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Abstract

Numerical solution of dynamical systems have been a successful means for study-

ing complex physical phenomena. However, in large-scale setting, the system

dimension makes the computations infeasible due to memory and time limita-

tions, and ill-conditioning. The remedy of this problem is model reduction. This

dissertation focuses on projection methods to efficiently construct reduced order

models for large linear dynamical systems. Especially, we are interesting by pro-

jection onto unions of standard Krylov subspaces which lead to a class of reduced

order models known as rational interpolation. Based on this theoretical framework

that relate Krylov projection to rational interpolation, four rational Lanczos-type

algorithms for model reduction are proposed.

At first, an adaptive rational block Lanczos-type method for reducing the order

of large scale dynamical systems is introduced, based on a rational block Lanc-

zos algorithm and an adaptive approach for choosing the interpolation points. A

generalization of the first algorithm is also given where different multiplicities are

consider for each interpolation point. Next, we proposed another extension of the

standard Krylov subspace method for Multiple-Input Multiple-Output (MIMO)

systems, which is the global Krylov subspace, and we obtained also some equa-

tions that describe this process. Finally, an extended block Lanczos method is

introduced and new algebraic properties for this algorithm are also given.

The accuracy and the efficiency of all proposed algorithms when applied to

model order reduction problem are tested by means of different numerical exper-
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iments that use a collection of well known benchmark examples.

Keywords: Lanczos algorithm, Model reduction, Moment matching, Rational

Krylov subspace, Transfer function.
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Résumé

La solution numérique des systèmes dynamiques est un moyen efficace pour étudier

des phénomènes physiques complexes. Cependant, dans un cadre à grande échelle,

la dimension du système rend les calculs infaisable en raison des limites de mémoire

et de temps, ainsi que le mauvais conditionnement. La solution de ce problème est

la réduction de modèles. Cette thèse porte sur les méthodes de projection pour

construire efficacement des modèles d’ordre inférieur à partir des systèmes linéaires

dynamiques de grande taille. En particulier, nous nous intéressons à la projection

sur la réunion de plusieurs sous-espaces de Krylov standard qui conduit à une

classe de modèles d’ordre réduit. Cette méthode est connue par l’interpolation

rationnelle. En se basant sur ce cadre théorique qui relie la projection de Krylov

à l’interpolation rationnelle, quatre algorithmes de type Lanczos rationnel pour

la réduction de modèles sont proposés.

Dans un premier temps, nous avons introduit une méthode adaptative de type

Lanczos rationnel par block pour réduire l’ordre des systèmes linéaires dynamiques

de grande taille, cette méthode est basée sur l’algorithme de Lanczos rationnel

par block et une méthode adaptative pour choisir les points d’interpolation. Une

généralisation de ce premier algorithme est également donnée, où différentes mul-

tiplicités sont considérées pour chaque point d’interpolation. Ensuite, nous avons

proposé une autre extension de la méthode du sous-espace de Krylov standard

pour les systèmes à plusieurs-entrées plusieurs-sorties, qui est le sous-espace de

Krylov global. Nous avons obtenu des équations qui décrivent cette procédure.

Finalement, nous avons proposé une méthode de Lanczos étendu par block et nous
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avons établi de nouvelles propriétés algébriques pour cet algorithme.

L’efficacité et la précision de tous les algorithmes proposés, appliqués sur des

problèmes de réduction de modèles, sont testées dans plusieurs exemples numériques.

Mots clés: Algorithme de Lanczos, Fonction de transfert, Moment correspon-

dant, Réduction de modèle, Sous-espace de Krylov rationnel.
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Glossary

Mathematical symbols

R set of real numbers

C set of complex numbers

Rm×n set of real n×m matrices

Λ(A) spectrum of matrix A

σmax(A) largest singular value of matrix A

0 zero matrix

In identity matrix of dimension n× n
Re(s) real part of s

C− left half plane, {s ∈ C− : Re(s) < 0}
C+ right half plane, {s ∈ C+ : Re(s) > 0}
A−1 inverse of matrix A

AT transpose of matrix A

ei i-th unit vector

<,> inner product

<,>F Frobenius product

X ⊥F Y < X, Y >F= 0

δi,j Kronecker symbol

j
√
−1

‖.‖ arbitrary norm of a matrix

‖.‖2 spectral norm of a matrix

‖.‖F Frobenius norm of a matrix

‖.‖H2 H2 norm of a dynamical system

‖.‖H∞ H∞ norm of a dynamical system
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General Notation
A,B,C state space matrices of the original MIMO state space system

u(t) the input vector of the state space system

y(t) the output vector of the state space system

x(t) the state variable

n order of the original state space model

Σ nth order original dynamical system

F (s) transfer function of the original system

Ar, Br, Cr state space matrices of the reduced MIMO state space system

r order of the reduced state space model

Σr rth order reduced system

Fr(s) transfer function of the reduced system

Σm the set of interpolation points

σi(Σ) ith Hankel singular value of Σ

ε(s) the error system

f
(j)
σ jth moment of Σ at σ

f̂
(j)
σ jth moment of Σr at σ

f
(j)
∞ jth Markov parameter of Σ

f̂
(j)
∞ jth Markov parameter of Σr

Km(., .) the block Krylov subspace

Km(., .) the matrix Krylov subspace

Ke
m(., .) the extended block Krylov subspace

Km(., ., .) the rational block Krylov subspace

Km(., ., .) the matrix rational Krylov subspace

Vm,Wm projection matrices computed using the block Lanczos algorithm

Vm,Wm projection matrices computed using the global Lanczos algorithm

Ve
2m,We

2m projection matrices computed using the extended block Lanczos algorithm
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Abbreviations
LTI Linear Time Invariant

SISO Single input Single Output

MIMO Multiple input Multiple Output

IRKA Iterative Rational Krylov Method

AORBL Adaptive Order Rational Block Lanczos

AMRBL Adaptive Modified Rational Block Lanczos

AMRGL Adaptive Modified Rational Global Lanczos

TRKS Tangential Rational Krylov Subspace

EBLA Extended Block Lanczos Algorithm

SVD Singular value decomposition
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1
Introduction

1.1 Motivation de la thèse

Les systèmes linéaires dynamiques ont été étudiés depuis longtemps et dans plusieurs

domaines: la physique, la chimie, les mathématiques, l’ingénierie, et ainsi de suite.

Dans le contexte d’ingénierie, les systèmes linéaires ont été largement étudiés

depuis les années 1930 [3, 104, 107, 109, 115]. De nos jours, ces systèmes trouvent

leurs applications dans d’autres domaines, comme le domaine de la bio-chimie et

le domaine d’économie.

En général, les systèmes dynamiques proviennent directement par modélisation

de phénomènes phisiques. Ils proviennent également de la discrétisation spaciale

des équations différentielles partielles (EDP) pour la simulation de systèmes de

contrôle.
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Chapter 1. Introduction

Dans la littérature, de nombreux travaux ont été publiés sur les systèmes

linéaires, en particulier en ce qui concerne les parties théoriques fondamentales.

Cependant, il y a une partie de la littérature relativement limitée pour les systèmes

linéaires de grande taille qui se posent naturellement lorsqu’on modélise des struc-

tures complexes. En général, les systèmes linéaires de grande taille sont creuses

et souvent structurés. Les méthodes itératives sont plus appropriées que les

méthodes directes. Le problème c’est que ces modèles dynamiques sont souvent

compliqués à étudier et contiennent un grand nombre de variables d’état. Ceci

nous conduit à la notion de réduction de modèles.

La réduction de modèles est considérée comme un processus de description

et simulation simplifiées de la dynamique d’un problème physique. Il y a une

correspondance biunivoque entre la précision et le coût de calcul. Donc pour

bien choisir la technique de réduction de modèles, il faut faire attention à cette

correspondance et à la précision souhaitée. Une réduction de modèles permet de

réduire le temps de calcul et réduire la mémoire utilisée et ceci passent par la

réduction de nombre de variables d’état nécessaire.

Donc la motivation de cette thèse est la suivante: à partir des systèmes linéaires

dynamiques de grande taille, on va développer de nouveaux algorithmes qui seront

appliqués pour réduire la dimension de telle façon que le système réduit préserve

les mêmes caractéristiques du système d’origine. C’est ainsi que le modèle simple

obtenu sera utilisé à la place du modèle de départ.

1.2 Formulation du problème

Dans cette thèse, on va s’intéresser aux systèmes linéaires dynamiques de grande

taille, invariants dans le temps et qui sont décrits par la forme suivante

{
ẋ(t) = Ax(t) +Bu(t); x(t0) = x0

y(t) = Cx(t)
(1.1)
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Chapter 1. Introduction

où x(t) ∈ Rn est le vecteur d’état, u(t), y(t) ∈ Rp sont le vecteur d’entrée et le

vecteur de sortie du système (1.1), respectivement. La matrice A ∈ Rn×n est

supposée être de grande taille et creuse et B,CT ∈ Rn×p (p � n). Le système

(1.1) peut être aussi définit par

Σ =

[
A B

C 0

]
. (1.2)

La fonction de transfert F (s) du système Σ est donnée par

F (s) = C(sIn − A)−1B.

Pour le cas particulier p = 1, le système dynamique est dit un système avec seule-

entrée seule-sortie, et il est dit un système avec plusieurs-entrées plusieurs-sorties

dans l’autre cas. Dans plusieurs applications, la dimension n du système d’origine

est très grande ce qui rend les calcules très difficiles au niveaux de temps et de

mémoire, et c’est la motivation de base du problème la réduction de modèles.

Donc, l’objectif de la réduction de modèles est de remplacer le système (1.1) par

un sytème dynamique d’ordre inférieur ayant la forme suivante

{
ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t),
(1.3)

où Ar ∈ Rr×r, Br, C
T
r ∈ Rr×p et r � n, tel que le modèle d’ordre réduit préserve

les même caractéristiques du système d’origine comme la stabilité et la passivité.

En plus, la sortie yr du système réduit doit être proche à celle du modèle d’origine.

On peut aussi définir le système (1.3) par

Σr =

[
Ar Br

Cr 0

]
, (1.4)

sa fonction de transfert est

Fr = Cr(sIr − Ar)−1Br.

En général, il existe deux catégories de méthodes pour la réduction de modèles:

les méthodes basées sur la SVD et celles de Krylov. Une approche très connue

pour la première catégorie est la méthode dite troncature équilibrée introduite par

Mullis et Robert [109] et utilisée ultérieurement par Moore [107] pour les systèmes
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et le contrôle. L’application de la méthode de troncature équilibrée sur un système

stable préserve les propriétés théoriques importantes du système d’origine comme

la stabilité et fournie une majoration de l’erreur. Cependant, cette méthode n’est

pas adapté pour les systèmes de grande taille.

Les méthodes de Krylov pour la réduction de modèles sont basées sur l’interpolation

rationnelle de la fonction de transfert du système d’origine autour de quelques

fréquences. Ces méthodes utilisent directement les bases biorthogonales d’un cer-

tain sous-espace de Krylov pour construire le modèle d’ordre réduit. Parmis ces

méthodes, celles basées sur Arnoldi et Lanczos [3, 78, 81]. Malheureusement,

la version standard de ces algorithmes a tendance de créer des modèles d’ordre

réduit qui donne de mauvaise approximation. Pour traiter ce problème, des al-

gorithmes d’Arnoldi et de Lanczos rationnels ont été proposés [1, 13, 43, 50, 71].

Ces procédures permettent d’obtenir un modèle d’ordre réduit tel que sa fonc-

tion de transfert approxime la fonction de transfert du système d’origine au-

tour de plusieurs points d’interpolation. L’avantage des méthodes de sous-espace

de Krylov est qu’elles traitent les problèmes de grande taille et qu’en plus elles

s’implimentent d’une manière itérative et efficace. Dans la littérature, plusieurs

travaux ont montré que la méthode de Lanczos est liée à l’approximation de Padé

[24] qui est aussi une méthode utile pour réduire la dimension des systèmes de

grande taille [25, 26, 49]. L’inconvénient de cette approche c’est qu’elle ne préserve

pas la stabilité du système d’origine. Pour résoudre ce problème, un approximant

de type Padé partiel a été introduit pour préserver les caractéristiques principales

du système d’origine comme la stablilité et la passivité [10].

Dans cette thèse, on va utiliser les méthodes de Krylov rationnel pour réduire la

dimension des systèmes linéaires dynamiques de grande taille. Plus précisemment,

on va proposer des algorithmes de type-Lanczos rationnel pour construire deux

matrices V,W ∈ Rn×r avec W TV = Ir et telle que les matrices du système réduit

sont donées par

Ar = W TAV, Br = W TB, Cr = CV.

Le problème majeur des méthodes de Krylov rationnel est la construction d’un

ensemble de points d’interpolation que l’on doit utiliser pour construire les es-

paces de Krylov rationnel. Cette procédure n’est pas automatique et les points
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d’interpolation doivent être convenablement choisis pour avoir de bonnes approx-

imations et garantir une bonne convergence de la procédure. Plusieurs techniques

pour bien choisir ces paramètres vont être aussi proposées dans ce travail.

1.3 Exemples motivants

Dans cette section, on va donner quelques exemples d’applications de systèmes

dynamiques de grande dimension. Ces types de systèmes sont utilisés pour la

simulation et le contrôle. Pour plus d’exemples voir [3, 124]

1.3.1 Réacteurs chimiques: Contrôle de la température

des réactifs

Le premier exemple est un système qui apparâıt lors de l’optimisation de la

température (chauffage/refroidissement) d’un écoulement fluide dans un tube.

L’application potentielle serait la régulation de la température de certaines entrées

de réactif dans un réacteur chimique. Les équations du modèle sont:
∂x

∂t
− κ∆x+ v.∇x = 0 sur Ω

x = x0 sur Γin
∂x

∂n
= σ(u− x) sur Γheat1 ∪ Γheat2

∂x

∂n
= 0 sur Γout

Ici Ω désigne le domaine rectangulaire représenté sur la figure 1.1. Le flux en-

trant Γin est du coté gauche du domaine, tandis que le flux sortant Γout est à la

frontière droite. Nous pouvons considérer ce domaine juste en dimension 2, en sup-

posant une symétrie rotationnelle ce qui est équivalent à supposer un écoulement

non-turbulent. Les matrices tests ont été crées en utilisant le logiciel COMSOL4

multi-physique, leurs dimensions est 1090. Le système est doté d’une seule entrée
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appliquée aux limites supérieures et inférieures vu sa symétrie rotationnelle. Les

trois données de sortie correspondent à la température de l’écoulement du flux

à la sortie. Notons que dans ce cas, nous avons un domaine convexe qui nous

permet d’utiliser les points d’évaluation comme des sorties.

En utilisant une discrétisation spatiale par éléments fini, le modèle semi-discret

s’écrit sous la forme suivante:

{
Mẋ = Ãx+ B̃u(t)

y(t) = C̃x
(1.5)

En supposant que la matrice M est inversible, ce système peut être représenté

sous la forme standard (1.1).

Figure 1.1: Domain Ω for the Inflow Example: A 2d cross-section of the liquid
flow in a round tube.
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1.3.2 Système vibrationnel/système acoustique

Considérons un pare-brise d’une voiture soumise à une accélération. Le problème

consiste à calculer le bruit généré en des points en dehors de la fenêtre de la

voiture. Le premier pas dans la résolution de ce problème est l’EDP décrivant

la déformation du pare-brise constitué d’un matériau donné. La discrétisation

par éléments finis donne 7564 noeuds (3 couches de 60 × 30 éléments), pour un

matériau constitué de verre avec un module de Young égale à 7.107N/m2, une

densité de 2490kg/m3 et un facteur de poisson de 0.23. Ces paramètres aident à

déterminer expérimentalement les coefficients du modèle résultant par les éléments

finis. Enfin le pare-brise subit une force en un point donné, et l’objectif est donc

de calculer le déplacement de ce point.

La discrétisation par éléments finis de cet exemple mène à l’équation du second

ordre suivante

M
d2

dt2
x(t) + C

d

dt
x(t) +Kx(t) = f(t),

où la dimension du problème discrétisé est n = 22692, x représente la position,

et
d

dt
x est la vitesse du pare-brise au point choisi. Les matrices M,C et K sont

respectivement les matrices de masse, d’amortissement et de raideur. Comme il

s’agit d’un système de second ordre, sa complexité est deux fois plus élevé (45 384

états).

1.3.3 Traquer une tempête dans l’océan pacifique

Le problème consiste à étudier la sensibilité de l’équilibre de l’atmosphère face aux

perturbations. En particulier, nous souhaitons déterminer la perturbation initiale

qui génère la plus grande perturbation dans un intervalle de temps spécifié. Ces

perturbations sont gouvernées par les équations de ORR-Sommerfield. En sup-

posant des perturbations harmoniques de la vitesse du vent de la forme Φ(x, y, t) =

φ(y, t)eikx, on a
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∂φ(y, t)

∂t
= Aφ(y, t) = −iky∂

2φ(y, t)

∂y2
+

1

Re

(
∂2φ(y, t)

∂y2
− k2φ(y, t)

)2

,

où Re désigne le nombre de Reynolds. La discrétisation en variable y mène à

l’ensemble des ODEs suivant :

dφ̂(t)

dt
= Âφ(t), Â ∈ Rn×n.

On suppose que ce système est influencé par les perturbations, en particulier on

suppose que

1. Les entrées aléatoires affectent toutes les variables φ̂i,

2. Toutes ces variables sont observables.

Le système discrétisé est donc un système linéaire ayant le même nombre d’entrée

m, des vecteurs d’état n, et des sorties p. i.e,

Σ ≡

[
Â In

In 0

]
⇒m = p = n.

De tels modèles sont utilisés pour traquer les tempêtes dans les moyennes altitudes

de l’océan pacifique [47].

1.4 Contributions de la thèse

L’objectif de ce travail est maintenant clair: on va proposer des algorithmes basés

sur la méthode de Lanczos rationnel, puis on va les appliquer pour réduire la di-

mension des systèmes linéaires dynamiques de grande taille. La thèse est présentée

selon le plan suivant:

Dans le deuxième chapitre, on va présenter tous les outils nécessaires pour les

systèmes linéaires, ainsi on va expliquer les idées principaux pour la réduction de

modèles. On va rappeler deux approches pour traiter le problème de la réduction
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de modèles, qui sont la méthode de la troncature équilibrée et la méthode basée

sur les sous-espaces de Krylov.

Dans le troisième chapitre, vu l’objectif de la réduction de modèles et puisque

les méthodes de Krylov rationnel sont plus efficaces que les méthodes standards,

on va commencer par proposer un algorithme de type Lanczos rationnel par bloc

pour construire les deux bases V et W de l’espace de Krylov rationnel. Après, on

va établir quelques équations rationnelles qui décrivent la relation entre ces bases

et la matrice A du système d’origine. En suite, on va utiliser ces équtaions pour

établir une expression de l’erreur entre la fonction de transfert du système d’origine

et celle du système réduit. Une approche adaptative pour choisir les points

d’interpolation va être aussi introduite. Finalement, on va montrer l’efficacité

des méthodes proposées en donnant des résulats numériques et des comparaisons

entre notre méthode et la célèbre approche IRKA(”Iterative Rational Krylov Al-

gorithm”).

Dans le quatrième chapitre, on va proposer un algorithme de Lanczos rationnel

par bloc modifié. Cette procédure peut être considérée comme une généralisation

de l’algorithme proposé dans Chapitre 3 où plusieurs multiplicités sont considérées

pour chaque point d’interpolation. L’avantage de l’algorithme modifié est que

les équations simples de Lanczos standard restent vraies aussi dans le cas ra-

tionnel. Après, on va utiliser ces équations pour établir des expressions simples

de l’erreur résiduelle. Comme les méthodes de Krylov rationnel sont toujours liées

à l’ensemble des points d’interpolation, on va proposer à nouveau une technique

adaptative pour choisir ces paramètres.

Chapitre 5 représente une autre extension des méthodes de sous-espace de

Krylov pour les systèmes avec plusieurs-entrées plusieurs-sorties, qui est la méthode

de sous-espace de Krylov global. On va commencer par introduire l’algorithme

général de Lanczos rationnel global, puis établir les équations rationnelles qui

décrivent cette procédure. Ensuite, on va modifier cette algorithme de telle façon

que les équations simples de Lanczos global restent vraies aussi dans le cas ra-

tionnel. Quelques techniques pour choisir les points d’interpolations vont être

aussi proposées. Dans la deuxième partie de ce chapitre, on va traiter les systèmes
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linéaires dynamiques de deuxième ordre et on va appliquer l’algorithme de Lanczos

rationnel global modifié sur les modèles du premier ordre correspondant. Finale-

ment, queleques résultats numériques vont être donnés.

Toujours dans le contexte des méthodes de type Lanczos rationnel pour la

réduction de modèles, on va proposer aussi dans le sixième chapitre un algo-

rithme de Lanczos étendu par bloc pour construire deux bases biorthogonales

pour le sous-espace de Krylov étendu. L’avantage de cette méthode est qu’on n’a

pas à construire les points d’interpolation comme les autres méthodes de Krylov

rationnel. Après avoir décrit la procédure de cette méthode, on va montrer un

ensemble de propriétés algébriques, puis on va appliquer l’algorithme de Lanczos

étendu par block sur le problème de la réduction de modèles. La dernière section

de ce chapitre est consacrée à quelques résultats numériques et comparaion avec

l’approche IRKA.

Dans le dernier chapitre (Chapitre 7), on va donner un résumé de tous les

résulats proposés, ainsi que des idées à explorer dans les futurs travaux.
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2
LTI System Theory and Model Reduction

Nowadays, abundant natural laws and phenomena can be described (or approx-

imated) by linear systems. For example, in chemical engineering there are heat

transfer or reaction, convection, diffusion models; in mechanical engineering there

are wave propagation or vibration models; in electrical engineering, circuit simu-

lation and design, amplifier or filter design, digital signal processing . . . All require

linear system theories. These mathematical models can be used to simulate the

behavior of the processes in question. Sometimes, they are also used to modify

or control the behavior of the processes. The weather, on the one hand, and very

large scale integration (VLSI) circuits, on the other, constitute examples of such

processes, the former physical and the latter artificial. Furthermore, these are

dynamical systems, as their future behavior depends on their past evolution. Yet

for all mentioned applications, the accuracy and reliability of the model plays an

important role. The better the model describes reality, the better the expectable

29



Chapter 2. LTI System Theory and Model Reduction

results from simulation, and the more likely predictions apply,. . . . Increasing de-

mands on the accuracy, however, typically bring about higher complexity of the

model which may complicate or even inhibit the fulfilment of the given task due

to limitations of memory and/or computational capacity. This phenomena leads

to concept of model reduction.

Then, the motivation of this thesis is: starting from large scale linear dynamical

systems, we develop new algorithms that will be applied to reducing the original

system to a lower dimensional system that has same response characteristics and

capture the main features of the original complex model. This need arises from

limited computational, accuracy, and storage capabilities. The simplified model is

then used in place of the original complex model, for either simulation or control.

Thereby, efficiency can be dramatically increased, as comparable results can be

produced in far less time.

A dynamical system has input and output variables. The output variables can

be measured while the input variables can influence the outputs of the system and

could be controlled to give more interesting properties to the dynamical system.

Controlling a system according to measurements of the output variables is called

feedback. It needs the knowledge of the state variables, assumed to be known.

They can be estimated by a special system called the observer. Generally, a

dynamical system comes from the discretization (in the space) of partial differen-

tial equations (PDE’s). Attention is often devoted to the classical approximation

of complex dynamic systems, and the first type of approximation is devoted to

obtaining linearized time-invariant models from non-linear, distributed, or time-

variant systems. Indeed, even a linear time-invariant system derived from this

type of approximation is often too complicated to be investigated due to the large

number of state variables that are included.

In this thesis, we will focus on continuous Linear Time Invariant (LTI) dynam-

ical systems.
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2.1 Problem formulation and overview

A continuous linear dynamical system can be expressed via the following state-

space form {
ẋ(t) = Ax(t) +Bu(t); x(t0) = x0

y(t) = Cx(t)
(2.1)

where x(t) ∈ Rn is the state vector, u(t), y(t) ∈ Rp are the input and the output

vectors of the system (2.1), respectively. The system matrices B,CT ∈ Rn×p and

A ∈ Rn×n are assumed to be large and sparse. When p = 1, the dynamical

system is called Single-Input Single-Output (SISO), and is called Multiple-Input

Multiple-Output (MIMO) otherwise. The control problem consists of acting on

the input vector u(t) so that the output vector y(t) has a desirable time trajectory.

Modifying the input u(t) according to the output y(t) which is observed or to the

state x(t) is called feedback. The LTI dynamical system (2.1) can be also denoted

as

Σ =

[
A B

C 0

]
. (2.2)

When the dimension n of the original system is very large, as stated above, it is

not practical to use the full system for simulation or run-on-time control, so the

concept of model reduction was introduced. The reduced order dynamical system

can be stated as follows

{
ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t),
(2.3)

where Ar ∈ Rr×r, Br, C
T
r ∈ Rr×p and r � n. The system (2.3) can be also

expressed as

Σr =

[
Ar Br

Cr 0

]
. (2.4)

The reduced order dynamical system (2.3) should be constructed such that

• The output yr(t) of the reduced system approaches the output y(t) of the
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original system.

• Some properties of the original system are preserved, such as passivity and

stability.

• The computation methods are steady and efficient.

2.1.1 The transfer function

The state space representation is usually referred as an internal representation

of a dynamical system because it involves the state variables x which are inter-

nal variables of the system. The input/output representation, also called external

representation, is obtained by eliminating the state vector, between the state equa-

tion and the output equation with zero initial conditions. To get the frequency

domain description we apply the Laplace transform

L(f)(s) :=

∫ ∞
0

e−stf(t)dt

to (2.1), we obtain {
sX(s) = AX(s) +BU(s)

Y (s) = CX(s),

where X(s), Y (s) and U(s) are the Laplace transforms of x(t), y(t) and u(t), re-

spectively. If we eliminate X(s) in the previous two equations we obtain Y (s) =

F (s)U(s), where F (s) is called the transfer function of the system (2.1) and de-

fined as

F (s) = C(sIn − A)−1B. (2.5)

We will see later that most of the model reduction techniques are based on

this simple looking transfer function (especially the moment matching approach),

since what one concerns most is the output of a system under different inputs.

