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Abstract

Numerical solution of dynamical systems have been a successful means for study-
ing complex physical phenomena. However, in large-scale setting, the system
dimension makes the computations infeasible due to memory and time limita-
tions, and ill-conditioning. The remedy of this problem is model reduction. This
dissertation focuses on projection methods to efficiently construct reduced order
models for large linear dynamical systems. Especially, we are interesting by pro-
jection onto unions of standard Krylov subspaces which lead to a class of reduced
order models known as rational interpolation. Based on this theoretical framework
that relate Krylov projection to rational interpolation, four rational Lanczos-type

algorithms for model reduction are proposed.

At first, an adaptive rational block Lanczos-type method for reducing the order
of large scale dynamical systems is introduced, based on a rational block Lanc-
zos algorithm and an adaptive approach for choosing the interpolation points. A
generalization of the first algorithm is also given where different multiplicities are
consider for each interpolation point. Next, we proposed another extension of the
standard Krylov subspace method for Multiple-Input Multiple-Output (MIMO)
systems, which is the global Krylov subspace, and we obtained also some equa-
tions that describe this process. Finally, an extended block Lanczos method is

introduced and new algebraic properties for this algorithm are also given.

The accuracy and the efficiency of all proposed algorithms when applied to

model order reduction problem are tested by means of different numerical exper-



iments that use a collection of well known benchmark examples.

Keywords: Lanczos algorithm, Model reduction, Moment matching, Rational

Krylov subspace, Transfer function.



Résumé

La solution numérique des systemes dynamiques est un moyen efficace pour étudier
des phénomenes physiques complexes. Cependant, dans un cadre a grande échelle,
la dimension du systeme rend les calculs infaisable en raison des limites de mémoire
et de temps, ainsi que le mauvais conditionnement. La solution de ce probleme est
la réduction de modeles. Cette these porte sur les méthodes de projection pour
construire efficacement des modeles d’ordre inférieur a partir des systemes linéaires
dynamiques de grande taille. En particulier, nous nous intéressons a la projection
sur la réunion de plusieurs sous-espaces de Krylov standard qui conduit & une
classe de modeles d’ordre réduit. Cette méthode est connue par 'interpolation
rationnelle. En se basant sur ce cadre théorique qui relie la projection de Krylov
a l'interpolation rationnelle, quatre algorithmes de type Lanczos rationnel pour

la réduction de modeles sont proposés.

Dans un premier temps, nous avons introduit une méthode adaptative de type
Lanczos rationnel par block pour réduire I'ordre des systemes linéaires dynamiques
de grande taille, cette méthode est basée sur l'algorithme de Lanczos rationnel
par block et une méthode adaptative pour choisir les points d’interpolation. Une
généralisation de ce premier algorithme est également donnée, ou différentes mul-
tiplicités sont considérées pour chaque point d’interpolation. Ensuite, nous avons
proposé une autre extension de la méthode du sous-espace de Krylov standard
pour les systemes a plusieurs-entrées plusieurs-sorties, qui est le sous-espace de
Krylov global. Nous avons obtenu des équations qui décrivent cette procédure.

Finalement, nous avons proposé une méthode de Lanczos étendu par block et nous



avons établi de nouvelles propriétés algébriques pour cet algorithme.

L’efficacité et la précision de tous les algorithmes proposés, appliqués sur des

problemes de réduction de modeles, sont testées dans plusieurs exemples numériques.

Mots clés: Algorithme de Lanczos, Fonction de transfert, Moment correspon-

dant, Réduction de modele, Sous-espace de Krylov rationnel.
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Mathematical symbols

R

C

Rmx*n
A(A)
Umaz(A)

<,>f
X1pY

J
1]

I-]]2
17
[RE2

-9

set of real numbers

set of complex numbers

set of real n x m matrices
spectrum of matrix A

largest singular value of matrix A

zero matrix

identity matrix of dimension n x n

real part of s

left half plane, {s € C™ : Re(s) < 0}
right half plane, {s € CT : Re(s) > 0}

inverse of matrix A
transpose of matrix A

i-th unit vector

inner product

Frobenius product

<X,)Y >p=0

Kronecker symbol

V-1

arbitrary norm of a matrix
spectral norm of a matrix
Frobenius norm of a matrix
‘H> norm of a dynamical system

Hoo norm of a dynamical system
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General Notation

A B,C

state space matrices of the original MIMO state space system
the input vector of the state space system

the output vector of the state space system

the state variable

order of the original state space model

n order original dynamical system

transfer function of the original system

state space matrices of the reduced MIMO state space system
order of the reduced state space model

r*" order reduced system

transfer function of the reduced system

the set of interpolation points

i'" Hankel singular value of 3

the error system

3" moment of ¥ at o

4" moment of ¥, at o

4" Markov parameter of 3

p9) 4" Markov parameter of 3,

Ko (- -) the block Krylov subspace

Kin(.s.) the matrix Krylov subspace

Ke (.,.) the extended block Krylov subspace

K,.(.,.,.) the rational block Krylov subspace

Kn(.,.,.) the matrix rational Krylov subspace

Vi, W,,  projection matrices computed using the block Lanczos algorithm

Vs Win projection matrices computed using the global Lanczos algorithm

Vs,,, Ws,_ projection matrices computed using the extended block Lanczos algorithm
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Abbreviations

LTI
SISO
MIMO
IRKA
AORBL
AMRBL
AMRGL
TRKS
EBLA
SVD

Linear Time Invariant

Single input Single Output

Multiple input Multiple Output

Iterative Rational Krylov Method

Adaptive Order Rational Block Lanczos
Adaptive Modified Rational Block Lanczos
Adaptive Modified Rational Global Lanczos
Tangential Rational Krylov Subspace
Extended Block Lanczos Algorithm

Singular value decomposition
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Introduction

1.1 Motivation de la these

Les systemes linéaires dynamiques ont été étudiés depuis longtemps et dans plusieurs
domaines: la physique, la chimie, les mathématiques, l'ingénierie, et ainsi de suite.
Dans le contexte d’ingénierie, les systemes linéaires ont été largement étudiés
depuis les années 1930 [3, 104, 107, 109, 115]. De nos jours, ces systémes trouvent
leurs applications dans d’autres domaines, comme le domaine de la bio-chimie et

le domaine d’économie.

En général, les systemes dynamiques proviennent directement par modélisation
de phénomenes phisiques. Ils proviennent également de la discrétisation spaciale
des équations différentielles partielles (EDP) pour la simulation de systemes de

controle.

19



Chapter 1. Introduction

Dans la littérature, de nombreux travaux ont été publiés sur les systemes
linéaires, en particulier en ce qui concerne les parties théoriques fondamentales.
Cependant, il y a une partie de la littérature relativement limitée pour les systemes
linéaires de grande taille qui se posent naturellement lorsqu’on modélise des struc-
tures complexes. En général, les systemes linéaires de grande taille sont creuses
et souvent structurés. Les méthodes itératives sont plus appropriées que les
méthodes directes. Le probleme c’est que ces modeles dynamiques sont souvent
compliqués a étudier et contiennent un grand nombre de variables d’état. Ceci

nous conduit a la notion de réduction de modéles.

La réduction de modeles est considérée comme un processus de description
et simulation simplifiées de la dynamique d'un probleme physique. Il y a une
correspondance biunivoque entre la précision et le cout de calcul. Donc pour
bien choisir la technique de réduction de modeles, il faut faire attention a cette
correspondance et a la précision souhaitée. Une réduction de modeles permet de
réduire le temps de calcul et réduire la mémoire utilisée et ceci passent par la

réduction de nombre de variables d’état nécessaire.

Donc la motivation de cette these est la suivante: a partir des systemes linéaires
dynamiques de grande taille, on va développer de nouveaux algorithmes qui seront
appliqués pour réduire la dimension de telle fagon que le systeme réduit préserve
les mémes caractéristiques du systéeme d’origine. C’est ainsi que le modele simple

obtenu sera utilisé a la place du modele de départ.

1.2 Formulation du probleme

Dans cette these, on va s’intéresser aux systemes linéaires dynamiques de grande

taille, invariants dans le temps et qui sont décrits par la forme suivante

20



Chapter 1. Introduction

ou z(t) € R™ est le vecteur d’état, u(t),y(t) € RP sont le vecteur d’entrée et le
vecteur de sortie du systeme (1.1), respectivement. La matrice A € R™" est

supposée étre de grande taille et creuse et B,CT € R™P (p < n). Le systéme

A|B
C

La fonction de transfert F'(s) du systeme X est donnée par
F(s)=C(sl, — A)'B.

(1.1) peut étre aussi définit par

. (1.2)

Pour le cas particulier p = 1, le systeme dynamique est dit un systeme avec seule-
entrée seule-sortie, et il est dit un systeme avec plusieurs-entrées plusieurs-sorties
dans 'autre cas. Dans plusieurs applications, la dimension n du systeme d’origine
est tres grande ce qui rend les calcules tres difficiles au niveaux de temps et de
mémoire, et c’est la motivation de base du probleme la réduction de modeles.
Donc, 'objectif de la réduction de modeles est de remplacer le systéme (1.1) par

un syteme dynamique d’ordre inférieur ayant la forme suivante

{@m:m%@+&mw (1.3)

yr(t) = Crap (1),

ot A, € R™" B,,CT € R™P et r < n, tel que le modele d’ordre réduit préserve
les méme caractéristiques du systeme d’origine comme la stabilité et la passivité.
En plus, la sortie y, du systeme réduit doit étre proche a celle du modele d’origine.
On peut aussi définir le systeme (1.3) par
A, | B,

3, =
C, |0

, (14)

sa fonction de transfert est
F.=C,.(sI, — A,)"'B,.

En général, il existe deux catégories de méthodes pour la réduction de modeles:
les méthodes basées sur la SVD et celles de Krylov. Une approche tres connue
pour la premiere catégorie est la méthode dite troncature équilibrée introduite par

Mullis et Robert [109] et utilisée ultérieurement par Moore [107] pour les systéemes
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Chapter 1. Introduction

et le controle. L’application de la méthode de troncature équilibrée sur un systeme
stable préserve les propriétés théoriques importantes du systeme d’origine comme
la stabilité et fournie une majoration de I’erreur. Cependant, cette méthode n’est
pas adapté pour les systemes de grande taille.

Les méthodes de Krylov pour la réduction de modeles sont basées sur I'interpolation
rationnelle de la fonction de transfert du systéme d’origine autour de quelques
fréquences. Ces méthodes utilisent directement les bases biorthogonales d'un cer-
tain sous-espace de Krylov pour construire le modele d’ordre réduit. Parmis ces
méthodes, celles basées sur Arnoldi et Lanczos [3, 78, 81]. Malheureusement,
la version standard de ces algorithmes a tendance de créer des modeles d’ordre
réduit qui donne de mauvaise approximation. Pour traiter ce probleme, des al-
gorithmes d’Arnoldi et de Lanczos rationnels ont été proposés [1, 13, 43, 50, 71].
Ces procédures permettent d’obtenir un modele d’ordre réduit tel que sa fonc-
tion de transfert approxime la fonction de transfert du systeme d’origine au-
tour de plusieurs points d’interpolation. L’avantage des méthodes de sous-espace
de Krylov est qu’elles traitent les problemes de grande taille et qu’en plus elles
s'implimentent d’une maniere itérative et efficace. Dans la littérature, plusieurs
travaux ont montré que la méthode de Lanczos est liée a 'approximation de Padé
[24] qui est aussi une méthode utile pour réduire la dimension des systemes de
grande taille [25, 26, 49]. L’inconvénient de cette approche c¢’est qu’elle ne préserve
pas la stabilité du systeme d’origine. Pour résoudre ce probleme, un approximant
de type Padé partiel a été introduit pour préserver les caractéristiques principales

du systeme d’origine comme la stablilité et la passivité [10].

Dans cette these, on va utiliser les méthodes de Krylov rationnel pour réduire la
dimension des systemes linéaires dynamiques de grande taille. Plus précisemment,
on va proposer des algorithmes de type-Lanczos rationnel pour construire deux
matrices V, W € R™" avec W1V = I, et telle que les matrices du systéme réduit
sont donées par

A, =WTAV, B.=WT'B, C, =CV.
Le probleme majeur des méthodes de Krylov rationnel est la construction d'un
ensemble de points d’interpolation que 1’on doit utiliser pour construire les es-

paces de Krylov rationnel. Cette procédure n’est pas automatique et les points
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Chapter 1. Introduction

d’interpolation doivent étre convenablement choisis pour avoir de bonnes approx-
imations et garantir une bonne convergence de la procédure. Plusieurs techniques

pour bien choisir ces parametres vont étre aussi proposées dans ce travail.

1.3 Exemples motivants

Dans cette section, on va donner quelques exemples d’applications de systemes
dynamiques de grande dimension. Ces types de systemes sont utilisés pour la

simulation et le controle. Pour plus d’exemples voir [3, 124]

1.3.1 Réacteurs chimiques: Controle de la température

des réactifs

Le premier exemple est un systeme qui apparait lors de l'optimisation de la
température (chauffage/refroidissement) d'un écoulement fluide dans un tube.
L’application potentielle serait la régulation de la température de certaines entrées

de réactif dans un réacteur chimique. Les équations du modele sont:

0
—x—/‘iAw—i—/I}.vx = 0 sur
ot
r = o sur I,
ox
o = ou—=z) sur Thear, U T heat,
0
6_2 -0 sur Doy

Ici 2 désigne le domaine rectangulaire représenté sur la figure 1.1. Le flux en-
trant I';, est du coté gauche du domaine, tandis que le flux sortant I',,; est a la
frontiere droite. Nous pouvons considérer ce domaine juste en dimension 2, en sup-
posant une symétrie rotationnelle ce qui est équivalent a supposer un écoulement
non-turbulent. Les matrices tests ont été crées en utilisant le logiciel COMSOL4

multi-physique, leurs dimensions est 1090. Le systeme est doté d’une seule entrée
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Chapter 1. Introduction

appliquée aux limites supérieures et inférieures vu sa symétrie rotationnelle. Les
trois données de sortie correspondent a la température de 1’écoulement du flux
a la sortie. Notons que dans ce cas, nous avons un domaine convexe qui nous

permet d’utiliser les points d’évaluation comme des sorties.

En utilisant une discrétisation spatiale par éléments fini, le modele semi-discret

s’écrit sous la forme suivante:

Mi = Az + Bu(t)
{ y(t) = Cx

En supposant que la matrice M est inversible, ce systeme peut étre représenté

sous la forme standard (1.1).

(1.5)
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Figure 1.1: Domain €2 for the Inflow Example: A 2d cross-section of the liquid
flow in a round tube.
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1.3.2 Systéme vibrationnel/systéme acoustique

Considérons un pare-brise d'une voiture soumise a une accélération. Le probleme
consiste a calculer le bruit généré en des points en dehors de la fenétre de la
voiture. Le premier pas dans la résolution de ce probleme est 'EDP décrivant
la déformation du pare-brise constitué d’'un matériau donné. La discrétisation
par éléments finis donne 7564 noeuds (3 couches de 60 x 30 éléments), pour un
matériau constitué de verre avec un module de Young égale & 7.107N/m?, une
densité de 2490kg/m? et un facteur de poisson de 0.23. Ces parametres aident &
déterminer expérimentalement les coefficients du modele résultant par les éléments
finis. Enfin le pare-brise subit une force en un point donné, et ’'objectif est donc

de calculer le déplacement de ce point.

La discrétisation par éléments finis de cet exemple mene a I’'équation du second

ordre suivante )

M%x(t) + C%x(t} + Kz(t) = f(¢),

ou la dimension du probleme discrétisé est n = 22692, x représente la position,

d
et Em est la vitesse du pare-brise au point choisi. Les matrices M,C et K sont
respectivement les matrices de masse, d’amortissement et de raideur. Comme il
s’agit d’un systéme de second ordre, sa complexité est deux fois plus élevé (45 384

états).

1.3.3 Traquer une tempéte dans ’océan pacifique

Le probleme consiste a étudier la sensibilité de 1’équilibre de I’atmosphere face aux
perturbations. En particulier, nous souhaitons déterminer la perturbation initiale
qui génere la plus grande perturbation dans un intervalle de temps spécifié. Ces
perturbations sont gouvernées par les équations de ORR-Sommerfield. En sup-
posant des perturbations harmoniques de la vitesse du vent de la forme ®(x,y,t) =
d(y,t)e ™ on a
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9p(y, 1)
ot

L Py,t) 1 [Py, t) ’
P(y,t) = —tky 0 + = e oy:t) )
ou Re désigne le nombre de Reynolds. La discrétisation en variable y mene a

I'ensemble des ODEs suivant :

d(g(t) )\ A nxn
7_A¢(t), A e R™™,

On suppose que ce systeme est influencé par les perturbations, en particulier on

suppose que

1. Les entrées aléatoires affectent toutes les variables ggi,

2. Toutes ces variables sont observables.

Le systeme discrétisé est donc un systeme linéaire ayant le méme nombre d’entrée
m, des vecteurs d’état n, et des sorties p. i.e,

Al
L,

De tels modeles sont utilisés pour traquer les tempétes dans les moyennes altitudes

=m=p=n.

de l'océan pacifique [47].

1.4 Contributions de la these

L’objectif de ce travail est maintenant clair: on va proposer des algorithmes basés
sur la méthode de Lanczos rationnel, puis on va les appliquer pour réduire la di-
mension des systemes linéaires dynamiques de grande taille. La these est présentée

selon le plan suivant:

Dans le deuxieme chapitre, on va présenter tous les outils nécessaires pour les
systemes linéaires, ainsi on va expliquer les idées principaux pour la réduction de

modeles. On va rappeler deux approches pour traiter le probleme de la réduction
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de modeles, qui sont la méthode de la troncature équilibrée et la méthode basée

sur les sous-espaces de Krylov.

Dans le troisieme chapitre, vu l'objectif de la réduction de modeles et puisque
les méthodes de Krylov rationnel sont plus efficaces que les méthodes standards,
on va commencer par proposer un algorithme de type Lanczos rationnel par bloc
pour construire les deux bases V et W de I'espace de Krylov rationnel. Apres, on
va établir quelques équations rationnelles qui décrivent la relation entre ces bases
et la matrice A du systeme d’origine. En suite, on va utiliser ces équtaions pour
établir une expression de I’erreur entre la fonction de transfert du systeme d’origine
et celle du systeme réduit. Une approche adaptative pour choisir les points
d’interpolation va étre aussi introduite. Finalement, on va montrer 'efficacité
des méthodes proposées en donnant des résulats numériques et des comparaisons
entre notre méthode et la célebre approche IRKA(”Iterative Rational Krylov Al-
gorithm”).

Dans le quatrieme chapitre, on va proposer un algorithme de Lanczos rationnel
par bloc modifié. Cette procédure peut étre considérée comme une généralisation
de I'algorithme proposé dans Chapitre 3 ou plusieurs multiplicités sont considérées
pour chaque point d’interpolation. L’avantage de ’algorithme modifié est que
les équations simples de Lanczos standard restent vraies aussi dans le cas ra-
tionnel. Apres, on va utiliser ces équations pour établir des expressions simples
de l'erreur résiduelle. Comme les méthodes de Krylov rationnel sont toujours liées
a 'ensemble des points d’interpolation, on va proposer a nouveau une technique

adaptative pour choisir ces parametres.

Chapitre 5 représente une autre extension des méthodes de sous-espace de
Krylov pour les systemes avec plusieurs-entrées plusieurs-sorties, qui est la méthode
de sous-espace de Krylov global. On va commencer par introduire ’algorithme
général de Lanczos rationnel global, puis établir les équations rationnelles qui
décrivent cette procédure. Ensuite, on va modifier cette algorithme de telle facon
que les équations simples de Lanczos global restent vraies aussi dans le cas ra-
tionnel. Quelques techniques pour choisir les points d’interpolations vont étre

aussi proposées. Dans la deuxieme partie de ce chapitre, on va traiter les systemes
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linéaires dynamiques de deuxieme ordre et on va appliquer I’algorithme de Lanczos
rationnel global modifié sur les modeles du premier ordre correspondant. Finale-

ment, queleques résultats numériques vont étre donnés.

Toujours dans le contexte des méthodes de type Lanczos rationnel pour la
réduction de modeles, on va proposer aussi dans le sixieme chapitre un algo-
rithme de Lanczos étendu par bloc pour construire deux bases biorthogonales
pour le sous-espace de Krylov étendu. L’avantage de cette méthode est qu’on n’a
pas a construire les points d’interpolation comme les autres méthodes de Krylov
rationnel. Apres avoir décrit la procédure de cette méthode, on va montrer un
ensemble de propriétés algébriques, puis on va appliquer ’algorithme de Lanczos
étendu par block sur le probleme de la réduction de modeles. La derniere section
de ce chapitre est consacrée a quelques résultats numériques et comparaion avec
I’approche IRKA.

Dans le dernier chapitre (Chapitre 7), on va donner un résumé de tous les

résulats proposés, ainsi que des idées a explorer dans les futurs travaux.
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LTI System Theory and Model Reduction

Nowadays, abundant natural laws and phenomena can be described (or approx-
imated) by linear systems. For example, in chemical engineering there are heat
transfer or reaction, convection, diffusion models; in mechanical engineering there
are wave propagation or vibration models; in electrical engineering, circuit simu-
lation and design, amplifier or filter design, digital signal processing . .. All require
linear system theories. These mathematical models can be used to simulate the
behavior of the processes in question. Sometimes, they are also used to modify
or control the behavior of the processes. The weather, on the one hand, and very
large scale integration (VLSI) circuits, on the other, constitute examples of such
processes, the former physical and the latter artificial. Furthermore, these are
dynamical systems, as their future behavior depends on their past evolution. Yet
for all mentioned applications, the accuracy and reliability of the model plays an

important role. The better the model describes reality, the better the expectable
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results from simulation, and the more likely predictions apply,. ... Increasing de-
mands on the accuracy, however, typically bring about higher complexity of the
model which may complicate or even inhibit the fulfilment of the given task due
to limitations of memory and/or computational capacity. This phenomena leads

to concept of model reduction.

Then, the motivation of this thesis is: starting from large scale linear dynamical
systems, we develop new algorithms that will be applied to reducing the original
system to a lower dimensional system that has same response characteristics and
capture the main features of the original complex model. This need arises from
limited computational, accuracy, and storage capabilities. The simplified model is
then used in place of the original complex model, for either simulation or control.
Thereby, efficiency can be dramatically increased, as comparable results can be

produced in far less time.

A dynamical system has input and output variables. The output variables can
be measured while the input variables can influence the outputs of the system and
could be controlled to give more interesting properties to the dynamical system.
Controlling a system according to measurements of the output variables is called
feedback. It needs the knowledge of the state variables, assumed to be known.
They can be estimated by a special system called the observer. Generally, a
dynamical system comes from the discretization (in the space) of partial differen-
tial equations (PDE’s). Attention is often devoted to the classical approximation
of complex dynamic systems, and the first type of approximation is devoted to
obtaining linearized time-invariant models from non-linear, distributed, or time-
variant systems. Indeed, even a linear time-invariant system derived from this
type of approximation is often too complicated to be investigated due to the large

number of state variables that are included.

In this thesis, we will focus on continuous Linear Time Invariant (LTI) dynam-

ical systems.
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2.1 Problem formulation and overview

A continuous linear dynamical system can be expressed via the following state-

space form

{ X(t) = Aw(t) + Bu(t); 2(to) = o (2.1)

y(t) = Cu(t)
where z(t) € R" is the state vector, u(t),y(t) € RP are the input and the output
vectors of the system (2.1), respectively. The system matrices B, CT € R™? and
A € R™™ are assumed to be large and sparse. When p = 1, the dynamical
system is called Single-Input Single-Output (SISO), and is called Multiple-Input
Multiple-Output (MIMO) otherwise. The control problem consists of acting on
the input vector u(t) so that the output vector y(¢) has a desirable time trajectory.
Modifying the input u(t) according to the output y(¢) which is observed or to the
state x(t) is called feedback. The LTI dynamical system (2.1) can be also denoted

as
A|B
C

When the dimension n of the original system is very large, as stated above, it is

. (2.2)

not practical to use the full system for simulation or run-on-time control, so the
concept of model reduction was introduced. The reduced order dynamical system

can be stated as follows

yr(t) = Orxr(t)7 (23)

where A, € R™" B,,CT € R™? and r < n. The system (2.3) can be also

expressed as

{@@:m%@+&mw

A, | B,

3, =
C, | o

(2.4)

The reduced order dynamical system (2.3) should be constructed such that

e The output y,.(t) of the reduced system approaches the output y(¢) of the
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original system.

e Some properties of the original system are preserved, such as passivity and
stability.

e The computation methods are steady and efficient.

