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Introduction

0.1 Modelling of Social Systems

The science of complex systems describes systems composed of interacting units,
and infers macroscopic properties from these interactions. This concept is ex-
tremely successful in physics, where the statistical description of interacting
particles provide a microscopic foundation to macroscopic phenomena in ther-
modynamics. It applies to all many-body descriptions within physics, i.e. gases,
liquids and condensed matter, to fluids, as well as to molecular self-assembly
[74]. It also applies to many fields beyond it, such as genetics and language for-
mation [16], networks [7], biology [105], and social sciences [32]. In the latter,
applications range from trading behaviour in financial markets [65], urbanism
[13], segregation [83] to firm growth, which is the main focus of this thesis.
Obtained macroscopic results are for instance equilibrium prices [38], price vari-
ations [6], city size distributions [68, 109], or growth rate distributions [97, 19].
When decribing social systems in the complexity perspective, one main diffi-
culty is that several micro-specifications may exist, which explain equally well
some macroscopic result [32]. An even more profound difficulty when describing
a system of interacting humans is that they are typically heterogeneous.

“(...) Any modelling of social agents inevitably involves a large
and unwarranted simplification of the real problem. It is then clear
that any investigation of models of social dynamics involves two lev-
els of difficulty. The first is the very definition of sensible and realis-
tic microscopic models; the second is the usual problem of inferring
the macroscopic phenomenology out of the microscopic dynamics of
such models. Obtaining useful results out of these models may seem
a hopeless task. ”[24]

However, phenomena in complex systems are often unsensitive to the details of
the interactions which generate them, which allows that one can abstract from
them [24]. A factor contributing to the success of models for social phenomena in
the complexity perspective is that they can be validated on data more and more
easily, thanks to growing availability of data and advances in computer science
[41]. Besides this approach to formulate relatively abstract models, another
strand has developed to describe complex systems. “The second approach is to
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create more comprehensive and realistic models, usually in the form of computer
simulations, which represent the interacting parts of a complex system, often
down to minute details, and then to watch and measure the emergent behaviors
that appear.”[74] Both approaches are relevant for this work.

Also within the field of economics, the concept of modelling macrobehavior
as the result of interactions at an underlying level is widespread. Tacitly, it is
applied by any economic theory, in the sense that there is no doubt that macroe-
conomics results from human interactions. J. Epstein [32] formulates this for the
example of neoclassical price formation: “Whether they realize it or not, when
economists say “the market is at equilibrium”, they are asserting that this type
of dynamic “social neural net” has executed a computation – it has computed
P ∗, an equilibrium price vector. No individual has tried to compute this, but the
society of agents has done so nonetheless.” However, the transition between the
two levels cannot always be explained, and what can be called “micro-macro”
problem exists [90, 72]. One common way out of this is to assume that a repre-
sentative agent at the micro-level is performing some optimization task, which
was proposed as early as 1890 by A. Marshall [66]. Some consider this to be a
microfoundation, albeit one where interactions among units at the microlevel do
not provide an explanation of results at the macro-level. More explicitly, agent-
based models for economics have been advocated by Orcutt[77]; first examples
are so-called microsimulation models [11, 31]. Later, this strand of research
has become known as ‘agent-based computational economics’ [101]. The focus
lies on feedback between micro and macrobehaviour, and on sophisticated be-
haviour of agents that, in some models, are endowed with cognitive abilities.
Some examples of such models are presented in this thesis, whose aim is among
others the description of the feedback that causes business cycles. A limitation
of this strand of research remains that the models are very complicated, and
therefore difficult to describe and to analyze. Lately, agent-based models in
economics have been advocated because their two most common alternatives,
data-driven econometric-empirical statistical models and dynamical stochastic
general equilibrium models were found to have flaws [36].

0.2 Introduction to this work

Motivated by the aim of better understanding these feedback mechanisms, this
work started in the context of macroeconomic agent-based models, comprising
firms, households, a bank and possibly a state, which model the production
cycle. While building up a model similar to [21], it turned out that already a
much simpler model yields very interesting results. In that sense, the model in
this thesis is studied in two versions: once as an abstract mathematical model in
chapter 1, then as a more complete model. In chapter 1, related simple stochas-
tic growth models are presented in section 1.2. Next, the model is introduced.
A central assumption of such a simple setting is that firms have a homogeneous
expected profit margin, i.e. firms differ only in their size. These firms are in
competition, either for workforce, or for the purchasing power of households
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(section 1.3). In order to describe the model in the context of stochastic pro-
cesses, some preliminaries are recalled in section 1.4. In the following, (section
1.5) the model is analyzed theoretically. Results from this stochastic process
are a fat-tailed size distribution, a size-dependent growth rate variance, and
a tent-shaped growth rate distribution. In chapter 2, a more comprehensive
model is analyzed, which has additional features: margin heterogeneity, interest
payments to a bank, the possibility of failure, as well as an ageing process. The
introduction of these features is presented in a paper, followed by further anal-
ysis in the two successive sections. Where possible, the results are compared to
empirical studies of firm data. In addition, the extensions make it possible to
analyze the profit rate distribution, as well as typical life cycles of firms. The
dynamics with margin heterogeneity can be described theoretically by replica-
tor equations, which are derived in section 2.2. This heterogeneity modifies the
scaling of the growth rates’ standard deviation with respect to the simple model
in chapter 1, which is shown theoretically and numerically in section 2.3. With
these additional features, the model can be compared to different economic
models, which are presented in section 2.4. Relevant fields of economics are
notably evolutionary economics [85], stock-flow consistent models[47, 55, 40],
and some recent macroeconomic agent-based models like [21, 45, 87, 29, 26],
although the presented model remains simpler. Chapter 3 presents a working
paper where the age distribution of firms and bankruptcy statistics are pre-
sented and analyzed. It is the continuation of the analysis of the model, in
essence as it is introduced in chapter 2. These results allow for an extended
comparison to empirical studies. Results are for example the effect of financial
constraints on growth [35, 20], the empirical age distribution and bankruptcy
probabilities of firms [57, 27], and the theoretical and empirical results on the
sizes of bankrupt firms [79, 3]. These comparisons point out some limitations of
the model, which are discussed in section 3.2. Chapter 4 is thematically less re-
lated to the preceding chapters. It presents results of a collaboration, where the
existence of fat-tailed distributions in social systems has been exploited for the
purpose of hierarchical classification in machine learning. Chapter 5 concludes
and discusses strengths and weaknesses of the presented work.
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0.3 Contributions of this thesis

1. Description of the results of a model for firm growth in the context of
solutions of the Langevin equation

2. Identification of the problem of compatibility between a power law distri-
bution for firm size, and the standard deviation of a firm’s growth rate
scaling as σ ∝ n−β with firm size n.

3. Combination of a stochastic firm growth model with heterogeneity that
leads to relative growth of firms, described by replicator equations.

4. The description of bankruptcies theoretically and numerically, and com-
parison to empirical studies

5. Explanation of the presence of power laws in large web-databases and its
exploitation for machine learning purposes



Chapter 1

The model – Theoretical
Analysis

1.1 Introduction

In this chapter, a simple model for firm growth is presented. It is motivated by
some important stylized facts from relevant literature, regarding firm size distri-
bution, growth rate distribution and growth rate variance scaling. Since the firm
size distribution has been widely reported to follow a power law, some existing
theory on the formation of power laws is presented, which are widely used in
the field of complex systems. Further empirical evidence is that the growth rate
distribution deviates from a Gaussian distribution and is tent-shaped, and that
the growth rate variance is dependent on a firm’s size. These stylized facts are
reproduced by a simple agent-based model which is presented in this chapter,
albeit not with the correct scaling exponent.

This chapter is organized as follows. In section 1.2, some related work is dis-
cussed. 1.3, the model is introduced. In section 1.4, some preliminaries for its
analysis are recalled: the formation of normal distributions and power laws in
the framework of the Langevin equation, as well as in the framework of entropy
maximization. In section 1.5, the model is discussed theoretically in comparison
to existing theory. In section 1.7, numerical results of the introduced model are
provided and discussed. Some consequences of binning data are also discussed
here. Section 1.8 presents an alternative implementation of the model, which
yields a slightly different growth rate distribution. This is illustrated by numeri-
cal results. Section 1.9 presents a comparison with other scaling exponents than
the one resulting from this model, illustrated by simulations. In section 1.10,
the model is compared to two similar models from the literature. In section
1.11, a theoretical aspect of the model is discussed. Section 1.12 concludes and
points out possible extensions.

11
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1.2 Context of related work

Economic growth processes have been the object of active research since the
ground-laying work of R. Gibrat [46] who described growth as a multiplica-
tive stochastic process. By assuming that growth rates are independent and
identically distributed random variables, and by studying the time evolution of
the system, he obtained a lognormal distribution of company sizes, i.e. a heavy-
tailed distribution. The topic has since then attracted much interest [96]. Recent
empirical studies suggest that the firm size distribution follows a Zipf (power
law) distribution [18, 5, 76]. Various different models exist for the formation of
such distributions with power-law tails. In the context of firm growth, the well-
known model by H. Simon [89] explains a power law for firm size distribution
based on a process introduced by Yule [73]. In his model, the number of firms is
constantly growing in the system, and individual firms cannot shrink, i.e. they
grow continuously. The exponent of the power law depends on the frequency of
new firms, and approaches 1 if this frequency is low. However, the requirement
that the system has to grow continuously for the formation of a power law limits
its applicability [73, 44]. For systems of constant global size, which are the focus
of this thesis, models exist that explain the formation of fat tails by multiplica-
tive stochastic processes. Although for such systems with multiplicative noise,
no result of the generality of the central limit theorem exists [71], it has been
shown that the stationary distribution has a power law tail in the lowest order
approximation, if in addition additive noise is present[98, 15, 93, 64].

More recently, Stanley et al. [95] uncovered two empirical features that an
accurate theory on firm growth should explain. The first is that the growth
rate frequencies exhibit exponential (Laplacian) decay, i.e. it gives rise to a tent
shape in logarithmic scale. The second is that the variance of the growth rate
scales with company size n as σ(n) ∝ n−β . This means that the simple assump-
tions by Gibrat and others, who assume multiplicative noise to be independent
of firm size, are at odds with the data. The empirically determined values of
β (typically ≈ 0.2) depend on the studied system. A number of papers have
provided further evidence of these two findings in various growth processes: firm
growth [95] (β = 0.15), [75] (β = 0.18), [42] (β = 0.28), [86] (β = 0.3) (the lat-
ter authors also consider bird populations and mutual funds), a country’s GDP
growth [63] (β = 0.15), citations in scientific journals [78] (β = 0.22) and the
growth rate of crime [2] (β = 0.36). The multitude of examples suggest that the
process generating a tent-shaped growth rate distribution, a scaling exponent β
�= 0 for the growth rate standard deviation, and a fat tailed size distribution is
simple and universal.

A number of sophisticated models giving rise to a tent shaped growth rate
distribution have been proposed. They follow different approaches. Bottazzi and
Secchi [19] predict a tent-shaped (Laplacian) growth rate distribution as being
the result of a number of abstract shocks drawn from a Polya urn, without ad-
dressing the question of the standard deviation’s scaling exponent. In order to
obtain the scaling of the standard deviation, many models assume that firms
have an internal structure, i.e. they are composed of subunits [107, 42, 99]. In
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Schwarzkopf et al.[86], the probability that the firms’ subunits reproduce them-
selves follows a power law. As a result, the aggregated growth rate distribution
is tent-shaped with a power law decay: it is not a collective phenomenon but
holds at the individual level. Another interesting model [78] assumes that the
growth rate variance depends on the size of the elements (which are citations
in their case), and numerically obtains a fat-tailed size distribution. The tent-
shaped growth rate distribution is however not a result of the model but instead
a hypothesis at the individual level.

Most models explaining the tent-shaped growth rate distribution and the
variance scaling relation do not attempt to simultaneously explain the formation
of the fat-tailed firm size distribution. Rather, existing models for power law
tails via multiplicative noise assume the growth rate to be independent of the
firms’ size, which seems in conflict with a scaling exponent β �= 0. However,
there is empirical evidence for both a power law firm size distribution and a
scaling exponent β > 0 for the standard deviation.

This issue is addressed in this work, both theoretically and numerically with
a simple agent-based model comprising firms and employees. A distinction is
made between collective phenomena at the firm level and at the level of the
macroeconomy. In contrast to the models cited above, I investigate the hypoth-
esis that the same process accounts for the tent-shaped growth rate distribution,
its standard deviation’s scaling exponent β > 0 and the fat-tailed size distribu-
tion of firms.

1.3 The model

In this section, a simple firm growth model is introduced, and subsequently ana-
lyzed in the following sections. Chapters 2 and 3 build on this simple model with
additional features. In this first scenario, the agent-based model comprises firms
and workers, Nf and Nw, which are both constant numbers. Firms are charac-
terized by an expected profit margin µ = (expected sales-expenses)/expenses,
which allows them to determine the necessary amount of workers n in order to
produce a given quantity q of commodity goods. Goods are sold at a fixed price
p, workers earn a wage w. The expected margin of a firm i is defined as

µi =
qi p− ni w

ni w
. (1.1)

This relation allows a firm to calculate the neccessary number of workers in
order to produce a certain amount of goods,

n̂i = q̂i
p

w

�
1

1 + µi

�
, (1.2)

and inversely, to calculate how many goods it can produce with a given number
of workers:

qi = ni
w

p
(1 + µi) (1.3)
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The size of a firm i is defined as the number of its workers. In the follow-
ing, q̂i,t is the intended production quantity of firms, qi,t the actual produced
quantity, and qsi,t the sold quantity at iteration t. At each iteration, firms i hire
ni workers in a job market in order to produce a quantity of qi goods, which
are then sold in a goods market. Firms adjust the quantity q̂i they indend to
produce at time t based on the previously produced quantity qi,t−1, and on their
last realized profits:

q̂i,t = qi,t−1(1 + µn
i,t−1) , (1.4)

where µn
i,t−1 is the net realized profit margin

µn
i,t−1 =

qsi p− ni w

ni w
. (1.5)

It may be smaller than the expected margin µi. In order to be able to produce
this quantity, firms offer n̂i jobs (1.2)

n̂i = q̂i (1 + µi)
p

w
. (1.6)

The job market then opens, where open positions and available workers are
matched at random. Every open position has the same probability of being filled
by a worker, or in the case of too few jobs, every worker has the same chance of
being hired. After the job market, production takes place, where firms produce
qi goods according to equation (1.3). These goods are put in a goods market,
which follows the same algorithm as the job market: every produced good has
the same chance of being sold, or in the case of shortage of goods, every demand
has the same chance of being satisfied. This hypothesis, which is equivalent to
the microcanonical ensemble in statistical physics, is also used elsewhere in the
context of growth processes, albeit for internal firm structure [97, 107]1.

Throughout this chapter, the expected profits are assumed to be the same
for all firms. This is the simplest case of this model.2. The following two cases
are discussed separately:

(i) both workers and firms are consumers, who spend their salaries and their
profits in the goods market

(ii) only workers spend their salaries.

Firms compete for two limited resources, workforce and purchasing power of
customers. In case (i), purchasing power is sufficient and the limited resource
is workforce. In case (ii) only workers are consumers, firms compete for limited
purchasing power. Since the job market and the goods market are based on
the same algorithm, these two settings lead to the same evolution of firm size
distribution and growth rate distribution, but for clarity they are presented
separately in subsections 1.3.1 and 1.3.2.

1The concept of a statistical equilibrium in a market has also been applied to markets with
very different hypotheses. In section 2.4.3, this market is compared to the market setting by
[38] which equally exhibits a statistical equilibrium.

2A scenario with heterogeneous µi of firms is discussed in chapter 2.
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In case (i), aggregate demand is sufficient, firms sell their entire production,
i.e. qsi,t = qi,t and µn

i,t = µ, and demand a discrete quantity of n̂i workers,
proportional to their size

n̂i,t = ni,t−1(1 + µ) . (1.7)

Since µ > 0, firms attempt to increase their size, and the stationary state of the
system corresponds to full employment. In case (ii), not all goods qi,t are sold,
i.e. qsi,t < qi,t and µn

i,t < µ. As a consequence, the same number of workers will
be hired as in the previous iteration, and consequently the same total number
Qt of goods will be produced. In that case, firms demand less workers than
available, and do not compete for workforce.

1.3.1 The job market

In the job market, workers do not stay at their firm but are newly placed at every
iteration. Similar results would hold if only a (constant) fraction of workers of
each company were newly placed. In case (i), there is a workforce shortage, and
the allocation of workers gives rise to interesting dynamics: since the Nw (1+µ)
open positions are covered at random with Nw workers, the actual number ni,t+1

of employees hired by a firm i at time t + 1, is likely to be smaller than their
job offer n̂i,t = ni,t(1 + µ).

It can even be smaller than the number of employees ni,t in the preced-
ing period, which includes a situation where firms may receive no worker at
all and vanish. The number of active firms would decrease continuously, and
workers would eventually accumulate in a monopoly, which is avoided by the
introduction of new firms. To maintain Nf constant, extinct firms are replaced
by new ones3, initialized with a number of workers nnew

i,t drawn from a distri-
bution F(nnew). New firms contribute to the total demand for workforce in the
next period with the quantity n̂new

t = (1 + µ)nnew
i,t . Analytically, the matching

process in a market is described by a multinomial probability distribution. A
simpler description of the evolution of the system is obtained if the number
of workers is assumed to be conserved only on average: ��i ni,t� = Nw. The
probability for an open position to be filled then becomes

p =
Nw�
i n̂i

, (1.8)

where
�

i n̂i = (1 + µ)Nw +
�

i n
new
i . Since

�
i n

new
i � Nw, the probability

of a position to be filled is approximately p ≈ (1 + µ)−1. The probability for a
firm of size ni to receive ki workers in the next period is given by the binomial
distribution

P (ki|ni) =

�
n̂i

ki

�
pki(1− p)n̂i−ki , (1.9)

3It is also possible to re-insert firms at a constant rate, in which case the level of active
firms will become stationary after some time. In this chapter, a strictly constant number of
active firms is used, since this guarantees that all presented systems will be the same size.
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with mean �ni,t� = n̂i,t p = ni,t−1, which is precisely the number of workers of
firm i at the previous time step. The variance is n̂i p (1 − p) = niµ/(1 + µ)2.
With probability P (0|ni) = (1 − p)n̂i a firm does not receive any workers and
disappears.

For large ni, the binomial distributions may be approximated by Gaussian
distributions, whose variance exhibits the same n-dependence. Alternatively,
another implementation uses a different rounding method by which firms deter-
mine their job offer, such that the Gaussian distribution is a good approximation
even for small firms. It can be seen as growth of entirely independent subunits,
where subunits are jobs (see section 1.8). For both the alternative method and
for equation (1.9), the Gaussian approximation of the probability for a firm of
size ni,t to reach size ni,t+1 is written as

P(ni,t+1 = ki|ni,t) =
1

σi,t

√
2π

e
− 1

2

�
ki−ni,t

σi,t

�2

, (1.10)

where the mean has been replaced by its value ni,t, and σ2
i,t = ni,t

µ
(1+µ)2 = c ni,t.

If the growth rate of a firm is defined as

gi,t =
ni,t+1

ni,t
, (1.11)

equation (1.10) yields for the growth rate probability density G (dropping the
index t):

G(gi|ni) =

�
ni

2π c
e−

1
2

ni
c (gi−1)2 , (1.12)

where c = µ/(1 + µ)2 for the binomial approximation4. Thus, in the present
model, the scaling exponent β of the growth rate’s standard deviation is defined
through

σ(n) ∝ n−β , (1.13)

and has the value β = 0.5. This value for β is a general feature of models that
explain firm growth as being the sum of the growth of independent subunits. In
other published models, subunits often represent the sectors in which the firm
is active [75, 97, 107]; in this model these are jobs. Other values for β and the
corresponding empirical evidence are addressed in section 1.9.

1.3.2 The goods market

In scenario (ii), firms do not spend their profits in the goods market. Aggregate
demand D =

�
j dj consists only of the wages which are paid to the j employees.

A quantity
�

i qi,t p is produced, but the demand, i.e. the overall wages paid to
workers are

Dt =
�

i

ni,t w =
�

i

qi,t p
1

1 + µ
. (1.14)

4For the rounding method detailed in section 1.8, this constant is 2µ
(1+µ)2
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It is clear that the aggregate sales
�

i q
s
i,t p is smaller than the production Qt =�

i qi,t p, since in this scenario workers are the only consumers. Then, the
probability for a produced good to be sold becomes

v =
Dt

Qt
=

�
i qi,t p

1
1+µ�

i qi,t p
=

1

1 + µ
, (1.15)

which is the analogon to equation (1.8). Unsold goods are lost, they cannot
be stored and put in the market in following iterations. Since every good has
the same chance of being sold, the allocation of demand also follows a binomial
distribution

V (qsi |qi) =
�
qi
qsi

�
vq

s
i (1− v)qi−qsi . (1.16)

Again, this binomial distribution can be approximated with a Gaussian for large
q. It becomes

V(qsi,t+1 = ki|qi,t) =
1

σi

√
2π

e
− 1

2

�
ki−q̂i,t

σi

�2

. (1.17)

On average, each firm sells a quantity
�
qsi,t

�
= qi v = w

p ni,t. Therefore, their

average realized profit is
�
µnet
i,t

�
=

�qsi,tp�−ni,tw

ni,tw
= 0. In the next iteration, firms

will demand �n̂i,t+1� = ni,t, and since there is no competition of workforce,
�ni,t+1� = ni,t. The average quantity of sold goods can be expressed in terms
of the previously sold quantity:

�
qsi,t

�
= qi v = w

p ni,t =
w
p

�
ni,t−1(1 + µnet

i,t−1)
�
=

w
p

�
ni,t−1(

qsi,t−1

ni,t−1 )
�

=
�
qsi,t−1

�
. Thus, on average, firms stay constant in size,

both measured in terms of employees, and in terms of sales. The growth rate
can be written as

gi,t =
ni,t+1

ni,t
(1.18)

or equivalently as

gsalesi,t−1 =
qsi,t

qsi,t−1

. (1.19)

This yields the growth rate probability density

G(gi|qsi ) =
�

qsi
2π c

e−
1
2

qsi
c (gi−1)2 , (1.20)

with c = µ
(1+µ)2 , where the standard deviation of the growth rate scales as

σ(q) ∝ q−β , (1.21)

with β = 0.5, as in the job market competition scenario.
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1.4 Preliminaries for analyzing the dynamics

In the following, the dynamics of the model is analyzed. Iteration of scenarios
(i) or (ii) each result in the same fat-tailed size distribution, which is however
not a Zipf law (i.e. a power law with exponent α=1). In order to be able to
describe it, some existing theory on the formation of power laws is introduced.

1.4.1 Brief introduction of existing models and power laws

Since in the literature, firm growth has often been associated with the formation
of power laws, they are briefly introduced here. A power law distribution of a
variable x is characterized by a density

p(x) ∝ x−α−1 (1.22)

Since this density diverges at the origin, its integral is often used,

P (x ≥ x�) = x−α (1.23)
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Figure 1.1: Examples of counter-cumulative size distribution and density of the
same power-law distributed data.

It is more precise to plot the counter-cumulative size distribution of data in
order to verify whether it is power-law distributed, since for the density, data
needs to be grouped into bins, where some information gets lost. Besides these
two, a more precise method is the use of a rank-1/2-estimator [18, 73], which
has not been applied yet to the presented results.

Power laws are an ubiquituous phenomenon in complex systems and are
found in physical, biological and in particular social systems, which are studied
more in detail in this thesis. They occur for instance in phase transitions of
physical systems, in a blood vessel system of mammals, as well as in the dis-
ributions of firm sizes, city sizes, income, or stock market fluctuations (see for
instance [15, 105, 95, 18, 5]). Different mechanisms exist which can generate
them [70, 73], but for this thesis only explanations with some sort of multi-
plicative noise are relevant. A model for the formation of power laws (originally
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formulated for the genera size distribution of biological species) was introduced
in 1925 by U. Yule [108]. However in the following, the focus lies on explana-
tions for systems of constant size, since these are more apt for a comparison to
the model studied in this thesis.

1.4.2 The Langevin equation

The Langevin equation was introduced by P. Langevin in 1908 in order to de-
scribe Brownian motion of particles in a fluid [62]. In its linear form in discrete
time, it can be written as

nt+1 = gtnt + ξ . (1.24)

If g is a damping constant < 1 and ξ a stationary noise term, this equation is
solved by a normally distributed function ρ(n). This is for instance used to de-
rive Boltzmann-Gibbs statistics for particles in an ideal gas: If n is identified as

the momentum of particles p, the distribution of the energy E = p2

2m of free par-
ticles decays exponentially. The Langevin equation has also been widely studied
where g is a multiplicative noise term, e.g. by [84, 98, 9, 15] who give examples
from physics and chemistry, where the interpretation of the multiplicative noise
are fluctuations of an external field. This explanation has also been applied to
the formation of firm size and city size distributions [109, 68, 43], as well as to
income distribution (e.g. [25, 58]). A variable n whose evolution is described by
equation (1.24) exhibits a stationary distribution with a power law tail, in the
presence of a multiplicative noise term g and an additive noise term ξ. n may
be a continuous variable or, as in the context of firm growth, discrete, denoting
the size of a firm i from an ensemble of firms. The existence of a stationary
distribution with a power law decay can be derived from an equation in discrete
time (1.24) or continuous time (1.31). In the following, two formalisms taking
different approximations are presented.

1.4.3 Derivation via the master equation

Gabaix [44] shows the existence of power laws for a city size distribution based
on an argument by Champernowne in 1953 [25] and developed rigorously by
Kesten [56]. The counter-cumulative size distribution, which is the probability
that a firm i is bigger than a value x, is defined as Ht+1(x) = P (ni,t+1 > x).
Its evolution in one timestep, without additive term ξ, can be written as

Ht+1(x) = P (ni,t+1 > x) = P (gi,tni,t > x) = P

�
ni,t >

x

gi,t

�
(1.25)

=

� ∞

0

Ht

�
x

g

�
G(g)d g , (1.26)
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where G(g) is the distribution of the growth rate g. In a stationary state,
Ht+1 = Ht, so the relation becomes

H(n) =

� ∞

0

H

�
n

g

�
G(g)d g . (1.27)

For the distribution H(n), [44] and [84] show that a trial function H(n) = c/nα

(c = const) yields the following relation for the noise g: 1 =
�∞
0

gαG(g)dg which
is

E[gα] = 1 . (1.28)

This holds, however, only if such a stationary state exists, which is only the
case if additionally some additive noise ξ is present. Takayasu et al. [98] equally
derive equation (1.28). He derives the fact that the stable distribution has a
power law tail at its lowest order, i.e. H(≥ n) = c/nα, from the condition of
continuity of its characteristic function (i.e. its Fourier transform). However,
the additive term ξ in (1.24) is needed for the system to achieve a stationary
state where H(x) follows a power-law distribution. For systems of constant
global size, where the additive term is small, the noise distribution G(g) is
centered around a value close to 1, so �Ht+1� = �g� �Ht�, so �g� = 1. For such
noise, equation (1.28) yields α = 1, which is called the Zipf law. Applied to
firm growth, possible interpretations are that the additive term ξ prevents firms
from becoming too small, or that some firms are continuously being started and
compensate firms that become smaller than a threshold and exit5. Since power
law distributions are conserved under addition of a faster decaying distribution
[44], the presence of additive noise does not affect the power law exponent.

A model for firm growth consisting only of multiplicative noise was intro-
duced by R. Gibrat in 1931 [46]. Since a stabilising additive term is absent,
it does not yield a stationary distribution. His model supposes that the noise
can be written as gt = 1+ �t, where �t is uncorrelated noise. Iterating equation
(1.24) over m timesteps in absence of additive noise yields,

nt+m

nt
=

m−1�

t=0

(1 + �t) (1.29)

Taking the logarithm of equation 1.29,

log
nt+m

nt
=

m−1�

t=0

log(1 + �t) , (1.30)

the right side of equation 1.30 can be approximated as
�m−1

t=0 �t, which is nor-
mally distributed due to the Central Limit theorem. For the growth rate nt+m

nt
,

this yields a lognormal firm size distribution, whose variance grows over time
[43]. A number of later models have used and built on this model [71, 48, 52,

5If firm size is discrete, this can simply mean that firms which have reached size ni = 0
are replaced.
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54, 53] As derived in [27] and detailed further in chapter 3, the dynamics of
the model by Gibrat are compatible with a stationary power law-decaying size
distribution if new firms enter the system, such that an exponential age distri-
bution is assumed. This amounts to assuming an additive noise term ξ �= 0.
This ξ has a positive mean for the firms of size 0, but for the entire system it
can have a mean of 0 or > 0.

