015) and
Zhou et al. (2015) consider diving waves in RWI in order to better constrain the velocity
inversion at shallow depths. In specific, Zhou et al. (2015) propose to parameterize the
subsurface by velocity and impedance for velocity macromodel building and reflectiv-
ity imaging, respectively, which forces the scale separation between the two subsurface
representations.
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1.3.5 Summary and motivation of this study

A summary of aforementioned velocity estimation methods is given in Table 1.3. Un-
like the others, FWI does not assume scale separation, which makes it highly nonlinear
and often requires sufficiently accurate initial models in a sense that the data can be
reproduced within an error of half cycle. However, the interest in FWI grows steadily
because its high-resolution imaging power and automated process give the possibility for
interpreters to better pinpoint reservoirs, salt body, faults etc. Therefore, investigations
are more towards initial model building methods. Without considering other possibili-
ties, initial models could be built by traveltime tomography, MVA or RWI. While the
effectiveness of traveltime tomography is case-dependent, MVA often requires more com-
putational resources consumed by the migration step and extended imaging conditions
(Duveneck, 2013). Although being considered less immune to kinematic errors than
MVA (Alkhalifah et Wu, 2015), RWI is a new way to build initial velocity models. The
advantage is its higher resolution that FWI may demand to start with (tomography may
not satisfy this resolution-related condition), and its cheap implementation than MVA
because no extended-domain images are built. Considering both resolution and compu-
tational expenses, RWI is the best among the three methods to build the initial model
for FWI.

One shortage of RWI is the lack of contribution associated to transmitted waves, or
specifically the diving and refracted waves in the case of surface acquisition. With the
development of very long-offset/wide-azimuth acquisition geometries,4 there is an abun-
dance of transmitted energy recorded in seismic traces, and any high-resolution velocity
model building methods should take benefit from that. On the other hand, despite this
increasing length of acquisition aperture, FWI remains unqualified for very deep target
imaging which makes mandatory an prior implementation of RWI. However, it is also
crucial to keep using diving waves to recover the large wavelengths of shallow zones as
accurately as possible. Therefore, the motivation of this PhD study is to add these waves
into RWI for more robust velocity macromodel building while the computational price
is kept same as RWI.

1.4 Contribution of this work and thesis outline

Main contributions:

1. Diving waves (or early arrivals) and reflected waves are combined in a unified for-
mulation for velocity macromodel building (namely JFWI). All low-wavenumber
components associated to diving and reflected waves are included in the sensi-
tivity kernel, whereas high-wavenumber migration isochrones are mitigated by an
explicit data separation of diving and reflected waves, and by choosing suitable

4A recent example is the dual-coil multivessel method of WestenGeco that can potentially provide
ultralong offsets up to 29 km! (Vigh et al., 2013)
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Table 1.3: A comparison among different velocity estimation methods.

Separating Human Linearity Output
scales intervention resolution

Ray-based Yes Manual picking Quasilinear Low
tomography
MVA Yes No Quasilinear (except Low

stacking-power MVA)

FWI No No Highly nonlinear High
RWI Yes No Nonlinear Low
JFWI as a Yes Prior data Nonlinear Low
variant RWI separation

parameterization of the subsurface as well as a stacking of sensitivity kernels over
source-receiver couples. The computational time to evaluate the gradient is twice
of the conventional FWI gradient while the memory cost is the same.

2. Based on scale separation, an integrated workflow is proposed which alternates an
impedance inversion and JFWI, using short-spread reflection data and long-offset
diving+reflected waves, respectively. The velocity model resulted from JFWI can
be used as the initial model of FWI for the purpose of broadband reconstruction.

3. The synthetic example shows that like RWI, JFWI ensures no cycle skipping at
near offsets, and provides sensitivity to low wavenumbers at depths greater than
the penetration depth of diving waves. However, the advantage of JFWI over RWI
is the improved image quality at shallows depth, due to considering the complemen-
tary information carried by diving waves, which translates to better reconstruction
in terms of kinematics at great depths.

4. The real case study shows that for successful applications of JFWI a) the diving and
reflected waves should be easily separable from each other; b) the cycle skipping
problem should be mitigated. Otherwise, the inversion would converge to local
minima; c) low-wavenumber content should be injected into the velocity model at
the early stage of inversion and before resolving the high-wavenumber content.

Organization of the thesis:

� Chapter 2 will analyze the FWI and RWI gradient by vectorial decompositions in
simple circumstances, by which I shall explain why RWI has better sensitivity to
deep targets than FWI, and why RWI is able to reduce the cycle skipping problem
when reflected waves are used. In addition, the reliance of RWI on frequencies
and acquisition aperture will also be studied in a simple test, which can serve as a
guideline for realistic applications.

26



1.4 Contribution of this work and thesis outline

� The formulations of FWI, RWI and JFWI will be systematically studied in Chapter 3,
from which the reader will see how diving waves can be combined into RWI through
a unified formulation. To further fulfill scale separation, I shall propose to param-
eterize the subsurface by velocity and impedance, rather than the conventional
velocity and density. The benefit of this choice will be explained by analyzing the
radiation patterns in the framework of single scattering formulation, and will be il-
lustrated in a two-layer example. Based on this parameterization, a cycle workflow
will be proposed, which alternates between high-wavenumber impedance inversion
and velocity macromodel building, using near-offset reflected waves and large-offset
diving and reflected waves, respectively.

In addition, Chapter 3 will also show a numerical example of JFWI on a synthetic
Valhall model. This model is composed of nearly flat interfaces superimposed on
the smooth background, which helps separate velocity and impedance in terms of
wavenumbers, as is assumed by the approach. Moreover, the flat interfaces gener-
ate primary reflections that can be easily separated from the direct/diving waves
within the considered acquisition aperture. In the preprocessing stage, I only per-
form an offset-dependent time window for data separation while during inversion,
I apply layer-stripping and data weighting to increase the robustness of the ap-
proach and enhance the illumination at depths. Vertical sections of the results will
show the realization of the scale separation between velocity and impedance. The
reconstructed velocity model can be used as the initial model for a sequential FWI
such that the intermediate-to-high wavenumbers are further injected for broadband
reconstruction of the subsurface.

� With the confidence gained from the synthetic study, I shall further study the
promises and pitfalls of JFWI with a real-data case study (Chapter 4). Three
points are noted:

a) Because the seismic modeling is performed in the time domain, I omit the
attenuation effect for high numerical efficiency. By using an existing initial
model, the attenuation effect is illustrated by classical FWI sequentially imple-
mented in the time and frequency domains, which tells us that the attenuation
has limited effect for frequencies below 5.6 Hz;

b) The second point is the nonlinearity caused by the interference of early arrivals
and critical reflections after low-pass filtering. In order to mitigate this, I feed
JFWI only short-to-intermediate offsets and then extend to longer offsets
during the sequential FWI process;

c) By using different initial models with increasing low-wavenumber contents,
the importance of low wavenumbers is highlighted to recover the velocity
model: either the initial model should contain sufficient low wavenumbers,
either longer offsets should be used at the early stage of JFWI. As the cycle-
skipping issue prevents us from using long offsets, I need a better initial model
in the real-data case than the one in the synthetic case.
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� The final chapter will draw conclusions and propose several options for future study.

Chapter 3 is extracted from the publication:

Zhou, W., Brossier, R., Operto, S. et Virieux, J. (2015). Full waveform inver-
sion of diving and reflected waves for velocity model building with impedance inversion
based on scale separation. Geophysical Journal International, 202:1535–1554

Chapter 4 is extracted from the manuscript:

Zhou, W., Brossier, R., Operto, S., Virieux, J. et Yang, P. (2016). Joint
full waveform inversion of early arrivals and short-spread reflections: a 2D ocean-bottom-
cable study including gas cloud effects. To be submitted.
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Chapter 2

From FWI to RWI – Mitigation of
cycle skipping and approaching to
low wavenumbers at great depths

A lack of information cannot be remedied by any mathematical trickery!

— Cornelius Lanczos (Quoted by Kirsch, 2011)

In this chapter, I shall establish the theoretical foundation for the proposed method
of the thesis, which will be fully described in the next chapter. Without essential inves-
tigations of the methodology, the advantage of RWI over FWI and the additional benefit
of the proposed method would not be manifest. Meanwhile, this chapter also serves as
a guideline for realistic applications of RWI as well as the new method I propose.

The cycle skipping problem is always encountered in FWI applications, as seismic
traces are oscillatory signals. It generates local minima for the misfit function and leads
to erroneous subsurface models. One usual source of cycle skipping can be attributed to
inaccurate reproductions of the reflection phases. How does RWI encounter this problem?
In many surface experiments, the offsets between sources and receivers are limited to a
certain range, which forbids a direct implementation of FWI to recover deep targets. Is
it still the case for RWI? As will be shown that RWI naturally images low wavenumbers
at depth, do we still need long offsets or low-frequency data for this imaging? In this
chapter, these questions will be answered by theoretical studies as well as numerical
illustrations.



FROM FWI TO RWI

2.1 Forward modeling

To promote the analysis related to FWI and RWI, I shall briefly review the acoustic
isotropic wave equation that is used in this thesis. The first-order partial differential
equations (PDEs) are written as

∂tvx = b ∂xp+ b fx, (2.1)

∂tvy = b ∂yp+ b fy, (2.2)

∂tvz = b ∂zp+ b fz, (2.3)

∂tp = κ (∂xvx + ∂yvy + ∂zvz) + s (2.4)

where vx, vy, vz denote the three components of the vectorial velocity wavefield ~v, p the
scalar pressure wavefield, fx, fy, fz the components of the vectorial velocity sources, and
s the stress source, respectively. Two model parameters are considered: the buoyancy
b (the inverse of density ρ) and the bulk modulus κ. The compressional wavespeed VP
and acoustic impedance IP can be deduced by VP =

√
κb and IP =

√
κ/b. In this thesis,

the temporal partial derivative (∂t) is computed by an explicit second-order leap-frog
scheme, and the spatial derivatives (∂x, ∂y, ∂z) are discretized by staggered-grid fourth-
order finite-difference mesh (Levander, 1988; Fornberg, 1988). In this thesis, I consider
explosive sources, so fx = fy = fz = 0.

In the frequency domain, on the other hand, I only consider the pressure field p.
The associated second-order PDE can be obatined by taking the temporal derivatives
of Equation (2.4) and merging the four equations together. The Fourier transform with
respect to time transfers this PDE into a linear system which is also known as the
Helmholtz equation:

ω2p+ ρ V 2
P ∇ ·

(
1

ρ
∇p
)

= s (2.5)

where ω denotes the circular frequency, ∇ = (∂x, ∂y, ∂z) the gradient operator.

No matter which domain is considered, the two systems (2.1)-(2.4) and (2.5) can be
summarized in a unified formalism by using the modeling operator notation B:

B(m)u = W, (2.6)

where m denotes the models of all physical parameters (for instance VP and ρ in the
acoustic isotropic case, or many others if we consider anisotropy, elastic or viscous inver-
sion). The operator B, field u and source term W include different quantities depending
on which system is considered (Table 2.1). The wavefield u are sampled at sparse receiver
locations implying a linear matrix R that projects the wavefield into the data space:

dcal = Ru, (2.7)

where dcal represents the synthetic data computed in the proposed model m during
inversion. Conversely, its transpose RT, reallocates the seismic traces at positions where
they are recorded.
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2.2 Formulations and the cycle skipping issue

Table 2.1: Quantities that are represented by B, u and W in Equation (2.6)

Time domain (2.1)-(2.4) Frequency domain (2.5)

B spatial discretization stencil, spatial discretization stencil,
finite-difference approximation of ∂t ω

u vx, vy, vz and p p
W fx, fy, fz and s s

2.2 Formulations and the cycle skipping issue

2.2.1 FWI as a least-squares linearized optimization

Classical FWI attempts to minimize the following object function:

CFWI(m) =
1

2
‖dobs − dcal(m)‖22, (2.8)

where ‖ · ‖2 denotes the L2 norm of the mismatch between the observed data dobs and
the synthetic data dcal(m) computed in a proposed subsurface model m. It translates to
the integration on the time window in the time-domain implementation, or implies the
moduli of the mismatch vectors sampled by different frequencies in the frequency-domain
implementation, plus a summation over shots and receivers. Due to its large size (104–
106 unknowns in 2D and much more in 3D) and the non negligible time to compute dcal,
this inverse problem is generally solved by linearized iterative methods, which updates
the subsurface model by using the gradient of CFWI with respect to m. The formulation
can be found by using the adjoint-state method (Plessix, 2006b). For sake of simplicity,
the frequency-domain formulation is used here (Appendix 5):

∇CFWI(m) = <

{
uT0

(
∂B

∂m

)T

λ∗0

}
, (2.9)

which is the real part (i.e. <) of the inner product of the transposed modeled wavefield
uT0 and the conjugate of the adjoint wavefield λ∗0, weighted by the transposed partial
derivative of the modeling operator B with respect to the model m. The modeled
wavefield is the solution of the Helmholtz equation B(m)u0 = W with W the source
function and the adjoint wavefield is the solution of the following adjoint-state equation

B(m)†λ0 = RT(dcal − dobs)∗ (2.10)

with a virtual source term using the conjugate of the data residuals. The symbol †
denotes the adjoint operation (transpose conjugate). However, without consideration of
absorbing layers the modeling operator is self-adjoint (B(m)† = B(m)). Therefore, the
similar form of (2.10) and B(m)u0 = W shows that the same modeling engine can be
used to solve both u0 and λ0. In addition, the conjugate operation on the source term of
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FROM FWI TO RWI

Equation (2.10) translates to the signal reversal in the time domain, implying that the
time-domain computation of λ0 should be performed in the reverse time order.

The gradient is further weighted by the Hessian matrix H in Newton-based optimiza-
tion:

∆m = −H−1∇C, (2.11)

where the Hessian is the second-order information from the data, formulated as (Pratt
et al., 1998)

H(m) = ∇2C(m) (2.12)

= Ha +Hb (2.13)

= <
{
JTJ∗

}
+ <

{(
∂JT

∂mT

)
(∆d∗ ∆d∗ . . . ∆d∗)

}
(2.14)

where J = ∇u0 =
(
∂u0i
∂mj

)
denotes the sensitivity kernel (i.e. Jacobian matrix) and ∆d the

data residuals. The first term Ha is known as the approximate Hessian in Gauss-Newton
methods, diagonally dominant and banded due to correlations of first-order scattered
fields of a finite frequency band. The diagonal corresponding to spatial autocorrelations,
which account for amplitude decay due to geometrical spreading. On the other hand,
the off-diagonal corresponding to spatial crosscorrelations, which is nonzero due to the
finite frequency content and limited acquisition sampling. Therefore, inverting Ha helps
balance the gradient amplitudes at different depths by its diagonal terms (precondition),
and sharpen the image by its the off-diagonal terms (deconvolution). In addition, an
implicit summation over shots in Ha (not written above) also helps balance the contri-
butions from different shot gathers.

In the second term Hb, the partial derivative matrix ∂JT

∂mT =
(

∂2u0i
∂mj∂mk

)
is related to

the second-order scattering with respect to the parameters mk and mj. Considering this
information allows to mitigate the cross-talk effect of two parameters of one and/or two
classes. However, due to the second-order derivatives, Hb is more difficult to compute
than Ha, and is generally neglected with the argument that it would have little influence
when the residuals ∆d are largely reduced. Nonetheless, investigations have manifest its
key role in the discrimination of parameters (e.g. velocity–density, velocity–attenuation.
Métivier et al., 2015), especially at the early stage of the inversion. With the upgraded
computing hardware the full Hessian has been accounted in the truncated Newton ap-
proach (Métivier et al., 2014a).

The answer to the inverse problem (2.8) is not unique due to the lack of acquisition
coverage and frequency content; two distinct models could result in a same level of
data fitness (see an example in Chapter 4). Besides matching the observed data, model
constraints can be added into Equation (2.8) to exclude unwanted models:

CReg(m) =
1

2
‖dobs − dcal(m)‖22 + ‖P (m)‖22, (2.15)

where P denotes a certain operator. In Tikhonov regularization, for example, P (m)
includes some spatial derivatives of m, such that rapid variations (or high wavenumbers)
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2.2 Formulations and the cycle skipping issue

are penalized in the model update (Tikhonov et Arsenin, 1977; Guitton, 2012; Esser
et al., 2016; Liu et al., 2016). Alternatively, P (m) can involve some prior information of
the subsurface (geology, well-logs etc.), such that the result is close to this information
and also geologically meaningful (Asnaashari et al., 2013; Vigh et al., 2015).

In this chapter, I shall omit the possibility of using model constraints to mitigate
cycle skipping, as it is not the topic of this thesis. Also, the Hessian matrix will not
be considered for a straightforward sampling analysis with regard to FWI and RWI
gradients.

2.2.2 Velocity-depth ambiguity – Reflection data-induced cycle
skipping

For deep-target imaging, reflected waves should be considered. However, the ambiguity
arises since both the depths of subsurface interfaces and background velocities can de-
termine the observed traveltimes of reflected waves; the influences of the two parameters
may not be separable in the available offset window. Incorrect reflectivity depths, and/or
inaccurate velocities result in a mismatch of the traveltimes, which cause the cycle skip-
ping problem that has been widely encountered in many studies. In the following, I
shall first point out that FWI tends to resolve interface depths before velocity building,
causing cycle skipping problems and inaccurate velocity models. From a simple example,
the advantage of RWI over FWI will then be highlighted.

Suppose the model we look for consists of two homogeneous layers. We observe the
direct and reflected waves from a surface shot:

dobs = ddirobs + dreflobs . (2.16)

Starting from a homogeneous model m(0), the gradient expression (2.9) for the first
iteration can be decomposed as

∇CFWI(m
(0)) = u0 ? λ

dir
0 + u0 ? λ

refl
0 ≈ u0 ? λ

refl
0 (2.17)

where the transpose and conjugate operations, the partial derivatives and < are repre-
sented by ? for simplicity. Without loss of generality, I neglect the first term to highlight
the cycle skipping caused by reflected waves (i.e. assuming a good knowledge of the
surface). The second term, on the other hand, represents the high-wavenumber migra-
tion isochrone due to the small aperture angle made between u0 and λrefl0 , resulting
reflectivity images in m(1) after the first iteration (migration mode of FWI). In the sec-
ond iteration, these reflectivity images generate the scattered fields δu and δλrefl in the
forward and adjoint modeling processes, respectively, leading to the following updated
gradient expression that includes three terms:

∇CFWI(m
(1)) = u0 ? λ

refl
0 + u0 ? δλ

refl + δu ? λrefl0 . (2.18)

The first term still represents the high-wavenumber migration isochrone. The last
two terms, on the other hand, represent the low-wavenumber update (see the sampling
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FROM FWI TO RWI

analysis in Section 2.3, Figure 2.9). To assess the respective contributions to the gradient
(2.18) of these three terms, let us assume the amplitude of u0 is 1. The relative amplitude
of each term can be estimated by using the reflection coefficient Z of the imaged reflector:

u0 ∼ 1 λrefl0 ∼ Z u0 ? λ
refl
0 ∼ Z;

δu ∼ Z δλrefl ∼ Z2 δu ? λrefl0 ∼ Z2;
u0 ? δλ

refl ∼ Z2.

(2.19)

For short-spread reflections, Z is very small (∼ 0.1), meaning that the total contribution
of δu ? λrefl0 and u0 ? δλ

refl is negligible compared with u0 ? λ
refl
0 (10%). In other words,

the gradient (2.18) is dominated by its high-wavenumber term u0 ?λ
refl
0 that contributes

to reflectivity imaging. Note that this conclusion does not generally hold for critical
and postcritical reflections (Z tends to 1). Nevertheless, the postcritical reflection and
refraction fields represented by δu or δλrefl will be treated as transmission field that is
not considered by RWI in principle.

For the moment, let us still assume the dominance of u0 ? λ
refl
0 . Consequently, I can

assume that the depth of the imaged reflectivity is fixed through iterations. This is fairly
true. Indeed, experiences have shown that in realistic cases shifting the depths of imaged
reflectors often requires more iterations than updating the background velocity.

Let us first suppose that the depth of the reflector is correctly determined in m(1).
This implies that I have somehow well resolved the ambiguity between reflector depth
and velocity, and the remaining job is to determine the velocity by involving the two
terms u0 ? δλ

refl and δu ? λrefl0 . However, it is not easy, as the sinusoidal nature of
the seismic waves is translated to the oscillating behavior of the misfit function, and
a gradient-based searching method would converge to a local minimum if the initial
velocity is far from the true one (Figure 2.1). For example, with a velocity of 2300 m/s
(Point a in the figure), the reflection phase is reproduced outside one dominant cycle of
the observed phase (the black wiggle disclosing the blue part in Figure 2.1a). Because
shifting the synthetic phase to earlier times makes a higher misfit value, the minimization
of the misfit function would rather postpone the arrival times using a lower velocity (e.g.
2200 m/s). One may mitigate this issue by decreasing the frequency content of the
data (usually by implementing a low-pass filter), such that the observed wavelet is wide
enough to accept the synthetic wavelet. As a result, in the figure, Point b is inside the
local attraction valley of the global minimum unlike Point a, and the iteration would
converge to the true velocity. Note that the lower frequency also gives a less steep misfit
function near the global minimum, which may slow down the convergence rate of the
iteration. Therefore, higher frequencies can be re-used for the speedup (Bunks et al.,
1995). However, the success of this hierarchical scheme is case-dependent. For example,
starting from Point c in the figure which is on the local plateau of the misfit function,
FWI would fail to converge because the magnitude of the gradient is too small to update
the model (zero derivatives at the local plateau).

Taking the velocity-depth ambiguity into consideration, one may image the reflector
at incorrect depths in m(1) due to the erroneous initial velocity provided by m(0). The
adjustment of the background velocity is thus hampered by these incorrect depths that
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Figure 2.1: Illustration of reflection data-related cycle skipping (top) causing local min-
ima in the L2 norm-defined FWI misfit function (bottom), due to inaccurate velocity
background. The observed data are plotted with a blue-white-red color scale, superim-
posed by the synthetic data plotted with a variable area wiggle display (40% of opacity).
The two data are in phase if the black area covers the blue part of the real data (top).
The Ricker wavelet is used to generate the data, with central frequencies 6.25 Hz and
12.5 Hz, respectively (bottom). The true velocity equals 2500 m/s. The depth of the
reflector is 500 m in the true and tested velocity models. When the tested velocity is
inaccurate (Point a), the synthetic data are reproduced outside the dominant cycle of
the observed data (note that the black area discloses the blue area); the minimization
of the misfit function would propose an erroneous velocity value (e.g. 2200 m/s). Using
lower frequencies may mitigate this problem but slows down the convergence rate. See
text for more discussions.

are fixed during inversion (Figure 2.2). First of all, the misfit function does not show
a global minimum at the true velocity, because the traveltimes deduced from incorrect
depths and true velocity are not equal to the observed traveltimes. Second, the global
minimum may be located at an erroneous velocity through a relatively good match
of the observed phase; however, mismatches do exist at far offsets so that the global
minimum is always above zero (Point a). In offset-domain MVA, such ambiguity is
tackled by resolving the depths for each offset (roughly speaking computing u0 ? λ

refl
0

for each offset), such that the deduced traveltimes are equal to the observed ones for all
offsets. The consistency of these depths is then used to update the velocity. However,
this solution often demands more computing resources.

In RWI, the velocity-depth ambiguity is accounted for by two folds: on the one hand,
by assuming scale separation, the depth of the reflector can be adapted to the background
velocity for a perfect match at short offsets; the mismatch at longer offsets, on the other
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Figure 2.2: Illustration of reflection data-related cycle skipping (top) and non convexity
of the L2 norm-defined FWI misfit function (bottom), due to inaccurate velocity back-
ground and incorrectly imaged reflector depth. The data are plotted in the same way as
Figure 2.1, which are generated by using the Ricker wavelet with central frequency 12.5
Hz (top). The true velocity equals 2500 m/s. The depth of the reflector is 500 m. The
depth of the imaged reflector is estimated by zinit = vinit/t0 where t0 denotes the vertical
two-way traveltime of the reflected waves (bottom). The global minimum can be reached
at an erroneous velocity due to a better match in short offsets (Point a). However, the
normal moveout of the observed reflected waves is not correctly reproduced so that mis-
matches exist in longer offsets giving a nonzero global minimum, unlike in Figure 2.1.
For the same tested velocity, a different initial velocity leads to a higher misfit value due
to the mismatch at short offsets (Point b). This highlights that the initial velocity has
a strong impact on the data fitness. Like in Figure 2.1, a local plateau can be found at
Point c due to the complete mismatch at all offsets.

hand, can be used to update the velocity without creating additional reflectors, thus no
additional ambiguity is introduced. In this way, the number of local minima is largely
reduced. The remaining ones are attributed to cycle skipped traces at longer offsets
depending on the frequency content. If lower frequencies are used, there should be less
number of cycle skipped traces in the intermediate-to-far offsets.