2.1.1 The transfer function

The state space representation is usually referred as an internal representation
of a dynamical system because it involves the state variables x which are inter-
nal variables of the system. The input/output representation, also called external
representation, is obtained by eliminating the state vector, between the state equa-
tion and the output equation with zero initial conditions. To get the frequency

domain description we apply the Laplace transform
o

L) = [ e

to (2.1), we obtain
sX(s) = AX(s)+ BU(s)
{ Y(s) = CX(s),

where X(s),Y (s) and U(s) are the Laplace transforms of z(t),y(t) and u(t), re-
spectively. If we eliminate X (s) in the previous two equations we obtain Y (s) =
F(s)U(s), where F(s) is called the transfer function of the system (2.1) and de-
fined as

F(s)=C(sl, — A)™'B. (2.5)

We will see later that most of the model reduction techniques are based on
this simple looking transfer function (especially the moment matching approach),

since what one concerns most is the output of a system under different inputs.

Actually in the frequency domain there are infinity many state-space descrip-
tions for a given linear system with given input and output, to see this, we intro-

duce the following definition:
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A|B
c|0

A|B
d|—
Cl|0
equivalent if they have the same transfer function, i.e.,

F(s) = C(sl, —A)'B=C(sl, — A)"'B = F(s), VseC.

Definition 2.1.1 Two LTI dynamical systems are called

It is easy to verify that for any non-singular n x n matrix 7', the LTI system
TAT [ T8 Al B
cr | o clo|

main concern is the outputs under some specific inputs, we have many choices of

is equivalent to the LTI system Hence, if the

the state-space description. The choice of the matrix 7" is very important and the

states are connected by the relation x(t) = TZ(t).

If we solve the state equation (2.1) with initial condition zq = x(to), we get
t
£(t) = A (ty) + / A Bu(r)dr. (2.6)
to
We notice that this solution is a sum of two terms: the first term eA(t—t0)z(ty)
represents the state evolution of the autonomous system (u = 0) while the second
term fti eAt=7) Bu(r)dr corresponds to the state evolution for the zero initial
condition. This last term written as a convolution product of e4'B with wu(t)
is called the input-to-state impulse matrix. From (2.1) and (2.6), the output
response y(t) is given by
y(t) = Cet=t)x(ty) + / Ce ) Bu(r)dr. (2.7)
to
The state-space approach has many advantages: it can be obtained directly
from a real problem as in PDE control problems where the matrix A comes from
the spatial discretization of the PDE, the control gives the input u(t), the bound-
ary conditions provide the matrix B while C' is obtained from measurements of
the output. The transfer function F'(s) relates the Laplace transform of the out-
put vector to that of the input vector. Each entry Fj;(s) is a rational function
representing the transfer function between the i-th input and the j-th output, all

other inputs being set equal to zero.
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2.1.2 Stability, controllability and observability of a dy-

namical system
2.1.2.1 Stability-Passivity

we start by given the definition of a stable dynamical system.

Definition 2.1.2 The LTI dynamical system (2.1) is

o Asymptotically stable, if and only if A is stable (A(A) C C™1).

e Stable, if and only if all eigenvalues of A have non-positive real parts, and

in addition, all pure imaginary eigenvalues have multiplicity one.

An important property of a dynamical system is its stability which means the
ability of the autonomous system (u = 0) to recover its equilibrium point after
being disturbed from it. Roughly speaking, stability means that for bounded
inputs wu(t), the state-variable vector z(t) will remain bounded for all times ¢.
A stable system tends to return to its equilibrium state when perturbed from
it. Conversely, perturbations are increased by an unstable system. Formally, the
dynamical system (2.1) is asymptotically stable if for any initial condition x(t¢),

we have

thinmx(t) = 0. (2.8)
Using the expression (2.6) with w = 0, the limit condition (2.8) holds if and
only if the matrix A has all its eigenvalues in the open left-half plane C!. In
this case the matrix A is called stable or Hurwitz. There are several properties
associated with stability. Clearly, if A is stable, then also A~! and AT are stable.
Moreover, if the product of matrices AB is stable, then also BA can be shown
to be stable. It is also clear that, due to the relation between eigenvalues of A
and poles of the transfer function, stability can also be formulated in terms of the
poles of the transfer function F'(s). A stable structure can become unstable if non-

linear components are connected to it. Another property called passivity is more
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stronger than stability. An LTT system is passive if it is incapable of generating

energy. The passivity of the transfer function F'(s) is defined as follows.
Definition 2.1.3 (Passivity) A stable LTI system is called passive if:

e I has no pole in CT.

® Re(F(s)) >0 VseCH,

in this case F' is also called positive-real.

2.1.2.2 Controllability and observability

The controllability of a dynamical system is related to the ability of the system to
attain a given state under the action of an appropriate control signal. If a state is
not controllable, then it is not possible to move this state to another one by acting
on the control input. If the matrix representing the dynamics of a non controllable
state is stable, then the state is said to be stabilizable. The observability is related
to the possibility of evaluating the state of a system through output measurements.

The notions of controllability and observability are due to Kalman [89, 90].

Definition 2.1.4 (Controllability) An LTI dynamical system is called controllable
if starting from zero initial state, any state can be reached via a suitable control
within finite time, i.e., given any state z € R", starting from xz(ty), there exists
u(t) such that at time t, x(ty) = z.

Proposition 2.1.1 The LTI dynamical system (2.1) is controllable if and only if
the controllability matriz

C =[B,AB, A’B,..., A" 'B]

is of full rank, i.e; rank(C) = n. In this case the pair (A, B) is said to be control-
lable.
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If rank(C) = k < n, then n — k is the number of the uncontrollable modes (the
eigenvalues of the matriz A satisfying rank([\ — AB]) < n ). If all uncontrollable

modes are stable then the system is said to be stabilizable.

Definition 2.1.5 (Observability) Given the dynamical system, the system is called
observable if without control, different initial states lead to different outputs, i.e.,

when u(t) = 0,y(t) is uniquely determined by x(to).

Proposition 2.1.2 The LTI dynamical system (2.1) is observable if and only if
the observability matriz

O=[CT,ATCT (A*)TCT, .. (AT T
is of full rank, i.e; rank(O) = n. In this case the pair (A, C') is said to be observ-
able. If rank(O) =1 < n, then n —1 is the number of the unobservable modes (the
eigenvalues of the matriz A satisfying rank((I\ — ATCT]T) < n).

The observability is linked to the possibility of evaluating the state of a system
through output measurements. If a state is not observable there is no way to
determine its evolution. If the dynamics of a non observable state is stable, then
the state is said to be detectable.

Proposition 2.1.3 A stable LTI system (2.1) is controllable if and only if the

controllability Gramian given by (2.9) is positive definite and it is observable if

and only if the observability Gramian (2.10) is positive definite.

2.1.3 Controllability and Observability Gramians

We assume that the LTI dynamical system is stable.

Definition 2.1.6 The controllability Gramian associated to the LTI system (2.1)
is defined as

P= / A BB dt, (2.9)
0
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and the observability Gramian is defined by
Q= / e CT Cetdt. (2.10)
0

By applying Parseval’s relation (or Plancherel Theorem) [147], we get another

integral for P and @ (these formulas are also proved in [19]):

+oo
P= zi/ (jwI — A)"'BB" (—jwl — AT) dw, (2.11)
™ —0o0
1 [T
Q=5 / (—jwl — ATYLCTC(jwl — A)dw. (2.12)
™ — 0o

The two Gramians are the unique solutions of the following coupled Lyapunov
matrix equations
AP + PAT + BBT =, (2.13)
ATQ+QA+CTC =0. (2.14)
As can be seen from the expressions (2.9) and (2.10), the Gramians P and @ are
at least positive semi-definite.

The following theorem strengthens semi-definiteness by relating definiteness to

controllability and observability.

Theorem 2.1.1 The LTI system (2.1) is controllable if and only if the solution
P of (2.13) is positive definite; it is observable if and only if the solution @ of
(2.14) is positive definite.

We will see later that the product PQ plays an important role in model reduction.

Consider the new equivalent LTI dynamical system

T'AT |T'B
cT | 0

where T is a non-singular matrix. Then the associated controllability and observ-

Y

ability Gramians P and @ are expressed as

P / AR BT AT g,
0

O— / o AT T CetA gy,

0
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where A = T~YAT, B = T~'B and C = CT. Hence, we obtain
P=T"'PT " and Q=T7QT, (2.15)
and these last relations show that the Gramians of two equivalent LTI systems
are not similar. However, the similarity is preserved for the product of the con-
trollability and observability Gramians and we have
PQ =T'PQT and QP =T7QPTT.
Hence the eigenvalues of P(Q) are invariant under state-space transform, these

eigenvalues turn out to be the very important Hankel singular values (to be
defined latter).

2.2 Different dynamical system norms

System norms play an important role in the analysis of LTI systems, as they
quantify certain properties of the model and also they are used to measure the
accuracy of the reduced order model. In this thesis, we will concentrate on the H.,
norm, other norms like the H, norm and the Hankel norm will be also introduced

in this section; see [3] for more details.

2.2.1 The Hs norm

We start by recall the definition of the Ho-norm of the transfer function F(s)

associated to the dynamical system 3.

Definition 2.2.1 The Hy-norm of F(s) is defined as

1 [+ . .
IO =55 [ tracel (i) F(jw)lds (2.16)
where j is the complex number j> = —1.

Consider the impulse response g(t) = L71[F(s)] = CeA B where L is the Laplace

transform
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Then using the Parseval relation
/000 tracelg(t)’ g(t)]dt = % /+0<> trace[F(jw)” F(jw)]dw,
the Hs norm can be also expressed as -
IFO)3, = / tracelg(t)" g(t)]dt. (2.17)
Therefore, the Hy norm could be cal(():ulated as follows
| F ()3, = trace lBT (/00 etATCTC’etA) B} . (2.18)
Setting ’
Q= / AT et gt (2.19)
we get '
IF()|3, = trace(B"QB). (2.20)
Assuming that A is a stable matrix, the observability Gramian () can be computed
by solving the Lyapunov matrix equation (2.13). We notice that in a similar way,
the H, norm can be computed by using the controllability Gramian defined by

(2.9). Therefore, Hs norm can be expressed as
|E()||* = trace(CPCT).

2.2.2 The Hankel norm

The Hankel singular values of a stable LTI system are the square roots of the

product of the controllability and observability Gramians:
O'z(F):O'Z<E) =V /\,(PO), @':1,2,...,n,

where P and ) are the Gramians associated to the LTI dynamical system (2.1).

Definition 2.2.2 The Hankel norm of a stable LTI dynamical system is the
largest system Hankel singular value of the associated Hankel operator of this

system, 1.e.,

=1,4,...,
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2.2.3 The H,-norm

An other important norm in linear system theory is the well known H.,-norm,

which is related to the Hardy space Ho.

Definition 2.2.3 The H., norm of the transfer function F(.) is defined as

weR
where T4 denotes the largest singular value. To approrimate the Hoo-norm, we

choose a set of frequencies §2, = wi,ws, . ..,w, and search for
SUP Omaa (F'(jwr)) & [|F ()|l 30 -
1<k<n

2.3 Model reduction techniques

There are two well known model reduction methods for MIMO systems which
are currently in use, SVD based methods and Krylov (moment matching) based
methods. The key steps in the first category are the computation of the so-called
Hankel singular values and balancing of the system. In general terms, balanc-
ing consists of simultaneously diagonalization of two appropriate chosen positive
definite matrices [3], according to solutions of Lyapunov equations or Riccati
equations. One of the most common approach of the SVD-based methods is the
so-called Balanced truncation model reduction [96, 126, 107]. This method have
nice system theoretical properties, such as preservation of stability and computa-
tion of an error bound. However, they are not suited for large scale systems [3].
This drawback stems from the fact that they require dense matrix factorizations,
such as solving two Lyapunov equations, and therefore the computational cost
on the order O(n3) and storage of order O(n?) becomes impractical for systems
of order n <« 1000. However, Krylov-subspace methods [8, 13, 70, 71, 85] based
on moment matching have the advantage for large problems. This is due to the
fact that they need only matrix-vector operations and no decomposition of large
matrices is required. They require O(nr?) operations for sparse problems and the

requirement of memory is about O(rn) where n is the size of the original problem
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and r is the size of the reduced system. Unfortunately, these methods lack good

theoretical properties; see [3].

2.3.1 Lyapunov balanced truncation

One of the most commonly used model reduction scheme is the so-called Balanced
Truncation model reduction, which was first introduced by Mullis and Robert [109]
and later in the systems and control literature by Moore [107]. The approxima-
tion theory underlying this approach was developed by Glover [66, 67]. Several
researchers have recognized the importance of balanced truncation for model re-
duction because of its theoretical properties. Computational schemes for small to
medium scale problems already exist. However, the development of computational

methods for large scale setting is still an active area research.

2.3.1.1 The concept of balancing

We assume here that the LTT system is stable, controllable and observable (in this
case we call it also stable and minimal). Then the controllability and observability
Gramians are unique positive definite. The concept of balanced truncation is to
transform the original LTI system to an equivalent one in which the states that
are difficult to reach are also difficult to observe. This reduces to finding a non-
singular matrix 7" such that the new Gramians P and @ given by (2.15) are equal.
We consider the controllability and observability Gramians P and () of the original
system (2.1). The square roots of the eigenvalues of the product PQ are the Hankel
singular values of the LTT system X:

O; = \/ )\Z(PQ)

Definition 2.3.1 The reachable, observable and stable system F'(s) is called Lyapunov-
balanced if
P =Q = diag(oyq,...,0n), (2.22)
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where o; is the i-th Hankel singular value of the LTI system.

The following construction of the balanced transform 7" by the Cholesky factors of
P and @ was first discussed in [96]. Suppose we have the Cholesky factorisation
of the controllability and observability Gramians P and () such that

P=LJLI Q=L,LY, (2.23)

where L,, L. are lower triangular matrices. Compute the singular value decom-
position of LT L, as
L'L, = Z%Y7, (2.24)

where Z and Y are unitary n X n matrices and X is a tridiagonal matrix containing
the singular values. Let T" be defined as

T=LZx V2 7t =xn12yTl (2.25)
then it can be verified by direct calculation that the Gramians P and @ are
diagonal and equal, i.e.

P=Q=7,

where ¥ is a diagonal matrix whose elements are the Hankel singular values
VAi(PQ) since P(Q) is similar to ﬁ@ There are other possible way for the con-
struction of the matrix 7. It was remarked by Glover [66] that the balanced

transformation is not unique but unique up to a non-singular transformation.

2.3.1.2 Model reduction by balanced truncation

As the concept of balancing truncation method has the property that the states
which are difficult to reach are simultaneously difficult to observe. Then, a re-
duced model is obtained by truncating the states which have this property, i.e.,
those which correspond to small Hankel singular values ;. We have the following

theorem.

Theorem 2.3.1 Assume that the LTI dynamical system (2.1) is stable, minimal
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and having the following balanced realization

All A12 Bl
Z - A21 A22 B2 )
O, Cy \ 0

with P = Q = diag(3,,, im), where ¥, = diag(oy, . ..,0m) and Y, = diag(Cmity - 0n).

Then, the reduced order model represented by

~ Ay | B
S 11 | b1
Cy |0
is asymptotically stable, minimal and satisfies
NE() — Fon( )i <2(0mi1 + .-+ 0n)- (2.26)

The equality holds if f]m contains only o,.

The preceding theorem shows that if the neglected singular values o,,11,...,0,
are small, then the reduced order LTI system is close to the original one. Note
that the inequality (2.26) is an a priori error bound. Then given a error tolerance,

one can decide how many states to truncate without forming the reduced model.

Balanced truncation technique can be applied to any ¥ which is asymptotically
stable and minimal. For application of balancing to unstable and non-minimal

systems, see [34, 91, 136, 149] and the references therein.

Now, let us see how to construct the low order model X,,. We define the

matrices
Wy = LYy, X212 and V,, = Lo Z, 2,12, (2.27)

where %, = diag(oy,...,0,) and Z,,,Y,, correspond to the leading m columns
of the matrices Z, Y given by the singular value decomposition (2.24), respectively.
We can easily verified that W,?;Vm = I,,, and then also that VmWn:C is an oblique
projector. The matrices of the reduced LTI system

= A | B
Em - )
Cn| O
are given by
An=WLAV, B,=W.B and C,, =CV,,. (2.28)
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The use of Cholesky factors in the Gramians P and @) is not applicable for large-
scale problems. Instead, and as we will see later, one can compute low rank
approximations of P an () and use them to construct an approximate balanced
truncation model.

Let ﬁ, B and C be the following matrices

Z:(%),é:(i),é:(o G ).

Then, the Gramians corresponding to the error dynamical system
~ A|B
Y=|—= ,
c|0
are the solutions of the following Lyapunov matrix equations
AP+ PAT + BBT =0,
and
ATQ+ QA+ CTC =0.

Therefore, the Hankel norm of the error can be expressed as

1F(s) = Fun(s) [l = \/ Amaa PQ).

2.3.2 Model reduction via Krylov methods

An important class of numerical methods for model reduction is the Krylov-based
model reduction. Unlike the SVD based methods, stability of the reduced model
constructed by Krylov methods is not guaranteed and no a priori error bound
exists. However, the methods are numerically reliable and can be implemented
iteratively; see, for example, [7, 71, 59, 60, 85, 95] for efficient implementations
of the Krylov based methods. The main advantage of this approach is that it
requires a low computational effort and small memory storage especially when
compared to other reduction approaches. They reduce the computational cost
to O(n?r) (to O(nr) if the matrix A is sparse) and the storage requirements to
O(nr). Moreover, Krylov methods are not based on minimization, as with the
SVD-based model reduction. Instead they are based on moment matching, where
one attempts to match some of the first coefficients of Taylor (or Neumann) series

expansion of the original and reduced transfer functions. These methods find the
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reduced order model in a relatively short time with a good numerical accuracy

via a projection using bases of particular Krylov subspaces.

2.3.2.1 Moment matching techniques

Let F(s) = C(sl, — A)™'B be the transfer function associated with the linear
dynamical system (2.1). Then, if we expand F'(s) as the Taylor series expansion
around a given finite point 0 € R, we get
F(s) = C(ol,—A—(0c—9),)"'B
= C(I,— (oI, — A) Yo —3s) " ol,— A)'B
= O+ Do —s)+ fP(o—s)?+ fO0—s)+...

= > -y
=0

The coefficients féj ) for § > 0 are called the j"* moments of the original system

around o, and they are given by

fY9) =cC(ol, — A)~U+Y B,
It can be shown that these moments are the values of the transfer function and its
derivatives evaluated at the point o; see [3]. Then, model-order reduction using a
moment matching method consists in finding a lower order transfer function F.(s)
having a power series expansion at ¢ as follows

EFu(s) = fO + fD(o —s) + [P0 —5)? + [P (o —s)® +...

such that £ moments are matched, i.e.,

féj):fy)’ j=0,...,k—1 (2.29)
for an appropriate k& < n. The reduced-order model resulting is known as a

rational interpolation. Expanding F'(s) around o = oo, the Taylor series is given

by
F(s)=> f9s,
j=1

where fé? are called the Markov parameters of F'(s) and defined by
fQ=ca'B, j>1,
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and the corresponding problem is known as a partial realization [69]. A power
series expansion can also be performed about o = 0, in this case the moments
satisfy féj ) = —CA~UHVB for J >0, and the computed approximation is a Padé
approximation [3, 140].

Importantly, these problems can be solved in a recursive and numerically reliable
way, by using the Lanczos and Arnoldi procedures. In general for an arbitrary o €
R, the problem is a rational interpolation problem, see, for example, [4]. In this
case rational Lanczos and rational Arnoldi methods give a numerically efficient
solution. We can also use multiple interpolation points o¢; and this becomes the
multi-point rational interpolation problem, see [36, 71, 146]. In this case, we use
the rational Krylov method of Ruhe [120] to produce the reduced order models.
The concept of these methods is to match the moments of the transfer function at
selected frequencies and therefore we obtain a better approximation of the transfer

function over a broad frequency range.

2.3.2.2 Approximation by moment matching

A straightforward approach to produce the reduced-order models can be obtained
by explicitly computing 2m moments of the original system, where m is the order
of the reduced model. Then, the frequency response of the reduced-order system is
forced to correspond to the selected moments. This can be viewed as a selection of
the coefficients for the numerator and denominator of the reduced-order transfer
function through the solution of a linear system involving Hankel matrices. Unfor-
tunately, numerical drawbacks of the explicit moment-matching can occur, such
as ill-conditioned Hankel matrices, sensitivity of the partial realization, moment

scaling, and the stability of the approximation [61].

Numerically reliable and efficient algorithms have been proposed in the litera-
ture for moment matching method without using an explicit moment computa-
tion; see [71]. When the matrix A is non-symmetric, the main Krylov subspace
methods for non-symmetric problems rely on the Arnoldi algoithm and the non-
symmetric Lanczos algorithm. As this thesis focus on the non-symmetric Lanczos

procedure and the dynamical system in question is MIMO, we need to use the

46



Chapter 2. LTI System Theory and Model Reduction

non-symmetric block Lanczos and the non-symmetric global Lanczos algorithms
to construct the projecting matrices. We recall in this paragraph the standard

versions of these processes and we give some of them algebraic properties.

Now, we consider the dynamical system represented by the internal description

B A| B
clo |’
then one should to find two matrices V,, and W,, and construct the low order
model
Am Bm
2m = )
Cn!l O

by applying the oblique projector P,, = V,,WZ to the original system 3 such that
Ap=WrAV, B, =W.B and C,, =CV,,.

A careful selection of V,, and W,, as the bases of certain Krylov subspaces
results in moment matching. Then, these bases could be chosen using either the
block Lanczos process [8, 68, 78] (in this case the projecting matrices will be noted
V. and W,,,) or the global Lanczos process [86, 87](the projecting matrices will
be noted V,, and W,,).

2.3.2.3 The non-symmetric block Lanczos-based method

The non-symmetric Lanczos algorithm was originally proposed by Lanczos in 1950
[95] as an oblique projection method for the computation of eigenvalues of non-
symmetric matrices. The idea was to reduce the general matrix to a tridiagonal

form from which the eigenvalues could be easily computed [9].

The first mathematical connection between the Lanczos algorithm and model
reduction was shown in [69]. It was shown that partial realizations could be gen-
erated through the Lanczos process. Villemagne and Skelton [36] have shown
that adaptations to the Krylov subspaces could be performed in order to gen-
erate Padé approximations. Applications of the moment matching results were

utilized in the structural dynamics field as a model reduction technique for flexible
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structures [135] and MIMO systems [92, 93].

Next, we first recall the definition of the block Krylov subspace and then we

introduce the non-symmetric block Lanczos procedure.

Definition 2.3.2 Given a matric A € R™"™ and a block vectors B € R"*P the
i-th block Krylov subspace of A and B, denoted by K;(A, B), is defined as
K;(A, B) = Range(B, AB, ..., A7'B). (2.30)

Let V and W be two initial blocks of R"*P, and consider the block Krylov sub-
spaces K,,,(A,V) and K, (AT, W). The non-symmetric block Lanczos algorithm
applied to the pairs (A, V) and (AT, W) generates two sequences of bi-orthonormal
n x p matrices {V;} and {W;} such that

K. (A, V) = Range(V1, Vo, ..., Vi),
and
K, (AT, W) = Range(Wy, Wa, ..., W,,).
The matrices V; and W; that are generated by the block Lanczos algorithm satisfy
the bi-orthogonality conditions, i.e.
WJ'TVz‘ = Op’ ZfZ 3& ja

Lo (2.31)
VVJTVi =1, ifi=j.