Actually in the frequency domain there are infinity many state-space descrip-

tions for a given linear system with given input and output, to see this, we intro-

duce the following definition:
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Definition 2.1.1 Two LTI dynamical systems

[
A B

C 0

]
and

[
Ã B̃

C̃ 0

]
are called

equivalent if they have the same transfer function, i.e.,

F̃ (s) = C̃(sIn − Ã)−1B̃ = C(sIn − A)−1B = F (s), ∀s ∈ C.

It is easy to verify that for any non-singular n × n matrix T , the LTI system[
T−1AT T−1B

CT 0

]
is equivalent to the LTI system

[
A B

C 0

]
. Hence, if the

main concern is the outputs under some specific inputs, we have many choices of

the state-space description. The choice of the matrix T is very important and the

states are connected by the relation x(t) = T x̃(t).

If we solve the state equation (2.1) with initial condition x0 = x(t0), we get

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ. (2.6)

We notice that this solution is a sum of two terms: the first term eA(t−t0)x(t0)

represents the state evolution of the autonomous system (u = 0) while the second

term
∫ t
t0
eA(t−τ)Bu(τ)dτ corresponds to the state evolution for the zero initial

condition. This last term written as a convolution product of eAtB with u(t)

is called the input-to-state impulse matrix. From (2.1) and (2.6), the output

response y(t) is given by

y(t) = CeA(t−t0)x(t0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ. (2.7)

The state-space approach has many advantages: it can be obtained directly

from a real problem as in PDE control problems where the matrix A comes from

the spatial discretization of the PDE, the control gives the input u(t), the bound-

ary conditions provide the matrix B while C is obtained from measurements of

the output. The transfer function F (s) relates the Laplace transform of the out-

put vector to that of the input vector. Each entry Fij(s) is a rational function

representing the transfer function between the i-th input and the j-th output, all

other inputs being set equal to zero.
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2.1.2 Stability, controllability and observability of a dy-

namical system

2.1.2.1 Stability-Passivity

we start by given the definition of a stable dynamical system.

Definition 2.1.2 The LTI dynamical system (2.1) is

• Asymptotically stable, if and only if A is stable (Λ(A) ⊂ C−1).

• Stable, if and only if all eigenvalues of A have non-positive real parts, and

in addition, all pure imaginary eigenvalues have multiplicity one.

An important property of a dynamical system is its stability which means the

ability of the autonomous system (u = 0) to recover its equilibrium point after

being disturbed from it. Roughly speaking, stability means that for bounded

inputs u(t), the state-variable vector x(t) will remain bounded for all times t.

A stable system tends to return to its equilibrium state when perturbed from

it. Conversely, perturbations are increased by an unstable system. Formally, the

dynamical system (2.1) is asymptotically stable if for any initial condition x(t0),

we have

lim
t−→∞

x(t) = 0. (2.8)

Using the expression (2.6) with u = 0, the limit condition (2.8) holds if and

only if the matrix A has all its eigenvalues in the open left-half plane C−1. In

this case the matrix A is called stable or Hurwitz. There are several properties

associated with stability. Clearly, if A is stable, then also A−1 and AT are stable.

Moreover, if the product of matrices AB is stable, then also BA can be shown

to be stable. It is also clear that, due to the relation between eigenvalues of A

and poles of the transfer function, stability can also be formulated in terms of the

poles of the transfer function F (s). A stable structure can become unstable if non-

linear components are connected to it. Another property called passivity is more

34



Chapter 2. LTI System Theory and Model Reduction

stronger than stability. An LTI system is passive if it is incapable of generating

energy. The passivity of the transfer function F (s) is defined as follows.

Definition 2.1.3 (Passivity) A stable LTI system is called passive if:

• F has no pole in C+.

• Re(F (s)) ≥ 0 ∀s ∈ C+,

in this case F is also called positive-real.

2.1.2.2 Controllability and observability

The controllability of a dynamical system is related to the ability of the system to

attain a given state under the action of an appropriate control signal. If a state is

not controllable, then it is not possible to move this state to another one by acting

on the control input. If the matrix representing the dynamics of a non controllable

state is stable, then the state is said to be stabilizable. The observability is related

to the possibility of evaluating the state of a system through output measurements.

The notions of controllability and observability are due to Kalman [89, 90].

Definition 2.1.4 (Controllability) An LTI dynamical system is called controllable

if starting from zero initial state, any state can be reached via a suitable control

within finite time, i.e., given any state z ∈ Rn, starting from x(t0), there exists

u(t) such that at time t, x(t0) = z.

Proposition 2.1.1 The LTI dynamical system (2.1) is controllable if and only if

the controllability matrix

C = [B,AB,A2B, . . . , An−1B]

is of full rank, i.e; rank(C) = n. In this case the pair (A,B) is said to be control-

lable.
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If rank(C) = k < n, then n− k is the number of the uncontrollable modes (the

eigenvalues of the matrix A satisfying rank([λI−AB]) < n ). If all uncontrollable

modes are stable then the system is said to be stabilizable.

Definition 2.1.5 (Observability) Given the dynamical system, the system is called

observable if without control, different initial states lead to different outputs, i.e.,

when u(t) = 0, y(t) is uniquely determined by x(t0).

Proposition 2.1.2 The LTI dynamical system (2.1) is observable if and only if

the observability matrix

O = [CT , ATCT , (A2)TCT , . . . , (An−1)TCT ]T

is of full rank, i.e; rank(O) = n. In this case the pair (A,C) is said to be observ-

able. If rank(O) = l < n, then n− l is the number of the unobservable modes (the

eigenvalues of the matrix A satisfying rank([λI − ATCT ]T ) < n).

The observability is linked to the possibility of evaluating the state of a system

through output measurements. If a state is not observable there is no way to

determine its evolution. If the dynamics of a non observable state is stable, then

the state is said to be detectable.

Proposition 2.1.3 A stable LTI system (2.1) is controllable if and only if the

controllability Gramian given by (2.9) is positive definite and it is observable if

and only if the observability Gramian (2.10) is positive definite.

2.1.3 Controllability and Observability Gramians

We assume that the LTI dynamical system is stable.

Definition 2.1.6 The controllability Gramian associated to the LTI system (2.1)

is defined as

P =

∫ ∞
0

etABBT etA
T

dt, (2.9)
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and the observability Gramian is defined by

Q =

∫ ∞
0

etA
T

CTCetAdt. (2.10)

By applying Parseval’s relation (or Plancherel Theorem) [147], we get another

integral for P and Q (these formulas are also proved in [19]):

P =
1

2π

∫ +∞

−∞
(jωI − A)−1BBT (−jωI − AT )−1dω, (2.11)

Q =
1

2π

∫ +∞

−∞
(−jωI − AT )−1CTC(jωI − A)−1dω. (2.12)

The two Gramians are the unique solutions of the following coupled Lyapunov

matrix equations

AP + PAT +BBT = 0, (2.13)

ATQ+QA+ CTC = 0. (2.14)

As can be seen from the expressions (2.9) and (2.10), the Gramians P and Q are

at least positive semi-definite.

The following theorem strengthens semi-definiteness by relating definiteness to

controllability and observability.

Theorem 2.1.1 The LTI system (2.1) is controllable if and only if the solution

P of (2.13) is positive definite; it is observable if and only if the solution Q of

(2.14) is positive definite.

We will see later that the product PQ plays an important role in model reduction.

Consider the new equivalent LTI dynamical system

Σ̃ =

[
T−1AT T−1B

CT 0

]
,

where T is a non-singular matrix. Then the associated controllability and observ-

ability Gramians P̃ and Q̃ are expressed as

P̃ =

∫ ∞
0

etÃB̃B̃T etÃ
T

dt,

Q̃ =

∫ ∞
0

etÃ
T

C̃T C̃etÃdt,
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where Ã = T−1AT, B̃ = T−1B and C̃ = CT . Hence, we obtain

P̃ = T−1PT−T and Q̃ = T TQT, (2.15)

and these last relations show that the Gramians of two equivalent LTI systems

are not similar. However, the similarity is preserved for the product of the con-

trollability and observability Gramians and we have

P̃ Q̃ = T−1PQT and Q̃P̃ = T TQPT−T .

Hence the eigenvalues of PQ are invariant under state-space transform, these

eigenvalues turn out to be the very important Hankel singular values (to be

defined latter).

2.2 Different dynamical system norms

System norms play an important role in the analysis of LTI systems, as they

quantify certain properties of the model and also they are used to measure the

accuracy of the reduced order model. In this thesis, we will concentrate on theH∞
norm, other norms like the H2 norm and the Hankel norm will be also introduced

in this section; see [3] for more details.

2.2.1 The H2 norm

We start by recall the definition of the H2-norm of the transfer function F (s)

associated to the dynamical system Σ.

Definition 2.2.1 The H2-norm of F (s) is defined as

‖F (.)‖2H2
=

1

2π

∫ +∞

−∞
trace[F (jω)TF (jω)]dω, (2.16)

where j is the complex number j2 = −1.

Consider the impulse response g(t) = L−1[F (s)] = CetAB where L is the Laplace

transform

L(g)(s) =

∫ ∞
0

g(t)e−stdt = F (s).
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Then using the Parseval relation∫ ∞
0

trace[g(t)Tg(t)]dt =
1

2π

∫ +∞

−∞
trace[F (jω)TF (jω)]dω,

the H2 norm can be also expressed as

‖F (.)‖2H2
=

∫ ∞
0

trace[g(t)Tg(t)]dt. (2.17)

Therefore, the H2 norm could be calculated as follows

‖F (.)‖2H2
= trace

[
BT

(∫ ∞
0

etA
T

CTCetA
)
B

]
. (2.18)

Setting

Q =

∫ ∞
0

etA
T

CTCetAdt, (2.19)

we get

‖F (.)‖2H2
= trace(BTQB). (2.20)

Assuming that A is a stable matrix, the observability Gramian Q can be computed

by solving the Lyapunov matrix equation (2.13). We notice that in a similar way,

the H2 norm can be computed by using the controllability Gramian defined by

(2.9). Therefore, H2 norm can be expressed as

‖F (.)‖2 = trace(CPCT ).

2.2.2 The Hankel norm

The Hankel singular values of a stable LTI system are the square roots of the

product of the controllability and observability Gramians:

σi(F ) = σi(Σ) =
√
λi(PO), i = 1, 2, . . . , n,

where P and Q are the Gramians associated to the LTI dynamical system (2.1).

Definition 2.2.2 The Hankel norm of a stable LTI dynamical system is the

largest system Hankel singular value of the associated Hankel operator of this

system, i.e.,

‖F‖H = max
i=1,2,...,n

σi(F ).
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2.2.3 The H∞-norm

An other important norm in linear system theory is the well known H∞-norm,

which is related to the Hardy space H∞.

Definition 2.2.3 The H∞ norm of the transfer function F (.) is defined as

‖F (.)‖H∞ = sup
ω∈R

σmax(F (jω)), (2.21)

where σmax denotes the largest singular value. To approximate the H∞-norm, we

choose a set of frequencies Ωn = ω1, ω2, . . . , ωn and search for

sup
1≤k≤n

σmax(F (jωk)) ≈ ‖F (.)‖H∞ .

2.3 Model reduction techniques

There are two well known model reduction methods for MIMO systems which

are currently in use, SVD based methods and Krylov (moment matching) based

methods. The key steps in the first category are the computation of the so-called

Hankel singular values and balancing of the system. In general terms, balanc-

ing consists of simultaneously diagonalization of two appropriate chosen positive

definite matrices [3], according to solutions of Lyapunov equations or Riccati

equations. One of the most common approach of the SVD-based methods is the

so-called Balanced truncation model reduction [96, 126, 107]. This method have

nice system theoretical properties, such as preservation of stability and computa-

tion of an error bound. However, they are not suited for large scale systems [3].

This drawback stems from the fact that they require dense matrix factorizations,

such as solving two Lyapunov equations, and therefore the computational cost

on the order O(n3) and storage of order O(n2) becomes impractical for systems

of order n � 1000. However, Krylov-subspace methods [8, 13, 70, 71, 85] based

on moment matching have the advantage for large problems. This is due to the

fact that they need only matrix-vector operations and no decomposition of large

matrices is required. They require O(nr2) operations for sparse problems and the

requirement of memory is about O(rn) where n is the size of the original problem
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and r is the size of the reduced system. Unfortunately, these methods lack good

theoretical properties; see [3].

2.3.1 Lyapunov balanced truncation

One of the most commonly used model reduction scheme is the so-called Balanced

Truncation model reduction, which was first introduced by Mullis and Robert [109]

and later in the systems and control literature by Moore [107]. The approxima-

tion theory underlying this approach was developed by Glover [66, 67]. Several

researchers have recognized the importance of balanced truncation for model re-

duction because of its theoretical properties. Computational schemes for small to

medium scale problems already exist. However, the development of computational

methods for large scale setting is still an active area research.

2.3.1.1 The concept of balancing

We assume here that the LTI system is stable, controllable and observable (in this

case we call it also stable and minimal). Then the controllability and observability

Gramians are unique positive definite. The concept of balanced truncation is to

transform the original LTI system to an equivalent one in which the states that

are difficult to reach are also difficult to observe. This reduces to finding a non-

singular matrix T such that the new Gramians P̃ and Q̃ given by (2.15) are equal.

We consider the controllability and observability Gramians P and Q of the original

system (2.1). The square roots of the eigenvalues of the product PQ are the Hankel

singular values of the LTI system Σ:

σi =
√
λi(PQ).

Definition 2.3.1 The reachable, observable and stable system F (s) is called Lyapunov-

balanced if

P = Q = diag(σ1, . . . , σn), (2.22)
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where σi is the i-th Hankel singular value of the LTI system.

The following construction of the balanced transform T by the Cholesky factors of

P and Q was first discussed in [96]. Suppose we have the Cholesky factorisation

of the controllability and observability Gramians P and Q such that

P = LcL
T
c , Q = LoL

T
o , (2.23)

where Lo, Lc are lower triangular matrices. Compute the singular value decom-

position of LTc Lo as

LTc Lo = ZΣY T , (2.24)

where Z and Y are unitary n×n matrices and Σ is a tridiagonal matrix containing

the singular values. Let T be defined as

T = LcZΣ−1/2, T−1 = Σ−1/2V TLTo , (2.25)

then it can be verified by direct calculation that the Gramians P̃ and Q̃ are

diagonal and equal, i.e.

P̃ = Q̃ = Σ,

where Σ is a diagonal matrix whose elements are the Hankel singular values√
λi(PQ) since PQ is similar to P̃ Q̃. There are other possible way for the con-

struction of the matrix T . It was remarked by Glover [66] that the balanced

transformation is not unique but unique up to a non-singular transformation.

2.3.1.2 Model reduction by balanced truncation

As the concept of balancing truncation method has the property that the states

which are difficult to reach are simultaneously difficult to observe. Then, a re-

duced model is obtained by truncating the states which have this property, i.e.,

those which correspond to small Hankel singular values σi. We have the following

theorem.

Theorem 2.3.1 Assume that the LTI dynamical system (2.1) is stable, minimal
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and having the following balanced realization

Σ̃ =

 A11 A12 B1

A21 A22 B2

C1 C2 0

 ,
with P = Q = diag(Σm, Σ̃m), where Σm = diag(σ1, . . . , σm) and Σ̃m = diag(σm+1, . . . , σn).

Then, the reduced order model represented by

Σ̃m =

[
A11 B1

C1 0

]
is asymptotically stable, minimal and satisfies

‖F (.)− Fm(.)‖H∞ ≤ 2(σm+1 + . . .+ σn). (2.26)

The equality holds if Σ̃m contains only σn.

The preceding theorem shows that if the neglected singular values σm+1, . . . , σn

are small, then the reduced order LTI system is close to the original one. Note

that the inequality (2.26) is an a priori error bound. Then given a error tolerance,

one can decide how many states to truncate without forming the reduced model.

Balanced truncation technique can be applied to any Σ which is asymptotically

stable and minimal. For application of balancing to unstable and non-minimal

systems, see [34, 91, 136, 149] and the references therein.

Now, let us see how to construct the low order model Σm. We define the

matrices

Wm = LoYmΣ−1/2m and Vm = LcZmΣ−1/2m , (2.27)

where Σm = diag(σ1, . . . , σm) and Zm, Ym correspond to the leading m columns

of the matrices Z, Y given by the singular value decomposition (2.24), respectively.

We can easily verified that W T
mVm = Im and then also that VmW

T
m is an oblique

projector. The matrices of the reduced LTI system

Σ̃m =

[
Am Bm

Cm 0

]
,

are given by

Am = W T
mAVm, Bm = W T

mB and Cm = CVm. (2.28)
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The use of Cholesky factors in the Gramians P and Q is not applicable for large-

scale problems. Instead, and as we will see later, one can compute low rank

approximations of P an Q and use them to construct an approximate balanced

truncation model.

Let Ã, B̃ and C̃ be the following matrices

Ã =

(
A 0

0 Am

)
, B̃ =

(
B

Bm

)
, C̃ =

(
C Cm

)
.

Then, the Gramians corresponding to the error dynamical system

Σ̃ =

(
Ã B̃

C̃ 0

)
,

are the solutions of the following Lyapunov matrix equations

ÃP̃ + P̃ ÃT + B̃B̃T = 0,

and

ÃT Q̃+ Q̃Ã+ C̃T C̃ = 0.

Therefore, the Hankel norm of the error can be expressed as

‖F (s)− Fm(s)‖H =

√
λmax(P̃ Q̃).

2.3.2 Model reduction via Krylov methods

An important class of numerical methods for model reduction is the Krylov-based

model reduction. Unlike the SVD based methods, stability of the reduced model

constructed by Krylov methods is not guaranteed and no a priori error bound

exists. However, the methods are numerically reliable and can be implemented

iteratively; see, for example, [7, 71, 59, 60, 85, 95] for efficient implementations

of the Krylov based methods. The main advantage of this approach is that it

requires a low computational effort and small memory storage especially when

compared to other reduction approaches. They reduce the computational cost

to O(n2r) ( to O(nr) if the matrix A is sparse) and the storage requirements to

O(nr). Moreover, Krylov methods are not based on minimization, as with the

SVD-based model reduction. Instead they are based on moment matching, where

one attempts to match some of the first coefficients of Taylor (or Neumann) series

expansion of the original and reduced transfer functions. These methods find the
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reduced order model in a relatively short time with a good numerical accuracy

via a projection using bases of particular Krylov subspaces.

2.3.2.1 Moment matching techniques

Let F (s) = C(sIn − A)−1B be the transfer function associated with the linear

dynamical system (2.1). Then, if we expand F (s) as the Taylor series expansion

around a given finite point σ ∈ R, we get

F (s) = C(σIn − A− (σ − s)In)−1B

= C(In − (σIn − A)−1(σ − s))−1(σIn − A)−1B

= f (0)
σ + f (1)

σ (σ − s) + f (2)
σ (σ − s)2 + f (3)

σ (σ − s)3 + . . .

=
∞∑
j=0

f (j)
σ (σ − s)j.

The coefficients f
(j)
σ for j ≥ 0 are called the jth moments of the original system

around σ, and they are given by

f (j)
σ = C(σIn − A)−(j+1)B.

It can be shown that these moments are the values of the transfer function and its

derivatives evaluated at the point σ; see [3]. Then, model-order reduction using a

moment matching method consists in finding a lower order transfer function Fr(s)

having a power series expansion at σ as follows

Fr(s) = f̂ (0)
σ + f̂ (1)

σ (σ − s) + f̂ (2)
σ (σ − s)2 + f̂ (3)

σ (σ − s)3 + . . .

such that k moments are matched, i.e.,

f (j)
σ = f̂ (j)

σ , j = 0, . . . , k − 1 (2.29)

for an appropriate k � n. The reduced-order model resulting is known as a

rational interpolation. Expanding F (s) around σ =∞, the Taylor series is given

by

F (s) =
∞∑
j=1

f (j)
∞ s−j,

where f
(i)
∞ are called the Markov parameters of F (s) and defined by

f (j)
∞ = CAj−1B, j ≥ 1,
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and the corresponding problem is known as a partial realization [69]. A power

series expansion can also be performed about σ = 0, in this case the moments

satisfy f
(j)
0 = −CA−(j+1)B for j ≥ 0, and the computed approximation is a Padé

approximation [3, 140].

Importantly, these problems can be solved in a recursive and numerically reliable

way, by using the Lanczos and Arnoldi procedures. In general for an arbitrary σ ∈
R, the problem is a rational interpolation problem, see, for example, [4]. In this

case rational Lanczos and rational Arnoldi methods give a numerically efficient

solution. We can also use multiple interpolation points σi and this becomes the

multi-point rational interpolation problem, see [36, 71, 146]. In this case, we use

the rational Krylov method of Ruhe [120] to produce the reduced order models.

The concept of these methods is to match the moments of the transfer function at

selected frequencies and therefore we obtain a better approximation of the transfer

function over a broad frequency range.

2.3.2.2 Approximation by moment matching

A straightforward approach to produce the reduced-order models can be obtained

by explicitly computing 2m moments of the original system, where m is the order

of the reduced model. Then, the frequency response of the reduced-order system is

forced to correspond to the selected moments. This can be viewed as a selection of

the coefficients for the numerator and denominator of the reduced-order transfer

function through the solution of a linear system involving Hankel matrices. Unfor-

tunately, numerical drawbacks of the explicit moment-matching can occur, such

as ill-conditioned Hankel matrices, sensitivity of the partial realization, moment

scaling, and the stability of the approximation [61].

Numerically reliable and efficient algorithms have been proposed in the litera-

ture for moment matching method without using an explicit moment computa-

tion; see [71]. When the matrix A is non-symmetric, the main Krylov subspace

methods for non-symmetric problems rely on the Arnoldi algoithm and the non-

symmetric Lanczos algorithm. As this thesis focus on the non-symmetric Lanczos

procedure and the dynamical system in question is MIMO, we need to use the
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non-symmetric block Lanczos and the non-symmetric global Lanczos algorithms

to construct the projecting matrices. We recall in this paragraph the standard

versions of these processes and we give some of them algebraic properties.

Now, we consider the dynamical system represented by the internal description

Σ =

[
A B

C 0

]
,

then one should to find two matrices Vm and Wm and construct the low order

model

Σm =

[
Am Bm

Cm 0

]
,

by applying the oblique projector Pm = VmW
T
m to the original system Σ such that

Am = W T
mAVm, Bm = W T

mB and Cm = CVm.

A careful selection of Vm and Wm as the bases of certain Krylov subspaces

results in moment matching. Then, these bases could be chosen using either the

block Lanczos process [8, 68, 78] (in this case the projecting matrices will be noted

Vm and Wm) or the global Lanczos process [86, 87](the projecting matrices will

be noted Vm and Wm).

2.3.2.3 The non-symmetric block Lanczos-based method

The non-symmetric Lanczos algorithm was originally proposed by Lanczos in 1950

[95] as an oblique projection method for the computation of eigenvalues of non-

symmetric matrices. The idea was to reduce the general matrix to a tridiagonal

form from which the eigenvalues could be easily computed [9].

The first mathematical connection between the Lanczos algorithm and model

reduction was shown in [69]. It was shown that partial realizations could be gen-

erated through the Lanczos process. Villemagne and Skelton [36] have shown

that adaptations to the Krylov subspaces could be performed in order to gen-

erate Padé approximations. Applications of the moment matching results were

utilized in the structural dynamics field as a model reduction technique for flexible
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structures [135] and MIMO systems [92, 93].

Next, we first recall the definition of the block Krylov subspace and then we

introduce the non-symmetric block Lanczos procedure.

Definition 2.3.2 Given a matrix A ∈ Rn×n and a block vectors B ∈ Rn×p, the

i-th block Krylov subspace of A and B, denoted by Ki(A,B), is defined as

Ki(A,B) = Range(B,AB, . . . , Ai−1B). (2.30)

Let V and W be two initial blocks of Rn×p, and consider the block Krylov sub-

spaces Km(A, V ) and Km(AT ,W ). The non-symmetric block Lanczos algorithm

applied to the pairs (A, V ) and (AT ,W ) generates two sequences of bi-orthonormal

n× p matrices {Vi} and {Wj} such that

Km(A, V ) = Range(V1, V2, . . . , Vm),

and

Km(AT ,W ) = Range(W1,W2, . . . ,Wm).

The matrices Vi and Wj that are generated by the block Lanczos algorithm satisfy

the bi-orthogonality conditions, i.e.{
W T
j Vi = 0p, if i 6= j,

W T
j Vi = Ip, if i = j.

(2.31)

Next, we give a stable version of the non-symmetric block Lanczos algorithm

that was defined in [8]. The algorithm is summarized as follows.
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Algorithm 1 The non-symmetric block Lanczos algorithm (BLA)

• Inputs: A ∈ Rn×n, V,W ∈ Rn×p and m an integer.

1. Compute the QR decomposition of W TV , i.e., W TV = δβ;
V1 = V β−1;W1 = Wδ; Ṽ2 = AV1; W̃2 = ATW1;

2. For j = 1, . . . ,m
αj = W T

j Ṽj+1; Ṽj+1 = Ṽj+1 − Vjαj; W̃j+1 = W̃j+1 −Wjα
T
j ;

Compute the QR decomposition of Ṽj+1 and W̃j+1, i.e.,

Ṽj+1 = Vj+1βj+1; W̃j+1 = Wj+1δ
T
j+1;

Compute the singular value decomposition of W T
j+1Vj+1, i.e.,

W T
j+1Vj+1 = UjΣjZ

T
j ;

δj+1 = δj+1UjΣ
1/2
j ; βj+1 = Σ

1/2
j ZT

j βj+1;

Vj+1 = Vj+1ZjΣ
−1/2
j ;Wj+1 = Wj+1UjΣ

−1/2
j ;

Ṽj+2 = AVj+1 − Vjδj+1; W̃j+2 = ATWj+1 −Wjβ
T
j+1;

3. end For.