1.4.4 Derivation via the Fokker-Planck equation

The existence of power laws in a stationary state can also be derived by solving
the Fokker-Planck equation instead of the master equation [84, 17, 15]. Here
the derivation by Biro and Jakovác [15], who study the Langevin equation in
continuous form, is detailed:

ṅ+ γn = ξ (1.31)

with a multiplicative noise term γ and additive noise term ξ 6. In their deriva-
tion, γ is assumed to be white noise of mean �γ(t)� = G and autocorrelation
�γ(t)γ(t�)�−�γ(t)� �γ(t�)� = 2Cδ(t−t�). The additive noise has mean �ξ(t)� = F
and autocorrelation �ξ(t)ξ(t�)�−�ξ(t)� �ξ(t�)� = 2Dδ(t−t�). The cross-correlation
between the two noises is �γ(t)ξ(t�)� − �γ(t)� �ξ(t�)� = 2Bδ(t − t�). To derive a
differential equation they apply a method of multiplying the distribution f(n, t)
by a trial function R(n), which they expand until the second order of n, valid
in infinitesimally short timescales. Keeping only linear terms in dt they derive
a Fokker-Planck equation, which is solved for the stationary state, as also done
by [17, 106]. The idea of this method is that in short timescales, the variable n
cannot vary very widely. It has been introduced by [104] originally to derive the
Gaussian distribution as the stationary distribution of Brownian motion. Here,
it leads to the Fokker-Planck equation

∂f

∂t
= −∂(F −Gn)

∂n
+

∂2((D − 2Bn− Cn2)f)

∂n2
, (1.32)

whose general solution for the distribution f(n) is

ln
f(n)

f(0)
= −

�
1 +

G

2C

�
ln

(D − 2Bn+ Cn2)

D
− GB

C − F√
CD −B2

atn

�√
CD −B2 n

D −Bn

�

(1.33)
where atn is the inverse tangent function. This has been solved in two limits:

1. In the limit C=B=0, which means the absence of multiplicative noise
γ (and absence of the cross-correlations of the noises). The last term
vanishes since the argument of the inverse tangent function (1.33) becomes
zero. The derived solution for f(n) is

f(n) = f(0)e−
G
2Dn2

e
F
Dn , (1.34)

6Compared to the discrete equation (1.24), the multiplicative term g corresponds to 1− γ
here.
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which is the Gaussian distribution and which simplifies to f(n) = f(0)e−
G
2Dn2

without drift (F = 0). If n is thought of as the momentum of particles,
this solution corresponds to a Gaussian distribution of the momentum of
free particles. This in turn leads to the Boltzmann-Gibbs statistics for gas
particles for n2.

2. In the limit D=B=0, which is the case of pure multiplicative noise and
corresponds to a large argument of the inverse tangent function in equation
1.33.

f(n) = f(0)n−2−G/Ce
F

C|n| , (1.35)

which is a Gamma distribution in 1/n and has a power law tail.

The Fokker-Planck equation (1.32) has also been derived by [81], who solve
it in a different way: they show that by choosing trial functions in a specific
way, the equation reduces to one that describes random walk for a variable in a
specific potential field. The solution of this reduced equation is an exponential
decaying distribution, as is the case the with Boltzmann formula. Through the
retransformation of the continuous Langevin equation to the original variable n,
the Gamma distribution is derived. Other approaches leading to these results
are [94] and [67].

1.4.5 The relationship between multiplicative noise and
entropy

Power law distributions in a system can be the result of long-range interactions
of its elements, as is the case in phase transitions [80]. These states are not
stationary states, and only with some additional additive term will the system
stay in that state. However, a power law distribution can be an attractor of
the dynamics, such that a system may in practice never leave it [37]. Instead
of deriving a stationary distribution from the dynamics of the system, another
possible way is to derive it from extremality of an entropy function, taking into
account constraints on the degrees of freedom. Its idea is that in a stationary
state, the system is as random as possible under these constraints [8]. For in-
stance, the normal distribution, which is the stationary distribution of equation
(1.31) with additive uncorrelated noise and a multiplicative factor γ < 1, can
also be derived from the extremality of the Gibbs-Shannon entropy

S(G)({pi}) =
�

i

pik log pi (1.36)

where k is a constant, under the constraint
�

i pi = 1 and
�

i Hi pi = E are
conserved, where Hi ∝ p2i :

∂

∂pi

��

i

pik log pi − λ

��

i

Hipi − E

�
− η

��

i

pi − 1

��
= 0 , (1.37)
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where λ and η are Lagrangian multipliers. It is solved by

pi = e[−
λ
kHi+( η

k−1)] (1.38)

If Hi ∝ p2i , pi is normally distributed, like the solution (1.34) of the Fokker-
Planck equation. This derivation corresponds to the canonical ensemble. The
probability pi in equation (1.38), if written as a function of energy Hi ∝ p2i ,
is called the Boltzmann factor of a particular energy state, B(p2i ) = B(Hi) ∝
e−βHi .

Analogously, the stationary state of a system with multiplicative noise can
be explained by the extremality of a different entropy function than the Gibbs-
Shannon entropy, which becomes extremal for equilibrium systems.

[15, 106] showed that the solution for the Fokker-Planck equation (1.32) with
large multiplicative noise yields a Gamma distribution for n (equation (1.34),
and, as distribution for a quantity Hi (∝ n2

i ):

pi = f0

�
1 + (q − 1)

Hi

T

� q
1−q

. (1.39)

This distribution is termed q-exponential distribution, since it is the analogon
to an exponential distribution (1.38) resulting from the maximum of the Gibbs-
Shannon entropy. In physical applications, H corresponds to energy, and T to
the temperature of a system. In [15], the exponent q is identified as q = 1+ 2C

G ,
where C is the variance of the multiplicative noise, and G is its mean value. The
same distribution can be derived from extremality of the Rényi entropy S(R)

[82]:

S(R)({pi}) =
q

q − 1
log

�

i

p
1/q
i , (1.40)

which becomes extremal when pi is Gamma distributed, exhibiting a power
law tail. When exhibiting this distribution, the system is as indeterminate as
possible. In order to derive the distribution (1.39), the derivative of equation
(1.40) with respect to pi is set to zero, again under the constraints that the
quantities 1 =

�
i pi and E =

�
Hipi are conserved (see for instance [8]7).

Alternatively, equation (1.39) can also be derived from the nonextensive Tsallis
entropy, which is equal to the linear expansion of the logarithm in the Rényi
entropy (1.40). Other derivations of the parameter q from the dynamics of the
system have been derived by [9, 106]. In the limit q → 0, which corresponds to a
vanishing amplitude of the multiplicative noise, both the Rényi entropy and the
Tsallis entropy become the Gibbs-Shannon entropy. To summarize, extremality
of the Gibbs-Shannon entropy under the constraint of a conserved quantity
yields a Gaussian distribution for n, so the Gibbs-Shannon entropy corresponds
to solution (1.34) of equation (1.33), and the Rényi entropy to solution (1.35).

Although a lot of empirical evidence has been reported, a question remains as
to why the Rényi entropy is the appropriate function that becomes extremal for a
system with multiplicative noise. This entropy function was introduced by Rényi

7[8] uses the convention q� = 1/q of the parameter q presented here
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[82] as a function of a generalized probability distribution that satisfies an axiom
of additivity for entropies of independent degrees of freedom. Bashkirov [8]
gives an intuitive interpretation of its definition in the context of physics: Since
a nonequilibrium system exchanges entropy with its environment, he proposes
the construction of a new function, which is the cumulant generating function
of the Gibbs-Shannon entropy

ψS(λ) = log
�

i

eλS
(G)
i (1.41)

Multplied by a factor 1
1+λ , i.e. the Rényi entropy is obtained SR = 1

1+λ log
�

i e
λS

(G)
i

≡ log
�

i p
λ
i . The factor guarantees that for λ → −1, the Rényi entropy becomes

the Gibbs-Shannon entropy again. His reasoning follows an analogy to the way
the free energy F = −kT log

�
i e

−Hi/(kT ) =
�

i piHi = U can be constructed
from the internal energy, where F is extremal in equilibrium thermodynamic
systems that can exchange heat with their environment.The temperature T is
the parameter needed for the passage from a mechanical equilibrium to a ther-
modynamic equilibrium. [8] draws a comparison from T to the parameter λ
which is needed to describe a system which can exchange entropy with its envi-
ronment.

1.5 Theoretical Analysis

1.5.1 Discussion on additive and multiplicative noise

Additive and multiplicative noise terms in the Langevin equation lead to dif-
ferent stationary size distributions, which have been described in section 1.4.4,
where results of the corresponding Fokker-Planck equation are given. It is illus-
trated with numerical simulations of both systems in figures 1.2 and 1.3. If f(n)
is thought of as the firm size distribution, additive fluctuations tell the absolute
change in size of a firm, and multiplicative fluctuations tell the ratio by which
a firm’s size has changed, i.e. they are relative fluctuations. These two have
different n-dependencies, which are both different to the n-dependency of the
model introduced in section 1.3. n-dependency of the standard deviation of ab-
solute and relative fluctuations are compared for additive noise, multiplicative
noise and the introduced model in table 1.1.

For the introduced model, the time evolution of the firm size distribution
cannot be described by equation (1.24), where g and ξ are drawn from distri-
butions independent of n. Here, the standard deviation σ of the noise depends
on n. It may either be written as additive Gaussian noise with σadd ∝ √

n

nt+1 = nt + ξ(
√
n) , (1.42)

where ξ is Gaussian with σ ∝ √
n, or as multiplicative Gaussian noise with

σmult ∝ 1√
n
,

nt+1 = g(
1√
n
)nt (1.43)
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σ of σ of stationary
relative fluctuations absolute fluctuations size distribution

purely
additive noise ∝ 1/n const Gaussian

purely
multiplicative noise const n Power law

studied model ∝ 1/
√
n ∝ √

n Fat-tailed

Table 1.1: Different n-dependencies for additive and multiplicative noise in com-
parison to the one from the introduced model.

where g is Gaussian with σ ∝ 1√
n
noise. Formulation (1.43) has been chosen for

the equations (1.12) and (1.20). It corresponds to a more complicated stochas-
tic process that has unfortunately not yet been solved analytically. Also in the
literature, only few solutions for more complicated processes exist [84]. A dif-
ferent process whose noise has the same n-dependency as this model is treated
in [68], and discussed further in section 1.11.

Comparison of the noises in a different formulation. This technical
reflexion is useful for the description of the fluctuations of the studied model.
Systems with multiplicative noise can not be described as maximizing the Gibbs-
Shannon entropy, as described above. The probabilities of particular states are
not Gaussian distributed, and their squares are not exponentially distributed,
i.e. they are not described by Boltzmann factors of the form B(H) ∝ e−βH .
However, it is possible to re-formulate equation (1.31) such that multiplicative
noise is expressed in terms of some additive noise which follows a particular,
non-Gaussian distribution f(ξ̂). This equivalent additive noise then exhibits a
different n-dependence (see table 1.1):

nn+1 = gtnt = nt + (gt − 1)nt ≡ nt + ξ̂n (1.44)

This additively written noise ξ̂n contains information on the absolute fluctu-
ations of n, but it remains n-dependent. It is possible to express the noise
distribution in terms of B(H), where integration over n of f(ξn) is performed
and yields B(H) =

�
ρ(n)e−f(ξn)Hdn. This B(H) is a distribution independent

of ξn, which may be thought of as the analogon of firm size distribution in the
studied model. Beck and Cohen [10] describe such a system by introducing a
generalized Boltzmann factor B(H), where the integration is done over inverse
temperatures β. They call the concept superstatistics, i.e. statistics of statistics.

The concept of mapping the noise and performing an integral over a n-
dependency is used to explain the results of the model introduced in section 1.3.
The difference is that for the firm growth rate in the model, it is not absolute
fluctuations that are relevant, but relative fluctuations, which is why the noise is
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expressed in terms of multiplicative noise. It will be discussed further in section
1.11, after numerical results have been provided.

1.5.2 The growth rate probability distribution

Figure 1.8 shows that despite the normally distributed G(g|n), the aggregate
G(g) exhibits a tent-shape. The n-dependence (equation 1.13) is the reason
why the growth rate distribution of G(g|n) is wider for small firms and more
narrow for big firms. All firms contribute to the aggregate G(g) and the growth
rate distribution for the Nf firms can be written as

G(g) = 1

Nf

Nf�

i=1

G(gi|ni) , (1.45)

or, in the continuous limit:

G(g) =
� ∞

0

dnG(g|n)ρ(n) , (1.46)

where ρ(n) is the firms’ size distribution. Since so far no analytical expression
for the simulated size distribution of this model is derived, we evaluate the
integral as an approximation for power-law size distributions of exponent α.
For firms’ size distributions ρ(n) ∝ n−α−1 and scaling exponents β = 0.5 the
integral yields

G(g) ∝
� ∞

0

n0.5 1

nα+1

1√
2π

e−
1
2n (g−1)2dn , (1.47)

which yields 1√
π
2−α (g − 1)2α−1Γ

�
1
2 − α

�
for α < 0.5 and simplifies to G(g) =

1
|g−1| for α = 0. Since ρ(n) is not a normalized probability density, (1.47) is not

defined at g = 1 unless if integrated from a minimal size n0 > 0 instead of 0.
In that case, it is defined for α < 0.5 for any g, albeit it is not a normalized
probability density. However its tent-shaped form explains the form of the
numerically obtained growth rate probability density. Numerically, the number
of firms is discrete, so (1.45) is performed, which is always finite at any value of
g, independently of n0. Integral (1.47) can be generalized to values of β other
than 0.5, which is interesting since empirical values are α ≈ 1 and β ≈ 0.25.
The smaller is β , the less peaked G(g), which is intuitive, since if β = 0, the
result is a Gaussian G(g).

Notice that the shape of G(g) is not very sensitive to the underlying size
distribution: equation (1.47) yields an approximate tent-shaped G(g) even for
exponential decay of ρ(n). This suggests that despite the fact that the size dis-
tribution in the proposed model deviates from a Zipf law, the idea of performing
integral (1.46) explains the observed tent-shape well.

In the literature, the principle of performing this integral has been used in
the model by [42] to obtain a tent-shaped growth rate distribution of a single
firm. Other models [95, 63, 19, 78] do not perform the integral and do not clearly
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distinguish between the growth rate probability at firm level and at aggregate
level. Both are fitted with a Laplacian distribution. The necessity to perform
the integral in equation (1.46) is however independent of the assumed G(g|n).
The functional form of G(g) yields an approximate 1/|g−1| tent-shape for both
Laplacian and Gaussian G(g|n). If it is integrated from a size cutoff, for low
values of β , Laplacian G(g|n) yield a more peaked aggregate G(g). Since the
growth rates typically have values close to 1, empirical evidence can often be
fitted equally well with a Laplacian (centered around 1) and a 1/|g−1|-function.
However [42] find that the tails of the tent-shape exhibit power law decay rather
than exponential decay of a Laplacian, substantiating the argument presented
here.

1.6 Numerical implementation

Some general technical details are given here. Parameters are found in the figure
captions.

1.6.1 The sequence of events

At each iteration, the following events happen:

1. production decision: q̂i = qi,t−1(1 + µnet
i,t−1)

2. hiring decision: n̂i,t =
p
w q̂i,t

1
1+µi

3. job market: ni,t is determined.

4. production: qi,t =
w
p ni,t(1 + µi)

5. goods market: qsi,t is determined.

6. µnet
i,t is calculated.

7. firms of size 0 are replaced by one of a size drawn from a distribution.

This also holds in the extended model described in chapter 2, where ad-
ditional functions are present. A schema is shown on page 4 of publication
1.

1.6.2 Rounding method

In equation (1.4) q̂ (and also n̂) are not necessarily integer numbers and round-
ing is needed. In order to minimize rounding errors, the following method is
introduced:

Let kn̂ ∈ [0, 1] be

kn̂ = [n(1 + µ)]− �n(1 + µ)� (1.48)
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Rounding is then done using kn̂ as a probability:

n̂ =

�
�n(1 + µ)� with probability kn̂

�n(1 + µ)� with probability 1− kn̂
(1.49)

This minimizes the rounding errors from discretization. This rounding method
implies that it is possible for small firms to grow with a rate g > (1+µ): a firm
of size 1, which sold its entire production, demands (1 + µ) workers in the next
iteration, which may be rounded to 2 with a probability of k1+µ = µ.

1.6.3 Additive term ξ in scenarios (i) and (ii)

In scenario (i) where firms consume, and (ii) where firms do not consume, newly
introduced firms affect the system in slightly different ways. In both scenarios,
new firms contribute to the job offer

�
j n̂

new
j

N̂ =
�

i

n̂i +
�

j

n̂new
j (1.50)

− In scenario (i), the stationary state is at full employment, and only a
fraction p = Nw

N̂
of positions will receive a worker. This p will be slightly

lower than 1
1+µ whenever a new firm is started.

− In scenario (ii), all positions are filled, so additional job offers cause an
increase in workforce (i.e. decrease in unemployment) by Nnew

�
j n

new
j

workers. Therefore, the next production would be higher, and if iterated
many times the system would tend towards full employment. In order to
avoid this, the job offer of entrant firms Nnew is subtracted from existing
firms. This is implemented such that every job offer of existing firms has
the same chance of being eliminated. The result is that the job offer at
iteration t + 1 also equals the job offer at iteration t when new firms are
started. This means that the additive noise ξ, if considered for the entire
system, has mean 0, since it does not change the size of the system, but
merely shifts some workers from existing firms with ni > 0 to firms with
ni = 0.

The latter method is also used in the simulations of the similar model by
Marsili and Zhang [68], shown in figures 1.14 and 1.15. It is not used in the
extended model in chapters 2 and 3, where unemployment can evolve freely.

1.7 Numerical Results

Although the following two approximations do not correspond to the model in-
troduced in section 1.3, I simulated for comparison systems with purely additive
noise (figure 1.2) and multiplicative noise (figure 1.3). Only a small additional
term ξ has been present in order to keep the system at constant global size.
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Since the elements (firms) are discrete, rounding towards discrete values has
the role of additive noise. In the following subsections, the results of the model
are presented.
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σ=0.1
σ=0.2

Figure 1.2: Density of the size distribution of a system with purely additive
uncorrelated Gaussian noise of mean zero, and absence of a multiplicative term.
Simulations of two different standard deviations, on a log-linear scale. In this
scale, a parabola corresponds to a Gaussian distribution. Nw = 105, Nf = 103.
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Figure 1.3: Numerical counter-cumulative size distributions of the Langevin
equation (1.24), with multiplicative noise, which is uncorrelated and normally
distributed. In this double logarithmic scale, a straight line corresponds to a
power law. The smaller the variance of the noise distribution, the slower the
convergence, and even after convergence the distribution remains concave. This
is because rounding towards discrete values modifies the growth rate, such that
it resembles additive noise. The smaller σ, the stronger this effect is. Results
are from a system with 104 firms and 5 · 105 workers, after 4000 iterations.
Whenever an element reached size 0, it was replaced by one of average size 1.5.
The result is not sensititve to the size of re-initialisation.
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1.7.1 Size distribution

In figure 1.4, typical examples of the time evolution of a scenario where the
only constraint is limited purchasing power in the goods market are shown. To
keep the system at constant global size, firms that reached size 0 were re-started
n ∈ [1, 2] (1.5 on average), by the method detailed in appendix 1.6.3. Compared
to simulations of systems with multiplicative noise, simulations of this model
take much longer to approach a power law, whose exponent is α ≈ 0.7, which
is much lower than the exponent 1 of a Zipf law. α = 1 is the lowest exponent
that is found with multiplicative noise (see figure 1.3). This flatter power law
decay has been found for different values of µ in the range 0.05 ≤ µ ≤ 0.2. As
shown in successive snapshots in figure 1.4, it is not stationary. The higher µ is,
the faster the system converges to it, but the faster the system leaves it again
too.

Typical size distributions for different values of µ are shown in figure 1.7,
which remain stable over a long period. The observed effect is that the higher µ
is, the closer the result approaches a power law. The interpretation is that for
small µ, the rounding introduced by equation (1.49) modifies the actual planned
production q̂i more than the multiplication by (1 + µnet

i,t−1). The modification
through rounding can be regarded as additive noise rather than the noise with
σ ∝ n−1/2- scaling. Indeed, the smaller µ is, the less the size distribution
fluctuates. This effect is stronger for smaller systems, as the comparison of
systems with 2000 and 10000 firms has shown (see figure 1.4).
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Figure 1.4: Two examples of the evolution of firm size distribution, between
3000, and 10000, steps of convergence. Left column: µ = 0.1, right column:
µ = 0.2. The power law exponent is < 1. Extinct firms are replaced by one
of size n ∈ [1, 2] with the method detailed in appendix 1.6.3. For a value of
µ = 0.05, the size distribution can be fitted with a power law of exponent ≈ 0.7,
too, but the tail stays concave and does not converge to it (see next figure).
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Figure 1.5: Same setting as the simulations shown in 1.4, but with µ = 0.05.
The size distribution stays more concave.
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Figure 1.6: Example of the evolution of firm size distribution, between 5000 and
7300, steps of convergence. µ = 0.1, for scenario (i) where the firms compete
for workforce. The power law exponent is < 1. Extinct firms are replaced by
one of size n ∈ [1, 50]. The obtained size distribution does not seem to depend
on whether scenario (i) is used, or (ii) as in figure 1.4.
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Figure 1.7: Firm size distribution after 5000 iterations for a system of 2 · 103
firms and 9 · 104 workers for different values of µ. Whenever a firm has attained
size 0, it is replaced by a firm (a) of size from the interval [1, 2], or (b) of size from
the interval [1, 50], yielding very similar results. The larger µ is, the closer the
distribution approaches a power law after the same time. In these simulations
firms do not consume, i.e. the system’s only constraint is that demand for
goods is lower than production, but workforce availability is sufficient (scenario
2 detailed in section 1.3.2). Growth rates are binomial (the method in section
1.8 is not used).
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1.7.2 Growth rate probability distribution

 1

 10

 100

 1000

 10000

 0.7  0.75  0.8  0.85  0.9 0.95  1  1.05 1.1 1.15 1.2 1.25 1.3

n
u

m
b

e
r 

o
f 

c
o

m
p

a
n

ie
s

growth rate

(a)

Figure 1.8: growth rate distribution with rounding detailed in 1.8, in a system
with full employment, where the only constraint is workforce availability. 104

firms, 106 workers.

Figure 1.8 shows the tent-shaped growth rate distribution. Its explanation,
detailed in 1.5.2 uses a superposition of Gaussian G(g|b) of n-dependent standard
deviation. Small firms have larger σ, which is why they account for the ‘fat tails’,
whereas big firms dominate in the peak of the growth rate distribution.

Artefacts from binning Some effects arising from binning data are ad-
dressed here. Empirical data in [95, 63, 97, 78] exhibits tent-shaped growth
rate distributions of different widths depending on firms size (or country’s size
or citations respectively). For all of these, a Laplacian fit is proposed. To do
this, firms are grouped according to their size in large logarithmic bins. From
the slopes of the growth rate distribution on logarithmic scale, σ(n) and its
scaling exponent β are determined.

Numerical simulations of the model show that aggregation of firm growth
rates within one order of magnitude of size is sufficient to obtain a growth rate
distribution that resembles a tent-shape, when G(g|n) is Gaussian (see figure
1.9). The reason for this is that ρ(n) ≈ 1/n1.7 and σ(n) ∝ n−0.5. This result
implies that if the average of an ensemble of firms is used to determine the shape
of G(g|n), its functional form is only assessed correctly if the sampled firms have
precisely the same size. If G(g) is n-dependent, a size spectrum of one order of
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magnitude is already enough to modify the form of G(g|n). The value of β does
not seem to depend on binning. By plotting the slope of the obtained G(g|nmax)
against nmax of the respective bin, the found relation is again σ ∝ n−0.5.
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Figure 1.9: Histograms for growth rate distributions. (a) Aggregate growth rate
distribution for companies ranging from 1 to 5 · 104 employees from a system
with 107 employees and a Zipf firm size distribution. (b) For Gaussian growth
rate probability densities, the growth rate distribution of firms within one order
of magnitude (its smallest size indicated in the plot) resembles a tent-shape,
thus in qualitative agreement with the data shown in [95]. (c) The slopes of
these approximate 1/|g−1|-distributions follow the same scaling relation as the
variance of the Gaussian growth rate probability densities σ(n) ∝ n−0.5.

The very simple underlying microscopic mechanisms suggest that Gaussian
functions might be a simpler alternative to the commonly assumed Laplacian
shape for G(g|n), since it also yields a tent-shaped G(g). Furthermore, Gaussian
distributions are conjugate priors to themselves, so may result from several
reasons, where each is Gaussian distributed. This idea is detailed further in
section 2.3.1.

1.8 Alternative implementation: growth of in-
dependent subunits

The growth rate probability density of this model is binomial if there is a short-
age of workforce (equation 1.9) or of purchasing power (equation 1.16). For
large n, this distribution can be approximated with a Gaussian distribution of
the same variance. An alternative rounding method is now introduced which
can be used for the determination of the job offer (case (i)) or the quantity to
produce (case (ii)). It is detailed using the example of the job market.

The following setup yields a discrete Gaussian growth rate probability den-
sity even for small firms. Firms demand on average a quantity of workers
n̂i = ni (1 + µ), which can be rounded towards integer values using the method
introduced in equation 1.49. Instead of rounding the quantity n̂i to integers, the
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rounding can also be done at the level of individual positions: for every existing
position j, the job offer ĵ may be 1 or 2:

ĵ =

�
2 with probability µ

1 with probability (1− µ)
(1.51)

Then, the job offer n̂i is the sum of the job offers correponding to the positions
of a firm.

n̂i =

ni�

j=1

ĵ (1.52)

This n̂i is the offer posted in the job market. Then, the aggregate job offer�
i n̂i is collected. On average, it is N(1 + µ), as with the standard rounding

method.

Combination with the allocation in the job market. If available work-
force Nw is inferior to this offer (which is the case studied here), every open
position has a probability

p =
Nw�
i n̂i

≈ 1

1 + µ
(1.53)

of receiving a worker. This attribution on its own would yield a binomial con-
straint, depending on a firm’s size, as stated in equation (1.9). The growth rate
has a cutoff at the upper value (1+µ), but firms can shrink to any size ≥ 0. On
the contrary, if firms determine their job offer via equations (1.51) and (1.52),
the number of received workers follows a symmetric distribution between 0 and
2n, if n was the size of the firm in the previous timestep. Combining the prob-
abilistic job offer (equation (1.51)) with the binomial allocation of workers in
the job market (equation 1.9), a single job has a certain probability to double,
a certain probability to reproduce itself, and a certain probability to vanish:

p(j = 2) = q =
µ

(1 + µ)2
(1.54)

p(j = 1) = p =
1 + µ2

(1 + µ)2
(1.55)

p(j = 0) = q =
µ

(1 + µ)2
(1.56)

(1.57)

These probabilities are ‘reproduction probabilities’ for single positions. For
a firm of size n, the probabilities of receiving k workers can be calculated out of
these probabilities p and q, in an analogous way as the coefficients of Pascal’s
triangle are found. It is indeed possible to establish a recursion relation for the
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coefficients C. The probability that a firm of size n will have the size k := 2n− l
in the following timestep is given by

p(2n−l|n) =
�

j=0,n−l+2j>0,l−2j>0

�
C(pl−2j−1qn−l+2j) + C(pl−2jqn−l−2j−1)

�
pl−2j qn−l−2j

(1.58)
In this derivation, the re-insertion of new firms has been neglected. Numerically,
G(g|n) is less noisy with this rounding method, compared to the case where firms
offer precisely (1 + µ)ni jobs

8. This rounding method is convenient because it
yields a Gaussian G(g|n) already for small firms.

This method can also be applied to the production decision of firms. In
combination with a shortage of purchasing power, a growth rate probability is
derived in analogy to equation (1.58). An interpretation would be that for every
sold good, a firm has a probability to sell 0, 1 or 2 in the following timestep,
analogously to equations (1.57).
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Figure 1.10: (a) and (b): Two different rounding methods for µ = 0.05. Very
small firms qs < 10 are removed from these statistics, since their growth rates
cannot take continuous values, which will distort the statistics. For instance, a
firm of size 2 can only grow by 0, 0.5, 1, 1.5 and 2, and since these small firms
are numerous, peaks would be visible at these values.