Next, we give a stable version of the non-symmetric block Lanczos algorithm

that was defined in [8]. The algorithm is summarized as follows.
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Algorithm 1 The non-symmetric block Lanczos algorithm (BLA)
e Inputs: A € R VW € R"™P and m an integer.

1. Compute the QR decomposition of W'V, i.e., W'V = 4;
= VB Wi = W5 Vo = AVi; Wy = ATW;

2. Forj=1,....m B .
o = W]'TVjH; Vier = Vip = Vioy; WJ+1 Wit — MQQJT;
Compute the QR decomposition of V}H and W;,4, i.e.,
Vi1 = Vi1 Bjp; Wy = Wj+15]T+17
Compute the singular value decomposition of VVJHVJH, i.e.,
W]—i—l‘/;-i-l U; E]Z]T7
djr1 = 01U; El % ; Bj1 = 1-/2Zfﬁj+1§
Vien = Vi 2%, 2, Wy+1 Wj+1UJZ'_1/2'
‘/j+2 = AVj+1 V6]+17 I/V]—&-Q ATVV]'-&-l W 6 J+1)

3. end For.

Setting V,,, = [V1, Vo, ..., V] and W,,, = [Wy, Ws, ..., W,,], we have the follow-

ing block Lanczos relations
AV, =V, Ty + Vi1 Bmi1 BN,
and
AW, =W, T? + W16 B
where F,, is last mp x p block of the identity matrix Imp and T,, is the mp X mp
block tridiagonal matrix defined by
(03] 52

52 (8%

Om

B Qm
Let V,,,, W,,, € R"™™P he the bi-orthonormal matrices computed by Algorithm 1,
the application of the oblique projector I1,, = V,, W on the original system (2.1)

yields a reduced order system such that
Apn=WL AV, B, =W!Band C,, = CV,,. (2.32)
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2.3.2.4 The global Lanczos-based method

The global Krylov method was first proposed in [86, 87] for solving linear equations
with multiple right hand sides and Lyapunov equations. Application to model-
order reduction of first order systems is also studied in [29, 30, 31, 32]. It was
also used for solving large Lyapunov matrix equations [88]. Basically, the global
Krylov method is similar to the standard Krylov method except that the standard

inner product is replaced by the Frobenius inner product defined above.

Next, we review some notations and definitions that will be used for the global
Lanczos method. For two matrices X and Y in R"*?, we define the Frobenius inner
product (X,Y)r = Tr(X'Y) where Tr(X'Y) denotes the trace of the square
matrix X Y. The associated Frobenius norm is given by ||V ||z = Tr(YTY)z.
A system {Vi, Vs, ..., V,,} of elements of R"*? is said to be F-orthonormal if it
is orthonormal with respect to the inner product (. ,.)p, ie., (V;,Vj)r = 6;;.
For Y € R"*?  we denote by vec(Y) the vector of R™ obtained by stacking the
columns of Y. For two matrices A and B, A® B = [a;;B] denotes the Kronecker
product of the matrices A and B.

In the sequel, we give some properties of the Kronecker product.
1. (A@B)"' = AT ® BT.

2. (A® B)(C ® D) = (AC ® BD).

3. If A and B are non-singular matrices of size n x n and p X p respectively,
then the np X np matrix A® B is non-singular and (A® B)™! = A~'@ B~

4. vec(A)Tvec(B)=Tr(A"B).
Definition 2.3.3 Let A = [Ay,...,As] and B = [By,..., Bj| be matrices of di-

mension nx sp and nxlp, respectively, where A; and Bj (i =1,...,s; j=1,...,1)

are n X p. Then the s x | matriz AT o B is defined by:

B i

Remark 2.3.1 The following relations were established in [21].
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1. The matriz A = [Ay, ..., Ay is F-orthonormal if and only if AT o A = I,.
2. For all X € R™®, we have X7 o X = || X||%.

3. (DA)"oB=A"o(D"B).

4. ATo(B(L®1,)) = (AT o B)L.

5. |AT o Bllr < | AllF|IBl|#.

Let V € R™*P then the matrix Krylov subspace
Km(A, V) = Span{V, AV,..., A"V}

is spanned by the matrices V, AV, ... A™"1V. Hence Z € K,,(A, V) means that
m—1
Z=) aAV, o€R i=0,....m-1
i=0

We recall that the previous subspace is different from the block Krylov subspace
K. (A, V) where Z € K,,(A4, V) means that

m—1

Z=> AVQ, QGeR i=0,.. m-1
=0

let W € R™*P  the global Lanczos algorithm constructs two F-biorthogonal

bases
Vo = {1, V2, ..., Vin} and W,,, = {W, W, ..., W, }

of the matrix Krylov subspaces K,,(A,V) and K,,(AT, W), respectively. This

algorithm is summarized as follows.
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Algorithm 2 The Global Lanczos Algorithm (GLA)

1. Inputs: A € R™"™" V. W € R™P and an integer m.
2. Choose two n x p matrices V7 and W7 such that < Vi, W; >p=1,
3. SetﬁlzéleandW():Vo:Q

4. for j=1,....m
Q; = <VVJ7 AV}>F’
ij—l = AV} — oV = B3V,
Wi = ATW; — oW — 6;W; 1,
Oj+1 = |T1"(szll/[fj+1)|l/27
Bjr1 = Tf(vjzl”/jﬂ)/(;jﬂa
Vier = Vi1 /041,
Wis1 = Wit /Bin,

5. Endfor

Let 7T, be the tridiagonal matrix of dimension m x m defined as
ar o
0y
T = S ,
Bim
Om O,

where «;, 5; and ¢§; are the scalars defined in the Algorithm 2. Define the matrix

~ T
T = :
< 5m+1€£ )

The following result holds for the standard global Lanczos algorithm (see [87]).

Theorem 2.3.2 Assume that the global Lanczos algorithm does not break down
before m steps. Let Vi1 = [Vi, ..o, Viny Vina1] and Wy = [Wh, ..o, Wi, W]

be the F-biorthogonal matrices of R™*"+VP constructed by Algorithm 2, then we
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have the following relations
AV = VoD ® L) + St Ve B

where e, = (0,...,0,1)T € R™ and E,;, = (e ® I,) = [0p, ..., 0p, L)

2.4 Contributions of the Dissertation

The motivation of this thesis is now clear: There are many applications of linear
systems in engineering, many of the real world applications are large scale. In
the literature, many works are proposed for model order reduction problem based
on standard Krylov subspace. Unfortunately, the standard versions of the Krylov
subspace algorithms tend to create reduced order models that poorly approxi-
mated low frequency dynamics. To overcome this problem, some rational Krylov
methods were recently defined; see [71, 120] and the references therein, and it
was shown that these rational-based methods are more effective for model order
reduction [1, 13, 14, 42, 50, 70], and also for solving large Lyapunov and Riccati

matrix equations [40, 133].

Hence, we will focus in this thesis on Multi-input Multi-output (MIMO) contin-
uous Linear Time Invariant (LTI) large scale dynamical systems, and we develop

new efficient rational Krylov algorithms to produce reduced order systems.

first, and towards the goal of Krylov based model reduction, we propose a ra-
tional block Lanczos-type algorithm to compute two bi-orthogonal bases of the
rational Krylov subspaces. After that, we show how to obtain some rational
equations that describe the relation between these bases and the matrix A of the
original model. Once the reduced order model is constructed, we must compute
the exact transfer matrix error between the original and the reduced systems to
measure the accuracy of the resulting reduced-order model. Grimme in his thesis
[71] proposed the computation of the exact error in term of two residual vectors
in the case of SISO systems, this result will be extended her to the MIMO case.
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Moreover, we use the rational equations proposed to derive another error expres-
sion. One of the drawbacks of the rational Krylov methods is the selection of some
interpolation points which must be appropriately chosen for a good convergence

of the process. Some techniques to chose these parameters will be also proposed.

Next, we will propose a modified non-symmetric rational block Lanczos algo-
rithm. This process can be considered as a generalization of the rational block
Lanczos algorithm given in the last chapter where different multiplicities are con-
sider for each interpolation point. The advantage of the modified rational block
Lanczos algorithm is that the standard Lanczos equations remain valid also in
the rational block case. After that, we will use these simple equations to derive
simple residual error expressions. As rational Krylov methods are always related
to the interpolation points, we will propose an adaptive approach for selecting

some good shifts.

Another extension of the standard Krylov subspace method for MIMO systems
is the global Krylob subspace. The global Lanczos process is an algorithm for
computing F-biorthogonal bases of the rational matrix Krylov subspaces. We
start by describe the general form of the rational global Lanczos algorithm and
then we establish the rational equations witch describe this process. After that, we
modify the rational global Lanczos algorithm in such a way the standard Lanczos
equations remain valid also in the rational global case, the resulting algorithm will
be named the modified rational global Lanczos process. Next, we propose some
adaptive techniques for choosing the interpolation points and then we combine
one of these methods and the modified rational global Lanczos process to get
an Adaptive Modified Rational Global Lanczos (AMRGL) procedure for reducing
the dimension of large scale linear dynamical systems. In the second part of this
Chapter, we consider the second-order dynamical systems and we applied the

AMRGL algorithm to an equivalent state space model.

Always in the context of rational Krylov methods for model order reduction,
we will propose also an extended block Lanczos algorithm for constructing bi-
orthogonal bases of the extended Krylov subspace. This Krylov based method

was first proposed by Druskin and Knizhnerman in [41] for numerically approx-
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imating the action of a matrix function to a given vector. The advantage of
this approach is that we are not even mentioning the numerical difficulties that
might arise for selecting the poles of the rational Krylov subspace and then we
don’t need to construct the set of interpolation points as for the other rational
Krylov algorithms. After describing the extended block Lanczos algorithm, we
obtain some algebraic properties and then we apply this method to model order
reduction. We show how to apply the extended block Lanczos process to MIMO

dynamical systems to produce a low-order dimensional systems.

2.5 OQOutline of the Dissertation

We conclude this introduction with a summary of each of the remaining chapters.

In Chapter 3, we start by proposing a rational block Lanczos-type algorithm
and then we show how to obtain a set of equations that describe the relations
between the matrix A and the bases constructed by this procedure. After that,
we use these equations to obtain an error expression between the original and
the reduced-order transfer functions. Moreover, we propose adaptive techniques
for selecting some interpolation points that used to construct the rational Krylov
subspaces. The application of this algorithm to approximate the exponential on a
block vector B will be also considered in this chapter. The last section is devoted

to some numerical experiments to show the effectiveness of the proposed methods.

In Chapter 4, a modified version of the algorithm introduced in Chapter 2 is
proposed, namely, the modified rational block Lanczos algorithm. The advantage
of this process is that the standard Lanczos equations remain valid also in the
rational block case. Moreover, these simple equations will be used to develop
simple residual error expressions. Next, an adaptive method for choosing the

interpolation points is propose and finally, some numerical examples will be given.

Chapter 5 presents another extension of the standard Krylov subspace method
for MIMO systems, which is the global Krylov subspace. We first describe the
adaptive modified rational global Lanczos (AMRGL) algorithm proposed and then
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we establish Lanczos-like equations for the global case. Next, some adaptive
techniques for choosing the interpolation points will be proposed. Second-order
dynamical systems are also considered in this Chapter and the AMRGL algorithm
is applied to an equivalent state space model. In the last section, some numerical

examples will be introduced.

In Chapter 6, we propose an extended block Lanczos method and we obtain
new algebraic properties for this process. The application of this method to model
order reduction is also considered. We show how to apply the extended block
Lanczos process to MIMO dynamical systems to produce a low-order dimensional
systems. The last section is devoted to some numerical experiments for large and

sparse problems to show the efficiency of the proposed approach.

In the last chapter (Chapter 7), a summary of the obtained results is provided,

together with ideas to be explored in future work.

56



An adaptive rational block Lanczos-type
algorithm for model reduction of large

scale dynamical systems

As we explained in the next chapter, they are two well-known approaches for
model reduction problem, SVD-based methods and Krylov-based model reduc-
tion. However, the SVD-based methods are not suitable for large-scale systems
due to the use of dense matrix factorisation of O(n?) and storage of O(n?). As
an alternative, Krylov subspace techniques become a good choices for large-scale
systems because they rely on matrix-vector multiplication and they can be imple-

mented iteratively in a numerically efficient manner [3].

Krylov based model reduction are based on matching the moments of the orig-
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inal transfer function around some selected frequencies to finding a reduced order
model that matches a certain number of moments of the original model around
these frequencies. This is achieved by iteratively constructing matrices that span
certain Krylov subspaces of A and B, and/or AT and C. in other words, we can
use the Lanczos and the Arnoldi processes to solve the problem in a recursive and
numerically efficient way. In particular, the Lanczos process has been used for
the SISO and MIMO dynamical systems; see [51, 50, 78, 95] and the references
therein. The Padé via Lanczos method of [48], which exploits the deep connection
between the Lanczos procedure and the moment matching problem at o, is one
of the leading efforts for this case. The Lanczos procedures can be used to match
the moments of 3 only at a single interpolation point. However, the standard
version of the Lanczos algorithm builds reduced order models that poorly approx-
imate some frequency dynamics and to overcome this problem, one is interested
in matching the moments at various interpolation points to obtain a better ap-
proximation over a broad frequency range. In this case, the problem is called
the multipoint rational interpolation problem and the reduced order model can
be constructed by using the rational Krylov method first proposed by Ruhe [120]
and developed these last years in [58, 59, 71, 70, 140]. Since ones matched the
moments of the transfer function at various frequencies, a better approximation
of the transfer function over a broad frequency range is obtained. The multi-
point rational interpolation was first proposed by Skelton and al. [36, 145, 146].
Grimme in his thesis showed how one can construct the required projection by
Krylov methods in a numerically efficient way; see [71]. One of the main problems
of the rational Krylov methods is the selection of suitable shifts to guarantee a
good convergence of the process. Therefore, various methods have been proposed
in the literature to construct these interpolation points. In [20, 58] Gugercin et al.
proposed an Iterative Rational Krylov Algorithm (IRKA) to compute a reduced
order model satisfying the first order conditions for the Hy approximation. Other
adaptive methods (for the SISO case) are introduced in [22, 41, 51, 66, 70, 78]

and the references therein.

In the first section of this chapter, we recall the multipoint rational interpolation

problem and we give some basic results. In the second section, we propose a
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rational block Lanczos-type process and we give some algebraic properties related
to the this algorithm. An error expression between the original and the reduced-
order transfer functions is derived in Section 3. In Section 4, we propose adaptive
techniques for selecting some interpolation points. The last section is devoted to

some numerical experiments.

3.1 Multipoint rational interpolation

For the multipoint rational interpolation problem by projection, the goal is to
obtain the reduced system by projection. In the other words, we try to find
matrices V,,, € R™*" and W,,, € R™*" with W%Vm = [, and such that the reduced

order model
A, | B,

Cnl| O

matches the moments of the original system X at the selected interpolation points.

YXm =

Consider the following projection:

x=V,Tm,,

Vi € R 2z € R", z,,, € R",
where » < n. By applying this projection to the original system and then mul-
tiplying the state equation by transpose of the matrix W,,,, a reduced model can
be obtained as follows,

T (t) = WL AV, 2, (t) + W Bu(t)
{ Ym(t) = CVpzm(t),

Then, the reduced order system in state space is identified by the following ma-
trices:

Ap=WLAV,,, B,=W!B, C,=CV,,. (3.1)

Now, the question is how to choose the projection matrices to find a reduced
system that matches the original system at selected frequencies. The following
theorems show how one can achieve this goal by Krylov projection methods. We
start by the case of matching the Markov parameters. A special case, called
Oblique Projection, for matching only the Markov parameters has been intro-

duced in [84]. In this case, matching the Markov parameters leads to a good
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approximation at high frequencies which most of the time is not desired. In the

following theorem, a general case is discussed.

Theorem 3.1.1 The matrices Ay, By, and C,, generated by applying the block
Lanczos process to the original system 3 are such that the first 2m — 1 Markov

parameters of the original and the reduced models are the same, that is,
CA'B =C,A B,,, for j=0,1,...,2(m—1).

Proof. The complete proof is found in [78].

The following result is presented in [71] for SISO systems, and is extended to
the MIMO case in [57]. It shows how to construct the bi-orthogonal bases V,,
and W,,, so that the multipoint rational interpolation problem is solved, i.e., the
reduced order model has to interpolate the original transfer function F'(s) and its

first derivative at the interpolation points {o;}7,.

Theorem 3.1.2 Given F(s) = C(sI,,—A)™'B and m interpolation points {o;}™,
that verify o; # o; for i # j. Let V,, € R™" and W,, € R"™" be obtained as
follows:
Range(V,,) = Range{(4—o.1,)'B,...,(A—o0,I,) B} (3.2)
Range(W,,) = Range{(A—o.1,) 7CT, ..., (A—o0,L,)TCT} (3.3)
with W'V, = I,. Then, the reduced order transfer function F,,(s) = Cp, (sl —
A,) B, obtained in (3.1) interpolates F(s) and its first derivative at {o;}™ .

Theorem 3.1.2 states that for moment matching problem, one has to construct
two full-rank matrices V,,, and W,,, such that Range(V,,) and Range(W,,,) satis-
fying equations (3.3) and (3.3) respectively.

Several algorithms have been implemented in the literature: Lanczos algorithm
and Arnodi algorithm and its variants; see [71] and referenced therein. In general,
these processes follow the Rational Krylov methods of Ruhe [121]. Based on the
conditions (3.3) and (3.3) of theorem 3.1.2, a rational block Lanczos algorithm is

proposed in the next section.
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3.2 The rational block Lanczos method

The rational Krylov method was originally proposed by Ruhe [120] in the con-
text of approximating interior eigenvalues, which with appropriately chosen shifts
would accelerate convergence to the sought after spectral region. Within model
order reduction, the role of rational Krylov subspaces is rather different, as they
are particularly well suited for approximating the behavior of the transfer func-
tion on the imaginary axis. Indeed, it is now acknowledged as being one of the
most powerful projection approaches for reducing the order of large scale linear

dynamical system.

3.2.1 The rational block Lanczos algorithm

As discussed in the next section, in order to solve the multipoint rational interpo-
lation problem by Krylov techniques, one has to construct full rank matrices V,,
and W,,, which span the required Krylov subspaces for some selected interpola-
tion points oy, 09, ..., 0,,. That’s will be done by using the rational block Lanzos
procedure.

The rational block Lanczos process presented in Algorithm 3 is a procedure for
constructing bi-orthonormal bases of the union of the block Krylov subspaces

defined as follows

Kn(A, B, %) = Range{(A—o01L,)"'B,..., [[(A—oxL,)'B}, (34)

k<m
K (A", C", %) = Range{(A—o11,)"C",..., [[(A—oxl)""C"},
k<m
(3.5)
where ¥, = {01,...,0,} is the set of interpolation points. The rational block

Lanczos-type algorithm is defined as follows.
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Algorithm 3 The rational block Lanczos-type algorithm(RBLA)

1. Input: A ¢ R™", B, CT ¢ R™P,

2. Output: two bi-orthogonal matrices V,, 1 and W,,,; of R™*(m+1)p,
function [V,,, W,,] =Rational-Block-Lanczos(A,B,C,{o1,...,0n})
3. Set So=(A—o011,)'Band Ry=(A—o01,)"TCT

4. Set Sy = ViHyo and Ry = WG4, such that W'V} = I;
5. Initialize: V, = [Vi] and W, = [W].

6. Fork=1,....,m
7
8

if (k < m)
. if {0311 = o00}; Sp = AV and Ry = ATW,; else
9. Sy = (A — akﬂfn)_le and Ry = (A — O'k+1[n)_TWk; endif
11. Sk = Sk — Vka and Rk = Rk — Wka,

12. Sk =Vir1Hprp and Ry = Wi1Griag; (QR factorization)
13. WL Vigr = PuDyQf;  (Singular Value Decomposition)

14, Vi =VinQuDp Y% and Wiy = Wi BD %

15. Hipip = Di/2Q£Hk+1,k and Gryi1r = DiﬂP];FGkJrl,k;

16. Vitr = [Vi, Visa]s Wigr = Wi, Wia];

17.  else

18. if {01 =00}; S,y = AB and R, = ATC; else
19. Sy =A"'B and R, = A”TCT; endif

20. H,=WLS, and G,,=VIR,;

21. S =5,—V,,H, and R, = R,, — W,,G,;

22. Sm = Vis1Hmi1m and Ry, = W1 G m; (QR factorization)
23. W Vi1 = PnD,,QL;  (Singular Value Decomposition)

24, Vinit = Vi1 QD ’? and Wiy = Wiyt P D%

2. Hpsrm = Dy ’QC Hyprm and Gogrn = Di>PLG it

26 Vm—H = [Vm, Vm+1];Wm+1 = [Wm, Wm+1];

27.  endif

28. endFor.

We notice that in our setting, we assume that we are not given the sequence of
shifts o1,09,...,0,11 and then we need to include the procedure to automati-
cally generate this sequence during the iterations of the process. This adaptive

procedure well be defined in the next sections.

In the rational block Lanczos-type algorithm (Algorithm 3), steps 8-9 and steps
18-19 are used to generate the next Lanczos vectors. According to Algorithm 3,

two residual expressions are used. At each iteration k, we used a new interpolation
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point o1,k = 1,...,m — 1 and we initialize the subsequent Krylov subspaces
corresponding to this shift by Sy = (A—op11,) Vi and Ry = (A—opi1 1)~ T W,
if Ok+1 is finite and Sk = AVk, Rk = ATWk if Ok+1 = OQ.

To insure that the block vectors Vi1 and Wy, generated in each iteration are
bi-orthogonal, the QR and SVD decompositions are used (steps 12-14 and 22-24).
The matrices H and Gy constructed in steps 10 and 20 are kp x p and they are
used to construct the block upper Hessenberg matrices H,,, and G,,, respectively
(for more details see Theorem 3.2.1).

We notice that a breakdown may occur in Algorithm 3 if the smallest singular
value of W,;[ +1Vk+1 1s zero, which causes a problem in the calculating of the block
Viyr and Wiii. In [8], a novel breakdown treatment scheme was proposed to
overcome this problem for the single point block Lanczos algorithm ABLE. This
method is generalized in [111] for MABLE algorithm. Here, the same technique
could be used to detect and cure breakdowns. However, this problem of breakdown

or near-breakdown is not developed in this thesis.

3.2.2 Analysis of the rational block Lanczos algorithm

In this subsection, we give some theoretical results which establish the rational
Lanczos equations that relate the matrix A of the original system, the bases
Vo, W,,, constructed by Algorithm 3 and the Hessenberg matrices generated also
by this algorithm.

Theorem 3.2.1 Let V,,.1 and W,,.1 be the matrices generated by Algorithm
3, assuming that A is non-singular and that all the interpolation points o;, i =
1,...,m are finite real numbers. Then, there exist (m + 1)p X mp block upper

Hessenberg matrices ]ﬁ[m, @m, ]Km and IEmsuch that the following relations hold for
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the left and the right Krylov subspaces:

AV, H, = VK, (3.6)
A™W,, 1G,y = WoiiLin, (3.7)
H, = W.A'V,K,, (3.8)
Gn = VIATTW,L,, (3.9)

where H,,, G,,, K,, and L,, are the mp x mp block upper Hessenberg matrices

obtained by deleting the last row block vectors ofﬁm, @m, ]Km and ]Ijm, respectively.

Proof. We begin by the case where £ = 1,...,m — 1 which involves the
execution of Step 9. Replacing the expression of Si into the expressions of Step
11 and Step 12 yields the following relation

Vi1 Hisrp = (A = opg1ln) ™ 'Vi — Vi H,,

which can be written as

H
Vi Visd] Pl = (A= opnly) W (3.10)
k+1k
Multiplying (3.10) on the left by (A — oy411,) and replacing Vi by Vi E) gives
H
(A - Uk+1[n)Vk+1 . = VkEkv
Hyq1k

where Fj, is an kp x p tall thin matrix with an identity matrix of dimension p at

the k' block and zero elsewhere. Re-arranging the expression of the last equation

H E H
AV * = Vi g + Okt1 : s k=1,...,m—1.
k+1,k Hyi1k
(3.11)
On the other hand, for k =1,...,m — 1, we have
AVm+1 - [AVk+1, AVk+27 e ,Avm7 Avm+1].
Therefore, we can deduce from 3.11, the following expression
Hy, E; Hy,
AVt | Hyip | = Vi 0 | +0ks1 | Higrp ) (3.12)
0 0 0

where 0 is the zero matrix having m — k rows.

