Prof Asst Cornillot 
  
Reynes Ankit Christelle 
  
Dwivedi 
  
Prof Emmanuel 
  
Dr Thomas D Otto 
  
Prof Cerdan -Examiner Rachel 
  
Dr Stéphane Cruveiller 
  
Ankit Dwivedi 
email: aankitddwivedi@gmail.com
  
Nimol Khim 
  
Christelle Reynes 
  
Patrice Ravel 
  
Laurence Ma 
  
Magali Tichit 
  
Christiane Bourchier 
  
Saorin Kim 
  
Dany Dourng 
  
Chanra Khean 
  
Pheaktra Chim 
  
Sovannaroth Siv 
  
Roger Frutos 
  
Dysoley Lek 
  
Odile Mercereau-Puijalon 
  
Frédéric Ariey 
  
Emmanuel Cornillot 
email: emmanuel.cornillot@umontpellier.fr
  
A Kuehn 
  
M Hebrard 
  
S Milanesi 
  
E Rivals 
  
D Menard 
  
Choukri Ben Mamoun 
email: choukri.benmamoun@yale.edu
  
J Colinge 
  
Aprajita Garg 
  
Anna Stein 
  
William Zhao 
  
  
  
  
Keywords: 4, 2, microti isolates, 4, 3

Functional analysis of genomic variations associated with

emerging artemisinin resistant P. falciparum parasite populations and human infecting piroplasmida B. microti populations

First, I would sincerely like to express my gratefulness to Professor Emmanuel Cornillot for his guidance and encouragement throughout the project. His valuable discussion and ideas have helped in broadening my scope of thinking. His knowledge has helped me in understanding the fundamentals of parasite biology and associated functions. Being my guide and mentor for the last three years, he has patiently taught me many techniques and aspects of bioinformatics and functional analysis.

Next, I would sincerely like to thank Asst. Prof. Christelle Reynes for guiding me, being my thesis co-supervisor. She has supported me throughout the project and has helped me in improving my presentation and technical skills. Her knowledge and guidance has played an important role in guiding me through mathematical and computational parts of the project. Her suggestions and valuable discussions have helped me a lot in understanding and improving various aspects of statistics.

I am grateful to the team leader, Prof. Jacques Colinge, for the valuable discussions and guidance in the functional analysis stage of the project. He has provided inputs and guided me through the new techniques and trends in network analysis. The discussions with him has provided new aspects to the project. I am thankful to Dr. Axel Kuehn for helping me through the technical part of the network analysis. I am thankful to the other members of the team, Dr. Patrice ravel, Dr. Rasha E Boulos and Sabine Chabalier, for valuable discussions and technical support.

I would like to thank Dr. Didier Menard and Dr. Nimol Khim for valuable discussions and data input. The data was made available by them for the barcode approach. I would also sincerely like to acknowledge Dr. Maxime Hebbard and Sylvain Milanesi for helping me with the technical part of the project. Their support v vi in the beginning of the project has played a crucial role in completing the variant calling analysis. I would like to sincerely thank Dr. Eric Rivals and Prof. Patrick Bastien for being the thesis committee members and providing me valuable inputs and critics to improve the analysis, results and presentation skills.

I would sincerely like to acknowledge the Erasmus Mundus Action 2 Svaagata.eu project and European commission for granting me the scholarship for pursuing full time Ph.D. program for the duration of 36 months at the University of Montpellier, France. Also, I am grateful to Institut de Biologie Computationnelle (IBC) for providing me all the financial and technical support and services. IBC has provided me opportunities to participate in international conferences which has helped me in growing professionally.

I am very grateful to and would sincerely like to thank Ankita Jha for all the moral, emotional and professional support. In the last very importantly, I would like to thank my family for showing belief in me and supporting me in every possible way.

-Ankit Dwivedi viii subpopulations were described. Presence of admixture parasite subpopulation could be supporting artemisinin resistance transmission. Functional analysis based on significant genes validated similar background for resistant isolates and revealed PI3K pathway in resistant populations supporting acquisition of resistance by assisting the parasite in ring stage form.

Our findings question the origin and the persistence of the P. falciparum subpopulations in Cambodia, provide evidence of gene flow among subpopulations and describe a model of artemisinin resistance acquisition.

The variant calling approach was also implemented on the Babesia microti genome. This is a malaria like syndrome, and is endemic in the North-Eastern USA. The objective was to validate the taxonomic position of B. microti as an out-group among piroplasmida and improve the functional genome annotation based on genetic variation, gene expression and protein antigenicity. We identified new proteins involved in parasite host interactions. ix

Résumé

Analyse fonctionnelle des variations du génome au sein de populations de P. falciparum résistantes à l'artémisinine et chez le piroplasme responsable de la babésiose humaine B. microti

par Ankit Dwivedi
Le programme d'élimination du paludisme de l'OMS est menacé par l'émergence et la propagation potentielle de parasites de l'espèce Plasmodium falciparum résistants à l'artémisinine. Récemment il a été montré que (a) des SNPs dans une région du chromosome 13 subissaient une forte sélection positive récente au Cambodge, (b) plusieurs sous-populations de parasites de P. falciparum résistants et sensibles à l'artémisinine étaient présentes au Cambodge, (c) des mutations dans le domaine Kelch du gène k13 sont des déterminants majeurs de la résistance à l'artémisinine dans la population parasitaire cambodgien et (d) des parasites de sous-populations du nord du Cambodge près de la Thaïlande et du Laos sont résistants à la méfloquine et portent l'allèle R539T du gène de k13.

Il est donc nécessaire d'identifier la base génétique de la résistance dans le but de surveiller et de contrôler la transmission de parasites résistants au reste du monde, pour comprendre le métabolisme des parasites et pour le développement de nouveaux médicaments. Ce travail a porté sur la caractérisation de la structure de la population de P. falciparum au Cambodge et la description des propriétés métaboliques des souspopulations présentes ainsi que des flux de gènes entre ces sous-populations. Le but est d'identifier les bases génétiques associées à la transmission et l'acquisition de résistance à l'artémisinine dans le pays.

La première approche par code-barre a été développée pour identifier des souspopulations à l'aide d'un petit nombre de loci. Une approche moléculaire de PCR-LDR-FMA multiplexée et basée sur la technologie LUMINEX a été mise au point pour identifier les SNP dans 537 échantillons de sang (2010 -2011) provenant de 16 centres de santé au Cambodge. La présence de sous-populations le long des frontières du pays a été établie grâce à l'analyse de 282 échantillons. Les flux de gènes ont été décrits à partir des 11 loci du code-barre. Le code-barre permet d'identifier les souspopulations de parasites associées à la résistance à l'artémisinine et à la méfloquine x qui ont émergé récemment.

La seconde approche de caractérisation de la structure de la population de P.

falciparum au Cambodge a été définie sur la base de l'analyse de 167 génomes de parasites (données NGS de 2008 à 2011) provenant de quatre localités au Cambodge et récupérés à partir de la base de données ENA. Huit sous-populations de parasites ont pu être décrites à partir d'un jeu de 21257 SNPs caractérisés dans cette étude. La présence de sous-populations mixtes de parasite apparait comme un risque majeur pour la transmission de la résistance à l'artémisinine. L'analyse fonctionnelle montre qu'il existe un fond génétique commun aux isolats dans les populations résistantes et a confirmé l'importance de la voie PI3K dans l'acquisition de la résistance en aidant le parasite à rester sous forme de stade anneau. Nos résultats remettent en question l'origine et la persistance des sous-populations de P. falciparum au Cambodge, fournissent des preuves de flux génétique entre les sous-populations et décrivent un modèle d'acquisition de résistance à l'artémisinine.

Le processus d'identification des SNPs fiables a été ensuite appliqué au génome de Babesia microti. Ce parasite est responsable de la babésiose humain (un syndrome de type malaria) et est endémique dans le nord-est des Etats-Unis. L'objectif était de valider la position taxonomique de B. microti en tant que groupe externe aux piroplasmes et d'améliorer l'annotation fonctionnelle du génome en incluant la variabilité génétique, l'expression des gènes et la capacité antigénique des protéines. Nous avons ainsi identifié de nouvelles protéines impliquées dans les interactions hôte-parasite. 
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Chapter 1 Introduction

The work presented in this thesis focuses on the description of parasite population structure using whole genome sequencing data and functional annotation of the identified polymorphisms and genes. The work presented here focuses on two genomes primarily, Plasmodium falciparum and Babesia microti. All the methods and approaches are developed for P. falciparum whole genome sequencing data analysis and implemented on B. microti genomic data as an application of developed pipelines.

The following bibliographical sections will be mainly focused on the parasite P. falciparum and Malaria. The bibliographic sections is divided into two parts, one part explaining the epidemiology and biology associated to the two parasites and the other part focussing on whole genome sequencing data analysis.

Genomic Information

Proteins are the building blocks of an organism. They are functional units involved in physiological processes. The DNA sequence encodes the genetic information of an organism. In eukaryotes, they are encoded in protein coding (exons) and non-coding regions (introns), which are defined stretches of DNA sequence that contain the information required to construct proteins and functional RNA molecules, respectively.

In the nucleus, the dsDNA (double stranded DNA) carrying the genetic information goes under transcription producing premature mRNA (messenger RNA), which is a single stranded (ss) nucleotide sequence. This premature RNA containing exons and introns undergoes splicing and the intronic part of the RNA is removed. The intronic sequence containing non-coding regions encode for RNA molecules. The 6 CHAPTER 1. INTRODUCTION spliced mRNA containing the exonic sequence is transported outside the nucleus in the cytoplasm through nuclear pores. The mature mRNA contains the open reading frame (ORF) encoding for the protein. This mRNA undergoes translation (5' -> 3') in the presence of Ribosome and tRNAs (transfer RNAs). The nucleotide sequence is read as three bases at a time (referred to as codon) and the tRNAs match the codon coding for one of the 20 amino acids with three complimentary bases (anticodon). The synthesized proteins (inactive form) folds into 3-D structure (active form) in the presence of molecular chaperon proteins near the endoplasmic reticulum.

Starting from the dsDNA to synthesis of RNAs and proteins, different kind of data can be recovered at each level, i.e, at DNA level (Annotation and Epigenomic data), at RNA transcription level (Transcriptomic data), at protein translation level (proteomic data) and phenotype level (phenomic data).

Apicomplexan Genomes

Plasmodium falciparum is a protozoa from phylum Apicomplexa. These apicomplexans are eukaryotic and share many metabolic pathways with host organisms. Eukaryotic nuclear genomes are organized in linear chromosomes. The composition in chromosomes is called the karyotype. The proportion between coding and non-coding regions vary greatly among eukaryotes. Larger genomes have a small ratio of coding regions. Apicomplexa are protists. The eukaryotic genome is much larger and complex than the prokaryotic genome. In the genome of eukaryotic organism, apart from the protein coding genes, a large amount of sequences does not code for any proteins and constitutes most of the DNA, thus increasing the complexity [Cooper GM., 2000]. Many gene families exist in eukaryotic genes contributing to the large size of the eukaryotic genome and fulfilling the requirement of increased RNA and protein production. The size of eucaryotic genomes is explained first by the number of genes, because they have to fulfill more complex functions and the size of the coding regions. Some eukaryotes have genomes which are smaller than bacteria (microsporidia). Some bacteria (Streptomyces, 9 Mbp) have genome larger than B. microti (6.5 Mbp) 1.2. APICOMPLEXAN GENOMES

P. falciparum nuclear genome

The P. falciparum nuclear genome is 23 Mbp in size and dispersed throughout 14 chromosomes. The genome of P. falciparum is haploid. More than 5,500 protein coding genes have been recognized. The size of each chromosome is in the range 0.643 -3.29 Mbp. Around 54 % of the genome is intronic sequence [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. Most of the genome sequence is AT rich, which makes the genome less complex and prone to overlapping errors. The nuclear genome contains 43 tRNAs and some rRNAs (ribosomal RNAs) in different chromosomes. The subtelomeric region has most of the mutations in the genome, affecting the genes involved in antigenic variation. Three gene families rif, stevor and var were shown to be associated with antigenic variation and were separated from the telomeres by tandem repeats of 21 bp telomereassociated repetitive elements (TARE). The centromeric regions have more conserved domains, with house-keeping genes. The predicted proteins in P. falciparum are hypothetical proteins with unknown function and around 60% of the genes do not have homology with other organisms, making the genes specific to P. falciparum. Based on the genome ontology (GO) term analysis of the P. falciparum genome, the products of predicted genes were associated to functions like cell invasion/adhesion, response to external stimulus, signal transduction, cell organization and biogenesis, stress response, transport, cell growth/maintatnance and others [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF].

The genome of P. falciparum comprises of the nuclear genome and the two organelle genomes (Figure 1.1), mitochondrial genome (6 KB) and circular apicoplast genome (35 KB) [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. The mitochondrial genome is the smallest described so far. The nuclear genome and mitochondrial genome were described earlier [Cornillot et al., 2012, Cornillot et al., 2013] and were used in the description of apicoplast genome (Article3: Materials and Methods section).

P. falciparum organelle genome

Mitochondria are small double membrane organelles in the eukaryotic genome. They are involved in oxidative phosphorylation and responsible for cellular energy by producing ATP. The presence of this organelle is explained by endosymbiont evolution, where a proteobacterium (prokaryotic cell) capable of oxidative mechanisms was engulfed by and incorporated into a eukaryote [van Dooren et al., 2006]. Mitochondria CHAPTER 1. INTRODUCTION genome contains 3 protein coding genes, cytochrome oxidase I (cox I), cytochrome oxidase III (cox III) and cytochrome b (cyt b) and at least 20 rRNA sequences. This organelle is also responsible for other metabolic functions such as apoptosis and biosynthetic processes for synthesis of compounds required in the electron transport chain (Figure 1.1). The genome lacks tRNA genes, genes encoding cox II and NADH dehydrogenase which are imported from nuclear genome [van Dooren et al., 2006]. The import of proteins takes place by N-terminal leader peptide. The electron transport chain functions as an electron sink, but is responsible for producing reactive oxygen species contributing to DNA mutations. It contains proteins to tackle oxidative stress [Muller, 2004]. The smaller size of the genome, uniparental mode of inheritance and lower rate of decay makes it a suitable genetic marker for evolutionary population studies and phylogenetic analyses [Smith, 2016]. The mitochondrial genome organization of B. microti is different from other apicomplexa [Cornillot et al., 2013].

The apicoplast genome is a circular DNA contained in a non-photosynthetic plastid [START_REF] Lim | The evolution, metabolism and functions of the apicoplast[END_REF]. The origin of this chloroplast like genome can be traced back to algae. The gene organization is conserved between Plasmodium and Toxoplasma. The presence of apicoplast in parasite genome is explained by secondary endosymbiosis theory, in which eukaryotic alga was engulfed by the apicomplexan parasite and the plastid was retained in the parasite [START_REF] Funes | A green algal apicoplast ancestor[END_REF]. The apicoplast genome encodes 30 proteins and like the chloroplast in plant cells, most of the apicolplast proteins are translated in the nucleus and then transported to the apicoplast (Figure 1.1). The proteins are targeted using amino-terminal secretory signal sequence followed by plastid signal peptide which takes the proteins into the plastid [START_REF] Roos | Origin, targeting, and function of the apicomplexan plastid[END_REF]. The targeted proteins include housekeeping enzymes involved in DNA replication, DNA repair, protein synthesis, protein turnover, metabolic processes and transport activities. This organelle is associated with functions like fatty acid synthesis, isoprenoids synthesis and heme synthesis [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. Fatty acids were shown to be absent in B. microti [Cornillot et al., 2012]. The apicoplast is essential for survival of the parasite [START_REF] Roos | Origin, targeting, and function of the apicomplexan plastid[END_REF]. Around 60% of the putative apicoplast proteins are of unknown function. The unique proteins and pathways compared to human biochemical pathways make apicoplast a good drug target [START_REF] Preston | A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains[END_REF]. [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. Metabolic pathways associated to food vacuole, mitochondria and apicoplast are shown. Glucose and glycerol provide the major carbon sources for malaria parasites. The white squares indicate TCA (tricarboxylic acid) cycle metabolites that may be derived from outside the mitochondrion. Antimalarial targets are represented by block arrows. Potential drug targets are represented by grey block arrows. Transporters are grouped by substrate specificity: inorganic cations (green), inorganic anions (magenta), organic nutrients (yellow), drug efflux and other (black). O the top the numbers in parentheses are the number of transporter genes with similar substrate predictions. Membrane transporters of unknown or putative subcellular localization are shown in a generic membrane (blue bar). Abbreviations: ACP, acyl carrier protein; ALA, aminolevulinic acid; CoA, coenzyme A; DHF, dihydrofolate; DOXP, deoxyxylulose phosphate; FPIX2+ and FPIX3+, ferro-and ferriprotoporphyrin IX, respectively; pABA, para-aminobenzoic acid; PEP, phosphoenolpyruvate; Pi, phosphate; PPi, pyrophosphate; PRPP, phosphoribosyl pyrophosphate; THF, tetrahydrofolate; UQ, ubiquinone.
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The two organelles, apicoplast and mitochondria are in close contact during the asexual stages of the parasite due to their metabolic dependence. Many proteins in these organelles are imported from the nuclear genome. These organelles are observed and transmitted in the female gametocytes only and do not recombine [START_REF] Okamoto | Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum[END_REF]. The no-recombinant nature of the organelle genomes makes it a good target for evolutionary studies [START_REF] Preston | A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains[END_REF].

Apicomplexan infections affecting humans

Malaria is a mosquito-borne parasitic infection of the liver and red blood cells (RBCs) in humans. It is caused by the protozoan Plasmodium. The main source of transmission of malarial infection is the female Anopheles mosquito. It is one of the most widespread parasitic diseases in the world and transmitted in more than 100 countries. Malaria cases are predominantly observed and reported in Sub-Saharan African regions, followed by South-East Asia regions, Eastern Mediterranean regions and some South American regions (see Fig. 1.1). There are five species of the genus Plasmodium reported that cause all malarial infections in human beings. These are P. falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi [START_REF] Kantele | Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi[END_REF]. Most of the infections are caused by P. falciparum and P. vivax with P. falciparum alone accounting for the 90 percent of the death cases due to Malaria [White et al., 2014]. The death cases due to P. vivax Malaria are observed in patients with other diseases leading to low immunity [START_REF] Douglas | Mortality attributable to Plasmodium vivax malaria: a clinical audit from Papua, Indonesia[END_REF]. The death cases due to Malaria are common in all ages, but it is mostly prevalent in children [White et al., 2014, Murray et al., 2012].

One of the most important challenges being faced today is the emergence of antimalarial drug resistance [White, 2008, Eastman andFidock, 2009]. One of the reasons is anti-malarial drug practices for long periods in specific locations. Artemisinincombination therapy (ACTs) is the front line treatment used to cure P. falciparum Malaria worldwide and is the key component of global malaria elimination programs [START_REF] Dondorp | The threat of artemisinin-resistant malaria[END_REF], Chotivanich et al., 2000, Douglas et al., 2012]. The parasite population structure has evolved due to the Malaria control interventions and the emergence of anti-malarial drug resistance has been observed. Cambodia in the South-East Asian region is the epicenter of evolving parasites with acquired anti-malarial drug resistance. The first clinical case of artemisinin drug resistance was observed near Western Cambodia and the Thailand-Myanmar border in 2008 [Noedl et al., 2008, Dondorp et al., 2009, Phyo et al., 2012]. Emergence of artemisinin drug resistance in this region is of major concern, as this is the same location where resistance to earlier anti-malarial drugs Chloroquine, Sulfadoxin-Pyrimethamine and Mefloquine [START_REF] Naidoo | Mapping 'partially resistant', 'fully resistant', and 'super resistant' malaria[END_REF], Sa et al., 2011, Wongsrichanalai and Meshnick, 2008] was observed in the past. In all the cases the resistance spread to different parts of the world, specifically in areas of high transmission such as sub-Saharan Africa and caused millions of deaths [START_REF] Dondorp | Artemisinin resistance in Plasmodium falciparum malaria[END_REF], Phyo et al., 2012]. There is a strong need to understand the underlying mechanism of acquisition of drug resistance and also the role played by parasite population structure in Cambodia to support this process. To prevent the spread of artemisinin resistance parasites in South-East Asia and Africa, it is very much necessary and urgent to detect the outbreaks of resistance at the early stage and provide guidelines to implement prevention measures.

The main objective of this study is the characterization of P. falciparum parasite population structure in Cambodia and describing the metabolic properties of the parasite subpopulations. The goal was to use the genomic and bioinformatics approaches to describe the specific metabolic capacities of different subpopulations and the genetic flux among them. The epidemiological knowledge of artemisinin resistant parasite populations will help in identifying the genetic evidence associated to transmission and acquisition of resistance in Cambodia.

Malaria: Global Review

Malaria has been eliminated from most parts of the world mainly in developed countries such as USA, Canada, Europe, and Russia. But around 40% of the world's population is still affected. The cases of Malaria increased significantly during the 1970s to the 1990s. The increase can be due to various reasons, such as relaxation of control efforts, increasing antimalarial drug resistance and insecticide resistance in the mosquito vectors [START_REF] Feachem | Call to action: priorities for malaria elimination[END_REF], Alonso et al., 2011]. Various effective measures have been implemented since then to control Malaria cases. Many countries have adapted Malaria elimination programs and have implemented guidelines such as early diagnosis and effective treatment within 48 hours, rational use of anti-malarial drugs, combination therapies and optimal dosage of anti-malarial drugs [The World Health Organization, 2015a]. The number of malaria cases have dropped from estimated 262 million in 2000, to 214 million in 2015 and the number of death cases Sub-saharan Africa is the region where the risk of Malaria transmission is highest and around 75% of death cases due to P. falciparum malaria are children under 5 years [START_REF] Snow | Estimating mortality, morbidity and disability due to malaria among Africa's nonpregnant population[END_REF]. The other regions are areas where the risk of malaria transmission is lower. Between 2000 and 2015, the number of reported malaria cases and the morality rate have declined significantly (>50%) globally. An increasing number of countries are dedicated towards eradicating malaria and have adapted malaria elimination programs. The European Region reported zero indigenous cases of malaria in 2015. Also the central asian region reported zero cases of malaria [The World Health Organization, 2015b]. On the other hand Venezuela has experienced increased cases of malaria (Figure 1.3). Map showing malaria endemic countries around the world and the changes in malaria incidence rates for the affected countries as accounted for the period 2000-2015[The World Health Organization, 2015b]. This map is created based on surveillance conducted among 97 countries and territories where malaria is endemic.

Out of the 5 species of Plasmodium known to infect humans, P. falciparum and P. vivax infect most of the population around the world. P. malariae and P. ovale are less frequently observed. The species P. knowlesi is mostly found in primates and is prevalent in south-east Asia (SEA), but can also affect humans. Even though P. falciparum is responsible for most of the death cases due to malaria, P. vivax has the wider geographical distribution. The reason for this distribution is the ability of P. vivax to survive in the mosquito vector at higher altitudes and lower temperatures. This parasite has a dormant liver stage (hypnozoites), which enables it to survive for longer periods. The two common drugs used as the treatment against P. vivax are chloroquine and primaquine. These two drugs eliminate the asexual blood stages and hypnozoites, which can relapse the infection [The World Health Organization, 2014, Antony andParija, 2016]. ACTs are used as the treatment in the areas where chloroquine resistance is prevalent. The risk of infection due to P. vivax is low in Africa because of the absence of Duffy antigen on the surface of RBCs in many CHAPTER 1. INTRODUCTION human populations in Africa [START_REF] Miller | The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy[END_REF].

One of the major threats faced by the malaria elimination programs worldwide is the emergence of antimalarial drug resistance. Understanding the mechanism of drug resistance and identifying the molecular markers to target is essential for development of antimalarial vaccines and planned implementation of the drugs. There is a need to develop new tools and diagnostics using different genomic and bioinformatics tools for the rapid identification of molecular markers associated to antimalarial drug resistance in different scenarios. Although the precise evaluation and monitoring of malaria worldwide is difficult, a continuous and planned surveillance is required for predicting transmission and acquisition of antimalarial drug resistance. The containment and treatment of the malaria cases should be dealt simultaneously.

Life cycle of Plasmodium falciparum

Malaria is caused by intra-erythrocytic protozoan parasites belonging to the phylum Apicomplexa. It is the most widespread vector-borne disease caused by the parasite species of genus Plasmodium. This parasite is transmitted to humans during the blood feed by female Anopheles mosquitoes mostly during the night time. Out of more than 400 Anopheles species only around 70 are potential vectors, which are robust to environmental change, occur in high densities in tropical climates, breed readily, and prefer humans [START_REF] Sinka | A global map of dominant malaria vectors[END_REF].

The sylvatic reserves of P. vivax and P. malarie exist [Ramasamy, 2014]. The life cycle of the parasite involves multiple stages in the anopheline mosquitoes and humans. The life cycle is complex and the parasite population in the host increases rapidly to help in transmission and pathogenesis [START_REF] Gerald | Mitosis in the human malaria parasite Plasmodium falciparum[END_REF]. Humans are the intermediate host in the replication cycle and Anopheles mosquitoes are the definitive hosts for sexual reproduction.

The life cycle of P. falciparum parasites can be described by four important stages (Figure 1.4): (1) liver-stage development in humans, (2) rapid blood-stage asexual multiplication in humans, (3) gamete development in humans and (4) Sporozoite formation in the gut of Anopheles mosquito [Rosenberg, 2008]. The parasite number during the life cycle stages increases greatly and rapidly during Plasmodium life cycle stages by mitosis leading to mass cytokinesis to release the progeny [Sinden, 1991, Gerald et al., 2011]. Figure 1.4 shows the life cycle of the parasite in the Anopheles mosquito (definitive host) and human (intermediate host). [START_REF] Josling | Sexual development in Plasmodium parasites: knowing when it's time to commit[END_REF]. The life cycle of the parasite in the human host begins with inoculation of motile sporozoites into the blood stream during the blood meal of female Anopheles mosquito. The sporozoites then travel to the liver, invade a hepatocyte and multiply rapidly. After about a week, the liver schizonts burst and release thousands of merozoites that invade the red blood cells and undergo repeated asexual multiplication. This asexual division is followed by the morphological stages such as the ring stage, the trophozoite and the schizont stage. Illness starts when total asexual parasite numbers in the circulation reach roughly 100 million. Less than 10% of the parasites develop into male and female gametocytes and are taken up by the Anopheles mosquito and undergo the sexual phase. This is the only parasite form transmitted from humans to the mosquito. In gut of the mosquito the zygote formed after fertilization develops into motile ookinete which can penetrate the midgut and forms an oocyst. The oocyst enlarges over time and bursts liberating sporozoites, which migrate to the salivary glands to await inoculation at the next blood feed [Klein, 2013, White et al., 2014, Bousema et al., 2014].

CHAPTER 1. INTRODUCTION

Life cycle stages in the vector

The part of the life cycle responsible for gametocytes fertilization and sporozoite development takes place in the gut of the female Anopheles mosquito.

The Anopheles mosquitoes are the transmission vectors for the P. falciparum parasite causing Malaria. The mature sexual gametocyte form of the parasite is transmitted to mosquitoes from humans during the blood feed. This is the only form of the parasite capable of transmission from humans to mosquitoes and the density of the mature gametocytes in the blood in very less [START_REF] Drakeley | The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion[END_REF].

After the transmission of the male motile and female non-motile sexual forms, further development takes place within the midgut of the mosquito. A small number of male gametocytes (macrogametes) fuse with the female gametocytes (microgametes) and form a diploid zygote. These zygotes become motile ookinates that pass through the midgut epithelial wall and form a oocyst [START_REF] Sinden | Plasmodium invasion of mosquito cells: hawk or dove?[END_REF]. The ookinates inside the oocyst undergo meiosis and produce thousands of sporozoites. The oocysts are ruptured and thousands of infective haploid sporozoites migrate to the salivary glands in about 24 hours [START_REF] Rosenberg | The number of sporozoites produced by individual malaria oocysts[END_REF], Beier, 1998, Gerald et al., 2011].

Life cycle stages in humans

The part of the life cycle with infected sporozoites responsible for liver cell invasion and the blood stage infection takes place in human blood stream.

The female Anopheles mosquitoes transmit malaria during the human blood feed by inoculating motile and microscopic protozoan sporozoites, few of which are able to swim in the blood to attach themselves to the liver cells (hepatocytes) and grow as a trophozoite (uninucleate). The parasites not reaching the liver are removed by phagocytic cells. This step is usually fast and sporozoites takes around 30 minutes to reach the liver cells. In the pre-erythrocytic stage or the liver stage, over the span of 7 to 15 days, these liver stage parasites undergo 13-14 rounds of differentiation and asexual reproduction producing a schizont with up to tens of thousands of daughter merozoites [START_REF] Gerald | Mitosis in the human malaria parasite Plasmodium falciparum[END_REF].

The hepatocyte infection for P. vivax and P. ovale could last up to 9-10 months. These two species show a slightly different life cycle within the intermediate human host. The liver-stage of these species is prolonged as few sporozoites do not develop immediately into schizonts and remain at an undifferentiated (uninucleate) stage known as hypnozoite [START_REF] Soulard | Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice[END_REF]. Because of the presence of this hypnozoite form of the parasite the relapse of malaria in a human can occur even after several years. The factors activating the relapse are still not clearly known [Mary R. Galinski and Esmeralda V.S. Meyer and John W. Barnwell, 2013]. There are no hypnozoite forms of the parasite described for P. falciparum and P. malariae [START_REF] Greenwood | Malaria: progress, perils, and prospects for eradication[END_REF], Tanomsing et al., 2007].

The daughter merozoites are released into the liver sinusoids (capillary vessels of the liver forming the junction between the latter and the bloodstream) after the hepatic schizont bursts and eventually released in the bloodstream to infect the RBCs [START_REF] Sturm | Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids[END_REF].

The erythrocyte life cycle stages are responsible for malaria clinical symptoms [START_REF] Miller | The pathogenic basis of malaria[END_REF]. The liberated merozoites from the liver invade the erythrocytes and asexual proliferation takes place. A single merozoite in the RBC begins as a ring stage. This is called the ring stage as all the major organelles of the cell (nucleus, mitochondria, apicoplast, endoplasmic reticulum and ribosomes) are organized on the boundary of the cell with cytosolic central region. The ring stage parasites are surrounded by parasitophorous vacuolar membrane (PVM) developed during invasion into RBCs. The metabolic activity and the size of the ring stage parasite increase. The growing parasite enters the trophozoite stage, consumes RBCs contents and inserts newly derived parasite proteins to alter the membrane of the red blood cell. At this stage a tubovesicular network (TVN) is generated between the PVM and the host RBC membrane to import the nutrients and control the proteins and lipids of the erythrocyte membrane [START_REF] Lauer | A membrane network for nutrient import in red cells infected with the malaria parasite[END_REF], Tamez et al., 2008]. The trophozoite stage parasites then undergo DNA synthesis, mitosis and nuclear division to develop into a schizont with around 16 to 32 merozoites. With the rupture of the RBCs the merozoites spread and infect other RBCs. Some of the merozoites undergo 10 days maturation and develop into sexual gametocytes (male and female) and circulate in the blood. These gametocytes are then taken up by the mosquito during the blood feed and developed into sporozoites. Hence, continuing the cycle.

The malaria parasite is able to multiply rapidly by mitosis at every developmental stage. The incubation period is around 12 to 14 days from the infecting bite [START_REF] Simpson | Population dynamics of untreated Plasmodium falciparum malaria within the adult human host during the expansion phase of the infection[END_REF]. The parasite avoids the major growth regulation process of splenic clearance by expressing the antigens on the infected erythrocyte to sequester them CHAPTER 1. INTRODUCTION on endothelial cells [START_REF] Gerald | Mitosis in the human malaria parasite Plasmodium falciparum[END_REF]. Prolonged growth periods of the parasite support transmission and the schizont bursts support the pathogenic symptoms of the disease.

Malaria Treatment 1.3.3.1 Diagnosis

The early symptoms of malaria are flu-like symptoms. These symptoms are variable and have a incubation period of 9 days for P. falciparum and around 30 days for P. vivax malaria. These include fever, headache, weakness, myalgia (muscle pain), chills, dizziness, abdominal pain and diarrhea, followed by irregular occurrence of fever, nausea, vomiting, anorexia (loss of appetite) and skin itching. These symptoms are referred to as uncomplicated malaria systems. If not treated timely and properly these symptoms can lead to severe malaria symptoms which can be fatal.

Clinical diagnosis of these symptoms is difficult as these symptoms are also common in case of viral and bacterial infections. This ambiguity in diagnosis of symptoms can lead to improper use of antimalarial drugs and on the other hand improper use of other drugs used for common infections. Even if the symptoms are identified for malaria and antimalarial drugs are provided, it is important to have an account of the parasite species causing the malarial infection. Improper drug use may lead to severe malaria symptoms. Therefore, laboratory diagnosis and proper treatment is required to cure Malaria [The World Health Organization, 2015a].

Early malaria diagnosis is required for curing the patients and for preventing transmission of the infection. In laboratories, malaria is diagnosed using different strategies like microscopic detection of parasites in blood, concentration techniques, rapid diagnostic tests and molecular diagnostic methods.

The microscopic detection of the parasite is a conventional diagnosis method. It relies on microscopic examination of Giemsa stained blood films in which the cytoplasm of the RBC is colored in pink and the parasite nucleus in purple. A thick blood film is used for the confirmation of the presence of the parasite while the thin blood films are used to identify the parasite species [Ndao, 2009]. This is the most widely accepted and practiced method in the laboratories all over the world as it is cheap, easy to understand and able to identify the parasite density and the species. The drawbacks are less efficiency at low parasite densities, difficulties in identify-ing mixed infections and laborious microscopy technique, which is not suitable for high-throughput [START_REF] Tangpukdee | Malaria diagnosis: a brief review[END_REF].

One of the other diagnosis methods called Quantitative Buffer Coat (QBC) method was developed to simplify parasite diagnosis and enhance the microscopic detection of parasites. In this method the blood is collected in acridine orange dye stained capillary tube which is centrifuged to separate the components of the blood based on density. The presence of the parasite is confirmed using epifluorescence microscopy. The parasite DNA appears light green and the cytoplasm orange [START_REF] Clendennen | QBC and Giemsa-stained thick blood films: diagnostic performance of laboratory technologists[END_REF]. The sensitivity of this method is similar to that of a thick blood film. Although it is fast, simple, and user-friendly, it requires specialized instrumentation and training which makes it costlier. Also, it is less efficient in determining parasite density and species. It is more efficient for P. falciparum than the other species [START_REF] Tangpukdee | Malaria diagnosis: a brief review[END_REF].

In order to come over the limitations in using microscopy based technique for malaria diagnosis, a technique based on antigen-antibody reaction was developed in the 1990's and is referred to as rapid diagnostic tests (RDTs). This technique relies on immunochromatographic assays to detect malaria antigen in the patient blood flowing along a capillary whose membrane contains specific anti-malaria antibodies. Most of the RDTs target for detection of three parasite proteins, the histidine-rich protein II (HRP-II) and lactate dehydrogenase (pLDH) or aldolase. The protein HRP-II is present in the cytoplasm and membrane of the infected RBC and is specific to P. falciparum. The protein pLDH and adolase are glycolytic enzymes of genus Plasmodium and are used to detect asexual and sexual parasites stages. These methods are less sensitive to other Plasmodium species than P. falciparum [START_REF] Tangpukdee | Malaria diagnosis: a brief review[END_REF]. More than 80 RDTs are available [The World Health Organization, 2015b].

These RDTs have limitations and increased specificity to P. falciparum. Therefore, new molecular diagnostic methods with higher sensitivity have been developed. One of the most extensively used and sensitive techniques is the Polymerase Chain Reaction (PCR) DNA amplification process. The host DNA, parasite genome is identified by amplification of certain target genes [START_REF] Singh | A genus-and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies[END_REF]. This can be useful in analysing genomes with low parasite levels. PCR is able to detect mutations in genes associated with antimalarial drug resistant and mixed infections. Although PCR increases diagnosis sensitivity and specificity, it is limited by complex methodologies and high cost [START_REF] Tangpukdee | Malaria diagnosis: a brief review[END_REF].
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Some of the other diagnosis methods are LAMP technique, microarrays, FCM assay, Automated blood Cell Counters (ACC) and mass spectrophotometry [START_REF] Tangpukdee | Malaria diagnosis: a brief review[END_REF]. These methods are labor intensive, expensive or require improvement to be used as laboratory diagnosis methods universally. The microscopic techniques using blood films and the use of RDTs remain the gold standards for the diagnosis of malaria parasites [The World Health Organization, 2015a].

Anti-malaria drugs

The antimalarial drugs made available for the treatment of malaria and controlling the transmission, target different parasite forms at different life cycle stages. These drugs can be classified into four groups based on the drug effect on particular parasite stage in humans: Blood schizonticides kill asexual intra-erythrocytic stages (merozoite, trophozoite and schizont) of the parasites; tissue schizonticides kill hepatic schizonts before development into merozoites leading to erythrocytic invasion; hypnozoiticides kill the hypnozoite stages of P. vivax and P. ovale for the prevention of relapsing infection and the gametocytocides that kill the gametocyte form of the parasite to control the transmission of the malaria infection [Schlitzer, 2007]. These drugs are used in combination (combination therapies) with other drugs to slow down the development of drug resistance to monotherapies. The clearance half-life and anti-malarial action of both the drugs is different. Some of the front line therapy drugs and their action on the parasite are described in further paragraphs.

The first antimalarial drug to be used was quinine (QN) discovered in the 1800s and fully synthesized in 1944 [Toovey, 2004]. It is the most effective and practiced anti-malarial drug. This drug targets the hemozoin formation in the red blood cells. During the infection, parasite digests haemoglobin and releases free heme, which is toxic for the cell. The parasite converts this free heme into crystal form known as hemozoin. Quinine inhibits the formation of hemozoin, hence killing the blood-feeding parasites [White, 1996]. In south-east Asia (SEA) it is combined with antibiotics (clindamycin and tetracycline). It is used to treat P. falciparum malaria [Sibley, 2014]. It is mostly used for the treatment of severe malarial cases. The two other drugs used to target hemozoin were chloroquine (CQ) and mefloquine (MQ). Mass drug administration of the drugs led to resistance. The first case of CQ resistance for P. falciparum malaria was observed at Thailand-Cambodia border in 1957, which eventually spread to Africa around the 1980s [START_REF] Dondorp | Artemisinin resistance in Plasmodium falciparum malaria[END_REF]. It is used for the treatment of P. vivax, P. ovale and P. malariae malaria. Mefloquine was introduced in the 1980s and became the first line treatment of uncomplicated malaria in SEA after QN (Pradines Bruno et al. 2010a) in the 1990s. Since 2001 it has been widely used in combination with artesunate in SEA [The World Health Organization, 2015a]. These three drugs (quinine, chloroquine and mefloquine) have blood schizonticides activity. Whereas chloroquine also has gametocytocides activity in P. vivax and P. malariae [White, 1996].

After the emergence of chloroquine drug resistance, the combination of sulfadoxine and pyrimethamine (SP) was used as the anti-malarial drug [Sibley, 2014]. Pyrimethamine targets the folate biosynthesis pathway by inhibiting the enzyme dihydrofolate reductase (DHFR). The folate derivatives are essential for DNA replication and cell division. One of the folate derivatives, tetrahydrofolic acid is important for the biosynthesis of amino acid. The resistance against pyramithamine was rapid after its introduction. Therefore, it was used in combination with sulfonamide antibiotic sulfadoxine, targeting the dihydropteroate synthase (DHPS), which catalyzes the production of dihydropteroate required for biosynthesis of folate. This combination was introduced in Thailand in 1967 [Wongsrichanalai et al., 2002], but resistance developed rapidly. It is used to treat P. falciparum malaria, but due to side-effects it is only used in areas with resistance to other effective drugs. Sulfadoxin-Pyramethamine has blood schizonticides activity. Whereas, pyramethamine also has tissue schizonticides and hypnozoiticides activity [White, 1996].

Another drug, atovaquone with anti-malarial properties was used in combination with proguanil. This combination affects the mitochondrial electron transport chain, responsible for ATP synthesis. This drug combination targets the liver stage (preerthrocytic) parasite forms in addition to the RBC (erythrocytic) parasite forms. The molecular target of atovaquone is the cytochrome b (cyt b) protein encoded by Pfcytb gene in the mitochondria [START_REF] Mckeage | Atovaquone/proguanil: a review of its use for the prophylaxis of Plasmodium falciparum malaria[END_REF].

Artemisinin, an old medicinal Chinese herb was recognized for its rapid antimalarial action and was introduced in 1977 [White, 1997]. It is the fastest acting antimalarial. The combination of artemisinin and other antimalarial drugs referred to as Artemisinin Combination Therapies (ACTs), were recommended by the WHO as the front line therapy for the treatment of cerebral malaria and multi-drug resistant malaria in 2001. This drug can be used for both uncomplicated and severe P. falciparum malaria. The biological action of this drug on the parasite is not completely CHAPTER 1. INTRODUCTION known. Some of the plausible modes of actions are (1) reaction of the iron (F e 2+ ) from heme with artemisinin to form carbon centered free radical or reactive oxygen species (ROS) inhibiting parasite growth leading to parasite death or (2) direct interaction between artemisinin and Ca 2+ -ATPase PfATP6, causing loss of Ca 2+ pump of parasite leading to death [Shandilya et al., 2013, Cui andSu, 2009]. A computational approach has shown that Fe-artemisinin molecule inhibits the function of Ca 2+ pump PfATP6 through an allosteric mechanism causing death of the parasite [START_REF] Shandilya | A plausible mechanism for the antimalarial activity of artemisinin: A computational approach[END_REF] (Figure 1 .5). Artemisinin is used in combination with other anti-malarial drugs. Due to less biovailability of artemisinin, three artemisinin derivatives artesunate (water soluble), Artemether (lipid soluble) and dihydroartemisinin (DHA) are mostly used combined with other drugs such as sulfadoxine-pyramethamine (SP) and mefloquine (MQ). Artemisinin derivatives reduces the parasitemia IC50 (half maximal inhibitory concentration) by a log fold and are eliminated rapidly. The combination partner drugs are responsible for eliminating rest of the parasites and have a longer half-life, thus preventing emergence of artemisinin resistant mutants [White, 2004]. Therefore, the partner drug resistance will be acquired if the parasites are able to evade artemisisnin action. ACTs have blood schizonticides activity and targets all the intra-erythrocytic stages of the parasite. It also prevents the development of gametocytes by its action on the ring stage of the parasite and the early gametocyte stage (I-III) [START_REF] Witkowski | Novel phenotypic assays for the detection of artemisininresistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drugresponse studies[END_REF]. Hence, controlling the transmission of malarial parasite [START_REF] Price | Effects of artemisinin derivatives on malaria transmissibility[END_REF]. Some new possible anti-malarial compounds are in pipeline, targeting multiple life-cycle stages of the parasite and are under clinical trials. Two classes of chemical compounds pyrazoleamides [START_REF] Vaidya | Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum[END_REF] and spiroindolones [START_REF] Spillman | Na+ regulation in the malaria parasite plasmodium falciparum involves the cation {ATPase} pfatp4 and is a target of the spiroindolone antimalarials[END_REF] are defined, which target and increase the sodium ion concentration inside the blood stage P. falciparum parasite form (sexual stages) and disrupt the parasite membrane and permeability, subsequently killing the parasite. The pyrazoleamides affect the cation-pummping P-type ATPase (E1-E2 ATPase), and the spiroindolones effect the cation ATPase (PfATP4). Based on whole genomic sequencing methods, mutations in two proteins PfCDPK5 and PfATP4 are shown to be necessary for resistance to these two compounds. Another chemical compound DDD107498 [START_REF] Baragana | A novel multiple-stage antimalarial agent that inhibits protein synthesis[END_REF], was shown with anti-malarial activity against multiple life-cycle stages. This compound has long half-life and potential for single dose treatment. This compound also effects the transmission of parasites from the liver stage. The target of DDD107498 is the gene encoding P. falciparum translocation elongation factor 2 (PfeEF2), playing a role in protein synthesis. This compound affecting multiple life-cycle stages of P. falciparum has a potential to be advanced towards clinical trials [START_REF] Baragana | A novel multiple-stage antimalarial agent that inhibits protein synthesis[END_REF]. [START_REF] Ding | Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets[END_REF]. Red dots, represent the mutations in the proteins responsible for increasing (arrow) or decreasing (inhibition line) in vitro sensitivity to ART. The target molecules and mechanisms are in orange and the resistance factors are in yellow.

Drug Resistance

In the above sections we have seen that the resistance for all of the widely used antimalarial drugs has been observed in most parts of the world. As each drug targets different parasite forms and has different mode of action, understanding the resistance mechanism is complex. Some plausible resistance pathways have been described, but the process of acquisition of resistance is not completely understood. Some molecular markers have been defined based on the acquired mutations in the parasite genome associated to the underlying drug resistance process for different drugs (Figure 1.5). These markers have helped in understanding the resistance process and defining new drug targets for the synthesis and recognition of new anti-malarial drugs.

For the first widely used anti-malarial drug quinine, three genes encoding transporters at the digestive vacuole membrane, were shown to have mutations associated to resistance in 2004. The identification of these genes was based on analysis of quantitative trait locus (QTL) of genetic crosses between the reference clones HB3 (sensitive) and Dd2 (resistant). Ferdig and colleagues showed that Pfmdr-1 gene (Pf multidrug resistance 1) on chromosome 5, Pfcrt (Pf chloroquine resistance transport) on chromosome 7, and Pfnhe-1 (Pf Na+ / H+ exchanger-1) on chromosome 13 were associated with reduced sensitivity to QN [START_REF] Ferdig | Dissecting the loci of low-level quinine resistance in malaria parasites[END_REF]. The identification of molecular changes in the genome of the parasite treated with chloroquine was based on analysis of genetic crosses between CQ sensitive (HB3) and resistant (Dd2) parasite strains. This analysis identified the non-synonymous SNPs (8 mutations) in the P. falciparum chloroquine resistance transporter encoded by the Pfcrt gene (PF3D7 0709000) on chromosome 7. The Pfcrt-K76T mutation was found in all the chloroquine resistant parasites [Sibley, 2014]. These results were supported by association studies between genotype (resistant alleles) and phenotype (half maximal inhibitory concentration (IC50)) of isolates [START_REF] Ecker | PfCRT and its role in antimalarial drug resistance[END_REF]. This Pfcrt has a transporter-like structure at the digestive vacuole of the cell. The mutant Pfcrt (loss of the positively charged lysine 76) has acquired the ability to transport protonated CQ out of the digestive vacuole to the cytosol. Therefore reducing the excess CQ for heme from the digestive vacuole [START_REF] Ecker | PfCRT and its role in antimalarial drug resistance[END_REF]. In the case of Sulfadoxine-Pyramethamine (SP) the point mutations in the gene dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS ) were seen to be associated with resistance. For the mefloquine (MQ) resistant drugs, several studies (clinical or in vitro) have shown a correlation between the resistance to MQ and amplification of the copy number of Pfmdr1. This gene, similarly to Pfcrt, encodes a transporter at the digestive vacuole membrane of the parasite [START_REF] Ferreira | PfMDR1: mechanisms of transport modulation by functional polymorphisms[END_REF].

