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Stephen Brewster University of Glasgow Rapporteur
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du Laboratoire de Recherche en Informatique de l’Université Paris-Sud
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Abstract

Optimizing the bandwidth of the communication channel between users and
the system is fundamental for designing efficient interactive systems. Apart from
the case of speech-based interfaces that rely on users’ natural language, this en-
tails designing an efficient language that users can adopt and that the system can
understand. My research has been focusing on studying and optimizing the two fol-
lowing types of languages: interfaces that allow users to trigger actions through the
direct manipulation of on-screen objects, and interactive systems that allow users
to invoke commands by performing specific movements. Direct manipulation re-
quires encoding most information in the graphical representation, mostly relying
on users’ ability to recognize visual elements; whereas gesture-based interaction
interprets the shape and dynamics of users’ movements, mostly relying on users’
ability to recall specific movements. This manuscript presents my main research
projects about these two types of language, and discusses how we can increase the
efficiency of interactive systems that make use of them. When using direct manip-
ulation, achieving a high expressive power and a good level of usability depends
on the interface’s ability to accommodate large graphical scenes while enabling the
easy selection and manipulation of objects in the scene. When using gestures, it
depends on the number of different gestures in the system’s vocabulary, as well as
on the simplicity of those gestures, that should remain easy to learn and execute. I
conclude with directions for future work around interaction with tangible objects.
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One of the grand challenges of research in Human-Computer Interaction (HCI)
consists in optimizing the bandwidth of the communication channel between users
and the system. Apart from the case of speech-based interfaces that rely on users’
natural language, this entails designing an efficient language that users can adopt
and that the system can understand. What “efficient” means depends on the type
of users and the context of use. For example, operators whose goal is to maximize
their productivity will need a vocabulary that allows them to invoke a limited set
of commands very quickly. On the opposite, artists may not consider execution
speed as highly critical, and will rather need a large vocabulary that allows them to
explore a large design space. On average, good interaction design should make the
language easy to learn and manipulate, allowing users to comfortably express their
intent to the system with a reasonable speed.

This manuscript focuses on the two types of languages that are respectively used
in point-based and gesture-based interfaces. The term point-based interfaces refers
to graphical interfaces featuring objects that users can designate and manipulate
with a pointing device to invoke commands. In those interfaces, most informa-
tion is encoded in the graphical representation, and very few in users’ movements:
when users perform a pointing action, the system only considers the graphical ob-
ject on which this action ends, ignoring its trajectory or speed. On the opposite,
gesture-based interfaces associate movements with controls, allowing users to ex-
press a message to the system by executing a specific movement. This latter type
of interface carries either a part or all of the information in users’ movements, that
feature varying shapes and dynamics.

Designing interfaces that are metaphors of the physical world is common in
HCI. If we think about using the types of languages described above for communi-
cating in the real world, we quickly understand what their potential strengths and
limits are. Using a point-based paradigm for communicating would require peo-
ple to convey concepts and designate things by reaching different objects one after
the other. Giving people a rich expressive power thus means that the environment
should feature a large number of objects. Also, to make people able to express
themselves efficiently, the objects should be easy to reach. However, in an envi-
ronment that contains many objects, those objects can be potentially very far and/or
very small. A gesture-based paradigm does not rely on objects, but rather corre-
sponds to adopting a sign language. The expressive power depends on the number
of different signs and how they can express varying things and concepts. Of course,
the signs should be easy to memorize and perform to offer an efficient means of
expression. However, offering a large set of signs that has enough variability usu-
ally requires considering complex signs, implying that learning and manipulating
them will require a lot of cognitive and motor resources.
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What emerges is a tension between two types of limited resources: physical
space, and human cognitive and motor abilities. Point-based interfaces heavily rely
on recognition. Their expressive power is a function of the number of graphical
primitives that the system can display, and their usability depends on the difficulty
to point at each graphical primitive. Gesture-based interfaces rather resort to a
recall paradigm. Their expressive power is a function of the different movements
in the vocabulary of the system, and their usability depends on the difficulty to
learn and perform each movement. Going from one type of interface to the other
can be seen as transferring the expressive power from the display to users’ hands.

This display-hands opposition between point- and gesture-based interaction is,
of course, a simplistic characterization of interactions that rely on these paradigms.
For example, a swiping gesture for deleting an object on a tactile screen relies on
both display and hand. However, this display-hand opposition remains interesting
to identify fundamental research questions about the two interaction channels in-
dependently. My research for the past ten years has been driven by such questions:
how can direct manipulation scale to large graphical scenes that are too large to fit
on the display? how can users manipulate very small graphical objects? are users
able to learn and perform large sets of gestures? how can we offer a high power of
expression without resorting to complex gestures? I believe that addressing these
fundamental questions is crucial for designing efficient interactions in today’s vir-
tual environments that can feature very small to very large displays, and that can
capture a large variety of user movements through multiple sensors.

1.1 Point-based Interfaces

As mentioned above, point-based interfaces may have to show a very large
amount of graphical objects on the display. Zoomable interfaces (also called Multi-
scale interfaces) have this capability as they can present a graphical scene that can
be far larger than the display viewport (such as in, e.g., Google Maps). To visu-
alize a given area, users usually resort to navigation techniques such as traditional
Pan&Zoom. However, when zoomed-in on a given region, users may miss impor-
tant information from the surrounding context [JF98]. Focus+Context techniques
such as fisheye lenses [CM01] offer an alternative by providing in-place magnifi-
cation of a region without requiring users to zoom the whole representation. How-
ever, adoption of Focus+Context techniques may be hindered by both perceptual
and motor issues when transitioning between focus and context. These usability
problems have driven several of the research projects I have worked on.

We have first investigated how to design transitions that are more efficient than
those that are solely based on spatial deformation by rather relying on dynamic be-
havior and translucence. We have proposed a design space for such transitions that
we use for creating new lenses, called Sigma lenses [19, 21]. Our empirical study
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showed that some of these new lenses outperform traditional magnification lenses
for focusing on a given area. While well-designed lenses offer a good solution
for focusing on objects, they can still suffer from usability issues when interact-
ing with those objects. The typical implementation of Focus+Context techniques
makes two representations of the data exist simultaneously at two different scales,
with the focus region’s location associated with the pointer, meaning that a one-
pixel displacement may make the pointer jump by several pixels in the magnified
(focus) region. This quantization problem, i.e., the mismatch between visual and
motor precision in the magnified region, gets worse with increasing zoom factors,
thus limiting the range of applications that could offer magnifying lenses. We have
studied this quantization problem and introduced new interaction techniques for
selecting with a high-precision while preserving fast navigation performance [9].
Quantization is also partly responsible for the difficulty to follow a route with a
magnifying lens, the route having a tendency to “slip off” the side of the lens. We
have also designed lenses to make these steering tasks easier [1]. Our RouteLenses
automatically adjust their position based on the geometry of a route making users
able to comfortably navigate along paths of interest.

Most point-based interfaces allow users not only to select but also move ele-
ments through drag-and-drop actions according to the principles of direct manip-
ulation [Shn87]. For example, users pan the view in multi-scale interfaces, they
move and edit the geometry of elements in graphics editors, they adjust parameters
using controllers such as sliders, or they move and resize windows. While direct
manipulation stipulates that actions should be easily reversible, reverting changes
made via a drag-and-drop usually entails performing the reciprocal drag-and-drop
action. This can be costly, as users have to remember the previous position of
the object and put it back precisely where it was. We have worked on identifying
the inconsistencies that exist between the different situations where users perform
drag-and-drop actions, and on proposing a unifying model, DND−1, that allows
users to easily undo and redo drag-and-drop actions in any situation [11]. Our
Dwell-and-Spring widget [10] allows users to interact with this model in order to
restore any past location of an individual object or of a group of objects.

The overall goal of these research projects is to push direct manipulation to its
maximum expressive power by making users able to reach any graphical object
and manipulate it. The related publications result from collaborative work with
Emmanuel Pietriga, Olivier Chapuis, Olivier Bau (who was PhD student at that
time), and two master students Jessalyn Alvina and Marı́a Jesús Lobo (now PhD
students). Chapter 2 details these different projects.
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1.2 Gesture-based Interfaces

Gesture-based interaction consists in associating a given human gesture with
a command in the application. The HCI literature proposes different types of
gestures that involve users’ hands at different granularities, ranging from micro-
movements of finger tips [RLG09] to whole-arm movements [NWP+11]. Some
systems also rely on mid-air gestures (e.g., [BBL93]) while others propose ges-
tures that take their meaning relative to a device (e.g., [BIH08]) or to a surface (e.g.,
[WMW09]). Other dimensions can be identified to structure the potentially infinite
design space of gestures. Proposing taxonomies for the use of gestures for inter-
action has actually retained HCI researchers’ attention (e.g., [Ks05, WMW09]). I
worked on such a taxonomy for the specific family of stroke gestures in collabora-
tion with Shumin Zhai et al. [26]. In our integrative review, we discuss the use of
stroke gestures along cognitive aspects such as discovery and memorization, and
also point at the difficulties of developing robust gesture recognizers. My projects
on gesture-based interaction address both system and user aspects: engineering so-
lutions for integrating gestures that are robustly recognized by the system on the
one hand, and defining novel vocabularies of gestures that remain simple for users
to memorize and perform on the other hand.

I started to work on recognition engines when I was a post-doc in 2007-2008
at IBM Almaden. I designed and developed a toolkit to implement stroke short-
cuts in software applications with only a few lines of code, with the motivation
that stroke shortcuts should not be more costly to implement than keyboard short-
cuts are [13]. This first project was more focused on integrating gestures within
traditional graphical interfaces. In terms of recognition engine, it was relying on
a template-based algorithm that runs once the gesture is complete. Since then, I
have worked on incremental gesture recognizers (i.e., recognizing gestures dur-
ing their execution as opposed to after their execution). I strongly believe that
we should move towards this type of recognizer for two main reasons. First, it
enables the development of interaction techniques that can guide users during ges-
ture execution, supporting users in the discovery and learning of gestures. Second,
with well-designed gesture vocabularies, incremental recognition enables transi-
tions between different gestures for smoothly chaining command invocations and
parameter adjustments. I have worked on designing incremental recognition en-
gines for both single point and multi-touch input. In [3], we present an algorithm
for estimating the scale of any partial single point input in the context of a gesture
recognition system. We show how it can be used as a support for implementing
OctoPocus [BM08], a visual guide that displays all available gestures in response
to partial input. More recently, I have developed an incremental recognizer for a
large vocabulary of multi-touch gestures that relies only on the last events in the
finger input stream, meaning that users can switch between different gestures with-
out resorting to explicit delimiters [17]. These gestures can thus be used to activate
discrete commands as well as to adjust values of continuous parameters.
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In 2011-2014, I coordinated an ANR JCJC project (MDGEST), whose core
idea consisted of designing large vocabularies of gestures for small tactile surfaces
(smartphones and tablets) that remain easy to memorize and perform. This had
to be achieved by using gestures that remain simple in their shape by rather rely-
ing on other characteristics. Within the context of MDGEST, we have designed
several novel vocabularies of gestures that rely, e.g., on additional input channels:
tilt [25], pressure [24] and proximity [23]. These vocabularies of gestures remain
simple to perform while offering at least as much expressivity as the whole set of
existing graphical widgets, and without consuming any screen space. For all these
projects, we have designed a set of gesture primitives and we have implemented the
associated recognizer either on a regular smartphone using built-in sensors (e.g.,
accelerometers and gyroscopes) or on a smartphone that we equipped with some
extra sensors (pressure or proximity) while taking care of preserving the device’s
initial form factor. During the last year of the project, we also studied how to aug-
ment the expressivity of multi-touch gestures, which we believe are not used to
their full potential. In particular, we have shown that the system can analyze how
fingers are positioned relative to each other to infer some user intentions at touch
time, i.e., before users actually perform the manipulation [18]. For multi-touch
input on regular tablets, we have also proposed a vocabulary of gestures that vary
along high-level dimensions (such as fingers’ movements relative to one another, or
the whole gesture’s frame of reference) in order to offer a rich power of expression
to users, while only relying on simple circular and linear shapes [17].

My research on gestures, presented in Chapter 3, aims at limiting the complexity
of the vocabulary in order to offer a high power of expression without increasing
the cost of learning and using the language. Users can actually perform an infinite
number of different gestures but, to be useful in an interactive system, the gestures
must remain easy for users to recall, and recognizable by the system. My publi-
cations on gesture-based interaction result from collaborative work with two post-
docs (Daniel Spelmezan and Halla Olafsdottir), three permanent researchers from
my research team (Emmanuel Pietriga, Olivier Chapuis and Theophanis Tsandi-
las), as well as four colleagues from all over the world (Shumin Zhai (Google,
USA), Per Ola Kristensson (University of St Andrews, Scotland), Tue Haste An-
dersen (University of Copenhagen, Denmark), and Xiang Cao (Microsoft Research
Asia, China)).
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Pivotal to direct manipulation is the ability to select and move objects in a graph-
ical scene. This usually implies view navigation to adjust the display viewport,
target acquisition to grab objects, and potential movements of these objects in
the scene. This chapter presents my projects along these three fundamental in-
teraction components: navigation (which I already started to investigate during my
PhD [12, 20]), acquisition and movement.

As mentioned in the introduction, multi-scale interfaces can accommodate a
large graphical scene featuring numerous objects in a limited display space. In
such interfaces, users can pan in the 2D plane as well as move in altitude so as
to either get an overview or visualize details [CKB09]. This interaction scheme
has become very widespread in today’s interfaces, and is especially useful to ac-
commodate rich applications on portable devices. However, without appropriate
navigation techniques, even simple tasks such as inspecting a local region or fol-
lowing a path can quickly become cumbersome.

Once users have navigated in the graphical scene to bring objects of interest in
the viewport, they must be able to designate them with their pointing device to
actually select them. Fitts’ law [Fit54] accurately models this task and its asso-
ciated difficulty in electronic worlds when the representation and the locomotion
are similar to what we do in the physical world. However, by making two scales
coexist at the same altitude, focus+context representations do not resemble the real
world. The simultaneous existence of two scales introduces the quantization prob-
lem, i.e., the mismatch between visual and motor precision in the magnified region,
and forces us to reconsider what we know regarding target acquisition tasks.

Finally, according to the principles of direct manipulation, a lot of point-based
interfaces also require users to move objects through drag-and-drop actions. Being
able to change objects’ location increases the expressive power of those interfaces
but it also introduces some complexity related to undoing such moves, when, e.g.,
repairing errors or when exploring different solutions. While a target acquisition
(or selection) can usually be easily undone by designating the background, putting
back an object where it exactly was is much more difficult.

This chapter presents our work about the different focus+context interaction
techniques that we designed to offer an efficient means for navigating multi-scale
interfaces and acquiring graphical objects. It then shows how our DND−1 model
tackles the problem of reverting movements of objects performed using direct ma-
nipulation.
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(a) (b) (c)

Figure 2.1 : Various transitions between focus and context: (a) step transition
causing occlusion (MAGNIFYING GLASS), (b) distorting space (FISHEYE), (c) using
gradually increasing translucence (BLENDING).

2.1 View Navigation

Typical pan&zoom techniques are based on a navigation scheme that imposes a
sequence of zoom operations (typically performed using the mouse wheel or pinch
gestures) and pan operations (usually performed using mouse drags or finger slides)
[GBLB+04]. Using pan&zoom, reaching an object that is not visible in the current
viewport requires changing the whole display’s content, which may be cognitively
demanding [CKB09]. Focus+Context techniques offer an alternative by providing
in-place magnification of a region without requiring users to zoom into the repre-
sentation. These techniques have been shown to be useful for navigating complex
visual representations such as large trees [LRP95, MGT+03], graphs [GKN05],
high-resolution bitmap representations [CLP04], and even graphical user interfaces
featuring small controls [RCBBL07]. A focus+context representation allows users
to concurrently preserve the context that the display offers and navigate at a zoom
factor that is higher than that of the display. Contextual information can guide nav-
igation when, e.g., looking for particular localities in a map of a densely populated
region, or when exploring the points of interest along an itinerary.

However, magnifying in place also introduces a transition area that can hin-
der the performance of focus+context techniques. For instance, simple magnify-
ing glasses (Figure 2.1-a) create occlusion of the immediate context adjacent to
the magnified region [RM93]; graphical fisheyes [SB94], also known as distortion
lenses (Figure 2.1-b), make it challenging for users both to acquire targets [Gut02]
and to follow trajectories. This section presents our extensions to Carpendale’s
framework for unifying presentation space [CM01], providing interface designers
with novel types of magnifying lenses that facilitate focus targeting [19, 21] and
path following [1] tasks.
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Transition

Context

RO

RI

Focus

Figure 2.2 : Gaussian distortion lens. The level of detail in the flat-top is increased
by a factor of MM = 4.0

2.1.1 Sigma Lens

In [19], we introduce the Sigma Lens framework that defines transitions be-
tween focus and context as a combination of dynamic scaling and compositing
functions. This framework opens a design space to create a variety of lenses that
use transformations other than spatial distortion to achieve smooth transitions be-
tween focus and context, and whose properties adapt to the users’ actions. We
identify lenses in this space that facilitate the task that consists in acquiring an ob-
ject (focus targeting) and potentially exploring its surroundings (local navigation).

The framework

All constrained magnification lenses featuring a regular shape share the follow-
ing general properties, no matter how they transition between focus and context
(see Figure 2.2):

· RI : the radius of the focus region (a.k.a the flat-top), which we call inner radius,

· RO : the radius of the lens at its base, i.e., its extent, which we call outer radius,

· MM : the magnification factor in the flat-top.

Applying a constrained lens to a representation effectively splits the viewing
window into two regions: the context region, which corresponds to the part of the
representation that is not affected by the lens, and the lens region, in which the
representation is transformed. Since we want the lens to actually provide a more
detailed representation of objects in the magnified region, and not merely duplicate
pixels from the previous rendering, our framework relies on two buffers of pixels:
the context buffer, whose dimensions w×hmatch that of the final viewing window
displayed to the user, and the lens buffer of dimensions 2 ·MM·RO×2 ·MM·RO.
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In our approach, the overall process consists in applying a displacement function
to all pixels in the lens buffer that fall into the transition zone: pixels between RI
and MM ·RO get scaled according to the drop-off function in such a way that
they eventually all fit between RI and RO. Pixels of the lens buffer can then be
composited with those of the context buffer that fall into the lens region.

Scaling. The standard transformation performed by graphical fisheyes consists
in displacing all points in the focus buffer to achieve a smooth transition between
focus and context through spatial distortion. This type of transformation can be
defined through a drop-off function which models the magnification profile of the
lens. The drop-off function is defined as:

Gscale : d 7→ s

where d is the distance from the center of the lens and s is a scaling factor. Distance
d is obtained from an arbitrary distance function D. A Gaussian-like profile is often
used to define drop-off function Gscale, as it provides one of the smoothest visual
transitions between focus and context (see Figure 2.2). It can be replaced by other
functions (see [CM01, CLP04]).

Compositing. The rendering of a point (x, y) in the final viewing window is
controlled by function R below, where

plens ⊗α pcontext

denotes the pixel resulting from alpha blending a pixel from the lens buffer and an-
other from the context buffer with an alpha value of α. As with scale for distortion
lenses, the alpha blending gradient can be defined by a drop-off function that maps
a translucence level to a point (x, y) located at a distance d from the lens center:

Gcomp : d 7→ α

where α is an alpha blending value in [0, αFT ], αFT being the translucence level
used in the flat-top of the lens.

R(x, y) =

∀(x, y)|D(x, y) 6 RI , (xc + x−xc

MM , yc + y−yc
MM )

⊗
αFT

(x, y)

∀(x, y)|RI < D(x, y) < RO, (xc + x−xc

Gscale(D(x,y)) , yc + y−yc
Gscale(D(x,y)) )

⊗
Gcomp(D(x,y)) (x, y)

∀(x, y)|D(x, y) > RO, (x, y)
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Figure 2.3 : SPEED-COUPLED BLENDING lens moving from left to right, with S(t)
implemented as a low-pass filter.
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Figure 2.4 : HOVERING Lens

Speed-coupling. In addition to the transition functions Gscale and Gcomp, the
Sigma Lens framework allows for lens properties such as magnification factor, ra-
dius or flat-top opacity to vary over time. The first example of lens to make use
of dynamic properties was Gutwin’s SPEED-COUPLED FLATTENING lens [Gut02],
which uses the lens’ dynamics (velocity and acceleration) to automatically control
magnification. By canceling distortion during focus targeting, SPEED-COUPLED

FLATTENING lenses improve the usability of distortion lenses. Basically, MM de-
creases toward 1.0 as the speed of the lens (operated by the user) increases, there-
fore flattening the lens into the context, and increases back to its original value as
the lens comes to a full stop. Such behavior can easily be implemented by defining
a time-based function S(t) that returns a numerical value depending on the veloc-
ity and acceleration of the lens over time. The function is set to return a real value
in [0.0, 1.0]. Making a lens parameter speed-dependent is then easily achieved by
simply multiplying that parameter by the value of S(t).

Instantiating Specific Lenses

In our approach to the implementation of the Sigma Lens framework, various
constrained lenses are obtained easily, only by defining functions Gscale, Gcomp,
and S(t). We have implemented some examples of transitions with static lenses that
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rely on scaling (Figure 2.1-b) or on compositing (Figure 2.1-c), and with dynamic
lenses that implement a speed-dependent behavior in terms of scaling (such as
Gutwin’s SPEED-COUPLED FLATTENING lens) or compositing (our SPEED-COUPLED

BLENDING lens illustrated in Figure 2.3). We have also implemented more complex
transitions as with, e.g., the HOVERING lens (Figure 2.4) that relies on both scaling
and compositing, with a dynamic behavior for both its transparency level and flat
top size. We conducted a series of experiments to assess the pros and cons of the
different dimensions that the Sigma Lens framework features, as detailed next.

2.1.2 Focus Targeting

We first compared the focus targeting performance and limits of the five fol-
lowing lenses: a plain MAGNIFYING GLASS, a simple distortion lens (FISHEYE),
and BLENDING, SPEED-COUPLED FLATTENING, SPEED-COUPLED BLENDING. We
considered five different magnification factors (MM ). Higher magnification fac-
tors make the task increasingly difficult: (i) the transition area becomes harder to
understand as it must integrate a larger part of the world in the same rendering area,
and (ii) it becomes harder to precisely position the target in the flat-top of the lens,
the latter being controlled in the motor space of the context window. To test the lim-
its of each lens, we included factors up to 14x. Our experiment was a 5× 5 within-
participant design: each participant had to perform several trials using each of the
five lenses with five different magnification factors (MM ∈ {2, 4, 6, 10, 14}). A
trial in our experiment consisted of a series of focus targeting tasks in every di-
rection, as recommended by the ISO9241-9 standard [ISO00]. All details about
our experimental design and statistical analyses are reported in [19]. Figure 2.5
summarizes our main results.

Interestingly, FISHEYE and BLENDING do not significantly differ in their perfor-
mance. We initially thought that translucence could improve user performance by
eliminating the drawbacks of space-based transitions. Transitioning through space
indeed introduces distortion that makes objects move away from the approach-
ing lens focus before moving toward it very fast, making focus targeting difficult
[Gut02]. But BLENDING does not overcome this problem, as it introduces a new
one: the high cognitive effort required to comprehend transitions based on gradu-
ally increasing translucence which, as opposed to distortion-based transitions, do
not rely on a familiar physical metaphor.

We expected speed-based lenses (SPEED-COUPLED FLATTENING and SPEED-
COUPLED BLENDING) to outperform their static versions (FISHEYE and MAGNIFY-
ING GLASS). Each focus targeting task can be divided into two phases: in the first
phase, the user moves the lens quickly to reach the target’s vicinity, while in the
second phase, she moves it slowly to precisely position the target in the focus. In
the first phase, the user is not interested in, and can actually be distracted by, in-
formation provided in the focus region since she is trying to reach a distant object
in the context as quick as possible. By smoothly and automatically neutralizing
the focus and transition regions during this phase, and then restoring them, speed-
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Figure 2.5 : Mean completion time per Technique×MM condition.

based lenses should help the user. Our results did actually support that this is the
case for SPEED-COUPLED BLENDING and MAGNIFYING GLASS: smoothly neutral-
izing and restoring the focus of a MAGNIFYING GLASS by making it translucent
does improve performance. However our participants were not significantly faster
with SPEED-COUPLED FLATTENING than with FISHEYE. This was especially sur-
prising since the study conducted in [Gut02] showed a significant improvement in
users performance with SPEED-COUPLED FLATTENING. We think this inconsistency
is probably due to implementation differences: we implemented SPEED-COUPLED

FLATTENING as a constrained lens while it was implemented as a full-screen lens
by Gutwin. In full-screen lenses, distortion affects the whole representation, which
thus benefits more from the neutralization effect than constrained lenses that only
affect a limited area.

2.1.3 Local Navigation

We then further investigated the performance of the two dynamic lenses, SPEED-
COUPLED BLENDING and SPEED-COUPLED FLATTENING, by considering a more re-
alistic task where (1) the graphical scene is more complex, and thus potentially
causes legibility issues when using distortion or transparency, and (2) the object to
explore does not fully fit into the lens’ flat top, forcing local navigation, which may
be difficult for users to perform with lenses that dynamically change. We conducted
two experiments illustrated in Figure 2.6 based on two different types of represen-
tation: a network (vector graphics) for Experiment Expgraph (Bg = graph), and
a high-resolution satellite map (bitmap) for Experiment Expmap (Bg = map).
In both cases, participants are instructed to memorize a word as they will have to
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Figure 2.6 : Local navigation tasks in (a) a graph (labels displayed in black) and
(b) in a map (labels displayed in yellow over a black background).

search for it in the representation. Once this target word is memorized, partici-
pants put the cursor on a red square (20 × 20 pixels) located at the center of the
screen and press the space bar to start the trial. Words (including distractor words)
appear successively in the same locations as the circular targets did in our focus
targeting experiment discussed earlier. However, here, a word can never be fully
displayed in the flat-top, forcing participants to perform local navigation. When
they recognize the target word, participants press the space bar. We count an error
if they press the space bar while the lens is over a distractor word. Here again, to
compare lenses both in usual and extreme conditions, we use two magnification
factors (MM ∈ {8, 12}). Font size is set to 42 pts (at context scale) for MM = 8
and 28 pts for MM = 12, so that the lens’ flat-top can display at most 6 letters
at full magnification. We use two word lengths to test the effect of the amount of
local navigation on lens performance (LabLength ∈ {8, 12}). Finally, we con-
sider two levels of Opacity as we were hypothesizing that background and focus
might be perceptually interpreted as one illegible image if contrast is not strong
enough when making use of translucence. Opacity was not included as a factor in
Experiment Expgraph because sharp edges displayed on a uniform background are
strongly contrasted.

Our results revealed that, in terms of completion time, participants were faster
using SPEED-COUPLED BLENDING than SPEED-COUPLED FLATTENING. However,
this difference was not statistically significant. Differences in accuracy were stronger,
with participants being more accurate using SPEED-COUPLED BLENDING than SPEED-
COUPLED FLATTENING. Furthermore, differences between lenses in terms of accu-
racy increased with the magnification factor. In addition, lenses seem to be un-
equally affected by word length, the comparative gain of SPEED-COUPLED BLEND-
ING over SPEED-COUPLED FLATTENING regarding accuracy is greater for longer
words, tending to show that SPEED-COUPLED BLENDING better supports local nav-
igation than SPEED-COUPLED FLATTENING does. This latter effect, observed only
in Experiment Expmap, reinforces our intuition that lens usability is affected by
the type of representation. We also observed that SPEED-COUPLED FLATTENING is
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(a) (b)

Figure 2.7 : Following an itinerary. (a) Conventional lens: the user overshoots
at a right turn in Harrisburg; losing the route that falls in the distorted region.
(b) RouteLens: the route’s attraction compensates the overshoot; the lens remains
closer to the route, which remains in focus.

more penalized by background type than SPEED-COUPLED BLENDING. While we
were expecting usability problems due to the use of transparency especially with
complex representations such as maps, SPEED-COUPLED FLATTENING was actually
more affected by the background type than SPEED-COUPLED BLENDING was. We
were even more surprised to observe that participants were more strongly affected
by label opacity with SPEED-COUPLED FLATTENING than with SPEED-COUPLED

BLENDING. As a summary, speed-coupled translucence does not have a negative
impact on local navigation in our experiment. The SPEED-COUPLED BLENDING lens
then appears as a very efficient technique for navigating even complex scenes that
feature a low level of contrast between elements.

2.1.4 Path Following

Speed-based behaviors rely on the hypothesis that users do not seek informa-
tion at a detailed level when moving a magnifying lens. While this is typically the
case in focus targeting tasks when users want to reach a distant graphical object as
fast as possible, this hypothesis does not hold for path following tasks such as when
inspecting an itinerary. Focus+context techniques are conceptually well-suited to
inspect itineraries by allowing users to see the entire route at once, and perform
magnified steering [GS03] to navigate along the path and explore locally-bounded
regions of interest. Navigation based on magnified steering has been shown to out-
perform regular pan&zoom for large steering tasks [GS03]. Yet, this task remains
a challenging one for users, in part because paths have a tendency to “slip off” the
side of the lens.

In order to make it easier for users to follow a route, we have designed Route-
Lens, a new content-aware technique that automatically adjusts the lens’ position
based on the geometry of the path that users steer through, so as to keep the lens
on track in case of overshoot (Figure 2.7). RouteLens makes it easier for users to
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follow a route, yet do not constrain movements too strictly. The lens is more or less
strongly attracted to the path depending on its distance to it, and users remain free
to move the lens away from it to explore more distant areas. RouteLenses decouple
the lens’ position from the cursor’s position to give users the impression that the
lens is attracted by the route. This separation between the motor and the visual
space is similar to what Semantic Pointing [BGBL04] does when enlarging targets
of interest only in motor space while leaving their visual counterparts unchanged.

When using RouteLens, all route segments whose distance to the system cursor
is less than ∆ apply an attraction force to the lens. The lens’ positionL is computed
as a function of the system cursor’s position C by using a weighted mean between
all attracting route segments:

L = C + dmin ·
∑n

i=1wi ·Ai∑n
i=1wi

whereAi is the force vector that route segment i applies at position C to attract
the lens (see below) and dmin is the distance between the cursor and the closest
route segment.

To ensure continuous lens movements when a route segment starts or stops
having an influence on the lens, wi is set to ∆ − dc,i, where dc,i is the distance
between the cursor and route segment i.

For a given route segment, the attraction vector is computed as:

A = α(dc) · (Rc − C)/dc

whereRc is the point on the route closest to the cursor, and dc the distance between
the cursor and the route segment. α is a power function of dc that parameterizes
the force vector a route segment applies to the lens:

α(dc) =

{
1−

(
dc
∆

)p
if dc ≤ ∆

0 otherwise.

When steering along a magnified route, users want to minimize the distance dl
between the lens’ center and the route. In Accot & Zhai’s steering law [AZ97],
dl represents the movement’s variability along the tunnel centered on the route,
i.e., the tunnel’s width. The law stipulates that the larger the variability, the easier
the movement. Figure 2.8 shows how RouteLens makes steering easier than a
regular fisheye lens does, by allowing for a wider variability in user-controlled
cursor movements. To keep a regular lens at a distance dl from the route, users
have to keep the cursor at a distance dc = dl. With a RouteLens, this distance can
be larger: dc = dl + dc · α(dc).
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Figure 2.8 : Position of the cursor (grey line), and of the RouteLens (black line),
that is vertically attracted (p = 2) by the route (bold blue line). The dashed black
line shows the positions of the RouteLens when p = 6. In this figure, ∆ is equal to
the lens’ flat-top diameter in motor space, and the black (resp. grey) circles show
the part of the context displayed in the lens’ flat-top.

We ran a study comparing conventional fisheye lenses (RegularLens) with fish-
eye lenses augmented with the attraction mechanism described above (RouteLens).
While RouteLenses only affect the motor behavior of lenses, and can thus easily
be combined with any type of graphical magnification lens [19][PPCP12], we con-
sidered conventional fisheye lenses as a baseline both to isolate the benefits of the
attraction mechanism and to avoid a too lengthy experiment. Our experimental
task consisted in following a route with a lens, always keeping the route visible in
the flat-top. The experiment was a 2×2×2×4 within-subjects design with factors:
TECH, ANGLE, DISTRACTOR, and DIR. TECH was the primary factor with two
values: RegularLens and RouteLens. ANGLE and DISTRACTOR were secondary
factors that defined characteristics of the route. ANGLE (Acute = π/4 and Obtuse
= 3π/4) defined the angle between two route segments. DISTRACTOR defined the
presence or absence of distractor routes, that also attract the cursor. When DIS-
TRACTOR = With, additional (grey) routes were added at each turn of the (black)
target route. DIR defined the direction of steering: left-to-right, right-to-left, top-
to-bottom, or bottom-to-top. This factor was introduced for ecological reasons.