Setting Vm = [V1, V2, . . . , Vm] and Wm = [W1,W2, . . . ,Wm], we have the follow-

ing block Lanczos relations

AVm = VmTm + Vm+1βm+1E
T
m,

and

ATWm = WmTTm +Wm+1δ
T
m+1E

T
m,

where Em is last mp× p block of the identity matrix Imp and Tm is the mp×mp
block tridiagonal matrix defined by

Tm =


α1 δ2

β2 α2 .

. . .

. . δm

βm αm

 .

Let Vm,Wm ∈ Rn×mp be the bi-orthonormal matrices computed by Algorithm 1,

the application of the oblique projector Πm = VmWT
m on the original system (2.1)

yields a reduced order system such that

Am = WT
mAVm, Bm = WT

mB and Cm = CVm. (2.32)
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2.3.2.4 The global Lanczos-based method

The global Krylov method was first proposed in [86, 87] for solving linear equations

with multiple right hand sides and Lyapunov equations. Application to model-

order reduction of first order systems is also studied in [29, 30, 31, 32]. It was

also used for solving large Lyapunov matrix equations [88]. Basically, the global

Krylov method is similar to the standard Krylov method except that the standard

inner product is replaced by the Frobenius inner product defined above.

Next, we review some notations and definitions that will be used for the global

Lanczos method. For two matricesX and Y in Rn×p, we define the Frobenius inner

product 〈X, Y 〉F = Tr(X>Y ) where Tr(X>Y ) denotes the trace of the square

matrix X>Y . The associated Frobenius norm is given by ‖Y ‖F = Tr(Y TY )
1
2 .

A system {V1, V2, . . . , Vm} of elements of Rn×p is said to be F -orthonormal if it

is orthonormal with respect to the inner product 〈. , .〉F , i.e., 〈Vi, Vj〉F = δi,j.

For Y ∈ Rn×p, we denote by vec(Y ) the vector of Rnp obtained by stacking the

columns of Y . For two matrices A and B, A⊗B = [ai,jB] denotes the Kronecker

product of the matrices A and B.

In the sequel, we give some properties of the Kronecker product.

1. (A⊗B)> = A> ⊗B>.

2. (A⊗B)(C ⊗D) = (AC ⊗BD).

3. If A and B are non-singular matrices of size n × n and p × p respectively,

then the np×np matrix A⊗B is non-singular and (A⊗B)−1 = A−1⊗B−1.

4. vec(A)>vec(B)=Tr(A>B).

Definition 2.3.3 Let A = [A1, . . . , As] and B = [B1, . . . , Bl] be matrices of di-

mension n×sp and n×lp, respectively, where Ai and Bj (i = 1, . . . , s; j = 1, . . . , l)

are n× p. Then the s× l matrix A> �B is defined by:

A> �B = [〈Ai, Bj〉F ]1≤i≤s; 1≤j≤l.

Remark 2.3.1 The following relations were established in [21].
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1. The matrix A = [A1, . . . , As] is F -orthonormal if and only if A> � A = Is.

2. For all X ∈ Rn×p, we have X> �X = ‖X‖2F .

3. (DA)> �B = A> � (D>B).

4. A> �
(
B(L⊗ Ip)

)
= (A> �B)L.

5. ‖A> �B‖F ≤ ‖A‖F‖B‖F .

Let V ∈ Rn×p, then the matrix Krylov subspace

Km(A, V ) = Span{V,AV, . . . , Am−1V }

is spanned by the matrices V,AV, . . . , Am−1V . Hence Z ∈ Km(A, V ) means that

Z =
m−1∑
i=0

αiA
iV, αi ∈ R, i = 0, . . . ,m− 1.

We recall that the previous subspace is different from the block Krylov subspace

Km(A, V ) where Z ∈ Km(A, V ) means that

Z =
m−1∑
i=0

AiV Ωi, Ωi ∈ Rp×p, i = 0, . . . ,m− 1.

let W ∈ Rn×p, the global Lanczos algorithm constructs two F -biorthogonal

bases

Vm = {V1, V2, ..., Vm} and Wm = {W1,W2, ...,Wm}

of the matrix Krylov subspaces Km(A, V ) and Km(AT ,W ), respectively. This

algorithm is summarized as follows.
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Algorithm 2 The Global Lanczos Algorithm (GLA)

1. Inputs: A ∈ Rn×n, V,W ∈ Rn×p and an integer m.

2. Choose two n× p matrices V1 and W1 such that < V1,W1 >F= 1,

3. Set β1 = δ1 = 0 and W0 = V0 = 0,

4. for j=1,...,m
αj = 〈Wj, AVj〉F ,

Ṽj+1 = AVj − αjVj − βjVj−1,
W̃j+1 = ATWj − αjWj − δjWj−1,

δj+1 = |Tr(Ṽ T
j+1W̃j+1)|1/2,

βj+1 = Tr(Ṽ T
j+1W̃j+1)/δj+1,

Vj+1 = Ṽj+1/δj+1,

Wj+1 = W̃j+1/βj+1,

5. Endfor

Let Tm be the tridiagonal matrix of dimension m×m defined as

Tm =


α1 β2

δ2 α2 .

. . .

. . βm

δm αm

 ,

where αi, βi and δi are the scalars defined in the Algorithm 2. Define the matrix

T̃m =

(
Tm

δm+1e
T
m

)
.

The following result holds for the standard global Lanczos algorithm (see [87]).

Theorem 2.3.2 Assume that the global Lanczos algorithm does not break down

before m steps. Let Vm+1 = [V1, . . . , Vm, Vm+1] and Wm+1 = [W1, . . . ,Wm,Wm+1]

be the F -biorthogonal matrices of Rn×(m+1)p constructed by Algorithm 2, then we
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have the following relations

AVm = Vm(Tm ⊗ Ip) + δm+1Vm+1E
T
m,

AVm = Vm+1(T̃m ⊗ Ip), (2.33)

(2.34)

where em = (0, . . . , 0, 1)T ∈ Rm and Em = (em ⊗ Ip) = [0p, . . . , 0p, Ip].

2.4 Contributions of the Dissertation

The motivation of this thesis is now clear: There are many applications of linear

systems in engineering, many of the real world applications are large scale. In

the literature, many works are proposed for model order reduction problem based

on standard Krylov subspace. Unfortunately, the standard versions of the Krylov

subspace algorithms tend to create reduced order models that poorly approxi-

mated low frequency dynamics. To overcome this problem, some rational Krylov

methods were recently defined; see [71, 120] and the references therein, and it

was shown that these rational-based methods are more effective for model order

reduction [1, 13, 14, 42, 50, 70], and also for solving large Lyapunov and Riccati

matrix equations [40, 133].

Hence, we will focus in this thesis on Multi-input Multi-output (MIMO) contin-

uous Linear Time Invariant (LTI) large scale dynamical systems, and we develop

new efficient rational Krylov algorithms to produce reduced order systems.

first, and towards the goal of Krylov based model reduction, we propose a ra-

tional block Lanczos-type algorithm to compute two bi-orthogonal bases of the

rational Krylov subspaces. After that, we show how to obtain some rational

equations that describe the relation between these bases and the matrix A of the

original model. Once the reduced order model is constructed, we must compute

the exact transfer matrix error between the original and the reduced systems to

measure the accuracy of the resulting reduced-order model. Grimme in his thesis

[71] proposed the computation of the exact error in term of two residual vectors

in the case of SISO systems, this result will be extended her to the MIMO case.
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Moreover, we use the rational equations proposed to derive another error expres-

sion. One of the drawbacks of the rational Krylov methods is the selection of some

interpolation points which must be appropriately chosen for a good convergence

of the process. Some techniques to chose these parameters will be also proposed.

Next, we will propose a modified non-symmetric rational block Lanczos algo-

rithm. This process can be considered as a generalization of the rational block

Lanczos algorithm given in the last chapter where different multiplicities are con-

sider for each interpolation point. The advantage of the modified rational block

Lanczos algorithm is that the standard Lanczos equations remain valid also in

the rational block case. After that, we will use these simple equations to derive

simple residual error expressions. As rational Krylov methods are always related

to the interpolation points, we will propose an adaptive approach for selecting

some good shifts.

Another extension of the standard Krylov subspace method for MIMO systems

is the global Krylob subspace. The global Lanczos process is an algorithm for

computing F -biorthogonal bases of the rational matrix Krylov subspaces. We

start by describe the general form of the rational global Lanczos algorithm and

then we establish the rational equations witch describe this process. After that, we

modify the rational global Lanczos algorithm in such a way the standard Lanczos

equations remain valid also in the rational global case, the resulting algorithm will

be named the modified rational global Lanczos process. Next, we propose some

adaptive techniques for choosing the interpolation points and then we combine

one of these methods and the modified rational global Lanczos process to get

an Adaptive Modified Rational Global Lanczos (AMRGL) procedure for reducing

the dimension of large scale linear dynamical systems. In the second part of this

Chapter, we consider the second-order dynamical systems and we applied the

AMRGL algorithm to an equivalent state space model.

Always in the context of rational Krylov methods for model order reduction,

we will propose also an extended block Lanczos algorithm for constructing bi-

orthogonal bases of the extended Krylov subspace. This Krylov based method

was first proposed by Druskin and Knizhnerman in [41] for numerically approx-
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imating the action of a matrix function to a given vector. The advantage of

this approach is that we are not even mentioning the numerical difficulties that

might arise for selecting the poles of the rational Krylov subspace and then we

don’t need to construct the set of interpolation points as for the other rational

Krylov algorithms. After describing the extended block Lanczos algorithm, we

obtain some algebraic properties and then we apply this method to model order

reduction. We show how to apply the extended block Lanczos process to MIMO

dynamical systems to produce a low-order dimensional systems.

2.5 Outline of the Dissertation

We conclude this introduction with a summary of each of the remaining chapters.

In Chapter 3, we start by proposing a rational block Lanczos-type algorithm

and then we show how to obtain a set of equations that describe the relations

between the matrix A and the bases constructed by this procedure. After that,

we use these equations to obtain an error expression between the original and

the reduced-order transfer functions. Moreover, we propose adaptive techniques

for selecting some interpolation points that used to construct the rational Krylov

subspaces. The application of this algorithm to approximate the exponential on a

block vector B will be also considered in this chapter. The last section is devoted

to some numerical experiments to show the effectiveness of the proposed methods.

In Chapter 4, a modified version of the algorithm introduced in Chapter 2 is

proposed, namely, the modified rational block Lanczos algorithm. The advantage

of this process is that the standard Lanczos equations remain valid also in the

rational block case. Moreover, these simple equations will be used to develop

simple residual error expressions. Next, an adaptive method for choosing the

interpolation points is propose and finally, some numerical examples will be given.

Chapter 5 presents another extension of the standard Krylov subspace method

for MIMO systems, which is the global Krylov subspace. We first describe the

adaptive modified rational global Lanczos (AMRGL) algorithm proposed and then
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we establish Lanczos-like equations for the global case. Next, some adaptive

techniques for choosing the interpolation points will be proposed. Second-order

dynamical systems are also considered in this Chapter and the AMRGL algorithm

is applied to an equivalent state space model. In the last section, some numerical

examples will be introduced.

In Chapter 6, we propose an extended block Lanczos method and we obtain

new algebraic properties for this process. The application of this method to model

order reduction is also considered. We show how to apply the extended block

Lanczos process to MIMO dynamical systems to produce a low-order dimensional

systems. The last section is devoted to some numerical experiments for large and

sparse problems to show the efficiency of the proposed approach.

In the last chapter (Chapter 7), a summary of the obtained results is provided,

together with ideas to be explored in future work.
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3
An adaptive rational block Lanczos-type

algorithm for model reduction of large

scale dynamical systems

As we explained in the next chapter, they are two well-known approaches for

model reduction problem, SVD-based methods and Krylov-based model reduc-

tion. However, the SVD-based methods are not suitable for large-scale systems

due to the use of dense matrix factorisation of O(n3) and storage of O(n2). As

an alternative, Krylov subspace techniques become a good choices for large-scale

systems because they rely on matrix-vector multiplication and they can be imple-

mented iteratively in a numerically efficient manner [3].

Krylov based model reduction are based on matching the moments of the orig-
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inal transfer function around some selected frequencies to finding a reduced order

model that matches a certain number of moments of the original model around

these frequencies. This is achieved by iteratively constructing matrices that span

certain Krylov subspaces of A and B, and/or AT and C. in other words, we can

use the Lanczos and the Arnoldi processes to solve the problem in a recursive and

numerically efficient way. In particular, the Lanczos process has been used for

the SISO and MIMO dynamical systems; see [51, 50, 78, 95] and the references

therein. The Padé via Lanczos method of [48], which exploits the deep connection

between the Lanczos procedure and the moment matching problem at σ, is one

of the leading efforts for this case. The Lanczos procedures can be used to match

the moments of Σ only at a single interpolation point. However, the standard

version of the Lanczos algorithm builds reduced order models that poorly approx-

imate some frequency dynamics and to overcome this problem, one is interested

in matching the moments at various interpolation points to obtain a better ap-

proximation over a broad frequency range. In this case, the problem is called

the multipoint rational interpolation problem and the reduced order model can

be constructed by using the rational Krylov method first proposed by Ruhe [120]

and developed these last years in [58, 59, 71, 70, 140]. Since ones matched the

moments of the transfer function at various frequencies, a better approximation

of the transfer function over a broad frequency range is obtained. The multi-

point rational interpolation was first proposed by Skelton and al. [36, 145, 146].

Grimme in his thesis showed how one can construct the required projection by

Krylov methods in a numerically efficient way; see [71]. One of the main problems

of the rational Krylov methods is the selection of suitable shifts to guarantee a

good convergence of the process. Therefore, various methods have been proposed

in the literature to construct these interpolation points. In [20, 58] Gugercin et al.

proposed an Iterative Rational Krylov Algorithm (IRKA) to compute a reduced

order model satisfying the first order conditions for the H2 approximation. Other

adaptive methods (for the SISO case) are introduced in [22, 41, 51, 66, 70, 78]

and the references therein.

In the first section of this chapter, we recall the multipoint rational interpolation

problem and we give some basic results. In the second section, we propose a
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rational block Lanczos-type process and we give some algebraic properties related

to the this algorithm. An error expression between the original and the reduced-

order transfer functions is derived in Section 3. In Section 4, we propose adaptive

techniques for selecting some interpolation points. The last section is devoted to

some numerical experiments.

3.1 Multipoint rational interpolation

For the multipoint rational interpolation problem by projection, the goal is to

obtain the reduced system by projection. In the other words, we try to find

matrices Vm ∈ Rn×r and Wm ∈ Rn×r with WT
mVm = Ir and such that the reduced

order model

Σm =

[
Am Bm

Cm 0

]
matches the moments of the original system Σ at the selected interpolation points.

Consider the following projection:{
x = Vmxm,

Vm ∈ Rn×r, x ∈ Rn, xm ∈ Rr,

where r � n. By applying this projection to the original system and then mul-

tiplying the state equation by transpose of the matrix Wm, a reduced model can

be obtained as follows,{
ẋm(t) = WT

mAVmxm(t) + WT
mBu(t)

ym(t) = CVmxm(t),

Then, the reduced order system in state space is identified by the following ma-

trices:

Am = WT
mAVm, Bm = WT

mB, Cm = CVm. (3.1)

Now, the question is how to choose the projection matrices to find a reduced

system that matches the original system at selected frequencies. The following

theorems show how one can achieve this goal by Krylov projection methods. We

start by the case of matching the Markov parameters. A special case, called

Oblique Projection, for matching only the Markov parameters has been intro-

duced in [84]. In this case, matching the Markov parameters leads to a good
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approximation at high frequencies which most of the time is not desired. In the

following theorem, a general case is discussed.

Theorem 3.1.1 The matrices Am, Bm and Cm generated by applying the block

Lanczos process to the original system Σ are such that the first 2m − 1 Markov

parameters of the original and the reduced models are the same, that is,

CAjB = CmA
j
mBm, for j = 0, 1, . . . , 2(m− 1).

Proof. The complete proof is found in [78].

The following result is presented in [71] for SISO systems, and is extended to

the MIMO case in [57]. It shows how to construct the bi-orthogonal bases Vm

and Wm so that the multipoint rational interpolation problem is solved, i.e., the

reduced order model has to interpolate the original transfer function F (s) and its

first derivative at the interpolation points {σi}mi=1.

Theorem 3.1.2 Given F (s) = C(sIn−A)−1B and m interpolation points {σi}mi=1

that verify σi 6= σj for i 6= j. Let Vm ∈ Rn×r and Wm ∈ Rn×r be obtained as

follows:

Range(Vm) = Range{(A− σ1In)−1B, . . . , (A− σmIn)−1B} (3.2)

Range(Wm) = Range{(A− σ1In)−TCT , . . . , (A− σmIn)−TCT} (3.3)

with WT
mVm = Ir. Then, the reduced order transfer function Fm(s) = Cm(sIm −

Am)−1Bm obtained in (3.1) interpolates F (s) and its first derivative at {σi}mi=1.

Theorem 3.1.2 states that for moment matching problem, one has to construct

two full-rank matrices Vm and Wm such that Range(Vm) and Range(Wm) satis-

fying equations (3.3) and (3.3) respectively.

Several algorithms have been implemented in the literature: Lanczos algorithm

and Arnodi algorithm and its variants; see [71] and referenced therein. In general,

these processes follow the Rational Krylov methods of Ruhe [121]. Based on the

conditions (3.3) and (3.3) of theorem 3.1.2, a rational block Lanczos algorithm is

proposed in the next section.
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3.2 The rational block Lanczos method

The rational Krylov method was originally proposed by Ruhe [120] in the con-

text of approximating interior eigenvalues, which with appropriately chosen shifts

would accelerate convergence to the sought after spectral region. Within model

order reduction, the role of rational Krylov subspaces is rather different, as they

are particularly well suited for approximating the behavior of the transfer func-

tion on the imaginary axis. Indeed, it is now acknowledged as being one of the

most powerful projection approaches for reducing the order of large scale linear

dynamical system.

3.2.1 The rational block Lanczos algorithm

As discussed in the next section, in order to solve the multipoint rational interpo-

lation problem by Krylov techniques, one has to construct full rank matrices Vm

and Wm which span the required Krylov subspaces for some selected interpola-

tion points σ1, σ2, . . . , σm. That’s will be done by using the rational block Lanzos

procedure.

The rational block Lanczos process presented in Algorithm 3 is a procedure for

constructing bi-orthonormal bases of the union of the block Krylov subspaces

defined as follows

Km(A,B,Σm) = Range{(A− σ1In)−1B, . . . ,
∏
k≤m

(A− σkIn)−1B}, (3.4)

Km(AT , CT ,Σm) = Range{(A− σ1In)−TCT , . . . ,
∏
k≤m

(A− σkIn)−TCT},

(3.5)

where Σm = {σ1, . . . , σm} is the set of interpolation points. The rational block

Lanczos-type algorithm is defined as follows.
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Algorithm 3 The rational block Lanczos-type algorithm(RBLA)

1. Input: A ∈ Rn×n, B, CT ∈ Rn×p.
2. Output: two bi-orthogonal matrices Vm+1 and Wm+1 of Rn×(m+1)p.
function [Vm,Wm] =Rational-Block-Lanczos(A,B,C,{σ1, . . . , σm})
3. Set S0 = (A− σ1In)−1B and R0 = (A− σ1In)−TCT

4. Set S0 = V1H1,0 and R0 = W1G1,0 such that W T
1 V1 = Ip;

5. Initialize: V1 = [V1] and W1 = [W1].
6. For k = 1, . . . ,m
7. if (k < m)
8. if {σk+1 =∞}; Sk = AVk and Rk = ATWk; else
9. Sk = (A− σk+1In)−1Vk and Rk = (A− σk+1In)−TWk; endif
10. Hk = WT

k Sk and Gk = VT
kRk;

11. Sk = Sk − VkHk and Rk = Rk −WkGk;
12. Sk = Vk+1Hk+1,k and Rk = Wk+1Gk+1,k; (QR factorization)
13. W T

k+1Vk+1 = PkDkQ
T
k ; (Singular Value Decomposition)

14. Vk+1 = Vk+1QkD
−1/2
k and Wk+1 = Wk+1PkD

−1/2
k ;

15. Hk+1,k = D
1/2
k QT

kHk+1,k and Gk+1,k = D
1/2
k P T

k Gk+1,k;
16. Vk+1 = [Vk, Vk+1]; Wk+1 = [Wk,Wk+1];
17. else
18. if {σm+1 =∞}; Sm = AB and Rm = ATC; else
19. Sm = A−1B and Rm = A−TCT ; endif
20. Hm = WT

mSm and Gm = VT
mRm;

21. Sm = Sm − VmHm and Rm = Rm −WmGm;
22. Sm = Vm+1Hm+1,m and Rm = Wm+1Gm+1,m; (QR factorization)
23. W T

m+1Vm+1 = PmDmQ
T
m; (Singular Value Decomposition)

24. Vm+1 = Vm+1QmD
−1/2
m and Wm+1 = Wm+1PmD

−1/2
m ;

25. Hm+1,m = D
1/2
m QT

mHm+1,m and Gm+1,m = D
1/2
m P T

mGm+1,m;
26. Vm+1 = [Vm, Vm+1];Wm+1 = [Wm,Wm+1];
27. endif
28. endFor.

We notice that in our setting, we assume that we are not given the sequence of

shifts σ1, σ2, . . . , σm+1 and then we need to include the procedure to automati-

cally generate this sequence during the iterations of the process. This adaptive

procedure well be defined in the next sections.

In the rational block Lanczos-type algorithm (Algorithm 3), steps 8-9 and steps

18-19 are used to generate the next Lanczos vectors. According to Algorithm 3,

two residual expressions are used. At each iteration k, we used a new interpolation
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point σk+1, k = 1, . . . ,m − 1 and we initialize the subsequent Krylov subspaces

corresponding to this shift by Sk = (A−σk+1In)−1Vk and Rk = (A−σk+1In)−TWk

if σk+1 is finite and Sk = AVk, Rk = ATWk if σk+1 =∞.

To insure that the block vectors Vk+1 and Wk+1 generated in each iteration are

bi-orthogonal, the QR and SVD decompositions are used (steps 12-14 and 22-24).

The matrices Hk and Gk constructed in steps 10 and 20 are kp× p and they are

used to construct the block upper Hessenberg matrices Hm and Gm, respectively

(for more details see Theorem 3.2.1).

We notice that a breakdown may occur in Algorithm 3 if the smallest singular

value of W T
k+1Vk+1 is zero, which causes a problem in the calculating of the block

Vk+1 and Wk+1. In [8], a novel breakdown treatment scheme was proposed to

overcome this problem for the single point block Lanczos algorithm ABLE. This

method is generalized in [111] for MABLE algorithm. Here, the same technique

could be used to detect and cure breakdowns. However, this problem of breakdown

or near-breakdown is not developed in this thesis.

3.2.2 Analysis of the rational block Lanczos algorithm

In this subsection, we give some theoretical results which establish the rational

Lanczos equations that relate the matrix A of the original system, the bases

Vm,Wm constructed by Algorithm 3 and the Hessenberg matrices generated also

by this algorithm.

Theorem 3.2.1 Let Vm+1 and Wm+1 be the matrices generated by Algorithm

3, assuming that A is non-singular and that all the interpolation points σi, i =

1, . . . ,m are finite real numbers. Then, there exist (m + 1)p × mp block upper

Hessenberg matrices H̃m, G̃m, K̃m and L̃msuch that the following relations hold for
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the left and the right Krylov subspaces:

AVm+1H̃m = Vm+1K̃m (3.6)

ATWm+1G̃m = Wm+1L̃m, (3.7)

Hm = WT
mA
−1VmKm, (3.8)

Gm = VT
mA
−TWmLm, (3.9)

where Hm, Gm, Km and Lm are the mp × mp block upper Hessenberg matrices

obtained by deleting the last row block vectors of H̃m, G̃m, K̃m and L̃m, respectively.

Proof. We begin by the case where k = 1, . . . ,m − 1 which involves the

execution of Step 9. Replacing the expression of Sk into the expressions of Step

11 and Step 12 yields the following relation

Vk+1Hk+1,k = (A− σk+1In)−1Vk − VkHk

which can be written as

[Vk Vk+1]

[
Hk

Hk+1,k

]
= (A− σk+1In)−1Vk. (3.10)

Multiplying (3.10) on the left by (A− σk+1In) and replacing Vk by VkEk gives

(A− σk+1In)Vk+1

[
Hk

Hk+1,k

]
= VkEk,

where Ek is an kp× p tall thin matrix with an identity matrix of dimension p at

the kth block and zero elsewhere. Re-arranging the expression of the last equation

as

AVk+1

[
Hk

Hk+1,k

]
= Vk+1

([
Ek

0

]
+ σk+1

[
Hk

Hk+1,k

])
, k = 1, . . . ,m− 1.

(3.11)

On the other hand, for k = 1, . . . ,m− 1, we have

AVm+1 = [AVk+1, AVk+2, . . . , AVm, AVm+1].

Therefore, we can deduce from 3.11, the following expression

AVm+1

 Hk

Hk+1,k

0

 = Vm+1


 Ek

0

0

+ σk+1

 Hk

Hk+1,k

0


 , (3.12)

where 0 is the zero matrix having m− k rows.

Now, consider the case where k = m. Using steps 19 − 21 gives the following
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relation

Vm+1Hm+1,m = A−1B − VmHm (3.13)

Since (A− σ1In)−1B = V1H1,0 and V1 = VmE1, (3.13) can be rewritten as

Vm+1

[
Hm

Hm+1,m

]
= A−1(A− σ1In)VmE1H1,0.

Multiplying on the left by A and rearranging the expression results in

AVm+1

([
Hm

Hm+1,m

]
−

[
E1

0

]
H1,0

)
= Vm+1

(
−σ1

[
E1

0

]
H1,0

)
(3.14)

Equations (3.12) and (3.14) lead to the following expression

AVm+1H̃m = Vm+1K̃m, (3.15)

where H̃m and K̃m are the block upper Hessenberg matrices of R(m+1)p×mp, given

as follows

H̃m = [H̃(1), H̃(2), . . . , H̃(m)] and K̃m = [K̃(1), K̃(2), . . . , K̃(m)],

where for k = 1, . . . ,m− 1 the k-th block columns are given by

H̃(k) =

 Hk

Hk+1,k

0

 and K̃(k) =

 Ek + σk+1Hk

σk+1Hk+1,k

0


and for k = m we have

H̃(m) =

[
Hm − E1H1,0

Hm+1,m

]
and K̃(m) =

[
−σ1E1H1,0

0

]
.