Now, consider the case where k& = m. Using steps 19 — 21 gives the following
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relation
VinsiHpi1m = A™'B =V, H,, (3.13)
Since (A — 011,)"'B =ViHy o and V; = V,,,Ey, (3.13) can be rewritten as
H,,

Verl = Ail(A - Ulln)VmElHl,O-

m+1m

Multiplying on the left by A and rearranging the expression results in

H, E E
AVm—f—l ([ ] — ! HL()) == Vm—H (—0'1 ! HL()) (314)
Hm+1,m

Equations (3.12) and (3.14) lead to the following expression
AV, Hy = Vi Ko, (3.15)

where IF]Im and ]Km are the block upper Hessenberg matrices of R("+DPxmp - oiven

as follows
]ﬁlm - []ﬁl(l)’ fHVI(Z)’ T ’ﬁ(m)] and Km = [K(l)a K(Q), e ’K(m)]’

where for k =1,...,m — 1 the k-th block columns are given by

R H, N Ey 4 op1 Hy
H® = | Hipqy | and K® = | oy Hiprp
0 0
and for £ = m we have
™ — Hy = ExHg ] and K™ = —o1fath ] .
Hpiim 0

Equation (3.8) is easily derived from the relation (3.6).
In a similar way, we can show the relations (3.7) and (3.9) for the left Krylov

subspace.

We notice that since K™ =

K™
0 ] , and AV, = [AV,,, AV,,4] it follows

that
AV, Hy = Vo K. (3.16)
In the same manner, we also have
A™W, 111Gy = WLy (3.17)
In what follows in this chapter, we assume that all the shifts o;, 7 = 1,...,m

are finite real numbers. This was always the case in our numerical examples.
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3.3 model reduction error

The computation of the exact transfer matrix error between the original and the
reduced systems

€(s) = F(s) — Fu(s) (3.18)
is important for the measure of the accuracy of the resulting reduced-order model.
This error can be used to monitor the number of iteration required for convergence
of the reduced order model. Moreover, it can be also used to know how the
response of the reduced model is sufficiently close to that of the original system.
Unfortunately, the exact error €(s) is not available, because the higher dimension
of the original system yields the computation of F'(s) very difficult. To remedy this
situation, various approaches have been explored in the literature for estimating
the error (3.18).

3.3.1 Residual error

In [71], Grimme proposed the computation of the exact error in term of two
residual vectors in the case of Single-Input Single-Output systems. The result is
extended here to the Multi-Input Multi-Output case. Let
Rp(s) = B —(sl,— A)VWXBN(S), (3.19)
Re(s) = CT — (s, — A)TW,, Xc(s)

be the residual expressions, where Xp(s) and X (s) are the solutions of the matrix

equations
($Ipp — Am)XB(s) = By,
(8Lmp — Am)TXC(S) = Cn,

and satisfy the Petrov-Galerkin conditions
Rp(s) L Range(Ws,...,W,,)
{ Re(s) L Range(Vh,..., Vi),
which means that WL Rp(s) = VI Ro(s) = 0.
Residual expressions are a significant tool for quantifying the error in iterative
linear systems solving, and simple residual expressions arise in the context of

Arnoldi and Lanczos processes. The residuals are pertinent to the computation of
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the exact error,and they were utilized in [84] for the partial realization problem.
In the following result, we give an expression of the error €(s) based on the residual

expressions.

Theorem 3.3.1 The error between the frequency responses of the original and
reduced-order systems can be expressed as
e(s) = RL(s)(sI, — A) ' Rp(s). (3.20)

The proof of this theorem is similar to the one of Theorem 5.1 given in [71] for
SISO system.

3.3.2 An error expression for the transfer functions

In this paragraph, we compute an error estimation using the proposed rational
block Lanczos-type algorithm (Algorithm 3) and the rational Lanczos equations
derived in Theorem 3.2.1.

In the previous section we defined the rational block Krylov subspaces by (3.4) and
(3.5). However, the inclusion of the block vectors B and CT may be beneficial.

Then for computing an error estimation, we use the following rational Krylov

subspaces
Kn(A,B,X,,) = Range{B, (A — 021,)'B,... . [ [(A-oxl,) !B},  (3.21)
k=2
and .
Kn(A”,CT, %) = Range{C”, (A= 031,)"C", ... [[(A=owL,)"C"}, (3.22)
k=2
where ¥/ = {03,...,0,} is the set of interpolation points. Thus we have the

following theorem.

Theorem 3.3.2 Let V,, and W, be the matrices computed using the rational
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block Lanczos algorithm. If (sI,, — A) and (sl,,, — Am) are non-singular, we have
F(s)—Fy(s) = O(sl,— A) "NV, WL — YAV, .1 Hppoy o ELH Y (81— A) ™' Bo.
(3.23)

Proof. The error between the initial and the projected transfer functions is given

b
' F(s) — Fu(s) = C(sl,, — A (B — (sI, — AV, (8L,np — Ap) "' Bp).
Since
AV, H,, =V, K, (3.24)
then
AV, = (V, K., — AV, Hypoy o ELH (3.25)
and
Ay =WE AV, = (K,, — W AV, Hypo1 o EL)H L (3.26)

Using equations (3.25) and (3.26), we obtain
(sI, — A)V,, =V, (sLy,, — Ap) — T,
where
L= (VWL — LAV, 1 Hy1 n EXH Y
The relation (3.23) can be obtained using this result and the fact that V,, W B =
B.

3.3.3 Residual error expressions for the rational Lanczos

algorithm

In [50] simple Lanczos equations for the standard rational case are proposed and
used for deriving simple residual error-expressions. In this section, we use the
rational Lanczos equations given in Theorem 3.2.1 to simplify the residual error
expressions. To simplify calculations, we use the rational Krylov subspaces in
(3.21) and (3.22). Using the rational Lanczos equations and the fact that B €
K,.(A, B,Y),CT € K,,,(AT,CT 3! ), the expressions of the residual Rp(s) and
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Rc(s) could be written as
Rp(s) = B—(sl, — A)V,,(s], — Ap) ' By,
= (VoW = DAViy Hyor i B (L — A) ™' By

-

g ~~

B Rp(s)
and
Re(s) = CT —(sI — AW, (s, — Ap) " TCL
= (W, VI — DNA"W,. 11 Griam EX G (81 — Ay) T CL

-~

C’T Rc(s)

where Rp(s), Re(s) are the terms of the residual errors Rp(s) and Re(s), re-
spectively, depending on the frequencies. The matrices B , CT are frequency-
independent terms of Rp(s) and Rq(s), respectively. Therefore, the error expres-

sion in (3.20) becomes

e(s) = Ro(s)TC(sI, — A)"'BRp(s) = Re(s)TF(s)Rp(s).

The transfer function F(s) = C(sl, — A)™' B contains terms related to the orig-
inal system which makes the computation of |RLF Rp||s very expensive. Then,
instead of using F'(s) we can use an approximation of F(s). Various possible

approximations of the error €(s) are listed in Table 3.1.

Table 3.1: Estimations of the error €(s)

1| é(s) = Rp(s)

2 | () = Bels)

3 | () = Fuls)is(s)

4| &(s) = Funls)

5 | (s) = RE(5)Fn(s)

6 | é(s) = RL(s)E(s)Rp(s)
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3.4 An adaptive-order rational block Lanczos-

type algorithm

3.4.1 Interpolation point selection

Model-order reduction using multipoint rational interpolation generally gives a
more accurate reduced-order model than interpolation around a single point. Un-
fortunately, One of the drawbacks of this approach is the selection of the inter-
polation points [70]. The location of the interpolation points and the number of
moments matched dictates the accuracy of the reduced-order model. In [18, 72]
the Iterative Rational Krylov Algorithm (IRKA) has been proposed in the context
of the Hs-optimal model-order reduction by using a specific way to choose the
interpolation points o;, ¢ = 1,...,m. Starting from an initial set of interpola-
tion points, a reduced-order system is determined and a new set of interpolation
points is chosen as the Ritz values —\;(A,,),7 = 1,...,m, where X\;(4,,) are the
eigenvalues of A,,. The process continues until the Ritz values from consecutive
reduced-order models stagnate. The main disadvantage of this method is that it
requires the construction of many Krylov subspaces which will not be utilized in
the final model and only the last subspace is used. In contrast to IRKA method,
Grimme in his thesis [70] proposed an adaptive method for choosing the interpo-
lation points. This approach is based on the residual expression derived for the
rational Lanczos algorithm such that the interpolation points are selected where
the residual error is large. At each iteration of the algorithm, a residual function
is computed and a new interpolation point is selected so as to correspond to the
maximum of this residual function. He studied also the placement and selection
of interpolation points, moreover, connections are made between the locations of
interpolations points and the convergence behavior of the model. In particular,

Grimme is concentrated on the popular choices of purely or imaginary shifts.

In [20, 43, 70, 97, 134] some techniques for choosing good interpolation points
have been proposed. The aim of these methods is the construction of the next

interpolation point at every step and they are based on the idea that the shifts
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should be selected such that the norm of certain approximation of the error should

be minimized at every iteration.

3.4.2 An adaptive choice of interpolation points

In the following, we introduce a new adaptive approach for selecting the interpola-
tion points. The proposed method is based on the following error-approximation
expression
é(s) = RE(s)Ri(s).

Then, the procedure to generate the set of interpolation points ¥, used in Algo-
rithm 3 is described as follows. We start by given two initial shifts oy, 09, and we
construct the next shift 05,0 € R as

Oy = arg max |IRE(s)Rp(s)|l2, k=1,...,m—2. (3.27)
and if 0,9 is complex, its real part is retained and used as the next interpolation

point.

Remark 3.4.1 The choice of the approzimated error expression é(s) = RL(s)Rp(s)
is a heuristic choice that allowed to have good shifts without much calculations as
i1s shown in the numerical tests. We notice that for small problems, one can also
use the following criterion for selecting the shifts

Ors = argmax | RE(s) R (s) (328)
This selection gives good results but, at it is related to the dimension n of the
space, it needs more computation times and arithmetic operations for large prob-
lems. In our numerical examples, we used 3.27 for large dimensions and 3.28 for

small problems.

An adaptive order rational block Lanczos algorithm for the computation of the
reduced-order system using the rational block Lanczos process (Algorithm 3) and

the above adaptive approach for selecting the interpolation points can be summa-
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rized as follows.

Algorithm 4 The Adaptive Order Rational Block Lanczos-type (AORBL) algo-
rithm for model-order reduction(AORBL)

1. Input: The original system (A,B,C), choose a tolerance tol and set Fy = I,,.
2. Output: The reduced system (A, B, Cpn).

3. Define¢,, =1 and m = 1.

4. While (¢, > tol) do

5. [V, W,,] = Rational-Block-Lanczos(A,B,C%,,).

6. Compute the reduced model 4,, = WL AV,, B, = W! B C,, = CV,,
and the corresponding transfer function F,,.

7. Compute the error estimation €,, = ||F,, — Fru_1||oo-
8. Setm=m+1.

9. end while.

Notice that, for choosing the interpolation points, we can also use one of the
approximated error expressions listed in Table 3.1. The way of choosing these

parameters affects the speed of convergence of the algorithm.

Remark 3.4.2 For large problems, the total number of arithmetic operations af-
ter m iterations is dominated by O(mpn?) and also LU factorizations for solving
shifted linear systems with the shifted matrices A — o1, (Line 3 and Line 9 of
Algorithm 3). One can also use solvers such as GMRES with a pre-conditioner

for solving these shifted linear systems.
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3.5 The rational block Lanczos algorithm for the

computation of the matrix exponential /4B

The problem of approximating the matrix

Ut) =B (3.29)
for a fixed constant t € R, a given matrix B of R™*?” and A € R™" is of consider-
able importance in many applications. In fact, it is the core of many exponential
integrators for solving systems of ordinary differential equations (see [82, 83]) or
time dependent partial differential equations [54, 62]. We denote tA by A from

now on unless otherwise stated.

Over the years, several methods have been proposed to consider the numerical
approximation of the matrix exponential to a block vector B for 1 < p < n. In
1978, Moler and van Loan [106] published their famous paper discussing nineteen
dubious ways to compute the exponential of a matrix. Since then, Krylov subspace
methods have been an important development towards tackling the problem (3.29)

when the matrix A is very large and sparse.

Generally speaking, there are two classes of Krylov subspace methods for eval-
uating (3.29) when A is large and sparse [114]. In the first class of methods, the
matrix is projected into a much smaller subspace, then the exponential is applied
to the reduced matrix, and finally the approximation is projected back to the
original large space [17, 41, 43, 45, 108, 123]. The second class of methods is a

4 is replaced by an explicitly computed

direct approximation approach where e
rational function r such that r(A) ~ e, and then the action of the matrix ex-
ponential is evaluated [55, 56, 102, 137, 138, 144]. However, all these methods
have in common the fact that linear system solves with (shifted versions of) A are
required, and in rational Krylov methods one typically solves one linear system
per iteration. Therefore a rational Krylov iteration may be considerably more
expensive (in terms of computation time) than a polynomial Krylov iteration,
which involves only a matrix-vector product with A. The applicability of rational
Krylov methods hinges on the efficiency by which these linear systems can be

solved. Since rational functions may exhibit approximation properties superior to
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polynomials, the number of overall iterations required by rational Krylov methods
is hopefully smaller than that required by polynomial methods, provided that the

poles of the rational functions involved have been chosen in a suitable way.

The aim of this section is to use the first class of methods described above to
approximate the problem (3.29) for p > 1, and by using the rational block Lanczos
method proposed in last sections. For the rational Krylov methods, the desired
approximation has the following form

Tm—1(A)B, (3.30)
where r,,_1 is a rational function of the type (m — 1,m — 1), i.e., such that the
denominator has the same degree m — 1 as the numerator. On the theoretical
side we generalize some of the error estimates and a priori error bounds proved
in [123] on to the rational case. The proposed results are very general and can be

applied in other contexts than the approximation of the exponential.

3.5.1 Polynomial approximation

In this section we recall the problem of computing an approximation to the matrix
et B by using polynomial approximation [64, 123], i.e., in this case we seek an
approximation of the form

e’ B = p,,_1(A)B, (3.31)
where p,,_1 is a polynomial of degree m — 1. Since this approximation is an
element of the block Krylov subspace

K,.(A, B) = Range{B, AB, ..., A" B},

the problem can be reformulated as that of finding an element of K,,(A, B) that
approximates U = e4B. A well known algorithm for building a convenient basis of
K.,.(A, B) is the block Lanczos algorithm described in last chapter. Because the
bi-orthogonality condition of the matrices V,,, and W,,, generated by this process,
we have T,,, = WT AV,, and as a result T,, represents the projection of the linear
transformation A to the subspace K,,(A, B). The matrix X,,; = VmWQGAB is

the projection of eAB on K,,(4, B), i.e., it is the closest approximation to e B
from K,,,(A, B). Let 8 € RP*P and V; € R™*P as defining in algorithm 1, it follows
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immediately that
VW eAB =V, W etV =V, WL eV, B8,

the optimal fit is therefore X,,; = V,,,Y,,; in which Y,,, = WT eA4V,,E1 3. Unfor-
tunately, Y,,; is not practically computable, since it involves e. The alternative
which will be used throughout is to approximate WX eAV,, by e leading to
the approximation Y, ~ e¢' F,3, where E; is first mp x p block of the identity
matrix I,,,. Then we have

"B~V e™Ef=V,e"W!B. (3.32)
We are now left with the problem of computing efficiently the block vector e E, 3

which is similar to the problem we started with but typically of much smaller size.

3.5.2 Rational approximation

In this section, we use the rational block Lanczos procedure described in previous
sections to approximate the problem (3.29). In general, rational Krylov methods
for computing e B all have in common the fact that an approximation at iteration
m is of the form r,,_1(A)B, where r,,_ is a (m — 1, m — 1) rational function with

a prescribed denominator polynomial ¢,,_1 € P,,_1.

The rational approximation is already defined for the rational Arnoldi proce-
dure; see [40, 73], and also for the special case of extended Krylov subspaces
[43, 132]. In a similar manner, and using the bi-orthogonality of the bases gener-
ated by the rational block Lanczos algorithm, the rational block Lanczos approx-
imation for eAB can be defined as

U,, = VmeAmwgB, where A, = WZIAVm.

In this case, only the computation of a matrix function e4™ of size mp x mp
is required, which is small compared to the original e* problem of size n x n.
To simplify notations, in rational block Lanczos algorithm (Algorithm 3), we
construct the p X p matrix 5 such that B =V} E . Then the rational approximation
U,, will be expressed as

U, = Ve B4 B. (3.33)
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The rational approximation enjoys several remarkable properties. First of all, is
the exactness. This property is well known for polynomial Arnoldi approximations
[38, 123], and generalizes to the rational Krylov case, either for the special case

of extended Krylov subspaces [40], or for the general case in [73].

Lemma 3.5.1 LetV,, and W,, be the bases generated by the rational block Lanc-
zo0s algorithm (Algorithm 3), and A,, = WL AV,,. Then we have
o1 (A)B = Vorm—1(Am) E1 3, (3.34)

i.e., the approzimation for r,,_1(A)B is exact (provided that rp,_1(Ay,) is defined),
where 1,1 s a rational function of the type (m — 1,m — 1), i.e., such that the

denominator has the same degree m — 1 as the numerator,

The following result states that a rational approximation from a rational Krylov

subspace is closely related to rational interpolation at the rational Ritz values

A(Ap).

Lemma 3.5.2 Under the assumptions of Lemma 3.5.1, the following equality
holds
Ve B\ = rpy_1(A)B, (3.35)

where 1,1 interpolates the exponential function at the Ritz values A(A,,).

The following Lemma generalizes a result introduced in [63, 123]. It shows how to
systematically exploit rational approximations to e, in order to establish a priori

error bounds.

Lemma 3.5.3 Let A be an arbitrary matriz and V,,, W,,, the results of m steps
of Algorithm 3. Let f(z) be any function such that f(A) and f(A,,) are defined
and A,, = WL AV,,. Let r,,_1 be any rational function of the type (m —1,m — 1)
approzimating f(z), and define the remainder 1,,(2) = €* — rp,_1(2). Then,

1 (A)B = Vo f(Am) ErBlla < (Fm(A) |+ [Vinlla 17 (A [)1Bll2. (3.36)

Proof. As a result of the relation f(z) = r,_1(2) + 7n(2) we have
FAAVE = rp1 (A)VI + 7 (A) V4. (3.37)
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Lemma (3.5.2) implies that

Pim-1(A)V1 = Viurn 1 (An) Er. (3.38)
Similarly to (3.37) we can write
Tm-1(An)Er = f(An)EL — T (Ap) B (3.39)
Multiply (3.39) by V,, and substitute the resulting equation in (3.38) gives
rm1(A)V1 =V, f(An)E1 — V7 (AL EL. (3.40)
Substitute (3.40) in (3.37) to get, after multiplying by 3
F(A)B =V, f(A) ErB + (Frn(A)Vi — VT (A En)B. (3.41)

Finally we have
1f(A)B = Vi f(An) E1Bll2 < ([Fm(A)ll2 + Vi ll2]I7m (Ar) [12) 11 B]]2-

3.6 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the
proposed AORBL algorithm when applied to model order reduction problem. All
the experiments were performed on a computer of Intel Core i5 at 1.3GHz and
8GB of RAM. The algorithms were coded in Matlab 8.0. We give some numerical
tests to show the performance of the adaptive-order rational block Lanczos-type
(AORBL) algorithm. In all the presented experiments, tol = 10~® and the AORBL
algorithm is stopped when the H.-error
em = |Fm — Fin-1llo
between the previous reduced system and the current one is less than tol, where

the Hoo-norm of the error is given as (cf., e.g., [4], sec.5.3)

HFm - Fm—IHOO = Sug ||Fm(jw) - Fm—l(jW)H?v
we
w € [1073,10%] and j = /1.

To compute the H,-norm, the following functions from LYAPACK [113] are used :

e 1p lgfrq: Generates the set of logarithmically distributed frequency sam-
pling points.
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e 1p para: Used for computing the initial first two shifts.
e 1p gnorm: Computes || F,,(jw) — Fn_1(jw)||2-
In our experiments, we used some matrices from LYAPACK . These matrix tests

are reported in the following Table 3.2. For the FOM model [110], we notice that

Table 3.2: The matrix tests.

Matrices sizes
CD-Player n =120, p =2
Rail3113 n=3113,p==06
Modified FOM | n = 1006, p =6
1SS n=270,p=3
fdm n = 40.000, p =5

originally, the model is SISO system and we modified the inputs and outputs to
get a MIMO system. The matrices B and C' are then given by
B=[by,...,bs], CT =1lc1,...,cq],
where
bl =¢ = (10,...,10,1,...,1), and by,...,bs;Ca,...,Cq
—_—— ——

6 1000
are random column vectors.

For the fdm model, the corresponding matrix A is obtained from the centered

finite difference discretization of the operator

La(w) = Bu = o)1 ~ g(o.0) 5~ i)

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet boundary conditions
with

flx,y) = log(z +2y),

glw,y) = e,

hlz,y) = a4y,
and the matrices B and C' were random matrices with entries uniformly dis-
tributed in [0, 1]. The number of inner grid points in each direction was ny = 200

and the dimension of A is n = n2 = 40.000.
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Example 1. For this experiment, we used the modified FOM model with
m = 18. The top plots of Figure 3.1 show the frequency response of the original
system (circles) compared to the frequency response of its approximation (solid
plot). The bottom plot of this figure represents the exact error || F'(jw)— Fy, (jw)||2

for different frequencies.

Modified FOM model: Freguency Response plot

Singular values

10° 10* 10" 10’ 10’ 10° 10°
Frequency

tiodified FOM model: Error plot

fagnitude

10 10 10 1’ 10 10 10
Frequency

Figure 3.1: Top: ||[F(jw)|]2 and it’s approximations ||F,,(jw)||2. Bottom: the
exact error ||F(jw) — F,,(jw)l|2 for the modified FOM model with m = 18.

Example 2. In this experiment and as a first test model, we considered the

1SS example of dimension n = 270 with 3 inputs and 3 outputs, and we plotted

79



Chapter 3. An adaptive rational block Lanczos-type algorithm for model
reduction of large scale dynamical systems

the Hoo error norm ||F' — F,||o versus the number m of iterations. As can be

shown from this plot, the AORBL algorithm gives good result with small values of

m.
Example 3. We consider the well known CD player model. This is a small

1SS model: Error plot
T T

Transfer error norms

iterations

Figure 3.2: The H, error ||F' — F,||o versus the number of iterations for the ISS

model.

dimension example but generally difficult and is always considered as a benchmark
test. The top plots of Figure 3.3 represent the sigma plots of the original system
(circles) and the reduced order system (solid line). For the bottom curve, we

plotted the error norm ||F(s) — F,(s)]|2 versus the frequencies.

Example 4. In the last example we compared the AORBL algorithm with IRKA
method. We used four models: the CD player, the ISS, the Rail3113 [110] and
the £dm model (n = 40000, p = 5). In Table 3.3, we listed the obtained H,, norm
of the error transfer function || F'— F,, ||, the corresponding cpu-time, the number
of required iterations for the two methods and in parentheses we also gave the

used space dimension for IRKA. A maximum number of m,,,, = 500 iterations
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The CD player model: Frequency Response plot
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CD player: Error plot
T
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Figure 3.3: The CD player model with m = 30. Top: The singular values of the
exact transfer function (circles) and its approximation (solid) versus the frequen-
cies. Bottom: The error norms [|F(s) — F,.(s)]|2 -

was allowed to the two algorithms. As observed from Table 3.3, TRKA and AORBL
return similar results (computing times and norms of the errors) for the first two
models with an advantage for AORBL. However, for the last two examples, IRKA

didn’t converge within the allowed maximum number of iterations.
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Table 3.3: Comparison between IRKA and AORBL for CD player, ISS, Rail3113

and fdm models.