As expected, RouteLens’ attraction effect made participants steer along the
route with a movement that exhibits less variability. The average distance from
the lens’ center to the route was significantly lower for RouteLens than for Reg-
ularLens. The distance was 13.3 ±0.9 pixels for RouteLens and 33.3 ±1.7 pix-
els for RegularLens (expressed with respect to the flat-top’s coordinate system).
Also, RouteLens was significantly faster than RegularLens, a difference of∼ 15%.
Interestingly, the presence of distractors did not negatively affect RouteLens’ per-
formance. We even observed a comparative improvement of completion time for
RouteLens over RegularLens. This may be due to the specific route layout we con-
sidered: a distractor route in the middle of the turn applies additional force vectors,
resulting in a stronger global attraction towards the route at the end of the turn.
Finally, qualitative feedback from participants revealed that participants hardly no-
tice a difference between the two lenses, and that overall they express a preference
for RouteLens.
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2.2 Object Acquisition and Manipulation

Point-based interfaces rely on selections and movements of graphical objects.
The Focus+Context techniques discussed above make it possible to implement
graphical interfaces that feature a very large number of graphical objects and that
users can still efficiently navigate. However, while navigation can be an end in,
e.g., information visualization tasks, it is often only a means to make some objects
visible before actually interacting with them through selection and drag-and-drop
operations. This section presents our work about facilitating selection, and provid-
ing a more flexible model for drag-and-drop interactions.

2.2.1 Acquiring objects with high-precision

The quantization problem

Early implementations of magnification techniques only magnified the pixels
of the context by duplicating them without adding more detail, thus severely lim-
iting the range of useful magnification factors (up to 4x). Newer implementations,
in Carpendale’s original framework [CLP04] or in the Sigma Lens extension in-
troduced earlier, do provide more detail as magnification increases. Theoretically,
this means that any magnification factor can be applied, if relevant data is avail-
able. In practice, this is not the case as another problem arises that gets worse as
magnification increases: quantization.

Lenses are most often coupled with the cursor and centered on it. The cursor,
and thus the lens, are operated at context scale. This allows for fast repositioning
of the lens in the information space, since moving the input device by one unit
makes the lens move by one pixel at context scale. However, this also implies
that when moving the input device by one unit (dot), the representation in the
magnified region is offset by MM pixels, where MM is the focus’ magnification
factor. This means that only one pixel every MM pixels can fall below the cursor
in the magnified region. In other words, some pixels are unreachable, as visual
space has been enlarged in the focus region but motor space has not. Objects can
thus be difficult or even impossible to select; even if their visual size is above what
is usually considered a small target (less than 5 pixels). The square representing
Arlington station in Figure 2.9-(Left) is 9-pixel wide, yet its motor size is only 1
pixel. Figure 2.9-(Right) illustrates this quantization problem with a space-scale
diagram [FB95]: the center of the lens can only be located on a pixel in the focus
window that is aligned – on the same ray in the space-scale diagram – with a pixel
in the context window. The space-scale diagram shows that the problem gets worse
as magnification increases.

High-precision Lenses

In [9], we introduce several strategies that decouple the cursor from the lens’
center in order to resolve the mismatch between visual and motor space precision
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Figure 2.9 : Focus+Context techniques and the quantization problem. (Left) Mov-
ing the lens by one unit of the input device South and East makes the cursor
jump several pixels in the detailed representation (magnification factor MM =
12). (Right) Space-scale diagram of possible locations for lens center (each ray
corresponds to one pixel in context space).

in the focus region. Our techniques’ design aims at making it possible to perform
both fast navigation for focus targeting and high-precision selection in the focus
region in a seamless manner.

· Key is a simple mode-switching technique. It uses two control modes: a
context speed mode and a focus speed mode. It requires an additional input
channel to perform the mode switch, for instance using a modifier key such
as SHIFT. Users can then navigate large distances at context speed, where
one input device unit is mapped to one context pixel, i.e., MM focus pixels,
and perform precise adjustments at focus speed, where one input device unit
corresponds to one focus pixel.

· Speed is inspired by techniques featuring speed-dependent properties (e.g.,
[CLP09, Gut02, IH00]. We map the precision of the lens control to the input
device’s speed with a continuous function, relying on the assumption that a
high speed is used to navigate large distances while a low speed is more char-
acteristic of a precise adjustment (as observed for classical pointing [Bal04]).

· Ring is inspired by Tracking menus [FKP+03]. With this technique, the
cursor can freely move within the flat-top at focus scale, thus enabling pixel-
precise pointing in the magnified region. When the cursor comes into contact
with the flat-top’s border, it pulls the lens at context speed, enabling fast
repositioning of the lens in the information space.

A pointing task with a lens is typically divided in two main phases: (i) focus
targeting, which consists in putting a given target inside the flat-top of the lens
(Figure 2.10-(a) and (b)) and (ii) cursor pointing to precisely position the cursor
over the target (Figure 2.10-(b) and (c)).
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(a) (b) (c)

Figure 2.10 : Acquiring a target with a lens: focus targeting from (a) to (b) and,
cursor pointing from (b) to (c).

The focus targeting task has an index of difficulty of about:

IDFT = log2(1 +
Dc

(WFTc −Wc)
)

whereWFTc andWc are the respective sizes of the flat-top and the target in context
pixels, and Dc is the distance to the target in context pixels as well1. This formula
clearly shows that difficulty increases as distance increases, as the size of the flat-
top decreases, and as the size of the target decreases. The size of the flat-top in
context pixels is directly related to the magnification factor of the lens, MM . In-
deed, the size of the flat-top is fixed in terms of focus pixels, so the higher MM ,
the smaller the size of the magnified area in context pixels.

The final cursor pointing task mainly depends on the area of the target in focus
space that intersects the flat-top after the focus targeting task. The larger this area,
the easier the cursor pointing task. We can at least consider the best case, i.e., when
the target is fully contained in the flat-top. In this case, the difficulty of the cursor
pointing task can be assessed by the ratio Df

Wf
where Df is the distance between

the cursor and the target, and Wf is the motor size of the target when magnified
in the flat-top. The distance Df is small, i.e., smaller than the flat-top’s diameter,
so we assume that the difficulty of the cursor pointing task is mainly caused by the
value of Wf . For regular lenses, the value of Wf is actually the size of the target
at context scale because the target is only visually magnified. With our lenses,
however, since pixel-precise selections are possible, Wf is the magnified size of
the target (at focus scale).

We conducted two experiments that involve pointing tasks. In the first exper-
iment, we considered tasks with an average level of difficulty in order to test
whether any of our three techniques degrade performance when compared with
regular lenses (Reg). In the second experiment, we asked participants to perform
tasks with a very high level of difficulty, which involve targets smaller-than-a-pixel
wide at context scale and which regular lenses do not support.

1IDFT is the exact index of difficulty when the target must be fully contained in the flat-top.
Here the task is slightly easier because the target just has to intersect the flat-top.
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Figure 2.11 : First experiment. (a) Movement time per TECH×WC. (b) Movement
time per TECH × MM. The lower part of each bar represents focus targeting time,
the upper part cursor pointing time.

Figure 2.11 illustrates the main results for our first experiment. As expected,
regular lenses (Reg) performed worse than the three other techniques. This is likely
because, as we explain above, the target’s motor size is in context pixels for Reg
whereas it is in focus pixels for Key, Speed and Ring. The comparative differences
between the three other techniques are quite small. The only significant difference
is actually between Key and Ring, with Key being faster than Ring.

More interestingly, the interaction effect TECH×MM on movement time sug-
gests that Ring suffers more than the other techniques from an increasing magnifi-
cation factor. A closer look reveals that the time for performing the focus targeting
phase is proportionally longer for Ring. This is probably due to the cost of repair-
ing overshoot errors during this phase: changes in direction are costly with Ring
since the user first has to move the cursor to the opposite side of the flat-top before
being able to pull the lens in the opposite direction.

The interaction effect TECH×WC on movement time is also interesting as it
highlights that the differences really matter for small targets (WC= 1 and WC=3).
Key, Speed and Ring are significantly faster than Reg only for WC=1 and WC=3.
The difference is not significant for WC=5. In the latter case, only Speed is signifi-
cantly faster than Reg. Moreover Ring is faster than Key for WC= 1, while Speed is
not. These results suggest that Ring is particularly efficient for very small targets
and that Speed is more appropriate for larger ones.

Our first experiment thus supports that, in comparison with regular lenses, our
precision lenses improve user experience when pointing at small targets. Our sec-
ond experiment aimed at assessing the comparative performance of those precision
lenses in extreme cases that regular lenses cannot support: very small target sizes
(less than one pixel in context scale) and high magnification factors. We used the
same experiment set up, but discarded the Reg technique as it is not capable of
achieving sub-pixel pointing tasks, and considered targets that have a size in focus
(WF) ∈ {3, 5, 7}.

Figure 2.12 illustrates our main observations. Ring and Key are significantly
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Figure 2.12 : Movement time per TECH×MM. The lower part of each bar repre-
sents focus targeting time, the upper part cursor pointing time.

faster than Speed but only for MM=12 while these differences are not significant
for MM=8. This large difference at MM=12 is due to a sharp increase of focus tar-
geting time (FTT) for Speed. Comments from participants confirm that the speed
dependent control of motor precision is too hard when the difference between con-
text scale and focus scale is too high, resulting in abrupt transitions.

As in our first experiment, we observe that focus targeting performance of Ring
degrades as MM increases. However, good cursor pointing performance compen-
sates for it, resulting in good overall task completion time. During the cursor
pointing phase, Ring is stationary; only the cursor moves inside a static flat-top.
This is not the case for Key and Speed for which high-precision cursor pointing
is achieved through a combination of cursor movement and flat-top offset. As a
result, the control-display gain is divided by MM for Key and Speed, resulting in a
loss of precision that makes the pointing task more difficult with those two latter
techniques than with Ring.

To summarize, when pushed to extreme conditions, the Speed lens becomes
significantly slower than the other precision lenses while Ring remains as fast as
Key without requiring an additional input channel for mode switching.

Finally, we designed a family of four high-precision lenses by combining our
mechanisms for solving the quantization problem with visual behaviors from the
Sigma Lens framework. We chose the two Sigma lens visual designs that we ob-
served as the most efficient ones (SPEED-COUPLED BLENDING – abbreviated Blend,
and SPEED-COUPLED FLATTENING – abbreviated Flat), and we combined them with
either speed-dependent motor precision (Speed) or cursor-in-flat-top motor preci-
sion (Ring). Key was discarded because it proved awkward to combine explicit
mode switching with speed-dependent visual properties.

Speed + Flat: this lens behaves like the original Speed design, except that the
magnification factor decreases toward 1 as speed increases. The main advantage is
that distortion no longer hinders focus targeting. Additionally, flattening provides
indirect visual feedback about the lens’ precision in motor space: it operates in
context space when flattened, in focus space when not flattened.



Object Acquisition and Manipulation 33

Ring + Flat: This lens behaves like the original Ring design, with the magni-
fication factor varying as above. As a consequence, the flat-top shrinks to a much
smaller size, thus making course corrections during focus targeting easier since the
cursor is still restricted to that area. As above, distortion is canceled during focus
targeting.

Ring + Blend: This distortion-free lens behaves like the original Ring design,
except that the restricted area in which the cursor can evolve (the flat-top) is larger.
As speed increases, the flat-top fades out, thus revealing the context during the
focus targeting phase. An inner circle fades in, representing the region that will ac-
tually be magnified in the flat-top if the lens stops moving. The cursor is restricted
to that smaller area, making course corrections less costly.

Speed + Blend: This lens behaves like the original Speed design without any
distortion. As above, the flat-top fades out as speed increases and fades back in as
speed decreases. Again, the larger flat-top reduces the focus targeting task’s index
of difficulty. In a way similar to Speed + Flat, blending provides indirect visual
feedback about the lens’ precision in motor space: it operates in context space
when transparent, in focus space when opaque.

In a final experiment comparing those four hybrid lenses to the static Ring and
Speed designs from our first two experiments, our participants saw their pointing
performance further improved by the visual designs from the Sigma Lens frame-
work. This supports that the gains from our high-precision mechanisms can be
combined with the gains from our advanced visual designs.

2.2.2 Moving objects

The projects presented above facilitate object acquisition, which is the most
basic and frequent action that users perform in point-based interfaces. The comple-
mentary key component to point-based interaction is object displacement, which
is usually enabled through drag-and-drop actions in graphical applications both on
desktop computers and touch-sensitive surfaces. Drag-and-drop is used to pan the
view in multi-scale interfaces, to move and edit the geometry of elements in graph-
ics editors, to adjust parameters using controllers such as sliders, or to move and
resize windows.

Objects manipulated via drag-and-drop often have to be restored to one of their
previous positions. For instance, a user will carefully lay out windows on his desk-
top but will then temporarily move or resize one of them to access content hidden
behind it, such as an icon or another window of lesser importance that was left
in the background; he will then want to restore the foreground window to its ear-
lier configuration. The reader of a document will scroll down to an appendix or
check a reference, and will then want to come back to the section he was read-
ing. Current systems do not enable users to easily restore windows or viewports to
their earlier configuration; users have to manually reposition and resize the corre-
sponding objects. Such actions can be costly. From a motor perspective, the cost
of repairing a drag-and-drop manipulation can be higher than that of the original
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Figure 2.13 : The Dwell-and-Spring technique (DS). A red circular handle pops
up close to the cursor when the user presses the mouse button and remains still for
500ms (i.e., dwells) over an icon. Releasing the mouse button while the cursor is
over the spring handle will undo the last move of this icon.

manipulation depending on how precisely the object has to be positioned. This is
especially true for touch-based interfaces, which can make precise manipulations
challenging [SRC05]. The cost can also be high from a cognitive perspective, as
users may have difficulty remembering what was the previous state of a particular
object [KLDK08].

We studied typical situations where users have to perform a reciprocal drag-
and-drop in order to restore objects to their past locations. We first designed the
Dwell-and-Spring interaction technique [10] that allows users to undo movements
of individual objects according to a simple linear undo model. We then introduced
the DND−1 model [11] that can handle all past locations of individual objects and
groups of objects, which led us to redesign Dwell-and-Spring in order to allow
users to navigate objects’ histories and perform the reciprocal drag-and-drop action
of interest.

Reciprocal Drag-and-drop: Simple cases

Situations that call for reciprocal drag-and-drop can be simple: for instance,
putting a window back to its last location or reverting it to its previous size.

The basic Dwell-and-Spring technique, as described in [10], readily applies to
all simple cases of reciprocal drag-and-drop. Figure 2.13 illustrates it on a very
simple case, where an icon gets restored to its last position. A red circular handle
pops up close to the cursor when the user presses the mouse button and remains
still for 500ms (i.e., dwells) over the icon. Bringing the cursor or finger onto this
handle will make a spring appear, showing what the center of the icon will become
if the user releases the mouse button or lifts his finger over the spring handle. If
the user dwells without having initiated any movement, the spring shows the last
move that was applied to the icon. If the user has already initiated a drag-and-drop,
the spring proposes the reciprocal drag-and-drop for the current move. The user
can either move over the spring handle and select it, activating the spring and thus
bringing back the object to its previous location; or he can discard the widget by
getting out of the active area.

As illustrated in Figure 2.14, this version of Dwell-and-Spring supports various
cases of reciprocal drag-and-drop: manipulating icons on the desktop, navigating
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Figure 2.14 : Examples of frequent drag-and-drop actions that may call for recip-
rocal drag-and-drop actions.

documents using a scrollbar or with a swipe gesture on a touch-sensitive surface,
moving and resizing windows, or any other action where the spring’s actions are
equivalent to what the user would manually do to revert to the original state, like
moving a slider knob or a manipulation handle. In this original version, Dwell-
and-Spring is only able to revert the current or the last drag-and-drop, as it is only
keeping track of the previous location of each object, based on a per-object linear
undo model.

We conducted an experiment to capture what users typically do in situations
where they want to revert a drag-and-drop. We also wanted to evaluate whether
the spring metaphor implemented in Dwell-and-Spring is a viable alternative or
not. The experiment contained two parts: (1) an interactive in-situ questionnaire to
gather data about users’ habits when reverting drag-and-drop actions in different
contexts of use (view navigation, window management, vector graphics editing,
etc), and (2) a formal experiment to evaluate how easy it is to discover and un-
derstand Dwell-and-Spring, and how often users would actually resort to it once
discovered.

First, our general observation about users’ habits was that they always repair
their direct manipulation errors manually, except when the direct manipulation acts
at the functional level of the corresponding application (e.g., moving a shape back
where it was with the undo command in a vector-graphics editor). Second, when
the environment proposes Dwell-and-Spring for reverting moves, one third of users
spontaneously tried to make use of it. Demonstrating the technique even a single
time was sufficient for users to understand and adopt it. Finally, our quantita-
tive analysis highlighted the speed-accuracy trade-off of using Dwell-and-Spring:
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Figure 2.15 : Exploring different office layout alternatives on a floor plan. (a)
Placing a cupboard in the SW corner. (b) When moving the cupboard to the SE
corner, it is difficult to access it when the door is open. (c) Cupboard back to the
SW corner. (d) Cupboard in the NE corner. The heater is partially occluded. (e)
Cupboard almost centered along the S wall. (f) Adding a desk in the NE corner,
composed of two tables and a chair. The heater is partially occluded. (g) Cupboard
back in the SE corner to free space for the desk in the SW corner. (h) Desk in the
SW corner. (i) Changing the relative placement of the desk elements. (j) Desk back
in the NE corner with the new relative layout between the two tables and the chair.

while it may be a bit slower in some cases, Dwell-and-Spring accurately cancels or
undoes any direct manipulation, which can be a significant advantage for precise
positioning.

Reciprocal Drag-and-drop: Advanced cases

Situations calling for reciprocal drag-and-drop can be much more elaborate
than simply restoring an object’s last location: for instance, putting back a group of
shapes to an earlier position on the drawing canvas after having manipulated other
shapes, while preserving the new relative position that was given to the shapes in
the group after they were initially moved away. From a user perspective, such
graphical layout tasks are often part of an exploratory process. For instance, Fig-
ure 2.15 illustrates a scenario in which a person rearranges furniture in an office
and tests alternative layouts. The software allows her to explore different arrange-
ments by selecting and moving either a single piece of furniture, or multiple pieces
together. Direct manipulation strongly contributes to making such exploratory de-
sign activities easy. But effectively supporting users also entails enabling them to
easily revert back to past states from which to try other design options. Most graph-
ical editing software provides an undo command to restore a past state of the entire
document but, unfortunately, the underlying undo model is usually a global linear
one that does not keep track of branches in the history of manipulations. Such a
basic undo mechanism has two strong limitations, as detailed below.

The first limitation is that some previous states in the history can become inac-
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Figure 2.16 : DND−1 stores all repositioning actions applied to an object, includ-
ing those performed via a reciprocal drag-and-drop (D, F and I, shown as dashed
black lines). It presents the shortest path to all past locations.

cessible [Ber94, YMK13]. In Figure 2.15, the user moves the cupboard (a-b) but
then undoes this move (b-c) when she realizes that this location might not be so
convenient because of its proximity to the door. Later, after having considered the
different constraints (window, heater, additional furniture), she finally decides that
putting the cupboard behind the door (as in (b)) is the best option. She wants to
revert it to this location, but as she has moved it to other locations (c-d-e) after her
undo operation (b-c), she is no longer able to get back to this configuration other
than by manually moving it back there.

The second limitation comes from the lack of integration of object selection
mechanisms with the history of direct manipulations. In Figure 2.15, the user
moves the two tables and the chair that make her workstation (g-h), and then
changes their relative layout, thus breaking the previous multiple selection (i). Be-
cause there can only be one single active selection at a time, testing a location of
the workstation that has already been explored (f), but with the new relative layout
made in (i-j), requires selecting all its elements again and manually dragging-and-
dropping them in the right place. Some graphical editors feature a command to
group objects together. But this makes the exploratory design process much more
cumbersome, as groupings have to be anticipated and created explicitly. In addi-
tion, groupings set persistent links between objects, which impede single-object
editing operations.

All Past Locations of an Object Applications that support undo typically store
the history of actions as a tree whose nodes are the different states of the applica-
tion. Performing an operation means adding a novel child state to the current node.
Undoing an operation means getting back to the parent node. The linear undo
model that most applications propose only supports one single active path. All
nodes outside this path are inaccessible via undo. For instance, in Figure 2.16, the
user moves the icon three times successively (displacements A, B then C), reverts
C, and then moves the icon again by E. At this point, she can no longer recover the
position the icon had after displacement C, since this one no longer belongs to the
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active path ({A,B,E}). A few applications, such as Emacs [Gos82, Yan92], make
users able to recover any state. However, this might require chaining a long series
of interactions to reach a given state, as the history stack is presented to them as a
full sequential path in the history tree.

Figure 2.16 illustrates DND−1, our local undo model to navigate in the history
tree of displacements performed on a graphical object. This model lies in-between
the single active path and the full sequential path models described above. It stores
the full history of repositioning actions, but provides users with shortcuts to quickly
access nodes in the tree, so as to make them able to recover any past location, in the
spirit of the Selective Undo model [Ber94]. Each object remembers the sequence
of moves that were applied to it, including reciprocal drag-and-drop actions. All
past locations are accessible. Also, when a user invokes a reciprocal drag-and-drop
action to restore a past position P of an object O, DND−1 adds the straight move
between O’s current location and P to the end of the history, in the spirit of the
inverse model for selective undo (used in e.g., [Ber94, Mye98, YMK13]), rather
than inserting all reciprocal moves after the corresponding moves in the history, as
the script model (used in, e.g., [KF88, MLL+15]) would have done.

However, keeping a trace of all past moves also means that the number of steps
to revert to a past location can be very long. In order to present an object’s history
of past locations in a compact way, we have implemented a navigation algorithm
that computes the shortest path in the history to reach any of these past locations.
This is basically achieved by removing cycles, i.e., series of moves that bring the
object back to a location already present on the path. For instance, navigating two
steps back with DND−1 after move J in Figure 2.16-b entails following path {-J,
-I}; but navigating three steps back entails following path {-J, -G}, as {-J, -I, -H}
would have led to the same location than {-J}, which is already proposed for a
one-step-back navigation. This simplification decreases the number of steps that
should be presented to the user, while ensuring that he can reach any past locations.

Groups of Objects To keep track of all multiple selections an object has be-
longed to, the DND−1 model stores the whole history of moves into a hashtable
(History) whose keys are groups of objects (which can be singletons) that index
lists of timestamped movements. Because there can be some ambiguity when de-
ciding what a group is, as the same objects can be involved in different multiple
selections, we have designed a strategy for handling groups that is detailed in [11].
This strategy makes users able to not only keep a trace of previous multiple object
selections even if other selections happened afterwards, but also restore objects’
locations individually.

The first advantage is that the current relative layout between objects within
a group G is preserved in case they want to restore a past location of G, making
transitions such as the one in Figure 2.15-(i-j) very easy: the user can put back all
desk elements to a past location while preserving the rearrangement of the elements
that was made afterwards.



Object Acquisition and Manipulation 39
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Figure 2.17 : Positioning the legend of a bar chart. (a-b) The user makes a selec-
tion of all elements of the legend. (c) He notices that he has accidentally included
a bar in his selection and moved it along with the legend. (d) He uses Dwell-and-
Spring to restore the bar to its original position. (e) The novel placement of the
legend is not satisfying, and he puts the legend back where it was initially. (f) He
moves the y-axis label, and (g-h) reverts the legend back to the left position.
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(2)(1) (4)(3) (6)(5)

Figure 2.18 : DND−1 applied to shape manipulation handles. (1-2-3) The user
resizes a rectangle twice. (4) She invokes Dwell-and-Spring on the resizing handle
and enters the spring’s main handle. This shows where the resizing handle was
prior to the last resizing manipulation. (5) She moves the cursor to the next spring
handle in the DND−1 history. This shows where the resizing handle was prior
to the last two resizing manipulations. (6) She releases the mouse button on that
second spring handle to revert back to the configuration in (1).

The second advantage is that it overcomes some limits of the single active se-
lection model used in most applications. With the latter, the current selection gets
cleared as soon as users click on a region or object that does not belong to the
selection. DND−1 should save a lot of time and effort when trying to revert com-
plex selections (small objects, objects scattered all over the workspace, partially
occluded objects, etc.). For example, Figure 2.17 shows a scenario where a user
wants to test alternative placements for the legend of a bar chart. The user acci-
dentally selects a bar along with the legend, but notices it only after he has moved
the legend to another location (a-c). As each object is also added individually in
History, he can easily restore the bar’s position (d), which has the effect of creat-
ing the group that contains only the graphical elements of the legend in History.

Navigating the DND−1 model

In order to navigate our DND−1 efficiently, we have extended the Dwell-and-
Spring widget so as to make users able to invoke any reciprocal drag-and-drop on
individual objects and groups of objects.

The first enhancement made to the Dwell-and-Spring technique is to provide
users with extra spring handles that allow them to apply a series of reciprocal drag-
and-drop actions quickly. As illustrated in Figure 2.18, the spring widget features
additional handles that are horizontally aligned with the main spring handle (which
was the only handle in the original design). Users can navigate through these
handles to get a preview of where the selected object(s) would go if they selected
them (by releasing the mouse button or lifting their finger). Selecting a handle
invokes the series of reciprocal drag-and-drop actions that are associated with this
handle. As explained above and illustrated in Figure 2.16, the series of past moves
is managed by the DND−1 model.

The second enhancement made to Dwell-and-Spring is to provide users with
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Figure 2.19 : The DnD-List technique.

another type of extra spring handles that allow them to apply reciprocal drag-and-
drop actions to groups of objects that were moved simultaneously in the context
of a multiple selection. These additional square handles act on the groups that
contain object O, on which Dwell-and-Spring has been invoked. For example,
in Figure 2.17-(g), the widget features three handles for the “Task 1” text label:
a handle for the label itself (red circular handle), a handle for the group Glegend
consisting of all legend elements, and another handle for the group corresponding
toGlegend plus the bar that was accidentally moved in Figure 2.17-(c). Handles are
organized into several rows, one per group. The primary handle of a row is aligned
with the main spring handle that initially popped out. When the cursor enters the
handle associated with a group G, additional handles appear on its left. There are
as many handles as the number of locations this group has visited. To help users
anticipate what will happen if they activate a given handle, Dwell-and-Spring gives
some feedforward when entering that handle: objects in the group are highlighted,
and the sequence of moves is shown as a series of springs that ends on what will
become the center of object O.

We conducted an experiment to test if users could understand and use the DND−1

model effectively when they have to restore the position of either a single object
or a group of objects. As the DND−1 model is novel, we also wanted to gather
observations about its usability independently from its combination with Dwell-
and-Spring. We thus designed a baseline technique that exposes the full history
of DND−1 in a standard list presentation, close to the one found in, e.g., Adode
Photoshop. This technique, DnD-List, consists of a separate window, that remains
always visible on top of other windows. As illustrated in Figure 2.19, this window
shows a scrollable list. Each row displays the history of moves for a given group
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of objects G. An image of G is on the left, and the list of paths that lead to all
past locations of G is on the right. A path is displayed as a series of arrows whose
orientation matches that of the actual movements that brought G where it currently
is. Also, as for Dwell-and-Spring, when the mouse cursor hovers a path, a feed-
forward is provided so as to show the bounding boxes of objects that belong to the
associated group, along with a polyline showing what will become the center of
this group if the user selects this path. The user can click on the path to actually
execute the reciprocal drag-and-drop that reverts this series of movements.

In our experiment, participants had to both perform movements of objects using
drag-and-drop operations and apply undo operations in order to reach a specific
graphical layout. In the first part of the experiment, the difference between the
target and the current layouts could be corrected with a reciprocal drag-and-drop
on an individual object, whereas in the second part, solving the difference required
performing a reciprocal drag-and-drop on a group of objects. In both cases, if users
made an optimal use of the DND−1, they were able to solve the difference with a
single (optimal) reciprocal drag-and-drop.

Our empirical results suggest that the DND−1 model can effectively support
undo for direct manipulations on both individual objects and multiple selections.
This does not mean that participants understood all the details of DND−1, but that
they were able to use it effectively for the layout problem that they had to solve.

All participants expressed a preference for Dwell-and-Spring over DnD-List.
This probably comes from the fact that DnD-List is a global technique that displays
the whole history of all objects, consequently suffering from issues related to the
difficulty in identifying the right manipulation in the history. By using an object as
a reference to provide a contextual history in place, Dwell-and-Spring scales better
with long and complex histories, and better fits with the per-object nature of the
DND−1 model.

2.3 Conclusion

Point-based interfaces encode all information in graphical representations. It
makes them efficient for both novice users who can interpret information with-
out much prior knowledge of the interface, and expert users who can exploit their
spatial memory [SCG13] to speed up frequent actions. However, actions become
difficult from a motor perspective when the number of objects and movements be-
come large. Visual interfaces can be augmented with non-visual feedback based
on e.g., auditory [Bre02] or tactile perception [BCB07] in order to facilitate small
object acquisition, but both the display’s physical size and humans’ motor preci-
sion impose a lower bound to the size of graphical objects and to the precision of
object movements. Interaction techniques that support multi-scale navigation and
fine-grained manipulation can increase the expressive power of point-based inter-
faces by augmenting the number of objects that displays can accommodate and that
users can manipulate.
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Point-based interaction is heavily dependent on the graphical representation,
meaning that increasing its expressive power consists in optimizing the use of the
display area. However, no matter how good the optimization strategy for screen
real-estate use is, the display resource remains limited. Furthermore, today’s inter-
active systems include a large variety of displays, ranging from portable devices to
wall-sized screens. Such systems feature graphical objects that are difficult to point
at either because of their small size or because of their distant location. Gesture-
based interaction then appears as a promising alternative or complement to point-
based interaction, and has been my main research interest since my post-doc at
IBM Almaden. In particular, I have studied how efficient surface gestures can be
for invoking application commands, and how we could design sets of gestures that
are highly expressive for small and/or multi-touch tactile surfaces.

Using gestures for invoking application commands is a priori effective to tighten
the link between the expressivity of an interface and the amount of graphical ob-
jects it can accommodate. However, gesturing also comes with its own usability
problems, such as the difficulty for users to discover and learn the available ges-
tures, or their ability to reach a speed-accuracy trade-off for gesturing fast but pre-
cisely enough for the system to recognize their input traces. Designing efficient
gesture-based interfaces demands both to understand what advantages they can of-
fer over other input channels, and to implement support for users to help them
discover the vocabulary of interaction and use it in an efficient way.

Making general statements about gestures is almost impossible given the wide
variety of gestures. As mentioned in the introduction, gestures can involve users’
whole body or only their finger tips; they can also be executed mid-air or on a
surface; etc. Even when considering only surface gestures, i.e., movements that are
performed with fingers relative to a surface, the design space of possible gestures
is theoretically infinite. However, in practice, the space is much more limited,
both because users have limited cognitive and motor abilities, and because the
robustness of a recognition system is usually inversely proportional to the number
of gestures in the vocabulary. Providing large gesture sets that remain easy to learn
and perform is a core challenge for making gesture-based interfaces usable.

This chapter reports on our empirical study that shows the cognitive advantages
of gesture commands over more widespread accelerators such as keyboard short-
cuts; and our engineering and design solutions to assist users during the discovery
and learning phases of a gesture-based interface. It then presents our different
projects about designing large gesture sets that can be used for manipulating mul-
tiple controls while relying only on simple-shaped gestures in order to limit the
cognitive and motor load for memorizing and performing them.
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(a) (b) (c)

Figure 3.1 : The task used in the experiment: (a) a command stimulus appears as
an icon, the participant clicks on it (this makes the icon become semi-transparent)
(b) the participant invokes the command through a menu, (c) or through a shortcut
(a stroke shortcut in this case)

3.1 Gesturing for invoking commands

As a first investigation of the efficiency of gestures for invoking application
commands, we ran an experiment comparing stroke shortcuts to the standard key-
board shortcuts [13]. We then proposed solutions for integrating gesture shortcuts
with conventional widget-based interfaces, and for improving dynamic guides that
support users in their adoption of a gesture-based interface.