Equation (3.8) is easily derived from the relation (3.6).

In a similar way, we can show the relations (3.7) and (3.9) for the left Krylov

subspace.

We notice that since K̃(m) =

[
K(m)

0

]
, and AVm+1 = [AVm, AVm+1] it follows

that

AVm+1H̃m = VmKm. (3.16)

In the same manner, we also have

ATWm+1G̃m = WmLm. (3.17)

In what follows in this chapter, we assume that all the shifts σi, i = 1, . . . ,m

are finite real numbers. This was always the case in our numerical examples.
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3.3 model reduction error

The computation of the exact transfer matrix error between the original and the

reduced systems

ε(s) = F (s)− Fm(s) (3.18)

is important for the measure of the accuracy of the resulting reduced-order model.

This error can be used to monitor the number of iteration required for convergence

of the reduced order model. Moreover, it can be also used to know how the

response of the reduced model is sufficiently close to that of the original system.

Unfortunately, the exact error ε(s) is not available, because the higher dimension

of the original system yields the computation of F (s) very difficult. To remedy this

situation, various approaches have been explored in the literature for estimating

the error (3.18).

3.3.1 Residual error

In [71], Grimme proposed the computation of the exact error in term of two

residual vectors in the case of Single-Input Single-Output systems. The result is

extended here to the Multi-Input Multi-Output case. Let{
RB(s) = B − (sIn − A)VmX̃B(s),

RC(s) = CT − (sIn − A)TWmX̃C(s)
(3.19)

be the residual expressions, where X̃B(s) and X̃C(s) are the solutions of the matrix

equations {
(sImp − Am)X̃B(s) = Bm,

(sImp − Am)T X̃C(s) = CT
m,

and satisfy the Petrov-Galerkin conditions{
RB(s) ⊥ Range(W1, . . . ,Wm)

RC(s) ⊥ Range(V1, . . . , Vm),

which means that WT
mRB(s) = VT

mRC(s) = 0.

Residual expressions are a significant tool for quantifying the error in iterative

linear systems solving, and simple residual expressions arise in the context of

Arnoldi and Lanczos processes. The residuals are pertinent to the computation of
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the exact error,and they were utilized in [84] for the partial realization problem.

In the following result, we give an expression of the error ε(s) based on the residual

expressions.

Theorem 3.3.1 The error between the frequency responses of the original and

reduced-order systems can be expressed as

ε(s) = RT
C(s)(sIn − A)−1RB(s). (3.20)

The proof of this theorem is similar to the one of Theorem 5.1 given in [71] for

SISO system.

3.3.2 An error expression for the transfer functions

In this paragraph, we compute an error estimation using the proposed rational

block Lanczos-type algorithm (Algorithm 3) and the rational Lanczos equations

derived in Theorem 3.2.1.

In the previous section we defined the rational block Krylov subspaces by (3.4) and

(3.5). However, the inclusion of the block vectors B and CT may be beneficial.

Then for computing an error estimation, we use the following rational Krylov

subspaces

Km(A,B,Σ′m) = Range{B, (A− σ2In)−1B, . . . ,
m∏
k=2

(A− σkIn)−1B}, (3.21)

and

Km(AT , CT ,Σ′m) = Range{CT , (A−σ2In)−TCT , . . . ,
m∏
k=2

(A−σkIn)−TCT}, (3.22)

where Σ′m = {σ2, . . . , σm} is the set of interpolation points. Thus we have the

following theorem.

Theorem 3.3.2 Let Vm and Wm be the matrices computed using the rational
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block Lanczos algorithm. If (sIn−A) and (sImp−Am) are non-singular, we have

F (s)−Fm(s) = C(sIn−A)−1(VmWT
m−In)AVm+1Hm+1,mE

T
mH−1m (sImp−Am)−1Bm.

(3.23)

Proof. The error between the initial and the projected transfer functions is given

by

F (s)− Fm(s) = C(sIn − A)−1(B − (sIn − A)Vm(sImp − Am)−1Bm).

Since

AVm+1H̃m = VmKm, (3.24)

then

AVm = (VmKm − AVm+1Hm+1,mE
T
m)H−1m (3.25)

and

Am = WT
mAVm = (Km −WT

mAVm+1Hm+1,mE
T
m)H−1m . (3.26)

Using equations (3.25) and (3.26), we obtain

(sIn − A)Vm = Vm(sImp − Am)− Γm,

where

Γm = (VmWT
m − In)AVm+1Hm+1,mE

T
mH−1m .

The relation (3.23) can be obtained using this result and the fact that VmWT
mB =

B.

3.3.3 Residual error expressions for the rational Lanczos

algorithm

In [50] simple Lanczos equations for the standard rational case are proposed and

used for deriving simple residual error-expressions. In this section, we use the

rational Lanczos equations given in Theorem 3.2.1 to simplify the residual error

expressions. To simplify calculations, we use the rational Krylov subspaces in

(3.21) and (3.22). Using the rational Lanczos equations and the fact that B ∈
Km(A,B,Σ′m), CT ∈ Km(AT , CT ,Σ′m), the expressions of the residual RB(s) and
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RC(s) could be written as

RB(s) = B − (sIn − A)Vm(sImp − Am)−1Bm

= (VmWT
m − I)AVm+1︸ ︷︷ ︸

B̃

Hm+1,mE
T
mH−1m (sImp − Am)−1Bm︸ ︷︷ ︸

R̃B(s)

and

RC(s) = CT − (sI − A)TWm(sImp − Am)−TCT
m

= (WmVT
m − I)ATWm+1︸ ︷︷ ︸

C̃T

Gm+1,mE
T
mG−1m (sImp − Am)−TCT

m︸ ︷︷ ︸
R̃C(s)

,

where R̃B(s), R̃C(s) are the terms of the residual errors RB(s) and RC(s), re-

spectively, depending on the frequencies. The matrices B̃, C̃T are frequency-

independent terms of RB(s) and RC(s), respectively. Therefore, the error expres-

sion in (3.20) becomes

ε(s) = R̃C(s)T C̃(sIn − A)−1B̃R̃B(s) = R̃C(s)T F̃ (s)R̃B(s).

The transfer function F̃ (s) = C̃(sIn−A)−1B̃ contains terms related to the orig-

inal system which makes the computation of ‖R̃T
CF̃ R̃B‖∞ very expensive. Then,

instead of using F̃ (s) we can use an approximation of F̃ (s). Various possible

approximations of the error ε(s) are listed in Table 3.1.

Table 3.1: Estimations of the error ε(s)

1 ε̂(s) = R̃B(s)

2 ε̂(s) = R̃C(s)T

3 ε̂(s) = F̃m(s)R̃B(s)

4 ε̂(s) = F̃m(s)

5 ε̂(s) = R̃T
C(s)F̃m(s)

6 ε̂(s) = R̃T
C(s)F̃m(s)R̃B(s)
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3.4 An adaptive-order rational block Lanczos-

type algorithm

3.4.1 Interpolation point selection

Model-order reduction using multipoint rational interpolation generally gives a

more accurate reduced-order model than interpolation around a single point. Un-

fortunately, One of the drawbacks of this approach is the selection of the inter-

polation points [70]. The location of the interpolation points and the number of

moments matched dictates the accuracy of the reduced-order model. In [18, 72]

the Iterative Rational Krylov Algorithm (IRKA) has been proposed in the context

of the H2-optimal model-order reduction by using a specific way to choose the

interpolation points σi, i = 1, . . . ,m. Starting from an initial set of interpola-

tion points, a reduced-order system is determined and a new set of interpolation

points is chosen as the Ritz values −λi(Am), i = 1, . . . ,m, where λi(Am) are the

eigenvalues of Am. The process continues until the Ritz values from consecutive

reduced-order models stagnate. The main disadvantage of this method is that it

requires the construction of many Krylov subspaces which will not be utilized in

the final model and only the last subspace is used. In contrast to IRKA method,

Grimme in his thesis [70] proposed an adaptive method for choosing the interpo-

lation points. This approach is based on the residual expression derived for the

rational Lanczos algorithm such that the interpolation points are selected where

the residual error is large. At each iteration of the algorithm, a residual function

is computed and a new interpolation point is selected so as to correspond to the

maximum of this residual function. He studied also the placement and selection

of interpolation points, moreover, connections are made between the locations of

interpolations points and the convergence behavior of the model. In particular,

Grimme is concentrated on the popular choices of purely or imaginary shifts.

In [20, 43, 70, 97, 134] some techniques for choosing good interpolation points

have been proposed. The aim of these methods is the construction of the next

interpolation point at every step and they are based on the idea that the shifts
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should be selected such that the norm of certain approximation of the error should

be minimized at every iteration.

3.4.2 An adaptive choice of interpolation points

In the following, we introduce a new adaptive approach for selecting the interpola-

tion points. The proposed method is based on the following error-approximation

expression

ε̂(s) = R̃T
C(s)R̃B(s).

Then, the procedure to generate the set of interpolation points Σm used in Algo-

rithm 3 is described as follows. We start by given two initial shifts σ1, σ2, and we

construct the next shift σk+2 ∈ R as

σ̃k+2 = argmax
s∈S
‖R̃T

C(s)R̃B(s)‖2, k = 1, . . . ,m− 2. (3.27)

and if σ̃k+2 is complex, its real part is retained and used as the next interpolation

point.

Remark 3.4.1 The choice of the approximated error expression ε̂(s) = R̃T
C(s)R̃B(s)

is a heuristic choice that allowed to have good shifts without much calculations as

is shown in the numerical tests. We notice that for small problems, one can also

use the following criterion for selecting the shifts

σk+2 = argmax
s∈S
‖RT

C(s)RB(s)‖2, (3.28)

This selection gives good results but, at it is related to the dimension n of the

space, it needs more computation times and arithmetic operations for large prob-

lems. In our numerical examples, we used 3.27 for large dimensions and 3.28 for

small problems.

An adaptive order rational block Lanczos algorithm for the computation of the

reduced-order system using the rational block Lanczos process (Algorithm 3) and

the above adaptive approach for selecting the interpolation points can be summa-
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rized as follows.

Algorithm 4 The Adaptive Order Rational Block Lanczos-type (AORBL) algo-
rithm for model-order reduction(AORBL)

1. Input: The original system (A,B,C), choose a tolerance tol and set F0 = Ip.

2. Output: The reduced system (Am, Bm, Cm).

3. Define εm = 1 and m = 1.

4. While (εm > tol) do

5. [Vm,Wm] = Rational-Block-Lanczos(A,B,C,Σm).

6. Compute the reduced model Am = WT
mAVm, Bm = WT

mB,Cm = CVm

and the corresponding transfer function Fm.

7. Compute the error estimation εm = ‖Fm − Fm−1‖∞.

8. Set m = m+ 1.

9. end while.

Notice that, for choosing the interpolation points, we can also use one of the

approximated error expressions listed in Table 3.1. The way of choosing these

parameters affects the speed of convergence of the algorithm.

Remark 3.4.2 For large problems, the total number of arithmetic operations af-

ter m iterations is dominated by O(mpn2) and also LU factorizations for solving

shifted linear systems with the shifted matrices A − σiIn (Line 3 and Line 9 of

Algorithm 3). One can also use solvers such as GMRES with a pre-conditioner

for solving these shifted linear systems.
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3.5 The rational block Lanczos algorithm for the

computation of the matrix exponential etAB

The problem of approximating the matrix

U(t) = etAB (3.29)

for a fixed constant t ∈ R, a given matrix B of Rn×p and A ∈ Rn×n is of consider-

able importance in many applications. In fact, it is the core of many exponential

integrators for solving systems of ordinary differential equations (see [82, 83]) or

time dependent partial differential equations [54, 62]. We denote tA by A from

now on unless otherwise stated.

Over the years, several methods have been proposed to consider the numerical

approximation of the matrix exponential to a block vector B for 1 ≤ p � n. In

1978, Moler and van Loan [106] published their famous paper discussing nineteen

dubious ways to compute the exponential of a matrix. Since then, Krylov subspace

methods have been an important development towards tackling the problem (3.29)

when the matrix A is very large and sparse.

Generally speaking, there are two classes of Krylov subspace methods for eval-

uating (3.29) when A is large and sparse [114]. In the first class of methods, the

matrix is projected into a much smaller subspace, then the exponential is applied

to the reduced matrix, and finally the approximation is projected back to the

original large space [17, 41, 43, 45, 108, 123]. The second class of methods is a

direct approximation approach where eA is replaced by an explicitly computed

rational function r such that r(A) ≈ eA, and then the action of the matrix ex-

ponential is evaluated [55, 56, 102, 137, 138, 144]. However, all these methods

have in common the fact that linear system solves with (shifted versions of) A are

required, and in rational Krylov methods one typically solves one linear system

per iteration. Therefore a rational Krylov iteration may be considerably more

expensive (in terms of computation time) than a polynomial Krylov iteration,

which involves only a matrix-vector product with A. The applicability of rational

Krylov methods hinges on the efficiency by which these linear systems can be

solved. Since rational functions may exhibit approximation properties superior to

73



Chapter 3. An adaptive rational block Lanczos-type algorithm for model
reduction of large scale dynamical systems

polynomials, the number of overall iterations required by rational Krylov methods

is hopefully smaller than that required by polynomial methods, provided that the

poles of the rational functions involved have been chosen in a suitable way.

The aim of this section is to use the first class of methods described above to

approximate the problem (3.29) for p > 1, and by using the rational block Lanczos

method proposed in last sections. For the rational Krylov methods, the desired

approximation has the following form

rm−1(A)B, (3.30)

where rm−1 is a rational function of the type (m − 1,m − 1), i.e., such that the

denominator has the same degree m − 1 as the numerator. On the theoretical

side we generalize some of the error estimates and a priori error bounds proved

in [123] on to the rational case. The proposed results are very general and can be

applied in other contexts than the approximation of the exponential.

3.5.1 Polynomial approximation

In this section we recall the problem of computing an approximation to the matrix

eAB by using polynomial approximation [64, 123], i.e., in this case we seek an

approximation of the form

eAB ≈ pm−1(A)B, (3.31)

where pm−1 is a polynomial of degree m − 1. Since this approximation is an

element of the block Krylov subspace

Km(A,B) = Range{B,AB, . . . , Am−1B},

the problem can be reformulated as that of finding an element of Km(A,B) that

approximates U = eAB. A well known algorithm for building a convenient basis of

Km(A,B) is the block Lanczos algorithm described in last chapter. Because the

bi-orthogonality condition of the matrices Vm and Wm generated by this process,

we have Tm = WT
mAVm and as a result Tm represents the projection of the linear

transformation A to the subspace Km(A,B). The matrix Xopt = VmWT
me

AB is

the projection of eAB on Km(A,B), i.e., it is the closest approximation to eAB

from Km(A,B). Let β ∈ Rp×p and V1 ∈ Rn×p as defining in algorithm 1, it follows
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immediately that

VmWT
me

AB = VmWT
me

AV1β = VmWT
me

AVmE1β,

the optimal fit is therefore Xopt = VmYopt in which Yopt = WT
me

AVmE1β. Unfor-

tunately, Yopt is not practically computable, since it involves eA. The alternative

which will be used throughout is to approximate WT
me

AVm by eTm , leading to

the approximation Yopt ≈ eTmE1β, where E1 is first mp × p block of the identity

matrix Imp. Then we have

eAB ≈ Vme
TmE1β = Vme

TmWT
mB. (3.32)

We are now left with the problem of computing efficiently the block vector eTmE1β

which is similar to the problem we started with but typically of much smaller size.

3.5.2 Rational approximation

In this section, we use the rational block Lanczos procedure described in previous

sections to approximate the problem (3.29). In general, rational Krylov methods

for computing eAB all have in common the fact that an approximation at iteration

m is of the form rm−1(A)B, where rm−1 is a (m− 1,m− 1) rational function with

a prescribed denominator polynomial qm−1 ∈ Pm−1.

The rational approximation is already defined for the rational Arnoldi proce-

dure; see [40, 73], and also for the special case of extended Krylov subspaces

[43, 132]. In a similar manner, and using the bi-orthogonality of the bases gener-

ated by the rational block Lanczos algorithm, the rational block Lanczos approx-

imation for eAB can be defined as

Um = Vme
AmWT

mB, where Am = WT
mAVm.

In this case, only the computation of a matrix function eAm of size mp × mp
is required, which is small compared to the original eA problem of size n × n.

To simplify notations, in rational block Lanczos algorithm (Algorithm 3), we

construct the p×p matrix β̃ such that B = V1β̃. Then the rational approximation

Um will be expressed as

Um = Vme
AmE1β̃. (3.33)
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The rational approximation enjoys several remarkable properties. First of all, is

the exactness. This property is well known for polynomial Arnoldi approximations

[38, 123], and generalizes to the rational Krylov case, either for the special case

of extended Krylov subspaces [40], or for the general case in [73].

Lemma 3.5.1 Let Vm and Wm be the bases generated by the rational block Lanc-

zos algorithm (Algorithm 3), and Am = WT
mAVm. Then we have

rm−1(A)B = Vmrm−1(Am)E1β̃, (3.34)

i.e., the approximation for rm−1(A)B is exact (provided that rm−1(Am) is defined),

where rm−1 is a rational function of the type (m − 1,m − 1), i.e., such that the

denominator has the same degree m− 1 as the numerator,

The following result states that a rational approximation from a rational Krylov

subspace is closely related to rational interpolation at the rational Ritz values

Λ(Am).

Lemma 3.5.2 Under the assumptions of Lemma 3.5.1, the following equality

holds

Vme
AmE1β̃ = rm−1(A)B, (3.35)

where rm−1 interpolates the exponential function at the Ritz values Λ(Am).

The following Lemma generalizes a result introduced in [63, 123]. It shows how to

systematically exploit rational approximations to ex, in order to establish a priori

error bounds.

Lemma 3.5.3 Let A be an arbitrary matrix and Vm,Wm the results of m steps

of Algorithm 3. Let f(z) be any function such that f(A) and f(Am) are defined

and Am = WT
mAVm. Let rm−1 be any rational function of the type (m− 1,m− 1)

approximating f(z), and define the remainder r̃m(z) = ez − rm−1(z). Then,

‖f(A)B − Vmf(Am)E1β̃‖2 ≤ (‖r̃m(A)‖2 + ‖Vm‖2‖r̃m(Am)‖2)‖β̃‖2. (3.36)

Proof. As a result of the relation f(z) = rm−1(z) + r̃m(z) we have

f(A)V1 = rm−1(A)V1 + r̃m(A)V1. (3.37)
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Lemma (3.5.2) implies that

rm−1(A)V1 = Vmrm−1(Am)E1. (3.38)

Similarly to (3.37) we can write

rm−1(Am)E1 = f(Am)E1 − r̃m(Am)E1. (3.39)

Multiply (3.39) by Vm and substitute the resulting equation in (3.38) gives

rm−1(A)V1 = Vmf(Am)E1 − Vmr̃m(Am)E1. (3.40)

Substitute (3.40) in (3.37) to get, after multiplying by β̃

f(A)B = Vmf(Am)E1β̃ + (r̃m(A)V1 − Vmr̃m(Am)E1)β̃. (3.41)

Finally we have

‖f(A)B − Vmf(Am)E1β̃‖2 ≤ (‖r̃m(A)‖2 + ‖Vm‖2‖r̃m(Am)‖2)‖β̃‖2.

3.6 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the

proposed AORBL algorithm when applied to model order reduction problem. All

the experiments were performed on a computer of Intel Core i5 at 1.3GHz and

8GB of RAM. The algorithms were coded in Matlab 8.0. We give some numerical

tests to show the performance of the adaptive-order rational block Lanczos-type

(AORBL) algorithm. In all the presented experiments, tol = 10−8 and the AORBL

algorithm is stopped when the H∞-error

εm = ‖Fm − Fm−1‖∞
between the previous reduced system and the current one is less than tol, where

the H∞-norm of the error is given as (cf., e.g., [4], sec.5.3)

‖Fm − Fm−1‖∞ = sup
ω∈R
‖Fm(jω)− Fm−1(jω)‖2,

ω ∈ [10−3, 103] and j =
√
−1.

To compute the H∞-norm, the following functions from LYAPACK [113] are used :

• lp lgfrq: Generates the set of logarithmically distributed frequency sam-

pling points.

77



Chapter 3. An adaptive rational block Lanczos-type algorithm for model
reduction of large scale dynamical systems

• lp para: Used for computing the initial first two shifts.

• lp gnorm: Computes ‖Fm(jω)− Fm−1(jω)‖2.

In our experiments, we used some matrices from LYAPACK . These matrix tests

are reported in the following Table 3.2. For the FOM model [110], we notice that

Table 3.2: The matrix tests.

Matrices sizes
CD-Player n = 120, p = 2
Rail3113 n = 3113, p = 6
Modified FOM n = 1006, p = 6
ISS n = 270, p = 3
fdm n = 40.000, p = 5

originally, the model is SISO system and we modified the inputs and outputs to

get a MIMO system. The matrices B and C are then given by

B = [b1, . . . , b6], CT = [c1, . . . , c6],

where

bT1 = c1 = (10, . . . , 10︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
1000

), and b2, . . . , b6; c2, . . . , c6

are random column vectors.

For the fdm model, the corresponding matrix A is obtained from the centered

finite difference discretization of the operator

LA(u) = ∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions

with 
f(x, y) = log(x+ 2y),

g(x, y) = ex+y,

h(x, y) = x+ y,

and the matrices B and C were random matrices with entries uniformly dis-

tributed in [0, 1]. The number of inner grid points in each direction was n0 = 200

and the dimension of A is n = n2
0 = 40.000.
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Example 1. For this experiment, we used the modified FOM model with

m = 18. The top plots of Figure 3.1 show the frequency response of the original

system (circles) compared to the frequency response of its approximation (solid

plot). The bottom plot of this figure represents the exact error ‖F (jω)−Fm(jω)‖2
for different frequencies.

Figure 3.1: Top: ‖F (jω)‖2 and it’s approximations ‖Fm(jω)‖2. Bottom: the
exact error ‖F (jω)− Fm(jω)‖2 for the modified FOM model with m = 18.

Example 2. In this experiment and as a first test model, we considered the

ISS example of dimension n = 270 with 3 inputs and 3 outputs, and we plotted
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the H∞ error norm ‖F − Fm‖∞ versus the number m of iterations. As can be

shown from this plot, the AORBL algorithm gives good result with small values of

m.

Example 3. We consider the well known CD player model. This is a small
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Figure 3.2: The H∞ error ‖F −Fm‖∞ versus the number of iterations for the ISS
model.

dimension example but generally difficult and is always considered as a benchmark

test. The top plots of Figure 3.3 represent the sigma plots of the original system

(circles) and the reduced order system (solid line). For the bottom curve, we

plotted the error norm ‖F (s)− Fm(s)‖2 versus the frequencies.

Example 4. In the last example we compared the AORBL algorithm with IRKA

method. We used four models: the CD player, the ISS, the Rail3113 [110] and

the fdm model (n = 40000, p = 5). In Table 3.3, we listed the obtained H∞ norm

of the error transfer function ‖F−Fm‖∞, the corresponding cpu-time, the number

of required iterations for the two methods and in parentheses we also gave the

used space dimension for IRKA. A maximum number of mmax = 500 iterations
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Figure 3.3: The CD player model with m = 30. Top: The singular values of the
exact transfer function (circles) and its approximation (solid) versus the frequen-
cies. Bottom: The error norms ‖F (s)− Fm(s)‖2 .

was allowed to the two algorithms. As observed from Table 3.3, IRKA and AORBL

return similar results (computing times and norms of the errors) for the first two

models with an advantage for AORBL. However, for the last two examples, IRKA

didn’t converge within the allowed maximum number of iterations.
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Table 3.3: Comparison between IRKA and AORBL for CD player, ISS, Rail3113
and fdm models.

AORBL IRKA (tol = 10−4)
H∞ error # iter. time H∞ error # iter. (dim) time

CD player 2.6e-06 25 1.1s 1.5e-04 42(35) 1.4s
ISS 3.8e-05 20 1.2s 1.2e-04 54(30) 4.9s
Rail3113 1.1e-07 30 4.5s – – –
fdm (n = 4 .104) 4.5e-08 35 53s – – –

3.7 Conclusion

In this chapter, we proposed a new adaptive rational block Lanczos process and

an adaptive method for choosing the interpolation points with applications in

model order reduction of multi-input and multi-output first-order stable linear

dynamical systems. Moreover, we established new Lanczos-like expressions and

new error estimations between the original and the reduced transfer functions.

We presented some numerical results to confirm the good performance of the

rational block Lanczos subspace method compared with other known method.

The proposed procedure is tested on well known benchmark problems of medium

and large dimensions and the numerical results show that the adaptive approach

allows one to obtain reduced order models of small dimension.
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4
A modified nonsymmetric rational block

Lanczos method for model reduction in

large scale LTI dynamical systems

In this chapter, we propose a modified non-symmetric rational block Lanczos

algorithm. This process can be considered as a generalization of the rational

block Lanczos algorithm given in the last chapter where different multiplicities

are consider for each interpolation point. In the second section on this chapter we

show how to obtain new Lanczos-like equations for the rational block case. Simple

residual error expressions are developed in Section 3. In Section 4 we propose an

adaptive choice to generate the set of interpolation points. The last section is

devoted to some numerical experiments to show the accuracy of the proposed

methods.
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4.1 The modified rational block Lanczos algo-

rithm

Let ΣK = {σ1, . . . , σK} and Σ̃K = {σ̃1, . . . , σ̃K} be two sets of interpolation points,

with multiplicities m1, . . . ,mK , and m̃1, . . . , m̃K , respectively. The column vectors

of the matrices Vm and Wm generated by the modified rational block Lanczos

algorithm are determined from the K block Krylov subspaces Kmi
(A,B, σi) and

Km̃i
(AT , CT , σ̃i), respectively, for i = 1, . . . , K. Therefore, at each iteration i, the

modified rational block Lanczos algorithm generate the matrices Vmi
∈ Rn×mi and

Wm̃i
∈ Rn×m̃i whose column-space spans the block Krylov subspaces Kmi

(A,B, σi)

and Km̃i
(AT , CT , σ̃i), respectively. From each of these subspaces, the mi and m̃i

column vectors are used to generate the matrices Vm and Wm, respectively, such

that

Vm = [Vm1 ,Vm2 , . . . ,VmK
] and Wm = [Wm̃1 ,Wm̃2 , . . . ,Wm̃K

],

where Vm,Wm ∈ Rn×mp and m =
∑K

i=1mi =
∑K

i=1 m̃i.