1.9 Results with different values of β

The empirical studies cited in the introduction find smaller values for β than
0.5, the value in this model. These are often explained by firm-intern factors
contributing to a firm’s growth, as by [95, 75, 107, 97]. Intuitively, if the growth
of a company was entirely dependent on the decisions of its CEO, there would
be no reason to assume that a company’s size should affect its growth rate
variance. Under this assumption, values of β between 0 and 0.5 are possibly

8Even in that case, �(1 + µ)ni� or �(1 + µ)ni� are offered, but no other values
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due to a contribution of both internal hierarchical structure and of a firm’s size.
An additional factor that can lower β are aggregate business fluctuations, which
have not been considered in the derivation above. If the total amount of availble
workforce or purchasing power fluctuates, so does the probability v for good to
be sold, as well as the means of the Gaussian growth rate distributions (equation
(1.12) and 1.20). This is independent of the firm’s size.

For comparison to these empirical studies, I simulated a system with a Gaus-
sian G(g|n) and a scaling exponent β = 0.25. This β is not the result of inter-
actions in the job market, but firm’s growth consists Gaussian multiplicative
noise where σ ∝ n−0.25, without specifying its microfoundations.
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Figure 1.11: (a) counter-cumulative size distribution and (b) growth rate distri-
bution of a simulation with Gaussian multiplicative noise with a scaling relation
of β = 0.25. (after 3000 iterations in a system with 106 workers and 104 com-
panies)
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Figure 1.12: (a) Growth rate distribution where companies are clustered into
size bins (system with 105 companies and 107 workers), (b) scaling exponent
determined from the slopes in (a). It yields β = 0.26, in agreement with the
scaling exponent σ ∝ n−0.25 of the Gaussian growth rate probability densities
with which the system has been simulated.

The results of simulations shown in figures 1.11 and 1.12 are, as expected,
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in between pure multiplicative noise β = 0 (figure 1.3) and the presented model
with scaling exponent β = 0.5 (figure 1.8). The counter-cumulative size distri-
bution on log-log-scale is closer to a Zipf law (i.e. α = 1) than the one from
the presented model. In contrast, the slopes of the tent-shaped growth rate
distribution appear less linear than for β = 0.5.

The strength of the hypothesis of Gaussian G(g|n) is that it would allow the
explanation of heavy-tailed growth fluctuations as a collective phenomenon on
aggregate level, without having to assume them on firm level, as e.g. [86]. Even
if a Laplacian G(g|n) is assumed, as many authors do, the presence of a scaling
exponent β �= 0 does not guarantee a power law for the size distribution. As
the simulation in figures 1.11 and 1.12 show (which were not simulated with the
presented model), this conclusion is independent of the rationale of the model
as presented in section 1.3. An alternative explanation for values of β < 0.5,
which does not assume any internal structure of firms but takes into account
firm’s heterogeneity, is given in section 2.3.2.

1.10 Comparison to other models

The model can be compared to two existing models which also exhibit β = 0.5.
The first is the city formation model of Marsili and Zhang [68]. They study
two scenarios, of which one corresponds to pure multiplicative noise (β = 0)
and yields a power law for the city size distribution, and one (which they term
linear case) in which the growth rate standard deviation has scaling exponent
β = 0.5. For the latter scenario, Marsili and Zhang obtained an analytical
expression for the size distribution as a function of the rank R of a city’s size,
m(R) = m · e−R+1, which is not a power law. No numerical result is shown.

The analogy to the model in this thesis is easiest for case (i) where firms
compete for available workforce, and all workers are employed. Then, workers
can be considered to change company at each iteration, which is why firms
grow and shrink. Marsili and Zhang’s setting differs from our model in that
city-dwellers do not move among cities all at the same time. It corresponds
to a version of this model that is simulated in sequential update, a situation
where workers drawn at random can change company, and the probability of
joining a particular company is proportional to its size. I have simulated these
sequential dynamics for comparison (see figures 1.15 and 1.14), since the authors
do not show numerical results of their ‘linear case’. If the statistics of G(g|n)
are calculated after a given number of changes at the level of workers, similar
results to our tent-shaped G(g) are obtained, for the same reason as detailed
in section 1.7.2. A difference to the presented model is that a given city may
change its size within the period over which the growth rate has been evaluated,
so the probabilities of receiving or loosing a city-dweller may evolve during
the movements of citizens that are all represented in 1.15. In contrast, in the
presented model, these probabilities remain constant during one iteration. The
results obtained for the size distribution (figure 1.14) are similar to the ones
from the presented model, provided that µ was chosen sufficiently large. A



42 CHAPTER 1. THE MODEL – THEORETICAL ANALYSIS

conjecture is that the size distributions of the two models coincide, although it
has been shown for other models that the choice of synchronous or asynchronous
update does indeed influence the result [51]. Neither of the two models leads to
a size distribution that can be fitted by exponential decay (see figure 1.13 where
exponential and power law are compared).
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Figure 1.13: Plot of the counter-cumulative distribution of the same simulation
as in 1.4 (b): (a) on log-linear scale, (b) on double-logarithmic scale. If decay
was exponential, a the graph would be linear in (a), which is not the case.
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Figure 1.14: Counter-cumulative size distribution of city sizes from simulations
of the linear model by Marsili and Zhang [68].
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The second interesting model with β = 0.5 is the widely used model by Yule
[108] and Simon [89], which also has binomial G(g|n) [43]: if the constituent
subunits of a firm were jobs, all existing jobs might double to two jobs with
equal probability. In a particular time interval the variance of how many jobs
doubled is narrower for large firms than for small firms, which may be described
by a binomial distribution. (In addition, newly starting firms need to be taken
into account). Yule’s model leads to a Beta distribution, which exhibits a power
law tail. This is due to the fact that the system is constantly growing, both
in the number of employees and in the number of firms. However, it has been
stated before that the power law is not found if these two assumptions are not
satisfied [59].

1.11 Discussion

Having presented the evolution of the size distribution and the growth rate
distribution of this model (which has β = 0.5), as well as simulations of systems
with additive noise (β = 1), multiplicative noise (β = 0), and a system with
β = 0.25 for comparison, I return to some theoretical aspects of the model. Its
dynamics can be described on three levels: The noise on the elementary (i.e. job)
level is the same for every element, which can double, vanish, or stay constant
(see section 1.8 for the case (i)). This elementary level allows for the calculation
of size evolution of companies, which are the second level. On that level, the
growth rate probability density is Gaussian, with a size-dependent variance.
Because of this size dependency, integral (1.46) becomes non trivial. The tent-
shaped growth rate distribution of companies only holds at the aggregate system
level, which is the third level.

An analogy can be drawn to a physical system, where, due to long-range
interactions, the statistics of an element and the statistics of the ensemble can
differ. [10] describe this by the term superstatistics, i.e. statistics of statistics,
stating that in physical systems with fluctuations, the Boltzmann factor of the
system is obtained by integrating the Boltzmann factors of every subsystem
over their inverse temperatures. The analogy to the model presented here is
the following: Instead of a Boltzmann factor, the quantity of interest is G(g|n),
which depends on n. It is important to note that G(g|n) describes relative
fluctuations, which are normalized by n, whereas additive noise (including noise
mapped to additive noise as in equation (1.44)), describes absolute fluctuations.
Because of the standard deviation of 1/

√
n, the system cannot be described

neither as additive nor as multiplicative noise, which leads to the conjecture that
the size distribution cannot be derived from extremality neither of the Gibbs-
Shannon entropy nor of the Rényi entropy. However, the concept of integrating
over Boltzmann factors is the same as the integration over n-dependent growth
rate variances in equation (1.46). This n-dependence may also be seen as the
result of long-range interactions: the hypothesis that every job is taken with the
same probability implies that every open position interacts with every available
employee.
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As addressed in section 1.4.5, physical systems with multiplicative noise,
where the dynamics depend on the square of a Gaussian variable, exhibit the
so-called q-exponential distribution [10][15], which can be derived from the ex-
tremality of the Rényi entropy. Multiplicative noise can be described as the
interaction with a fluctuating external field. In contrast, in this model, the
fluctuations come from competition for a limited resource, and exhibit different
n-dependence, and different statistics as the distributions commonly found in
physics. Further links of growth processes to the q-exponential distribution are
presented in [92, 81] and for the case of the tent-shaped growth rate distribution
[78] and [12].

1.12 Conclusion

In this chapter a simple agent-based model has been introduced and analyzed,
in which firm growth is the result of constraints in the markets, which can be the
job market or the commodity goods market. Depending on whether or not firms
spend their profits in the goods market, either workforce or aggregegate demand
become scarce quantities in both markets respectively. These two scenarios
have been simulated separately, but yield, as expected, very similar results.
A matching algorithm, which is the same in the two markets, attributes this
scarce quantity, and accounts for the growth dynamics of the system. Firm
growth rates are size-dependent, where the standard deviations exhibit a scaling
exponent σ ∝ n−0.5. This feature is shared by other models that describe firm
growth as the result of independent random processes. In order to keep the
size of the system constant, an additive term is needed, which here corresponds
to the introduction of new firms whenever a firms has attained size 0. The
firm size distribution in the stationary state can be approximated by a power
law of exponent α = −0.7, which is lower than that of a Zipf law with α = 1
found in data. This exponent is found in both scenarios and independently of
profit margin µ. This distribution has not yet been derived analytically, but is
discussed in the context of existing results for Langevin systems with additive
and multiplcative noise.

The second main result consists of the explanation of a tent-shaped growth
rate probability density as a collective phenomenon. The presented model yields
a growth rate probability density for firms that may be approximated by a Gaus-
sian. Nevertheless, the aggregate growth rate pobability density of the system,
for which there is empirical evidence, is tent-shaped. This tent-shaped form is
also found if firms are grouped into size bins, and a tent-shaped function is fitted
to the growth rates of each bin, without the need to assume a Laplacian G(g|n).
The central idea is to take firms’ size distribution into account when calculating
the growth rate distribution. For comparison, simulations of a system with size-
dependent Gaussian multiplicative noise (σ ∝ n−0.25) were carried out. Even
for the latter case, which is in the range of empirical findings, the growth rate
appears tent-shaped.
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Chapter 2

The model – Economic
Specification

2.1 Introduction

Having studied a simple model for firm growth in chapter 1, this chapter is ded-
icated to its extension with more features. The previously introduced stochastic
growth model may be criticized because it is very abstract, and therefore diffi-
cult to interpret [96]. The extensions in this chapter provide a bridge between
simple probabilistic models and more complicated agent-based macro-models.
These models consist of a very complicated stochastic process that includes
feedback loops, and their analysis as such is more difficult. In this chapter, the
two central extensions are

(1) heterogeneity of firms’ expected profit margins

(2) constraints for the availability of credit, in addition to the constraints from
the markets: In order to finance production, they take out loans at a bank,
which charges an interest rate r (which is a constant here, i.e. the same for
all firms, irrespective of their financial position or profits margin)

(3) Whenever a firm’s leverage ratio has reached a threshold set by the bank,
the firm is removed from the system. A constant influx of new firms com-
pensates for these exits and ensures that the system has a number of active
firms fluctuating around an average value.

The introduction of further features serves the following purposes. Firstly, an
extended model combines several dynamics that are not happening at the same
timescale. This means that results which may hold at long timescales may not
explain observed phenomena at short timescales, and vice versa. Some dynamics
governing longer timescales and which are being superposed on the stochastic
dynamics are presented in section 2.2.1. The extended features have also been
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described by equations. Firm growth is now happening at different relative
speeds, since in addition to stochastic growth, firms with a high profit margin
displace firms with a low profit margin. This phenomenon can be described by
replicator equations. Another aspect is that the introduction of µ-heterogeneity
affects the scaling exponent β of the standard deviation of growth rates (see
section 2.3). In this sense, more complete explanations can also qualitatively
improve those of the simple model. Secondly, the additional features provide
explanations that are at a lower level of abstraction, which are easier to inter-
pret, and take up arguments from economic theory. In particular, it links the
model to macroeconomic agent-based models, as well as to stock-flow consistent
models. Thirdly, along with more complicated dynamics, further possibilities
for its empirical validation are given. A more complete model exhibits further
distributions which can be compared to empirical data, such as firms’ profit
rate distribution, which can be compared to firm databases like [33, 1, 61].
This allows for a more extended validation of the model. Since the evolution
of individual firms is no longer purely stochastic, it is now possible to analyze
a firm’s typical life cycle, and compare it to existing studies such as [103]. In
addition, it is possible to study fluctuations and feedback loops, and relate them
to explanation of business fluctuations and cycles.

The chapter is organized as follows: First, publication 1 is presented. It
contains an introduction of the new features. In the following section 2.2, the
extended model is described theoretically. In section 2.3, the effect of margin
heterogeneity on the scaling exponent β is shown numerically and theoretically.
Only in section 2.4, related literature is discussed. This untypical order of
sections was chosen to be able to draw comparisons with the presented model,
and to keep the technical sections directly after chapter 1. Section 2.5 is the
conclusion.
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Abstract

We present a macroeconomic agent-based model that combines several mechanisms oper-
ating at the same timescale, while remaining mathematically tractable thanks to a low number
of parameters. It comprises firms and workers who compete in a job market and a commodity
goods market. The model is stock-flow consistent; a bank lends money charging interest rates,
and keeps track of equities. Important features of the model are heterogeneity of firms, exis-
tence of bankruptcies and creation of new firms, as well as productivity increase. It combines
probabilistic elements and deterministic dynamics, whose relative weights, determined by the
parameters, may be modified according to the considered problem or the belief of the modeler.
The model’s evolution reproduces empirically found regularities of firms’ size, growth rate and
profit rate distributions. We discuss the origin and the amplitude of endogenous fluctuations
of the system’s stationary state for two different scenarios and analyze typical life cycles of
firms.

1 Introduction

In economic theory, a long history of approaches exists beyond maximizing principles leading to
equilibrium. These share as principles a separate treatment of households and firms and the
division of income into wages and profits [1]. Within these models are agent-based models, which
have been proposed as early as 1957 by G. Orcutt [2] under the name microsimulation models,
in order to make predictions at the macroeconomic level based on the growing knowledge about
decision-making units, and to avoid flawed aggregation. Such models became feasible with larger
availability of computing power. First models including production, investment and consumption
have been proposed by B. Bergmann [3] and G. Eliasson [4]. These models aim at predicting
responses to different economic policies. To this end, the units’ behaviors are calibrated with
empirically based parameters, as described in [5]. More recently, agent-based models have been
used to analyze the role of the units’ parameters on some stylized facts of economic systems
[6, 7, 8, 9, 10, 11]. In addition to earlier microsimulation models, these later models emphasize
the interactions between financial and real sector, reflecting the increasing importance of finance
in the economy of today. The models contain very many features, and their main purpose is the
reproduction of macroeconomic emergent phenomena like business cycles. Since the number of
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firms is relatively small (ranging from 10 [10], 60 [8], 100 [6], 200 [7], 250 [11]), distributions of
firm characteristics are not the focus of analysis.

Many microsimulation or agent-based models conserve the flow of funds. They can serve as a
tool to study the role of debt levels, interest flows, or availability of credit on economic activity.
The most important implication of this stock-flow consistency is that the financial condition of
agents plays a central role determining their actions. In that sense, stock-flow consistency can
become the guiding principle instead of the efficient market principle, which assumes “the impact
of the flow of funds and the stocks of credit and debt are fully reflected in returns and risks at the
individual level”[12]. If, in contrast, agents base their decisions only on their balance sheet, and
do not know the financial condition of others – as is the case in our model –, endogeneous cycles
in economic activity can occur.

Several analytical stock-flow consistent models describe the money flows between sectors [13,
14], or sub-sectors [1]. These models exhibit stationary state scenarios where the money flows to
and from each sector add to zero. If the model is discrete in time, in one iteration every actor needs
to re-inject in the system the money he has received, be it wages, profits, interest payments or
other. Otherwise, economic activity will eventually cease. Regarding firms, this phenomenon has
become known as the ‘paradox of monetary profits’ [15], originally formulated by Marx, stating
that firms can at most earn what they have paid in wages. To circumvent this, some models
introduce as money flows interest payments of firms to the bank, which is a joint stock company
and distributes a dividend [8], consumption of the bank [14], dividends of firms who are joint-stock
companies or investment of firms[7]

Another relevant area of research for agent-based macro models are empirical studies, e.g. for
firm size [16, 17], growth rate [18, 17, 19, 20, 21] and profit rate distribution [22, 19, 20].

Many of these statistical regularities have been explained by stochastic growth models, i.e.
theoretical models designed to explain one or several stylized facts found in firm data. An important
firm growth model has been proposed by R. Gibrat as early as [23], describing firm sizes to follow
a lognormal distribution. Since then, many more have been proposed. Some describe growth as
being the result of growth of independent subunits, which has been attributed to firms being active
in different sectors or different markets[24, 18, 25, 26, 27]. These are often based on a model by
H. Simon [28], which describes a constantly growing economy and its theoretical foundation is a
model by Yule [29].

Several growth models combine an economic principle, e.g. maximization, with stochasticity
[30, 21, 20]. As advocated in a survey on growth models by J. Sutton, “A proper understanding of
the evolution of structure may require an analysis not only of such economic mechanisms, but also
the role played by purely statistical (independence) effects, and (...) a complete theory will need to
find an appropriate way of combining these two strands.” [31], which relates them to agent-based
macro models, since also these combine stochastic and deterministic dynamics.

The model presented here is a macroeconomic agent-based model which combines a stochastic
firm growth process with stock-flow consistent principles. It abstracts from different sectors, and
firms merely grow in terms of their sales and employees. Firms plan to grow depending on their last
realized profits, and the actually realized growth is a result of the competition in the markets. In
a simple scenario of the model analyzed theoretically in [32], a company’s workplaces may be seen
as the independent subunits. In the more complete model presented in this paper, the focus lies on
constraints from the financial sector that influence the real sector. Interest payments lower the net
realized profits of firms, and therefore influence both growth and economic activity. Once a firm has
accumulated debt to a given threshold, it is declared bankrupt and exits the system, its debt being
cancelled. Endogeneous fluctuations and cycles in economic activity are analyzed at the aggregate
level, distributions of firm charactersitics at an intermediate level, as well as life cycles of firms
may be analyzed at the individual level. The model proposed here can be analyzed theoretically
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and contains fewer features than other macro-models, and may be completed successively.
The paper is organized as follows. In section 2, we introduce the model. In section 3 we show

and discuss numerical results on steady states and distributions of firm characteristics. We then
introduce another feature (aging), and analyze life cycles, robustness and business fluctuations
with and without this feature. Finally, in section 4, we conclude and point at possible extensions
and applications.

2 The model

We present here the main elements and the dynamics of the model, which are analyzed successively
in the following sections.

2.1 Main elements

The system is composed of three types of agents: Nf,t firms, Nw workers, and one bank that issues
credit to firms. The number of active firms fluctuates over time, since the model includes entry
and exit of firms. The flow of funds is conserved.

firms i (1 ≤ i ≤ Nf,t) are characterized by an expected gross profit margin µi.

µi =
p qi − ni w

niw
, (1)

where ni is the number of hired workers, w the wage, and p qi the expected sales. µi are
intrinsic constant parameters drawn at random with a uniform probability density in the
range [µmin ≤ µi ≤ µmax] with 0 < µmin < µmax < 1. These expected gross profit margins
are distinct from the net realized profit margin, detailed in equation (17), which can attain
negative values. µi reflects the technological level or workforce productivity of a firm: the
higher the margin, the lower the production cost per unit or the lower the number of workers
needed to produce a given quantity.

Firms produce qi non-durable goods per period, which are put on the market at price p.
This commodity good is an abstraction of purchases in the real sector, which is useful to
ensure that via limited aggregate demand all firms are in competition with each other. If
unemployment drops to zero, firms compete in addition for is workforce in the job market.
A third constraint is the availability of credit, for which they do not compete. The number
of active firms fluctuates over time.

workers j (1 ≤ j ≤ Nw) may be employed or unemployed. When employed they earn a wage w
per period. Like Godley and Lavoie [13] in their ‘simplest model’, and M. Kalecki [33] in his
profit equation, we assume that workers try to spend all their earnings in the consumption
market, unless too few goods are offered to satisfy their demand.

the bank represents a simple financial sector. It lends money to firms at a constant interest rate
r, and keeps track of their equities ei (1 ≤ i ≤ Nf ), which cannot be less than a lower bound
ui ≤ 0 :

ei ≥ ui = −γ wni , (2)

where γ is some positive constant. Firms which do not satisfy this constraint are declared
bankrupt, and their debts are assumed by the bank. This is the only expense of the bank,
and interest its only revenue. In this simple model, the bank does not base decisions on its
own balance sheet.
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2.2 Dynamics

The dynamics of the model, visualized in figure 1, is detailed below. Upper case letters stand
for for aggregate quantities, lower case letters for individual quantities, both for firms i or work-
ers/households j. Quantities with hat (q̂i, n̂i, d̂i) are initially planned quantities before agents
have checked constraints.

at each time step t:

1. production decision of firms: firms calculate their expected volume of production q̂i,t
according to their previous production qi,t−1 and their net realized profit margin µn

i,t−1

(which is lower than the expected profits because of interest payments and unsold goods,
see equation (17)). If the net profit margin is positive (negative) they plan to produce more
(less) goods proportionally:

q̂i,t = qi,t−1

�
1 + µn

i,t−1

�
. (3)

The necessary number of workers for the production of q̂i,t goods is determined by the intrinsic
margin µi defined in equation (1)

n̂i,t = q̂i,t

�
1

1 + µi

�
p

w
. (4)

2. job market: the aggregate job offers of firms

N̂w,t =
�

i

n̂i,t (5)

may exceed the available number of workers Nw. Workers do not stay at their employer but
are newly placed at each iteration through a process where job offers and available workers
are matched at random1. If N̂w,t ≤ Nw, each firm i will hire exactly the desired number of
workers:

ni,t = n̂i,t if N̂w,t ≤ Nw. (6)

Every worker has the same probability N̂w/Nw of being hired by some firm but Nw− N̂w,t of

them are left unemployed. If N̂w,t > Nw, all workers are hired and each job opening has the

same probability Nw/N̂w of being filled and N̂w,t−Nw positions remain vacant. On average,
each firm i receives

�ni,t� = n̂i,t
Nw

N̂w,t

if N̂w,t > Nw . (7)

3. credit market: once the number of hired workers ni,t is known, each firm calculates whether
its owned equities ei,t are sufficient to pay the corresponding wages. If necessary, it takes out
a loan of amount li,t from the bank:

li,t = [ni,t w − ei,t] (1 + r) . (8)

4. production: the actually produced amount of goods qi,t by the ni,t workers of firm i is given
by

qi,t =
w

p
ni,t(1 + µi) , (9)

1This hypothesis is not crucial for the model, the dynamics are similar if a fixed fraction of each firm’s workforce
change their employer.
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i.e. firms with a higher µi produce more goods per worker. The aggregate output Qt is

Qt =
�

i

qi,t. (10)

5. consumption decision: workers j intend to spend their wages, which allow them to buy
the quantity

dwj,t =

�
w
p if employed

0 otherwise
(11)

Firms i intend to spend their previous net realized profits2:

dfi,t =
πn
i,t−1

p
. (12)

The bank does not act as a consumer (as is done e.g. in [14]), it can merely lose money when
firms go bankrupt. Thus, the aggregate demand is:

Dt =
�

i

dfi,t +
�

j

dwj,t. (13)

6. commodity goods market: Aggregate Qt andDt are not known to firms and workers; they
experience if their offer and demand are satisfied as result of a random matching algorithm
(which is also used to match job offers and workers). If Qt < Dt, all the production is sold,
leaving some demands unsatisfied. Each demand – whether coming from firms or workers –
has the same chance of being fulfilled:

qsi,t = qi,t if Qt < Dt . (14)

Conversely, if Qt > Dt, firms face a random constraint due to limited aggregate demand;
only a fraction Dt/Qt of all produced goods is sold. On average, each firm sells

�
qsi,t

�
= qi,t

Dt

Qt
if Qt > Dt . (15)

This is the situation in the present paper, which is why realized margins (17) are generally
lower than the intrinsic margins µi even before paying interest (see examples shown in figure
5).

The commodity good can be thought of as being a service, which provides a simple interpre-
tation why unsold goods are lost. For other interpretations, this loss may include roughly all
costs of storing and lowering future production. It is possible to reproduce size and growth
rate distribution also in a situation with competition only for one single resource (see [32]
where this is the job market), but competition for the non-durable commodity good adds
important features to the model: It introduces a stochastic term for the last realized prof-
its, which is the basis of firm’s following production decision. Furthermore, it contains an
important long-term effect: if a firm cannot sell enough goods, its net realized profits are
negative, and it start the next interation with a lower financial position. This decreases with
the interest payments further the next profits, and ultimately leads to a firm’s bankruptcy.
Even in a more complex models, such a long-term effect should be present. The principle that
profits can only be estimated beforehand is in some way present in many Keynesian-inspired
models, e.g. in the agent-based models [34, 7, 11].

2In addition to the setting analyzed in this paper, it is also possible to obtain a stationary state where firms do
not consume, and their only expenses are wages and interest payments.
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7. firms’ balance sheet accounting: firms pay interests on the whole amount of their loans,
i.e. on current lending and accumulated debts. If they have enough assets, they repay loans
at the end of the iteration; if the liabilities exceed the assets, they start the next iteration
with a negative net equity. In order to decide on the quantity to produce in the following
period, firms calculate their net realized profit πn

i,t, defined by

πn
i,t = qsi,t p− ni,t w − li,t r , (16)

and their net realized profit margin

µn
i,t =

qsi,tp− ni,tw − li,tr

ni,tw + li,tr
. (17)

µn
i,t is generally lower than µi and only equals µi if both r = 0 and a firm sells all of its

production.

8. bankruptcy and new firms: firms whose equities (after repayment of loans) fall below
the threshold ui defined by eq. (2) are declared bankrupt and are removed from the system.
Their (negative) equities are losses to the bank.

In order to avoid a decline in the number of firms due to bankruptcies, ν new firms are
introduced at each iteration, with an initial number of workers (ni,init) and a margin µi both
drawn at random from [0, nmax,init] and [µmin, µmax]. With this procedure the total number
of firms fluctuates over time. This differs from the approaches by Bruun [7], DelliGatti et al.
[6] and Dosi et al. [11], who replace systematically each bankrupt firm by a new one, keeping
thus the total number of firms constant.

2.3 Transaction Flow Matrix

Table 1 summarizes the money flows between sectors. A more detailed matrix would contain a
separate column for the asset account and liability account of every individual agent, since the
model is implemented with double-entry acoounting. Upper case letters stand for the aggregates
of the quantities defined in the preceding equations. ΔL represents the changes in firms’ level of
loans from the bank at the considered iteration. Reimbursement of loans is conditioned by the
financial position of each firm: those whose equities are lower than a threshold defined in (2) fail
and their loans are never reimbursed. Consequently, ΔL� ≤ ΔL.

Interest payments link stocks and flows, since their volume depends on the finiancial position
of a firm, which is a stock. This interest flow influences other flows (how much firms can spend
in the commodity goods market), and via the net realized margin in equation 3 the production
decision of companies. Also the moment of a firm’s bankruptcy depends on its money stock of debt.
Stock-flow consistency determines economic activity, and itroduces a second timescale (exceeding
one iteration) at which the pas influences the present economic situation.

This transaction flow matrix makes model comparable to analytical flow-of-funds models [1,
13, 14] but with the important difference that the aggregate flows are composed of the flows of
individual agents, and therefore reach a fluctuating stationary state, i.e. the aggregated equities
of each sector fluctuate around a constant. These fluctuations in the money flows are interlinked
with the fluctuations in economic activity, as detailed further in section 3.5.
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transaction sectors Σ
workers firms bank 0

wages Nt w −Nt w 0

loans ΔL −ΔL 0

interests −Lr L r 0

consumption −Qs,w p Qs,w p 0

consumption firms −Qs,f p

Qs,f p 0

reimbursement of loans −ΔL� ΔL� 0

Δ equities ΔEw ΔEf ΔEb 0

Σ 0 0 0 0

Table 1: Accounting matrix of the model.
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3 Results

In this section we discuss results of simulations corresponding to different sets of parameters of the
model:

− [µmin, µmax], the range of expected margins,

− r, the interest rate,

− γ, the bankruptcy threshold,

− ν, the number of new firms entering per iteration.