AORBL IRKA (tol = 107%)
Hoo error  # iter. time | Hoo error # iter. (dim) time
CD player 2.6e-06 25 1.1s | 1.5e-04 42(35) 1.4s
ISS 3.8e-05 20 1.2s | 1.2e-04 54(30) 4.9s
Rail3113 1.1e-07 30 4.5s - - -
fdm (n =4.10%) 4.5e-08 35 53s - = -

3.7 Conclusion

In this chapter, we proposed a new adaptive rational block Lanczos process and

an adaptive method for choosing the interpolation points with applications in

model order reduction of multi-input and multi-output first-order stable linear

dynamical systems. Moreover, we established new Lanczos-like expressions and

new error estimations between the original and the reduced transfer functions.

We presented some numerical results to confirm the good performance of the

rational block Lanczos subspace method compared with other known method.

The proposed procedure is tested on well known benchmark problems of medium

and large dimensions and the numerical results show that the adaptive approach

allows one to obtain reduced order models of small dimension.
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A modified nonsymmetric rational block
Lanczos method for model reduction in

large scale LTI dynamical systems

In this chapter, we propose a modified non-symmetric rational block Lanczos
algorithm. This process can be considered as a generalization of the rational
block Lanczos algorithm given in the last chapter where different multiplicities
are consider for each interpolation point. In the second section on this chapter we
show how to obtain new Lanczos-like equations for the rational block case. Simple
residual error expressions are developed in Section 3. In Section 4 we propose an
adaptive choice to generate the set of interpolation points. The last section is
devoted to some numerical experiments to show the accuracy of the proposed
methods.
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4.1 The modified rational block Lanczos algo-

rithm
Let ¥k = {o1,...,0x} and Yi = {71, ...,0K} be two sets of interpolation points,
with multiplicities mq, ..., mg, and mq, ..., mg, respectively. The column vectors

of the matrices V,, and W,, generated by the modified rational block Lanczos
algorithm are determined from the K block Krylov subspaces K,,.(A, B, 0;) and
K, (AT, CT,5;), respectively, for i = 1,..., K. Therefore, at each iteration 7, the
modified rational block Lanczos algorithm generate the matrices V,,, € R™™ and
W, € R™™i whose column-space spans the block Krylov subspaces K,,, (4, B, ;)
and Kz, (AT, CT,5;), respectively. From each of these subspaces, the m; and m;
column vectors are used to generate the matrices V,,, and W,,, respectively, such
that
Voo = Vi, Vings -, Vi ] and W, = W W o000 W,

K K ~
n><mp — . = .
where V,,,,W,, € R andm—Eilmz—Eilml.

As in the last chapter, we give now the result which shows how we can construct
the bi-orthogonal bases V,,, and W,, of the rational Krylov subspaces so that the
multi-point rational interpolation problem is solved. This result is proven in [71]
for SISO systems and extended to the MIMO case in [57].

Theorem 4.1.1 Let ¥ = {oy,...,0x} and Sg = {G1,...,0K} be two sets of
interpolation points, with multiplicities mq, ..., mg, and mq, ..., Mg, respectively.
IfV,,, W,, € R"™™ satisfy
U Ko, (A, B, oy,) € Range(V,,)

U \Kin, (AT, C7 5) C Range(W,,)
where Y1 my, = S iy = m. Then, assuming that (A — ol,)"" exists for all
o€ XU im
o if o), = ok, Fiu(s) matches the first my, + my moments of the original transfer
function F(s) at oy,
o if o # O, Fin(s) matches the first my of F(s) at oy and the first my, moments

of F(s) at oy, respectively.
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The modified rational block Lanczos process is summarized in Algorithm 5. It
is a generalization of the one given in [51] to the block case. For simplicity of the

presentation we assume that m; = my and also it is assumed that o; # o; and
Gi# G fori £ j.

Algorithm 5 The modified rational block Lanczos algorithm (MRBLA)

1. Input: Sx = {o1,...,0x}, 5k = {61,...,0k}, A, B,C and my, = iy,
2. Initialize: V,, =[|,W,, =[] and 1 =0

function [V,,, W,,] = Modified _rational Block Lanczos(A, B, C, %, i)
3. fork=1,... K

4. if {op = }; Siy1 = Belse S;y1 = (A —o041,) 'B; end

5. if {op = o00}; Riy1 =CT else Ry = (A—041,)"7C”T end

6.  Siy1=Si41 — VWL Sii1; Riy1 = Ripn — W, VIR

7. Si—H = ‘/;+1H¢+1,i; Ri+1 = m+1Gi+1,i; (QR factorization);

8.  WL,Viyi=PFD;Q]; (Singular Value Decomposition);

9. Vi = V;+1QiD¢_1/2§ Wi = VVi+1PiD¢_1/2;

10. Vi = Vi, Vigal; Wi = [Wy, Wii]; i =i+ 1

11. forj=1,...,mp—1

12. if {0, = 00}; 541 = AV else S;y1 = (A — op1,)"'V;; end

13. if {6, =oo}; Riy1 = ATW; else R, = (A — 0x1,,)"TW; end

14. Sit1 = Siz1 — Vi, WE Si1s Ry = Rin — W, VE R4y

15. Sit1 =VieiHiv14; Rivi = WiniGiyi o (QR factorization);
16. W, Visi = P.D;QF  (Singular Value Decomposition);

17. Vier = VintQiD; V% Wigy = Wi PD; %

18. Vi = [Vin, Viga]; Wo = [Wo,, Wip]; i =i 4+ 1;

19. end

20. if {k =K}

21. Siy1 =A™= B and R, = (A™=)TCT,

22. Sit1 = Sip1 — VmW%Sﬂrl; Ripn = Rip1 — WmV%RH—l;

23. Si+1 = V;—I—IHH-LZ'; Ri—i—l = V[/’H-lGi-i-Li (QR factorization);
24. W Visn = P.D;QT  (Singular Value Decomposition);

25. Vier = WHQz‘D;lﬂ; Win = I/Vi+1piD;l/2§

26. Vst = Vi, Vi1l Wonar = W, Whaals

27.  end

28 end.
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4.2 Lanczos-like equations for the rational block

case

Rational Krylov algorithms are always related to a set of equations that relate
the bases constructed by these procedures and the matrices of the original system;
see [13, 59, 57, 111, 122] and references therein. However, these equations are not
in the standard form. Her, we show that the modified rational block Lanczos
process proposed in last section allow to obtain Lanczos-like equations for the
rational case. This result is first proposed in [51, 50] for the standard rational

Lanczos algorithm and extended her to the block case.

Theorem 4.2.1 Let V,, 11 and W,,, .1 be the matrices generated by the modified
rational block Lanczos algorithm (Algorithm 5), then we have
Range[V,,, A™= B] C Range{V,, .1}, Range[W,,, (A™=)TCT] C Range{W,,;1},
and
W;L—l-le'i‘l = Im+1,
where my, and My, are the multiplicities of oo in ¥ and i, respectively.
Moreover, we have the following Lanczos-like relations
AV, = V, A, + Vi1 P, (
B = V., B, + Viiibm, (
AW, = WAL + W1 Qo (
ct = W,,CF + W,yicl (
where b, = er,;HB,Cm = CVyut, P = WZHAVm and Qmi1 = V£+1ATWm.
Furthermore, b,, = 0 if my > 0 and ¢,, = 0 if my, > 0.

Proof. We first prove the result for m,, = 0. Let V,, be defined as in Theorem
4.2.1. Then we extend V,, to V,, 11 = [V, Vi11] such that

Range[vma B] g Range{vm-H}
by biorthogonalising B against all previous columns of W,, with the Lanczos

algorithm. Then the following relations are true:

Range{(A — o.1,)) ' B} C Range{V,}, (4.5)
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Range{(A — 0 1,) """V B} C Range{V, ;}
Range{(A — o1,1,) "B} C Range{V;} (4.6)
and
Range{B} C Range{V 41},
where V,, = [Vi,Va, Vs,..., Vi) € R™™ m = S8 m,; and V; is the matrix
constructed at the (k)g, interpolation point and for the it multiplicity, i.e., j =
;:11 my; + . We start by proving the theorem for the first block column of V,,.
Multiply (4.5) by (A — o011,,) from the left and rearrange to get
Range{AV1} C Range{Vy, B}
Then we have
Range{ AV} C Range{V,,+1}.
We proceed the proof by induction. We assume that the result holds for an
arbitrary interpolation point oy, of the K,, Krylov subspace up to the (i — 1)
multiplicity. We will prove the result for the next multiplicity. Therefore we
assume
Range{AV;_1} C Range{V,,11} (4.7)
and then we prove that
Range{AV;} C Range{V,,41}.
Multiply (4.6) from the left by (A — o /,,) and rearrange to get:
Range{AV;} C Range{V,;, AV; 1}
which gives
Range{AV;} C Range{V 41}
Combining the last relation with the assumption made in (4.7) gives
Range{AV;} C Range{V,,4+1}. (4.8)
Therefore it is easy to see that the result in (4.8) holds for all columns in V,,, i.e.,
Range{AV,,} C Range{V,,11},
and then there exists a matrix Y € RmTDPxmp guch that
AV, =V, Y.
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Am

m+1

Setting Y = ( > , we obtain

AV, =V, 1 ( Am
P, m+1
Using the bi-orthogonality between W,,,,; and V,,,; gives ,me = A, =WT AV,
and P11 = WL, AV,,. Therefore we get
AV, =V, AL+ Vi1 Py
Similarly to prove (4.2) we proceed as follows: Since Range{B} C Range{V,,1}
there exists a matrix Z € R(™TUP*P guch that

B=Vu.Z (4.9)

B,
Setting Z = ( ; , and multiplying (4.9) by WI ; from the left we get

B,
Wl B = ( ) > : (4.10)

Then B, = By, = WL B, b, = W7 B and consequently we obtain the following
relation
B=V,B, + Vyiib,.

Assume now that my, > 0. The matrix V,, verifies
Range|B AB ... A’"'BV,, ] C Range{V,,}

where p < m. Since B is already in the Range of V,, it is easy to see that the
relation (4.1) will be satisfied if
Range{AVi, ..., AV,} C Range{V,,41}. (4.11)

This can be shown by setting V,,, 11 = [V,,,, V;11] and then
Range|V,,, APB] C Range{V,,+1} and W%HVmH =l

which is obtained by bi-orthogonalising AP B against all the previous columns of
W,,,. It follows that (4.11) holds since by construction we have that,
Range{Vi,..., Vis1}, forO <k <p

Range{V1, ..., Viui1}, fork=p
which completes the proof of (4.1) and (4.2).
To prove the last part, note that if ms, > 0 then B € Range{V,,} from which it
follows that b,, = 0.

Range{A*B} C (4.12)
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In a similar way, the relations (4.3) and (4.4) can be shown.

4.3 Residual error expressions

In last chapter, we utilized the rational Lanczos equations to simplify the residual
error expressions. More simplified residual expressions will be established her

using Lanczos-like equations obtained in last section.

4.3.1 Simplified Lanczos residual errors in the rational

block Lanczos

Using the results of Theorem 4.2.1, we give new simple expressions of the residuals
Rp(s) and Re(s). In fact, from the residual expression Rp(s) defined in (3.19)

we get

Rp(s) = B— (sl — AV, (slyny — Ap) ' B
= B —Vyu(shuy — An)(8Imp — A) " By + Vinr1 Prg1 (8Imp — Ap) ™' Bin,
= Vil m+1(slmp Ap) By + by,
= DBRpg(s)

where ﬁB( ) = Pui1(shnp — An) ' By, + by, is the frequency dependent term of

the residual error Rp(s), and B = Vi1 the non frequency dependent term of
Rgp(s). In a similar way, we can use the expression of Ro(s) in (3.19) to obtain

the following relations
Ro(s) = CT —(sI — AW, (s, — Ap) T CL
= C"Re(s),
where Re(s) = Qi1 (8Inp—Am) TCL 4-cI is the frequency dependent term of the

residual error Ro(s), and C' = Wi, is the frequency-independent terms of Re(s).
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4.3.2 Error approximations

As in last chapter, the error expression in Theorem 3.3.1 can be expressed as
e(s) = Ro(s)" F(s)Rp(s),

and we can use an approximation of F(s) to simplify calculations. The different

possible approximations of the error €(s) are listed in the following table.

Table 4.1: Various estimations of the error
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The simple approximations in Table 4.1 are the first two ones for which the com-
putations require a small work as compared to the other choices. In the last

section, we will give some numerical tests comparing these approximations.

4.4 An adaptive modified rational block Lanczos

algorithm

As we already mentioned, the rational Krylv method has proven to be very effec-
tive for model reduction [71, 59, 60], but it has the drawback that the selection of
interpolation points is a difficult task since it is an ad-hoc process. For a discus-
sion on the choice of the interpolation points, see [75]. In this section we address
this issue and we give an adaptive approach to chose these shifts. This adaptive
method is first proposed in [20] for the case of standard rational Arnoldi algo-

rithm. It is based on an approximation of upper bound of the error norm between

90



Chapter 4. A modified nonsymmetric rational block Lanczos method for
model reduction in large scale LTI dynamical systems

the original and the reduced transfer functions. Here, we use the same approach
for our modified rational block Lanczos algorithm. The following result is the key

ingredient of this method.

Proposition 4.4.1 Let ¥, and im denote two given sets of interpolation points
and let V,,, W,, € R™™ pe the bi-orthogonal matrices computed by the modified
rational block Lanczos algorithm. The following relation holds

1F(s) = Fn(s)ll2 < [CP7 (s) |2l R (5)]l2, (4.13)

where Rp(s) = B — P(s)V,, P (s) B, P(s) =sl — A and B,, = W! B.

Proof. From the expression of original and reduced transfer functions F'(s) and
F,.(s), we have

1F'(s) = Fun(s)lla = C(sIn = A)'B = Con(sLonp = Am) ™" B2
IC(sLn = A) (B = (sIn = A)Vin(sLp — Am) ™ Bu) |12
ICP(s)™(B = P(s)ViuPrur(5) ™ Bin) |12
< ICP(s) 2l Ba(s)]l2-

Now, we can approximate the upper bound by employing the reduced or-
der matrix triplet (A,,, Bm, Cy,) and then ||CP(s)™!|| could be approximated by
|Co P (s) 7|, where P, (s) = slny — Ay and A, = WL AV,

Using the above approximation, the next shift o, can be selected as

T = argmax | Cou Po(s) " al| R (s) o (4.14)

We notice here that another simple way of choosing the shifts, is to consider in
(5.16) only the second part which gives

Fen = argmax || Rs(s)] (4.15)

however, for some problems, choosing the interpolation points by using the formu-

lation (4.14) gives more accurate results than those obtained with the expression

(4.15).

Next, we combine the modified rational block Lanczos algorithm (Algorithm 5)

and the adaptive approach explained above for selecting the interpolation points to
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have an adaptive order rational block Lanczos algorithm for computing reduced-

order system. This process can be summarized as follows.

Algorithm 6 The Adaptive Modified Rational Block Lanczos (AMRBL) algorithm
for model-order reduction

1. Input: The original system (A,B,C), the initial values oy = 71, choose a
tolerance tol and set Fy = Ip,.

2. Output: The reduced system (A,,, By, Cpn).

3. Initialize X1 = {01 }; il ={o};mi =m; =3;¢, =1and K = 1;

4. While (e, > tol) do

5. [V, W,,] = Modified_rational Block Lanczos(A, B, C, X, f]K)

6. Compute the reduced model A,, = W! AV, B,, =W’ B, C,, = CV,,

and the corresponding transfer function F,,.
7. Compute the next interpolation point o1 = 0k using (4.14).
8. Set Xpy1 ={Xk,0k41}; S = {§K75K+1}§ ME41 = ME41 = 3
9.  Compute the error estimation €,, = || F,,, — Fin_1l/co
10. Set K=K +1

11. end while.

Remark : For choosing the interpolation points, we can also use one of the
error approximation expressions listed in Table 4.1. In this case the interpolation
points are selected to be the frequencies 0 € X and 7 € 5 k at which one of the
approximated error expressions achieves its maximum, i.e,.

Sk = {01 é(0)] = elloc} and S = {7+ 63)] = llell}-
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4.5 Numerical results

In this section, we give some experimental results to show the effectiveness of the
adaptive modified rational block Lanczos (AMRBL) algorithm for model reduction in
large LTI dynamical systems. All the experiments were performed on a computer
of Intel Core i5 at 1.3GHz and 8Go of RAM. The algorithms were coded in Matlab
8.0. In all the presented numerical testes, we used as a tolerance tol = 107> and
the while-loop in Algorithm 6 is stopped when the error

€m = |Fm — Frne1|leo < tol

where w € [107¢,109].

In all the experiments of this section, we consider the special case where the
sequences of shifts {o;}, and {7;}!", are equal. To compute the set of frequency

S and w, we used the function 1p_lgfrq.

Example 1. For this example, we applied the AMRBL on the modified FOM model
and ISS model to get a reduced order systems of dimensions m = 40 and m = 45,
respectively. The top plots of Figure 4.1 (modified FOM) and Figure 4.2 (ISS)
show the frequency responses of the original system (circles) compared with the
frequency responses of its approximation (solid plot). The bottom plot of these
figures represent the exact error || F'(jw) — Fy,(jw)||2 for different frequencies w €
[107¢,109].

Example 2. For this experiment, we considered the fdm [113] and the Rail821
[110] models. We plotted the H relative error norm

I = Fnllse
1l
versus the number m of iterations. For the fdm model, we consider the operator
ou ou

La(u) = Au — f(, y)g - g(r,y)a—y — h(z,y)u,
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Modified FOM model: Freguency Response plot

Singular values

10° 10 10? 10’ 10 10* 10
Frequency

Modified FOM model: Error plat

Magnitude

10 i 10 1’ 10 10 10
Frequency

Figure 4.1: Top: ||F(jw)||2 and its approximations || £, (jw)||2. Bottom: the exact
error ||F(jw) — Fn(jw)l2 for the modified FOM model with m = 40.

such that
flz,y) = log(z +2y),
g(z,y) = ey,
hMzy) =  z+y.

The matrices B and C' were random matrices with entries uniformly distributed
in [0, 1]. The number of inner grid points in each direction was ny = 100 and the
dimension of A is n = ng = 10.000. For this experiment, we used p = 6. The

Rail821 model is a first-order system of dimension n = 821 and p = 6. As can
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i |55 model: Frequency Response plot
10 T T T T T

Singular values

o
107 L L 1 1 L

10° 107 10? 10’ 10 10* 10
Frequency

135 model: Error plot

Magnitude

10 i 10 1’ 10 10 10
Frequency

Figure 4.2: Top: ||F(jw)||2 and its approximations || F,(jw)||2. Bottom: the exact
error ||F(jw) — Fn(jw)l2 for the ISS circuit model with m = 45.

be shown from Figure 4.3, the relative error decreases rapidly to zero.

In Table 4.2 we reported the results obtained with different matrix tests. In
this table, we listed the exact H.-error norm, the corresponding iteration (It.)

and the obtained cpu-time.

Example 3. For the last example, we compared the exact H.-error with different
approximations using the methods described in last section for choosing the in-

terpolation points (Table 4.1). For this experiment, the matrix test was Rail821.
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Relative error

B 1 | | 1 1 | | 1 1
10 200 30 40 50 E0 0 a8 90 100 110
Iteration

Relative error

20 40 g0 80 100 120 140 18D 180
lteration

Figure 4.3: Relative error norms. Top: the Rail821 model and bottom: the fdm
model.

Table 4.2: The exact H.-error for different matrix tests.

Matrices Iteration | ||F — Fyllco
Rail821 16 212 x 10~ 1
Rail3113 26 5.32 x 1079
fdm, n = 10.000,p =6 | 40 30.66 x 1079

As shown from Table 4.3, the results are similar when using the different proposed
approaches for selecting the shifts except for the set ¥ for which one needs many

iterations to get a good approximation. Therefore, we can choose simple sets such
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as Y1 or Yo to get good interpolation points that could be used in the adaptive

modified rational block Lanczos algorithm.

Table 4.3: Results with the Rail821 model.

Error Expressions It. |IF— Flloo
Sy ={o: |Rp(0)|2 = | R} 16 | 4.5x 10710
S = {0 : |R5(0)]|2 = || RE|se} 14 | 52x10° 1
Sy = {0 : || Hn(0)Rp(0)|2 = | HmRpllso} 16 | 1.8x107!
Sy = {0 : |RE(0)Hp(0)|l2 = | REHploo} 16 | 2.5x 10710
S5 = {0 : | Hu(0)|l2 = || Hmloo} 50 | 9.6 x 10710
S = {0 : |RE(0)Hp(0)Rp(0) |2 = | REHp Rp| o} 16 | 2.0x 101
Y7 = {0 ||Cn P (o) |2l RB(0)]l2= [|Coi Pyt oI RBllsc} | 16 | 5.3 x 1071

4.6 Conclusion

In this Chapter, we proposed a new adaptive algorithm based on a modified ratio-

nal block Lanczos process and an adaptive method for choosing the interpolation

points for in model order reduction of MIMO first-order stable linear dynamical

systems. Moreover, we obtained simple Lanczos equations in rational block case.

Numerical experiments show the applicability of the proposed algorithm.
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second order dynamical systems

This Chapter presents numerical and theoretical foundations of global Krylov
subspace method for model order reductions. This method is an another exten-
sion of the Krylov subspace method for multiple-inputs multiple-outputs (MIMO)

systems, as the block Krylov method introduced in last chapters.

If the global Lanczos method and the block Lanczos method are applied to the
same matrix pairs (A, B) and (AT, CT) the resulting matrices both span the same
input and output Krylov subspaces, respectively. The bi-orthogonalization of the

bases vectors of Krylov subspaces is the only difference whether constructed by

98



Chapter 5. A matrix rational Lanczos method for model reduction in large
scale first and second order dynamical systems

the block or the global Lanczos methods. In [70] (Chapter 3), it is shown that the
moment matching property does only depend on the fact that the columns of the
bases generated by the global and the block Lanczos methods span the input and
the output Krylov subspaces . It does not depend on the way theses bases are
computed or whether their columns have a certain additional property. Hence,
the moment matching property holds for reduction methods based on the global
Lanczos algorithm as well as for reduction methods based on the block Lanczos

algorithm.

In this chapter, we describe an adaptive modified rational global Lanczos (AMRGL)
algorithm for model-order reduction problems using multipoint moment match-
ing based methods. In the first section, we start by proposing a modified rational
global Lanczos process and then we show that these proposed algorithm allows
to obtain the Lanczos-like equations also for the rational global case. Next, since
the major problem of the rational Krylov methods is the selection of some inter-
polation points, we propose in the second section some adaptive techniques for
choosing these shifts. Second-order dynamical systems are also considered in this
Chapter and the AMRGL algorithm is applied to an equivalent state space model.

Finally some numerical examples will be given.

5.1 The modified rational global Lanczos method

In this section, two versions of the global Lanczos procedure are given. we start
by introduce the general form of the global Lanczos process and we derive the
rational global Laczos equations related to this algorithm. Next, we modified the
first algorithm in such a way the Lanzos-like equations remains valid also in the

rational global case.
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5.1.1 The rational global Lanczos algorithm

The rational global Lanczos procedure is an algorithm allowing to construct two F-
biorthogonal bases {Vi,...,V,,} and {W7,..., W,,} of the rational global Krylov
subspaces K, (A4, B, 2,,) and K., (AT, CT,5,,) respectively, where

Kn(A, B, %) = Span{(A—o11,)"'B,,....][(A - i)' B},

i=1
m

ICm(ATa OT> im) = Span{(A - Elln)_TCTa sy H(A - ai[n)_TCT}‘
i=1
The sets X, = {01,...,0m} and ©,, = {&1,...,5m,} contain the interpolation
points which will be specified later. The rational global Lanczos algorithm is

summarized as follows.