2.2.3 RWI based on scale separation and mitigation of cycle
skipping

Let m0 denote the low-wavenumber velocity model and δm the high-wavenumber reflec-
tivity model. Using δm to reproduce the reflected waves, RWI updates m0 by minimizing
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Figure 2.3: Mitigation of cycle skipping (top) and better convexity of the L2 norm-defined
FWI misfit function (bottom), by adaptation of reflector depths to background velocity.
The data are plotted in the same way as Figure 2.1(top panel), which are generated by
using the Ricker wavelet with central frequencies 6.25 Hz and 12.5 Hz (bottom). The
true velocity equals 2500 m/s. The depth of the reflector is 500 m. The depth of the
imaged reflector is estimated by z = v/t0 where v denotes the tested velocity and t0 the
vertical two-way traveltime of the reflected waves. Please note the difference between the
fixed depth zinit in Figure 2.2 and the changeable depth z here. In terms of traveltimes,
the reproduction of reflection phase is gradually inaccurate from near to far offsets, and
is more accurate for lower frequencies at short offsets (Point a vs Point b). Because
of this, a good inversion scheme is to consider short offsets (and/or lower frequencies)
before longer offsets (higher frequencies). Note that the local plateau shown in Figures
2.1 and 2.2 has been avoided here.

the following misfit function associated to reflected waves only:

CRWI(m0) =
1

2
‖dreflcal (m0, δm)− dreflobs ‖

2
2, (2.20)

where the synthetic reflected waves dreflcal (m0, δm) are computed in m0 (associated to
kinematics) and δm (associated to dynamics). Note that δm should be nearly accurate
in the sense that the reflector depths should be equal to the one-way vertical traveltime
of reflected waves multipled by the background velocity, as shown in Figure 2.2 that
an improper reflector depth would result in a non-minimum point for the true velocity.
Note also that RWI aims to update m0 only; the adaptation of reflector depths (i.e. δm
updates) should be implemented by using other methods, such as time-depth conversion
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or linearized migration. The RWI gradient can be formulated as

∇CRWI(m
(0)
0 ) ≈ u0 ? δλ

refl + δu ? λrefl0 , (2.21)

where I have neglected a minor term. Comparing with the FWI gradient (2.18) in the
second iteration, the above formulation shows that the RWI gradient excludes the high-
wavenumber term u0?λ

refl
0 . Therefore, RWI does not create reflectors in m0, as requested

by the scale separation assumption.

Because the reflectivity model is decoupled from the velocity model, I have the free-
dom to re-image the reflectors once the background velocity is updated, such that the
reflected waves are kept perfectly matched at short offsets throughout the iterations
(Figure 2.3). Consequently, the misfit function presents fewer numbers of local minima,
which are mainly attributed to long-offset mismatch. As in Figure 2.1, lower frequen-
cies still improves the convexity of the misfit function. Furthermore, we could expect
the global convergence to the true velocity, by using alternative misfit definitions such
as those based on crosscorrelation (Xu et al., 2012; Brossier et al., 2015) or optimal
transport (Métivier et al., 2015), or some offset-driven strategies as those adopted in
Section 3.5.

2.3 Sampling analysis in the frame of diffraction to-

mography and orthogonal decomposition

Another advantage of RWI is the capacity to approach to zero-to-low wavenumbers
of subsurface at the early stage of inversion. This will be manifest by analyzing the
imaging wavenumber vectors in the frame of generalized diffraction tomography. Huang
et Schuster (2014) have also performed a comprehensive analysis of the resolution power
I shall consider. I further decompose these vectors in the Cartesian system to assess
the influence of acquisition offset and frequency content, which will be illustrated by a
simple test.

2.3.1 FWI: preferentially high wavenumber samplings

Let us start the discussion from Equation (2.9), which expresses the FWI gradient in
the frequency domain as a weighted product of the incident field u0 and the conjugate of
the adjoint field λ0. In a homogeneous medium (wavespeed = c0), analytical expressions
for the two fields can be deduced by using the Green function, which are functions of
the arbitrary point A(z, x) in space (see the coordinate system in Figure 2.4) and the
circular frequency ω:

u0(z, x;ω) =
W (ω)

4π|SA|
exp [i~s ·

−→
SA], (2.22)

λ0(z, x;ω) =
∆d(ω)

4π|GA|
exp [i(−~g) ·

−→
GA], (2.23)
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2.3 Sampling analysis

Figure 2.4: Sketch of the wavenumber vectors ~s, ~g and their sum (Equations (2.22)-(2.24))
in the 2D Cartesian system. S denotes the source position, G the receiver position, A an

arbitrary point in space and M is the point on surface such that
−−→
MA is parallel to k. The

coordinate system is built by choosing
−→
SG as the x-axis and their midpoint as the origin.

The positive z-axis is toward depth. The acquisition offset is related to the aperture angle
θ which controls the modulus |~s + ~g|, representing the recovered wavenumbers of the
subsurface. In shallow zones, θ has a wide range and thus a broadband of wavenumbers
can be recovered whereas in deep zones, θ is limited to small ranges and thus only high
wavenumbers can be recovered without using low frequencies.

where W (ω) and ∆d(ω) denote the spectra of the source and data residual, ~s and ~g
(moduli=ω/c0) denote the wavenumber vectors of the u0 and λ0, respectively. Due to

the spherical wavefront, ~s (respectively ~g) is parallel to the distance vector
−→
SA (

−→
GA) that

starts from S to A (from G to A), the modulus of which is denoted by |SA| (|GA|). The
minus sign in the second expression derives from the conjugate operation on the adjoint
field λ0 of Equation (2.9), which also means the retropropagation in the time domain.
Then, the FWI gradient (2.9) can be written as

∇CFWI(z, x;ω) ≈ <
{
W (ω)∆d(ω)∗

16π2|SA||GA|
exp [i~k ·

−−→
MA]

}
(2.24)

where ~k = ~s+ ~g denotes the imaging wavenumber vector. The approximation is related
to the ignorance of the partial derivative matrix ∂B

∂m
. I omit this factor to focus on the

wavenumber samplings resulted from the vectors ~s and ~g. The influence of the partial
derivative matrix will be discussed later.

The imaging wavenumber vector ~k for a given source-receiver couple highlights the
sampled spectral component of the subsurface perturbation, weighted by the (adjoint)
source spectrum and the distance from the surface. Specifically, considering the aperture
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Figure 2.5: Illustration of the exponential kernel of the FWI gradient (Equation (2.24)),

superimposed by the vector field ~k deduced from Equation (2.26). Low wavenumbers of
shallow zones are sampled while high wavenumbers are sampled at depths (top). By using
shorter offsets (bottom left) or higher frequency (bottom right), we have samplings of
higher wavenumbers. However, normal frequency bands and offset ranges often lacks low
wavenumber samplings in depths, that can be theoretically supplemented by involving
(very) low frequencies. In the frequency domain, the kernel is formed by a series of
horizontal ellipses with the source and receiver as the focal points. The innermost ellipse
is known as the first Fresnel zone while others are called secondary Fresnel zones, which
form the migration isochrones when a group of frequencies are summed.

angle θ made between ~s and ~g, the modulus of ~k is given by

|~k| = |~s+ ~g| = 2ω

c0
cos

θ

2
, (2.25)

which is also known as the generalized diffraction tomography principle (Devaney, 1982;
Wu et Toksöz, 1987; Mora, 1989, and others). It makes a link from the sampled wavenum-
bers of the subsurface to the aperture angle and data frequency (Figure 2.5). If the seis-
mic data contain the whole 0–360◦ information, all wavenumbers will be imaged. From
surface acquisitions, however, we often face a restriction that the range of θ decreases as
A is deeper, meaning that the bandwidth of sampled wavenumbers are relatively narrow
at depths. The missing low wavenumbers could be compensated for by decreasing the
frequency content of the data (usually by implementing a low-pass filter). However, in
practice this solution is often obstructed by the (very) low S/N of the low frequency
data, largely because of the limited-band nature of the source spectrum W (ω).

The above analysis assumes a single source-receiver couple. For multiple couples,
the total sampled wavenumbers are the gather of all imaging vectors ~k associated to
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Figure 2.6: Diagram of sampled wavenumbers in the kz–kx axes. This diagram is gener-
ated by displaying as scattered points the vector heads of those ~k’s in Equation (2.26)
with varying x and H (but fixed z). These points depict areas from which vertical
and horizontal wavenumbers are sampled. High frequency gives high kz samplings (Red
points) while low frequency gives low kz samplings (Green and blue points). For one fre-
quency, small offsets lead to the green points while large offsets lead to the blue points.
The total sampled area is bounded by the black dashed semicircles. The blank area inside
this bound can be filled in by using larger offsets and more distant source-receiver cou-
ples. In an asymptotic sense, infinitely long acquisitions allow to sample zero kz at kx of
values between ±0.5 and ±1, respectively. According to the analysis based on Equation
(2.26), the two shaded areas between ±0.5 cannot be filled unless lower frequencies are
used.

each couple. To illustrate this total sampling, I first decompose ~k of one couple into its
orthogonal components using the coordinates of Figure 2.4:

~k = ~s+ ~g =
ω

c0

(z, x+H)√
z2 + (x+H)2

+
ω

c0

(z, x−H)√
z2 + (x−H)2

, (2.26)

where H = 1
2
|SG| denotes the half offset. Then, I can determine the gather by varying

the values of x and H (equivalent to moving sources and receivers on surface). At a
common depth (fixing z), Figure 2.6 shows this gather in the kz–kx plot, where the
vertical (respectively horizontal) axis represents which vertical (respectively horizontal)
wavenumbers are sampled. This plot allows us to distinguish the respective samplings in
the two directions, unlike Equation (2.25). The conclusions, nonetheless, are consistent:
a) the FWI gradient preferentially images high kz; b) the sampling area is proportional
to the considered frequency; c) for one frequency, increasing offset allows to approach to
zero kz samplings but still misses low kx coverage (see shaded areas in Figure 2.6).

I should mention that the above reasoning is limited to the case of smooth models
(i.e. no scattering in the considered frequency range). When the model has reflectivity
content, however, the gradient has more terms than Equation (2.24) which gives low kx
samplings. I shall come back to this point in the discussion section.

41



FROM FWI TO RWI

Unlike FWI, RWI relies on the transmission regimes attributed to reflected waves. In
the following, the associated sampling analysis will be carried out in the same manner
as above. Orthogonal decompositions of the imaging wavenumber vectors will show that
RWI naturally images lower wavenumbers than does FWI at great depths.

2.3.2 RWI: preferentially low wavenumber samplings

Suppose the subsurface comprises a single flat reflector at the depth D in the homoge-
neous background (wavespeed = c0). The incident field u0 encounters the reflector and
generates the scattered field δu that includes both transmission and reflection. Because
the contribution of the transmission field to the gradient is negligible in this simple set-
ting, I only consider the reflection counterpart. Same consideration also holds for δλrefl.
In order to express the reflection fields by using the Green function, I adopt the concept
of virtual source (Figure 2.7): above the reflector, the reflection field δu (respectively
δλrefl) can be approximated by an upgoing field that is generated from a virtual source
located at the mirrored position S ′ (G′) of the real source at S (real receiver at G), with
regard to the reflector. Therefore, the four fields can be formulated as (for z < D)

u0(z, x;ω) =
W (ω)

4π|SA|
exp [i~s1 ·

−→
SA], (2.27)

δλ(z, x;ω) ≈ Z∆drefl(ω)

4π|G′A|
exp [i(−~g1) ·

−−→
G′A], (2.28)

and

δu(z, x;ω) ≈ ZW (ω)

4π|S ′A|
exp [i~s2 ·

−→
SA], (2.29)

λ0(z, x;ω) =
∆drefl(ω)

4π|GA|
exp [i(−~g2) ·

−→
GA], (2.30)

where, again, the reflection coefficient of the reflector is simplified by the ratio Z, and
~s1, ~s2, ~g1 and ~g2 denote the wavenumber vectors of the four fields, respectively. This is
a very important feature we add in RWI compared with FWI. Then, the RWI gradient
(2.21) can be written as

∇CRWI(z, x;ω) ≈ <
{
ZW (ω)∆d(ω)∗

16π2|SA||G′A|
exp [i~k1 ·

−−→
M1A]

}
(2.31)

+ <
{
ZW (ω)∆d(ω)∗

16π2|S ′A||GA|
exp [i~k2 ·

−−→
M2A]

}
(2.32)

where ~k1 = ~s1+ ~g1 and ~k2 = ~s2+ ~g2 denote the imaging wavenumber vectors derived from
the first and second terms of Expression (2.21). Points M1 and M2 are the intersection
~k1 and

−−→
SG′, ~k2 and

−−→
S ′G, respectively. (For sake of clarity, M1 and M2 are not depicted

in Figure 2.7. Please see Figure 2.4 for a reference.) The approximation is related to
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Reflector
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D

Figure 2.7: Sketch of wavenumber vectors ~si, ~gi and their sums ~ki (i = 1, 2, Equations
(2.27)-(2.24)). The coordinate system is built by the same manner in Figure 2.4. S
denotes the source position, S ′ the mirrored position of S with regard to the reflector, G
the receiver position and G′ the related mirrored position. Virtual sources are proposed
at S ′ and G′ for analytical expressions of the scattered fields δu and δλ, respectively.

the ignorance of the partial derivatives of forward modeling operators with respect to
model parameters, as I am interested in the geometrical configuration in this discussion.
Figure 2.8 illustrates the two exponential kernels of the gradient, superimposed by the
vector fields k1 and k2, respectively. Unlike the FWI gradient case (2.25), the aperture

angles associated to ~k1 and ~k2 are relatively large, resulting low wavenumber samplings
in deep zones.

I decompose ~k1 and ~k2 in the orthogonal coordinates to account for multiple source-
receiver couples:

~k1 = ~s1 + ~g1 =
ω

c0

(z, x+H)√
z2 + (x+H)2

+
ω

c0

(z − 2D, x−H)√
(z − 2D)2 + (x−H)2

, (2.33)

~k2 = ~s2 + ~g2 =
ω

c0

(z − 2D, x+H)√
(z − 2D)2 + (x+H)2

+
ω

c0

(z, x−H)√
z2 + (x−H)2

. (2.34)

As in Figure 2.6, I plot the sampled wavenumbers of vertical and horizontal directions
in Figure 2.9, from which I can infer that

a) The RWI gradient preferentially images zero-to-low kz, which is complementary to the
FWI gradient in terms of samplings. This issue will be detailed in the next paragraph;
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+

=

Figure 2.8: Illustration of the first exponential kernel (top left), second kernel (top
right) and their sum (bottom) of the RWI gradient (Equations (2.31) and (2.32)) for one

source-receiver coupe and one frequency, superimposed by the vector fields ~k1 and/or ~k2
deduced from Equations (2.33) and (2.34). The flat reflector is positioned at the bottom
of each panel. The kernels are formed by series of inclined ellipses. Their common focal
points are at the real source position and the virtual receiver position (first kernel), or
at the virtual source position and the real receiver position (second term). The total
sensitivity kernel is a superimposition of these two groups of ellipses, which are related
to the transmission regimes along the reflection path. This kernel gives much lower
wavenumber samplings than does FWI gradient at great depths (see Figure 2.10).

b) As for FWI, the sampling area of RWI is proportional to the considered frequency.
The difference is that for RWI the coverage of low wavenumbers is not enlarged by de-
creasing the frequency content; the high frequency provides the same low-wavenumber
content as the low frequency. Therefore, the benefit of using low frequencies is not
related to a wider range of wavenumbers, but a denser sampling of low wavenumbers;

c) For one frequency, increasing offset allows to sample higher kz, thus results in higher
resolution. Again, this is different from FWI for which larger offsets lead to lower
wavenumbers.

In the next section, these behaviors are partially verified by a simple numerical example.
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Figure 2.9: Diagram of sampled wavenumbers in the kz–kx axes. This diagram is plotted
in a similar way of Figure 2.6. Zero-to-low wavenumbers are sampled. Compared with
the low frequency, the high frequency (Red points) gives higher kz and kx samplings with
larger intervals (sparse sampling). Large offsets (Blue points) increase the bandwidth of
kz samplings, with the same interval of small offsets (Green points). The total sampled
area is bounded by the black dashed circles. The blank area inside this bound can be
filled in by using larger offsets and more distant source-receiver couples.
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Figure 2.10: Diagram of sampled wavenumbers by FWI (red points) and RWI (blue
points) gradients, respectively, separated by the blank area that is also known as the
scale gap in seismic imaging. The black dashed circles denote the boundary of the two
samplings that could be reached in the limit case (infinite long acquisitions).
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Figure 2.10 compares the wavenumber samplings respectively from FWI (Figure 2.6)
and RWI (Figure 2.9) for multiple offsets and one frequency. While FWI preferentially
samples in a narrow band of high kz, RWI preferentially samples zero-to-small kz com-
ponents of the subsurface. The two disjoint areas highlights the scale gap in terms of
kz samplings that is resulted from the limited length of the acquisition geometry (re-
mind Figure 1.2). With larger offsets/wider azimuth coverage, the gap can be narrowed,
and the two areas asymptotically reach the theoretical boundary depicted by the dashed
circles. A broad frequency band can also be used to fill this gap efficiently.

2.3.3 Numerical verification

I verify our former analysis by a simple experiment. The true velocity and density models
are shown in Figure 2.11. A ball-shape anomaly with a higher velocity value is present
in the velocity model, which is excluded in the homogeneous initial model (1000 m/s).
Because the box-car function corresponds to the sinc function in the Fourier domain,
the sharp boundary of the anomaly provides a broadband spectrum, from which I can
determine which wavenumbers are sampled by FWI and RWI.

The true density model comprises a flat interface to generate the reflected wave. I
take this model as the initial density model and keep it unchanged. Therefore, the misfit
function includes the residuals associated to the direct and reflected waves, and combines
the FWI misfit (2.8) and RWI misfit (2.20) in a single L2 norm:

C(m0) =
1

2
‖
(
ddircal(m0)− ddirobs

)︸ ︷︷ ︸
FWI

+
(
dreflcal (m0, δm)− dreflobs

)
︸ ︷︷ ︸

RWI

‖22, (2.35)

where m0 and δm denotes the velocity and density models, respectively (let us omit the
influence of δm to ddircal). Then, the associated gradient joints the FWI gradient (2.17)
and RWI gradient (2.21) as5

∇C(m0) = u0 ? λ
dir
0 + u0 ? λ

refl
0︸ ︷︷ ︸

FWI

+u0 ? δλ
refl + δu ? λrefl0︸ ︷︷ ︸

RWI

. (2.36)

I consider two offset ranges represented by the red line (large offsets) and blue line
(short offsets) in Figure 2.11, respectively. Four frequencies are simultaneously used:
[2, 4, 6, 10] Hz. The range of sampled wavenumbers can be assessed by analyzing
the gradient in the Fourier domain (Figure 2.12). I identify five fundamental features
(Table 2.2). Features 1–4 confirm the analysis in Figure 2.6 that FWI preferentially
images high kz and this imaging is proportional to the considered frequency. Comparing
Feature 5 with Feature 4, we see that RWI preferentially samples zero-to-small kz that is
complementary to the FWI high kz sampling, as pointed out in Figure 2.10. Here, we do
not see RWI samplings from other frequencies. I attribute this nearly-zero imprint to the

5Another equivalent phrasing is that the gradient (2.36) is the joint of the FWI gradient (2.18) in the

second iteration and RWI gradient (2.21) in the first iteration with shared terms u0 ? δλ
refl + δu ?λrefl0 .
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Figure 2.11: True velocity and density models. The initial velocity model excludes the
ball-shape anomaly. The model is discretized by Nx×Nz = 400×200 with a 5 m interval.
The sources and receivers are deployed on the model surface with a 50 m spacing. Red
line: 0–1200 m offsets. Blue line: 0–300 m offsets (deployed also on the surface).

weak energy of RWI terms compared with u0 ? λ
refl
0 (remind the amplitude comparison

in (2.19) that the RWI terms are around 10% of it).On the other hand, large offsets
help enlarge the respective sampling areas: lower kz is sampled by FWI (white arrows in
Figure 2.12) and relatively higher kz is sampled by RWI (note the higher amplitudes for
Feature 5 in the left panel comparing with the right one). In other words, by using large
offsets, the scale gap between FWI and RWI samplings is narrowed, and the intermediate
wavenumbers are more continuously sampled (remind the gap in Figure 2.10).

As a result, we can see a good reconstruction from large offsets in Figure 2.13. Higher
velocities are imaged at the correct position of the ball. The periodic shadows around
the ball are attributed to the sparse sampling of frequencies, the content of which is not
sufficient to cancel out the side slobes of the signals. If larger offsets and more frequencies
are used, these shadows should be further attenuated. On the contrary, the short-offset
result can be considered as the low-wavenumber component imaged by the RWI kernels
(the grey zones along the x = 1 km profile), superimposed by the high-wavenumber
perturbations imaged by the FWI kernels that are similar to those in the large-offset
result. Due to the narrow offset range, we lack more high wavenumbers. Therefore,
these shadows are more visible in the result (Figure 2.12). The ball is also not fully
recovered because intermediate wavenumbers are insufficiently sampled.

In the large-offset result, a high-velocity perturbation with a linear shape is observed
below the ball. It is a footprint of the migration isochrone (u0 ? λ

refl
0 term) that should

have been used to image the reflectivity in the density model. Such a leakage derives from
the possibility to explain the density-associated reflected waves by velocity perturbations,
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Figure 2.12: Spectra of gradients with large offsets (left) and short offsets (right). Five
fundamental features are identified. Features 1–4 are associated to FWI high wavenum-
ber samplings and Feature 5 is associated to RWI low wavenumber samplings. The scale
gap can be narrowed by using large offsets (white arrows).

Table 2.2: Five features identified in the gradient spectra for analysis

# Feature Sampling area Source of contribution Freq.

1 Outermost circle highest kz u0 ? λ
refl
0 (FWI) 10 Hz

2 Sub-outer circle higher kz u0 ? λ
refl
0 (FWI) 6 Hz

3 Middle circle middle kz u0 ? λ
refl
0 (FWI) 4 Hz

4 Innermost circle low kz u0 ? λ
refl
0 (FWI) 2 Hz

5 Red-filled oval low kx the two RWI terms 2 Hz

a trade-off between two parameters. Other trade-offs are also possible (e.g. velocity–
anisotropic parameters), and should be mitigated for reliable subsurface imaging. I shall
go back to this point in Section 2.5 and shall suggest a decoupling scheme in Chapter 3.

2.4 Discussion

According to the classification of Table 1.2, FWI and RWI belong to data-domain wave-
form inversion methods. Though their target functions are different, both seek the nearby
minimum by computing the gradients without building extended images. Their key dif-
ference, however, resides in the scale separation assumption. In FWI, no separation is
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Figure 2.13: Results by large (left) and small (right) offset data. Four frequencies are
simultaneously used: [2, 4, 6, 10] Hz. The gradient is smoothed to avoid too rapid
changes. Eleven iterations are implemented on the long-offset data and nine iterations on
the short-offset data, both reduced the associated misfit function by 25%. I superimpose
on the results the vertical profiles of the true velocity model (blue curves) and the result
(red curves) at x = 1 km position, and the horizontal profiles of the true velocity model
(cyan curves) and the result (yellow curves) at 0.5 km depth, respectively. The samplings
of intermediate wavenumbers from large offsets translates to an improved reconstruction
of the ball anomaly. See text for details.

assumed. Although low wavenumbers are often missing at depths due to insufficient
coverage, there is no intrinsic limitation to recover the full wavenumber spectrum. In
contrast, RWI assumes the separation between low and high wavenumbers, as repre-
sented by the background velocity model m0 and reflectivity model δm, respectively. A
cycle workflow that alternates true-amplitude migration and RWI can be used to simul-
taneously reconstruct m0 and δm. This is considered to be more robust than classical
FWI in two aspects:

� Mitigation of cycle skipping. The ambiguity of reflector depth and background
velocity actually reflects the ill-posedness of the problem: we want to resolve two
quantities from mainly one data attribute (i.e. the traveltime). Using longer offsets
help resolve the ambiguity but the problem becomes more nonlinear. In addition,
the L2 norm defined misfit function is too sensitive to the waveform, such that many
local minima are generated. On the other hand, by scale separation, RWI actually
only solve for velocity from the traveltime, making the problem better posed. The
remaining parameter, i.e. the depth is allowed to be re-defined such that the near-
offset data are kept matched after velocity updates, producing fewer local minima
than FWI. Conversely, this match can stabilize the data fitting procedure at longer
offsets if we incorporate them in later iterations. Note that, since the migration
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isochrone has been filtered out, fitting near-offset data does not generate reflectivity
in the velocity model, unlike FWI.

� Low wavenumber samplings at depths. Because of the ambiguity mentioned above,
FWI mainly relies on diving waves to image low wavenumbers, at least in the early
stage of iteration. However, the diving wave is well known to have the limitation on
depth penetration, therefore may not sample deeper targets. Using lower frequen-
cies is sometimes ineffective as it is always a question of noise. As the ambiguity
is mitigated by RWI, we can enjoy the low-wavenumber information carried by the
reflected waves. The way that RWI image these low wavenumbers is similar to
the ideology of reflection tomography in the data domain, but as the waveform is
involved RWI can provide higher resolution. In addition, as no extended images
are built, it requires less computing resources than MVA methods.

In practice, FWI also use reflected waves to recover deep targets, assuming the
ambiguity is somehow under control. As shown in Section 2.2, the use of reflected
waves generates reflectivity images in the velocity model, which can produce in
the second iteration the two scattering quantities δu and δλrefl giving RWI-like
sensitivity kernels. This is the case of the misfit function (2.35) and gradient ex-
pression (2.36). In other words, FWI includes the RWI functionality that samples
low wavenumbers at depths. However, I need to emphasize that, because the depth
of reflectors tend to be unchanged through FWI iterations, as discussed in Section
2.2, the cycle skipping problem or ambiguity still exists, and therefore the recon-
structions may not be reliable at depth. Therefore, the main advantage of RWI
over FWI in terms of reflection data processing is related to the enhancement of
low wavenumber samplings at the early stage of the iteration, reducing the number
of local minima as many as possible.