The parameters in the model are all relative. Roughly one month can be though of as the order
of magnitude for one iteration. The type of analysis in this paper is rather suited to understand
dependencies, and to address the question how much randomness a system has or should have with
respect to the deterministic part of the dynamics.

3.1 Steady states and parameter dependence
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Figure 2: Nw = 10 000, bankruptcy threshold γ = 2, interest rate r=0.01062, new firms per
iteration ν = 120, [µm, µM ] = [0, 0.1]. Time evolution of (a) unemployment, (b) number of active
firms, (c) job losses due to firm bankruptcies (averaged over 50 iterations).

Figure 2 presents results corresponding to a typical time evolution of the system. The system
exhibits fluctuations also after convergence to a stationary state, since these are due to the ran-
domness in the system. Job losses do not occur at a constant rate but fluctuate around a certain
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rate (here 1.5% of the existing jobs in one iteration. In subfigure 2 (c) job losses are averaged over
50 iterations in order to see slower trends, the amplitude of actual fluctuations is heavy-tailed, as
studied in [35]). The stationary state of the system is characterized by a number of active firms
and a level of unemployment, which depends on the interest rate r, the bankruptcy threshold γ,
the number ν of entering firms per iteration and the margin range [µmin, µmax]. The higher the
interest rate, the higher the level of unemployment for a given ν and γ.

The stationary state is noisy since the dynamics has two stochastic elements, but for a given
set of parameters the system converges to such a state for any initial level of unemployment, any
initial size distribution of firms, and (almost) any number of initially active firms.

Unemployment fluctuates in the stationary state for the following reasons: Aggregate offer
of goods exceeds aggregate demand, since firms need to service their debts and spend only their
previous net realized profits in the goods market. The random allocation of demand to the produced
goods implies that firms face a random constraint which lowers their profits and if these are
negative, firms get into debts. Debt accumulation follows thus a random dynamics. Furthermore,
the survival times depend on the intrinsic margin µi of each firm: the higher µi, the longer the
life time on average. Bankruptcy frequency fluctuates, and in addition firm size at bankruptcy
has a fat-tailed distribution, i.e. large bankruptcies are rare events. If large firms go bankrupt,
the joboffer suddenly declines, less wages are paid, and existing firms earn only lower profits. The
time until unemployment diminishes depends on aggregate profits, which in turn depend on the
interest rate r and on the frequency of restarts ν. Fluctuations and business cycles are discussed
more in detail in section 3.5.

3.2 Distributions

For any agent-based macroeconomic model with a sufficiently large number of firms, it is possible to
analyze distributions of firm characteristics. Even if the primary focus lies on aggregate variables,
the arising distributions should be at least qualitatively in agreement with empirical evidence,
which is one way of validating the model. Otherwise, the differences should be understood from
the simplifications that the model makes. The stochastic process of a simple scenario of this model,
with homogeneous µ and no interest payments has been analyzed theoretically in [32], and is the
dominant dynamics also in this setting, though completed by the banktuptcy mechanism.

Size distribution of firms. Every single firm size varies over time, but the size distribution
of firms forms a fat tailed distribution that can be approximated by a power law which remains
stable (as long as firm entry and exit are possible: otherwise the stationary state is a monopoly).
Most firms fail after few iterations. Typical cases for surviving firms are shown in figure 5. The
stochastic process leading to this is a superposition of two effects: firstly, a stochastic process due
to competition for demand and the fact that each firm plans to grow according to its realized profits
(on its own described in [32]). Secondly, in the setting presented here µi are heterogeneous, and
firms incur debts over time, which is why their net realized profits are lower than their expected
ones, and why they will eventually go bankrupt. The higher the interest rate r and the number of
new firms per iteration ν, the higher the numerically found exponent of the power law fit to the
cumulative size distribution. For low interest rates, the exponents but is close to 1 (see figure 2,
which is the approximate value reported in empirical data [16, 17].

Growth rate distribution of firms. In [32], an explanation for the stylized fact of a tent-
shaped growth rate distribution is derived, both analytically and in simulations. This shape has
empirically been found e.g. in [21, 18, 17], as well as for growth processes of other quantities than
firms [36, 37, 38]. In our model, the necessary ingredients for this growth density are that the
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size distribution is fat tailed, and that the growth rate probability density for individual firms i is
(approximately) Gaussian with a standard deviation σ scaling as a power of size ni: σ(n) ∝ n−β .
These two features arise naturally in the presented model, but the argument holds independently
of the precise reason for the Gaussian growth density, and may in principle stem from other
reasons than this model suggests. In this model, three factors contribute to it, which on their own
would yield a binomial growth density (that can be approximated by a Gaussian for large n): (i)
competition in the job market for workers, (ii) competition in the goods market for purchasing
power, or (iii) a probabilistic rounding method by which firms determine their joboffer (detailed
in [32]). (iii) yields the same growth rate distribution as the model by H. Simon [28] based on the
Yule process, although his interpretation differs. The arising size dependence of the growth rate is
such that small firms have a wider growth rate density and therefore account for the tails of the
distribution, whereas large firms have a more narrow growth rate distribution, and account for the
middle peak.

The model offers also the possibility to compare further tendencies with empirical surveys. For
instance, as A. Coad states in his survey of the literature on firm growth [39] p.12, “there is a lot
of evidence that a slight negative dependence of the growth rate on size is present at various levels
of industrial aggregation.” Also [40] confirm this result for a database of Italian firms. This effect
also occurs in our model: To reach a large size, firms need to attain a certain age. During that
time, their margin diminishes due to the recentering of µeff , and the level of debt will increase, so
it is not possible for the net margin of big firms to range among the higher end of the distribution.
Small firms, in turn, are more likely to have a net margin above average: Of the firms with negative
net margin, a part goes bankrupt, and evidently cannot enter the statistics on average growth rates,
so the average growth rate is shifted towards a positive value of growth.

Profit margin distribution of firms. Margin heterogeneity, interest payments, competition
in the goods market, new firms and bankruptcies are the features accounting for the profit rate
distribution shown in figures 3. The tent-shaped growth rate distribution can in principle be found
without these features (see [32] where the profit rate distribution is a delta peak), and the profit
rate distribution acts as a prior distribution to the growth distribution due to competition in the job
market. With this prior distribution, the growth rate distribution becomes wider, though its shape
is approximately the same. Depending on the scenario, simulations yield a profit rate distribution
that is approximately Gaussian or Laplacian, and in some cases is asymmetric. Empirical evidence
suggests that the shape of the profit rate distribution is between Gaussian and Laplacian [20, 22, 19]
for databases on Italian, US and Icelandic firms. The last two publications show in addition that
for the same firm data, the profit rate distribution is narrower than the growth rate distribution,
which is also a result of this model (see figure 3).

The profit margin distribution is composed of firms of all stages in their life cycles. However,
these are not entirely random but show some typical trajectories for the variables size, profit margin
and leverage ratio over their life cycle (shown in figures 5). The dynamics of the model are crucial
for the formation of the profit rate distribution, since figure 3 (c) differs clealy from a uniform
distribution of the expected gross profit margin µi at which new firms are initialized. Firms with
a low net realized profit margin are likely to incur debts and default quickly, which is why only
few firms in the distribution have very low margins. Likewise, very few firms gain very high profit
margins, since this is happens only under lucky coincidences: the intrinsic margin needs to be high,
a firm’s debt needs to be low, and no or few goods remain unsold.
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Figure 3: Interest rate 0.0162, ν = 120, γ = 2, 100000 workers, ≈ 2500 active firms, unemployment
around 9% (shown in figure 2). Snapshots after 1200 iterations. (a) growth rate distribution
of firms in double logarithmic scale, (b) size distribution of firms, (c) net realized profit margin
distribution, (d) profit margin distribution weighted by the size of firms. If firms did not face a
random constraint due to limited aggregate demand, every firm would grow according to its net
realized margin, and the growth rate distribution (a) would have precisely the shape of (c), which
is clearly not the case. (d) shows that the result of a uniform µi-initialisation in combination with
a dynamics with interest payments, restarts, and bankruptcies is that most workers are hired at
firms whose margin is in the middle of the net margin distribution. Large firms occur mostly at
the middle of the net margin distribution for two reasons: they have a lower growth rate variance
from market competition, and because some time is needed to grow, in which they already incur
debts, lowering µn

i .

3.3 Introduction of explicit aging of firms

A valid objection to this simple model is that the only reason why older firms have a lower
profitability is that they are indebted. This is certainly not the case in reality. A desired feature
would be that new firms enter with a higher performing technology than incumbent ones. If this
is attempted by the entry of new firms with a constantly increasing µi, a new problem needs to
be solved: the average margin should remain in a constant relation to the interest rate, which
otherwise would lose its function of lowering net realized margins. Therefore, aging of firms was
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added as an aditional feature. We define the effective margin as

µeff,t =
1

Nw,t

�

i

ni,tµi . (18)

This quantity has a natural tendency to grow, since firms with higher margins earn on average
higher profits, leading to more job offers and faster growth. For comparison with the scenario
presented in subsections 3.1 and 3.2, we now perform simulation with a lower interest rate, where
the individual µi are being recentered at each iteration, such that µeff remains constant over time:

µi,t = µi,t−1 − (µeff,t − µeff,t−1) (19)

This has the effect that new firms are much more likely to grow, since their intrinsic margins µi

have not diminished yet, and are therefore higher on average. The survival rate is higher and
less new firms ν need to be introduced per iteration in order to obtain comparable dynamics. An
additional bankruptcy criterion is needed, in that firms fail once their gross expected margin µi

has attained zero. Also empirical studies show that several bankruptcy criteria are commonly
used, e.g. [41]. Implications on distributions of these criteria are studied in detail in a forthcoming
paper.

This situation may correspond to new firms entering the system with a more profitable tech-
nology. Apart from this more plausible interpretation, this leads to slightly different results: the
profit margin distribution contains fewer firms with very high profit margins (see figure 4), closer
in line with empirical studies [19, 20, 22]. One may go as far as to interpret the recentering as an
increase productivity and in the standard of living, implying that the interpretation of one good
and one salary changes. However, we encountered an inconsistency with this interpretation, since
it is at odds with the interpretation that µi stands for the technological level or labour intensity
of a firm: why should labour intensity rise over time? A possible unification of these two views is
to interpret µi as the relative labour intensity of firms, indicating what fraction of the workforce
is needed in order to produce a certain fraction of the total production. Another possibility to
respond to this limitation could be the explicit introduction of productivity increase and inflation,
at the risk of sacrificing the mathematical tractability of the model.
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Figure 4: Results including recentering of the margin. r = 0.0102, ν = 10. Compared to figures 3
(c) and (d), less firms have a very high margin, and less workers accumulate in firms with a very
high margin, because the intrinsic margins µi shrink over time.
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3.4 Life cycles

The implications of margin aging become evident when looking at the typical time evolution of
individual firms. The evolution of the leverage ratio over a firm’s life cycle is closer to empirical
findings: [42] report from a study on Canadian firms that firms typically start indebted (termed
“liability of newness”). Firms which manage to repay them survive and grow. Later, firms incur
again debts since their technology is outdated (which they term “liabilities of obsolence”). This is
also visible in typical life cycles of firms if margin aging in included (see figure 5), whereas without
recentering of the margin, the evolution of debt follows a linear trend. In subfigures (a,c,e) in the
left column, firms are unprofitable because they are indebted, whereas in the situation with margin
aging in subfigures (b, d, f) in the right column, firms incur debts because they are unprofitable,
although a high leverage ratio is also self-reinforcing.
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Figure 5: Comparison of typical life cycles. Without margin recentering (subfigures (a), (c),
(e), r = 0.0162), firms’ growth and debt accumulation follows a linear trend. With recentering
(subfigures (b), (d), (f), r = 0.0102), firms start to shrink in size before failure. They repay initial
debts, and only later indebt again.
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3.5 Fluctuations

Stability has been verified by simulating 30 times the system with same parameters and different
randomization, as well as by simulating the same system with different initial conditions in suc-
cessive intervals. With respect to these tests, the system is stable, though atypical behavior may
in principle arise. For the observed simulations, after some time fluctuations occur always around
the same mean, which is characterized by the parameters ν, γ, r and the range of µi. Numerically,
the stability analysis yields a value of 0.092 ± 0.006 for unemployment for the scenario presented
in figure 2, averaged over 800 iterations, and 0.087± 0.019 for the scenario with recentering of the
margin (shown in figure 4). The amplitude of business fluctuations is less stable (0.009±0.006 and
0.007 ± 0.003 respectively). The relatively few parameters of the model would allow for a Monte
Carlo exploration or other estimation methods [5]. In the following we describe typical behaviour
encountered when varying systematically the its parameters.

Parameter dependence. Simulations showed that the system is less sensitive to the number of
new entries ν than to the interest rate r: If ν is very high, competition is high and most firms do
not manage to survive the first iterations. These failures do however not affect aggregate joboffer
significantly, since initial firm size is small. In contrast, the system is very sensitive to the interest
rate r, and already a difference of 0.0001 leads robustly to higher unemployment.

A wide interval [µmin, µmax] has the effect that unemployment disappears rapidly, since new
profitable firms grow very fast and hire unemployed workers. In contrast, if the interval is more
narrow, this may not happen fast enough and the system finds a stationary state with high unem-
ployment.

Business cycles For both scenarios with and without recentering of the margin, the bankruptcy
of a large firms causes a rise in unemployment (see figure 6). However, the feedback loops differ:
whereas in 6 (a), lower aggregate profits cause lower employment (and therefore lower aggregate
salaries) immediately, in 6 (b) unemployment occurs with some delay, and the feedback loop of
such an endogeneous cycle is more complex. This is because in (b), firms first stagnate and shrink
before their failure, whereas in (a) they do not shrink. Therefore, in (a) the downturns are always
due to bankruptcies.
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Figure 6: A business cycle in the scenarios (a) without and (b) with recentering of the margin. If
the salary per worker is 30, it corresponds to a system with full employment.

Roughly, this is the type of fluctuations that DelliGatti et al. [6] interpret as business fluc-
tuations in their similar model. Since the evolution of the job losses due to bankruptcy is not
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explicitely given in their book, we estimate its impact on unemployment to be at least twice as
strong as in the case presented here, based on their bankruptcy frequency and the relation of firms
to workers.

4 Discussion and Conclusion

In this paper we proposed an agent-based model linking statistical regularities of macroeconomic
systems to characteristics of single firms like their typical life cycles. This is done by combining
a well understood stochastic model [32] with further features. The new elements are heteroge-
neous margins, interest payments, bankruptcies and recentering of the margin of firms, reflecting
an ‘ageing process’. Altogether, the system exhibits a fat tailed size distribution (which can be ap-
proximated by a power law), a tent-shape growth rate distribution and an approximately Gaussian
profit rate distribution, as well as fluctuations in unemployment, in aggregate debt level and in
the number of active firms. We show and explain the feedback loops that reproduce endogeneous
business cycles.

Finally we would like to point out some interesting problems for which this model can be useful:
(1) This model may be developed further and calibrated such that it serves for the study of policy
implications. A possibility, similarly to [8], is to vary some parameters that are currently fixed, i.e.
to generate an external shock, e.g. in the interest rate, in order to reproduce a specific situation
observed in the real world. (2) In the model presented here, the margin of one firm is cannot be
influenced by its own behaviour throughout an firm’s lifetime. Productivity increase happens thus
only via the creation of new firms. A possible extension of the model would be to let the margin
of an firm depend on its investments, as is done in [6], or by purchasing production goods that
depreciate over time as [7]. This would allow for firms to take strategic choices and to have more
variable lifecycles. (3) The financial sector is very simplified in the model. Decisions of the bank
depending on its own balance sheet are not present, as well as variable interest rates or more than
one bank, which seems a promising extension in order to study more in detail the role of credit. By
banks’ decisions whom to grant credit, it would also be possible to allow for a pro-cyclical entry
rate of firms in times of booms, as present in the MOSES model [34]. Particularly, this may have
a further impact on profit, growth and size distribution of firms, since investment may contribute
to accumulation of capital [1].
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2.2 Theoretical description of the extended model

In publication 1, an extended model is presented via equations and a visual
scheme. In this section, some consequences of the features introduced in pub-
lication 1 are analyzed more theoretically. The central extension is the intro-
duction of heterogeneous margins µi. Margin heterogeneity complicates the
dynamics of the model, in that now, high-margin firms grow faster on average
than firms with a lower margin. This is described theoretically and discussed in
2.2.1. The introduction of heterogeneous margins affects the scaling exponent,
which is discussed theoretically and numerically in 2.3.

2.2.1 Replicator dynamics

In this section, the relative growth of firms is addressed. This feature did not
exist in the setting of chapter 1, where all firms have the same µ and differ
merely in size, which evolves stochastically. Margin heterogeneity accounts for
a slow relative growth by which high-margin firms outperform firms with lower
margins. For its description, the concept of replicator dynamics is briefly in-
troduced. Replicator dynamics is a concept from evolutionary biology which
describes growth in terms of populations, rather than in terms of individuals
[50]. It has been introduced by [100]. Replicator dynamics describe the evo-
lution of a sub-population of size ni by the following deterministic nonlinear
equation:

ṅi = ni[ai(ni)− φ(n)] , (2.1)

where n =
�

i ni is the size of the system. A typical application is to explain the
population growth of biological species, where the evolution of one species i re-
flects its reproductive success, ai is a function denoting the fitness of a particular
species i. The ‘average success’ of the system is described by the second term

φ(n) =
�Nf

j=1 nja(nj). Through this term, the success of a strategy depends
on the success of all other strategies. Beyond biology, the replicator equation
has various applications in evolutionary game theory. Here the interpretation
of the terms is slightly different: generally a ni corresponds to the number of
individuals that play a strategy in a game1, and ai denotes its payoff. Replicator
dynamics describe a game that is carried out repeatedly in an entire population
of players, not merely by individuals [50]. Instead of biological reproduction,
players may switch to a more rewarding strategy, due to imitation, learning or
inheritance [88]. The so-called ‘folk theorem’ proves the existence of Nash equi-
libria for replicator dynamics, i.e. a set of strategies that no player will benefit
from leaving unilaterally.

2.2.2 Application to the firm growth model

In the model as detailed in chapter 1, the dynamics was purely stochastic, and
different paths of the firms depended exclusively on the stochasticity of the

1In this description, strategies are assumed to be pure strategies, i.e. they are not combin-
tations of basic strategies
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dynamics, since all the firms had the same margin. Introduction of margin
heterogeneity adds a deterministic term to a firms’ evolution, such that the
mean of growth rates G(g) follow replicator dynamics. Equation (2.1) written
in discrete time becomes

ni,t+1 = [ai(ni,t)− φ(n) + 1]ni,t , (2.2)

where ni,t, 1 ≤ i ≤ Nf are firm i’s number of employees at time t. In the
following the dynamics of �ni,t� in the model is derived, but it would equally be
possible to express the dynamics in terms of the produced quantity �qi,t�. To
describe the effect of a shortage of workforce and aggregate demand, it is useful
to define the effective margin µeff,t, i.e. the weighted sum of firms’ margins µj,t

µeff,t =
1

Nw,t

Nf�

i=1

µini,t . (2.3)

where Nf is the number of firms, and Nw,t the total number of workers hired at
iteration t (since there is full employment, it equals the total amount of workers,
Nw). (2.3) is the ‘effective margin’ in publication 1. The success (i.e. average
growth) of a firm i can be derived by expressing �ni,t+1� in terms of �ni,t�. As
in chapter 1, two cases are discussed separately: (i) firms consume, and the only
limited resource is the workforce, and (ii) only workers consume, and the only
limited resource for firms is the aggregate demand. In case (i), firms intend to
hire

n̂i,t = ni,t−1(1 + µn
i,t−1) = ni,t−1(1 + µi) , (2.4)

since all output is sold. The available amount of workforce is Nw, such that
only a fraction p of job offers can be filled, where p is

p =
Nw�
i n̂i,t

=
Nw

Nw +
�

i µini,t
=

1

1 + µeff,t
(2.5)

The number of workers which a firm actually receives is on average

�ni,t+1� = p n̂i,t+1 = ni,t(1 + µi)
1

1 + µeff,t
(2.6)

In case (ii) where firms do not consume, firms only sell a fraction v = Dt

Qt
of their

production, since demand comes only from the money which has been spent as
wages in the same production cycle. Using the relationship between ni and qi
(equation (1.3)), it can be written as

v =
Dt

Qt
=

�
i ni,tw�
i qi,tp

=

�
i ni,tw�

i(1 + µi)ni,t
w
p p

=
Nw

Nw +
�

i µini,t
=

1

1 + µeff,t

(2.7)

�
µn
i,t

�
=

�
qsi,tp− ni,tw

ni,tw

�
=

qi,t p
Dt

Qt
− ni,tw

ni.tw
(2.8)
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The number of jobs offered by firms is smaller than in scenario (i). On average,
each firm demands

�n̂i,t+1� = ni,t(1 +
�
µn
i,t

�
) = ni,t

�
Dt

Qt
qi,tp

ni,tw

�
= ni,t

�
qi,tp

ni,tw

1

1 + µeff,t

�
(2.9)

which is

�n̂i,t+1� = ni,t(1 + µi)
1

1 + µeff,t
(2.10)

Since in case (ii), the workforce is sufficient, each firm is able to employ the
desired number of workers, i.e.

�ni,t+1� = ni,t(1 + µi)
1

1 + µeff,t
, (2.11)

which is the same result as equation (2.6), that has been derived for case (i)
where the constraint is a limited workforce.

ai(ni) =
1 + µi

1 + µeff,n,t
, (2.12)

and the ‘average sucess’ φ(n) can then be written as

φ(n) =
1

(1 + µeff,t)


1 +

1

Nw

Nf�

i=1

µi,tni,t


 =

(1 + µeff,t)

(1 + µeff,t)
= 1 . (2.13)

Since other firms’ sizes appear via (2.5) or (2.7) in the denominator of ex-
pression (2.12), the expression ai for a firm’s success cannot be written in terms
of a payoff matrix. The dynamics cannot be thought of as the repetition of two
randomly drawn firms competing with each other: all firms compete simultane-
ously. The evolution then goes as follows: Based on their profit (payoff), firms
adjust the planned production, anf their ni increases or decreases respectively.
Other common interpretations in evolutionary game theory are that ni

Nw
corre-

sponds to a ratio of a particular strategy i, and ai(ni) to strategy i’s payoff.
In the presented case, equation (2.2) converges to a state where all employees
are hired in firms whose µi equals µeff , and this is the case if all employees are
hired at the firm with the highest margin, which is the Nash equilibrium of the
system.

2.2.3 Combined dynamics

The replicator dynamics with stochastic terms has been widely studied [50].
2. Having described how the average of a given firm size evolves according
to deterministic replicator dynamics, the original problem of combining these

2For instance, Lotka-Volterra equations, which are equivalent to replicator dynamics (of
one dimension higher), have been combined with the linear Langevin equation by [81]
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dynamics with a stochastic term will now be addressed. These dynamics can be
combined with the dynamics from the stochastic market constraints. Inserted
into the linear Langevin equation (1.24), a firm’s size evolves according to

ni,t+1 = [ai,t(ni,t) gi,t]ni,t + ft (2.14)

The deterministic replicator dynamics are dominant for large firms which exhibit
relatively small stochastic growth fluctuations. Their distribution gi is more
narrowly centered around a mean value m, with standard deviation σ ∝ n−1/2.
The value m is heterogeneous among firms, since ai,t are heterogeneous. In
contrast, for small firms, the standard deviation of gi is far larger, and their
evolution in size is governed more by the stochastic term of (2.14). In the next
subsection, an element is introduced that prevents the emergence of a monopoly,
which would be the evolutionary stable state of the dynamics of equation (2.14)

2.2.4 The recentering of the effective margin

The above dynamics alone would lead on the long term to a situation where
all workers accumulate in the firm with the highest margin. A possibility to
avoid it is introduced in publication 1: µeff,n is recentered at each iteration, by
subtracting its difference from the margins of all active firms.

µi,t = µi,t−1 − (µeff,n,t − µeff,n,t−1) (2.15)

This has two effects. Firstly, the margins of existing firms slowly decline, which
may be interpreted as an aging of technology. Secondly, new firms are started
at a fix rate with a margin drawn at random from a fixed interval. Since their
margin has not been lowered by the recentering, they have some probability to
have a margin higher than existing firms, and grow faster. This simple method
has however some limitations. One, discussed in publication 1, is that labour
productivity for a single firm declines over time. The second is that this largely
deterministic evolution of the margin limits the maximum lifetime of firms. This
aspect is discussed in chapter 3.

2.2.5 Interest payments, Entry and Exit of Firms

Replicator equations can equally be derived if firms pay interest li,t. In order
to finance production, firms can take loans from the bank at an interest rate.
At the end of each production cycle, they repay it if possible, otherwise debts
accumulate and the firm starts the next iteration with lower equity. Interest
is charged for the loans, whether from the actual timestep or accumulated in
previous timesteps, given by equation (8) in publication 1:

li,t = [ni,t w − ei,t] (1 + r) . (2.16)

This has the effect of lowering the net expected profit of a firm by the interest
payments due to this amount, in addition to the fact that over time, the margin
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of a firm declines due to the recentering. Firms’ expected µi is now lowered,
and becomes the time-dependent ‘net expected’ µi, which can be written as

µ�
i,t =

qip− niw − lir

niw + li,tr
(2.17)

This affects the overall constraints in the system, and p and v (equations (2.5)
and (2.7)) need to be rewritten with these µ�

i,t.

One implication of interest payments are that now, constraints in the job
market and in the goods market can be present simultaneously. If the scenario
is (i) where firms spend their net realized profits in the goods market of the fol-
lowing iteration, the profits are lowered by the interest payments, and therefore
Dt < Qt even if firm spending is included.

Interest payments are also the feature which links the role of the margin to
the entry and exit dynamics. Lower net profits further reduce a firm’s chances to
repay the loan, so that at some point in time, its leverage will reach a threshold
at which it is declared bankrupt by the bank. This additional exit mechanism
is a consequence of loans and interest. In the simple setting of chapter 1, firms
could only ‘die out’ by not receiving any workers in the job allocation process.
Also in that case, exit of firms was a naturally arising feature, and entry of
firms was a necessary ingredient to maintain a constant number of firms and
a stationary size distriution. In that sense, new entry and exit conditions may
be seen as a modification of the additive noise term in the Langevin equation
(1.24).

To summarize, the term ai,t(ni,t) in equation (2.14) as it arises in the set-
ting with µ-recentering, interest payments and bankruptcies, becomes time-
dependent. For this reason, the stationary state is not attained via replicator
dynamics, which typically describes a population that reproduces itself, and in
which a nontrivial evolutionary stable state may exist due to the feedback of
the term φ(n). Here, in contrast, firm sizes do evolve according to equation
(2.14), but the evolutionary stable state (which would be a monopoly) is never
reached, since new firms are entering with a possibly higher margin. As shown
in figure 3 (b) of publication 1 and figure 2.3, the size distribution of the model
containing all these features is still heavy tailed, because the stochastic element
is still dominant.

The possibility of describing the dynamics by a replicator equation also pro-
vides a bridge from the model towards evolutionary economics. It has also been
used for the same purpose in other agent-based models inspired by Schumpeter
[29]. As addressed in section 2.4, replicator dynamics contain an economic
foundation: they apply whenever agents (here firms) do not have perfect infor-
mation about other agents’ strategies (here margins). In contrast, a scenario
where firms act upon knowing other firms’ margins would be described by best
reponse dynamics.
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2.3 Effect of heretogeneous µi on the scaling ex-
ponent β

The simple model in chapter 1 describes growth as the sum of the growth of its
independent subunits, i.e. of its jobs. As other models sharing this assumption
[97], it yields a scaling exponent for the growth rate standard deviation σ ∝ n−β

with β = 0.5. This result is reportedly far from empirical studies which find
smaller values in the range of 0.1 < β < 0.3. Furthermore, it is based on
the assumption that firms all have the same expected profit margin µ. In this
section, the effect of the new features on this result is investigated theoretically
and numerically in 2.3.1 – 2.3.2.

2.3.1 The prior distribution

For the sake of clarity, the following reasoning is detailed for scenario (i) where
firms consume, and where the competition is for workforce in the job market. It
holds equally in the goods market. To recall: In the simple setting in chapter 1,
all firms could maximally earn the profits µ. If on top of this margins are dis-
tributed, firms multiply their current size by heterogeneous factors to determine
their demand for workers. The probability for a job to be taken depends on the
total shortage of workforce in the system, and so does the average shortage for
one firm. Firms with a margin inferior to µeff will therefore shrink on aver-
age. The net realized margin, which is the quantity on which firms base their
production decision, is therefore a prior probability distribution to the growth
rate distribution. The question becomes how to calculate P (g) whose mean m
is distributed according to p(m).