Algorithm 7 The Rational Global Lanczos Algorithm (RGLA)

1. Input: A € R B,CT € R S, = {01,.. . 0mi1}, Smi1 =
{G1,...,0ms1} and a fixed integer m.

2. Set V, = (A—o0.1,)7'B, W, = (A —0o11,)"TCT and construct the initial
block vectors V; and Wj such that (W, Vi)p = 1; V; = [Vi] and W, = [W];

3. for j=1,....m -

4. V}—i—l = (A — O-j—l-l]n)_lv} and VVJ’_H = (A — 5j+1]n)_TWj;

5 fori=1,...,7, N
6 @J = <%7‘/}+1>F and 9ij = <‘/E,%+1>F
7. Vj+1 = V}'+1 - hi,jVi and Wj+1 = Wj+1 - gi,jVVi5
8 end o
UT T Tr(Vi W)
9 hivrs = \/’Tr(vjj-;—le—i-l)’ and  gj41,; = %;
. L Jj+1.J
|7 W
10. Vi = 2% and W,y = —4,
j+1,j 9j+1,
11. Vj+1 = [Vj> V}'+1]; Wj+1 = [Wj, Wj+1};
12. end.

13. Outputs V11 = [Vi, ..o, Vinaa], Wi = [Wh, ..., Wi

Next, we show how to obtain some equations that describe the rational global

Lanczos algorithm (Algorithm 7).

100



Chapter 5. A matrix rational Lanczos method for model reduction in large
scale first and second order dynamical systems

5.1.2 The rational global Lanczos equations

Let H,, and G,, be the m x m upper Hessenberg matrices whose nonzero entries
are defined by Algorithm 7, and fIm, ém, }?m and Em are the (m+1) x m matrices

defined as
T Hm iy Im + HmDm
Hm — 9 Km Y
herl,me% herl,mO'erle%
=~ Gm 4 ]m + Gmﬁm
G, = - and L, _ r |
gm—i-l,mem gm+1,m0m+1€m
where D,, and D,, are the diagonal matrices diag(os, . . ., 0,41) and diag(cs, . . ., Opmi1),
respectively, and the sets {09, ..., 0,11} and {09, ..., 0,11} contain the interpo-

lation points used in Algorithm 7. The following result gives some algebraic

properties obtained from the rational global Lanczos algorithm.

Theorem 5.1.1 Let Vy,iq and W41 be the F-biorthogonal matrices of R™*(m+1p

constructed by Algorithm 7. Then we have the following relations

Avm—H(E]m ® ]p) = Vins1(Km ® Ip), (5.1)
ATWm—H(ém ® ]p) = Wm-f—l(zm ® Ip)7 (5.2)

and

Tm = KmHnibl + hm+1,m[0m+1W£ © (Vm+1E7:CL) - err; © (AVerlEZ;)}H;Ll? (5-3)
where Tp, = WE o AV,,.

Proof. From Algorithm 7, we have

J
hj+1,j‘/}+1 = (A — O-jJrIIn)ilV} — Z hi,j% for j = 1, oo, (54)
i=1
Multipling (5.4) on the left by (A — 0,411,,), we get
J+1 J+1
Azh’hj‘/l = ‘/J +O'j+1zhi,jv; for j = 1, o,

i=1 i=1
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which gives the following relation
AVm+1(Hm & Ip) = Vm(Im + HmDm) ® ]p + O-m—i—lhm—l—l,mvm-i—l(e% ® ]p)a

== Vm-i—l (Km & Ip)a

and then the equation (5.1) is satisfied. In a similar way, the relation (5.2) can
be shown.
To prove the relation (5.3), we proceed as follows. We use the relation (5.1) to
have

AV (Hy @ 1) = V(K @ L) + 01 hins 1 m Vi1 B — AVt B 1 BT
Using the F-biorthogonality between V,, and W,, and the properties of the kro-

necker product gives
T = W0 AV = K H B[00 i Wiy (Vi By ) = Wi o (AVi i B ) L

Let us now write the transfer function of the dynamical system (2.1) as F'(s) =
CX where X € R™? is the solution of the following matrix linear system
(sl, — A)X = B, (5.5)
assuming that the matrix sI, — A is non-singular. In the context of solving the
shifted system (5.5), an approximate solution X, = V,,Y;, can be determined by
imposing the Petrov-Galerkin condition
Rp(s) Lp Span{W,..., W, },
where Rp(s) = B — (sI,, — A)X,, is the residual associated to the approximation
X Therefore we obtain
X =Vl ((sLy — To) ' (W) 0 B)) ® L))
Using the properties of the kronecker product, X,, can be expressed as
X = Vi ($Ip — (T @ 1)) " (W, © B) @ L) (5.6)
Then the reduced-order transfer function can be written as
Fu(s) = CXp=CVi(shyy — (T ® L)) (WL 0 B) ® I,)
= Cp(8hyp — Am) ' B,
where
Ap = (Tm®1,), By = (W oB)®1I,) and C,, = CV,,. (5.7)
One possibility of choosing the two sets of shifts could be derived by using the
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following theorem presented in [71] for SISO systems, and extended to MIMO

case in [57].

Theorem 5.1.2 Let %, = {o01,...,0,} and 3, = {G1,...,0m} be two sets of
interpolation points such that the matrices A — o;1,, and A — 7;1,, are invertible
fori=1,....m. If
Span{(A — o11,) ' B,..., (A= 0,,1,) "' B} C Range(V,,),
and
Span{(A —&,1,)"CT ... (A—5G,1,)""C"} C Range(W,,)
with WEL oV, =1, then

e [fo; = 0;, the approximate transfer function F,, defined in (5.7) interpolates
the original transfer function F(s) and its first derivative at the selected
points o;,1=1,...,m, i.e.,

Fn(0;) = F(0;) and F. (0;) = F'(03), i=1,...,m.

o If 0; # 0;, the reduced order transfer function F,, interpolates the values
of the original transfer function F(s) at the points o;,i = 1,...,m and
oi,i=1,...,m, i.e.,

F,.(0;) = F(o;) and F,,(5;) = F(0;), i=1,...,m.

Later, we will propose two adaptive techniques for choosing the two sets of shifts.

5.1.3 Lanczos-like equations in the rational Global case

The relations derived in Theorem 5.1.1 are known as the rational global Lanczos
equations that relate the F-biorthogonal matrices V1, Wy,11 and the matrix A.
We can also derive simple Lanczos equations in the rational case. For this reason,
we modified the rational global Lanczos algorithm by allowing some interpolation
points to be equal to infinity. Such a result is given for the block case in last
chapter [14]. The modified rational global Lanczos algorithm is summarized as

follows.

103



Chapter 5. A matrix rational Lanczos method for model reduction in large
scale first and second order dynamical systems

Algorithm 8 The Modified Rational Global Lanczos Algorithm (MRGLA)

1. Imput: A € R™™ B CT € RV, %, = {o,... ,Umﬂ},imﬂ =
{G1,...,0m+1} and a fixed integer m.

2. Set V, = (A—o0.1,)7'B, W, = (A —5,1,)""CT and construct the initial
block vectors Vi and Wi such that (W, Vi)p = 1; V; = [V4] and W, = [W];

3. forj=1,....m

4. if {O'j_|_1 = OO}, ‘7}4_1 = AV} else ‘7}4_1 = (A — O'j_i_ljn)il‘/}; end
5. if {5j+1 = OO}, VVj—i—l = ATVVJ else M/j+1 = (A — 5j+1fn)7TWj end
6. forizl,...Lj, N
7. @] = <I£/z'7vj+1>F and gm/'v: <W,WN/J‘+1>F
8. Vier = Vi — hijVi and Wi = Wi — i ;Wi
9. end o
~ —~ Tr(VT W‘+1)

10 hjpy = \/|TY(VJ':-FHWJ'+1)| and  gjy15 = %3

N . 1,5

V; W,
11 ‘/j—l-l = I+l and Wj+1 = j+1;

hj+1,j 9j4+1,5
12, Vig = [V, Vial; Wi = Wy, Wil
13. end.

14. Outputs V1 = Vi, ..., Vipga], Wi = (Wi, ..., W)

We notice that in our setting, we assume that we are not given the sequences
of shifts o1,09,...,0,1 and 01,09, ...,0,11 and then we need to include the
procedure to automatically generate this sequences during the iterations of the
process. This adaptive procedure well be defined in the next section. Using
the modified rational global Lanczos algorithm for o,,.1 = 0,41 = 00, we can
obtain Lanczos-like equations such those obtained in the standard Lanczos case.
The simple equations allow us to have simple residual error expressions for the

rational case or to derive error bounds.

Theorem 5.1.3 Let Vo1 and W11 be the matrices generated by the modified

rational global Lanczos algorithm (Algorithm 8) for the extra interpolation points
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at Opy1 = Opmy1 = 00. Then we have the following Lanczos-like relations

AVy = V(T ® L) + Vi1 (P @ 1), (5.8)
ATWm = Wm(Tg ® [p) + Wm—i—l(@m—i—l ® Ip)a (5-9)
B = VB + Vi (b ® 1), (5.10)
T = W,COL + W(ch ® 1), (5.11)
where Tr, = WE© AV, Prp1 = W1 0 AV, Qg1 = VI 0 ATW,,,
B, =((WLoB)®1I,),Ch = ((CoVy)®1,),bym =W, 0B and ¢y = C o V.
Proof. According to Algorithm 8, we have
Span{V1, ..., V, AV,,} = Span{V,,,.11}
with Vi1 = Vi, ..., Vippa) and WL o V,i1 = L1, and we need to prove that

Span{AVy,... AV} C Span{V,,41}.

In fact, after m — 1 iterations of Algorithm 8 and assuming that H,, ; is non-

singular, the result of Theorem 5.1.1 gives

AV (Hpo1 @ 1) = Vi (K1 @ 1y).
therefore
AVt = V(Ko @ L) (HLy @ 1) + ombimm1 Vi By (H) L © 1)
— D1 AV B (H Ly ® 1),
which gives Span{AV,,_1} C Span{V,,+1}.
Now, as AV, = [AV,,_1, AV,,] and AV,, € Span{V,,+1}, we have
Span{AV,,} C Span{V,,41}.

Then, there exists a matrix Y € R(™TD*™ gych that
AVm = Vm+1 (Y ® [p)

Setting Y = " , we obtain

m+1
AV = Viia T @1, | .
Perl

Using the F-biorthogonality between V,,.1 and W, 1 gives %m =T = WELo AV,
and P,pq = WL, | o AV,,. Therefore we get
AV =V (Ton @ Iy) + Vi1 (P @ ).

Similarly, to prove (5.10) we proceed as follows: Since B € Span{V;} C Span{V,, 11},
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there exists a matrix Z € Rm+Dx1 guch that
B=Vu(Z®L). (5.12)

By,
Setting Z = < ), and multiplying (5.12) by W/, from the left we get
B,
W, oB= ( ) ) (5.13)
Then B,, = WEL o B, by, = W, ¢ B and consequently we obtain the following

m

relation

B = Vm(Bm ® [p) + Vm+1(bm ® [p)
- VmBm + Verl(bm ® [p)
(5.14)

In a similar way, we can show the relations (5.9) and (5.11).

5.2 An adaptive modified rational global Lanc-

zos algorithm

5.2.1 Adaptive choice of interpolation points

As in the previous chapters, rational Krylov methods always require a good se-
lection of interpolation points for a good convergence of the reduced order model
process. This subsection deals with this problem and propose some adaptive

techniques to chose the set of shifts.

5.2.1.1 First approach

The first approach is a generalization to the one used in last chapter for the global

case. The following result is the key ingredient of this method.

Proposition 5.2.1 Let ¥, = {01,...,0,} denote a given set of interpolation
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points and let V,,, W,, € R"* ™ be the F-biorthogonal matrices computed by the
modified rational global Lanczos algorithm. The following relation holds

1F(s) = Fn(s)llz < ICP~ ()2l Ri(s)]|2. (5.15)
where Rp(s) = B— P(8)Vu Py, (8)Bm, P(s) = sl — A and B,, = (WL oB)®1,).

Proof. From the expression of transfer functions F'(s) and F,,(s), we have
1F'(s) = Fu(s)ll2 = C(sln = A)'B = Con(sInp = Am) ™" B2

IC(sLn = A) (B = (sIn = A)Vin(sLp = Am) ™ Bun) |2
= [[CP(s)" (B = P(s)VPon(s) " Bu)ll2

< [ICP(s) M2l Ba(s)]l2-

The preceding result suggests us to approximate the upper bound by using the
reduced order matrix triplet (A,,, By, Cr) and then ||C'P(s)™!|| could be approx-
imated by ||C,, P (s) 7|, where P, (s) = sl,,, — A, and A, = (T,, ® I,). Using

the above approximation, the next shift ¢,,,1 can be selected as

Omi1 = argmax [|Con P ()™ [lof| R (s)ll2- (5.16)

Since the expression of Rp(s) contains therms related to the dimension n of
the space, the computation of the next shift ¢,,,1 needs more computation times
and arithmetic operations for large problems. Then we use the result of Theorem
5.1.3 to simplify the residual expression. We have

Rp(s) = B—(sl, — A)Vu(sly, — Ay) "' Ba.

= B~ (Vo = V(T @ L) = Vi1 (P @ L)) (8Lnp — Ay) "' By,

= B— V(s — Ap)(8Lnp — Ap) ' By,

+ Vis1(Pry1 @ L) (8L — Ap) ' Bo,

— Vit (Prss ® L,)(Inp — A) ™ B + (b @ I,),

= Vi }N‘EB(S)
where Rp(s) = (P ®1,)(8Lnp—Am) By + (b ®1,) is the frequency-dependent
term of the residual Rp(s). Therefore, we can choose the next interpolation points

Om+1 and 0,41 by using just the frequency-dependent term of the residual Rp(s)
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instead of using Rp(s), such that
Omi1 = argmax [Cpn Prn(s) " [l2 Bp ()]l and  Fpyr = argmax || Rp(s)]».

(5.17)

5.2.1.2 Second approach

In [43] Druskin and al. proposed an adaptive approach for computing real and
complex interpolation points. This method is a generalization of the one proposed
in [40] for the symmetric case. A similar approach is used here for the modified
rational global Lanczos algorithm in the context of real shifts. First, notice that
any vector u € K,,,(A, B, %,,) can be written as
u = p-1(A)gm(A) 7' B,

where p,,_1 is a polynomial of degree at most m — 1, while ¢,, is a polynomial of
degree m, whose roots are the components of >, € R™. Let X,, be the approx-
imate solution defined in (5.6) and fp, . 0,..01...0., (6, s) is the so-called skeleton
approximation introduced in [139], which is an [m — 1/m] rational function of
each variable, interpolating (6 + s)™' at = 60;,s = 0;,4 = 1,...,m. Using the
same techniques in [94], we can show that

X = fradmoroom (A, 8)B, (5.18)

where \;,7 = 1,...,m are the eigenvalues of T,, = WL o AV,,. Since the relative

error of the skeleton approximation is given by

5(>\,s):( !

Ats

A\
where 7,,,(2) = [[_, %; see [40], and using the relation (5.18), the residual
j

L rm(A)
A5 r(s)

Y

Rp(s) can be expressed as

Ra(s) = 6(A,5)B = B — (5], — A)X,, = D8

T'm (S)

From Proposition 2 in [35], the characteristic polynomial of 7, minimizes ||p(A) Vi | r

(5.19)

over all monic polynomial of degree m, so that the numerator in (5.19) satisfies

lrm(A)Bl[r = min | H(ijn — A)(oj L, — A) "' Bl|p. (5.20)

1yeeey Om j=1
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With this result, the next interpolation point o, is selected as

1
Om41 — arg (I?EH:S‘X m) s (521)

where the choice of the set S will be discussed later. For the other next interpo-
lation point, we can consider 7,,,1 = 0,,+1. The algorithm for constructing the

new shift o, is given as follows.

Algorithm 9 The second procedure for selecting the shifts

e Input : {\;}7L, {0;}72, and the set {n:,...,m};

1. For j=1,...,1—1

1 T\
2. p; =arg max , Tm(2) = H il ;

peln i1l [m ()] 70
3. end
) 1

3= Leed =1 |7 (115)]

{A\i}, are the eigenvalues of the matrix 7, at the iteration m and {o;}!", are
the previously chosen interpolation points. The set {n;,...,n} contains two given
initial values aél), 062) and the previously chosen shifts (increasingly ordered) such

that a(()l) is used as the first interpolation point.

5.2.2 The adaptive modified rational global Lanczos algo-

rithm

Combining the modified rational global Lanczos algorithm (Algorithm 7) and one
of the adaptive approaches explained above to construct the interpolation points
gives the adaptive modified rational global Lanczos (AMRGL) algorithm for reduced

the order of large scale dynamical systems.
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5.3 Model Reduction of Second order Systems

Second order systems are sets of second order differential equations. In some fields
like electrical circuits and mechanical systems, modeling (for instance by FEM)
leads to a large number of second order differential equations [9, 117, 119, 130].
It is then advisable to construct a reduced order model that approximates the
behavior of the original system while preserving its second-order structure [12,
100, 127, 135].

An extension of balancing and truncation methods to reduce the order of second
order system was first introduced by Meyer and Srinivasan in [105]. However, it
is not recommended to use this approach for the reduction of large scale systems
for numerical reasons. To reduce the order of large scale second order systems,
it is required to implement more reliable and faster algorithms and preferably
iterative procedures. The first idea is of course extending the numerically efficient
algorithms like Arnoldi and Lanczos, which are used in Krylov subspace methods

as well-accepted approaches for the reduction of large scale state space models.

One of the oldest extensions of moment matching method for second order
model was proposed by Su and Craig [135] which is equivalent to a recent work
in [12] where the reduced system is found in a way different from [135]. In both
papers, the Krylov subspaces were used and the structure of the original system

is preserved.

Recently, in several works, it is tried to extend the Krylov subspace approach
to reducing the order of second order systems. In [52, 53, 98, 141], it is proposed
to reduce the equivalent state space system by applying a projection such that the
structure of the state space matrices does not change and an algorithm is given

to find the desired projection matrices.
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5.3.1 Model order reduction techniques for second order

systems

We consider the second order dynamical system expressed as follows
Mi(t) + Di(t) + Kq(t) = Buft),

y(t) = Calt), (522)

where ¢(t) € R™ is a vector of the state variables, u(t), y(t) € RP are the input
force and the output measurement functions, respectively. The matrices M, D and
K € R™™ are known as the mass, damping and stiffness matrices, respectively.
B, CT € R™P are the input distribution and the output measurement matrices,
respectively. If D = 0, the system (5.22) is said to be undamped. Second order
systems arise naturally in many areas of engineering; see for example [116, 118,
142].
The mass matrix is assumed to be invertible and we write
Ky=M"'K, Dy=M"'D, By=M"'B, Cy=C. (5.23)
To simplify notations, we still denote K, D, B and C instead of Ky, Dy, By and
C, respectively. Then, the transfer function associated with the system (5.22)
by direct Laplace transform is
F(s)=C(s’I, +sD+ K) 'B. (5.24)
The original system is too large to allow the efficient solution of various control
or simulation tasks. In order to address this problem, many methods have been
developed to produce a reduced-order system of size r < n such that the essential
properties of the original system are preserved. Then we need to construct a
reduced model having the form
{éw+bmwumw:3mm
j(t) = C4(t),
where §(t) € R".D,K € R, B,CT € R™P, such that its transfer function is

close to the original transfer function. The associated low-order transfer function

(5.25)

is denoted by
F(s) = C(s*I, + sD + K)™'B.

Second order systems can be considered as a particular class of linear systems by
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rewriting the system (5.22) as follows
(| I, at) | 0 Li||a@®)
0 I, G(t) -K —-D q(t)

y(t) = c o][

(5.26)

\

Defining
x(t)zlgéz;],/l:[_; _g],B:[g],C:[C 0], (5.27)

the system (5.26) and the transfer function in (5.24) can be written as
t(t) = t) + Bu(t
B(t) = As(t)+ Bult), 529
y(t) = Cx(t),

and
F(s) =C(shn — A)'B.
If the dimension of the state ¢(t) of the original second order system (5.22) is
equal to n, then the order of its corresponding linearized state space realization
(5.27) (called also the McMillan degree of F(s)) is equal to N = 2n.
We notice that, F(s) = F(s). In fact, setting
X = (sl — A)7'B = ( X1 ) ,
Xo
it follows that F(s) = CX where X satisfies (so,—.A)X = B. Therefore, replacing
A, B and C by the expressions in (5.27) gives
(s*I, +sD+ K)X; = B, and F(s)=CX;.
Hence,
F(s) = F(s) = C(s’I, +sD+ K) 'B.

We can produce a reduced model for the second order system (5.22) by ap-
plying classical linear model reduction techniques to (A, B,C) in (5.27). Unfor-
tunately, there is no guarantee that the resulting reduced system would be a
second-order system, which requires the development of second-order structure
preserving model reduction techniques, see [16, 27, 28, 141] and the references

therein.
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5.3.1.1 Second Order Structure-Preserving Krylov Techniques

As the Krylov subspace-type methods do not preserve second order structure when
applied to the linear system (5.27), the authors in [27, 141] proposed to modify it
to satisfy the interpolation condition and produce a second order reduced system.
The results are given for the SISO systems and extended here to the MIMO
case. The following result, which is not difficult to prove, gives a simple sufficient

condition for obtaining a second order reduced system.

Lemma 5.3.1 Let (A,B,C) be the state space realization defined in (5.27). If

one projects such a state space realization with 2n x 2mp bloc diagonal matrices
Voo Wk 0
Vi = 5 m =
0 V3 0o W2
where VY, V2 W2 and W2 € R™™ then the reduced transfer function
Fin(8) = CVn[sIomp — WL 0 AVy) @ L] (WL o B) ® 1)

is a second order transfer function, provided that the matriz (Wh)T o V2)® I, is

] P Wygovm:IQma

non-singular.

Using the above result and the result of Theorem 4.1, the following theorem can

be proved.

Theorem 5.3.1 Let F(s) = C(s*I, +sD + K) 'B = C(sly, — A)~'B, with

A—[ 0 h],B— Orc—[oo],
_K -D B

be a second order transfer function of McMillan degree 2n. Let V,,, W,, € R2"*m»
be defined as

\% Wi
m Wm
with V1 V2 WL W2 € R gnd (W) oVl = (W2)T o V2 = 1I,,. Let us
define the 2n x 2mp projecting matrices
vioo0 WLo0
V,, = m ,and W, = mn
0 Vi 0 W2
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Define the second order transfer function of order m (and of McMillan degree
2m) by
Fn(s) = CVn(shomp — Wh o AV,,) @ L) (WL 0 B) ® 1)
= Con(8lomp — An) "B
(5.29)

Assume that
Span{(A — o 1)7'B,..., (A~ 0,1) "B} C Range(V,,)

and

Span{(A—a 1) IC",... . (A—5G,1)""C"} C Range(W,,)
where the interpolation points o), and o are chosen such that the matrices A— o1
and A — ol are invertible Vk € {1,...,m}.
Then, if the matriz (W} )T oV2)® I, is non-singular, the reduced order transfer
function Fp,(s) = Cp(slomp — A.) 7B, interpolates the values of the original
transfer function F(.) at the interpolation points {o;}1*, and {o;}",. If 0; = 07y,
the reduced order model interpolates the original transfer function F(.) and its

first derivative at the selected points {o;}7,.

Proof. The second order structure of F,,(s) follows from Lemma 5.3.1. It is
clear that
Range(V,,) C Range(V,,) and Range(W,,) C Range(W,,).

Then using the results of Theorem 5.1.2, the interpolation conditions are satisfied.

5.3.1.2 Proportionally Damped Systems

The idea of this subsection is to reduce second order models by applying a projec-
tion directly in the second order system. To this end, the definition of the stan-
dard Krylov subspace is extended to the so called Second Order Krylov Subspace
which was first introduced in [128] to find the projection matrices and matching

the moments, and more investigated and generalized in [101].

Next, we define the second order Krylov subspaces, see [9], and the refereces

therein.
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Definition 5.3.1 The Second Order Krylov Subspace is defined as,

Ko (Py, P2, Q) = span{ Xo, X1, ..., Xm_1}
where where
Xo = @
X1 = PXo
X; = PX, 1+ PX, 5, 1=23,....m—1
(5.30)

and Py, Py € R™" () € R™P are constant matrices. The columns of QQ are called

the starting vectors and the matrices X; are called basic blocks.