The last point to discuss is related to the use of frequency. Like FWI, RWI would
need lower frequencies to avoid potential cycle skipping at long offsets, and enjoy faster
convergence rate and higher resolution from higher frequencies. This is same as the
multiscale strategy proposed by Bunks et al. (1995). However, this does not mean that
we could expect more low wavenumber reconstructions from low frequencies. As shown
in Section 2.3, high frequencies are able to provide the same content of low wavenumber
samplings as low frequencies. As soon as cycle skipping is avoided, we can start inversion
from higher frequencies.

In the cycle workflow, one may consider to use higher frequency for true-amplitude
migration and lower frequency for RWI, which helps satisfy the scale separation assump-
tion. However, experiences have suggested use a same frequency band for both processes.
This is mainly because if two bands are respectively used, the reflection coefficients in-
ferred from the high-frequency reflectivity may not be sufficiently accurate to reproduce
the low-frequency reflection waveform for RWI; the same frequency band ensures that
the waveform residuals at longer offsets are totally attributed to velocity errors, in the
frame of acoustic assumption.
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2.5 Summary

In this chapter, I review essential ingredients of FWI and RWI, particularly in the case of
surface acquisitions. The ambiguity derived from reflection data is often inappropriately
handled in FWI, leading to cycle skipping problems and erroneous velocity models. In
contrast, the scale separation assumed in RWI allows the adaptation of reflector depths,
which makes perfect match at short offsets and reduces the number of local minima for the
misfit function. As a result, RWI is more robust than FWI. Classical inversion schemes
that work for FWI, such as traveltime-oriented misfit functions, multiscale inversion,
offset-driven strategies etc., can also be used for RWI for global convergence.

The analysis on resolution power is carried out in the frame of generalized diffraction
tomography. The orthogonal decomposition of the imaging wavenumber vectors allows
to further assess the wavenumber samplings respectively in the vertical and horizontal
directions. While both FWI and RWI have samplings of all horizontal wavenumbers, a
scale gap of vertical wavenumber samplings is observed for FWI and RWI: FWI preferen-
tially samples high wavenumbers whereas RWI preferentially samples low wavenumbers.
This gap can be filled in by using larger acquisition coverage; in the limit case this gap
would disappear. However, the distinction between FWI and RWI samplings has been
lined out in this theoretical study, and also verified by a numerical example. Because
of this, at the depths beyond diving-wave penetration, FWI results in small-scale per-
turbations (large-scale updates are case-dependent and less reliable) whereas RWI gives
rise to large-scale reconstructions.

The frequency bandwidth plays different roles in FWI and RWI. While FWI needs
low frequencies for low wavenumber samplings, RWI can extract the low wavenumbers
from high frequency data as long as cycle skipping problem is avoided. The benefit of
low frequencies is related to the dense samplings of low wavenumbers.

Although the conclusions are deduced from simple cases, they can be generalized to
more sophisticated models and serve as guidelines for real data applications. Here, for a
preparation of the next chapter, I put forward the discussion related to two aspects:

� Subsurface parameterization. The influence of the parameterization has been omit-
ted in Equations (2.24), (2.31) and (2.32). Specifically, they do not change the
wavenumber samplings provided by the imaging wavenumber vectors, but affects
the amplitudes of the sensitivity kernels. Depending on the parameterization, a
diffractor may generate stronger transmitted waves than reflected waves (or the
opposite situation), favoring the illumination coming from large aperture angles
(∼ 180◦) to small ones (∼ 0◦). These angle-dependent illuminations, in turn, act
as a weighting function on the sensitivity kernels (damping high wavenumbers) and
thus results in low wavenumber reconstruction of that diffractor. This wavenumber-
related property can be considered to further meet the scale separation assumption.
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� Using diving waves in RWI. From Figure 2.9 or 2.10, I concluded that RWI sam-
ples low kz. However, the bandwidth of this sampling reduces as kx approaches
to zero. This reflects that RWI misses the low kz information carried by the div-
ing waves, and this shortage cannot be remedied by using only short-spread re-
flected waves. Therefore, diving waves should be considered. However, this is not
straightforward, as I still want to preserve the scale separation property of RWI.
For example, Equation (2.35) provides a brute-force way that directly inserts diving
wave-related residuals into the misfit function, but the resulting gradient formula-
tion (2.36) presents the migration isochrone term which leads to high-wavenumber
velocity updates. The mitigation of this contribution may be realized by choosing
a particular parameterization, as mentioned above, but this may be less effective
as expected due to its high amplitude. Therefore, I should follow an alternative
way which enables a natural suppressing of this term, and the diving way can also
be included through a unified formulation. This new methodology, named Joint
Full Waveform Inversion, is the topic of the next chapter.
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Chapter 3

Joint Full Waveform Inversion

The world under heaven, after a long period of division, tends to unite; after a
long period of union, tends to divide. This has been so since antiquity.

— Guanzhong Luo, Romance of Three Kingdoms

In the previous chapter a simple example is used to illustrate the cycle skipping
problem of FWI and how it is mitigated by RWI assuming scale separation. Moreover, I
review the wavenumber samplings provided by FWI and RWI. In shallow zones, we often
enjoy the abundance of transmitted and reflected waves for broadband reconstructions
whereas in deep zones, the limitation of depth penetration of diving waves leads to high-
wavenumber samplings only. In contrast, RWI emphasizes the transmission regimes of
reflected waves to recover low wavenumbers at depths. In this chapter, I shall prove
this point more rigorously by analyzing the gradient formulations, and based on this I
shall propose an extended RWI approach, namely Joint FWI, which also includes diving
waves for more complete samplings of low wavenumbers. How is it formulated, such that
the associated gradient does not include the migration isochrones? Which subsurface
parameterization should be used, such that we can naturally separate large scales from
small ones? In this chapter, I shall answer these two questions and provide a synthetic
example highlighting the advantages of JFWI over RWI and FWI.
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Abstract

Full waveform inversion (FWI) aims to reconstruct high-resolution subsurface models
from the full wavefield which includes diving waves, post-critical reflections and short-
spread reflections. Most successful applications of FWI are driven by the information
carried by diving waves and post-critical reflections to build the long-to-intermediate
wavelengths of the velocity structure. Alternative approaches, referred to as reflection
waveform inversion, have been recently revisited to retrieve these long-to-intermediate
wavelengths from short-spread reflections by using some prior knowledge of the reflec-
tivity and a scale separation between the velocity macromodel and the reflectivity. This
study presents a unified formalism of FWI, named as Joint FWI, whose aim is to ef-
ficiently combine the diving and reflected waves for velocity model building. The two
key ingredients of Joint FWI are, on the data side, the explicit separation between the
short-spread reflections and the wide-angle arrivals and, on the model side, the scale
separation between the velocity macromodel and the short-scale impedance model. The
velocity model and the impedance model are updated in an alternate way by Joint FWI
and waveform inversion of the reflection data (least-squares migration), respectively.
Starting from a crude velocity model, Joint FWI is applied to the streamer seismic data
computed in the synthetic Valhall model. While the conventional FWI is stuck into a
local minimum due to cycle skipping, Joint FWI succeeds in building a reliable velocity
macromodel. Compared with reflection waveform inversion, the use of diving waves in
Joint FWI improves the reconstruction of shallow velocities, which translates into an
improved imaging at deeper depths. The smooth velocity model built by Joint FWI can
be subsequently used as a reliable initial model for conventional FWI to increase the
high-wavenumber content of the velocity model.

3.1 Introduction

With the emergence of long-offset wide-azimuth acquisitions and broadband sources, full
waveform inversion (FWI) has been recognized as an efficient tool for velocity model
building (Virieux et Operto (2009) for a review). In these long-offset experiments, FWI
is mainly driven by the information carried by diving waves and post-critical reflections
to build the long-to-intermediate wavelengths of the velocity structure. The connection
between the acquisition geometry and the spatial resolution of FWI has been clearly
established in the theoretical framework of the generalized diffraction tomography (e.g.
Devaney, 1982; Miller et al., 1987). It has been shown that the wavenumber component k,

54



3.1 Introduction

Source Receiver

k

k

k
S

R
θ

Figure 3.1: Spatial resolution of diffraction tomography and its connection with acquisi-
tion geometry. The wavenumber vectors associated with the rays connecting the source
and the receiver to the diffractor are denoted by kS and kR, respectively. The scattering
angle is denoted by θ. The wavenumber vector k = kS + kR is the spectral component
mapped at the diffractor point by the source-receiver pair during FWI.

injected at a diffractor point in the subsurface is related to the local wavelength λ and
the scattering angle θ by the relationship

k =
2

λ
cos

(
θ

2

)
n, (3.1)

where n is the normalization of the vector k (Figure 3.1). This relationship shows
that the wide-scattering angles associated with diving waves and post-critical reflections
contribute low-to-intermediate wavenumber updates to the subsurface. Conversely, the
small scattering angles associated with short-spread reflections contribute high wavenum-
ber updates to the subsurface. One key issue in the classical formulation of FWI (for
short, referred to as FWI in the following) is that the penetration depths of diving waves
are often insufficient to reach the deepest targeted structures, even from modern wide-
azimuth surveys. At these depths, FWI behaves as a least-squares migration of the
short-spread reflections rather than as a tool for velocity model building, and would fail
to update the low-to-intermediate wavenumbers of deep targets.

Alternatively, migration-based velocity analysis has been developed in the image
domain to build the velocity macromodel by using the reflection data (Diaz et al., 2013;
Liu et al., 2013; Allemand et Lambaré, 2014). These approaches focus on the flattening
of the common image gathers generated by migration (Symes et Carazzone, 1991; Sava
et Biondi, 2004). Extended-domain approaches have also been proposed, which attempt
to minimize the energy left in the non-physical dimensions added to the model space
(Sava et Fomel, 2006; Yang et Sava, 2011; Almomin et Biondi, 2012; Biondi et Almomin,
2012; Sun et Symes, 2012; Lameloise et al., 2015). The main issue of these approaches
is their high computational cost that is made, on the one hand, by the migration step
performed during each velocity update and, on the other hand, by the extended-domain
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imaging condition. Although 2D applications have shown promising results, the cost of
these approaches seems to prevent a direct extension to 3D cases, in particular when the
forward modeling is performed with the two-way wave equation.

Inspired by the pioneering work of Chavent et al. (1994), Chavent (1996) and Clé-
ment et al. (2001) on migration-based traveltime inversion (MBTT), recent data-domain
FWI strategies, referred to as reflection waveform inversion (RWI) in this paper, have
been proposed as a new alternative to build the velocity macromodel from the reflec-
tion data (e.g., Xu et al., 2012; Ma et Hale, 2013; Brossier et al., 2015). As most of
the seismic reflection processing workflows, RWI relies on the explicit scale separation
between a smooth velocity macromodel and a rough reflectivity. This scale separation
results from the gap between wavenumber contents of the velocity macromodel built by
reflection tomography or migration velocity analysis and the reflectivity built by migra-
tion (Claerbout, 1985; Jannane et al., 1989; Mora, 1989; Wu et Toksöz, 1987). Such a
separation leads to a two-step imaging workflow in which one repeatedly alternates the
velocity model building assuming a known reflectivity and the reflectivity update by mi-
gration using the previous velocity update as the background model. More sophisticated
approaches can be viewed to mitigate the computational burden of this workflow, for
example by building the reflectivity in the pseudo-time domain (Plessix, 2013) to avoid
performing migration at each iteration of the velocity update (Brossier et al., 2015; Wang
et al., 2015). In RWI, the governing idea behind the velocity model building task is to
assume the reflectivity is known in priori, by which the reflected waves are predicted and
the residuals are minimized for the velocity macromodel update. Under this assumption,
high-wavenumber contributions such as migration isochrones are not present in the sen-
sitivity kernels of RWI. Moreover, this prior reflectivity is used by RWI as the secondary
sources to highlight in the sensitivity kernel the contribution of the transmission paths
followed by the reflected waves. Indeed, the wide-scattering angles associated with these
transmission regimes are amenable to update the low-to-intermediate wavenumbers of
the subsurface located between the reflectors and the surface (Equation 3.1).

Brute-force approaches might be performed without explicit scale separation in the
FWI formalism (e.g. the one proposed by Equation (2.35) in Section 2.3.3). They
consist of applying the conventional FWI to build reflectivity during early iterations by
a migration-like processing (e.g. the associated gradient expression (2.36) in Section
2.3.3) before updating the low-to-intermediate wavenumbers of the subsurface from the
transmission paths of the reflected waves (AlTheyab et al., 2013). These approaches
could be further developed for the velocity macromodel building or for the reflectivity
imaging by a wavenumber-driven filtering of the gradient of the FWI misfit function
(Alkhalifah et Wu, 2014; Alkhalifah, 2014; Wu et Alkhalifah, 2014; Alkhalifah, 2015).
Note that RWI can be implemented either in the time domain or in the frequency domain
as shown by Wang et al. (2013c). Other data-domain approaches for velocity model
building rely on a wavefield decomposition into upgoing and downgoing waves to separate
the contribution of forward-scattering and backward-scattering in the sensitivity kernel
of waveform inversion (Wang et al., 2013a; Tang et al., 2013).

One key limitation of RWI, that will be overcome in this study, is the exclusive re-
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liance on the use of reflected waves, discarding the low-wavenumber information on the
shallow targets that are carried by the diving waves. In this study, we propose a new
FWI method, referred to as joint full waveform inversion (JFWI), which integrates the
ingredients of the conventional FWI and RWI into a unified formalism. Like RWI, JFWI
still rests on the scale separation between the velocity macromodel and the reflectivity.
The added value of JFWI compared with RWI, is the combination of the diving waves
and the reflected waves such that the low-wavenumber information carried by these two
wave modes, as described above, are simultaneously used in the velocity model building
task. In JFWI, we regenerate the reflectivity by conventional FWI using only short-
offset reflected waves (i.e., non-linear least-squares migration) at each iteration of the
scale-separation workflow. A key feature of JFWI is to require the explicit separation of
the early arriving phases (diving waves and post-critical reflections) and the pre-critical
reflections in the data. Our approach shares some similarities with Wang et al. (2015),
who also use refracted and reflected waves to update the low-to-intermediate wavenum-
bers of the subsurface. The main differences is that our workflow relies on the waveform-
difference misfit function to update the velocity macromodel and the reflectivity, whereas
the approach of Wang et al. (2015) relies on the cross-correlation based misfit function,
the so-called wave-equation tomography (Luo et Schuster, 1991), to perform the velocity
macromodel update. Although our approach relies on the explicit separation between
reflected waved and refracted waves, it does not require assigning a time window to iso-
late phases as it does in the workflow of Wang et al. (2015). This phase identification
might be quite cumbersome for the reflection recordings in the complex environments.
In addition, we use a velocity-impedance parameterization to alternate the update of
the velocity macromodel and the reflectivity, unlike Wang et al. (2015) who choose the
velocity-density parameterization.

This paper is organized as follows. First, we shall review the intrinsic limitation of
FWI and RWI as well as the benefit that can be expected from JFWI with a simple
synthetic model. Second, we shall discuss about the choice of a suitable subsurface
parameterization to perform the velocity model and reflectivity updates, such that the
scale separation between these two models is satisfied. This naturally directs us toward
a subsurface parameterization in terms of wavespeed (VP ) and impedance (IP ). Third,
we shall review the ingredients of the JFWI workflow that alternates the updates of VP
and IP before showing its application to the synthetic Valhall case. The experimental
setup of this case study is designed in a way such that the diving waves only sample the
shallow part of the subsurface. We shall firstly show how the use of diving waves in JFWI
improves the reconstruction of the shallow velocities compared with RWI, and how this
shallow improvement translates into an improved imaging at greater depths. Then, we
shall show that the smooth velocity model built by JFWI can be subsequently used as
a reliable initial model for conventional FWI, resulting a broadband velocity model that
can be taken for the purpose of structural interpretation.
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3.2 Review of FWI and RWI

FWI is a data-fitting procedure during which the subsurface model m is iteratively
updated in order to match the synthetic data d = d(m) with the recorded data dobs. The
misfit function is conventionally defined as the least-squares norm of the data residuals
weighted by a linear operator W , that is

CFWI(m) =
1

2
‖W (dobs − d(m))‖22 , (3.2)

with an implicit summation over sources, receivers and time. As the wavefield does
not linearly depend on the subsurface parameters, this optimization problem is highly
non-linear. Many local optimization approaches have been proposed to mitigate this
non-linearity and make the misfit function as convex as possible: they might differ in
the misfit definition and/or in the domain within which the minimization is performed,
but all of them aim to update the model by a linear-search method (Shin et Cha, 2008;
van Leeuwen et Mulder, 2010; Luo et Sava, 2011; van Leeuwen et Herrmann, 2013). The
local descent direction relies on the gradient of the misfit function with respect to the
model parameters, which can be efficiently computed by the adjoint-state method (for a
review see Plessix (2006b)). For one source-receiver pair, the gradient can be written in
a compact form as

∇CFWI = u0 ? λ0, (3.3)

where the symbols u0 = u0(m) and λ0 = λ0(m) denote the incident wavefield and the
back-propagated adjoint wavefield, respectively. For multiple sources and receivers, the
gradient is a summation of u0 ? λ0 over all sources and receivers. The adjoint wavefield
is computed with a source term that gathers the data residuals associated with all kinds
of waves (diving waves, reflected waves, scattered waves etc.). The gradient of the
misfit function is computed by a zero-lag cross-correlation between the incident and
adjoint fields. This correlation operation, denoted by a single star (?) in Equation (3.3),
embeds, for the sake of compactness, the partial derivative of the forward modeling
operator with respect to model parameters (the so-called diffraction pattern) that is
cumbersome to be expressed in the time domain. Hiding this kind of complexity in the
star symbol will not obscure the governing idea underlying the following derivation of
the misfit function gradients. All details about the incident and adjoint fields as well as
the gradient expressions are provided in the Appendix A in the framework of frequency-
domain FWI allowing for more compact notations. Note that all our implementations
are performed in the time domain.

We first illustrate the FWI gradient (Equation 3.3) in the case of a homogeneous
subsurface model in which a flat reflector is embedded (Figure 3.2a). The background
model is homogeneous with a wrong velocity and does not contain the reflector, so
that the source of the adjoint equation contains the residuals of the direct wave and
reflected wave (Figure 3.2b). These residuals give rise to two components in the adjoint
field denoted by λd0 and λr0, respectively. Correlations of the incident wavefield u with
these two components of the adjoint wavefield respectively build a wide first Fresnel
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zone and a secondary Fresnel zone (the so-called migration isochrone, Figure 3.3a), over
which the direct-wave residual and the reflection residual are respectively back-projected
(Woodward, 1992). The width of these isophase surfaces gives the spatial resolution with
which a point diffractor located in these surfaces is imaged by the current source-receiver
pair, according to Equation (3.1). A seismic acquisition generally provides the samplings
of the shallow subsurface with both diving and reflected waves, allowing for a broadband
imaging of the shallow targets. In contrast, only short-spread reflections sample the
subsurface at greater depths, i.e. beyond the penetration depths of the diving waves,
leading to a high-wavenumber imaging of deep targets.

RWI focuses on the reflection data to build the subsurface model. The method relies
on the prior knowledge of the reflectivity to predict the reflected waves. The misfit
function is given by

CRWI(m0) =
1

2

∥∥∥W r
(
dreflobs − d

refl
pred(m0, δm)

)∥∥∥2
2
, (3.4)

where the symbols dreflobs and dreflpred denote the observed and predicted reflected waves,
respectively, weighted by the linear operator W r. The low-wavenumber background
m0 and the high-wavenumber reflectivity δm are separated in scales, and RWI seeks to
reconstruct the background m0 only. Following Brossier et al. (2015), the gradient with
respect to the background model is (for the counterpart in the frequency domain, see
Appendix A),

∇CRWI ≈ u0 ? δλr + δu ? λr0 + δu ? δλr, (3.5)

where the symbols u0 = u0(m0) and δu = δu(m0, δm) denote the incident wavefield
computed in m0 and the wavefield scattered by δm, respectively. Similarly, the adjoint
wavefield can be decomposed as a component λr0 propagating in the background model
and a scattered component δλr. The scattered wavefield includes forward and backward
scatterings (transmissions versus reflections) of any order. Note that the three correlation
operations in Equation (3.5) embed two different diffraction pattern operators computed
in m0 and m0 + δm, respectively. The detailed expressions are provided in Appendix A.

The RWI gradient corresponding to the one-reflector synthetic model is shown in
Figure 3.3(b). The source of the adjoint-state equation contains only the residual of the
reflected wave (Figure 3.2c). The first term u0 ? δλ

r represents the correlation between
the down-going field u0 and the up-going scattered field δλr (ray path indicated by yel-
low arrows). This correlation builds a wide first Fresnel zone connecting the reflector
and the source position. Similarly, the second term δu ? λr0 gives rise to a mirror Fresnel
zone generated by the up-going scattered field δu and the down-going field λr0 (ray path
indicated by cyan arrows). Known as “rabbit ears”, this pair of Fresnel zones allow for
a long-wavelength reconstruction of the deep targets where FWI encounters difficulties.
The third term represents higher-order migration isochrones. Due to the weak ampli-
tude of the scattered fields δu and δλr, these higher-order isochrones are generally of
small amplitudes and thus negligible. In Figure 3.3(b), two mirror high-order migration
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Figure 3.2: Illustration of the initial models and the data residuals used in different FWI
approaches. (a) True velocity model including a reflector at 1 km depth. One source and
receiver couple is indicated. (b) Homogeneous initial model (m) without reflector and
erroneous background velocity for FWI. Only the direct wave (green arrow) is generated.
Residuals include the direct wave and the reflected wave residuals. (c) Homogeneous
background (m0) and prior reflectivity (δm) for RWI. Only the reflected wave (red arrow)
is modeled. (d) Initial model with prior reflector for FWI. Both direct and reflected waves
are modeled. (e) Homogeneous background (m0) and prior reflectivity (δm) for JFWI.
Compared with RWI (c), diving waves are modeled; compared with FWI (d), direct and
reflected wave residuals are explicitly separated (see text for details).

isochrones are shown near the reflector position. They and are built, on the one hand
by the zero-lag correlation between the incident and adjoint fields transmitted across the
reflector and, on the other hand by the zero-lag correlation between the incident and
adjoint fields reflected from the reflector. The reader is referred to Appendix B for a
more detailed description of these higher-order contributions.

The limitation of RWI is the reliance of the exclusive use of the reflected waves,
discarding the low-wavenumber information carried by the diving waves (i.e. u0?λ

d
0 term,

see analysis of conventional FWI gradient). One may simply insert the diving waves into
the RWI misfit function, augmenting the reflection data residuals in Equation (3.4) with
the diving wave residuals (i.e. dobs − ddivpred(m0) − dreflpred(m0, δm)). This is equivalent to
performing FWI with a prior reflectivity in the initial model (Figure 3.2d). Although all
low-wavenumber contributions are gathered in the gradient (Figure 3.3c), the dominant
imprint of the high-wavenumber information carried by the migration of the reflection
residuals (i.e. u0 ? λ

r
0, Figure 3.3(c), red arrows) makes challenging the extraction of

the low-wavenumber information carried by the first Fresnel zones associated with RWI
(Figure 3.3b). This highlights the necessity to force a scale separation between the
low-wavenumber and high-wavenumber components in the FWI formalism, and this is
the aim of the following section where we propose an alternative FWI formulation that
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Figure 3.3: Illustration of gradients generated by different FWI approaches. Solid
and dashed arrows denote the ray paths respectively followed by the incident and ad-
joint fields that interfere constructively. (a) FWI gradient combines a low-wavenumber
first Fresnel zone (represented by u0 ? λ

d
0) between source and receiver, and a high-

wavenumber migration isochrone (represented by u0 ? δλ
r). Note that the first Fresnel

zone has a limited penetration in depth. (b) RWI gradient shows two wide first Fresnel
zones centered on the two-way paths followed by the reflected wave between the reflector
(behaving as a secondary source) and the source/receiver positions. (c) FWI gradient,
with a prior reflectivity in the initial model, combines FWI (a) and RWI (b) gradi-
ents. Low-wavenumber and high-wavenumber information enter into the gradient, hence
breaking down the scale-separation prerequisite. (d) JFWI gradient combines the first
Fresnel zone generated by direct-wave residuals and RWI gradient. Compared with (c)
the migration isochrone was removed to honor the scale separation. Online animations:
https://drive.google.com/open?id=0Bx0JCm2KZyueUlJqMFBNYkNWWWM

combines the diving waves and the reflected waves for the velocity macromodel building
without generating the high-wavenumber isochrones.

3.3 Methodology

We shall first review the main idea behind JFWI that will allows us to mitigate the
high-wavenumber contributions during the velocity model building before discussing the
implementation of the JFWI gradient.

3.3.1 Formulation

The governing idea of JFWI is to explicitly separate the contributions of the diving and
reflected waves (Figure 3.2e), which means that the misfit function is decomposed as the
sum of two terms,

CJFWI(m0) =
1

2

∥∥W d
(
ddivobs − ddivpred(m0)

)∥∥2
2

+
1

2

∥∥∥W r
(
dreflobs − d

refl
pred(m0, δm)

)∥∥∥2
2
, (3.6)

where the symbols ddivobs and ddivpred(m0) denote the observed and predicted diving waves,

and W d and W r denote the weighting operator that are applied to the diving and re-
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flected waves, respectively. The role of the two weighting operators is to balance the
respective contributions of diving and reflected residuals in the misfit function, consid-
ering that reflected wavefields have generally weaker amplitudes than the diving waves.
The operator W r can also embed a time-dependent weighting of reflection residuals to
enhance the contribution of late reflected arrivals at the expense of early ones in the
misfit function. This inversion preconditioning can contribute to balance the amplitudes
of the shallow and deep perturbations in the gradient of the misfit function, and hence
improve the convergence rate. Other weightings can also be added in the W d and W r op-
erators such as offset-dependent weighting, which can be useful to design layer-stripping
strategies. These issues will be illustrated in the synthetic example presented in the
sequel of this study.