The main focus of this study is the emergence of artemisinin resistant parasites in the SEA region. The emergence of resistance to artemisinin appears to be currently limited to the Mekong basin [START_REF] Ashley | Spread of artemisinin resistance in Plasmodium falciparum[END_REF]. Clinical resistance to artemisinin in Plasmodium falciparum cases were documented at Pailin in 2009 [START_REF] Dondorp | Artemisinin resistance in Plasmodium falciparum malaria[END_REF] in WestWestern Cambodia. Since then, other cases have been found in the adjacent countries such as Thailand [START_REF] Phyo | Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study[END_REF], Vietnam [START_REF] Hien | In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam[END_REF], Burma [START_REF] Kyaw | Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar[END_REF] and Myanmar [START_REF] Tun | Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker[END_REF]. The clinical resistance is defined as the increased parasite clearance half-life. The rate of clearance of parasites is based on frequent parasite counts until no more parasites are detected. The emergence of resistance to this front line therapy worldwide is of major concern as the locus of emergence (Thailand-Cambodia border) is same as that of the emergence of resistance to previously used anti-malarial drugs and all the major drugs have developed resistance. All the combined therapies use artemisinin derivative [Sibley, 2014]. The resistance mechanism is not fully understood and no new anti-malarial agent is present for the replacement/substitution of ACTs. The increased parasite clearance half-life could evolve into true resistance, where it will not be efficient to clear the parasites and spread of this resistance following the trajectory of resistant to previous anti-malarial drugs will result into millions of deaths. The evidence supporting the plausible mechanisms associated to artemisinin resistance emergence in SEA are discussed in the next section.

Evidences decoding artemisinin resistance in Cambodia

Most of the malaria cases are due to P. falciparum and P. vivax, but all the species have been reported to cause infections [The World Health Organization, 2015b]. Resistant is mostly prevalent for P. falciparum, but cases in other species are also observed. Anti-malarial drug resistance is defined as delayed parasite clearance half-life. Cambodia is the epicenter of emergence of drug resistance. It shares its borders with Thailand, Vietnam and Laos in the north-west, east and north, respectively. These parasites are carried by around 25 different species of Anopheles mosquitoes in Cambodia. The first cases of resistance against chloroquine, mefloquine and sulfadoxinepyramethamine used for the treatment of P. falciparum malaria were observed near the Thailand-Cambodia border. Mefloquine was practiced as the main drug for the treatment of malaria from 1993 to 2000, which lead to emergence of resistance to mefloquine. Later it was combined with artemisinin derivative artesunate for the treatment of malaria [Sibley, 2014].

The first clinical case of artemisinin resistance (increased IC 50 ) was observed in Pailin in 2009 [START_REF] Dondorp | Artemisinin resistance in Plasmodium falciparum malaria[END_REF]. This location is very close to north-western bor-der with Thailand, where resistance to other drugs was reported. Artesunate was used as the monotherapy in that region for some years, which lead to the emergence of resistance [Noedl et al., 2008]. Since 2009, the combined therapy of dihydroartemisinin (DHA) and piperaquine (activity similar to chloroquine) is used for the treatment in Cambodia [START_REF] Zani | Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria[END_REF]. This treatment is failing in Cambodia, because the parasite surviving artemisinin are targeted by only piperaquine, leading to piperaquine resistance [Fairhurst, 2015].

Identifying the genetic basis of resistance is very important for developing tools to provide aiding efforts to tackle resistance. Studies have been performed on parasite genotypes to examine trends of recent positive selection and to identify regions of the genome associated with artemisinin resistance.

In the early studies, based on geographical differentiation, haplotype structure and GWAS (Genome Wide Association Study) analyses, it was shown that SNPs on chromosome 13 are under strong selection and associated to delayed parasite clearance half-life [START_REF] Cheeseman | A major genome region underlying artemisinin resistance in malaria[END_REF], Takala-Harrison et al., 2013]. Also, a novel assay was developed to measure the parasite clearance phenotype. Two properties of artemsinin were recognized for this assay: (1) short half-life and (2) on the ring stage exposure to artemisinin, the parasite is shrunk and squeezed out of the RBCs in spleen, producing uninfected RBCs. In this assay the clinical parasite isolates were adapted to culture and then synchronized to early ring stage. Then these ring stages were exposed to DHA for 6 hours and then cultured for 66 hours. The parasite density was calculated after DHA exposure [START_REF] Witkowski | Novel phenotypic assays for the detection of artemisininresistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drugresponse studies[END_REF]. This test is referred to as Ring Stage Assay (RSA) and shows that the artemisinin resistance phenomenon takes place at the early ring stage rather than other stage [Sibley, 2014].

In the early 2014, a strong molecular marker associated to artemisinin resistance was described based on extensive genetic analysis [Ariey et al., 2014]. Resistant was induced in Tanzanian cell lines by supplying escalating doses of artemisinin for 5 years in vitro. By comparing the resistant and sensitive parasite lines, mutations in the propeller domain of the kelch gene called as K13 (PF3D7-1343700) in chromosome 13 were associated to artemisinin resistance. Out of the 17 mutations observed in Cambodia, three mutations C580Y, Y493H and R539T showed long parasite clearance half-life and elevated RSA levels. The most dominant allele C580Y, is highly prevalent in western Cambodia. These mutations are mutually exclusive; each resistance strain contains only one of the K13 alleles. Clusters of mutant K13-propeller alleles in Cambodia are observed where resistance is prevalent; also an increased frequency of the most dominant mutant K13-propeller allele is correlated to the recent spread of resistance in western Cambodia. These K13 alleles show different levels of resistance and C580Y has been shown to be the most resistant among other alleles based on mutating the wild-type strains with these mutations and calculating the RSA levels [START_REF] Straimer | Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates[END_REF]. Kelch gene (K13) is homologous to KEAP1 gene in humans and contains propeller domain and BTB-POZ domain [Ariey et al., 2014]. Other mutations in K13 gene have been observed with slow clearance parasite half-life in Myanmar and C580Y mutations have been observed in the south-eastern part of Myanmar [START_REF] Tun | Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker[END_REF]. These results support that chromosome 13 can be a region of interest and also that K13-propeller mutations can be important determinants of artemisinin resistance. To follow these directions accurately and to build strategies for containing resistance, there is a need of temporal and geographical distribution data from the region of interest.

In 2013, based on population studies, existence of resistant and sensitive parasite subpopulations was shown in Cambodia [Miotto et al., 2013]. Artemisinin resistant populations were defined based on non-synonymous single nucleotide polymorphism data from 825 parasite genomes originating from regions in Africa and Asia. The resistant populations were associated to clinical resistance to artemisinin and it was shown that the artemisisn-resistant founder subpopulations are highly differentiated and have gone under recent expansion [Miotto et al., 2013]. Three artemisinin resistant subpopulations (KH2, KH3 and KH4) and an existing ancestral population (KH1) were described in Cambodia. Based on GWAS analysis in 2015 O. Miotto and colleagues, showed that all the resistant populations have a similar genetic background. This analysis identified five background mutations showing that the SNP fd-D193Y (ferredoxin) is most significantly associated with resistant founder populations followed by crt-I356T (chloroquine resistance transporter), crt-N326S, arps10 -V127M (apicoplast ribosomal protein s10) and mdr2 -T484I (multidrug resistance 2 transporter). The mechanism with which these mutations support mutations in the K13 gene and artemisinin resistance is not known, but these mutations are likely to increase the fitness of the parasite to overcome artemisinin drug pressure [Miotto et al., 2015].

These efforts have led to a suitable molecular marker of artemisinin resistance, but still the mechanism of resistance is not understood. Some efforts have been CHAPTER 1. INTRODUCTION made and hypothetical models associated to artemisinin resistance have been suggested. In one of the transcriptional analyses it has been shown that the resistance is associated to an unfolded protein response pathway with P. falciparum reactive oxidative stress complex and TCP-1 ring complex (TRiC) [START_REF] Mok | Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance[END_REF]. One of the hypotheses is that these factors repair the oxidative stress of the parasite due to artemisinin and then the parasites continue their life cycle [Fairhurst, 2015]. The other hypothesis for the artemisinin-resistance pathway is that the artemisinin targets the phosphatidylinositol-3-kinase (PI3K). The phosphatidylinositol-3-kinase (PI3K) produces phosphatidylinositol-3-phosphate (PI3P) and the level of PI3P is shown to increase when ring stages develop to schizonts. Hence PI3P is required for the parasite growth [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF]. The non-mutated k13 binds to the phosphatidylinositol-3-kinase (PI3K), which is followed by polyubiquitination of K13 by an unknown ubiquitin ligase. Due to this binding the levels of PI3P remain low in parasites. PI3K is proposed as being sensitive to artemisinin, and because of the low PI3P levels the growth of the parasite is stopped. In the case of artemisinin resistant K13, the binding does not take place increasing the levels of PI3K activity and hence increasing the level of available PI3P. The inhibiting action of artemisinin on PI3K does not affect the levels of PI3P available for the parasite growth. No relation was seen in increased PI3K transcripts and parasite clearance half-life [START_REF] Mok | Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance[END_REF]. These two hypotheses are still under validation and need more results to fully understand the artemisinin drug resistant mechanism completely [Fairhurst, 2015].

Therefore, from all the efforts and development to understand the artemisinin mechanism we know artemisinin resistance is based on delay in parasite clearance halflife (> 5 hrs) and increased parasite density at the early ring stage (RSA test). SNPs in the gene (K13) have been shown to be an effective molecular marker associated to artemisinin resistance. Also, the resistant parasites have been shown to have increased levels of PI3K activity and PI3P levels. The most dominant K13 allele C580Y is prevalent in the western part of Cambodia [Fairhurst, 2015]. As the resistance process is not fully understood, new methods and markers are required to understand the resistance process.

In this study we try to define the parasite population structure in Cambodia and an association with artemisisnin resistant based on the whole genome sequencing data from the study of O. Miotto and colleagues [Miotto et al., 2013]. We try to identify the parts of the parasite genome associated to these markers, which support the acquisition and transmission of artemisinin resistance in Cambodia. In the next chapter we discuss some important DNA sequencing techniques developed over years and mention data post-processing methods used to produce whole genome sequencing data and for the identification of mutations.

Babesiosis

Babesiosis is a worldwide emerging parasite disease with malaria like symptoms. The increasing prevalence of babesiosis has been observed in the north-eastern and north-western USA. Human babesiosis is mainly caused by apicomplexan parasite Babesia microti and is the first pathogen transmitted by blood transfusion. The parasite is mainly transmitted to humans from arthropod vector tick bites. The tick species Ixodes scapularis is responsible for Babesia transmission in the USA. The other Babesia species affecting humans are Babesia duncani, Babesia divergens and Babesia venatorum [Vannier et al., 2015]. In general B. microti infects rodents, but recent reports show that the dear population is playing an essential role in modulating the vector population. Not much is known about the genomic structure, proteome, drug targets, population structure and epidemiology of this parasite.

B. microti genome

The genome of B. microti has been sequenced recently. The B. microti R1 strain genome is the reference genome for this species. The parasite was isolated from the blood of a patient and was propagated in gerbils and hamsters [Cornillot et al., 2012]. This strain provided a unique opportunity to probe the genome composition of this parasite. The sequencing of B. microti genome and the first annotation was completed in 2012 [Cornillot et al., 2012]. In 2013, a whole genome map of both the R1 strain as well as another B. microti isolate known as the Gray strain was completed [Cornillot et al., 2013]. More recent efforts have led to the sequencing of several isolates from human, ticks and infected animals. In these analyses the genome size of B. microti genome is reported between 6.3 mbp and 6.9 mbp depending on the isolate, making it the smallest nuclear genome among other Apicomplexa [Cornillot et al., 2012, Cornillot et al., 2013] till date. The genome consists of four chromosomes encoding 3567 protein-coding genes, most of which are expressed during parasite development in mammalian red blood cells. It has a G+C content of around 36%.
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The organelle genomes, mitochondria and apicoplast (in context of this thesis and is mentioned in Chapter 4), of B. microti are also sequenced [Cornillot et al., 2013, Garg et al., 2014]. The phylogenetic analyses revealed that B. microti represents a new lineage within apicomplexans, which is distinct from lineages encompassing Plasmodium species, Theileria species and Babesia bovis. Extensive 18S phylogenies, based on sequencing data from databases, revealed that the B. microti clade is highly diverse with host specificity among different groups [START_REF] Schnittger | Babesia: a world emerging[END_REF].

The genome annotation of R1 isolate and subsequent metabolic pathway reconstitution revealed novel antigens and several metabolic functions that could be targeted for the development of new diagnostic tests and more effective therapies [START_REF] Cornillot | A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti[END_REF]. The drug used for the treatment of babesiosis is atovaquone. Mutations in the cytochrome b (cytb) gene in the mitochondrial genome are associated to atovaquone drug resistnace. The other drug used is quinine. The usage of this drug is questionable due to the side effect associated with this drug, the lack of evidence that B. microti degrades hemoglobin and the inability of the compound to inhibit growth of the parasite in mice, suggesting that its use for babesiosis treatment should be reevaluated. Clindamycin and azytromycin used in combined therapies for babesiosis and are expected to target translation in the apicoplast. Most of the immunocompetent patients recover from babesiosis without the need for treatment and present only flu-like symptoms, but some immunocompetent individuals can develop moderate to severe disease symptoms which could also be fatal.

Symptoms

The symptoms of babesiosis are similar to diseases with flu like symptoms (inflammatory response). This also contributes to the misdetection of B. microti infection with P. falciparum infection due to similarity in blood smears. B. microti is mainly confused with lyme disease in the absence of erythema migrans (specific lyme disease rash), as both the pathogens are prevalent in the same geographical areas. The early symptoms of B. microti infection are high fever, chills and headache followed by malaise, fatigue, drenching sweats, muscle pains, nausea, vomiting, hypotonia, liver problems, severe hemolytic anemia and kidney failure in moderate illness [Vannier et al., 2015]. Severe cases are often associated with immunologically depressed individuals, either due to HIV infection or after immune suppressive medication (e.g. in case of B-cell lymphoma). Also, splenectomy supports B. microti development, as the spleen is one of the major organs where B-cells are activated. The life cycle of B. microti does not have any liver stage unlike P. falciparum. Also no human transmission, because of low exposure to ticks and ticks bite only once. When considering babesiosis, in addition to the blood smear more specific tests should be considered, such as immunefluorescenceassay (IFA), which is the most common serological test, and particularly PCR for confirmation of the diagnosis. PCR is highly sensitive in the detection of acute babesiosis, i.e., the infections with as few as three parasites in 100 microliters of blood can yield a positive result [START_REF] Persing | Detection of Babesia microti by polymerase chain reaction[END_REF], Wilson et al., 2015]. PCR is performed with two clade specific primers design in the 18S gene such as piroA/piroB or BAB1/BAB4. Size polymorphism is used to distinguish between species and sequencing is used to identify group among B. microti isolates.

Diagnosis

The diagnosis of B. microti infection by detection of parasites in blood smears is challenging and inconclusive, and can lead to misdetection of babesiosis cases as malaria cases. The detection is more challenging in infected individuals with very low levels of parasitemia, such as asymptomatic blood donors in transfusion-associated cases or following treatment with currently approved combination therapies. Furthermore, it is difficult to discriminate between infections caused by P. falciparum and B. microti based on microscopy results in patients whose travel histories cannot exclude either parasite [START_REF] Lantos | Babesiosis: similar to malaria but different[END_REF]. Cross-reactivity between specific antigens of different hemoparasites has been previously described for B. bovis and P. falciparum [START_REF] James | Antigenic relationship between Plasmodium falciparum and Babesia bovis: reactivity with antibodies to culture-derived soluble exoantigens[END_REF] and could also be true for B. microti. Therefore, considering the extensive travel history of the patients, including areas endemic for the malaria parasite, is essential for distinction between malaria and babesiosis.

Diagnosis of babesiosis is also difficult because of the diversity of symptom between patients, which can range from asymptomatic including fever to severe including spleen disruption. The rapid growth of the parasite in patient blood is not always observed and followed, which increases the severity of the disease and leads to hemolysis and other associated complications. B. microti has been identified as a human pathogen since the late 1960s and despite the increasing number of cases of human babesiosis reported each year, little is known about babesiosis pathogenesis. The current diagnostic tests and therapies are not ideal and needs to be reevaluated.

CHAPTER 1. INTRODUCTION

Therapy

Most of the B. microti infected people are asymptomatic and recover naturally from babesiosis. The treatment regime is essentially recommended for patients with active babesiosis, which is associated with symptoms described above. The illness usually results 1-2 weeks after administration of single course of therapy, which combines an anti-malaria drug and an antibiotic and observation of clinical improvements after 48 hours. Current therapy regimes for treatment of human babesiosis caused by B. microti consist of combinations of atovaquone and azithromycin for 7 to 10 days for patients with mild to moderate disease or quinine and clindamycin for at least 6 weeks for patients with severe disease [Vannier et al., 2015]. There is a need to survey patients at least for hemolysis and parasitemia during the complete period of drug administration and continuation of therapy until parasitemia is cleared. As stated earlier, some major side-effects associated to quinine have been observed, such as shakiness, hearing deficiency or cardiac effects. Intravenous quinine treatment, which is often performed in the early phase of infection must be associated with cardiac profile monitoring. The capacity of the patient to support both therapy regimes for mild and moderate scenarios should be taken into consideration. Although both combinations are generally effective, drug failures and major side effects have been observed [Vannier et al., 2015]. Partial or complete blood transfusion must be considered for severe babesiosis when parasitemia levels grow over 10%, when liver or renal impairment are observed or when patients are presenting ARD syndrome (ARDS). Patients more susceptible to severe babesiosis are immunocomprised after cancer treatments, organ transplants or other reasons. In the past, AIDS patients were also presenting severe babesiosis, but the former disease is becoming rarer in the USA. Mortality rate of these patients remains at the level of 20% even after blood transfusion. Blood transfusion remains also a concern, as control of blood samples for the presence of Babesia parasite is still not possible. Indeed, B. microti becomes the first pathogen transmitted by blood transfusion in the USA. The threat of B. microti should also be taken into account in other countries where B. microti is still not prevalent. As was exemplified by the description of the first Australian case in a patient that receive extensive blood transfusion after a car accident [START_REF] Senanayake | First report of human babesiosis in Australia[END_REF].

For patients travelling to, or residing in areas endemic for both malaria as well as babesiosis, correct diagnosis might prove difficult, so there is a need to consider expertise of experienced reference centers for infectious diseases for evaluation of blood smears. In case of doubtful diagnosis, hospital admission should be considered for patients with more severe symptoms and an extremely detailed travel history should be taken into consideration to distinguish between an infection with Babesia spp. or Plasmodium spp. based on incubation period, mode of infection and presence of vectors. Both inpatients and outpatients who have suspected babesiosis, but are not initially treated should be closely observed over time. Recent validation of targets for sensitive and specific B. microti assay is promising for future development of highly sensitive and specific EIA test for babesiosis [START_REF] Cornillot | A targeted immunomic approach identifies diagnostic antigens in the human pathogen Babesia microti[END_REF].

The cases of babesiosis are emerging worldwide and Asia could be the next area of emergence of human babesiosis. Reports on simultaneous infection with both apicomplexan parasites are uncommon, except near the China-Myanmar border [START_REF] Zhou | Co-infections with Babesia microti and Plasmodium parasites along the China-Myanmar border[END_REF]. Careful diagnosis of babesiosis in south-east Asia where malaria is also endemic is important to prevent misdiagnosis of babesiosis cases as drug-resistant malaria.

Bacterial coinfections

The tick vector Ixodes scapularis is present in north America, where Babesia microti Anaplasma phagocytophilum (previously referred to as Ehrlichia phagocytophila) and Borrelia burgdorferi infections are endemic. Parasite and bacteria are transmitted from rodents to humans in the northeastern and midwestern US. Furthermore, it is also important to emphasize that human co-infection with Babesia microti and tick-transmitted bacteria of the genera Ehrlichia, Anaplasma or Bartonella have also been reported in different regions of the world. Co-infections are also frequently observed in the environment, in rodent and tick populations. Interestingly, genome sequencing revealed the lateral transfer of a Bartonella gene encoding a putative thiamin pyrophosphokinase into B. microti genome.

Genomic data functional analysis 1.4.1 Sequencing technologies

Sequencing provides the orderly construction of nucleotides (A, T, C and G) in a molecule of DNA. The first DNA sequencing was produced by Fred Sanger in 1950's, CHAPTER 1. INTRODUCTION for which he received the Nobel prize. Later in the 1970s, Maxam and Gilbert developed methods to sequence DNA based on 2D chromatography and chemical degradation [START_REF] Maxam | A new method for sequencing DNA[END_REF]. In 1977, Fred Sanger developed the chain termination method to sequence DNA, commonly referred to as the Sanger sequencing method [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF]. This method became the most used DNA sequencing method, as it required less chemicals and radioisotopes and was much reliable compared to other methods [Van Dijk et al., 2014]. These DNA sequencing methods are referred to as the first generation sequencing techniques. Since 1990, efforts have been made to improve the DNA sequencing methods. New technologies producing high-throughput data in less cost have been developed and are known as the Next Generation Sequencing (NGS) methods. Most of these methods utilize DNA polymerase catalysis and nucleotide labeling techniques. Due to the growing demand of DNA sequencing to answer important genetic level questions, platforms are continuing their efforts to generate sequence data faster, cheaper and at higher volume [START_REF] Schuster | Next-generation sequencing transforms today's biology[END_REF].

The first genome sequence of P. falciparum (3D7 clone; canonical reference genome) was produced using Sanger sequencing method [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. The nuclear genome of P. falciparum is around 23 megabase and comprises of 14 chromosomes, encoding aroud 5,300 genes. Sequencing was challenging because the AT content of this genome is very high. B. microti is a more recent genome to be sequenced using this technique [Cornillot et al., 2012].

Development of genome sequencing technologies and platforms has helped in producing unbiased and reliable results. Availability of whole genome sequencing data has made possible the identification of parasite population structure and loci associated to drug resistance [START_REF] Takala-Harrison | Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia[END_REF], Miotto et al., 2013]. Due to the availability of large number of genome sequences from around the world, population genomic studies have become an important analysis tool to examine and track the genetic variations and evolution of parasite populations locally and globally. Such information can help in following the transmission and acquisition of drug resistance, which provides an opportunity to design guidelines to contain and eradicate malaria [START_REF] Carlton | Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research[END_REF]. This section explains the basic principles involved and the limitations of some of the widely used DNA sequencing methods.

First generation sequencing techniques

The first generation sequencing strategies comprises the Maxam-Gilbert method and chain-termination method developed in the 1970's.

Maxam-Gilbert sequencing method

Allan M. Maxam and Walter Gilbert developed one of the first DNA sequencing methods in 1977 [START_REF] Maxam | A new method for sequencing DNA[END_REF], for which they won a Nobel prize. In this method terminally radioactive labeled DNA is chemically cleaved at guanine (G), guanine + adenine (G+A), cytosine (C) and cytosine + thymine (C+T), producing radioactive fragments of the length equal to the cleaved position from the labeled terminal. The concentration of the chemicals used is controlled to approximately introduce one modification per molecule, which are separated using gel electrophoresis. These radio labeled DNA fragments produced from the four reactions are separated using electrophoresis through high resolution acrylamide gels. The sequence is inferred from the dark bands depicting the position of the radio labeled nucleotides [START_REF] Maxam | A new method for sequencing DNA[END_REF].

This method was widely accepted as sequencing method, because of its ability to sequence the purified DNA directly. It could sequence around 500 bp. Some of the drawbacks of Maxam-Gilbert method were setup complexity, use of hazardous chemicals, low read length for incomplete cleavage reactions and difficulty in differentiating bands on the gel [START_REF] Liu | Comparison of next-generation sequencing systems[END_REF].

Chain-termination sequencing method

Frederick Sanger, developed the DNA sequencing method in 1977 based on chaintermination inhibitors of the DNA polymerase at specific residues [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF]. This method gained popularity from 1980s to 2000, as it required less chemicals and lower levels of radioactivity [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF]. This sequencing method used single stranded DNA, DNA primer, DNA polymerase 1, deoxynucleoside triphosphates (dNTPs; dATPs, dTTPs, dCTPs and dGTPs), and di-deoxynucleoside triphosphates (ddNTPs; ddATPs, ddTTPs, ddCTPs and ddGTPs). In this method also, four different sequencing reactions are set up to detect the four nucleotides A, T, C and G. To each reaction ssDNA (5' -> 3'), DNA polymerase, dNTPs and only one of the ddNTPs were added. The DNA polymerase incorporates dNTPs complementary to the target DNA strand and stops when encountered with a ddNTP, as no free hydroxyl group available to react with DNA polymerase. Hence, fragments with different sizes and same primer at the 5' end are produced for each of the four reactions. The different sized fragments for the four reactions are separated using gel electrophoresis and the dark bands on the gel is descriptive of the position of the nucleotide in the sequence.

This method provides highly accurate results for short fragments only. This method can produce sequence reads of size 600 nucleotides on an average. The major disadvantages of this method were non-specific primer binding and short read length. To perform sequencing on longer DNA sequences, extension of this method known as shotgun sequencing method was developed [START_REF] Shendure | Next-generation DNA sequencing[END_REF].

Shotgun sequencing method

This method based on the Sanger sequencing method was the most advanced technique for sequencing large genomes and was described in the early 1980s [Green, 2001]. In this method the different size fragments of DNA clones are sub-cloned into vectors. Then fragment libraries are created and the vector DNA is isolated to be sequenced using chain termination method, generating redundant amounts of sequence data from one or both ends of random fragments. Consensus sequence is deduced from computational assembly of these redundant sequence read fragments [Staden, 1979].

The applications were limited due to increased complexity caused by the large size of the genome and the assembly process. Therefore, before initiation of sequencing process a physical map (overlapping genome fragments of source genome) of the genome was created by arrangement of YAC (Yeast Artificial Chromosome) or BAC (Bacterial Artificial Chromosomes) clones. These genome fragments were further randomly fragmented into smaller fragments to be sequenced using shotgun method. This process is known as hierarchical shotgun sequencing and is slower than the whole genome shotgun sequencing method.

The main drawbacks of shotgun sequencing were the sequence gaps and misassemblies due to repetitive sequences. In the case of B. microti for example, the first release of the genome contained two gaps and two chromosomes were merged in a single contigue [Cornillot et al., 2012, Cornillot et al., 2013]. But because of the ability to generate large amounts of sequence data from full genome rapidly (500 bp per day) for identification of conserved sequence and avoid the step of creating physical maps, whole genome shotgun sequencing was used primarily as the sequencing method to sequence genomes of small bacteria, Drosophilla and eventually humans [Green, 2001], which was achieved utilizing paired-end tags strategy, increasing the sequencing efficiency. In this strategy paired ends from both the ends of DNA fragments are sequenced [Venter et al., 2001].

This method was used to determine the sequence of canonical reference strain Plasmodium falciparum 3D7. Some chromosomes showed gaps (mostly <2.5Kb) in the consensus sequence after assembly. The reason for the problem caused in sequencing and assembly process was the high A+T rich P. falciparum DNA [START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. The biased AT richness of the DNA causes library creation problems, as the complexity (combination of nucleotides) of base pairs is reduced compared to source genome, causing production of overlapping sequence. This makes the assembly process difficult by wrong assembly of short read sequences, which leads to creation of gaps [START_REF] Carlton | Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research[END_REF].

Next generation sequencing (NGS) techniques

The extensions of the Sanger sequencing method were the dominant sequencing techniques till 2005. Some of the limitations and drawbacks of the Sanger sequencing method were using gels or polymers as separation media, sequencing of limited numbers of samples in parallel and the creation of libraries by cloning onto a bacterial host. This was time consuming and can include host biases [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF]. Though the first human genome was sequenced using parallel processing of Sanger method in 2004[START_REF] Ihgsc | Finishing the euchromatic sequence of the human genome[END_REF], there was a need of financially cheap sequencing methods producing high throughput results. This was the motivation for the development of NGS techniques. The methods developed over the last 15 years have overcome those limitations [Van Dijk et al., 2014]. This section presents the description of the important NGS technologies developed and commercialized by different platforms over the world [Hall, 2007].

454 Pyrosequencing method

This was one of the first NGS technologies released and commercialized in 2005 by a US based biotech company 454 Life Sciences, part of Roche Diagnostics [START_REF] Margulies | Genome sequencing in microfabricated high-density picolitre reactors[END_REF]. This technology used the pyrosequencing technique and improved the DNA amplification process. This reduced amplification time and removed biases due to amplification in a bacteria cell. This method detects the incorporation of a nucleotide by a DNA polymerase in real time (also known as sequencing by synthesis approach) and was faster than the dye-termination method as explained above [START_REF] Shendure | Next-generation DNA sequencing[END_REF].

The target DNA is sheared into small fragments, which are ligated with common adapters and are amplified on the beads (streptavidin-coated magnetic beads) using water in oil emulsion PCR technique. These beads are then loaded onto the Pico Titer plate device which allows for only one bead per well (reaction chamber). The base of this slide is attached with CDD imager to detect the light signals [START_REF] Margulies | Genome sequencing in microfabricated high-density picolitre reactors[END_REF]. The sequencing approach was based on detection of polymerase activity by an enzymatic luminometric inorganic pyrophosphate detection assay (ELIDA) [Nyren, 1987]. Each well is supplied with one of the four dNTPs, DNA polymerase, ATP sulfurylase, luciferase and apyrase, and with the substrates adenosine 5' phosphosulfate (APS) and luciferin. The oxyluciferyn producing visible light is produced in two reactions, using pyrophosphate (PPi) released during polymerase activity. The sequence of each DNA template is determined from a pyrogram, which corresponds to the order of correct nucleotides that had been incorporated [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF]. This NGS technology is discontinued [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF], but was capable of generating 80-120 Mb of sequence in 200 to 300 bp reads in a 4 hour run [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF]. The major drawbacks of this technology were low throughput, high reagent cost, relatively high error rates in homopolymers and the shorter read lengths which makes the assembly process difficult.

Illumina sequencing method

The Illumina/ Solexa sequencing technology [Bentley et al., 2008] was developed and commercialized by Solexa in 2006, acquired by the USA based company Illumina in 2007. This technology differs from the pyrosequencing method in DNA amplification process and sequencing by synthesis process. This technology amplifies DNA using solid phase bridge PCR process in flow cells. Also, the real time sequence detection is achieved using the dNTPs attached with reversible termination group and fluorescent dye [START_REF] Chen | The history and advances of reversible terminators used in new generations of sequencing technology[END_REF]. This technology produces shorter reads, but cost for sequencing each base is lower than the pyrosequencing method.

The large DNA to be sequenced is sheared into small fragments and each strand is attached with a primer sequence, index sequence and the adapter sequence [Bentley et al., 2008]. DNA insert is achieved by isothermal amplification of the target DNA fragment. The modified DNA strands are passed on to the flow cell, which is a glass slide with lanes containing oligonucleotide sequences complementary to the adapters attached to the DNA fragment. The adapters attached to the DNA fragment on both ends are complimentary to each other. The fragments are amplified using bridge PCR technique. The clonal amplification step increases the quality of the sequencing signal. The double stranded fragments are denatured resulting into forward strand and reverse strand. After the clonal amplification the reverse strands (reverse strand of the source DNA fragment) are cleaved and washed from the flow cell. Sequencing in each strand begins at the 3' end. A special polymerase is used to incorporate the nucleotides with fluorescence dye tag and 3'-reversible terminator, which blocks the addition of other nucleotides (ddNTPs), improving detection of homo-polymers unlike in pyrosequencing method. The 3' group can be removed by chemical or enzymatic hydrolysis [START_REF] Canard | DNA polymerase fluorescent substrates with reversible 3'-tags[END_REF]. All the nucleotides have different light emission properties and all the four nucleotides are supplied to the flow cell in each cycle, but only one is incorporated [START_REF] Chen | The history and advances of reversible terminators used in new generations of sequencing technology[END_REF]. Therefore, number of cycles is equal to the length of the fragment. On addition of each nucleotide, a light is emitted specific to the added nucleotide.

Both, forward and reverse strands are sequenced and the reads are clustered based on the index sequence of each fragment. For each sample, reads with similar base calls are clustered, and forward and reverse reads are paired [Bentley et al., 2008]. These read sequence clusters are used for the de novo assembly process to predict the sequence of an unknown genome or aligned to the reference genome to identify the nucleotide variations such as SNVs and INDELs.

This approach increased the throughput by improving the amplification and sequencing by synthesis steps. Making the real time sequencing step independent of the enzymatic action unlike the earlier methods, significantly decreases sequencing time and increases sequencing capacity. Accuracy of base calling also improved because of pair-read sequencing. Illumina sequencers are capable of producing upto 400 bp long reads. One of the major drawbacks of high throughput technologies is short read lengths, making the assembly process difficult [Morozova andMarra, 2008, Van Dijk et al., 2014]. Sources of calling errors could be base substitutions caused by modified DNA polymerase and reversible terminators or due to biased PCR reactions because of bias in the base composition (like AT richness in P. falciarum genome). PCR amplification is the major source of errors. Efforts have been made to improve the results by modulating the library preparation techniques [START_REF] Oyola | Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes[END_REF]. For sequencing of P. falciparum genome, better results have been shown with selective PCR conditions (specific polymerase and improved enzymes) in Illumina library preparation, generating unbiased results and greater coverage at AT rich regions [START_REF] Oyola | Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes[END_REF]. The P. falciparum genomic data used in this study, could be the data used in the population structure description study, explained in Chapter 2 and Chapter 3. Continuous efforts are being made to to remove the errors and optimize the sequencing process facilitating accurate SNP detection.

Polony sequencing method

This sequencing technique was developed by George M Church in the same year as pyrosequencing technique by 454 Life Sciences. One of the biggest advantage of this technology is that the software and the protocols has been made open source [Hall, 2007]. This technology is based on sequence by ligation method and uses emulsion PCR to amplify the signal. Using this technology, the genome of E. coli was sequenced in 2005 [START_REF] Shendure | Accurate multiplex polony sequencing of an evolved bacterial genome[END_REF].

In this technique the library of randomly sheared DNA fragments is created using rolling circle replication and emulsion PCR. The replicated circular fragments are cleaved at 17-18 bp from T30 and ligated with two adapter sequences for hybridization to beads on the ends of the fragments. Total length of this modified fragment is 135 bp and each strand of the fragment is amplified using emulsion PCR on a bead. These beads are mixed with acrylamide and poured into a teflon-masked microscope slide, covered by a coverslip which is washed with aminosaline to enable the covalent binding because of the free hydroxyl group between the DNA templates attached to the bead and the coverslip. This polymerization results in the formation of a monolayer of beads in the acrylamide gel. The reagents, anchor primers and degenerated nonamers are passed between this monolayer and the microscope slide [START_REF] Shendure | Accurate multiplex polony sequencing of an evolved bacterial genome[END_REF]. Each of these nonamers has specific fluorescent markers and one of the four bases (A, T, C and G) at one of the 9 positions. Polymerase is not used and these nonamers are selectively ligated to the anchor primer, producing a fluorescent signal corresponding to one of the four bases. Like these seven bases from the 5' to 3' direction and six bases from the 3' end can be recovered. For each DNA fragment, a 26 bp read is recovered (for both forward and reverse strand) [START_REF] Shendure | Accurate multiplex polony sequencing of an evolved bacterial genome[END_REF]. This technology was cheaper than the conventional sequencing methods and open source platform, but the paired-reads produced were very short causing problems in the assembly process and low accuracy due to complex amplification and nonamer cleavage steps [Hall, 2007].

SOLiD sequencing method

The SOLiD (Sequencing by Oligonucleotide Ligation and Detection) technology was commercialized by the USA based company Applied Biosystems, brand of Life Technologies and owned by Thermo Fisher Scientific corporation. This technology is based on Polony sequencing technique as explained above and was commercialized in 2008. This technology is based on 2 base encoding and is able to sequence around 35 bases which is more than the polony sequencing method where only 26 bases could be sequenced [START_REF] Shendure | Accurate multiplex polony sequencing of an evolved bacterial genome[END_REF].

The sheared DNA fragments (up to size 35 bp) are tagged with two adapters at both ends. The DNA libraries are created using emulsion PCR. The PCR products are transferred onto a glass surface. The sequencing occurs at this glass surface by hybridization and ligation of octamer probes (one of the 16 dinucleotide known bases + 3 degenerated bases + 3 degenerated bases attached to fluorescent dye). There is a cleavage site between the 5th and the 6th positions of the probe for SOLiD version 2 and between 4th and 5th for SOLiD version 1 [Mardis, 2008]. In the sequencing reaction on this glass side, universal primers (length n) with free 5' phosphate group and the octamer probes are provided. The primer is annealed to the 5' end adapter sequence of the DNA fragment. The probe having the complimentary dinucleotide of the first two template dinucleotides is ligated to the primer. The fluorescent signal of the ligated probe is read and the probe is chemically cleaved at the 5th position leaving a free phosphate group available for the next probe ligation. Ligation cycle is repeated up to 7 times and after that the initial primer and all the ligated probes (length 5) are denatured and removed from the reaction. A new reaction is started with a new universal primer (length n-1) and the probes and so on [Applied Biosystems, 2016]. For each DNA fragment a sequence read of length around 35 bp is produced after 5-7 ligation events X 5 primer cycle reactions [Mardis, 2008]. Each base is sequenced by two probes and in two different primer cycle reactions. The read is deduced from the color space. The color peaks recorded for the fluorescence activity in the same CHAPTER 1. INTRODUCTION way as in the Illumina sequencing technology. With the knowledge of the first base of the DNA fragment, the full sequence can be derived by converting the color space to base space [Mardis, 2008]. This is the only NGS technology that is based on sequencing by ligation process and is one of the high throughput methods. It offers improved accuracy and validation of sequencing reads as each base is sequenced twice, differentiating errors from true variations as compared to the reference genome. The drawbacks of this technology are shorter read lengths and long run time. Each SOLiD sequencing run produces around 3 Gb of sequence data with an average read length of up to 35 bp in around 6-8 days [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF].

Ion Torrent sequencing method

The Ion Torrent sequencing method was developed by Jonathan Rothberg (founder of 454) at Ion torrent systems Inc. owned by Life technologies corporation founded in 2008. The DNA sequencing approach is similar to that of the 454 pyrosequencing method and was commercialized in 2010. This technology directly translates chemically encoded information into digital information on a semiconductor chip [START_REF] Rothberg | An integrated semiconductor device enabling non-optical genome sequencing[END_REF] and is improved over the other sequencing methods, as no fluorescent detection or modified polymerase or nucleotides are used. This technology utilizes amassively parallel semiconductor sensing device to detect the hydrogen ion released on addition of a nucleotide. It is one of the fastest, cheapest and scalable DNA sequencing methods [Van Dijk et al., 2014].

The library creation of the DNA to be sequenced is similar to 454 pyrosequencing. The amplified beads containing the ssDNA fragments are added to the microarray chips, which contain millions of reaction wells of the size close to a single bead. In the sequencer this chip is added on top of a ion-sensitive field-effect transistor based sensors (ISFET sensor), which are compatible with complementary metal-oxide semiconductor (CMOS) process to convert the chemical signal into digital signal [START_REF] Rothberg | An integrated semiconductor device enabling non-optical genome sequencing[END_REF]. In each reaction well, PPi and hydrogen ion are released due to each polymerase reaction and the change in the pH of the solution is recorded by the CMOS sensor. The information about the supplied dNTP and the change in the pH is used to determine the complementary DNA sequence. The level of change in the pH of the solution depicts the number of nucleotides added in single reagent cycle [START_REF] Rothberg | An integrated semiconductor device enabling non-optical genome sequencing[END_REF].

This sequencing method provides increased accuracy of sequenced reads with fewer errors. Not relying on the signal detection method as used in other technologies, it increases the speed and accuracy of sequencing. Some errors can occur in reading homopolymers. The capacity of microarray chip has increased from 10 Mb (Ion Personal Genome Machine) to 10 Gb (ion proton sequencer). This technology is capable of producing up to 300 million reads of length 200 bp with close to 100 gb of data in approximately 3 hours [START_REF] Frey | Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood[END_REF].

PacBio sequencing methods

The PacBio DNA sequencing technology also referred to as Single Molecule Real Time (SMRT) DNA sequencing method was developed and commercialized by a USA based biotechnology company Pacific Biosciences. This is one of the most recent technologies. This technology is based on sequencing by synthesis approach. This technology does not require amplification of the DNA sequence (which helps in even genome coverage) and instead relies on real time DNA polymerase action to complete the strand complementary to the target strand [START_REF] Liu | Comparison of next-generation sequencing systems[END_REF].

The technologically advanced part of this sequencing process is the zero mode waveguide (ZMW), which maintains high signal to noise ratio. In each ZMW an active DNA polymerase and a ssDNA molecule are immobilized at the bottom. Each SMRT cell contains thousands of ZMWs (reaction chambers), which are illuminated from below with light having wavelength greater than the diameter of the ZMW and not allowing the light to pass through the cylindrical waveguides. DNA polymerase action is fast and unaltered. During polymerase action the fluorescence label is excited and emits light which is captured on a sensor. The sequential emission of lights due to incorporation of complementary fluorescence labeled dNTPs in real time is continuous and enables sequencing of long reads using natural DNA synthesis process [START_REF] Levene | Zero-mode waveguides for single-molecule analysis at high concentrations[END_REF].

This technology utilizes the efficiency of DNA polymerase action without any alterations and sequences the target DNA molecule in real time. This technology is capable of producing 50k reads of continuous long read length of 10 to 15 kb utilizing 150,000 ZMWs in approximately 4 hours [START_REF] Rhoads | PacBio Sequencing and Its Applications[END_REF]. The drawbacks of this technology is high fluorophore-dependent raw read error rate compared to other technologies and high price per Mb of data. This technology is considered as the onset of third generation sequencing technologies, which aims to further increase the CHAPTER 1. INTRODUCTION performance and decrease the cost and complexity of DNA sequencers [START_REF] Rhoads | PacBio Sequencing and Its Applications[END_REF].

Overview of Sequencing technologies

In the above sections, the most commercialized and used next-generation sequencing methods have been explained. The most popular and successful NGS platforms are 454, Illumina, SOLiD, Ion Torrent and PacBio [Van Dijk et al., 2014] (454 discontinued). These technologies have improved the amplification step and material loss due to selective reagents. With improved sequencers and base-calling software, long reads have become available, which enable for de novo genome assembly and metagenomic studies by Illumina and 454.

PacBio technology provides the longest reads and is suitable for complete genome sequencing. Illumina offers one of the highest throughput and lowest per base calls (HiSeq X Ten), because of improved amplification process, clustering process, reagents, and signal detection technology. This technology can help in population genomic analysis [Van Dijk et al., 2014]. Illumina is the most effective for de novo assembly as it offers read-pairs. The fastest sequencing platform is Ion Torrent (PGM platform) and PacBio platforms, the latter being more expensive and more error prone. A comparitive study of these three platforms Ion Torrent PGM, PacBio RS and Illumina MiSeq, has shown better results for P. falciparum genome sequencing and variant calling Illumina sequencing platform [START_REF] Quail | A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers[END_REF]. The P. falciparum genomic data used in this study, could be the data used in the population structure description study, explained in Chapter 2 and Chapter 3.

New technologies are developing on assessing single molecule undergoing natural processes [START_REF] Morozova | Applications of next-generation sequencing technologies in functional genomics[END_REF]. One of the promising sequencers made available is MinION, which is based on Oxford Nanopore technology. This technology avoids the use of secondary signals for detecting base incorporation or hybridization. In nanopore technology, the real-time base detection is performed by passing a ssDNA through a protein pore with passing current. The DNA sequence is charaterized by changes in voltage due to translocation of DNA by secondary motor proteins [START_REF] Goodwin | Coming of age: ten years of next-generation sequencing technologies[END_REF]. Overall, sequencing platforms are entering the third generation of sequencing technologies and aimed at increasing throughput, avoiding amplification bias, producing longer reads with higher consensus accuracy for haplotype and rare mutation detection, reducing reagents and the cost to sequence the target DNA molecule [START_REF] Liu | Comparison of next-generation sequencing systems[END_REF].

The rapid advancement of sequencing technologies and rapid production of huge amounts of genomic data have led to the development of bioinformatics and data analysis tools. Algorithm and methods have been developed to remove the low quality called bases, remove noise, assemble the short reads, data and functional analysis. The next chapter discusses the use of NGS genomic data available at various public databases for variant calling and functional analysis.

Data processing and variant recovery

In the previous section, we have seen different techniques and platforms producing sequencing data. Over the past years, a large amount of sequencing data has been produced for genomic studies and identification of genomic variations in the form of single nucleotide variants (SNVs), insertions/deletions (INDELs), copy number variations (CNVs), or other structural variants (SVs). SNPs are an important category of genetic variations and can influence disease risk and associated drug efficacy. Using whole genome sequencing data, P. falciparum population structure based on nonsynonymous SNPs, marker SNPs have been identified in the K13 gene associated to artemisinin resistance and SNPs are identified in background genes in South-east Asia (SEA) [Miotto et al., 2013, Ariey et al., 2014, Miotto et al., 2015]. CNVs due to recombination events are other important source of variation in the population. One of the ways for identification of CNVs is genome-wide association study (GWAS) analysis. Recently, a study by Cheeseman and colleagues [START_REF] Cheeseman | Population Structure Shapes Copy Number Variation in Malaria Parasites[END_REF] showed different frequencies of CNVs in different size P. falciparum populations in Africa, South America and SEA based on microarray experiments. They provide evidence for prevalence of deleterious CNVs and identify CNVs under positive selection, including CNVs encompassing 1)Pfrh2b (reticulocyte binding-like homologue protein 2), a adhesive molecule involved in erythrocyte invasion and 2)pfmdr1 (multi drug resistance 1), a well studied locus under strong selection [START_REF] Cheeseman | Population Structure Shapes Copy Number Variation in Malaria Parasites[END_REF]. In this thesis, SNVs are primarily focused for parasite population description and functional analysis. This section outlines methods, techniques and tools for identification of SNVs and databases for description of associated functions.

For processing and storing the sequencing data, specific file formats have been created. These file formats have become standard and suitable for different algorithms and platforms for the analysis of sequencing data. The process of variant calling can CHAPTER 1. INTRODUCTION be divided into 4 steps: (1) quality assessment of the raw data, (2) alignment of the reads to reference targets, (3) processing of reads after alignment for variant discovery, and (4) genomic and functional analysis of variants. In this section we mention the processing steps after alignment (post-processing) required and tools used to curate the raw sequencing data from various sequencing platforms into readable format files and make it available for genomic analysis [START_REF] Dolled-Filhart | Computational and bioinformatics frameworks for next-generation whole exome and genome sequencing[END_REF], Bao et al., 2014]. Only read alignments on reference genome are discussed and not de novo assembly.

Quality assessment

The data produced from the DNA sequencer, containing the information regarding raw sequencing reads and the quality scores is stored in FASTQ format files, which is the standard format published by the Wellcome Trust Sanger Institute [START_REF] Cock | The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[END_REF]. Quality scores are the Phred-scaled scores, which gives the likelihood that the base quality is correct. It is defined as -10log10(P), where P is the base-calling error probability, which is based on detected signal for each base. The Phred-scaled values are used to deal with small numbers.