3.1.1 Stroke shortcuts vs Keyboard shortcuts

Like using gestures to invoke commands, keyboard shortcuts have the advan-
tage of saving screen space as they can activate commands without relying on
a graphical widget. However, traditional keyboard shortcuts have their limits in
many situations. First, studies show that users often have difficulty to transition
from menu selection to keyboard shortcuts [LNPS05]. Second, keyboard shortcuts
may not be convenient to use, particularly for portable devices such as smartphones
that have no physical keyboard. Enabling users to efficiently trigger a command
with a stroke gesture would overcome some of these problems.

Our experiment was motivated by the following hypothesis: stroke shortcuts
may have a cognitive advantage in that they are easier to memorize than keyboard
shortcuts. To better support recall, designers should make the shortcuts as analo-
gous or mnemonic to the command name or meaning as possible. However, ar-
bitrary mappings are unavoidable since many concepts in the digital world do not
offer a direct metaphor to the physical world. Interestingly, because strokes are
spatial and iconic, which makes richer and deeper processing possible in human
memory [CL72] even if the mapping is arbitrary, we hypothesize that stroke short-
cuts could have cognitive (learning and recall) advantages over keyboard shortcuts.

Our comparison to keyboard shortcuts was not meant to be a competition, but
rather to use keyboard shortcuts as a baseline control condition. Since the use
of shortcuts largely depends on their ease of learning, we focused our study on
learning aspects involved in both types of shortcuts. We also limited our study to
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ICON Keys Stroke ICON Keys Stroke
Shift+W Ctrl+W

Shift+D Ctrl+D

... ... ... ... ... ...

Figure 3.2 : An excerpt of the mappings used in the experiment.

the general case of arbitrary mappings between the commands and the shortcuts,
namely mappings without direct mnemonic association in either condition. This
decision was based on several considerations. First, a learning experiment takes
time to do well even when it is focused. Second, the special cases of mnemonic
mapping, which should be maximized in actual design, is rather limited in number.
For example the usual way of making a keyboard shortcut mnemonic is to use the
first letter of the command name. However this rule makes interface developers
quickly run into conflicts: in fact the small set of five common commands {Cut,
Copy, Paste, Save and Print} already exhibits two conflicts. Also, for non-English
speakers, the same command may have different names in different languages yet
it has the same keyboard shortcut (which is probably a reasonable design choice
for consistency). Third, stroke shortcuts can always be made as mnemonics as
keyboard shortcuts by choosing letter-shaped strokes. Learning required in that
case is probably limited.

Experiment design

We modeled our experimental task after Grossman et al. [GDB07] which was
the most recent and most complete study to date on learning keyboard shortcuts.
The task required the participants to activate a set of commands that were accessi-
ble through both menus and shortcuts. Once a command stimulus (i.e.,a graphical
icon, as in [GDB07]) was displayed in the center of the screen, the participant was
asked to first click on the icon (Figure 3.1-(a)) and then execute a corresponding
command as quickly as possible through either menu selection (Figure 3.1-(b)) or
a shortcut activation (by drawing a stroke or pressing hot keys, depending on the
experimental condition) (Figure 3.1-(c)). The click on the icon at the beginning of
each trial prevented the participant from keeping the mouse cursor in the menu area
to only interact with menu items. Both types of shortcuts were displayed on-line
beside the corresponding menu items. The participant was explicitly told to learn
as many shortcuts as possible. In case he did not know or remember a shortcut, he
could use the menu to directly select the command or look at the shortcut.

The keyboard shortcuts were assigned in accordance with the rule used in
[GDB07]: they were composed of a sequence of a modifier key followed by an
alphabetic key that was not the first or last letter of the name of the object. To re-
flect a necessary difficulty in practical keyboard assignments, the same alphabetic
key preceded by two different modifier keys (Ctrl or Shift) constituted two different
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Figure 3.3 : (a) Time and Recall performance according to the number of times a
command has been seen in the test session - (b) percentage of use of each technique
by participant in the retest session

commands. To reduce a potential bias, we reproduced this potential pair confusion
in stroke shortcuts as well: the same shaped stroke with two different orientations
activated two different commands. Table 3.2 shows a sample of the icons and the
two types of shortcut we tested. To minimize the influence of the participants’
personal experience, commands tested were not those in common software appli-
cations but rather objects and activities of everyday life organized into five menus
(categories): Animals, Fruits, Office, Recreation and Vegetables. Each menu con-
tained 12 menu items resulting in a total of 60 items. In order to have enough trial
repetitions, the participants had to activate a subset of 14 commands during the
experiment. Note that the rest of the 60 items were also assigned shortcuts and
served as distractors both to the participants and to the stroke recognizer. Finally,
to reflect the fact that some commands are invoked more frequently than others in
real applications, we assigned different frequencies to different commands.

Because we were interested in memorization aspects, it was important to oper-
ationalize the case when users return to an application after a period of not using
it. Our experiment consisted of two sessions on two consecutive days. On the
first day, participants had to perform a warm-up session where the only way of in-
voking a command was through menu selection, followed by a test session where
commands could be invoked through either menu selection or shortcuts (they were
presented to both stroke and gesture shortcuts condition in a counter-balanced or-
der). On the second day, they participated to a re-test session where both types of
shortcuts were available and the participants were told to use what was most conve-
nient for each trial. At the end of the experiment, they were given a questionnaire
in order to collect qualitative feedback.
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Results

In the test session on the first day, participants used shortcuts in 96% of the
trials when the application was featuring stroke shortcuts. The percentage dropped
to 88.5% when the shortcuts were standard keyboard shortcuts. The recall score
was significantly higher with stroke shortcuts than it was with keyboard shortcuts.
Trials were also completed faster on average with stroke shortcuts than they were
with keyboard shortcuts. Finally, our participants made significantly fewer errors
with stroke shortcuts than with keyboard shortcuts. Figure 3.3-(a) illustrates the
main phenomenon: participants benefited from the use of stroke shortcuts when
they were learning the mappings. The figure plots the mean Time andRecall per-
formance as a function of the number of times an item was tested, clearly showing
that Time decreased faster andRecall accuracy increased faster with stroke short-
cuts than with keyboard shortcuts. Note that the performance difference between
the two types of shortcuts is primarily cognitive (learning and recalling the short-
cuts). With enough practice, when user performance is more likely to be limited
by motor execution (around the 25th exposure in this experiment), the difference in
both time and recall between the two types of shortcuts becomes indistinguishable.

Data collected in the re-test blocks on the second day allowed us to evaluate
users’ memory retention of the shortcuts learned, and to see which type of short-
cuts they preferred. Figure 3.3-(b) shows the percentage of use for each technique
(Keyboard, Stroke and Menu) per participant. Although varied by individual,
on average, significantly more stroke shortcuts than keyboard shortcuts were used.

The participants’ open remarks confirmed our hypothesis about the power of
strokes for encoding mnemonics. Strokes gave participants richer clues to make up
an association (more levels of processing) between a command and its arbitrarily
assigned stroke. Examples of participant quotes were “I thought of this stroke as
fish because the shape’s stroke makes me think about a basin” or “I associated this
stroke with a jump and I see karate as a sport where people jump”. Interestingly,
no two people mentioned the same trick to associate a stroke with a command.

In summary, although the purpose of stroke shortcuts is not to replace or com-
pete against either menu selection or keyboard shortcuts, the experiment clearly
shows that stroke shortcuts can be as efficient as, or more advantageous than, key-
board shortcuts. While both types of shortcuts have the same level of performance
with enough practice, stroke shortcuts have substantial cognitive advantages in
terms of learning and recall. With the same amount of practice, users can suc-
cessfully recall more shortcuts, and make fewer errors with stroke shortcuts than
with keyboard shortcuts.

3.1.2 Discovering and learning stroke shortcuts

If using strokes to activate commands looks promising, it also has the well-
known and important drawback that strokes are not self-revealing [KM94, HZS+07,
BM08]. In other words, as opposed to buttons and menus, users cannot guess which
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(a) (b) (c)

Figure 3.4 : Revealing stroke shortcuts (a) Tooltip, (b) with Menu preview and (c)
with a Strokes Sheet

stroke-based commands are available and which stroke triggers which command.
Often, novel features of an interface are unused not because they are difficult to
use, but because users are not aware of them. Therefore, interfaces should offer
visual clues about available strokes to enable end users to discover and learn their
effect.

Revealing stroke shortcuts using standard widgets

To address the visibility problem (i.e., users do not have a way to discover the
available strokes and their meaning), we proposed the Stroke Shortcuts Toolkit
(SST) that allows developers to implement stroke shortcuts in a wide range of
software applications [13]. SST requires only a few lines of code to add stroke
shortcuts in any Java Swing application. In particular, with a single line, developers
can turn on three types of visual clues (Tooltip, Menu preview and Strokes Sheet). If
Tooltip is turned on, any graphical component that provides a shortcut will display
it in a tooltip that pops up when the mouse cursor dwells over this component.
If this component already has a tooltip associated with it, the existing tooltip is
augmented with the stroke illustration while preserving its original text (Figure 3.4-
(a)). Similarly, if the Menu preview is turned on, any menu item that is invokable
by a stroke displays a preview of this stroke beside its label, as is usually done
with keyboard shortcuts (Figure 3.4-(b)). Finally, a Strokes Sheet can be enabled
(Figure 3.4-(c)). It is an independent window that displays the list of shortcuts
and the name of their associated commands found in the current opened windows.
The behavior of the strokes sheet was inspired by the Tivoli system [KM94]: this
sheet pops up each time the user pauses during a stroke (at the beginning, or at any
moment while stroking) and remains visible until the user enters a shortcut that is
successfully recognized, or closes the sheet.

Revealing stroke shortcuts using contextual guides

The mechanisms for making stroke shortcuts visible described above have the
advantage of being easy to plug in an existing WIMP-based application. How-
ever, they also have important drawbacks such as consuming screen space (Strokes
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Figure 3.5 : (a-b) OctoPocus in novice mode (tracing copy causes cut to get
thinner). (c-d) OctoPocus in intermediate mode (cut disappeared, and there is a
scale mismatch for copy)
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Figure 3.6 : Partial input recognition and scale ratio estimation.

Sheet) or requiring extra actions from users to access visual clues (Menu preview
and Tooltip). Contextual guides, such as OctoPocus [BM08], offer a better user
experience as their support is dynamic and integrated into users’ gesturing actions.
The guide is dynamically updated, as the input grows, to show only the subset
of gestures that match the partial input. However, implementing such guides in a
robust way is difficult as it demands to incrementally recognize the gesture as the
user performs it. Figure 3.5-(c, d) shows what can happen if the incremental recog-
nition process does not handle the variability that exists in different versions of the
same gesture. Here, the problem is that partial input recognition is scale dependent
while most gesture recognizers support scale independence (i.e., the same shape at
different scales actually invokes the same command).

In [3], we propose an algorithm to address this scale mismatch issue. Fig.
3.6 illustrates what our algorithm is capable of: identifying the matching prefix
between users’ partial input and a gesture template, and computing the scale ra-
tio between both. Our solution is inspired by the “turning angles representation”
algorithm used in image analysis [NY95], which has the advantage of represent-
ing a shape as a vector of turning angles. This representation is actually scale-
independent. In this algorithm, the shape is sampled at a given number of equally
spaced points to obtain a series of subsegments. A subsegment is defined by the
angle it forms with a reference axis, e.g., the x-axis. The distance between two
shapes is simply computed as the distance between the two vectors of turning an-
gles. In the case of partial input recognition, users provide only a prefix of the final
gesture, making the sampling in equally spaced points irrelevant for comparing an
input to a template. Our algorithm addresses this issue.

Given an input stroke Sinput and a set of n templates St1 ... Stn, our algorithm
consists of the following steps:
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Copy (a) mouse real input (b) most plausible template (c) displayed gesture trace

Figure 3.7 : (Left) Rescaling the gesture candidate - (Right) Attracting users’
input: (a) Raw input (b) Template (c) Actual gesture trace.

Step 1: Compute a scale independent representation (SIR) for Sinput and
all St1 ... Stn. A SIR can be seen as a coarse turning angle representation: it
aggregates the subsegments that do not significantly vary in the angle they form
with the x-axis. The SIR is thus a series of segments defined by their length (i.e.,
the sum of aggregated lengths) and their angle (i.e., the mean of aggregated angles).

Step 2: SIRs are convenient to look for the prefix that matches Sinput in each
template St1 ... Stn by simply comparing the successive segments. Two segments
are similar if their difference in terms of angle is lower than TOLERANCE1. If a seg-
ment SegSinput from Sinput is not similar to a segment from a template, SegSinput
length is recorded as non matching. When the consecutive non matching length ex-
ceeds 10% of the length of Sinput, the compared template is discarded. However
a non matching part lower than that threshold is ignored to avoid discarding plau-
sible candidates just because of a small noisy portion. Note that this tolerance is
applied only on the Sinput side and not on the template side, to avoid ignoring an-
gle changes on small portions that are explicitely part of a template (e.g., a curly
brace stroke). Our algorithm thus considers templates as perfect strokes.

Step 3: Once the matching prefix (if any) is identified for each template, the
scale ratio between the input and a matching prefix is computed as the mean of the
ratios between lengths of matching pairs of segments.

The algorithm described above allowed us to implement an augmented version
of the OctoPocus guide. First, the missing part of gesture candidates is rescaled us-
ing the proper ratio (Figure 3.7-(Left)). Second, we have implemented a magnetic
effect to facilitate gesturing. We “dig ditches” along the most probable template
trajectories in motor space, in the spirit of kinematic templates [FLTL08]. The
width and depth of each ditch are proportional to the template’s plausibility given
the current partial input: the more probable a template, the larger and the deeper
its ditch. To provide a smooth and continuous behavior, ditch depth is maximal in
the center and progressively decreases towards the boundaries. Users have more
control than with a binary snapping mechanism, enabling them to deviate from the
most probable trajectory to draw another gesture (in the spirit of our RouteLens
technique presented in the previous chapter). Figure 3.7-(Right) shows an interest-

1In practice, we use TOLERANCE=π
4

.
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ing side effect of this magnetism: the stroke gets beautified as it is drawn. Not only
may this inform the user that he can draw more quickly since the trace looks good,
but it also provides a pleasant aesthetic experience.

We conducted an experiment to test if our augmented guide improves users’ ex-
perience. Participants had to gesture with a mouse in two conditions: assisted by a
regular OctoPocus guide or by an augmented version of it. We measured the com-
pletion time and the distance between participants’ input and the correct gesture
template. Collected data showed that our augmented guide helped participants to
perform gestures that are better recognized (because closer to the correct template)
without increasing drawing time.

3.2 Gesturing on portable devices

Using gesture-based interaction appears, at first, as an excellent fit to portable
devices which have a small screen that can display a limited number of widgets.
However, the results presented above, which were conducted in the context of a
desktop station operated with a mouse or of a tablet PC operated with a stylus, are
not directly relevant to devices that support touch-based input and that are used in
a mobile context. On such devices, slide and pinch gestures are already dedicated
to navigation, meaning that using other gestures for invoking commands would
require to resort to a mode switching action. Furthermore, these devices are often
operated in a one-handed context where only the thumb can move on screen with
a limited range of motion. The gestures should then remain simple if we want
users to be able to perform them in such contexts. In this section, we present three
projects that tackle these issues: SidePress that augments a device with pressure
sensors on its side to allow users to, e.g., delocalize the navigation controls on the
device’s edge or easily switch between modes; the Power-up button that can track
simple thumb mid-air gestures that are performed on the side of the device; and
TilTouch gestures that combine finger sliding with device tilting in order to avoid
collision with slide gestures that are used for navigation.

3.2.1 SidePress

SidePress [24], illustrated in Figure 3.8, augments a mobile device with two
continuous pressure sensors, co-located on one of its sides. Our prototype consists
of three components: an iPod touch 4G (iOS 5.0), a custom-designed plastic cas-
ing that hosts two force-sensitive resistors (Interlink Electronics FSR 400), and a
custom-built circuit board. Figure 3.8 illustrates a right-handed user applying pres-
sure with either the two groups of digits <index, middle> and <ring, little>, or
with her thumb and palm.

Thanks to its two sensors, SidePress provides bi-directional navigation ca-
pabilities at different levels of granularity, all seamlessly integrated: continuous
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Figure 3.8 : The SidePress prototype has two pressure sensors on one of its sides,
providing a rich input vocabulary for interaction. Pressure Sensors can be posi-
tioned on either side of the device.

rate-based control (pressure intensity), jumps of different amplitudes (light-click
or strong-click), jump to the minimum or maximum values in the value’s range
(strong-press). Altogether, these events provide users with the same level of ex-
pressiveness as a traditional scrollbar, but without cluttering the screen, and without
causing visual occlusion or interfering with touch input, as control gets delegated to
sensors outside the display area. Users can also press both sensors simultaneously,
an additional event that can be useful for, e.g, holding a call, switching between
navigation and editing modes, or displaying a control panel to invoke a command
or to jump to a bookmark.

Interaction events

The hardware prototype is driven by software that translates variations of both
pressure sensor values into interaction events. Figure 3.9 illustrates the state ma-
chine corresponding to one sensor. Two such machines run in parallel, one for each
of the two sensors A and B. Whenever the user actuates one of the sensors, i.e., as
soon as one of the machines leaves the Idle state, the other machine gets disabled.

SidePress is particularly well-suited for navigating large collections of items,
such as the pages of a long text document, collections of pictures, a feature film
or any other long video. It can also be useful when precisely adjusting the value
controlled by any kind of slider, or positioning the caret in a text document. In the
following, we describe the interaction techniques enabled by these state machines
using a simple example: navigating a document.

When navigating a document, the two sensors provide a set of actions seam-
lessly integrated together to move upward (sensor A) and downward (sensor B).
When the user starts pressing one of the sensors, e.g., sensor B, the correspond-
ing machine goes into the LightPressure state and waits a short amount of time
(500ms) for one of the following events to occur depending on what the user inputs.
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Two state machines run in parallel, one for the upper sensor (PA) and one for the lower
sensor (PB). Whenever a machine leaves the Idle state, it disables the other machine,
which gets re-enabled when the former gets back to the Idle state.
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Figure 3.9 : State machine for sensor B.
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Figure 3.10 : Application to navigation in a document
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· She can release sensor B. This takes the machine back in the Idle state,
and triggers a light-click event that translates the document downward by
one line.

· She can apply a stronger level of pressure on sensor B. This takes the ma-
chine in the StrongPressure state. From there, either she releases the
sensor within 500ms, which triggers a strong-click event that takes her to
the next page; or she keeps the sensor pressed for more than 500ms, which
triggers a max event that takes her to the last page of the document.

· She can press sensor A (in addition to B). This takes the machine in the
BiPressure state. From there, either she stops applying pressure within
500ms, which triggers a bi-click event that bookmarks the current position
in the document; or she keeps them pressed for more than 500ms, which
triggers a switch-on event that toggles another mode and takes the machine
in the LongBiPressure state until the sensors get released (switch-off).
In our example, toggling to the other mode pops-up a list of previously-
bookmarked locations in the document, that can be selected, e.g., using direct
touch or by tilting the device.

If none of the above three events happen within the first 500ms after the user
started pressing sensor B, the machine enters state LongLightPressure, which
allows for pressure-dependent continuous control. In our example, this translates
to rate-based continuous downward scrolling.

The same events performed on sensor A translate to upward navigation actions
in the document: up by one line, previous page, first page, continuous rate-based
upward scrolling.

Users can perform additional actions by actuating both sensors simultaneously.
Pressing both sensors at the same time consists in squeezing the device, and is a
relatively natural gesture. The gesture is interpreted either as a bi-click if users re-
lease the sensors less than 500ms after press, or as a mode switch if they keep them
pressed for a longer period, triggering a switch-on/off (lower part of Figure 3.9).
These two events can be associated with the invocation of a command, like book-
marking or undoing an action, or entering/leaving another mode, respectively.

Evaluation

We ran a first experiment to evaluate users’ ability to trigger, on demand, each
of the ten events described above. A trial consisted in triggering one of the events.
Because simply displaying the name of the event as a stimulus would have been too
artificial and cognitively demanding, we conveyed the stimulus information using
a tank filling metaphor. A light-click adds (A) or removes (B) one volume unit. A
strong-click sets the volume to the closest upper tick (A) or to the closest lower tick
(B). A max event fills (A) or empties (B) the tank. A switch-on/off makes the tank
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Figure 3.11 : (Left) Our prototype equipped with a Power-up button. The sen-
sors are placed inside custom-built plastic casings. (a) Side view of the pressure
and proximity sensors. (b) Front view of the window above the proximity sensor.
(Right) Users can perform mid-air and pressure gestures using their thumb.

disappear; the participant then has to wait for a Release instruction that pops up 2
seconds later.

This first empirical evaluation showed that side pressure input is a very promis-
ing modality. Participants were able to control the whole vocabulary of events with
an overall success rate of 90%, most errors being low-cost or costless ones (for
example, performing a continuous(B) instead of a light-click(B)).

The second experiment tested how users can take benefit of such a new vocabu-
lary for tasks that mainly involve unidimensional or bi-directional navigation, such
as scrolling a document or finding a scene in a video. We compared SidePress with
the standard interaction technique for one-handed scrolling: drag and flick touch
gestures. The experimental task consisted in scrolling a 20-page document (page
length = screen height = 920 pixels) to bring a target that was initially out-of-screen
inside the viewport.

The most interesting observation was the performance difference between the
two techniques that depended on target distance: Touch is faster than SidePress for
small distances, and conversely SidePress is faster than Touch for long distances.

3.2.2 Power-up button

The Power-up Button [23] consists of one proximity sensor superimposed on
one continuous pressure sensor. Located on the side of a mobile device, it enables
gestural interaction with the thumb that holds the device. Figure 3.11 shows our
prototype. The sensing hardware comprises four components: a force-sensitive
resistor (Interlink Electronics FSR400 Short), an infrared proximity sensor (Vishay
VCNL4000) that is mounted on a Sparkfun breakout board, an Arduino Pro Mini,
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(a) (b) (c) (d) (e) (f)
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Figure 3.12 : Gestures performed on and around the Power-up Button.
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Figure 3.13 : Proximity profiles for discrete events (time scale = 1 sec).
discreteDown+ and discreteUp+ show two consecutive gestures (time scale = 1.5
sec).

and a custom-designed printed circuit board.
Our Power-up Button enables users to perform numerous actions using a single

controller that does not occupy more space than a regular button would, but that
provides a much higher level of expressive power. Combined with a gesture recog-
nizer that takes the hand’s anatomy into account, it allows users to trigger a set of
four discrete events and two continuous events using simple gestures performed on
and around the button while operating the device with a single-hand (Figure 3.12).
A single Power-up Button enables users to control, e.g., a music player eyes-free:
pause and resume playback, adjust volume settings, and navigate both within and
across songs.

Interaction events

To demonstrate the potential of the Power-up Button, we designed a set of
gestures that can be discriminated using the technology described above. We con-
sidered both motor and physiological aspects, ending up with a set of gestures that
are easy to perform and that will not cause too much fatigue even when performed
in sequence. To control the Power-up Button, users move their thumb within the
device’s plane towards or away from the button (Figure 3.12-(c,d,e)), and out of the
device’s plane towards either the front or the rear of the device (Figure 3.12-(a,b,f)).
We implemented a recognizer to discriminate between these two-dimensional ges-
tures with one-dimensional sensing capabilities only.
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Our recognizer is implemented as a finite state machine in which final states are
one of the following interaction events: discreteDown, discreteUp, click, quick-
Release, continuousDown and continuousUp. Transitions are triggered by input
variations on the pressure and proximity sensors. For the two continuous events, a
first-order control is initiated as soon as the corresponding state is reached, letting
users adjust the rate by varying the pressure intensity or the distance to the button.

Events and Pressure To recognize click and continuousDown events, the Power-
up Button analyzes the profile of the normalized pressure intensity that the thumb
applies to the device. When the user starts pressing the force sensor, the state ma-
chine waits for a short amount of time (500 ms) to decide if the pressure is released
or sustained. Releasing the pressure before the timeout occurs triggers a click event
if the initial force exceeded 1N. If the pressure is sustained, the state machine trig-
gers continuousDown, enabling pressure-dependent continuous control.

Events and Proximity The Power-up Button analyzes the profile of the normal-
ized distance between the device and the thumb. The distance is d = 1 if the
thumb is too far away from the sensor’s detection zone (OutOfRange), d = 0 if
the sensor is occluded (Touch), and d ∈ ]0..1[ if the thumb is close to the but-
ton (Prox). In addition, our algorithm examines how the distance changes over
time (∆d = dt− dt−1, uniform sampling frequency) to detect changes in direction
(∆d > 0 and ∆d < 0) and gesture speed.

This low-level input allows our recognizer to identify the discreteDown, dis-
creteUp, quickRelease and continuousUp gestures. The main challenge lies in dis-
criminating orthogonal gestures discreteDown and discreteUp, as the proximity
sensor only captures the orthogonal distance between the thumb and the edge of
the device. We call these gestures orthogonal because the thumb is leaving the
device’s plane either towards the front of the device (discreteDown) or towards the
rear of the device (discreteUp). Figure 3.13-(a,b) shows typical sensor readings for
these gestures. Both gestures must begin in the proximity range (Prox), touch the
button (Touch) and leave the device’s plane in one direction or the other. This fi-
nal part of the movement can be discriminated because of the anatomy of the hand,
that makes moving the thumb away from the user (adduction) harder than moving
it towards her (abduction). This results in sensing OutOfRange for discreteDown
gestures and Prox for discreteUp gestures.

The recognizer for discreteDown and discreteUp accepts several profiles for a
single gesture, making the repetition of such gestures in clockwise and counter-
clockwise directions easier to perform. The initial position for both gestures be-
comes optional, allowing users to start their gesture either in proximity range Prox
(Figure 3.13-(a,b)) or OutOfRange (Figure 3.13-(c,d). For discreteDown, users
can either touch the button or pass close enough to it in mid-air (Figure 3.13-(c)).

Figure 3.13-e shows that the quickRelease gesture is easily recognized based on
a speed threshold at which the thumb must leave the Prox(∆d=0) without touching
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the button (∆d > s with s = 0.5 · (1− dtinitial
)). Finally, the continuousUp gesture

is recognized when the thumb remains in the detection zone for more than 500 ms.

Expressive power

To evaluate the expressive power of our button, we have demonstrated how
the set of interaction events it generates can be used to control any widget of an
existing graphical application without touching the screen. Avoiding touch input
implies dedicating interaction events to give the focus to a given widget. We used
the (click, quickRelease) couple of events to navigate the widget hierarchy in depth,
and (discreteUp, discreteDown) to navigate it in breadth. Once at the deepest level
of the hierarchy, the four events (discreteUp, discreteDown, continuousUp and
continuousDown) are used to set the value of the widget that owns the focus.

The exercise that consists of controlling all widgets is a demonstration of what
the Power-up Button could do, pushed to the extreme. The more relevant use cases
we envision involve a smaller set of controls like, e.g., discarding phone calls or
controlling a music player. The Power-up Button can also complement touch input,
and can be particularly useful when interacting eyes-free. It also opens up a larger
design space for widget organization on screen: the button enables a more compact
layout of interface components than what touch input alone would allow. This can
be useful when, e.g., filling the numerous fields of a long Web form, or for very
small devices.

3.2.3 TilTouch

The last contribution about gesturing on portable devices that we present in this
section does not require any additional electronics. TilTouch gestures [25] extend
the vocabulary of navigation interfaces by combining motion tilt with directional
touch, and can be implemented using the device’s built-in gyroscope. TilTouch
gestures do not interfere with regular touch and tilt actions, and can thus be used
to invoke commands without resorting to explicit mode-switching actions. Our
approach lies within the Sensor Synaesthesia design space [HS11], but we focus
on directional drags rather than static touch.

Combining touch with tilt

Our goal is to facilitate command invocation while users perform navigation
tasks. By combining drags and tilts, we can enhance the number of available ges-
tures but also avoid the use of explicit mode-switching. To that end, we explored
how a TilTouch gesture should be defined such that it does not interfere with ex-
isting navigation gestures. We conducted a preliminary study to determine the
angular range of unintentional tilts that occur during common drag and swipe ac-
tions. 10 participants interacted with three representative mobile interfaces: a large
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touch tiltDir = East dragDir = EasttiltSwitch

Figure 3.14 : 〈tiltDir, dragDir〉 = 〈East, East〉 gesture performed with one
hand. Here, the user starts with a tilt followed by a touch action.

2D view, a vertical list of 50 items, and a horizontally aligned view of five screens.
We analyzed a total of 3935 events of navigation or directional-drag gestures and
defined unintentional relative tilt angles to be in the range of [−18, 18] degrees,
where tilts are measured relative to the initial orientation of the phone when the
finger starts touching the screen. This range corresponds to less than 0.2% of false
positives and does not hinder the activation of intentional TilTouch gestures. We
also set the minimum drag distance for activating a gesture to 7 mm. When these
criteria are met, we detect the dominant direction of the tilt (tiltDir) and the drag
(dragDir) to recognize the TilTouch gesture 〈tiltDir, dragDir〉. The command
associated with this combination is executed after lifting the finger.

Our goal was to keep the shape of gestures as simple as possible while pro-
viding a reasonable number of accessible commands. Therefore, we only consider
the simplest touch marks and tilt angles along the four cardinal directions: North,
South, East, and West. Combining such simple gestures along the touch and
tilt modality results in a total of 16 commands. Figure 3.14 illustrates an example
where the user performs an 〈East, East〉 gesture.

TilTouch gestures are especially useful as quick triggers of commands, e.g.,
copy-paste, make a call, and add a bookmark on a map. The technique requires
the sequential or parallel control of two input modalities. We envision that novice
users will start discovering the gestures by controlling tilt and touch in sequence.
However, we expect that with practice, expert users will be able to internalize a
single action and use the two input channels in parallel, combining the two gestures
into a single interaction chunk [Bux95]. As other directional gestures, TilTouch
gestures have drawbacks: drags are limited near screen edges, and screen visibility
is reduced both by the finger and the tilt. Yet, our low threshold value of relative
tilts (±18◦) minimizes this problem.

Evaluation

We conducted a laboratory study where participants performed TilTouch ges-
tures in conjunction with regular drags. Our goals were to find: (1) which TilTouch
gestures are more effective; (2) whether the same gestures are appropriate for both
single and two-handed use; and (3) whether users can control the two input modal-
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Figure 3.15 : The normalized TilTouch space.

ities in parallel.
The primary factors of our experiment were the type of gesture and the mobile

use. For the type of gesture, we considered TilTouch gestures where participants
were only instructed about the direction of the drag gesture and were free to com-
bine with a tilt gesture in any direction; and TilTouch gestures where both drag
and tilt directions were imposed. For the mobile use, we considered both one- and
two-handed contexts of use. When using only one hand, participants had to drag
and tilt with their dominant hand, while they were tilting with their non-dominant
hand and dragging with their dominant hand when using two hands.

Results reported in [25] details what the best combinations of TilTouch ges-
tures were in our experiment, the take-away message being that constraining tilt
direction has a great cost to user performance. Combinations with same tilt and
drag directions have the best performance. This is especially true for one-handed
use. And, when participants are free to tilt in the direction of their choice, most of
the TilTouch gestures are a combination of a drag and a tilt in the same direction.

We were also interested in observing whether users are able to control touch
and tilt in an integral way [JSMM94] when performing TilTouch gestures, as it
would suggest that they perceive a TilTouch gesture as a single interaction chunk
[Bux95]. We analyzed the degree of parallelism of the tilt and touch input chan-
nels by plotting the collected TilTouch gestures in the normalized tilt+touch space
shown in Figure 3.15. The path length of a TilTouch gesture exhibiting the highest
degree of parallelism is

√
2 while a TilTouch gesture with no parallel control has a

length of 2. By normalizing the path length of each TilTouch gesture, we obtain the
Separability measure ∈ [0, 1]: the less parallel the control over the two input chan-
nels the higher the value of Separability. We found a positive correlation between
mean Separability and mean completion time, with remarkably low separability
values for tilts and drags of the same direction for both one- and two-handed con-
texts.

3.3 Gesturing with multiple fingers

Most tactile screens also support multi-finger input. While using several fin-
gers concurrently quickly becomes uncomfortable on a small device such as a
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smartphone, multi-touch offers a rich input channel for tablet-sized screens and
tabletops. However, current systems do not use it at its full potential. They make
an extensive use of single-finger slides and two-finger pinches for viewport nav-
igation, but the use of other multi-touch gestures remains anecdotal. In the end,
interaction still heavily relies on graphical widgets that interpret only single touch
input. Some projects propose hand gestures for interacting with tabletops that are
based on diffuse illumination technology (e.g., [CWB+08, WBP+11]). But, apart
from the specific case of chording gestures (e.g., [BML12, GHB+13]), there is
very little work about what can be done with the basic multi-touch API that most
tactile screens only support.