Both the observed data and predicted data should be decomposed into the diving
part and the reflection part during the data preprocessing stage. Many preprocessing
tools, commonly used to preprocess the reflection data before migration, can be applied
here, such as the dynamic time windowing or F-K filtering. While the observed data
are preprocessed one and for all before the inversion starts, the decomposition of the
predicted data, however, has to be performed at each iteration of JFWI. This might
be cumbersome if the decomposition should be refined according to the velocity model
update. For the synthetic example shown in the following of this study, we did not need
to perform this refinement: we applied to the modeled data, at each JFWI iteration, the
same decomposition rule based on the offset-dependent time window as is applied to the
recorded data. We could afford to keep the same windowing law at each JFWI iteration
because the initial model for JFWI is already accurate enough to predict the first-arrival
traveltimes within half the dominant period. If the separation between the diving waves
and the reflected waves is awkward, a systematic separation procedure would consist in
performing two forward modelings, one in m0 and one in m0 + δm. The first simulation
provides the diving wavefield, while the subtraction between the two simulated wavefields
provides the reflection wavefield.

The gradient of the misfit function with respect to the background model m0 is given
by (for the counterpart in the frequency domain see Appendix A)

∇CJFWI ≈ u0 ? λd0 + u0 ? δλr + δu ? λr0 + δu ? δλr, (3.7)

where the symbols λd0 and λr0 denote the background components of the adjoint field
generated by the diving-wave residuals and the reflection residuals, and δλr denotes
the scattered component of the adjoint wavefield generated by the reflection residuals,
respectively. The first term in Equation (3.7) builds the first Fresnel zone associated
with the diving waves, while the second and third terms are those generated during
RWI. The key point is that the gradient in Equation (3.7) does not include the u0 ? λ

r
0

term associated with the high-wavenumber migration isochrone (Figure 3.3d).

The last three terms in Equation (3.7) encapsulate all of the high-order scattering
propagation. Among them, higher-order migration isochrones can be generated and
hence, inject undesired high-wavenumber components into the gradient. A two-reflector
model, in which internal multiples are generated, is used to illustrate the imprint of these
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Figure 3.4: Two-reflector model and the corresponding JFWI gradients. (a) Two-
reflector model to generate multi-scattered fields. (b) JFWI gradient for the VP–ρ param-
eterization. Higher-order isochrones are produced due to constructive interference of the
multi-scattered fields (Appendix B for a detailed review of all of these isochrones). (c)
Same as (b) except that the VP gradient was built for the VP–IP parameterization. The
low-wavenumber components of the gradient are kept unchanged, while the undesired
high-wavenumber components are filtered out. Online animation for gradient with VP–ρ
parameterization: https://drive.google.com/open?id=0Bx0JCm2KZyueQTc1dUhFVE1SQWc

high-order migration isochrones on the gradient (Figures 3.4a,b). A detailed review of the
different high-order contributions is provided in Appendix B. Due to their inconsistent
spatial locations, most of these high-order migration isochrones interfere with each other
in a destructive way when the contributions from multiple shot gathers are stacked, and
thus the gradient tends to be free from these high-wavenumber components. Moreover,
in the next section, we shall show how to further reduce their footprint by choosing a
proper subsurface parameterization for JFWI.

3.3.2 Mitigation of high-order isochrones by choosing suitable
subsurface parameterization

In most acoustic FWI approaches, the subsurface is parameterized by the velocity (VP )
and the density (ρ) (e.g., Wang et al., 2015). The diffraction patterns associated with
these parameters are shown in Figure 3.5(a) and (b), respectively. They show two wave-
fields scattered by a single VP and ρ point perturbation in a homogeneous background.
These wavefields represent the partial derivatives of the incident wavefield with respect
to the model parameters that undergo a perturbation. Zero-lag correlations of this kind
of partial derivative wavefields at the receiver positions with the data residuals form the
FWI gradients. The amplitude variation of the partial derivative wavefield with the scat-
tering angle θ (i.e., the diffraction pattern) controls the effective range of scattering angles
that will confer the spatial resolution to the FWI gradient for one parameter class (see
Operto et al. (2013) for a recent tutorial on multi-parameter FWI). The wavefield scat-
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Figure 3.5: Diffraction patterns of VP–ρ (a) and VP–IP (b) parameterizations. Single
diffractors are located in the center of the homogeneous background. A source at the
vertex of the diffractor generates the scattered field, whose amplitude variation with the
scattering angle is representative of the diffraction pattern of the parameter. Note how
the diffraction pattern of VP changes depending on the other parameter involved in the
parameterization (ρ versus IP ). See text for details.

tered by the VP diffractor shows an isotropic radiation pattern, conferring a broadband
wavenumber content to the VP gradient. On the other hand, the wavefield scattered
by the ρ diffractor has significant amplitudes at small-to-intermediate θ, conferring a
narrower (high) wavenumber content to the ρ gradient. This VP–ρ parameterization is
a natural choice for FWI to reconstruct a broadband VP model, keeping in mind that
cross-talks or leakage between VP and ρ are necessarily present in the high-wavenumber
part of the VP and ρ gradients. A careful accounting for the Hessian should help to
remove this leakage in the FWI subsurface models.

In contrast, the VP–IP parameterization leads to a natural scale separation between
the two parameter classes. The corresponding diffraction patterns are shown in Figures
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3.5(c) and (d). The wavefield scattered by the VP diffractor has significant amplitudes for
large θ, leading to a VP gradient with a low-wavenumber content. Conversely, the wave-
field scattered by the IP diffractor has significant amplitudes for small θ, leading to an IP
gradient with a high-wavenumber content. Compared with the VP–ρ parameterization,
the VP–IP parameterization is more suitable to satisfy the scale-separation condition
underlying JFWI, although it will prevent the reconstruction of the high wavenumbers
in the VP model.

According to this diffraction-pattern analysis, we choose the VP–IP parameterization
to perform JFWI, where the low-wavenumber part of the subsurface m0 is parameterized
by VP and the high-wavenumber part δm is parameterized by IP (Equation 3.6). The
effect of the subsurface parameterization on the JFWI gradient is illustrated in Figure
3.4(c) by the effective attenuation of the high-order isochrones when the VP–IP param-
eterization is used. (Another advantage of the VP–IP parameterization over the VP– ρ
parameterization is described in Snieder et al. (1989), their figures 2 and 3.)

3.3.3 Implemention

In order to perform a computationally efficient implementation of JFWI, we rewrite
Equation (3.7) in a more compact form by regrouping scattered and background wave-
fields, which is

∇CJFWI = u0 ? λ
r
0 + δu ? λr0 + u0 ? δλ

r + δu ? δλr + u0 ? λ
d
0 − u0 ? λr0 (3.8)

= ur ? λr︸ ︷︷ ︸
G1

+u0 ? (λd0 − λr0)︸ ︷︷ ︸
G2

(3.9)

where we have (re-)introduced the total reflection field ur = ur0 + δur and the total
reflection adjoint wavefield λr = λr0 + δλr. Note that Equation (3.8) is a true identity
even though we have concealed the partial derivatives of the modeling operator inside the
symbol ?. Strict demonstration is provided by the developments starting from Equation
(A.10) to Equation (A.14) in Appendix A.

This alternative expression of the gradient leads to a workflow that sequentially com-
putes two quantities G1 and G2 (Algorithm 3.1). The quantity represented by G1 is
computed in m0 + δm (Figure 3.3c) by conventional FWI of the reflection data (hence,
the first Fresnel zone associated with the diving waves represented by u0 ? λ

r
0 are not

embedded in this expression), while the quantity represented by G2 is computed in m0 by
conventional FWI of the diving waves and reflection data (Figure 3.3a), in which the sign
of the reflection data residuals is reversed. This reversal, indicated by the minus sign in
front of λr0 in Equation (3.9), cancels by subtraction the first-order migration isochrone
involved in G1, making the total gradient G1+G2 dominated by low-wavenumber compo-
nents. Moreover, computing G1 or G2 requires the same tasks as those performed during
FWI to evaluate the FWI gradient in the time domain (the boundary-saving strategy is
used to alleviate the memory load, Clapp (2008)). These tasks can be summarized as
follows: simulate the modeled wavefield and save the values on the model boundaries,
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compute the data residuals at receiver positions, compute the adjoint field by taking
the residuals as the source function, and re-simulate the modeled wavefield in reverse
time by using the boundary values as the Dirichlet condition, cross-correlate on the fly
the two fields. Therefore, for one evaluation of the FWI gradient, we need to do three
modelings and save two fields at maximum. As a combination of G1 and G2, Algorithm
3.1 requires to perform six modelings and to store two fields for the cross-correlation.
Consequently, the workflow to evaluate the JFWI gradient has a time complexity two
times higher than the one of conventional FWI but the memory requirement is the same
(see Table 3.1). In addition, the cost of JFWI is the same as the cost of RWI.

Table 3.1: Cost comparison

Cost FWI RWI JFWI

Modelings 3 6 6
Storage 2 2 2

Algorithm 3.1 Efficient evaluation of ∇CJFWI

Step 1

USE prior reflectivity
DO forward modeling: u = u0 + δu
USE reflected wave residuals
DO backpropagation and correlation
GET G1 = rabbit ears + 1st-order isochrone

G 1

Step 2

USE smooth models (NO reflectivity)
DO forward modeling: u0
USE diving wave residuals
USE same reflected wave residuals as in Step 1

but with a minus sign
DO backpropagation and correlation
GET G2 = diving-wave first Fresnel zone

− 1st-order isochrone G 2

Step 3
DO G1 +G2 = ∇CJFWI
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3.4 Integrated workflow of velocity (VP ) and impedance (IP ) inversion

If more subtle data separations are used, i.e. involving the decomposition of the
modeled wavefield on the fly by subtraction of the full field and the background field, the
implementation of G1 in equation 3.9 is impossible. This is because G1 is only related to
the predicted reflection data, which would not be readily available at the time of the ad-
joint simulation when the data separation is performed on the fly with the aforementioned
subtraction procedure. In this case, we would recommend computing an approximation
of ∇CJFWI with the following workflow: (1) Compute the conventional FWI gradient
in the model m0 + δm using both the diving and reflected wave residuals (Figure 3.3c).
(2) Build the first-order migration isochrones by conventional FWI performed in model
m0 using the reflection residuals as the source of the adjoint equation. At this stage
the predicted reflection data becomes available since the subtraction of the modeled full
field and the background field can be readily performed. (3) Subtraction of the two
quantities gives a low-wavenumber quantity, which is a good approximation of ∇CJFWI .
A relative error of 2% is found in the synthetic Valhall case study presented later. This
implementation requires the same resources as the one discussed above (Table 3.1, third
column).

3.4 Integrated workflow of velocity (VP) and

impedance (IP) inversion

So far we have derived the principles of JFWI for low-wavenumber velocity building, and
choose the VP–IP parameterization for high-wavenumber isochrones mitigation. In the
following we shall design a complementary imaging tool that provides a high-wavenumber
model of the subsurface, and combine it with JFWI to have an integrated inversion
workflow.

3.4.1 IP inversion by using short-offset reflection data

We perform the high-wavenumber imaging by waveform inversion using only the short-
offset reflection data (referred to as IpWI in the following). According to the previous
diffraction-pattern analysis, the subsurface is parameterized by VP–IP and only the IP
parameter is updated using the VP model as the background model. The corresponding
misfit function is given by

C(IP ) =
1

2

∥∥∥W r
(
dreflobs − d

refl
pred(VP , IP )

)∥∥∥2
2
. (3.10)

The corresponding gradient (Figure 3.6) contains the 1st-order isochrones similar to the
ones which would have been imaged by a migration processing

∇C = u0 ? λr0 = u0 ? B†
−1

(dreflobs − d
refl
pred), (3.11)

where the forward modeling operator is denoted by the symbol B.
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Figure 3.6: Impedance gradient resulting from the migration of one residual seismogram
in a homogeneous background. The true model contains two reflectors. The gradient
only contains 1st-order isochrones. Ray paths of the incident and adjoint fields for the
source-receiver pair are illustrated.

The only noticeable difference from a least-squares migration is that the observed
reflection data is used as the source function to compute the back-propagated field in
the migration process, whereas the source function of the adjoint-state equation in this
IpWI is the reflection data residual.

3.4.2 Cycle workflow of VP–IP imaging

Recall that the VP–IP parameterization naturally leads to the scale separation between
the two parameter classes. The low wavenumbers of VP are reconstructed by JFWI, which
requires a prior high-wavenumber IP model built by IpWI. Conversely, the impedance
imaging requires a background VP that can be provided by JFWI. Therefore, it is natural
to combine JFWI and IpWI to reconstruct these two parameters (a similar strategy can
be found in Ma et Hale, 2013). A critical issue is that, once the VP model has been
modified by JFWI to some extent, a new IP reflectivity model should be generated
accordingly in order to match the reflection data before continuing the VP update, and
the initial smooth impedance model should be used as the starting model for this new
IpWI implementation (i.e. removing the imaged reflectivity) (Brossier et al., 2015).
This directs us toward a cycle workflow in which the VP model and the IP model are
repeatedly updated in an alternate way by several non-linear iterations of JFWI and
IpWI (Algorithm 4.1), and during each JFWI and IpWI step the two parameters are
considered independently from each other. As the velocity model is not expected to be
accurate during the cycle workflow, we build the impedance model from very short-offset
reflections to enhance the focusing of the reflectivity image, even if mispositioned in
depth, in order to avoid any biases associated to the residual move-out in the depth-
migrated domain.
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Algorithm 3.2 Cycle Workflow of VP–IP Imaging

Smooth initial VP
(0) and IP

(0), k = 1
repeat

USE VP
(k−1), IP

(0) (NO reflectivity)
USE short offsets
DO IP inversion by IpWI of reflection data
GET high-wavenumber IP

(k)

(building reflectivity)

USE VP
(k−1), IP

(k)

USE full offsets
DO VP inversion by JFWI
GET low-wavenumber VP

(k)

(updating background)

Cycle number k = k + 1
until convergence

3.5 Synthetic example: Valhall case study

3.5.1 Experimental setup

We apply our cycle workflow on a synthetic case representative of the Valhall oil field.
The true IP and VP models are shown in Figures 3.7(a) and (c), respectively. The sea
floor is at 62.5 m depth, above the sediment layers that overlay several low-velocity gas
zones depicted in red. From 2.5 km to 3.3 km depths, the high-velocity oil reservoir is
separated from the low-velocity gas zones by a cap rock of anticline structure. The sand
is laid below the reservoir with smooth VP , IP variations, supported by the bedrock at
5 km depth. The model, which is 8.8 km in width and 5.2 km in depth, is discretized by
418×704 grid points with a grid interval of 12.5 m.

We use a Gaussian filter to smooth the true velocity model (excluding the water
layer), and then extract one vertical profile to build the 1D initial model for JFWI and
IpWI (Figures 3.7b and d). This initial velocity model captures the large-scale variation
of the true model and discards all features of the gas zones. Therefore, the main task of
JFWI is to reconstruct the gas zones. Based on a former analysis (Prieux et al., 2011,
their Figure 2b), more than 14 km of offset would be needed to record diving waves that
propagate at reservoir depths. In this study, the maximum offset is set to 6 km and the
diving waves reach a maximum penetration-depth of 1.5 km, which is shallower that most
of the gas layers. Therefore, only the reflected waves can contribute to the reconstruction
of the deep targets. The initial impedance model is shown in Figure 3.7(b), which was
built by taking a two-layer density model (setting 1000 kg/m3 for the water and 2000
kg/cm3 below).
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The forward problem is solved by a classicalO(∆t2,∆x4) staggered-grid finite-difference
method. The absorbing boundary condition implemented with perfectly-matched layers
(PMLs, e.g. Bérenger, 1994; Komatitsch et Martin, 2007) is applied along each edge of the
model. Therefore, no surface-related multiples are generated in the data. We exclude
this kind of multiples for a purpose to avoid potential cycle skipping among primary
reflections and secondary reflections. More realistic case involving the surface-related
multiples will be discussed in Section 3.5.3. The source function is a Ricker wavelet with
a peak frequency of 6.25 Hz. We consider a streamer acquisition of 80 shots, with the
first shot gather being shown in Figure 3.7(e). The reflection phases with zero-offset
two-way traveltimes ranging from 0.4 s to 2.8 s are reflections from the gas layers. The
reflections from the cap rock and the reservoir have zero-offset two-way traveltimes rang-
ing from 2.8 s to 3.4 s, followed by the multi-scattered phases (indicated by the yellow
arrows) especially the one arriving at 3.8 s (by the yellow ellipse). These multi-scattered
waves are generated from the highly-reflective cap rock and from the edges of the gas
layers. As the direct/diving waves do not significantly overlap the reflected waves in
time, we simply apply a linear time-offset window to the data set for the purpose of data
separation, defined by the following formula:

tsep (s) = offset (km) / 1.5 (km/s) + 0.33 (s), (3.12)

where tsep is the time of the window boundary as a function of offset (indicated by the
red dashed line in Figure 3.7e), the slope of the linear boundary is given by the water
wavespeed (1.5 km/s) and the intercept is equal to 0.33 s according to the dominant
period of the Ricker wavelet. Furthermore, we estimate that the direct/diving waves
have amplitudes ten times higher than those of the reflected waves. This prompts us to
leave the amplitudes of the direct/diving waves unchanged in the misfit function (i.e. W d

equals to the identity matrix), while the reflection residuals are multiplied by a factor of
ten in the misfit function.

Having been observed in several tests, JFWI tends to match the recorded multi-
scattered phases (indicated by the yellow arrows and ellipse in Figure 3.7e) with the
modeled primary reflections if the full reflection wavefield is processed in one go, which
implies that JFWI also suffers from non-linearity as FWI does. Therefore, we apply a
progressively increasing time window procedure (Kolb et al., 1986) to the data to enhance
the robustness of JFWI. This is implemented by muting the full-offset reflection data
after 3.5 s during first few cycles to remove the contribution of the multi-scattered waves
in the misfit function, then gradually restore their amplitude to their original level during
later cycles.

The velocity gradients that are computed in the initial smooth model by FWI, RWI
and JFWI are shown in Figures 3.7(f-h), respectively. As expected, the FWI gradient
shows the limited penetration depth (∼0.8 km) of the first Fresnel zones associated with
the diving waves and a high-wavenumber content at greater depths generated by the
stack of the migration isochrones (Figure 3.7f). The RWI gradient shows how the migra-
tion isochrones were avoided by assuming a known reflectivity in the waveform inversion
formalism, while low-wavenumber components were injected at all depths along the trans-
mission wavepaths of the reflected waves that are predicted by using the prior reflectivity
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Figure 3.7: Synthetic Valhall case study. (a) True IP model. (b) Initial IP model. (c)
True VP model. (d) Initial VP model. (e) First shot gather. Diving and reflected waves
are recorded (separated by the time-offset boundary delineated by the red dashed line),
as well as several multi-scattered waves indicated by the yellow ellipse and arrows. (f)
Conventional FWI gradient, (g) RWI gradient and (h) JFWI gradient for VP .

(Figure 3.7h). The JFWI gradient yet highlights how a deficit of low-wavenumber cov-
erage in the shallow part of the RWI gradient (Figure 3.7g, see at 0.5 km and 7 km
in distance) can be filled through the diving wave contribution (Figure 3.7h). The op-
timization method relies on the l-BFGS quasi-Newton approach (Nocedal, 1980). We
perform 10 non-linear iterations of IpWI and 20 non-linear iterations of JFWI during
each cycle of the workflow. We use only offsets smaller than 200 m to perform IpWI in
order to increase the linearity of the problem (see Section 4).

3.5.2 Results and discussions

3.5.2.1 Results and comparisons

Figure 3.8 displays a selection of IP perturbations (namely IP updates) and VP models
obtained at different cycles of the workflow (Algorithm 4.1). The initial IP perturbation
is zero and the initial VP is smooth (Cycle 0). After the first cycle, the IP perturbation,
computed using the initial VP model as the background model, is not well focused espe-
cially for the sand-bedrock interface. The image of the gas-zone reflectors in the first IP

71



JOINT FULL WAVEFORM INVERSION (JFWI)

perturbation are mispositioned at excessive depths due to the overestimated velocities in
the initial model. Large-scale VP variations of the gas zones start to show up at about
1.8 km depth in the first model built by JFWI. This velocity update contributes to move
the gas-zone reflectors at their correct position during IpWI in the following cycles. We
perform 22 cycles of the IpWI+JFWI workflow. The final VP and IP models are shown
in Figure 3.9(b) and (e), respectively. The reflectors have been moved at their correct po-
sitions, as JFWI has injected long-to-intermediate wavelengths into the velocity model.
In particular, the zone of influence of the low-velocity gas-zone between 2.5 km and 5 km
in distance has been well delineated. The long-wavelengths of VP between the reservoir
and bedrock are rarely imaged due to two facts: most of the incident energy is reflected
backwards by the hard cap rock and the smooth variations in the sand zone provides few
reflection information.

We also apply FWI and RWI on this data set to highlight the add-value provided
by JFWI. Results are shown in Figures 3.9(a), (c) and (d). FWI is implemented with
the VP–ρ parameterization and only the VP model is reconstructed. RWI is performed
with the VP–IP parameterization. The same cycle workflow as was used for JFWI is
used again to perform RWI, except that the contribution of diving waves is discarded by
RWI.

The final VP model obtained by FWI is roughly the superimposition of short-wavelength
velocity perturbations on the smooth initial velocity model. The inversion clearly fails
to update the long-to-intermediate wavelengths of the velocity model because of the
inaccuracy of the initial model and the lack of long offsets. The short-wavelength com-
ponents of the reconstructed VP are poorly focused due to the inaccurate long-wavelength
components.

In contrast, both RWI and JFWI have reconstructed the long wavelengths of the gas
zones to some extent. However, the final VP model built by JFWI is significantly more
accurate than the one built by RWI, especially in the shallow part where diving waves
penetrate. An inspection of the vertical profiles extracted from the true model, RWI
model and JFWI model supports this statement (Figure 3.10, to be discussed later).
The final IP models obtained by IpWI, from either JFWI or RWI VP models, are purely
superimpositions of the short-wavelength components imaged by IpWI on the smooth
initial IP model, according to the diffraction pattern of the IP parameter (Figure 3.5d).
In summary, the scale-separation condition has been fulfilled through this proposed cycle
inversion.

Figures 3.10(a) and (b) show the logs of the IP perturbations obtained by IpWI and
the VP models inferred from RWI and JFWI at x = 3.75 km, respectively. Above z =
1 km, the IP perturbations computed from the RWI and JFWI VP models are merely
equivalent. However, the RWI VP model is clearly less accurate than the JFWI VP model,
particularly in the shallow part where the diving waves penetrate. From 1.5 km to 2.5
km depth, due to the accumulation of inaccuracies from the near surface, the velocities
of the RWI model are overestimated and prevent the correct positioning in depth of the
IP perturbations. This highlights that, indeed, an accurate near-surface reconstruction
is also critical to properly image deeper zones.
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Figure 3.8: Selection of IP perturbations and VP models from the cycle IpWI+JFWI
workflow. Long wavelengths are built in VP while short wavelengths are imaged in the
IP perturbation model. Online animation of all intermediate updates: https://drive.

google.com/open?id=0Bx0JCm2KZyueQThsakJHbW9odm8

3.5.2.2 Quality control by common image gathers

We further assess the quality of the velocity models inferred from RWI and JFWI by gen-
erating common image gathers (CIGs) in the offset-depth domain (Figure 3.11). These
CIGs are computed in the initial VP , RWI VP and JFWI VP models by reverse-time
migration using the same modeling engine as was used during JFWI and IpWI.

Compared with the initial VP model, both the RWI and JFWI VP models can sig-
nificantly improve the flatness of the events in the CIGs. The improvement provided by
JFWI compared with RWI is more subtle as the CIGs generated by RWI are already
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Figure 3.9: Final subsurface models of different waveform inversion approaches. (a-b)
Impedance models obtained by RWI (a) and JFWI (b). (c-e) VP model obtained by FWI
(c), RWI (d) and JFWI (e). See text for explanations. Online animation of all interme-
diate updates: https://drive.google.com/open?id=0Bx0JCm2KZyueS2JjMW01TTA0NEE

quite flat. Nonetheless, we still show that shallow events are flatter in the CIGs inferred
from the JFWI VP model relative to those inferred from the RWI VP model (Figure 3.11,
horizontal yellow arrows). This manifests the diving wave contribution used in JFWI as
well as the difficulty of the reflection-based imaging methods to update the shallow part
of the subsurface. This point was illustrated with a real-data case study from Valhall by
Prieux et al. (2011), who showed that FWI of diving waves and reflected waves improved
the flatness of the CIGs in the first kilometers in depth of the subsurface compared with
the CIGs inferred from a reflection traveltime tomography velocity model. Some im-
provements achieved by JFWI compared with RWI are also shown at the cap rock level
(Figure 3.11, red arrows), which highlight how the more accurate shallow velocity recon-
struction impacts on the focusing of the deep reflector images. The horizontal reflector
at 5 km depth is also better imaged in the JFWI model than in the RWI model (Figure
3.11, vertical green arrow).