In the FASTQ files information for each read is represented by 4 parts; first part is an identifier associated with the read, second part is the sequenced read, third part is the quality score identifier and fourth part gives the Phred-scale based quality score associated with each base in the read, using an ASCII code [START_REF] Cock | The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[END_REF]. For short sequences each part is in one line, but for longer sequences it can be in more than one line. Usually the size of these files is huge. Therefore, to reduce the processing time these files can be divided into shorter files, processed in parallel and the results can be combined later.

The other format used for representing nucleotide or peptide sequences is FASTA format. The first line of each sequence is the header starting with the symbol ">" describing the sequence. Each nucleotide and peptide base is represented by one letter and the sequence is represented by a continuous string of letters. This format is usually used to store reference sequences [START_REF] Pearson | Improved tools for biological sequence comparison[END_REF].

To recover statistics on the raw reads several tools are available such as FastQC [Andrews, 2010]. These methods can provide statistics regarding quality distribution along the reads, GC content, read length distribution, duplication of sequence reads and check for adapter. These statistics are used to determine if the raw reads needs to be filtered for noise. At the pre-processing step (before alignment), the bases with very low quality score, base associated to primers and adapters can be removed. Tools such as Cutadapt [Martin, 2011], can be used to perform for the filtering of these raw reads [START_REF] Bao | Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing[END_REF].

Alignment

Over the years many alignment tools have been developed for the alignment of sequencing reads accurately and efficiently to a reference genome such as MAQ [START_REF] Li | Mapping short DNA sequencing reads and calling variants using mapping quality scores[END_REF], BWA [Li and Durbin, 2009], Bowtie [START_REF] Langmead | Ultrafast and memory-efficient alignment of short dna sequences to the human genome[END_REF], NovoAlign [START_REF] Novocraft | Novocraft[END_REF] and others. The tool to be used for the alignment of the reads depend on factors like, sequencing method used and amount and the length of the reads to be mapped [START_REF] Bao | Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing[END_REF]. The main strategy in these programs is to reduce the false positive matching and avoid loss of biologically important variables. Tools like BWA and Bowtie are more fast and tools like NovoAlign are sensitive [START_REF] Dolled-Filhart | Computational and bioinformatics frameworks for next-generation whole exome and genome sequencing[END_REF]. These tools are mostly based on two algorithms for matching the read to the reference genome, Burrows-Wheeler Transformation (BWT) compression techniques and Smith-Waterman (SW) Dynamic programing algorithm. BWA and Bowtie are based on BWT technique and are one of the most used alignment tools [START_REF] Bao | Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing[END_REF]. Also, tools like BWA provide a mapping quality score for each assembly based on various factors which assess the confidence and accuracy of the called base [Li et al., 2009]. The output of of these mappers in Sequence Alignment/Map (SAM) format files are converted to Binary Alignment/Map (BAM) format files using SAMtools [Li et al., 2009]. These alignment format files can further be visualized using many online and offline tools available like ARTEMIS [Carver et al., 2012a], IGV [START_REF] Thorvaldsdottir | Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration[END_REF] and others.

Post-processing and variant calling

After the alignment to the reference genome, these alignments are stored in Sequence Alignment/Map (SAM) format files and the binary version Binary Alignment/Map (BAM) format files. These files store and represent the alignment information with 11 fields providing position, orientation and mapping quality of all the aligned reads. This information is stored in tab-delimited text format with a header section starting with a symbol "@" followed by the alignment section and then the tag section representing associated quality of the aligned read [Li et al., 2009].

The information in these alignment files associated to the variations can be further processed using SAMtools [Li et al., 2009]. This tool can perform tasks on the SAM/BAM files, such as sorting, merging, indexing, removing duplicates and retrieving information from specific regions in the genome. The variant calling can be performed using tools like SAmtools (bcftools), GATK [McKenna et al., 2010] and Freebayes [Garrison andMarth, 2012, Bao et al., 2014]. These tools can also perform statistics based on the quality of reads to help in the process of filtering the data for a specific analysis [Li et al., 2009, McKenna et al., 2010]. These variant calling programs provide specific metrics based on base quality and coverage. In order to identify reliable SNVs (Single Nucleotide Variations) accurately, the choice of the variant calling program should be based on the quality metrics provided by each program. The calling of SNVs can vary at different coverage levels when using these programs, as the used statistics and algorithms of these variant calling programs is different [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF]. In this section we discuss the two most commonly used variant calling programs, GATK and SAMtools (bcftools).

The NGS analysis program, GATK uses MapReduce framework to process calling of variants in parallel and make the calculations fast. For genotype likelihood estimation, GATK implements Bayesian model [START_REF] Mckenna | The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[END_REF]. GATK consists of two main variant calling programs, UnifiedGenotyper and HaplotypeCaller. UnifiedGenotyper calls SNVs and INDELs, assuming each locus as independent. Hap-lotypeCaller performs a local de novo assembly and detects SNVs, INDELs with increased accuracy. GATK learns the filters to remove low quality variants from the data [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF]. Therefore, base quality filter threshold is different for every dataset.

The other program SAMtools, scans every position in the alignment files and contains tools for manipulation of aligned reads in SAM/BAM format [Li et al., 2009, Bao et al., 2014]. For the estimation of sequencing errors SAMtools uses a MAQ model [START_REF] Liu | Variant Callers for Next-Generation Sequencing Data: A Comparison Study[END_REF]. The mpileup tool, calculates the likelihood of each possible genotype based on the sequence reads and calculates the consensus genotype. This function creates a pileup format file containing information for each base in the genome. The bcftools tool, then uses this pileup file and calls the SNVs and INDELs based on the genotype likelihood scores. Most of the analysis is based on the analysis of the variation in the genome compared to the reference genome. In SAMtools, the estimation of the genotype likelihood of SNVs and INDELs is different from GATK [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF]. SAMtools uses predefined base quality filter threshold to remove low quality variants.

In the sequencing dataset, each base is assigned a Phred-scaled quality score generated by the sequencer representing the confidence of a base call [Li et al., 2009, McKenna et al., 2010]. These sequencer generated scores can be biased and inaccurate. Therefore, before calling of the SNPs in the sequencing dataset, the alignments provided by the alignment tools are processed again by these programs. The duplicate reads starting at the same location are removed keeping the read with the best alignment quality score. The read sequencing quality scores are recalibrated based on raw quality scores and allele types. The reads are realigned for accurate detection of SNPs and INDELs. The mismatching of read alignments to the alignment provided by alignment tools are considered as the sequencing errors [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF].

After the pre-processing step, both the programs GATK and SAMtools identify the SNPs using Bayesian framework [START_REF] Webb-Robertson | A Bayesian framework for SNP identification[END_REF]. These programs calculate the posterior probability of the possible genotypes and report the genotype with highest probability as the consensus genotype. The SNP calling is based on comparison of this consensus genotype to the reference genotype. SAMtools assigns a phred-scaled quality score as -10log10(1-P), where P is the consensus genotype probability [Li et al., 2009, Yu andSun, 2013].

The genotype quality parameters and SNP quality parameters are provided in the output variant call format (VCF) file and correct genotype is selected based on these parameters. These programs do not report all the bases, as the internal filters remove the bases with low mapping quality and phred-scaled quality score of the variant (cutoff is 13 in SAMtools). This programs report more informative parameters representing quality of a SNP, like coverage, mapping quality, allele frequency and strand bias, which can be used for filtering the data further in order to select high base quality SNPs with good coverage [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF]. SAMtools and GATK produce similar results for single-sample analysis and provide specific SNP quality parameters [Warden et al., 2014, Yu andSun, 2013].

Variant analysis

These tools can used to retrieve information associated to different types of variations (SNPs, MNVs and INDELs) in a variant calling format (VCF) file [Danecek et al., 2011]. This file format was generated for the 1000 genome project to store variant information. Now, this is the standard file format used to represent annotations associated to the different variations in the genome of one or more samples. This format is flexible, extensible, compact in size and easy to generate and parse.

The structure of this text format file consists of headers and the quality properties of each site (base/variation). The headers in the starting of the file provide information about the VCF file version used, the criteria used to filter the data, the commands used to generate the VCF file, description of the quality annotation parameters, contig names and lengths and the reference file used for the assembly.

After the headers, the information and quality parameters associated to each base/variant site is represented in eight columns detailing chromosome name (CHROM), base position in the chromosome (POS), variant identifiers based on location or universal identifiers from the reference database (ID), reference allele on the forward strand of the sample (REF), alternative allele on the forward strand of the sample (ALT), phred-scale score (base quality score in SAM/BAM file)of the variant that it is wrongly mapped (QUAL), filtering criteria passed by the variant (FILTER) if any, quality annotations (INFO) associated to each base. The information in the INFO column depends on different variant callers. These files also contain columns describing the annotations of the genotype of each sample. Genotype annotations for each variant site for more than one sample can be included in a single VCF [Danecek et al., 2011].

There are many different parameters presented in the INFO column of the VCF files. Some of these parameters can be included or excluded at the time of VCF file generation. The definition of some of the parameters in the INFO column and some genotype descriptors from the VCF file produced using SAMtools mpileup function and bcftools are the following ones (NOTE: The parameters in this manuscript are described based on GATK tool documentation [START_REF] Gatk | GATK tool documentation[END_REF], SAMtools tool documentation [START_REF] Github | SAMtools tool documentation[END_REF] and various forums, as the description of all the parameters is not provided in articles extensively): DP (Raw read depth): This parameter represents the unfiltered number of reads (depth) at a particular genomic location for a sample. Minimum value of this parameter is 0. The higher the number of reads (depth), the more confidence on the base call. For multiple samples this will represent the sum of filtered reads of all the samples. VDB (Variant Distance Bias): This parameter represents the misalignment of the reads. It checks if the variant bases occur randomly in aligned reads. Higher value indicates greater bias and the reads within the aligned reads are distributed randomly. AF1 (Maximum likelihood estimate of the first ALT allele frequency): This parameter estimates the frequency of the most frequent ALT allele at that location. This parameter ranges between 0 and 1. The higher the value, the more often the ALT allele is present in the reads at that location. AC1 (Max-likelihood estimate of the first ALT allele count): This parameter estimates the count of the most frequent ALT allele at that location. The higher the value, the more often the ALT allele is present in the reads at that location.

DP4 (high-quality ref-forward bases, ref-reverse, alt-forward and alt-reverse bases):

This parameter summarizes the number of forward strands with the REF base, reverse strand with the REF base, forward strand with the ALT base and reverse strand with the ALT base. The sum of these 4 values can be less than the parameter DP (accounting for all the reads), as DP4 does not take into consideration reads with low quality bases. The default base quality threshold for using SAMtools mpileup is 13, i.e, the bases with base quality below 13 are not considered in DP4.

MQ (Root-mean-square mapping quality of covering reads): Mapping quality (MAPQ) represents the score that all the reads containing the base with base quality greater than 13 are mapped correctly, i.e., how unique is the mapped region. This parameter (MAPQ in SAM/BAM file) depends on the aligner that is used to align the reads and depends on the probability considered for accuracy of read alignment. In the VCF file it is calculated as the root mean square of MAPQ of the reads at the specific genomic location. The range of mapping quality is between 0 and 60. The value 255 means that no mapping quality is present. Higher values indicate more uniqueness and that the base is mapped correctly. FQ (Phred probability of all samples being the same): This parameter measures if the variant locus is conserved in all the samples. The positive value of this parameter represents the Phred-scaled probability that there is more than one allele. Otherwise, negative value represents the phred-scaled probability that all the samples have the same allele. For a single-sample test, positive value represents heterozygous locus and negative value represents homozygous locus. heterozygous, second ALT is represented by 2 and so on. This representation is for the diploid data. For haploid data genotype is represented by only one value (0/1/2). In the case of using bcftools to create the VCF file, the homozygous genotype is represented as 1/1 and heterozygous genotype is represented as 1/2 for haploid data. PL (Phred-scaled genotype likelihood): This parameter represents the -10 log ( P ( Genotype | Data ) ) likelihoods for the genotypes of all the possible sets of REF and ALT alleles. For a biallelic location, PL will be represented as three comma separated values: first one is the probability that the site is homozygous for the REF allele, second is the probability that the site is heterozygous and third is the probability that the site is homozygous for ALT allele. These values are normalized by subtracting the lowest PL value with all the values. The lower the value, the more likely the kind of genotype to expect. For homozygous ALT sites in haploid data the third value will always be 0.

GT (Genotype

GQ (genotype quality, encoded as a Phred score): In GATK, this parameter represents the difference between the likelihoods of the two most probable genotypes. It can be interpreted from PL as the second loWest score, i.e., the first score greater than 0, which is the most probable. Maximum value of GQ is 99. Any value above this threshold is still represented as 99.

Many other parameters are available [START_REF] Gatk | GATK tool documentation[END_REF][START_REF] Github | SAMtools tool documentation[END_REF] and can be recovered using different utilities and tools to be included in a VCF file [Danecek et al., 2011].

The data size reduces a lot moving from the raw reads to the variants for analysis. Data are filtered based on quality before the alignment process, then filtered for accuracy during the alignment process, and then further filtered based on the quality parameters associated to the variations under focus of analysis.

Plasmodium genome resources

In the last decade due to advancement of sequencing and assembly technologies the quantity and quality of the sequence data have increased. Storing such data and making them publicly available for analysis is one of the important tasks that have been focused by the sequencing centers. In the previous section we discussed the variant calling process for selecting significant SNPs and INDELs from the raw reads sequenced by different sequencing platforms. SNPs are an important category of genetic variations and can influence disease risk and associated drug efficacy. Genes containing non-synonymous SNPs responsible for changing the amino acid sequence can be retrieved and annotated. The expression of these genes in different life stages can be assessed using protein and RNA-seq data. These predicted genes and proteins from the DNA sequencing data can be annotated using Gene Ontology (GO) terms provided by different sequencing centers and Malaria research community. Further, these genes can be identified in metabolic pathways and gene-gene/protein-protein interaction networks to reveal the affected networks in upstream and downstream of the targeted genes.

These genomic, transcriptomic and proteomic information can provide evidence regarding the underlying metabolic pathways influenced by the genes and support the discovery of drug targets and evolutionary population studies. There are publicly available database servers for Plasmodium falciparum genome such as European Nucleotide Archive (ENA) [Leinonen et al., 2011a], GeneDB [START_REF] Hertz-Fowler | GeneDB: a resource for prokaryotic and eukaryotic organisms[END_REF], Logan-Klumpler et al., 2012], MalariaGEN [MalariaGEN, 2016c], Plas-moDB [START_REF] Bahl | PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data[END_REF], Stoeckert et al., 2006, Aurrecoechea et al., 2009] and STRING [von Mering et al., 2005, Szklarczyk et al., 2011, Szklarczyk et al., 2015]. In this section we discuss the use of these databases.

ENA

The European Nucleotide Archive (ENA) is a publicly available archive for raw nucleotide sequence, assembly information and functional annotation information [Leinonen et al., 2011a]. It provides services for nucleotide data submission, storage, search (text and sequence) and download. This works in collaboration with National Center for Biotechnology Information (NCBI) and The DNA Data Bank of Japan (DDBJ) in International Nucleotide Sequence Database Collaboration (INSDC). This archive includes three databases: (1) Sequence Read Archive (SRA) [Leinonen et al., 2011b], which stores raw NGS sequence data. The raw NGS data in supported formats (ex: BAM) and associated meta-information (study, sample, experiment and run) can be uploaded in the SRA archive. The data can also be submitted with authorized access through SRA into European genome-phenome archive (EGA), (2) Trace Archive, which stores the sequencing data from gel/capillary platforms and (3) EMBL-Bank, which stores nucleotide sequences, associated biological annotation and source of the annotation. The submitted data are diverse, such as, expressed sequence tags, high-throughput sequences, through genomic assemblies and richly annotated sequence fragments [Leinonen et al., 2011a]. The data at ENA is also mirrored to two other databases, DNA Data Bank of Japan (DDBJ) and GenBank.

ENA provides interactive web platform to retrieve data in various formats, such as XML, HTML, FASTA, FASTQ, SAM/BAM and SRF. For each sequence a summary page is available which provides the sequence, associated meta-information, bibliographic sources, EMBL bank annotation and a graphical view of the assembly. The sequences can be searched using descriptors in the text based search and providing the sequence for sequence similarity search. The data can also be browsed and downloaded using a programmatic data access tool, which allows retrieval of information and data using REST (Representational state transfer) URLs. The ENA browser also provides options to download sequence, read and taxonomy data in bulk from the databases. The ENA "Features and Qualifiers" tool provides the vocabulary for DNA sequencing.

MalariaGEN

The Malaria Genomic Epidemiology Network (MalariaGEN) is a data sharing database, which makes available genetic variation data and analysis associated to human (host), Plasmodium (parasite) and Anopheles mosquito (vector) genome from different collaborative projects aimed at understanding the effects of variation on biology and epidemiology of malaria [MalariaGEN, 2016c]. Research labs from more than 20 countries contribute in these collaborative projects. MalariaGEN resource center (MRC) is a National Institutes of Health project funded by Wellcome Trust and Gates Foundation.

The data comes from various studies including clinical research, epidemiology, genetics, statistics, parasitology, entomology, immunology, computer science and ethics. The data from these studies contribute to three projects on host genome variation, four projects on parasite genome variation and one project on vector genome variation. MalariaGEN currently provides interactive tools to browse and retrieve genomic data, variants and associated statistics (depth histogram and variant density), sample information and statistics (samples plotted on world map, mean base quality and mean coverage), study information and list of study locations. This interactive tool is available for two projects: (1) Anopheles Gambiae (principal vector of P. falciparum malaria in Africa) 1000 Genome project, which aims at analyzing variations in population of Anopheles Gambiae [MalariaGEN, 2016a] and (2) Pf3k project, which aims at analyzing genome variation in 3,000 P. falciparum parasite samples [MalariaGEN, 2016b]. The SNP calling in Pf3K project dataset is done using GATK haplotype caller.

The mentioned interactive tools are included in the Panoptes web application, which is an open source application for browsing and visualizing data. The data are stored in simple tab-delimited files and other specific formats. The data is structured as MySQL data tables in nested folders.

The SNPs described for defining the population structure of Plasmodium falciparum parasite [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], Miotto et al., 2013] and identifying the genetic background associated to artemisinin resistance [Miotto et al., 2015] in Cambodia and in SEA, can be recovered with the meta-information from the MalariaGEN database server as Tab delimited tables.

PlasmoDB

PlasmoDB Plasmodium genomics data resource is the official and highly used database for Plasmodium genome sequencing consortium [START_REF] Bahl | PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data[END_REF], Stoeckert et al., 2006, Aurrecoechea et al., 2009]. This database is a project of EuPathDB (Eukaryotic Pathogen genome database) Bioinformatic resource center (BRC), in addition to other databases for Amoeba, Cryptosporidium, Giardia, Microsporidia, Priroplasma, Toxoplasma, Trichomonas and Kinetoplastida. PlasmoDB provides a user friendly data-mining interface for analysis and visualizing genomic-scale data produced by the global malaria research community. This database provides information for 10 Plasmodium species and 13 strains based on sequencing data. The source for these data are GeneDB, GenBank and information provided by malaria research community. PlasmoDB provides tools for comparisons of these species and organisms. There are two P. falciparum reference strains present in the database, 3D7 and IT. This database presents sequence and associated annotation of P. falciparum canonical reference genome strain 3D7 and other isolate strains from different Plasmodium sequencing projects. The complete sequence of the strain 3D7 is included in Plas-moDB since release version 4.0 (2008). The current release version is 28 (2016) and the 3D7 reference genome sequence version 3 is available in the database server. For this sequence, PlasmoDB provides data at genomic, transcriptomic and proteomic levels, such as SNPs, CHIP-seq, RNA-seq, Microarray (multiple life cycle stages), expressed sequence tags (ESTs), serial analysis of gene expression (SAGE) tags and CHAPTER 1. INTRODUCTION protein expression data (multiple life cycle stages). SNP data are present for more than 100 isolates and can be used for population studies [START_REF] Bahl | PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data[END_REF], Stoeckert et al., 2006, Aurrecoechea et al., 2009]. This database server implements Genomics Unified Schema (GUS) deployed in Oracle and PostgreSQL (open source object-relational database developed in 1996) [Post-greSQL, 2016]. GUS is a highly structured format to include different sequence and expression data types [START_REF] Clark | A structured interface to the object-oriented genomics unified schema for XML-formatted data[END_REF]. This schema stores and integrates, genomic sequences, annotation and co-expression data from different available resources. GUS allows users to customize the query (SQL) and recover information of genes and SNPs and associated functions and expressions for different analysis.

Information from this relational database server can be retrieved by ( 1) Text based search: provide old/new SNPs ID, gene IDs, gene names or gene product names. ( 2) Pre-defined query based search: select pre-defined query options. The retrieved result can be based on a single query or a combination of different queries [START_REF] Bahl | PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data[END_REF].

In this database server, a summary page for each annotated gene can be recovered. The genes can be visualized in the genome using the genome browser tool. For each gene, the details such as associated annotations, IDs, predicted mRNA and protein sequences, microarray expression results precomputed statistics based on transcriptomic and proteomic data, and links to Malaria Parasite Metabolic Pathways database and Malaria Research and Reference Reagent Resource Centre can be recovered from the summary page. The functional annotation associated with the genomic sequences of other species can be recovered using orthology criteria [START_REF] Bahl | PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data[END_REF].

GeneDB

GeneDB is a publicly available database archiving pathogen genomic sequences made available by various sequencing centres [START_REF] Hertz-Fowler | GeneDB: a resource for prokaryotic and eukaryotic organisms[END_REF], Logan-Klumpler et al., 2012]. It includes data from different genome and expressed sequence tag (EST) projects. GeneDB currently provides access to genomes of 41 organisms, which includes completed and partial sequence annotations. This database server provides up to date annotation of ( Plasmodium) genomes, including Plasmodium falciparum genome. This database provides the reference genomes with annotations and manual curation.

The data are stored in PostgreSQL relational database that uses the Chado schema [START_REF] Mungall | A Chado case study: an ontology-based modular schema for representing genome-associated biological information[END_REF], which allows for consistent and flexible an-1.4. GENOMIC DATA FUNCTIONAL ANALYSIS 57 notation of sequence features. GeneDB implements GUS [START_REF] Clark | A structured interface to the object-oriented genomics unified schema for XML-formatted data[END_REF] using the standardized files for sequences and annotations generated by GeneDB mining code.

This database implements a pipeline to provide automated annotation (predictions) of the stored sequence data before manual curations. The manual annotations are included from literature, other public databases and information provided by other research institutes. The automated genome annotation pipeline includes algorithms for selecting gene, prediction of protein features, BLAST/FASTA search against nucleotide, protein databases and domain information, annotated and predicted GO terms [START_REF] Hertz-Fowler | GeneDB: a resource for prokaryotic and eukaryotic organisms[END_REF].

The Plasmodium curated genomes and associated annotations from this database are shared by PlasmoDB. The user comments provided in the PlasmoDB database for genes are accessed by GeneDB to revise the curation as well [START_REF] Logan-Klumpler | GeneDB-an annotation database for pathogens[END_REF].

GeneDB also provides genome browser tool, Artemis [Carver et al., 2012b], with latest curation for all the genes. This tool is used for genome annotation and it is possible to read and write to the Chado relational database schema directly.

Gene interaction networks

In order to determine the biological processes taking place in different subpopulations, gene-gene interaction networks can be studied. Functional and predicted proteinprotein interactions are available based on data sources and literature [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF]. The interactions between the proteins can help in understanding the function of the proteins and reveal role in metabolic pathways. The biological networks are data representation of protein-protein interactions, coexpression evidence and metabolism. The nodes of the network are the proteins or the genes and the edges could be the evidences for physical interaction or association based on experimental data.

For identification of biological function associated to the significant genes, the functionally grouped networks of GO terms (annotated and predicted) from Gene Ontology (GO) consortium and pathways from KEGG and BioCarta can be recovered using the ClueGO v2.2.4 and CluePedia v1.2.4 plugins of Cytoscape. ClueGO utilizes updated precompiled annotation and ontologies files as the data source, to recover annotation and pathways of provided genes. The algorithm to define the functional groups is: (a) create a binary matrix for genes and associated terms, (b) Using this matrix and kappa statistics create a term-term similarity matrix, (c) create initial functional groups based on predefined threshold of kappa score and minimum number of terms per group to be considered (d) iteratively merge the functional groups, if there is a certain percentage of overlap [START_REF] Bindea | ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks[END_REF]. The network is created with nodes as the term and edges as the association based on kappa score. These networks can be filtered based on the statistical enrichment/depletion of GO terms.

STRING

The Search Tool for the Retrieval of Interacting Genes/Proteins database (STRING-DB) provides a user friendly web interface for browsing, visualization and retrieving known and predicted interactions based on functional and physical interaction evidence [von Mering et al., 2005, Szklarczyk et al., 2011, Szklarczyk et al., 2015]. It is a collaborative project of Swiss Institute of Bioinformatics (SIB), European Molecular Biology Laboratory (EMBL) and Center for protein research (CPR). STRING aims at providing interaction confidence scores, comprehensive coverage (increased number of proteins, organisms and accurate prediction methods), user friendly interface and being a stable resource of protein networks. The current release of STRING, i.e., version 10 provides interaction data for 2031 organisms. STRING database is based on protein-coding gene loci.

The interactions provided in STRING are the functional association between proteins contributing to similar biological process. The sources of these interactions can be classified into three groups, known interactions, predicted interactions and computed interactions [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF]. The source of known interaction evidence are (1) interactions recovered from experimental data available in public databases (Ex: Yeast2Hybrid) and ( 2) pathway and protein complexes information from manually curated databases. The source of predicted interaction evidences are (1) the genomic neighbourhood genes, (2) gene families with similar occurrence pattern and (3) gene fusion events. The source for computed interaction evidences are (1) automated literature text-mining, (2) proteins with correlated genes based on expression and (3) interactions from pre-computed protein orthology relations available in eggNOG database (partner resource project) [START_REF] Powell | eggNOG v4.0: nested orthology inference across 3686 organisms[END_REF]. These interaction evidences represents the sharing of biological function and is not necessarily the physical interaction between two nodes (genes) [START_REF] Szklarczyk | The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored[END_REF]. The accu-racy of all the interaction evidences in STRING is validated with the interactions in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps [START_REF] Kanehisa | KEGG: kyoto encyclopedia of genes and genomes[END_REF] for only the metabolism.

STRING allows the visualization and retrieval of interaction network with genes as nodes and edges as the interaction based on the evidence from different sources. The network can be requested for multiple protein sequences and protein names. For single protein names and sequences all the interactions with that gene are provided and for multiple protein namessequences interactions among the only those genes are provided. The genes with no interaction evidence are also represented as unconnected nodes.

Each interaction in the network is scored, and cutoff on these scores can be used to filter data for accuracy. The STRING interaction evidence scores based on the coexpression data are calculated as [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF]:

The pipeline matches the probe identifiers and the experimental microarray expression values to the target set of genes in STRING. The expression values are extracted from microarray gene expression experiments deposited in NCBI Gene Expression Omnibus (NCBI GEO) [START_REF] Barrett | NCBI GEO: archive for high-throughput functional genomic data[END_REF]. For each gene, the probe values are combined into a single vector and the expression values of all the probes are averaged. The microarray expression values in these vector arrays are z-value normalized and in order to remove redundancy the normalized expression vectors for each target gene is correlated with other genes in the target set using Spearman's rank correlation. The gene arrays are pruned using Hobohm-2 algorithm [START_REF] Hobohm | Selection of representative protein data sets[END_REF]. This algorithm removes the mostly connected gene at each step until the there is only one connection in the remaining gene. This array of n target genes is transformed into n arrays per gene. The raw score for expression values is calculated as pairwise Pearson correlation coefficient. The correlation is calibrated with STRING benchmark, which is that the number of functional pathway in KEGG [START_REF] Kanehisa | KEGG: kyoto encyclopedia of genes and genomes[END_REF], where pair of genes are annotated together, i.e., score cutoff on the fraction of true functional association [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF].

The raw scores for interaction evidence from neighbourhood, homology, gene fusion, experimental data and text mining are calculated as sum of intergenic distances, euclidean distance, as constant (0.99) of fusion event, uniqueness of interaction and log-odds ratio, respectively [von Mering et al., 2005]. The combined score for all the interaction evidences is calculated as 1 -(1 -Ki), where i is the evidence source and K is the STRING confidence score created by benchmarking each interaction evidence confidence score against the KEGG database [von Mering et al., 2005]. These scores represent the confidence of an interaction to be true and not the strength of the interaction.

For P. falciparum genome, the recovered interaction networks based on different sources should be analyzed carefully, as most of the edges (interactions) have a low interaction score. For example, in the complete interaction network of P. falciparum based on coexpression data source, less than 10% of the interactions have a score greater than 0.9 (range 0 to 1). This creates interaction hubs, i.e., nodes (genes) with many edges (interactions) with low score. Therefore, the network is not scale free and it should be curated for network based studies. The B. microti genome is not included in the STRING database server. -----------------Chapter 2

Barcoding the P. falciparum genome 2.1 Introduction

Plasmodium falciparum malaria is one of the most severe and wide spread parasitic disease affecting millions of humans in the world. Following the emergence and spread of drug resistant parasites is a major challenge. The Cambodian-Thai border is recognized as the epicentre of the emerging drug resistances. The resistance to earlier drugs chloroquine [Eyles et al., 1963] and sulfadoxine-pyramethamine [Wongsrichanalai et al., 2002] was observed in the same location as for recently emerging artemisinin resistance [Ariey et al., 2014]. Molecular epidemiological studies have confirmed that the spread of resistant parasites to these two drugs to Africa has originated from Southeast Asia [Mita et al., 2009]. The reasons supporting the emergence of multi-drug resistance parasites in this area are unknown. Recent reports have shown existence of artemisinin resistance and sensitive populations in Cambodia based on whole genome sequencing [Miotto et al., 2013, Miotto et al., 2015]. Three resistant subpopulations (KH2, KH3 and KH4), ancestral population (KH1) and one large admixed subpopulation (KHA) were described using samples isolated in the time period 2007-2011. The resistant subpopulations are associated to clinical artemisinin resistance defined by a delayed of parasite clearance in the first 3 days of artesunate monotherapy, or artemisinin based combination therapy (ACT) [Miotto et al., 2013], and were later confirmed to be associated to mutations in the propeller domain of the K13 gene (PF3D7_1343700) located on the chromosome 13 [Ariey et al., 2014]. In their report, CHAPTER 2. BARCODING THE P. FALCIPARUM GENOME Ariey and collaborators clearly showed that the prevalence of mutant k13 alleles, involved in artemisinin resistance, was much higher in western Cambodian provinces than in eastern Cambodia.

A new approach was used to identify a unique molecular barcode to follow the diffusion of k13 alleles and allow classification of the samples into artemisinin resistant and sensitive populations using small number of loci. Two earlier studies describing the importance and usefulness of the barcode approach for P. falciparum genome are (1) a 24-SNP barcode in P. falciparum nuclear genome, detected by a robust TaqMan genotyping approach [Daniels et al., 2008]. Their analysis was performed on African and Thai isolates and (2) a 23-SNP barcode in P. falciparum organelle (mitochondria and apicoplast) genomes, constructed using iterative SNP detection algorithm based on haplotypes [START_REF] Preston | A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains[END_REF]. This analysis was performed on samples from Africa, Thailand, Cambodia and Vietnam.

At present, novel, rapid and reliable techniques based on fluorescent magnetic beads, such as the LUMINEX technology, are available to detect specific alleles. A rapid assay of Plasmodium typing was developed using fluorescent microspheres [McNamara et al., 2006]. This assay combined a PCR and a ligation reaction: PCR-LDR-FMA (PCR-based ligase detection reaction-fluorescent microsphere assay).

This chapter describes the implementation of the PCR-LDR-FMA for the detection of an 11-SNPs barcode from the set of 24 SNPs described by Daniels et al., [Daniels et al., 2008]. The evidence supporting presence of parasite subpopulations was provided and intensive gene flow over Cambodia was described to assess the spread of drug resistance. The idea was to provide evidence to support the hypothesis that parasite population structure plays an important role in spread of k13 alleles and artemisinine resistance from west to east Cambodia. Allele gradient analysis supports the idea of west to east allele diffusion axis. A new subpopulation was defined, highly prevalent in northern Cambodia and associated with in vitro mefloquine resistance (expressed by high mefloquine IC 50 values). This work has been recently published in Malaria journal as "Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia" and the approach, results and discussions sections presented in this chapter can be referred from Article 1.

Approach and Results

The aim of implementing the barcode approach was (1) the clustering of samples into parasite subpopulations based on a small number of loci and ( 2 

Barcode genotyping

The genomic DNA was extracted from blood samples using DNA mini blood kit (Qiagen, Germany) and primary PCR was carried using FirePol R Taq DNA Polymerase to reach the target between 164 and 385 bp (Article 1: Method section "DNA extraction and PCR amplification"). The genotyping was performed using LUMINEX technology, which is based on polystyrene / paramagnetic microspheres to perform multiplexed assays. The assay was designed as polymerase chain reaction (Article1: Additional file 2) followed by ligation detection reaction (Article1: Additional file 3 and 4), followed by fluorescent microsphere-based assay (PCR-LDR-FMA) (Article 1: Method section "Ligation and detection assays" and "Hybridization and labeling of magnetic beads").

The 11 barcode loci were selected among 24 SNPs described by Daniels et al., [Daniels et al., 2008], which were detected by a robust TaqMan genotyping approach for genotyping studies in P. falciparum African and Thai populations. Primers for the 24 SNPs were designed using P. falciparum reference genome 3D7 version 3 (Article1: Additional file 2). Out of the 24 SNPs only 11 SNPs could be genotyped for 282 blood samples (Article1: Result section "Barcode of alleles for 11 variable sites").

Around 50% of the samples were rejected due to traces of mixed infection, no significant signal with LUMINEX for at least one barcode position and/or no amplification using PCR for at least one locus. Around 60 samples showed more than one mentioned factor and were rejected (Article1: Additional file 7). Finally, 282 samples among 533 blood samples were successfully genotyped at the 11 SNP loci (Article1: Result section "Barcode of alleles for 11 variable sites").

LUMINEX signal analysis

The PCR-LDA-FMA assay is a multi-step approach (Figure 2.3A). The locus is first amplified by PCR. The Ligation detection assay (LDA) will bind two primers, one carrying a florescent dye. The ligation is allowed only when both primer hybridized at 100% to the PCR product. The allele specific base is located just at ligation point. LUMINEX beads have been coupled with a primer and the allele detection is measured after hybridization with the ligation product. The LUMINEX detection assay is based of florescent beads with specific properties. The LUMINEX microsphere is targeted to a specific detector in the MAGPIX apparatus. The fluorescent signal is captured and provided as a quantitative value.

The heterogeneity of the signal measured by the MAGPIX apparatus was important. Background noise and positive signal vary both in linearity and intensity for each tested bead. It depends on the microsphere, but also on the used primer. We had several examples, where the same microsphere was used for different loci. The 96-well plate inter-variability was also high. A signal analysis method was developed based on a set of values recovered from an array of measurements. The signal was analyzed per 96-well plate. Four control DNA (strains 3D7, Dd2, HB3 and RO33) were introduced in our analysis on each plate to ensure that a significant number of representative values for both the background noise and the positive signal would be present.

The algorithm first classifies the set of signal values for one allele k between two series, one corresponding to the signal without noise (referred to as "signal"), and the other corresponding to the noised signal (referred to as "noise"). This classification method minimizes the variance associated to the two series of measures, and is anal-ogous to the k-mean algorithm where k = 2. A test was developed to address each measurement to the negative or positive value of the allele assuming that both series of values are following a Gaussian distribution (Figure 2.3B). We considered two possibilities: either the signal is significantly different from the noise, or it is significantly from the signal. We compared the two probabilities of accepting the null hypothesis H0 whilst H0 is true. Nevertheless, if both probabilities were higher than 1-0.0027/2 (6 times the standard deviation according to the unilateral normal distribution), we considered that the signal was uncertain. The final decision concerning uncertainties was always given to the operator. Noise" is referred to signal from beads in which ligation does not take place and "signal" is referred to signal from beads which undergo ligation.

Decisions concerning alleles at a specific locus were taken from the analysis of two signals, one for primer 1 and one for primer 2. In the study, primer 1 corresponds to the reference allele found in 3D7 and primer 2 for the altered allele. Loci characterized as mixture corresponds to polyclonal samples of P. falciparum. "Other" means that the allele value could not be characterized at the corresponding locus based on the two primers used in the present analysis. In the case of BC07, we assumed that "other" value corresponded to the third allele, which was not tested experimentally. For the other loci that are bi-allelic, the significant absence of signal was considered as a technical problem. "Not valid" data corresponded to experiments that either need to be confirmed, or to DNA samples of bad quality (Figure 2.4). 

Visual representation of allele specificity to health centers

Decision concerning alleles at a specific locus were taken from the analysis of two signals, one for primer 1 and one for primer 2. In the study, primer 1 corresponds to the reference allele found in 3D7 and primer 2 for the altered allele. Loci characterized as mixture correspond to polyclonal samples of P. falciparum. "Other" means that the allele value could not be characterized at the corresponding locus based on the two primers used in the present analysis. In the case of BC07, we assume that "other" value corresponds to the third allele which was not tested experimentally. For the other loci which are bi-allelic, the significant absence of signal could be considered as a technical problem. "Not valid" data corresponds to experiments that either need to be confirmed, or to DNA samples of bad quality (Figure 2.4).

It was observed that the REF (reference 3D7) and ALT (non-reference) alleles at a specific SNP position were in an opposite quadrant (Article1: Figure 1 and Additional file 8) for bi-allelic loci. Comparing the results with Between-Class analysis for health centres, the specificity of alleles was determined visually (Article1: Results section "Allele distribution associated to health centres"). This graphical results show an east to west opposition of locations. The geographical localization of localities was not entirely met. The localities are closer to the center and Pursat appears in an aberrant position.

Gradient of alleles based on allele significance in health centres

The correspondence analysis was used in an exploratory way and these results were confirmed using Chi-squared statistical test (Article1: Figure 2, Additional file 1 and Additional file 9). Chi-squared test was used to determine statistically significant (pvalue < 0.05) relationship between all the alleles and health centres (Article1: Results section "Allele frequency gradient between localities"). In the Figure 2 of Article 1, the allele frequencies are represented by weblogos and the red and blue color signifies ALT and REF allele enrichment, respectively. The allele enrichment is defined as Chi-squared test statistics component (χ 2 = Σ[(Observed -Expected) 2 /Expected]; one component for each health centre) greater than 1 (Article1: Figure 2, Additional file 1 and Additional file 9). Other Not significant SNP positions are colored in grey and the barcode position 11 was not significant in any of the health centres evident by its low variation.

Form this analysis and representation on the map of Cambodia (Article1: Figure 2 and Additional file 9), it was seen that the enriched alleles were not restricted to a single health centre, but instead enriched in geographically close localities. Alleles of some of the SNPs were significantly enriched in specific regions of Cambodia (e.g., ALT alleles for BC01, BC02, BC03, BC07 and BC08 and the REF allele for BC04, BC05 and BC06). Also, a specific allele gradient was observed between regions based on significant allele frequency in health centres. For example, western Cambodia appeared as the starting point for the diffusion for BC02_ALT_C allele and northern Cambodia was associated with BC02_REF_T allele. The region of Battambang shows no significant allele frequency for this locus (Article1: Additional file 9B). Therefore, barcode allele specificity for localities could suggest the presence of specific subpopulations with fixed allele in restricted area and overlap between these subpopulations, or even gene flow.

Subpopulation structure based on barcode

In order to determine the allele diversity between samples at different locations, a fixation index (F ST ) was calculated [Charlesworth, 1998] for the 16 health centers (Article1: Results section "Presence of fixed alleles at the border of Cambodia"). This parameter is representative of genetic differentiation. The increased value represents genetic drift within subpopulations, which could be due to bottleneck effect, or founder effect [Whitlock, 2011]. The value ranges from 0 (no differentiation high diversity) to 1 (complete differentiation low diversity) for subpopulations with respect to total population. The average F ST is calculated based on average allele diversity of 11 SNPs in subpopulations at specific locations (samples at 16 health centers) and total population (282 samples). The allele diversity at a single barcode locus for a specific location or total population is calculated as 1-Σp 2 i , where p is REF and ALT allele frequency. Average allele diversity is calculated as average over all the barcode loci. Average F ST is calculated as (At -As)/At, where At is average allele diversity in total population and As is average allele diversity at different locations.

Based on the average F ST values (Article1: Figure 3), it was observed that the localities near the border (mostly north and west) show higher F ST values than the localities at a distance from the border, i.e., subpopulations at the localities near border could be emerging subpopulations due to founder effects with low diversity and the subpopulations at the localities away from the border could be ancestral or admixed populations with high diversity.

Another approach for identification of subpopulations was based on unsupervised hierarchical clustering of the 282 genotyped samples based on 11-SNPs barcode (Arti-cle1: Methods section "Data and statistical analysis"). The pairwise distance between the samples was calculated as the proportion of base substitution between them over the barcode (genetic distance [Miotto et al., 2013]). Ward's minimum variance method was used as the clustering method to build the dendrogram (Article1: Additional file 5A). This method minimizes the variance (square of error) in each cluster.

The dendrogram was cut to obtain 8 clusters (k=8) based on dendrogram structure and earlier defined subpopulations [Miotto et al., 2013] by matching the barcode. The correspondence of the 293 samples and defined subpopulations was provided by Olivo Miotto [Miotto et al., 2013]. Random sampling was performed in order to obtain robust results (Article1: Additional file 5B): the clustering approach was implemented on 10,000 subsets of 230 samples each (idea was not to disrupt the structure of clustering too much), randomly selected out of the 282 samples. Based on these 10,000 clustering results, pairwise distances between samples were calculated as the percentage of clustering results in which two samples are in the same cluster. Nine clusters (conserved groups) G1-G9 were finally selected based on the dendrogram structure (Additional file 5B) and association with earlier defined subpopulations [Miotto et al., 2013]. Weblogo was used to highlight conserved alleles among health centres in G1 to G9 groups. The groups are geolocalized by the geographical centroids on the 2D map. The coordinates for the geographical centroids are calculated as the average of the coordinates (measured in the coordinate space of the 2D map) of the health centres included in the group.

The significance of each group was established by comparing the average distance of the samples to the geographical centroid within a group to the distribution of average distance after random sampling in nine groups. The p value < 0.05 was significant. The average distance for each group was compared to the average distances calculated for 5000 random re-sampling of the 282 samples within the nine conserved groups. The p value was calculated as the proportion of average values below the average distance of the health centres to the geographical centroid for each group.

Unsupervised clustering runs based on different random subset of the 282 isolates suggested the existence of 9 robust clusters (referred as G1-G9, size of the groups, n = 18-44) representative of the parasite subpopulations (Article1: Figure 4). Specific conserved groups identified in north-west area of the country and have matching barcodes with the earlier defined founder subpopulations [Miotto et al., 2013] and no groups corresponding to specific subpopulations (G5, G6 and G9) could be identified near the center of the country (Article1: Results section "Identification of emerging subpopulations in Cambodia").

Anti-malarial drug susceptibilities associated to regions and subpopulations

Out of the 282 samples, mutations in k13 gene associated with resistance to artemisinin were questioned in 98 patients, as described earlier [Ariey et al., 2014]. From these patients, 70% of the samples were positive for one of the k13 resistant alleles (C580Y, R539T, Y493H, I543T, P553L, V568G and N458Y). The C580Y allele was the most prevalent (5468 positive patients) and present in all the conserved groups (Article1: Additional file 10) followed by R539T (968 positive patients). Barcode alleles at BC01, BC03, BC04, BC05, BC09 and BC11 are conserved in these nine samples and significantly associated to Trapaing Prasat HC (Article1: Figure 2 and Additional file 11).

In vitro IC 50 (half maximal inhibitory concentration) susceptibilities to chloroquine (n = 109), mefloquine (n = 111), piperaquine (n = 103) and quinine (n = 107), were assessed in isolates with a parasitaemia > 0.1% (Article1: Results section "Mefloquine resistance is strongly associated to northern Cambodia"). The data was represented as a box plot and the parasites were considered to be resistant for the median value for target drug > 30Nm. No geographical bias was observed for Piperaquine. The susceptibility for mefloquine was highest in northern and southern localities (Article1: Figure 5) followed by chloroquine (Article1: Additional file 12). Two geographic loci for mefloquine resistance in Cambodia were identified, one associated to C580Y allele (south) (Article1: Additional file 10) and one associated to R539T allele (north) (Article1: Figure 5). The samples in G4 and G8 groups show high mefloquine IC 50 values (Article1: Additional file 13) and large proportion of G8 samples originating from Trapaing Prasat HC carried R539T mutation (Article1: Additional file 10). This suggests presence of recently emerging P. falciparum subpopulation in northern Cambodia (supported by high F ST for Trapaing Prasat HC) with mefloquine resistance.

Discussion

A PCR-LDR-FMA technique for the mid-throughput detection of a barcode for P. falciparum Cambodian isolates was optimized. A specific algorithm was developed for signal discrimination between the 23 alleles corresponding to 11 SNPs, which enabled us to characterize 282 samples. The choice of the loci was based on both possibility to run detection at the corresponding locus and allele frequency. We see that the frequency of most of the 11 successfully genotyped SNPs is comparable to the frequency of ESEA samples included in MalariaGEN v4 database. This information was not available at the beginning of the project and the comparisons were performed after the MalariaGEN data release. As, the study by Daniels et al., [Daniels et al., 2008] included only African and Thai samples, the frequency of the alleles in the dataset is different from the allele frequency in the MalariaGEN database (Article1: Additional file 6). The level of genotyping failure is due to the fact that the 24 SNPs from the Broad Institute were not selected for the DNA content of the genomic location (Article1: Result section "Barcode of alleles from 11 variable sites"). AT richness of the P. falciparum genome contributes to the failure. A significant amount of samples were rejected because of mixed infections, the impossibility to design primers, lack of PCR amplification and bad quality of the signal (Article1: Additional file 2, 3, 4 and 7). Also, bioanalysis based on genome annotation present in PlasmoDB, revealed that some of the SNPs were in the subtelomeric regions encoding surface antigens (Article1: Additional file 6). These SNPs might not reflect population evolution, but more parasite-host interactions such as antigenic variation.

From the F ST (fixation index) analyses we see that the regions on the border of Cambodia are more towards fixations of alleles, i.e., genetic material is not shared, because of low level of breeding. F ST analysis (Article1: Figure 3) and gradients of allele frequencies (Article1: Additional file 9A-J) over the country suggest gene flow in a centripetal orientation. Crossing of subpopulations could be responsible for allele diffusion over the country. Especially in western Cambodian sites, where the low F ST values could result from overlap between subpopulations. This likely reflects gene flow driving the homogenization of the population. The parasite population structure was defined based on individual SNPs and global barcode analysis. The uneven distribution and specificity of alleles confirmed the presence of subpopulations and allele gradient representing gene flow. G1, G3 and G7 are associated with C580Y k13 mutant alleles and correspond to KH2 and KH3 subpopulations. It should be interesting to compare the barcodes in the two subpopulations (WKH-F01 and WKH-F03) described recently in the same localities in western Cambodia [Miotto et al., 2015] from parasites isolated later than the present study (2011)(2012)(2013).