This section presents two projects that advocate for a better use of multi-touch
input. The first one [18] empirically shows that there is a planning effect when ma-
nipulating virtual objects on a multi-touch surface, this effect affecting how users
initially grasp objects. This preliminary result suggests that we could possibly
anticipate people’s intentions as soon as they grab an object, before its actual ma-
nipulation starts. The second one [17] presents a large design space for multi-touch
gestures that are easy to perform, and a recognition engine to accurately discrimi-
nate them. In this space, interface designers can identify a set of gestures to provide
users with a large number of both discrete and continuous controls.

3.3.1 Effect of planning on multi-touch grasps

The manipulation of virtual objects has a central role in interaction with table-
tops. For example, users move and rotate documents and pictures around the sur-
face to share them with other users. Graphical designers manipulate information
and graphical objects to create new content. Multiple users work collaboratively
to create schedules, make decisions, or solve complex problems. In all these sce-
narios, users interact with their hands and their fingers; they grasp, translate, and
rotate virtual documents as they would do with physical objects.

Researchers in Psychology have studied how people manipulate objects in the
physical world. This work has unveiled that people show strong signs of prospec-
tive motor planning, i.e., they choose initial grasps that avoid uncomfortable end
postures and facilitate object manipulation. A very recent model that considered
continuous tasks, such as rotating a physical knob, has been proposed by Herbort
[HB12]. This model, which appeared to us as especially relevant to the continuous
manipulation of virtual objects, argues that there are various biases that influence
people’s initial grasp of an object. In its simplest form, the model can be expressed
as follows:

pinitial =
wanti · panti + wdefault · pdefault

wanti + wdefault
(3.1)

According to the model, two different biases contribute to the initial grasp ori-
entation pinitial. An anticipatory bias pulls the initial grasp toward a pronated or
supinated angular position panti, depending on the intended direction of rotation. A
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r

Figure 3.16 : The position of interactive objects expressed in polar coordinates
(r, θ), where r is the radial distance and θ is the clockwise angle with respect to
the vertical axis of the screen. The grip orientation is expressed by the clockwise
angle φ defined by the thumb and the index.

second bias pulls the initial grasp toward a preferred task-independent orientation
pdefault. The contributing weights wanti and wdefault of the two biases can vary,
for example, depending on the difficulty of the task or the required end precision.

In [18], we describe a series of experiments that test if such prospective motor
control also takes place in the context of virtual objects manipulated on a tabletop.
In those experiments, participants were asked to grab a circular start object with
the thumb and the index of the right hand, and to manipulate it to make its position
and orientation match another circular target object.

In order to test if there is a default bias, we considered different locations for the
start object. Regarding the potential effect of an anticipatory bias, we considered
two conditions differing in whether users could plan their movements or not:

· target is displayed before participants grab the start (Known Target, planning
possible), or

· target is displayed after participants grab the start (Hidden Target, planning
not possible).

Figure 3.16 illustrates the six screen positions for both the start and the target
objects that we tested. One was located close to the user, centered on the vertical
axis of the display, 35 mm from the front edge. We refer to it as the User position.
The other five positions were located around the User position with an angular
position θstart of −90◦, −45◦, 0◦, 45◦, and 90◦, and a radial distance of r = 314
mm. Our main measure was participants’ grip orientation φinit (i.e., the angle
defined by the thumb and index when participants grab the object).

Default bias In order to observe if there is a preferred task-independent way of
grabbing an object (default bias), we considered the trials where the start and target
configurations were the same. In such trials, the start and the target objects were
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appearing at the same position, and the participant had to hold the start object and
keep it inside the target. Figure 3.17 reports participants’ grip orientation for those
trials φdefault, and clearly illustrates that φdefault varied along different angular
positions. This supports the fact that, like with physical objects, there is a default
bias when manipulating virtual objects.

Anticipatory bias Our observations also corroborate the fact that there is an an-
ticipatory bias when manipulating virtual objects on a tabletop. For example, Fig-
ure 3.18-(Left) illustrates that φinit is different depending on whether participants
were able to plan their manipulation or not. In the presence of translations, the
anticipatory bias is dependent on the φdefault orientation of the target position. In
the presence of rotations, the bias is dependent on the direction βdir and the range
β of the rotation (Figure 3.18-(Right)). When both rotations and translations are
combined, both these factors contribute to φinit but with different weights.

Overall, our results support that there is some prospective planning when people
perform translations and rotations of virtual objects on a tabletop. We have shown
that users choose a grip orientation that is influenced by three factors: (1) a pre-
ferred orientation defined by the start object position, (2) a preferred orientation
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defined by the target object position, and (3) the anticipated object rotation. We
have also shown that our results are consistent with Herbort’s WIMB model for
physical objects [HB12].

These results suggest that we could possibly infer information about users’
prospective movement to improve user experience during the manipulation phase.
Interface designers could, for example, develop techniques that adapt their graph-
ical layout to improve visual feedback, avoid potential occlusion issues [HB04,
VC12] or reduce interference [HMDR08] when multiple users interact in close
proximity in collaborative settings. We could also derive directions about how to
design grips and visual guides to facilitate both the acquisition and the manipula-
tion of virtual objects.

3.3.2 A design space for multi-touch gestures

We believe that the use of multi-touch gestures should not be restricted to ob-
ject manipulations that mimic how we interact with objects in the physical world,
but that such gestures also offer an efficient means for invoking commands. En-
abling users with a larger set of multi-touch gestures than what current systems
do could both make interaction easier and smoother in some scenarios, and make
graphical presentations lighter by avoiding graphical widgets. For example, mak-
ing a text selection on a small touchscreen can be difficult. In particular, if the text
to select is longer than what the viewport can accommodate, users need to rely on
an autoscrolling mechanism which, as any first-order control, can pose difficulties
when, e.g., trying to repair an overshooting error. If users were rather provided
with gestures for adjusting the text selection that integrate with navigational finger
slides, they could fluidly transition between navigation and selection actions, and
thus have a finer control.

In [17], we propose a design space of multi-touch gestures. This space is orga-
nized along dimensions that (i) make sense in terms of human anatomy, (ii) do not
involve complex shapes and (iii) can be systematically explored. Our goal was to
offer a set of gestures that remain simple to execute, and that could ideally be easy
to input in a sequence, to provide fluid transitions between the different controls
that need to be chained to achieve many tasks. In addition to the text selection ex-
ample mentioned above, users may want to pan a representation at different speeds
to reach quickly and precisely a given paragraph in a PDF document, or a geo-
graphical area in a map. They might also want to manipulate different degrees
of freedom of a graphical object, as in a 3D docking task [NBBW09], or acti-
vate a command and immediately set the value of its parameters in a fluid manner
[GW00].

Design space

Our multitouch gesture design space is defined along four dimensions: Contact
Point (CP), Constraint, Reference and Shape.
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Figure 3.19 : Design space for multi-touch gestures. Pictures show a subset of this
space by illustrating only gesture classes that involve from 1 to 3 contact points
(CP) and that feature at most one anchor (the thumb).

In the Contact Point dimension, the number of contact points involved in a
gesture is defined. For a single-handed interaction, its values ranges from 1 to 5. To
be compatible with current technology, our design space does not consider finger
identification. For example, a 2-CP gesture may involve the thumb and the index
finger, middle and ring finger or any other two-finger combination. Constraint
refers to the behavior of the contact points, that are either active or static. A gesture
is free when all contact points are active. It is anchored when it has at least one
static and one active CPs. The Reference dimension reflects whether an invariant
point serves as a reference for gesture execution or not. Gestures are internal if
there is a reference, being the centroid of contact points for free gestures or the
anchor digit for anchored gestures. The Shape dimension captures the gestures’
form. When creating the design space, we consciously decided to include only
simple shapes: linear or circular.

The design space, illustrated in Figure 3.19 with a subset of gestures, is ob-
tained by crossing the values of the above dimensions. In practice, the space is
reduced by two main constraints. Both anchored and internal free gestures can-
not be defined when the gesture involves only one contact point. Nevertheless, the
design space still contains 18 free and 116 anchored gestures. This number is de-
rived by identifying all possible finger combinations that yield discernible patterns
of contact points. For example, a 3-finger anchored gesture can have one or two
anchor points which can be either adjacent or divided, resulting in a total of six
combinations for these gesture classes.

However, not all gestures are feasible. Strong enslaving of middle and ring
fingers [YvDG10, ZLL00] will, for example, make any gesture where those two do
not act in unison very difficult or even impossible. The form factor of the device
also affects what proportion of the design space can be used. Large devices such
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as tabletops allow for gestures with up-to-five contact points, or even the use of
both hands. On the other hand, using more than three fingers on a tablet is often
cumbersome.

The range of motion of gestures in the design space is not uniform. Limiting
factors can be anatomical, such as the length of the involved fingers and the flexi-
bility of the hand. The size of the device may also limit the gesture amplitude. Free
external linear gestures can, for example, only be as long as the size of the screen,
while free internal circular gestures are limited by how much fingers and wrist can
ab- and adduct, as well as by shoulder movement. External circular gestures are,
on the other hand, infinite in range, as users can perform as many rotations as they
wish. Gestures that have a limited range may suit well for discrete controls to, e.g.,
replace a button. Gestures that can be repeated for an arbitrary duration can be
used for continuous controls to, e.g., replace a slider.

Recognition engine

The full design space is quite large. As a first evaluation, we study a subset
of gestures for a tablet-sized device, GStablet. We explicitly choose gestures that
are the least challenging from the perspective of finger-coordination, have two or
three contact points, and a maximum of one anchor point (second and third lines
of Figure 3.19). The gestures may involve the thumb, index, middle and/or ring
fingers; but participating fingers are always adjacent to each other. The anchor
point is always the thumb, as it is one of the most independent fingers [HRS00,
YvDG10], in particular when acting in parallel to the other ones [OZL05]. This
set consists of 16 gesture classes. Within each gesture class, we consider different
directions. Linear external gestures are along one of the four cardinal directions
(NORTH, EAST, SOUTH, WEST). Linear internal gestures go either TOWARDS or
AWAY from the gesture’s reference point. Circular gestures can be either clockwise
(CW) or counterclockwise (CCW). From this set of 40 gestures, we excluded the 8
anchored external linear gestures based on user feedback collected during informal
preliminary tests (grayed out in Figure 3.19). These gestures are actually both
uncomfortable and difficult to perform. In the end,GStablet consists of 32 gestures.

We introduced a recognition algorithm that can discriminate between this set
of 32 gestures. Our algorithm is incremental, i.e., it relies only on the most recent
finger traces, to enable both early recognition and continuous control during ges-
ture execution. By using only local geometrical features of the last points sampled,
users are able to fluidly transition between different gestures without requiring ex-
plicit delimiters, like pausing or lifting fingers. Our engine analyzes the finger
traces in a recognition loop that starts as soon as one finger touches the surface. To
detect static fingers, the loop runs at a frequency of 40Hz (period 25ms), indepen-
dently from the frequency at which the system delivers events.

In order to avoid unstable recognition due to local noise in the different fin-
ger traces, we filter the recognition results by introducing a short lag (100 ms). A
gesture is considered as reliably recognized for the first time if it has been recog-
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nized at least four times in a row by the recognition loop. It then remains the active
gesture until any other gesture has been reliably recognized.

The loop treatment starts by looking at whether the gesture is anchored or free.
A finger is anchored if its trace is bounded to a 50-pixel (85mm) square over the
last 500ms. Otherwise, it is free. A gesture is anchored as soon as one finger in
contact is anchored. The algorithm then computes the values of other dimensions
by using two local geometrical features: the most recent individual finger traces
and the polygon formed by the finger contact points (i.e., the contact envelope).
In the following, Pd refers to the polygon formed by the points ptd of each finger
trace. For a given finger, ptd is the point located d pixels away from its current
point pt0 along its trace (i.e., distance path = d).

Anchored gestures During a circular internal gesture, each free finger moves
along a circle centered on the anchor location. Our algorithm considers all points
of one free finger trace over the last 200 pixels (339mm), and looks at how much
their distance to the anchor varies. It computes distances to the anchor for all cap-
tured points since pt200. It considers a gesture as circular internal if the standard
deviation over these distances is lower than 20 pixels. Considering only one finger
trace is sufficient, as in the case of other possible anchored gestures (internal linear
and external circular) all free fingers see their distance to the anchor vary.

During a linear internal gesture, all free fingers either get close to, or away
from, the anchor along individual linear movements. Our algorithm considers
polygons P50 and P0, and the different individual finger traces over the last 50
pixels (85mm). For both polygons, it computes the vertex-centroid distance. It
also computes the straightness of each individual 50-pixel trace. A trace between
pt50 and pt0 is considered as straight if the ratio between the length of the pt50pt0
segment and the distance path separating pt50 from pt0 is above 0.99. A gesture is
recognized as linear internal (i) if the vertex-centroid distance has changed by at
least 15 pixels and (ii) if all free finger traces are straight. As we do not consider
linear external gestures, the gesture is recognized as circular external otherwise.

Free gestures During a circular internal gesture, each free finger moves along a
circle centered on the centroid of the polygon’s contact envelope, while the relative
position of free fingers remains constant. Our algorithm considers both polygons
P200 and P0 and computes their angle of reference. It recognizes a circular internal
gesture if this angle has changed by more than π

6 . Checking this rotation criterion
is enough to discriminate this type of gesture from other gestures: neither linear
internal gestures nor linear/circular external gestures involve such a rotation of the
contact envelope.

During a linear internal gesture, all free fingers get either close to, or away
from, the centroid of the current contact envelope P0. Our algorithm considers
polygons P50 and P0 and recognizes a linear internal gesture if the difference
between the vertex-centroid distance is higher than 15 pixels (25mm) between P50
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and P0. It eventually discriminates between circular external and linear external
gestures by looking at whether all finger traces are arcs over their last 100 pixels
(170mm) or not. A trace between pt100 and pt0 is considered as an arc if (i) it is
not straight (according to the straightness criterion mentioned above for anchored
linear internal) and (ii) it is not a corner (the ratio between the Mahalanobis distance
from pt100 to pt0 and the distance path separating pt100 from pt0 is either below
0.9 or above 1.1).

Evaluation In our experiment, participants were asked to perform either one ges-
ture or two gestures in sequence without lifting their fingers off the tablet between
the two gestures. Discrete gestures, which are limited by either the size of the tablet
or anatomical constraints, had to be consistently recognized for 1.7 cm. Continu-
ous gestures, which do not have such limitations, had to be consistently recognized
for 1000 ms to validate that users are able to maintain them for a substantial amount
of time. The overall recognition score for the 32 tested gestures was ∼ 90% when
gestures are performed individually. When participants transition between two ges-
tures, the results were more contrasted. Out of 39 transitions, 11 are recognized
with an accuracy greater than 90%, but accuracy falls below 75% for 12 others.
We argue that these scores represent a worst-case scenario, as the recognizer chose
one gesture among the 32. In the context of a real application, only a subset of can-
didate gestures would likely be used. Also, we chose the transitions that we tested
without considering anatomical constraints related to starting a gesture directly af-
ter the end of another. Previous studies [HNK+13, HWO+13] have shown that
multi-touch gestures can be uncomfortable when started in some specific postures.
Future work should rely on this literature to conduct further studies and identify
the most user-friendly transitions.

3.4 Conclusion

As opposed to point-based interaction, gesture-based interaction allows users
to express their intentions using movements that are less display-dependent, mak-
ing this interaction style suited to a large variety of setups. However, this flexibility
comes at some cost, as users cannot rely on recognition to invoke commands, and
rather have to recall which gesture to perform in order to invoke a specific com-
mand. Even if gestures offer a rich space for building mnemonics, the cognitive
effort for memorizing gestures and retrieving them quickly becomes very high. A
multi-modal approach [NC93] can help in making gesture-based interaction scale
with an increasing number of commands and controls. Combining simple mes-
sages from different input channels can offload the gesture channel, enabling users
to rely on gestures that remain simple enough to memorize and perform.
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While direct manipulation heavily relies on display resources, gestures, on the
opposite, heavily depend on users’ ability to learn how to use their hands in or-
der to send messages that the system can understand. My research for the last
ten years has focused on bringing empirical findings and designing solutions to
improve these two types of interaction. However, these channels have intrinsic
limitations. On the one hand, direct manipulation does not scale to today’s in-
teractive systems, which can involve very small or very large devices, and even
combinations of several devices in the same set up. On the other hand, gestures
inevitably hit humans’ cognitive and motor limits when the number of application
commands and controls becomes too large. I argue that combining different input
types is a promising approach to efficiently support complex interactive environ-
ments. In particular, I strongly believe that combining gestures and tangibles offers
a very rich input channel that has the potential to improve user experience with ap-
plications that feature a large number of controls, or that involve several devices
with potentially multiple users. Tangibles afford specific grasps and manipula-
tions, and can thus act as guides for “telling” users what and how gestures can be
performed. Also, holding a tangible object decreases fingers’ degrees of freedom
and will likely lead to movement trajectories that are easier to discriminate with a
recognition engine. Finally, objects can make gestures polymorph [BLM00], as the
same gesture performed with different objects can have different meanings. Poly-
morphism could lower users’ cognitive load by offering an interaction paradigm
that borrows from both recall and recognition paradigms: the number of different
gestures that users need to recall can be small and can be reused with different
objects that support recognition thanks to their physicality.

In the coming years, I want to study in depth this idea of combining gestures
and tangibles, that I started to investigate within the context of Rafael Morales
González’s PhD. The first results are very promising and raise many research ques-
tions that go far beyond the context of a single PhD. I want to push this concept
further along two main axes: (1) understand where its design limitations are, how
it can be brought to the general public, and consider its use for manipulating two
specific types of complex datasets (graphs of heterogeneous data and geograph-
ical data); and (2) study how they could scale to, and what they can bring in, a
multi-display and/or multi-user environment.

4.1 Tangibles for any application and for all users

My hypothesis is that the geometry of a tangible object impacts how users grasp
it and what movements they can do while holding it, reducing and structuring the
initially-infinite space of gestures. We did some first investigations with tokens
featuring carved notches to indicate where fingers should be placed when held on
a tactile surface [16]. Our results show that we can design at least six tokens that
actually lead to different touch patterns (i.e., the touch points’ relative positions).
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We are able to discriminate these patterns with more than 98% of accuracy using
a recognition engine that we designed, and which does not require any training. In
our experiment, participants were able to comfortably execute three types of simple
gestures (rotating the token, or sliding it along a linear or a circular trajectory).

The originality of this approach is that, as opposed to other tangible interfaces,
it neither requires any special equipment such as a diffuse illumination tabletop
(e.g., [JGAK07]) nor does it require augmenting the tokens with conductive circuit
(e.g., [KWRE11]) or specific sensors (e.g.,[HAW13]). It simply relies on carving
notches in the tokens to help users position their fingers when holding the token
on the surface. Because it is so simple and low-cost, I believe that it has a strong
potential if we can (1) show that we can design a large number of different tokens
to cover many usages, and (2) provide developers and end-users with tools that
allow them to easily build their own token sets and customize their applications.

4.1.1 Designing tangibles

Our first proof-of-concept shows that we can build at least one set of six tan-
gibles that have simple geometric shapes. Reactions to demonstrations of this first
prototype are often about the scalability of the approach in terms of both the num-
ber of tokens (e.g., “how many different tokens can I consider for my application?”)
and the degree of customization of each token (e.g., “can I put decorations like fur
or jewels on my token?” or “can I create a token that has the shape of a phone
or of my favorite cartoon character?”). Such questions call for empirical research
with the aim of increasing the power of expression of such tangibles by identifying
and characterizing the space within which we can design them. Both anatomical
and cognitive constraints must be considered. Regarding anatomy, tangibles must
be comfortable to grasp while leading to distinguishable grasps. I plan to conduct
studies to identify the criteria in shape, size and volume that the tangibles must
meet. Regarding cognition, variations in the shape, size and material of tokens all
play an important role in providing the right manipulation affordances and convey-
ing the proper semantics. As our current approach relies on carving notches that
alter the shape of tangibles, it is important to understand how shape and semantics
are tied in order to define heuristics that indicate how a shape can be carved-in
without altering its meaning. For example, heuristics could tell the amount and the
type of detail that can be removed from a token while preserving both its meaning
in isolation and its identity within the considered token set.

4.1.2 Implementing tangibles

Implementing innovative interactive systems is a difficult task with conven-
tional UI toolkits. Tangible interfaces are especially challenging in that regard,
as their physicality makes them resistant to customization [HAW13]. The ap-
proach based on passive tokens is very promising to change this state of affairs
because of its low cost in terms of construction and implementation. However,
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there is still some important effort to put on development to make developers and
end-users able to create or customize their tangible interfaces. I plan to work on
providing development solutions that make interface designers and end-users able
to develop applications with custom-made tokens that suit their specific require-
ments. In terms of design, what they need are tools that let either designers or
end-users easily specify the tokens’ shape, that guide them in the process of plac-
ing notches ensuring both comfort and recognition accuracy, and that provide them
with recommendations for building recognizable tokens. Ideally, these tools would
be developed as plugins for mainstream vector drawing editors such as Adobe Il-
lustrator, in order to be as flexible as possible. These design tools should be able to
output token descriptions that can be sent to any construction device (e.g., a laser
cutter or a 3D printer) and to the underlying token recognition engine. In terms of
programming, this latter engine needs to rely on robust algorithms for accurately
tracking the tokens’ state (where they are on the surface, what their exact position
and orientation are, etc.) with an API that remains simple for developers. This
API should be built on top of programming languages that most platforms with
tactile screens support (JavaScript and Android appear as good candidates). While
appearing simple at first, relying on fully passive tangibles is actually challenging
when developing robust tracking strategies, as it implies that the system must infer
a lot from very few input data, which are essentially limited to the fingers’ contact
points. Finally, it would be interesting to allow end-users to customize their tan-
gible applications (especially if we think about personal devices like smartphones)
by designing mechanisms that expose mappings between controls and tokens, in
order to let users change them on-demand.

4.1.3 Application domains

In addition to the empirical and engineering research mentioned above, there
is a need to demonstrate how this type of input can actually be used to control
complex applications. I consider two application domains where users have to
perform many manipulations on a large amount of data: geographical data and
networks of heterogeneous data.

Geovisualization systems allow users to present geographical data that are usu-
ally arranged into piles of layers that users navigate. We study this type of nav-
igation in the context of Marı́a Jesús Lobo’s PhD. We first conducted an empiri-
cal evaluation of existing techniques [14], and are currently investigating a novel
model to support interactive compositing between layers. We want this model to
be very flexible, so as to let users define the area where the compositing should
take place and whether it should be done instantaneously or smoothly animated.
The number of manipulations can be very high as users can define many different
regions with varying compositing parameters.

One of the research axes of the ILDA team is to design interactive visualiza-
tions to navigate and manipulate large webs of data. We consider graphs where the
different entities can have heterogeneous types and where links express different
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semantic relationships between these entities, the more general instance of such
graphs being the Web of Data [HB11]. This type of data is very rich and calls for
highly expressive input if we want users to be able to directly interact with it in a
flexible way. I consider it as the most challenging application domain for demon-
strating how scalable my approach can be. We started to investigate this area in the
context of Hugo Romat’s PhD.

4.2 Gestures and tangibles for multi-display and
multi-user environments

As already mentioned in this manuscript, tactile surfaces can have varying
form factors, ranging from handheld devices (such as smartphones and tablets)
to wall-sized displays and tabletops. Recent interactive platforms combine sev-
eral such tactile surfaces in a room (e.g., the WILDER platform at Inria Saclay)
and offer an environment that is especially well suited to collaborative interac-
tion. Our recent experiences developing advanced applications in the domains of
astronomy [22] and GIS1 revealed that designing coherent input vocabularies for
such multi-display and multi-user environments is a significant research challenge.
In this section, I discuss how gestures and tangibles could be an efficient means
to interact with such advanced set ups, and I present the research questions that I
want to work on.

4.2.1 Multi-display environments

Multi-display gestures

In a multi-display environment, information is distributed across the different
surfaces. Users need to be able to move from one surface to the other and to re-
motely interact with a surface when this latter is not within arm’s reach. Gestures,
both touch and mid-air, are portable and represent an ideal candidate for input,
as opposed to traditional mouse and keyboard that require users to remain seated
at a desk. However, the varying nature of the diverse surfaces (small vs. large,
horizontal vs. vertical, tactile vs. remotely controlled) prevents us from using the
same gestures on all surfaces. For example, some surfaces do not support tactile
input, and others are too small to accommodate multi-touch gestures. The chal-
lenge is thus to design gesture vocabularies that do not require users to learn a
completely different set of gestures for each surface. I believe that this can be done
by identifying high-level dimensions for describing gestures as we have started to
do in [17]. This level of abstraction would go higher than the touch-point level by
rather considering clusters of points that get defined depending on their coherence
or difference in terms of dynamics (presence or absence of invariants, shared or
opposite movement direction, internal or external frame of reference, etc.). With

1ANR project MapMuxing: http://mapmuxing.ign.fr

http://mapmuxing.ign.fr
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this approach, we would define families of gestures that can encompass a version
for each type of surface. As a concrete and simple example, defining a pinch ges-
ture as two clusters of points that evolve in opposite directions encompasses both
the pinch performed with two fingers on a portable device and the pinch performed
with two hands on an interactive wall.

Multi-display tokens

A physical object can be a powerful tool for interacting in multi-display en-
vironments. It can be used, e.g., as a versatile controller that can be moved from
one surface to another (factorizing the number of controls in the environment),
or as a data container to carry information between the different displays (mak-
ing the dependency between data and displays lower). Designing physical tokens
that can be both manipulated and tracked in a multi-surface environment is diffi-
cult. For example, handling several tokens on a vertical surface can be uncomfort-
able if they cannot be conveniently stored when not in use. Investigating how we
can combine different materials to fabricate tokens that can stick on wall displays
while remaining easy to move is one of the design challenges I would like to work
on. Also, different surfaces use different tracking technologies (capacitive screens,
light-based touch frames, external cameras), making the design of a token that can
be transparently tracked by all of them an interesting technical challenge.

4.2.2 Multi-user environments

Combining gestures and tangibles can also provide efficient support for collab-
orative interaction. Gestures and objects encode a lot of information in their shape,
dynamics and direction, that can be directly interpreted in relation with the user,
independently from the display output (as opposed to, e.g., a mouse movement or
click that can only be interpreted according to the graphical controller (widget)
above which it occurs). On the one hand, physical objects can offer a significantly
better user experience for collaborative problem solving. For example, in a study
reported in [SJZD11], groups of users were better at designing warehouses with
tangibles than with touch input. I also believe that their physicality can greatly
improve coordination among different actors for, e.g., handling priorities or as-
signing specific roles, by simply exchanging tokens among users. On the other
hand, direct touch provides a better awareness in group work than indirect input
methods [NPSG07] and promotes more equal participation [RLHM09]. Specific
collaborative use cases that would benefit from both the tangible and the tactile
worlds remain to be identified and investigated.

From a technical perspective, allowing multiple users to work together on the
same multi-touch surface brings some difficulty to properly interpret input streams.
For example, how can the system know that several points belong to the same user
rather than to several users? Here, what could be interesting to investigate is an
engine that, based on machine learning approaches, could tell who is gesturing. It is
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worth studying the feasibility of such an approach by first empirically observing if
users have different ways of gesturing, that could be discriminated using describing
features such as spacing between fingers, spacing between hands/fingers at gesture
start time, speed of gesturing, contact point mean altitude on a vertical display or
mean distance to border on a tableto.
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ABSTRACT
Focus+context interfaces provide in-place magnification of
a region of the display, smoothly integrating the focus of
attention into its surroundings. Two representations of the
data exist simultaneously at two different scales, providing
an alternative to classical pan & zoom for navigating multi-
scale interfaces. For many practical applications however,
the magnification range of focus+context techniques is too
limited. This paper addresses this limitation by exploring
the quantization problem: the mismatch between visual and
motor precision in the magnified region. We introduce three
new interaction techniques that solve this problem by in-
tegrating fast navigation and high-precision interaction in
the magnified region. Speed couples precision to navigation
speed. Key and Ring use a discrete switch between precision
levels, the former using a keyboard modifier, the latter by de-
coupling the cursor from the lens’ center. We report on three
experiments showing that our techniques make interacting
with lenses easier while increasing the range of practical
magnification factors, and that performance can be further
improved by integrating speed-dependent visual behaviors.

Author Keywords
Focus+Context, Lenses, Quantization, Navigation, Selection
ACM Classification Keywords
H. Information Systems H.5 Information Interfaces and Pre-
sentation H.5.2 User Interfaces (H.1.2, I.3.6)
General Terms
Design, Human Factors

INTRODUCTION
Although display technologies continue to increase in size
and resolution, datasets are increasing even faster. Scien-
tific data, e.g., telescope images and microscope views of
the brain, and generated data, e.g., network visualizations,
geographical information systems and digital libraries, are
too big to be displayed in their entirety, even on very large
wall-sized displays. In Google Maps, the ratio between ex-
treme scales is about 250,000. Vast gigapixel images, such
as the 400,000-pixel wide image of the inner-part of our
galaxy from the Spitzer telescope also require huge scale
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
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permission and/or a fee.
CHI 2010, April 10 – 15, 2010, Atlanta, Georgia, USA
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factors between a full overview and the most detailed zoom.
Users do not necessarily need to navigate through the entire
scale range at one given time, but still, they need interaction
techniques that will allow them to fluidly navigate between
focused and contextual views of large datasets. Such tech-
niques are typically based on the following interface schemes
[8]: overview + detail, zooming, focus + context; none of
which offers an ideal solution. The task determines which
technique is most appropriate, taking scale range, the na-
ture of the representation, input device, available screen real-
estate, and of course, the user’s preferences, into account.

This paper introduces techniques designed to improve lens-
based focus+context interfaces. Our goals are to extend the
range of practical magnification factors, which is currently
very limited, and to make low-level interactions easier. For
the sake of clarity, we illustrate all of our techniques with
one common type of lens: constrained magnification lenses
[4, 18, 19]. However, our improvements are generic and
apply to all types of lenses. They can also be adapted to other
focus+context interfaces, including hyperbolic trees [16] and
stretchable rubber sheets [20].

QUANTIZATION IN FOCUS+CONTEXT INTERFACES
Constrained lenses provide in-place magnification of a boun-
ded region of the representation (Figure 1-a). The focus is
integrated in the context, leaving a significant part of the
latter unchanged. Typical examples of such lenses include
magnifying glasses and many distortion-oriented techniques

1px

12px

12px
(c)

(b)

(a)
Map of the Boston area (source: OpenStreetMap.org)

context
focus

Figure 1. (a) In-place magnification by a factor of 12; (b) center of
magnified region with cursor in the middle (detail); (c) same region
after moving the lens by one pixel both South and East.
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such as the so-called graphical fisheyes. Early implementa-
tions of magnification techniques only magnified the pixels
of the context by duplicating them without adding more de-
tail, thus severely limiting the range of useful magnification
factors (up to 4x). Newer implementations [4, 18] do pro-
vide more detail as magnification increases. Theoretically,
this means that any magnification factor can be applied, if
relevant data is available. In practice, this is not the case
as another problem arises that gets worse as magnification
increases: quantization.

Lenses are most often coupled with the cursor and centered
on it. The cursor, and thus the lens, are operated at context
scale. This allows for fast repositioning of the lens in the in-
formation space, since moving the input device by one unit
makes the lens move by one pixel at context scale. However,
this also means that when moving the input device by one
unit (dot), the representation in the magnified region is off-
set by MM pixels, where MM is the focus’ magnification
factor. This means that only one pixel every MM pixels
can fall below the cursor in the magnified region. In other
words some pixels are unreachable, as visual space has been
enlarged in the focus region but motor space has not.

This problem is illustrated in Figure 1: between (b) and (c),
the lens has moved by 1 unit of the input device, correspond-
ing to 1 pixel in the context, but the magnified region is offset
by 12 pixels. Objects can thus be difficult or even impossi-
ble to select; even if their visual size is above what is usually
considered a small target (less than 5 pixels). The square
representing Arlington station in Figure 1 is 9-pixel wide,
yet its motor size is only 1 pixel.

Figure 2 illustrates the problem with a space-scale diagram
[11]: the center of the lens can only be located on a pixel
in the focus window that is aligned – on the same ray in the
space-scale diagram – with a pixel in the context window.
Since the focus window is MM2 larger than the context
window, and since the cursor is located at the lens’ center,
only one out of MM2 pixels can be selected. Figure 2 shows
that as MM increases, more pixels become unreachable.