P (g|n) =
� ∞

−∞
P (g|m,n)p(m)dm . (2.18)

As shown in chapter 1, P (g|m,n) is Gaussian for our model. If p(m) is assumed
to be Gaussian, P (g|n) can be written as

P (g|n) =
� ∞

−∞

1√
2πσ1

e
− (g−m)2

2σ2
1

1√
2πσ2

e
− m2

2σ2
2 dm , (2.19)

where now the n-dependency is contained in the standard deviation σ1. This
can be written, using completing-the-square

P (g|n) =
� ∞

−∞

1√
2πσ1

1√
2πσ2

e
− g2

2(σ2
1+σ2

2) e
−
�

gσ3√
2σ2

1
− m√

2σ3

�2

dm (2.20)

where the abbreviation σ2
3 =

σ2
1σ

2
2

σ2
1+σ2

2
was used. It yields

P (g) ∝ e
− 1

2(σ2
1+σ2

2)
g2

(2.21)
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Figure 2.1: n-dependence of different scaling variance relations in the growth
rate probability P (g|n,m). The continuous line shows the scaling relation
where the prior distribution is Gaussian with variance independent of firms’
size, i.e. the growth rate scaling relation is σ ∝

�
1/n+ c2. If the prior dis-

tribution is itself n-dependent and scales like σ2 ∝ n−0.25 (long-dashed line),
σ ∝

√
n−1 + n−0.5, both cannot be written in terms of a (constant) scaling ex-

ponent σ ∝ n−β , but their n-dependence is closer to n ∝ n−0.25 than n ∝ n−0.5.
This is numerically verified, and is closer to empirical results than the simple
setting with β = 0.5.

P (g|m) is equal to the Gaussian G(g|n,m) derived in chapter 1, whose σ1 ∝
n−0.5. If this n-dependence is assumed for σ1, the n-dependence of P (g|n) in
equation 2.21 becomes σ ∝

�
1/n+ σ2

2 , which cannot be expressed by a constant
scaling exponent β : for firms with large n, the correction by a (constant) σ2 is
more dominant than for small n. A comparison is shown in figure 2.1.

2.3.2 The conjugate prior distribution for job market con-
straints in the model

The analytic expression for the prior distribution p(m) is hard to assess: the
newly introduced firms have a uniform distribution of their gross expected mar-
gin, but this is not the case for the population of active firms. Over time, firms
become indebted, which lowers the net expected margin. The lower the margin,
the faster firms indebt. These firms do not live long, and therefore only few
firms with very low net realized margins are active. Some ‘lucky’ firms may
not accumulate debts for a very long time (allowing them to become large).
Figure 2.3 (c) shows a snapshot of the numerically obtained prior distribution
at the stationary state: It shows the frequency of firms as a function of their
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net realized margin (repeated here from equation (20) in publication 1),

µn
i,t =

qi,tp− ni,tw − li,tr

niw + li,tr
. (2.22)

µnet
i,t contains their intrinsic margin µi = qip−niw

niw
appearing in the produced

quantity qi,t and their debt li,tr. Simulations showed that the distribution in
figure 2.2 (a) becomes stationary. From its shape, a Gaussian distribution is
assumed as prior distribution. Based on µnet

i,t , firms decide on the quantity
to produce, so they will demand n̂i,t = ni,t−1(1 + µn

i,t−1). The distribution
P (g|m) comes from the shortage of workforce in the job market, and can be
approximated Gaussian. This can be compared to the scenario (i) presented in
chapter 1, where firms consume and all output is sold. Then, µnet

i,t = µ = const,
and no prior distribution exists.
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Figure 2.2: (a) Frequency of firms as a function of their net realized margins,
which is the numerically determined p(m). Based on this distribution, p(m) has
been assumed Gaussian. (b) Scatterplot of µ

�
i,t vs. size. This shows that for big

firms, the distribution of the net realized margin has a smaller variance, and
that p(m) in equation 2.18 is n-dependent.

n-dependence of σ2. An additional effect which is addressed only qualita-
tively is the following: the variance of µnet

i,t can depend in addition on the firm’s
size. This is shown in figure 2.2 (b).

Prior distribution in the goods market. The idea that margin heterogene-
ity introduces a prior distribution for the growth rate holds also if the allocation
of demand in the goods market is considered. Firms produce qi =

w
p ni(1+µi), so

the offer is Qt =
�

i
w
p ni(1+µi), but aggregate demand is only Dt =

�
i niw. In

this case, it is the distribution of the expected µi which is the prior distribution,
not the distribution of µnet

i , as was the case for the job market.

Other explanations for β < 0.5 This explanation for a scaling exponent
β < 0.5 was based on the idea that firms of a certain size n have different
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averagre growth rates. σ(n) is therefore wider than the standard deviation
σ(ni) of a particular firm i. An alternative explanation or β < 0.5 has been
detailed in section 1.9, where the internal structure of a firm – not detailed with
microfoundations – was assumed to account for a different scaling exponent.
This idea also has been suggested in [95, 97]. It is possible that both of these
explanations hold true simultaneously.
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Figure 2.3: (a) Counter-cumulative size distribution of a complete setting in-
cluding interest rate (r = 0.0162), margin heterogeneity (0 ≤ ni ≤ 0.1), restarts
(ν = 120 per iteration) and bankruptcies, without recentering of the margin.
(b) for comparison: counter-cumulative size distribution of the simple setting
from chapter 1, where the only constraint is limited purchasing power. The fact
that firms remain slightly smaller is a result of the recentering of the margin
and the bankruptcy mechanism (detailed in 2.2.4 and 2.2.5), since this limits
the lifetime of firms, and therefore also the time in which they can grow. For
the simple setting shown in (b), there is no prior distribution of the net margins
p(m). The equivalent to the distribution shown in figure 2.2 (a) would be a delta
peak. Snapshots at the stationary state after 2200 (a) and 7500 (b) iterations.
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Figure 2.4: Two snapshots of firm growth rates, where the firms are grouped
into size bins. Snapshots at iteration 300 (a) and (b) and 310 (c) and (d).
(b) and (d) show the slopes fitted to the ‘tent-shaped’ growth rate distribution
as a function of the smallest firm within the bin. The reason why the scaling
exponent β is not 0.5 is that the mean of the firm growth rates are distributed
as a result of µ-heterogeneity. The exponent β may vary slightly over time, and
its precision is not very high. Simulations with 106 workers, ≈ 104 active firms,
interest r = 0.01, initial µ uniformly distributed between 0 and 0.1. The fact
that more firms with positive growth rates exist results from the bankruptcy
threhold: The same plot for the simple setting without margin heterogeneity is
shown in figure 1.12, yielding β = 0.5.
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Figure 2.5: Scatterplots of firm sizes vs. growth rates. (a) complete setting
with same parameters as in figure 2.4 with scaling exponent β ≈ 0.3, (b) simple
setting from chapter 1 with β = 0.5. As expected, in (a) the growth rate variance
shrinks to a lesser extent for bigger firms than in (b).
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2.4 The context of economic models

Since the model has assumptions at short and long term, and combines stochas-
tic and deterministic dynamics, it can also incorporates argument from differ-
ent theories, which can be weighted differently depending on the choice of the
parameters. For instance, the choice of the width of the margin distribution in-
fluences the speed at which the effective margin increases, and therefore allows
to weight the deterministic dynamics with respect to the stochastic dynamics.
The smaller this range, the more important the stochastic dynamics is.

The level of abstraction at which the economy is analyzed is very high.
Although many other models explain firm growth by emphasizing the role of
the number of sectors in which a firm is active [107] [19], in this model no sectors
are present. Here, firms produce an abstract good, which can be thought of as a
service, since it is non durable. This simple hypothesis may be plausible, given
that in modern industrialized countries the service sector accounts for more
than 2/3 of the emloyment [34]. An abstract good is convenient since it allows
the approximation that all firms are in competition with all other firms in the
goods market. The introduction of sectors would make the competition more
complex: firms would compete with firms of their sector to sell their goods, but
would also compete for the limited purchasing power of workers with all other
firms. The microfoundations of the model should be handled with care. It is not
possible to make any statement about features which the model has abstracted
from.

The model describes an industrial economy of firms and employees. Firms
have more possible choices than employees: depending on their margin, they
offer workplaces, produce goods, sell them, take loans. Workers, in contrast,
are very simple in this model. They are homogeneous and cannot compete.
This separation has been described by economists since the work David Ricardo
(1772 – 1823) and is a central feature of so-called heterodox models [91, 40].

2.4.1 Keynesian arguments

As is the case other macroeconomic agent-based models [21, 30, 87], the model
incorporates several of Keynes’s ideas. The common points to Keynesian argu-
ments refer mainly to production:

− Monetary profits are the driving force for economic activity[90]

− Firms base their decisions on the expectations of profits [39]

− Competitiom is present in quantity and not price[90, 91]

− Firms focus on the ‘short run’. In Keynes’s view, “there was only a suc-
cession of short runs”[39] rather than a long run. This also holds true in
the model, in that firms plan only one iteration in advance, and because
new firms are constantly arriving. If described by a differential equation,
boundary conditions would change at every timestep (see figure 2.6).
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Figure 2.6: Scheme in [13] to show how changing boundary conditions influence
the evolution of some quantity. The dynamics can be seen as a succession of
short run developments. In a similar way, productivity evolves in the presented
model. Without the arrival of new firms, productivity (see equation (21) in
publication 1) would converge to a constant value.

As to Keynes’s arguments on investment, the comparison is hardly possible,
since at this stage the model has a very simple financial sector, and firms have
access to credit in a ‘binary’ mode: below a certain leverage threshold they
do, above they don’t. The financial sector has potential to be described more
realistically and has so far not been the focus of the analysis of the model (see
chapter 5). However the comparison cannot be too in depth, since Keynes him-
self did not specify microfoundations for his macroeconomic theory. As states
[39] p.195, “The problem of linking Keynesian macroeconomics to a coherent
and persuasive theory of competition among individual firms remains a central
unresolved issue in contemporary economics.”

2.4.2 Neoclassical arguments

Few common points can be stated, since the neoclassical axioms of perfect in-
formation and market-clearing prices are completely missing. The absence of
perfect information of firms is also addressed in 2.2.1. The only way that firms
can know their own competitiveness is through their sales in the market. Past
experience is also their only way to experience the aggregate demand: for in-
stance, if a large firm goes bankrupt, unemployment rises and aggregate demand
drops suddenly, but other firms will only notice this once they have incurred
negative profits due to overproduction. What distinguishes this model most
from neoclassical assumptions is that there is no asset market that takes the
function of allocating risk. For instance via variable interest rates, a negative
feedback loop is generated that keeps the system in an equilibrium and does not
allow for systemic risk [39],[14].
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2.4.3 Framework of statistical market equilibrium [38]

D. Foley describes a framework of a market which exhibits a statistical equilib-
rium, which is methodologically weaker than a Walrasian equilibrium. It applies
to the markets in the studied model. It considers a general market where agents’
offer and demand of a traded good are posted, Both quantity and offer/demand
price can vary among agents. All feasible outcomes (called transactions) are
equally likely. (Only one will actually happen and clear the market). The results
that can be achieved by several transactions have higher probabilities, as in this
model. For the distribution of results, the Gibbs-Shannon entropy is calculated,
and maximized under 2 constraints, the conservation of probability of outcomes,
and that only transactions take place which on average leave every agent in an
advantageous position, using Langrangian multipliers. This setting is equivalent
to the canonical ensemble in statistical physics. The Langrangian multiplier of
the second constraint is interpreted as “market temperature”. When it is high,
many transactions can possibly take place, and “agents are spread out widely
in terms of the gains from trade”. When it is low, only few transactions are
possible. Applied to this model, a high temperature corresponds to a high pa-
rameter µeff , where many transactions are possible (although only one will be
realized).

2.4.4 Evolutionary Economics

Evolutionary economics is a field inspired by concepts of evolutionary biology.
It was termed so by Thorstein Veblen (1857 – 1929) who was inspired by Ch.
Darwin’s The Origin of Species [49]. In evolutuionary economics often the role
of competition for resources and growth are emphasized. In the perspective of
evolutionary economics, Schumpeter’s approach to this was to describe the econ-
omy as being in a macroeconomic equilibrium on the short term, which is being
transformed by the arrival of innovations. This is assumed to happen discontin-
uously and shakes apparently calm periods [85]. These arguments are taken up
by the fact that new firms are entering continuously, which are potentially more
productive than existing firms, and displace them. This displacement follows
replicator dynamics, as detailed in 2.2.1. While this is happening, the system
may be regarded to be in a short-term equilibrium, since the job market and the
goods market are both designed in a way that every realization has the same
probability, which guarantees that the system exhibits a stationary firm size
distribution (see figure 2.3).

2.4.5 Stock-flow consistent models

The guiding principle of stock-flow consistent models is the conservation of
money within the system [47]. This conservation imposes some constraints on
macroeconomic outcomes that do not need to be explained by other arguments,
e.g. behavioral arguments. From this follows that if a model should reach a
stationary state, every economic actor has to spend his earnings at each timestep
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(see also the introduction of publication 1). Stock-flow consistent models share
the assumption of an agent-based approach, in that economic actors do not have
foresight, and therefore base their decisions on simple rules, which for stock-flow
consistent models are based on their own balance sheet. So does this model,
which is stock-flow consistent. How accounting is precisely done is considered
to be crucial in stock-flow consistent models, as well as in this model.

The balance sheet transaction matrix. The flows of any stock-flow consis-
tent model can be described in a matrix. Some of these models are agent-based,
such as [21, 87], or analytical [40, 47, 55]. As also discussed in publication 1,
the cited stock-flow consistent models include different money flows. All models
have in common that profits earned by firms need to be spent in some way in
order to obtain a stationary state. Otherwise, firms would either not earn any
profit, or economic activity would eventually cease, which is Marx’s “paradox
of monetary profits” [55, 22]. Firm spending can either happen through invest-
ment in capital goods [21, 87], through dividends if they are public companies
[21] or through high interest payments to a bank, which then spends its earn-
ings. This may be because the bank itself is a public company [87], because
the bank acts as a consumer in the goods market [55], or because the bank
cancels debt of bankrupt firms, which is the case in the presented model. The
“simplest model” by Godley and Lavoie [47] has instead a state who collects
taxes from firms, and re-distributes them in the form of unemployment benefits.
One alternative to firm spending is present in the model by J. Mimkes [69], who
describes the production cycle as an analogon to a heat pump, which creates
mechanical energy (profits) by exploiting two different temperature levels (wage
levels): applied to the production cycle, production needs to take place at a
lower wage level than consumption. This solution however is not possible in a
closed system as described here, where the recipients of wages coincide with the
customers. Table 2.1 shows all the money flows of the presented model. For
the sake of simplicity only the aggregate flows of this model are shown, but the
matrix has in fact as many rows and columns as there are agents.

In publication 1, an effect of stock-flow consistency is manifested in the cou-
pling of aggregate wages and spending in the next iteration, since the modeled
economic system is closed. In a situation with high unemployment, aggregate
demand is low, and therefore firms are constrained in how much they can grow.
Another feature where stock-flow-consistency is important is the role of credit
availability: If firms did not face any constraint and could take infinite debts,
the job losses due to bankruptcies would be non existent, since the only reason
for a firm to vanish is because it doesn’t sell anything (or doesn’t receive any
workers), which only occurs for very small firms.
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transaction sectors Σ
workers firms bank 0

wages Nt w −Nt w 0

loans ΔL −ΔL 0

interests −Lr L r 0

consumption −Qs,w p Qs,w p 0

consumption firms −Qs,f p

Qs,f p 0

reimbursement of loans −ΔL� ΔL� 0

Δ equities ΔEw ΔEf ΔEb 0

Σ 0 0 0 0

Table 2.1: Accounting matrix of the model, aggregated into sectors. L denotes ag-
gregate loans, E is the financial position of an agent.
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2.4.6 Macroeconomic Agent-Based Modelling

Recently, the neoclassical approach of using a representative agent has been
widely criticised, in that it makes what is called a “fallacy of composition”
(e.g. [28], [90]) Agent-based modelling as a methodology can circumvent this
[32],[102]. For the same reason, the use of agent-based models in economic
science has been advocated as early as 1957 by Orcutt [77]. Among the earlier
of these models, which were at the time called microsimulation models, are
[11, 31]. Later models, which are discussed below, detail more the interaction
between the financial and the real sector.

Despite their diversity, agent-based macro-models have several features in
common. Typically, the agents are households, firms, one or many banks, and
possibly a government. They model the production cycle, as well as the money
flows, which is why some of them are stock-flow consistent. Agents act according
to relatively simple rules, even though some models may differ in this point,
and may take ideas from different economic arguments, e.g. contain elements of
neoclassical optimization [45]. They all typically exhibit feedback loops, which
may arise from constraints in the markets, from long-term growth dynamics,
and possibly imitation of other agents’ behaviour. Feedback may be positive (re-
inforcing) or negative (stabilizing). There are always some stochastic elements
in the markets. To understand more precisely business fluctuations in a model,
the crucial elements are the timescales at which these feedback loops operate,
and the amplitude of stochastic fluctuations admitted in the model. Depending
on these, business fluctuations may result from feedback loops of the underlying
stochastic differential equations, or merely from fluctuations.

Existing models

Here some approaches of macroeconomic agent-based models are briefly pre-
sented. They differ from the model studied in this thesis in that they contain
more features, and that they are not analyzed theoretically as in chapter 1 and
sections 2.2.1 and 2.3.1. Other differences are that all of these simulate a much
smaller number of agents, and that the focus lies more on predictions and pol-
icy implications, which is not the case of the model in this thesis. Common
results with the presented model are that some of these models find fat tailed
size distribution and a tent-shaped growth rate distribution [45, 30]. Since they
contain many features, the dynamics is necessarily some type of multiplicative
noise. Furthermore, superposition of many features may lead to a Gaussian
growth rate probability density of individual firms, so that the explanation for
a tent-shaped G(g) derived in 1.7.2 might approximately hold in these models,
although this is not explicited.

The model by G. Dosi et al. [30, 29] The model captures elements from
the theories of Keynes (short term demand fluctuations) and of Schumpeter
(technology-driven growth), hence the name K+S (Keynes and Schumpeter). It
consists of two types of firms, workers (which are not simulated explicitly), and
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a state. One type of firm produces investment goods, another one consumption
goods, as in [21]. Investment good producers can both innovate, and imitate
other firms’ technology. Firms exit if their size has attained very small values, or
if their net assets become negative. Every exit is followed by the entry of a small
new firm, so the number of active firms is strictly constant (not fluctuating as in
the case of the presented model). In the labor market, wage adjustments take
place, but not to an extent that unemployment disappears. As in the model
of this thesis, firms’ market shares are reported to evolve according to replica-
tor dynamics, such that profitable firms outperform unprofitable ones, which
are however not specified as done for this model in 2.2.1. The system has 22
parameters; the number of firms is 250. Workers are not simulated explicitly,
which is why their model is only partly comparable to the one presented in
this chapter. In contrast to the model in this thesis, the main purpose of the
K+S model is to test different policy scenarios. The key variables that gov-
ern economic activity are tax rates and unemployment benefits. Validation is
done by exploiting statistical regularities of empirical data. For this aim the
authors compute averages over many simulations in order to compensate for its
small size. A tent-shaped growth rate distribution is reported, as well as a size
distribution, which decays faster than lognormal.

The ‘Eurace’ model by S. Cincotti et al. [26] The Eurace model is stock-
flow consistent and focuses on the interrelation of financial and real sectors.
It models a job market, a goods market and a financial market. Agents are
several commercial banks, a central bank, a state, firms which are joint-stock
companies, and households. The goods market takes place at malls to which
firms deliver their production. A homogeneous good is traded, but at varying
prices. Households try to spend all their money at one mall and split their
puchase only if the mall does not have the desired quantity. After the second
attempt, money is kept, so not necessarily all potential purchasing power is
spent, unlike the case in the model in this thesis. In the job market, firms offer
jobs at different wages. A matching algorithm assigns workers to open jobs.
If not all positions are filled, the desired quantity cannot be produced. The
malls act as a buffer, since they may dispose of stock, and because shortage
in workforce at one time step can be compensated by higher production in the
following time step. This is not so in the model of this thesis, where shortage
in workforce immediately repercutes in a change of company size and its next
production. In the financial market, the government, firms and the households
participate for the purpose of saving and speculation. Separately, firms can take
loans from commercial banks in a credit market to finance their production.
Besides this, they invest in capital. A central bank sets the maximum leverage
of commercial banks. It may buy government bonds and therefore influence the
amount of credit money in the system, in addition to loans issued by commercial
banks to firms (as in the model in this chapter). Both explicitely simulated
external shocks, and endogeneous feedback loops exist in the Eurace model,
which are identified as reasons for fluctuations in economic activity. The reasons
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are “the coordination failure between demand and supply of consumption goods,
strong fluctuations in the investment in physical capital, and disruptions in the
supply chain as well as mass layoffs due to firms’ bankruptcies“[26].

The Eurace model’s dynamics are governed by 10 parameters. Its analysis
is uniquely done for time series of aggregate quantities. Neither distributions
nor individual life cycles are addressed.

The model by Ch. Bruun [21]. This model is an implementation of the
theory of Keynes. It comprisies workers, firms, a simple bank, and a state which
collects taxes and pays unemployment benefits. As in our model, wages and
prices are fixed, and competition happens only in quantities, except in a stock
market where stock prices may change. Firms need a certain stock of capital
in order to be able to produce, which they buy, and whose value depreciates
over time. However, capital and labour cannot be substituted as in neoclassical
production functions. Firms adjust their production quantity depending on last
period’s profits, albeit not linearly dependent as in our model. In the model, two
types of firms exist: producers of consumption goods, and producers of capital
goods. The firms are joint-stock companies, who pay dividends to shareholders
(which are workers and other firms). Firms also make an investment decision,
depending on experienced capital constraints, stock prices, and their financial
position. From their intrinsic parameters, firms are homogeneous, but the many
degrees of freedom introduce heterogeneity. Workers are placed on a spatial
network. They do not spend all of their wages but their consumption depends
on their neighbours’ consumption. Randomness is present in the job market,
the goods market and in the stock market. Analysis is mainly via aggregate
variables and their correlation in a business fluctuation. As a distributional
feature, the Gini index, which measures skewness of the wealth distribution
of households, is calculated. Despite its similar assumptions to the presented
model, the comparison is difficult, since it has 17 parameters.

The model by D. Delli Gatti et al. [45]. In their book, the authors have
analyzed several scenarios. I will refer to their central model, which they term
‘basic agent-based model’ (BAM). The agents of this model are households,
firms and banks. Despite using an agent-based approach, this model uses some
principles from neoclassical economics: In the goods market, the job market
and the credit market, prices can adjust because agents demand several offers.
However, the agents are adaptive and do not perform real optimization. The
markets are decentralized, without a clearing mechanism, which is why the out-
comes are characterized by unemployment and unsold goods .Inflation is present,
which is a result of the price mechanisms in the markets. In a simple scenario,
no productivity increase is allowed. If over indebted, firms can go bankrupt,
and are replaced by new firms. Business fluctuations are explained as originat-
ing from waves of bankruptcies (and restarts). The model has 14 parameters.
Results of the model have been compared to a firm database of Italian firms,
which does however not contain bankruptcies and birth of firms. The model re-
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produces a fat-tailed size distribution and a Laplacian size distribution, whose
parameters are compared to data. Since the shown size bins are very large, it is
difficult to compare the size distribution with the one in the presented model.
Other comparisons to data are the evolution of average interest rates, and wage
distributions.

The model by P. Seppecher [87]. This model is equally stock-flow con-
sistent and describes a system of households, firms, and a bank. It bases itself
monetary circuit theory, i.e. the endogeneous creation of money. This means
that once a firm takes a loan, an amount of money is being created positive on
the firm’s account, and negative on the bank’s account. Additionally, the bank
earns some interest. After firms earn revenues from the production financed by
the loan, they pay it back. This is termed ‘destruction of money’.No phyical
capital good exists in this model, the only costs for firms are labour and interest
payments. In contrast to the model of this thesis, a bankruptcy mechanism does
not exist Seppecher’s model. Over-indebted firms are merely charged a higher
interest rate, but continue to exist even once they are declared bankrupt. New
firms are not introduced. The absence of bankruptcies (i.e. absence of money
losses to the bank) poses the problem that the bank accumulates money from
interest payments, which would eventually stop economic activity. This situa-
tion is prevented in P. Seppecher’s model by the introduction of high dividend
payments from both firms and the bank, which is a stock company, to share-
holders (except some own funds that are kept by the bank). Other differences
to the presented model are the existence variable prices and wages, and there-
fore inflation. The markets are search algorithms for individual agents, which
end after a certain number of search steps. The evolution of distributions has
not been presented. The model has 27 parameters, but how many of them are
important for the dynamics is not discussed .

The presented model in this context. The model presented in this thesis
differs in that it is much simpler. µmin is always 0, which is why it has not

[µmin, µmax] range of expected gross profit margins of firms
r interest rate
γ bankruptcy threshold
ν number of restarts per iteration
ninit initial size of a firm
linit initial debts of a firm

Table 2.2: List of parameters

been listed separately. The model depends sensitively on the µ and r. The
bankruptcy threshold γ and number of restarts per iteration ν affect the size
of the system, as well as the average lifetime of firms. The dynamics is less
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sensitive to the itilialisation parameters linit and ninit. Further dependence on
parameters is discussed in publication 1.

Furthermore, the presented model focuses less on the financial markets than
the mentioned approaches, at the present stage of its development. Its main
contribution is to study the evolution of distributions, not merely the mean
values of aggregate quantities. This provides a link between mathematically
tractable simpler growth models and the macroeconomic agent-based models.

Comparison of the business cycle mechanisms. One object of study of
the models by [45] and [21] is to describe business cycles. In economic theory,
business cycles are explained as being either reactions to exogeneous shocks,
or emerge endogeneously, i.e. they are positive feedback loops. In the cited
models, these are endogeneous cycles, or simulated reactions to a shock, as in
[87]. In [21], the cyclic behaviour seems to be governed by a herding effect
of household’s decision to invest in stocks or to consume, which then influences
the investment and production decision of firms. In [45], downturns of economic
activity are released by waves of bankruptcies. Since they may occur abruptly,
they may also be seen as endogeneous shocks due to randomness in the system.

For the model in this thesis, some business fluctuations have been presented
in publication 1 (figure 6). It is shown that the more features are included, the
less fluctuations are due to randomness, and the more they are indeed feedback
loops. In figure 2.7, the feedback loop is driven by the entry and exit of firms,
firms’ consumption in the goods market, and the recentering of µeff . It goes
as follows: While firms’ net realized profits are increasing, spending in the
goods market also increases. High profits incite firms to produce too much,
which is why not all goods can be sold and their profits saturate 3. Since
µeff is recentered, firms’ expected margins slowly decline, and the indebtedness
increases, which further lowers their net profits. Firms who intend to spend
their last realized profits as consumption in the goods market, consume less.
Due to their low profits, firms do not plan to grow quickly, and at some point
they cannot absorb the workforce which is set free due to large bankruptcies.
Unemployment is a consequence (visible here in the decline of the aggregate
salaries, since the salary is a constant). However, since the failing firms are
unprofitable and indebted, a wave of bankruptcies lowers aggregate debt in the
system. This causes aggregate profits to rise again, because new unindebted
firms dominate who can earn higher profits. Due to their high profits, they offer
more jobs, which is why unemployment declines again.

Further features causing endogeneous feedback-loops could readily be added
to this model, for instance a feature in order to create a feedback loop from credit
availability. Since for example the stationary state of the level of unemployment
depends on interest rate r and bankruptcy threshold γ, it is clear that if these
parameters depend on economic prospects, and these in turn on unemployment,
the system would exhibit more complex endogeneous cycles. The introduction

3Note that in the presence of interest payments, Dt < Qt even if firms spend their last
realized profits.
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Figure 2.7: Feedback loop of several quantities. Aggregate salaries of 30 corre-
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from 0 is added.
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of further features can also have a stabilizing effect on economic activity, i.e.
they may introduce negative feedback loops.

2.5 Concluding Remarks

In this chapter, a simple stochastic firm growth model has been extended with
several features: margin heterogeneity of firms, interest payments and a limited
volume of credit. As in the simple scenario of chapter 1, the dynamics of the
model is stochastic, and generates a power law decay of the size distribution,
as well as a tent-shaped growth rate distribution. In addition, the profit rate
distribution is analyzed, as well as life cycles of individual firms.