In this paragraph, we concentrate on the spacial case of proportionally damped
systems where the damping matrix D is given by D = aM + 8K = al,+ K, with
a, > 0and aff < 1. For this case, it was shown in [16, 44] that the second-order
Krylov subspaces used for moment matching about an expansion point o # 0 can
be reduced to the classical Krylov subspaces for one-sided method (V,, = W,,).

The result remains valid also for two-sided method.

Theorem 5.3.2 If the damping matriz D verify D = «al,, + SK, with o, > 0
and aff < 1 then we have
Km(K; (201, + D), K;', K;'B) = Ko (K, Y, K, ' B),
and
Km(KzT(261, + D7), K;7, KZTCT) = Ko (K57, KZTCT),
where K, = 0?1, + oD + K and Kz = ¢*1,,+ oD + K.

This result can be naturally extended to the case where multiple interpolation
points are chosen. In this case, we use the union of the input and the output Krylov
subspaces corresponding to each interpolation point o; and g;, respectively. As in
the case of first-order systems, we can use the approximation of the upper bound
of the error
€(s) = F(s) — Fu(s) to construct the next shifts o,,.1 and 7,,,1 as

Omt1 = QrgMax |CnPr(s) " 2l Re(s)ll2 and &1 = arg IgleagHRB(S)H%
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where
P(s) = Cpn(8°Ly + 8Dy, + Kpp),
and
Rp(s) = B — (81, + sD + KV, (s* Ly + 8Dy, + K,) "' By,
Let V,,, Wy, € R™™P be the F-biorthogonal matrices generated by the modified
rational global Lanczos algorithm (Algorithm 8) applied to the matrix Krylov
subspaces Ko, (021, + 0:D + K), B, ) and K, (621, + 5;D + K)T,CT,%,,),
where
Km((0?1, +0;D+ K),B,%,,) = Span{(cil,+o, D+ K)'B,...,

m

[[(c?1. + oD + K)7' B},

i=1

and
K (321, + ;D + K)T,CT 5,) = Span{(c?L, + D+ K)~'c”, ...,

m

1]@ . +5:D0+ K)"C"}.

i=1

The reduced-order model of the second-order system (5.22) is given by
Dy = (WEhoDV,)®1,), K= (WLoKV,)®Il,),
B, =((WZLoeB)®1I,) and C,, = CV,,
where D,,, K,, € R™*™ and B,,,CI € R™*?P_ As in the case of first order
systems, the bases V,, and W,, should span the union of the input and the output
Krylov subspaces corresponding to each interpolation point o; and 7;, respectively,
for that the moment matching property holds, i.e.,
Span{(oil, + 01D+ K)'B,... (621, +0,D+ K)'B} C Range(V,,)
Span{(c31, + oD+ K) " TCt, ... (621, +5,D+ K)""C"} C Range(W,,),

see theorem 4.5 in [129].
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5.4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the
proposed approaches. All the experiments were performed on a computer of Intel
Core i5 at 1.3GHz and 8GB of RAM. The algorithms were coded in Matlab 8.0.
In order to show the performance of the adaptive modified rational global Lanczos
(AMRGL) algorithm for state-space systems, two different methods were considered

for selecting the shifts:

e Method 1: We give two initial shifts and we choose the shift 7,1 as

Ori1 = arg max || Cou Pra(5) ' |2l| B (5) 2

e Method 2: We give the first initial shift and then o,,, is chosen as

1
s =08 (2 )

We mention that when it was necessary, a global F-rebiorthogonalization proce-
dure was used in the (AMRGL) algorithm. In all the experiments, the subspace
dimension will be fixed a-priori and we consider the special case where the se-
quences of shifts {o;}", and {0}, are equal. To compute the set of frequency
S for the Method 1, we use always the function 1p_1gfrq from LYAPACK [113].

Example 1. For this example, we applied the AMRGL algorithm to the first-order
systems. The first model is the modified FOM model from [110]. We applied
AMRGL to get a reduced order model of dimension 40 by using Method 2 to choose
the set of interpolation points with a(()l) = 10 and 0(()2) =103

In the second experiment, we considered the Modified RLC circuit model of
dimension n = 3000 by modifying the inputs and outputs of the RLC circuit
model to get a MIMO systems with p = 4. We used Method 2 to choose the
interpolation points with O'(()l) = —1072 and 0(()2) = 10% and the reduced system
was of order 25.

The top plots of Figure 5.1 (modified FOM)and Figure 5.2 (Modified RLC circuit)

show the frequency responses of the original system (circles) compared with the
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frequency responses of its approximation (solid plot). The bottom plot of these
figures represent the exact error ||[F(jw) — F,,(jw)||s for different frequencies
w € [1079,10°).

Baode plots: solid [[Hrll, circles |IHIl

Singular values

L 1 1
10 10 10° 1’ 10 10 10
Frequencies

Etror-nom
T

Magnitude

I 1 1
10 i 10 10’ 10 10 10
Frequencies

Figure 5.1: Top: ||F(jw)||2 and its approximations ||, (jw)||2. Bottom: the exact
error ||F(jw) — Fn(jw)l|2 for the modified FOM model with m = 40.

As a third experiment, we considered the well known CD player model from [110]
(n = 120 and p = 2). For this model test we used a(()l) = —10"* and 0(()2) = 10*

and we got a reduced order model of dimension 23. The obtained plots for this
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Baode plots: solid [[Hrll, circles |IHIl

Singular values
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Frequencies

Figure 5.2: Top: ||F(jw)||2 and its approximations || F,,(jw)||2. Bottom: the exact
error ||F(jw) — Fp(jw)l2 for the Modified RLC circuit model with m = 25

experiment are given in Figure 5.3.

Example 2. In this example, we considered the fdm and the Rail3113 models.
We plotted the Ho error norm ||F' — Fp,||« versus the number m of iterations
using Method 1 to select the shifts. For the fdm model, the corresponding matrix

A is obtained from the centered finite difference discretization of the operator

ou

0
La(w) = Au = f(e,y)5- = glay) 5~ hley)u
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Baode plots: solid [[Hrll, circles |IHIl
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Figure 5.3: Top: ||F(jw)|l2 and the approximations || F,,(jw)|2. Bottom: the
exact error ||F(jw) — Fp,(jw)]|2 for the CD player model with m = 23.

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet boundary conditions
with

fla,y) =™, g(z,y) = sin(zy) and h(z,y) =y* — 2"
The matrices B and C' were random matrices with entries uniformly distributed
in [0, 1]. The number of inner grid points in each direction was ny = 100 and the
dimension of A is n = 10.000. For this experiment, we used p = 5. The Rail3113
model is a first-order system of dimension n = 3113 and p = 6. As can be shown

from Figure 5.4, the AMRGL algorithm gives good result with small values of m.
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Exact error

1 | | 1 1 | | | 1
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lteration

Figure 5.4: The H, error norms ||F — F,,||~ versus the number of iterations for
the £dm model (top curve) and the Rail3113 model (bottom curve).

Example 3. For this experiment, we considered second-order systems. We find
an equivalent state space model and we applied the AMRGL algorithm to get a
state space reduced system. As a first test model, we considered the ISS example.
This system is a second order model of dimension n = 135, and the order of
its corresponding linearized state space realization is equal to N = 270 with 3
inputs and 3 outputs. The reduced second order system was of dimension 15.

The top curves of Figure 5.5 show the frequency responses of the original system
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(circles) compared to the frequency responses of its approximations (solid). The
bottom curve of this figure represents the exact error ||F(jw) — F,,(jw)l|2 for
frequencies w € [107¢,10%]. We used Method 2 to choose the interpolation points
with Jél) = —10% and 0(()1) = 10%2. We also applied the AMRGL algorithm to the

Baode plots: solid [[Hrll, circles |IHIl

Singular values

10° 107 10° 10’ 10 10* 10°
Frequencies

errar-norm

Magnitude

107 107 10° 10’ 10 10* 10°
Frequencies

Figure 5.5: Top: |[[F(jw)|]2 and it’s approximations ||F,,(jw)||2. Bottom: the
exact error ||F(jw) — Fp,(jw)||2 for the ISS model with m = 30.

modified beam model [110]. This system is a second-order model of dimension
n = 174 with one input and one output. We modified the matrices B and C
(random matrices) to get a MIMO system with four inputs and four outputs.

The order of the reduced model was 16 and we used Method 1 to choose the set
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of interpolation points.

Bode plots: solid [[Hmll, circles |H]|

Singular values

107 107 107 1" i 10t 1
Frequencies

Brrar-narm
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=
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Figure 5.6: Top: || F(jw)l|2 and its approximations ||, (jw)l||2. Bottom: the exact
error ||F(jw) — Fn(jw)l|2 for the Modified Beam model with m = 16.

Example 4. For the last example, we considered the case of proportionally
damped systems and we applied the AOMRGL directly to the second order models.
The first test model considered is the second order system with exact condenser
distribution used in [16]. Originally, this model is a SISO system and we modified
the inputs and outputs to get a MIMO system. The mass matrix and stiffness

matrix are, respectively, defined as
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o Viap
[0
K= —
g : ’
2 4
V1—ap
_q 2—1—-ap
V1—ap
24++V1—ap ]
Vi—es
b e
M = )
2 1
V1—ap
] 2+ V1—ap

v1—ap

and the damping matrix G = aM + K, with a« = 8 = 0.5. Input and output
matrices are B,CT € R™P with a identity matrix of dimension p = 4 at the
first block and zeros elsewhere. We modified the system matrices such that the
mass matrix is the identity as in (5.23). The order of the system is n = 2000
and we reduced the order to m = 25. The plots of Figure 5.7 represent the
largest singular value ,,,, of the original system (circles) and the reduced order
system (solid line) and the largest singular value of the error systems for different
frequencies w = [107%,10°]. The H, error norm ||F — F, ||« versus the number

m of iterations is also considered in Figure 5.8.
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Figure 5.7: Top: ||[F(jw)|]2 and it’s approximations ||F,,(jw)||2. Bottom: the
exact error ||F(jw) — F,,(jw)l|2 for the Exact Condenser Distribution model
with m = 25.

The second test model in this experiment represents a system whose matri-
ces are from FEM (Finite Element Modeling) software ANSYS. The FEM-based
model yields a second order system where M, K, D € R?*%20 ¢ ¢ R?*20 and
B € R?. Then we modified the input B = [by,by] to be a 20 x 2 matrix such
that by is a random column vector. The second-order system is considered to be
proportional, i.e., D = aM + K where the damping parameters a and [ are
chosen as o = 3 = 2 x 107!, As in the last example, we modified the system

matrices such that the mass matrix is the identity as in (5.23) and we reduced
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Exact error
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Figure 5.8: The H., error ||F — F,,||o versus the number of iterations for the
Exact Condenser Distribution model.

the system to order m = 4 in second-order form (m = 8 in state space). Figure
5.9 represent the largest singular value o,,,, of the original system (circles) and
the reduced order system (solid line) and the largest singular value of the error

systems for different frequencies w = [1073,10?].

5.5 Conclusion

In this Chapter, we proposed a new adaptive algorithm based on a modified ra-
tional global Lanczos process. The method was applied to get reduced order
models that approximate large-scale MIMO and LTI linear dynamical systems.
We derived new algebraic rational global Lanczos equations. We also applied our
proposed approach to get reduced second-order models from second-order dynam-
ical systems. We gave some theoretical results and present numerical experiments
on some well known benchmark examples. We mention that preliminary exper-

iments showed the competitiveness of the AMRGL method compared to the adap-
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Figure 5.9: Top: |[|[F(jw)||2 and it’s approximations ||F,,(jw)||2. Bottom: the
exact error ||F(jw) — Fp,(jw)]|2 for the ANSYS model with m = 4.

tive Tangential Rational Krylov Subspace (TRKS) approach, proposed in [41] for

the problems with multiple-input multiple-output, but more detail comparison is

needed to determine the areas of the comparable strength of each method.

127



An extended block Lanczos algorithm for

model reduction of large scale dynamical

MIMO systems

The extended Krylov subspace can be considered as a special case of the rational
Krylov subspace by tacking 09,11 = 0 and 09; = oo for ¢ > 0. Therefore, the
advantage of this method is that we are not even mentioning the numerical diffi-

culties that might arise for the selections of poles of the rational Krylov subspace
[103].

Let A € R and V € R"*P, the extended block Krylov subspace K¢ (A, V)

can be considered as the subspace of R spanned by the columns of the matrices
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AV k=—-m,....m—1,ie.,
K¢ (A,V) = Range{A™™V,... A2V, A"V, V, AV, A*V,... A"V},
It is clear that the subspace K¢ (A, V) is a sum of two block Krylov subspaces.
More precisely,
K (A, V) =Kn(A4, V) + Ky, (A A7),
where K,,(A, V) = Range{V, AV, A%V, ...  A™" 1V} is the classical block Krylov
subspace related to A and K,,,(A™, A7'V) is related to the inverse of A.

In order to numerically approximate the action of a matrix function f(A) on
a vector v where A € R™" is a symmetric matrix and v € R", Druskin and
Knizhnerman introduced in [41] the extended Arnoldi process. Simoncini in [131]
exploited the extended block Arnoldi process to solve Lyapunov equations. In
[80], authors showed that the extended block Arnoldi process still satisfies the
well Arnoldi recursions and used it for computing approximate solutions to large

scale continuous-time algebraic Riccati equations.

In this chapter, we show how to derive an extended block Lanczos process
which is devoted to compute two bi-orthogonal matrices for the extended Krylov
subspaces K¢ (A, V) and K¢ (AT, W), where W € R™? and such that the first
subspace is associated with A and A~!, while the second one is related to A and
A~T. Another aim of this chapter is to show that the extended block Lanczos
algorithm can be applied to model order reduction problems by combining it
with moment matching techniques. More precisely, we show that the moments of
the original transfer function are approximated by those of the reduced transfer

function.

This chapter is organized as follows. In Section 1, we describe the extended
block Lanczos algorithm and we explain how to obtain some new algebraic prop-
erties. The application of this method to model order reduction is considered
in Section 2 where we show how to apply the extended block Lanczos process
to MIMO dynamical systems in order to produce low-order dimensional systems.
The last section is devoted to some numerical experiments for large and sparse

problems to show the efficiency of the proposed method.
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6.1 The extended block Lanczos algorithm

6.1.1 Description of the process

Let A € R™™ and let V, W be two initial blocks of R™*??. In this section, we first
introduce the extended block Lanczos process for constructing two bi-orthogonal
bases Vy,,, and Wy, of the Krylov subspaces K¢ (A, V) and K¢ (AT, W).

Letting Vo, = {V1,Va,..., V,} and Wy, = {W;y, Wy, ..., W,,} where V;, W;
(fori=1,...,m) are n x 2p matrices. Then the bases are said to be bi-orthogonal
if and only if the n x 2p matrices V; and W; satisfy the following biothogonality

condition

{ WV =0y, ifi # j, (6.1)

W]V, = Iy, ifi=j.
Now, we describe the procedure that allows to compute the bi-orthogonal bases
of the extended block Lanczos algorithm.
Initialization. Let’s partition the two first block vectors V; and W; of the ex-
tended block Lanczos process as Vi = [vg,v5] and W) = [wy, ws] where each
v, w; € R™P for ¢ = 1,2. To obtain V; and W;, we start by computing the QR
decomposition of the n x 2p matrices [V, A=1V] and [W, A=TW], i.e.,

[V7 A_lv] = Vily,

(W, ATW] = WiAw

where Ay and Ay are 2p x 2p upper triangular matrices and Vi, W; are n x 2p

(6.2)

orthogonal matrices. Then, letting

Wi{Vi = RiDoQg
be the SVD decomposition of W[V, we define the new initial block vectors V;
and W as

1

‘/1 = ‘/1620[)(;§ and W1 = WlpoD(;g.

Hence, thanks to the orthogonality of the matrices Py, Qo and since Dy is a

diagonal matrix, we have
1 _1
Wivi = D, ?PIWIViQuD, >

= I,
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Iteration k. We assume that Vi,...,V, and Wy, ..., W}, have been computed.
Next, we seek for Vi1, Wiy1 € R™? under the form Vi1 = [vogy1, Vory2] and
Wii1 = [wWogyi1, Wakso] where the block vectors wvopyq, wory1 € R™P are com-
puted by orthogonalizing the matrix-vector products Avy,_; and ATwy,_; against
U1, Vo, . .., Vg and wy, wy, ..., wok respectively, i.e., the block vectors vogi1, Woks1

are computed via
2k

U2k+1h2k+1,2k—1 = AU?k—l_E Uz‘hi,Qk—la
i=1 (6.3)

2k
w = AT - i
2k+1 92k+12k—1 — Wk —1 W; Gi,2k—1,
i=1
where the coefficients hy op—1, ..., hogor—1 and g1 2k—1,..., ok 2k—1 are p X p ma-

trices obtained respectively by imposing the orthogonalities

V2k+1 1 [wl, Wwa, ..., wgk] and Wok+1 1 [Ul, V2,..., UQk]. (64)

In this case, we have

T T AT ;
hi,Qk—l =w; A?)Qk_l and 9i2k—1 =Y, A Wok—1, for 1 = 17 2, ce ,2/{?

Similarly, the block vectors vopio, worro € R™P are computed by orthogonaliz-

ing the matrix-vector products A~lvy, and A=Twy, against vy, vs,. .., Va1 and
w1, We, . . ., Wogyq respectively, i.e., we generate the vectors vog o, wor o satisfying:
2k+1
-1 } :
V2k+-2 h2k+2,2k = A7 vy — Uy hi,2k7
i=1
241 (6.5)
_ T\—1
W2k+2 92k+2,2k = (A ) Wak — g Wi Gi, 2k
=1
where again imposing the orthogonality conditions
Vopto L wi, ..., worpr  and wopyo L vg, .., Uapy, (6.6)
we easily verify that the pxp coefficient matrices hy o, . . ., hogy1,2p a0d g1 2k, - - -, G2k+1.2k,

are respectively given by :

hiog = w] A vgy and  giop = v} (A7) Ty, fori=1,2,...,2k+ 1.
hokt1,2k—1 and gogy1,26—1 are also p X p matrices that normalize the block vectors
Vo1 and wegy 1. They are computed using the QR and SVD decompositions (see
Algorithm 10). hogyo9r and gopioor are p X p matrices that normalize the block
vectors vggyo and wokyo, and they are also computed using the QR and the SVD

decomposition (see Algorithm 10).
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The extended block Lanczos process described above allows to compute two bi-
orthogonal matrices Vo, 10 = [Vi,..., Viuq] and Wy, = [Wy, ..., W,44], such
that Vi = [vog_1, vox] and Wy, = [weg_1, wey] for k =1,...,m + 1. This algorithm
constructs also two 2(m~+1)p x 2mp upper block Hessenberg matrices Ha,, = [hij]
and Gy, = [gi;], where h; j,g;; e RF*P fori=1,....2m+2,57=1,...,2m.
Next, we give some properties for the biorthogonal matrices Vo, 1o, Wy, 1o, and
the upper block Hessenberg matrices Iﬁlgm, @Qm. We consider the following nota-
tions :

V¢, and WY are matrices of R"*"™" formed by the block columns of odd indices
of the matrices V5, and Ws,,, respectively.

V¢ and W?, are the matrices formed by the block columns of even indices of the
bases V5, and Wy, respectively.

He, and G9, are the matrices of RZ™+1P*mp formed by the block columns of odd
indices of the matrices ﬁgm and @gm, respectively.

He, and G¢, are the matrices of R2™FUP*™? formed by the block columns of even
indices of the matrices ]ﬁlgm and @gm, respectively.

The bloc Hessenberg matrices Iﬁlﬁl and @gl correspond to the block columns and

the block rows of odd indices of the matrices Hy,, = [h”]f;l;’: and Go,, =

[g”]f;l;:; , respectively. Finally, H¢, and G¢, are formed by the block columns

and the block row of even indices of Hsy,, and Gg,,, respectively.

We have the following result.

Proposition 6.1.1 Using the above notations, and let Vop, 11 = [Vou,, Vams1]| and

Womi1 = [Wop, Wama1]. Then, we have

Aan = V2m+1Hfm (6'7)
ATWO = Wy, G2, (6.8)
ATIVE =V, 0HE (6.9)
ATTWE = Wo,,,»GE. (6.10)

Furthermore, the matrices Hs,, and G, are 2p X 2p tridiagonal matrices.

Proof. Equations (6.7)-(6.10) can be easily proven by considering the relations
(6.3) and (6.5), for k = 1,...,m, and the biorthogonality condition.
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Now, using equations (6.7) and (6.8), and the biorthogonality condition, we get
(W) TAVE = (W}) Vo, Hy,
H;,,
and
(Vo) ATWY, = (V5,) Wop Gy,
= G,
which gives
He = (G2,)T. (6.11)
In the same manner, we can use equations (6.9) and (6.10) to show that
He = (G¢,)T. (6.12)
Comparing the members of equalities (6.11) and (6.12), we note that the first
member in both equalities is an upper block Hessenberg matrix while the second is
a lower block Hessenberg matrix . Then, ]I?]Igl, @gw ]EI; and G% are p X p tridiagonal

matrices. Therefore, H,,, and Gs,, are 2p x 2p tridiagonal matrices .

Using the fact that Hy,, and Gy, are 2p x 2p tridiagonal matrices, and the
sub-diagonal blocks are 2p x 2p upper triangular matrices. then, the relations

given in (6.3) and (6.5) can be simplified as

Vok+1 h2k+1,2k—1 = Avgy_1 — Vak—3 h2k—3,2k—1 — Ugk—2 h2k—2,2k—1
—U2k—1 h2k—1,2k;—1 — U2k h2k,2k—1 (6'13)
Wok+1 Y2k+1,2k—1 = AT Wak—-1 — W2k—-3 92k—3,2k—1 — W2k—2 §2k—2,2k—1
—W2k—1 Y2k—1,2k—1 — W2k G2k,2k—1, (6-14)
and
02k+2h2k+2,2k = A Vor — U2k—2 h2k;—2,2k — V2k—1 h2k—1,2k
—V2p Mok 2k — Vak+1 Pok41,2k (6.15)
Wok+292k+2,2k — (AT)_l War — Wak—292k—2,2k — W2k—192k—1,2k
—WakY2k,2k — W2k+192k+1,2k- (6-16)
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Now, we write equations (6.13)-(6.16) in the following form

hopt12k—1  hoks12k _
(Va1 Vagy2] ( 2t i = [Avgy_1 A 11)%]

0 hogy2,2k
hok—1.2k—1 hor—1,2k
- [UQk—l UQk]

hok 2k—1 ok 2k

hok—3 251 0
- [U2k—3 UQk—z] )
h2k—2,2k:—1 h2k—2,2k

(6.17)
and
92k+1,2k—1  G2k+1,2k T _T
[w2k+1 w2k+2] = [A Wak—1 A w2k]
0 92k+2,2k
92k—1,2k—1  G92k—1,2k
- [w%—l w2k] ( )
92k,2k—1 92k 2k
92k—3,2k—1 0
- [w2k—3 w2k—2] .
92k—22k—1 Y92k—2,2k
(6.18)
Set
.
Vie1 = [vak—3 Vak—2], Vi = [vak—1 var], Vit1 = [Vakt+1 Vokto]
Wi = [wzk—s wzk—2]> Wi, = [wzk—l ka], Wk+1 = [w2k+1 w2k+2]
(. Uk = [Avgg—1 A_1U2k]7 Sk41 = [ATwzk—1 A_Tw%]
and

(
hok—3.2k-1 0 ~ 92k—3,2k—1 0
Nk = 7Nk =
h2k72,2k71 h2k72,2k 92k—2.2k—1  G2k—22k
C h2k—1,2k—1 h2k—1,2k 5 92k—12k—1  92k—1,2k
k — , Vg —
h2k,2k71 h2k,2k 92k,2k—1 92k 2k

A h2k+1,2k—1 h2k;+1,2k g 92k+1,2k—1  92k+1,2k
E= y Ak =

0 hok+2.2k 0 92k+2,2k
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Therefore, equations (6.17) and (6.18) can be written as
Vi1 Ay = Ugr — VilCr — Vi1 Ni,,

Wk—&-lAvk = Skt1 — Wkak - Wk—lﬁk-

Finally, the extended block Lanczos algorithm is summarized as follows.