Beyond the general problem of pixel-precise selection in the
magnified region, quantization also hinders focus targeting,
i.e., the action that consists in positioning the lens on the
object of interest [12, 18]. This action gets harder as the
magnification factor increases, even becoming impossible at
extreme magnification factors.

This quantization problem has limited the range of magni-
fication factors that can be used in practice; the upper limit
reported in the literature rarely exceeds 8x, a value relatively
low compared to the ranges of scale encountered in the in-
formation spaces mentioned earlier.

In this paper, we introduce techniques that make it possible
to perform both fast navigation for focus targeting and high-
precision selection in the focus region in a seamless manner,
enabling higher magnification factors than those allowed by
conventional techniques. After an overview of related work,
we introduce our techniques. Speed continuously adapts mo-
tor precision to navigation speed. Key and Ring use a discrete
switch between two levels of precision (focus and context),
the former using an additional input channel, the latter by
decoupling the cursor from the lens’ center. We then report
the results of two controlled experiments that evaluate fo-
cus targeting and object selection performance. Finally, we
iterate our designs by integrating speed-dependent visual be-
haviors from the Sigma Lens framework [18]. The resulting
hybrid lenses further improve performance, as shown in a
third controlled experiment.

RELATED WORK
Most techniques for navigating multi-scale information spa-
ces are based on either overview + detail, zooming or focus
+ context (see Cockburn et al. [8] for a very thorough sur-
vey). Zooming interfaces, e.g., [21, 14] display a single level
of scale and therefore require a temporal separation to tran-
sition between “focus” and “context” views. They usually
do not suffer from quantization effects, but both views can-
not be observed simultaneously. Overview+detail interfaces
[13, 22] show both views simultaneously using spatial sepa-
ration, still requiring some mental effort to integrate the two
views. They usually allow pixel-precise selections in the de-
tail region, but focus targeting is also subject to quantization
problems in conventional bird’s eye views.

Focus+context techniques “aim to decrease the short term
memory load associated with assimilating distinct views of
a system” [8] by integrating the focus region inside the con-
text. This integration, however, limits the range of magni-
fication factors of practical use. Basic magnifying glasses
occlude the surroundings of the magnified region [12]. To
address this issue, distortion oriented techniques provide a
smooth transition between the focus and context views. Dis-
tortion, however, causes problems for focus targeting and
understanding of the visual scene. Carpendale et al. [4]
describe elaborate transitions that enhance the rendering of
the distorted area and make higher magnifications compre-
hensible from a visual perspective. Gutwin’s Speed-coupled
flattening lens [12] cancels distortion when the lens is repo-
sitioned by the user, thus removing a major hindrance to fo-
cus targeting. The Sigma Lens framework [18] generalizes
the idea of speed-coupling to a larger set of lens parameters.
For example, the Speed-coupled blending lens makes focus
targeting easier from a motor perspective by increasing the
focus region’s size for the same overall lens size, using a dy-
namically varying translucence level to smoothly transition
between focus and context.
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Although their primary goal is different, focus+context in-
terfaces share issues with techniques designed to facilitate
pointing on the desktop. The decoupling of visual and motor
spaces plays a central role in techniques designed to facili-
tate the selection of small targets, e.g., [6, 7, 17] – see [2] for
a detailed survey. Not designed for exploratory multi-scale
navigation, but closer to our problem are pointing lenses
[19], which punctually enlarge both visual and motor space
to facilitate small target selection through stylus input. How-
ever, visual space is enlarged by duplicating the pixels of
the original representation. The popup vernier [1] enables
users to make precise, sub-pixel adjustments to the position
of objects by transitioning from coarse to fine-grain drag-
ging mode through an explicit mode switch. The technique
provides visual feedback based on the metaphor of vernier
calipers to make precise adjustments between both scales.

LENSES WITH HIGH-PRECISION MOTOR CONTROL
The quantization effect is due to the mismatch between vi-
sual and motor space precision in the focus region. This
mismatch, in turn, is caused by the following two properties
of conventional lenses:
(P1) the cursor is located at the center of the lens, and

(P2) the cursor location is controlled in context space.
These properties cause problems with the two low-level ac-
tions performed by users: focus targeting, and object selec-
tion within the magnified region. In this section we introduce
three techniques that address these problems by breaking the
above properties.

For all our techniques, lens displacements of less than MM
focus pixels, corresponding to displacements of less than 1
context pixel, are achieved by slightly moving the represen-
tation in the focus region while keeping the cursor stationary
(see discussion of Experiment 2’s results for more detail).

Precision through Mode Switching: the Key technique
The first approach to address the problem is to provide a
way of controlling the location of the lens in focus space
(as opposed to context space). We immediately discard the
solution that consists in solely interacting in focus space be-
cause of obvious performance issues to navigate moderate to
large distances (all distances are multiplied by MM in fo-
cus space). The simplest technique uses two control modes:
a context speed mode and a focus speed mode. This requires
an additional input channel to perform the mode switch, for
instance using a modifier key such as SHIFT. Users can then
navigate large distances at context speed, where one input
device unit is mapped to one context pixel, i.e., MM fo-
cus pixels, and perform precise adjustments at focus speed,
where one input device unit corresponds to one focus pixel.

Figure 3 illustrates this technique, called Key: the first case
(No modifier) is represented by the topmost grey line; the sec-
ond case (Shift pressed) by the bottommost grey line. When
SHIFT is pressed, (P2) is broken. A similar “precision mode”
is already available in, e.g., Microsoft Office to freely posi-
tion objects away from the intersections formed by the un-
derlying virtual grid using a modifier key.
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Figure 3. Displacement in focus space (in pixels) for one input device
unit move in function of the input device speed (MM = 4).

The Key technique represents a simple solution. However,
as the selection tools based on Magic Lenses [3], an addi-
tional channel is required to make the explicit mode switch.
Bi-manual input techniques are still uncommon. Modifier
keys tend to be used for other purposes by applications, and
their use often results in a “slightly less than seamless inter-
action style” [2]. The next two techniques we propose do
not require any additional input channel.

Speed-dependent Motor Precision: the Speed technique
Following recent works that successfully used speed-depen-
dent properties to facilitate pointing [5] and multi-scale nav-
igation [12, 14, 18], our first idea was to map the precision of
the lens control to the input device’s speed with a continuous
function, relying on the assumption that a high speed is used
to navigate large distances while a low speed is more char-
acteristic of a precise adjustment (as observed for classical
pointing [2]).

The black line (Speed) in Figure 3 illustrates the behavior of
our speed-dependent precision lens. Cursor instant speed s
is computed as the mean speed over the last four move events.
It is mapped to the lens’ speed so as to break (P2) as follows:
(i) if s < MIN SPEED then the lens moves at focus speed ;
(ii) if MIN SPEED ≤ s ≤ MAX SPEED then the lens moves

by x focus-pixels for 1 input device unit, where x is
1 + (1− MAX SPEED−s

MAX SPEED−MIN SPEED )× (MM − 1) ;
(iii) if s > MAX SPEED then the lens moves at context

speed like a conventional lens.

Cursor-in-flat-top Motor Precision: the Ring technique
The last technique is inspired by Tracking menus [10]. Con-
sider a large rigid ring (e.g., a bracelet) on a flat surface (e.g.,
a desk). The ring can be moved by putting a finger inside it
and then moving that finger while keeping it in contact with
the surface to pull the ring. This is the basic metaphor used
to interact with the Ring lens: the ring is the lens’ focus re-
gion (called the flat-top) and the cursor is the finger.

The Ring lens breaks property (P1): it decouples the cursor
from the lens center; the cursor can freely move within the
flat-top at focus scale, thus enabling pixel-precise pointing
in the magnified region (bottommost grey line (Inside ring) in
Figure 3). When the cursor comes into contact with the flat-
top’s border, it pulls the lens at context speed, enabling fast
repositioning of the lens in the information space (topmost
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grey line (Pushing ring) in Figure 3). Figure 5 illustrates the
lens behavior when the cursor comes into contact with the
ring: the segment joining the lens center (g) to the contact
point (p) is progressively aligned with the cursor’s direction.

Decoupling the cursor’s location from the lens’ center has a
drawback when changing direction: because the user has to
move the cursor to the other end of the flat-top before she can
pull the lens in the opposite direction. We tried to address
this issue by pushing the physical metaphor: we introduced
friction in the model to make the ring slide when the cursor
stops, with the effect of repositioning the lens’ center so as
to match the cursor’s position. We were not able however to
get a satisfying result, and abandoned the idea.

EXPERIMENTS
We conducted two experiments to compare the performance
and limits of the three lenses described above. Participants
were asked to perform a simple task: selecting an object in
the magnified area. The targets were laid out in a circular
manner and the order of appearance forced participants to
perform the task in every direction, following the recommen-
dations of the ISO 9241-9 standard [9]. Only one target was
visible at a time so that participants could not take advantage
of the layout to facilitate the task: as soon as the participant
clicked on one target, the next target appeared. The recorded
movement time is the interval between the appearance of the
target and a click on it. The target is presented as a yellow
circle on a gray background, and is always surrounded by a
10-pixel red square clearly visible in the context view. The
background is also decorated by a grid to help participants
understand the transition between context and focus view,
and to minimize desert fog effects [15] that can occur with
scenes that are too uniform.

Analysis of the Task
A pointing task with a lens is typically divided in two main
phases: (i) focus targeting, which consists in putting a given
target inside the flat-top of the lens (Figure 4-(a) and (b)) and
(ii) cursor pointing to precisely position the cursor over the
target (Figure 4-(b) and (c)).

The focus targeting task has an index of difficulty of about:

IDFT = log2(1 +
Dc

(WFTc −Wc)
)

where WFTc
and Wc are the respective sizes of the flat-top

and the target in context pixels, and Dc is the distance to the
target in context pixels as well1. This formula clearly shows
that difficulty increases as distance increases, as the size of
the flat-top decreases, and as the size of the target decreases.
The size of the flat-top in context pixels is directly related to
the magnification factor of the lens, MM . Indeed, the size
of the flat-top is fixed in terms of focus pixels, so the higher
MM , the smaller the size of the magnified area in context
pixels (see [18] for an analysis of the difficulty of a focus
targeting task).
1IDFT is the exact index of difficulty when the target must be fully
contained in the flat-top. Here the task is slightly easier because the
target just has to intersect the flat-top.

Figure 5. Bottom: behavior of a Ring lens when the cursor comes into
contact with the flat-top’s border at the bottom of the ring and then
moves to the right. Top: Computation of the ring’s location.

The final cursor pointing task mainly depends on the area
of the target in focus space that intersects the flat-top after
the focus targeting task. The larger this area, the easier the
cursor pointing task. We can at least consider the best case,
i.e., when the target is fully contained in the flat-top. In this
case, the difficulty of the cursor pointing task can be assessed
by the ratio Df

Wf
where Df is the distance between the cur-

sor and the target, and Wf is the motor size of the target
when magnified in the flat-top. The distance Df is small,
i.e., smaller than the flat-top’s diameter, so we assume that
the difficulty of the cursor pointing task is mainly caused by
the value of Wf . Note that for regular lenses, the value of
Wf is actually the size of the target at context scale because
the target is only visually magnified. With our lenses how-
ever, since pixel-precise selections are possible, Wf is the
magnified size of the target (at focus scale). We provide ad-
ditional details about the division between the two subtasks
in the following sections.

The first experiment tests pointing tasks with an average
level of difficulty, while the second one tests pointing tasks
with a very high level of difficulty, involving targets smaller-
than-a-pixel wide at context scale. Our experimental design
involves the three factors that determine the pointing task
difficulty introduced above: the distance to the target (DC),
its width (WC), and the lens’ magnification factor MM.

Experiments: Apparatus
We conducted the experiments on a desktop computer run-
ning Java 1.5 using the open-source ZVTM toolkit. The dis-
play was a 21” LCD monitor with a resolution of 1600 x
1200 (≈ 100 dpi). The mouse was a regular optical desktop
mouse at 400 dpi with the default acceleration function.

Experiment 1: Design
The goal of the first experiment is to test whether any of the
three techniques we introduced in the previous section de-
grade performance when compared with regular lenses (Reg).
We expect them to improve overall performance because
the overall task difficulty is theoretically lower. On the one
hand, the focus targeting task should not be harder: since we
test small targets with lenses having the same flat-top size,
the distance in context space is the main factor contributing
to difficulty. All our lenses are able to navigate large dis-
tances like a regular lens, i.e., move at context speed (Key:
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(a) (b) (c)
Figure 4. Screenshots of our experimental task: focus targeting from (a) to (b) and, cursor pointing from (b) to (c). Screenshots have been cropped to
show details, and cursors have been made thicker to improve readability.

when SHIFT is released; Ring: when the cursor pulls the lens;
Speed: when the lens moves fast enough). On the other hand,
cursor pointing should be easier since the difficulty of this
second phase mainly depends on the target’s motor width in
focus space. Since all of our lenses allow to navigate at fo-
cus speed, they can take benefit of the magnified target size
whereas this is not the case with a regular lens: even though
it is magnified, the target size in motor space is the same as
if it were not magnified.

Sixteen unpaid volunteers (14 male, 2 female), age 20 to 35
year-old (average 26.8, median 26), all with normal or cor-
rected to normal vision, served in Experiment 1. Experiment
1 was a 4 × 2 × 2 × 3 within-subject design with the fol-
lowing factors:
• Technique: TECH ∈ {Speed ,Key ,Ring ,Reg}
• Magnification: MM ∈ {4, 8}
• Distance between targets (context pixels): DC ∈ {400, 800}
• Target width (context pixels): WC ∈ {1, 3, 5}
We grouped trials into four blocks, one per technique (TECH),
so as not to disturb participants with too many changes be-
tween lenses. The presentation order was counterbalanced
across participants using a Latin square. Within a TECH block,
each participant saw two sub-blocks, one per value of mag-
nification factor (MM). The presentation order of the two val-
ues of MM was also counterbalanced across techniques and
participants. For each TECH × MM condition, participants ex-
perienced a series of 12 trials per DC × WC condition, i.e., 12
targets laid out in a circular pattern as described earlier. We
used a random order to present these 2 × 3 = 6 series within
a sub-block. We removed the first trial of each series from
our analyses as the cursor location is not controlled when a
series begins. To summarize, we collected 4 TECH × 2 MM
× 2 DC × 3 WC × (12-1) replications × 16 participants =
8448 trials for analysis. Before each TECH condition, the ex-
perimenter took 2-3 minutes to explain the technique to be
used next. Participants were told each time the value of MM
was about to change, and had to complete 4 series of practice
trials for each new TECH × MM condition.

Experiment 1: Results and Discussion
Our analysis is based on the full factorial model:

TECH×MM×WC×DC×Random(PARTICIPANT)
with the following measures:
• FTT, the focus targeting time;

• CPT, the cursor pointing time;
• MT = FTT + CPT, the time interval between the appear-

ance of the target and a successful mouse press on it (this
measure includes penalties caused by errors); and

• ER, the error rate (an error is a press outside the target).

Analysis of variance reveals an effect of TECH on MT (F3,45 =

15.2, p < 0.0001). A Tukey post-hoc test shows that Reg is
the significantly slowest technique and that Key is signif-
icantly faster than Ring. Note that there is no significant
difference between Ring and Speed, nor between Speed and
Key. Participants also made more errors with Reg than with
our techniques. We expected Reg to perform worse since, as
we already mentioned, the target’s motor size is in context
pixels for Reg whereas it is in focus pixels for Key, Speed
and Ring. The target is thus much harder to acquire in the
CPT phase. Analysis of variance shows a significant effect
of TECH (F3,45 = 18.5, p < 0.0001) on ER. Figures 6-(a) and
(b) respectively show the time MT and error rate ER for each
TECH×WC condition.

We find a significant effect of DC (F1,15 = 121.9, p < 0.0001)
on movement time MT. It is consistent with our expectations:
DC has a significant effect on FTT (F1,15 = 165, p < 0.0001)
while it does not on CPT (p=0.4). The higher the value of DC,
the harder the focus targeting phase. Our techniques do not
seem to be at a disadvantage in this phase compared to Reg
since the effect of DC×TECH on FTT is not significant (p=0.9).

MM also has a significant effect on MT (F1,15 = 249.6, p <

0.0001), the effect being distributed across both FTT (F1,15 =

515, p < 0.0001) and CPT (F1,15 = 79, p < 0.0001). Figure 6-
(c) shows the three measures per TECH×MM: a bar represents
MT per condition while the line shows the repartition be-
tween FTT (lower part of the bar) and CPT (upper part)2.
This clearly shows that a high MM leads to high FTT since
the flat-top size in context pixels directly depends on MM, as
explained in the previous section. A higher MM also means
a larger target width in focus pixels. This can explain the
effect of MM on CPT: CPT decreases as MM increases.

The target width in focus pixels is of course also related
to WC, which is consistent with our observations: WC has
an effect on both (i) FTT (F2,30 = 45, p < 0.0001) and (ii)
CPT (F2,30 = 1110, p < 0.0001), and also on MT (F2,30 =

2Error bars in the figures represent the 95% confidence limits of
the sample mean (mean± StdErr × 1.96).
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Figure 6. Movement time (a) and error rate (b) per TECH × WC. (c) Movement time per TECH × MM. For (a) and (c), the lower part of each bar
represents focus targeting time, the upper part cursor pointing time.

623.8, p < 0.0001, Figure 6-(a)). Indeed, as we expected, the
smaller WC, the higher the focus targeting time (i). Also,
the larger WC, the larger the target in focus pixels to im-
prove focus pointing time (ii). Regarding error rate, WC

(F2,30 = 17.5, p < 0.0001) and MM (F1,15 = 16.8, p = 0.0009)
have a significant effect on ER: participants made more er-
rors when the target size was small. This is a simple inter-
pretation that explains the difference in means that we ob-
serve; but we have to refine it to reflect the more complex
phenomenon that actually takes place.

Coming back to the effect of TECH, we also observe two sig-
nificant interaction effects that involve TECH on MT.

First interaction effect: TECH×MM (F3,45 = 4.7, p = 0.0063)
which can be observed on Figure 6-(c). A Tukey post-hoc
test shows that for MM = 4, Speed, Key and Ring are sig-
nificantly faster than Reg but this test also shows that for
MM = 8, only Key and Speed are significantly faster than
Reg (Ring no longer is). A closer look at the focus targeting
phase explains why Ring seems to suffer from high magnifi-
cation factors. We know that FTT increases as MM increases.
We can observe on Figures 6-(c) and (a) that Ring is actually
slower than the other techniques for this FTT phase. This is
probably due to the cost of repairing overshoot errors during
this phase: changes in direction are costly with Ring since
the user first has to move the cursor to the opposite side of
the flat-top before being able to pull the lens in the opposite
direction.

Second interaction effect: TECH×WC (F6,90 = 55.1, p < 0.0001)
which can be observed on Figure 6-(a). A Tukey post-hoc
test shows a significant difference in mean for WC=1 between
Reg and the other techniques, while this difference is not sig-
nificant for WC=3 and WC=5. To better assess the interpreta-
tion of such a result, we consider finer analyses on CPT. Fig-
ure 7 shows CPT for each TECH×MM×WC condition. Analy-
ses reveal significant effects of TECH, MM and WC and signif-
icant interactions TECH×MM and TECH×WC (all p < 0.0001)
on CPT. Tukey post-hoc tests show that Key, Speed and Ring
are globally faster than Reg for cursor pointing. This is not
surprising since the motor size of the target is smaller for
Reg than for the others, as we said earlier. However, this sig-
nificant difference holds only for WC=1 and WC=3, not for
WC=5. In the latter case, only Speed is significantly faster
than Reg. Moreover Ring is faster than Key for WC= 1, while
Speed is not. These results suggest that Ring is particularly
efficient for very small targets and that Speed is more appro-
priate for larger ones.
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Figure 7. Cursor pointing time per TECH × MM × WC condition.

The latter observations suggest that modeling the movement
time MT as the sum of FTT and CPT (MT=FTT+CPT) may
be too naive to explain the subtle differences between tech-
niques. For instance, this model does not explain the dif-
ferences between Ring and Speed that depend on WC. In
the same spirit, we observe that the difference between Reg
and other lenses for WC=5 is very small considering that
the target’s motor size is 5 for Reg and 20 (MM=4) or 40
(MM=8) for Key, Speed and Ring. The additive model based
also fails to explain the following observation: Speed fea-
tures significantly higher FTT values than Key and Reg for
MM=8 only. We tentatively explain this by the increased
difficulty of controlling a lens with speed-dependent preci-
sion when the slope of the mapping function is too steep
(linear function from MIN SPEED to MAX SPEED, i.e.,
focus speed to context speed on Figure 3). We tried sev-
eral variations that, e.g., depend on the difference between
these two speeds, without success. Using a gentler slope
is frustrating because of the stickiness caused by the large
movements required to reach the MAX SPEED threshold.
The more subtle differences we reported in the second part
of this section may be explained by the fact that a transi-
tion phase between the focus targeting phase (FTT) and the
cursor pointing phase (CPT) actually exists for our lenses:
pressing a key for Key, stop pulling the flat-top for Ring,
performing speed adjustments with Speed.

At the end of the experiment, participant were asked to rank
the lenses (with ex-aequo allowed) using two criteria: per-
ceived usability and performance. These two rankings were
almost the same for all participants. All but one ranked Reg
as their least preferred technique (one participant ranked it
third with Speed fourth). There was no significant differ-
ence among other lenses. For instance, 8 participants ranked
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Speed first, 3 ranked it second; 6 participants ranked Key
first, 5 ranked it second, and 5 participants ranked Ring first,
7 ranked it second. We also asked participants to comment
on the techniques. The main reason for the bad ranking of
Reg is the great difficulty to acquire small targets, related
to the cursor jumping effect due to quantization. Regard-
ing Speed, most participants found the technique “natural”;
some found the speed “difficult to control”. The partici-
pants who ranked Key high justified it by a “transparent con-
trol”; other participants complained about the need to use
two hands. Regarding Ring, the cursor pointing phase was
found easier because the lens is stationary, but participants
also raised the overshooting problem discussed earlier.

To summarize, in comparison with regular lenses, precision
lenses increase pointing accuracy. They also increase selec-
tion speed for small targets and are as fast for larger ones.

Experiment 2: Design
This second experiment evaluates our techniques on extreme
tasks: very small target sizes and high magnification factors.
We discard the Reg technique as it is not capable of achiev-
ing sub-pixel pointing tasks, i.e., involving targets that are
smaller-than-a-pixel wide in context space. Another differ-
ence with Experiment 1 is that we use WF as a factor instead
of WC. This allows us to isolate the effects of WF and MM.
Indeed, since WF = WC × MM, two values of MM correspond
to two different values of WF for the same WC value.

Twelve participants from Experiment 1 (10 male, 2 female),
age 20 to 35 year-old (average 27.25, median 26.5), also
served in Experiment 2. Experiment 2 was a 3 × 2 × 2
× 3 within-subject design with the following factors:

• TECH ∈ {Speed ,Key ,Ring}
• MM ∈ {8, 12}
• DC ∈ {400, 800}
• WF ∈ {3, 5, 7}
As in Experiment 1, trials were blocked by technique, with
presentation order counterbalanced across participants us-
ing a Latin square. The experimenter explained the tech-
nique to be used during 2-3 minutes before each TECH condi-
tion. For each TECH, participants saw the two values of MM,
grouped into two sub-blocks (sub-block presentation order
were counterbalanced across techniques and participants).
Each sub-block contained 6 series of 8 trials, 1 series per
DC × MM condition, presented in a random order. To sum-
marize, we collected 3 TECH × 2 MM × 2 DC × 3 WC × (8-1)
replications × 12 participants = 3024 trials for analysis. As
in Experiment 1, participants were alerted by a message each
time the MM value changed and had to complete 4 practice
series for each TECH × MM condition.

Experiment 2: Results and Discussion
Our analysis is based on the full factorial model:

TECH×MM×WF×DC×Random(PARTICIPANT)

We consider the same measures as in Experiment 1: task
completion time MT, focus targeting time FTT, cursor point-
ing time CPT and error rate ER.
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Figure 8. Movement time per TECH×MM. The lower part of each bar
represents focus targeting time, the upper part cursor pointing time.

Analysis of variance reveals simple effects of WF (F2,22 =

68), MM (F1,11 = 393) and DC (F1,11 = 65) on MT (all p <

0.0001). As expected, MT increases as WF decreases, as MM
increases and as DC increases. Participants also make sig-
nificantly more errors when WF decreases (3.67% for WF =
7, 5.36% for WF = 5 and 8.82% for WF = 3).

The differences in movement time MT among techniques is
significant (F2,22 = 21.6, p < 0.0001) while the difference in
error rate is not (6.15% for Speed, 6.05% for Key and 5.65%
for Ring).

There is an interaction effect TECH×MM on MT (F2,22 =

24.8, p < 0.0001): Tukey post-hoc tests show that Ring and
Key are significantly faster than Speed but only for MM=12
while these differences are not significant for MM=8. Figure
8 shows that this large difference at MM=12 is due to a sharp
increase of focus targeting time (FTT) for Speed. Comments
from participants confirm that the speed dependent control
of motor precision is too hard when the difference between
context scale and focus scale is too high, resulting in abrupt
transitions. With Speed, participants did not succeed in con-
trolling their speed: either they overshot the target (targeting
speed too high) or spent a lot of time putting the target in
focus (speed too low). Therefore, Speed does not seem to be
a suitable lens for pointing with a very high magnification
factor: at MM=12, the linear function linking focus speed to
context speed is too steep to be usable.

Figure 8 shows that focus targeting performance of Ring de-
grades as MM increases. However, good cursor pointing per-
formance compensates for it, resulting in good overall task
completion time. Figure 9 shows CPT for each TECH × MM
× WC condition. Analysis of variance reveals a significant
effect of WF (F2,22 = 230, p < 0.0001) on CPT. As mentioned
earlier, the larger WF, the easier the cursor pointing task.
However, the effects of MM (F1,11 = 154, p < 0.0001) and
TECH (F2,22 = 64, p < 0.0001) on CPT are less straightforward
to interpret. CPT is higher when MM=12 than when MM=8,
Ring is faster than Key and Speed, and the difference be-
tween Ring and both Key and Speed is larger when MM=12
than when MM=8 (the TECH×MM interaction is indeed sig-
nificant on CPT, F2,22 = 9.8, p = 0.0009).

A plausible explanation for these effects lies in the differ-
ences in terms of Control-Display (C-D) gain among tech-
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Figure 9. Cursor pointing time per TECH × MM × WF condition.

niques in the cursor pointing phase3. Figure 10 illustrates the
difference in terms of control-display gain among lenses, all
in high-precision mode. During the cursor pointing phase,
Ring is stationary; only the cursor moves inside a static flat-
top. This is not the case for Key and Speed for which high-
precision cursor pointing is achieved through a combination
of cursor movement and flat-top offset. In Figure 10, to
achieve a mouse displacement of 15 units, the cursor has
moved by 1 context pixel (= 8 focus pixels) and the repre-
sentation has moved by 7 focus pixels to achieve an overall
displacement of 15 focus pixels. As a result, the control-
display gain is divided by MM for Key and Speed. This might
be the cause for the observed performance degradation. This
interpretation is consistent with the stronger degradation for
Key and Speed than for Ring from MM=8 to MM=12. Note,
however, that there is still a small degradation of CPT from
MM=8 to MM=12 for Ring, that we tentatively explain by a
harder focus targeting phase when MM=12 that influences
the transition from focus targeting to cursor pointing.

To summarize, when pushed to extreme conditions, the Speed
lens becomes significantly slower than the other precision
lenses while Ring remains as fast as Key without requiring
an additional input channel for mode switching.

MOTOR CONTROL COMBINED WITH VISUAL FEEDBACK
Previous experiments show that techniques with advanced
motor behaviors enable higher-precision focus targeting and
object selection while increasing the upper limit of usable
magnification factors. The Sigma Lens framework [18] takes
a different approach at solving the same general problem by
proposing advanced visual behaviors. We now explore how
to combine these two orthogonal approaches to create hybrid
lenses that further improve performance.

Sigma Lenses with High-Precision Motor Control
The two Sigma lens visual designs reported as the most effi-
cient ones in [18] can be directly combined with our motor
designs. The first one is the Speed-coupled blending (ab-
breviated Blend): it behaves as a simple magnifying glass
whose translucence varies depending on lens speed. Smooth
transition between focus and context is achieved through dy-
namic alpha blending instead of distortion. This enables a
larger flat-top for the same overall lens size, reducing the
3The ratio between the distances traveled by the cursor and the
input device, both expressed in metric units.

(min speed) / (Shift pressed)(inside ring)

Figure 10. Difference in control-display gain between Ring and
Speed/Key lenses (MM=8). In italic: cursor location on screen.

focus targeting task’s index of difficulty. The other design
(abbreviated Flat) is a variation on Gutwin’s original Speed-
coupled flattening [12]. The lens flattens itself into the con-
text as its speed increases so as to eliminate the problems
caused by distortion. Figure 11 illustrates both behaviors.

We designed four new techniques that result from the com-
bination of one of the above two visual behaviors with either
speed-dependent motor precision (Speed) or cursor-in-flat-
top motor precision (Ring). Key was discarded because it
proved awkward to combine explicit mode switching with
speed-dependent visual properties.

Speed + Flat: this lens behaves like the original Speed de-
sign, except that the magnification factor decreases toward 1
as speed increases (Figure 11-a). The main advantage is that
distortion no longer hinders focus targeting. Additionally,
flattening provides indirect visual feedback about the lens’
precision in motor space: it operates in context space when
flattened, in focus space when not flattened.

Ring + Flat: This lens behaves like the original Ring de-
sign, with the magnification factor varying as above. As
a consequence, the flat-top shrinks to a much smaller size
(time stamp t3 on Figure 11-a), thus making course correc-
tions during focus targeting easier since the cursor is still re-
stricted to that area. As above, distortion is canceled during
focus targeting.

Ring + Blend: This distortion-free lens behaves like the orig-
inal Ring design, except that the restricted area in which the
cursor can evolve (the flat-top) is larger (time stamps t1 and
t5 in Figure 11-b). As speed increases, the flat-top fades out,
thus revealing the context during the focus targeting phase
(time stamps t2 to t4). An inner circle fades in, representing
the region that will actually be magnified in the flat-top if the
lens stops moving. The cursor is restricted to that smaller
area, making course corrections less costly.

Speed + Blend: This lens behaves like the original Speed
design without any distortion. As above, the flat-top fades
out as speed increases and fades back in as speed decreases.
Again, the larger flat-top reduces the focus targeting task’s
index of difficulty. In a way similar to Speed + Flat, blend-
ing provides indirect visual feedback about the lens’ preci-
sion in motor space: it operates in context space when trans-
parent, in focus space when opaque.

Experiment 3: Design
Our goal is to evaluate the potential benefits of combining
techniques that enable higher motor precision with visual
behaviors based on speed-coupling. We use Static versions,
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Figure 11. Behavior of two Sigma lenses during a focus targeting task ending on East Drive in Central Park. (a) As speed increases, the speed-coupled
flattening lens smoothly flattens itself into the context (from t1 to t3), and gradually reverts to its original magnification factor when the target has been
reached (t4 and t5). The inner circle delimits the region magnified in the flat-top. (b) As speed increases, the speed-coupled blending lens smoothly
fades into the context (from t1 to t3), and gradually fades back in when the target has been reached (t4 and t5). The inner circle fades in as the lens
fades out; it delimits which region of the context gets magnified in the lens. The magnification factor remains constant.

i.e., without any dynamic visual behavior, of our Ring and
Speed techniques as baselines. Experiment 2 revealed that
problems arise for the difficult tasks. We thus consider here
difficult conditions in terms of magnification and target size.
To reduce the length of the experiment, we discarded the DC

factor (distance between targets) as it did not raise any par-
ticular issue for any of the techniques.

Twelve participants from the previous experiments served in
Experiment 3. Experiment 3 was a 2 × 3 × 2 × 3 within-
subject design with the following factors:
• Motor precision technique: TECH ∈ {Speed ,Ring}
• Visual behavior: VB ∈ {Blend ,Flat ,Static}
• Magnification: MM ∈ {8, 12}
• Target width in focus pixels: WF ∈ {3, 7, 15}
Trials were grouped into two main blocks, one per tech-
nique (TECH). These blocks were divided into three sec-
ondary blocks, one per visual behavior. The presentation or-
der of TECH main blocks and VB secondary blocks was coun-
terbalanced across participants using a Latin square. Within
a TECH×VB block, each participant saw two sub-blocks, one
per magnification factor (MM); presentation order was coun-
terbalanced as well. For each TECH × VB × MM condition,
participants experienced 3 series of 8 trials, one per value of
WF, presented in a random order. We collected 2 TECH × 3
VB × 2 MM × 3 WC × (8-1) replications × 12 participants =
3024 trials for analysis. As with the other two experiments,
participants received a short explanation before each TECH ×
VB condition and performed 3 practice trial series per TECH

× VB × MM condition.