Among the three less significant groups defined by the barcodes, G2 and G4 could not be associated to any of the specific subpopulations described earlier. The group G8 was associated with northern Cambodia and most of the samples were carrying the R539T k13 allele. Allele frequencies of this group were very close to that of the Trapaing Prasat HC, as illustrated by the Weblogos (Article1: Additional file 11). The high F ST value of northern localities is in agreement with the hypothesis of gene flow associated with R539T mutation from the north. The prevalence of R539T k13 allele associated with increased ring stage survival and delayed parasite clearance rates near eastern Thailand and northern Cambodia border has been shown in recent studies (Article1: Discussion section "11-SNPs barcode successfully identifies parasite subpopulations"). The other 3 groups G5, G6 and G9 could not be associated to specific subpopulations and the reason cold be presence of admixed or ancestral population, which could not be identified based on the presented 11 SNPs barcode.

The association of G1, G3 and G7 group with artemisinn resistance and presence of C580Y k13 allele supports the diffusion of C580Y allele form western Cambodia, as described earlier [Ariey et al., 2014]. The R539T allele was strongly associated to a subpopulation originating from northern Cambodia and represented by G8 group. The two groups G4 and G8 were associated to high mefloquine IC 50 values (Article1: Additional file 13). Allele frequency in G8 was close from those found in Trapaing Prasat samples (Article1: Additional file 11), suggesting that it could be the region of origin of these parasites. Despite the observed association between drug resistance (artemisinin and mefloquine) and subpopulations, the present study provides no evidence that drug pressure is responsible for emergence of subpopulations in western and northern Cambodia.

The existence of subpopulation and gene flow among these subpopulations has CHAPTER 2. BARCODING THE P. FALCIPARUM GENOME been supported by the conserved group analysis (clustering approach), allele gradient analysis (Chi-squared test) and fixation index (F ST ) analysis. These could be founder subpopulations emerging from the ancestral population KH1, as defined earlier [Miotto et al., 2013]. The variation in the significance of the conserved groups towards the center of Cambodia could be related to diffusion of alleles by overlapping subpopulations. This is supported by the presence of G2, G4 and G8 groups which have some barcodes associated to admixed subpopulation KHA. A west to east gene flow axis is observed, but other diffusion axis might also be present in Cambodia. The genetic exchange between subpopulations takes place by mating, which could be supported by human socio-economical migrations. The socio-economic scenario is changing in Cambodia rapidly, and it will be interesting to develop a specific barcode analysis to follow the evolution of these subpopulations in this new socio-economical context.

These 11 SNPs are shown to be suited for identification of the recent emerging subpopulations (KH2, KH3 and KH4), but this barcode was not able to identify the ancestral population (KH1) and the admixed population (KHA) as defined earlier [Miotto et al., 2013]. Reason could be the diversity of these two parasite populations. The present study validates the possibility of LUMINEX to barcode parasites. Indeed, a more relevant and specific set of SNPs should be analyzed for implementation of the barcode approach.

The barcoding approach (SNP genotyping) is a way of rapid and feasible assays for classification of isolates into subpopulations or relevant clusters. This approach is supported by the development of multi-assay technologies. This approach can reduce the cost and resources used for epidemiological studies compared to whole genome sequencing approach. At health centers it can provide a means to track the parasite development and classify patients into different classes based on parasite nature (resistant, wildtype, mixed infection). One of the issues with this approach could be the selection of barcode loci for a specific study (as in this study, a specific barcode relevant to Cambodian population should be developed). Methods and techniques should be developed to generalize the barcoding approach. These barcodes can provide rapid results but should be combined with other results for accuracy.

Article 1
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Plasmodium falciparum parasite population structure and gene ow associated to anti-malarial drugs resistance in Cambodia

Background

Plasmodium falciparum malaria is one of the most severe and wide spread parasitic disease affecting millions of humans in the world. Following the emergence and spread of multidrug resistant parasites is a major challenge. e Cambodian-ai border is recognized as the epicentre of the emerging resistances. Plasmodium falciparum clinical malaria resistance to chloroquine was first documented in 1957 [1,2] in this area. Later, in 1967 pyrimethamine resistance was also reported in the same region [3,4]. Molecular epidemiological studies have confirmed that the spread of resistant parasites to these two drugs to Africa has originated from Southeast Asia [5]. In 1990s, mefloquine resistance was consequently observed in this area and more recently, the emergence of artemisinin derivatives resistance was observed along Cambodian-ai
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e reasons supporting the emergence of multidrug resistance parasites in this area are unknown. Recently, whole genome sequencing data demonstrated that P. falciparum populations were highly fragmented in Cambodia [8,9]. Four subpopulations (KH1, KH2, KH3 and KH4) and one large admixed subpopulation (KHA) were described using samples isolated in the time period 2007-2011 [8]. KH1 subpopulation was shown to be as the ancestral population. e KH2, KH3 and KH4 subpopulations were associated to clinical artemisinin resistance defined by a delayed of parasite clearance in the first 3 days of artesunate monotherapy or artemisinin-based combination therapy (ACT) [8] and were later confirmed to be associated to mutations in the propeller domain of the Kelch gene (PF3D7_1343700) located on the chromosome 13 (k13) [6]. In their report, Ariey and collaborators clearly showed that the prevalence of mutant k13 alleles, involved in artemisinin resistance, was much higher in western Cambodian provinces than in eastern Cambodia [6].

In this context, the present study aimed at evaluating the structure of the parasite population at a country-wide scale. Indeed, one hypothesis is that the structure of the parasite population plays an important role in the spread of k13 mutant alleles from west to east Cambodia. e parasite population structure can be assessed by following different genetic variations such as single nucleotide polymorphisms (SNPs), microsatellite repeats, insertions/deletions and range of gene duplication events [10]. Several molecular approaches have been developed to accurately detect reliable SNPs in the P. falciparum genome. For instance, a 24-SNP barcode detected by a robust TaqMan genotyping approach was described by Daniels et al. [11].

eir analysis was performed on African and ai isolates. At present, novel, rapid and reliable techniques based on fluorescent magnetic beads, such as the LUMINEX technology, have been developed to detect specific alleles. A rapid assay of Plasmodium typing was developed using fluorescent microspheres [12]. is assay combined a PCR and a ligation reaction: PCR-LDR-FMA (PCR-based ligase detection reaction-fluorescent microsphere assay).

is paper describes the implementation of the PCR-LDR-FMA for the detection of an 11-SNP barcode. e presence of parasite subpopulations was evaluated and intensive gene flow over Cambodia was described to assess the spread of drug resistance. Of note, a new subpopulation was defined, highly prevalent in northern Cambodia and associated with in vitro mefloquine resistance (expressed by high mefloquine IC 50 values).

Methods

Plasmodium falciparum isolates and samples size

A set of 533 blood samples collected in 2010-2011 from P. falciparum malaria patients was analysed. ese samples originate from 16 health centres (11 health centres and five reference hospitals) located in 10 provinces in Cambodia. Isolates were grouped in four regions: western, southern, eastern and northern Cambodia (Additional file 1). Four control DNA samples were used to validate barcode detection (3D7, Dd2, HB3 and RO33).

DNA extraction and PCR ampli cation

e genomic DNA was extracted from 200 µl of blood using the DNA Mini blood kit (Qiagen, Germany) according to manufacturer's instructions. DNA extracts were stored at -20 °C until use. DNA from reference strains 3D7, Dd2, HB3 and RO33, provided by Malaria Research and Reference Reagent Resource Center-MR4, were used as controls. Primary PCR was carried out in 25 µL of final volume with 5 µL of DNA, 0.25 µM of each corresponding primers (Additional file 2), 0.2 mM of each deoxynucleoside triphosphate (dNTP) (Solis Biodyne), 1× of reaction Buffer, 2.5 mM of MgCl2, 1.25 U FirePol ® Taq DNA Polymerase (Solis Biodyne), with the following conditions: 94 °C for 15 min, then 30 cycles of a three step program (94 °C for 30 s, 52-55 °C for 1 min and 72 °C for 1 min) and final extension at 72 °C for 10 min to reach the corresponding target between 164 and 385 bp (Additional file 3).

e nested PCR was performed in 25 μl containing 0.5 μM of each primer (Additional file 2), 0.2 mM of each deoxynucleoside triphosphate (dNTP) (Solis Biodyne), 1× of reaction Buffer, 2.5 mM of MgCl 2 , 2.5 U Taq polymerase (FirePol ® DNA Polymerase, Solis Biodyne). 5 µl of the primary PCR reaction were used as the template. PCR conditions were: 94 °C for 15 min, then 40 cycles of 94 °C for 30 s, annealing temperature between 55 and 60 °C for 1 min and 72 °C for 1 min. A final extension at 72 °C for 10 min was performed to obtain the corresponding fragments between 100 and 200 bp. PCR of valid SNPs were performed in four multiplexed reactions (Additional file 3).

Ligation and detection assays

Nested PCR products were pooled together in two sets according to microsphere combinations. One microlitre of the pooled PCR products were used for the ligase detection reaction (LDR).

e LDR was based on two allele-specific primers and one locus-specific probes (Additional file 4). e allele-specific primers were composed of two parts: the 5-prime part hybridizing with the MagPlex-Tag probe and the 3-primer part hybridizing with the PCR product. 33 different MagPlex-Tags were used to detect 40 alleles (Additional file 4) corresponding to the 20 loci which were successfully amplified by PCR (Additional file 3). Ligation was performed after hybridization of the locus-specific primer. Several MagPlex anti-Tag probes were used twice. Locus-specific probes were 5′ phosphorylated and 3′ biotinylated. LDRs were performed in a final volume of 15 µL holding in 1× of Taq Ligase buffer, 10 nM of each LDR (allele-and locusspecific primers), 4 U of Taq DNA ligase (Genesearch) and 1 µL of pooled Nested PCR. ermocycling conditions were carried out by denaturation of the double stranded DNA at 95 °C for 1 min, followed by 32 cycles at 95 °C for 15 s and hybridization at 58.0-60 °C (Additional file 3) for 2 min. Quality control was performed by using DNA from reference strains provided by MR4. Two multiplexed reactions were used to characterize final valid SNPs (Additional file 3).

Hybridization and labeling of magnetic beads

A 5 µL fraction of the LDR product was poured into 60 µL of hybridization solution TMAC buffer (3× of tetramethylammonium chloride [TMAC] (Sigma-Aldrich), 3 mM of EDTA (Gibco), 50 mM Tris-HCl, pH 8.0 (Sigma-Aldrich), 0.1 % sodium dodecyl sulfate) and 1000 beads of each MagPlex-Tag microspheres used in the multiplex LDR, as described above. Beads quantification was performed as previously described [13]. Mixtures were heated to 95 °C for 1 min 30 s and incubated at 37 °C for 35 min to allow hybridization between SNPsspecific LDR products (Tag-probe) and bead-labeled anti-TAG probes. en, 6 µL of 1:50 dilution of streptavidin-R-phycoerythrin (Invitrogen) in TMAC buffer was added to the post-LDR mixture and incubated at 37 °C for 20 min in 96-well plate (Eppendorf ). PCR and LDR reactions were conducted in 96-well plate.

e fluorescence of each allele-specific LDR products was measured on a MagPix instrument with xPonent 4.2 software (LUMINEX).

e measurement of the signal for an allele was decomposed into the signal intensity without noise and the background noise. Negative samples show reduced signal-to-noise ratio and positive samples show increased signal-to-noise ratio.

e identification of negative and positive samples was based on a classification method which minimizes the variance associated to the two series of measures.

is algorithm was analogous to the k-mean algorithm where k = 2. A test was used to address each measurement to the negative or positive value of the allele. Negative and positive results for the two alleles were combined to assess barcode value at considered position. Double negative results were considered as positive for the third allele at BC07 barcode position (BC07_ALT_G allele). DNA of the four reference strains 3D7, Dd2, HB3 and RO33 was introduced as the positive control on each 96-well plates. A set of 282 samples were successfully genotyped out of the 533 blood samples initially selected for the analysis, using an 11 positions barcode.

Data and statistical analysis

Comparison with the available genomic resources was performed after calling of the mutations from BAM files deposited in the ENA database for 167 samples isolated between 2007 and 2011. Correspondence of these isolates and the earlier defined subpopulations in Cambodia [8] was provided by O. Miotto. Alleles for the 11 barcode positions and k13 locus were recovered from the VCF files.

Statistical analysis was performed on the 282 samples using R software [14]. For determining the dependency of the alleles of some selected genes on the locations, firstly the association between alleles and health centres was visually addressed using correspondence analysis (Fig. 1). Analysis was performed for the 11 barcode positions. Space distribution of health centres was questioned using Between-Class analysis.

e significance of differences in allele distribution was tested using Chi squared tests for independence. Loci presenting a p value <0.05 were considered as exhibiting a significantly different distribution among centres. To identify localities that account most for the SNP allele dependency on health centres, a threshold value of 1 for the Chi squared test statistics components was used (one component for each health centre, Additional file 1). Weblogos [15] were used to highlight conserved alleles among health centres.

Average F ST (fixation index) was calculated to measure the extent of genetic differentiation within health centres. It was based on 11-SNPs barcode of 282 samples. An average allele diversity value was first calculated per sampling area (Hs) from the 11-SNPs barcode. It was then compared with the allele diversity measured for the 282 samples (Ht) to obtain the average F ST value, ranging from 0 (no differentiation/high diversity) to 1 (complete differentiation/low diversity: subpopulations fixed for different alleles).

To define the population structure, hierarchical clustering was performed on 282 samples described by the 11-SNPs barcode.

e pairwise distances between the samples were estimated as the proportion of base substitutions between them over the barcode. Ward's minimum variance method was used to build the dendrogram (Additional file 5A). Random sampling was performed in order to obtain robust results: the clustering approach was implemented on 10,000 subsets of 230 samples each, randomly selected out of the 282 samples. Based on these 10,000 clustering results, pairwise distances between samples were calculated as the percentage of clustering results in which two samples are in the
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Page 4 of 12 Dwivedi et al. Malar J (2016) 15:319 same cluster. is distance matrix was then used to build a dendrogram for all 282 samples. e number k of final clusters (conserved groups) was selected based on the dendrogram structure (Additional file 5B). e value for k = 9, 10 and 14 were producing relevant clusters, but on comparing the barcodes with the previously defined population structure [8], it was observed that the clusters produced on increasing k after 9 are not associated to a specific resistant population (KH2, KH3 and KH4) and instead are related to admixed population KHA and the mixture of other resistant subpopulations. ese unspecific clusters were localized close to centre of the country. Hence, the population structure was represented by nine conserved groups (G1 to G9). Weblogo was used to highlight conserved alleles among health centres in G1 to G9 groups.

e groups are geolocalized by the geographical centroids on the 2D map. e coordinates for the geographical centroids are calculated as the average of the coordinates (measured in the coordinate space of the 2D map) of the health centres included in the group. To determine the groups significantly related to geographical locations, the average distance to geographical centroid within a group was compared to the average distance to the geographical centroid when the 282 samples were randomly assigned to the nine groups. e average distance for each group was compared to the average distances calculated for 5000 random re-sampling of the 282 samples within the nine conserved groups.

e p value was calculated as the proportion of average values below the average distance of the health centres to the geographical centroid for each group.

Results

Barcode of alleles from 11 variable sites

PCR fragments were successfully amplified for 20 SNPs.

ere were no PCR amplification for the other four SNPs and were rejected. Assays for only 13 SNPs provide interpretable LUMINEX signal (Additional file 3) and others were excluded from the assay. Out of the 13 SNPs, the locus #7 was abandoned due to non-reproducibility and non-accuracy of the detection on control DNAs and locus #5 was rejected because genotyping analysis revealed that this locus was monomorphic. Finally, 11 SNPs were validated for barcoding (BC01 to BC11). Four multiplex PCRs and two multiplex LDRs were set up for the LUMINEX detection according to their annealing temperature.

Since the work of Daniels et al. [11], the genome version and annotation has been improved. Databases revealed that 23 SNPs amongst the 24 were located in a coding region and they are equally distributed between synonymous and non-synonymous mutations (Additional file 6). Five SNPs were located in subtelomeric regions. Genomic analysis revealed that non detection in the locus #11 was due to the presence of two nearly identical copies of the rifin gene in which the SNP is located (Additional file 6). PlasmoDB v11.1 suggested that locus #15 corresponding locus was tri-allelic. LUMINEX data treatment was adapted for this locus. Locus #24 (BC11) was validated for LUMINEX genotyping despite its low variation in Cambodian parasite population (Additional file 6). Initial analysis was performed on 533 samples, 79 were resulting from mixed infection, 183 of the samples present no significant signal with LUMINEX for at least one barcode position and 50 samples could not be amplified using PCR for at least one locus. Among the 251 rejected samples, 59 samples show more than one type of errors (Additional file 7). Finally, 282 samples among 533 blood samples were successfully genotyped at 11 SNP loci.

Allele distribution associated to health centres

Correspondence analysis was performed using barcode of all the samples (Fig. 1a). Axis 1, 2 and 3 were explaining 21, 16 and 12 % of the information respectively. For each SNP, REF (reference 3D7) and ALT (non-reference) alleles were in opposite quadrants except for BC07 barcode position which was tri-allelic. e BC11_ALT_T allele was located at the centre of the representation as it was present in nearly all samples. Despite the low number of isolates with corresponding BC11_REF_G allele, correspondence analysis showed association of this allele with eastern and southern Cambodia. Association of alleles with health centres was questioned using Between-Class analysis (Fig. 1b). Matching of relative position of health centres in the Between-Class analysis with their geographic position suggests that some alleles show association with samples geographic origin. A strict opposition between eastern and western Cambodia was observed, which can be due to specific distribution of BC03 and BC05 alleles in samples from these areas (Fig. 1). Northern and southern localities present a similar distribution pattern in other projections (Additional file 8). Present analysis suggests that allele frequencies are in agreement with the geographic location of health centres. Pursat is not in a correct position in both correspondence and Between-class analysis. It is located in the western part of Cambodia and it clusters with eastern localities. e discrepancy with its geographic localization could be due to the BC06_ALT_T and BC07 allele frequencies.

Allele frequency gradient between localities

Uneven distribution of alleles was confirmed by Chi squared analysis (p value <0.05) and the allele frequencies were represented using Weblogo (Fig. 2). Barcode BC11 was excluded from this analysis because of its low variation. Most important allele enrichments were highlighted in red and blue colors for ALT and REF alleles respectively, using the Chi squared values (Additional file 1). Allele enrichment was not restricted to a single health centre but is often present in geographically close localities. Western Cambodia, including Battambang, Pailin and Pursat provinces displayed significant enrichment of ALT alleles for BC01, BC02, BC03, BC07 and BC08 and the REF allele for BC04, BC05 and BC06 (Additional file 8). e region of Kampot (Koh Slar and Chhouk health centres) showed strong enrichment of BC02_REF_T and BC04_ALT_T with a quasi-absence of opposite alleles (Additional files 1, 9B, D). For some alleles, the gradient from ALT to REF significant allele frequency was emphasized by the presence of health centres located between ALT and REF significant geographic area where no significant enrichment could be specified for any of the alleles. For example, western Cambodia appeared as the starting point for the diffusion of BC02_ALT_C and northern Cambodia was associated with BC02_REF_T (Additional file 9B). e region of Battambang shows no significant allele frequency for this locus. An example for the West-East axis is observed for BC10 locus where the region of Pailin was associated with BC10_REF_G alleles whereas BC10_ALT_A allele was found in eastern Cambodia. Accordingly, Battambang and Pursat health centres located between these two areas show no significant bias in allele frequency (Additional file 9J). erefore, association between barcode alleles and localities could suggest the presence of specific subpopulations with fixed allele in restricted geographic distribution and overlap between these subpopulations or even gene flow.

Presence of xed alleles at the border of Cambodia

e presence of subpopulations was confirmed using an average F ST value calculated per health centres. High F ST values are observed at the localities near the borders of Cambodia (Fig. 3), including Keov Seima (eastern Cambodia). Tasanh and Sampov Loun health centres in western Cambodia are associated with high F ST values and accordingly BC02_ALT_C allele was observed to be fixed in Tasanh region. Similarly, BC04_ALT_T and BC09_ALT_C might have contributed to high F ST values in northern localities. e fixation of BC04_ALT_T allele was also observed in Kampot province (Chhouk HC).

F ST analysis and gradients of allele frequencies (Additional file 9A-J) over the country suggest gene flow in a centripetal orientation. According to high F ST values, the five locations Anlong Veng, Keov Seima, Sampoev Loun, Tasanh and Trapaing Prasat might be associated with parasite subpopulations. Crossing of subpopulations could be responsible for allele diffusion over the country. Especially in western Cambodian sites, where the low F ST values could result from overlap between subpopulations.
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is likely reflects gene flow driving the homogenization of the population.

Identi cation of emerging subpopulations in Cambodia

Results presented in sections above suggest that subpopulations were restricted to small geographic areas. Unsupervised clustering runs based on different random subset of the 282 isolates suggested the existence of 9 robust clusters (referred as G1-G9, size of the groups, n = 18-44) representative of the parasite subpopulations. e relationship between groups and health centres was established based on distance of samples to their geographical centroid. None of the groups had samples restricted to a single health centre, and most of the geographical centroids are focused in north-west area of the country (Fig. 4).

e three groups G1, G3 and G7 were significantly associated to specific geographic area (p value <0.05).

e samples in these groups were mostly isolated in western Cambodia, but also include samples from the north or from the south of the country (Additional file 10). G1 includes two samples from eastern Cambodia. G3 samples were originating from western and southern Cambodia only. G7 had two samples from the southern and one from northern Cambodia. Relationship with previously described Cambodian parasite subpopulations shows that the three groups could be associated with KH2 and KH3 subpopulations. Accordingly, samples that have been probed, carried C580Y k13 mutation. Weblogos were added to the analysis to illustrate the frequency of alleles at the 11 barcode position among conserved clusters (Fig. 4). In accordance with the results presented above (Figs. 1,2), G1 shows conserved allele positions: BC01_T, BC04_A, BC05_G, BC08_A and BC10_G.

is genotype was very close to the two barcodes associated with Pailin and Ou Chra health centres. Group G3 weblogo was more reminiscent of Promoy HC barcode (Additional file 11). e barcode analysis based on 11 SNPs was efficient to describe conserved subpopulations that emerged recently in western Cambodia concomitantly with artemisinin resistance.

e three groups G2, G4 and G8, are localized in the area between north-western region and the centre of the country (Fig. 4; Additional file 10). e average distance 

Me oquine resistance is strongly associated to northern Cambodia

Mutations in k13 gene associated with resistance to artemisinin were determined in 98 patients, as described earlier [6]. From these patients, 70 % of the samples were positive for one of the k13 resistant alleles (C580Y, R539T, Y493H, I543T, P553L, V568G & N458Y). Artemisinin resistance was more frequent in western and northern Cambodia (Chi squared test p < 0.01). e mutant alleles Y493H, I543T, P553L, V568G, and N458Y were found once in the 282 isolates. e C580Y allele was the most prevalent (54/68 positive patients) and was found to be present in all the conserved groups. irty-seven different barcodes were found among these 54 samples. No association was found between the C580Y allele and 11-SNPs barcode. e R539T was the second most frequent allele (9 isolates over 68 positive patients) with six isolates belonging to G8, two to G4 and one from G5. Four isolates were from northern Cambodia, three from western and two from southern Cambodia. Barcodes of these nine samples have BC01_REF_C, BC03_ALT_A, BC04_ALT_T, BC05_ REF_G, BC09_ALT_C and BC11_ALT_T in common. All these alleles were significantly associated to Trapaing Prasat health centre (Fig. 2; Additional file 11).

In vitro IC 50 susceptibilities to chloroquine (n = 109), mefloquine (n = 111), piperaquine (n = 103) and quinine (n = 107), were assessed in isolates with a parasitaemia >0.1 % [16]. Samples were distributed among all geographical locations and clustering groups. Piperaquine showed no geographical bias.

e susceptibility for chloroquine and mefloquine were lower in eastern Cambodia (Additional file 12). High mefloquine IC 50 values were found in isolates from Promoy, Takavit and Trapaing Prasat health centres (Fig. 5). Mefloquine resistant parasites in the region between Promoy and Takavit were mostly carrying C580Y allele. R539T mutant parasites had significantly high mefloquine IC 50 values (Fig. 5) suggesting two geographic loci for mefloquine resistance in Cambodia, one associated to C580Y allele and one associated to R539T allele. Large proportion of G8 samples were carrying R539T alleles and most originating from Trapaing Prasat HC in the north.

e samples in G4 and G8 groups show high mefloquine IC 50 values (Additional file 13). e F ST values are shown to be high for Trapaing Prasat HC (Fig. 2). ese results suggest the presence of a recently emerging P. falciparum subpopulation in northern Cambodia.

Discussion

Implementation of 11-SNPs barcode for mid-throughput analysis

A PCR-LDR-FMA technique for the Mid-throughput detection of a barcode for P. falciparum Cambodian isolates was optimized. is strategy included multiplex PCR and ligase detection reactions prior to hybridization with magnetic microspheres (MagPlex-Tag probes). A specific algorithm was developed for signal discrimination between the 23 alleles corresponding to 11 SNPs which enabled us to characterize 282 samples. e choice of the loci was a critical step. It was based on both possibility to run detection at the corresponding locus and allele frequency. In fact, the PCR-LDR-FMA required the design of several primers at each locus. is was the main source of rejection of SNPs. Indeed, this task was hampered by the AT richness of P. falciparum genome.

e frequency of alleles in the present dataset (Additional file 6) was sometimes different from the expected non-reference allele frequency (NRAF). One explanation could be that the study of Daniels et al. included only ai samples [11]. Discrepancy was also observed with the MalariaGEN database. Genome annotation of P. falciparum is available at PlasmoDB. Bioanalysis revealed that some of the selected SNPs were present in genes located in subtelomeric regions and encoded surface antigens (Additional file 6). ese regions are known to be highly variable and to encode surface antigens. Variation in these regions might not reflect population evolution, but more parasite-host interactions such as antigenic variation. e uneven distribution of most alleles confirmed the presence of subpopulations with restricted geographic distribution, leading us to define nine groups. Isolates from clustering groups G1, G3 and G7 were mostly located in western Cambodia. ey were associated with the C580Y k13 mutant allele and correspond to the KH2 and KH3 subpopulations described earlier [6,8]. ese three groups might have restricted geographic origin as barcode allele frequencies from health centres (Fig. 2) and clustering groups (Fig. 4) were similar (Additional file 11). Subpopulation in these localities have been shown to emerge recently and correlates with artemisinin resistance specific to C580Y allele. It should be interesting to compare the barcodes in the two subpopulations (WKH-F01 and WKH-F03) described recently in the same localities in western Cambodia [9] from parasites isolated later than the present study (2011)(2012)(2013).

11-SNPs barcode successfully identi es parasite subpopulations

Among the three less significant groups defined by the barcodes, G2 and G4 could not be associated to any of the specific subpopulations described earlier. e reason for G2 could be the origin of samples from the area which was not covered by genomic analysis. In fact, high F ST value was observed in Chhouk suggesting possible emergence of subpopulation in southern Cambodia. Only five barcodes from these two groups were matching with the genotypes of defined subpopulation origin, one from KH4 and 4 from the admixed subpopulation KHA. e group G8 was associated with northern Cambodia and most of the samples were carrying the R539T k13 allele. Allele frequencies of this group were very close to that of the Trapaing Prasat HC, as illustrated by the Weblogos (Additional file 11). e high F ST value of northern localities is in agreement with the hypothesis of gene flow associated with R539T mutation from the north. e prevalence of R539T k13 allele associated with increased ring stage survival and delayed parasite clearance rates near eastern ailand and northern Cambodia border has been shown in recent studies [17,18]. e 11-SNPs barcode questions the origin of subpopulations in Cambodia. Subpopulations are expected to emerge at different places and at different times over the country. Introduction of ACT is clearly associated with emergence of western parasite subpopulations. e origin of other subpopulations is not known. Barcode analysis shows that the genetic drift induced by the emergence of subpopulation disappears rapidly over time, most likely through the presence of admixed populations. Unfortunately, the present 11-SNPs barcode seems less relevant for the characterization of populations with high heterogeneity such as core population KH1 and admixed population KHA.

Relationship between subpopulations and drug susceptibilities

Groups G1, G3 and G7 were associated with resistance to artemisinin. Resistant parasites in these groups were carrying the C580Y allele only (Additional file 10). e diffusion of the C580Y allele in 2010-2011 over Cambodia was described previously [6]. e present study provides evidence that the C580Y allele can be found in all groups. In the group G8, though the C580Y allele is present, most of the samples are associated to the R539T resistant allele.

ree groups contains more than one k13 allele: G4 (N458Y, 1; R539T, 2; C580Y, 8), G5 (Y493H, 1; P553L, 1; R539T, 1; C580Y, 4), G6 (I543T, 1; V568G, 1; C580Y, 6) and G8 (R539T, 6; C580Y, 4).

e R539T allele was strongly associated to a subpopulation originating from northern Cambodia and represented by G8 group. e two groups G4 and G8 were associated to high mefloquine IC 50 values (Additional file 13). Interestingly, G8 includes highest number of samples (21/28) with associated to high mefloquine IC 50 values (IC 50 > 30 nM). Parasites were genetically close according to their barcode. Allele frequency in G8 was close from those found in Trapaing Prasat samples, suggesting that it is the region of origin of these parasites.

is result is in agreement with the study by Chaorattanakawee et al., which shows the increase in occurrence of R539T allele from 2009 to 2013 and association with increased mefloquine IC 50 value for R539T allele (ex vivo drug susceptibility test) [19]. Despite the observed association between drug resistance (artemisinin and mefloquine) and subpopulations, the present study provides no evidence that drug pressure is responsible for emergence of subpopulations in western and northern Cambodia.

Genetic exchange between parasite subpopulations

Clustering approach provided evidence that subpopulations have emerged in different parts of the country. ey might have emerged from the ancestral KH1 population described by Miotto et al. [8]. Significance of geographical centroids shows that the most recently emerged subpopulations could be well localized. e decrease of the significance could be related to the diffusion of alleles, which in that case follows the west to east major axis (Fig. 4). Nevertheless, other gene flow axis might also be present over Cambodia. is was confirmed by high F ST values at the periphery of the country (Fig. 3). Regions with high F ST were strongly related to forest areas which are mostly distributed at the border of Cambodia. Parasite subpopulations might have encountered independent drift of mutation and selection. Parasites moving out of their region of origin will progressively mix their genetic background with other parasites. is hypothesis Dwivedi et al. Malar J (2016) 15:319 is supported by the presence of G2, G4 and G8 groups containing barcodes associated to admixed population KHA. Genetic exchange between subpopulations takes place by mating. It might be supported by human socioeconomical migrations.

e presence of this ongoing gene flow might have supported the eastward dispersal of artemisinin resistance k13 alleles after introducing ACT in the country. Currently, environmental factors such as deforestation, development of communication axes and global welfare are changing rapidly. It will be interesting to develop a specific barcode analysis to follow the evolution of these subpopulations in this new socio-economical context.
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Additional les

Additional le 1. Geographic distribution of samples and allele frequency. Blood samples from P. falciparum positive patients were collected from 16 health centres or hospitals covering the areas where parasite transmission is active. The number of valid samples (282) out of the total selected samples ( 533) is provided per health centre. The frequency of each allele (REF/ALT) is given for the 11 loci, which were positive for LUMINEX detection. The alleles with Chi squared test statistics components (one component for each health centre) greater than 1 are highlighted in grey. The presence of Kelch-propeller domain altered allele was assessed by PCR and sequencing. The frequencies of wild type individuals and of the two major alleles C580Y and R539T are provided per location. The other alleles present at low frequency, N458Y, Y493H, I543T, P553L and V568G are pooled together. The drug sensitivity was measured routinely for patients presenting high parasitaemia (>2 %). The number of samples tested for IC 50 measurements for chloroquine (CQ), piperaquine (PIP), quinine (QN), artesunate (ART), mefloquine (MF) and dihydroartemisinin (DHA) is provided.

Additional le 2. Primers sequences for PCR reactions corresponding to 20 of the 24 SNPs selected for barcode detection and for k13 locus amplification.

Additional le 3. PCR and LDR conditions. NV for not valid PCR. Eight LUMINEX assays were negative. Assay#7 was rejected because one allele only was not detected (Pos/Neg). LUMINEX detection was performed after microsphere hybridization and ligation reaction. ID of microspheres that were used for several assays are in bold. Additional le 10. Sample Meta-information, barcode, associated drug susceptibility, associated k13 alleles and the correspondence to the KH subpopulations [8] (based on the matching of the barcode). The blank cells in the columns 21-28 and columns 29-35 means that the samples are not tested for drug susceptibility and k13 alleles, respectively. Additional le 11. Comparison of allele frequencies in health centre and in conserved clustering groups. A comparative analysis was illustrated using Weblogos sorted for health centre and clustering groups.

Additional

Additional le 12. Distribution of IC 50 value of P. falciparum isolates per major geographic areas. Box Plot analysis is presenting median and quartiles. Dashed line figure out the threshold where parasite could be resistant for the drug (30 nM). Parasites were originating from regions distributed at the four compass points in Cambodia. ANOVA test was significant for chloroquine and mefloquine (p value = 5.62e-5 and p value = 0.0408, respectively).

Additional le 13. Distribution of mefloquine IC 50 value of isolates associated to conserved clusters G1 to G9. Box Plot analysis is presenting median and quartiles. Mefloquine resistant parasites have IC 50 over the dashed line (30 nM).
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Chapter 3

Functional analysis of Pf subpopulations

Introduction

This chapter describes another approach for description of P. falciparum population structure and identification of molecular markers and pathways supporting artemisinin resistance. At the beginning of this project the meta-information about parasite population structure described earlier [Miotto et al., 2013] in Cambodia was not available. Therefore, we decide to describe again the population structure and make associations with the artemisinin resistance molecular markers. Other contributing factors for using this dataset was the time period of early emergence of artemisinin resistance (2008)(2009)(2010)(2011). The barcoding approach was suitable for subpopulation and gene flow analysis. This approach is aimed at functional analysis of the polymorphisms recovered in whole genome sequencing data.

The recently identified molecular markers, the mutations in the BTB/POZ domain and propeller domain of the kelch 13 gene (k13), have proven to be important targets for identifying resistant isolates and following resistance. In addition to the three dominant mutations identified by Ariey and colleagues (C580Y, R539T and Y493H) [Ariey et al., 2014], more mutations have been identified in Cambodia [Miotto et al., 2015] and adjoining countries like Myanmar [START_REF] Tun | Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker[END_REF]. This raises concern, as previous spreads of earlier antimalarial drug resistances to Africa caused millions of death. Understanding the mechanism associated to transmission and acquisition of resistance is very important to contain the resistance by identi-110 CHAPTER 3. FUNCTIONAL ANALYSIS OF PF SUBPOPULATIONS fying new drug targets. Furthermore, the non-synonymous SNPs identified (based on GWAS analysis) in ferredoxin (fd), apicoplast ribosomal protein S10 (arps10 ), multidrug resistance protein 2 (mdr2 ) and chloroquine resistance transporter (crt) were shown to be associated to mutations in k13 and were described as background mutations [Miotto et al., 2015]. Even after the identification of molecular marker and associated studies, the mechanism underlying artemisinin resistance is not known. One of the possible pathways associated to artemisinin resistance has been recently described by Mbengue and colleagues [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF] based on experimental data. They showed that the production of phosphatidylinositol-3-phosphate (PI3P) by phosphatidylinositol-3-kinase (PI3K) and artemisinin interaction is essential for parasite growth (elevated levels of PI3P when going from ring to schizont stage). In the case of mutated k13 (C580Y), the binding of k13 to PI3K (inhibitory action) and polyubiquitination of PI3K does not take place, keeping the level of PI3P always high, allowing the parasite to mature. Therefore, PI3K was described as an important target for understanding the mechanism.

Apart from the identified molecular markers and possible pathways associated to artemisinin resistance, understanding the parasite population structure is also important. Fragmentation of P. falciparum population structure was shown by Miotto and colleagues [Miotto et al., 2013] based on whole genome sequencing analysis and confirmed by the analyses in the previous chapter. The description of ancestral population, founder populations and admixed subpopulation based on chromosome walking analysis, provides an insight into understanding the emergence of parasite resistant subpopulations. Emerging of resistance subpopulations in varied localities in Cambodia was also made evident by the barcoding approach [START_REF] Dwivedi | Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia[END_REF] described above.

The main objective of this study was the functional annotation of the polymorphisms associated to artemisinin resistance in P. falciparum resistant and sensitive subpopulations. Major part of this work was to develop pipelines and utilize the available bioinformatics tools to recover the list of SNPs and identify potential genes in artemisinin resistant populations that could be targeted for understanding the artemisinin resistant mechanism.

The whole parasite genome data from four localities in Cambodia was postprocessed. A variant calling pipeline was implemented based on sequencing quality signal parameters to recover non-synonymous SNPs for description of parasite pop-ulation structure (Article2: Figure S13). The population structure was identified using two approaches, unsupervised hierarchical clustering based on the called SNPs followed by association studies and the network based stratification method using protein interaction network based on coexpression data. One method is based on the significant SNPs discovered in the defined subpopulations and the other method is based on the significant genes in the network. The interest of performing such a double analysis is of course to test the robustness of results: processing such big datasets is always likely to give significant results, but finding concordant information from different sources of information is much more reassuring. Indeed, both approaches provide quite similar results suggesting the robustness of the functional evidence. The classification of isolates based on interaction network has not been performed earlier for P. falciparum genomic data. Three gene sets were focused on, significant genes in KH1.2 common with ART-R subpopulations, ART-R subpopulations specific genes and resistance background specific genes. Functional annotation of these three gene sets based on GO terms and functional groups of GO terms revealed PI3K-K13 interaction pathway and suggested E3 mediated autophagy pathway could be playing an essential role in acquisition of artemisinin resistance. This work questions the emergence of subpopulations and acquisition of artemisinin resistance. In further sections, the approaches and major results are explained briefly and the complete manuscript provided in the last section should be referred. This manuscript will be submitted soon.

Approach and Results

Data Acquisition

The dataset used in this study is the same as the one on which the P. falciparum population structure in Cambodia was described earlier [Miotto et al., 2013]. The samples are isolated from 4 locations in Cambodia. The whole genome sequencing data was recovered from ENA database server as BAM files. The sequencing was done using Illumina Genome Analyzer II and the alignment was performed using BWA tool [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], Miotto et al., 2013]. Only 167 BAM files (Article2: Table S4) were successfully recovered out of the 293 isolates used by Miotto and colleagues (Article 2: Supplementary material section "Data acquisition"). The genomes were aligned using 3D7 reference genome version 2. The data originated from four regions in Cambodia, Pailin, Pursat and Tasanh in West and Ratanakiri in east. The 167 BAM files were converted to VCF files using SAMtools v 0.1.19 and the SNPs were extracted using the following procedure: samtools sort "BAMfilename".bam s"BAMfilename" samtools index s"BAMfilename".bam samtools mpileup -uf PfalciparumGenomic_PlasmoDB5. 

Data filtering

This analysis is focused on non-synonymous SNPs in the coding region of the genome in at least one of the isolates and does not take insertion/deletion (INDELs) muta-CHAPTER 3. FUNCTIONAL ANALYSIS OF PF SUBPOPULATIONS analysis.

Removing uncertain SNPs

Uncertain SNPs are defined as loci with a possibility of more than one ALT allele. The loci representing uncertain SNPs in some of the isolates were removed when uncertainty was too important to be resolved, or substituted with ALT allele of highest frequency or the REF allele based on the uncertain SNP frequency in the 167 isolates (Article2: Supplementary material section "Removing uncertain SNPs and correcting errors"). Around 2% SNPs were removed and 17% were substituted in at least one isolate. Therefore, 106538 SNPs were recovered after this step. Figure S17, shows the global scenario used to remove and substitute uncertain SNPs. This approach is not very stringent and removes a very small proportion of SNPs compared to the full dataset. The memory of these SNPs is kept and can be included in the analysis if required.

Genome annotation

The recovered SNPs were annotated using VCF-annotator Perl script (developed at the Broad Institute, Cambridge, MA)(Article2: Supplementary material section "Annotation of the recovered SNPs"). The GFF3 (General Feature Format version 3) format annotation file corresponding to 3D7 reference genome version 2 was recovered from Ensemble release version ASM276v1.21. Also, the regions containing the genes with description such as CLAG, DBL, Rifin, hyp, Stevor, GARP, RESA, VAR, PfEMP, Surfin, PHIST, KAH and EMP in a consecutive organization, were considered as telomeric regions and were removed from the analysis (Article2: Table S5). Therefore, finally a set of 21257 SNPs in 167 isolates was recovered for population study. This set is referred to as IBC dataset. The recovered genome annotation was validated in the PlamoDB genome browser.

Validation of IBC dataset

The IBC dataset was validated by comparison with other publically available datsets, PlasmoDB (Asian strains) and MalariaGEN (Asian and African strains) by considering the common SNPs between the datasets (Article2: Figure S18) and the distribution of SNPs in the coding region of the genome (Article2: Figure S19 and Table 6). The overlap between IBC dataset and MalariaGEN dataset, as well as IBC and PlasmoDB is better than overlap between those two previously published datasets. The use of this pipeline and analysis of a big dataset seems to stabilize the results and reduce the false positives in the recovered list of SNPs. (Article2: Supplementary material section "Validation of IBC dataset").

Clustering

A similar clustering pipeline was used, as described in the chapter above (Article1). Samples were divided into 8 subpopulations (Article2: Figure 1) instead the 5 subpopulations described earlier [Miotto et al., 2013] (Article2: Supplementary material section "Clustering"). The number of clusters was decided based on presence of k13 alleles and correspondence with the KH subpopulations, which were provided by O. Miotto .

The subpopulations KH2 and KH3 were already described by Miotto and are the donor populations for the most dominant allele C580Y, but in our dataset the KH2 subpopulation could be robustly divided into two subpopulations KH2.1 and KH2.2. KH4 is known to be the donor population for the Y493H allele. We denoted KH5 a new subpopulation, which was not described earlier and which was highlighted by our analysis. All the isolates in this subpopulation carry one of the three K13 alleles, which are mutually exclusive. R539T is the dominating allele followed by C580Y and Y493H alleles. Hence, we consider KH5 as a donor population for R539T allele of the k13 gene. The ART sensitive (ART-S) subpopulation KH1 described as the ancestral population [Miotto et al., 2013] was also divided into two robust subpopulations, KH1.1 and KH1.2. None of the isolates in these two subpopulations carried any of the three K13 mutations and all the corresponding isolates originate from Ratanakiri in eastern Cambodia (one isolate from Tasanh in western Cambodia). KH1.1 is one of the largest subpopulations and KH1.2 is the smallest subpopulation. The other dominating subpopulation is the admixed subpopulation KHA with around 52% of the ART resistant isolates and 48% ART sensitive isolates (Article2: Result and Discussion section "Description of P. falciparum subpopulations").

As done in the barcoding chapter, to perform an additional robustness study of the clusters, 1000 hierarchical clustering were performed for 150 isolates randomly selected from the 167 isolates and the frequency of samples being in a specific subpopulation (for k = 8) was calculated. Out of the 167 isolates only 9 isolates were observed to be not specifically associated with a particular subpopulation and can be included either in one of the subpopulations (KH2.1, KH3, KH5 and KH1.1), or the admixed subpopulation KHA. The remaining 158 isolates always clustered in the same subpopulation.

Significant SNPs and genes

SNPs significantly associated to each subpopulation were identified using one-tailed Fisher exact test (Article2: Supplementary Material section "Significant SNPs and Genes"). For each SNP, ALT allele frequency in each subpopulation was compared to the ALT allele frequency in KH1.1 subpopulation (considered as the ancestral population). Benjamini-Hochberg method was used to correct the p-values for multiple comparisons. All the SNPs with a corrected p-value lower than 0.05 were considered as significant and the genes containing these significant SNPs were defined as the significant genes (Article 2: Table S7).

Information from gene interaction networks and gene ontology

A new approach was used to understand the underlying metabolic pathways associated to artemisinin resistance. Gene-gene interaction networks based on coexpression data were recovered from STRING v10 (Article2: Supplementary material section "Gene interaction network and gene ontology"). Only, the interactions with scores greater than 50% were kept. Maximum expression in blood stage based on microarray transcriptomic data was recovered from PlasmoDB and the genes were classified on the coexpression network into different blood stage forms (Article2: Figure S1) using Cytoscape. This analysis has not been done before and provides a very clear description of coexpressed genes in different blood stage forms (Article2: Table S8).

In order to verify the expression of genes associated with the K13 gene (PF13_0238) in the described blood stages, the genes co-expressed with K13 gene were represented on the coexpression interaction network. In the full network, starting from the K13 gene the neighboring genes were marked then the neighbors of neighbor genes and so on until the major part of the network (representative of blood stages) was marked. It was observed that the genes associated with the K13 gene were mostly expressed in the ring stage and schizogony stage part of the network (Article2: Figure 2).

For identification of biological function associated to the significant genes, the functionally grouped networks of GO terms and pathways were recovered and studied for each subpopulation using the ClueGO v2.2.4 and CluePedia v1.2.4 plugins of Cytoscape (Article2: Supplementary material section "Gene interaction network and gene ontology"). For the functional annotation of the significant genes in each subpopulation, GO terms were also recovered from PlasmoDB v13.

Network based description

Apart from the hierarchical clustering method for classification of subpopulations based on SNPs, efforts were made to classify the samples based on interactions among significant genes in a network. This approach can be used to reveal the part of the networks or pathways, which are more connected and are affected the most in case of mutations (Article2: Supplementary material section "Network based subpopulation description").

In the first approach the subpopulations were clustered based on presence or absence of the interaction in the interaction network with evidence from all the sources available in STRING v10. This analysis revealed that the KH1.2 population (artemisinin sensitive subpopulation) clusters with the resistant subpopulations, suggesting that it might have acquired the resistance background, but not completely (K13 alleles absent).

To validate this a new approach was implemented, that has never been implemented on P. falciparum genome before (Article2: Supplementary material section "Network based subpopulation description"). The population structure of 167 parasite isolates was also questioned using the method of Network Based Stratification [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF], which clusters the isolates together having diffusion paths associated to mutated genes in similar network regions. Full P. falciparum interaction network recovered from STRING v10. All interaction prediction sources were considered. The results were obtained for the top 10% highest interaction scores. The mutated genes were propagated to the neighbourhood network (network smoothing) and based on the node score matrix of the resulting diffusion network for each isolate, clustering was performed using non-negative matrix factorization (NMF) method [Lee and Seung, 1999]. Consensus clustering was performed by selecting 80% mutated genes and 80% isolates 100 times randomly and iterating NMF clustering 10 times. The consensus clustering between samples was estimated as the percentage of co-CHAPTER 3. FUNCTIONAL ANALYSIS OF PF SUBPOPULATIONS clustering results in which they are in the same cluster when the dendrogram is cut to obtain 8 groups (to make the comparison easy with the 8 KH sub-populations). This consensus clustering matrix was normalized and then used to build a dendrogram for all 167 isolates using Euclidean distance matrix and ward minimum variance method in R. This method provides clustering of the isolates based on interacting significant genes in a network. The clustering was very similar to the clustering obtained from unsupervised hierarchical clustering approach. Some of the samples were clustered in different subpopulations (Article2: Figure S2). Also, the description of KHA subpopulation was different. Some of the sensitive isolates in KHA clustered with KH1.1 and some clustered with resistant subpopulations. This suggests that due to crossing between or among subpopulations, some ART sensitive samples in the KHA subpopulation have acquired resistance background and some sensitive KHA samples have not acquired the resistant background (Article2 : Result and Discussion section "Description of P. falciparum subpopulations"). Also, when modulating K to obtain 2-8 clusters, it was observed that KH1.2 clusters with KH4 (Y493H donor subpopulation). This could suggest the presence of P. falciparum parasite subpopulations with specific genetic background in Cambodia before the introduction of ART.