3.5.2.3 Fitting amplitudes

Due to the geometrical spreading effects that are incompletely removed during the FWI
process, the amplitude of the impedance perturbations decreases with depth. Without
an accurate reconstruction of the impedance contrasts, the amplitude of the modeled
reflected waves can be significantly smaller than the observed amplitude. In order to
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Figure 3.10: (a-b) Logs of IP perturbations (a) and VP models (b) at x = 3.75 km
for IpWI+RWI and IpWI+JFWI. Accounting for diving waves in JFWI improves the
velocity reconstruction in the shallow part, which translates into an improved imaging
of the deep velocity and the impedance structures.

improve the amplitude fit, we precondition the gradient to strengthen the deep pertur-
bations at the expense of shallow ones and perform 40 IpWI iterations with the precon-
ditioned l-BFGS optimization scheme, starting from the final VP model of JFWI (Figure
3.9e). We still use offsets smaller than 200 m.

The number of iterations is taken twice as before such that tiny differences in the
data amplitude can influence the model update. The refined impedance perturbations
computed in the RWI and JFWI velocity models are shown in Figure 3.12. Compared
with the previous IP models (Figures 3.9 a and b), the image of the deep reflectors, such
as the cap rock-reservoir interface, has been significantly enhanced. Note also how the
geometry of the reservoir is much more accurately delineated in the IP model computed
by using the JFWI velocity model compared with the one using the RWI velocity model.

For the sake of completeness, we plot the vertical profile of the new IP perturbation
models at x = 3.75 km in Figure 3.13. The amplitude of the impedance perturbations
is now much better estimated in the deep part of the model.
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Figure 3.11: Common image gathers at positions x ={1.88 2.50 3.13 3.75 4.38 5.00
5.63 6.25 6.88} km from the initial VP (a), RWI VP (b) and JFWI VP (c) models.
Improvements to the event flatness provided by JFWI compared with RWI are pointed
by horizontal yellow arrows in the shallow part, red arrows at the cap rock level and
vertical green arrows at 5 km depth.

The first shot gather computed in the true models and in the final RWI and JFWI
models are compared in Figures 3.14 and 3.15. Phases and amplitudes in the JFWI-
calculated data agree quite well with those of the observed data, except for the multi-
scattered waves (e.g. time = 4.4 s to 5.2 s at offset = 6 km). Nevertheless, the absence
of the multi-scattered waves in the calculated data helps us avoid somehow the cycle-
skipping issues: the phase ended in time = 4.6 s at offset = 6 km seems not to be
cycle-skipped. As the sand zone is hard to be recovered (due to few reflection infor-
mation from the seismogram), the move-out of the latest reflection coming from the
sand-bedrock interface is less properly matched especially at offset = 4 km. More convex
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misfit functions (Luo et Schuster, 1991; Luo et Sava, 2011; Brossier et al., 2009a, 2010,
2015; Ma et Hale, 2013; Warner et Guasch, 2014) would be helpful to relax the cycle-
skipping issue raised by waveform-difference misfit functions, and allow large traveltime
shifts for the inversion procedure to match the full-offset reflection phases. On the other
hand, the data calculated in the RWI final models match the observed data at short
offsets, but fail at long offsets (e.g. time = 3.6 s, 5.4 s at offset = 6 km). This means
that the diving-wave information is also critical for the matching of the reflection data
(phases, move-outs etc.), and should not be discarded in the high-resolution imaging
techniques.

3.5.2.4 Broadband imaging of VP

The impedance model in Figure 3.12 could be used for geophysical interpretation. Al-
ternatively, a broadband VP model is also very helpful to understand the structure of
the subsurface and the rock properties, but conventional approaches like FWI may fail
in building such a VP model from a crude initial model due to the lack of low frequencies
(Figure 3.9a). Joint FWI can be used as a robust tool for initial model building since it
can build the long wavelengths that are required to perform reliable FWI (Figure 3.9e).

Figure 3.16(a) shows the result of FWI starting from the JFWI VP model (Figure
3.9e) under the VP–ρ parameterization. The two-layer density model that was used as
the initial model for JFWI is used here as the background model, and is kept fixed during
this FWI implementation. The final FWI velocity model matches quite closely to the
true velocity model, except in the deep part due to the lack of illumination. This result
confirms the relevance of JFWI as a robust tool to build an initial velocity model for
FWI, leading to a two-step velocity model building workflow of successive JFWI and
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Figure 3.15: (a) Direct comparison between seismograms computed in the true VP model
(black lines) and the final RWI model (blue lines) for the first shot gather (Figure 3.14).
(b) Same as (a) for seismograms computed in the JFWI model (red lines). See text for
details.

FWI. However, this VP model is prone to contain imprints from VP–ρ cross-talks: the
short-scale heterogeneities that are missed in the background density model might be
interpreted as the short-scale velocity perturbations by FWI, leading to an erroneous
velocity estimation. This might explain some amplitude mismatches between the true
and the FWI velocities in the log profile (Figure 3.16b), for example at 2 km to 2.5 km
depths.

The data fit of the first shot gather computed in the true VP model and in the final
JFWI followed by FWI VP model is shown in Figure 3.17. The multi-scattered waves
are generated (e.g. time = 4.4 s to 5.2 s at offset = 6 km), due to the injection of
the intermediate wavenumbers into the final VP model, which allows us to model these
higher-order scattering effects from the top of the cap rock and the vertical edges of
the gas layers. Except at zero offset, the match of the phase and amplitude is further
improved comparing with Figure 3.15, especially for the multi-scattered waves and the
late reflection at long offsets. In summary, this experiment manifests that JFWI has
a great potentiality to be used as a robust tool for initial velocity model building for
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conventional FWI.

The match at zero offset has been degraded (within the two-way traveltimes ranging
from 1.8 s to 3.4 s) due to the offset weighting that has been applied to enhance the
reflection data at long offsets. Moreover, this degradation might be caused by the fact
that we have kept the smooth density model to its initial values, suggesting that the
model space is not large enough to account for the amplitude effects at short offsets. In
other words, these amplitudes cannot be matched by a velocity-only inversion procedure.
Therefore, a multi-parameter FWI for VP and ρ should be considered to improve the data
fit.

3.5.3 JFWI in presence of multiples

In this section, we discuss the robustness of JFWI in the presence of surface multi-
ples. The interest is that if JFWI allows the multiples to be present in the data, the
preprocessing workflow could be simplified.

We still consider the synthetic Valhall model (Figures 3.7a and c) and generate a data
set with surface-related multiples (Figure 3.18). This data set is processed by JFWI and
IpWI by considering a free-surface boundary condition on the surface during the seismic
modeling. Compared with the data set computed without free-surface multiples (Figure
3.7a), the diving waves have weaker amplitudes in the 1 km to 2 km offset range (using
the same clip), and more complex reflection wavefields are recorded. This prompts us
to reduce the scaling factor applied to the reflected waves through the operator W r

from 10 to 5, such that the contributions from the diving and reflected waves are re-
balanced in the JFWI misfit function. Moreover, as free surface effects generate more
multi scattering, we progressively feed the inversion with late-arriving reflections at a
slower rate than in the former case performed without surface multiples. Here, we mute
the reflection data after 3.3 s over the full offset range during first few cycles, then
gradually restore their amplitude to their original level during later cycles (also weighted
by 5). We apply the same time-offset window (Equation 3.12) to separate the data.

Figure 3.19(a) shows the JFWI result after 14 cycles. Although the final JFWI VP
model shows the long wavelengths of the true VP model as in Figure 3.9(e), we have
witnessed some degradations of the quality from this velocity result:

1. The thin reflector at the water bottom between x = 3 km and 4 km is an artifact
coming from the very early reflections in the diving-wave time window. Because we
have applied a simple linear time-offset window, the migration isochrones generated
from the reflections left in the diving-wave time window are not totally canceled
during the summation of G1 and G2. When multiples are present, these reflections
may be enhanced, making the migration isochrones apparent in the gradient. This
highlights that a successful application of JFWI heavily relies on the accuracy of
data separation.
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Figure 3.16: (a) Broadband reconstruction of the velocity model by conventional FWI
using JFWI VP model as the starting model. The VP -ρ parameterization is used for
inversion keeping the density model fixed). (b) Comparison between velocity profiles
(x=3.75 km) extracted from the true model (solid black line), the initial VP model
(dashed line), the JFWI VP model (red line) and the broadband VP model shown in (a)
(green line). Leakage of ρ reflectivity is expected (e.g. at 2 km to 2.5 km depths).
Online animation for all intermediate updates: https://drive.google.com/open?id=

0Bx0JCm2KZyueZWZDXzN6VFQ5WlE
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Figure 3.17: Data fit of the first shot gather computed in the true VP model (black)
and in the final JFWI+FWI VP model (red), which is comparable with the one obtained
with the JFWI VP model (Figure 3.15). Here, the fit at long offsets of multi-scattered
waves has been nicely improved at the expense of the fit at short offsets. See text for
interpretation.

2. Above 2 km depth, the resolution seems to be higher in Figure 3.19(a) than in
Figure 3.9(e), even though we have applied the same Gaussian smoothing reg-
ularization to the gradient (vertical and horizontal correlation lengths equal to
twice of the dominant wavelength). This improved resolution might result from
the improved subsurface coverage provided by the surface-related multiples. This
statement deserves however further investigations.

3. In contrast, the low velocity zone at 2.3 km depth is reconstructed less accurately
in Figure 3.19(a) than in Figure 3.9(e). We consider that imaging at this depth,
covered by only reflection kernels, is a difficult task especially when multiples are
present.

As was in Section 3.5.2.4, we launch the conventional FWI starting from the JFWI
VP macromodel (Figure 3.19a) using the VP–ρ parameterization. The two-layer density
model that was used as the initial model for JFWI is also used here as the background
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Figure 3.18: First short gather of synthetic Valhall case study with free surface multiples.

model, and is kept fixed during this FWI implementation. The result is shown in Figure
3.19(b). The gas zone is properly reconstructed, with some noise due to the multiples.
The image of the cap rock, however, is not as accurate as the one built from multiple-
free data. We believe that this degradation results from the surface multiples and the
multi-scattered waves generated by the hard interfaces and the edge of the gas layers.
Remembering the former application without multiples, these multi-scattered waves had
already made the velocity model building quite non-linear, which prompted us to design a
time-windowing approach to mitigate this non-linearity. Here, as expected, the presence
of multiples has significantly increased the non-linearity, which forces us to apply a more
prudent time-windowing approach. With such an effort, the degradation of the resolution
is limited.

Regardless the difficulties raised by these two wave modes, we still obtain a reasonable
velocity model by FWI using the JFWI model as the starting model. The log extracted
at x = 3.75 km is shown in Figure 3.19(c). Without considering possible cross-talk effects
between parameters, the final VP values (green curve) fit quite well the true VP values
(black curve) above 3.2 km depth, and is much comparable with the one inferred from
multiple-free data (Figure 3.16).
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Figure 3.19: Synthetic Valhall case study with free surface multiples. (a) Long-
wavelength VP model by JFWI. (b) Broadband reconstruction of the VP model (con-
ventional FWI implementation starting from (a), VP–ρ parameterization and density
fixed). (c) Logs of VP models at x = 3.75 km for (a) and (b). JFWI suffers from the
high-order scattering effects from the surface-related multiples and the multi-scattered
waves, therefore the VP results are worse than the previous results (Figure 3.9e and
Figure 3.16a). However, from the log we see that the gas layers are still well imaged. See
text for details.

3.6 Conclusions and perspectives

Most applications of the conventional FWI are driven by diving waves and post-critical re-
flections. However, imaging the long-to-intermediate wavelengths in deep regions remains
challenging if the transmitted waves do not penetrate these regions due to insufficient
offsets. In contrast, RWI succeeds to some extent in imaging the long-to-intermediate
wavelengths of the deep regions focusing on the two transmission wavepaths followed by
the reflected waves from the surface to the reflector positions. This kind of approaches
relies on a scale separation between a smooth velocity model and a known reflectivity,
that allows one to suppress the contribution of the unwanted (high-wavenumber) mi-
gration isochrones during the velocity model building. The limitation of RWI is that
diving waves and post-critical reflections are not used, although they carry the essen-
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tial long-wavelength information of the shallow subsurface. We have presented in this
paper an extension of RWI, namely Joint FWI, the aim of which is to account for the
contribution of the diving waves and post-critical reflections during the velocity model
building. The relevance of the method is demonstrated with the synthetic Valhall case
study, which has shown that how the improvement of the near surface imaging provided
by the diving waves translates into an improved imaging of the deep targets performed
by RWI. Although modern wide-azimuth long-offset seismic acquisition may still not
allow to record the diving waves with a sufficient penetration depth to sample the deep-
est targeted structures, diving waves and post-critical reflections can have an increasing
contribution in the seismic wavefield. In this study, we have proposed a seismic workflow
which makes an optimal use of the information carried by all kinds of waves to build a
reliable velocity macromodel. Our approach requires however the explicit separation of
the diving waves (or post-critical reflections) and the pre-critical reflections.

The conventional VP–ρ parameterization of the subsurface favors a broadband recon-
struction of the VP parameter, but the mitigation of the cross-talks between VP and ρ
is challenging from reflected waves. In contrast, the VP–IP parameterization leads to a
more natural uncoupling between the two parameter classes, which is consistent with
the scale separation between the velocity model and the reflectivity underlying RWI and
JFWI. It becomes therefore natural to combine within an iterative workflow the velocity
model building performed by JFWI and the impedance imaging performed by conven-
tional FWI of reflected waves (IpWI). As the impedance model needs to be updated
according to the velocity updates, JFWI and IpWI are performed in an alternate way
leading to the cycle workflow.

For more efficient implementations of the cycle workflow, one possibility is to reduce
the iteration number of the IP inversion. Although the amplitudes of the imaged re-
flectivity will be incompletely estimated, the kinematics of the data can be retrieved to
reconstruct a reliable VP background model. As soon as the kinematic attributes of the
data are matched, amplitudes can be further used to build more accurate reflectivity
images.

Having respectively built the low-part and the high-part of the VP and IP spectra,
it is natural to wonder whether imaging a broad spectrum of the subsurface is possible.
Starting from the velocity macromodel built by JFWI, a broadband velocity model can
be tentatively imaged by conventional FWI using the VP–ρ parameterization. The qual-
ity of the reconstructed velocity model shows that the low-to-intermediate wavenumber
components of the JFWI model are accurate enough to successfully image the subsur-
face from reflected waves by FWI. In this experiment, only the VP parameter is updated
keeping the density fixed to its original value. Therefore, this VP model is prone to con-
tain imprints from VP–ρ cross-talks. These cross-talks probably manifest by the over-
estimation and/or underestimation of the reconstructed velocities. To tackle this kind
of cross-talks, multi-parameter inversions which involves the Hessian operator should
be considered. Depending on the computational facilities, l-BFGS (Nocedal, 1980) or
Truncated Newton (Métivier et al., 2013) methods could be considered to introduce the
Hessian operator.
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On the other hand, imaging low-wavenumber part of the IP spectrum could be more
difficult, as neither VP–ρ nor VP–IP parameterization can provide low-wavenumber sen-
sitivity to the IP parameter (cross-talks arise in the transmission regimes for the ρ–IP
parameterization). In this case, we have to rely on empirical parametric relations such
as the Gardner relation. From this kind of relation, we could rebuild the initial IP in
each cycle to translate low wavenumbers from VP to IP , or set a trust region to bound
the searching area of the IP inversion.

We also look forward to the applications of JFWI to real data sets such as the real
Valhall one. The cycle-skipping issue would appear and could hinder the local search
method to reach the global minimum. Therefore, more robust misfit definitions would be
required. Besides, how the cycle inversion scheme is affected by the elastic information
of the data should be studied. For example, we foresee that the misinterpretation of
elastic wavefields as acoustic ones would generate reflection residuals due to inaccurate
amplitudes. The inversion of these residuals by JFWI would generate some artificial
velocity perturbations even if the initial VP model is correct. Accounting for density
to absorb the elastic effects is an option, although this inevitably questions the use
of the VP–IP parameterization during JFWI (Borisov et al., 2014; Plessix et al., 2014;
Plessix et Pérez Solano, 2015). Another possible strategy is to correct the acoustic
wavefields for the elastic effects by using artificial source terms (Chapman et al., 2014;
Hobro et al., 2014). A last-but-not-least possibility could be to rely on the kinematic-
associated misfit functions such as the ones based on cross-correlation (van Leeuwen et
Mulder, 2010), deconvolution (Luo et Sava, 2011; Warner et Guasch, 2014), instantaneous
phase (Fichtner et al., 2008; Bŏzdag et al., 2011), or dynamic warping (Hale, 2013).
Extensions to 3D geometry could be performed, but the repetition of the IP inversion
inside the cycle workflow would be a computational obstacle. One possible solution is to
build the reflectivity in the pseudo-time domain instead of the depth domain, by which
reflection phases are always matched in short offsets (Plessix, 2013; Wang et al., 2015).
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Chapter 4

Real Data Application

When in doubt, smooth.

— Sir Harold Jeffreys (Quoted by Moritz, 1980 and Tarantola, 2005)

Avec les rêves aussi on peut faire des confitures. Il suffit d’ajouter des fruits et
du sucre.

— Stanislaw Jerzy Lec, Nouvelles pensées échevelées

Encouraged by the promising result of JFWI in the synthetic Valhall case, I move
forward to real case studies to assess its promises and pitfalls, particularly in initial
velocity model building for classical FWI. Can JFWI recover sufficient low wavenumbers
such that the subsurface model can be located inside the attraction valley of the global
minimum of FWI? What are the main obstacles for JFWI to build such desirable model?

A 2D section of OBC data set cross-cutting a gas cloud is adopted to answer these
questions. The first obstacle is the inseparability of the postcritical branch of the re-
flected waves from the refracted and direct/diving waves at far offsets (hence, they are
uniformly called “early arrivals” in this chapter). However, due to their weak amplitudes
the high-wavenumber updates from the reflected waves can be mitigated by using the
VP–IP parameterization and model regularization. Therefore, I shall directly augment
the diving-wave term of JFWI misfit function with all early arrivals, and I shall only sep-
arate between early arrivals and precritical reflected waves which can be implemented
simply by time windowing.

Previous study has shown reasonable velocity models by 3D monoparameter FWI in
the frequency domain (Operto et al., 2015). They believe that the elastic effect can be
ignored due to mild velocity contrasts in the field. However, their data misfits at far
offsets and degraded resolution at high frequencies are attributed to the underestimation
of attenuation, an issue that was not considered in the previous synthetic study of JFWI.
In this chapter, I shall also address this via the implementation of classical FWI using
different attenuation models in order to well manage the data for JFWI applications.



REAL DATA APPLICATION

Joint Full Waveform Inversion of Early Arrivals and
Short-spread Reflections: a 2D Ocean-Bottom-Cable

Study Including Gas Cloud Effects

Zhou, W., Brossier, R., Operto, S., Virieux, J. & Yang, P.
To be submitted.

Abstract

Joint full waveform inversion (JFWI) combines reflection (RWI) and early-arrival
(EWI) waveform inversions to build a large-scale velocity model of the subsurface. The
misfit function of JFWI requires an explicit separation between the short-spread reflec-
tions and early arrivals, the feasibility of which is illustrated with a real long-offset data
set. JFWI is alternated with a waveform inversion/migration of short-spread reflections
to provide a short-scale impedance model that is used as an input to build the sensitiv-
ity kernel of RWI along the two-way reflection paths. The velocity macromodel built by
JFWI can be taken as the initial model for classical FWI to enrich the high wavenumber
content of the subsurface model. We present an application of this workflow to a real 2D
OBC profile cross-cutting a gas cloud in the North Sea to review its main promises and
pitfalls. Several initial models and offset-driven strategies are assessed with the aim to
manage the cycle-skipping issue while producing subsurface models of sufficient vertical
and horizontal resolution. Our workflow produces an acceptable FWI velocity model that
fits the main early arrivals and reflections when JFWI starts from a smoothed version of
an existing traveltime tomographic model. We expect that considering the 3D geometry
would relax the strict planar propagation assumed in 2D. The improved scattering angle
illustration would also reduce the requirement on the quality of the initial model.

4.1 Introduction

Full waveform inversion (FWI) is a promising tool to image the subsurface (Virieux et
Operto, 2009). Successful applications often require a good initial guess of the sub-
surface: the purposed velocity model must match the recorded phases within a half
cycle; otherwise the inversion is easily trapped by a local minimum associated to an
unphysical model. Ray-based tomographic approaches, such as first-arrival traveltime
tomography (Sei et Symes, 1994; Zelt et Barton, 1998; Leung et Qian, 2006; Taillandier
et al., 2009), reflection traveltime tomography (Bishop et al., 1985; Sword, 1987; Whiting,
1998; Farra et Madariaga, 1988), stereotomography (Billette et Lambaré, 1998; Lambaré,
2008; Prieux et al., 2013c) are conventionally applied for the purpose of initial model
building for FWI. However, the underlying high-frequency approximation may limits the
applicability of these approaches to complex media. Alternatively, wave equation-based
inversion can overcome such limitation. Waveform inversion using early arrivals (EWI,
Shipp et Singh, 2002; Sheng et al., 2006; Sirgue, 2006; Shen, 2014; Wang et al., 2015),
such as diving waves and super-critical reflections is usually performed to image the
large scales of the subsurface before short ones. Sufficiently wide apertures and/or long
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offsets are required to reach the deep target, which in turn intensify the risk of cycle
skipping due to long propagation distances. To mitigate this difficulty, we can rely on
low frequency data to reduce the nonlinearity (Bunks et al., 1995; Sirgue et Pratt, 2004).
Formulations in the Laplace domain can also boost the low frequencies and early arrivals
in the data (Shin et Cha, 2008, 2009; Pyun et al., 2008, 2011). However, the problem
is that current acquisition techniques still cannot provide very low frequencies (typically
< 2 Hz); the reliability of the results can be questioned due to the low S/N of the data.
On the other hand, misfit functions that present less local minima than the L2-norm
misfit are also considered. Numerous investigations are promoted in this direction, such
as those based on correlation (Luo et Schuster, 1991; van Leeuwen et Mulder, 2010),
deconvolution (Luo et Sava, 2011; Warner et Guasch, 2014), envelope (Bŏzdag et al.,
2011; Luo et Wu, 2015), unwrapped phase (Alkhalifah et Choi, 2012), dynamic warping
Ma et Hale (2013) and optimal transport (Métivier et al., 2015).

Short-spread reflections have the sensitivity to deep targets without the need of very
far offsets, and the redundancy of the reflection data enables image domain approaches
(Diaz et al., 2013; Liu et al., 2013; Allemand et Lambaré, 2014) to update the velocity
model. By migrating the reflection energy to common-depth-point images, these ap-
proaches focus on the flatness in the image gathers (Symes et Carazzone, 1991; Sava et
Biondi, 2004), or attempt to minimize the energy left in the non-physical dimensions
added to the model space (Sava et Fomel, 2006; Yang et Sava, 2011; Almomin et Biondi,
2012; Biondi et Almomin, 2012; Sun et Symes, 2012; Lameloise et al., 2015). The main
issue is related to their high computational cost due to the migration step and image
evaluations in extended domains performed during each velocity update.

In general, data-domain inversion requires less computational resources than image-
domain inversion. Inspired by migration-based traveltime inversion (Chavent et al.,
1994; Chavent, 1996; Clément et al., 2001), reflection waveform inversion (RWI) has
been proposed to build the velocity macromodel by restricting the sensitivity kernel of
FWI along the two-way transmission paths of short-spread reflections (Zhou et al., 2012;
Xu et al., 2012). It is alternated with the migration or impedance waveform inversion
that produces a short-scale reflectivity model to be used as a prior information to build
the RWI sensitivity kernel. A key property of RWI is the significant reduction of cycle
skipping at short offsets. The need for regenerating the impedance model can be relaxed
by building the reflectivity in the pseudo-time domain (Plessix, 2013; Brossier et al.,
2015; Wang et al., 2015).

Due to the different wavepaths followed by early arrivals and short-spread reflections,
EWI and RWI tend to preferentially sample the vertical and horizontal components
of the wavenumbers, respectively. This prompts us to combine EWI and RWI into
a joint inversion workflow (JFWI) to enrich the wavenumber content of the velocity
macromodel and to improve the reconstruction at shallow depths (Zhou et al., 2015).
The JFWI misfit function relies on an explicit separation between early arrivals and
short-spread reflections, which might require a careful data preprocessing. Nevertheless,
as argued in Wang (2015), sufficiently broadband data rather than low frequencies should
be considered in the early stage of RWI to extract the low-wavenumber information from
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the normal moveout of precritical reflections. The focused wavelets, resulting from this
broadband signal, facilitate the separation of the data by a simple time windowing as
will be illustrated in this study. In Zhou et al. (2015), we also show with a synthetic
experiment that JFWI is immune to cycle skipping as long as a time-driven scheme (Kolb
et al., 1986; Bunks et al., 1995) is used to image shallow targets before deeper ones.