Experiment 3: Results and Discussion
As in Experiments 1 and 2, we perform analyses of vari-
ances with the full factorial model VB × TECH × MM × WC

× Random(PARTICIPANT) for MT, FTT, CPT and ER. Tukey
post-hoc tests are used for pairwise comparisons.

As expected, we find a simple effect of VB on MT (F2,22 =
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Figure 12. Movement time (MT) per VB by TECH × MM condition.
The lower part of each bar represents focus targeting time (FTT), the
upper part cursor pointing time (CPT).

67, p < 0.0001) revealing that visual behaviors significantly
improve overall performance. Even if CPT is significantly
degraded, the gain in FTT is strong enough (significantly)
to decrease MT (see Figure 12). The degraded cursor point-
ing performance observed here is not surprising. It can be
explained by the time it takes for a speed-coupled blending
lens to become opaque enough or for a speed-coupled flat-
tening lens to revert to its actual magnification factor. The
performance gain measured for the focus targeting phase is
consistent with previous experimental results [12, 18]. Over-
all, the gain in the focus targeting phase is strong enough to
improve overall task performance.

The effects of WF and MM on MT are consistent with the pre-
vious two experiments: MT increases as WF decreases and
as MM increases. Ring is still significantly faster than Speed
(TECH has a significant effect on MT: F1,11 = 153, p < 0.0001).
Even if visual speed-coupling improves the performance of
Speed more than that of Ring (significant interaction effect
of TECH×VB on MT: F1,11 = 11, p = 0.0005), Ring remains
faster than Speed for each MM. However, the advantage of
Ring over Speed is significant only for MM=12 when we
consider only the two speed-coupling techniques (TECH×MM
on MT is significant, F1,11 = 227, p < 0.0001, as well as
VB×TECH×MM, F2,22 = 21, p < 0.0001).
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Note that we do not observe a significant advantage of Blend
over Flat as reported in [18]. The main difference is that our
targets are much smaller than those tested with Sigma lenses
(0.25 to 1.9 context pixels in our experiment vs. 8 context
pixels in [18]). Small targets probably cause more overshoot
errors that are more expensive to repair with Blend than with
Flat: if the larger flat-top of Blend is supposed to make fo-
cus targeting easier under an error-free hypothesis, it also
causes an area of occlusion that is a significant drawback
when trying to correct overshoots. Our participants actually
reported that observation; in case of an overshoot they of-
ten left the target zone completely to perform a new focus
targeting task. However this interpretation should be taken
carefully since we did not record the number of overshoot
errors. We only measured ER, the percentage of clicks out-
side the target (5.15% for Blend, 5.55% for Flat and 4.36%
for Static). As in Experiment 2, the only factor that has an
effect on error rate is target width WF.

SUMMARY AND FUTURE WORK
Large differences in scale between focus and context views
cause a quantization problem that makes it difficult to pre-
cisely position lenses and to acquire small targets. Quan-
tization severely limits the range of magnification factors
that can be used in practice. We have introduced three high-
precision techniques that address this problem, making focus
targeting and object selection more efficient while allowing
for higher magnification factors than regular lenses. This
is confirmed by the results of our evaluations, which also re-
veal that some lenses are more robust than others for extreme
conditions, with the Ring technique performing the best. Our
high-precision techniques can be made even more efficient
by combining them with speed-dependent visual behaviors
drawn from the Sigma lens framework, as shown in the last
experiment.

We analyzed our observations based on a model for target
acquisition that sums the focus targeting and cursor pointing
time to get the overall task time. Our results suggest that
this model is too simple as it ignores the transition period
between the two subtasks. This is especially true for lenses
with a speed-dependent behavior, because of the delay to
revert back to their stationary configuration. As future work
we plan to refine the additive model to better account for
these transitions. We also plan to adapt our techniques to
other focus+context interfaces and investigate non-circular
focus shapes.
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Drag-and-drop has become ubiquitous, both on desktop computers and touch-sensitive surfaces. It is used
to move and edit the geometry of elements in graphics editors, to adjust parameters using controllers such
as sliders, or to manage views (e.g., moving and resizing windows, panning maps). Reverting changes made
via a drag-and-drop usually entails performing the reciprocal drag-and-drop action. This can be costly as
users have to remember the previous position of the object and put it back precisely. We introduce the
DND−1 model that handles all past locations of graphical objects. We redesign the Dwell-and-Spring widget
to interact with this history, and explain how applications can implement DND−1 to enable users to perform
reciprocal drag-and-drop to any past location for both individual objects and groups of objects. We report
on two user studies, whose results show that users understand DND−1, and that Dwell-and-Spring enables
them to interact with this model effectively.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces
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1. INTRODUCTION

Most graphical user interfaces rely heavily on drag-and-drop interactions for view man-
agement. Drag-and-drop is the primary method for moving and resizing windows on a
desktop, for laying out icons, for panning a map or a very large image, for browsing a
long document. But objects manipulated via drag-and-drop often have to be restored
to one of their previous positions. For instance, a user will carefully lay out windows
on his desktop but will then temporarily move or resize one of them to access content
hidden behind it, such as an icon or another window of lesser importance that was left
in the background; he will then want to restore the foreground window to its earlier
configuration. The reader of a document will scroll down to an appendix or check a
reference, and will then want to come back to the section he was reading. Current
systems do not enable users to easily restore windows or viewports to their earlier
configuration; users have to manually reposition and resize the corresponding objects.
Such actions can be costly. From a motor perspective, the cost of repairing a drag-and-
drop manipulation can be higher than that of the original manipulation depending on
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Fig. 1. Exploring different office layout alternatives on a floor plan. (a) Placing a cupboard in the SW corner.
(b) When moving the cupboard to the SE corner, it is difficult to access it when the door is open. (c) Cupboard
back to the SW corner. (d) Cupboard in the NE corner. The heater is partially occluded. (e) Cupboard almost
centered along the S wall. (f) Adding a desk in the NE corner, composed of two tables and a chair. The heater
is partially occluded. (g) Cupboard back in the SE corner to free space for the desk in the SW corner. (h) Desk
in the SW corner. (i) Changing the relative placement of the desk elements. (j) Desk back in the NE corner
with the new relative layout between the two tables and the chair.

how precisely the object has to be positioned. This is especially true for touch-based
interfaces, which can make precise manipulations challenging [Siek et al. 2005]. The
cost can also be high from a cognitive perspective, as users may have difficulty remem-
bering what was the previous state of a particular object [Katifori et al. 2008].

Users also rely heavily on drag-and-drop for content manipulation in WYSIWYG
applications such as vector graphics editors and slide show presentation programs.
The precise positioning of elements is particularly important in such contexts, where
users perform advanced graphical layout task. But it can be challenging. For instance,
graphical shapes vary in their size and may be very close to one another. Accidental
selections are likely to occur, and users may want to revert a subset of objects, selected
by mistake, back to their original position; and this without having to cancel the
manipulation for the objects they actually had intended to move. Some shapes can also
overlap other shapes, or even completely cover them. While the shapes below can be
visible through alpha blending, they will often be difficult to access. In this situation,
users will often temporarily move the shape on top to access the ones below and modify
them, but will eventually want to revert to the original layout.

From a user perspective, such graphical layout tasks are often part of an exploratory
process. For instance, Figure 1 illustrates a scenario in which a person rearranges
furniture in an office and tests alternative layouts. The software allows her to explore
different arrangements by selecting and moving either a single piece of furniture,
or multiple pieces together. Direct manipulation strongly contributes to making such
exploratory design activities easy. But effectively supporting users also entails enabling
them to easily revert back to past states from which to try other design options. Most
graphical editing software provides an undo command to restore a past state of the
entire document but, unfortunately, the underlying undo model is usually a global
linear one that does not keep track of branches in the history of manipulations. Such a
basic undo mechanism has two strong limitations, as detailed later.

The first limitation is that some previous states in the history can become inacces-
sible [Berlage 1994; Yoon et al. 2013]. If a user applies a command that turns state
A into state B, reverts back to state A using undo, and then applies a new command
that turns state A into state C, she will no longer be able to get back to state B. For
instance, in Figure 1, the user moves the cupboard (a-b) but then undoes this move
(b-c) when she realizes that this location might not be so convenient because of its
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proximity to the door. Later, after having considered the different constraints (window,
heater, additional furniture), she finally decides that putting the cupboard behind the
door [as in (b)] is the best option. She wants to revert it to this location, but as she has
moved it to other locations (c-d-e) after her undo operation (b-c), she is no longer able
to get back to this configuration other than by manually moving it back there.

The second limitation comes from the lack of integration of object selection mecha-
nisms with the history of direct manipulations. When adjusting layouts, users often
want to apply direct manipulation actions to multiple objects simultaneously, typically
selected using a rubber-band rectangle or by clicking on all objects in turn while keeping
a modifier key pressed. Multiple selection allows users to manipulate groups of objects
simultaneously while preserving their relative layout. But this notion of group is tran-
sient, as graphical editors usually support only one active selection at a time. Undoing
an action performed on multiple objects will no longer be possible once the selection has
changed. Users then have to select these objects again, and manually revert them to
their earlier position using the reverse drag-and-drop action. Coming back to Figure 1,
the user moves the two tables and the chair that make her workstation (g-h), and then
changes their relative layout, thus breaking the previous multiple selection (i). Because
there can only be one single active selection at a time, testing a location of the worksta-
tion that has already been explored (f), but with the new relative layout made in (i-j),
requires selecting all its elements again and manually dragging-and-dropping them in
the right place. Some graphical editors feature a command to group objects together.
But this makes the exploratory design process much more cumbersome, as groupings
have to be anticipated and created explicitly. In addition, groupings set persistent links
between objects, which impede single-object editing operations.

In all the aforementioned examples, users have to put back individual objects or
groups of objects to one of their past locations. In other words, they have to perform
reciprocal drag-and-drop actions. Such actions occur frequently, and their associated
cognitive and motor cost can be high. We present the DND−1 history model, that keeps
track of all past locations for both individual and multiple object selections. DND−1 is
based on a direct selective undo model for drag-and-drop actions that works for all past
selections of both single and multiple objects. We extend the Dwell-and-Spring widget,
that was introduced in Appert et al. [2012], to let users quickly restore single objects and
groups of objects to any past location.1 DND−1, together with this extended version of
the Dwell-and-Spring widget, better support exploratory tasks in direct manipulation
interfaces, as they let users revert arbitrary objects to a previous configuration, while
preserving the result of drag-and-drop actions that happened later in the editing pro-
cess. For instance, DND−1 lets users perform the edits described in Figure 1 in a lesser
number of actions, as they can undo actions performed on a selection of objects without
having to undo the direct manipulations that were performed later on in the workspace.

We first describe the DND−1 model and detail how we extended the Dwell-and-Spring
widget to support reciprocal drag-and-drop. We illustrate DND−1 on both simple and
advanced cases, and discuss implementation details. Finally, we report on two user
studies which indicate that: (i) users are faced with situations in which they would
like to have better support for reciprocal drag-and-drop, (ii) they can successfully use
the Dwell-and-Spring widget in such situations, and (iii) they can take advantage of
DND−1 to solve advanced layout problems with reciprocal drag-and-drop.

2. RECIPROCAL DRAG-AND-DROP

Situations that call for reciprocal drag-and-drop can be simple: for instance, putting a
window back to its last location or reverting it to its previous size. They can also be

1The original Dwell-and-Spring technique was supporting only a basic linear undo model for single objects.
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Fig. 2. The Dwell-and-Spring technique (DS). A red circular handle pops up close to the cursor when the
user presses the mouse button and remains still for 500ms (i.e., dwells) over an icon. Releasing the mouse
button while the cursor is over the spring handle will undo the last move of this icon.

Fig. 3. Evaluating the impact of different values of a parameter controlled with a slider. (1) The current
value of the slider is 248. (2) The user tests value 392. (3) Unsatisfied with it, he sets the value back to 248.

much more elaborate: for instance, putting back a group of shapes to an earlier position
on the drawing canvas after having manipulated other shapes, and putting them back
there while preserving the new relative position that was given to them after they
were initially moved away. This section illustrates both simple and more advanced
situations, and explains how we have redesigned the Dwell-and-Spring widget on top
of the DND−1 model to provide users with a flexible and powerful way of reverting
various types of drag-and-drop actions (the companion video shows the technique in
action).

2.1. Last Location of an Object

The basic Dwell-and-Spring technique, as described in Appert et al. [2012], readily
applies to all simple cases of reciprocal drag-and-drop. Figure 2 illustrates it on a very
simple case, where an icon gets restored to its last position. A red circular handle
pops up close to the cursor when the user presses the mouse button and remains still
for 500ms (i.e., dwells) over the icon. Bringing the cursor or finger onto this handle
will make a spring appear, showing what the center of the icon will become if the
user releases the mouse button or lifts his finger over the spring handle. If the user
dwells without having initiated any movement, the spring shows the last move that
was applied to the icon. If the user has already initiated a drag-and-drop, the spring
proposes the reciprocal drag-and-drop for the current move. The user can either move
over the spring handle and select it, activating the spring and thus bringing back the
object to its previous location; or he can discard the widget by getting out of the active
area.

This simple technique already applies to many cases of reciprocal drag-and-drop:
manipulating icons on the desktop (Figure 2), navigating documents using a scrollbar
(Figure 4) or with a swipe gesture on a touch-sensitive surface (Figure 5), moving
and resizing windows (Figure 6), or any other action where the spring’s actions are
equivalent to what the user would manually do to revert to the original state, like
moving a slider knob (Figure 3) or a manipulation handle (Figure 7). However, in its
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Fig. 4. Reading a document. (1) The user finds a bibliographic reference while reading. (2) He drags the
scrollbar knob to the end of the document to check that reference. (3-4) Once he has checked it, he invokes
Dwell-and-Spring on the scrollbar knob to get back to the page he was reading.

original version [Appert et al. 2012], Dwell-and-Spring was only able to revert the
current or the last drag-and-drop, as it was only keeping track of the previous location
of each object, based on a per-object linear undo model.

2.2. All Past Locations of an Object

The first enhancement made to the Dwell-and-Spring technique is to provide users
with extra spring handles that allow them to apply a series of reciprocal drag-and-
drop actions quickly. As illustrated in Figure 7, the spring widget features additional
handles that are horizontally aligned with the main spring handle (which was the
only handle in the original design). Users can navigate through these handles to get
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Fig. 5. Panning a map on a tabletop. (1-2) The user swipes on the touch screen to set the viewport over the
region of interest on the map, revealing more of Central Park in New York City. (3-4) She touches the screen
and remains still to invoke Dwell-and-Spring on the map and go back to her view on Midtown.

Fig. 6. Managing the desktop. (1) The user is making a transcription of a sketch into a vector-based
document. (2-3) She resizes the window in order to copy and paste some elements that she had already
drawn somewhere else in her document. (4-5) She restores the initial window size to get back to an ideal
window layout for her transcription task. (6) She adjusts the location of the just pasted elements.

a preview of where the selected object(s) would go if they released the mouse button
or lifted their finger on one of them. Releasing the mouse button while the cursor is
over a spring handle will invoke the series of reciprocal drag-and-drop actions that are
associated with this handle. As explained later, the series of past moves is managed
by the DND−1 model, which differs from the linear undo stack that is implemented in
most systems. With DND−1, users can revert back to any past location, while keeping
the length of the history as short as possible.

Applications that support undo typically store the history of actions as a tree whose
nodes are the different states of the application. Performing an operation means creat-
ing a novel child state to the current node. Undoing an operation means getting back
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Fig. 7. DND−1 applied to shape manipulation handles. (1-2-3) The user resizes a rectangle twice. (4) She
invokes Dwell-and-Spring on the resizing handle and enters the spring’s main handle. This shows where the
resizing handle was prior to the last resizing manipulation. (5) She moves the cursor to the next spring handle
in the DND−1 history. This shows where the resizing handle was prior to the last two resizing manipulations.
(6) She releases the mouse button on that second spring handle to revert back to the configuration in
(1). Steps (7–12) illustrate a similar scenario on a rotation handle.

Fig. 8. DND−1 stores all repositioning actions applied to an object, including those performed via a reciprocal
drag-and-drop (D, F, and I, shown as dashed black lines). It presents the shortest path to all past locations.

to the parent node. Some systems make several branches active at the same time: in
collaborative work settings (e.g., Edwards and Mynatt [1997]) or for comparing varia-
tions of an image design that have minor differences [Terry et al. 2004]. However, the
linear undo model only supports one single active path. All nodes outside this path are
inaccessible via undo. For instance, in Figure 8, the user moves the icon three times
successively (displacements A, B, then C), reverts C, and then moves the icon again by
E. At this point, she can no longer recover the position the icon had after displacement
C, since this one no longer belongs to the active path ({A,B,E}). A few applications, such
as Emacs [Gosling 1982; Yang 1992], make users able to recover any state. However,
this might require chaining a long series of interactions to reach a given state, as the
history stack is presented to them as a full sequential path in the history tree.

Figure 8 illustrates DND−1, the local undo model we propose to navigate in the history
tree of displacements performed on a graphical object. This model lies in-between the
single active path and the full sequential path models described previously. It stores
the full history of repositioning actions, but provides users with shortcuts to quickly
access nodes in the tree, so as to make them able to recover any past location, in the
spirit of the Selective Undo model [Berlage 1994]. Each object remembers the sequence
of moves that were applied to it, including reciprocal drag-and-drop actions. All past
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locations are accessible. Also, when a user invokes a reciprocal drag-and-drop action
to restore a past position P of an object O, DND−1 adds the straight move between
O’s current location and P to the end of the history, in the spirit of the inverse model
for selective undo (used in, e.g., [Berlage 1994; Myers 1998; Yoon et al. 2013]), rather
than inserting all reciprocal moves after the corresponding moves in the history, as the
script model (used in, e.g., [Kurlander and Feiner 1988; Myers et al. 2015]) would have
done.

For example, in Figure 8, the user moves an icon using three standard drag-and-drop
actions (moves A, B, and C). He then moves the icon back to the location where it was
before reaching C, using a reciprocal drag-and-drop (move D). At this point, there is no
difference between DND−1 and the script model: both append D (i.e., −C) right after C
at the end of the history: {A, B, C, D}. However, when the user moves the object back
to the location it had before move B (following move E), DND−1 handles this reciprocal
drag-and-drop as any regular drag-and-drop by appending F to the history ({A, B, C,
D, E, F}), while the script model would have turned the history into {A, B, -B, C, -C, E,
-E}. This entails that a drag-and-drop that has been undone with DND−1 can be easily
redone. However, keeping a trace of all past moves also means that the number of steps
to revert to a past location can be very long. In order to present an object’s history of
past locations in a compact way, we have implemented a navigation algorithm that
computes the shortest path in the history to reach any of these past locations. This
is basically achieved by removing cycles, that is, series of moves that bring the object
back to a location already present on the path. For instance, navigating two steps back
with DND−1 after move J in Figure 8(b) entails following path {−J, −I}; but navigating
three steps back entails following path {−J, −G}, as {−J, −I, −H} would have led to
the same location than {−J}, which is already proposed for a one-step-back navigation.
This simplification decreases the number of steps that should be presented to the user,
while ensuring that he can reach any past locations. For the scenario in Figure 8,
thanks to this simplification, our extended version of Dwell-and-Spring presents seven
spring handles, while it would have presented ten (i.e., the length of the stored history)
otherwise.

2.3. Groups of Objects

The second enhancement made to Dwell-and-Spring is to provide users with another
type of extra spring handles that allow them to apply reciprocal drag-and-drop actions
to groups of objects that were moved simultaneously in the context of a multiple selec-
tion. Figure 9 illustrates what Dwell-and-Spring looks like after the user has played the
scenario of Figure 10. These additional square handles act on the groups that contain
object O, on which Dwell-and-Spring has been invoked. Handles are organized into
several rows, one per group. The primary handle of a row is aligned with the main
spring handle that initially popped out. When the cursor enters the handle associated
with a group G, additional handles appear on its left. There are as many handles as the
number of locations this group has visited. To help users anticipate what will happen
if they activate a given handle, Dwell-and-Spring gives some feedforward when the
mouse cursor or the finger enters that handle: objects in the group are highlighted, and
the sequence of moves that will be reverted is shown as a series of springs that ends on
what will become the center of object O after completion of the sequence of reciprocal
drag-and-drops.

To keep track of all multiple selections an object has belonged to, the DND−1 model
stores the whole history of moves into a hashtable (History) whose keys are groups of
objects (which can be singletons) that index lists of timestamped movements. Figure 10
illustrates this on a simple example. However, there can be some ambiguity when
deciding what a group is, as the same objects can be involved in different multiple
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Fig. 9. Extended version of Dwell-and-Spring (the zoomed-in inset is added on top of UI screenshots for
illustration purposes only). (a) The user presses the mouse button and remains still over object O; the main
circular handle appears after a short delay. (b) The user enters this handle; additional handles appear as a
result. (c) Navigating the row of circular handles lets her undo sequences of moves for O as an individual
object. (d) Square handles allow her to restore any past location for groups in which O was – or is – involved.
The first row of square handles will act on group Gmeeting+desk, that contains the seven objects in the scene.
(e) Navigating along this row lets the user undo sequences of moves for group Gmeeting+desk. (f) The second
row of square handles will act on group Gmeeting, that contains the four chairs and the circular table.

selections [Figure 10(a-d)]. In order to maintain a coherent history, we have designed
a strategy for handling groups that allows users to recover any past state without
breaking any previous group.

When a group G has been moved by d, we first add G and all the singletons for objects
in G that are not already in History. We associate an empty history with each of them
(lines 1–8). We then review the history of all groups, as detailed in Algorithm 1. Each
group Gi is split into two parts: G∩, that contains the objects that belong to both G and
Gi, and G\, that contains the objects that only belong to Gi (lines 10-11). Each of these
groups, if not empty, are updated in History (after creation if needed). The history of
G∩, which is empty if just created, is merged with the one of Gi and is then enriched
with the last move d (line 15). The history of G∩, which will be empty if it just got
created, is merged with the one of Gi.

Figure 10 illustrates this on a concrete example. Starting from an empty History,
GroupA, that consists of seven objects, is moved by d1 as illustrated in step (a). Our
algorithm creates seven singletons and GroupA in History. Then, during the process of
revising existing groups, the individual histories are populated with d1. In step (b), d2
is added to all histories. In step (c), the user moves GroupB by d3. This latter group is
created (line 3 in Algorithm 1) and, when revising the existing groups, GroupA is split
into GroupB (line 10) and GroupC (line 11). GroupB’s empty history is merged with
the one of GroupA, which is (d1, d2), and d3 is added to the resulting history (line 15).
GroupC is also created (line 18) and its empty history is merged with the one of GroupA
(line 19).

The creation of singleton objects (line 4 in Algorithm 1) gives more flexibility to users
by allowing them to revert moves on individual objects, as in the scenario of Figure 11,
detailed later. However, we do not add all sets that belong to the power set of group G
(the one that just moved). This is to keep the number of groups in History reasonable,

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 6, Article 29, Publication date: September 2015.

113



29:10 C. Appert et al.

Fig. 10. A scenario involving multiple selections: arranging furniture on an office’s floor plan. (a-b) Moving
GroupA by d1 then d2. GroupA consists of all seven pieces of furniture: the circular table and its associated
four chairs + the rectangular table and its associated chair. (c) Moving group GroupB by d3. GroupB consists
of the two pieces of furniture: the rectangular table and its associated chair.

while ensuring that any revert operation is possible. This simplicity versus flexibility
tradeoff means that, if users want to revert a move for a subset g of objects that belong
to group G, they have to revert that move on each of the individual objects. Finally,
when users delete a graphical object, this object is not removed from History, but is
simply tagged as passive, so as to keep a memory of it in case it gets restored by means
of the application’s functional undo model or by drag-and-drop across applications. Its
passive state makes it ignored by our algorithm for revising groups.

Support for groups in DND−1 means that users can keep a trace of previous multiple
object selections even if other selections happened afterwards. In particular, the current
relative layout between objects within a group G is preserved in case they want to
restore a past location of G, making transitions such as the one in Figure 1(i-j) very
easy: the user can put back all desk elements to a past location while preserving the
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Fig. 11. Positioning the legend of a bar chart. (a-b) The user makes a selection of all elements of the legend.
(c) He notices that he has accidentally included a bar in his selection and moved it along with the legend.
(d) He uses Dwell-and-Spring to restore the bar to its original position. (e) The novel placement of the
legend is not satisfying, and he puts the legend back where it was initially. (f) He moves the y-axis label, and
(g-h) reverts the legend back to the left position.
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ALGORITHM 1: Revising History after a group G has been moved by d at time t.
// Let h be the function that returns the local history of G stored in History

as a list of timestamped past movements (di, ti), merge(H1, H2) be a function
that creates a chronologically ordered list of all timestamped movements of
H1 and H2 (removing duplicates), and append(H, (d, t)) be a function that
appends (d, t) at the end of H.

1 if G does not exist in History then
2 h(G) = ∅
3 foreach object O in G do
4 if {O} does not exist in History then
5 h({O}) = ∅
6

7 end
8 foreach existing group Gi in History do
9 G∩ = Gi ∩ G

10 G\ = Gi \ G∩
11 if G∩ �= ∅ then
12 if G∩ does not exist in History then
13 h(G∩) = ∅
14 h(G∩) = append(merge(h(G∩), h(Gi)), (d, t))
15 if G\ �= ∅ then
16 if G\ does not exist in History then
17 h(G\) = ∅
18 h(G\) = merge(h(G\), h(Gi))
19

20 end
21 h(G) = append(h(G), d)

rearrangement of the elements that was made afterwards. It also overcomes some
limits of the single active selection model used in most applications. With the latter,
the current selection gets cleared as soon as users click on a region or object that does
not belong to the selection. DND−1 should save a lot of time and effort when trying
to revert complex selections (small objects, objects scattered all over the workspace,
partially occluded objects, etc.). For example, Figure 11 shows a scenario where a user
wants to test alternative placements for the legend of a bar chart. The user accidentally
selects a bar along with the legend, but notices it only after he has moved the legend
to another location (a-c). As each object is also added individually in History, he can
easily restore the bar’s position (d), which has the effect of creating the group that
contains only the graphical elements of the legend in History. As the novel placement
of the legend overlaps with the y-axis label, he applies a reciprocal drag-and-drop to
this group to put it back where it initially was (e). Later, he decides to slightly offset
the label of the y-axis (f) and can easily test the alternative placement with the legend
on the left again (g-h).

2.4. Implementing DND−1

DND−1 is designed to be implemented at the system level, in an application-independent
manner. We developed a Java prototype using SwingStates [Appert and Beaudouin-
Lafon 2008] to demonstrate the approach, in which each client application implements
the ReciprocalDnDProtocol interface and runs in a JInternalFrame. The Reciprocal-
DnDManager communicates with these applications exclusively through messages, while
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the interaction techniques to navigate in DND−1 (Dwell-and-Spring or DnD-List—
described later in Experiment 2) are hosted on a full-screen GlassPane.

The central object in the implementation is the ReciprocalDnDManager, that handles
the entire History across client applications. Application developers can add support
for DND−1 simply by registering their application with the ReciprocalDnDManager and
implementing the simple protocol described later.

Client applications send a message each time an object is created or deleted. The
ReciprocalDnDManager can then tag this object as either active or passive. They also
send a message moved(G,d) each time a group of objects G is moved by a displacement
vector d. The ReciprocalDnDManager then updates History according to the algorithm
described earlier. All these client-to-server messages contain the sender application’s
id, and the ids of objects that are created, deleted or moved. The ReciprocalDnDManager
organizes object ids using namespaces (one per client application), meaning that unicity
is ensured across applications but that applications still have to guarantee the unicity
of their objects’ ids.

Techniques for interacting with DND−1 are connected to the ReciprocalDnDManager
to expose History to users and let them select a group G and a past location p to re-
store. When users invoke such a reciprocal drag-and-drop, the ReciprocalDnDManager
updates History by adding δ to the history of G, with δ being the vector between the
current location of G and p. It then sends a translate(G,δ) message to the right
client application with the ids of objects in G and the translation vector as arguments.
The client application is then in charge of applying this displacement. To enable the
implementation of feedforward mechanisms such as object highlighting, client appli-
cations must also be able to reply to two other messages: id:pick(screenPoint) and
rectangle:bounds(G). The first returns the id of the object that is picked at a given
location, the second returns the bounding box of a group of objects. We have used this
prototype to implement the experiments that we report on in the next sections.

3. EXPERIMENT 1: UNDERSTANDING USERS’ DRAG-AND-DROP HABITS
AND EVALUATING THE DISCOVERABILITY OF DWELL-AND-SPRING

For completeness, we include an experiment that was reported in Appert et al. [2012],
in which we introduced the original, simpler version of the Dwell-and-Spring widget.
We conducted this first experiment to capture what users typically do in situations
where they want to revert a drag-and-drop. We also wanted to evaluate whether the
spring metaphor implemented in Dwell-and-Spring is a viable alternative or not. The
experiment lasted around 45min and contained two parts: an interactive in situ ques-
tionnaire to gather data about how users currently revert drag-and-drop actions, fol-
lowed by a formal experiment to evaluate how easy it is to discover and understand
Dwell-and-Spring, and how often they would actually use it once discovered.

3.1. Participants and Apparatus

Twelve unpaid volunteers (ten male, two female), aged 24–36 year-old (average 29.1,
median 28.5), all daily users of personal computers, participated in this experiment:
seven of them used Mac OS X, four Microsoft Windows, and one an X-Window system.

Each session started with a short paper questionnaire asking participants about
their familiarity with, and use of, undo operations. Nine participants said that they use
the undo operation very often, two often, and one sometimes. All but one participants
reported using keyboard shortcuts often (e.g., Ctrl/Cmd-Z). Only one said that she
mainly uses a toolbar button, with five participants sometimes using such a button.
One participant also mentioned using an elaborate menu to navigate in the command
history of an image editor (namely Adobe Photoshop).
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Fig. 12. Scenarios used for collecting users’ habits in different situations of reciprocal drag-and-drop. The
current location of the object (icon, scrollbar knob, window, or vector shape) is highlighted in green and the
past position to restore is highlighted in red.

All sessions were conducted on a workstation with a 30” LCD monitor (2560 × 1600,
100 dpi, 1 pixel is about 0.256mm in width) running Mac OS X. The mouse was a
standard optical mouse with 400dpi resolution and default system acceleration.

3.2. Capturing Users’ Habits

To gather data about how users revert drag-and-drop actions more specifically, we
used an interactive questionnaire where participants actually played several scenarios
leading to cognitive states where they want to either cancel an on-going interaction
or undo that interaction right after they have completed it. To simulate this cognitive
state, participants were instructed to move a graphical object to a target location
highlighted on screen. We considered two cases.

—DRAGGING case: an instruction pops up in the middle of the press-drag-release inter-
action (i.e., the user has not yet released the mouse button) asking the participant
to stop and to put the object back where she grabbed it (Cancel).

—DROPPED case: an instruction pops up as soon as the participant has dropped the
object at the target location (i.e., the user has just released the mouse button) asking
her to restore the object to its previous location (Undo).

In both cases, we considered four scenarios involving different graphical objects
(Figure 12): a desktop icon (Sicon), a scrollbar knob (Sscrollbar), a window (Swindow), and a
geometrical shape in a vector graphics editor (Seditor). As mentioned before, the answer
can be highly dependent on the context of use as there is no unified way of doing such a
cancel/undo operation across systems. This sample of scenarios was aimed at collecting
answers representative of the different contexts of use. We also believe that asking
participants to interactively show us what they would do in each scenario, as opposed
to simply telling us in response to a verbal description, captures answers that have
higher ecological validity.

We asked questions for the four scenarios, first in the DRAGGING case, and then in the
DROPPED case. We decided to use a fixed presentation order for the two cases because
the DRAGGING case can always be solved the same way the corresponding DROPPED case
is, that is, the user can always decide to commit his current drag by releasing the
mouse button and then undo it. Within both cases, the scenario presentation order was
counterbalanced using a Latin Square.