As in the last chapter, we give now the result which shows how we can construct

the bi-orthogonal bases Vm and Wm of the rational Krylov subspaces so that the

multi-point rational interpolation problem is solved. This result is proven in [71]

for SISO systems and extended to the MIMO case in [57].

Theorem 4.1.1 Let ΣK = {σ1, . . . , σK} and Σ̃K = {σ̃1, . . . , σ̃K} be two sets of

interpolation points, with multiplicities m1, . . . ,mK, and m̃1, . . . , m̃K, respectively.

If Vm,Wm ∈ Rn×mp satisfy

∪Kk=1Kmk
(A,B, σk) ⊆ Range(Vm)

∪Kk=1Km̃k
(AT , CT , σ̃k) ⊆ Range(Wm)

where
∑K

k=1mk =
∑K

k=1 m̃k = m. Then, assuming that (A− σIn)−1 exists for all

σ ∈ ΣK ∪ Σ̃K ,

• if σk = σ̃k, Fm(s) matches the first mk + m̃k moments of the original transfer

function F (s) at σk

• if σk 6= σ̃k, Fm(s) matches the first mk of F (s) at σk and the first m̃k moments

of F (s) at σ̃k, respectively.
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The modified rational block Lanczos process is summarized in Algorithm 5. It

is a generalization of the one given in [51] to the block case. For simplicity of the

presentation we assume that mk = m̃k and also it is assumed that σi 6= σj and

σ̃i 6= σ̃j for i 6= j.

Algorithm 5 The modified rational block Lanczos algorithm (MRBLA)

1. Input: ΣK = {σ1, . . . , σK}, Σ̃K = {σ̃1, . . . , σ̃K}, A,B,C and mk = m̃k

2. Initialize: Vm = [ ],Wm = [ ] and i = 0

function [Vm,Wm] = Modified rational Block Lanczos(A,B,C,Σ, Σ̃)
3. for k = 1, . . . , K
4. if {σk =∞}; Si+1 = B else Si+1 = (A− σkIn)−1B; end
5. if {σ̃k =∞}; Ri+1 = CT else Ri+1 = (A− σ̃kIn)−TCT end
6. Si+1 = Si+1 − VmWT

mSi+1; Ri+1 = Ri+1 −WmVT
mRi+1;

7. Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i; (QR factorization);
8. W T

i+1Vi+1 = PiDiQ
T
i ; (Singular Value Decomposition);

9. Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

10. Vm = [Vm, Vi+1]; Wm = [Wm,Wi+1]; i = i+ 1;
11. for j = 1, . . . ,mk − 1
12. if {σk =∞};Si+1 = AVi else Si+1 = (A− σkIn)−1Vi; end
13. if {σ̃k =∞};Ri+1 = ATWi else Ri+1 = (A− σ̃kIn)−TWi end
14. Si+1 = Si+1 − VmWT

mSi+1;Ri+1 = Ri+1 −WmVT
mRi+1;

15. Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i (QR factorization);
16. W T

i+1Vi+1 = PiDiQ
T
i (Singular Value Decomposition);

17. Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

18. Vm = [Vm, Vi+1]; Wm = [Wm,Wi+1]; i = i+ 1;
19. end
20. if {k = K}
21. Si+1 = Am∞B and Ri+1 = (Am̃∞)TCT ;
22. Si+1 = Si+1 − VmWT

mSi+1;Ri+1 = Ri+1 −WmVT
mRi+1;

23. Si+1 = Vi+1Hi+1,i; Ri+1 = Wi+1Gi+1,i (QR factorization);
24. W T

i+1Vi+1 = PiDiQ
T
i (Singular Value Decomposition);

25. Vi+1 = Vi+1QiD
−1/2
i ; Wi+1 = Wi+1PiD

−1/2
i ;

26. Vm+1 = [Vm, Vm+1];Wm+1 = [Wm,Wm+1];
27. end
28 end.
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4.2 Lanczos-like equations for the rational block

case

Rational Krylov algorithms are always related to a set of equations that relate

the bases constructed by these procedures and the matrices of the original system;

see [13, 59, 57, 111, 122] and references therein. However, these equations are not

in the standard form. Her, we show that the modified rational block Lanczos

process proposed in last section allow to obtain Lanczos-like equations for the

rational case. This result is first proposed in [51, 50] for the standard rational

Lanczos algorithm and extended her to the block case.

Theorem 4.2.1 Let Vm+1 and Wm+1 be the matrices generated by the modified

rational block Lanczos algorithm (Algorithm 5), then we have

Range[Vm, A
m∞B] ⊆ Range{Vm+1}, Range[Wm, (A

m̃∞)TCT ] ⊆ Range{Wm+1},

and

WT
m+1Vm+1 = Im+1,

where m∞ and m̃∞ are the multiplicities of ∞ in Σ and Σ̃, respectively.

Moreover, we have the following Lanczos-like relations

AVm = VmAm + Vm+1Pm+1, (4.1)

B = VmBm + Vm+1bm, (4.2)

ATWm = WmA
T
m +Wm+1Qm+1, (4.3)

CT = WmC
T
m +Wm+1c

T
m, (4.4)

where bm = W T
m+1B, cm = CVm+1, Pm+1 = W T

m+1AVm and Qm+1 = V T
m+1A

TWm.

Furthermore, bm = 0 if m∞ > 0 and cm = 0 if m̃∞ > 0.

Proof. We first prove the result for m∞ = 0. Let Vm be defined as in Theorem

4.2.1. Then we extend Vm to Vm+1 = [Vm, Vm+1] such that

Range[Vm, B] ⊆ Range{Vm+1}

by biorthogonalising B against all previous columns of Wm with the Lanczos

algorithm. Then the following relations are true:

Range{(A− σ1In)−1B} ⊂ Range{V1}, (4.5)
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Range{(A− σkIn)−(i−1)B} ⊂ Range{Vj−1}

Range{(A− σkIn)−iB} ⊂ Range{Vj} (4.6)

and

Range{B} ⊂ Range{Vm+1},

where Vm = [V1, V2, V3, . . . , Vm] ∈ Rn×mp,m =
∑K

i=1mi and Vj is the matrix

constructed at the (k)th interpolation point and for the ith multiplicity, i.e., j =∑k−1
l=1 ml + i. We start by proving the theorem for the first block column of Vm.

Multiply (4.5) by (A− σ1In) from the left and rearrange to get

Range{AV1} ⊂ Range{V1, B}

Then we have

Range{AV1} ⊂ Range{Vm+1}.

We proceed the proof by induction. We assume that the result holds for an

arbitrary interpolation point σk of the Kσk Krylov subspace up to the (i − 1)th

multiplicity. We will prove the result for the next multiplicity. Therefore we

assume

Range{AVj−1} ⊂ Range{Vm+1} (4.7)

and then we prove that

Range{AVj} ⊂ Range{Vm+1}.

Multiply (4.6) from the left by (A− σkIn) and rearrange to get:

Range{AVj} ⊂ Range{Vj, AVj−1}

which gives

Range{AVj} ⊂ Range{Vm+1}.

Combining the last relation with the assumption made in (4.7) gives

Range{AVj} ⊂ Range{Vm+1}. (4.8)

Therefore it is easy to see that the result in (4.8) holds for all columns in Vm, i.e.,

Range{AVm} ⊂ Range{Vm+1},

and then there exists a matrix Y ∈ R(m+1)p×mp such that

AVm = Vm+1Y.
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Setting Y =

(
Ãm

Pm+1

)
, we obtain

AVm = Vm+1

(
Ãm

Pm+1

)
.

Using the bi-orthogonality between Wm+1 and Vm+1 gives Ãm = Am = WT
mAVm

and Pm+1 = W T
m+1AVm. Therefore we get

AVm = VmAm + Vm+1Pm+1.

Similarly to prove (4.2) we proceed as follows: Since Range{B} ⊂ Range{Vm+1}
there exists a matrix Z ∈ R(m+1)p×p such that

B = Vm+1Z. (4.9)

Setting Z =

(
B̃m

bm

)
, and multiplying (4.9) by WT

m+1 from the left we get

WT
m+1B =

(
B̃m

bm

)
. (4.10)

Then B̃m = Bm = WT
mB, bm = W T

m+1B and consequently we obtain the following

relation

B = VmBm + Vm+1bm.

Assume now that m∞ > 0. The matrix Vm verifies

Range[B AB . . . Ap−1B Vm−p] ⊂ Range{Vm}

where p < m. Since B is already in the Range of Vm it is easy to see that the

relation (4.1) will be satisfied if

Range{AV1, . . . , AVp} ⊂ Range{Vm+1}. (4.11)

This can be shown by setting Vm+1 = [Vm, Vm+1] and then

Range[Vm, A
pB] ⊂ Range{Vm+1} and WT

m+1Vm+1 = Im+1

which is obtained by bi-orthogonalising ApB against all the previous columns of

Wm. It follows that (4.11) holds since by construction we have that,

Range{AkB} ⊂

{
Range{V1, . . . , Vk+1}, for 0 < k < p

Range{V1, . . . , Vm+1}, for k = p
(4.12)

which completes the proof of (4.1) and (4.2).

To prove the last part, note that if m∞ > 0 then B ∈ Range{Vm} from which it

follows that bm = 0.
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In a similar way, the relations (4.3) and (4.4) can be shown.

4.3 Residual error expressions

In last chapter, we utilized the rational Lanczos equations to simplify the residual

error expressions. More simplified residual expressions will be established her

using Lanczos-like equations obtained in last section.

4.3.1 Simplified Lanczos residual errors in the rational

block Lanczos

Using the results of Theorem 4.2.1, we give new simple expressions of the residuals

RB(s) and RC(s). In fact, from the residual expression RB(s) defined in (3.19)

we get

RB(s) = B − (sI − A)Vm(sImp − Am)−1Bm.

= B − Vm(sImp − Am)(sImp − Am)−1Bm + Vm+1Pm+1(sImp − Am)−1Bm,

= Vm+1(Pm+1(sImp − Am)−1Bm + bm),

= B̃ R̃B(s)

where R̃B(s) = Pm+1(sImp − Am)−1Bm + bm is the frequency dependent term of

the residual error RB(s), and B̃ = Vm+1 the non frequency dependent term of

RB(s). In a similar way, we can use the expression of RC(s) in (3.19) to obtain

the following relations

RC(s) = CT − (sI − A)TWm(sImp − Am)−TCT
m

= C̃T R̃C(s),

where R̃C(s) = Qm+1(sImp−Am)−TCT
m+cTm is the frequency dependent term of the

residual error RC(s), and C̃ = Wm+1 is the frequency-independent terms of RC(s).

89



Chapter 4. A modified nonsymmetric rational block Lanczos method for
model reduction in large scale LTI dynamical systems

4.3.2 Error approximations

As in last chapter, the error expression in Theorem 3.3.1 can be expressed as

ε(s) = R̃C(s)T F̃ (s)R̃B(s),

and we can use an approximation of F̃ (s) to simplify calculations. The different

possible approximations of the error ε(s) are listed in the following table.

Table 4.1: Various estimations of the error

ε̂(s) = R̃B(s)

ε̂(s) = R̃C(s)T

ε̂(s) = F̃m(s)R̃B(s)

ε̂(s) = F̃m(s)

ε̂(s) = R̃T
C(s)F̃m(s)

ε̂(s) = R̃T
C(s)F̃m(s)R̃B(s)

The simple approximations in Table 4.1 are the first two ones for which the com-

putations require a small work as compared to the other choices. In the last

section, we will give some numerical tests comparing these approximations.

4.4 An adaptive modified rational block Lanczos

algorithm

As we already mentioned, the rational Krylv method has proven to be very effec-

tive for model reduction [71, 59, 60], but it has the drawback that the selection of

interpolation points is a difficult task since it is an ad-hoc process. For a discus-

sion on the choice of the interpolation points, see [75]. In this section we address

this issue and we give an adaptive approach to chose these shifts. This adaptive

method is first proposed in [20] for the case of standard rational Arnoldi algo-

rithm. It is based on an approximation of upper bound of the error norm between
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the original and the reduced transfer functions. Here, we use the same approach

for our modified rational block Lanczos algorithm. The following result is the key

ingredient of this method.

Proposition 4.4.1 Let Σm and Σ̃m denote two given sets of interpolation points

and let Vm,Wm ∈ Rn×mp be the bi-orthogonal matrices computed by the modified

rational block Lanczos algorithm. The following relation holds

‖F (s)− Fm(s)‖2 ≤ ‖CP−1(s)‖2‖RB(s)‖2, (4.13)

where RB(s) = B − P (s)VmP
−1
m (s)Bm, P (s) = sI − A and Bm = WT

mB.

Proof. From the expression of original and reduced transfer functions F (s) and

Fm(s), we have

‖F (s)− Fm(s)‖2 = ‖C(sIn − A)−1B − Cm(sImp − Am)−1Bm‖2
= ‖C(sIn − A)−1(B − (sIn − A)Vm(sImp − Am)−1Bm)‖2
= ‖CP (s)−1(B − P (s)VmPm(s)−1Bm)‖2
≤ ‖CP (s)−1‖2‖RB(s)‖2.

Now, we can approximate the upper bound by employing the reduced or-

der matrix triplet (Am, Bm, Cm) and then ‖CP (s)−1‖ could be approximated by

‖CmPm(s)−1‖, where Pm(s) = sImp − Am and Am = WT
mAVm.

Using the above approximation, the next shift σk+1 can be selected as

σk+1 = argmax
s∈S
‖CmPm(s)−1‖2‖RB(s)‖2. (4.14)

We notice here that another simple way of choosing the shifts, is to consider in

(5.16) only the second part which gives

σ̃k+1 = argmax
s∈S
‖RB(s)‖2, (4.15)

however, for some problems, choosing the interpolation points by using the formu-

lation (4.14) gives more accurate results than those obtained with the expression

(4.15).

Next, we combine the modified rational block Lanczos algorithm (Algorithm 5)

and the adaptive approach explained above for selecting the interpolation points to
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have an adaptive order rational block Lanczos algorithm for computing reduced-

order system. This process can be summarized as follows.

Algorithm 6 The Adaptive Modified Rational Block Lanczos (AMRBL) algorithm
for model-order reduction

1. Input: The original system (A,B,C), the initial values σ1 = σ̃1, choose a
tolerance tol and set F0 = Ip.

2. Output: The reduced system (Am, Bm, Cm).

3. Initialize Σ1 = {σ1}; Σ̃1 = {σ̃1};m1 = m̃1 = 3; εm = 1 and K = 1;

4. While (εm > tol) do

5. [Vm,Wm] = Modified rational Block Lanczos(A,B,C,ΣK , Σ̃K)

6. Compute the reduced model Am = WT
mAVm, Bm = WT

mB,Cm = CVm

and the corresponding transfer function Fm.

7. Compute the next interpolation point σK+1 = σ̃K+1 using (4.14).

8. Set Σk+1 = {ΣK , σK+1}; Σ̃k+1 = {Σ̃K , σ̃K+1};mK+1 = m̃K+1 = 3

9. Compute the error estimation εm = ‖Fm − Fm−1‖∞

10. Set K = K + 1

11. end while.

Remark : For choosing the interpolation points, we can also use one of the

error approximation expressions listed in Table 4.1. In this case the interpolation

points are selected to be the frequencies σ ∈ ΣK and σ̃ ∈ Σ̃K at which one of the

approximated error expressions achieves its maximum, i.e,.

ΣK = {σ : |ε̂(σ)| = ‖ε̂‖∞} and Σ̃K = {σ̃ : |ε̂(σ̃)| = ‖ε̂‖∞}.
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4.5 Numerical results

In this section, we give some experimental results to show the effectiveness of the

adaptive modified rational block Lanczos (AMRBL) algorithm for model reduction in

large LTI dynamical systems. All the experiments were performed on a computer

of Intel Core i5 at 1.3GHz and 8Go of RAM. The algorithms were coded in Matlab

8.0. In all the presented numerical testes, we used as a tolerance tol = 10−5 and

the while-loop in Algorithm 6 is stopped when the error

εm = ‖Fm − Fm−1‖∞ < tol

where ω ∈ [10−6, 106].

In all the experiments of this section, we consider the special case where the

sequences of shifts {σi}mi=1 and {σ̃i}mi=1 are equal. To compute the set of frequency

S and ω, we used the function lp lgfrq.

Example 1. For this example, we applied the AMRBL on the modified FOM model

and ISS model to get a reduced order systems of dimensions m = 40 and m = 45,

respectively. The top plots of Figure 4.1 (modified FOM) and Figure 4.2 (ISS)

show the frequency responses of the original system (circles) compared with the

frequency responses of its approximation (solid plot). The bottom plot of these

figures represent the exact error ‖F (jω)− Fm(jω)‖2 for different frequencies ω ∈
[10−6, 106].

Example 2. For this experiment, we considered the fdm [113] and the Rail821

[110] models. We plotted the H∞ relative error norm
‖F − Fm‖∞
‖F‖∞

versus the number m of iterations. For the fdm model, we consider the operator

LA(u) = ∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,
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Figure 4.1: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the modified FOM model with m = 40.

such that 
f(x, y) = log(x+ 2y),

g(x, y) = ex+y,

h(x, y) = x+ y.

The matrices B and C were random matrices with entries uniformly distributed

in [0, 1]. The number of inner grid points in each direction was n0 = 100 and the

dimension of A is n = n2
0 = 10.000. For this experiment, we used p = 6. The

Rail821 model is a first-order system of dimension n = 821 and p = 6. As can
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Figure 4.2: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the ISS circuit model with m = 45.

be shown from Figure 4.3, the relative error decreases rapidly to zero.

In Table 4.2 we reported the results obtained with different matrix tests. In

this table, we listed the exact H∞-error norm, the corresponding iteration (It.)

and the obtained cpu-time.

Example 3. For the last example, we compared the exactH∞-error with different

approximations using the methods described in last section for choosing the in-

terpolation points (Table 4.1). For this experiment, the matrix test was Rail821.
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Figure 4.3: Relative error norms. Top: the Rail821 model and bottom: the fdm

model.

Table 4.2: The exact H∞-error for different matrix tests.

Matrices Iteration ‖F − Fm‖∞
Rail821 16 2.12× 10−11

Rail3113 26 5.32× 10−9

fdm, n = 10.000, p = 6 40 30.66× 10−9

As shown from Table 4.3, the results are similar when using the different proposed

approaches for selecting the shifts except for the set Σ5 for which one needs many

iterations to get a good approximation. Therefore, we can choose simple sets such
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as Σ1 or Σ2 to get good interpolation points that could be used in the adaptive

modified rational block Lanczos algorithm.

Table 4.3: Results with the Rail821 model.

Error Expressions It. ‖F − Fm‖∞

Σ1 = {σ : ‖R̃B(σ)‖2 = ‖R̃B‖∞} 16 4.5× 10−10

Σ2 = {σ : ‖R̃T
C(σ)‖2 = ‖R̃T

C‖∞} 14 5.2× 10−11

Σ3 = {σ : ‖H̃m(σ)R̃B(σ)‖2 = ‖H̃mR̃B‖∞} 16 1.8× 10−11

Σ4 = {σ : ‖R̃T
C(σ)H̃m(σ)‖2 = ‖R̃T

CH̃m‖∞} 16 2.5× 10−10

Σ5 = {σ : ‖H̃m(σ)‖2 = ‖H̃m‖∞} 50 9.6× 10−10

Σ6 = {σ : ‖R̃T
C(σ)H̃m(σ)R̃B(σ)‖2 = ‖R̃T

CH̃mR̃B‖∞} 16 2.0× 10−11

Σ7 = {σ : ‖CmP−1m (σ)‖2‖RB(σ)‖2= ‖CmP−1m ‖∞‖RB‖∞} 16 5.3× 10−11

4.6 Conclusion

In this Chapter, we proposed a new adaptive algorithm based on a modified ratio-

nal block Lanczos process and an adaptive method for choosing the interpolation

points for in model order reduction of MIMO first-order stable linear dynamical

systems. Moreover, we obtained simple Lanczos equations in rational block case.

Numerical experiments show the applicability of the proposed algorithm.
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5
A matrix rational Lanczos method for

model reduction in large scale first and

second order dynamical systems

This Chapter presents numerical and theoretical foundations of global Krylov

subspace method for model order reductions. This method is an another exten-

sion of the Krylov subspace method for multiple-inputs multiple-outputs (MIMO)

systems, as the block Krylov method introduced in last chapters.

If the global Lanczos method and the block Lanczos method are applied to the

same matrix pairs (A,B) and (AT , CT ) the resulting matrices both span the same

input and output Krylov subspaces, respectively. The bi-orthogonalization of the

bases vectors of Krylov subspaces is the only difference whether constructed by
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the block or the global Lanczos methods. In [70] (Chapter 3), it is shown that the

moment matching property does only depend on the fact that the columns of the

bases generated by the global and the block Lanczos methods span the input and

the output Krylov subspaces . It does not depend on the way theses bases are

computed or whether their columns have a certain additional property. Hence,

the moment matching property holds for reduction methods based on the global

Lanczos algorithm as well as for reduction methods based on the block Lanczos

algorithm.

In this chapter, we describe an adaptive modified rational global Lanczos (AMRGL)

algorithm for model-order reduction problems using multipoint moment match-

ing based methods. In the first section, we start by proposing a modified rational

global Lanczos process and then we show that these proposed algorithm allows

to obtain the Lanczos-like equations also for the rational global case. Next, since

the major problem of the rational Krylov methods is the selection of some inter-

polation points, we propose in the second section some adaptive techniques for

choosing these shifts. Second-order dynamical systems are also considered in this

Chapter and the AMRGL algorithm is applied to an equivalent state space model.

Finally some numerical examples will be given.

5.1 The modified rational global Lanczos method

In this section, two versions of the global Lanczos procedure are given. we start

by introduce the general form of the global Lanczos process and we derive the

rational global Laczos equations related to this algorithm. Next, we modified the

first algorithm in such a way the Lanzos-like equations remains valid also in the

rational global case.
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5.1.1 The rational global Lanczos algorithm

The rational global Lanczos procedure is an algorithm allowing to construct two F-

biorthogonal bases {V1, . . . , Vm} and {W1, . . . ,Wm} of the rational global Krylov

subspaces Km(A,B,Σm) and Km(AT , CT , Σ̃m) respectively, where

Km(A,B,Σm) = Span{(A− σ1In)−1B, , . . . ,
m∏
i=1

(A− σiIn)−1B},

Km(AT , CT , Σ̃m) = Span{(A− σ̃1In)−TCT , . . . ,

m∏
i=1

(A− σ̃iIn)−TCT}.

The sets Σm = {σ1, . . . , σm} and Σ̃m = {σ̃1, . . . , σ̃m} contain the interpolation

points which will be specified later. The rational global Lanczos algorithm is

summarized as follows.

Algorithm 7 The Rational Global Lanczos Algorithm (RGLA)

1. Input: A ∈ Rn×n, B, CT ∈ Rn×p,Σm+1 = {σ1, . . . , σm+1}, Σ̃m+1 =
{σ̃1, . . . , σ̃m+1} and a fixed integer m.

2. Set Ṽ1 = (A − σ1In)−1B, W̃1 = (A − σ̃1In)−TCT and construct the initial
block vectors V1 and W1 such that 〈W1, V1〉F = 1; V1 = [V1] and W1 = [W1];
3. for j = 1, . . . ,m
4. Ṽj+1 = (A− σj+1In)−1Vj and W̃j+1 = (A− σ̃j+1In)−TWj;
5. for i = 1, . . . , j,
6. hi,j = 〈Wi, Ṽj+1〉F and gi,j = 〈Vi, W̃j+1〉F
7. Ṽj+1 = Ṽj+1 − hi,jVi and W̃j+1 = W̃j+1 − gi,jWi;
8. end

9. hj+1,j =
√
|Tr(Ṽ T

j+1W̃j+1)| and gj+1,j =
Tr(Ṽ T

j+1W̃j+1)

hj+1,j

;

10. Vj+1 =
Ṽj+1

hj+1,j

and Wj+1 =
W̃j+1

gj+1,j

;

11. Vj+1 = [Vj, Vj+1]; Wj+1 = [Wj,Wj+1];
12. end.
13. Outputs Vm+1 = [V1, . . . , Vm+1], Wm+1 = [W1, . . . ,Wm+1].

Next, we show how to obtain some equations that describe the rational global

Lanczos algorithm (Algorithm 7).
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5.1.2 The rational global Lanczos equations

Let Hm and Gm be the m×m upper Hessenberg matrices whose nonzero entries

are defined by Algorithm 7, and H̃m, G̃m, K̃m and L̃m are the (m+1)×m matrices

defined as

H̃m =

(
Hm

hm+1,me
T
m

)
, K̃m

(
Im +HmDm

hm+1,mσm+1e
T
m

)
,

G̃m =

(
Gm

gm+1,me
T
m

)
and L̃m

(
Im +GmD̃m

gm+1,mσ̃m+1e
T
m

)
,

whereDm and D̃m are the diagonal matrices diag(σ2, . . . , σm+1) and diag(σ̃2, . . . , σ̃m+1),

respectively, and the sets {σ2, . . . , σm+1} and {σ̃2, . . . , σ̃m+1} contain the interpo-

lation points used in Algorithm 7. The following result gives some algebraic

properties obtained from the rational global Lanczos algorithm.

Theorem 5.1.1 Let Vm+1 andWm+1 be the F-biorthogonal matrices of Rn×(m+1)p

constructed by Algorithm 7. Then we have the following relations

AVm+1(H̃m ⊗ Ip) = Vm+1(K̃m ⊗ Ip), (5.1)

ATWm+1(G̃m ⊗ Ip) =Wm+1(L̃m ⊗ Ip), (5.2)

and

Tm = KmH
−1
m + hm+1,m[σm+1WT

m � (Vm+1E
T
m)−WT

m � (AVm+1E
T
m)]H−1m , (5.3)

where Tm =WT
m � AVm.