Algorithm 10 The extended block Lanczos algorithm (EBLA)

1. Input: A € R™", V, W € R™*%,
2. Initialize: Vy = Wy = 0y, and N; = Ny = O,

3. Set Uy = [V,A"'V] and S; = [W,A"TW] and construct V;, W; € R"*?"
such that W'V, = Iy;

4. Initialize: Vo, = [V}] and Wy = [W;].
5. For k=1,....m
6. Upy1 = [Avop_1, A oy and Spyi = [ATwor_1, A" Twoy;
7. Npy=WEL U1, Cp = W[Upy and Ny = VT Sei, Cp = Vi Sii,
8. Upyr = Upp1 — ViCr — Vi1 Ny and Siiq = Si1 — WiCi — Wiy N
9. Upi1 = Vii1Apy and Sy = Wk+1gk+1; (QR factorization)
10. WL Vi1 = BDyQF;  (Singular Value Decomposition)
11 Visr = Vi @Dy ? and Wiy = Wi PD; %
12, Agpr = D?QF Ay and Ay = DYP BT Ay
13, Voo = [Vor, Vira]; Woryo = [Wap, Wiia];
14. endFor.

After m steps, Algorithm 10 builds two bi-orthogonal bases Vy,,.o and Wo,, 1,
and two 2(m + 1)p x 2mp upper block Hessenberg matrices ]ﬁgm and @Qm defined

as follows
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Hy,, G
I’HVIQm = and @gm = ,
Api1 ET A ET
where L
Ci N C1 N,
Ay Oy Ay G
H,,, = L and G, = L ,
N, . N,
Ay Ch Ay Ch

and E,, is last 2mp x 2p block of the identity matrix Io,,,.

6.1.2 Theoretical results

In this subsection, we derive some theoretical results of the extended block Lanczos
Algorithm.

Let Ty, = WI AV,, € R¥**2mP_ Using the same technique in [131] (for
the extended Arnoldi process), we can easily verified that Ty, is block upper
Hessenberg with 2p x 2p blocks. In the following, we will also consider the 2mp x
2mp matrix defined as

Loy = W2 A7V,
Notice that we can check that Lo, is also 2p x 2p block upper Hessenberg matrix.

Proposition 6.1.2 Suppose that m steps of Algorithm 10 have been carried out,
and let ':le"2m = ng+2AV2m and Egm = ng+2A_1V2m. Then, the following

relations hold

AV = Vo, Tom + Viri Ti1mEL (6.20)
AWVa, = VouLom + Vi1 Lny1mEL (6.21)
AW, = Wor T2 + Wipir Do m BT, (6.22)
AWy = WonlZ + Wit Lins1.m BT, (6.23)
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'R _ T T T _ T -T
where Trp1m = Vi1 A" Way and L1 =V, (AT Wo,,.

Proof. To prove the first equation, we start by using the fact that AK¢ (A, V) C
K¢, .1(A,V), and the bi-orthogonality condition. Then, there exists a matrix 7'
such that AVy, = Vy,ioT. Hence T = WL ., AV,, which gives T = Ta,.
Therefore

AV2m = V2m+2p]ﬁf2m .

Now, since we have Vo, 10 = [Vo,,, Vini1], Wopio = [Way,, Wi i) and as Toypyp0 =
w? 4+2AV5,, 19 is block upper Hessenberg matrix, then
TniimEL =Wk AV,
Hence
Tom
Wl AV,

TZm
T
Tm—i—l,mEm

Tom = W3, 0 AVs,, =

which completes the proof of (6.20).
For the second relation, we will follow the same procedure. As Ly, o = W2 +2A_1V2m+2
is block upper Hessenberg matrix, we have
Wr AV, = L m B,

and then the upper block Hessenberg matrix ]izm can be written as

Loy, Lom
W£+1A_1V2m Lni1mEL
Using the bi-orthogonality condition and the fact that A7'K¢, (A, V) C K¢, (A, V),
then there exists a matrix L such that

A7V, = Voo L.

Loy = ng+2A_1V2m = [

Hence
L=W. . A"'Vy,,

which gives
L = EQm-

Therefore
A_1V2m = V2m+2£2m - V27711["’2777, + Vm—i—le-i—l,mErjy;-

In a similar way, we can use ATK¢, (AT, W) C K¢, (AT, W) and A~TK¢, (AT, W) C
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K¢, .1 (AT, W) to show equations (6.22) and (6.23), respectively.

Let 'ﬁm and ]ﬁlgm be the block upper Hessenberg matrices defined earlier. The
computation of ']f}m seems to require additional matrix-vector products with A
and extra inner products of long vectors. To completely avoids this expensive
step, we next derive a recursions to compute the block columns of the matrices
']T‘gm directly from the block columns of the upper block Hessenberg matrix Iﬁbm
without requiring the matrix-vector products with A. We start by defining the

following notations which will be used later.

1. For k =1,...,m, we define now V}, and W}, as
Vi = VY V2] and Wi = (w0, W),
where Vk,(l) (.resp W,El)) is the first p columns of V} (.resp W}) and Vk@) (.resp
Wk(z)) is the second p columns of Vj, (.resp Wy).

2. For k = 1,...,m, we partition the upper triangular matrix A;,,; € R?»*?,
computed from Algorithm 10, as

(1,1) (1,2)

Ay A

2,2
0 A%

Ak+1 =

3. Let Hy,, be the 2mp x 2mp block upper Hessenberg matrix defined in (6.19),
and e; = e;®1, where e; is the vectors of the canonical basis. From Algorithm
10, we have

U1 = [US1, U] = [AVD, ATVD) - Vo Hop[Eopr, 8] (6.24)
and
Un+1 = Vintr1A4m+1- (6.25)
Then
Vi1 = Um+1A7:1£rl7 (6.26)

where A;}H is also 2p x 2p upper triangular matrix.

Proposition 6.1.3 Let 'INFgm and ﬁQm be the upper Hessenberg matrices defined
earlier. Then, for k =1

Tomer = Hapmen
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Tomes = [G ALY — Hy e A2 (AZ) -1 (6.27)

While (k=2,...,m)
Tom@or—1 = HamCoi—1,

P]1‘12k72

] H2k252k2> (Alzl)@’z),

Tomeor = szgqux(k) + <g2k2 -

O2(m—k+1)px (2k—2)p
where
A = AT (40D,

Proof. To prove the odd block columns, we start by considering relations (6.24)
and (6.25) to get
Avk(l) = Ugpre1 + Vo Hpreon—1

= VipiAppier + VopHoreor o
= VoppoHorCor1. (6.28)
Pre-multiplying the above equality on the left by W3 ., then

I ~
ng+2A%(1) - 2kLp Hokeor—1,
O2(m—k)px2(k+1)p
hence _
~ H,, N ~
Tomeor—1 = ? eak—1 = Hopm€o_1.
OQ(m—k)pXQk:p

To prove (6.27), we start by using the QR decomposition of [V, A~'V] defined
in (6.2) such that

1 W yon | AT AV
VATV =ViAy = [V, V)7] 0 Ag,z)
= WA VAR L VEAREL . (6.29)

If AS’I) and A§/272) are non-singular, we obtain
ATV = ATV = AR - VEATI AR )
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then
AV = AT = AVIDAT T

Pre-multiplying on the left by Ws,, 1o to get equation (6.27).

For the other even block columns, we proceed as follows. From (6.24), we have
AUL), = v — AV, Hoyen,
hence
WL, LAUD, = WI VP — WL AV Hyen
_ Tor

= €9 — Hgkggk. (630)

02(m7k)p><2kp
On the other hand, we use (6.26) to get
2 1) - 2) [ A—
Vk(+)1 = Ulg—&-)l(Ak—sl-l)(LQ) + U1§+)1(Aki1)(2’2)-
We pre-multiply the last equation on the left by A, and then we use (6.25) to

obtain

AV = AURL (A0 + AU, (4

k+ k+1
1) 4 (1,1), 4— 2) 4
= A%(+)1Alg+1)(Ak+ll)(l’2) + AU1§+)1 (Alch)(z’?)- (6.31)
We pre-multiply on the left by W3, and we use (6.30) to get
T
2 1) 4 (1,1), 4— ~ 2%k
W2Tm+2AVk(+)1 = ng+2AVk(+)1Al(c+l)(Akj-l)(la) + <€2k -

] szg2k> (A;il)(zz)

2(m—k)px2kp

T - _
2k ] H%e%) (Akil)(zz).

= P]Tng2k+1A](€1_;_11) (A;Zil)(m) + (g% -
2(m—k)px2kp

. . 2 g ~
Then the proof is completed since we have ng +2A‘/}c( +)1 = Ty néor12. Now we
show the same result for the matrix Lo,,, and we derive recursions to compute
the block columns of this matrices directly from the block columns of the upper

block Hessenberg matrix ]ﬁlzm, without requiring the matrix-vector products with
AL

Proposition 6.1.4 Let IEQm and ]i-v]IQm be the upper Hessenberg matrices defined
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earlier. Then, the following relations hold

Lomer = [G AL + &AZ2 AL (6.32)
and for k=1,...,m, we have
Lomear, = Haom o, (6.33)

Loy €ort1 = <€2k—1 -

L _ _
o ] H%e%_l) (Al (6.34)

O2(m—k)px2kp

Proof. To prove (6.32), we use the QR decomposition of [V, A7'V] as in (6.29).
Then if Ag/l s non-singular, we obtain
A—1V1(1) _ A—IV(ASJ))—I _ [Vf”A%}’Q’ + ‘/1(2)/\%/2,2)](/\%/1,1))—1.
We pre-multiply the above equality on the left by W2 ., and we use the biorthog-
onality condition to get
Waneo A VY = AV + ST AP
Then, equation (6.32) is obtained by using the fact that V2m+2A_1V1(1) = Egm'él.

For the other even block vectors, we proceed as follows. We start by using

(6.24) and (6.25) to have

A_lvk(z) = Uiqi€a + Vo lHyeo,
= Vi Agpi€a + VopHogeor
= VoproHopok. (6.35)
Now, multiplying on the left by W3, to get

W§m+2A_1Vk(2) = ng+2V2k+2ﬂ2kg2ka
hence
I _—
ngJrzAile@) = R Hogeor
02(m7k)p><2(k+1)p
therefore _
Hy,

]I’ngZk’ = [ ] = ﬁ2mé/2k7

2(m—k)px2kp

which gives relation (6.33).
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For the odd blocks, we multiply (6.24) on the left by A~! and we consider only
the first p columns of each block to obtain

AW = VI — A7V Hopéo s

Since Ugi1 = Vii1Aks1, we have
Ui = VALY,
if A,(:jrll) is non-singular, we obtain
AW = AU E (AL T = (VY — ATV Hay o1 ) (A
Multiplying from the left by W1 ., we get

WL ATV = (W VD — W AT WV Ho 1) (AL) 7

and then

T T ~ T -1
Lomeoks1 = W2m+2V2m+262k—1 - ngHA Vom
2(m—k)px2kp

~ Loy,
~ P
= eok—1 — Lo,

2(m—k)px2kp

L _ .
2" ] H2k€2k—1> (A§€1+11)) 17
02(m—k)p><2kp

which gives the relation (6.34).

H) (AL

= €2k—1 —

The results of the next two propositions will be used to prove other properties
in the next section which is devoted to the application of the extended block
Lanczos method to obtain reduced order models in large scale dynamical systems.
As we will see, the method allow one to approximate low and high frequencies of

the corresponding transfer function at the same time.

Proposition 6.1.5 LetV,, and W, be the matrices generated by Algorithm 10,
and let Ly, = W2 A~'V,,,. Then we have

ATV, By = Vo, By, forj=0,...,m—1, (6.37)
(AT Wy, By = Wy, (L3 VEy,  forj=0,...,m—1. (6.38)

Moreover, we have
TorE; = Lo, Ej,  forj=1,...,m—1, (6.39)

where E; is an 2mp x 2p tall thin matriz with an identity matriz of dimension p

at the ™ block and zero elsewhere.
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Proof. Using equation (6.21) of proposition (6.1.2), we have
A_1V2m - VQm]LZm + Vm+1Lm+1,mET

- (6.40)
we pre-multiply on the left by A=! j times, we re-arrange the result and then we
multiply from the right by E; to get
J
A7V By = VoL By + > AV, Ly ED LY TR,
i=1
As Ly, is an upper block Hessenberg matrix, it follows that Eng;iEl = 0, for

j=1,...,m —1, and then equtaion (6.37) is verified. In a similar way, we can
use equation (6.23) of proposition (6.1.2) to show (6.38).

Now to prove (6.39), we multiply (6.40) from the right by E; to get
A71V2mEj = V2mL2mEj7 fO’f’j = 1, e, — 1.

We pre-multiply the above equality by W2 A from the left and we use the
biorthogonality condition to have
Ej = TgmLQm]Ej7 fO’f’j = ]_, N 1.

Finally, equation (6.39) can be obtained if we assume that Ty, is non-singular.

The following result is proven in [87], it gives a general property for two upper

Hessenberg matrices.

Proposition 6.1.6 Let T' = (T;;) and L = (L;;) be two upper Hessenberg ma-
trices with blocks T; ;, L; ; € RP*P for 1,5 =1,...,m, and suppose that
TE; = LE;, forj=1,...,m—1.

Then
T'E, = LFE,, fork=1,...,m—1.

6.2 Application to model reduction problem

We consider the Multi-Input Multi-Output LTI dynamical system 3 described
in (2.1). Then the aim of this section is to present a new projection method

that allows to compute the low-order dimensional system (2.3) by projecting the
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original problem on to the extended Krylov subspace. The application of the
extended block Lanczos algorithm, described in last section, to the pairs (A, B)
and (AT, CT) gives two bi-orthogonal bases Vy,, € R™?™ and W,,, € R™*?mp

and then the reduced order model can be defined as

Ao = Tom = WL AV, By, = W2 B and Cy,, = CV,,,. (6.41)

As in the next chapters, we use the moment matching techniques to generate

the reduced order model (2.3). We consider the Markov parameters

fO =0AB, j>0,
and the j" moment of F(s) around o =0

U= CAB, j>0.
Then, the aim of the moment matching problem using the extended block Lanczos
algorithm is to produce a reduced order model such that 2m —1 moments are to be
matched for the Markov parameters, and 2m — 1 moments are also to be matched

around zero, i.e.,

FO=fD  for j=0,...,2m—2, (6.42)
and
JP =19, forj=0,...,2m - 2. (6.43)

For the Markov parameters, the equality (6.42) is already proven in the literature;
see [86] and the references therein. the following result shows that the first 2m — 1

moments of the transfer function F' around o = 0 are also matched.

Proposition 6.2.1 Let féj ) and féj ) be the matriz moments giwen by the Laurent
expansions of the transfer functions F,, and F around o = 0, respectively. Then,
the first 2m — 1 moments of the original and the reduced models are the same,
that 1s,

D = (D for j=0,...,2(m—1).

Proof. Let j € {0,1,...,2(m — 1)}, let ji,jo € {0,1,...,m — 1} such that
Jj1 4+ j2 = 7. Then we have
[P =CATB =CA" B = CAT AR B, (6.44)
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Using the QR decomposition defined in (6.2) for V = B and W = CT gives
ALD AL 17
v and C = I/(I]/ wit.

Substituting this result in equation (6.44) yields
1T

B=V

4 [ ALD - ALD
éj) _ w WlTA—hA—Jle \4
0 0
A 77 o ALD
= Vg ETW. ATMA2V,,E | Y (6.45)
Therefore, using the re_sult of P_’roposition 6.1.5, we get
} AL 17 , , ALD
= | M| e g E |
0 0
- 1T
A(lvl) . A(lvl)
= VOV ETL] E, VO : (6.46)

On the other hand, since Ly, and T, are both Hessenberg matrices that verify
T;;Ej = Lo, [E;, then the application of Proposition 6.1.6 gives
L) By =T, Ky, forj=0,...,m—1,

and so i .
i A(lvl) . A(lvl)
O R
- T
A(Ll) . A(lvl)
= Vg W Vo Tod Wo, Vi | Y
= CV,, T, WL B
= C.T,. B,
= £ (6.47)

which completes the proof of Proposition 6.2.1.
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6.3 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the
extended block Lanczos algorithm proposed when applied to reduce the order of
large scale dynamical systems. All the experiments were performed on a computer
of Intel Core i5 at 1.3GHz and 8 GB of RAM. The algorithms were coded in Matlab
8.0.

In the experiments of this chapter, we used some matrices from LYAPACK and
different known benchmark models listed in Table 6.1. The subspace dimension

will be fixed a-priori for all examples.

Table 6.1: The matrix tests.

Matrices sizes
CD-Player n=120,p=2
add32 n = 4960, p =4
Modified FOM | n = 1006, p =5
1SS n=270,p=3
fdm n = 10.000, p =6
Flow-Meter n = 9669, p =5

Example 1. In this example, we used the extended block Lanczos algorithm to
reduce the order of ISS and CD player models. They are small dimension systems
but are generally difficult and are always considered as a benchmark test . The
top curves of Figure 6.1 (ISS) and Figure 6.2 (CD player) show the frequency
responses of the original system (circles) compared with the frequency responses
of its approximations for m = 5. The bottom curves of these figures represent the

exact error ||F(jw) — Fy,(jw)]|2 for different frequencies w € [107¢10°].

As a third test model of example 1, we considered the Flow model which is
obtained from the discretization of a 2D convective thermal flow problem ( flow

meter model v0.5) from the Oberwolfach model reduction benchmark collection,
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IS5 model: Frequency Response plots

Singular values

10° 10 10? 10’ 10 10* 10
Frequency

135 model: Error plot

Magnitude

10 i 10 1’ 10 10 10
Frequency

Figure 6.1: Top: ||F(jw)||2 and its approximations || £, (jw)||2. Bottom: the exact
error || F(jw) — F,(jw)||2 for the ISS model.

2003, with 5 inputs and 5 outputs. The obtained plots of this experiment are

given in Figure 6.3.

Example 2. In this example, We plotted the H, error norm || F' — F), || versus
the number m of iterations for two different models. The first one is the modified
FOM model, while the second is the fdm system. For the fdm model we have

flz,y) =€, g(x,y) = sin(zy) and h(z,y) =y* — 2,

the dimension of the original system is n = 10* with 6 inputs and 6 outputs. As
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CD Player model: Freguency Response plots

Singular values

10° 10 10? 10’ 10 10* 10
Frequency

CD Player model: Eror plat

Magnitude

10 i 10 1’ 10 10 10
Frequency

Figure 6.2: Top: ||F(jw)||2 and its approximations || £, (jw)||2. Bottom: the exact
error ||F(jw) — Fn(jw)l2 for the CD player model.

can be shown from Figure 6.4, the extended block Lanczos algorithm (EBLA) gives

good result with small values of m.

Example 3. In the last example we compared the extended block Lanczos
algorithm (EBLA) with IRKA method. We used four models: the ISS, the add32,
the Modified fom and the fdm models. In Table 6.2, we listed the obtained H
norm of the error transfer function ||F' — F},||«, the corresponding cpu-time, and

the used space dimension. A maximum number of m,,,, = 100 iterations was
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Flow Meter model: Frequency Response plots
10 T T T T

Singular values

1D il il 1 1 il
10° 10 10? 10’ 10 10* 10
Frequency

Flow Meter model: Error plot
10 T T T T T

Magnitude

10 L L L L L

10 i 10 1’ 10 10 10
Frequency

Figure 6.3: Top: ||F(jw)||2 and its approximations || F,(jw)||2. Bottom: the exact
error ||F(jw) — Fn(jw)l2 for the flow-meter model.

allowed to the IRKA method. As observed from Table 6.2, IRKA and EBLA return
similar results for the H,, norm, with an important advantage of the cpu-time for
the EBLA.
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fdm model: Errar plot

Transfer error norms

| 1 | 1 | 1 |
10 20 30 40 g0 g0 70 80
Iterations

Mudified forn model: Error plot

Transfer error norms
=

20 40 60 80 100 120
lterations

Figure 6.4: The Ho, error |F' — F,, ||~ versus the number of iterations for the fdm
model (top curve) and the modified fom model (bottom curve).

6.4 Conclusion

In this chapter, we proposed an extended block Lanczos algorithm with appli-
cations in model order reduction of MIMO first-order stable linear dynamical
systems. Moreover, we derived new theoretical results and new properties for this
precess. We presented some numerical results to confirm the good performance of
the extended block Lanczos subspace method compared with other known method.

The proposed procedure is tested on well known benchmark problems of medium
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Table 6.2: Comparison between IRKA and EBLA for ISS, add32, Modified fom
and fdm models.

EBLA IRKA
Hoo error  # dim(2mp)  time | Hoo error # dim(mp)  time
ISS 8.41e-04 60 0.25s | 1.61e-04 75 12.71s
add32 1.96e-08 120 4.72s | 8.65e-09 120 313.77s
Modified fom | 3.89e-11 216 1.61s | 3.60e-10 150 78.66s
fdm 6.07e-11 180 20.93s | 3.75e-11 150 1000.60s

and large dimensions, and the numerical results show that the application of the
extended algorithm on model reduction problem allows one to obtain reduced

order models of small dimension.
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Conclusions and Future Directions

This chapter provides a summary of the results on model order reduction estab-
lished in the previous chapters. Moreover, suggestions for future directions on the
improvements of the aforementioned techniques and extension of these results will
be stated.

7.1 Summary of results

This dissertation has focused on projection methods to efficiently generated re-
duced order models for large scale linear dynamical systems with Multiple-Input
Multiple-Output, especially, the moment matching techniques based on multi-
point rational interpolation. Rational Krylov has been shown to be very effective

for large-scale systems and produce better approximations over a broad frequency
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range by matching the moments of the original transfer function F(s) around
different frequencies. Unfortunately, these methods have the drawback that the

selection of interpolation points is a difficult task since it is an ad-hoc process.

The main contribution of all the chapters of this thesis may be summarized in

four parts:

Proposing a new variant of rational Lanczos algorithm.

Deriving some algebraic properties that describe the proposed process.

Introducing new techniques for choosing the interpolation points.

e Giving new expressions for the transfer function error.

Then in this thesis, four rational Lanczos algorithms are proposed and applied to
model order reduction problem. The first one is named the rational block Lanczos-
type algorithm and it is related to a set of rational equations that describe the
relation between the two bi-orthogonal bases generated by this process and the
matrices of the original system. The combination of the first algorithm and an
adaptive approach for choosing the interpolation points gives an Adaptive Order
Rational Block Lanczos-type (AORBL) algorithm. The numerical results confirm
the good performance of the rational block Lanczos subspace method, especially

when compared with the well known approach IRKA.

The second algorithm, named the modified rational block Lanczos algorithm,
can be considered as a generalization of the first one where different multiplicities
are consider for each interpolation point. The advantage of this procedure is that

the standard Lanczos equations remain valid also in the rational block case.

An other extension of the standard Krylov subspace method for MIMO systems
is the global Krylov subspace. This algorithm compute F-biorthogonal bases of
the rational matrix Krylov subspaces. In this part, two versions of the rational
Global Lanczos algorithm are given. The first one represents the general form

of this process which allows to obtain the global Lanczos equations but in the
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rational form. In the second version, we modify the first rational global Lanczos
algorithm in such a way the standard Lanczos equations remain valid also in
the rational global case. Next, we combine the modified rational global Lanczos
process and one of the proposed method to select the interpolation points to get
an Adaptive Modified Rational Global Lanczos (AMRGL) procedure.

The last procedure proposed in this thesis is the extended block Lanczos algo-
rithm (EBLA). The advantage of this process compared with other rational Krylov
procedures is that we don’t need to construct the poles of the rational Krylov

subspace to compute the F-biorthogonal bases.

7.2 Future directions

The goal of this dissertation was to provide efficient rational Krylov algorithms for
model order reduction problem. Some recommendations for future studies related

to this work are presented below:

Proposing other rational Krylov algorithms.

Applying the rational Lanczos algorithms proposed to approximate the

problem of e!4B.

Developing efficient algorithms based on balanced truncation method and

rational Krylov algorithms.

Developing new and efficient techniques for choosing the interpolation points.
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