It has shown that with the introduction of margin heterogeneity on its own,
the system would evolve towards a monopoly. However, if additional, ‘counter-
acting’ features exist, a stationary state may be obtained. In the presented case,
these are interest payments which lower the gross expected margin, ‘ageing’ of
margins due to recentering of the effective margin µeff,t, as well as bankrupt-
cies and entry of firms. These features, however, represent only one possibility
of further specification of a stochastic firm growth model, and other specifica-
tions may be closer to reality. Even though comparison to empirical studies
look promising, what can really be stated is merely that they does not seem to
falsify the model.

The presented scenario is much simpler and more tractable than existing
agent-based macro models. It can be seen as a baseline scenario for further
development towards model as comprehensive as other macro models. The ne-
cessity of some extension depends of course on the purpose for which the model
shall be used, and care needs to be taken not to loose track of the causality.
Possible elements are a more cognitive bank, which takes into account the prof-
its, margin or the financial position of a firm when deciding on the volume of
credit a firm receives. Another possible feature is the introduction of investment
goods. In view of globalization, a further possible scenario is to study a sys-
tem which is not closed, e.g. where customers do not coincide with employees.
In addition to new functions, it is possible to study different behavioral rules
for firms and workers, for instance by comparing different levels of information
when taking decisions.
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Chapter 3

Study of Bankruptcies in
the model

3.1 Introduction

This chapter consists of a working paper, containing the sequel of the analy-
sis carried out in chapter 2. The theoretical aspects in section 2.2 and 2.3, as
well as the comparison to models in section 2.4 apply equally for the results
of this chapter. Without complexifying the model, a number of new results
are analyzed. These center around bankruptcies. For their description, the fo-
cus lies on the dynamics of ageing and debt accumulation, as well as on the
criteria by which the bank declares firms bankrupt. In the following working
paper, different bankruptcy criteria are tested, and how this choice affects the
distribution of active and bankrupt firms is shown. Results are the age distri-
bution and size distribution of active firms, and those of firms at the moment of
bankruptcy. They allow the bankruptcy probability as a function of age and size
to be calculated. Further results are a more thorough analysis of life cycles, the
distribution of the liabilities, and the relation between several variables. These
results have been compared with a number of empirical studies of firm char-
acteristics [35, 1, 33, 61, 60, 58, 20], and to stochastic models for bankruptcy
[79].
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Abstract

This paper presents results of a macroeconomic agent based model
comprising households, firms and a bank. Firms statistics of active firms
are linked to bankruptcy statistics by focusing on the bankruptcy criteria
and firms life cycles. Bankruptcy probabilities as a function of age and
size are calculated using Bayesian inference. The model builds upon a
simpler stochastic model [36] and is mathematically tractable. Several
distributions are compared to empirical studies, such as size, growth rate,
age, margin and debt distribution, as well as correlations of variables.

From the complexity perspective, a goal is to explain jointly arising stylized
facts with coherent microfoundations. This is one of the purposes of macroeco-
nomic agent-based models, which typically have several types of agents: house-
holds, firms, and one or many banks. They attempt to relate a simple theory
of the firm to macroeconomic outcomes. This type of model has as a common
feature that they avoid what is called “fallacy of composition” since the sectors
are not aggregated to representative sectors. Besides that, they may incorporate
different economic ideas, e.g. Keynesian [10], neoclassical [26] or Post-Keynesian
as the model by [41] which focuses on monetary circuit theory, and does not
include bankruptcies. All of the cited models are also stock-flow consistent.

Any agent-based model is based on a stochastic process, which can be de-
scribed more or less explicitly [19]. Many relatively simple models exist, which
describe only one or two stylized facts of an economic system. These may
be city size or firm size formation [34, 49], firms’ growth rate distribution [8];
growth rate distribution and scaling of the size-dependent growth rate variance
[39, 22, 46]; or scaling laws for firms’ bankruptcy risk [40]. These models rely
on the stochastic evolution of firms’ sizes. However, these simple models can be
difficult to interpret in economic theory, since they typically do not model the
production cycle [45, 24]. Another approach are macroeconomic agent-based
models, which have more features, and in which mechanisms from these simple
models may be present to some extent, even if they dynamics are not uncovered
and analyzed explicitly. We showed in [37] that the construction from simpler
firm growth models is a means to keep the model mathematically tractable.
more than one timescale is relevant for the dynamics,

The strength of macroeconomic agent-based models is that they not only
allow to study aggregate quantities like unemployment and GDP, but also dis-
tributions [25], which is a crucial intermediary step to validate plausibility of
certain microfoundations. To do so, it is crucial to dispose of empirical evidence.
Important stylized facts are the heavy-tailed firm size distribution [6][38]; the
tent-shaped growth rate distribution and the scaling exponent of the growth rate
variance [44][39][46][38]. Other interesting empirical results are the profit rate
distributin [20, 2, 32], the effect of credit constraint on age and growth [21][11],
the margin distribution [32], debt distribution [31, 40], bankruptcy probability
of firms [40] and debt at bankruptcy [4].

The focus of this paper is the analysis of credit constraints and bankrupt-
cies, in a framework that has been introduced and analyzed in other respects
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in [36, 37, 35]. Since different factors are reported to contribute to firm failure,
the model needs some sophistication. For the problem of corporate failure pre-
diction, different techniques have been used in the relevant literature: neural
networks [5, 17], data mining [33], and support vector machines [42]. The typi-
cally studied quantities in these approaches are as in [3]: working capital/total
assets, retained earnings/total assets, earnings before interest and taxes/total
assets, market capitalization/total debt, sales/total assets.

The idea of this paper is to link distributions of active and bankrupt firms
in an agent-based model, and to exploit empirical studies for its qualitative
validation. We use the previously introduced model [35] but focus on the lifespan
of firms and the relation between distributions of active firms and bankrupt
firms. Bankruptcy statistics depend crucially on typical life cycles of firms,
which in turn depend on the rules of the model, as well as on the parameters,
which weight the speed of the different dynamics. In the following we analyze the
model along three axes: Distributions at a certain point in time, the evolution
of single firms, and bankruptcy statistics. We refer to literature and empirical
findings on these three aspects.

The paper is organized as follows. In section 1, we recall the equations of the
model. In section 2, we study the age distribution of firms, and discuss how it
is influenced by the used bankruptcy criterion. In section 4 we discuss with the
aid of typical examples how firms evolve over time in their size, debt and profit
margin. In section 5, further distributions of firm characteristics are shown, at
this stage without an in-depth discussion. In section 6, we discuss and conclude.

1 The model

We recall the macroeconomic agent-based model that has been introduced in
[35]. It comprises a number Nw of available workers, a fluctuating number Nf,t

of firms and one bank representing a simplified financial sector. Firms are het-
erogeneous in their gross expected profit margins µi. What differs significantly
from the models by [26, 10, 41, 18, 12] is that the number of agents isone to two
orders of magnitude larger, and that the validation is done via the stationary
distributions of characteristic firm variables. To a part, these may be described
theoretically, since the model is a mathematically tractable extension [37] of
a stochastic model for firm growth [36]. Since the dynamics generates scaling
phenomena, it is important that the number of firms and workers is big enough
to be able to produce these phenomena1. The basic concept is that firms are in
competition for limited resources, which in this paper are aggregate purchasing
power in the goods market and workforce in the job market. As soon as there is
a shortage of one of these resources, a stochastic element appears in the dynam-
ics, because every demand has the same chance of being satisfied. That is, every
offered unit of commodity goods has the same chance of being sold, and every
offered position has the same chance of being filled. Competition happens thus
only via quantities and no price or wage adjustment mechanisms are present in
the model. A second important ingredient is heterogeneity of firms profitability,
which leads to relative replicator-type growth of firms. A third aspect, which

1typically, the number of firms is 104 (in this preliminary version 103), and the number of
workers 106 (or 105)
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comes from the model’s stock-flow consistency, is that firms finance production.
Firms can demand loans at an interest rate, which at this point serves as ab-
straction for various kinds of capital costs. Over longer lapses of time, firms
can accumulate debt until a threshold where they go bankrupt. The option
of bankruptcy limits the life span of firms, and interest payments limit firms’
net realized profits, on which they base the decision of how much to produce
in the next iteration. New firms are being introduced at a constant rate, such
that the system finds a (fluctuating) level of active firms rather than forming a
monopoly. Since debt accumulation depends on the (heterogeneous) margins as
well as on the stochastic dynamics, the life time is also heterogeneous.

1.1 The Sequence of Events – Equations

We recall the model. One iteration is composed of the following steps:

1. Production decision of firms. Firms decide a quantity q̂i,t of goods to
produce at time t. It is based on their production in the previous iteration
qi,t−1, adjusted by a factor that grows linearly with their net realized profit
margin µn

i,t−1 (defined in equation (15)).

q̂i,t = qi,t−1 (1 + µn
i,t−1) , (1)

where p is the price of a unit of commodity goods. To be able to produce
this quantity, their demand for workforce n̂i,t is given by

n̂i,t = q̂i,t
p

w

1

1 + µi
, (2)

where w denotes the (constant) wage.

2. Job market. All Nf,t firms post their job offers, which sum to

N̂w,t =

Nf,t�

i=1

n̂i,t . (3)

If the number Nw of available workers is sufficient, firms hire the planned
quantity:

ni,t = n̂i,t if N̂w,t ≤ Nw . (4)

If N̂w,t > Nw, workers are attributed with equal probability to every open
position, so that the actual received quantity by a firm follows a binomial
distribution, which has the mean value �ni,t� = n̂i,t

Nw

N̂w,t
(see [36]). Since

margis are heterogeneous, after the placement of workers in the job market,
it is useful to calculate the effective margin of the economy:

µeff,t =
1

Nw,t

Nf,t�

i=1

ni,t µi , (5)

where Nw,t denotes the number of employed workers. The competitiveness
of a firm in the system depends on its margin compared to µeff,t.
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3. Possibility to take a loan. Firms check if they dispose of enough equity
ei,t to be able to pay wages. If not, they demand a loan li,t at interest
rate r:

li,t = [ni,t w − ei,t] (1 + r) . (6)

All agents do double-entry accounting, and technically all transactions are
booked in a way that guarantees stock-flow consitency.

4. Production and payment of salaries. With a number ni,t of workers,
a firm produces qi,t units of consumption goods:

qi,t =
w

p
ni,t(1 + µi) , (7)

Hired workers receive a (constant) salary w.

5. Consumption decision. Workers j are assumed to spend their salary
on a number of d consumption goods:

dj,t =

�
w
p if employed

0 otherwise
(8)

Scenarios have been simulated where also firms spend their net realized
profits from the previous iteration. These are discussed in [35]. However,
in the simulations presented here, workers are the only consumers, so that
total demand is

Dt =

Nw�

j=1

dj,t . (9)

6. Commodity goods market. Analogously to the job market, if aggregate
demand Dt is sufficient, all goods

Qt =

Nf,t�

i=1

qi,t (10)

are sold:
qsi,t = qi,t if Qt ≤ Dt . (11)

If Qt > Dt, the allocation of demand is again probabilistic, such that
the actual sold quantity follows a binomial distribution, whose mean is�
qsi,t

�
= qi,t

Dt

Qt
. After the transactions, firms calculate their sales. Since

unsold goods cannot be stored and are lost, the abstract good can also be
interpreted as a service.

7. Repayment of the loan and possible bankruptcy. Firms which
dispose of enough assets repay their loan to the bank. If their assets
are not sufficient, they will start the next iteration with a more negative
financial position. The bank declares a firm bankrupt according to two
criteria:

(1) A firm’s margin µi reaches

µi,t = µcrit = 0 (12)
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This can happen since firm margins diminish due to an ageing process
introduced in equation (16). As (16), bankruptcy criterion 1 is an
optional feature.

(2) The debt ratio reaches a threshold γcrit, and a firm’s debts reaches a
level li,crit:

lcriti,t = −γcrit wni,t (13)

Once a firm is declared bankrupt, its debts are losses to the bank. Impli-
cations of these two criteria are analyzed separately in this paper.

8. Calculation of profits. Firms net realized profits are

πn
i,t = qsi,t p− ni,t w − li,t r , (14)

where li,t may have accumulated over many iterations. This means that
the net realized profit margin is

µn
i,t =

πn
i,t

(ni,t w + li,t r
) (15)

9. Recentering of firms’ margins An optional feature is that at the end
of each iteration, each of the intrinsic margins µi is lowered by an amount
such that µeff,t remains constant.

µi,t = µi,t−1 −Δt (16)

where
Δt = µeff,t − µeff,t−1 . (17)

µeff has a natural tendency to grow at every iteration, since the dynamics
of the job market has the effect that on average, firms with a high margin
will offer more jobs and attract more workers. This recentering is a means
to describe ageing of the technology of a firm and is important for the long-
term dynamics, if new firms are introduced. Δt describes the productivity
increase within iteration t.

10. Introduction of new firms. At the end of each iteration, a constant
number ν of new firms are introduced. They are initialized as follows:

− µi ∈ [µmin, µmax]. Therefore, on average their margins are higher
than those of older firms, whose margins have already been shifted
to lower values due to recentering.

− ni,t ∈ [0, nnew
max]. The simulations presented in this paper use nnew

max =
4.

− qi,t and µnet
i,t of new firms is calculated from these two values, which

is used by firms for making their first production decision q̂i,t+1.

− assets ai, liabilities li are initialized, as well as equities ei = ai − li.
Here, initial li liabilities are distributed between γniw ≤ li ≤ 0.
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2 Results I – Age distribution

As a starting point we analyze the age distribution of active firms in empiri-
cal studies and in existing stochastic growth models. We then show the age
distribution of purely stochastic version of this model [36]. This serves as a
theoretical foundation for the results presented in subsection 2.2 where heter-
geneity, debt accumulation and bankruptcy are added: the age distribution for
different bankruptcy criteria. From these results follow all further results of this
paper.

Empirical Evidence. In empirical studies different functions have been fit-
ted to the age distribution of firms: [21] and [30] find that firm age follows a
lognormal distribution in a database of Italian and Irish firms respectively. [15]
finds firm age to be power-law distributed in a database of 6 million U.S. firms,
[9, 7, 14] find an exponential age distribution (for Italian, Spanish and Indian
firms respectively)2.

Two existing models. A commonly used growth model is the model by H.
Simon [43], which describes a constantly growing system. It has a constant
influx of firms but no exit, so the age distribution of active firms exhibits linear
decay. Another famous model is the model by Gibrat[27], which describes a
multiplicative noise process that leads to a lognormal distribution for firm sizes
nt,

P (nt) =
1

nt

√
2πσ2t

e
(lnnt−�t)

2

2σ2t , (18)

whose width increases over time. Gibrat’s model is based on the hypothesis
that all firms have the same age, which limits its applicability for real-world
data. [1] has solved this problem by working backwards: if an exponential age
distribution

A(t) = λe−λt (19)

of firms is assumed, and if firms follow Gibrat’s dynamics, the size distribution
becomes

P (nt) =

�
λeλt

1

nt

√
2πσ2t

e−
(lnnt−�t)

2

2σ2t dt (20)

This firm size distribution is not lognormal any more, but exhibits a power-law
decay in the first approximation:

P (nt) ∝ C n−α−1
t (21)

For this result there is empirical evidence [6, 38]. This coincides with the size
distribution of models with a multiplicative noise term in the Langevin equation,
where entry and exit are neccessary elements [47].

2.1 A purely stochastic scenario.

We now turn to the introduced model and recall a purely stochastic scenario
analyzed in [36] where firms have a homogeneous µ, with r = 0 and consequently

2The scaling reported here is only for firms above the median age, i.e. we do not consider
differences reported for small firms here.
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no bankruptcy, where firms only exit when they shrink to size zero. Its resulting
size and growth rate distribution (figure 1) are close to widely reported empirical
results (e.g. [6][44]). They correspond to the nonequilibrium stationary state
of the stochastic firm growth which is generated by the competition in the
markets. It yields a counter-cumulative size distribution which is not a Zipf law
but decays approximately like a power law of exponent α ≈ 0.7, (see [36]). The
reasoning from equations (20) and (21) applies to this result and suggests that
for the age distribution, exponential decay may be a good approximation for
our model, which has been fitted in figure 2. Since entry and exit of firms as
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Figure 1: Results discussed in detail in [36]: (a) Heavy-tailed size distribution
of active firms in a simulation of homogeneous firms in double-logarithmic scale.
(b) tent-shaped growth rate distribution.

necessary elements to reach this stationary state, an age distribution of active
firms arises naturally.

 1

 10

 100

 1000

 10000

 100  1000

n
u
m

b
e
r 

o
f 
fi
rm

s

age of firms  [bin width: 50 iterations]

β = 1.70

(a)

 1

 10

 100

 1000

 10000

 500  1000  1500  2000  2500  3000  3500

n
u
m

b
e
r 

o
f 
fi
rm

s

age of active firms

λ = 0.001

(b)

Figure 2: age distribution of active firms in a simulation of homogeneous firms
discussed in [36]. (a) power law fit with exponent −β (in log-log scale), (b)
exponential fit with decay constant λ (in log-linear scale).

A strong limitation of the model is that this age distribution arises for an
economically unplausible reason: The only criterion by which firms exit the
system is when they have shrunk to size 0. This highlights the need to com-
plexify the model, which has been done by the introduction of heterogeneous
profit margins, interest payments and, most importantly, bankruptcies. These
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features superpose another relative growth dynamics that can be described by
replicator equations [37] and is much slower than the stochastic growth. How
these features modify the results is discussed in the following.

2.2 Bankruptcy criteria in the complete model

The model as detailed in subsection 1.1 equally exhibits a fat-tailed size distri-
bution and a tent-shaped growth rate distribution, since these distributions are
the result of the firms’ stochastic growth (figure 3).
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Figure 3: (a) Heavy-tailed size distribution of active firms in a simulation of
homogeneous firms in double-logarithmic scale. (b) tent-shaped growth rate
distribution. 106 workers, 104 firms, interest r = 0.005, ν = 120 new firms
per iteration, 0 ≤ µi,init ≤ 0.1, 0 ≤ li,t,init ≤ γni w bankruptcy criterion
2 (equation 13), γcrit = 2. Firms’ lifetimes are further limited by interest
payments, bankruptcy and recentered margins, so the size distribution decays
faster than in the simple setting, especially for large firms the decay is faster.
β is the exponent of a power law fit to the size frequency. This value depends
on the chosen bin size. The deviation shows that the power law hypothesis is
only approximately fulfilled. It corresponds to β − 1 for the cumulative size
distribution.

Firms’ evolution is not only probabilistic, but in addition µ-heterogeneity
and µ-evolution create a typical ‘life cycle’ for firms’ size, net realized margin,
and debt ratio3, defined as

γi,t =
li,t

ni,tw
. (22)

The dynamics of the expected values of size, margin and debt ratio is however
slower than the stochastic market dynamics, i.e. it is weak on the short term,
where the stochastic dynamics dominate. Whereas already for a purely stochas-
tic model, entry and exit of firms are necessary to reach a stationary state, in
the setup with interest payments and bankruptcies, the choice of the entry and
exit criteria is economically more plausible. The aim is to understand how the
arising distributions depend on this choice, and to compare the results qualita-
tively with data. These variables may be size, growth rate, age of active firms,

3Since in the model firm’s margins µi ∈ [0, 0.1], the results are approximately the same
if the debt ratio is normalized by a firm’s sales qsp instead of wage payments. These would

correspond to firm’s assets before the repayment of a loan, i.e. γ =
li,t
ai,t
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debt of active firms, net realized margin of active firms, as well as statistics
of these variables at the moment of firm’s bankruptcy, averaged over a certain
time span. Two different bankruptcy criteria have been tested:

1. The expected margin µi reaches 0. If a firm does not even have a theoret-
ical chance to earn profit, the bank stops financing it.

2. The debt ratio reaches γcrit. This is also used in the agent-based models
by [10] and [26].

Despite the simplicity of the model, these conditions contain similar information
to the features traced by data-mining approaches enunciated in section ??, where
the realized profits are used.

Depending on which bankruptcy criterion is used, the size distribution of
active firms is different, since margin and debt are only slightly correlated in
the model (see figure 4).
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Figure 4: Typical snapshot of the 2-dimensional plane showing expected margin
vs. debt of a company. Each firm corresponds to one point. Bankruptcy
criteria 1 (dotted line) and 2 (continuous line) are shown. In this setting, the
margin and debt ratio are only slightly correlated. Their correlation depends
on the µ-distribution and on the resource constraints which are responsible for
the randomness of the dynamics. 105 workers, 103 firms, r = 0.012, iteration
= 1000, new firms initialized with 0 ≤ µi ≤ 0.1 and debt 0 < li < γ (values
< 0 correspond to positive equity). Bankruptcy criterion 2 has been used for
the simulation

Bankruptcy criterion 1: margin threshold µcrit = 0. In this scenario,
lifetime of firms is determined by their initial µi and system variables (number of
entrants per iteration and possibly an interest rate r �= 0). Firms are initialized
with µi from a uniform distribution ∈ [0, µmax]. The rate how recentering
lowers margins is the same for all firms, so life times are (approximately) linearly
distributed (this is shown numerically in figure 5(a)). The age distribution at
bankruptcy is a constant, shown in figure 5(b).
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Figure 5: Age distribution of active firms after 100 iterations for bankruptcy
criterion 1 (µi = µcrit = 0). In (a) a firm’s lifetime depends only on its initial
margin, and if this is drawn from a uniform distribution, the age distribution is
linear.

Bankruptcy criterion 2 (equation (13)): debt threshold γ = γcrit. In
this scenario, firms are equally initialized with a margin µi and debt ratio
drawn from a uniform distribution. They fail once their debt ratio has attained
γ = γcrit. In contrast to the margin µi, the debt ratios evolve heterogeneously,
depending on µi, debt ratio itself and the stochastic market outcomes. The
arising age distribution of active firms decays slower and is closer to an expo-
nential distribution found in empirical observations [13] (see figure 6(a)). It
differs from the purely stochastic model in that firms are still large when they
fail, so their lifetime is shorter. If in addition recentering of µi is used, the
maximal time in which a firm is profitable is lowered additionally. Therefore,
even well-performing firms will eventually incur debt and fail, which is why the
age distribution is cut at a certain value, depending on r and the frequency of
new entries. Also the age distribution for bankrupt firms has been simulated
numerically. It is decaying approximately exponentially (see figure 6 (b)).
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Figure 6: Age distribution of active firms after 100 iterations in log-linear rep-
resentation for bankruptcy criterion 2 (a firms’ debt reaches the threshold lcrit).
The age distribution of active firms depends on their debts, which in turn ac-
cumulate over time and diminsh the net realized margin, and therefore growth.
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For both bankruptcy criteria, size and growth rate distributions are similar
(see further discussion plots in appendix A). Compared to the purely stochastic
model, for both bankruptcy criteria firms remain smaller and the tail of the size
distribution decays much faster, since a limited lifetime also limits the maximum
size to which firms can grow.

Analysis of the arising age distribution shows that in order to obtain an ap-
proximately exponential age distribution, the variable that determines bankruptcy
should follow stochastic dynamics. In principle this is possible for the evolution
of µi if more sophisticated rules for µ-evolution are introduced. In order to keep
the model simple, in this paper we limit our study to bankruptcy criterion 2
(debt threshold), where debts accumulate heterogeneously, which accounts for
a slower decaying age distribution. This is analyzed in detail in the remainder
of the paper.

3 Results II – Distributions of active and bankrupt
firms

We start by analyzing the bankruptcy probability

p(b) =
nbankrupt,t

Nf,t
, (23)

i.e. the fraction of firms that fail in one timestep divided by the number of
active firms. Some authors [13] study instead the survival probability, which is
p(s) = 1 − p(b). This probability relates statistics on active firms to statistics
on bankrupt firms and provides further evidence as to whether the dynamics
produce reasonable results. Unsurprisingly, on average, young firms are smaller,
(e.g. [21] for Italian firms), which is also a result of this model. However, as
figure 8 shows, the size distribution is fat-tailed for all age groups, which implies
that size and age are not proxies for each other, and that a separate analysis of
thhe bankruptcy probability of both variables is necessary.

3.1 Bankruptcy probability depending on age

The theorem of Bayes describes the relationship between the age distribution of
active firms p(a), the age distribution of firms at their bankruptcy p(a|b), the
probability of bankruptcy p(b), and the probability of bankruptcy as a function
of a firm’s age, p(b|a):

p(b|a) = p(a|b)p(b)
p(a)

(24)

Distributions p(a), p(a|b), and the rate p(b) are direct results of the model.
In order to obtain a higher precision, for the age distribution of active firms
p(a) and the age distribution at bankruptcy p(a|b), both distributions were
aggregated over 800 iterations. Summing over all ages of these two distributions,
and dividing the total number of bankruptcies by the total number of active
firms, a division yields the probability of bankruptcy p(b). Using (24), p(b|a),
the bankruptcy probability depending on age, can be calculated.

For bankruptcy criterion 1 (µi = µcrit = 0), bankruptcy probability p(b|a)
increases with age, which is unplausible. For bankruptcy criterion 2 (γ = γcrit),
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Figure 7: (a) age distribution (bin width 5) (snapshot at iteration 2000) (b) size
distribution of bankrupt firms, averaged over 1300 iterations. (c) bankruptcy
probability as a function of age, averaged over 1300 iterations. Total bankruptcy
probability p(b) is 1.52 ·10−2. 106 workers, 8 ·103 firms, interest r = 0.012. This
is very low and means that firms have time to diminish their size before failure.
(c) bankruptcy probability as a function of age, averaged over 1300 iterations.
Firms are initialized with 0 ≤ µi ≤ 0.1 and debt 0 < li < γ.

the probabilities p(a), p(a|b), and p(b|a) are shown in figure 17 (a)-(c). For
young firms, this probability p(b|a) decreases for two reasons: young firms are
small and therefore experience stronger random fluctuations. They start with
debts that not all manage to repay. Older firms have already grown and repaid
initial debts, and their bankruptcy probability is lower. This has also been
observed empirically: [13] finds that young firms’ bankruptcy rates decrease in
their first years, by analyzing bankruptcy (or survival) probabilities separately
for 6 datasets on Portuguese, Swedish and US firms. This lowered bankruptcy
probability has been reported to be highly statistically significant, and is present
independently of the year of firm entry.

However, the strong increase of p(b|a) for old firms is an unwanted artefact
that is due to the method of recentering µeff . It limits the life time of firms, since
even firms with a high µi will become unprofitable, incur debts, and eventually
fail. The number of firms that reach this age and contribute to the peak is low,
since most fail at an earlier age.

The same results for another simulation with a very low interest rate r are
presented in appendix B for comparison. In this scenario, the effect of µi-
recentering is more dominant. It is the reason why firms become unprofitable,
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eventually incur debt and fail. The bankruptcy probability exhibits a higher
peak for old firms than in figure 17 (c), where the interest payments were more
dominant in reducing µnet

i and led to different speeds at which firms become
indebted.

In his empirical analysis, [13] show that the age distribution of different
sectors may however deviate significantly from the aggregate age distribution:
in the example of the international airline sector, he shows that multimodal
behaviour exists, and that the corresponding age distribution decays faster than
exponential. The total age distribution is a superposition of all sectors. Relating
these results to our model suggests that more heterogeneity is needed in order
to obtain an age distribution without cutoff. Introducing sectors with different
ageing constants may be one of several possibilities.
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Figure 8: (a) scatterplot size vs. age of firms, (b) rank-size distribution for
selected age groups. It shows that every age group individually follows a fat-
tailed distribution. Very large firms are only present in older groups, but the
dynamics of the model is such that at a certain age, firms do not grow any more.
Therefore the oldest age group does not contain the biggest firms. Snapshot after
2000 iterations, 106 workers, 8 · 103 firms, r = 0.012. (same parameters as in
figure 17).

3.2 Bankruptcy probability depending on size

Bayes’ theorem can also be used to calculate the bankruptcy probability as a
function of firms’ size, p(b|n), as a function of the the size distributions of ac-
tive firms p(n), the size distribution of bankrupt firms p(n|b), and the total
bankruptcy probability p(b). The result is shown in figure 9: The size distri-
bution for bankrupt firms, measured in terms of assets, has been found by [40]
to follow a power law. The same is found for the liabilities distribution, since
they are linked by the debt ratio threshold γ. A power-law size distribution
has been found empirically by [4, 23] for Japanese firms, measured in terms of
their debt. The latter found an exponent of α = 0.911 for the cumulative size
distribution.by [15] for US firms, and by [28] for OECD countries.