Our interactive questionnaire presented the user with a desktop environment where
all existing techniques were made available, in all contexts we tested. This means
that the drag-and-drop of any graphical object could be cancelled by right clicking,
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Fig. 13. Strategies reported in the interactive questionnaire for each scenario in both the DRAGGING case
(top) and the DROPPED case (bottom). Each cell corresponds to a strategy and contains two numbers: first
the number of participants who effectively used this strategy in the questionnaire, second the number of
participants who usually employ this strategy.

dropping in the menu bar, or pressing the Escape key. Once committed (i.e., mouse
button released), the user could undo the last action by either using the Cmd-Z keyboard
shortcut or by selecting an Undo item in the menu bar (always displayed at the top edge
of the screen). In scenario (Seditor), there was an additional possibility: an undo button
in a toolbar, as most applications of this kind actually feature one. Our environment
offered a kind of “ideal setting” by making all possible techniques available, whatever
the scenario. Our goal was to let participants show us both what they would like to do
(Q1), and what they usually do with their current system (Q2) in each situation.

Figure 13 summarizes the answers from our participants. It first shows a clear differ-
ence between the graphical editor scenario (Seditor), in which participants manipulate
content (functional level), and the other scenarios, in which they modify the view config-
uration (view level). With Seditor, many more participants employed another technique
than manually reverting. Ten participants reported using the Cmd-Z keyboard shortcut
once they have DROPPED the object. Seven participants usually choose to drop and then
undo when they are still DRAGGING. Very few participants used the Escape key and no
participant used the right-click technique to abort and cancel the current action. In the
other three scenarios, participants mainly restored the object to its original position
manually, that is, by performing the same action in the opposite direction. This is even
more pronounced in the DRAGGING case, where participants almost never used another
technique.

There was almost no difference between answers to what participants would like to do
and answers to what they usually do. However, we did collect a few surprising answers.
For instance, one participant said that she usually used Cmd-Z in the DROPPED case under
all the presented scenarios while her system only supports undo for the Seditor scenario.
This indicates that some users might expect their system to be consistent over these
four scenarios. Three participants told us that they usually use Cmd-Z to move back
a desktop icon (Sicon) to its original position, and four thought they were using it to
restore the past position of a window (Swindow). They might have been thinking they
can do this because undo works when the user drops an icon to a new folder, that is,
a command at the functional level. This reinforces our intuition that the distinction
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Fig. 14. Outline of the discovery-and-use experiment’s design.

between the view level and the functional level is not always clear to users: in one case,
the path of the file remains unchanged in the file system, while in the other case, the
same interaction causes the file to be moved to a new folder.

Some participants made interesting comments during this interactive questionnaire.
In particular, four participants told us that they would like to have an undo mecha-
nism when scrolling, such as a button or an implicit bookmarking system. Expression of
such a need for better revisitation mechanisms supports findings reported in previous
studies (such as, e.g., [Ko et al. 2006]). Topaz [Myers 1998] includes scrolling opera-
tions in its history to allow users to selectively undo them. But users have to locate
these specific navigation actions within the whole history of commands. As we will see
later, Dwell-and-Spring is particularly well suited to canceling on-going, or undoing
just performed, scrolling actions directly on the scrollbar, which could be additionally
augmented with some colored marks, as in Alexander et al. [2009].

3.3. Discovery and Use: Experiment Design

After the interactive questionnaire, participants ran an experiment whose purpose was
to study the following questions.

(1) Is Dwell-and-Spring easy to discover?
(2) Will people be willing to use Dwell-and-Spring once they have discovered it?

Figure 14 outlines our experimental design. As in the questionnaire, we considered
both cases DRAGGING and DROPPED. Trials were blocked by case, with the DRAGGING case
always presented first. As mentioned before, we chose this fixed presentation order
because the DRAGGING case can always be considered as a DROPPED case. We also expect
that, in a real context of use, there should be transfer from the situations modeled
by the DRAGGING case to the situations modeled by the DROPPED case. Dwelling in the
middle of a movement that the user finally wants to cancel seems rather natural:
consider, for example, the scenario where the user takes a quick look at a given object
in a scrollable view before coming back to the location where she was editing; or the
scenario where the user temporarily moves a window to look at the graphical scene
under it. We expect this case to lead to discovery of Dwell-and-Spring so that users will
more easily understand they can adopt a similar approach in the DROPPED case.

To limit the length of the experiment, we only considered the desktop icon scenario
(Sicon). The task consisted in moving the icon to a target location shown as a red
rectangle (Figure 15). In the DRAGGING case, participants were told before starting that
they would be interrupted in the middle of their move by a pop-up message that would
give them further instructions about how to finish the trial. The instruction would
be either to put the icon back to its original location (Cancel condition) or to finish
the current operation, that is, move the icon to drop it at the intended target location
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Fig. 15. Discovery task used in Experiment 1. (a) Participants are instructed to move an icon, highlighted
in green, toward a target location, which is highlighted in red. (b) In the middle of their drag-and-drop, a
message pops up to ask them to stop their movement. (c)-Cancel–(c)-Continue Participants are instructed to
either put back the icon to its initial location or keep on dragging the icon to the target location.

(Continue condition). Once they had followed the new instructions, participants had to
press the Space bar to end the trial.

In the DROPPED case, participants also had to drag-and-drop a desktop icon to a
target location. As soon as they had dropped the icon, they got a message asking them
to either put it back where it was before they moved it, and then press the Space bar
(Undo condition), or to just press the Space bar immediately (Continue condition). In
both cases, when they were told to restore the icon to its original location (Cancel and
Undo conditions), the instruction explicitly mentioned that “various techniques may
be available” to help them.

In both cases, trials were organized into four blocks of 24. For instance, when DRAG-
GING, a block contained 12 trials in the Cancel condition and 12 trials in the Continue
condition, presented randomly. The 12 trials in the same condition always involved an
icon of 48×48pixels, located 800pixels from the target location. Only the direction of
movement varied across trials to take into account the fact that the spring’s orientation
depends on the movement direction. To vary movement direction, we laid out icons and
target locations in a circular way.

There were two phases for each case: discovery and use. For the first two blocks, par-
ticipants did not receive any indication about available techniques. They were simply
encouraged to explore the interface. After completion of these two discovery blocks, the
experimenter demonstrated each available technique before participants ran into the
two other use blocks. These last two blocks were aimed at observing what strategy par-
ticipants adopted once they had been exposed to all techniques, with clear instructions
about how to use them.

Because we were interested in observing how people behave with the Dwell-and-
Spring technique in a traditional desktop environment, but also in contexts where the
hardware does not feature additional physical buttons or keys (e.g., a touchscreen as in
Figure 5), the environment only proposed techniques that rely on “single-point input.”
The environment only proposed: the Dwell-and-Spring technique (Dwell-and-Spring),
the technique that consists in dropping the icon in the top menu bar (MenuBar), an undo
menu item (EditMenu,) and, of course, the manual technique that basically consists in
dragging the icon back manually (Manual).

3.4. Discovering Techniques

We first analyze data we collected in the discovery phase of both cases DRAGGING and
DROPPED.

3.4.1. DRAGGING Case. 4 out of 12 participants discovered how to use the Dwell-and-
Spring technique. This is less than we expected since the spring popped up in 96% of the
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trials and we thought that the spring offered powerful feedforward. The experimenter’s
observations help explain this low rate of discovery: several participants only used the
spring as a visual guide, and not as a reactive graphical object. When the spring
popped up after a dwell, some participants brought the cursor over the spring handle
but did not activate the spring by releasing the mouse button as soon as the cursor was
over the handle. Instead, they brought the spring handle towards the spring’s origin
(thus compressing the spring) and only then released the mouse button. The same
participants spontaneously said to the experimenter that the spring was useful because
it showed the icon’s original position. Quantitative evidence backs this interpretation:
participants who did not discover the technique grabbed but dropped the spring in
about 70% of all cases (under the Cancel condition; this happened in only 3% of the
cases under the Continue condition).

The four participants who discovered the Dwell-and-Spring technique understood
how to use it during the first block: at first try for two of them, at second and sixth try
for the two others. Once discovered, they used the technique a lot: in 100%, 92%, 79%,
and 70% of all cases (Cancel condition). They also made a few errors in the first block
where they activated the spring under the Continue condition, but no such accidental
spring activation was observed in the second block.

This suggests that feedforward about spring activation should be stronger. A simple
solution consists in making the spring more difficult to drop, to offer more opportuni-
ties to activate it (e.g., by enlarging the area where the spring is visible around the
activation point or by making it more difficult to compress). Another approach would
consist in removing the need for a release event to activate the spring (the spring would
get activated as soon as the cursor enters the spring’s handle). However, these design
solutions would make the spring hard to discard in case the user does not want to
activate it. An interesting tradeoff might be to come up with a way of discarding the
spring that is a function of expertise: the spring could be made difficult to drop only
the first few times the user explicitly interacts with it.

3.4.2. DROPPED Case. Seven participants discovered how to use Dwell-and-Spring.
This may seem like a lot, given that contrary to case DRAGGING, the spring would
not spontaneously pop up; participants had to explicitly press and dwell on the object
to see the spring. But once a participant had found how to invoke the spring, they al-
ready knew how to use it as they had all learnt how to do so in the DRAGGING case. This
observation tends to support our expectation of a learning effect between the cancel
and undo conditions during the experiment.

As in the DRAGGING case, participants discovered the spring technique in the first
block: two at first try, two at third try, two at fourth try, and one at eighth try. Then, as
in the DRAGGING case, they used the Dwell-and-Spring technique a lot: 95%, 92%, 68%,
100%, 88%, 87%, and 86%.

3.5. Using Techniques

The aforementioned analysis reveals that users who discovered the Dwell-and-Spring
technique made extensive use of it. In the following, we analyze data collected in the use
phase (after discovery), to find out whether the other participants, who did not discover
the technique by themselves, eventually adopted Dwell-and-Spring once exposed to it
and to the other techniques (MenuBar, EditMenu, or Manual) by the experimenter.

3.5.1. Frequency of Use and Qualitative Results. Figure 16 shows the frequency of use
of Dwell-and-Spring in the last block2 for conditions Undo (DROPPED case) and

2We analyze data in the last block only, as it is more likely that participants had made a “definitive” choice
by then.
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Fig. 16. Use of Dwell-and-Spring in the last block for both DRAGGING and DROPPED, per participant.

Cancel (DRAGGING case). The only other technique that was used significantly is Manual:
MenuBar was used only twice and EditMenu, was used six times.

Except for P3, P7, and P10, participants used Dwell-and-Spring very often, with P1
and P4 using it systematically. The three participants who used Dwell-and-Spring in
less than 50% of the trials in the DROPPED case said that they were not willing to wait
for the spring to pop up to precisely reposition the icon, as precision did not matter
much. They also stated that they would have used Dwell-and-Spring, had precision
been an issue, for example, had the task been to reposition a scrollbar knob. We discuss
this speed-accuracy tradeoff in the next section. We can also observe that the frequency
of use is a bit lower in the DROPPED case than in the DRAGGING case. This is probably
due to the fact that doing a long press on an object to undo its last move is less natural
than making a pause during a movement the user wants to cancel.

The aforementioned results show that most participants quickly adopted Dwell-and-
Spring. Of course, the Hawthorne effect [Landsberger 1958] may have led to higher
frequency of use than we would have observed in a real setting. However, the qualitative
comments we collected at the end of the experiment were very positive and showed a
real interest for the technique. Several participants spent a lot of time discussing
design issues with the experimenter. Interestingly, more than half of the participants
suggested that Dwell-and-Spring should enable users to trigger multiple undos in a
single “spring step.”

3.5.2. Outliers and Errors. For our analyses, we first filter out trials that end while the
icon is more than 400pixels away from the ideal position it should have been put at.
As the distance between start and target icon locations is initially 800pixels and the
message pops up either at the end of the movement in the DROPPED case or in the middle
of the movement in the DRAGGING case, this 400pixel criterion captures outlier trials
where something unexpected occurred. In the DROPPED case, these are trials where
participants pressed the space bar before putting the icon back to its original position
in the Undo condition (i.e., instruction ignored, possibly because of mechanical routine).
This happened in 2.09% of the trials in the DROPPED case. In the DRAGGING case, these
are trials where participants either ignored the instruction that asked them to put the
icon back where it was (Cancel condition) or activated the spring while they should
have continued their current move (Continue condition). This happened in 2.78% of the
trials in the DRAGGING case (∼2% in the Cancel condition and ∼0.75% in the Continue
condition). This shows that participants activated the spring while they should not
have in less than 1% of the cases. All remaining trials, which ended with the icon being
less than 400pixels away from the target location, are kept for further analyses.
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Fig. 17. Movement time (left) and precision error in pixels (right) for Manual and Dwell-and-Spring, in
both cases DRAGGING and DROPPED (under Cancel and Undo). Error bars show the 95% confidence limits.

Regarding accidental interactions with the spring, we also recorded occurrences of
participants grabbing the spring without activating it while they should not have used
it (Continue condition). This happened in 3.86% of the trials in the DRAGGING case
and in only one trial in the DROPPED case. All these trials ended without any error,
indicating that participants were able to drop the spring. In the DROPPED case, a cancel
spring popped up in about 6.62% of the trials under the Continue condition (typically
just before the end of the task), but participants never activated it. These observations
tend to show that the Dwell-and-Spring technique minimizes accidental triggers and
enables easy repair.

3.5.3. Movement Time and Precision. Figure 17 shows movement time and precision (dis-
tance between the icon’s original location and its position at trial end time) for trials in
the Cancel and Undo conditions, after having removed the outliers mentioned earlier.
In the DRAGGING case, we observe very similar movement time for Dwell-and-Spring
and Manual, and a better precision (distance close to zero) for Dwell-and-Spring than
for Manual.3 In the DROPPED case, Manual was about 1.2s faster than Dwell-and-
Spring, but Manual was far less precise than Dwell-and-Spring. It is not surprising
that Dwell-and-Spring offers a much better precision, since it automatically performs
the ideal reciprocal manipulation, putting the object back to its exact original location.
The average precision error with Manual was 71.5pixels (median 69pixels). Our ex-
perimental design allowed participants to choose which technique they wanted to use.
This resulted in an unbalanced number of collected measures between the Manual and
Dwell-and-Spring conditions, thus violating the assumptions made when running a
statistical test comparing conditions. However, Figure 17 suggests a tradeoff between
movement time and precision when comparing Dwell-and-Spring and Manual in the
DROPPED case. The precision error is lower in the DRAGGING case than in the DROPPED case
as the spring was always popping up at the moment participants had to pause in the
middle of their drag movement. In such cases, the spring visually helped participants
revert the icon back to its exact previous location.

3.6. Summary

Collecting users’ habits in different contexts of use revealed that they always repair
their direct manipulation errors manually, except when the direct manipulation acts at
the functional level of the corresponding application. Observing users when they are in
an environment where Dwell-and-Spring is available revealed that one third of users
spontaneously tried to make use of it, and that demonstrating the technique even a

3The small imprecision observed in Figure 17-right is due to accidental clicks before pressing the space bar.
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Fig. 18. The DnD-List (List) technique (after playing the scenario in Figure 10).

single time is sufficient for users to understand and adopt it. Our quantitative analysis
highlighted the speed-accuracy tradeoff that users may face with such a technique.
While it may be a bit slower in some cases, Dwell-and-Spring allows users to accurately
cancel or undo a direct manipulation, which can be a significant advantage for precise
positioning.

4. EXPERIMENT 2: USABILITY OF DND−1 COMBINED WITH DWELL-AND-SPRING

We conducted a second experiment to test if users could understand and use the DND−1

model effectively when they have to restore the position of either a single object or
a group of objects. We also wanted to assess the relevance of the Dwell-and-Spring
technique (abbreviated Spring) in comparison with a baseline technique, which exposes
the full history (abbreviated List).

4.1. The DnD-List (List) Technique

As the DND−1 model is novel, we wanted to gather observations about its usability in-
dependently from its combination with Dwell-and-Spring. We thus designed a baseline
technique that exposes the full history of DND−1 in a standard list presentation, close
to the one found in, for example, Adode Photoshop. This technique, DnD-List (List),
consists of a separate window, that remains always visible on top of other windows. As
illustrated in Figure 18, this window shows a scrollable list. Each row displays the his-
tory of moves for a given group of objects G. An image of G is on the left, and the list of
paths that lead to all past locations of G is on the right. A path is displayed as a series of
arrows whose orientation matches that of the actual movements that brought G where
it currently is. The user can click on any of these paths to actually execute the recipro-
cal drag-and-drop that reverts this series of movements. As DnD-List is implemented
according to the DND−1 model, a reciprocal drag-and-drop is appended to the his-
tory, following the inverse model of selective undo (as Dwell-and-Spring does—see
Section 2.2).

As illustrated in Figure 19, List makes a screen capture each time users press the
mouse button, and creates a thumbnail picture of a group G when users select and
move it for the first time. List crops the minimal square that fully contains the group
and adds a white translucent mask on top of this image to emphasize the objects that
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Fig. 19. Thumbnail creation process for DnD-List. When users initiate a drag-and-drop on a multiple
selection (here, {folder_2, folder_3}) for the first time, DnD-List takes a screen shot, crops it and applies a
mask to emphasize the objects that actually belong to the group.

actually belong to the group. Objects that fall within the bounding box of the multiple
selection but that are not part of the group are still visible, but faded out.

Groups are sorted by the number of objects they contain (largest groups at the bottom
of the list). Groups that feature the same number of objects are sorted according to the
timestamp of their last move (a group is below another group if it has been moved more
recently). Each time a move occurs, resulting from either a manual drag-and-drop or a
reciprocal drag-and-drop, the path item that has just been inserted is highlighted and
the window auto-scrolls to make it fully visible inside the list’s viewport. Also, when the
mouse cursor hovers an item, the bounding boxes of objects that belong to the associated
group appear, along with a polyline showing what will become the center of this group
if the user selects this item. Figure 18 illustrates this. Gdesk has just been moved
(Figure 10(e)) and the cursor hovers a path item to restore a past position of Gmeeting.
This hovering feedforward mechanism, which is intended to prevent errors, is hosted
on a transparent layer on top of any application that implements the communication
protocol described in the implementation section earlier.

4.2. Hypotheses

Our main hypothesis is that users can interact with DND−1 using both techniques
(factor TECH = {Spring, List}). We hypothesize that DND−1 enables them to minimize
the number of operations required to revert a sequence of moves.

Our secondary hypothesis is that the cost of using a technique depends on the struc-
ture of the History relative to the reciprocalDnD(G,P) operation to do. This cost is
a function of both local and global depths. Let us consider a group G at position P.
The performance of Spring, which operates object wise, will be mainly impacted by
local depth, that is, the number of positions that G visited until it was eventually put
in P (LOCAL-DEPTH). The performance of List, on the contrary, will also and mainly be
impacted by the number of manipulations that have been performed on other objects
since G left position P. Indeed, this entails that the right item is deeper in the list
and that retrieving it requires more scrolling. To operationalize this notion of cost, we
consider two secondary factors: LOCAL-DEPTH and LIST-SCROLL, as detailed later.

The experiment was divided into two parts and took 70min on average. In each part,
participants had to both perform movements of objects using drag-and-drop operations
and apply undo operations in order to reach a specific graphical layout. In the first
part, the difference between the target and the current layouts can be corrected with a
reciprocal drag-and-drop on an individual object, whereas in the second part, solving
the difference requires performing a reciprocal drag-and-drop on a group of objects.
In both cases, if users make an optimal use of the DND−1, they are able to solve the
difference with a single (optimal) reciprocal drag-and-drop.
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Fig. 20. Move and Undo instructions for a single object.

4.2.1. Participants. Twelve volunteers (five female), all right handed, aged 24–40 years
old (average 30.0, median 28.5), daily computer users, participated in the experiment.

4.2.2. Apparatus. We used a Mac Pro workstation running Mac OS X, equipped with
a high-end graphics card connected to a 30” LCD display (100 dpi, 2560 × 1600pixels)
and an Apple Mighty Mouse set with the default transfer function.

4.3. Part 1: Multistep Reciprocal Drag-and-Drop for Individual Objects

4.3.1. Experiment Scene and Task. Starting from a graphical scene composed of 16 dif-
ferent shapes (Figure 20), participants are instructed to follow a scenario that consists
of a series of Forward and Backward instructions. Participants have to press the space
bar in order to get the specific instruction and perform it. In the case of a Forward
instruction [Figure 20(a)], the next position Pnext, where the shape S has to be moved
is shown by displaying an outline of S in Pnext with an arrow linking the center of S to
Pnext. In the case of a Backward instruction [Figure 20(b)], the past position Ppast (that
needs to be restored) of shape S is illustrated with a grayed out copy of S centered on
Ppast. To avoid any ambiguity when interpreting instructions, any two shapes either
differ in their geometry (circle, star, square, hexagon, triangle, or clover) or in both
their size (small or large) and outline stroke (dotted or solid). In the List condition, the
size of the history list window is set to 250 × 300pixels, meaning that a maximum of
four objects with up to two past locations fit in its viewport at the same time. To avoid
introducing variability in the way participants navigated the list, its window could not
be resized and it could only be browsed using the scroll bar.

The experiment program also controls the History’s structure, ensuring that it is
exactly the same across participants. Drag-and-drop interactions are enabled only for
Forward instructions. Conversely, the technique for restoring a past position (Spring
or List) is enabled only for Backward instructions. During a Forward instruction,
participants are allowed to move only the shape that has to be moved. Any other
move makes the application beep and cancel the move without recording it in History.
Similarly, during a Backward instruction, participants are allowed to restore a past
position only for the shape that differs from the indicated layout. Any other reciprocal
drag-and-drop causes a beep and is ignored. However, participants are not forced to
perform the reciprocal drag-and-drop in a single (optimal) operation. They can choose
to perform a series of reciprocal drag-and-drop operations as long as they perform them
on the right shape. The program logs the number of operations and proposes the next
instruction as soon as the shape is placed in the indicated position. Each time the
program beeps, it counts a misinterpretation and reinitializes the timer used to record
task completion time. We logged 3.8% such errors for Spring and 3.6% for List.

4.3.2. Design and Procedure. The experiment is divided into two blocks. One group of
six participants see the Spring block first, followed by the List block, while the other
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Fig. 21. Experiment 2. Presentation order of the six scenarios and TECH conditions across participants.

half start with List and then see Spring. At the beginning of each block, the operator
introduces the technique that participants are about to use (3min). Participants then
have to complete four scenarios, with the first one serving as a practice session (Spractice).

We collect measures (for analysis) on six scenarios (S1, . . . , S6) per participant, that
is, three scenarios per TECH block. We use the six same scenarios for all participants. We
compute six possible scenario presentation orders with a Latin Square. Each order is
assigned to two participants, one participant starting with List and another participant
starting with Spring (Figure 21). Overall, each scenario is played six times with List
and six times with Spring.

As explained earlier, a scenario consists of a series of Forward and Backward in-
structions. More precisely, a scenario contains 12 Backward instructions interleaved
with some Forward instructions, 4.75 in average (min=1 and max=8), for a total of
57 Forward instructions. Each scenario is generated in a pseudorandom manner, en-
suring a balanced number of measures per LOCAL-DEPTH × LIST-SCROLL and satisfying
three criteria: (1) the 12 Backward instructions of a scenario are distributed among
the same four shapes; (2) each shape is involved in three Backward operations with
LOCAL-DEPTH = {1, 3, 5}; (3) half of the Backward instructions can be performed by click-
ing an item that is initially visible when using List (LIST-SCROLL=NO), while the other
half requires scrolling the viewport (LIST-SCROLL=YES).

4.3.3. Results for Part 1. Among the 864 (12 instructions × 6 scenarios × 12 participants)
Backward instructions measured, 850 were completed by invoking a single reciprocal
drag-and-drop. This shows that participants were able to use DND−1 in an optimal
way for 98.38% of the Backward instructions they had to perform. The distribution of
nonoptimal trials plays against List (ten for List and four for Spring), and a pairwise
Wilcoxon test (n = 12) confirms a significant effect of TECH on the number of nonoptimal
trials (p = 0.048). However, there is no significant effect of the structure of History on
the number of such trials: neither LOCAL-DEPTH nor LIST-SCROLL has a significant effect.

For trial completion time (TCT) analyses, we only keep trials completed in an optimal
way. Among the 850 trials that were completed with a single reciprocal drag-and-drop,
participants scrolled the viewport even though it was not required in 11.11% of the
cases in the List condition. In these trials, participants failed to recognize the right
shape in the list’s thumbnails even though they were visible without scrolling (LIST-
SCROLL=NO). This is not surprising, as searching through a list of graphical objects to
find a target is a difficult task, that is costly in terms of both visual and cognitive
processing [Salvucci 2001]. We filter out these trials, as they may be an artifact related
to our experimental task. In a real context of use, objects may be either easier or harder
to recognize in these thumbnails, depending on the type of graphics in the scene.

ACM Transactions on Computer-Human Interaction, Vol. 22, No. 6, Article 29, Publication date: September 2015.

128 SELECTED PUBLICATIONS



Reciprocal Drag-and-Drop 29:25

Fig. 22. (a) TCT by scenario presentation order for each TECH. (b) TCT by TECH × LIST-SCROLL for the third
scenario. (c) ANOVA results.

We look at the evolution of performance over the three scenarios per technique in
order to check for a potential learning effect. As illustrated in Figure 22(a), we observe
such an effect only for List, not for Spring. An ANOVA shows a significant interaction
between TECH and the scenario presentation order on TCT (F2,22 = 3.76, p = 0.0392,
η2

G = 0.06). A post hoc (Holm corrected) t-test reveals that TCT significantly differs
between each pair of conditions that vary in their scenario presentation order for List,
while this is not the case for Spring. A t-test also shows that Spring is significantly
faster than List in the first (p = 0.0133) and second (p = 0.0188) scenarios, but not in
the third scenario (p = 0.2136).

So as not to disadvantage List by ignoring the fact that users’ performance will
benefit from learning, we analyze effects on TCT only for trials collected in the third
scenario. Figure 22(c) reports the results of an ANOVA for model TCT ∼ TECH × LOCAL-
DEPTH × LIST-SCROLL × Rand(PARTICIPANT). It shows that, in our experiment, the structure
of History impacts the performance of both Spring and List.

More specifically, both LOCAL-DEPTH and LIST-SCROLL have an impact on TCT for both
techniques. First, the local depth of History for an object (LOCAL-DEPTH), which sets
either the number of spring handles to traverse with Spring or the number of items
per object thumbnail with List, has an impact on the performance of both Spring and
List. Second, LIST-SCROLL, which is related to the global depth of History, has a large
effect on TCT. This mainly comes from the fact that the performance of List strongly
degrades when users need to scroll the list of items, as illustrated in Figure 22(b).
Indeed, the effect of TECH is marginal, whereas interaction effect TECH × LIST-SCROLL is
very large. A post hoc t-test (with Bonferroni correction) actually shows that (i) List is
significantly faster than Spring when LIST-SCROLL=NO (p = 0.0003) and that (ii) Spring
is significantly faster than List when LIST-SCROLL=YES (p = 0.0001).

While our analyses consider trials that better reflect the behavior of expert users,
results are similar when analyzing the entire set of measured trials. The only
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difference lies in the performance of List, which is slightly worse than that of Spring.
For instance, interaction effect TECH × LIST-SCROLL remains very strong, but there is a
significant difference between both techniques only when LIST-SCROLL=YES, whereas List
is not significantly faster than Spring when LIST-SCROLL=NO.

In summary, DND−1, combined with either Spring or List, lets users restore past
locations of individual objects in an optimal way. However, the performance of List
suffers from a high variability depending on the reciprocal drag-and-drop considered
and on the history structure. On the opposite, by adopting a per-object navigation
strategy, Spring limits this cost, yielding more constant performance figures across
reciprocal drag-and-drop actions.

4.4. Part 2: Reciprocal Drag-and-Drop for Groups of Objects

4.4.1. Experiment Scene and Task. In the second part of the experiment, the application
enables users to perform multiple rectangular selections through rubber-band interac-
tion. It also allows them to add and remove individual objects using Shift+Click. The
graphical scene is the same as in Part 1, but every Forward and Backward instruction
involves several objects. Also, as opposed to Part 1, in which Forward and Backward
instructions were interlaced, a scenario in Part 2 gives a series of Forward instructions
and ends with a single Backward instruction. This final instruction indicates a target
layout that can always be reached with a single (optimal) DND−1 operation.

As in Part 1, the application ensures that History is the same across participants by
constraining their interactions. For a Forward instruction, participants have to move
all shapes involved at the same time, using the correct multiple selection. Otherwise,
the application beeps and ignores the last move. For the final Backward instruction, the
application enables any sequence of reciprocal drag-and-drop actions. It records them
until the target layout is reached. Participants were also allowed to skip a trial on
demand, if they were confused and unable to figure out how to reach the target layout.
This could have happened if they had chained a large number of reciprocal drag-and-
drop actions.

4.4.2. Design and Procedure. As in Part 1, each participant has to complete two blocks,
one per TECH. When a block starts, the operator gives a 2min introduction about how to
use the technique on a group of objects. Participants then complete a practice scenario,
followed by six measured scenarios. We generate 12 scenarios (2 series of 6) in advance,
that we present to all participants. To make sure each scenario is performed with
each technique across participants, the presentation order between the two series of
six scenarios is always the same, but the presentation order between the two TECH

conditions varies (six participants start with Spring, the six others start with List). We
also counterbalance the presentation order of the six scenarios within a series by using
a 6 × 6 Latin square.

In Part 2, each scenario contains from 9 to 11 Forward instructions that involve three
or four subgroups of six specific graphical shapes among the 16 shapes in the scene. A
subgroup consists of 2, 3, 4, or 6 shapes and is involved in 1 to 5 Forward instructions.
The direction and amplitude of the drag-and-drop is randomly generated while avoiding
overlap between shapes. The final Backward instruction is generated by picking one of
a subgroup’s past locations (the chosen subgroup must have been moved at least four
times). The past location is either 1, 2, or 3 step(s) backward (LOCAL-DEPTH ∈ {1, 2, 3}).
Half of the scenarios require scrolling with List (LIST-SCROLL=YES), while the other
half does not (LIST-SCROLL=NO). In order to ensure an equivalent difficulty among the
two sets of six scenarios, we generated six pairs of scenarios. Paired scenarios feature
the same number of subgroups, which have the same size, and a similar sequence of
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Fig. 23. (a) Total number of trials completed with a single optimal DND−1 among the six trials each partic-
ipant performed with each TECH. (b) TCT by TECH × LIST-SCROLL.

instructions. They only differ in the shape of objects they contain, and in the amplitude
and direction of each drag-and-drop.

4.4.3. Results for Part 2. As explained earlier, each final Backward instruction can be
performed in a single optimal reciprocal drag-and-drop. The percentage of trials that
were completed in such an optimal way was high in our experiment, with no significant
difference between Spring (90.3%) and List (84.7%). Figure 23(a) reports the number
of trials that were completed in such an optimal way, per participant. Eight of the
twelve participants made either 0 or 1 error. Moreover, among the 18 trials that were
not completed with an optimal use of DND−1, 9 required only 2 or 3 reciprocal drag-
and-drop operations, and only 3 were considered as too difficult and skipped at the
participant’s request. These results show that, even if the notion of group necessarily
introduces some difficulty in the task, participants succeed in using the DND−1 model
to apply reciprocal drag-and-drop on groups of objects.

For our analysis of TCT, we first remove the 18 nonoptimal trials mentioned previously.
As we did in Part 1, we also remove 11.45% of trials in the List condition, which
correspond to cases where participants scrolled the viewport even though this was not
necessary (LIST-SCROLL = NO). However, as opposed to our earlier observations about
reciprocal drag-and-drop on single objects, there was no significant learning effect
on TCT, neither for Spring nor List. Figure 23(b) reports TCT by TECH for both LIST-
SCROLL conditions and shows the same TECH × LIST-SCROLL interaction effect we already
observed in Part 1. A t-test shows that Spring is significantly faster than List when
LIST-SCROLL = YES (p = 0.006), while this difference is not significant when LIST-SCROLL =
NO (p = 1.0). Finally, LOCAL-DEPTH did not have a significant effect on TCT.

4.5. Qualitative Questionnaire

At the end of the experiment, participants had to fill a questionnaire. They were asked
about their preferred technique, and about their perception of how easy it was to use
each technique for undoing moves on both individual objects and on groups of objects.
All participants said that Dwell-and-Spring was their preferred technique, which is in
accordance with the perceived difficulty of the different experimental tasks. Figure 24
illustrates this perception of difficulty as a score on a five-point Likert scale ([1: very
easy . . . 5: very difficult]). A pairwise Wilcoxon test with Holm correction reveals that
this score significantly differs for all six pairs of tasks. In particular, participants found
that Spring was easier to use than List for tasks on both individual objects and groups
of objects.
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Fig. 24. Participants’ subjective rating of difficulty with each TECH for both the single and group Backward
instructions on a five-point Likert scale (1: best, . . . , 5: worst).