Proof. From Algorithm 7, we have

hj+1,jVj+1 = (A− σj+1In)−1Vj −
j∑
i=1

hi,jVi for j = 1, . . . ,m. (5.4)

Multipling (5.4) on the left by (A− σj+1In), we get

A

j+1∑
i=1

hi,jVi = Vj + σj+1

j+1∑
i=1

hi,jVi for j = 1, . . . ,m
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which gives the following relation

AVm+1(H̃m ⊗ Ip) = Vm(Im +HmDm)⊗ Ip + σm+1hm+1,mVm+1(e
T
m ⊗ Ip),

= Vm+1(K̃m ⊗ Ip),

and then the equation (5.1) is satisfied. In a similar way, the relation (5.2) can

be shown.

To prove the relation (5.3), we proceed as follows. We use the relation (5.1) to

have

AVm(Hm ⊗ Ip) = Vm(Km ⊗ Ip) + σm+1hm+1,mVm+1E
T
m − AVm+1hm+1,mE

T
m,

Using the F -biorthogonality between Vm and Wm and the properties of the kro-

necker product gives

Tm =WT
m�AVm = KmH

−1
m +hm+1,m[σm+1WT

m�(Vm+1E
T
m)−WT

m�(AVm+1E
T
m)]H−1m .

Let us now write the transfer function of the dynamical system (2.1) as F (s) =

CX where X ∈ Rn×p is the solution of the following matrix linear system

(sIn − A)X = B, (5.5)

assuming that the matrix sIn − A is non-singular. In the context of solving the

shifted system (5.5), an approximate solution Xm = VmYm can be determined by

imposing the Petrov-Galerkin condition

RB(s) ⊥F Span{W1, . . . ,Wm},

where RB(s) = B − (sIn −A)Xm is the residual associated to the approximation

Xm. Therefore we obtain

Xm = Vm[((sIm − Tm)−1(WT
m �B))⊗ Ip].

Using the properties of the kronecker product, Xm can be expressed as

Xm = Vm(sImp − (Tm ⊗ Ip))−1((WT
m �B)⊗ Ip). (5.6)

Then the reduced-order transfer function can be written as

Fm(s) = CXm = CVm(sImp − (Tm ⊗ Ip))−1((WT
m �B)⊗ Ip)

= Cm(sImp − Am)−1Bm,

where

Am = (Tm ⊗ Ip), Bm = ((WT
m �B)⊗ Ip) and Cm = CVm. (5.7)

One possibility of choosing the two sets of shifts could be derived by using the
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following theorem presented in [71] for SISO systems, and extended to MIMO

case in [57].

Theorem 5.1.2 Let Σm = {σ1, . . . , σm} and Σ̃m = {σ̃1, . . . , σ̃m} be two sets of

interpolation points such that the matrices A − σiIn and A − σ̃iIn are invertible

for i = 1, . . . ,m. If

Span{(A− σ1In)−1B, . . . , (A− σmIn)−1B} ⊆ Range(Vm),

and

Span{(A− σ̃1In)−TCT , . . . , (A− σ̃mIn)−TCT} ⊆ Range(Wm)

with WT
m � Vm = Im, then

• If σi = σ̃i, the approximate transfer function Fm defined in (5.7) interpolates

the original transfer function F (s) and its first derivative at the selected

points σi, i = 1, . . . ,m, i.e.,

Fm(σi) = F (σi) and F
′

m(σi) = F
′
(σi), i = 1, . . . ,m.

• If σi 6= σ̃i, the reduced order transfer function Fm interpolates the values

of the original transfer function F (s) at the points σi, i = 1, . . . ,m and

σ̃i, i = 1, . . . ,m, i.e.,

Fm(σi) = F (σi) and Fm(σ̃i) = F (σ̃i), i = 1, . . . ,m.

Later, we will propose two adaptive techniques for choosing the two sets of shifts.

5.1.3 Lanczos-like equations in the rational Global case

The relations derived in Theorem 5.1.1 are known as the rational global Lanczos

equations that relate the F-biorthogonal matrices Vm+1,Wm+1 and the matrix A.

We can also derive simple Lanczos equations in the rational case. For this reason,

we modified the rational global Lanczos algorithm by allowing some interpolation

points to be equal to infinity. Such a result is given for the block case in last

chapter [14]. The modified rational global Lanczos algorithm is summarized as

follows.
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Algorithm 8 The Modified Rational Global Lanczos Algorithm (MRGLA)

1. Input: A ∈ Rn×n, B, CT ∈ Rn×p,Σm+1 = {σ1, . . . , σm+1}, Σ̃m+1 =
{σ̃1, . . . , σ̃m+1} and a fixed integer m.

2. Set Ṽ1 = (A − σ1In)−1B, W̃1 = (A − σ̃1In)−TCT and construct the initial
block vectors V1 and W1 such that 〈W1, V1〉F = 1; V1 = [V1] and W1 = [W1];
3. for j = 1, . . . ,m
4. if {σj+1 =∞}; Ṽj+1 = AVj else Ṽj+1 = (A− σj+1In)−1Vj; end

5. if {σ̃j+1 =∞}; W̃j+1 = ATWj else W̃j+1 = (A− σ̃j+1In)−TWj end
6. for i = 1, . . . , j,
7. hi,j = 〈Wi, Ṽj+1〉F and gi,j = 〈Vi, W̃j+1〉F
8. Ṽj+1 = Ṽj+1 − hi,jVi and W̃j+1 = W̃j+1 − gi,jWi;
9. end

10. hj+1,j =
√
|Tr(Ṽ T

j+1W̃j+1)| and gj+1,j =
Tr(Ṽ T

j+1W̃j+1)

hj+1,j

;

11 Vj+1 =
Ṽj+1

hj+1,j

and Wj+1 =
W̃j+1

gj+1,j

;

12. Vj+1 = [Vj, Vj+1]; Wj+1 = [Wj,Wj+1];
13. end.
14. Outputs Vm+1 = [V1, . . . , Vm+1], Wm+1 = [W1, . . . ,Wm+1].

We notice that in our setting, we assume that we are not given the sequences

of shifts σ1, σ2, . . . , σm+1 and σ̃1, σ̃2, . . . , σ̃m+1 and then we need to include the

procedure to automatically generate this sequences during the iterations of the

process. This adaptive procedure well be defined in the next section. Using

the modified rational global Lanczos algorithm for σm+1 = σ̃m+1 = ∞, we can

obtain Lanczos-like equations such those obtained in the standard Lanczos case.

The simple equations allow us to have simple residual error expressions for the

rational case or to derive error bounds.

Theorem 5.1.3 Let Vm+1 and Wm+1 be the matrices generated by the modified

rational global Lanczos algorithm (Algorithm 8) for the extra interpolation points
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at σm+1 = σ̃m+1 =∞. Then we have the following Lanczos-like relations

AVm = Vm(Tm ⊗ Ip) + Vm+1(Pm+1 ⊗ Ip), (5.8)

ATWm = Wm(T Tm ⊗ Ip) +Wm+1(Qm+1 ⊗ Ip), (5.9)

B = VmBm + Vm+1(bm ⊗ Ip), (5.10)

CT = WmC
T
m +Wm+1(c

T
m ⊗ Ip), (5.11)

where Tm =WT
m � AVm, Pm+1 = W T

m+1 � AVm, Qm+1 = V T
m+1 � ATWm,

Bm = ((WT
m �B)⊗ Ip), Cm = ((C � Vm)⊗ Ip), bm = W T

m+1 �B and cm = C �Vm+1.

Proof. According to Algorithm 8, we have

Span{V1, . . . , Vm, AVm} = Span{Vm+1}

with Vm+1 = [V1, . . . , Vm+1] and WT
m+1 � Vm+1 = Im+1, and we need to prove that

Span{AV1, . . . , AVm} ⊂ Span{Vm+1}.

In fact, after m − 1 iterations of Algorithm 8 and assuming that Hm−1 is non-

singular, the result of Theorem 5.1.1 gives

AVm(H̃m−1 ⊗ Ip) = Vm(K̃m−1 ⊗ Ip).

therefore

AVm−1 = Vm−1(Km−1 ⊗ Ip)(H−1m−1 ⊗ Ip) + σmhm,m−1VmE
T
m−1(H

−1
m−1 ⊗ Ip)

− hm,m−1AVmE
T
m−1(H

−1
m−1 ⊗ Ip),

which gives Span{AVm−1} ⊂ Span{Vm+1}.
Now, as AVm = [AVm−1, AVm] and AVm ∈ Span{Vm+1}, we have

Span{AVm} ⊂ Span{Vm+1}.

Then, there exists a matrix Y ∈ R(m+1)×m such that

AVm = Vm+1(Y ⊗ Ip).

Setting Y =

(
T̃m
Pm+1

)
, we obtain

AVm = Vm+1

((
T̃m
Pm+1

)
⊗ Ip

)
.

Using the F-biorthogonality between Vm+1 andWm+1 gives T̃m = Tm =WT
m�AVm

and Pm+1 = W T
m+1 � AVm. Therefore we get

AVm = Vm(Tm ⊗ Ip) + Vm+1(Pm+1 ⊗ Ip).

Similarly, to prove (5.10) we proceed as follows: SinceB ∈ Span{V1} ⊂ Span{Vm+1},
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there exists a matrix Z ∈ R(m+1)×1 such that

B = Vm+1(Z ⊗ Ip). (5.12)

Setting Z =

(
B̃m

bm

)
, and multiplying (5.12) by WT

m+1 from the left we get

WT
m+1 �B =

(
B̃m

bm

)
. (5.13)

Then B̃m = WT
m � B, bm = W T

m+1 � B and consequently we obtain the following

relation

B = Vm(B̃m ⊗ Ip) + Vm+1(bm ⊗ Ip)

= VmBm + Vm+1(bm ⊗ Ip).

(5.14)

In a similar way, we can show the relations (5.9) and (5.11).

5.2 An adaptive modified rational global Lanc-

zos algorithm

5.2.1 Adaptive choice of interpolation points

As in the previous chapters, rational Krylov methods always require a good se-

lection of interpolation points for a good convergence of the reduced order model

process. This subsection deals with this problem and propose some adaptive

techniques to chose the set of shifts.

5.2.1.1 First approach

The first approach is a generalization to the one used in last chapter for the global

case. The following result is the key ingredient of this method.

Proposition 5.2.1 Let Σm = {σ1, ..., σm} denote a given set of interpolation
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points and let Vm,Wm ∈ Rn×mp be the F-biorthogonal matrices computed by the

modified rational global Lanczos algorithm. The following relation holds

‖F (s)− Fm(s)‖2 ≤ ‖CP−1(s)‖2‖RB(s)‖2, (5.15)

where RB(s) = B−P (s)VmP−1m (s)Bm, P (s) = sI−A and Bm = ((WT
m �B)⊗ Ip).

Proof. From the expression of transfer functions F (s) and Fm(s), we have

‖F (s)− Fm(s)‖2 = ‖C(sIn − A)−1B − Cm(sImp − Am)−1Bm‖2
= ‖C(sIn − A)−1(B − (sIn − A)Vm(sImp − Am)−1Bm)‖2
= ‖CP (s)−1(B − P (s)VmPm(s)−1Bm)‖2
≤ ‖CP (s)−1‖2‖RB(s)‖2.

The preceding result suggests us to approximate the upper bound by using the

reduced order matrix triplet (Am, Bm, Cm) and then ‖CP (s)−1‖ could be approx-

imated by ‖CmPm(s)−1‖, where Pm(s) = sImp − Am and Am = (Tm ⊗ Ip). Using

the above approximation, the next shift σm+1 can be selected as

σm+1 = arg max
s∈S
‖CmPm(s)−1‖2‖RB(s)‖2. (5.16)

Since the expression of RB(s) contains therms related to the dimension n of

the space, the computation of the next shift σm+1 needs more computation times

and arithmetic operations for large problems. Then we use the result of Theorem

5.1.3 to simplify the residual expression. We have

RB(s) = B − (sIn − A)Vm(sImp − Am)−1Bm.

= B − (sVm − Vm(Tm ⊗ Ip)− Vm+1(Pm+1 ⊗ Ip))(sImp − Am)−1Bm,

= B − Vm(sImp − Am)(sImp − Am)−1Bm

+ Vm+1(Pm+1 ⊗ Ip)(sImp − Am)−1Bm,

= Vm+1((Pm+1 ⊗ Ip)(sImp − Am)−1Bm + (bm ⊗ Ip)),

= Vm+1 R̃B(s)

where R̃B(s) = (Pm+1⊗Ip)(sImp−Am)−1Bm+(bm⊗Ip) is the frequency-dependent

term of the residual RB(s). Therefore, we can choose the next interpolation points

σm+1 and σ̃m+1 by using just the frequency-dependent term of the residual RB(s)
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instead of using RB(s), such that

σm+1 = arg max
s∈S
‖CmPm(s)−1‖2‖R̃B(s)‖2 and σ̃m+1 = arg max

s∈S
‖R̃B(s)‖2.

(5.17)

5.2.1.2 Second approach

In [43] Druskin and al. proposed an adaptive approach for computing real and

complex interpolation points. This method is a generalization of the one proposed

in [40] for the symmetric case. A similar approach is used here for the modified

rational global Lanczos algorithm in the context of real shifts. First, notice that

any vector u ∈ Km(A,B,Σm) can be written as

u = pm−1(A)qm(A)−1B,

where pm−1 is a polynomial of degree at most m− 1, while qm is a polynomial of

degree m, whose roots are the components of Σm ∈ Rm. Let Xm be the approx-

imate solution defined in (5.6) and fθ1,...,θm,σ1,...,σm(θ, s) is the so-called skeleton

approximation introduced in [139], which is an [m − 1/m] rational function of

each variable, interpolating (θ + s)−1 at θ = θi, s = σi, i = 1, . . . ,m. Using the

same techniques in [94], we can show that

Xm = fλ1,...,λm,σ1,...,σm(A, s)B, (5.18)

where λj, j = 1, . . . ,m are the eigenvalues of Tm =WT
m � AVm. Since the relative

error of the skeleton approximation is given by

δ(λ, s) =

(
1

λ+ s
− fλ1,...,λm,σ1,...,σm(λ, s)

)
/

1

λ+ s
=
rm(λ)

rm(s)
,

where rm(z) =
∏m

j=1

z − λj
z − σj

; see [40], and using the relation (5.18), the residual

RB(s) can be expressed as

RB(s) = δ(A, s)B = B − (sIn − A)Xm =
rm(A)B

rm(s)
. (5.19)

From Proposition 2 in [35], the characteristic polynomial of Tm minimizes ‖p(A)V1‖F
over all monic polynomial of degree m, so that the numerator in (5.19) satisfies

‖rm(A)B‖F = min
θ1,...,θm

‖
m∏
j=1

(θjIn − A)(σjIn − A)−1B‖F . (5.20)
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With this result, the next interpolation point σm+1 is selected as

σm+1 = arg

(
max
s∈S

1

|rm(s)|

)
, (5.21)

where the choice of the set S will be discussed later. For the other next interpo-

lation point, we can consider σ̃m+1 = σm+1. The algorithm for constructing the

new shift σm+1 is given as follows.

Algorithm 9 The second procedure for selecting the shifts

• Input : {λj}mj=1, {σj}mj=1 and the set {η1, . . . , ηl};

1. For j = 1, . . . , l − 1

2. µj = arg max
µ∈[ηj ,ηj+1]

1

|rm(µ)|
, rm(z) =

m∏
i=1

z − λi
z − σi

;

3. end

4. σm+1 = arg max
j=1,...,l−1

1

|rm(µj)|
.

{λi}mi=1 are the eigenvalues of the matrix Tm at the iteration m and {σi}mi=1 are

the previously chosen interpolation points. The set {η1, . . . , ηl} contains two given

initial values σ
(1)
0 , σ

(2)
0 and the previously chosen shifts (increasingly ordered) such

that σ
(1)
0 is used as the first interpolation point.

5.2.2 The adaptive modified rational global Lanczos algo-

rithm

Combining the modified rational global Lanczos algorithm (Algorithm 7) and one

of the adaptive approaches explained above to construct the interpolation points

gives the adaptive modified rational global Lanczos (AMRGL) algorithm for reduced

the order of large scale dynamical systems.
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5.3 Model Reduction of Second order Systems

Second order systems are sets of second order differential equations. In some fields

like electrical circuits and mechanical systems, modeling (for instance by FEM)

leads to a large number of second order differential equations [9, 117, 119, 130].

It is then advisable to construct a reduced order model that approximates the

behavior of the original system while preserving its second-order structure [12,

100, 127, 135].

An extension of balancing and truncation methods to reduce the order of second

order system was first introduced by Meyer and Srinivasan in [105]. However, it

is not recommended to use this approach for the reduction of large scale systems

for numerical reasons. To reduce the order of large scale second order systems,

it is required to implement more reliable and faster algorithms and preferably

iterative procedures. The first idea is of course extending the numerically efficient

algorithms like Arnoldi and Lanczos, which are used in Krylov subspace methods

as well-accepted approaches for the reduction of large scale state space models.

One of the oldest extensions of moment matching method for second order

model was proposed by Su and Craig [135] which is equivalent to a recent work

in [12] where the reduced system is found in a way different from [135]. In both

papers, the Krylov subspaces were used and the structure of the original system

is preserved.

Recently, in several works, it is tried to extend the Krylov subspace approach

to reducing the order of second order systems. In [52, 53, 98, 141], it is proposed

to reduce the equivalent state space system by applying a projection such that the

structure of the state space matrices does not change and an algorithm is given

to find the desired projection matrices.
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5.3.1 Model order reduction techniques for second order

systems

We consider the second order dynamical system expressed as follows{
Mq̈(t) +Dq̇(t) +Kq(t) = Bu(t),

y(t) = Cq(t),
(5.22)

where q(t) ∈ Rn is a vector of the state variables, u(t), y(t) ∈ Rp are the input

force and the output measurement functions, respectively. The matricesM , D and

K ∈ Rn×n are known as the mass, damping and stiffness matrices, respectively.

B, CT ∈ Rn×p are the input distribution and the output measurement matrices,

respectively. If D = 0, the system (5.22) is said to be undamped. Second order

systems arise naturally in many areas of engineering; see for example [116, 118,

142].

The mass matrix is assumed to be invertible and we write

KM = M−1K, DM = M−1D, BM = M−1B, CM = C. (5.23)

To simplify notations, we still denote K, D, B and C instead of KM , DM , BM and

CM , respectively. Then, the transfer function associated with the system (5.22)

by direct Laplace transform is

F (s) = C(s2In + sD +K)−1B. (5.24)

The original system is too large to allow the efficient solution of various control

or simulation tasks. In order to address this problem, many methods have been

developed to produce a reduced-order system of size r � n such that the essential

properties of the original system are preserved. Then we need to construct a

reduced model having the form{
¨̂q(t) + D̂ ˙̂q(t) + K̂q̂(t) = B̂u(t),

ŷ(t) = Ĉq̂(t),
(5.25)

where q̂(t) ∈ Rr, D̂, K̂ ∈ Rr×r, B̂, ĈT ∈ Rr×p, such that its transfer function is

close to the original transfer function. The associated low-order transfer function

is denoted by

F̂ (s) = Ĉ(s2Ir + sD̂ + K̂)−1B̂.

Second order systems can be considered as a particular class of linear systems by
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rewriting the system (5.22) as follows

[
In 0

0 In

][
q̇(t)

q̈(t)

]
=

[
0 In

−K −D

][
q(t)

q̇(t)

]
+

[
0

B

]
u(t),

y(t) =
[
C 0

] [ q(t)

q̇(t)

]
.

(5.26)

Defining

x(t) =

[
q(t)

q̇(t)

]
, A =

[
0 In

−K −D

]
, B =

[
0

B

]
, C =

[
C 0

]
, (5.27)

the system (5.26) and the transfer function in (5.24) can be written as{
ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(5.28)

and

F(s) = C(sI2n −A)−1B.

If the dimension of the state q(t) of the original second order system (5.22) is

equal to n, then the order of its corresponding linearized state space realization

(5.27) (called also the McMillan degree of F (s)) is equal to N = 2n.

We notice that, F(s) = F (s). In fact, setting

X = (sI2n −A)−1B =

(
X1

X2

)
,

it follows that F(s) = CX where X satisfies (sI2n−A)X = B. Therefore, replacing

A, B and C by the expressions in (5.27) gives

(s2In + sD +K)X1 = B, and F(s) = CX1.

Hence,

F(s) = F (s) = C(s2In + sD +K)−1B.

We can produce a reduced model for the second order system (5.22) by ap-

plying classical linear model reduction techniques to (A,B, C) in (5.27). Unfor-

tunately, there is no guarantee that the resulting reduced system would be a

second-order system, which requires the development of second-order structure

preserving model reduction techniques, see [16, 27, 28, 141] and the references

therein.
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5.3.1.1 Second Order Structure-Preserving Krylov Techniques

As the Krylov subspace-type methods do not preserve second order structure when

applied to the linear system (5.27), the authors in [27, 141] proposed to modify it

to satisfy the interpolation condition and produce a second order reduced system.

The results are given for the SISO systems and extended here to the MIMO

case. The following result, which is not difficult to prove, gives a simple sufficient

condition for obtaining a second order reduced system.

Lemma 5.3.1 Let (A,B, C) be the state space realization defined in (5.27). If

one projects such a state space realization with 2n× 2mp bloc diagonal matrices

Vm =

[
V1
m 0

0 V2
m

]
, Wm =

[
W1

m 0

0 W2
m

]
, WT

m � Vm = I2m,

where V1
m,V2

m,W1
m and W2

m ∈ Rn×mp, then the reduced transfer function

Fm(s) = CVm[sI2mp − (WT
m � AVm)⊗ Ip]−1[(WT

m � B)⊗ Ip]

is a second order transfer function, provided that the matrix ((W1
m)T � V2

m)⊗ Ip is

non-singular.

Using the above result and the result of Theorem 4.1, the following theorem can

be proved.

Theorem 5.3.1 Let F(s) = C(s2In + sD +K)−1B = C(sI2n −A)−1B, with

A =

[
0 In

−K −D

]
, B =

[
0

B

]
, C =

[
C 0

]
,

be a second order transfer function of McMillan degree 2n. Let Vm,Wm ∈ R2n×mp

be defined as

Vm =

[
V1
m

V2
m

]
, Wm =

[
W1

m

W2
m

]
with V1

m,V2
m,W1

m,W2
m ∈ Rn×mp and (W1

m)T � V1
m = (W2

m)T � V2
m = Im. Let us

define the 2n× 2mp projecting matrices

Vm =

[
V1
m 0

0 V2
m

]
, and Wm =

[
W1

m 0

0 W2
m

]
.
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Define the second order transfer function of order m (and of McMillan degree

2m) by

Fm(s) = CVm(sI2mp − (WT
m � AVm)⊗ Ip)−1((WT

m � B)⊗ Ip)

= Cm(sI2mp −Am)−1Bm.

(5.29)

Assume that

Span{(A− σ1I)−1B, . . . , (A− σmI)−1B} ⊆ Range(Vm)

and

Span{(A− σ̃1I)−TCT , . . . , (A− σ̃mI)−TCT} ⊆ Range(Wm)

where the interpolation points σk and σ̃k are chosen such that the matrices A−σkI
and A− σ̃kI are invertible ∀k ∈ {1, . . . ,m}.
Then, if the matrix ((W1

m)T �V2
m)⊗ Ip is non-singular, the reduced order transfer

function Fm(s) = Cm(sI2mp − Am)−1Bm interpolates the values of the original

transfer function F(.) at the interpolation points {σi}mi=1 and {σ̃i}mi=1. If σi = σ̃i,

the reduced order model interpolates the original transfer function F(.) and its

first derivative at the selected points {σi}mi=1.

Proof. The second order structure of Fm(s) follows from Lemma 5.3.1. It is

clear that

Range(Vm) ⊂ Range(Vm) and Range(Wm) ⊂ Range(Wm).

Then using the results of Theorem 5.1.2, the interpolation conditions are satisfied.

5.3.1.2 Proportionally Damped Systems

The idea of this subsection is to reduce second order models by applying a projec-

tion directly in the second order system. To this end, the definition of the stan-

dard Krylov subspace is extended to the so called Second Order Krylov Subspace

which was first introduced in [128] to find the projection matrices and matching

the moments, and more investigated and generalized in [101].

Next, we define the second order Krylov subspaces, see [9], and the refereces

therein.
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Definition 5.3.1 The Second Order Krylov Subspace is defined as,

K̃m(P1, P2, Q) = span{X0, X1, . . . , Xm−1}

where where

X0 = Q

X1 = P1X0

Xi = P1Xi−1 + P2Xi−2, i = 2, 3, . . . ,m− 1

(5.30)

and P1, P2 ∈ Rn×n, Q ∈ Rn×p are constant matrices. The columns of Q are called

the starting vectors and the matrices Xi are called basic blocks.

In this paragraph, we concentrate on the spacial case of proportionally damped

systems where the damping matrix D is given by D = αM+βK = αIn+βK, with

α, β > 0 and αβ < 1. For this case, it was shown in [16, 44] that the second-order

Krylov subspaces used for moment matching about an expansion point σ 6= 0 can

be reduced to the classical Krylov subspaces for one-sided method (Vm = Wm).

The result remains valid also for two-sided method.

Theorem 5.3.2 If the damping matrix D verify D = αIn + βK, with α, β > 0

and αβ < 1 then we have

K̃m(K−1σ (2σIn +D), K−1σ , K−1σ B) = Km(K−1σ , K−1σ B),

and

K̃m(K−Tσ̃ (2σ̃In +DT ), K−Tσ̃ , K−Tσ̃ CT ) = Km(K−Tσ̃ , K−Tσ̃ CT ),

where Kσ = σ2In + σD +K and Kσ̃ = σ̃2In + σ̃D +K.