14



 1

 10

 100

 1000

 10000

 50  100  250  500 570  1000 1500

n
u
m

b
e
r 

o
f 
fi
rm

s

size of firms  [bin width: 40 employees]

β = 1.98

(a)

 1

 10

 100

 1000

 10000

 100000

 50  100  250  500  750 1000 1500

n
u
m

b
e
r 

o
f 
fi
rm

s

size of bankrupt firms  [bin width: 40 employees]

β = 2.38

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  200  400  600  800  1000  1200  1400  1600

b
a
n
k
ru

p
tc

y
 p

ro
b
a
b
ili

ty

size [ni]

(c)

Figure 9: (a) size distribution at iteration 1000. 106 workers, 104 firms, interest
r = 0.012. This is very low and means that firms have time to diminish their
size before failure. (b) size distribution of bankrupt firms, averaged over 800
iterations (c) bankruptcy probability as a function of size, averaged over 800
iterations.) Same parameters as in figure 17.
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4 Results II – Lifecycles

In the model, a firm’s evolution depends on its margin, and the three con-
straints which it faces: credit constraints, workforce constraints and constraints
in demand. Over its lifespan, it evolves in size, debt, µi, and earns fluctuating
profits. These variables are traced for every firm, and should fit empirical stud-
ies on firm evolution. Their analysis provides another possibility to validate the
model. Empirically, life cycles have been analysed not only regarding the exit
probabilities which depend on the size and age of a firm, but rather focus on
the underlying reasons that lead to an observed pattern of bankruptcies. An
empirical study on life cycles of Canadian firms [48] uses as criteria (other than
size and age) the firm level resources, a firms capabilities, as well as the compet-
itive environment. Their results about firms level resources are that young and
small firms may have liabilities of “adolescence”. Those who cannot repay them
because of a lack of managerial experience will fail once their internal assets are
expired. In contrast, old firms who survived this period may fail for another
reason: they are inable to adapt to a changed environment. In our model, a
firm’s resources are the equity on which a firm is started. Its capabilities are
reflected in the margin µi. The competitive environment is reflected in its net
expected margin with respect to the µeff,t of the system.

 5

 10

 15

 20

 25

 30

 35

 40

 500  550  600  650  700  750  800

n
b
 o

f 
w

o
rk

e
rs

active time of firm [iterations]

(a)

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 500  550  600  650  700  750  800

µ
, 

µ
g
, 

µ
n

active time of firm [iterations]

expected µ
gross µ

net µ

(b)

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5
 500  550  600  650  700  750  800

le
v
e
ra

g
e

active time of firm [iterations]

(c)

Figure 10: (a) size evolution (b) margin evolution (c) debt evolution of a firm
that is active over 160 iterations. The dotted line represents γcrit, r = 0.012.
During this period, the system is has unemployment. Despite competition in
the goods market, firms grow on average, and negative returns are not enough
to shrink for these firms.
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Figure 11: (a) size evolution (b) margin evolution (c) debt evolution of a firm
that is active over 235 iterations. The dotted line represents γcrit, r = 0.005.
Firms compete both for purchasing power and workforce. Due to the low r,
the firm has time to shrink before reaching γcrit. From the same parameters as
figure17.

Qualitative results. We present two typical examples of firms’ life cycles
for different parameter settings in figures 10 and 11. As expected from the age
distribution, a wide range of trajectories is found. Many of the firms fail while
still small and young, depending on the random constraints, their initial debt
ratio itself, and their margin µi. Profitable firms manage to survive and repay
initial loans, but eventually they will also become indebted and fail because their
profit margin has become too low. The correlation among variables depends on
parameters:

− If the interest rate is very high: firms go bankrupt when they are still big.
The lower the interest rate, the more time firms have to shrink, and then
go bankrupt once they are already smaller.

− In the examples in figures 10 and 11 firms start with low debt, and it is
mainly shortly before bankruptcy that they become indebted in a self-
reinforcing way. If firms start with high debt, their net realized margin
may be lowered significantly.

− If recentering is used: Firms start with debt, then they diminish them,
and only when their margin has lowered due to ageing, they start spending
their assets, and their debts increase again.
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These results may be used to adjust parameters of the model according to em-
pirical observations. For instance, a possible comparison would be to the em-
pirically observed fraction of the profits needed for interest payments, dividends
or other sources of capital. Empirical studies may also help to find parameters
that weight the reasons why a firm becomes unprofitable, i.e. how strong the
ageing of technology should be with respect to a lower net margin due to debts.
This type of analysis also raises the question of whether the model captures
dominant patterns or whether it needs more heterogeneity, e.g. by introducing
adaptive interest rates.
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5 Results IV – Further distributions

Distributions of the debt and margins of active firms (in addition to size and
age), as well as correlations between variables, open further possibilities to con-
trol the dynamics of the model and check its validity. These results are in turn
strongly influenced by the life cycles, since the firms of all ages contribute to
these statistics, although the variables for individual firms are evolving. In the
following we present observations, which will be further compared to data in
ongoing work.

Leverage distribution. A distribution of debt, which in this simple model is
the same as liabilities normalized by the size of a firm, of active firms is shown
in figure 12. It qualitatively reproduced the fat-tailed distributions found in [40]
and [31]. Generally, firms with a high debt ratio are overrepresented, because
in the current model firms do not have any strategy to lower their debt. They
can only do so if their parameters and the constraints allow it. An introduction
of variable interest rates could also change this. A scatterplot debt vs. size of
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Figure 12: 106 workers, 1.2 · 104 firms, r = 0.005, iteration = 1000. (Negative
debt correponds to positive equity).

firms is presented in figure 13. The debt vs. the age of firms is fat-tailed in our
results. [13] and [21] find in their database on Italian firms that younger firms
are more liquidity-constrained, which is also the case of these results.

Margin distribution. The distribution shown in figure 14 has, roughly ap-
proximated, Gaussian shape. It exhibits asymmentry: no firm has a very high
net realized margin, and the distribution decays much slower for lower margins.
Interestingly, both the approximate Gaussian shape, as well as the same asym-
metrical shape, have been found empirically by [32] for Italian firms. Other
empirical studies [20] have found a distribution which is in between Gaussian
and Laplacian for Icelandic firms, and [2] for US firms a distribution which is
close to a Laplacian distribution.
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Figure 13: scatterplot of debt vs size (snapshot at iteration 2000, same param-
eters as simulation in figure 17).
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Figure 14: Distribution of the net realized margin. same parameters as simula-
tion in figure 17, iteration = 2000.

The relation between growth and size of firms. The effect of liquidity
constraints has been studied by [21] for Italian firm data (which also exhibits
other distributions that this model reproduces qualitatively, like size and growth
rate distribution). Besides stating that liquidity constraints have a negative
effect on growth, they also find that that smaller firms are less affected than
bigger firms by liquidity constraints. This finding is also a result from our
simulation: Since small firms have a much bigger growth rate variance in the
presence of high interest payments many will go bankrupt quickly. Then these
firms are removed from the statistics, rather than entering the statistics with
negative growth rates. That is, a high interest rate ‘clears up’ among small firms.
Large firms fluctuate much less and typically incur debt for an extended period
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before failure. Since interest payments lower their net margin and therefore
their growth rate, they exhibit lower growth rates during that period.

The relation between growth and age of firms. [21] find that on aver-
age, younger firms grow more, which is also an outcome of our model (see figure
15). It can be obtained with and without recentering of the margin, i.e. the
subtraction of Δt from the margins after each iteration (see equation (16)). If
this is done, old firms whose margin has been recentered many times cannot
range among the highest margins, whereas new firms are initialized with a mar-
gin ∈ [µmin, µmax], typically [0, 0.1]. This important fact is also the reason why
only very few firms become very old. Also the study by [16] find that the age
dependence of growth cannot solely be explained by technological obsolence and
selection, but there must be a contribution of liquidity constraints. This is the
case in our model, too, since interest payments (which represent a larger sum
for indebted businesses) are subtracted from the gross profit, and firms base
their production decision on the net profit. The model by [16] proposes that
the equity of firms affects firms’ financing decision, and firms’ finance patterns
depend on their size. This approach, which shares a number of results with
ours, is an interesting yet complex alternative: in our model, interest payments
are an abstraction of the entire capital cost. The negative relationship between
age and growth has also been found in a study by [30] on Irish firms.
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Figure 15: Scatterplot of age vs. growth of firms. Although growth is stochastic,
it is visible that firms with very high growth rates are concentrated at young
ages.
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6 Discussion and Conclusion

We have presented the role of financial constraints in a macroeconomic agent-
based model. It has been studied with focus on distributions of active and
bankrupt firms, as well as on life cycles that firms undergo. The relation be-
tween these distributions is described theoretically, and verified with numerical
examples for different parameter settings. A number of empirical studies have
been used for comparison and have shown that the model, despite its simplicity,
reproduces qualitatively a considerable number of empirical features. Never-
theless, certain limitations have been revealed. Clearly, comparison of further
features to data is needed. A project is to validate it with a database, and
possibly extend it.

A possible critique to our approach may be that firms do not have sufficient
strategic choice. This could be increased, for instance if firms could modify their
profit margin. However, stochastic growth is compatible with the interpretation
of deliberate decisions made by firms: The model does not describe why a firm
acts in a particular way, but merely the outcome of their choice.
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Appendices

A Size and growth rate for the two bankruptcy
criteria – images

In figure 16, size and growth rate distributions of simulations are shown, (a)
and (c) corresponding to bankruptcy criterion 1 (µi = µcrit = 0), (b) and
(d) to criterion 2 (γi = γcrit).The results of the simple setting [36] are widely
conserved: they exhibit a tent-shaped aggregate growth rate distribution, a
fat-tailed size distribution which decays slighlty faster than power law. For
criterion 1, where bankruptcy is more deterministic, a sharp bend in the size
distribution is visible. The fact that the decay is faster than power law is related
to the fact that the system exhibits (for both bankruptcy criteria) in addition a
size-dependent growth rate variance. Whereas in the simple setting, the width
of a (Gaussian) growth rate distribution was characterized by σn ∝ n−β with
β = 0.5, in current work shows that the scaling exponent in these simulations
is lower (numerically β ≈ 0.3). A lower β is the result of the fact that margin
heterogeneity widens the growth rate variance fo a certain size class, and this
effect is comparatively stronger for larger firms. As a result, the curve of the the
cumulative size distribution is less concave as the simple setting, and therefore
closer to empirical results [6][38].

B Age and size distribution for active and bankrupt
firms in a simulation with low interest rates
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Figure 16: Comparison of size and growth rate distribution for bankruptcy
criterion 1 (a) and (c) and 2 (b) and (d). Age distribution needs to be studied
to understand the difference which is not obvious from these distributions. In
(d), the age distribution decays slower, which is why some firms have time to
get bigger, and the cutoff of sizes is less pronounced. In a setting without
margin recentering in [35] in figure 3, the effect is absent. 105 workers, 103

firms, r = 0.011.
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Figure 17: (a) age distribution p(a) (snapshot at iteration 2000). (b) age distri-
bution p(a|b) of bankrupt firms, averaged over 1300 iterations. (c) bankruptcy
probability as a function of age p(b|a), averaged over 1300 iterations. 106 work-
ers, 8 · 103 firms, interest r = 0.005. The same plots for a higher interest rate
are shown in figure 9. Here, margin recentering is dominant with respect to
interest payments in lowering the margin. Therefore, the peak of bankruptcy
probability at the maximal life time is very pronounced.

28



3.2. CONCLUDING REMARKS AND OUTLOOK 123

3.2 Concluding Remarks and Outlook

In this chapter, which is thematically the continuation of chapter 2, bankruptcies
have been studied. The model is the same as introduced in the two previous
chapters. A situation where firms do not spend their profits has been analyzed
in this chapter. The comparison with data suggests some future improvements:

− The recentering should be changed because it is the reason why no firm
is active longer than a certain maximum age. The maximum age is the
one at which firm which starts without debt and a very high margin can
exist, before finally going bankrupt. Next, size distribution is expected to
decay more linearly than e.g. in figure 8 (b) of the working paper. More
specifically, the comparison to a system where firms merely age due to debt
accumulation, but without a deterministic margin recentering, shows that
this leads to a size distribution with slower decay (see figure 2.3) and figure
3 in publication 1). A possible rationale could be that firms can modify
their margin via investment into physical capital, as e.g. [45, 21] do.

− If firms µi can evolve stochastically, the use of bankruptcy criterion 1 of the
working paper (µi = 0) would yield more realistic results. The criterion
was proposed because it corresponds to one of the bank’s criteria reported
in studies [4], and because it is unplausible for firms to get financed when
they do not have a theoretical chance to earn profits. However, with
the method of recentering, firms’ lifetimes are almost linearly dependent
on their initial µi, which is the reason why the age distribution obtained
when using criterion 1 is not heavy-tailed at all (see figure 5 in the working
paper). This is far from the reported empirical evidence.

− One hypothesis, which is difficult to justify, is the credit policy of the
bank: each firm is given credit, independently of their margin and of their
leverage. There are neither different interest rates, nor a limited volume
of credit for less trustworthy firms. Simulations have shown that this has
an unplausible effect: the larger the volume of debt in the system (i.e. the
larger γ), the higher unemployment is, since unprofitable firms continue to
be active. Simulations for different interest rates r showed that the higher
r is, the higher unemployment is, which seems plausible. As already stated
in section 2.5, bank rules should be found such that these two parameters
yield results that reproduce qualitatively empirical data.

Even if these three modifications are taken into account, the fact that there is
no explicit capital good in the model is a strong limitation for some purposes. In
particular, it makes it difficult to compare the results to data where, for instance,
the leverage is defined as liabilities/assets. In this model, the assets are merely
positive money holdings. Currently, the model is being tested on databases,
which will suggest further ideas for future work. Since many variables can be
compared to the same dataset, it is a much more thorough validation than the
comparison of the separate results to various empirical studies. The results
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in the working paper are only qualitative, and even if some empirically found
distributions are reproduced, the rationale should be further tested, to prevent
false conclusions being drawn. One contribution of this work is however the
method of validation of an agent-based model, which differs from the agent-
based macroeconomic models described in section 2.4.



Chapter 4

Fat-tailed distributions in
other Social Systems

4.1 Introduction

Fat tailed distributions exist in various complex systems beyond economics. In
this section, results are shown from a project where a stochastic growth model
was designed to describe power law formation in large web taxonomies, with a
future application to machine learning purposes. Besides the application also
the theoretical model differs from the previous chapters. It is based on a twofold
preferential attachment growth, since a constantly growing system is described.
The common concept with the economic model of the previous chapters is that
empirical evidence shows again several jointly arising fat-tailed distributions,
which can be described in a joint model in which they are intrinsically linked.

Formation of fat-tailed distributions in web databases. Large web tax-
onomies are databases of websites, which are organized in classes, according to
their content. The classification of websites into these classes is done by a large
number (105) of voluntary referees. This taxonomy is hierarchical. For exam-
ple, the classes may correspond to different topics like sports and music, and
the subclasses may be football, tennis, skiing, pop music, classical music, which
may be again subdivided on the following level. The arising size distribution of
subclasses (measures in the number of websites it contains) is fat tailed, in every
class and for the total system. It can be very approximately fitted by a power
law decay. Within a subclass at the lowest level of the hierarchy, the formation
of this power law can be explained from the way the database is generated.
Since the database is constantly growing, both in the number of classes and in
the number of websites, a candidate for the explanation of class size distribution
is the model by Yule [108, 73].

The fact that a power law is also found for the sizes of categories, as well as for
the number of children categories, has been explained by a catenated preferetial
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attachment process, which is in line with the instructions for the voluntary
referees how to update the taxonomy. Other fat tailed distributions result from
the formation process, such as for the number of features per category, and the
categoriy size distribution at a given level of the hierarchy[43, 37].
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ABSTRACT
In many of the large-scale physical and social complex sys-
tems phenomena fat-tailed distributions occur, for which dif-
ferent generating mechanisms have been proposed. In this
paper, we study models of generating power law distribu-
tions in the evolution of large-scale taxonomies such as Open
Directory Project, which consist of websites assigned to one
of tens of thousands of categories. The categories in such
taxonomies are arranged in tree or DAG structured con-
figurations having parent-child relations among them. We
first quantitatively analyse the formation process of such
taxonomies, which leads to power law distribution as the
stationary distributions. In the context of designing classi-
fiers for large-scale taxonomies, which automatically assign
unseen documents to leaf-level categories, we highlight how
the fat-tailed nature of these distributions can be leveraged
to analytically study the space complexity of such classi-
fiers. Empirical evaluation of the space complexity on pub-
licly available datasets demonstrates the applicability of our
approach.

1. INTRODUCTION
With the tremendous growth of data on the web from var-
ious sources such as social networks, online business ser-
vices and news networks, structuring the data into concep-
tual taxonomies leads to better scalability, interpretability
and visualization. Yahoo! directory, the open directory
project (ODP) and Wikipedia are prominent examples of
such web-scale taxonomies. The Medical Subject Heading
hierarchy of the National Library of Medicine is another
instance of a large-scale taxonomy in the domain of life
sciences. These taxonomies consist of classes arranged in
a hierarchical structure with parent-child relations among
them and can be in the form of a rooted tree or a directed
acyclic graph. ODP for instance, which is in the form of a
rooted tree, lists over 5 million websites distributed among
close to 1 million categories and is maintained by close to
100,000 human editors. Wikipedia, on the other hand, rep-
resents a more complicated directed graph taxonomy struc-
ture consisting of over a million categories. In this context,
large-scale hierarchical classification deals with the task of
automatically assigning labels to unseen documents from a
set of target classes which are represented by the leaf level
nodes in the hierarchy.

In this work, we study the distribution of data and the hi-

erarchy tree in large-scale taxonomies with the goal of mod-
elling the process of their evolution. This is undertaken
by a quantitative study of the evolution of large-scale tax-
onomy using models of preferential attachment, based on
the famous model proposed by Yule [33] and showing that
throughout the growth process, the taxonomy exhibits a fat-
tailed distribution. We apply this reasoning to both cate-
gory sizes and tree connectivity in a simple joint model.
Formally, a random variable X is defined to follow a power
law distribution if for some positive constant a, the comple-
mentary cumulative distribution is given as follows:

P (X > x) ∝ x−a

Power law distributions, or more generally fat-tailed dis-
tributions that decay slower than Gaussians, are found in a
wide variety of physical and social complex systems, ranging
from city population, distribution of wealth to citations of
scientific articles [23]. It is also found in network connectiv-
ity, where the internet and Wikipedia are prominent exam-
ples [27; 7]. Our analysis in the context of large-scale web-
taxonomies leads to a better understanding of such large-
scale data, and also leveraged in order to present a concrete
analysis of space complexity for hierarchical classification
schemes. Due to the ever increasing scale of training data
size in terms of the number of documents, feature set size
and number of target classes, the space complexity of the
trained classifiers plays a crucial role in the applicability of
classification systems in many applications of practical im-
portance.

The space complexity analysis presented in this paper pro-
vides an analytical comparison of the trained model for hi-
erarchical and flat classification, which can be used to select
the appropriate model a-priori for the classification prob-
lem at hand, without actually having to train any mod-
els. Exploiting the power law nature of taxonomies to study
the training time complexity for hierarchical Support Vec-
tor Machines has been performed in [32; 19]. The authors
therein justify the power law assumption only empirically,
unlike our analysis in Section 3 wherein we describe the
generative process of large-scale web taxonomies more con-
cretely, in the context of similar processes studied in other
models. Despite the important insights of [32; 19], space
complexity has not been treated formally so far.

The remainder of this paper is as follows. Related work
on reporting power law distributions and on large scale hi-
erarchical classification is presented in Section 2. In Sec-
tion 3, we recall important growth models and quantita-
tively justify the formation of power laws as they are found



in hierarchical large-scale web taxonomies by studying the
evolution dynamics that generate them. More specifically,
we present a process that jointly models the growth in the
size of categories, as well as the growth of the hierarchi-
cal tree structure. We derive from this growth model why
the class size distribution at a given level of the hierarchy
also exhibits power law decay. Building on this, we then
appeal to Heaps’ law in Section 4, to explain the distribu-
tion of features among categories which is then exploited in
Section 5 for analysing the space complexity for hierarchi-
cal classification schemes. The analysis is empirically vali-
dated on publicly available DMOZ datasets from the Large
Scale Hierarchical Text Classification Challenge(LSHTC)1

and patent data (IPC) 2 from World Intellectual Property
Organization. Finally, Section 6 concludes this work.

2. RELATED WORK
Power law distributions are reported in a wide variety of
physical and social complex systems [22], such as in inter-
net topologies. For instance [11; 7] showed that internet
topologies exhibit power laws with respect to the in-degree
of the nodes. Also the size distribution of website cate-
gories, measured in terms of number of websites, exhibits a
fat-tailed distribution, as empirically demonstrated in [32;
19] for the Open Directory Project (ODP). Various mod-
els have been proposed for the generation power law distri-
butions, a phenomenon that may be seen as fundamental
in complex systems as the normal distribution in statistics
[25]. However, in contrast to the straight-forward derivation
of normal distribution via the central limit theorem, models
explaining power law formation all rely on an approxima-
tion. Some explanations are based on multiplicative noise
or on the renormalization group formalism [28; 30; 16]. For
the growth process of large-scale taxonomies, models based
on preferential attachment are most appropriate, which are
used in this paper. These models are based on the seminal
model by Yule [33], originally formulated for the taxonomy
of biological species, detailed in section 3. It applies to sys-
tems where elements of the system are grouped into classes,
and the system grows both in the number of classes, and
in the total number of elements (which are here documents
or websites). In its original form, Yule’s model serves as
explanation for power law formation in any taxonomy, irre-
spective of an eventual hierarchy among categories. Similar
dynamics have been applied to explain scaling in the connec-
tivity of a network, which grows in terms of nodes and edges
via preferential attachment [2]. Recent further generaliza-
tions apply the same growth process to trees [17; 14; 29].
In this paper, describe the approximate power-law in the
child-to-parent category relations by the model by Klemm
et al. [17]. Furthermore, we combine this formation process
in a simple manner with the original Yule model in order to
explain also a power law in category sizes, i.e. we provide
a comprehensive explanation for the formation process of
large-scale web taxonomies such as DMOZ. From the sec-
ond, we infer a third scaling distribution for the number of
features per category. This is done via the empirical Heaps’s
law [10], which describes the scaling relationship between
text length and the size of its vocabulary.

Some of the earlier works on exploiting hierarchy among tar-

1http://lshtc.iit.demokritos.gr/
2http://web2.wipo.int/ipcpub/

get classes for the purpose of text classification have been
studied in [18; 6] and [8] wherein the number of target classes
were limited to a few hundreds. However, the work by [19]
is among the pioneering studies in hierarchical classification
towards addressing web-scale directories such as Yahoo! di-
rectory consisting of over 100,000 target classes. The au-
thors analyse the performance with respect to accuracy and
training time complexity for flat and hierarchical classifica-
tion. More recently, other techniques for large-scale hierar-
chical text classification have been proposed. Prevention of
error propagation by applying Refined Experts trained on a
validation set was proposed in [4]. In this approach, bottom-
up information propagation is performed by utilizing the
output of the lower level classifiers in order to improve clas-
sification at top level. The deep classification method pro-
posed in [31] first applies hierarchy pruning to identify a
much smaller subset of target classes. Prediction of a test
instance is then performed by re-training Naive Bayes clas-
sifier on the subset of target classes identified from the first
step. More recently, Bayesian modelling of large-scale hier-
archical classification has been proposed in [15] in which hi-
erarchical dependencies between the parent-child nodes are
modelled by centring the prior of the child node at the pa-
rameter values of its parent.

In addition to prediction accuracy, other metrics of perfor-
mance such as prediction and training speed as well as space
complexity of the model have become increasingly impor-
tant. This is especially true in the context of challenges
posed by problems in the space of Big Data, wherein an opti-
mal trade-off among such metrics is desired. The significance
of prediction speed in such scenarios has been highlighted in
recent studies such as [3; 13; 24; 5]. The prediction speed is
directly related to space complexity of the trained model, as
it may not be possible to load a large trained model in the
main memory due to sheer size. Despite its direct impact
on prediction speed, no earlier work has focused on space
complexity of hierarchical classifiers.

Additionally, while the existence of power law distributions
has been used for analysis purposes in [32; 19] no thorough
justification is given on the existence of such phenomenon.
Our analysis in Section 3, attempts to address this issue in
a quantitative manner. Finally, power law semantics have
been used for model selection and evaluation of large-scale
hierarchical classification systems [1]. Unlike problems stud-
ied in classical machine learning sense which deal with a
limited number of target classes, this application forms a
blue-print on extracting hidden information in big data.

3. POWER LAW IN LARGE-SCALE WEB
TAXONOMIES

We begin by introducing the complementary cumulative size
distribution for category sizes. Let Ni denote the size of cat-
egory i (in terms of number of documents), then the proba-
bility that Ni > N is given by

P (Ni > N) ∝ N−β (1)

where β > 0 denotes the exponent of the power law dis-
tribution.3 Empirically, it can be assessed by plotting the
rank of a category’s size against its size (see Figure 1) The
derivative of this distribution, the category size probability

3To avoid confusion, we denote the power law exponents for
in-degree distribution and feature size distribution γ and δ.



Level # Categories

1 11
2 343
3 3670
4 13255
5 18169

Table 1: Number of categories at each level in the hierarchy
of the LSHTC2-DMOZ database.

density p(Ni), then also follows a power law with exponent

(β + 1), i.e. p(Ni) ∝ N
−(β+1)
i .

Two of our empirical findings are a power law for both the
complementary cumulative category size distribution and
the counter-cumulative in-degree distribution, shown in Fig-
ures 1 and 2, for LSHTC2-DMOZ dataset which is a subset
of ODP. The dataset4 contains 394, 000 websites and 27, 785
categories. The number of categories at each level of the hi-
erarchy is shown in Table 1.
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Figure 1: Category size vs rank distribution for the
LSHTC2-DMOZ dataset.

 1

 10

 100

 1000

 10000

 1  10  100  1000

n
b

 o
f 

c
a

te
g

o
ri
e

s
 w

it
h

 d
i>

d

number of indegrees d

γ  =  1.9

Figure 2: Indegree vs rank distribution for the LSHTC2-
DMOZ dataset.

We explain the formation of these two laws via models by
Yule [33] and a related model by Klemm [17], detailed in
sections 3.1 and 3.2, which are then related in section 3.3.
4http://lshtc.iit.demokritos.gr/LSHTC2 datasets

Variables

Ni Number of elements in class i
di Number of subclasses of class i
fi Number of features of class i
κ Total number of classes
D Total number of in-degrees (=subcategories)
pN,κ Fraction of classes having N elements

when the total number of classes is κ

Constants

m Number of elements added to the system af-
ter which a new class is added

w ∈]0, 1] Probability that attachment of subcat-
egories is preeferential

Indices

i Index for the class

Table 2: Summary of notation used in Section 3

3.1 Yule’s model
Yule’s model describes a system that grows in two quantities,
in elements and in classes in which the elements are assigned.
It assumes that for a system having κ classes, the probability
that a new element will be assigned to a certain class is
proportional to its current size,

p(i) =
Ni�κ

i�=1 Ni�
(2)

It further assumes that for every m elements that are added
to the pre-existing classes in the system, a new class of size
1 is created5.