This study aims to further assess the promises and pitfalls of JFWI with an applica-
tion to a 2D line of the OBC data set that is collected across a gas cloud in the North
Sea. This field has been studied by Prieux et al. (2011, 2013a) and Operto et al. (2015),
who have reported the attenuation effect of the wavefield in the whole available offset
range due to the dissipative medium in the near surface and in the gas. As it can af-
fect both phases and amplitudes of the wavefield, considering attenuation in waveform
inversion gives more reliable results. This is recently confirmed by the synthetic study
of Kurzmann et al. (2013), who have shown that an acoustic inversion scheme based on
viscoacoustic modeling can significantly improve the velocity models, requiring only an
appropriate representation of attenuation in the near surface. In view of the numerical
simulation of the attenuated wavefield, the frequency-domain implementation is cheaper
than in the time domain (Carcione et al., 1988; Robertsson et al., 1994; Bai et al., 2014;
Dutta et Schuster, 2014; Plessix, 2016; Yang et al., 2016, among others). However, JFWI
is implemented in the time domain for the purpose of explicit data separation.

For the sake of computational efficiency, we shall perform time-domain modeling
without considering attenuation, and a lower frequency range will be looked for such
that disregarding attenuation would not significantly affect the inversion. With this as-
surance, we shall test different source-receiver offset-driven strategies and initial models
of increasing accuracies to assess the sensitivity of the inversion to cycle skipping. The
velocity macromodel built by JFWI will be further assessed in terms of kinematic ac-
curacy and spatial resolution in order to be used as an initial model for FWI. Starting
from a smooth model with lateral variations, we succeed in building a velocity model
from JFWI followed by FWI that compares reasonably well with an existing 3D FWI
model from a former study (Operto et al., 2015). On the contrary, when starting from
a crude 1D model, JFWI fails to update enough the low-wavenumber content of the gas
cloud, leading to mispositioned reflectors after FWI. However, an equally good data fit
is achieved after inversions respectively starting from the smooth and 1D initial models,
which highlights the ill-posedness of the inverse problem due to the insufficient azimuthal
and offset coverage. We hope this issue would be overcome by extension of JFWI to 3D
geometries.

4.2 Methodology

Classical FWI tries to recover the subsurface model m by minimizing the following L2-
norm misfit function

CFWI(m) =
1

2
‖W (d−Ru(m)) ‖2, (4.1)
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where d denotes the recorded data and u(m) denotes the modeled wavefield computed in
the model m (same misfit function as Equation (3.2)). This wavefield is then sampled at
receiver positions by the operator R such that the residual can be evaluated. All waves,
including early arrivals and reflections are included in d and Ru. To highlight or mute
certain wave modes, the weighting operator denoted by W is introduced. In EWI, for
instance, W has nonzero values for early arrivals whereas it equals zero for short-spread
reflections.

Alternatively, JFWI assumes that, on the one hand, the early arrivals de can be a
priori separated from the short-spread reflected data dr, and, on the other hand, the
short-scale variations of the subsurface δm can be separated from the background model
m0 (i.e. scale separation). In this way, the misfit function of JFWI is defined as follows
(Zhou et al., 2015)

CJFWI(m0)|δm =
1

2
‖W e (de −Ru0(m0)) ‖2 +

1

2
‖W r (dr −Rδu(m0, δm)) ‖2 (4.2)

(same misfit function as Equation (3.6)). Note that the model δm is fixed during in-
version and only the model m0 is updated iteratively. At each iteration, the wavefield
u0 is computed in the smooth velocity model m0 whereas the perturbation wavefield
δu is computed in the whole model m0 + δm. The two terms of the misfit function,
associated with early arrivals and reflections, preferentially contribute to updating the
vertical and horizontal components of the low wavenumber vectors, respectively, and
hence are complementary. Thanks to the explicit data separation, the associated JFWI
gradient (i.e. Equation (3.7)) excludes the high-wavenumber migration isochrones that
were introduced into the FWI gradient. The remaining high-wavenumber update in the
JFWI gradient, coming from higher-order scattering, can be mitigated by stacking the
gradient from each source-receiver couple due to destructive interference. Furthermore,
based on the analysis of diffraction patterns with certain parametrizations, we propose
to use VP–IP to effectively force the scale separation, in which VP is chosen as m0 and
IP is chosen as δm in Equation (4.2) (Jannane et al., 1989; Operto et al., 2013).

The purpose of introducing scale separation and thus the short-scale impedance model
δm is to enhance the low-wavenumber update coming from reflected waves, and make
the velocity inversion immune to cycle skipping at least in short offsets (see discussion
in Chapter 2). For this reason, the impedance model cannot be given arbitrarily. For
example, the depth of one reflector, Z, in the impedance model should be equal to∫ Z

0

VP (z)t0(z)dz (4.3)

where t0 is the one-way vertical traveltime of the reflected wave associated to that reflec-
tor, and VP is the background velocity along the vertical reflection wavepath. Therefore,
to build an effective impedance model, we proposed impedance waveform inversion using
short offset reflection data (referred to as IpWI for short). We use the same regular
mesh to discretize the two parameters (velocity and impedance) for convenience, al-
though blocky models could also be used especially for impedance. I refer the reader
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to Section 3.3 or the publication Zhou et al. (2015) for a complete explanation of the
approach.

The overall workflow is listed in Algorithm 4.1. Note that in Step 2, V
(k−1)
P and

I
(0)
P are used as the initial models whereas in Step 3, V

(k−1)
P and I

(k−1)
P are used as the

initial models. In each cycle, the computational cost of IpWI is equivalent to FWI. The
temporal complexity of JFWI is twice of FWI but their memory requirement is the same.

Algorithm 4.1 Cycle workflow of VP–IP inversion

Initial condition: smooth models V
(0)
P and I

(0)
P , k = 1.

WHILE

1. Source wavelet s(t) estimation by the approach proposed in (Pratt, 1999):

s(t) = F−1
(

F (Rû)F (d)∗

F (Rû)F (Rû)∗ + ε

)
, (4.4)

where F and F−1 denote the Fourier transform and its inverse, respectively.
û = û(t) denotes the modeled data computed in V

(k−1)
P and I

(k−1)
P using the delta

function as source wavelet. The complex-valued signals F (d) and F (Rû) are
respectively conjugated (denoted by symbol ∗) to evaluate the cross- and auto-
correlations in the Fourier domain with a small number ε for numerical stability;

2. IpWI to build reflectivity image: I
(k)
P =I

(0)
P +∆IP ;

3. JFWI to update the macromodel: V
(k)
P =V

(k−1)
P +∆VP ;

4. k = k + 1

UNTIL convergence in Step 3.

4.3 Application

The area under exploration is the Valhall oilfield in the North Sea (Barkved et al.,
2010a,b; Sirgue et al., 2010). The data set is acquired at the sea bottom (70 m depth) with
ocean bottom cables. For this 2D study we use the inline gathers collected over the gas
cloud from the 3D acquisition system (Cable 13, Operto et al., 2015, their figure 2a). The
maximal offset range is 13.44 km (Figure 4.1a, white line and dots). The two white starts
represents two data gathers that will be discussed below. A velocity field has been built
by 3D reflection tomography, and the corresponding 2D section (Figure 4.1a, courtesy of
BP) shows the gas area at 1.5 km depth (depicted in blue) embedded in the overburden
(depicted in yellow). The presence of gas forms a local low-velocity region where strong
attenuation of wavefields has been reported (Prieux et al., 2011, 2013a; Operto et al.,
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2015), making the seismic imaging methods challenging at the reservoir depths (red). To
assess the quality of this tomographic model, we generate the associated migrated image
(Figure 4.1b) through source estimation (Step 1 of Algorithm 4.1) followed by waveform
inversion of near-offset reflected waves (Step 2) filtered in a narrow frequency band (3–
5.6 Hz). The detailed preprocessing flow will be listed in Section 4.3.2 and the reason
why using low frequencies will be explained in Section 4.3.1. A lateral discontinuity is
observed (ellipse) for the caprock reflector, which is attributed to the insufficiently low
velocities in the gas cloud provided from the velocity model (Figure 4.1a). In the 3D
study performed by Operto et al. (2015), FWI was implemented in the frequency domain,
where attenuation was considered by using complex-valued velocities during the modeling
process. They used a maximum frequency of 10 Hz and a homogeneous quality factor Q
of 200 below the sea bed to account for attenuation. The associated 2D section is shown
in (Figure 4.1c). Starting from the tomographic model, FWI has increased the velocities
in the overburden while decreased the velocities in the gas cloud (below 2 km), therefore
leads to a relatively flat caprock reflector with good lateral continuity (Figure 4.1d). The
reference reflectivity model is extracted from the velocity model (c) by filtering out the
low wavenumber components using Gaussian smoothing. We do not perform migration
as in Figure 4.1b because we favor high-resolution images for comparison (remind the
low-frequency content used in migration). In the following, we shall use the two models
(c,d) to assess the models developed in this study.

The anisotropic parameters are also reconstructed by reflection tomography (Figures
4.2a,c). Mild anisotropy is present in the soft sediments above the reservoir. We also
smooth these two models below the sea bed using the Gaussian function, such that they
do not generate apparent scattered fields (Figures 4.2b,d) in our application. In this
study, we do not consider anisotropic inversion.

For the sake of data separation, we shall implement JFWI in the time domain. The
modeling code is parallelized over shot gathers, but the original OBC acquisition provides
more airguns than hydrophones. Therefore, we apply source-receiver reciprocity to the
data meaning that we treat shots as receivers and vice versa. Therefore, we shall refer to
a receiver as a reciprocal shot and the word “reciprocal” will not be mentioned hereafter.
By filtering out high-frequency noise, two shot gathers are shown in Figure 4.3. The shots
are positioned far away from the gas cloud (a) and over the gas cloud (b), respectively
(stars in Figure 4.1a representing the two source positions). Main body-wave arrivals are
indicated by arrows. At short offsets, the direct waves (yellow arrows) propagate with
an apparent velocity of around 2 km/s followed by a series of reflections (blue arrows)
generated by the sediment layers (Figure 4.1c). Their constructive interference results
in a higher amplitude observed at 2.5 s. The strong reflection (red arrows) comes from
the sediment-caprock interface, which is followed by multiples and deep reflections after
around 3.2 s. Due to the low-velocity gas cloud, the right-hand-side branches of the
reflected waves in Figure 4.3b travel slower than their left-hand-side counterparts, giving
non hyperbolic shapes unlike the gather in Figure 4.3a (blue and red arrows) whose
source is far from the gas. The green arrows indicate the Stoneley surface waves that
are to be filtered out during the preprocessing stage (discussed later). At far offsets, the
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Figure 4.1: Prior knowledge of the subsurface under investigation. Associated 2D section
of reflection tomographic velocity model (a) (courtesy of BP). The white line represents
the ocean bottom cable (x = 2.88 to 13.81 km, z = 0.07 km) and the white line and the
dots denote the shot positions (x = 0.37 to 16.32 km, z = 0.07 km). We apply source-
receiver reciprocity due to the parallelism of our time modeling code. Two reciprocal
shots are indicated by the starts (x = 7.59, 13.81 km), and the corresponding gathers
are shown in Figures 4.3b,a, respectively. Low-velocity gas cloud (blue) is embed in
the sediment layers (yellow) making strong lateral inhomogeneity overriding the hard
interface at around 2.5 km depth formed by the sediment layers and the caprock (red).
The migrated image (b) shows a discontinuous caprock reflector (ellipse) due to the
overestimated velocities in the gas cloud (a). Associated 2D section of the 3D FWI
velocity model (c), whose large scales are extracted by Gaussian smoothing and then are
subtracted from the reference model to have the small-scale reflectivity model (d) for
reference. Unlike in (b), the caprock reflector is relatively flat due to the velocity update
in the gas cloud. The color bar of (c) also depicts the color scale of Figure 4.4, Figures
4.5a,b, Figures 4.8a,c, Figures 4.9a-c, Figures 4.10a,c,e and Figures 4.12a,c.

diving waves (dashed yellow arrows) have lower amplitudes than the direct waves due
to long propagation distances and attenuation. The (post)critical branch (dashed red
arrows) of the sediment-caprock reflection arrives later than the direct and diving waves
but propagates with a faster apparent velocity. Due to the low-velocity gas cloud, the
refraction branch (magenta arrow) is not recorded as the first arrival in the available
offset range, but shows a tendency to surpasses the diving waves at further offsets.

Let us remind that, for the sake of computational efficiency we shall implement
JFWI without taking attenuation into account, which causes inversion artifacts that will
be shown later. Therefore, we must first address this issue and aim to find a suitable
frequency range to mitigate such artifacts. This range will be found as follows. Starting
from the tomographic models (Figure 4.1a and Figures 4.2b,d), we shall perform classical
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Figure 4.2: 2D sections of reflection tomographic Thomsen parameters ε (a) and δ (c)
(courtesy of BP) and their smoothed versions for this study (b,d).
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Figure 4.3: Real data after high-frequency noise filtering (high cutoff at 9 Hz). Main
body waves are identified by colored arrows. See text for interpretations.
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FWI in the frequency domain to assess the results by using different Q models, and then
we shall perform time-domain FWI assuming an infinite Q (no attenuation) to assess the
results with increasing frequency ranges. With these findings, the desirable frequency
range will be determined for JFWI with disregard of attenuation, which is a reasonably
wide range of intermediate-to-low frequencies with regard to the data spectrum.

4.3.1 Preliminary results related to attenuation

Seven frequency groups are chosen for the frequency-domain FWI test (Table 4.1). The
inversion result from the previous group with lower frequencies is used as the initial model
for the inversion of the next group with higher frequencies. In each group, three or four
frequencies are simultaneously used. We do not use frequencies lower than 3.6 Hz due
to low S/N. We keep the intermediate frequencies (5.5 and 5.9 Hz) in Groups 6 and 7 to
mitigate potential cycle skipping at higher frequencies. Figure 4.4 shows the results from
Groups 6 (a,c) and 7 (b,d) using Q = 200 (a,b) and Q = 1000 (c,d) below the seabed,
respectively. We obtain an acceptable velocity model with Q = 200 whereas high-velocity
artifacts are shown in the shallow part of the velocity model with Q = 1000 (black ellipses
in c and arrows in d). Rather than true anomalies, we explain these anomalies as the
trade-off from the inadequate Q parameter to the VP parameter. Specifically, with a
fixed Q model, the inversion has to increase VP for a better match of the data. When
the value of Q is sufficiently low as in (b), this trade-off phenomenon disappears. Note
that these anomalies are less outstanding in the low-frequency model (c), implying that
we could expect to not generate these anomalies at rather low frequencies even with a
very large Q.

For the time-domain FWI test assuming an infinite Q, we apply the Butterworth
filter to the data with increasing passbands (Table 4.2). These bands include rather low
frequencies (<3.6 Hz) to avoid the ringing effect (i.e. Gibbs phenomenon) to take place,
unlike in the frequency domain where low frequencies are discarded for computational
efficiency (Table 4.1). The inversion result from the previous band is used as the initial
model for the inversion of the next band which has a larger frequency range. The
inversion results from Bands C and E are shown in Figures 4.5a,b, respectively. The
high-velocity anomalies, presented in Figure 4.4c, are also created in the Band E result
(enclosed by ellipses), issued from the trade-off caused by the infinite Q assumed in
the modeling process. In contrast, they are not generated in the Band C model which
considers lower frequencies. Consequently, the image of the underlying reflector (at 0.5
km depth) is reasonably flat in (a) as indicated by the line segment, whereas it is bended
in (b) as indicated by the curve line due to the overestimation of the above velocity field.

To choose a desirable frequency range for our time-domain inversion, we compare
the lateral profiles of these time-domain FWI results at the depth of the high-velocity
anomaly (245 m) in Figure 4.5c. For reference, we also show the profiles of the 3D FWI
and tomographic velocity models at the same depth. The plot illustrates the tendency
of increasing velocities at x = 14 km position at higher frequencies, and reach a value
of 2100 m/s by the Band E result. In contrast, the references models show a value
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Table 4.1: Frequency groups sequentially used in the frequency-domain FWI test. Fre-
quencies in each group are simultaneously used.

# Frequency group (Hz)

1 3.6 3.9 4.3
2 4.1 4.4 4.8
3 4.6 4.9 5.3
4 5.0 5.4 5.8
5 5.5 5.9 6.3
6 5.5 5.9 6.4 7.0
7 5.5 5.9 8.0 9.0
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Figure 4.4: Preliminary frequency-domain FWI results with Q = 200 (a,b) and Q = 1000
(c,d), using frequency groups 6 (a,c) and 7 (b,d) that are listed in Table 4.1 (see labels
below the results). High-velocity anomalies are generated in (c) and (d), respectively
indicated by ellipses and arrows, highlighting the trade-off issue when an inadequate Q
model is used without updates during the inversion. These anomalies are less outstanding
in (c) because Group 6 does not include the high frequencies 8 and 9 Hz. We could expect
to further mitigate these anomalies by using lower frequencies even with a very large Q.

lower than 1900 m/s. This discrepancy highlights the attenuation effect on velocity
model reconstruction, and also the influence of the 3D-to-2D conversion used in this
test. In this study, we only consider 2D applications of JFWI, and we need to balance
two opposite behaviors. In order to exclude the attenuation footprints, we would need to
use frequency content as low as possible. However, a broad frequency band improves the
S/N of data (particularly at low frequencies) and also facilitates the explicit separation
between early arrivals and reflections: if no sufficient high frequencies are considered,
the two types of body waves mix with each other and hence obstructs a straightforward
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Table 4.2: Characteristic frequencies defining five passbands for the Butterworth filter,
sequentially applied to the data for the time-domain FWI test. Through the comparison
made in Figure 4.5, we choose Band D for JFWI applications.

Band Characteristic frequencies (Hz)

A 2.9 3 3.6 3.9
B 2.9 3 4.1 4.4
C 2.9 3 4.6 4.9
D 2.9 3 5.1 5.4
E 2.9 3 5.6 5.9
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Figure 4.5: Preliminary time-domain FWI results using frequency bands C (a) and E
(b) that are listed in Table 4.2 (see labels below the results). The modeling is based
on acoustic wave equation therefore no attenuation is considered (assuming an infinite
Q). High-velocity anomalies that are present in Figure 4.4c,d are also generated in (b),
indicated by ellipses, which is a trade-off effect coming from disregard of attenuation.
As a result, the reflector image below the anomalies is bent (dashed curve) that should
be flat (line segment in b). We mitigate this trade-off issue by choosing a frequency
range excluding high frequencies. Comparing the lateral profiles of all intermediate
results from the five frequency bands and the referencing profiles of the 3D FWI and
tomographic model (c), we pick Band D (Table 4.2) for our JFWI applications which
includes sufficient low-to-intermediate frequencies to handle the low frequency noise as
well as for the explicit data separation between early arrivals and reflections (Figure 4.6).
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separation (Wang, 2015). Considering these two effects, we choose to limit the frequency
range below 5.6 Hz (critical frequency) and choose Band D for our JFWI applications.

4.3.2 Inversion setup

We design the data preprocessing workflow as follows:

1. Normalize shot gathers with respect to the maximum absolute value to balance the
contribution from each gather;

2. Remove Stoneley waves by f -k filtering;

3. Amplitude gain by a factor of (t−h/1480)0.7 where t denotes the time (in seconds)
and h the offset (in meters). The reduced velocity 1480 m/s is used to approxi-
mately follow the first breaks through offsets in the data. Empirically, we choose
0.7 as the power to roughly convert the amplitude from 3D to 2D geometric spread-
ing and to compensate the energy absorption due to attenuation. However, such
compensation does not overcome the dispersion;

4. Minimum-phase Butterworth filtering from 2.9 Hz (much noise at lower frequencies)
to 5.6 Hz (i.e. Band D of Table 4.2);

5. Predictive deconvolution to whiten the data spectrum for better separability of
early arrivals and short-spread reflections.

After preprocessing, the gathers in Figures 4.3a,b change into the gathers in Figures
4.6a,b, respectively. We identify the phases with the same colored arrows. In general,
the minimum-phase filter in Step 4 results in later traveltimes for all body waves, and
provides the desired low-frequency window on the data spectrum (gray lines in Figures
4.6c,d). The wraparound behavior at near-zero offsets does not cause a failure in source
estimation, yet it would dominate the misfit function among other offsets and thus should
be muted. The separability of body waves are recovered in the deconvolution step.
We apply a time windowing to the data to separate the early waves from short-spread
reflections. The time window starts at t = 0 s and finishes at t = tbound defined by

tbound(h) =

{
(1.59 + h/1.608) s, for h ≤ 5 km;
9 s, for h > 5 km.

(4.5)

where h denotes the offset (in km). Please refer to the yellow lines in Figures 4.6a,b.
Outside this window is regarded as reflections.

In order to assign an accurate water bottom (70 m depth) during inversion, we use a
143×477 grid with 35 m interval for discretization (16.7 km in width and 5 km in depth).
The forward problem is solved by a classical O(∆t2,∆x4) staggered-grid finite-difference
method (Levander, 1988), and the associated CFL condition leads to a sampling rate
of 5 ms. The absorbing boundary condition implemented with convolutional perfectly
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Figure 4.6: Preprocessed data (a,b) respectively from the two shot gathers shown in
Figure 4.3a,b. Due to the low-pass filtering, the wavelets are less focused than in Figure
4.3 (missing high frequencies), but we still have a relatively good separability between
different body waves thanks to the afterward deconvolution operation. The yellow line
indicates the boundary of the time window used to separate the early arrivals from the
short-spread reflections, and we use the same colored arrows to identify the typical phases
as in Figure 4.3. The amplitude spectra of one trace recording at x = 7 km are shown
in (c,d). The black lines depict the real data spectrum and the gray lines depict the
spectrum after preprocessing, respectively. We can observe two frequency bands in the
real data spectrum with a gap at 5.5 to 6 Hz. The low-pass filtering extracts the desired
low frequency band (3–5.6 Hz), and mutes the high frequencies that are related to the
attenuation issue. The extracted spectrum is not exactly proportional to the real data
spectrum due to the whitening effect of the deconvolution. We preserve around half of
the total energy after preprocessing.
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matched layers (PMLs, e.g. Bérenger, 1994; Komatitsch et Martin, 2007) is applied along
the edges of the model other than the free surface.

In the chosen frequency band 3–5.6 Hz, the tomographic model (Figure 4.1a) allows
for a reasonable match of the diving waves up to 8 km offsets but is not accurate enough
for data fitting at longer offsets (Figure 4.7a). On the contrary, the reference 3D FWI
model (Figure 4.1c) improves the match at long offsets (Figure 4.7b). To build an initial
model for JFWI, we smooth the tomographic model with the 2D Gaussian function
(Figure 4.8a) such that no reflected waves are generated (Figure 4.7c). However, the
smoothing also increases the background velocity in the gas cloud. Therefore, we can
observe a large mismatch at x = 5 km in Figure 4.7c. Like in Figure 4.1b, the migrated
image for the caprock reflector is still discontinuous (ellipse in Figure 4.8b) due to the
shortage of low wavenumbers in the proposed and tomographic velocity models. At
last, we build a 1D model (Figure 4.8c) from the x = 8 km profile of the smoothed
model to further assess the sensitivity of JFWI to the accuracy of the initial model.
Note that the velocities in the gas cloud are too high to properly match the critical
reflections (mismatch at x = 6 to 8 km in Figure 4.7d). These high velocities also
lead to a deepening of the migrated images below 2.5 km depth (ellipse in Figure 4.8d).
Initial density models are inferred from their respective velocity models by using the
Gardner relation (ρ = 0.23V 0.25

P , Gardner et al. (1974)) except that the water column is
set to 1 g/cm3. The smooth anisotropic models (Figures 4.1b,d) are used as background
modeling parameters during inversion.

In the following, we shall successively present the classical FWI and JFWI results.
The implementation of classical FWI is recast into cycles. One cycle consists of the
source wavelet estimation (i.e. Step 1 in Algorithm 4.1, Pratt et Shipp, 1999) using the
final velocity model from the previous cycles, followed by several nonlinear iterations of
the velocity model update. Considering that the initial models produce an inaccurate
wavelet, we perform only one iteration of velocity inversion in the first cycle and then
increase the number of iteration in later cycles. The optimization method relies on the
l-BFGS quasi-Newton approach (Nocedal, 1980). Offsets smaller than 1200 m are muted
for the velocity inversion (i.e. FWI and JFWI) whereas 700 to 1200 m offsets are used
in the impedance waveform inversion. No complicated weights on data are incorporated
because the amplitudes of early arrivals and reflections are close after data preprocessing.

4.3.3 Results

4.3.3.1 Classical FWI

We first apply FWI to the whole offset range using the smooth initial model (Figure
4.8a). The mismatch at far offset (e.g. x = 5 km in Figure 4.7c) turns out to be a cycle
skipping issue that guides the inversion to preferentially create high velocities in shallow
zones (ellipses in Figures 4.9a), rather than decrease the velocity in the gas cloud. This
wrong update can make earlier traveltimes for the synthetic early arrivals such that the
misfit value is reduced. As a result, in the data match plot (Figures 4.9d), we only
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Figure 4.7: Direct comparison between real and modeled data computed in the tomo-
graphic model (a), reference model (b), smoothed model (c) and 1D model (d). The
real data plotted with a blue-white-red color scale are superimposed by the modeled
data plotted with a variable area wiggle display (40% of opacity). The modeled data are
computed in the velocity models of Figures 4.1a,c and Figures 4.8a,c, respectively. The
two datasets are in phase if the black area covers the blue part of the real data. See text
for details. The color scale and the opacity are kept same for Figures 4.9d-f, Figures
4.10g-i and Figures 4.12c,d.
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Figure 4.8: Two proposed initial models for FWI and JFWI applications (a,c), respec-
tively built by (a) Gaussian smoothing of the tomographic model (Figure 4.1a), and (c)
1D profile at the left edge of the gas cloud without the low-velocity zone (blue region in
a). No wavefield reflections take place in the considered frequency band (3–5.6 Hz). The
migrated images (b,d) are generated in the same way as in Figure 4.1b using velocity
models of (a,c), respectively. Because the smoothing retains some lateral variations asso-
ciated to the gas cloud, the images are relatively flat in (b). Similarly, the discontinuity
of reflector image present in Figure 4.1b is still present here (ellipse in b), indicating a
shortage of low wavenumbers in the velocity model (a). On the other hand, the velocity
field in the 1D model is too high such that the inferred image shows deepening of reflector
images below 2.5 km depth (ellipse) with weaker lateral continuity.

observe the synthetic data in very short offsets which are mainly related to the source
signature (black wiggles); the amplitudes at other offsets are too weak to be comparable
to the observed data amplitudes, and cannot be seen within the chosen clip of this data
plot: the minimization of the misfit function strongly penalizes the synthetic amplitudes.