Analysis of the genes associated with artemisinin resistance

The analysis was focused on three gene sets primarily obtained at the intersection of significant genes (set of genes containing the significant SNPs) in the resistance subpopulations. These three gene sets are: (a) 168 significant genes having at least one significant SNP in all the resistant subpopulations (KH2.1, KH2.2, KH3, KH4, KH5) and the subpopulation KH1.2, (Article2: Figure S5, S6 and Table S1) (b) 97 significant genes having at least one significant SNP in all the resistant subpopulations only (Article2: Figure S7, S8 and Table S2)and (c) 57 significant genes having at least one significant SNP in all the resistant subpopulations and admixed subpopulation KHA, but no significant SNP in the subpopulation KH1.2 (Article2: Figure S10, S11 and Table S3). There can be different SNPs in the same gene in different subpopulations.

Discussion

The variant calling approach developed during this study, is reproducible, reliable and extendible. The filtering approach implemented on the recovered variations at different levels helps in recovering good quality SNPs in the coding region and reduces false positive SNP detection. The techniques implemented to remove uncertainties from certain SNPs are not very stringent and can differ for different studies. Only a small amount of SNPs are removed and can be included in the analyses if required. The results are validated in comparison with publically available dataset based on genomic structure and detectable SNPs. The overlap between IBC dataset and MalariaGEN dataset, as well as IBC and PlasmoDB is better than overlap between those two previously published datasets.

The pairwise distance calculated is similar to the genetic distance used earlier [Miotto et al., 2013]. The clustering recovered using Ward's minimum variance method based on the 21257 SNPs overlaps significantly with the population description by Miotto. The correspondence between the isolates and subpopulations is not publicly available. The clustering was validated with O. Miotto in personal communication. Also, due to the mapping of 3D7 reference genome version 2 and 3, the mutations in K13 could be recovered and associated with recovered clusters (subpopulations). These mutations were not recovered in the earlier analysis, as this region in the reference genome version 2 is not correctly mapped. In this work we are able to associate the P. falciparum population structure with the molecular marker of artemisinin resistance. The distribution of K13 Kelch mutations and the KH sub-populations shows the specificity of genetically defined sub-populations to the geographical locations.

The other clustering approach used to structure the population was the network based stratification method based on interactions among significant genes in a network, which clusters the isolates together having diffusion paths associated to mutated genes in similar network regions. This approach can be used to reveal the part of the networks or pathways which are more connected and are affected the most in case of mutations. This approach provides a tool to exploit the metabolic and protein interaction data available. This method was implemented in collaboration with the present postdoc in the team Bioinformatics and system biology of cancer at IRCM. This method validated the clusters and suggested the associations of isolates among subpopulations are robust. Indeed, around 9 isolates were misplaced in this approach compared to the hierarchical clustering method, but the important point is that the CHAPTER 3. FUNCTIONAL ANALYSIS OF PF SUBPOPULATIONS samples were either misplaced from or to the KHA subpopulation, which could suggest the crossing of founder subpopulations and KHA admixed subpopulation and the acquisition of resistance background or specific background associated to the founder populations. This finding also supports one of the hypotheses of my work that admixed subpopulation might be responsible for transmission resistant background by crossing (also mentioned in the barcoding approach). This approach can be implemented on other available interaction networks and metabolic pathways.

Based on both the clustering approaches samples were classified into more specific subpopulations and provides an important insight regarding the genetic background of the subpopulations, as in the case of KH1.2. Though KH1.2 is a small population (n=5), but it is observed to be robust based on both, significant SNPs and gene-gene interactions in the coexpression network.

One of the important results is the mapping of blood stage data recovered from PlasmoDB on the coexpression network (Article2: Figure S1). It clearly shows distinct parts of the network representing coexpression at ring, trophozoite and schizont. The approach of marking the neighbor interacting genes on this network shows strong association of K13 with the genes expressed in ring and schizont stage. This is in agreement with the strong homology between Kelch and KEAP1 human gene [START_REF] Paloque | Plasmodium falciparum: multifaceted resistance to artemisinins[END_REF]. This analysis suggests that studying the co-expression network is relevant for analysis of background genes in the context of ART resistance.

The background mutations described recently associated with K13 alleles were also assessed. It was seen that the most significant background mutation in ferrodoxin gene is not always present with the k13 mutations (in case of KH3). In some cases, different mutations in the five defined background genes are significant in different subpopulations, suggesting specificity (Article2: Result and Discussion section "Subpopulation associated genetic background"). There are 57 mutations found significant in all the ART-R subpopulations, suggesting that the fixation of one mutation in the population is the results of selection among subpopulations rather than de novo acquisition after drug pressure. These results could suggest that the selection was performed on subpopulations and not on the ancestral population.

We define three gene sets based on the population structure: (1) significant genes common in KH1.2 and ART-R subpopulations, (2) genes specific to ART-R subpopulations and ( 3) the resistance background ART-R and KHA subpopulations. The distribution of 168 genes in all compartments of the coexpression network suggests a common background of all the subpopulations differentiating from the ancestral population KH1.1. The analysis of all ART-R subpopulations significant genes (265 genes) reveal GO terms associated with cell signalization, gene expression at DNA, RNA and post-translation level, RNA metabolism (tRNA and mRNA modification, . . . ) and organella related functions (Article2: Figure S4). These functions are conserved in the two sets KH1.2 specific and ART-R specific, but not completely.

The 97 genes emphasize the presence of Phosphodiestarase 1 (PDE1) involved in regulation of cGMP concentration (Article2: Result and discussion section "Description of ART-R subpopulation genetic background"). Genes in the same GO term functional group as k13 are associated with polyubiquitination (E3-like protein MAL7P1.19 and RPN10 proteasome subunit), signal transduction (PI3K PFE0765w), autophagy (Atg7, Atg18) and regulation of protein activity (Serine/threonine phosphatase PFD0505c) (Article2: Figure S8). Figure S9 shows that major components of the 97 gene set have been kept in KHA isolates (Article2: Result and Discussion section "Artemisinin resistance background associated pathways"). This suggests that KHA background was acquired by crossing of parasites from various populations either ancestral, resistant or admixed population that existed before.

Overlapping gene set of KHA significant genes and ART-R specific genes (57 genes), identified two protein kinases PI3K and ARK2, and suggested autophagy as one of the pathways associated with artemisinin resistance (Article2: Result and discussion section "Artemisinin resistance background associated pathways"). Also, the presence of mutations in Atg7 and Atg18 suggest that autophagy could be a key pathway in the acquisition of artemisinin resistance. Despite the presence of PI3K in the final 57 gene set, mutations in PI3K were not systematically associated with k13 resistant alleles. Further studies will define how P. falciparum is able to manage ring stage arrest after oxidative stress induced by artemisinin.

We try to explain the transmission and existence of subpopulation with an Emergence Selection and Diffusion model, where the subpopulations emerge from ancestral population with a common background. Resistant alleles are selected in these subpopulations and the transmission takes place by crossing over with the admixed population KHA.

There is a strong need to analyze more genomic data from varied locations in the same country to understand the stated hypotheses completely. Also data from different countries should be analyzed to verify the generality of this model. The

Abstract:

Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-combination therapies (ACTs), the front-line treatments of Malaria. The first case of clinical artemisinin resistance was observed in Cambodia which is identified as the epicenter of anti-malarial drug resistance. Recent studies have provided evidence for parasite population fragmentation in Cambodia. However, promising molecular markers and possible pathways associated with artemisinin drug resistance have been identified, the underlying molecular mechanisms of resistance remain unknown. We evaluated the genomic data of early emergence of artemisinin resistance (2008)(2009)(2010)(2011) in Cambodia, through characterization of 167 isolates using a panel of 21257 SNPs. Eight subpopulations were identified and 57 background genes have been linked to artemisinin resistance and characterize the 167 isolates into eight subpopulations based on 21257 SNPs. We provide an extended list of 57 background genes. Functional analysis of artemisinin resistance subpopulations put into picture the role of PI3K pathway in artemisinin resistance and highlights the link between mitophagy and acquisition of artemisinin drug resistance.

One Sentence Summary:

The association of artemisnin resistant subpopulations background genes with the redox metabolism appears as a key factor for the acquisition of tolerance to drugs.

Introduction:

Malaria is one of the most widespread parasitic infections in the world affecting humans. The ongoing WHO malaria elimination program aimed at eradicating malaria, is hindered by the emergence of resistance to the front line-treatment, Artemisinin Combination therapy (ACT).

Resistance to artemisinin is identified as delayed parasite clearance, which could evolve into complete resistance to the drug. At present, there are no anti-malarial molecules which can replace artemisinin for the treatment of Malaria. Understanding the process and pathways underlying artemisinin drug resistance is crucial to the identification of new drug targets and containment of drug resistance. Cambodia in Southeast Asia (SEA) has been considered as the epicenter of emergence of anti-malarial drug resistance. The first clinical case of artemisinin treatment failure was reported in Pailin near western Cambodia-Thailand border [START_REF] Dondorp | Artemisinin resistance in Plasmodium falciparum malaria[END_REF], which is the same location where resistance to the anti-malarial drugs chloroquine [Eyles et al., 1963] and sulfadoxin-pyramethamine [Wongsrichanalai et al., 2002] was observed.

Epidemiological models suggest that the spread of resistance parasites to these two antimalarial drugs to Africa, originated from Southeast Asia [Mita et al., 2009]. Recently, the spread or emergence of artemisinin resistant parasites has been reported in neighboring countries of Cambodia [START_REF] Kyaw | Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a crosssectional survey of the K13 molecular marker[END_REF][START_REF] Wang | Artemisinin Resistance at the China-Myanmar Border and Association with Mutations in the K13 Propeller Gene[END_REF], Miotto et al., 2015], Leading to efforts amid to understand the resistance process, and to the identification of molecular markers associated with artemisinin resistance. Recent reports have shown the high fragmentation of P. falciparum parasite populations in Cambodia [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], Miotto et al., 2013, Dwivedi et al., 2016]. Miotto et al., [Miotto et al., 2013] , have shown the presence of P. falciparum parasite ancestral population (KH1), founder subpopulations (KH2, KH3 and KH4) associated with clinical artemisinin resistance and admixed subpopulation (KHA) in Cambodia based on analysis of 293 full genome sequences from time period 2008-2011. The founder subpopulations were associated with mutations in the propeller domain of the Kelch gene (PF3D7_1343700) located on chromosome 13 (C580Y, Y493H, R539T) and fixation of these mutations in western Cambodia has been shown [Ariey et al., 2014]. Furthermore, analysis of non-synonymous SNPs identified mutations in the ferredoxin (fd), apicoplast ribosomal protein S10 (arps10), multidrug resistance protein 2 (mdr2) and chloroquine resistance transporter (crt) genes associated with mutations in K13 and were described as background mutations. Although, these promising molecular markers have been described, the underlying molecular artemisinin drug resistance
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pathway is still unknown. Recently, Mbengue and colleagues have described a possible pathway associated with artemisinin drug resistance mechanism based on experimental evidence [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF]. They show that the production of phosphatidylinositol-3-phosphate (PI3P) by phosphatidylinositol-3-kinase (PI3K) and interaction with artemisinin is essential for parasite growth (elevated levels of PI3P when going from ring to schizont stage). In the case of mutated K13 (C580Y), the binding of K13 to PI3K (inhibitory action) and polyubiquitination of K13 does not take place, keeping the level of PI3P always high and allowing thus the parasite to mature. Therefore, PI3K was described as an important target for understanding the mechanism.

In this context, the present study is aimed at evaluating the structure of the parasite population at a country-wide scale to support one of the hypotheses that the P. falciparum parasite population structure plays an important role in transmission and acquisition of K13 mutant alleles among subpopulations. In the present study, we use the genomic dataset on which the population structure was described earlier [Miotto et al., 2013] to evaluate the early emergence of artemisinin resistance (2008)(2009)(2010)(2011) in Cambodian parasite population. In total, 21257 nonsynonymous SNPs were called again based on the quality of sequencing signal parameters. The P. falciparum population structure in Cambodia is described using unsupervised hierarchical clustering method and network based stratification method [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF] using coexpression data. The 167 successfully recovered isolates were characterized into more specific subpopulations (8 subpopulations compared to 5 subpopulations described earlier [Miotto et al., 2013]). We provide an extended list of 57 background genes associated with artemisinin resistance. Together these data suggest that emergence of P. falciparum subpopulations took place independently, followed by selection of artemisinin resistance parasites among subpopulations and the transmission of the resistant alleles and acquisition of artemisinin resistance background genes through admixed subpopulation KHA, as hypothesized earlier [START_REF] Dwivedi | Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia[END_REF]. This process of selection is tightly associated with the PI3K kinase and signalization pathways mediated by PDE1 and ARK2 enzymes.
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The parasite population structure in Cambodia was also confirmed using Network based stratification method [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF] based on the P. falciparum gene-gene interaction network (mainly co-expression data) provided by STRING v10 [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF] (Fig. S1). The isolates were clustered using non-negative matrix factorization (NMF) method [Lee & Seung, 1999]. The classification of most of the samples into subpopulations is similar to the classification based on hierarchal clustering of 21257 SNPs (Fig. S2). Only admixed subpopulation KHA was different. Out of the 58 isolates in this subpopulation, 20 isolates were clustering with other subpopulations. Out of the 28 ART sensitive KHA isolates, 18 isolates clustered with KHA, 5 isolates clustered with ART-R subpopulations and 5 isolates clustered with ART-S subpopulation KH1.1. This suggests that due to crosses between or among parasite subpopulations, some ART sensitive samples in the KHA subpopulation may have acquired background alleles and some sensitive KHA samples may have not acquired the resistant background. The description of the other subpopulations was similar to the description in the previous approach. Changing the dendrogram cut-off threshold to obtain 2 to 8 clusters, led to the observation that the KH1.2 ART-S subpopulation is robust and the isolates clustered with isolates of ART-R populations but not with the other ART-S subpopulation KH1.1. This suggests the presence of P. falciparum parasite subpopulations with specific genetic backgrounds in Cambodia before the introduction of ART.

Subpopulation associated genetic background

In order to probe metabolic differences between different parasite subpopulations, SNPs and genes found to be associated with artemisinin resistance were described by comparing the ALT frequency of SNPs in a specific subpopulation to the ALT frequency in the KH1.1

subpopulation. The genes carrying the significant SNPs were defined as significant genes. The ART sensitive ancestral population KH1.1 was considered as the reference as it has more REF significant alleles than ALT significant ones. The mapping of Kelch gene in the gene-gene interaction network from STRING v10 based on the co-expression data showed a strong relationship between the genes co-expressed in the ring and schizont forms of the erythrocyte stage (Fig. 2). This is in agreement with the strong homology between Kelch and KEAP1 human gene [START_REF] Paloque | Plasmodium falciparum: multifaceted resistance to artemisinins[END_REF]. Analysis of the co-expression network is therefore highly relevant for analysis of background genes in the context of ART resistance. ART-R subpopulations have 265 significant genes in common. A set of 168 significant genes were found in common with the KH1.2 ART-S subpopulation (Table S1). The 168 genes were distributed in most of compartments of the co-expression network deduced from STRING and confirmed the presence of a common background for all subpopulations emerging from the ancestral population KH1.1 (Fig. S3).

Significant GO terms were recovered using PlasmoDB v10. ClueGO was used to recover function groups of GO terms. The full 265 significant genes displayed GO terms associated with cell signaling, gene expression post-translation regulation, RNA metabolism (tRNA and mRNA modification, …) and organelle related functions (Fig. S4). The 168 gene set GO annotation functional groups showed conserved enrichment for organelle functions (AMA1, PfMDR2 or exosomal protein RRP6) and gene expression (Fig. S5). About 60 genes encode integral membrane proteins, (many of which are of unknown function (38/61)) and surface antigens such as msp1 and some specific var genes (Fig. S6). Several genes are associated with cell signaling in the 168 gene set and significant numbers of these are protein kinases. The PfMDR2 gene is associated with the background D484I mutation, which was present in KH1.2 ART-S subpopulation. The ARP10 (apicoplast ribosomal protein S10) encoding gene was found to carry two different mutations V127M and D128H, which were significantly associated with ART-R and admixed subpopulations, whereas KH1.2 had only D128H mutation.

Description of ART-R subpopulation genetic background

To assess the ART-R subpopulations specific set of 97 genes (Table S2), we removed the 168 gene set found in common with KH1.2 ART-S subpopulation from the total of 265 genes. GO terms enrichment for the cell signaling pathway showed less connections with protein kinase activity, but highlighted the presence of Phosphodiestarase 1 (PDE1) involved in regulation of cGMP concentration. (Fig. S7 andS8). The gene carries 3 mutations found in the KH1.1 ancestral population, but only S506L was fixed in all the ART-R subpopulations. New GO terms associated with apicoplast highlighted the presence of genes related to organelles, including the ferredoxin background gene. About half of the proteins associated with the GO term "integral component of the membrane" had at least another GO term in other functional categories
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including PDE1, apicoplast associated RAP-like protein, fatty acid biosynthesis and polyubiquitination. Genes in the same GO term functional group as K13 were associated with polyubiquitination (E3-like protein MAL7P1.19 and RPN10 proteasome subunit), signal transduction (PI3K PFE0765w), autophagy (Atg7, Atg18) and regulation of protein activity (Serine/threonine phosphatase PFD0505c). Background mutations associated with PfCRT and ferredoxin (fd) were found to be significant in all ART-R and admixed subpopulations.

Interestingly the ferredoxin D193Y background mutation was not always associated with the K13 mutation in the KH3 subpopulation. In our dataset, PfCRT was associated with 13 mutations including the two background mutations N326S and I356T. KH1.2 had no significant PfCRT mutations. An additional R371I mutation was found in ART-R and the admixed subpopulation KHA. In addition to these three PfCRT mutations, KH4 isolates carry one more significant mutation T256I.

According to these observations, resistance to artemisinin appears as a selection process among parasites from subpopulations. In the case of K13, different subpopulations carry different alleles. The K13 gene was found to be significant in donor populations where only one K13 mutation was present (p value = 3.92E -11 ), but also in KH5 (p value = 1.0296E -4 ) where all the 3 different exclusive mutations were present. KH5 is a donor for R539T mutations as it is absent in other subpopulations except KHA. The K13 gene is the only gene where mutually exclusive mutations associated with subpopulation are found. There are 57 mutations found significant in all the ART-R subpopulations, suggesting that the fixation of one mutation in the population is the results of selection among subpopulations than de novo acquisition after drug pressure.

Altogether, these results suggest that selection was performed on daughter subpopulations and not on the ancestral population. The mutation in the fd gene was not present in all isolates of KH3 subpopulation displaying the most dominant C580Y allele, emphasizing the relationship between initial genetic drift during the emergence of subpopulations and the selection process performed afterwards.

Artemisinin resistance background associated pathways

Emergence of K13 mutations in Cambodia was tightly related to the presence of subpopulations like KH2, KH3, KH4 and KH5, which provides an appropriate background for acquisition of artemisinin resistance. In the admixed subpopulation KHA, 20 isolates out of the 58 isolates had no K13 allele and these isolates are referred to as the KHA sensitive isolates (KHAs). Out of the 5 background genes mentioned above, the fd gene was the only significant gene in the KHA subpopulation when compared to the total population of 167 isolates. When KHA was compared with the ancestral population KH1.1 as reference, the number of significant genes increased to 467. Overlap between the 97 gene set and 467 gene set interaction networks based on coexpression data shows that the genes are conserved in all the compartments of the network. GO terms functional group analysis confirms that major components of the 97 gene set have been conserved in KHA isolates (Fig. S9). The KHA specific 467 gene set was similar to that of ART-R 265 gene set in terms of GO annotation. This suggests that KHA background was acquired through crossing of parasites from various populations either ancestral, resistant or from a preexisting admixed population.

The main hypothesis in this study is that artemisinin resistance is acquired by diffusion. The artemisinin resistance genetic background can be defined as the intersection between ART-R subpopulation background genes and the KHA significant genes. The significant genes of the KH1.2 subpopulation were removed from this set to yield a final list of 57 genes (Table S3). The K13 gene and two other known background genes fd and PfCRT are part of this artemisinin resistance specific gene set (Fig. S10 andS11). A lipid kinase PI3K and a protein kinase ARK2 could be identified. The PI3K-K13 interaction has been evaluated by Mbengue and colleagues [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF] and the ARK2 serine/threonine protein kinase was recently listed among the high priority malaria targets for novel drugs [START_REF] Spitzmüller | Prediction of the P. falciparum Target Space Relevant to Malaria Drug Discovery[END_REF]. We also identified the phosphodiesterase (PDE1) as an important protein involved in signal transduction. PDE1 activity is expected to regulate cGMP concentration in the parasite. These cyclic nucleotide molecules are second messengers regulating specific kinases, which are expected to play a major role in cell cycle control and differentiation. Only one mutation in PDE1 (S506L) was significantly associated with ART-R subpopulations, but it was also present in the ancestral population KH1.1

(7/45).
The mutations in the K13 gene associated with artemisinin resistance are very specific, mutually exclusive, and absent in the isolates of the ancestral population. The K13 gene is expected to work as a part of E3-like protein complex interacting with the target proteins through the kelch
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domain. Polyubiquitination of PI3K kinase mediated by K13 was described experimentally [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF], but the E3-like ubiquitin ligase domain containing K13 is expected to have many more targets. Nothing is known about the other potential targets. Furthermore, the PI3K itself is a protein being involved in cell signaling pathways. The presence of mutations in Atg7 and Atg18 suggest that autophagy could be participating in the acquisition of artemisinin resistance. Atg18 is a member of pre-autophagosomal structure (PAS) and is recruited by Atg9 at PI3P rich regions of the ER membrane (Fig. 3). Both PI3K and Atg18 are proteins with unique organization in Plasmodium species among Apicomplexa and most orthologues are found in plants. These proteins play an important role in the reduction of accumulation of ROS associated with mitochondria. Mitophagy, a response to oxidative stress, is also associated with cell cycle arrest and is essential for the cell to reduce its metabolic activity under stress. Interestingly, it has been suggested that artemisinin leads to E3-dependent mitophagy after targeting the mitochondria [START_REF] Wang | Artemisinin Directly Targets Malarial Mitochondria through Its Specific Mitochondrial Activation[END_REF]. Connection with cell cycle arrest is present in the 57 gene set, evident by the presence of ARK2 (soluble serine/threonine kinase) and PDE1. Best orthologues are found in plants, but the nuclear localization signal found in A. thaliana is absent. ARK2 was found to be highly expressed in schizont stage of the blood stage cycle. PDE1 might regulate the activity of cGMP dependent protein kinase PKG (PF14_0436), playing an essential role during the late schizont stage and gametogenesis. The role of these two enzymes in modulating the cell cycle during ring stage remains unknown.

Human KEAP1 protein involved in oxidative stress is the only model that could correlate with the function of K13. KEAP1 is involved in the sequestration of the transcription factor NRF2, but no orthologues of NRF2 could be found in P. falciparum. Interestingly, KEAP1 interacts with the protein poly-ubiquitination system, as an E3 subunit. This study suggests a link between autophagy in P. falciparum and acquisition of artemisinin resistance. Mutations in the PI3K enzyme were already present in the ancestral population and four of them have been fixed in the ART-R subpopulations (Fig. S12). Despite the presence of PI3K in the final 57 gene set, mutations in PI3K were not systematically associated with K13 resistant alleles. This could suggest that the mitophagy is one among several pathways associated with artemisinin resistance. Ferrodoxin (fd) was also suggested to interact with artemisinin. Our findings will set the xxx for future studies aimed to define how P. falciparum is able to manage ring stage arrest after oxidative stress induced by artemisinin.

The process of emergence of artemisinin resistance could be summarized in an Emergence Selection Diffusion model (ESD). This model is very close to the population shifting balance theory described by Wright. This work describes the emergence of subpopulation with common genetic background. The parasites among these subpopulations accumulated a large amount of mutations compared to the ancestral population KH1.1. Small populations are known to enable genetic drift. A large number of subpopulations in Cambodia have been previously described [START_REF] Dwivedi | Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia[END_REF], but little is known about the phenomenon responsible for the existence of these subpopulations. Emergence of K13 resistant alleles was only observed in the genetic background of these subpopulations and alleles were clearly associated with specific subpopulations. We suggest that artemisinin resistant parasites were selected among subpopulations. The diffusion of K13 allele was later observed through the admixed population KHA after crossing. The association of background genes with the redox metabolism appears as a key factor for the acquisition of tolerance to drugs. Mutations associated with oxidative stress pathways could be either the result of environmental parameters or intrinsic consequence of genetic drift in parasites with low fitness. According to the described ESD model, KHA parasites appear to be responsible for the diffusion of artemisinin resistance and some of these parasites will have better fitness in a new environment, where artemisinin combined therapies (ACTs) are systematically used. Health operators should be aware about the specific risk associated with the KHA parasites. The genes are colored according to the maximum expression stage data [Le [START_REF] Roch | Discovery of gene function by expression profiling of the malaria parasite life cycle[END_REF] recovered from PlasmoDB. The genes highlighted in "yellow" color are the first, second and third neighbour genes of the K13 gene, shown using four networks in clockwise orientation. The neighbour genes are marked using Cytoscape v3.2.1. To choose a quality threshold on the DA value we studied its distribution. It appeared to be a mix of two distributions: on the left low quality SNPs and on the right high quality SNP. We chose 0.7 as it seems to be the intersection between those two distributions and selected SNPs with DA higher than 0.7 (Supplementary Figure S15). Therefore, DA score ≥ 0.7 was considered as the second filtering criteria to include SNPs with high quality non-REF allele calls. Around 20,000 SNPs were recovered for each isolate after implementing these filtering criteria (from 13470 to 23022 SNPs). There were 247783 SNPs having a non-REF allele in at least one of the 167 Cambodian parasite genomes. In order to remove the SNPs with rare allele frequencies in the population, non-reference allele frequency (NRAF) was calculated for each SNP (Supplementary Figure S16a). MAF was defined as the minimum of NRAF and 1-NRAF [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF][START_REF] Amato | Genomic epidemiology of artemisinin resistant malaria[END_REF]. All the SNPs with a minor allele frequency (MAF) less than 0.01796 were removed from the analysis (Supplementary Figure S16b). This filter removed SNPs with non-REF frequency of 1, 2, 165, 166 and 167 (SNPs with REF allele in all the isolates were not focussed). After applying the three filters, 111701 unique SNPs were recovered in 167 Cambodian isolates.
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Correspondence between different genome versions

Mapping of the SNP coordinates between genome version 2 and 3 was done, as the new publicly available datasets are based on reference genome version 3. P. falciparum 3D7 reference FASTA file was recovered from PlasmoDB release v10, as genome version 3 is used for alignment in this release. BLAST (Basic Local Alignment Search Tool) was implemented from NCBI (National Centre for Biotechnology Information) platform to match the two versions. The mega BLAST was performed for each chromosome separately. For the chromosomes 4, 7, 8, 10 and 13 very short lengths of alignments were obtained depicting major changes in the genomic sequence between version 2 and 3. Therefore, alignments were obtained by defining specific regions in these chromosome sequences. Mapping for approximately all SNPs in all chromosomes were recovered. In overall, 3105 unmapped SNPs in the recovered data were removed from the analysis. BLAST was done for each chromosome keeping genome version 2 (PlasmoDB release version 5.5) as reference and version 3 (PlasmoDB release version 10) as query. Therefore, we obtain a list of 108596 SNPs.

Removing uncertain SNPs and correcting errors

After filtering the data and removing the unmapped SNPs, the uncertainties were treated.

SNPs with more than one ALT (non-REF) allele for a specific isolate were considered as uncertainties. These uncertainties were removed or substituted with REF or ALT allele based on the frequency of uncertainties in the isolates. SNPs having the uncertain ALT allele frequency higher than 40% were removed (830 SNPs). Some of the SNPs with low frequency uncertain ALT alleles were substituted with either most frequent ALT or REF allele and included in the analysis. For the case where SNPs have only one ALT allele in most of the isolates and uncertain ALT allele in some isolates, the uncertain allele was substituted with the ALT value (16859 SNPs). For the other case where SNPs have more than one ALT allele for different isolates, the uncertain ALT alleles were substituted with the most frequent ALT allele. The ALT alleles with the frequency 1.5 times the frequency of same allele at random, are considered as the most frequent ALT allele for SNP (1772 SNPs). In the case of uncertain
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ALT allele frequency less than 5% and no majority ALT allele, the uncertain ALT allele was substituted with the REF allele (54 SNPs). All the other cases were removed from the analyses (1228 SNPs). Therefore, 106538 unique SNPs were recovered in 167 Cambodian isolates with 18683 modified SNPs (Supplementary Figure S17).

Annotation of the recovered SNPs

To describe the distribution of the SNPs over the genome, the 167 strains were annotated using VCF-annotator Perl script (developed at the Broad Institute, Cambridge, MA). A GFF3 (General Feature Format version 3) format annotation file is required as an input file for running the VCF annotator. The GFF3 file was recovered from Ensembl database server. The Ensembl release version ASM276v1.21 corresponds to the P. falciparum genome sequence version 2. The annotation shows that the SNPs are mostly in CDS, introns, exons and 5pUTR. 3pUTR are rarely described in P. falciparum annotation data files used. To determine the coordinates of the telomeric regions more precisely than earlier, where 100kb were removed from starting and end of chromosomes, the chromosomes corresponding to genome version 3 (PlasmoDB release version 11) were visualized using the genome browser provided by PlasmoDB. The regions containing the genes with description such as CLAG, DBL, Rifin, hyp, Stevor, GARP, RESA, VAR, PfEMP, Surfin, PHIST, KAH and EMP in a consecutive organization, were considered as telomeric regions. The gene location in the coding region was determined and chromosome end coordinates were recovered (Supplementary Table5). Finally, after providing annotation information and the information describing the SNPs in telomeric regions, analysis was focused only on non-synonymous SNPs in the coding region of the gene. Therefore, we obtained a dataset containing 21257 non-synonymous SNPs. This dataset is referred to as IBC dataset in this manuscript and is used for parasite population study in Cambodia. There are 3714 modified SNPs (as described in the section above) in the set of these 21257 SNPs.

Validation of IBC dataset

To validate the recovered 21257 SNPs after filtering, correcting and annotating the 167 parasite genome sequences, the distribution of SNPs over the genome was compared to the distribution of SNPs in publicly available datasets. This comparison is the control for the genomic structure of the recovered variant set. The two datasets used for comparison are: (1) PlasmoDB dataset (release version 10) containing Asian isolates (Indochina, Thailand, Vietnam and SEA) and ( 2) MalariaGEN dataset (release version 1.0) containing African and Asian isolates. These datasets are outsourced, but annotated and mapped similarly to IBC dataset. IBC dataset was also compared to these two datasets by considering the common SNPs present in the data sets. There is an overlap of 4597 and 5478 SNPs out of 21257 SNPs with PlasmoDB (Asian isolates) and MalariaGEN dataset, respectively (Supplementary Figure S18). The reason for the mismatch of SNPs can be different sample sizes of the datasets (167 IBC isolates compared with 7 PlasmoDB isolates), sequencing of samples at different times and regions (PlasmoDB isolates) and different variant calling criteria (MalariaGEN isolates). Also, the number of SNPs was accounted for in coding and noncoding regions in all the three datasets for comparison. The specifications in the CDS (coding DNA sequence) region of the genome were reported and it was observed that the distribution of SNPs (Synonymous SNPs, Non-Synonymous SNPs, Non-sense SNPs and Read through SNPs) in the coding region is similar in all these three datasets (Supplementary Figure S19). The number of SNPs in the coding region after removing the SNPs in the chromosome ends for PlasmoDB (Asian isolates) and MalariaGEN (African and Asian isolates) are 8987 and 55093, respectively (Supplementary Table6). Hence, the overlap between IBC dataset and MalariaGEN dataset, as well as IBC and PlasmoDB is better than overlap between those two previously published datasets. The use of this pipeline and analysis of a big dataset seems to stabilize the results and reduce the false positives in the recovered list of SNPs.

Clustering

To describe the parasite population structure in Cambodia, unsupervised hierarchical clustering was performed on the IBC dataset (all the statistical analysis is performed in R v3.0.1 and v3.2.3). The pairwise distance between two isolates was estimated as the proportion of base substitution between them over the whole set of recovered SNPs. Ward minimum variance method was used as a metric to build the dendrogram. The correspondence between previously described parasite subpopulations in Cambodia [Miotto O. et al., 2013] and the 167 isolates were recovered from the Sanger Institute. Eight subpopulations were described based on the hierarchal clustering results: KH1.1, KH1.2, KH2.1, KH2.2, KH3, KH4, KH5 and KHA (Fig. 1). In order to choose the optimal number of clusters in the dendrogram, the value of k was set to 2 to 10 and the clusters obtained at k = 8 overlapped both, clusters based on different k13 alleles and the previously described KH subpopulations. By further increasing the k, only the admixed subpopulation KHA was further divided into small subpopulations, which was not really interesting. Hence, this result cross-checks the biological evidence.

To perform an additional robustness study of the clusters, 1000 hierarchical clustering were performed for 150 isolates randomly selected from the 167 isolates and the frequency of samples being in a specific subpopulation (for k = 8) was calculated. Out of the 167 isolates only 9 isolates were observed to be not specifically associated with a particular subpopulation and can be included either in one of the subpopulations (KH2.1, KH3, KH5 and KH1.1) or the admixed subpopulation KHA. The remaining 158 isolates always clustered in the same subpopulation.

Significant SNPs and Genes

To describe the metabolic pathways and functions associated with different subpopulations, significant genes were recovered based on significant SNPs. For each subpopulation significant SNPs were defined using one-tailed Fisher-exact test, by comparing the ALT allele frequency of each SNP in each subpopulation to the to the ALT allele frequency in artemisinin sensitive population KH1.1 which is considered as the ancestral population from which other subpopulations are derived [Miotto O. et al., 2013]. Accordingly, there are much less significant SNPs (43 SNPs / 21257 SNPs) observed in KH1.1 subpopulation (45 isolates) when compared to the total population (167 isolates). This shows that the isolates in KH1.1 are closer to the reference genome than the isolates in other subpopulations (based on 21257 SNPs). Only the SNPs with ALT allele increased frequency in a particular subpopulation were considered. Benjamini-Hochberg method was used to correct the p-values from multiple comparisons. All the SNPs with a corrected p-value lower than 0.05 were considered as significant and the genes containing these significant SNPs were defined as the significant genes (Supplementary Table7).

Gene interaction networks and gene ontology

In order to determine the biological processes taking place in different subpopulations, genegene interaction networks were studied. The interaction network data were recovered from
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STRING v10 which provides functional and predicted protein-protein interactions from other publicly available data sources and literature [START_REF] Szklarczyk | STRING v10: protein-protein interaction networks, integrated over the tree of life[END_REF]. Networks based on co-expression data for all the significant genes in each subpopulation were recovered. Only edges with a STRING confidence score for co-expression higher than 0.5 were considered for the analysis. The networks were imported and analysed in Cytoscape v3. 2.1 [Shannon P. et al., 2003]. Also, the complete P. falciparum interaction network based on co-expression data (confidence score ≥ 0.5) was recovered from STRING v10 database. Out of the 5777 genes identified in the genome of P. falciparum (PlasmoDB release v28), only 3875 genes have coexpression interaction confidence score greater than 0.5. Out of these 3875 genes, 33 genes do not have interactions with the major interaction network and are not considered in this analysis. The 3842 genes were classified into six parasite blood stage forms (early ring, late ring, early trophozoite, late trophozoite, early schizogony and late schizogony) (Supplementary Figure S1). These genes were classified according to the maximum expression stage, which was based on microarray transcriptomic data of the study by [START_REF] Roch | Discovery of gene function by expression profiling of the malaria parasite life cycle[END_REF], available in PlasmoDB server ("Pf-iRBC+Spz+Gam Max Exp Timing" column). The genes maximum expressed in merozoite blood stage form of the parasite were not focussed (711 genes). Also, 138 genes were not classified into any blood stage according to the maximum expression stage data [Le [START_REF] Roch | Discovery of gene function by expression profiling of the malaria parasite life cycle[END_REF].The remaining 2993 genes were majorly distributed into ring and trophozoite and followed by schizont blood stage (Supplementary Table8).

In order to verify the expression of genes associated with k13 gene (PF13_0238) in the described blood stages, the genes co-expressed with k13 gene were represented on the interaction network (Supplementary Figure S1). In the full network, starting from k13 gene the next adjacent genes were marked until the major parts of the networks (representative of blood stages) were marked. This can be visualised as one step diffusion of signal from the starting node k13 to other nodes of the interaction network. It was observed that the third neighbour genes (three diffusion steps) of the k13 gene were mostly expressed in the ring stage and schizogony stage part of the network (Fig. 2).

For identification of biological function associated to the significant genes, the functionally grouped networks of GO terms and pathways were recovered and studied for each subpopulation using the ClueGO v2.2.4 and CluePedia v1.2.4 plugins of Cytoscape. The algorithm to define the functional groups is: (a) create a binary matrix for genes and associated terms, (b) Using this matrix and kappa statistics create a term-term similarity matrix, (c) create initial functional groups based on predefined threshold of kappa score and minimum number of terms per group to be considered (d) iteratively merge the functional groups, if there is a certain percentage of overlap [START_REF] Bindea | ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks[END_REF]. The network is created with nodes as the term and edges as the association based on kappa score. All the default conditions of the ClueGO plugin were used. Right-sided hypergeometric test (enrichment) was used as the statistical test and Benjamini-Hochberg method was used to correct p-values. The GO terms associated to the significant genes for each subpopulation were also recovered from PlasmoDB release v13.

Network based subpopulation description

To describe the population structure based on the functional background, hierarchical clustering was performed on the subpopulations based on the presence and absence of edges in the interaction network from STRING v10. All the interactions among significant genes of each subpopulation above the STRING medium combined confidence score (0.4) from different sources were considered for this analysis (Neighbourhood, Gene Fusion, Co-occurrence, Co-expression, Experiments, Databases and Text-mining). This approach groups the subpopulations with similar functional background. The presence and absence of edges was treated as binary data, 1 if the edge is present and 0 if the edge is absent among significant genes in a specific subpopulation. Binary (Jaccard) distance matrix and Ward minimum variance method were used to build the dendrogram. The hierarchical clustering was performed with and without the KHA to analyse the effect of admixture subpopulation on the population structure (Supplementary Figure S20).

The population structure of 167 parasite isolates was also questioned using the method of Network Based Stratification [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF] which clusters the isolates together having diffusion paths associated to mutated genes in similar network regions. The list of mutated genes for each isolate was projected on the full P. falciparum interaction network recovered from STRING v10. Other prediction sources than co-expression data such as cooccurrence, gene fusion, databases, experimental evidence, text-mining and neighbourhood were also considered for the full P. falciparum interaction network. The results were obtained for top 10% gene-gene interactions based on combined confidence score provided by STRING database. The mutated genes were propagated to the neighbourhood network (network smoothing) and based on the node score matrix of the resulting diffusion network for each isolate, clustering was performed using non-negative matrix factorization (NMF) method [START_REF] Lee | Learning the parts of objects by non-negative matrix factorization[END_REF]. Consensus clustering was performed by selecting 80% mutated genes and 80% isolates 100 times randomly and iterating NMF clustering 10 times. The consensus clustering between samples was estimated as the percentage of coclustering results in which they are in the same cluster when the dendrogram is cut to obtain 8 groups (to make the comparison easy with the 8 KH sub-populations). This consensus clustering matrix was normalized and then used to build a dendrogram for all 167 isolates using Euclidean distance matrix and ward minimum variance method in R. Some of the isolates are clustered in different clusters when compared to the clustering results based on 21257 SNPs. There are 10 isolates (isolate index : 9, 70, 91, 103, 112, 134, 148, 151, 160, 162) that were in the KHA subpopulation according to clustering results based on 21257 SNPs, but according to clustering based on network based stratification these isolates are clustered in other resistant and sensitive subpopulations. Also one isolate (isolate index: 156) is classified in KH2.2 which was in classified in KH2.1 earlier and one isolate (isolate index: 61) is classified in KH2.1 which was classified in KH3 in the earlier method (Supplementary Figure S2). All the other 155 isolates completely overlaps with the clusters observed previously. This dendrogram was cut at different thresholds (k ϵ (2, 8)) to verify the closeness of different isolates and compare it with the hierarchical clustering results based on 21257 SNPs and absence/presence of interacting edges in network based on significant genes of different subpopulations.

Analysis of the genes supporting artemisinin resistance

The analysis was focused on three gene sets primarily obtained at the intersection of significant genes (set of genes containing the significant SNPs) in the resistance subpopulations. These three gene sets are: (a) 168 significant genes having at least one significant SNP in all the resistant subpopulations (KH2.1, KH2.2, KH3, KH4, KH5) and the subpopulation KH1.2, (b) 97 significant genes having at least one significant SNP in all the resistant subpopulations only and (c) 57 significant genes having at least one significant SNP in all the resistant subpopulations and admixed subpopulation KHA, but no significant SNP in the subpopulation KH1.2. There can be different SNPs in the same gene in different subpopulations. These three sets were chosen to focus on the genes contributing to artemisinin resistance. et al., 2013]. Interaction network was recovered from STRINGv10 and interaction evidence from all the sources was used. Only top 10% of the interactions were included in the analysis. Similarity matrix was computed using consensus clustering, which was performed by selecting 80% mutated genes and 80% isolates 100 times randomly and iterating NMF clustering 10 times. This similarity matrix was then used to build a dendrogram for all 167 isolates using Euclidean distance matrix and ward minimum variance method in R. Colors for different clusters were assigned by comparison with the hierarchical clustering result based on 21257 SNPs (Supplementary FigureS6). Fig. S4. The functionally grouped networks of GO terms and pathways for ART-R subpopulation specific gene set (265 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. Different parts of the network are marked with general annotation terms. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4.
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Fig. S5. The functionally grouped networks of GO terms and pathways for ART-S subpopulation KH1.2 common resistance background gene set (168 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4.

Fig. S6.

The functionally grouped networks of GO terms and pathways with associated genes for ART-S subpopulation KH1.2 common resistance background gene set (168 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology").

The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. Different parts of the network are marked with general annotation terms. The network of GO terms functional group with associated genes is built in Cytoscape v3.2.1 using the plugins ClueGO v 2.2.4 and CluePedia v 1.2.4 .
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Fig. S7. The functionally grouped networks of GO terms and pathways for ART-R subpopulations specific gene set (97 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4.

Fig. S8.

The functionally grouped networks of GO terms and pathways with associated genes for ART-R subpopulations specific gene set (97 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. Different parts of the network are marked with general annotation terms. The region with genes closely associated to k13 gene (PF13_0238) based on GO terms are marked with a circle. Genes are also associated to autophagy (PF11_0271 and PF10_0126). The network of GO terms functional group with associated genes is built in Cytoscape v3.2.1 using the plugins ClueGO v 2.2.4 and CluePedia v 1.2.4 .

ARTICLE 2

Fig. S9. Comparison of GO terms functional groups between the admixed subpopulation KHA specific genes (467 genes) and the ART-R subpopulation specific genes (97 genes).

The conserved functional groups are matched by black lines. This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4.

Fig. S10.

The functionally grouped networks of GO terms and pathways for artemisinin resistance background gene set (57 genes), obtained by overlapping KHA specific genes (467 genes) and ART-R subpopulations specific genes (97 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology"). The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4.

ARTICLE 2

Fig. S11. The functionally grouped networks of GO terms and pathways with associated genes for artemisinin resistance background gene set (57 genes), obtained by overlapping KHA specific genes (467 genes) and ART-R subpopulations specific genes (97 genes). This network represents the associations between the GO terms based on the similarity of the genes (refer Material and Method section "Gene interaction networks and gene ontology").

The nodes represent the GO terms and the edges are the associations based on kappa score, which is also used for defining functional groups. Each functional group is represented with the most significant GO term in the functional group. The "Triangles" represent the metabolic pathways, "Ellipse" represents the GO terms associated biological processes, "Hexagon" represents the GO terms associated to cellular component and the "Rectangles" represent the GO terms associated to Molecular functions. Different colors signify different GO terms functional groups. Nodes with more than one color represents the GO terms included in more than one functional group. The network of GO terms functional group is built in Cytoscape v3.2.1 using the plugin ClueGO v 2.2.4. Table S1. List of all the significant genes specific to KH1.2 resistant background (168 genes). These genes have at least one significant SNP (refer Material and Method section "Significant SNPs and Genes") in ART-S subpopulation KH1.2 and all the ART-R subpopulations. This list provides PLasmoDB gene ID, product description of the gene, associated old ID and the Uniprot ID recovered from PlasmoDB v 11. Table S2. List of all the significant genes specific to ART-R subpopulations (97 genes).

Gene

These genes have at least one significant SNP (refer Material and Method section "Significant SNPs and Genes") in all the ART-R subpopulations and no significant SNP in ART-S subpopulation KH1. Table S3. List of all the significant genes specific to artemisinin resistance background (57 genes). These genes have at least one significant SNP (refer Material and Method section "Significant SNPs and Genes") in all the ART-R subpopulations, in the admixed subpopulation KHA and no significant SNP in ART-S subpopulation KH1. The apicomplexan intra-erythrocytic parasite B. microti is an emerging pathogen and main cause of human babesiosis, endemic in USA. It is transmitted by ticks and by blood transfusion from asymptomatic B. microti infected humans. If not diagnosed and treated properly, the infection could lead to severe symptoms and could also cause death [Vannier et al., 2015]. In many cases inappropriate treatment is provided, because of confusion with lyme disease and P. falciparum malaria. There are still gaps in complete knowledge of the B. microti genome structure and not much is known about the proteome, drug targets, population structure and epidemiology of this parasite. There is not much information available about the genetic factors involved in pathogenesis and ability to infect human.