The described system is constantly growing in terms of el-
ements and classes, so strictly speaking, a stationary state
does not exist [20]. However, a stationary distribution, the
so-called Yule distribution, has been derived using the ap-
proach of the master equation with similar approximations
by [26; 23; 17]. Here, we follow Newman [23], who con-
siders as one time-step the duration between creation of two
consecutive classes. From this follows that the average num-
ber of elements per class is always m + 1, and the system
contains κ(m + 1) elements at a moment where the num-
ber of classes is κ. Let pN,κ denote the fraction of classes
having N elements when the total number of classes is κ.
Between two successive time instances, the probability for a
given pre-existing class i of size Ni to gain a new element is
mNi/(κ(m + 1)). Since there are κ pN,κ classes of size N ,
the expected number such classes which gain a new element
(and grow to size (N + 1)) is given by :

mN

κ(m+ 1)
κ pN,κ =

m

(m+ 1)
N pN,κ (3)

The number of classes with N websites are thus fewer by the
above quantity, but some which had (N−1) websites prior to
the addition of a new class have now one more website. This
step depicting the change of the state of the system from κ
classes to (κ + 1) classes is shown in Figure 3. Therefore,
the expected number of classes with N documents when the

5The initial size may be generalized to other small sizes; for
instance Tessone et al. consider entrant classes with size
drawn from a truncated power law [29] .
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Figure 3: Illustration of equation 4. Individual classes grow
constantly i.e., move to the right over time, as indicated by
arrows. A stationary distribution means that the height of
each bar remains constant.

number of classes is (κ+1) is given by the following equation:

(κ+ 1)pN,(κ+1) = κ pN,κ +
m

m+ 1
[(N − 1)(p(N−1),κ)

−NpN,κ]
(4)

The first term in the right hand side of equation 4 corre-
sponds to classes with N documents when the number of
classes is κ. The second term corresponds to the contribu-
tion from classes of size (N−1) which have grown to size N ,
this is shown by the left arrow (pointing rightwards) in Fig-
ure 3. The last term corresponds to the decrease resulting
from classes which have gained an element and have become
of size (N + 1), this is shown by the right arrow (pointing
rightwards) in Figure 3. The equation for the class of size 1
is given by:

(κ+ 1)p1,(κ+1) = κ p1,κ + 1− m

m+ 1
p1,κ (5)

As the number κ of classes (and therefore the number of ele-
ments κ(m+1)) in the system increases, the probability that
a new element is classified into a class of size N , given by
Equation (3), is assumed to remain constant and indepen-
dent of κ. Under this hypothesis, the stationary distribution
for class sizes can be determined by solving equation (4) and
using equation (5) as the initial condition. This is given by

pN = (1 + 1/m)B(N, 2 + 1/m) (6)

where B(., .) is the beta distribution. (6) has been termed
Yule distribution [26]. Written for a continuous variable N ,
it has a power law tail:

p(N) ∝ N−2− 1
m

From the above equation the exponent of the density func-
tion is between 2 and 3. Its cumulative size distribution
P (Nk > N), as given by equation (1), has an exponent
given by

β = (1 + (1/m)) (7)

which is between 1 and 2. The higher the frequency 1/m
at which new classes are introduced, the bigger β becomes,
and the lower the average class size. This exponent is stable
over time although the taxonomy is constantly growing.

3.2 Preferential attachment models for net-
works and trees

A similar model has been formulated for network growth by
Barabási and Albert [2], which explains the formation of a
power law distribution in connectivity degree of nodes. It
assumes that the networks grow in terms of nodes and edges,
and that every newly added node to the system connects
with a fixed number of edges to existing nodes. Attachment
is again preferential, i.e. the probability for a newly added
node i to connect to a certain existing node j is proportional
to its number of existing edges of node j.

A node in the Barabási-Albert (BA) model corresponds a
class in Yule’s model, and a new edge to two newly assigned
element. Every added edge counts both to the degree of an
existing node j, as well as to the newly added node i. For
this reason the existing nodes j and the newly added node i
grow always by the same number of edges, implying m = 1
and consequently β = 2 in the BA-model, independently of
the number of edges that each new node creates.

The seminal BA-model has been extended in many ways.
For hierarchical taxonomies, we use a preferential attach-
ment model for trees by [17]. The authors considered growth
via directed edges, and explain power law formation in the
in-degree, i.e. the edges directed from children to parent in
a tree structure. In contrast to the BA-model, newly added
nodes and existing nodes do not increase their in-degree by
the same amount, since new nodes start with an in-degree
of 0. Leaf nodes thus cannot attract attachment of nodes,
and preferential attachment alone cannot lead to a power-
law. A small random term ensures that some nodes attach
to existing ones independently of their degree, which is the
analogon to the start of a new class in the Yule model. The
probability v that a new node attaches as a child to the
existing node i of with indegree di becomes

v(i) = w
di − 1

D
+ (1− w)

1

D
, (8)

where D is the size of the system measured in the total
number of in-degrees. w ∈ [0, 1] denotes the probability that
the attachment is preferential, (1 − w) the probability that
it is random to any node, independently of their numbers
of indegrees. As it has been done for the Yule process [26;
23; 14; 29], the stationary distribution is again derived via
the master equation (4). The exponent of the asymptotic
power law in the in-degree distribution is β = 1 + 1/w.This
model is suitable to explain scaling properties of the tree or
network structure of large-scale web taxonomies, which have
also been analysed empirically, for instance for subcategories
of Wikipedia [7]. It has also been applied to directory trees
in [14].

3.3 Model for hierarchical web taxonomies
We now apply these models to large-scale web taxonomies
like DMOZ. Empirically, we uncovered two scaling laws: (a)
one for the size distribution of leaf categories and (b) one for
the indegree (child-to-parent link) distribution of categories
(shown in Figure 2). These two scaling laws are linked in a
non-trivial manner: a category may be very small or even
not contain any websites, but nevertheless be highly con-
nected. Since on the other hand (a) and (b) arise jointly,
we propose here a model generating the two scaling laws
in a simple generic manner. We suggest a combination of
the two processes detailed in subsections 3.1 and 3.2 to de-
scribe the growth process: websites are continuously added
to the system, and classified into categories by human ref-



erees. At the same time, the categories are not a mere set,
but form a tree structure, which grows itself in two quanti-
ties: in the number nodes (categories) and in the number of
in-degrees of nodes (child-to-parent links, i.e. subcategory-
to-category links). Based on the rules for voluntary referees
of the DMOZ how to classify websites, we propose a sim-
ple combined description of the process. Altogether, the
database grows in three quantities:

(i) Growth in websites. New websites are assigned into
categories i, with probability p(i) ∝ Ni (Figure 4).
This assignment happens independently of the hier-
archy level of category. However, only leaf categories
may receive documents.

Figure 4: (i): A website is assigned to existing categories
with p(i) ∝ Ni.

(ii) Growth in categories. With probability 1/m, the ref-
erees assign a website into a newly created category,
at any level of the hierarchy (Figure 5).

This assumption would suffice to create a power law in
the category size distribution, but since a tree-structure
among categories exists, we also assume that the event
of category creation is also attaching at particular places
to the tree structure. The probability v(i) that a cate-
gory is created as the child of a certain parent category
i can depend in addition on the in-degree di of that
category (see equation 9).

2

2 3

0 0 0 0 0 0

Figure 5: (ii): Growth in categories is equivalent to growth
of the tree structure in terms of in-degrees.

(iii) Growth in children categories. Finally, the hierarchy
may also grow in terms of levels, since with a certain
probability (1 − w), new children categories are as-
signed independently of the number of children, i.e.
its in-degree di of the category i. (Figure 6). Like in
[17], the attachment probability to a parent i is

v(i) = w
di − 1

D
+ (1− w)

�i
D

. (9)

Equation (8), where �i = 1, would suffice to explain
power law in-degrees di and in category sizes Ni.

To link the two processes more plausibly, it can be
assumed that the second term in equation (9) denoting

2

2 4

0 0 0 01

0

3

Figure 6: (iii): Growth in children categories.

assignment of new ‘first children’ depends on the size
Ni of parent categories,

�i =
Ni

N
, (10)

since this is closer to the rules by which the referees
create new categories, but is not essential for the ex-
planation of the power laws. It reflects that the bigger
a leaf category, the higher the probability that referees
create a child category when assigning a new website
to it.

To summarize, the central idea of this joint model is to con-
sider two measures for the size of a category: the number
of its websites Ni (which governs the preferential attach-
ment of new websites), and its in-degree, i.e. the number of
its children di, which governs the preferential attachment of
new categories. To explain the power law in the category
sizes, assumptions (i) and (ii) are the requirements. For the
power law in the number of indegrees, assumptions (ii) and
(iii) are the requirements. The empirically found exponents
β = 1.1 and γ = 1.9 yield a frequency of new categories
1/m=0.1 and a frequency of new indegrees (1− w) = 0.9.

3.4 Other interpretations
Instead of assuming in Equations (9) and (10) that referees
decide to open a single child category, it is more realistic to
assume that an existing category is restructured, i.e. one or
several child categories are created, and websites are moved
into these new categories such that the parent category con-
tains less websites or even none at all. If one of the new
children categories inherits all websites of the parent cat-
egory (see Figure 7), the Yule model applies directly. If
the websites are partitioned differently, the model contains
effective shrinking of categories. This is not described by
the Yule model, and the master Equation (4) considers only
growing categories. However, it has been shown [29; 21]
that models including shrinking categories also lead to the
formation of power laws. Further generalizations compati-
ble with power law formation are that new categories do not
necessarily start with one document, and that the frequency
of new categories does not need to be constant.

Figure 7: Model without and with shrinking categories. In
the left figure, a child category inherits all the elements of
its parent and takes its place in the size distribution.
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Figure 8: Category size distribution for each level of the
LSHTC1-large dataset.

3.5 Limitations
However, Figures 1 and 2 do not exhibit perfect power law
decay for several reasons. Firstly, the dataset is limited.
Secondly, the hypothesis that assignment probability (2) de-
pends uniquely on the size of a category might be too strong
for web directories, neglecting the change in importance of
topics. In reality, big categories can exist which receive only
few new documents or none at all. Dorogovtsev and Mendes
[9] have studied this problem by introducing an assignment
probability that decays exponentially with age. For a low
decay parameter they show that the stronger this decay, the
steeper the power law; for strong decay, no power law forms.
A last reason might be that referees re-structure categories
in ways strongly deviating from the rules (i) - (iii).

3.6 Statistics per hierarchy level
The tree-structure of a database allows also to study the
sizes of class belonging to a given level of the hierarchy. As
shown in table 1, the DMOZ database contains 5 levels of
different size. If only classes on a given level l of the hierar-
chy are considered, we equally found a power law in category
size distribution as shown in Figure 8. Per-level power law
decay has also been found for the in-degree distribution.
This result may equally be explained by the model intro-
duced above: Equations (2), and (9) respectively, are valid
also if instead of p(k) one considers the conditional proba-

bility p(l)p(i|l), where p(l) =
�κ

i�=1,l
Ni�,l�κ

i�=1
Ni�

is the probability

of assignment to a given level, and p(i|l) = Ni,l�κ
i�=1,l

Ni�,l
the

probability of being assigned to a given class within that
level. The formation process may be seen as a Yule process
within a level if

�κ
i�=1,l Ni�,l is used for the normalization

in equation (2), and this formation happens with probabil-
ity p(l) that a website gets assigned into level l. Thereby,
the rate at ml at which new classes are created need not
be the same for every level, and therefore the exponent of
the power law fit may vary from level to level. Power law
decay for the per-level class size distribution is a straight-
forward corollary of the described formation process, and
will be used in Section 5 to analyse the space complexity of
hierarchical classifiers.
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Figure 9: Number of features vs number of documents of
each category.

4. RELATION BETWEEN CATEGORY SIZE
AND NUMBER OF FEATURES

Having explained the formation of two scaling laws in the
database, a third one has been found for the number of fea-
tures fi in each category, G(f) (see Figures 9 and 11). This
is a consequence of the power law in category size distribu-
tion, shown (in Figure 1) in combination with another power
law, termed Heaps’ law [10]. This empirical law states that
the number of distinct words R in a document is related to
the length n of a document as follows

R(n) = Knα , (11)

where the empirical α is typically between 0.4 and 0.6. For
the LSHTC2-DMOZ dataset, Figure 10 shows that for the
collection of words and the collection of websites, similar
exponents are found. (An interpretation of this result is
that the total number words in a category can be measured
approximately by the number of websites in a category, al-
though not all websites have the same length.)
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Figure 10: Heaps’ law: number of distinct words vs. number
of words, and vs number of documents.

Figure 10 shows that bigger categories contain also more fea-
tures, but this increase is weaker than the increase in web-
sites. This implies that less very ‘feature-rich’ categories ex-
ist, which is also reflected in the high decay exponent δ = 1.9
of a power-law fit in figure 9, (compared to the slower de-
cay of the category size distribution shown in figure 1 where
β = 1.1). Catenation of the size distribution measured in
features and Heaps’ law yields again dize distribution mea-
sured in websites: P (i) = R(G(fi)), i.e. multiplication of
the exponents yields that δ · α = 1.1 which confirms our
empirically found value β = 1.1.

5. EXPLOITING POWER LAW DISTRIBU-
TION IN LARGE-SCALE CLASSIFICA-
TION



Fat-tailed distributions in large-scale web taxonomies high-
light the underlying structure and semantics which are use-
ful to visualize important properties of the data especially in
big data scenarios. In this section we focus on the applica-
tions in the context of large-scale hierarchical classification,
wherein the fit of power law distribution to such taxonomies
can be leveraged to concretely analyze the space complex-
ity of large-scale hierarchical classifiers in the context of a
generic linear classifier deployed in top-down hierarchical
cascade.

In the following sections we first present formally the task of
hierarchical classification and then we proceed to the space
complexity analysis for large-scale systems. Finally, we em-
prirically validate the derived bounds.

5.1 Hierarchical Classification
In single-label multi-class hierarchical classification, the train-
ing set can be represented by S = {(x(i), y(i))}Ni=1. In the

context of text classification, x(i) ∈ X denotes the vector
representation of document i in an input space X ⊆ Rd.

The hierarchy in the form of rooted tree is given by G =
(V, E) where V ⊇ Y denotes the set of nodes of G, and
E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually form the set of target
classes is given by Y = {u ∈ V : �v ∈ V, (u, v) ∈ E}. Assum-

ing that there are K classes, the label y(i) ∈ Y represents
the class associated with the instance x(i). The hierarchical
relationship among categories implies a transition from gen-
eralization to specialization as one traverses any path from
root towards the leaves. This implies that the documents
which are assigned to a particular leaf also belong to the
inner nodes on the path from the root to that leaf node.

5.2 Space Complexity of Large-Scale Classifi-
cation

The prediction speed for large-scale classification is crucial
for its application in many scenarios of practical importance.
It has been shown in [32; 3] that hierarchical classifiers are
usually faster to train and test time as compared to flat
classifiers. However, given the large physical memory of
modern systems, what also matters in practice is the size
of the trained model with respect to the available physical
memory. We, therefore, compare the space complexity of
hierarchical and flat methods which governs the size of the
trained model in large scale classification. The goal of this
analysis is to determine the conditions under which the size
of the hierarchically trained linear model is lower than that
of flat model.

As a prototypical classifier, we use a linear classifier of the
form wTx which can be obtained using standard algorithms
such as Support Vector Machine or Logistic Regression. In
this work, we apply one-vs-all L2-regularized L2-loss sup-
port vector classification as it has been shown to yield state-
of-the-art performance in the context of large scale text clas-
sification [12]. For flat classification one stores weight vec-
tors wy, ∀y and hence in a K class problem in d dimensional
feature space, the space complexity for flat classification is:

SizeFlat = d×K (12)

which represents the size of the matrix consisting ofK weight
vectors, one for each class, spanning the entire input space.

We need a more sophisticated analysis for computing the
space complexity for hierarchical classification. In this case,
even though the total number of weight vectors is much more
since these are computed for all the nodes in the tree and not
only for the leaves as in flat classification. Inspite of this, the
size of hierarchical model can be much smaller as compared
to flat model in the large scale classification. Intuitively,
when the feature set size is high (top levels in the hierarchy),
the number of classes is less, and on the contrary, when the
number of classes is high (at the bottom), the feature set
size is low.

In order to analytically compare the relative sizes of hierar-
chical and flat models in the context of large scale classifi-
cation, we assume power law behavior with respect to the
number of features, across levels in the hierarchy. More pre-
cisely, if the categories at a level in the hierarchy are ordered
with respect to the number of features, we observe a power
law behavior. This has also been verified empirically as il-
lustrated in Figure 11 for various levels in the hierarchy, for
one of the datasets used in our experiments. More formally,
the feature size dl,r of the r-th ranked category, according
to the number of features, for level l, 1 ≤ l ≤ L− 1, is given
by:

dl,r ≈ dl,1r
−βl (13)

where dl,1 represents the feature size of the category ranked
1 at level l and β > 0 is the parameter of the power law.
Using this ranking as above, let bl,r represent the number
of children of the r-th ranked category at level l (bl,r is the
branching factor for this category), and let Bl represents the
total number of categories at level l. Then the size of the
entire hierarchical classification model is given by:

SizeHier =

L−1�

l=1

Bl�

r=1

bl,rdl,r ≈
L−1�

l=1

Bl�

r=1

bl,rdl,1r
−βl (14)

Here level l = 1 corresponds to the root node, with B1 = 1.
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Figure 11: Power-law variation for features in different levels
for LSHTC2-a dataset, Y-axis represents the feature set size
plotted against rank of the categories on X-axis

We now state a proposition that shows that, under some con-
ditions on the depth of the hierarchy, its number of leaves,
its branching factors and power law parameters, the size of
a hierarchical classifier is below that of its flat version.

Proposition 1. For a hierarchy of categories of depth L
and K leaves, let β = min1≤l≤L βl and b = maxl,r bl,r. De-
noting the space complexity of a hierarchical classification
model by Sizehier and the one of its corresponding flat ver-



sion by Sizeflat, one has:

For β > 1, if β >
K

K − b(L− 1)
(> 1), then

Sizehier < Sizeflat

(15)

For 0 < β < 1, if
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then

Sizehier < Sizeflat

(16)

Proof. As dl,1 ≤ d1 and Bl ≤ b(l−1) for 1 ≤ l ≤ L, one
has, from Equation 14 and the definitions of β and b:

Sizehier ≤ bd1

L−1�

l=1

b(l−1)�

r=1

r−β

One can then bound
�b(l−1)

r=1 r−β using ([32]):

b(l−1)�

r=1

r−β <

�
b(l−1)(1−β) − β

1− β

�
for β �= 0, 1 (17)

leading to, for β �= 0, 1:

Sizehier < bd1

L−1�

l=1

�
b(l−1)(1−β) − β

1− β

�

= bd1

�
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)
− (L− 1)

β

(1− β)

�

(18)

where the last equality is based on the sum of the first terms
of the geometric series (b(1−β))l.

If β > 1, since b > 1, it implies that b(L−1)(1−β)−1

(b(1−β)−1)(1−β)
< 0.

Therefore, inequality (18) can be re-written as:

Sizehier < bd1(L− 1)
β

(β − 1)

Using our notation, the size of the corresponding flat clas-
sifier is: Sizeflat = Kd1, where K denotes the number of
leaves. Thus:

If β >
K

K − b(L− 1)
(> 1), then Sizehier < Sizeflat

which proves Condition (15).

The proof for Condition (16) is similar: assuming 0 < β <
1, it is this time the second term in Equation 18 (−(L −
1) β

(1−β)
) which is negative, so that one obtains:

Sizehier < bd1

�
b(L−1)(1−β) − 1

(b(1−β) − 1)(1− β)

�

and then:

If
b(L−1)(1−β) − 1

(b(1−β) − 1)
<

1− β

b
K, then Sizehier < Sizeflat

which concludes the proof of the proposition.

It can be shown, but this is beyond the scope of this paper,
that condition 16 is satisfied for a range of values of β ∈]0, 1[.
However, as is shown in the experimental part, it is condition
15 of Proposition 1 that holds in practice.

The previous proposition complements the analysis presented
in [32] in which it is shown that the training and test time of

hierarchical classifiers is importantly decreased with respect
to the ones of their flat counterpart. In this work we show
that the space complexity of hierarchical classifiers is also
better, under a condition that holds in practice, than the
one of their flat counterparts. Therefore, for large scale tax-
onomies whose feature size distribution exhibit power law
decay, hierarchical classifiers should be better in terms of
speed than flat ones, due to the following reasons:

1. As shown above, the space complexity of hierarchical
classifier is lower than flat classifiers.

2. ForK classes, only O(logK) classifiers need to be eval-
uated per test document as against O(K) classifiers in
flat classification.

In order to empirically validate the claim of Proposition 1,
we measured the trained model sizes of a standard top-down
hierarchical scheme (TD), which uses a linear classifier at
each parent of the hierarchy, and the flat one.

We use the publicly available DMOZ data of the LSHTC
challenge which is a subset of Directory Mozilla. More
specifically, we used the large dataset of the LSHTC-2010
edition and two datasets were extracted from the LSHTC-
2011 edition. These are referred to as LSHTC1-large, LSHTC2-
a and LSHTC2-b respectively in Table 3. The fourth dataset
(IPC) comes from the patent collection released by World
Intellectual Property Organization. The datasets are in the
LibSVM format, which have been preprocessed by stemming
and stopword removal. Various properties of interest for the
datasets are shown in Table 3.

Dataset #Tr./#Test #Classes #Feat.

LSHTC1-large 93,805/34,880 12,294 347,255
LSHTC2-a 25,310/6,441 1,789 145,859
LSHTC2-b 36,834/9,605 3,672 145,354
IPC 46,324/28,926 451 1,123,497

Table 3: Datasets for hierarchical classification with the
properties: Number of training/test examples, target classes
and size of the feature space. The depth of the hierarchy tree
for LSHTC datasets is 6 and for the IPC dataset is 4.

Table 4 shows the difference in trained model size (actual
value of the model size on the hard drive) between the two
classification schemes for the four datasets, along with the
values defined in Proposition 1. The symbol � refers to the
quantity K

K−b(L−1)
of condition 15.

Dataset TD Flat β b �
LSHTC1-large 2.8 90.0 1.62 344 1.12
LSHTC2-a 0.46 5.4 1.35 55 1.14
LSHTC2-b 1.1 11.9 1.53 77 1.09
IPC 3.6 10.5 2.03 34 1.17

Table 4: Model size (in GB) for flat and hierarchical models
along with the corresponding values defined in Proposition
1. The symbol � refers to the quantity K

K−b(L−1)

As shown for the three DMOZ datasets, the trained model
for flat classifiers can be an order of magnitude larger than
for hierarchical classification. This results from the sparse



and high-dimensional nature of the problem which is quite
typical in text classification. For flat classifiers, the entire
feature set participates for all the classes, but for top-down
classification, the number of classes and features participat-
ing in classifier training are inversely related, when travers-
ing the tree from the root towards the leaves. As shown in
Proposition 1, the power law exponent β plays a crucial role
in reducing the model size of hierarchical classifier.

6. CONCLUSIONS
In this work we presented a model in order to explain the
dynamics that exist in the creation and evolution of large-
scale taxonomies such as the DMOZ directory, where the
categories are organized in a hierarchical form. More specif-
ically, the presented process models jointly the growth in
the size of the categories (in terms of documents) as well as
the growth of the taxonomy in terms of categories, which
to our knowledge have not been addressed in a joint frame-
work. From one of them, the power law in category size
distribution, we derived power laws at each level of the hier-
archy, and with the help of Heaps’s law a third scaling law
in the features size distribution of categories which we then
exploit for performing an analysis of the space complexity
of linear classifiers in large-scale taxonomies. We provided
a grounded analysis of the space complexity for hierarchical
and flat classifiers and proved that the complexity of the
former is always lower than that of the latter. The analysis
has been empirically validated in several large-scale datasets
showing that the size of the hierarchical models can be sig-
nificantly smaller that the ones created by a flat classifier.

The space complexity analysis can be used in order to es-
timate beforehand the size of trained models for large-scale
data. This is of importance in large-scale systems where the
size of the trained models may impact the inference time.
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Chapter 5

Conclusion

In this thesis, a macroeconomic agent-based model, which has been studied
numerically and theoretically, is proposed. It is constructed successively. In
chapter 1 a simple scenario is analyzed, where firms have homogeneous ex-
pected profit margins µ. Since firms are in competition either for workforce, or
for purchasing power of customers, the dynamics of firm growth is stochastic.
Results are: firm-size dependent scaling of the growth rate’s standard devia-
tion σ(n) ∝ n−0.5, a tent-shaped growth rate distribution, and a fat-tailed size
distribution, whose counter-cumulative distribution can be approximated by a
power law of exponent ≈ 0.7.

In chapter 2, the simple scenario of chapter 1 is extended with heterogeneous
margins, interest payments, ageing, and firm birth-death dynamics. This makes
the results easier to interpret in the context of economics, and relates them to
stock-flow consistent models, to evolutionary economics, and to macroeconomic
agent-based modelling. The previously found results of a tent-shaped growth
rate distribution and fat-tailed size distribution are largely conserved, since the
stochastic dynamics that generate them is still present. Margin heterogeneity
accounts for relative growth of firms, for which replicator equations have been
derived. Another new result, which has been shown numerically and theoreti-
cally, is that margin heterogeneity modifies the growth rate’s scaling exponent
towards lower values. This result is closer to empirical studies than the scenario
of chapter 1.

In chapter 3, the model, as it has been introduced in chapter 2, is further
analyzed. Financial constraints and firms’ age distribution are discussed, as
well as distributions of age and size at the moment of firms’ bankruptcy. These
analyses allow the results of the model to be compared with further empirical
evidence like [35, 20, 23, 3, 1]. Since the studies provide evidence from many
different countries (Italy, US, Ireland, Japan, Portugal), they might contain uni-
versal features of industrial organization, and therefore suggest further possible
improvements. In current work, further validation on databases is being carried
out.

Chapter 4 presents an additional work, the exploitation of fat-tailed distri-
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butions for the purpose of hierarchical classification. This work is not directly
related to the previous three chapters.

The thesis concludes with some critical reflexions on the approach taken.
Firstly, the work can be criticized for a number of reasons. Apart from technical
shortcomings, the methodology has some flaws:

The model needs to be kept simple for its mathematical tractability, so
potentially the same mistake is repeated which models do:

− As models with representative agent do, the model might assume some
average behaviour in order to explain some statistical regularities, but the
reality is far too complex to be cast into a model[24].

− The fact that prices and wages are constants is doubtful. Even if it is used
in this way in this model in order to reason in terms of profit margins,
sales, and ‘wagebill’ of firms, it is unlikely to be accepted by the economics
community.

− The model omits some important features which impact its results, e.g.
physical capital, variable interest rates, household saving, and herding
effects, but also the fact that it is a closed system, and the trade balance
is not considered. Some of these features may possibly be included in
future work.

− As other macroeconomic models, its level of abstraction is not equal for
all sectors. This highlights the difficulty of the approach.

Even if the model has been kept simple, it may already be too complex for many
applications. The model is abstract and not designed for prediction or policy
analysis, which is a central task of macroeconomic models. Another limitation
is that at this stage, the size distribution resulting from the stochastic process
of the simple scenario has not been solved analytically.

Nevertheless, there are some strong points, which might be worth pursuing.
Several effects exist simultaneously in reality, so the attempt to reproduce

several of them simultaneously can in principle work. For instance, some effects
of financial constraints on growth have been found empirically [20, 35]. This can
be attempted to be explained in a joint framework with other results resulting
from stochastic growth, such as size, growth rate, and profit rate distribution
[18, 95, 1, 61]. The large availability of firm growth databases can serve as
a guideline. Its apparent success to reproduce jointly arising distributions on
industrial dynamics might back the arguments being used to explain. Caution
is however needed, since this can be a coincidence, and it may be easily falsified.

The fact that market allocations are modelled in a way where every outcome
is equally likely is a very general principle that is central in the description of
complex systems. In physics, it is associated with the principle of entropy
maximization, which Bashkirov described as the “maximum honesty principle”
[8], since no further information is assumed. These market allocations account
for the binomial growth rate distribution, and the size distribution found in
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the model. Other economic models have taken up the idea of a statistical
equilibrium in a market, e.g. [38, 1].

Even if some of the hypotheses of this model may not be convincing, some
results will hold true even under different assumptions. For instance, if many
factors contribute to the growth of a firm, from the Central limit theorem, it
seems plausible that the growth rate probability density is Gaussian, or close to
Gaussian. If in addition, for large firms, the growth rate variance is narrower
than for small firms, it is necessary to perform integral (1.46), which will be
more peaked than the growth rate probability density for individual firms, if
in addition a fat-tailed size distribution is assumed. Furthermore, the model
is stock-flow consistent, which is a framework that allows to study systemic
risk [14]. The model incoporates the Keynesian viewpoint that firms base their
decisions on their financial position [90, 21].

Two timescales are considered, a short and a long one, at which firms are in
competition. The long one relates the model to evolutionary economics, since it
can be described by replicator equations. The argument takes up evolutionary
arguments. In particular, for given parameters ([µmin, µmax], r, ν), a speed of
the dynamics with respect to the lifetime of firms, and with respect to random
events, can be set.

Since the market algorithms can be described theoretically, the model is more
mathematically tractable than macroeconomic agent-based models. Finally, the
theoretical growth model presented in chapter 1 is very general and might serve
to explain growth process in various applications of complex systems.

The presented work is still ongoing, so no premature overall conclusion is
drawn here. While conceiving, implementing and studying this model, I gained
many insights, practical experience and learned very valuable knowlege, and also
identified many interesting questions which might be addressed in the future.
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