This result can be naturally extended to the case where multiple interpolation

points are chosen. In this case, we use the union of the input and the output Krylov

subspaces corresponding to each interpolation point σi and σ̃i, respectively. As in

the case of first-order systems, we can use the approximation of the upper bound

of the error

ε(s) = F (s)− Fm(s) to construct the next shifts σm+1 and σ̃m+1 as

σm+1 = argmax
s∈S
‖CmPm(s)−1‖2‖RB(s)‖2 and σ̃m+1 = argmax

s∈S
‖RB(s)‖2,
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where

Pm(s) = Cm(s2Im + sDm +Km),

and

RB(s) = B − (s2In + sD +K)Vm(s2Im + sDm +Km)−1Bm.

Let Vm,Wm ∈ Rn×mp be the F-biorthogonal matrices generated by the modified

rational global Lanczos algorithm (Algorithm 8) applied to the matrix Krylov

subspaces Km((σ2
i In + σiD + K), B,Σm) and Km((σ̃2

i In + σ̃iD + K)T , CT , Σ̃m),

where

Km((σ2
i In + σiD +K), B,Σm) = Span{(σ2

1In + σ1D +K)−1B, . . . ,
m∏
i=1

(σ2
i In + σiD +K)−1B},

and

Km((σ̃2
i In + σ̃iD +K)T , CT , Σ̃m) = Span{(σ̃2

1In + σ̃1D +K)−TCT , . . . ,
m∏
i=1

(σ̃2
i In + σ̃iD +K)−TCT}.

The reduced-order model of the second-order system (5.22) is given by

Dm = ((WT
m �DVm)⊗ Ip), Km = ((WT

m �KVm)⊗ Ip),

Bm = ((WT
m �B)⊗ Ip) and Cm = CVm,

where Dm, Km ∈ Rmp×mp and Bm, C
T
m ∈ Rmp×p. As in the case of first order

systems, the bases Vm andWm should span the union of the input and the output

Krylov subspaces corresponding to each interpolation point σi and σ̃i, respectively,

for that the moment matching property holds, i.e.,

Span{(σ2
1In + σ1D +K)−1B, . . . , (σ2

mIn + σmD +K)−1B} ⊆ Range(Vm)

Span{(σ̃2
1In + σ̃1D +K)−TCT , . . . , (σ̃2

mIn + σ̃mD +K)−TCT} ⊆ Range(Wm),

see theorem 4.5 in [129].
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5.4 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the

proposed approaches. All the experiments were performed on a computer of Intel

Core i5 at 1.3GHz and 8GB of RAM. The algorithms were coded in Matlab 8.0.

In order to show the performance of the adaptive modified rational global Lanczos

(AMRGL) algorithm for state-space systems, two different methods were considered

for selecting the shifts:

• Method 1: We give two initial shifts and we choose the shift σm+1 as

σm+1 = arg max
s∈S
‖CmPm(s)−1‖2‖R̃B(s)‖2.

• Method 2: We give the first initial shift and then σm+1 is chosen as

σm+1 = arg

(
max
s∈S

1

|rm(s)|

)
.

We mention that when it was necessary, a global F -rebiorthogonalization proce-

dure was used in the (AMRGL) algorithm. In all the experiments, the subspace

dimension will be fixed a-priori and we consider the special case where the se-

quences of shifts {σi}mi=1 and {σ̃i}mi=1 are equal. To compute the set of frequency

S for the Method 1, we use always the function lp lgfrq from LYAPACK [113].

Example 1. For this example, we applied the AMRGL algorithm to the first-order

systems. The first model is the modified FOM model from [110]. We applied

AMRGL to get a reduced order model of dimension 40 by using Method 2 to choose

the set of interpolation points with σ
(1)
0 = 10 and σ

(2)
0 = 103.

In the second experiment, we considered the Modified RLC circuit model of

dimension n = 3000 by modifying the inputs and outputs of the RLC circuit

model to get a MIMO systems with p = 4. We used Method 2 to choose the

interpolation points with σ
(1)
0 = −10−3 and σ

(2)
0 = 103 and the reduced system

was of order 25.

The top plots of Figure 5.1 (modified FOM) and Figure 5.2 (Modified RLC circuit)

show the frequency responses of the original system (circles) compared with the
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frequency responses of its approximation (solid plot). The bottom plot of these

figures represent the exact error ‖F (jω) − Fm(jω)‖2 for different frequencies

ω ∈ [10−6, 106].

Figure 5.1: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the modified FOM model with m = 40.

As a third experiment, we considered the well known CD player model from [110]

(n = 120 and p = 2). For this model test we used σ
(1)
0 = −10−4 and σ

(2)
0 = 104

and we got a reduced order model of dimension 23. The obtained plots for this
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Figure 5.2: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the Modified RLC circuit model with m = 25
.

experiment are given in Figure 5.3.

Example 2. In this example, we considered the fdm and the Rail3113 models.

We plotted the H∞ error norm ‖F − Fm‖∞ versus the number m of iterations

using Method 1 to select the shifts. For the fdm model, the corresponding matrix

A is obtained from the centered finite difference discretization of the operator

LA(u) = ∆u− f(x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,
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Figure 5.3: Top: ‖F (jω)‖2 and the approximations ‖Fm(jω)‖2. Bottom: the
exact error ‖F (jω)− Fm(jω)‖2 for the CD player model with m = 23.

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions

with

f(x, y) = exy, g(x, y) = sin(xy) and h(x, y) = y2 − x2.

The matrices B and C were random matrices with entries uniformly distributed

in [0, 1]. The number of inner grid points in each direction was n0 = 100 and the

dimension of A is n = 10.000. For this experiment, we used p = 5. The Rail3113

model is a first-order system of dimension n = 3113 and p = 6. As can be shown

from Figure 5.4, the AMRGL algorithm gives good result with small values of m.

120



Chapter 5. A matrix rational Lanczos method for model reduction in large
scale first and second order dynamical systems

Figure 5.4: The H∞ error norms ‖F − Fm‖∞ versus the number of iterations for
the fdm model (top curve) and the Rail3113 model (bottom curve).

Example 3. For this experiment, we considered second-order systems. We find

an equivalent state space model and we applied the AMRGL algorithm to get a

state space reduced system. As a first test model, we considered the ISS example.

This system is a second order model of dimension n = 135, and the order of

its corresponding linearized state space realization is equal to N = 270 with 3

inputs and 3 outputs. The reduced second order system was of dimension 15.

The top curves of Figure 5.5 show the frequency responses of the original system
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(circles) compared to the frequency responses of its approximations (solid). The

bottom curve of this figure represents the exact error ‖F (jω) − Fm(jω)‖2 for

frequencies ω ∈ [10−6, 106]. We used Method 2 to choose the interpolation points

with σ
(1)
0 = −102 and σ

(1)
0 = 102. We also applied the AMRGL algorithm to the

Figure 5.5: Top: ‖F (jω)‖2 and it’s approximations ‖Fm(jω)‖2. Bottom: the
exact error ‖F (jω)− Fm(jω)‖2 for the ISS model with m = 30.

modified beam model [110]. This system is a second-order model of dimension

n = 174 with one input and one output. We modified the matrices B and C

(random matrices) to get a MIMO system with four inputs and four outputs.

The order of the reduced model was 16 and we used Method 1 to choose the set
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of interpolation points.

Figure 5.6: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the Modified Beam model with m = 16.

Example 4. For the last example, we considered the case of proportionally

damped systems and we applied the AOMRGL directly to the second order models.

The first test model considered is the second order system with exact condenser

distribution used in [16]. Originally, this model is a SISO system and we modified

the inputs and outputs to get a MIMO system. The mass matrix and stiffness

matrix are, respectively, defined as
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K =
α

β



2−
√

1− αβ√
1− αβ

−1

−1
2√

1− αβ
.

. . .

. .
2√

1− αβ
−1

−1
2−
√

1− αβ√
1− αβ


,

M =



2 +
√

1− αβ√
1− αβ

1

1
2√

1− αβ
.

. . .

. .
2√

1− αβ
1

1
2 +
√

1− αβ√
1− αβ


,

and the damping matrix G = αM + βK, with α = β = 0.5. Input and output

matrices are B,CT ∈ Rn×p with a identity matrix of dimension p = 4 at the

first block and zeros elsewhere. We modified the system matrices such that the

mass matrix is the identity as in (5.23). The order of the system is n = 2000

and we reduced the order to m = 25. The plots of Figure 5.7 represent the

largest singular value σmax of the original system (circles) and the reduced order

system (solid line) and the largest singular value of the error systems for different

frequencies ω = [10−6, 106]. The H∞ error norm ‖F − Fm‖∞ versus the number

m of iterations is also considered in Figure 5.8.
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Figure 5.7: Top: ‖F (jω)‖2 and it’s approximations ‖Fm(jω)‖2. Bottom: the
exact error ‖F (jω) − Fm(jω)‖2 for the Exact Condenser Distribution model
with m = 25.

The second test model in this experiment represents a system whose matri-

ces are from FEM (Finite Element Modeling) software ANSYS. The FEM-based

model yields a second order system where M,K,D ∈ R20×20, C ∈ R2×20 and

B ∈ R20. Then we modified the input B = [b1, b2] to be a 20 × 2 matrix such

that b2 is a random column vector. The second-order system is considered to be

proportional, i.e., D = αM + βK where the damping parameters α and β are

chosen as α = β = 2 × 10−1. As in the last example, we modified the system

matrices such that the mass matrix is the identity as in (5.23) and we reduced
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Figure 5.8: The H∞ error ‖F − Fm‖∞ versus the number of iterations for the
Exact Condenser Distribution model.

the system to order m = 4 in second-order form (m = 8 in state space). Figure

5.9 represent the largest singular value σmax of the original system (circles) and

the reduced order system (solid line) and the largest singular value of the error

systems for different frequencies ω = [10−3, 103].

5.5 Conclusion

In this Chapter, we proposed a new adaptive algorithm based on a modified ra-

tional global Lanczos process. The method was applied to get reduced order

models that approximate large-scale MIMO and LTI linear dynamical systems.

We derived new algebraic rational global Lanczos equations. We also applied our

proposed approach to get reduced second-order models from second-order dynam-

ical systems. We gave some theoretical results and present numerical experiments

on some well known benchmark examples. We mention that preliminary exper-

iments showed the competitiveness of the AMRGL method compared to the adap-
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Figure 5.9: Top: ‖F (jω)‖2 and it’s approximations ‖Fm(jω)‖2. Bottom: the
exact error ‖F (jω)− Fm(jω)‖2 for the ANSYS model with m = 4.

tive Tangential Rational Krylov Subspace (TRKS) approach, proposed in [41] for

the problems with multiple-input multiple-output, but more detail comparison is

needed to determine the areas of the comparable strength of each method.
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6
An extended block Lanczos algorithm for

model reduction of large scale dynamical

MIMO systems

The extended Krylov subspace can be considered as a special case of the rational

Krylov subspace by tacking σ2i+1 = 0 and σ2i = ∞ for i ≥ 0. Therefore, the

advantage of this method is that we are not even mentioning the numerical diffi-

culties that might arise for the selections of poles of the rational Krylov subspace

[103].

Let A ∈ Rn×n and V ∈ Rn×p, the extended block Krylov subspace Ke
m(A, V )

can be considered as the subspace of Rn spanned by the columns of the matrices
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AkV, k = −m, . . . ,m− 1, i.e.,

Ke
m(A, V ) = Range{A−mV, . . . , A−2V,A−1V, V,AV,A2V, . . . , Am−1V }.

It is clear that the subspace Ke
m(A, V ) is a sum of two block Krylov subspaces.

More precisely,

Ke
m(A, V ) = Km(A, V ) + Km(A−1, A−1V ),

where Km(A, V ) = Range{V,AV,A2V, . . . , Am−1V } is the classical block Krylov

subspace related to A and Km(A−1, A−1V ) is related to the inverse of A.

In order to numerically approximate the action of a matrix function f(A) on

a vector v where A ∈ Rn×n is a symmetric matrix and v ∈ Rn, Druskin and

Knizhnerman introduced in [41] the extended Arnoldi process. Simoncini in [131]

exploited the extended block Arnoldi process to solve Lyapunov equations. In

[80], authors showed that the extended block Arnoldi process still satisfies the

well Arnoldi recursions and used it for computing approximate solutions to large

scale continuous-time algebraic Riccati equations.

In this chapter, we show how to derive an extended block Lanczos process

which is devoted to compute two bi-orthogonal matrices for the extended Krylov

subspaces Ke
m(A, V ) and Ke

m(AT ,W ), where W ∈ Rn×p and such that the first

subspace is associated with A and A−1, while the second one is related to AT and

A−T . Another aim of this chapter is to show that the extended block Lanczos

algorithm can be applied to model order reduction problems by combining it

with moment matching techniques. More precisely, we show that the moments of

the original transfer function are approximated by those of the reduced transfer

function.

This chapter is organized as follows. In Section 1, we describe the extended

block Lanczos algorithm and we explain how to obtain some new algebraic prop-

erties. The application of this method to model order reduction is considered

in Section 2 where we show how to apply the extended block Lanczos process

to MIMO dynamical systems in order to produce low-order dimensional systems.

The last section is devoted to some numerical experiments for large and sparse

problems to show the efficiency of the proposed method.
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6.1 The extended block Lanczos algorithm

6.1.1 Description of the process

Let A ∈ Rn×n and let V,W be two initial blocks of Rn×2p. In this section, we first

introduce the extended block Lanczos process for constructing two bi-orthogonal

bases V2m and W2m of the Krylov subspaces Ke
m(A, V ) and Ke

m(AT ,W ).

Letting V2m = {V1, V2, . . . , Vm} and W2m = {W1,W2, . . . ,Wm} where Vi,Wi

(for i = 1, . . . ,m) are n×2p matrices. Then the bases are said to be bi-orthogonal

if and only if the n × 2p matrices Vi and Wj satisfy the following biothogonality

condition {
W T
j Vi = 0p, if i 6= j,

W T
j Vi = I2p, if i = j.

(6.1)

Now, we describe the procedure that allows to compute the bi-orthogonal bases

of the extended block Lanczos algorithm.

Initialization. Let’s partition the two first block vectors V1 and W1 of the ex-

tended block Lanczos process as V1 = [v1, v2] and W1 = [w1, w2] where each

vi, wi ∈ Rn×p for i = 1, 2. To obtain V1 and W1, we start by computing the QR

decomposition of the n× 2p matrices [V,A−1V ] and [W,A−TW ], i.e.,[V,A−1V ] = V1ΛV ,

[W,A−TW ] = W1ΛW

(6.2)

where ΛV and ΛW are 2p × 2p upper triangular matrices and V1,W1 are n × 2p

orthogonal matrices. Then, letting

W T
1 V1 = P0D0Q

T
0 ,

be the SVD decomposition of W T
1 V1, we define the new initial block vectors V1

and W1 as

V1 = V1Q0D
− 1

2
0 and W1 = W1P0D

− 1
2

0 .

Hence, thanks to the orthogonality of the matrices P0, Q0 and since D0 is a

diagonal matrix, we have

W T
1 V1 = D

− 1
2

0 P T
0 W

T
1 V1Q0D

− 1
2

0

= I2p.
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Iteration k. We assume that V1, . . . , Vk and W1, . . . ,Wk have been computed.

Next, we seek for Vk+1,Wk+1 ∈ Rn×2p under the form Vk+1 = [v2k+1, v2k+2] and

Wk+1 = [w2k+1, w2k+2] where the block vectors v2k+1, w2k+1 ∈ Rn×p are com-

puted by orthogonalizing the matrix-vector products Av2k−1 and ATw2k−1 against

v1, v2, . . . , v2k and w1, w2, . . . , w2k respectively, i.e., the block vectors v2k+1, w2k+1

are computed via
v2k+1 h2k+1,2k−1 = Av2k−1 −

2k∑
i=1

vi hi,2k−1,

w2k+1 g2k+1,2k−1 = AT w2k−1 −
2k∑
i=1

wi gi,2k−1,

(6.3)

where the coefficients h1,2k−1, . . . , h2k,2k−1 and g1,2k−1, . . . , g2k,2k−1 are p× p ma-

trices obtained respectively by imposing the orthogonalities

v2k+1 ⊥ [w1, w2, . . . , w2k] and w2k+1 ⊥ [v1, v2, . . . , v2k]. (6.4)

In this case, we have

hi,2k−1 = wTi Av2k−1 and gi,2k−1 = vTi A
T w2k−1, for i = 1, 2, . . . , 2k.

Similarly, the block vectors v2k+2, w2k+2 ∈ Rn×p are computed by orthogonaliz-

ing the matrix-vector products A−1v2k and A−Tw2k against v1, v2, . . . , v2k+1 and

w1, w2, . . . , w2k+1 respectively, i.e., we generate the vectors v2k+2, w2k+2 satisfying:
v2k+2 h2k+2,2k = A−1 v2k −

2k+1∑
i=1

vi hi,2k,

w2k+2 g2k+2,2k = (AT )−1w2k −
2k+1∑
i=1

wi gi,2k,

(6.5)

where again imposing the orthogonality conditions

v2k+2 ⊥ w1, . . . , w2k+1 and w2k+2 ⊥ v1, . . . , v2k+1, (6.6)

we easily verify that the p×p coefficient matrices h1,2k, . . . , h2k+1,2k and g1,2k, . . . , g2k+1,2k,

are respectively given by :

hi,2k = wTi A
−1 v2k and gi,2k = vTi (AT )−1w2k, for i = 1, 2, . . . , 2k + 1.

h2k+1,2k−1 and g2k+1,2k−1 are also p× p matrices that normalize the block vectors

v2k+1 and w2k+1. They are computed using the QR and SVD decompositions (see

Algorithm 10). h2k+2,2k and g2k+2,2k are p × p matrices that normalize the block

vectors v2k+2 and w2k+2, and they are also computed using the QR and the SVD

decomposition (see Algorithm 10).
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The extended block Lanczos process described above allows to compute two bi-

orthogonal matrices V2m+2 = [V1, . . . , Vm+1] and W2m+2 = [W1, . . . ,Wm+1], such

that Vk = [v2k−1, v2k] and Wk = [w2k−1, w2k] for k = 1, . . . ,m+ 1. This algorithm

constructs also two 2(m+1)p×2mp upper block Hessenberg matrices H̃2m = [hi,j]

and G̃2m = [gi,j], where hi,j, gi,j ∈ Rp×p for i = 1, . . . , 2m+ 2, j = 1, . . . , 2m.

Next, we give some properties for the biorthogonal matrices V2m+2,W2m+2, and

the upper block Hessenberg matrices H̃2m, G̃2m. We consider the following nota-

tions :

Vo
m and Wo

m are matrices of Rn×mp formed by the block columns of odd indices

of the matrices V2m and W2m, respectively.

Ve
m and We

m are the matrices formed by the block columns of even indices of the

bases V2m and W2m, respectively.

Ho
m and Go

m are the matrices of R(2m+1)p×mp formed by the block columns of odd

indices of the matrices H̃2m and G̃2m, respectively.

He
m and Ge

m are the matrices of R2(m+1)p×mp formed by the block columns of even

indices of the matrices H̃2m and G̃2m, respectively.

The bloc Hessenberg matrices Ĥo
m and Ĝo

m correspond to the block columns and

the block rows of odd indices of the matrices H2m = [hi,j]
j=1,...,2m
i=1,...,2m and G2m =

[gi,j]
j=1,...,2m
i=1,...,2m , respectively. Finally, H̆e

m and Ğe
m are formed by the block columns

and the block row of even indices of H2m and G2m, respectively.

We have the following result.

Proposition 6.1.1 Using the above notations, and let V2m+1 = [V2m, v2m+1] and

W2m+1 = [W2m, w2m+1]. Then, we have

AVo
m = V2m+1Ho

m, (6.7)

ATWo
m = W2m+1Go

m, (6.8)

A−1Ve
m = V2m+2He

m, (6.9)

A−TWe
m = W2m+2Ge

m. (6.10)

Furthermore, the matrices H2m and G2m are 2p× 2p tridiagonal matrices.

Proof. Equations (6.7)-(6.10) can be easily proven by considering the relations

(6.3) and (6.5), for k = 1, . . . ,m, and the biorthogonality condition.
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Now, using equations (6.7) and (6.8), and the biorthogonality condition, we get

(Wo
m)TAVo

m = (Wo
m)TV2m+1Ho

m

= Ĥo
m,

and

(Vo
m)TATWo

m = (Vo
m)TW2m+1Go

m

= Ĝo
m,

which gives

Ĥo
m = (Ĝo

m)T . (6.11)

In the same manner, we can use equations (6.9) and (6.10) to show that

H̆e
m = (Ğe

m)T . (6.12)

Comparing the members of equalities (6.11) and (6.12), we note that the first

member in both equalities is an upper block Hessenberg matrix while the second is

a lower block Hessenberg matrix . Then, Ĥo
m, Ĝo

m, H̆e
m and Ğe

m are p×p tridiagonal

matrices. Therefore, H2m and G2m are 2p× 2p tridiagonal matrices .

Using the fact that H2m and G2m are 2p × 2p tridiagonal matrices, and the

sub-diagonal blocks are 2p × 2p upper triangular matrices. then, the relations

given in (6.3) and (6.5) can be simplified as

v2k+1 h2k+1,2k−1 = Av2k−1 − v2k−3 h2k−3,2k−1 − v2k−2 h2k−2,2k−1
−v2k−1 h2k−1,2k−1 − v2k h2k,2k−1 (6.13)

w2k+1 g2k+1,2k−1 = AT w2k−1 − w2k−3 g2k−3,2k−1 − w2k−2 g2k−2,2k−1

−w2k−1 g2k−1,2k−1 − w2k g2k,2k−1, (6.14)

and

v2k+2h2k+2,2k = A−1 v2k − v2k−2 h2k−2,2k − v2k−1 h2k−1,2k
−v2k h2k,2k − v2k+1 h2k+1,2k (6.15)

w2k+2g2k+2,2k = (AT )−1w2k − w2k−2g2k−2,2k − w2k−1g2k−1,2k

−w2kg2k,2k − w2k+1g2k+1,2k. (6.16)
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Now, we write equations (6.13)-(6.16) in the following form

[v2k+1 v2k+2]

(
h2k+1,2k−1 h2k+1,2k

0 h2k+2,2k

)
= [Av2k−1 A

−1v2k]

− [v2k−1 v2k]

(
h2k−1,2k−1 h2k−1,2k

h2k,2k−1 h2k,2k

)

− [v2k−3 v2k−2]

(
h2k−3,2k−1 0

h2k−2,2k−1 h2k−2,2k

)
,

(6.17)

and

[w2k+1 w2k+2]

(
g2k+1,2k−1 g2k+1,2k

0 g2k+2,2k

)
= [ATw2k−1 A

−Tw2k]

− [w2k−1 w2k]

(
g2k−1,2k−1 g2k−1,2k

g2k,2k−1 g2k,2k

)

− [w2k−3 w2k−2]

(
g2k−3,2k−1 0

g2k−2,2k−1 g2k−2,2k

)
.

(6.18)

Set 

Vk−1 = [v2k−3 v2k−2], Vk = [v2k−1 v2k], Vk+1 = [v2k+1 v2k+2]

Wk−1 = [w2k−3 w2k−2], Wk = [w2k−1 w2k], Wk+1 = [w2k+1 w2k+2]

Uk+1 = [Av2k−1 A
−1v2k], Sk+1 = [ATw2k−1 A

−Tw2k]

and 

Nk =

(
h2k−3,2k−1 0

h2k−2,2k−1 h2k−2,2k

)
, Ñk =

(
g2k−3,2k−1 0

g2k−2,2k−1 g2k−2,2k

)

Ck =

(
h2k−1,2k−1 h2k−1,2k

h2k,2k−1 h2k,2k

)
, C̃k =

(
g2k−1,2k−1 g2k−1,2k

g2k,2k−1 g2k,2k

)

Ak =

(
h2k+1,2k−1 h2k+1,2k

0 h2k+2,2k

)
, Ãk =

(
g2k+1,2k−1 g2k+1,2k

0 g2k+2,2k

)
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Therefore, equations (6.17) and (6.18) can be written as
Vk+1Ak = Uk+1 − VkCk − Vk−1Nk,

Wk+1Ãk = Sk+1 −WkC̃k −Wk−1Ñk.

Finally, the extended block Lanczos algorithm is summarized as follows.

Algorithm 10 The extended block Lanczos algorithm (EBLA)

1. Input: A ∈ Rn×n, V, W ∈ Rn×2p.

2. Initialize: V0 = W0 = 02p and N1 = Ñ1 = 02p.

3. Set U1 = [V,A−1V ] and S1 = [W,A−TW ] and construct V1,W1 ∈ Rn×2p

such that W T
1 V1 = I2p;

4. Initialize: V2 = [V1] and W2 = [W1].

5. For k = 1, . . . ,m

6. Uk+1 = [Av2k−1, A
−1v2k] and Sk+1 = [ATw2k−1, A

−Tw2k];

7. Nk = W T
k−1Uk+1, Ck = W T

k Uk+1 and Ñk = V T
k−1Sk+1, C̃k = V T

k Sk+1,

8. Uk+1 = Uk+1 − VkCk − Vk−1Nk and Sk+1 = Sk+1 −WkC̃k −Wk−1Ñk;

9. Uk+1 = Vk+1Ak+1 and Sk+1 = Wk+1Ãk+1; (QR factorization)

10. W T
k+1Vk+1 = PkDkQ

T
k ; (Singular Value Decomposition)

11. Vk+1 = Vk+1QkD
−1/2
k and Wk+1 = Wk+1PkD

−1/2
k ;

12. Ak+1 = D
1/2
k QT

kAk+1 and Ãk+1 = D
1/2
k P T

k Ãk+1;

13. V2k+2 = [V2k, Vk+1]; W2k+2 = [W2k,Wk+1];

14. endFor.

After m steps, Algorithm 10 builds two bi-orthogonal bases V2m+2 and W2m+2,

and two 2(m+ 1)p× 2mp upper block Hessenberg matrices H̃2m and G̃2m defined

as follows
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H̃2m =

 H2m

Am+1E
T
m

 and G̃2m =

 G2m

Ãm+1E
T
m

 ,
where

H2m =


C1 N2

A2 C2 .

. . .