Recently, efforts have been made to sequence the nuclear genome and organelle genomes of B. microti, which lead to confirmation of the taxonomic position of B. microti [Cornillot et al., 2012, Cornillot et al., 2013]. Understanding the genetic structure of B. microti started with analysis of organelle genomes. In 2014, the apicoplast genome of the reference R1 isolate was the last part of the genetic material to be sequenced. I was involved in the apicoplast genome comparison with genomes of closely related species. It was observed that the B. microti apicolast metabolic functions are conserved among Apicomplexa and that the apicoplast can be targeted for feasible therapies for the treatment of human babesiosis. The main objectives to

The Apicoplast genome

Approach

The nuclear genome and mitochondrial genome were described earlier [Cornillot et al., 2012, Cornillot et al., 2013] and were used in the description of apicoplast genome (Article3: Materials and Methods section). The sequencing technique used was primer walking. PCR amplification was performed on complete genomic DNA and the primers were designed based on the sequencing of apicoplast contigs from the assembly of full genome [Cornillot et al., 2012]. Pair-end reads were obtained for at least two PCR products (Article3: Table S1).

Artemis and BLAST were used for genome annotation. Genome comparisons for B. bovis, Chromera, P. falciparum, T. parva, T. gondii and B. microti R1 strain were performed using Mauve and ACT with manual curations. The genetic maps were visualized using CGView and GenomeVx (Article3: Materials and Methods section).

Results

The sequence and assembly of the apicoplast genome revealed a circular molecule of 28.7 kbp, making it the smallest apicoplast genome to date (Article3: Figure 1). The AT richness is about 86% and coding density of about 98%. It encodes rRNAs, 18 ribosomal proteins, elongation factor, 3 subunits of RNA polymerase, chaperone proteins, 24 tRNAs, 140 amino acids and 5 hypothetical proteins (Article3: Result section "Sequence analysis of the circular apicoplast genome of B.microti"). The annotation was consistent with the annotation of nuclear genome [Cornillot et al., 2012, Cornillot et al., 2013]. Analysis of ribosomal proteins and RNAs revealed significant similarity with other Apicomplexa.

There are four gene clusters found in common with other compared apicomplexan parasites (Article3: Figure 2, S1 and S2) and the chloroplast genome of the Chromera algae (Article3: Result section "B. microti carries the minimal apicoplast genome of apicomplexa"). The hotspot of recombination was identified in the region between cluster1 and cluster 2 (Article3: Figure 3 and Figure 4). Also, the difference in size of apicoplast genome between the compared organisms could be due to the lack of duplicated genes in B. microti. Specific genes in different clusters were conserved in different organisms and duplication and recombination events were identified (Arti-cle3: Figure 5, Figure6 and Figure S3). This comparative analysis shows the various rearrangements during various stages of apicoplast evolution (Article3: Figure 7), whereas, loss of genes associated to photosynthesis occurred in early stages of the apicoplast evolution. Based on this analysis, it is suspected that B. microti could contain the core apicoplast organization of Apicomplexa.

Conclusion

The apicoplast genome encodes genes associated to transcription and translation events and lacks genes associated with metabolic functions. The nuclear encoded proteins are predicted to play an important role in parasitic life cycle in the erythrocytic stages of vectors. The apicoplast and nuclear encoded genes could be possible drug targets for developing novel and feasible therapies. This study identifies the markers of B. microti evolution among other Apicomplexa (Article3: Figure 7). Also, the information concerning the major rearrangement events and lack of gene duplication can be used for population studies. Sequencing and annotation of the B. microti apicoplast genome completes the full genome of B. microti to be used as a reference. The apicoplast genome was recently used by Giovanna Capri and colleagues at Yale University to assess USA B. microti population structure (work under review).

Article 3

Introduction

Human babesiosis is an emerging infectious disease caused by a select group of intraerythrocytic protozoan parasites defining a new clade in the Apicomplexan phylum distinct from those encompassing Plasmodium species, Theileria species or Babesia bovis [1]. Most babesiosis infections in humans are caused by Babesia microti and are transmitted by Ixodes ticks, the vectors responsible for transmission of several other pathogens including Borrelia, Anaplasma and Ehrlichia species. Human babesiosis is endemic in northeastern and northern midwestern United States but has also been reported in Europe, Asia, Africa, Australia and South America [2,3]. Depending on their immune status and age, patients with human babesiosis can experience mild, moderate or severe illness with the latter possibly leading to multi-organ system failure and death. In the United States, the mortality rate approaches 9% in hospitalized patients and ,20% in immunocompromised hosts [3,4]. As a result babesiosis has been recognized as an emerging health threat [5], and since 2011 has been designated as a nationally notifiable disease by the Center for Disease Control [6].

The ability of B. microti to invade and multiply within human red blood cells, and the lack of effective tools for large-scale screening of blood for B. microti infection from asymptomatic donors make this parasite a major risk to the national blood supply [7,8]. Accordingly, B. microti is now considered the most commonly reported transfusion-transmitted pathogen in the United States [5], and the number of documented cases of acquired infections by transfusion has substantially increased over the years [9]. Although babesiosis therapy, which consists of combination of atovaquone and azithromycin or clindamycin and quinine [10], is considered generally effective, adverse events and disease failure and relapse can occur in some patients.

Recent efforts aimed to probe the diversity, pathogenicity and metabolism of B. microti and to identify new markers and targets for diagnosis and therapy of human babesiosis have led to the completion of the first genomic sequence of a clinical clone named R1 [11]. Subsequently Whole Genome maps of two B. microti strains R1 and Gray were reported [12]. These genomic analyses revealed that the genome of B. microti is less than 7Mbp, making it the smallest nuclear genome among apicomplexa [11]. Phylogenetic analyses placed B. microti in a new lineage among apicomplexan parasites distinct from B. bovis and Theileria species [11]. The genome effort has also revealed that the parasite has two DNA-containing organelles, the mitochondria and the apicoplast. The apicoplast is a non-photosynthetic plastid that plays an essential role in parasite development and survival [13,14]. Genetic and biochemical studies in malaria and related parasites have shown that this organelle hosts important metabolic and housekeeping processes, which are critical for parasite survival within host cells (reviewed in [15]). Some of these pathways exist in B. microti and are significantly different from their host counterparts thereby offering new opportunities for the development of selective therapies for treatment of human babesiosis [11].

While the linear mitochondrial genome of B. microti has been fully characterized by two independent studies [12,16], the apicoplast genome of this parasite remained partially assembled due to its high A+T content and to its low representation. Here we report the completion of the genomic sequence of the apicoplast of the B. microti R1 isolate. We show that this genome consists of a 28.7 kb circular molecule, which encodes genes involved in maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins. Sequence analysis of the B. microti apicoplast genome and genome comparisons revealed that major gene alterations and rearrangements occurred in the apicoplast genomes during the evolution of piroplasms.

Materials and Methods

Sequencing, assembly and annotation of the apicoplast genome

Genomic DNA used to complete the sequence of the R1 apicoplast genome was previously described [11,12]. The apicoplast genome sequence was obtained by primer walking using long PCR reactions. PCR amplification was performed using total genomic DNA and primers designed following sequencing of apicoplast genome contigs obtained after the first genome assembly [11]. Sequencing was performed on both strands and from at least two PCR products using specific primer pairs (Table S1 in File S1). The complete sequence of the apicoplast genome was deposited in the European Nucleotide Archive with Accession Number LK028575. Genome annotation was performed using Artemis (https://www.sanger.ac.uk/resources/software/artemis/) [17] and BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Prediction of tRNA genes was performed using tRNAscanSE 1.21 (http://lowelab.ucsc.edu/tRNAscan-SE/) with the following parameters: search mode: ''default'', and source: ''Mito/Chloroplast'' [18]. Genetic maps were obtained using CGView (http:// stothard.afns.ualberta.ca/cgview_server) [19] and GenomeVx (http://wolfe.ucd.ie/GenomeVx) [19]. Genome comparisons were performed using Mauve (http://gel.ahabs.wisc.edu/mauve) [START_REF] Darling | progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement[END_REF] and edited using ACT (https://www.sanger.ac.uk/resources/ software/act) [START_REF] Carver | ACT: the Artemis Comparison Tool[END_REF]. Manual editing to correct the above automated analyses was completed on a gene-by-gene basis as needed. The following entries were used for comparative analyses: AAXT01000007 (B. Bovis), HM222968 (Chromera), fusion of X95275 (IRA) and X95276 (IRB) (P. falciparum), AAGK01000009 (T. parva), U87145 (T. gondii). Phylogenetic analyses were performed using Phylogeny.fr with default options [START_REF] Dereeper | Phylogeny.fr: robust phylogenetic analysis for the non-specialist[END_REF].

TMpred (http://www.ch.embnet.org/software/ TMPRED_form.html) and Pfam (http://pfam.sanger.ac.uk/) were used for transmembrane domain and motif predictions [START_REF] Punta | The Pfam protein families database[END_REF][START_REF] Hofmann | TMbase -A database of membrane spanning proteins segments[END_REF].

Results and Discussion

Sequence analysis of the circular apicoplast genome of B. microti

Previous efforts aimed to sequence the nuclear and organellar genomes of B. microti identified several contigs representing partial sequences of the apicoplast genome of this parasite. In order to generate a complete sequence of the apicoplast genome, we performed primer walking using total genomic DNA and specific primers derived from the complete sequencing of the individual contigs. Sequencing and assembly revealed that the apicoplast genome of B. microti is composed of a circular molecule of 28.7 kbp. It is the smallest apicoplast genome found in apicomplexan parasites. The genome is 86% A+T rich and has a coding density of over 98%. It encodes SSU and LSU rRNAs, 18 ribosomal proteins, an EF-Tu elongation factor, three subunits of the RNA polymerase, 2 copies of the ClpC chaperone, 24 tRNAs and five hypothetical proteins ranging in size between 49 (Hyp-E) and 140 amino acids (Hyp-A) (Fig. 1). All genes encoded in the apicoplast genome of B. microti are transcribed in the same orientation (Fig. 1). AUG or AUA serve as initiators for 18 and 13 of the 31 codon sequences (CDSs), respectively, and are preceded by an A-rich region that may play an important role in the recruitment of the ribosome. Consistent with this unusual translation initiation, a single Met-itRNA with an UAU anticodon was found in the apicoplast genome. Termination codons used in the CDSs of apicoplast genome include UAA (25 of the 31 CDSs) and UGA (6 of the 31 CDSs). This finding is consistent with the annotation of the B. microti nuclear genome, which identified an apicoplast targeting motif in the RF2 release factor [11]. No UAG stop codons were found in the apicoplast genome of B. microti consistent with the lack of an apicoplast targeting sequence in the RF1 release factor encoded by the nuclear genome [11].

The majority of CDSs in the apicoplast genome of B. microti do not overlap, and only four coding sequences were found to overlap over one to three codons, making the start of one CDS part of the stop codon of the previous CDS. tRNAscanSE analyses identified 24 tRNAs. In addition to the Met-itRNA, other tRNAs with a U at the first position of the anticodon have been found but the Wobble pairing U -G represents less than 1% of codons in the B. microti apicoplast genome. Half of the tRNAs known to decode codons ending with a U or a C were not detected by tRNAscanSE; these tRNAs might have a sequence that is too divergent from others to be recognized by tRNAscanSE. Similar to P. falciparum, CGU is the only codon found in the B. microti apicoplast genome used for arginine in the CGN group.

Detailed analysis of the ribosomal proteins and RNAs predicted from the B. microti apicoplast genome revealed significant similarity with other apicomplexa. The genome encodes proteins of the small (11 rps proteins) and large (7 rpl proteins) ribosomal subunits. Additional ribosomal proteins are encoded by the nuclear genome and targeted to the apicoplast [11]. Association of nuclear and apicoplast encoded ribosomal proteins with 16Sand 23S-like rRNA molecules may form the apiRibosome of B. microti. No 5S ribosomal RNA-encoding rff gene could be found in the B. microti apicoplast genome. This finding suggests that the apicoplast ribosomes of B. microti are independent of 5S rRNA or that the apicoplast can either import 5S RNA from the cytoplasm, as was previously shown for mammalian mitochondria [START_REF] Yoshionari | Existence of nuclear-encoded 5S-rRNA in bovine mitochondria[END_REF][START_REF] Magalhaes | Evidence for the presence of 5S rRNA in mammalian mitochondria[END_REF], or expresses a gene with a sequence highly divergent from known rff genes. Noteworthy, whereas the chloroplast genome of Chromera expresses an rff gene, no rff genes were found in the apicoplast genomes of all apicomplexan parasites sequenced to date.

Annotation of the apicoplast genome of B. microti revealed 5 hypothetical coding sequences (hypA-E). The encoded proteins do not share significant homology with any protein in available databases and do not contain any recognizable functional domains. Examination of the apicoplast genomes of other apicomplexan parasites shows the presence of unknown but dissimilar proteins in the same genomic regions. Whether these CDSs are expressed or are an artifact of annotation remains to be determined.

B. microti carries the minimal apicoplast genome of apicomplexa

Four gene clusters in the B. microti apicoplast genome were found to be in a synteny with those found in other apicomplexan parasites (Fig. 2 and Figures S1 and S2 in File S1) as well as the chloroplast genomes of Chromera algae [START_REF] Janouskovec | A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids[END_REF]. Cluster 1 includes genes encoding ribosomal proteins and the EF-Tu elongation factor (Fig. 3). Similar to the gene organization found in Theileria parva, Toxoplasma gondii and Babesia bovis, Cluster 1 of the apicoplast genome of B. microti lacks the rpl23 gene. This gene is present in Chromera and Plasmodium species between rpl2 and rpl4 genes but was lost during the evolution of the apicoplast in most apicomplexa. Two copies of the rps8-hypA genes encoding S8 ribosomal protein and a hypothetic protein (Hyp-A) are found in the Cluster, whereas no rps13-like gene could be found in this genome. In Chromera sp., rps13 is located between rps5 and rpl36, whereas in most apicomplexan parasites, this region contains a gene with unknown function or lacks a CDS as in the case in T. gondii (Fig. 3).

Cluster 1 of the B. microti apicoplast genome is surrounded by 10 tRNA genes on the side adjacent to Cluster 4 and 2 tRNA genes for Gln(UUG) and Trp(CCA) on the side adjacent to Cluster 2 (Fig. 4). Interestingly, in T. parva the junction between Cluster 1 and Cluster 2 contains two more tRNA genes for Lys(UUU) and Cys(GCA), whereas in B. bovis this region lacks tRNA regions. Unlike B. microti, the junction between Cluster 1 and Cluster 2 in T. parva and B. bovis contains several putative CDSs of unknown function some of which are identical copies of the same CDS (Tp020 and Tp021 in T. parva) and (Bb210 and Bb200, and cluster Bb200-Bb190 and Bb180-Bb170). The duplicated CDSs found in T. parva do not share homology with those found in B. bovis (Fig. 4). Altogether, these data suggest that the region between Clusters 1 and 2 might be a hot spot of recombination, and that major recombination events involving of regions adjacent to Cluster 1 may have taken place during the evolution of piroplasmida (Fig. 4). Furthermore, the lack of duplicated genes in B microti may account for the differences we see in size between these organisms.

Cluster 2 of the B. microti apicoplast genome consists primarily of ClpC chaperones (Fig. 5). Similar to B. bovis and T. parva, the ClpC gene of B. microti is duplicated with both copies containing the AAA_2 ATPase domain (Fig. 4 and Fig. S3 in File S1). The region of Cluster 2 adjacent to Cluster 3 contains a Ser(UGA) tRNA and three hypothetical proteins (Hyp-C, Hyp-D and Hyp-E) (Fig. 1). The position of the Ser(UGA) tRNA is conserved in other apicomplexan parasites including T. parva (Fig. 4), P. falciparum and T. gondii (Fig. 5). Similar to B. bovis, P. falciparum and T. parva no rpl11 ribosomal gene was found in the B. microti apicoplast genome (Fig. 2 &5). This finding suggests that either the ribosomes of these parasites do not require the L11 protein or that protein translation in the apicoplast of these parasites involves an rpl11-like gene radically divergent from that found in T. gondii, and prokaryotes and located on a different site in the apicoplast genome or possibly encoded by the nuclear genome. Because of the conserved gene order rpl11-clpC in Chromera, and T. gondii, the loss of the rpl11 gene in the apicoplast genomes of parasites within the Class Aconoidasida (which includes Haemosporida and Piroplasmida) Cluster 3 of the B. microti apicoplast genome includes the ''RNApol cluster'' and contains in addition to the RNA polymerase genes (rpoB, rpoC1, rpoC2.1 and rpoC2.2), the gene encoding the S2 ribosomal protein, rps2 (Fig. 1 and2). In B. microti as well as other apicomplexa, the alpha subunit of RNA polymerase (rpoA) gene is encoded by the nuclear genome, whereas in algae chloroplast genomes the gene encoding is present on cluster 1 (Fig. 3). Orientation of Cluster 3 genes in B. microti, T. parva and B. bovis is opposite to that found in P. falciparum and T. gondii, suggesting an inversion event that took place early during the evolution of piroplasmida (Fig. 2). Such an event might be responsible for the loss of the sufB gene in piroplasmida.

Cluster 4 of the apicoplast genome of B. microti includes rDNA genes. This region consists of a single set of ssu and lsu genes, which are transcribed in the same orientation (Fig. 6). In Chromera sp., T. gondi and P. falciparum apicoplast genomes, this cluster consists of two sets of ssu and lsu genes in opposite orientation (Fig. 6). Gene content and gene order in this cluster differ between species. In Chromera, the ssu and lsu genes are in the same orientation and separated by a CDS; in Toxoplasma and Plasmodium the ssu and lsu genes are in opposite orientation; and in B. bovis, 2 ssu genes are located upstream of the lsu gene and all three genes are transcribed in the same orientation. Unlike B. microti and T. parva, a second Thr(UGU) tRNA exists between the ssu and lsu genes in B. bovis (Fig. 6). This gene organization is likely the result of duplication events that occurred in the rDNA region during the evolution of B. bovis.

Comparison of different apicoplast genomes shows that major rearrangements took place during the various stages of apicoplast evolution (Fig. 7). While the loss of genes involved in photosynthesis represent a major early event in the evolution of the apicoplast, deletion of sufB, inversion of the RNApol region, reorganization of the rDNA region and duplication of the clpC gene represent important events that occurred during the early evolution of piroplasma. B. microti apicoplast genome carries these modifications but shows no DNA expansion (duplication of small regions) as is the case in B. bovis and T. parva. This suggests that B. microti may harbor the core apicoplast genome organization of apicomplexa.

Conclusion

We have completed the sequencing and assembly of the apicoplast genome of B. microti. Our studies revealed that this 28.7 kb circular genome encodes a simple machinery devoted primarily to the transcription and translation events occurring within this organelle. The genome lacks genes associated with metabolic functions but harbors five genes encoding small hypothetical proteins whose function remains unknown. Our analysis of the apicoplast genome of B. microti complements our prior annotation of the nuclear genome of this pathogen, which identified several genes encoding structural and regulatory proteins and enzymes harboring an apicoplast targeting motif [11]. These nuclear encoded proteins are predicted to control important metabolic functions during the parasite life cycle in mammalian red blood cells and the tick vector. The potent activity of drugs such as azithromycin and clindamycin [START_REF] Aboulaila | Apicoplast-targeting antibacterials inhibit the growth of Babesia parasites[END_REF] against B. microti indicates that the apicoplast plays an essential role during the parasite intraerythrocytic life cycle. Targeting the apicoplast-and nuclear-encoded functions important for apicoplast maintenance and replication may help identify and design novel, potent and safer therapies for the treatment of human babesiosis. 
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Variant Calling

The SNPs and small INDELs were called from the whole genome sequencing data after alignment, using SAMtools and GATK. Two different approaches were considered for calling variants. First variant calling approach is based on the parameters used to filter the data at Maryland University, which are DP (Raw read Depth), QUAL (Base quality score), SB (similar to DP4 in SAMtools; accounting for the reads of each allele in each strand) and MQ0 (Count of all reads with mapping quality as 0). These parameters were trained for the choice of the correct filtering threshold. SNPs that passed the filter were attributed to non-coding or coding regions using VCFannotator (http://sourceforge.net/projects/vcfannotator) in the context of the reference genome re-annotation. This approach recovers a list of 1490 possible variation sites, where more than 95% were single point mutations. INDELs were analyzed differently from SNPs and all were kept for further analysis.

When the Sanger sequencing of PCR products was performed for six identified loci: BBM_01g00985, BBM_02g04060, BBM_02g04280, BBM_03g00885, BBM_03g04060, BBM_04g09150, none of the variation described in the VCF files in these regions could be confirmed experimentally. Analysis was done on the 8 strains for loci BBM_02g04280 and BBM_03g04060 and on R1 only for the four other loci. This confirmed the need of a specific and stringent variant calling method to avoid false positive variations.

In the second variant calling approach all the quality parameters made available by GATK UnifiedGenotyper were analyzed for the signal (as in the case of P. falciparum described in Chapter 3) and correspondence with training mutations. The histogram of several parameter including the ABHom (At a specific locus reads with ref allele over all reads), DP (Raw read depth) and MQ (Mapping quality) value were constructed per isolate for each SNP positions. These parameters are different from the parameters used in the variant calling in P. falciparum genome, as the signal is different due to different genome structure and due to different tool to call variants (GATK instead of SAMtools). The ABHom parameter evaluating homozygosis at a locus provided valid information over the threshold of 0.85. Also, SNPs above the MQ value over 58 were kept. DP had no impact after these two thresholds were chosen, but in some isolates at some loci, DP could be equal to zero and these loci were identified as uncovered region. We found 889 (588 single point mutations, 301 insertions/deletions) highly reliable variants in the nuclear genome after analysis of It was observed that the R1 isolate is very different from other isolates, based on the genes having the mutations. The average pairwise difference between each isolate and the R1 is 588 SNPs, corresponding to a frequency of 0.9 SNPs/10Kb. The majority of the variable positions were found to be R1-specific, all other genomes being mutated. Furthermore, 54 SNP and 58 INDELs were unique to one of the isolates. Nine sequencing errors were found in the R1 reference genome (1 SNP and 8 INDELs present in all isolates including re-sequenced R1). The two R1 sequences had 27 INDELs differences, which were also present in some of the other isolate (3 being unique to re-sequenced R1). These 27 loci might be errors but could also be mutations hotspots. Only 20% of all INDELs are in CDS and nearly half of them are in-frame mutations. The distribution of INDELs, non-synonymous, read-through and non-sens SNPs was not strictly uniform across the genome. They are 205 genes carrying these mutations. Most contain one variable sites, but 27 genes combined contain nearly one thirds (79/257) of protein affecting mutations (Table 4 

Clustering

Unsupervised hierarchical clustering was performed for 7 samples based on 12 variable microsatellites. The pairwise distance between the samples was calculated as the proportion of base substitutions between them over the number of variable microsatellites, i.e. for pair of isolates (number of pairwise differences) / (total number of variable sites). Unsupervised hierarchical clustering was also performed based on differentially expressed genes. Pairwise distance among 6 isolates was calculated as the Euclidean distance. The Ward minimum variance method was used as a metric to build the dendrogram in R for both approaches. Conserved nodes were identified between the two clustering results (Figure 4.1). The clustering based on recovered SNPs and INDELs did not provide consistent results, even after removing the chromosome ends.

intracellular membrane, cellular traffic, nuclear pore, nucleus, PTEX, Rab, secretion, vacuolar. The orthology between B. microti and P. falciparum was defined by reverse BLAST analysis and identified 2118 matches. Proteins were characterized based on the new annotation, the former annotation [Cornillot et al., 2012], and annotation of P. falciparum orthologues.

The mitochondrial proteome was predicted using TargetP and MitoFates. The orthology between B. microti and P. falciparum identified a list of 206 B. microti putative mitochondrial polypeptides. The intracellular proteins and the proteins with low probability (<0.55 for TargetP and <0.385 for MitoFates) in the two tools used were removed from this analysis and based on the intersection among the three predicting methods, 446 proteins were identified. Finally, 35 more genes with known mitochondrial function were included in the final set of true annotated proteins (Figure 4.2A).

Apicoplast targeted proteins. The apicoplast proteome was predicted following a similar process. First, PATS prediction was used to characterize a first set of putative apicoplast proteins. Out of the set of 350 proteins, 97 intracellular proteins were removed. Second, TargetP predicted 125 putative chloroplast protein using plant parameters. Using the same approach as for the mitochondrial genome, 78 proteins with low probability and 19 intracellular proteins were removed. Orthology identified 215 B. microti putative targets to the apicoplast, around 60 of these orthologues intracellular proteins. The control set of apicoplast proteins was encoded by 29 genes having words apicoplast or chloroplast in their annotation. The IF2 initiation factor and CPN60 HSP proteins were also added to the list. Eight known apicoplast proteins were not detected by any of the approaches (Figure 4.2B).

At the initial step, the secretome was predicted using TargetP and TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) programs. A total of 680 secreted proteins and 196 membrane proteins were identified using this approach and 118 of the 680 proteins of the secretome predicted by TargetP had more than one transmembrane domain. These proteins seem to not require an obvious signal peptide to be targeted to the ER. All predicted proteins were then subjected to additional filters to exclude proteins predicted to be residents of the apicoplast or the mitochondria or targeted to other cellular compartments within the parasite. Using these criteria, it was shown that the secretome of B. microti is composed of 196 proteins and the membrane proteome of 205 proteins. Most of these proteins are hypothetical proteins.

Differential expression analysis

To identify differentially expressed genes among different samples, differential gene expression was evaluated using two approaches. In the first approach, the ratio of the normalized expression level over the median was computed for each gene. A ratio was considered to be significant if > 3 (up-regulated) or smaller than 1/3 (downregulated). A set of 403 differentially expressed genes were identified (Figure 4.3) with this method. A second approach was used to evaluate host dependent differential expression using edgeR and DEseq2 methods. RNAseq data was generated for four isolates grown in golden Syrian hamster and for two isolates grown in SCID mice. The full set of 3618 genes (including tRNA and rRNA) was screened. Genes with less than 4.26 reads were eliminated (70 genes). Because the sizes of the libraries varied between samples, the "Relative Log Expression" (RLE) normalization method was used. This method is implemented in edgeR and DESeq2 packages, which differ in their estimation of the statistical dispersion per gene. The edgeR method was used with exact test and tagwise estimation of the statistical dispersion, and a set of 75 differentially expressed genes were identified. The DEseq2 approach was more lax than DEseq and resulted in a set of 107 differentially expressed genes. Of the 59 genes predicted to be differentially expressed by the two methods, 57 were protein-coding genes. The intersection of the first (403) and second approach (57) provides a set of 50 protein-coding genes that are differentially expressed.

One of the observations of this study was the huge genetic variation difference between the R1 strain and the other seven strains. In the end, combining RNAseq data, genomic variation data and antigenicity data two antigens were identified, which could be interesting for host-parasite interaction and were never characterized before. These proteins can be targeted for novel B. microti diagnosis assay. A link between BMN2 gene family differential expression and variation could be observed (Figure 4.4). 

Discussion

Although the re-sequencing of R1 strain and sequencing of 7 isolates have provided an improved understanding of the genomic structure of B. microti genome, the population structure of the B. microti parasite could not be well established based on the recovered variations. One of the biggest factors contributing to this was the selection of samples. The sampling of parasites was not relevant to the study, as the samples were originating from very diverse locations and different time periods (Figure 4.1). Also, the number of sequenced samples was very small and due to the paucity of mutation no conclusions on the relationship between isolates could be drawn. A bias was introduced by the fact that these parasite were isolated and amplified in animals. The Bm1438 was sequenced after one passage only in SCID mice. On the other hand, the R1 isolate was re-sequenced after about 30 passages in animals. The sequencing technologies have been evolving rapidly and genome trapping and amplification was developed only a short time after the analysis was started. These techniques enable isolation of DNA of B. microti from ticks, blood of infected rodents, or even infected humans. A very small amount of DNA is required, which combined with amplification can provide very good results. For this study the B. microti parasite was propagated in rodent vectors (SCID mouse, Hamster or Gerbil). For studying the characterization of population structure and identifying molecular markers a large amount of DNA is required, which is more feasible with parasite cultures.

The genomic diversity observed in this analysis of 7 genomes (around 900 SNPs and INDELs) was less compared to the 21257 SNPs identified in the 167 samples in the case of P. falicparum (Chapter 3). One of the reasons could be low transmission rate of B. microti due to tick, rodent and human niche, i.e., the overlapping of these three different organism populations. For example, studies showing bottleneck of tick population due to reduced dear population [Goetherd and telford 2014].

Another reason could be less possibility of infection. The possibility of infection reduces as the transmission cycle depends on only one tick bite [START_REF] Brunner | Multiple causes of variable tick burdens on small-mammal hosts[END_REF] in each life stage (nymph, larva, adult), unlike mosquitoes with a 3-4 day feeding cycle in case of P. falciparum malaria. Therefore, this results into less recombination leading to less diversity.

A specific DNA dataset of increased number of parasite isolates from the endemic regions in USA is required for following the population dynamics of B. microti and for calling of variants identifying the genetic background and possible molecular markers.

A recent study by Lemieux and colleagues [Lemieux et al., 2016], summarizes the results of sequencing isolates, mostly coming from the US. They confirm the little number of variation existing in B. microti US isolates. They identify four major groups of parasites, one corresponding to western part of the US and three corresponding to eastern part of the US. Among these three eastern groups, one group is called REF, which encompass the R1 isolate and is a small group. The two other groups correspond to Nantucket islands isolates and to New England mainland isolates. Authors conclude of a bottleneck effect, explaining the little variation in B. microti US isolates with a common ancestor originating approximately 200 years ago. These results were confirmed by Giovanna and colleagues study, which has been submitted recently. The position of R1 as an outgroup and of the two other clade from north-east US is confirmed by Lemieux study [START_REF] Lemieux | A global map of genetic diversity in Babesia microti reveals strong population structure and identifies variants associated with clinical relapse[END_REF]. Two other isolates GI and PRA99 (Peabody, also identical to Gray strain) are common between Lemieux and this study.

In GPI proteome, six genes were differentially expressed and two were presenting host-dependent differential expression. BMGPI9 (member of BMN1 family) was the most variable protein and was associated with chromosome ends. GPI proteins are often antigens and in fact among them BmSA1 was highly variable and confirmed as a good antigen for B. microti detection. But we saw one mutation in ATCC3022 isolate (C->T, non-synonymous) and all the other US isolates (C->G, non-synonymous), which were different from R1. Additionally, two antigens were found in the secretome using protein array. These two genes are among the top 10 most expressed genes. Surprisingly, they show some mutations.

The genetic patterns reported here can help in better understanding of B. microti pathogenesis and mode of transmission, and may contribute to improve disease diagnosis and control.

Chapter 5

General Discussion

Methods to understand epidemiology provides vast opportunities for exploring the genome and identification of genomic variations. These variations can play an essential role in identification of drug targets and understanding parasite population dynamics. Identification of reliable variations is an essential step of this approach. One of the major steps of the parasite population description approach discussed in this thesis, is the identification of SNPs. My PhD focuses on the post-processing of genome sequencing data, identification of reliable variations in the genome, description of population structure, identification of significant genes and functional annotation of the genome and the target genes. The main motivation was to understand the emergence of parasite populations and transmission and acquisition of drug resistance in Cambodian P. falciparum isolates. This work provides important insights about the role of parasite population structure in acquisition and transmission of drug resistance in the case of P. falciparum malaria in Cambodia (Article 1 and Article 2) and the choice of sample set for identification of population structure in the case of B. microti Babesiosis in USA. Most of the approaches developed during the PhD were for the P. falciparum genomic dataset. These approaches were implemented on the B. microti genomic dataset, as an application of the pipeline.

The pipeline developed to call variants from the aligned reads in the beginning of the project, forms the basis of population structure description and functional analysis of identified genes. The most important step was the selection of the dataset to follow the artemisinin resistance of P. falciparum parasites in Cambodia and B. microti divergence in USA.

The genomic data used by Miotto and colleagues [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF] for establishing the specificity of the variant calling tool for P. falciparum haploid genomic data.

For assessing the quality of the data and avoiding any associated bias, analyses of the quality parameters for filtering the data for noise is an essential step. We see that different parameters were identified for the threshold to filter the data in the case of P. falciparum and B. microti. Therefore, it is very essential to analyze the data quality for each dataset, represented in different quality parameters, and not depend only on predefined thresholds or parameters for filtering the data. One of the issues in parameter analyses was the definition of the quality parameters in literature. Some of the parameters, predefined filters and associated thresholds are not defined clearly making it important to understand the tool completely before using it for the analyses of the data.

The approach of analyzing the sequences based on the signal parameters and filtering the data for noise results in improved identification of true positive variations. This is validated by comparison with other publicly available datasets and by the presence of marker SNPs such as mutations in K13 kelch domain [Ariey et al., 2014] and the associated background genes [Miotto et al., 2015].

The techniques implemented to remove uncertainties (more than one possible ALT allele at a given loci for some samples) from the recovered data are not very stringent and can differ for different studies. The approach was developed for conserving most of the information. Therefore, only loci with high frequency of uncertainties were removed (2%) and the loci with low frequency were substituted (17%). Also, rare mutations were removed from the analysis, as the great number of them can create bias in the population structure analysis. A large number of rare mutations (SNPs) are expected in the ancestral population compared to the founder populations, due to high diversity. Though after establishing the population structure based on the frequent mutations, methods should be developed and implemented to analyze the rare mutations in different populations.

The sequential approach used to select the SNPs and provide associated metainformation such as genomic annotation and correspondence with different reference genome versions was used to build a database (Chapter 3) following the database scheme shown in Figure 5 The meta-model focus on Single nucleotide polymorphisms (SNPs). When no reads cover the reference, information is not available. Strain single base (SSD) is the instance of the SNP after filtering of VCF data files. The meta-model suggest to create a permanent ID for the variable position: Single base mutation. The SNP is related to the reference genome. Annotation is second layer of genetic information that can be used and is independent from the reference genome.

The reliability of the obtained 21257 SNPs is validated by comparison with publicly available dataset based on SNP distribution over the genome (the annotation was validated in the genome browser manually), common SNPs. The overlap between IBC dataset and MalariaGEN dataset, as well as IBC and PlasmoDB is better than overlap between those two previously published datasets. Other important result contributing to the reliability of the IBC set is the robustness of the clusters obtained from unsupervised hierarchical clustering and population classification based on the gene interaction in a network.

The meta-model was used to translate genetic information from raw BAM files based on P. falciparum version 2 to the new version 3. To obtain the correspondence between P. falciparum genome version 2 and 3 BLAST was performed and was shown to be relevant in this work based on comparison with the SNPs and genes identified in PlasmoDB genome version 3. As a validation step, it will be interesting to redo the read alignment mapping to genome version 3 and compare the results.

Therefore, the variant calling approach was shown to be reliable by validation with external sources, extendible to other genomes and reproducible. This approach is different from the variant calling approach used at MalariaGEN, where reads were aligned using BWA, SNPs were called using SAMtools pileup and SNPs were filtered based on consensus quality, SNP quality, mapping quality, coding/non-coding regions, depth, degree of uniqueness and level of heterozygosity [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF].

The variant calling pipeline produced more reliable results in P. falciparum genome and was applied on the B. microti genomic set. Threshold had to be increased according to the signal analysis and threshold was defined by a set of long read sequencing on control PCR products. The density of mutations (0.9 variants / 10 kbp) recovered was more than one order of magnitude lower as compare to the P. falciparum. A specific DNA dataset of increased number of parasite isolates from the endemic regions in USA was extracted directly from ticks or infected blood and sequenced for following the population dynamics of B. microti by our colleague Giovana Capri from the department of Molecular Microbiology and Immunology at Yale University. The same variant calling conditions were used and she confirmed our observations. The low level of genetic diversity in the USA B. microti populations could be explained by a bottleneck effect on tick population due to reduced deer population in New England [START_REF] Goethert | Not "out of Nantucket": Babesia microti in southern New England comprises at least two major populations[END_REF]. This work is under submission.

Population structure definition

In the case of P. falciparum understanding the existence of population and transmission of alleles is necessary for containment of drug-resistant malaria. The first approach used to identify the structure of P. falciparum subpopulations in Cambodia was the Barcoding approach, developed in collaboration with Pasteur Institute of Cambodia, where all the experiments were performed. The main objectives were to identify genetic flow among the P. falciparum parasite subpopulations in Cambodia. This approach highlights the scope and importance of barcoding samples for classi-fication into parasite population with a specific trait. This approach validates the possibility of LUMINEX assay to barcode parasites. The LUMINEX signal analysis approach developed in the lab proved to be useful for identification of samples with true signal, which could help in sample validation to reject samples with increased noise. The choice of 11 SNPs from the 24 SNPs [Daniels et al., 2008] is able to track the emerging subpopulations in Cambodia, though the 24 SNPs were identified in African and Thai isolates. The barcode based on these 11 SNPs is unable to identify highly variable ancestral and admixed populations. Only around 50% of the assays could provide interpretable signal and 50% of the Cambodian samples were rejected due to traces of mixed infection, no significant signal with LUMINEX for at least one barcode position and/or no amplification using PCR for at least one locus.

The allele gradient analysis (Chi-squared test) and allele diversity analysis (F ST ), suggested existence of specific subpopulations and underlying gene flow. The subpopulation structure was made evident by the unsupervised hierarchical clustering approach. The barcodes of the samples could be identified in the set of 21257 SNPs and correspondence with Miotto population classification was provided (Article 1: Methods section "Data and statistical analysis"). The conserved groups (subpopulations) could not be identified towards the centre of the country. This could suggest presence of admixed population. Also, gene flow on west to east axis was determined from allele gradient analysis. This analysis contributes to support one of the hypotheses that admixed populations are responsible for transmission of resistant alleles. This signifies the importance of barcoding samples due to which artemisinin resistant and sensitive populations could be identified. This application provides future scope in identification of patients with artemisinin resistance parasitic infection at an early stage based on these barcode markers. Also, as it was shown in the population structure described based on 21257 SNPs (Article 2), that there is a specific donor population for R539T k13 allele in the west (data from 2008-2011). A subpopulation carrying R539T allele was identified in this area and in the north (data from 20010-2011). Barcode allele 2 was shown to have gradient from western Cambodia to northern Cambodia. These three results suggest a scenario of gene flow between subpopulations and acquisition of artemisinin resistant alleles. The population in the north was associated with mefloquine resistance and artemsinin resistance and the results are supported by recent studies stating the presence of R539T allele at the northern border of Cambodia [Talundzic et al., 2015, Ye et al., 2016].

Barcoding approach holds great potential for performing similar analysis with accuracy using relevant and specific gene sets to the population under study. Adapting the same approach for identification of B. microti parasite structure and gene flow among subpopulations will be interesting.

The Cambodian P. falciparum population structure was also defined based on the 167 samples isolated by the Wellcome Trust Sanger Institute. The hierarchical clustering approach was validated by comparison with the population structure described earlier. There was a good overlap with 85% matching classification. As different SNPs and classification methods are used for identification of clusters, this was expected [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], Miotto et al., 2013]. We classified samples into more specific subpopulations based on hierarchical clustering and identified a small artemisinin sensitive subpopulation with resistant background (KH1.2). Also the difference between the two subpopulations carrying C580Y allele only (KH2 and KH3) is made evident by showing that KH3 does not carry the mutation in ferrodoxin (fd) gene for all the samples carrying C580Y mutations. This is the only subpopulation with mutation in fd not present with k13 allele. Therefore, this classification is an important feature of the subpopulation structure. The reason these populations could not be identified earlier could be different SNPs (genome version 2) and use of principle component analysis (PCA) for recovering the population structure. PCA is an effective tool for population classification among diverse samples from different countries [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], but could produce overlapping populations for the data from single country. The region of Cambodia is a low transmission region and thus the identification of specific founder populations are possible and the structure is conserved. In high transmission region such as Africa, more admixed populations are expected and identification of specific populations such as KH1.1 and KH1.2 is not possible.

The other approach implemented on the IBC (21257 SNPs; 167 samples) dataset was the network based stratification method [START_REF] Hofree | Network-based stratification of tumor mutations[END_REF]. This method was developed for tumor patient classification and has not been implemented before for P. falciparum genome analyses. It aims at classifying the samples together based on the diffusion pathway of the target genes in an interaction network. The gene-gene interaction network was recovered from STRING v10 database server. This approach enables hierarchical clustering based on the target genes of each sample and provides a way of including gene-gene/protein-protein interaction networks based on experimental data into hierarchical clustering analysis. The classification obtained from this clustering approach, clusters the samples with similar underlying genetic network. This classification confirmed the overlapping genetic background of KH1.2 subpopulation with the resistant subpopulations, suggesting that this population has acquired the resistant background in accordance with the emergence, selection and diffusion model (Article 3). This approach shows good overlap with the clustering obtained from unsupervised hierarchical clustering method, which shows the reliability of the variant calling approach and the IBC dataset. Some of the samples are misclassified, but are displaced into or out of the KHA subpopulation. This supports one of the major hypotheses that the transmission of resistance alleles is due to the admixed subpopulation's ability of crossing with other subpopulations and crossing within subpopulation.

Network based methods is also an important way of exploring associated functions. But the choice and nature of the network is of great importance. The network recovered from STRING v10 for P. falciparum based on interactions supported by various sources, is not a scale free network and can produce biased clustering. We tried to keep only top 10% of the interactions in the analysis to remove most of the edges, but still the network is not completely scale free. This suggests that relevant network and sources of information should be taken into consideration before implementing network based approaches.

Functional analysis

Other networks used in this study are the functional groups of Gene Ontology terms recovered using Cytoscape plugin ClueGO and CluePedia. These tools provide interaction networks for the targeted genes at the level of GO terms. This can be used to understand the overlapping and connection of different functions. The GO terms available in public database are not accurate and should be dealt with care. Additional analyses should be accompanied as verification steps.

Three gene sets in the IBC dataset analysis were described for understanding the underlying mechanism of emergence of subpopulation and acquisition of an artemisinin resistance background. First, we focused on the significant genes identified in KH1.2 population common with the significant genes identified in artemisinin resistant pop-ulations (168 genes). This gene set represents the resistant background acquired by KH1.2 subpopulation. A second gene set contains the significant genes specific to the resistant subpopulations (97 genes). The third gene set is the overlap of admixed subpopulation significant genes with resistant subpopulations significant gene sets (57 genes), signifying the resistant background.

The results based on the recovered functions from the functional groups analysis, GO terms and these three gene sets, showed that the resistant population has acquired a similar background and that the KHA background was acquired by crossing of parasites from various populations either ancestral, resistant or admixed population that existed before. This suggests the scenario where the subpopulations emerge from ancestral population with a common background, resistant alleles are selected in these subpopulations and the transmission takes place by crossing over with the admixed population KHA.

Based on functional analysis, an autophagy pathway is suspected to be one of the pathways in P. falciparum playing an essential role in acquisition of artemisinin resistance. Association with ferredoxin was also confirmed. The proposed model of PI3K-K13 interaction was supported by the presence of mutations in PI3K, but the mutations were not systematically associated with K13 resistant alleles. The results point towards a stress response of the parasite [START_REF] Mbengue | A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria[END_REF]. This work is not able to describe the underlying pathway, but it successfully provides new techniques, new targets and new models to be considered for understanding the underlying artemisinin resistance transmission and acquisition pathway.

For complete functional annotation of the target genes in the P. falciparum genome, there is a strong need to analyze more genomic data from varied locations. Also data from different countries should be analyzed to verify the generality of the stated model. The geographical and socio-economic scenario of Cambodia is changing due to undergoing development initiatives, which could strongly influence the parasite population structure in Cambodia. Therefore, to follow the evolution and movement of these populations, genomic data in different time periods is required.

In the case of the B. microti genome, a secretome gene set could be identified. Based on the reverse-phase analysis to investigate immune-proteome properties of B. microti, two antigens potentially associated to host response were identified. This could suggest that B. microti has evolved the survival and host-interaction mechanism. Improved datasets and planned approaches to sample relevant isolates is required.

In conclusion, the genome-wide sequencing data due to NGS technologies has tremendously helped in epidemiological studies and revealed different aspects of parasite biology. Methods and techniques developed to define population structure are helpful in understanding the epidemiology of the parasite. The two approaches used, barcode approach and variant calling approach, not only verify the previously described results, but also provide a further understanding of pathways and processes involved in population structure evolution, and acquisition and transmission of artemisinin resistant alleles. Though NGS data analysis has shown to be a powerful tool for parasite population structure description, the barcode approach (SNP chip) can be used to identify the recently emerging founder parasite populations and also the parasites evading the vaccination trials. NGS data analysis is efficient for understanding the genomics, but methods and strategies should be developed to overcome certain limitations of sequencing and alignment errors, reproducibility, predicted annotations, integration of different data types and missing meta-information. As in this work, NGS data analysis provided insight of artemisinin action mechanism, but integration of other biological information and validation is required to fully understand the underlying artemisinin resistant mechanisms.

Significance of population structure for public health

The analysis of both the genomes P. falciparum an B. microti was focussed on the emergence of new parasites. This is one of the general problems faced by public health institutions. Global warming and globalization have contributed to the emergence of new pathogens everywhere in the world. Understanding the complete phenomenon of emergence is difficult, as it is the result of parameters that remains unclear and also due to lack of genetic markers to characterize these organisms. The present study shows that the use of whole genome sequencing data for the description of the population structure. In the case of B. microti, the parasite population structure could not be identified, but recent two population studies performed at genome scale prove the relevancy of this approach.

Emergence of artemisinin resistant parasites to ACT is a major problem worldwide. Artemisinin resistant parasites have emerged in the same region, where chloro-
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quine and pyrimethamine resistance had emerged earlier. We show that resistant parasites all come from subpopulations existing at the border of the country. The diffusion of K13 alleles took place through the admixed population, which can be considered as the major factor being responsible for the spread of the resistance. The Emergence, Selection and Diffusion (ESD) model is very close to the population shifting balance theory and helps to identify parasites that need to be targeted by public health policies. The first approach should be the identification of the geographic areas, where crossing between subpopulations takes place. It is now too late to search for the origin of KHA parasites. The C580Y allele is now fixed in the western P. falciparum Cambodian population. It is now essential to identify the route of diffusion to other countries from Cambodia. The second approach should be identification of the correlation with the vector (mosquito species) population that would preferentially transmit the admixed parasite. This study has not been able to identify the external factors that favour the emergence of subpopulation and selecting a specific background that is strongly related to stress response.

B. microti population study confirmed that all USA isolates are very close to each other. The three sub-populations described in northern America have diverged for several thousands of years, but the diversity among sample is low. This phenomenon can result from a bottleneck effect, which may have helped the emergence of parasites that can infect humans. The USA is facing a continuous increase in the number of babesiosis cases since the early seventies. It is becoming the first pathogen transmitted by blood transfusion. No reliable and cheap detection assay exist for blood donors and blood samples. B. microti is endemic only in small geographic areas in the USA and it is present only when ticks are active. Furthermore, most infected people are asymptomatic. The main focus of this study has been the identification of new protein markers of babesiosis. The BmSA1/BmG9/BmGPI18 protein was the most promising molecule. Our genomic survey has identified two new potential markers that are members of the secretome.

Despite decreased cost and an increase in feasibility, full genome sequencing cannot be systematically used for clinical analysis. The development of LUMINEX assay was a test to develop new low cost genotyping approaches. Results were promising, but more tests will be necessary before it can become a routine technology. Several studies are done to identify more SNPs in K13, but it is also important to identify new genes and alleles associated to resistance, through LUMINEX methods, and identify new underlying mechanisms supporting artemisinin resistance. Public health institutions should bring into practice, two approaches to follow emergence of pathogen, one based on routine identification of pathogens and another survey based on full genome sequencing to follow the evolution of population structure.