To mitigate such cycle skipping issue, we propose an offset-driven layer-stripping
strategy as follows. We first mute far offsets (larger than 5 km) to avoid cycle skipping
(Figure 4.9e). This leads to a reasonable velocity reconstruction (Figure 4.9b) and a
good data match within the 5 km offset range. In addition, some arrivals at longer
offsets are matched although they were not involved in the inversion. The amplitudes
of short-spread reflections are not so well reproduced since we have smoothed the model
update for inversion stability. Then, we gradually increase the offset range to involve
earlier arrivals, and relax the smoothing to match short-spread reflections. As a result, an
equally match of data can be achieved at all offsets (Figure 4.9f) as well as a reasonable
velocity model is reconstructed (Figure 4.9e).

Comparing with the reference model (Figure 4.1c), the degraded resolution of this
FWI model can be attributed to many reasons. For example, the initial model for the
3D FWI reference model is the tomographic model that contains more high-wavenumber
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Figure 4.9: FWI models (a-c) and associated data comparisons (d-f). The cycle skipping
at far offsets prevents a direct FWI application (artifacts enclosed by ellipses in a and
rather weak amplitudes of the synthetic data in d). Therefore, we first use offsets smaller
than 5 km (blue line in e) to build a stable intermediate model (b) and then gradually
feed inversion with longer offsets. This results in a reasonable velocity reconstruction (c)
and a good data match at all offsets (f). See text for details.

components than our initial model (Figure 4.8a). As a result, we may lack sufficient
reflectivity information at the beginning of the inversion to highlight the low wavenumber
update associated to reflected waves. We may also suffer from a shortage of data content
because we use only a 2D line of the 3D data set. The deficit of low wavenumbers in the
gas cloud is probably due to the narrower offset provided from the 2D geometry. The
off-plane propagation may also have an impact on the results. Besides, we have excluded
high frequencies to mitigate the attenuation effect, which also make the inversion more
ill-posed. Nonetheless, we accept this result as a reasonable velocity model.
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4.3.3.2 Joint FWI

The cycle skipping problem at far offsets also prevents JFWI from building a reasonable
velocity model, if no specific strategies are used. Figures 4.10a,b,g show the JFWI
velocity model using the whole offsets simultaneously, the inferred impedance model
and the associated data match, respectively. Similar to the FWI result (Figures 4.9a),
the cycle skipping leads to high velocities in the near surface (arrows in Figure 4.10a),
which make earlier traveltimes and weaker amplitudes for the synthetic direct and diving
waves. Unlike FWI, JFWI requires prior reflectivity images, therefore, reflected waves
can be generated in the synthetic data. Comparing with the data match associated to
the smooth model (Figure 4.7c), an improved match can be observed at x = 5 km.
However, this is a cycle skipping phenomenon that happens to postcritical reflections.
In the velocity model (Figure 4.10a), a pair of high-velocity tubes is produced (dashed
lines) near the low-velocity bulb in the center of the gas cloud (blue region). These
tubes are attributed to the transmission regimes generated by the two-way reflected
waves, and, due to cycle skipping, they cannot be canceled out by other transmission
regimes associated to reflected and/or diving waves. Due to their different wavepaths, the
reflected waves preferentially sample the horizontal components of the low wavenumber
vectors whereas the transmitted waves preferentially sample vertical components of the
low wavenumber vectors (see the sampling analysis in Section 2.3). The cycle skipping,
which mainly affect reflected waves, leads to strong lateral variations above the cap
rock in the velocity model. These lateral variations in the velocity model translate into
undulations in the impedance model (2.5 km depth in Figure 4.10g).

To mitigate cycle skipping, we apply the same offset-continuation strategy as pro-
posed in the classical FWI application. Figures 4.10c,d,h show the velocity model using
5 km offset range, the inferred impedance model and the associated data match, respec-
tively. As expected, the high velocity anomalies are avoided as well as the direct waves
in a short offset range are matched, indicating no cycle skipping issue in the considered
offset. Comparing with the smooth model (Figure 4.8a), the inversion has decreased
the velocity in the gas cloud, therefore can improve the match on early arrivals from
x = 5.5 to 8 km (Figure 4.10e) even though they are not included in the inversion. The
inferred impedance model also shows a flatter image for the caprock reflector than the
one in Figure 4.10b). Comparing with the image inferred from the smooth model (Figure
4.8b), there is a slight shift of the caprock reflector (e.g. x = 6 km, z =3 km) coming
from the low wavenumber update in the velocity model. However, the discontinuity en-
closed by ellipse still exists, implying a shortage of low wavenumbers in the velocity field
at this depth due to the offset constraint.

Using the same offset range (5 km), we implement JFWI starting from the 1D ve-
locity model (Figure 4.8c). Unlike others, this model gives higher velocities for the
gas cloud, therefore lacks more low wavenumber components especially in the horizon-
tal direction. Figures 4.10e,f,i show the velocity model, the inferred impedance model
and the associated data match, respectively. The inversion fails to recover sufficient low
wavenumber components in the gas cloud leading to overestimated velocities. As a result,
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Table 4.3: Misfit comparisons associated to JFWI models. For last two models the misfit
is computed within 5 km offset range. Note their close values indicating the same level
of data fitness in Figures 4.10h,i.

Models Figure # Misfit Relative misfit (%)

JFWI of all offsets 4.10a 1.56E-5 100
JFWI of short offsets 4.10c 9.85E-7 6.31
JFWI of short offsets 4.10e 9.05E-7 5.80
with 1D initial

the impedance model shows an apparent deepening of the caprock image (ellipse), ac-
companied with the unfocused energy shown as the residual images in a semicircle shape.
Compared with the image inferred from the 1D model Figures 4.8d, the erroneous reflec-
tor depth is largely corrected, though incompletely, resulted from the velocity update by
JFWI. However, the data match in the considered offset range (i) is reasonably as good
as the data match of the previous model (h). Indeed, the related misfit values are close
to each other (Table 4.3). This highlights that the desired low wavenumbers, missing in
the model of Figure 4.10e, actually belong to the null space of the inverse problem due
to the insufficient offset coverage. At further offsets, however, the critical reflections are
less well matched at x = 6 km in (i) than in (h), suggesting that the null space may be
reduced by involving larger offsets provided no cycle skipping problems exist.

These missing low wavenumbers are more evident by looking at the profiles of the
models (Figure 4.11). The JFWI model built from the 1D initial model (blue lines in
a,b,c) fails to capture the long-wavelength variations of the reference model (black lines)
at 1 to 2 km depths, unlike the JFWI model with the smooth initial input (red lines).
Consequently, the reflector images inferred from the poor JFWI model (blue lines in d)
tend to be mispositioned comparing with those inferred from the reference model (black
lines) below 0.5 km depth, whereas the reflectors inferred from the effective JFWI model
(red lines) shows good agreement with those reference reflectors above 2.2 km depth.
The discrepancy below this depth can be explained by the insufficient low wavenumber
updates due to the limited offset range.

In summary, we have confronted with the cycle skipping problem at far offsets in both
FWI and JFWI implementations. Consequently, we limit the offset range to mitigate
cycle skipping at the expense of updates of low wavenumber components in the gas cloud
carried in the far offsets. These low wavenumbers are believed to reside in the null space
of the inverse problem. Therefore, a sufficiently accurate initial model is expected.

4.3.3.3 Joint FWI followed by FWI (JFWI+FWI)

The JFWI models Figure 4.10b and c can be naturally taken as the initial models of
monoparameter FWI for broadband reconstruction of the velocity parameter. We per-
form the inversion in the time domain and the same frequency band is used. To mitigate
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Figure 4.10: JFWI models (a,c,e), inferred reflectivity (b,d,f) and associated data com-
parisons (g-i). The cycle skipping at far offsets prevents a direct application of JFWI
(a,b,g). Therefore, we limit the offset within 5 km (blue line in h) as in the FWI ap-
plication (Figure 4.9e). This leads to a stable velocity model (c) with flatter reflector
image (d) as well as a good data match at short offsets (h). However, the discontinuous
caprock image (ellipse in d) indicates the insufficient low wavenumber components in (c).
To assess its sensitivity to the accuracy of initial model, we apply JFWI to the 1D model
(Figure 4.8c) using 5 km offset range. The inversion fails to recover the low velocities
in the gas cloud (e), making discontinuous caprock images (ellipse in f) despite a good
match at short offsets (i). The equally match in (h) and (i) highlights the nonuniqueness
of the inverse problem due to the small offset range. See text for details.
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Figure 4.11: Vertical (a) and horizontal (b,c) profiles of JFWI models of Figures 4.10c
(red) and Figure 4.10e (blue), as well as reference velocity model of Figure 4.1c (black) in
(b,c) and the difference between Figures 4.1c,d as the reference background model (black
in a). Vertical (d) profiles of reflectivity of Figure 4.10d (red) and Figure 4.10f (blue)
inferred from the two JFWI models, respectively, as well as the reference reflectivity
model of Figure 4.1d (black). Because the low wavenumbers are better recovered in
Figure 4.10c, the velocity profile and inferred reflectivity depicted in red are closer to the
black referencing profiles, especially at 1 to 2 km depths.

the cycle skipping issue, we gradually increase the offset range from 5 km to the maxi-
mum available offset (13.5 km). Figures 4.12a,b,e show the FWI result using the JFWI
model of Figure 4.10c, the extracted reflectivity model and the data comparison, respec-
tively. The reflectivity models are built by filtering out large-scale components from the
velocity models using Gaussian smoothing. Again, we do not perform migration as in
Figure 4.10 because we favor high-resolution images for comparison (remind the low-
frequency band D used in migration). Except the small-scale updates by FWI, we also
see the large-scale updates at 2.5 km depth in the velocity model coming from far offset
data. Because of this, the discontinuity of the caprock reflector image that is present
in Figure 4.10d (ellipse) is mitigated in (b) to some extent. With higher frequencies,
we can show more focused images to better assess this improvement. Nonetheless, the
associated data plot (e) shows a high level of match at all offsets.

The JFWI+FWI result using the poor JFWI model (Figure 4.10e), the extracted
reflectivity model and the data comparison are shown in Figures 4.12c,d,f, respectively.
The high velocities built by JFWI in the gas cloud (Figure 4.10e) are not fully corrected in
(c), leading to a curved reflector image at 1.5 km depth (arrow in d). Consequently, in or-
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Table 4.4: Misfit comparisons associated to JFWI and JFWI+FWI models. For fair
comparisons, the misfits are computed from all available offsets without source signals.
Therefore, the two JFWI misfits are different from the values in Table 4.3. Note how
FWI has reduced the misfit in both cases, and built two models with close misfit values
indicating the same level of data fitness in Figures 4.12e,f.

Models Figure # Misfit Relative misfit (%)

Good JFWI 4.10c 2.50E-5 100
Good JFWI + FWI 4.12a 2.02E-5 80.91
Poor JFWI 4.10e 2.45E-5 98.15
Poor JFWI + FWI 4.12c 1.98E-5 79.19

der to match the vertical two-way traveltimes of reflected waves, a relatively low-velocity
zone (arrow in c) is generated to compensate for these high velocities. In addition, com-
pared with the caprock reflector image shown in Figure 4.10f, the image in (d) is more
continuous inside the ellipse due to the low wavenumber updates derived from far offsets.

Interestingly, the associated data comparison (f) shows a same level of match as (f)
despite the incorrect velocities in the gas cloud. Indeed, the related misfit values are close
to each other (Table 4.4), which highlights the nonuniqueness of the inverse problem.
From JFWI to JFWI+FWI, although we have used far offsets, this nonuniqueness means
that we still suffer from insufficient data content to uniquely image the subsurface model
(ill-posedness). Using the whole 3D data set, or including higher frequencies should pro-
vide a supplementary constraint to mitigate such nonuniqueness. Nonetheless, judging
from the reference model, we accept the velocity model of Figure 4.12a as a reasonable
result.

The accuracy of each JFWI+FWI models are more evident by comparing the profiles.
Figure 4.13 shows the profiles of the two initial models (Figures 4.8a,c), the inferred
JFWI models (Figures 4.10c,e) and JFWI+FWI models (Figures 4.12a,c) as well as the
reference model, respectively. The vertical profiles (a) of the accepted JFWI+FWI model
(green lines) depicts the injection of short wavelengths into the JFWI models (red lines)
mapped from reflectivity. More importantly, we see an update of long wavelengths in
the lateral profile (c) between x = 3 to 6 km and x = 12 km when comparing with the
reference model (black lines). This is attributed to the use of far-offset critical reflections
that can contribute to horizontal low-wavenumber components in the velocity update. In
contrast, starting from the poor JFWI model (blue line in b), the subsequent FWI of all
offsets (magenta line) fails to correct the long wavelengths at 1 to 2 km depths. Therefore,
the magenta line is far from the black reference line especially at depths between 1 and
1.7 km, unlike the accepted JFWI+FWI model (green line in a). Below 2 km, velocity
uncertainty increases due to insufficient data content and angle illumination, and thus
we see a degraded match of the reference by both JFWI+FWI models. Nonetheless,
the caprock reflector inferred from the accepted model (green arrow in a) is positioned
at a similar depth with the black reference reflector (black arrow), whereas the reflector
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Figure 4.12: FWI models with JFWI models as initial input (a,c), extracted reflectivity
models (b,d) and data comparisons (e,f). (a,b,e) starting from JFWI model of Figure
4.10c. (b,d,f) starting from JFWI model of Figure 4.10e. The reflectivity models are
extracted from the velocity models by filtering out large-scale components from the
velocity models using Gaussian smoothing. A broadband velocity model is built by FWI
(a), with the improved reflector images (ellipse in b) thanks to the low-to-intermediate
wavenumber updates given by far offsets. The use of far offsets also flattens the caprock
reflector image (ellipse in d) that was curved in Figure 4.10f (ellipse). However, the
reflector crossing the gas cloud is still non flat (arrow in d) due to the high velocity
background (c). The low-velocity zone pointed by the arrow in (c) is a consequence of
such high velocity in order to match the data. Despite its high level of data match (f)
the velocity model proposed in (c) should not be trusted due to the dissimilar feature
with the reference model of Figure 4.1c.
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inferred from the poor model (magenta arrow in b) is about 200 m deeper than the
reference reflector: this difference reflects a better recovery of velocities in the gas cloud
in the accepted JFWI+FWI model.

Comparing with the direct implementation of FWI (Figure 4.9e), we find an improved
resolution at 6 km location between 1.6 and 2.1 km depths resulted from JFWI followed
by FWI (blue ellipse in Figure 4.14). The JFWI+FWI model is closer to the reference
model than the FWI model due to the prior implementation of JFWI, who has suc-
cessfully recovered more low-to-intermediate wavenumber components than FWI. Such
improvement could be found at other locations when the 3D geometry is considered in
our further investigations.

4.3.3.4 Quality control of velocity models by common image gathers

We assess the quality of our inversion results by generating the common image gathers
(CIGs) in the surface-offset–depth domain (Figures 4.15 and 4.16). Six models are re-
spectively assessed: the smooth initial model (Figure 4.8a), the 1D initial model (Figure
4.8c) and JFWI models starting from the two initial models (Figures 4.10c,e), as well as
the JFWI+FWI models starting from the JFWI models (Figures 4.12a,c), at six posi-
tions above the gas cloud (x = 6 to 11 km, from top to bottom rows). The images are
built by reverse time migration. For high-resolution images we use the broadband data
(Figure 4.3), including high frequencies that have attenuation footprints (Section 4.3.1).
Therefore, we solve a viscoacoustic wave equation based on the rheology of generalized
Maxwell body (Emmerich et Korn, 1987; Moczo et Kristek, 2005). We use three re-
laxation mechanisms to approximate the frequency-independent Q (Emmerich et Korn,
1987), and estimate the anelastic coefficients via least-squares fitting (Yang et al., 2016).
We use a homogeneous Q = 200 during modeling to account for the attenuation below
the sea bed, since it has led to reasonable reconstructions as shown in Section 4.3.1. Due
to the source-receiver reciprocity, the images in the negative offset gathers (receiver on
left side of source) should be same with the images in the positive offset gathers (receiver
on right side of source) that share the same midpoints. Therefore, we sum the “twin”
gathers to increase the S/N of the images, and display only absolute offsets in 0–10 km.

Because it is difficult to separate direct and diving waves from the reflected waves
from shallow interfaces, we generate two sets of CIGs using different portions of the
data, which allow to assess the quality of velocity models at different depths. In the first
set (Figures 4.15), we incorporate all waves and no preprocessing is applied. Therefore,
images associated to diving waves are present below 0.5 km depth with linear residual
moveouts, for example, the dashed curves in the top left panel. The images above this
depth level are mainly associated to reflected waves from shallow interfaces. They are
rather discontinuous at offsets beyond 2 km in the CIGs inferred from the smooth model
(a) and 1D model (b). In contrast, we can see the significant improvements of image
flatness and focusing provided by JFWI (c,d) due to the low-wavenumber updates at
shallow depths in both cases. Moreover, the JFWI model inferred from the smooth
model (c) produces flatter images than the one inferred from the 1D initial model (d),
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Figure 4.13: Vertical (a,b) and horizontal (c,d) profiles of FWI models (green, magenta)
with JFWI inputs of Figure 4.10b (red) and of Figure 4.10c (blue), respectively, as
well as profiles of proposed initial models of Figures 4.8a,c (dashed black) and reference
model (Figure 4.1c, black). Arrows indicate the caprock reflector inferred from the two
JFWI+FWI models (green and magenta) and the reference model (black), respectively.
See text for details.
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Figure 4.14: Vertical profile of JFWI+FWI model (red), FWI model (Figure 4.9c, blue)
and reference model (Figure 4.1c, black). Note that the red line is closer to the black
line than the blue one at 1.6 to 2.1 km depths (blue ellipse) due to the improved low-to-
intermediate wavenumber updates by JFWI.
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as delineated by yellow curves in middle panels, which is consistent with our former
analysis that the former JFWI model has better kinematic accuracy. On the other hand,
the images inferred from JFWI+FWI models (e,f) are difficult to follow laterally because
the panels are noisy. We attribute this decreased S/N to multiple reflections generated
from shallow interfaces that are imaged by FWI, and an inadequate Q for viscoacoustic
modeling in the near surface. Nonetheless, improvements of image flatness can be seen
just below the sea bed (e.g. positions pointed by arrows), which means a better near
surface reconstruction achieved by FWI using larger offsets.

The second set of CIGs (Figures 4.16) are generated by using reflected waves inside
a time window, which is defined from an offset-dependent instant t to the maximum
instant (8 s), where t = 1.59 + h/1.563 s and h denotes the offset (in km). The value
1.563 km/s is chosen to exclude direct waves without losing too many reflected waves
at short-to-intermediate offsets. The disagreement of reflector depths between (a) and
(b) at zero offsets is resulted from the different velocity fields provided from the smooth
model (a) and 1D model (b). The velocities in the gas cloud are more accurate in the
smooth model as indicated by the flat images (yellow line in a) compared with the curved
images (yellow line in b). Such superiority is preserved after the implementation of JFWI
(yellow lines in c,d). Indeed, starting from the 1D model JFWI did not fully recover the
low wavenumber components of the gas cloud due to the limited offset range. On the
other hand, starting from the smooth model with more low wavenumber content, JFWI
improves the resolution in the gas cloud, therefore leads to flatter images comparing
(d) with (c), cyan lines. The low wavenumber information carried by far offsets are
further injected to the velocity models by the ultimate FWI implementation. We see the
improvements of image flatness from (c) to (d), green lines for the smooth initial case, as
well as the image flatness from (d) to (f), magenta lines for the 1D initial case. Note that
the magenta line is not as flat as the green line in (e,f), which implies that we could use
high frequencies to mitigate the nonuniqueness of inversion models that are encountered
in the Figure 4.12. The non flat images in (e) can be attributed to inaccurate velocities
proposed by the JFWI+FWI model, or other issues that are not considered in this study,
such as the off-plane effect due to 3D propagations.

4.4 Discussion

In this study, the successful application of JFWI was driven by the need to manage
the attenuation footprint in the data and the cycle skipping issue. As argued in many
other investigations, waveform inversion requires an accurate forward modeling algorithm
that should be able to mimic the real physics of the recorded data. However, for the
sake of computational efficiency we do not take attenuation into account, and inevitably
generate inversion artifacts when using high frequencies. Nevertheless, we emphasize
that this is not a limitation of JFWI. In the future we believe high frequencies can
be involved in JFWI with the development of computing infrastructures and viscous
modeling techniques.

On the contrary, like classical FWI, the cycle skipping issue is a problem of JFWI in
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Figure 4.15: Surface-offset domain common image gathers at x = [6 7 8 9 10 11] km
positions, using (a) smooth initial model (Figure 4.8a), (b) 1D initial model (Figure
4.8c), (c,d) JFWI models (Figure 4.10c and Figure 4.10e) of short offsets respectively
using the smooth and 1D initial model, and (e,f) JFWI+FWI models (Figure 4.12a and
Figure 4.12c). Broadband data (Figure 4.3) are used without muting direct and diving
waves, which generate images with large slopes (e.g. yellow curves in the top left panel).
Improvements to image flatness are pointed. See text for discussions.
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Figure 4.16: Surface-offset domain common image gathers at x = [6 7 8 9 10 11] km
positions, using six models (a-f) as explained in Figure 4.15. Broadband data (Figure
4.3) are used, and direct and diving waves are muted by time windowing to assess the
image flatness in deep zones. Improvements to image flatness are pointed. See text for
discussions.
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the sense that a brute-force application to the real data always outputs unphysical mod-
els corresponding to local minima. In this study, we have identified the cycle skipping
problem occurred on early arrivals at far offsets. This results from the low-pass filter-
ing implemented in the data preprocessing which mixes up the diving waves with the
(pre)critical reflections. Besides, this also makes difficult the data separation driven by
time windowing. Because of the cycle skipping and rough data separation, the inversion
falls into a local minimum giving high-velocity anomalies. Possible remedies are the use
of more robust misfit functions (e.g. Warner et Guasch, 2014; Métivier et al., 2015) and
phase identification techniques (e.g. Ma et Hale, 2013).

To tackle the cycle skipping at far offsets, in this study, we limit the offset range during
inversion, which inevitably limits our ability to update low-to-intermediate wavenumbers
due to the insufficient wide angle coverage. Comparing with the 3D FWI model, the
JFWI model with the 1D initial fails to properly recover the gas cloud, unlike in the
synthetic case that a successful reconstruction was achieved using a crude 1D initial
model (Section 3.5). Therefore, a better initial model is required such that the needed
low wavenumbers are already available, such as the 2D model derived from the existing
tomographic models. Otherwise, an unphysical model could be built with good data
match due to the insufficient data content making the inverse problem very ill-posed.

In this study, a key question needs to answer is whether or not we can separate
the scales of the subsurface by using this data set. The concept of scale separation
concept has long served as the fundamental assumption in seismic imaging. However,
the real Earth is a medium of continuous spectrum and intermediate wavenumbers have
been exploited in various FWI applications. Indeed, the continuous mapping from angle
apertures to imaged wavenumbers (Devaney, 1982) allows to retrieve the intermediate
wavenumbers from intermediate-to-long reflection angles/offsets. At postcritical reflec-
tion angles, intermediate and low wavenumbers simultaneously define the kinematics of
the postcritical reflections and refracted waves (e.g. critical offsets, traveltimes and their
slopes, etc.). Considering this, we suspect that the aforementioned cycle-skipping prob-
lem occurred on early arrivals is actually a matter of missing intermediate wavenumbers
in the initial model: methods based on scale separation, like JFWI cannot be readily
applied to these offsets. As soon as this assumption is valid, for example, by using short
offsets JFWI starts to recover low wavenumbers from the data.

Therefore, we consider that for this data set it is more suitable to keep intermediate
wavenumbers during the inversion, and aim to build a broadband velocity model. As
in Operto et al. (2015) the tomographic model is used as their initial model which
contain sufficient intermediate wavenumbers to reproduce the critical reflections, and
they were able to reconstruct a reasonably good model via a direct implementation of
classical FWI. However, we emphasize the advantage of JFWI over classical FWI, the
improved low wavenumber samplings in difficult area such as the low-velocity gas cloud by
reflected waves without generating cycle skipping at short offsets (Chapter 2). Injecting
intermediate-to-high wavenumbers, without much effort, can be achieved by performing
a subsequent classical FWI starting from the JFWI model.
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4.5 Conclusions and perspectives

In this study, we have combined the sensitivity kernels associated to early arrivals and
reflections for a robust velocity macromodel building that is suitable for a subsequent
classical FWI implementation. We have applied the approach to the 2D long-offset data
set collected across a gas cloud. We have found that the attenuation imprint in the
gas cloud has a strong impact on the time-domain inversion, when attenuation is not
taken into account in the modeling process, therefore only low frequencies are considered.
Critical or postcritical reflections and refracted waves from below the gas cloud (i.e. early
arrivals at far offsets) are crucial to update the low wavenumbers in the gas cloud that
significantly affect the kinematic accuracy, but the cycle-skipping issue prevents a direct
use of these waves. Therefore, we use an offset-continuation strategy which progressively
incorporates longer offset in the inversion combined with the use of a more accurate
initial model. Narrowing the offset range and the aperture illumination of the subsurface
limits the ability of the inversion to update the low part of the wavenumber spectrum.
Therefore, it is still required to design an accurate initial model for the proposed least-
squares misfit function. A reasonably good velocity model is built with high level of
data fit, through the workflow that alternates between JFWI and impedance waveform
inversion followed by classical FWI.