. . Nm

Am Cm

 and G2m =


C̃1 Ñ2

Ã2 C̃2 .

. . .

. . Ñm

Ãm C̃m

 ,

(6.19)

and Em is last 2mp× 2p block of the identity matrix I2mp.

6.1.2 Theoretical results

In this subsection, we derive some theoretical results of the extended block Lanczos

Algorithm.

Let T2m = WT
2mAV2m ∈ R2mp×2mp. Using the same technique in [131] (for

the extended Arnoldi process), we can easily verified that T2m is block upper

Hessenberg with 2p× 2p blocks. In the following, we will also consider the 2mp×
2mp matrix defined as

L2m = WT
2mA

−1V2m.

Notice that we can check that L2m is also 2p×2p block upper Hessenberg matrix.

Proposition 6.1.2 Suppose that m steps of Algorithm 10 have been carried out,

and let T̃2m = WT
2m+2AV2m and L̃2m = WT

2m+2A
−1V2m. Then, the following

relations hold

AV2m = V2mT2m + Vm+1Tm+1,mE
T
m (6.20)

A−1V2m = V2mL2m + Vm+1Lm+1,mE
T
m (6.21)

ATW2m = W2mTT2m +Wm+1T̃m+1,mE
T
m (6.22)

A−TW2m = W2mLT2m +Wm+1L̃m+1,mE
T
m, (6.23)
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where T̃m+1,m = V T
m+1A

TW2m and L̃m+1,m = V T
m+1A

−TW2m.

Proof. To prove the first equation, we start by using the fact thatAKe
m(A, V ) ⊆

Ke
m+1(A, V ), and the bi-orthogonality condition. Then, there exists a matrix T

such that AV2m = V2m+2T . Hence T = WT
2m+2AV2m which gives T = T̃2m.

Therefore

AV2m = V2m+2T̃2m.

Now, since we have V2m+2 = [V2m, Vm+1],W2m+2 = [W2m,Wm+1] and as T2m+2 =

WT
2m+2AV2m+2 is block upper Hessenberg matrix, then

Tm+1,mE
T
m = W T

m+1AV2m.

Hence

T̃2m = WT
2m+2AV2m =

[
T2m

W T
m+1AV2m

]
=

[
T2m

Tm+1,mE
T
m

]
which completes the proof of (6.20).

For the second relation, we will follow the same procedure. As L2m+2 = WT
2m+2A

−1V2m+2

is block upper Hessenberg matrix, we have

W T
m+1A

−1V2m = Lm+1,mE
T
m,

and then the upper block Hessenberg matrix L̃2m can be written as

L̃2m = WT
2m+2A

−1V2m =

[
L2m

W T
m+1A

−1V2m

]
=

[
L2m

Lm+1,mE
T
m

]
.

Using the bi-orthogonality condition and the fact thatA−1Ke
m(A, V ) ⊆ Ke

m+1(A, V ),

then there exists a matrix L such that

A−1V2m = V2m+2L.

Hence

L = WT
2m+2A

−1V2m,

which gives

L = L̃2m.

Therefore

A−1V2m = V2m+2L̃2m = V2mL2m + Vm+1Lm+1,mE
T
m.

In a similar way, we can useATKe
m(AT ,W ) ⊆ Ke

m+1(A
T ,W ) andA−TKe

m(AT ,W ) ⊆
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Ke
m+1(A

T ,W ) to show equations (6.22) and (6.23), respectively.

Let T̃2m and H̃2m be the block upper Hessenberg matrices defined earlier. The

computation of T̃2m seems to require additional matrix-vector products with A

and extra inner products of long vectors. To completely avoids this expensive

step, we next derive a recursions to compute the block columns of the matrices

T̃2m directly from the block columns of the upper block Hessenberg matrix H̃2m

without requiring the matrix-vector products with A. We start by defining the

following notations which will be used later.

1. For k = 1, . . . ,m, we define now Vk and Wk as

Vk = [V
(1)
k , V

(2)
k ] and Wk = [W

(1)
k ,W

(2)
k ],

where V
(1)
k (.resp W

(1)
k ) is the first p columns of Vk (.resp Wk) and V

(2)
k (.resp

W
(2)
k ) is the second p columns of Vk (.resp Wk).

2. For k = 1, . . . ,m, we partition the upper triangular matrix Ak+1 ∈ R2p×2p,

computed from Algorithm 10, as

Ak+1 =

[
A

(1,1)
k+1 A

(1,2)
k+1

0 A
(2,2)
k+1

]
.

3. Let H2m be the 2mp×2mp block upper Hessenberg matrix defined in (6.19),

and ẽi = ei⊗Ip where ei is the vectors of the canonical basis. From Algorithm

10, we have

Um+1 = [U
(1)
m+1, U

(2)
m+1] = [AV (1)

m , A−1V (2)
m ]− V2mH2m[ẽ2k−1, ẽ2k] (6.24)

and

Um+1 = Vm+1Am+1. (6.25)

Then

Vm+1 = Um+1A
−1
m+1, (6.26)

where A−1m+1 is also 2p× 2p upper triangular matrix.

Proposition 6.1.3 Let T̃2m and H̃2m be the upper Hessenberg matrices defined

earlier. Then, for k = 1

T̃2mẽ1 = H̃2mẽ1
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T̃2mẽ2 = [ẽ1Λ
(1,1)
V − H̃2mẽ1Λ

(1,2)
V ](Λ

(2,2)
V )−1. (6.27)

While (k = 2, . . . ,m)

T̃2mẽ2k−1 = H̃2mẽ2k−1,

T̃2mẽ2k = T̃2mẽ2k−1χ
(k) +

(
ẽ2k−2 −

[
T̃2k−2

02(m−k+1)p×(2k−2)p

]
H2k−2ẽ2k−2

)
(A−1k )(2,2),

where

χ(k) = A
(1,1)
k (A−1k )(1,2).

Proof. To prove the odd block columns, we start by considering relations (6.24)

and (6.25) to get

AV
(1)
k = Uk+1ẽ1 + V2kH2kẽ2k−1

= Vk+1Ak+1ẽ1 + V2kH2kẽ2k−1

= V2k+2H̃2kẽ2k−1. (6.28)

Pre-multiplying the above equality on the left by WT
2m+2, then

WT
2m+2AV

(1)
k =

[
I2(k+1)p

02(m−k)p×2(k+1)p

]
H̃2kẽ2k−1,

hence

T̃2mẽ2k−1 =

[
H̃2k

02(m−k)p×2kp

]
ẽ2k−1 = H̃2mẽ2k−1.

To prove (6.27), we start by using the QR decomposition of [V,A−1V ] defined

in (6.2) such that

[V,A−1V ] = V1ΛV = [V
(1)
1 , V

(2)
1 ]

[
Λ

(1,1)
V Λ

(1,2)
V

0 Λ
(2,2)
V

]
= [V

(1)
1 Λ

(1,1)
V , V

(1)
1 Λ

(1,2)
V + V

(2)
1 Λ

(2,2)
V ]. (6.29)

If Λ
(1,1)
V and Λ

(2,2)
V are non-singular, we obtain

A−1V
(1)
1 = A−1V (Λ

(1,1)
V )−1 = [V

(1)
1 Λ

(1,2)
V + V

(2)
1 Λ

(2,2)
V ](Λ

(1,1)
V )−1,
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then

AV
(2)
1 = [V

(1)
1 Λ

(1,1)
V − AV (1)

1 Λ
(1,2)
V ](Λ

(2,2)
V )−1.

Pre-multiplying on the left by W2m+2 to get equation (6.27).

For the other even block columns, we proceed as follows. From (6.24), we have

AU
(2)
k+1 = V

(2)
k − AV2kH2kẽ2k,

hence

WT
2m+2AU

(2)
k+1 = WT

2m+2V
(2)
k −WT

2m+2AV2kH2kẽ2k

= ẽ2k −

[
T̃2k

02(m−k)p×2kp

]
H2kẽ2k. (6.30)

On the other hand, we use (6.26) to get

V
(2)
k+1 = U

(1)
k+1(A

−1
k+1)

(1,2) + U
(2)
k+1(A

−1
k+1)

(2,2).

We pre-multiply the last equation on the left by A, and then we use (6.25) to

obtain

AV
(2)
k+1 = AU

(1)
k+1(A

−1
k+1)

(1,2) + AU
(2)
k+1(A

−1
k+1)

(2,2)

= AV
(1)
k+1A

(1,1)
k+1 (A−1k+1)

(1,2) + AU
(2)
k+1(A

−1
k+1)

(2,2). (6.31)

We pre-multiply on the left by WT
2m+2 and we use (6.30) to get

WT
2m+2AV

(2)
k+1 = WT

2m+2AV
(1)
k+1A

(1,1)
k+1 (A−1k+1)

(1,2) +

(
ẽ2k −

[
T̃2k

02(m−k)p×2kp

]
H2kẽ2k

)
(A−1k+1)

(2,2)

= T̃2mẽ2k+1A
(1,1)
k+1 (A−1k+1)

(1,2) +

(
ẽ2k −

[
T̃2k

02(m−k)p×2kp

]
H2kẽ2k

)
(A−1k+1)

(2,2).

Then the proof is completed since we have WT
2m+2AV

(2)
k+1 = T̃2mẽ2k+2. Now we

show the same result for the matrix L̃2m, and we derive recursions to compute

the block columns of this matrices directly from the block columns of the upper

block Hessenberg matrix H̃2m, without requiring the matrix-vector products with

A−1.

Proposition 6.1.4 Let L̃2m and H̃2m be the upper Hessenberg matrices defined
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earlier. Then, the following relations hold

L̃2mẽ1 = [ẽ1Λ
(1,2)
V + ẽ2Λ

(2,2)
V ](Λ

(1,1)
V )−1, (6.32)

and for k = 1, . . . ,m, we have

L̃2mẽ2k = H̃2mẽ2k, (6.33)

L̃2mẽ2k+1 =

(
ẽ2k−1 −

[
L̃2k

02(m−k)p×2kp

]
H2kẽ2k−1

)
(A

(1,1)
k+1 )−1. (6.34)

Proof. To prove (6.32), we use the QR decomposition of [V,A−1V ] as in (6.29).

Then if Λ
(1,1)
V is non-singular, we obtain

A−1V
(1)
1 = A−1V (Λ

(1,1)
V )−1 = [V

(1)
1 Λ

(1,2)
V + V

(2)
1 Λ

(2,2)
V ](Λ

(1,1)
V )−1.

We pre-multiply the above equality on the left by WT
2m+2 and we use the biorthog-

onality condition to get

WT
2m+2A

−1V
(1)
1 = [ẽ1Λ

(1,2)
V + ẽ2Λ

(2,2)
V ](Λ

(1,1)
V )−1.

Then, equation (6.32) is obtained by using the fact that V2m+2A
−1V

(1)
1 = L̃2mẽ1.

For the other even block vectors, we proceed as follows. We start by using

(6.24) and (6.25) to have

A−1V
(2)
k = Uk+1ẽ2 + V2kH2kẽ2k,

= Vk+1Ak+1ẽ2 + V2kH2kẽ2k

= V2k+2H̃2kẽ2k. (6.35)

Now, multiplying on the left by WT
2m+2 to get

WT
2m+2A

−1V
(2)
k = WT

2m+2V2k+2H̃2kẽ2k,

hence

WT
2m+2A

−1V
(2)
k =

[
I2(k+1)p

02(m−k)p×2(k+1)p

]
H̃2kẽ2k

therefore

L̃2mẽ2k =

[
H̃2k

02(m−k)p×2kp

]
= H̃2mẽ2k,

which gives relation (6.33).
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For the odd blocks, we multiply (6.24) on the left by A−1 and we consider only

the first p columns of each block to obtain

A−1Uk+1ẽ1 = V
(1)
k − A−1V2kH2kẽ2k−1.

Since Uk+1 = Vk+1Ak+1, we have

Uk+1ẽ1 = V
(1)
k+1A

(1,1)
k+1 ,

if A
(1,1)
k+1 is non-singular, we obtain

A−1V
(1)
k+1 = A−1Uk+1ẽ1(A

(1,1)
k+1 )−1 = (V

(1)
k − A−1V2kH2kẽ2k−1)(A

(1,1)
k+1 )−1.

Multiplying from the left by WT
2m+2, we get

WT
2m+2A

−1V
(1)
k+1 = (WT

2m+2V
(1)
k −WT

2m+2A
−1V2kH2kẽ2k−1)(A

(1,1)
k+1 )−1,

and then

L̃2mẽ2k+1 =

(
WT

2m+2V2m+2ẽ2k−1 −WT
2m+2A

−1V2m

[
I2kp

02(m−k)p×2kp

]
H2kẽ2k−1

)
(A

(1,1)
k+1 )−1

=

(
ẽ2k−1 − L̃2m

[
I2kp

02(m−k)p×2kp

]
H2kẽ2k−1

)
(A

(1,1)
k+1 )−1

=

(
ẽ2k−1 −

[
L̃2k

02(m−k)p×2kp

]
H2kẽ2k−1

)
(A

(1,1)
k+1 )−1, (6.36)

which gives the relation (6.34).

The results of the next two propositions will be used to prove other properties

in the next section which is devoted to the application of the extended block

Lanczos method to obtain reduced order models in large scale dynamical systems.

As we will see, the method allow one to approximate low and high frequencies of

the corresponding transfer function at the same time.

Proposition 6.1.5 Let V2m and W2m be the matrices generated by Algorithm 10,

and let L2m = WT
2mA

−1V2m. Then we have

A−jV2mE1 = V2mLj2mE1, for j = 0, . . . ,m− 1, (6.37)

(A−T )jW2mE1 = W2m(LT2m)jE1, for j = 0, . . . ,m− 1. (6.38)

Moreover, we have

T−12mEj = L2mEj, for j = 1, . . . ,m− 1, (6.39)

where Ej is an 2mp× 2p tall thin matrix with an identity matrix of dimension p

at the jth block and zero elsewhere.
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Proof. Using equation (6.21) of proposition (6.1.2), we have

A−1V2m = V2mL2m + Vm+1Lm+1,mETm, (6.40)

we pre-multiply on the left by A−1 j times, we re-arrange the result and then we

multiply from the right by E1 to get

A−jV2mE1 = V2mLj2mE1 +

j∑
i=1

A−(i−1)Vm+1Lm+1,mETmL
j−i
2mE1.

As L2m is an upper block Hessenberg matrix, it follows that ETmL
j−i
2mE1 = 0, for

j = 1, . . . ,m − 1, and then equtaion (6.37) is verified. In a similar way, we can

use equation (6.23) of proposition (6.1.2) to show (6.38).

Now to prove (6.39), we multiply (6.40) from the right by Ej to get

A−1V2mEj = V2mL2mEj, for j = 1, . . . ,m− 1.

We pre-multiply the above equality by WT
2mA from the left and we use the

biorthogonality condition to have

Ej = T2mL2mEj, for j = 1, . . . ,m− 1.

Finally, equation (6.39) can be obtained if we assume that T2m is non-singular.

The following result is proven in [87], it gives a general property for two upper

Hessenberg matrices.

Proposition 6.1.6 Let T = (Ti,j) and L = (Li,j) be two upper Hessenberg ma-

trices with blocks Ti,j, Li,j ∈ Rp×p for i, j = 1, . . . ,m, and suppose that

TEj = LEj, for j = 1, . . . ,m− 1.

Then

T kE1 = LkE1, for k = 1, . . . ,m− 1.

6.2 Application to model reduction problem

We consider the Multi-Input Multi-Output LTI dynamical system Σ described

in (2.1). Then the aim of this section is to present a new projection method

that allows to compute the low-order dimensional system (2.3) by projecting the
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original problem on to the extended Krylov subspace. The application of the

extended block Lanczos algorithm, described in last section, to the pairs (A,B)

and (AT , CT ) gives two bi-orthogonal bases V2m ∈ Rn×2mp and W2m ∈ Rn×2mp

and then the reduced order model can be defined as

A2m = T2m = WT
2mAV2m, B2m = WT

2mB and C2m = CVm. (6.41)

As in the next chapters, we use the moment matching techniques to generate

the reduced order model (2.3). We consider the Markov parameters

f (j)
∞ = CAjB, j ≥ 0,

and the jth moment of F (s) around σ = 0

f
(j)
0 = CA−jB, j ≥ 0.

Then, the aim of the moment matching problem using the extended block Lanczos

algorithm is to produce a reduced order model such that 2m−1 moments are to be

matched for the Markov parameters, and 2m−1 moments are also to be matched

around zero, i.e.,

f̂ (j)
∞ = f (j)

∞ , for j = 0, . . . , 2m− 2, (6.42)

and

f̂
(j)
0 = f

(j)
0 , for j = 0, . . . , 2m− 2. (6.43)

For the Markov parameters, the equality (6.42) is already proven in the literature;

see [86] and the references therein. the following result shows that the first 2m−1

moments of the transfer function F around σ = 0 are also matched.

Proposition 6.2.1 Let f̂
(j)
0 and f

(j)
0 be the matrix moments given by the Laurent

expansions of the transfer functions Fm and F around σ = 0, respectively. Then,

the first 2m − 1 moments of the original and the reduced models are the same,

that is,

f̂
(j)
0 = f

(j)
0 , for j = 0, . . . , 2(m− 1).

Proof. Let j ∈ {0, 1, . . . , 2(m − 1)}, let j1, j2 ∈ {0, 1, . . . ,m − 1} such that

j1 + j2 = j. Then we have

f
(j)
0 = CA−jB = CA−(j1+j2)B = CA−j1A−j2B. (6.44)
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Using the QR decomposition defined in (6.2) for V = B and W = CT gives

B = V1

[
Λ

(1,1)
V

0

]
and C =

[
Λ

(1,1)
W

0

]T
W T

1 .

Substituting this result in equation (6.44) yields

f
(j)
0 =

[
Λ

(1,1)
W

0

]T
W T

1 A
−j1A−j2V1

[
Λ

(1,1)
V

0

]

=

[
Λ

(1,1)
W

0

]T
ET1WT

2mA
−j1A−j2V2mE1

[
Λ

(1,1)
V

0

]
. (6.45)

Therefore, using the result of Proposition 6.1.5, we get

f
(j)
0 =

[
Λ

(1,1)
W

0

]T
ET1L

j1
2mWT

2mV2mLj22mE1

[
Λ

(1,1)
V

0

]

=

[
Λ

(1,1)
W

0

]T
ET1L

j
2mE1

[
Λ

(1,1)
V

0

]
. (6.46)

On the other hand, since L2m and T−12m are both Hessenberg matrices that verify

T−12mEj = L2mEj, then the application of Proposition 6.1.6 gives

Lj2mE1 = T−j2mE1, for j = 0, . . . ,m− 1,

and so

f
(j)
0 =

[
Λ

(1,1)
W

0

]T
ET1T

−j
2mE1

[
Λ

(1,1)
V

0

]

=

[
Λ

(1,1)
W

0

]T
W T

1 V2mT−j2mWT
2mV1

[
Λ

(1,1)
V

0

]
= CV2mT−j2mWT

2mB

= CrT−j2mBr

= f̂
(j)
0 , (6.47)

which completes the proof of Proposition 6.2.1.
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6.3 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the

extended block Lanczos algorithm proposed when applied to reduce the order of

large scale dynamical systems. All the experiments were performed on a computer

of Intel Core i5 at 1.3GHz and 8GB of RAM. The algorithms were coded in Matlab

8.0.

In the experiments of this chapter, we used some matrices from LYAPACK and

different known benchmark models listed in Table 6.1. The subspace dimension

will be fixed a-priori for all examples.

Table 6.1: The matrix tests.

Matrices sizes
CD-Player n = 120, p = 2
add32 n = 4960, p = 4
Modified FOM n = 1006, p = 5
ISS n = 270, p = 3
fdm n = 10.000, p = 6
Flow-Meter n = 9669, p = 5

Example 1. In this example, we used the extended block Lanczos algorithm to

reduce the order of ISS and CD player models. They are small dimension systems

but are generally difficult and are always considered as a benchmark test . The

top curves of Figure 6.1 (ISS) and Figure 6.2 (CD player) show the frequency

responses of the original system (circles) compared with the frequency responses

of its approximations for m = 5. The bottom curves of these figures represent the

exact error ‖F (jω)− Fm(jω)‖2 for different frequencies ω ∈ [10−6, 106].

As a third test model of example 1, we considered the Flow model which is

obtained from the discretization of a 2D convective thermal flow problem ( flow

meter model v0.5) from the Oberwolfach model reduction benchmark collection,
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Figure 6.1: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the ISS model.

2003, with 5 inputs and 5 outputs. The obtained plots of this experiment are

given in Figure 6.3.

Example 2. In this example, We plotted the H∞ error norm ‖F − Fm‖∞ versus

the number m of iterations for two different models. The first one is the modified

FOM model, while the second is the fdm system. For the fdm model we have

f(x, y) = exy, g(x, y) = sin(xy) and h(x, y) = y2 − x2,

the dimension of the original system is n = 104 with 6 inputs and 6 outputs. As
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Figure 6.2: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the CD player model.

can be shown from Figure 6.4, the extended block Lanczos algorithm (EBLA) gives

good result with small values of m.

Example 3. In the last example we compared the extended block Lanczos

algorithm (EBLA) with IRKA method. We used four models: the ISS, the add32,

the Modified fom and the fdm models. In Table 6.2, we listed the obtained H∞
norm of the error transfer function ‖F − Fm‖∞, the corresponding cpu-time, and

the used space dimension. A maximum number of mmax = 100 iterations was
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Figure 6.3: Top: ‖F (jω)‖2 and its approximations ‖Fm(jω)‖2. Bottom: the exact
error ‖F (jω)− Fm(jω)‖2 for the flow-meter model.

allowed to the IRKA method. As observed from Table 6.2, IRKA and EBLA return

similar results for the H∞ norm, with an important advantage of the cpu-time for

the EBLA.
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Figure 6.4: The H∞ error ‖F −Fm‖∞ versus the number of iterations for the fdm

model (top curve) and the modified fom model (bottom curve).

6.4 Conclusion

In this chapter, we proposed an extended block Lanczos algorithm with appli-

cations in model order reduction of MIMO first-order stable linear dynamical

systems. Moreover, we derived new theoretical results and new properties for this

precess. We presented some numerical results to confirm the good performance of

the extended block Lanczos subspace method compared with other known method.

The proposed procedure is tested on well known benchmark problems of medium
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Table 6.2: Comparison between IRKA and EBLA for ISS, add32, Modified fom

and fdm models.

EBLA IRKA

H∞ error # dim(2mp) time H∞ error # dim(mp) time
ISS 8.41e-04 60 0.25s 1.61e-04 75 12.71s
add32 1.96e-08 120 4.72s 8.65e-09 120 313.77s
Modified fom 3.89e-11 216 1.61s 3.60e-10 150 78.66s
fdm 6.07e-11 180 20.93s 3.75e-11 150 1000.60s

and large dimensions, and the numerical results show that the application of the

extended algorithm on model reduction problem allows one to obtain reduced

order models of small dimension.
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7
Conclusions and Future Directions

This chapter provides a summary of the results on model order reduction estab-

lished in the previous chapters. Moreover, suggestions for future directions on the

improvements of the aforementioned techniques and extension of these results will

be stated.

7.1 Summary of results

This dissertation has focused on projection methods to efficiently generated re-

duced order models for large scale linear dynamical systems with Multiple-Input

Multiple-Output, especially, the moment matching techniques based on multi-

point rational interpolation. Rational Krylov has been shown to be very effective

for large-scale systems and produce better approximations over a broad frequency
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range by matching the moments of the original transfer function F (s) around

different frequencies. Unfortunately, these methods have the drawback that the

selection of interpolation points is a difficult task since it is an ad-hoc process.

The main contribution of all the chapters of this thesis may be summarized in

four parts:

• Proposing a new variant of rational Lanczos algorithm.

• Deriving some algebraic properties that describe the proposed process.

• Introducing new techniques for choosing the interpolation points.

• Giving new expressions for the transfer function error.

Then in this thesis, four rational Lanczos algorithms are proposed and applied to

model order reduction problem. The first one is named the rational block Lanczos-

type algorithm and it is related to a set of rational equations that describe the

relation between the two bi-orthogonal bases generated by this process and the

matrices of the original system. The combination of the first algorithm and an

adaptive approach for choosing the interpolation points gives an Adaptive Order

Rational Block Lanczos-type (AORBL) algorithm. The numerical results confirm

the good performance of the rational block Lanczos subspace method, especially

when compared with the well known approach IRKA.

The second algorithm, named the modified rational block Lanczos algorithm,

can be considered as a generalization of the first one where different multiplicities

are consider for each interpolation point. The advantage of this procedure is that

the standard Lanczos equations remain valid also in the rational block case.

An other extension of the standard Krylov subspace method for MIMO systems

is the global Krylov subspace. This algorithm compute F -biorthogonal bases of

the rational matrix Krylov subspaces. In this part, two versions of the rational

Global Lanczos algorithm are given. The first one represents the general form

of this process which allows to obtain the global Lanczos equations but in the
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rational form. In the second version, we modify the first rational global Lanczos

algorithm in such a way the standard Lanczos equations remain valid also in

the rational global case. Next, we combine the modified rational global Lanczos

process and one of the proposed method to select the interpolation points to get

an Adaptive Modified Rational Global Lanczos (AMRGL) procedure.

The last procedure proposed in this thesis is the extended block Lanczos algo-

rithm (EBLA). The advantage of this process compared with other rational Krylov

procedures is that we don’t need to construct the poles of the rational Krylov

subspace to compute the F -biorthogonal bases.

7.2 Future directions

The goal of this dissertation was to provide efficient rational Krylov algorithms for

model order reduction problem. Some recommendations for future studies related

to this work are presented below:

• Proposing other rational Krylov algorithms.

• Applying the rational Lanczos algorithms proposed to approximate the

problem of etAB.

• Developing efficient algorithms based on balanced truncation method and

rational Krylov algorithms.

• Developing new and efficient techniques for choosing the interpolation points.
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(MOCASIM), 19-22 Novembre 2014, Marrakech Morocco.

• H. Barkouki, A. H. Bentbib, and K. Jbilou, ”A modified nonsymmetric ratio-

nal block Lanczos method for model reduction in large scale LTI dynamical
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