The work presented in this thesis was the opportunity to explore new areas of research and technology in the field of population dynamics and variant analysis. I will be glad to continue to explore these areas and hopefully contribute in a significant way.
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 11 Figure 1.1: Schematic representation of metabolic pathways associated to P. falciparum extrachromosomal organelles[START_REF] Gardner | Genome sequence of the human malaria parasite Plasmodium falciparum[END_REF]. Metabolic pathways associated to food vacuole, mitochondria and apicoplast are shown. Glucose and glycerol provide the major carbon sources for malaria parasites. The white squares indicate TCA (tricarboxylic acid) cycle metabolites that may be derived from outside the mitochondrion. Antimalarial targets are represented by block arrows. Potential drug targets are represented by grey block arrows. Transporters are grouped by substrate specificity: inorganic cations (green), inorganic anions (magenta), organic nutrients (yellow), drug efflux and other (black). O the top the numbers in parentheses are the number of transporter genes with similar substrate predictions. Membrane transporters of unknown or putative subcellular localization are shown in a generic membrane (blue bar). Abbreviations: ACP, acyl carrier protein; ALA, aminolevulinic acid; CoA, coenzyme A; DHF, dihydrofolate; DOXP, deoxyxylulose phosphate; FPIX2+ and FPIX3+, ferro-and ferriprotoporphyrin IX, respectively; pABA, para-aminobenzoic acid; PEP, phosphoenolpyruvate; Pi, phosphate; PPi, pyrophosphate; PRPP, phosphoribosyl pyrophosphate; THF, tetrahydrofolate; UQ, ubiquinone.
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 1 INTRODUCTIONhas reduced from estimated 839000 in 2000, to 438000 in 2015[The World Health Organization, 2015b].
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 12 Figure 1.2: Map showing malaria endemic countries around the world and number of confirmed malaria cases per 1000 of population accounted in 2013 [The World Health Organization, 2014]. This map is created based on surveillance conducted among 97 countries and territories where malaria is endemic.
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 13 Figure 1.3: Map showing malaria endemic countries around the world and the changes in malaria incidence rates for the affected countries as accounted for the period 2000-2015 [The World Health Organization, 2015b]. This map is created based on surveillance conducted among 97 countries and territories where malaria is endemic.
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 14 Figure 1.4: Life cycle stages of the malaria parasite P. falciparum in both mosquito and humans[START_REF] Josling | Sexual development in Plasmodium parasites: knowing when it's time to commit[END_REF]. The life cycle of the parasite in the human host begins with inoculation of motile sporozoites into the blood stream during the blood meal of female Anopheles mosquito. The sporozoites then travel to the liver, invade a hepatocyte and multiply rapidly. After about a week, the liver schizonts burst and release thousands of merozoites that invade the red blood cells and undergo repeated asexual multiplication. This asexual division is followed by the morphological stages such as the ring stage, the trophozoite and the schizont stage. Illness starts when total asexual parasite numbers in the circulation reach roughly 100 million. Less than 10% of the parasites develop into male and female gametocytes and are taken up by the Anopheles mosquito and undergo the sexual phase. This is the only parasite form transmitted from humans to the mosquito. In gut of the mosquito the zygote formed after fertilization develops into motile ookinete which can penetrate the midgut and forms an oocyst. The oocyst enlarges over time and bursts liberating sporozoites, which migrate to the salivary glands to await inoculation at the next blood feed[Klein, 2013, White et al., 2014, Bousema et al., 2014].
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 15 Figure 1.5: Possible Artemisinin mode of action and factors leading to resistance in P. falciparum [Ding et al., 2011]. Red dots, represent the mutations in the proteins responsible for increasing (arrow) or decreasing (inhibition line) in vitro sensitivity to ART. The target molecules and mechanisms are in orange and the resistance factors are in yellow.

  ): This parameter represents the allele values separated by / (unphased) or | (phased). REF is represented by 0 and ALT is represented by 1. If CHAPTER 1. INTRODUCTION

Figure 2 . 1 :

 21 Figure 2.1: Boundary map of Cambodia showing data (blood samples) collection localities (health centres and hospitals) by Pasteur Institute of Cambodia. Cambodia boundary map source: http://www.mappery.com/map-of/Cambodia-Provinces-Outline-Map

Figure 2 . 2 :

 22 Figure 2.2: A flowchart briefly representing major steps of the barcoding approach and associated results. The major steps are mentioned in boxes and associated analysis and results obtained are described in points for each step. The final results are mentioned in points associated to the box in grey "Results".

Figure 2 . 3 :

 23 Figure 2.3: LUMINEX signal analysis. (A) Schematic representation of PCR-LDR-FMA producing florescent signal. (B) Characterizing the obtained signal as signalwith noise and signal without noise. "Noise" is referred to signal from beads in which ligation does not take place and "signal" is referred to signal from beads which undergo ligation.

  The comparison of the 282 barcodes of 11 SNPs is made with the population structure described by O.Miotto et al., in 2013. It has been shown in the Additional file 6 (Article1) that all of the 24 SNPs are not present in the released MalariaGEN dataset. Also 2 SNPs out of the 11 SNPs are not called in MalariaGEN dataset. Therefore, these 11 SNPs were called again in the 167 BAM files recovered from the ENA database corresponding to the 2013 study by O. Miotto (Variant calling explained in Chapter 3). The correspondence of the 167 samples and subpopulations is not publicly available and was provided by O. Miotto.

Fig. 1

 1 Fig. 1 Relationship between allele distribution and geographic origin of parasites in the P. falciparum Cambodian population. Correspondence analysis was based on 23 alleles and was conducted for 282 samples. Each reference (REF) and altered (ALT) alleles are represented. Position BC07 had two alternative alleles. a Contribution of each allele in the distribution of the 282 samples. b Between-class analysis performed with health centres. Analysis was done on the same dataset as in a. Scales of the two diagrams are identical

Fig. 2 Fig. 3

 23 Fig. 2 Uneven distribution of alleles in the P. falciparum population over Cambodia. Barcode was determined per sampling areas. The barcode is represented by 11 genomic positions presenting two types of allele per site: the reference allele which is found in 3D7 reference genome (REF) and the alternative allele (ALT). Difference in frequency of one of the REF/ALT allele in a local parasite population vs the 282 samples was evaluated using a Chi squared analysis. The allele was in blue for REF and dark red for ALT. The allele was in grey color when the Chi squared parameter measuring the difference between observed and calculated value was below 1. Barcode position BC11 was not suitable for Chi squared analysis

Fig. 4

 4 Fig.4 Geographic distribution of the 282 isolates clustered in nine groups and Weblogo representation of the consensus sequence. Barcodes were grouped together after 10,000 random pairwise distance comparison of 230 samples. Isolates were grouped together based on the number of time they were clustered together after the 10,000 simulations. The Weblogo provide information on the level of diversity per barcode position in each group. Groups were geolocalized using the geographical centroid of samples within the group. The significance of each group was established by comparing the mean distance of the samples to the geographical centroid within a group to the distribution of average distance after random sampling within groups. The p value <0.05 was significant
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 1158 Fig. 5 Distribution of mefloquine IC 50 value among P. falciparum isolates in Cambodia. Box plot analysis presents median and quartiles. Mefloquine resistant parasite have IC 50 value over 30 nM (dashed line). a Mefloquine sensitivity measured per health centres. *** A significant effect was observed (Kruskal-Wallis: p = 2.028e-05). b Mefloquine sensitivity measured per k13 gene alleles related to artemisinin resistance. * A significant effect was observed (Kruskal-Wallis: p value = 0.01695). Number of samples: C580Y: 29, WT: 15 and R539T: 8

le 4 .Additional le 5 .Additional le 6 .

 456 Primer sequences for LDR (Ligation Detection reaction) performed. Classification of samples into 9 conserved groups. A. Hierarchical clustering of the 282 valid samples based on the 11-SNPs barcode. The pairwise distance between the samples is calculated as the proportion of base substitution between them over the barcode. Ward's minimum variance method was used to build the dendrogram. The dendrogram is cut to obtain 8 clusters (k = 8). The clusters are represented by red rectangles. B. Hierarchal clustering of 282 samples based on the percentage of clustering results in which two samples are in the same cluster (when 8 clusters are considered). The clustering approach was implemented on 10,000 subsets of 230 samples each, randomly selected out of the 282 samples. Based on these 10,000 clustering results, pairwise distance between samples were calculated as the percentage of clustering results in which two samples are in the same cluster. The number of clusters (conserved groups) was selected based on the dendrogram structure. The clusters are represented by red rectangles. Major features of the Single Nucleotide Polymorphisms selected for LUMINEX assay. A set 11 SNPs (highlighted in grey) has been selected from 24 SNPs validated byDaniels et al. [11]. NRAF value from three geographic areas and the global NRAF were recovered from MalariaGEN v4.0. Genome position was evaluated according to genome version 3. Subtelomere were identified based on gene composition. Valid SNPs are highlighted in grey. Frequency of valid alleles was calculated based on the data mentioned in Additional file 3. SNP ID is the column "Position" preceded by the tag "Pf3D7_[01-14]_v3:" in MalariaGEN and by the tag "NGS_SNP.Pf3D7_[01-14]_v3. " in PlasmoDB. Additional le 7. Number of samples rejected due to mixed infection (M), no significant signal with LUMINEX for at least one barcode position (N) and no amplification using PCR for at least one locus (X). Additional le 8. Relationship between allele distribution and geographic origin of parasites in the P. falciparum Cambodian population. Correspondence analysis was based on 23 alleles and was conducted for 282 samples. Each reference (REF) and altered (ALT) alleles are represented. Position BC07 had two alternative alleles. Left panel presented the contribution of each allele in the distribution the 282 samples. Between-class analysis performed with health centres is presented in the right panel. A. Axis1-axis3 projection of the correspondence analysis. B. Axis2-axis3 projection of the correspondence analysis. Additional le 9. Gene flow analysis based on uneven distribution of alleles in the P. falciparum population over Cambodia. The barcode is represented by 11 genomic positions presenting two types of allele per site: the reference allele which is found in 3D7 reference genome (REF) and the alternative allele (ALT). Over representation of one of the REF/ ALT allele in a local parasite population was evaluated using a Chi squared analysis. The allele was in blue for REF and dark red for ALT. The box was in grey when the Chi squared test statistics components (one component for each health centre) was less than 1. Allele distribution is presented for barcode position BC01 to BC10. Barcode position BC11 was not suitable for Chi squared analysis. Corresponding position in the barcode in surrounded in red. The significant health centres which are close together were circled. A. Allele distribution for barcode BC01. B. Allele distribution for barcode BC02. C. Allele distribution for barcode BC03. D. Allele distribution for barcode BC04. E. Allele distribution for barcode BC05. F. Allele distribution for barcode BC06. G. Allele distribution for barcode BC07. H. Allele distribution for barcode BC08. I. Allele distribution for barcode BC09. J. Allele distribution for barcode BC10.
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 15319 We accept pre-submission inquiries • Our selector tool helps you to find the most relevant journal • We provide round the clock customer support • Convenient online submission • Thorough peer review • Inclusion in PubMed and all major indexing services • Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit Submit your next manuscript to BioMed Central and we will help you at every step: Additional file 1. Geographic distribution of samples and allele frequency. Blood samples from P. falciparum positive patients were collected from 16 health centres or hospitals covering the areas where parasite transmission is active. The number of valid samples (282) out of the total selected samples (533) is provided per health centre. The frequency of each allele (REF/ALT) is given for the 11 loci, which were positive for LUMINEX detection. The alleles with Chi squared test statistics components (one component for each health centre) greater than 1 are highlighted in grey. The presence of Kelch-propeller domain altered allele was assessed by PCR and sequencing. The frequencies of wild type individuals and of the two major alleles C580Y and R539T are provided per location. The other alleles present at low frequency, N458Y, Y493H, I543T, P553L and V568G are pooled together. The drug sensitivity was measured routinely for patients presenting high parasitaemia (>2 %). The number of samples tested for IC50 measurements for chloroquine (CQ), piperaquine (PIP), quinine (QN), artesunate (ART), mefloquine (MF) and dihydroartemisinin (DHA) is provided.

3 .

 3 PCR and LDR conditions. NV for not valid PCR. Eight LUMINEX assays were negative. Assay#7 was rejected because one allele only was not detected (Pos/Neg).

Figure 3 . 1 :

 31 Figure 3.1: Boundary map of Cambodia showing data (blood samples) collection localities by Wellcome Trust Sanger Institute. Cambodia boundary map source: http://www.mappery.com/map-of/Cambodia-Provinces-Outline-Map

Fig. 1 .

 1 Fig. 1. Dendrogram representing the classification of 167 parasite isolates into 8 clusters (k = 8). The pairwise distance between two samples is calculated as the proportion of base substitution between them over the genome. Ward's minimum variance method is used as the metric to build the dendrogram. Different clusters (subpopulations) are represented with different colors. The barplot on the left represents the number of isolates in each locality and the colors represent the type of K13 mutation present. "Green" represents ART-S isolates. "Red", "Yellow" and "Blue" color represents isolates with C580Y, Y493H and R539T K13 mutations, respectively. The barplot on the right represents the number of isolates in each locality and the colors represent the associated subpopulation to each isolate.

Fig. 2 .

 2 Fig. 2. Flowchart showing the first, second and third neighbouring genes of the K13 gene in the interaction network based on co-expression data recovered from STRING v10. The unconnected nodes are not considered in this analysis. The force directed layout is used to plot the network.

Fig. 3 .

 3 Fig. 3. Schematic representation of the K13 gene targets and associated pathways. The interaction with the transcription factor is based on KEAP1 model in humans. PI3K-K13 interactions were identified experimentally. In addition to AKT signalization pathway our study suggests the involvement of PI3K kinase in autophagy pathway. MAL7P1.108 encodes phosphoinositide binding protein suggesting presence of other pathways regulated in artemisinin resistance background.

  Fig. S2. Hierarchical clustering of 167 isolates based on the network based stratification method[START_REF] Hofree | Network-based stratification of tumor mutations[END_REF]. Interaction network was recovered from STRINGv10 and interaction evidence from all the sources was used. Only top 10% of the interactions were included in the analysis. Similarity matrix was computed using consensus clustering, which was performed by selecting 80% mutated genes and 80% isolates 100 times randomly and iterating NMF clustering 10 times. This similarity matrix was then used to build a dendrogram for all 167 isolates using Euclidean distance matrix and ward minimum variance method in R. Colors for different clusters were assigned by comparison with the hierarchical clustering result based on 21257 SNPs (Supplementary FigureS6). (A) Hierarchical clustering showing different clusters in different colors. The isolate classified in different clusters in two approaches (SNP based and Network based) are pointed with black triangles. (B)

Fig. S3 .

 S3 Fig. S2. Hierarchical clustering of 167 isolates based on the network based stratification method[START_REF] Hofree | Network-based stratification of tumor mutations[END_REF]. Interaction network was recovered from STRINGv10 and interaction evidence from all the sources was used. Only top 10% of the interactions were included in the analysis. Similarity matrix was computed using consensus clustering, which was performed by selecting 80% mutated genes and 80% isolates 100 times randomly and iterating NMF clustering 10 times. This similarity matrix was then used to build a dendrogram for all 167 isolates using Euclidean distance matrix and ward minimum variance method in R. Colors for different clusters were assigned by comparison with the hierarchical clustering result based on 21257 SNPs (Supplementary FigureS6). (A) Hierarchical clustering showing different clusters in different colors. The isolate classified in different clusters in two approaches (SNP based and Network based) are pointed with black triangles. (B)

Fig. S12 .

 S12 Fig. S12. Domain structure of kelch protein (k13), Phospatidylinositol 3-kinase (PI3K), cGMP-specific phosphodiesterase (PDE1), Serine/threonine protein kinase (ARK2), Autophagy related protein (Atg18and Atg7) marked with all the mutations found in the IBC dataset. The figure was generated using Pfam server either using UNIPROT accession number or by direct submission of the amino acid sequence. Amino acid mutations in "red" color are the significant mutations observed in different subpopulations.

Fig. S13 .

 S13 Fig. S13. Variant (SNP) Calling Pipeline. This flowchart describes the 4 major steps of the pipeline to call significant SNPs for the population study. The numbers on the left of the flowchart are the number of SNPs kept at each step. The steps taken at each step to select

Fig. S15 .

 S15 Fig. S15. Histogram showing the density of SNPs for DA (∑non-REF alleles / ∑DP4) averaged over 167 isolates for each SNP. This figure represents the density of SNPs with a density function fitted on the histogram (red line) and the minima of the curve after DA ≥ 0.5 (dotted blue line). All the SNPs above the threshold DA ≥ 0.7 were included in the analyses.

  Fig. S16. Histogram representing frequency of 247783 SNPs for non-reference allele frequency (NRAF) score and minor allele frequency (MAF) score. (A) shows the frequency of SNPs for NRAF score. The small zoomed version of the histogram shows the NRAF values 1, 2, 165, 166 and 167 which were not include in the analyses (marked with red triangles). (B) shows the frequency of SNPs for MAF scores. The SNPs with the MAF value below the threshold of 0.01796 (blue dotted line) correspond to the NRAF values which were not included in the analyses.

Fig. S17 .

 S17 Fig. S17. Criteria and statistics of SNPs with uncertain ALT alleles in the isolates. Uncertain SNPs are defined as the SNPs with more than one ALT allele in at least one of the 167 isolates. (A) shows the histogram of uncertain ALT allele frequency. All the SNPs with uncertain ALT allele frequency greater than 40% (dotted blue line at 0.4) were removed from the analyses. (B) represents a schematic diagram of different cases considered for SNPs with uncertainties and the decision of substitution taken. Uncertainties were substituted with the most frequent ALT value or REF value in around 17% of the SNPs at this step. (C) represents the pie chart with percent of certain SNPs, substituted SNPs and removed SNPs.(A) (B)

Fig. S19 .

 S19 Fig. S19. Pie chart representing the number of synonymous SNPs, non-synonymous SNPs, non-sense SNPs and read through SNPs in the coding region recovered in IBC, PlasmoDB (Asian isolates) and MalariaGEN database. The PlasmoDB (Asian isolates) and MalariaGEN data were annotated and mapped similarly to IBC dataset. The distribution of SNPs in the coding region is very similar in all the three databases.

  Fig. S20. Hierarchal clustering of subpopulations based on interactions recovered from STRING v10. Interactions among significant genes of each subpopulation from all the sources above the confidence score of 0.4 were included in the analyses. The presence and absence of interactions in the network were treated as binary data. Binary (Jaccard) distance matrix and Ward's minimum variance method were used to build the dendrogram. (A) Hierarchal clustering of all the subpopulations. (B) Hierarchal clustering of the subpopulations after excluding the admixed subpopulation KHA from the analyses.

Figure 1 .

 1 Figure 1. Graphical circular map of the apicoplast genome of B. microti R1 isolate. The map was designed using CGview and GenomeVx. From outside to center: coding sequence (CDS), % G+C, GC skew and base coordinates. hypA-E refer to five hypothetical protein encoding genes found in the apicoplast genome of B. microti. doi:10.1371/journal.pone.0107939.g001

Figure 2 .

 2 Figure 2. Schematic representation of gene clusters in the apicoplast genomes of various apicomplexan parasites. Comparison was performed using Mauve and BLAST analyses. The red and blue bars between chromosomal DNA sequences represent highly conserved regions in the forward and reverse directions respectively. Only highly conserved and syntenic regions were included in the present analysis. tRNA genes are marked by *. doi:10.1371/journal.pone.0107939.g002

Figure 3 .

 3 Figure 3. Gene organization of cluster 1 in the apicoplast genomes of B. microti (R1), B. bovis (T2Bo), P. falciparum (3D7), T. gondii and T. parva (Mugaga) and the chloroplast genome of Chromera sp. (CCMP3155). Light grey boxes represent highly divergent genes. White boxes corresponds to genes restricted to one species. doi:10.1371/journal.pone.0107939.g003

Figure 4 .

 4 Figure 4. Schematic representation of the DNA regions surrounding cluster 1 in B. microti R1, B. bovis T2Bo and T. parva Mugaga. A line connecting the two ends of Cluster 1 indicate possible recombination events accounting for differences found in the gene organization and size between apicoplast genomes of piroplasmida. doi:10.1371/journal.pone.0107939.g004

Figure 5 .

 5 Figure 5. Domain structure and organization of Cluster 2 genes in B. microti and other apicomplexan parasites. A. Comparison of ClpC domain structure between B. microti, P. falciparum, T. gondii and Chromera sp. B. microti apicoplast genome encodes two ClpC proteins that lack the N-terminus part as revealed by Pfam and TMpred predictions. Other apicomplexan ClpC structures have been obtained from Pfam database using UNIPROT accession numbers. Two PfamA domains are found in ClpC proteins of apicomplexa: AAA_2 (ATPase catalytic function) and ClpB_D2-small (conserved C-terminal domain). Light grey boxes indicate regions of low complexity. Transmembrane domains were predicted by Pfam only for T. gondii ClpC proteins (TM). B. Gene organization of cluster 2. The tRNA genes of cluster 2, which are conserved in all three apicoplast genomes are in bold. Three putative genes, C, D and E present at 39 end of B. microti cluster 2 have no significant homologies with each other and lack homologs in other parasites. doi:10.1371/journal.pone.0107939.g005

Figure 6 .

 6 Figure 6. Organization and evolution of the rDNA region in the apicoplast genome of B. microti and other apicomplexa. A. Phylogenetic analysis based on ssu and lsu genes. The tree was obtained using the maximum-likelihood method with (Bootstrap over 90%). Genomic organization of rDNA regions in the apicoplast or chloroplast genomes is given on top of each branch. B. Gene organization of the rDNA regions. The tRNA genes that are present in all apicomplexan genomes are shown in bold. Scale bar represents the number of substitutions per site. doi:10.1371/journal.pone.0107939.g006

Figure 7 .

 7 Figure 7. Summary of the evolution of the organization of the apicoplast genome in apicomplexan parasites. The unweighted tree was built using raw data from Figure S2 in File S1. The branch supporting the clade piroplasmida is associated with several major genomic rearrangements. *: events that occurred twice in the apicoplast evolution; +: rearrangement, duplication and insertion events observed in B bovis and T. parva involving distinct genes. doi:10.1371/journal.pone.0107939.g007

Table S1 :

 S1 Primers used to assemble and sequence the B.microti apicoplast genome. Coordinates are given according to the sequence available at accession number LK028575. Primer orientation: w for Watson strand and c for Crick strand. **))*'*'''**')'))()')**)'***(*'*)
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200CHAPTER 4 .

 4 VARIANT CALLING IN B. MICROTI GENOME the eight sequences due to NGS technologies. Apart from the SNPs and INDELs, 260 microsatellites (12 fully characterized polymorphic loci) were also identified by colleagues at Maryland University using Tandem Repeat Finder (TRF) tool.

Figure 4 . 3 :Figure 4 . 4 :

 4344 Figure 4.3: Heatmap of the log-transformed relative expressions of 403 genes considered as differentially expressed with at least one method. The distance between genes is the Euclidean distance and the distance between isolates is 1-Pearson correlation coefficient. In both cases, Ward metrics is used to obtain to dendrogram.

Figure 5 . 1 :

 51 Figure 5.1: UML representation of genome variant meta-model. SNPs and short INDELs can be called after NGS sequencing. Reads are aligned on a reference genome.The meta-model focus on Single nucleotide polymorphisms (SNPs). When no reads cover the reference, information is not available. Strain single base (SSD) is the instance of the SNP after filtering of VCF data files. The meta-model suggest to create a permanent ID for the variable position: Single base mutation. The SNP is related to the reference genome. Annotation is second layer of genetic information that can be used and is independent from the reference genome.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Additional file 2. Primers sequences for PCR reactions corresponding to 20 of the 24 SNPs selected for barcode detection and for k13 locus amplification.

	ID	Barcode Orientation Forward AAAATGAAGCAGCAAAAG Primary PCR Reverse ATCTAATATACATTGAAGGGAATA		Length (bp)	Nested PCR GATTGTGAAAATGAGAAGAGAGAAA AAAGCAATCGAACCCTTTG	Length (bp)														2.4. ARTICLE 1
			Forward AAAATTCACAATGATTTAACAC					AAAACAAATGGCATCCACTG																		
			Reverse	TTTTTCTGAGTAAAGATCAGC						TGATAAAACCAAGAAGTCCAAGA																
			Forward TGGAAATACACAATTCAATG						TTCCAAAACTATGTTTGCTGCT																		
			Reverse	CGAATGTTTTTCCATATTTT	BC01	BC02	BC06 TGCAGTGGTACTTGTTGCTACC BC03 BC04 BC05		BC07		BC08	BC09	BC10	BC11			Kelch allele			IC50
			Forward CCAACCAACGAACACAAATAC						AGGAAAATGCTCCGGTAACT																		
			Reverse	TGGTTGACTGTTATTGGGGTA						GGTTCATATTATTTGGTGACTCG																	1	1	1
		2 West Pailin	Pailin RH	32	10	22	15	17	14	18	14	18	27	5	25		7	7	9	16	1	31	22	10	28	4	0	32	24	1	21	2	16 13 15	16
		3 West Pailin Forward TCAGGAATTTGAAGAACATT Ou Chra HC 18	6	12	6	12	6	12 TGAAAATAATGATGAGAATGATGTC 13 5 15 3 14 4	4	2	12	1	17	8	10	17	1	0	18	9	3	5	0	9	9	9	10
		4 West Battambang 5 West Battambang Reverse	Sampoev loun RH Battambang RH TTTCTTTCCTCATTTCTGTT 5 7	3 2	2 5	4 4	1 3	4 3	1 4 ATGTGGGGAACTATTAATGGAG 2 3 4 1 5 2 5 6 1 5	0 2	1 1	3 1	1 5	0 2	5 5	1 1	4 6	2 4	3 3	0 0	5 7	3 1	0 1	2 0	1 0	2 2	2 2	2 2	2 2
		6 North Oddar M eanchey 7 North Oddar M eanchey Forward TGACAAGAAAACAAAGAATG Anlong Veng RH 11 Trapaing Prasat HC 37 8 East Rattanakiri Veurn Say HC 26 Reverse ATCAACAAAAGCTGATGAAT	4 25 14	7 12 12	11 33 16	0 4 10	8 15 25	3 22 TGTGCAAGAAAAGTAGGAAATG 3 8 9 2 9 2 2 35 32 5 30 7 1 12 14 12 14 15 11 TGTGTCCCCTCTTTTTCTGT	4 5 8	4 23 10	3 9 8	1 4 4	10 33 22	2 6 17	9 31 9	7 14 8	4 23 18	0 0 3	11 37 23	3 12 12	1 3 12	2 5 0	0 4 0	1 20 21 20 1 1 5 5 5	1 21 5
		9 East 10 East	M ondulkiri Kratie Forward TGAATGTAATATAAATCAGGTTG Keov Seima HC 7 3 Khsim HC 15 10	4 5	5 11	2 4	6 8	1 7 CTGAAAAATCGGATGAATGG 2 5 1 6 5 4 11 6 9 12		2 3	4 4	3 4	0 7	1 3	6 12	1 6	6 9	1 8	6 7	0 0	7 15	2 7	1 3	0 3	0 0	1 4	1 5	1 4	1 5
		11 South Kampot Reverse	Chhouk HC GGCTGGAATAGATAAAATCA 17	8	9	16	1	13	4 GGCTAGCTCAGCTTCCAAT 2 15 12 5	14		3	2	6	9	4	13	7	10	9	8	1	16	6	0	4	1	8	9	9	9
		12 South Kampot Forward CGAATTTAAGTACCTTAGGAAA Koh Slar HC 16 7	9	13	3	10	6 TCACAACGTCCATATGTTGAA 3 13 10 6 11		5	2	9	5	11	5	7	9	8	8	0	16	5	1	3	1	7	7	7	7
		13 South Kampong Som	Takavit HC	21	13	8	14	7	16	5	6	15	6	15	19		2	1	9	11	10	11	7	14	10	11	3	18	5	1	4	0	15 15 15	14
		14 South Kampong Speu Reverse	Oral HC TCATAAAGTTTTTATTGTCTTCA 8 0	8	5	3	5	3 TCATTATCACCTACTTTCTGTACCA 5 3 5 3 6 2	0	5	3	3	5	3	5	5	3	0	8	0	0	0	0	2	1	1	1
		15 West Pursat Forward GAGGATGTATACCATTAGCTG Promoy HC 36	10	26	19	17	19	17 GATGAGTTAGCAACGAAACCA 18 18 31 5 30		6	2	19	15	5	31	9	27	19	17	1	35	6	2	4	0	16 11 15	16
		16 West Pursat	Pursat	21	13	8	9	12	8	13	13	8	8	13	6	15	11	6	4	0	21	15	6	9	12	0	21	0	0	0	0	0	0	0	0
			Reverse	ATCATTCATATGTGGAAACA						AACGTAAACCAGGAGTAAGACG																	
			Forward GTTGTTATATCTTTTGCTATGAA					AAATCCATCCTTTTATGAATGC																		
			Reverse	CGTAATGGTTTATAACTATTCTTT					TGGATGTATGACAGCTTTTTCTAA																
			Forward ATACACTAAACGCAAAACCT						CATTATGCGAATGCGATCTA																		
			Reverse	TGTTAATTCCTTTTCGATTT						CGTTTATATTGCAACATTTCTTCA																
			Forward CAATGAATATGAATTGGATTT						GATGAAAATGGAACCATTCATAG																
			Reverse	GAACATTAAGTAAAATGTGATCC					TGTTGGTCTTTTTCCTCTTCTAA																		
			Forward TGACAAACAAGTATATAATAATAAGAG				TGTTGTTGGTGAATACAATGAAA																
			Reverse	TGTTTTAAAAGTCGTGGATA						TCGTACCACCATTAACATTTTG																		
			Forward CATAAATAAAACTTTCGCTGA						TGGAATGATTTGAGCAATAGAA																	
			Reverse	ATTTTCAATATCATCTTCTTTACA					AATACCCATGATATCACATTCCA																
			Forward ATCATCTGTATTTTGTTATTATGA					AATCTTTTCCAGTTATTTTCTATCCA																
			Reverse	GTTAGACAATTTTGCTACACTT					CATGGGGGTATGTAATTTGG																		
			Forward TCACAAACAAATAACAATGAA						AAAAGCAATTCCACAAGAACC																		
			Reverse	ACATGTTTTGGACCATCTAC						CTGGTGTTTCCTTTTTATTTGG																		
			Forward ATCGCATGTAGATTAATATGG						AAGAAAATTAAAGAGCATGAATCG																
			Reverse	AAGGAGCTTCTGTAATACTATTTT					CATAAGAACTGCTTCCATCTCC																		
			Forward AATATATCTGTATTTGCTAACATGA			288		TGTGTTTTATTTTTAGTGTGAGCTTT																
			Reverse	TGTAACAAGGAATGACAAAA						AGAGGATATCCAATAGGGTGCT																		
	Assay#23		Forward TGTAACAGAAGAAGATTACACG			246		CAATAATGAAAGGTATTCAAACCA																
			Reverse	TATCAGCATAATTCGATAAGTG					TACTTCTTCACACATATCAAAATCG																
			Forward CGATTTAATTACTGTTTTGAGA					AACAAATCATCAATTAAGTCATCC																
			Reverse	TTGGTTTACAATTAGTTCTAGC					TGAGGAATAGGTTCATATGCTG																		
			Forward CGGAGTGACCAAATCTGGGA						GCCAAGCTGCCATTCATTTG																		
			Reverse	GGGAATCTGGTGGTAACAGC						GCCTTGTTGAAAGAAGCAGA																		

Year Site ID field Region

  Additional file 4. Primer sequences for LDR (Ligation Detection reaction) performed. Major features of the Single Nucleotide Polymorphisms selected for LUMINEX assay. A set 11 SNPs (highlighted in grey) has been selected from 24 SNPs validated by Daniels et al. [11]. NRAF value from three geographic areas and the global NRAF were recovered from MalariaGEN v4.0. Genome position was evaluated according to genome version 3. Subtelomere were identified based on gene composition. Valid SNPs are highlighted in grey. Frequency of valid alleles was calculated based on the data mentioned in Additional file 3. SNP ID is the column "Position" preceded by the tag "Pf3D7_[01-14]_v3:" in MalariaGEN and by the tag "NGS_SNP.Pf3D7_[01-14]_v3." in PlasmoDB.

	90	Primary PCR Assay #1 55 Assay #2 55 Assay #3 52 Assay #4 55 Assay #5 55 Assay #6 56 Assay #7 53 Assay #8 52 Assay #9 52 REF MTAG-A038 ATTCAATACTATCTAACACTTACT Nested PCR LDR 60 58-60 60 58-60 59 59 58 59 58 59 60 58-60 58 58-60 58 60 58 59 ALT MTAG-A039 ACAAATATCTAACTACTATCACAA MTAG-A042 CACTACACATTTATCATAACAAAT ALT MTAG-A043 AACTTTCTCTCTCTATTCTTATTT Assay#7 NA NA NA NA NA 11 Pf_07_000657939 REF 10 Pf_07_000545046 0.530 0.711 NA Assay#6 9 Pf_07_000490877 0.363 0.658 8 Pf_07_000277104 0.102 0.429 ALT MTAG-A036 ATTAAACAACTCTTAACTACACAA 7 Pf_06_000937750 NA NA REF MTAG-A033 ACTACTTATTCTCAAACTCTAATA ALT MTAG-A035 CATCTTCATATCAATTCTCTTATT NA Assay#5 6 Pf_06_000145472 0.341 0.421 REF 5 Pf_05_000931601 0.305 0.001 MTAG-A034 ACTTATTTCTTCACTACTATATCA 4 Pf_04_000282592 0.160 0.359 Assay#4 BC02 3 Pf_02_000842803 0.333 0.403 ALT MTAG-A029 TACTACTTCTATAACTCACTTAAA 2 Pf_01_000539044 0.949 0.768 Tm ( 0 C) CHAPTER 2. BARCODING THE P. FALCIPARUM GENOME MTAG_ID LUMINE X Barcode PCR LDR 22/25 Neg NA NA 26/27 Neg NA NA 28/29 Pos BC01 1 1 33/34 Pos BC02 2 1 35/36 Pos Neg NA 38/39 Neg NA NA 42/43 Pos/Neg NA NA NA 44/45 Pos BC03 3 2 12/13 Pos BC04 3 1 GGATGTTATTAAAAATGAAGAGAAGCATAG AAGGAGATAGTGTTGGGGGC AAGGAGATAGTGTTGGGGGT [Phos]ATTGCTACATGCATTATACAAAATCC[BtnTg] NA NA NV NV SYN T C D73 7 NA NA NV NV SYN T C D76 4 sub PFD0134c(p) PF3D7_0402700 163280 core MAL7P1.57 PF3D7_0713000 602559 0.571 0.518 NV NV SYN C T P435 7 core PF07_0047 PF3D7_0711000 489666 AAA family ATPase, CDC48 rifin (RIF) GGATGTTATTAAAAATGAAGAGAAGCATAC 0.601 0.333 BC04 0.65 SYN A T A233 7 core PF07_0040 PF3D7_0709700 435497 lysophospholipase, putative [Phos]TAAGAAACATTTTAATATTTTACAGAAAAAGAGG[BtnTg] 0.289 0.250 BC03 0.4 SYN G A L2389 7 core MAL7P1.19 PF3D7_0704600 221722 ubiquitin transferase, putative NA TGATGTTCATATTCACAATGATCAAG NA NA NV NV SYN A G G300 6 core PFF1105c PF3D7_0623000 937752 chorismate synthase (CS) NA GAAAAAAATAATTTGAACAATAAAACTTATAATAA TGATGTTCATATTCACAATGATCAAC [Phos]CACCCGAACTAAATCGCTCC[BtnTg] 0.524 0.387 NV NV NSY C G S1104T 6 core PFF0175c PF3D7_0603600 145475 conserved Plasmodium protein 0.002 0.157 NV NV NSY C G P7739A 5 core PFE1120w PF3D7_0522400 931606 conserved Plasmodium protein GAAAAAAATAATTTGAACAATAAAACTTATAATAG [Phos]CATGAACGAGTCACCAAATAATATG[BtnTg] 0.398 0.266 BC02 0.36 NSY T C N233S 4 core PFD0250c PF3D7_0405100 276127 Sec24 subunit b (SEC24b) 0.543 0.349 BC01 0.56 SYN C T N1004 2 sub PFB0935w PF3D7_0220800 842805 cytoadherence linked asexual protein NA 0.816 0.898 NV NV SYN G A S173 1 sub PFA0670c PF3D7_0113900 537322 Plasmodium exported protein (hyp8) TTTCAAATGTTATTTTCAACTATGTTAAGTAAT NA Multiplex 2.4. ARTICLE 1 Part 1 Part 2 REF MTAG-A022 CAAACAAACATTCAAATATCAATC GATAAAAATGTAGGTGATGTAAAAGATG ALT MTAG-A025 CTTTCTTAATACATTACAACATAC GATAAAAATGTAGGTGATGTAAAAGATA LDR PRIMER Conserved Primer Microsphere ID Allele Barcode ID NA Assay#1 [Phos]CATATAATGAAGAAAATTTATTAGGAAAGA[BtnTg] Additional file 6. Health centre REF MTAG-A026 TACATTCAACACTCTTAAATCAAA GCTTTCCTATCAACCGTTTCC ALT MTAG-A027 TAACTTACACTTAACTATCATCTT REF MTAG-A028 CACTTAATTCATTCTAAATCTATC [Phos]GATGCAAATAATCTTGATAAAGTATATGG[BtnTg] Assay#3 BC01 1 Pf_01_000130573 0.701 0.438 0.560 0.615 NV NV NSY C T A168T 1 core PFA0145c PF3D7_0102900 130339 aspartate--tRNA ligase TTTCAAATGTTATTTTCAACTATGTTAAGTAAC Assay SNP ID# WAF WSEA ESEA NRAF ID freq Type REF ALT Mutant Chrom. Loc. Genes Gene ID (new) Position Gene Name GCTTTCCTATCAACCGTTTCT NA Assay#2 Daniel et al. , 2008 MalariaGEN v4.0 Study Mutation Genome information [Phos]TTAGCCTTCACAGTTGTAATGTTATCT[BtnTg] or Hospital District Province SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10 SNP11
		Assay #10 52 Assay #11 52 Assay #12 52 Assay #13 52 REF 12 Pf_07_000671839 0.470 58 59 59 59 MTAG-A044 TCATCACTTTCTTTACTTTACATT 58-60 58-60 59 59 0.616 ALT Assay#8 BC03 13 Pf_07_000683772 0.418 0.419 MTAG-A045 TACACAATATTCATCATAACTAAC REF MTAG-A012 CATAATCAATTTCAACTTTCTACT 14 Pf_07_000792356 0.264 0.366 ALT MTAG-A013 CAAATACATAATCTTACATTCACT Assay#9 BC04 NA NA NA NA 15 Pf_07_001415182	14/15 18/19 20/21 30/37 TGATGAAAGCCACCGAACTC Neg Neg Pos Pos 0.365 0.520 BC05 TGATGAAAGCCACCGAACTT 0.404 0.335 BC06 0.21 0.3 0.308 0.274 NV NV CCATCATATAAATATTTCTATATTCCATTAGCT NSY NA NA BC05 BC06 [Phos]ATATTTATGGATGAACATTATATTAATAAAGATAT[BtnTg] NA NA NA NA 1 1 1 1 G A S692N 7 core MAL7P1.65 PF3D7_0713500 616459 conserved Plasmodium protein, NSY C T G3129S 7 core PF07_0053 PF3D7_0713900 628392 conserved Plasmodium protein, SYN A C P203P 7 core PF07_0070 PF3D7_0716900 736978 drug metabolite transporter, putative CCATCATATAAATATTTCTATATTCCATTAGCA [Phos]AAATTCTTAGGAAGCTTTTTTCCAAG[BtnTg] NA NA 0.4 NSY C A Q584K NA NA 0.41 NSY C G Q584E PF3D7_0731500 1359804 erythrocyte binding antigen-175 BC07 7 sub MAL7P1.176
		Assay #14 Neg Assay #15 52 Assay #16 52 REF MTAG-A014 AATTTCTTCTCTTTCTTTCACAAT NA NA 55 59 58 59 16 Pf_08_000613716 0.233 0.439 ALT MTAG-A015 TACTTCTTTACTACAATTTACAAC Assay#10 NA 17 Pf_09_000634010 0.413 0.357 18 Pf_10_000082376 0.0004 0 REF MTAG-A018 ACACTTATCTTTCAATTCAATTAC Assay#11 NA 19 Pf_10_001403751 NA NA	NA 46/47 48/51 0.856 0.459 BC08 0.81 NA Pos Pos TACGTAATGTTGTCTTAAGCCCG 0.300 0.416 NV NV TACGTAATGTTGTCTTAAGCCCA 0 0.0004 NV NV intergenic NA BC07 BC08 NSY [Phos]TTTAGTGATACCATACCTAATTTAAGTAGAGAAG[BtnTg] NA NA 4 1 3 1 C A F2558L 8 core NSY C T S61N 9 core A T -10 sub AAATGAAAGAAGTGATGCAACAATTTGAT [Phos]GATCGTGCCGCACAACGA[BtnTg] NA NA BC09 0.6 NSY A C T1106P 10 core	PF08_0089 PF3D7_0812100 612596 conserved Plasmodium protein PFI0725c PF3D7_0914800 634019 GINS complex subunit Psf3, putative NV NV 82375 conserved Plasmodium protein PF10_0344 PF3D7_1035300 1402510 glutamate-rich protein (GLURP)
		Assay #17 Neg ALT MTAG-A019 ATACTTTACAAACAAATAACACAC AAATGAAAGAAGTGATGCAACAATTTGAC NA NA NA NA 20 Pf_11_000117114 0.158 0.589 0.531 0.384 BC10 0.43	NA NSY	G	NA A	NA S597F	11	sub	PF11_0037 PF3D7_1102500 119497 Plasmodium exported protein (PHISTb)
		Assay #18 Neg Assay #19 52 REF MTAG-A020 CTTTCTCATACTTTCAACTAATTT NA NA 55 59 ALT Assay#12 BC05 21 Pf_11_000406215 0.473 0.729 MTAG-A021 TCAAACTCTCAATTCTTACTTAAT 22 Pf_13_000158614 NA NA	NA 52/53 AATGGAAAATTTTGATGATATTTTATTAAG NA Pos AATGGAAAATTTTGATGATATTTTATTAAA 0.661 0.646 NV NV NA NA NV NV	NA BC09 [Phos]TGAAAATGAAAAAGAATTATCTTCATATAAT[BtnTg] NA NA 4 1 NSY A C N1036H 11 core SYN T C T35 13 core MAL13P1.15 PF3D7_1303000 158412 conserved Plasmodium protein PF11_0108 PF3D7_1110200 408600 pre-mRNA-processing factor 6
		Assay #20 52 REF Assay#13 BC06 23 Pf_13_001429067 0.0001 0.995 58 60 MTAG-A030 CTTAACATTTAACTTCTATAACAC	12/13 AAATAACAATGAACATCATCATGATG Pos 0.999 0.396 NV NV	BC10 [Phos]GTTCAGTTATTCCAAATAATTTTTGTAATAA[BtnTg] 3 2 NSY T G N3191T 13 core MAL13P1.176 PF3D7_1335300 1429067 reticulocyte binding protein 2+
		Assay #21 Neg ALT MTAG-A037 TACAACATCTCATTAACATATACA NA NA 24 Pf_14_000755729 0.0003 0.820	NA AAATAACAATGAACATCATCATGATA NA 0.958 0.426 BC11 0.98	NA NSY	G	NA T	NA R736I	14	core	PF14_0177 PF3D7_1417800 755731 DNA replication factor MCM2
		Assay #22 52 REF Assay#14 NA	NA	58	NA	58-60	14/15	Neg NA	NA	NA	NA	NA
		Assay #23 52 ALT Assay #24 52 ALT REF Assay#15 BC07	58 55 MTAG-A047 TCTCTTTAAACACATTCAACAATA 58-60 60 MTAG-A046 TTAAACAATCTACTATTCAATCAC	26/27 28/78 AAATTCAAATTATGTTCACAGGAATAAAA Neg Pos AAATTCAAATTATGTTCACAGGAATAAAC	NA BC11 [Phos]AAAATGATAAGCTTTTTCGTGATGA[BtnTg] NA NA 4 2
		Assay#16 BC08	REF	MTAG-A048 AATCAACACACAATAACATTCATA ACCTTCCATATCTAAAAAAACTTCATTC		[Phos]AAAATCATAGACAAAAAAAAAACAGTTTC[BtnTg]
				ALT	MTAG-A051 CAATTTACATTTCACTTTCTTATC	ACCTTCCATATCTAAAAAAACTTCATTA	
				REF							
		Assay#17	NA		NA		NA			NA		NA
				ALT							
				REF							
		Assay#18	NA		NA		NA			NA		NA
				ALT							
		Assay#19 BC09	REF	MTAG-A052 TTCTTCATTAACTTCTAATCTTAC	CCTACATTAAATGAAAATGAAAACGTTA		[Phos]CTCCCAAACCATCTGAAGGT[BtnTg]
				ALT	MTAG-A053 TTAACAACTTATACAAACACAAAC CCTACATTAAATGAAAATGAAAACGTTC	
		Assay#20 BC10	REF	MTAG-A012 CATAATCAATTTCAACTTTCTACT	CAAAATATCAACAAGAAAAACATAATTACTC		[Phos] TTGGATGAAATTTCTTGATGAATATAA [BtnTg]
				ALT	MTAG-A013 CAAATACATAATCTTACATTCACT	CAAAATATCAACAAGAAAAACATAATTACTT	
				REF							
		Assay#21	NA		NA		NA			NA		NA
				ALT							
		Assay#22	NA	REF	MTAG-A014 AATTTCTTCTCTTTCTTTCACAAT	GTAAATATTTTAGTGAAGATTATTTTTGGACT		[Phos]CAAGCTAATATAGGTCCATTGTGTATT[BtnTg]
				ALT	MTAG-A015 TACTTCTTTACTACAATTTACAAC	GTAAATATTTTAGTGAAGATTATTTTTGGACC	
		Assay#23	NA	REF	MTAG-A026 TACATTCAACACTCTTAAATCAAA	AACAAAATGGATGATTTCGTATATACA		[Phos]TGCTGGAGGAGTTGTTTGTT[BtnTg]
				ALT	MTAG-A027 TAACTTACACTTAACTATCATCTT	AACAAAATGGATGATTTCGTATATACC	
		Assay#24 BC11	REF	MTAG-A028 CACTTAATTCATTCTAAATCTATC	AATTAGAAAATACACAAAATTATCAAAAAAG		[Phos] AATTGAAAATTTAAAAAATGTTATTGTTTC [BtnTg]
				ALT	MTAG-A078 TTTACAAATCTAATCACACTATAC	AATTAGAAAATACACAAAATTATCAAAAAAT	

Clustering

Sample IPC No.