Further investigations could deal with the 3D extension of JFWI to assess whether
the improved coverage could bring more low wavenumber samplings of the gas, whether
the full data cube may be sufficient to eliminate nonuniqueness of the solution, and
whether off-plane effects/propagation have influence in the 2D experiment. For these
goals, we may require more robust misfit functions to mitigate the related cycle skipping
problem and relax the need of an accurate velocity model.
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Chapter 5

Conclusions and Perspectives

Full waveform inversion (FWI) is a powerful tool for broadband subsurface imaging.
However, it often requires an accurate initial velocity model and/or sufficient low-frequency
content that are not easily available. Although modern acquisition geometries can pro-
vide very long-offset/wide-azimuth coverage, the angle illumination is still insufficient
for FWI to properly recover deep targets. Artifacts cannot be totally avoided due to the
shortage of data constraint, which requires complementary information to quality control
the results. In contrast, reflection waveform inversion (RWI) is carried out in the frame
of scale separation between large and small wavelengths of subsurface. The ambiguity
of velocity and reflector depths are decoupled, such that the misfit function associated
to RWI presents less local minima than that of FWI, therefore the line searching can
target the true model more easily. Furthermore, it has been shown that, by highlighting
the transmission regimes associated to reflected waves, RWI enhances small-wavelength
reconstructions at greater depths than FWI, therefore is more suitable for the surface
acquisition geometry. However, RWI omits the diving waves that are quite useful for
near-surface imaging.

In this thesis, I propose joint full waveform inversion (JFWI) to combine diving waves
and reflected waves for velocity macromodel building. Similar to RWI, this new method
is formulated under the scale separation assumption and benefits from reflected waves
to image large wavelengths of deep targets. However, it also includes the diving waves
in its formulation. Moreover, by analyzing the radiation patterns, I choose the VP–IP
parameterization of the subsurface to emphasize during inversion the scale separation
between the velocity model and reflectivity. Consequently, a cycle workflow is proposed
to alternate the velocity model building performed by JFWI and impedance imaging
performed by classical FWI of reflected waves (IpWI).

The synthetic Valhall experiment has shown the importance of using diving waves for
velocity inversion, as they can bring large-wavelength information which is not carried
by reflected waves. Compared with RWI, JFWI improves the velocity images at shallow
depths, which are further translated to a better recovery of deep targets. This implies
that, when the initial velocity model is inaccurate and the offset range is limited, RWI is
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unable to fit all reflected waves even for those generated by shallow interfaces; the addi-
tional information provided by diving waves assists in better constraining the inversion
at shallow depths and improve the fitting of all reflected waves. The promising velocity
model built by JFWI followed by FWI numerically confirms that 1) from a crude initial
model, JFWI can build a velocity model that is located inside the attraction valley of
the global minimum of the FWI misfit function; 2) the large-wavelength components in
the smooth JFWI velocity model are sufficient for FWI to build a broadband model.

The proposed hierarchical workflow (JFWI followed by FWI) is further assessed in
the real case study of the 2D data set including effect coming from a gas cloud above a
reservoir. For high numerical efficiency, I do not model the attenuation effect, and the
attenuation footprint in the results is mitigated by considering enough low frequencies
below 5.6 Hz. On the other hand, the cycle-skipping resulted from postcritical reflections
and refracted waves prevents a direct use of long offsets, and I use an offset-continuation
strategy starting from a more accurate initial model to stabilize the inversion. The ac-
ceptable broadband velocity model built by JFWI followed by FWI manifests the ability
of JFWI to build a reasonably good initial model for classical FWI, if 1) the cycle skip-
ping problem is mitigated, and 2) sufficiently long offsets are available or alternatively,
a better initial model is provided for JFWI that is not so accurate as expected for FWI.

Further necessary work should consider more convex misfit function rather than the
L2-norm difference-based misfit function (Ma et Hale, 2013; Warner et Guasch, 2014;
Métivier et al., 2015, etc). The candidates should allow an explicit operation to separate
the early arrivals and reflected waves, and for this reason, the ones formulated in the
time domain are preferred. In perspectives, such a good misfit function can allow a direct
use of the whole data, unlike in the synthetic and real-data case where I should select a
proper time window or offset range to mitigate cycle skipping. Undoubtedly, the benefit
is to build the velocity model in a more robust way.

I am also encountered with the cross-talks issue during the broadband reconstruction
process performed by classical FWI starting from the JFWI model. It is generated
because I use the VP–ρ parameterization which introduces the ambiguity between VP
and ρ for small scattering angles or short offsets. The mitigation of such cross-talk
effects has been well identified and studied in the literature (Operto et al., 2013). Using
the second-order information is considered to tackle this problem and successful examples
have been published (Métivier et al., 2014a).

JFWI is also oriented to 3D applications in the future. Nonunique solutions presented
in the real-case study reflect the insufficiency of data coverage as only a 2D line is
considered. Longer offsets provided from the diagonal direction of the 3D geometry may
relax the need of accurate initial models for JFWI. The increased elapse time from 2D
to 3D can be offset by using the time-depth conversion (Plessix, 2013; Brossier et al.,
2015). On the other hand, the attenuation effect has prevented me from using higher
frequencies and recovering high-resolution models, therefore viscous modeling should be
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embedded in the future to honor the name “full waveform”. Besides, extensions to elastic
inversion could be considered: how to introduce the shear-wave velocity into the frame
of scale separation between compressional velocity and acoustic impedance is still an
open question in this study. For this purpose, I am also interested in other datasets to
further assess the promises and pitfalls of the proposed hierarchical workflow in different
circumstances.
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Clément, F., Chavent, G. et Gómez, S. (2001). Migration-based traveltime waveform
inversion of 2-D simple structures: A synthetic example. Geophysics, 66:845–860.

Cocher, E., Chauris, H. et Lameloise, C.-A. (2015). Imaging with surface-related
multiples in the subsurface-offset domain. In Proceedings of the 77th EAGE Conference
& Exhibition. EAGE.

Crase, E., Pica, A., Noble, M., McDonald, J. et Tarantola, A. (1990). Robust
elastic non-linear waveform inversion: application to real data. Geophysics, 55:527–
538.

Dablain, M. (1986). The application of high order differencing for the scalar wave
equation. Geophysics, 51:54–66.

Demmel, J. W. (1997). Applied numerical linear algebra. SIAM, Philadelphia.

Devaney, A. (1984). Geophysical diffraction tomography. Geoscience and Remote
Sensing, IEEE Transactions on, GE-22(1):3–13.

Devaney, A. J. (1982). A filtered backprojection algorithm for diffraction tomography.
Ultrasonic Imaging, 4:336–350.

Diaz, E., Sava, P. et Yang, T. (2013). Data-domain and image-domain wavefield
tomography. The Leading Edge, September:1064–1072.
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Lambaré, G., Alerini, M., Baina, R. et Podvin, P. (2004). Stereotomography: a
semi-automatic approach for velocity macromodel estimation. Geophysical Prospecting,
52:671–681.
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Xu, S., Wang, D., Chen, F., Lambaré, G. et Zhang, Y. (2012). Inversion on reflected
seismic wave. SEG Technical Program Expanded Abstracts 2012, pages 1–7.

Yang, P., Brossier, R., Métivier, L. et Virieux, J. (2016). A review on the system-
atic formulation of 3D multiparameter full waveform inversion in viscoelastic medium.
Geophysical Journal International, 207(1):129–149.

143



BIBLIOGRAPHY

Yang, T. et Sava, P. (2011). Wave-equation migration velocity analysis with time-shift
imaging. Geophysical Prospecting, 59(4):635–650.

Yang, T., Shragge, J. et Sava, P. (2013). Illumination compensation for image-domain
wavefield tomography. Geophysics, 78(5):U65–U76.

Yilmaz, O. (2005). Earthquake seismology, exploration seismology and engineering
seismology: How sweet it is—listening to the earth. In 4th Congress of the Balkan
Geophysical Society.

Zelt, C. et Barton, P. J. (1998). Three-dimensional seismic refraction tomography:
a comparison of two methods applied to data from the Faeroe basin. Journal of
Geophysical Research, 103(B4):7187–7210.

Zelt, C. et Smith, R. B. (1992). Seismic traveltime inversion for 2-D crustal velocity
structure. Geophysical Journal International, 108:16–34.

Zhang, J., Chen, J. et al. (2014). Joint seismic traveltime and waveform inversion for
near surface imaging. In 2014 SEG Annual Meeting. SEG.

Zhao, H. (2004). A fast sweeping method for eikonal equations. Mathematics of com-
putation, 74(250):603–627.

Zhou, H., Amundsen, L. et Zhang, G. (2012). Fundamental issues in full waveform
inversion. In SEG Technical Program Expanded Abstracts, pages 1–5. SEG.

Zhou, W., Brossier, R., Operto, S. et Virieux, J. (2015). Full waveform inversion
of diving & reflected waves for velocity model building with impedance inversion based
on scale separation. Geophysical Journal International, 202(3):1535–1554.

144



Postscript

I started my PhD thesis in April of 2013. After the EAGE annual meeting of that year, I
told one of my supervisor, Romain Brossier, that I would like to attend EAGE the next
year. He was astonished, because at that time I even had not touched RWI yet, but if
I want to go I should submit an abstract to EAGE. The deadline was some day at the
beginning of February of 2014, giving me only about three months to make some new
work. So, I kept interrupting Romain in the first week, and gradually understood the
concept of sensitivity kernels associated to diving waves and reflected waves, in smooth
models or the ones with perturbations, by doing small tests. One day, he told me what
he and Stéphane Operto, another supervisor, had “brewed” in their mind. Some other
day, Stéphane returned from the 2013 SEG annual meeting and sent us a report on what
he had discussed with some one during the meeting (a mystery guy...). Though many
equations, I was able to understand what their motivation was behind and what the
difficulty they had encountered: it is straightforward to include both diving waves and
reflected waves in FWI to build velocity macromodel, but how to formulate the misfit
function without generating the high-wavenumber model updates?

The answer was found out based on clearly knowing the contribution from each
body wave, and how it is taken out via the Lagrangian formulation of the adjoint-state
method. Staring at my drafts, I realized that every hint leads to a data separation in the
misfit function: if I could separate the data, the correlation between the incident wave,
generated from the seismic source, and the adjoint wave, generated from the adjoint
source that uses the reflected wave residual as the wavelet function, disappears in the
gradient expression! This is what we need for JFWI to suppress the migration isochrone
from the gradient.

However, the separation only works for the suppression of the first-order migration
isochrones. When I test with the two-layer case, the inter-bed multiples could gener-
ate migration isochrones of higher orders (more exactly to two and three orders, see
Appendix B), thus brings new high-wavenumber contributions. Since the data separa-
tion between reflected waves from different layers is more difficult and even impossible
(though the high-order isochrones can be suppressed if we could do so), Romain told
me to use velocity–impedance parameterization based on former studies of SEISCOPE
(Yaser Gholami, Vincent Prieux etc). This problem was then nicely solved.

I was happy to attend EAGE in 2014 with my new approach and some results from
the synthetic Valhall application. At that time, the cycle skipping problem coming from
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the multiscattered waves generated by adjacent sharp interfaces could not be solved,
and I was only able to reconstruct shallow regions including gas layers at 1.5 to 2.5 km
depths. Nonetheless, as it is said Rome was not built in a day, I was satisfied with my
preliminary results. What was really a challenge for me was to present something in front
of many high-level expertises (especially they are in dark), for the first time! Needless
to say, I was nervous. However, as having practiced many times I was still able to speak
fluently without organizing the sentences. Coincidently, Jean was the chairman of that
FWI session and he helped me finish it smoothly. So finally, it was good.

The deeper part of the synthetic Valhall model was recovered after I managed to
handle the multiscattered waves, simply by ignorance their contribution in the early
stage and re-take them at the end. With the improved results I did a poster presentation
in 2014’s SEG meeting and published a paper on Geophysical Journal International.
My writing skills, although still defective now, had improved a lot many thanks to my
supervisors’ instructions, especially thanks to Stéphane who left many comments in my
latex file such that I could compare them with mine.

In that year, there was a release of benchmark test provided by Chevron to hold
a “competition” among worldwide FWI teams. The winner was CGG, although they
actually did not perform FWI. The data were very suitable to JFWI: abundant reflection
phases which were well separable from direct waves. The result showed a high-velocity
body on the left side in the shallow zone. However, Romain did not believe it, because
his multiscale FWI did not produce the same thing. It was funny that resolving this
disagreement had to wait for the “magical” moment when the answer was revealed.
It turned out that there was no such high-velocity body, which I think would be a
translation of the diving wave-associated kernel due to insufficient offset range. However,
this data were not touched again after the SEG meeting, and I directly moved forward
to the real case study following the established research plan (three years are short!).

The real data application was not as successful as the synthetic study. Many prob-
lems arose that I was not aware of at the beginning. Before Andrzej Górszczyk visited
Grenoble in the winter of 2015, the result was a mess. He told me how to whiten the data
spectrum to reduce potential cycle skipping due to ringing effect after low-pass filtering.
Then, following Stéphane and Romain’s suggestion, I tested the data by implementing
classical FWI respectively in the time and frequency domains, and quickly identified the
problem of attenuation (JFWI is implemented in the time domain without considering
attenuation for the sake of computational cost). This prompted the discussion with
Peng-Liang Yang, a postdoc of SEISCOPE working on cheap implementations of viscous
FWI in the time domain. With his help, I could find a band of lower frequencies that is
safe for me to perform seismic modeling without considering attenuation. (Therefore, a
perspective of JFWI could be to use higher frequencies when a specific modeling tool is
available.)

After one year’s effort (or say struggle), the finalization of the real case study was
set to the deadline of SEG submission, 1st of April, 2016. However, which message to
deliver to the audiences was not clear for me. After several telephone discussions with
Stéphane, I learned that I should report the promises and limitations of JFWI, rather
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than good results that show JFWI was working. (In fact, it must not work due to many
reasons!) This change of mind led me to point out some critical issues in JFWI.

I have learned many during the four-year stay in Grenoble, and benefited a lot from
my supervisors and colleagues to reach the finishing line. At the end, I want to share a
Chinese proverb with the reader and all the people I work with: 6

6“Diligence is the path to the mountain of knowledge; hard-work is the boat to the endless sea of
learning.”
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Appendix A

Derivation of Gradients through Lagrangian
Formulation

Although we perform full waveform inversion in the time domain, we shall derive the gra-
dient formulations in the frequency domain for the sake of compactness. The Lagrangian
quantities of FWI, RWI, FWI with reflectivity (denoted by FWI+reflectivity in Figure
3.2(d), here FWI2 for short), and JFWI can be expressed with common notations (see
Plessix (2006b) for a review of adjoint-state method):

L = Misfit function + <〈a|First constraint〉+ <〈b|Second constraint〉, (A.1)

where a and b denote the adjoint-state variables and <〈·|·〉 denotes the real part of the
inner product. In particular,

Misfit function State variable(s)

FWI 0.5‖W (dobs −Ru)‖2 u0
RWI 0.5‖W r(dreflobs −Rδu)‖2 u0 and δu
FWI2 0.5‖W d(ddivobs −Ru0) u0 and δu

+W r(dreflobs −Rδu)‖2
JFWI 0.5‖W d(ddivobs −Ru0)‖2 u0 and δu

+0.5‖W r(dreflobs −Rδu)‖2

Continued:

First constraint Second constraint

FWI B(m)u0 − s –
RWI B(m0)u0 − s B(m0 + δm)δu+ ∆Bu0
FWI2 B(m0)u0 − s B(m0 + δm)δu+ ∆Bu0
JFWI B(m0)u0 − s B(m0 + δm)δu+ ∆Bu0

where the physical meaning of u0 and δu are the background and scattered components
of the modelled wavefield, respectively. Starting from the smooth initial model, the
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scattered field is not generated during the first iteration of FWI, therefore δu = 0 and
only the first constraint is required. The operator B denotes the modeling operator, s
the source term and R the real-valued sampling operator that extracts the calculated
data from the modelled field.

The expression of the first constraint is derived from the forward problem equation
(i.e. B(m)u = s) in m or m0 to constrain u0. Similarly, the expression of the second
constraint is from the equation B(m+ ∆m)(u+ δu) = s = B(m)u to constrain δu. The
source term −∆Bu0 with ∆B = B(m0 + δm) − B(m0) emits the scattered field when
the background field u0 hits local diffractors. Since the modeling operator B(m0 + δm)
depends on δm, high-order scattering effects are accounted for in δu.

Setting the derivatives of Equation (A.1) with respect to the state variables to zero
gives the adjoint-state equations

∂δuL = 0 gives ∂u0L = 0 gives

FWI – B(m)†a = −RTWTW∆d∗

RWI B(m0 + δm)†b = B(m0)
†a = −∆B†b

−RTW rTW r∆drefl∗

FWI2 B(m0 + δm)†b = B(m0)
†a = −∆B†b

−RTW rT(W d∆ddiv∗ +W r∆drefl∗) −RTW dT(W d∆ddiv∗ +W r∆drefl∗)
JFWI B(m0 + δm)†b = B(m0)

†a =
−RTW rTW r∆drefl∗ −∆B†b−RTW dTW d∆ddiv∗

where ∆d∗ denotes the conjugate of the data residual, T the transpose operation and
† the adjoint operation. In the first column, ∆d∗ represents the data residuals at the
receiver positions, reversed in time, augmented with zeroes in the subsurface model by
the prolongation operator RT, and used as virtual sources to produce the adjoint field
b. In the second column, the other adjoint quantity a is emitted by the residual source
at receiver positions or by the secondary sources located at diffractor positions δm. The
adjoint propagator B† indicates that the computation of the adjoint quantities can be
implemented by modifying the forward modeling code without much effort, and the
cost to compute one adjoint quantity is the same as the cost of one forward modeling
computation.

Analysis of these equations allows us to give a more physical interpretation of the
adjoint fields a and b :

b a

FWI – W 2(λd0 + λr0)
RWI W r2(λr0 + δλr) W r2δλr

FWI2 W rd(λd0 + δλd) W d2λd0 +W rdδλd

+W r2(λr0 + δλr) +W drλr0 +W r2δλr

JFWI W r2(λr0 + δλr) W d2λd0 +W r2δλr

where λd0 denotes the background adjoint field from the diving wave residuals, δλd the
scattered adjoint field from the diving wave residuals, λr0 the background adjoint field
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from the reflected wave residuals, and δλr the scattered adjoint field from the reflected
wave residuals. W 2 is the short-hand for WTW , and similarly W d2 for W dTW d, W r2

for W rTW r, W dr for W dTW r and W rd for W rTW d. Instead of computing the adjoint
quantities a and b, we actually compute the adjoint fields λ’s because their source terms
are easier to be built: the evaluation of the operator ∆B is not required and only the
data residuals are computed.

In the adjoint-state method, the gradient is found by taking the derivative of Equation
(A.1) with respect to m or m0. Inserting the respective expressions of a, b, we find that

∇CFWI = (λd0 + λr0)
† W 2∂B(m)

∂m
u0, (A.2)

∇CRWI = δλr† W r2∂B(m0 + δm)

∂m0

u0 + λr†0 W r2∂B(m0 + δm)

∂m0

δu (A.3)

+ δλr† W r2∂B(m0 + δm)

∂m0

δu (A.4)

+ λr†0 W r2∂∆B

∂m0

u0 (≈ 0), (A.5)

∇CFWI2 =
[
λd†0 W d2 + λr†0 W rd

] ∂B(m0)

∂m0

u0 (A.6)

+
[
δλd† W dr + δλr† W r2

] ∂B(m0 + δm)

∂m0

u0 (A.7)

+
[
(λd0 + δλd)† W dr + (λr0 + δλr)† W r2

] ∂B(m0 + δm)

∂m0

δu (A.8)

+
[
λd†0 W dr + λr†0 W r2

] ∂∆B

∂m0

u0 (≈ 0), (A.9)

∇CJFWI = λd†0 W d2∂B(m0)

∂m0

u0 + δλr† W r2∂B(m0 + δm)

∂m0

u0 (A.10)

+ λr†0 W r2∂B(m0 + δm)

∂m0

δu+ δλr† W r2∂B(m0 + δm)

∂m0

δu (A.11)

+ λr†0 W r2∂∆B

∂m0

u0 (≈ 0). (A.12)

Apart from the fact that they are formulated in the frequency domain, these gradients
expressions are the exact forms of the compact ones provided in Equations (3.3), (3.5)
and (3.7), respectively. For FWI2, the gradient expression is not given but illustrated in
Figure 3.3(d).

The terms associated with ∂∆B/∂m0 have non-zero values only at reflector posi-
tions (where δm differs from 0). Regularization of the inverse problem helps suppress
these unwanted contributions because they have high-wavenumber contents. Therefore,
the last terms of RWI, FWI2 and JFWI gradients (A.5), (A.9) and (A.12) can be ne-
glected. Nonetheless, the workflow proposed to evaluate the JFWI gradient (Algorithm
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3.1) provides the exact expressions. In the frequency domain, G1 and G2 are given by:

G1 = (λr0 + δλr)† W r2∂B(m0 + δm)

∂m0

(u0 + δu), (A.13)

G2 = λd†0 W d2∂B(m0)

∂m0

u0 − λr†0 W r2∂B(m0)

∂m0

u0. (A.14)

One can verify that adding G2 to G1 results in the same expression as (A.10) to (A.12).

Another approximation can be made on Equation (A.6) to (A.9). Terms representing
interferences of δλd and u0, λ

d
0 and δu as well as δλd and δu can be discarded simply

because these interferences happen to high-order scattered fields, giving negligible con-
tribution to the gradient (e.g. around 2% of the total energy in the synthetic Valhall
case).
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High-order scattering effect

Formulations of the high-order migration isochrones can be theoretically deduced from
expressions (A.10) to (A.12). Taking the two-reflector case (Figure 3.4a) as an example,
the scattered component of the adjoint field can be decomposed as infinite series in an
increasing order:

δλr1 = δλr11 + δλr12 + δλr11,2 + . . . , (B.1)

δλr2 = δλr21 + δλr22 + δλr21,2 + . . . , (B.2)

where r1 and r2 respectively indicate the early and late reflection phases that provide the
adjoint sources. Numbers in the subscript indicate the reflectors at which the scattering
takes place. 1: scattering at the shallow reflector; 2: scattering at the deep reflector;
1, 2: successive scatterings at the shallow and deep reflectors. Similarly, the scattered
component of the incident field can be decomposed using the expression δu = δu1+δu2+
δu1,2 + . . . . Inserting these decompositions into expressions (A.10) to (A.12), omitting
small-amplitude terms and switching to the time domain, the gradient turns out to be

∇CJFWI = u0 ? λ
d
0(A) (B.3)

+ u0 ? δλ
r1
1 (B) + δu1 ? λ

r1
0 (C) + δu1 ? δλ

r1
1 (D) (B.4)

+ u0 ? δλ
r2
2 (E) + u0 ? δλ

r2
1,2(E) + δu2 ? λ

r2
0 (F) + δu1,2 ? λ

r2
0 (F) (B.5)

+ u0 ? δλ
r2
1 (G) + δu1 ? λ

r2
0 (H) + δu1 ? δλ

r2
1 (I, J) (B.6)

+ δu2 ? δλ
r2
2 (K) + δu1,2 ? δλ

r2
2 (K) + δu2 ? δλ

r2
1,2(K) + δu1,2 ? δλ

r2
1,2(K). (B.7)

Each term represents one or two Fresnel zones labelled by the capital letters in paren-
theses. They are shown in Figure B1. Zone A is the classical first-Fresnel zone wavepath
generated by direct/diving waves (Figure B1a). Zones B and C are the RWI wavepaths
associated with the first reflection, whereas Zone D is a high wavenumber isochrone lo-
cated near the shallow reflector (Figure B1b). The size of Zone D decreases as higher
frequencies are used. The late reflection phase gives rise to other zones E to K (Figure
B1c). Zones E and F are the RWI wavepaths associated with the second reflector.
Zones I, J, G and H are higher-order migration isochrones. In migration imaging, these
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Figure B1: Decomposed JFWI gradient in the two-reflector case, components associated
to (a) direct/diving wave, (b) early reflection phase denoted by r1, and (c) late reflection
phase denoted by r2. Fresnel zones A–K are represented by correlation terms in Equation
(B.3) to (B.7). Solid and dashed arrows denote the ray paths followed by the modelled
and adjoint fields, respectively. Blue paths are useful for low-wavenumber imaging unlike
the red ones.

isochrones are conventionally considered as migration artifacts, suppressed by destruc-
tive interference from different source-receiver couples. Like Zone D, Zone K is located
near the deep reflector position and shrinks with higher frequencies.
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