CQ PIP QN ART MF DHA BM AQ C580Y R539T Y493H I543T P553L V568G N458Y Conserved Clusters ENA Accession Region

  

																																KH
																																Subpopulation
	3503 1023503 2010 2	PLPF010	West	Ou Chra HC	Pailin	Pailin	T	C	A	A	G	C	C	A	A	G	T									1	0	0	0	0	0	0
	3522 1023522 2010 2	CP080	West	Pailin RH	Pailin	Pailin	T	C	A	A	G	C	C	A	A	G	T									1	0	0	0	0	0	0
	5035 1125035 2011 2 KH004_030 West	Pailin RH	Pailin	Pailin	T	C	A	A	G	C	G	A	A	A	T	100	36		2.92 35	4.79 8.3	60	1	0	0	0	0	0	0
	3268 1023268 2010 2	PL030	West	Ou Chra HC	Pailin	Pailin	T	C	A	A	G	C	G	A	A	G	T															ERS024146 WKH	KH2
	3498 1043498 2010 4 ORPF018	South	Oral HC	Oral	Kampong Speu	T	C	A	A	G	C	G	A	A	G	T															ERS024146 WKH	KH2
	3575 1023575 2010 2	P016	West	Battambang RH	Battambang	Battambang	T	C	A	A	G	C	G	A	A	G	T	669 85.4 993 5.5 98.7 8.76									ERS024146 WKH	KH2
	4375 1124375 2011 2 KH004_017 West	Pailin RH	Pailin	Pailin	T	C	A	A	G	C	G	A	A	G	T									1	0	0	0	0	0	0	ERS024146 WKH	KH2
	4954 1124954 2011 2	06PF033	West	Tasanh HC	Samlot	Battambang	T	C	A	A	G	C	G	A	A	G	T									1	0	0	0	0	0	0	ERS024146 WKH	KH2
	5208 1125208 2011 2	PLPF009	West	Ou Chra HC	Pailin	Pailin	T	C	A	A	G	C	G	A	A	G	T	25	39.3 88	0.63 9.3	0.6 34.5	8	1	0	0	0	0	0	0	ERS024146 WKH	KH2
	3652 1023652 2010 2	PLPF018	West	Ou Chra HC	Pailin	Pailin	T	C	A	A	G	T	G	A	A	G	T	151.54 29.9 358.55 2.29 44.81 2.95			1	0	0	0	0	0	0
	4357 1124357 2011 2 KH004_015 West	Pailin RH	Pailin	Pailin	T	C	A	A	G	T	G	A	A	G	T									1	0	0	0	0	0	0
	3918 1183918 2011 8	FTP132	North	Trapaing Prasat HC Trapaing Prasat Oddar Meanchey	T	C	A	T	G	C	G	C	A	G	T				0.61 30.82 0.77			0	0	0	0	0	0	0
	5149 1165149 2011 6	04PF037	East	Veurn Say HC	Veurn Say	Rattanakiri	T	C	G	A	A	C	G	A	C	G	G	66	21	115 0.3	31	0.49 18.3 11	0	0	0	0	0	0	0
	4221 1134221 2011 3	05PF013	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	A	A	C	G	T	326		404 1.1	96	0.57									ERS032018 WKH	KH3
	4358 1114358 2011 1	07PF004	West	Sampovloun RH	Sampovloun	Battambang	T	C	G	A	G	C	A	A	C	G	T															ERS032018 WKH	KH3
	3653 1043653 2010 4 ORPF034	South	Oral HC	Oral	Kampong Speu	T	C	G	A	G	C	A	C	A	G	T	138.11 26.55 468.56 1.81 70.43 1.11								
	4271 1134271 2011 3	05PF024	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	C	A	C	G	T	365 72.2 642 1.68 95.6 1.36 13	72						
	4287 1124287 2011 2 KH004_010 West	Pailin RH	Pailin	Pailin	T	C	G	A	G	C	G	A	A	G	T	85.93 58.11 242.39 1.24 24.94 1.27 49.26 42.67	1	0	0	0	0	0	0
	4288 1124288 2011 2 KH004_011 West	Pailin RH	Pailin	Pailin	T	C	G	A	G	C	G	A	A	G	T	274		548 1.2	22	0.61 98		1	0	0	0	0	0	0
	4417 1124417 2011 2 KH004_021 West	Pailin RH	Pailin	Pailin	T	C	G	A	G	C	G	A	A	G	T														
	5100 1125100 2011 2 KH004_033 West	Pailin RH	Pailin	Pailin	T	C	G	A	G	C	G	A	A	G	T	27	32	89	0.6	10	0.44 24		1	0	0	0	0	0	0
	5016 1135016 2011 3 VVPF017	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	A	T														
	3272 1023272 2010 2	PL033	West	Ou Chra HC	Pailin	Pailin	T	C	G	A	G	C	G	A	C	G	T	232.1 69.4 140.9 3.3 12.9 5.7									ERS032638 WKH	KH2
	3277 1023277 2010 2	PL036	West	Ou Chra HC	Pailin	Pailin	T	C	G	A	G	C	G	A	C	G	T	167.7 59.6 194.9 1.1	25	1.9			0	0	0	0	0	0	0	ERS032638 WKH	KH2
	4124 1134124 2011 3	05PF002	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	G	T	81		123 0.6 27.3 0.4 11.8 164							ERS032638 WKH	KH2
	4167 1134167 2011 3	05PF006	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	G	T	166		290 0.72 103 0.5	58	57							ERS032638 WKH	KH2
	4273 1134273 2011 3	05PF026	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	G	T	39			0.94 18	0.13									ERS032638 WKH	KH2
	4349 1124349 2011 2 KH004_014 West	Pailin RH	Pailin	Pailin	T	C	G	A	G	C	G	A	C	G	T	66		117 0.34 39.3 0.31			1	0	0	0	0	0	0	ERS032638 WKH	KH2
	4645 1124645 2011 2	06PF030	West	Tasanh HC	Samlot	Battambang	T	C	G	A	G	C	G	A	C	G	T															ERS032638 WKH	KH2
	5089 1135089 2011 3 VVPF024	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	G	T															ERS032638 WKH	KH2
	5131 1135131 2011 3 VVPF031	West	Promoy HC	Veal Veng	Pursat	T	C	G	A	G	C	G	A	C	G	T															ERS032638 WKH	KH2
	3780 1033780 2010 3 VVPF059	West	Promoy HC	Veal Veng	Pursat	T	T	A	A	G	C	G	A	A	G	T															ERS032009 WKH	KHA
	4613 1164613 2011 6	04PF012	East	Veurn Say HC	Veurn Say	Rattanakiri	T	T	G	A	A	C	G	A	A	G	G									0	0	0	0	0	0	0
	4842 1194842 2011 9	10PF032	South	Chhouk HC	Chhouk	Kampot	T	T	G	A	G	C	A	A	A	G	T														
	3587 1043587 2010 4 ORPF032	South	Oral HC	Oral	Kampong Speu	T	T	G	A	G	C	A	A	C	G	T														
	3791 1043791 2010 4 ORPF045	South	Oral HC	Oral	Kampong Speu	T	T	G	A	G	C	A	A	C	G	T														
	3861 1183861 2011 8	M085	North	Anlong Veng RH	Anlong Veng	Oddar Meanchey	T	T	G	A	G	C	C	A	C	G	T															ERS028715 WKH	KH2
	4021 1184021 2011 8	FTP139	North	Trapaing Prasat HC Trapaing Prasat Oddar Meanchey	T	T	G	A	G	C	C	A	C	G	T															ERS028715 WKH	KH2
	4469 1184469 2011 8	M091	North	Anlong Veng RH	Anlong Veng	Oddar Meanchey	T																								

gene) alleles Data from O. Miotto et al. , 2013 [8] Sample Information

  

											Genotype (Barcode)						IC50	Kelch (K13	
																		589	517 0.25 20	0.3	ERS032003 WKH	KH2
	4256 1134256 2011 3	05PF021	West	Promoy HC	Veal Veng	Pursat	T	T	G	A	G	C	G	A	C	G	T	842 105 2308 0.32 73	0.35 21.4 52	ERS032003 WKH	KH2

  2. This list provides PLasmoDB gene ID, product description of the gene, associated old ID and the Uniprot ID recovered from PlasmoDB v 11.

	3.4. ARTICLE 2 PF3D7_0808000 PF3D7_1351200	conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	MAL8P1.124 MAL13P1.258	C0H4S9 Q8IDI7
	PF3D7_0809400 PF3D7_1368800		conserved Plasmodium protein, unknown function DNA repair endonuclease, putative (ERCC4)	PF08_0101 MAL13P1.346	Q8IAS9 Q8ID22
	PF3D7_0812900 PF3D7_1406200		probable protein, unknown function conserved Plasmodium protein, unknown function	MAL8P1.97 PF14_0059	Q8IAW4 Q8IM32
	PF3D7_0816300 PF3D7_1407600		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	MAL8P1.80 PF14_0073	C0H4U8 Q8IM18
	PF3D7_0817600 PF3D7_1412700		conserved Plasmodium protein, unknown function AAA family ATPase, putative	PF08_0058 PF14_0126	Q8IB11 Q8ILW7
	PF3D7_0903400 PF3D7_1417600		DEAD/DEAH box helicase, putative conserved Plasmodium protein, unknown function	PFI0165c PF14_0175	Q8I3B4 Q8ILR9
	PF3D7_0908200 PF3D7_1420400		conserved Plasmodium protein, unknown function glycine--tRNA ligase (GlyRS)	PFI0395w PF14_0198	Q8I369 Q8ILP6
	PF3D7_0909100 PF3D7_1423500	conserved Plasmodium membrane protein, unknown function conserved Plasmodium protein, unknown function	PFI0440w PF14_0226	C0H528 Q8ILL7
	Gene ID PF3D7_0910000 PF3D7_1426700		Product Description SET domain protein, putative (SET4) phosphoenolpyruvate carboxylase (PEPC)	Old ID PFI0485c PF14_0246	UniProt ID Q8I352 Q8ILJ7
	PF3D7_0107500 PF3D7_0912000 PF3D7_1429900		lipid/sterol:H+ symporter conserved Plasmodium protein, unknown function ADP-dependent DNA helicase RecQ (WRN)	PFA0375c PFI0585c PF14_0278	NA Q8I332 Q8ILG5
	PF3D7_0108300 PF3D7_0912600 PF3D7_1433800		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	PFA0410w PFI0615w PF14_0319	NA Q8I326 Q8ILC5
	PF3D7_0212500 PF3D7_0213900 PF3D7_0916400 PF3D7_1448000 PF3D7_0214300 PF3D7_0917400 PF3D7_1452600 PF3D7_0217900 PF3D7_0920000 PF3D7_1459100 PF3D7_0302500 PF3D7_0921600 PF3D7_1460500 PF3D7_0309200 PF3D7_1005500 PF3D7_1461100 PF3D7_0317300 PF3D7_1008100 PF3D7_1466200 PF3D7_0409600 PF3D7_1012900 PF3D7_1012700 PF3D7_1468500	conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function U3 small nucleolar RNA-associated protein 12, putative (UTP12) conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function long chain fatty acid elongation enzyme, putative (ELO3) GTP-binding protein, putative cytoadherence linked asexual protein 3.1 (CLAG3.1) tetratricopeptide repeat family protein, putative conserved Plasmodium protein, unknown function serine/threonine protein kinase, putative (ARK2) regulator of nonsense transcripts, putative conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function replication protein A1, large subunit (RPA1) autophagy-related protein 18, putative (ATG18) NLI interacting factor-like phosphatase, putative (NIF4) derlin-1 (DER1-1)	PFB0560w PFB0630c PFI0805w PF14_0456 PFB0650w PFI0850w PF14_0501 PFB0835c PFI0980w PF14_0564 PFC0120w PFI1060w PF14_0577 PFC0385c PF10_0057 PF14_0583 PFC0760c PF10_0079 PF14_0631 PFD0470c PF10_0126 PF10_0124 PF14_0653	O96205 C0H539 Q8IKZ5 O96219 Q8I2X9 Q8IKV0 O96223 C0H545 Q8IKP0 O96259 Q8I2T7 Q8IKM7 O77310 Q8IJY4 Q8IKM1 O77328 Q8IJW2 Q8IKH4 O77384 Q8IJR6 Q9U0J0 Q8IJR8 Q8IKF2
	PF3D7_0410300 PF3D7_1015000		protein phosphatase PPM1, putative (PPM1) FAD synthetase, putative	PFD0505c PF10_0147	Q9U0I5 Q8IJP5
	PF3D7_0411000 PF3D7_1018000		conserved Plasmodium protein, unknown function tRNA pseudouridine synthase, putative	PFD0545w PF10_0175	Q9U0H8 Q8I715
	PF3D7_0412300 PF3D7_1023100		phosphopantothenoylcysteine synthetase, putative dynein heavy chain, putative	PFD0610w PF10_0224	Q9U0G7 Q8IJH4
	PF3D7_0420700 PF3D7_1110400		erythrocyte membrane protein 1, PfEMP1 (VAR) asparagine-rich antigen	PFD0995c PF11_0111	Q8IFQ6 Q8IIQ7
	PF3D7_0504700 PF3D7_1114900	centrosomal protein CEP120, putative (CEP120) pre-mRNA-processing ATP-dependent RNA helicase PRP5, conserved Plasmodium protein, unknown function	PFE0230w PF11_0158	Q8I455 Q8IIL3
	PF3D7_0508700 PF3D7_1117200		putative (PRP5) conserved Plasmodium protein, unknown function	PFE0430w PF11_0178	Q8I416 Q8IIJ5
	PF3D7_0515300 PF3D7_1126100		phosphatidylinositol 3-kinase (PI3K) autophagy-related protein 7, putative (ATG7)	PFE0765w PF11_0271	Q8I3V5 Q8IIA3
	PF3D7_0525200 PF3D7_1128900		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	PFE1255w PF11_0300	Q8I3L3 Q8II74
	PF3D7_0526000 PF3D7_1140700		RAP protein, putative conserved Plasmodium protein, unknown function	PFE1295c PF11_0418	Q8I3K5 Q8IHV8
	PF3D7_0607700 PF3D7_1141100		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	PFF0380w PF11_0422	C6KSS5 Q8IHV4
	PF3D7_0609700 PF3D7_1146600		conserved Plasmodium protein, unknown function CCAAT-box DNA binding protein subunit B (NFYB)	PFF0480w PF11_0477	C6KSU4 Q8IHQ2
	PF3D7_0612800 PF3D7_1209500.1		6-cysteine protein (P12p) cGMP-specific phosphodiesterase (PDE1)	PFF0620c PFL0475w	C6KSX1 Q8I5V4
	PF3D7_0613300 PF3D7_1209500.2		rhoptry protein ROP14 (ROP14) cGMP-specific phosphodiesterase (PDE1)	PFF0645c PFL0475w	C6KSX6 NA
	PF3D7_0615900 PF3D7_1211900	conserved Plasmodium protein, unknown function non-SERCA-type Ca2+ -transporting P-ATPase (ATP4)	PFF0770c PFL0590c	C6KT00 Q8I5T3
	PF3D7_0703400 PF3D7_1219400	conserved Plasmodium protein, unknown function erythrocyte membrane protein 1 (PfEMP1), pseudogene (VAR)	PF07_0013 PFL0940c	Q8IC36 NA
	PF3D7_0704600		E3 ubiquitin-protein ligase (UT) debranching enzyme-associated ribonuclease, putative	MAL7P1.19	C0H4K6
	PF3D7_0707200 PF3D7_1220400		conserved Plasmodium protein, unknown function (DRN1)	MAL7P1.207 PFL0980w	C0H4L9,Q8IAJ8 Q8I5K9
	PF3D7_0709000 PF3D7_1308200		chloroquine resistance transporter (CRT) carbamoyl phosphate synthetase (cpsSII)	MAL7P1.27 PF13_0044	Q8IBZ9 Q8IEN3
	PF3D7_0712800 PF3D7_1312800		erythrocyte membrane protein 1, PfEMP1 (VAR) conserved Plasmodium protein, unknown function	MAL7P1.55 PF13_0072	Q8IBW8 Q8IEJ4
	PF3D7_0716700 PF3D7_1318100		conserved Plasmodium protein, unknown function ferredoxin, putative	PF07_0069 MAL13P1.95	Q8IBT3 Q8IED5
	PF3D7_0717700 PF3D7_1318300		serine--tRNA ligase, putative conserved Plasmodium protein, unknown function	PF07_0073 PF13_0101	Q8IBS3 Q8IED3
	PF3D7_0720700 PF3D7_1322400		phosphoinositide-binding protein, putative conserved Plasmodium protein, unknown function	MAL7P1.108 MAL13P1.125	Q8IBP4 Q8IE91
	PF3D7_0723900 PF3D7_1328500		conserved Plasmodium protein, unknown function alpha/beta-hydrolase, putative	MAL7P1.126 PF13_0153	Q8IBL4 Q8IE45
	PF3D7_0724100 PF3D7_1339700		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function	MAL7P1.129 MAL13P1.202	Q8IBL1 Q8IDT8
	PF3D7_0804700 PF3D7_1343700		conserved Plasmodium protein, unknown function kelch protein K13 (K13)	PF08_0122 PF13_0238	Q8IAP3 Q8IDQ2
	PF3D7_0807800 PF3D7_1347200	26S proteasome regulatory subunit RPN10, putative (RPN10) nucleoside transporter 1 (NT1)	PF08_0109 PF13_0252	Q8IAR6 Q8IDM6

Table S8 .

 S8 2. This list provides PLasmoDB gene ID, product description of the gene, associated old ID and the Uniprot ID recovered from PlasmoDB v 11. Number of genes in P. falciparum gene-gene interaction network with maximum expression in different parasite blood stage forms. This table is based on the co-expression interaction network (confidence score ≥ 0.5) recovered from STRING v10 database server. The unconnected nodes (genes) were not considered in the analysis. The maximum expression data is based on the transcriptomic study by[START_REF] Roch | Discovery of gene function by expression profiling of the malaria parasite life cycle[END_REF] and is recovered from PlasmoDB. Data for early and late forms of the three blood stage ring, trophozoite and schizogony is available. Some of the genes are not classified in the interaction network.

	178	3.4. ARTICLE 2 PF3D7_0809400 PF3D7_0817600 PF3D7_0908200 PF3D7_0912000 PF3D7_0912600 PF3D7_0916400 PF3D7_0920000 long chain fatty acid elongation enzyme, putative (ELO3) conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function PF3D7_0921600 tetratricopeptide repeat family protein, putative PF3D7_1005500 regulator of nonsense transcripts, putative ERS028716 Cambodia Pursat 2010 PH0482-C ERS032697 Cambodia Pursat 2010 PH0483-CW Number of Number of CHAPTER 3. FUNCTIONAL ANALYSIS OF PF SUBPOPULATIONS PF08_0101 Q8IAS9 PF08_0058 Q8IB11 PFI0395w Q8I369 PFI0585c Q8I332 PFI0615w Q8I326 PFI0805w C0H539 PFI0980w C0H545 PFI1060w Q8I2T7 PF10_0057 Q8IJY4 1044 6263_3_nonhuman#1 1044 6468_8_nonhuman#8 Number of 3.4. ARTICLE 2 3.4. ARTICLE 2 Subpopulations isolates Significant SNPs Significant Genes 139 ERS028717 Cambodia Pursat 2011 PH0484-C 1044 6263_3_nonhuman#2 KH1.2 5 1361 823 140 ERS028718 Cambodia Pursat 2011 PH0485-C 1044 6263_3_nonhuman#3 KH2.1 11 1620 938 141 ERS028719 Cambodia Pursat 2011 PH0486-C 1044 6263_3_nonhuman#4 KH2.2 22 2312 1125 142 ERS028722 Cambodia Pursat 2011 PH0487-C 1044 6263_3_nonhuman#7 KH3 12 1495 859 143 144 ERS028723 Cambodia Pursat 2011 PH0488-C 1044 6263_3_nonhuman#8 145 ERS028724 Cambodia Pursat 2011 PH0489-C 1044 6263_3_nonhuman#9 146 ERS028725 Cambodia Pursat 2011 PH0490-C 1044 6263_3_nonhuman#10 KH4 9 1891 978 KH5 14 1612 900 KHA 49 740 493 Chapter 4
		PF3D7_1008100 149 ERS028720		conserved Plasmodium protein, unknown function Cambodia Pursat 2009 PH0047-Cx	PF10_0079 1044	Q8IJW2 6263_3_nonhuman#5
		PF3D7_1012700 PF3D7_1012900 PF3D7_1018000 150 ERS028721 151 ERS017705 152 ERS017706 Variant calling in B. microti NLI interacting factor-like phosphatase, putative (NIF4) PF10_0124 Q8IJR8 autophagy-related protein 18, putative (ATG18) PF10_0126 Q8IJR6 tRNA pseudouridine synthase, putative PF10_0175 Q8I715 Cambodia Pursat 2009 PH0051-Cx 1044 6263_3_nonhuman#6 Cambodia Pursat 2010 PH0206-C 1044 5756_1_nonhuman Cambodia Pursat 2010 PH0209-C 1044 5788_1_nonhuman
		PF3D7_1126100 PF3D7_1140700 PF3D7_1209500.1 153 ERS017707 167 ERS032258 11 ERS025277 genome	autophagy-related protein 7, putative (ATG7) conserved Plasmodium protein, unknown function cGMP-specific phosphodiesterase (PDE1) Cambodia Pursat 2010 PH0212-C Cambodia Pursat NA NA Cambodia Ratanakiri 2010 PH0339-C	PF11_0271 PF11_0418 PFL0475w 1044 NA 1044	Q8IIA3 Q8IHV8 Q8I5V4 5764_7_nonhuman 6345_3_nonhuman#11 6222_2_nonhuman#6
		PF3D7_1209500.2 12 ERS025278		cGMP-specific phosphodiesterase (PDE1) Cambodia Ratanakiri 2010 PH0340-C	PFL0475w 1044	6222_2_nonhuman#7
		PF3D7_1211900 13 ERS025279	non-SERCA-type Ca2+ -transporting P-ATPase (ATP4) Cambodia Ratanakiri 2010 PH0341-C	PFL0590c 1044	Q8I5T3 6222_2_nonhuman#8
		PF3D7_1219400 14 ERS025280	erythrocyte membrane protein 1 (PfEMP1), pseudogene (VAR) Cambodia Ratanakiri 2010 PH0342-C Gene Classification Number of Genes PFL0940c 1044	6222_2_nonhuman#9
		Gene ID PF3D7_0108300 PF3D7_0217900 PF3D7_0309200 PF3D7_0317300 PF3D7_0515300 PF3D7_0525200 PF3D7_0526000 PF3D7_0612800 PF3D7_1220400 PF3D7_1312800 PF3D7_1318100 PF3D7_1318300 PF3D7_1322400 PF3D7_1328500 PF3D7_1343700 PF3D7_1347200 PF3D7_1368800 PF3D7_1406200 PF3D7_1407600 PF3D7_1412700 PF3D7_1423500 PF3D7_1429900 PF3D7_1433800 30 ERS025379 29 ERS025378 28 ERS025377 27 ERS025376 26 ERS025291 25 ERS025290 24 ERS025289 23 ERS025288 22 ERS025287 21 ERS025286 19 ERS025284 20 ERS025285 17 ERS025282 18 ERS025283 15 ERS025281 16 ERS025260 4.1 Introduction Product Description conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function serine/threonine protein kinase, putative (ARK2) conserved Plasmodium protein, unknown function phosphatidylinositol 3-kinase (PI3K) conserved Plasmodium protein, unknown function RAP protein, putative 6-cysteine protein (P12p) debranching enzyme-associated ribonuclease, putative (DRN1) conserved Plasmodium protein, unknown function ferredoxin, putative conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function alpha/beta-hydrolase, putative kelch protein K13 (K13) nucleoside transporter 1 (NT1) DNA repair endonuclease, putative (ERCC4) conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function AAA family ATPase, putative conserved Plasmodium protein, unknown function ADP-dependent DNA helicase RecQ (WRN) conserved Plasmodium protein, unknown function U3 small nucleolar RNA-associated protein 12, putative Cambodia Ratanakiri 2010 PH0358-C Cambodia Ratanakiri 2010 PH0357-C Cambodia Ratanakiri 2010 PH0356-C Cambodia Ratanakiri 2010 PH0355-C Cambodia Ratanakiri 2010 PH0354-C Cambodia Ratanakiri 2010 PH0353-C Cambodia Ratanakiri 2010 PH0352-C Cambodia Ratanakiri 2010 PH0351-C Total 3842 Cambodia Ratanakiri 2010 PH0350-C Unclassified 138 Cambodia Ratanakiri 2010 PH0349-C Merozoite 711 Cambodia Ratanakiri 2010 PH0347-C Cambodia Ratanakiri 2010 PH0348-C Schizogony Early Late 477 391 Cambodia Ratanakiri 2010 PH0345-C Cambodia Ratanakiri 2010 PH0346-C Trophozoite Early Late 534 548 Cambodia Ratanakiri 2010 PH0343-C Cambodia Ratanakiri 2010 PH0344-C Ring Early 702 Late 341	Old ID PFA0410w PFB0835c PFC0385c PFC0760c PFE0765w PFE1255w PFE1295c PFF0620c PFL0980w PF13_0072 MAL13P1.95 PF13_0101 MAL13P1.125 PF13_0153 PF13_0238 PF13_0252 MAL13P1.346 PF14_0059 PF14_0073 PF14_0126 PF14_0226 PF14_0278 PF14_0319 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 1044 868 1044 1044 1082 1044 1044 1043	UniProt ID O96259 O77328 O77384 Q8I3V5 Q8I3L3 Q8I3K5 C6KSX1 Q8I5K9 Q8IED5 Q8IE91 6222_4_nonhuman#4 Q8ILC5 6222_4_nonhuman#3 Q8ILG5 6222_4_nonhuman#2 Q8ILL7 6222_4_nonhuman#1 Q8ILW7 6222_3_nonhuman#10 Q8IM18 6222_3_nonhuman#9 Q8IM32 6222_3_nonhuman#8 Q8ID22 6222_3_nonhuman#7 Q8IDM6 6222_3_nonhuman#6 Q8IDQ2 6222_3_nonhuman#5 Q8IE45 6222_3_nonhuman#3 6222_3_nonhuman#4 Q8IED3 6222_3_nonhuman#1 6222_3_nonhuman#2 Q8IEJ4 6222_2_nonhuman#10 6468_8_nonhuman#5
		PF3D7_0613300 PF3D7_1448000 31 ERS025380		rhoptry protein ROP14 (ROP14) (UTP12) Cambodia Ratanakiri 2010	PH0359-C	PFF0645c PF14_0456 1044	C6KSX6 Q8IKZ5 6222_4_nonhuman#5
		PF3D7_0703400 PF3D7_1452600 32 ERS025381		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function Cambodia Ratanakiri 2010 PH0360-C	PF07_0013 PF14_0501 1044	Q8IC36 Q8IKV0 6222_4_nonhuman#6
		PF3D7_0709000 PF3D7_1459100 33 ERS025382		chloroquine resistance transporter (CRT) GTP-binding protein, putative Cambodia Ratanakiri 2010	PH0361-C	MAL7P1.27 PF14_0564 1044	Q8IBZ9 Q8IKP0 6222_4_nonhuman#7
		PF3D7_0716700 PF3D7_1460500 34 ERS025383		conserved Plasmodium protein, unknown function conserved Plasmodium protein, unknown function Cambodia Ratanakiri 2010 PH0362-C	PF07_0069 PF14_0577 1044	Q8IBT3 Q8IKM7 6222_4_nonhuman#8
		PF3D7_0717700 PF3D7_1466200 35 ERS025384		serine--tRNA ligase, putative conserved Plasmodium protein, unknown function Cambodia Ratanakiri 2010 PH0363-C	PF07_0073 PF14_0631 1044	Q8IBS3 Q8IKH4 6222_4_nonhuman#9
		PF3D7_0720700 PF3D7_1468500 36 ERS025385		phosphoinositide-binding protein, putative derlin-1 (DER1-1) Cambodia Ratanakiri 2010 PH0364-C	MAL7P1.108 PF14_0653 1044	Q8IBP4 Q8IKF2 6222_4_nonhuman#10
		PF3D7_0723900 37 ERS025386		conserved Plasmodium protein, unknown function Cambodia Ratanakiri 2010 PH0365-C	MAL7P1.126 1044	Q8IBL4 6222_5_nonhuman#1
		PF3D7_0724100 PF3D7_0807800 ERS025387 38 39 ERS025388		conserved Plasmodium protein, unknown function Cambodia Ratanakiri 2010 PH0366-C 26S proteasome regulatory subunit RPN10, putative (RPN10) Cambodia Ratanakiri 2010 PH0367-C	MAL7P1.129 1044 PF08_0109 1044	Q8IBL1 6222_5_nonhuman#2 Q8IAR6 6222_5_nonhuman#3
		PF3D7_0808000		conserved Plasmodium protein, unknown function	MAL8P1.124	C0H4S9

  .2 and 4.3).

		R1	ATCC 30222	ATCC PRA-	Bm1438	GI	Naushon	GreenwichYale	Nan_Hs_2011_
				99				_Lab_Strain_1	N11-50
								(Lab_Strain_1)	(N11-50)
	Genome data								
	gDNA shearing size (bp)	500	241	271	500	240	255	416	303
	No. gDNA reads	49,000,00 0	427,433,106	463,798,222	43,500, 000	103,455,108	93,165,064	77,047,792	108,523,562
	SRA accession		SRP026017	SRP026029		SRP026012	SRP026015	SRP026028	SRP026025
	Genome assembly accession	N/A	JGVA00000000 JGUZ00000000	N/A	JGUY00000000 JGUX00000000 JGUW00000000 JGUV00000000
	Assembly length (bp)	N/A	6,630,005	6,346,114	N/A	6,878,190	6,438,007	6,800,559	6,361,046
	No. Contigs in assembly	N/A	234	82	N/A	140	131	250	131
	Longest contig in assembly	N/A	597,968	619,241	N/A	598,171	366,459	542,955	350,809
	Overlaps R1								
	reference genome	N/A	98.42	98.79	N/A	98.41	98.31	98.90	98.43
	(%)								
	Transcriptome data								
	mRNA shearing size (nucl)	N/A	286	286	N/A	285	286	288	289
	No. RNAseq reads	N/A	37,307,396	49,921,782	N/A	43,424,650	48,312,516	52,747,716	56,886,026
	SRA accession	N/A	SRS566271	SRS566154	N/A	SRS566158	SRS566212	SRS566229	SRS566414

Table 4 .

 4 2: Genome and transcriptome data generated for B. microti isolates.

	4.3. NUCLEAR GENOME OF 7 ISOLATES						201
	A.										
			Non coding region		coding region		Unique *
	Isolate	Total count	Inter-genic	Intronic	5'UTR 3'UTR	Syn.	Non-syn. Indel x3 Other	Unique ALT	Unique REF
	R1	27	17	2	0	2	3	3	0	3	Tab. 9
	ATCC_30222	130	55	24	4	5	18	10	14	40	0
	ATCC_PRA-99	121	56	25	2	2	14	9	13	7	0
	GI	116	58	18	2	2	14	9	13	12	0
	Greenwich_Lab_Strain_1 78	29	13	2	3	10	7	14	15	6
	Nan_Hs_2011_N11-50	130	62	21	2	5	13	15	12	21	0
	Naushon	119	61	17	2	3	9	9	18	5	0
	Bm1438	89	42	22	2	3	14	6	0	9	1
	Total	262	117	41	6	10	34	21	33	112	-
	B.										
			Non coding region		coding region		Unique
	Isolate	Total count	Inter-genic	Intronic	5'UTR 3'UTR	Syn.	Non-syn. Indel x3 Other	Unique ALT	Unique REF
	R1	618	156	91	42	161	159	6	3	0	618

Table 4 .

 4 3: A. Localization of 262 polymorphic positions relative to R1 reference genome, among seven B. microti isolates. B. Localization of 618 R1-specific mutations.

  .1:

			Gene		
			ID			
			Name			
			coordinates			
			Annotation version	location	
			(0..1) /\	carry the \/	Coding region Intron	
		Is localized in	(0..*)	5'UTR 3'UTR	
			Single base mutation		
	contains >	(0..*)	SBM Phenotype ID	is found as >	(0..*)	Strain single base data: SSD
	< is described in		Name		(1..1)	< is related to	ID Strain
	features				Coding ALT SNP	vcf parameters ALT value
	coordinate				Non synonymous
	chromosome				ALT aa value
	REF value				Annotation version
	(0..*)					
	Genome version					
						SNP	Not significant	Not available
	Reference					
	e.g. 3D7					

Table version1

 version1 

Table generef Table coding Table SSD_SNP Filter Description Table SBM2SSD DP=0

 generefcodingSSD_SNPDescriptionSBM2SSD 
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Additional file 5. Classification of samples into 9 conserved groups. A. Hierarchical clustering of the 282 valid samples based on the 11-SNPs barcode. The pairwise distance between the samples is calculated as the proportion of base substitution between them over the barcode. Ward's minimum variance method was used to build the dendrogram. The dendrogram is cut to obtain 8 clusters (k = 8). The clusters are represented by red rectangles. B. Hierarchal clustering of 282 samples based on the percentage of clustering results in which two samples are in the same cluster (when 8 clusters are considered). The clustering approach was implemented on 10,000 subsets of 230 samples each, randomly selected out of the 282 samples. Based on these 10,000 clustering results, pairwise distance between samples were calculated as the percentage of clustering results in which two samples are in the same cluster. The number of clusters (conserved groups) was selected based on the dendrogram structure. The clusters are represented by red rectangles.

A.

B.

ARTICLE 1

Additional file 7. Number of samples rejected due to mixed infection (M), no significant signal with LUMINEX for at least one barcode position (N) and no amplification using PCR for at least one locus (X). A.

ARTICLE 1

Additional file 11. Comparison of allele frequencies in health centre and in conserved clustering groups. A comparative analysis was illustrated using Weblogos sorted for health centre and clustering groups.

ARTICLE 1

Additional file 12. Distribution of IC50 value of P. falciparum isolates per major geographic areas. Box Plot analysis is presenting median and quartiles. Dashed line figure out the threshold where parasite could be resistant for the drug (30 nM). Parasites were originating from regions distributed at the four compass points in Cambodia. ANOVA test was significant for chloroquine and mefloquine (p value = 5.62e-5 and p value = 0.0408, respectively).

Additional file 13. Distribution of mefloquine IC50 value of isolates associated to conserved clusters G1 to G9. Box Plot analysis is presenting median and quartiles. Mefloquine resistant parasites have IC50 over the dashed line (30 nM).
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-----------------tions into consideration. The approach was to select SNPs with strong ALT signal and avoid false positive SNPs. The data was filtered for noise based on two parameters: mapping quality (MQ) and ALT allele frequency (DA), which is analogous to Non-Reference Allele Frequency (NRAF) (Article2: Supplementary material section "Filtering data for noise"). As it is known that the mapping quality decreases towards the chromosome ends, we randomly remove around 100 kb from the beginning and end of each chromosome. When visualizing the MQ values over the genome with and without the chromosome ends, a clear threshold at 29 is observed (Article2: Figure S14). Therefore, MQ >29 was used as one of the filtering criteria. Moreover, to identify true SNPs, the approach was to select SNPs with high ALT frequency. We used the parameter DP4, which accounts for number of reads having ref/non-ref (ALT) allele in forward/reverse strand. We calculated the ALT frequency (this term is referred to as DA in the manuscript) and on the frequency density plot, we put a threshold where the distribution of low quality SNPs and high quality SNPs intersect, which is at about 0.7 (Article2: Figure S15). Therefore, DA > 0.7 was considered as the second filtering criteria. Filtering the data based on these two parameters provides 247783 SNPs in 167 isolates, i.e., genome positions with reliable ALT alleles in at least one isolate. Also, the SNPs with Minor Allele Frequency (MAF) less than 0.01796 were removed (Article2: Figure S16). Therefore, a set of 111701 SNPs was recovered in 167 isolates. The isolate bias towards a given chromosome was checked by plotting the number of filtered SNPs in an isolate as a function of number of filtered SNPs in a chromosome for each chromosome. No isolate was rejected from the analysis.

Different genome versions

The data by Miotto and colleagues was aligned on 3D7 reference genome version 2 and to get the correspondence with the genome version 3, we performed BLAST (Article2: Supplementary material section "Correspondence between different genome version"). For some of the chromosomes, short alignments were recovered, so BLAST was performed on specific regions of these chromosomes to recover the alignment. Around 3000 unmapped SNPs were removed and a list of 108596 SNPs was obtained.

Realignment of the sequence reads was not done on the 3D7 reference genome version 3, as the FASTQ files were not available and the process was time consuming. The idea was to rapidly recover the list of potential SNPs for population structure subpopulations, refining further the previously described structure of P. falciparum parasite population in Cambodia [Miotto et al., 2013]. Isolates carrying one of the three dominant K13 alleles C580Y, Y493H and R539T found in our dataset are referred to as ART resistant isolates and the five subpopulations, of which nearly all the isolates were carrying the K13 alleles are referred to as artemisinin resistant (ART-R) subpopulations (Fig. 1). The subpopulations KH2 and KH3 are the donor populations for the most dominant allele C580Y (the isolates in KH2 are classified into two subpopulations KH2.1 and KH2.2). One isolate in KH2.2 does not carry any of the three K13 alleles. KH4 is the donor population for the Y493H allele. KH5 is a new subpopulation which was not described earlier, with all the isolates in this subpopulation carrying one of the three K13 alleles which are mutually exclusive. R539T is the dominating allele followed by C580Y and Y493H alleles. Hence, KH5 is considered to be a donor population for R539T allele of the K13 gene. Two KH5 isolates match with a barcode that is associated with mefloquine resistance as well [START_REF] Dwivedi | Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia[END_REF]. The ART sensitive (ART-S) subpopulation KH1 described as the ancestral population [Miotto et al., 2013] was classified into two subpopulations, KH1.1 and KH1.2. None of the isolates in these two subpopulations carry any of the three K13 alleles and all the isolates originate from Ratanakiri in eastern Cambodia (one isolate from Tasanh in western Cambodia). KH1.1 is one of the largest subpopulations and KH1.2 is the smallest subpopulation. The other dominant subpopulation is the admixed subpopulation KHA with around 52% of the ART resistant isolates and 48% ART sensitive isolates.
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Data Acquisition

The genome sequencing data of Cambodian parasite isolates was recovered from the ENA (European Nucleotide Archive) database server. This dataset was submitted by the Wellcome Trust Sanger Institute and is the same data that was used to define the artemisinin resistant parasite population structure in Cambodia [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF]][Miotto O. et al., 2013]. Out of 293 full genome sequences from 2008-2011 due to new generation sequencing (NGS) techniques, 86 files submitted in raw SRF (Sequence Read Format) were not recovered as the procedure to convert SRF to BAM (Binary Sequence Alignment/Mapping) or VCF (Variant Calling Format) is not well established and 40 BAM files were corrupted or empty when converted to VCF. Therefore, 167 genome sequences were recovered successfully (Supplementary Table4) in BAM format and converted to much readable VCF v4.1 files [START_REF] Danecek | The variant call format and VCFtools[END_REF] using SAMtools v0.1.19 [Li H. et al., 2009]. The canonical strain Plasmodium falciparum 3D7 was used as the reference genome. The reference genome in FASTA file format was recovered from the PlasmoDB Plasmodium Genomics resource database. The reference genome used is the version 5.5 of the PlasmoDB release, which is P. falciparum genome sequence version 2. The 167 genome sequences originate from four locations: Pailin (14 sequences), Tasanh (26 sequences) and Pursat (81 sequences) in western Cambodia and Ratanakiri (46 sequences) in eastern Cambodia.

Filtering data for noise

A reliable variant calling pipeline was established for the identification of significant SNPs (Supplementary Figure S13). This analysis is focussed on non-synonymous SNPs in the coding region of the genome in at least one of the isolates and does not take insertion/deletion (INDELs) mutations into consideration. The single nucleotide polymorphism (SNP) data was filtered for noise based on the signal parameters provided in the VCF (v4.1) files. For identification of the thresholds of these parameters to filter the data, at first around 100kb were removed from starting and end of each chromosome corresponding to genome version 2. These 100kb regions at the extremity of P. falciparum chromosomes encode for multi-gene families, most of them encoding putative surface antigens (VAR, Rifin, Stevor etc.). An average value for all the signal parameters over the 167 genome isolates was calculated for each SNP. Average quality values for each SNP were defined as sum of the values in different isolates over the number of isolates having a non-reference allele. When the average quality values per position were plotted along the genome, a clear threshold in the mapping quality (MQ) parameter was observed at 29 (Supplementary Figure S14). Removing chromosome ends removed most of the signal below the score 29. Therefore, mapping quality score higher than 29 was considered as one of the filtering criteria. Many SNPs showed MQ ≤ 29 in the coding core of chromosome 4 and 7, as internal VAR gene clusters are present in these chromosomes. No other quality parameters plotted along the genome, with or without the telomeric regions showed any change in distribution on which a significant threshold could be defined. In order to select the SNPs with high quality (as described in VCF v4. 
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Table S4. List of all the isolates used for the analysis. This list provides the index of the sample, ENA accession number, locality, year of data collection, Sample ID, Study ID and the name of the file to be downloaded from the ENA database server. This list is sorted in alphabetic order of localities in Cambodia. This publication uses data and the meta information from the MalariaGEN Plasmodium falciparum Community Project as described in Genomic epidemiology of artemisinin resistant malaria, eLife, 2016 (DOI: 10.7554/eLife.08714). S7. Number of significant SNPs and the number of significant genes in each subpopulation compared to ancestral KH1.1 artemisinin sensitive subpopulation. Significant SNPs were described using one tailed Fisher-exact test. For each SNP the ALT frequency in each subpopulation was compared to the ALT frequency in KH1.1 (45 isolates) to calculate the p-value. SNPs with p-value ≤ 0.05 were considered as significant and the genes containing these SNPs are considered as the significant genes in each subpopulation.
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sequence the apicoplast genome was to make it available for the population studies and provide a complete reference genome for genome-wide analysis. This work was published as "Sequence and Annotation of the Apicoplast Genome of the Human Pathogen Babesia microti" in the PLOS One journal.

The lack of knowledge concerning B. microti diversity in the context of pathogenesis and host-pathogen interactions makes it difficult to understand the impact on its virulence, transmission to humans, and disease diagnosis and therapy. Also, there is lack of genetic diversity data, continuous in vitro cultures for parasite propagation and tools to identify gene function in microbial development and virulence.

After the complete genome sequencing and annotation of the reference B. microti R1 isolate genome, the idea was to sequence more genomes to better understand the drug susceptibilities of B. microti and define the population structure of B. microti in USA. B. microti reference genome (R1) was sequenced using Sanger methods to produce long reads. The sequencing of 7 new B. microti isolates was initiated and was aimed to proceed on the analysis, as was done in the case of P. falciparum (Chapter 3). The development of multiplexing approach decreased the genome sequencing price drastically. In above chapters we presented work on understanding P. falciparum population structure based on genomic data, and the idea was to proceed in the same way for B. microti.

The next project focused on sequencing seven B. microti isolates and resequencing of R1 isolate. I was involved in calling of variants, describing population structure in USA and identification of potential genes with significant variations, which could help in understanding the infection and population structure, as in the case of Plasmodium falciparum in Cambodia (explained in Chapter 2 and Chapter 3). Sequencing analysis was combined with transcriptomic analysis, and the secretome was shown to be different from those reported in malaria parasites. This information could be used for development of specific assay for detection of B. microti infection, as well as for antibody-based targeted therapy. This work is under review process and I briefly explain the parts of the projects that I was involved in and the problematic faced in section 4.3. The main focus of this study was the host-parasite interaction to identify targets for development of novel diagnosis assays and therapies for the treatment of babesiosis.

Supporting Information

In this study combination of RNAseq data, genomic variation data and antigenicity data was used for the identification of factors potentially involved in pathogenesis.

High-throughput genome sequencing of 7 B. microti isolates (Table 4.1) and resequencing of R1 isolate was performed using whole genome shotgun sequencing platform by the colleagues at Yale and Maryland University. The reads were aligned to the reference B. microti R1 genome using BWA tool. All nucleic acid material was obtained from the intra-erythrocytic life cycle stages of parasite propagated in rodents (Mice and Golder Syrian hamsters). RNAseq data was generated for six of the isolates using Illumina HiSeq2000 sequencer and the RNAseq reads were mapped onto the genome sequence with Bowtie. The re-sequencing of R1 genome and sequencing of the 7 isolates confirmed the smallest size of the genome among other apicomplexan with increased gene density [Cornillot et al., 2012, Cornillot et al., 2013]. For microsatellites, pairwise distance between the isolates is calculated as proportion of base substitutions between them over all substitutions and for differentially expressed genes it is calculated as the Euclidean distance. Wards minimum variance method is implemented in R for building the dendrogram. Conserved nodes are represented with a "*".

Secretome analysis

The secretome of B. microti is defined as a set of proteins predicted to be secreted outside the infected cell. The membrane proteome consists of proteins predicted to be located in the surface of the parasite and the infected host cell. All the analyses were performed with the new version of the B. microti genome annotation.

Intracellular proteins involved in cellular or nuclear trafficking were characterized based on orthology. A set of 547 genes 835 P. falciparum (MPMP database) genes encoding intracellular proteins were characterized based on orthology, which included components of the acidocalcisome, clathrine, COP1, COP2, ER, Exocytosis, Golgi, et al., 2013] for epidemiology studies, was a good choice, as most of the isolates were from western localities, which is considered the epicenter of drug resistance. The data from one locality in eastern Cambodia (Ratanakiri) was a good control, as artemisinin resistance was not found at that time in this region. In fact, none of the isolates were associated with clinical artemisinin resistance. The other contributing factor for the choice of this dataset was the time period of isolation of parasite genome, 2008-2011, which represents the early period of emergence of artemisinin resistance.

In the case of B. microti it was observed that the sampling was not significant to carry out a population study, as the samples were very less in number (only 7), and were from very different locations (even outside USA), and were cultured in different time periods and the hosts was not the same for the isolates. The study of B. microti population has also been facing an unexpected dearth of genetic diversity.

Post-Processing of genome sequencing data

The sequence data by Wellcome Trust Sanger Institute coming from four locations in Cambodia was made available in sequence alignment format (SAM/BAM) for most of the 293 samples and in SRF format for some of the samples. SRF files were not recovered, as the process to convert to VCF was not well defined and was time consuming. The SNPs used for population description and the correspondence between the isolates and the defined subpopulations were not available at the beginning of the project [START_REF] Manske | Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing[END_REF], Miotto et al., 2015]. The lack of sample metainformation lead to redefining the population structure. The choice of variants to study population structure is crucial.

The approach focused on calling variants based on the quality of the sequenced data. For conversion of BAM to VCF and calling of variants, SAMtools mpileup and bcftools programs were used. The other variant calling tools like GATK could have been used. There is no documentation suggesting the use of one tool over the other for calling variants in haploid data, but some discussion forums and reviews state that for the single sample haploid data analysis both the tools provide similar results [START_REF] Yu | Comparing a few SNP calling algorithms using low-coverage sequencing data[END_REF]. In SAMtools the variant calling is done considering haploid data as diploid data, so the genotype information could be wrong, but the variant calling is unaffected. In the scope of this study, as the variant calling is validated and show robust results, it would be interesting to use other tools and compare the results