4.6. Summary

Our empirical results suggest that the DND−1 model can effectively support undo for
direct manipulations on both individual objects and multiple selections. This does not
mean that participants understood all the details of DND−1, but that they were able to
use it effectively for the layout problem that they had to solve.

All participants expressed a preference for technique Spring over List. This probably
comes from the fact that List is a global technique that displays the whole history of all
objects, consequently suffering from issues related to the difficulty in identifying the
right manipulation in the history. The first issue is the cost of searching in terms of
motor control: the longer the history, the larger the number of required scrolling actions.
The second issue is the cost of recognizing an object or a group of objects as what can
be shown in the thumbnails is limited. Designing more meaningful thumbnails by
emphasizing differentiating features between groups would help, but this is difficult to
achieve in an application-independent manner since we do not have any information
regarding the semantics of the objects manipulated. By using an object as a reference
to provide a contextual history in place, Spring does not suffer from such problems. In
particular, Spring scales better than List with the size of the history, and better fits
with the per-object nature of the DND−1 model.

5. RELATED WORK

Most applications handle a history of commands, as well as meta commands UNDO and
REDO to navigate it. We review the different models implemented by existing applica-
tions to offer such functionalities. However, the DND−1 model should not be directly
compared to any of these undo models. It is not intended to replace any of them, but
rather to complement them. DND−1 helps users make a precise drag-and-drop and, if
this manipulation actually invokes an application command, it will be handled by the
application’s undo model. In that regard, DND−1 is rather an enhancement to direct
manipulation than an undo model.

5.1. Undo Models

In the most common case, the history of commands can be represented as a tree whose
nodes are interface states. In the linear undo model, only a single child is associated
with each node (the most recently visited one). This makes it impossible to access some
previous states of the interface via undo. A few applications like Emacs [Gosling 1982;
Yang 1992] provide users with a better experience, in terms of exploration, by mak-
ing any previous state recoverable. This is achieved by considering UNDO as a regular
command that also gets stored in the history. While this model is very powerful—any
state can be restored—it remains a bit confusing, as users have to figure out how to
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break a flow of undo commands. Also, this model is global: reverting an object to a
given past state entails undoing all commands that were performed afterwards, no
matter which objects they were performed on. As the US&R model [Vitter 1984],
the DND−1 model makes the whole branching of drag-and-drop history accessible.
However, DND−1 provides a direct path to any past location, while the US&R model
prompts the user each time a redo command is issued on nodes that have several
children.

Selective Undo [Prakash and Knister 1994; Berlage 1994] lets users select a com-
mand to undo anywhere in the history. The original mechanism [Prakash and Knister
1994] basically removed the command to undo from the history, and then redid the
commands that were coming after it in the history. However, this interpretation of the
history of commands as a script may not always match users’ mental model of the undo
command [Cass et al. 2006]. With direct selective undo [Berlage 1994], application
developers can implement an undo behavior that is more appropriate in this context,
by adding an inverse command at the end of the history. The Amulet toolkit [Myers and
Kosbie 1996] provides a good architecture to enable support for such undo mechanisms
in graphical applications. However, selective undo remains difficult to implement since
what the semantics of a reverse command should be is difficult to predict, as it depends
on the current interface state. The DND−1 model can be described as direct selective
undo for drag-and-drop at the level of individual objects and group of objects. It defines
the inverse move to be appended to the history of an object or group as the straight
movement from the latter’s current location to one of its past locations.

Edwards et al. [2000] experimented with a clever approach to handle undo in Flat-
land. It consists of introducing commands that will be nested with past commands
already stored in the history. As Flatland is a system intended to be used by several
users, undo commands can also be region based, regardless of when they happened.
This concept of regional undo has also been applied to spreadsheet editors [Kawasaki
and Igarashi 2004], interactive large displays [Seifried et al. 2012], code editors [Yoon
et al. 2013], VLSI systems [Zhou and Imamiya 1997], sketch-based interfaces [Oe
et al. 2013], and painting applications [Myers et al. 2015]. However, to support such
an advanced model of undo, applications must take into account a complex system of
dependencies and causal relationships. The CAUSALITY model [Nancel and Cockburn
2014] identifies the different components and relations that an application should use
to store their interaction history in order to support any advanced undo model.

Our model, DND−1, focuses on direct manipulation. It is not intended to replace the
functional undo model of applications, but to run in parallel with them. DND−1 uses a
direct selective undo model to provide users with shortcuts that bring objects back to
their exact past positions, which is something that would otherwise be difficult to do. In
a sense, DND−1 offers a quick way to perform forward recovery [Abowd and Dix 1992],
that is, to do the right manipulation from the present state to reach a novel state that is
similar to a past state for some objects’ location. Actually, when users restore object O
to a past location P, DND−1 simply sends a message asking the underlying application
to translate O from its current location to P. But DND−1 does not have any idea of
what the semantics of this object’s move are in the application. If this move triggers
the invocation of a command in the application, the command will be added to the undo
model of that application, no matter the complexity of this model. If this move does
not invoke any command, it will simply be ignored by the application’s undo model.
For instance, in a graphical editor, if DND−1 moves a slider that controls transparency
while an object is selected on the canvas, the setTransparency command will be stored
in the application’s command history of the graphical editor. But if there is no object
selected when DND−1 moves the slider, the application will ignore it. Object movements
performed by DND−1 can have functional effects in a given application. Those effects
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can be appended to the application’s own history of commands, as any object movement
that is performed by users, no matter the complexity of the underlying history model.

5.2. Navigation in Command Histories

A few applications allow users to access their interaction’s history. The most basic his-
tory representation is a list of text items as in, for example, Adobe Photoshop. Clicking
on an item reverts the document back to the state in which it was before this command
got invoked, following a linear undo model. The most elaborate history representa-
tion is probably the Chronicle system [Grossman et al. 2010] that was also designed
for image editing. This system proposes a sophisticated timeline of user actions and
serves chronicle widgets on demand. A chronicle is an augmented video clip of what
happened between two time stamps on a given image area. This approach provides
a very exhaustive visualization of commands performed, that supports reflection and
communication with others for, for example, creating tutorials. But it is not intended
to support undo navigation by restoring a previous state as Rekimoto envisioned with
the Time-Machine concept [Rekimoto 1999].

Other approaches have been designed more specifically for selective undo. In the
GINA system [Berlage 1994], history is a list of text commands. Users can filter them
out using string pattern matching expressions. As it may be difficult to refer to a
graphical object textually, users can also drag-and-drop an object onto the list to get the
partial history specifically related to it. Other systems represent the history graphically.
For instance, Meng et al. [1998] propose two types of history widgets for selective undo,
with which users can browse a collection of snapshots that illustrate the different
interface states. Representing the history as a picture list has also been investigated
in a collaborative web site design tool [Klemmer et al. 2002], in a painting application
to perform selective undo [Myers et al. 2015] and for representing users’ operations on
large and complex visualizations [Heer et al. 2008]. Chimera [Kurlander and Feiner
1992] also exposes the history as a list of graphical panels, allowing users to edit
an object in the history and propagate changes to the current state. Chimera relies
on an application-dependent visual language to create a graphical representation of
the command. This representation conveys the command’s semantics better than a
scaled-down snapshot of the full interface would, while using less screen real estate.
Nakamura and Igarashi [2008] later showed how to adopt such a comic strip metaphor
in an application-independent manner, by emphasizing low-level user events and by
using the Phosphor afterglow effect [Baudisch et al. 2006] on affected widgets. These
systems can be powerful, but browsing collections of pictures requires heavy-weight
widgets, which makes them ill suited to performing fast iterations in graphical layout
design tasks.

Dwell-and-Spring is a light-weight widget, that works in an application-independent
manner, both in terms of graphical rendering and interaction with the widget. This is
made possible by the fact that Dwell-and-Spring works at the local level (focus on
objects or groups of objects), and has a more focused role: contrary to the heavy-weight
widgets mentioned earlier, Dwell-and-Spring is not intended to navigate the whole
history of an application, but is designed to navigate the history of past locations of the
object it has been invoked on.

5.3. Enhancements to Direct Manipulation

As mentioned earlier, DND−1 focuses on the history of direct manipulations, provid-
ing shortcuts to drag-and-drop interactions that move objects and groups of objects.
UIMarks [Chapuis and Roussel 2010] also offers shortcuts for graphical interfaces, en-
abling users to explicitly put some marks on the user interface and configure them to, for
example, facilitate invocation of frequently used widgets. The drag-and-pop technique
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[Baudisch et al. 2003] also accelerates drag-and-drop interactions by using the direction
of movement to predict and bring potential targets close to the dragged object.

Dwell-and-Spring implicitly records the start and end points of any press-drag-
release interaction with which users can interact by using a dwell time to trigger
a widget. Using the time dimension during a drag-and-drop to avoid having to rely on
an additional modality (e.g., the keyboard) is not new and is, for example, used in some
systems to reveal the content of a folder when dwelling over its icon. Another example
is Scriboli [Hinckley et al. 2005] that suggests the use of dwelling after a lasso selection
to pop up a contextual menu.

Allowing users to interact during a press-drag-release interaction can also be ad-
dressed with other approaches such as crossing or gesture dynamics. For instance,
Fold-and-Drop [Dragicevic 2004] proposes to cross window borders to fold windows dur-
ing a drag-and-drop to facilitate navigation over windows. The trailing widget [Forlines
et al. 2006] follows the cursor and can be grabbed with a quick movement to access a
menu. Boomerang [Kobayashi and Igarashi 2007] allows users to suspend a drag-and-
drop by using a throwing gesture.

Most graphical editors support an explicit grouping command, but very few systems
support more lightweight grouping definitions as DND−1 does by keeping a trace of
multiple selections. Among them, Bubble clusters [Watanabe et al. 2007] automatically
cluster objects that have been brought close-by via direct manipulation. The Dynomite
notebook application [Wilcox et al. 1997] groups graphical strokes that are spatially
and temporally related, to enable users to undo the creation of a set of hand-written
letters, in the same spirit as a text editor does with a series of characters that belong
to the same word unit. QuickSelect [Su et al. 2009] proposes a similar propagation
mechanism for enlarging the current selection based on previous multiple selections.
Finally, Handle Flags [Grossman et al. 2009] also proposes extra grouping widgets
(handles) that appear when the stylus approaches hand-written strokes. There are as
many handles as the number of potential groups, which are computed based on how
the strokes are spatially clustered and how the user actually refined proposed groups
to perform previous multiple selections. However, if these techniques also keep trace
of previous selections as DND−1 does, they focus on the quick selection of these groups
and do not address interaction with their history.

6. DISCUSSION AND LIMITATIONS

DND−1 provides users with a simple way of putting individual objects and groups
of objects back to any location in their respective histories, regardless of what other
movements were applied to other objects in the scene. As graphical user interfaces
heavily rely on direct manipulation and object movements at large, DND−1 can be
helpful in many cases, at both the system level and the application level: as discussed
in this article (Section 2), reciprocal drag-and-drop actions may be useful for desktop
and window management, view navigation, direct manipulation in vector graphics
editors, and control of widgets such as sliders, scrollbars, color wheels, manipulation
handles, etc.

Both the operating system and applications can register object moves to DND−1.
A naive implementation would consist in systematically registering the translation
vector between the mouse press and release events (or the finger touch and lift events).
However, this will fail in some cases, as graphical objects feature some tolerance with
respect to the input movement, in order to make the motor action easier to perform.
For example, when a snapping mechanism is implemented, or when users manipulate
an object that only has a single degree of freedom (such as a slider using a 2D input
device), the input movement performed by the user does not necessarily match the
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actual graphical object’s movement. In such cases, what should be registered in DND−1

is the object’s actual move rather than what the input device receives.
Another issue to consider is that some object movements are performed using another

input device than the pointing device. For instance, users can scroll a document or move
the currently selected object using arrow keys. The resulting object movements can still
be registered in DND−1. For example, when scrolling a document by maintaining the UP
key pressed, the system can send a moved(scrollbarknob, d) to the model when the key
is released. By doing so, the scrolling operation is featured in DND−1’s history and can
be reverted. To avoid registering successive micro-movements, application designers
can implement any policy for aggregating moves before sending a message to DND−1.
Sending moved messages would be triggered as soon as an input event of another
type occurs, including those related to DND−1’s invocation. For example, several small
moves, applied in sequence to an object using arrow keys, can be aggregated into a
single moved message with the overall amplitude corresponding to the sum of the small
successive moves. The message would get sent as soon as users hit any other key or
use a mouse button.

DND−1 has been designed to be application independent. The downside of this choice
is that it has no knowledge of the semantics of object movements in the underlying
applications. In some cases, a reciprocal drag-and-drop will thus not correspond to
the undo of the command that was invoked by the initial drag-and-drop. For example,
when an icon is moved from one window to another, and the window arrangement is
changed afterwards, moving back this icon using the inverse displacement might not
put it back in the window (and folder) from which it was taken. In that regard, DND−1

shares one of the limitations of scripting systems that replay sequences based on cursor
movements (an issue raised in [Myers 1998]). This is why the interaction techniques
that are proposed to navigate DND−1 must provide a clear feedforward of what the
result of a reciprocal drag-and-drop will be (as Dwell-and-Spring and DnD-List do), so
as to help users anticipate and prevent such errors.

DND−1 can also be qualified as selection agnostic. There are two main reasons for
making this choice. First, an application-independent approach requires establishing
a common vocabulary across all applications for the communication protocol between
the model and the applications. As selection mechanisms can be different from one
application to another,4 establishing a common protocol that would consider an orthog-
onal notion of selection could have been confusing and would have inherently led to
more complexity in the communication protocol. Second, objects belonging to a given
selection may have different histories. This is an issue with regional undo that is far
from trivial to address [Li and Li 2003; Yoon et al. 2013]. As our approach is focused
on drag-and-drop, the notion of group is independent from the current selection, and
is only implicitly defined when users move several objects together by mean of a drag-
and-drop on a multiple selection. While this is a restriction of our model, it has the
advantage of containing its complexity.

Even if the DND−1 model itself does not conceptually interfere with the notion of
selection in applications, the choice of interaction technique used to navigate the history
may still have a side effect on the application’s selection, if the input events it relies
on interfere with those used by the selection mechanism. For example, a reciprocal
drag-and-drop invoked using DnD-List does not require any direct interaction with
the application’s objects and will thus always let the current selection unmodified. On
the contrary, invoking Dwell-and-Spring requires performing a long press directly on

4Consider, for example, advanced selection mechanisms like that of Adobe Illustrator, where there are two
levels of selection—vertex and shape—in comparison with the absence of the notion of selection on graphical
controllers such a slider knob.
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the object or group that should be reverted. If the application relies on a click (quick
press-release sequence) to select an object, Dwell-and-Spring will not interfere and will
leave the selection as is. But if the application relies on a simple press to select an object,
the object on which Dwell-and-Spring has been invoked will become the new selection.
Also, on touch screens that have a limited input vocabulary, long press events may
already be mapped to another action, such as entering an edit mode (e.g., for moving
app icons on home screens on a smartphone) or invoking a contextual menu. The spring
handle is offset with respect to the user’s finger and should allow him to ignore it if he
does not actually want to trigger a reciprocal drag-and-drop. However, additional UI
design work may be required to handle some specific cases where Dwell-and-Spring’s
footprint may still interfere with the application’s controls.

Finally, the extended version of Dwell-and-Spring that we introduced in Section 2
may generate some visual clutter, especially if the object on which it is invoked has
been moved a large number of times or if it has been involved in numerous multiple
selections. How much visual interference this might cause depends on the nature of the
graphical scene below, and on how past locations and target locations are distributed
over it. To reduce potential clutter, the DND−1 model can be implemented with a max-
imum length of past steps per group of objects kept in history.5 But a more interesting
solution would consist in designing a graphical footprint that progressively becomes
less intrusive as users get increasingly familiar with the widget. The feedforward of
a reciprocal drag-and-drop could be displayed as a simple straight line, rather than
as a series of springs that explicitly represent the full sequence of drag-and-drop that
will get reverted. We believe that a richer graphical representation helps explore the
history and understand the widget, but that it is not necessary to effectively use it.
Our experience with it makes us think that what is the most important, once familiar
with how the widget works, is the overlaid feedforward that helps anticipate the result
when brushing through the different spring handles. We plan to enhance DND−1’s com-
munication protocol in order to let the application developer specify, at the object level,
the best type of feedforward (a series of lines or springs, or a simple line or spring).
This could be especially relevant for objects that are always moved along a single axis,
such as scrollbar knobs or sliders.

7. CONCLUSION

We introduced DND−1, a model that keeps track of all past locations of objects that can
be moved through drag-and-drop interactions in a graphical user interface, including
windows and other view management widgets. We have extended the Dwell-and-Spring
technique and combined it with DND−1 in order to cover a large number of scenarios in
which users need to perform a reciprocal drag-and-drop action and that were identified
as limitations in Appert et al. [2012]. With this extended version of Dwell-and-Spring,
users can now recover any past location of a single object or group of objects. First, they
have access to the whole history of locations that an object has visited, and can thus
revert a series of drag-and-drop actions in a single step. Second, they have access to the
history of drag-and-drop actions on past multiple object selections, and can thus revert
a drag-and-drop on a group of objects without breaking the current active selection.

In the experiments that we conducted, participants were able to understand how
the technique works and how it makes it easier to perform reciprocal drag-and-drop
actions. They were also able to use it to solve graphical layout tasks in which advanced
reciprocal drag-and-drop actions are required. We plan to run a field study that will

5The number of past steps has an impact on the widget’s footprint, which may overflow the screen when
invoked close to its left or bottom edge. In such cases, the widget’s layout could be mirrored vertically and/or
offset in the spirit of how contextual menus behave in desktop interfaces.
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focus on the potential distractions that the widget popping up might cause. However,
as discussed in this article, we advocate for an implementation where the graphical
representation of Dwell-and-Spring gets lighter as the user becomes familiar with it.
The analogy with a physical spring is especially useful in the discovery phase of the
technique, but it probably becomes less so when users actually know how to use it and
want to optimize time.
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ABSTRACT
This paper investigates using stroke gestures as shortcuts to
menu selection. We first experimentally measured the per-
formance and ease of learning of stroke shortcuts in com-
parison to keyboard shortcuts when there is no mnemonic
link between the shortcut and the command. While both
types of shortcuts had the same level of performance with
enough practice, stroke shortcuts had substantial cognitive
advantages in learning and recall. With the same amount of
practice, users could successfully recall more shortcuts and
make fewer errors with stroke shortcuts than with keyboard
shortcuts. The second half of the paper focuses on UI de-
velopment support and articulates guidelines for toolkits to
implement stroke shortcuts in a wide range of software ap-
plications. We illustrate how to apply these guidelines by
introducing the Stroke Shortcuts Toolkit (SST) which is a li-
brary for adding stroke shortcuts to Java Swing applications
with just a few lines of code.
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INTRODUCTION
Invoking a command in a graphical user interface can usu-
ally be done through three different means: finding and click-
ing its label in a menu, finding and clicking its icon (e.g.
toolbar buttons) or recalling and activating a shortcut. The
most common type of shortcuts is typing a sequence of keys,
known as keyboard shortcuts or hotkeys. Gesturing strokes
is an alternative or complementary type of shortcuts that
is also used but only in a few products. For example, the
Opera1 and the Firefox2 web browsers have a set of strokes

1http://www.opera.com/products/desktop/mouse/
2http://www.mousegestures.org/
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to open a new window, close a tab, etc. However, while
the UI community has a longstanding interest in strokes as
an interaction medium [24, 23, 7] and developed several re-
search GUI prototypes, e.g. [17, 25], our understanding in
this subject is still rather limited. In particular, there is a lack
of basic cognitive and motor performance measurements of
stroke gestures as command shortcuts in comparison to the
standard keyboard shortcuts.

Traditional keyboard shortcuts have their limits in many situ-
ations. First, studies show that users often have difficulty to
transition from menu selection to keyboard shortcuts [14].
Second, keyboard shortcuts may not be convenient to use,
particularly for a growing number of non-traditional com-
puting and communication devices. For example the iPhone
and the pen-based Tablet PCs either have no keyboard at all
or require the user to manipulate the screen to make the key-
board accessible. Enabling the users to efficiently trigger
a command with a stroke gesture would overcome some of
these problems, complement our current interaction vocabu-
lary and enhance user experience.

In this paper we formulate and investigate the following hy-
pothesis: stroke shortcuts may have a cognitive advantage in
that they are easier to memorize than keyboard shortcuts. To
better support recall, designers should make the shortcuts as
analogous or mnemonic to the command name or meaning
as possible (See related work on icons [19]). However arbi-
trary mappings are unavoidable since many concepts in the
digital world do not offer a direct metaphor to the physical
world. Interestingly, because strokes are spatial and iconic,
which makes richer and deeper processing possible in hu-
man memory [3] even if the mapping is arbitrary, we hypoth-
esize that stroke shortcuts could have cognitive (learning and
recall) advantages over keyboard shortcuts.

We test this hypothesis from a user behavior perspective.
Complementarily from a system design and development per-
spective, we articulate a set of guidelines for developing easy
to use stroke shortcuts toolkits. As a first step in this di-
rection, we present the Stroke Shortcuts Toolkit (SST) that
integrates stroke shortcuts in a widely used development en-
vironment, the Java programming language and its Swing
toolkit. Combining both types of contributions, we hope to
encourage broader and faster adoption of stroke shortcuts in
real world applications.
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RELATED WORK

Strokes and commands
The best known work on using strokes to activate commands
is probably the marking menus designed by Kurtenbach and
Buxton [11]. A marking menu is a circular menu displayed
after a delay so expert users who have already learned the
menu layout can stroke ahead without the visual feedback.
Extensions to marking menus include simple mark hierar-
chical marking menus [27] and the Hotbox [12].

Kurtenbach and colleagues also proposed a technique that
can handle a larger vocabulary of gestures in the Tivoli sys-
tem [13]. In that system, if the user does not know which
gestures are available or how to gesture a command, he presses
down the pen and waits for a crib-sheet to display the com-
mands and their corresponding gesture strokes available in
the current context. The Fluid Inking [25] system proposes
a similar approach: to discover the available strokes, users
invoke a marking menu in which an item is composed of
a command name and the corresponding stroke description
(in words), such as “Select (Lasso)”. Neither crib-sheets in
Tivoli nor the augmented marking menus in Fluid Inking
have been experimentally evaluated.

Command strokes (CSs) proposed by Kristensson and Zhai
[10] took another approach. CSs are based on the ShapeWriter
text input system [26, 9]. With ShapeWriter, instead of tap-
ping a sequence of soft keys the user draws a stroke that ap-
proximately links the letters of the intended word on a soft
keyboard. To invoke a command, the user shape writes the
name, or a part of the name, of a command prefixed by the
special Command key. With CSs, users were able to invoke
a command 1.6 times faster than selecting an item in a pull-
down menu. Obviously, CSs require the presence of a soft
keyboard which takes some valuable screen space.

Shortcuts and memorization
Most studies on command input focus on the execution phase
and bypass the command recall phase by using experimental
tasks where the stimuli and the responses are congruent and
direct. For example, participants select an item in a marking
menu in response to a given direction (e.g., N, W, E, S) in
[11]. The same is true in [5, 8] where participants selected
a color swatch (in a toolglass, flow menu or a palette) in re-
sponse to a colored dot. In a study that did involve indirect
mapping between the stimulus and the response, Odell and
colleagues [18] compared toolglasses, marking menus and
keyboard shortcuts to invoke a set of three commands (oval,
rectangle, line). In particular, they compared two sets of key-
board shortcuts. One used the first letter of each command
(’O’, ’R’ and ’L’) while the second used three abstract nu-
meric keys (’1’, ’2’ and ’3’). The latter assignment was the
most efficient on average in their study.

Grossman et al. [4] recently conducted what is possibly the
most comprehensive study to date on learning arbitrary as-
sociations between commands and keyboard shortcuts. In
their task, the stimulus was a graphical icon of a familiar ob-
ject and the action was a keyboard shortcut composed of one
modifier key and an alphabetic key which was not a letter

contained in the object name depicted by the icon. They ex-
plored a number of display methods to accelerate user learn-
ing of keyboard shortcuts but found them ineffective except
for two rather forceful ones: one augments a menu com-
mand selection with the speech audio of the corresponding
hot keys; the other simply disables the menu selection abil-
ity (rendering the menu a crib sheet of shortcuts) forcing the
user to rehearse the keyboard shortcuts.

Despite these and other related works, using strokes as short-
cuts to commands still requires investigations. First, researchers
have never measured users’ ability to learn associations be-
tween a stroke and a command therefore the understanding
of strokes as commands is rather limited. Second, practition-
ers do not have the right tools to easily implement stroke-
based commands and integrate them into mainstream prod-
ucts. The following sections address these understanding
and practical aspects respectively.

STROKE SHORTCUTS VS KEYBOARD SHORTCUTS
In this section we evaluate the performance of stroke short-
cuts relative to that of keyboard shortcuts. This comparison
to keyboard shortcuts is not meant to be a competition, but
rather to use keyboard shortcuts as a baseline control condi-
tion. Since the use of shortcuts largely depend on their ease
of learning, we focus our study on learning aspects involved
in both types of shortcuts. We also limit our study to the gen-
eral case of arbitrary mappings between the commands and
the shortcuts, namely mappings without direct mnemonic as-
sociation in either condition. This decision was based on
several considerations. First, a learning experiment takes
time to do well even when it is focused. Second, the special
cases of mnemonic mapping, which should be maximized in
actual design, is rather limited in number. For example the
usual way of making a keyboard shortcut mnemonic is to
use the first letter of the command name. However this rule
makes interface developers quickly run into conflicts: in fact
the small set of five common commands {Cut, Copy, Paste,
Save and Print} already exhibits two conflicts. Also, for non-
English speakers, the same command may have different
names in different languages yet it has the same keyboard
shortcut (which is probably a reasonable design choice for
consistency). Third, stroke shortcuts can always be made as
mnemonics as keyboard shortcuts by choosing letter-shaped
strokes. Learning required in that case is probably limited.

Participants
Fourteen adults, two females and twelve males, 26 to 44
years old (mean = 31.8, SD = 4.7), participated in our ex-
periment. They were rewarded with a lunch coupon.

Apparatus
The apparatus was a 1.5GHz Pentium M ThinkPad Tablet
PC with a 13-inch tablet digitizer screen at 1024 × 768 reso-
lution. The experiment window was set in full-screen mode.
Participants used the stylus to stroke gestures and could hold
the tablet at any time if it felt more comfortable. The set of
strokes was designed by the experimenter and the stroke rec-
ognizer was based on Rubine’s algorithm [20] trained with a
set of 15 examples per stroke input by the experimenter.
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(a) (b) (c)

Figure 1. The task used in the experiment: (a) a command stimulus appears as an icon, the participant clicks on it (this makes the icon become
semi-transparent) (b) the participant invokes the command through a menu, (c) or through a shortcut (a stroke shortcut in this case)

ICON Keys Stroke ICON Keys Stroke

Shift+W Ctrl+W

Shift+D Ctrl+D

... ... ... ... ... ...

Figure 2. An excerpt of the mappings used in the experiment.

Task
We modeled our experimental task after Grossman et al. [4]
which was the most recent and most complete study to date
on learning keyboard shortcuts. The task required the par-
ticipants to activate a set of commands that were accessible
through both menus and shortcuts. Once a command stim-
ulus (i.e. a graphical icon, as in [4]) was displayed in the
center of the screen, the participant was asked to first click
on the icon (Figure 1-(a)) and then execute a correspond-
ing command as quickly as possible through either menu se-
lection (Figure 1-(b)) or a shortcut activation (by drawing a
stroke or pressing hot keys, depending on the experimental
condition) (Figure 1-(c)). The click on the icon at the begin-
ning of each trial prevented the participant from keeping the
mouse cursor in the menu area to only interact with menu
items. Both types of shortcuts were displayed on-line beside
the corresponding menu items. The participant was explic-
itly told to learn as many shortcuts as possible. In case he
did not know or remember a shortcut, he can use the menu
to directly select the command or look at the shortcut.

The keyboard shortcuts were assigned in accordance to the
rule used in [4]: they were composed of a sequence of a
modifier key followed by an alphabetic key that was not
the first or last letter of the name of the object. To reflect
a necessary difficulty in practical keyboard assignments, the
same alphabetic key preceded by two different modifier keys
(Ctrl or Shift) constituted two different commands. To re-
duce a potential bias, we reproduced this potential pair con-
fusion in stroke shortcuts as well: the same shaped stroke
with two different orientations activated two different com-
mands. Table 2 shows a sample of the icons and the two
types of shortcut we tested. To minimize the influence of
the participants’ personal experience, commands tested were
not those in common software applications but rather ob-
jects and activities of everyday life organized into five menus
(categories): Animals, Fruits, Office, Recreation and Veg-

m1
(Karate,12) ; (Pumpkin,12) ; (Hockey,6) ; (Mushroom,6) ; ... ;
(Keyboard,2) ; (Garlic,2) ; (Dinosaur,1) ; (Pineapple,1)

m2
(Karate,6) ; (Pumpkin,6) ; (Hockey,4) ; (Mushroom,4) ; ... ; (Key-
board,1) ; (Garlic,1) ; (Dinosaur,12) ; (Pineapple,12)

...

Figure 3. Examples of frequency assignments used in the experiment.

etables. Each menu contained 12 menu items resulting in a
total of 60 items. In order to have enough trial repetitions,
the participants had to activate a subset of 14 commands dur-
ing the experiment. Note that the rest of the 60 items were
also assigned shortcuts and served as distracters both to the
participants and to the stroke recognizer.

To reflect the fact that some commands are invoked more fre-
quently than others in real applications, we assigned differ-
ent frequencies to different commands for each participant,
as in [4]. The fourteen frequencies, defined as the number
of occurrence per block of trials, were (12, 12, 6, 6, 4, 4, 3,
3, 2, 2, 2, 2, 1, 1). We used 7 frequency assignments (m1,
..., m7), balanced across the 14 commands (Figure 3), and
assigned each mapping to a group of two participants. The
7 different mappings we used ensured that we collected the
same total number of measures per command in the overall
experiment.

Design
Participants had to complete 12 blocks of 60 trials organized
into two sessions on two consecutive days. Presentation or-
der for commands within a block was randomized while re-
specting the assigned frequencies. Participants had to per-
form 10 blocks on the first day and two blocks on the second
day. In the first two blocks on the first day (warm-up), the
only way of invoking a command was through menu selec-
tion so participants could become familiar with the menu
layout and the experimental task (Shortcut = None). In
the 8 other blocks (test) on the first day commands could be
invoked through either menu selection or shortcuts. These
blocks were divided into two sets: in 4 blocks the short-
cuts were keyboard-based (Shortcut = Keyboard) and in
the other 4 they were stroke-based (Shortcut = Stroke).
Within a group of two participants assigned to the same fre-
quency mapping mi, one experienced the test blocks in the
order Keyboard - Stroke while the other the order Stroke
- Keyboard. For the 11th and 12th blocks on the second
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day (re-test) both types of shortcuts were available and the
participants were told to use what was most convenient for
each trial (Shortcut = Both).

Before starting the first session, the experimenter distributed
instructions explaining the task and asking the participants
to learn as many shortcuts as they could in order to com-
plete the study as quickly as possible. Participants were
not told what would be in the second session so that they
would not consciously rehearse shortcuts during the break
between the two days. On the second day, they were told to
complete the last two blocks as quickly as possible by us-
ing the method of their choice for each trial (re-test blocks).
Throughout the experiment the participants could rest not
only between blocks but after every 20 trials within a block.
At the end of the experiment, they were given a question-
naire about their background (if and how much they used
keyboard shortcuts and if they had already used a gesture-
based interface) and their preference between the two types
of shortcuts based on their experience in the study. The fi-
nal part of the questionnaire was a table organized into three
columns “Icon/command”, “Keyboard shortcut” and “Stroke
shortcut”, similar to Figure 2, but with only cells of the first
column filled. The participants had to write down the two
types of shortcuts as they recalled them for every icon they
saw during the experiment. They also had to indicate a con-
fidence level between 0 (don’t remember at all) and 1 (totally
confident) to each shortcut.

Hypothesis
As mentioned in the Introduction, we hypothesize that an
arbitrary association between a command and a shortcut is
more learnable when this shortcut is a stroke rather than a
combination of keys. This hypothesis is based on two argu-
ments, one in favor of strokes and one against key combina-
tions:

• It has been previously postulated in the literature that strokes
(also known as gestures or marks) have various possible
advantages including being iconic [17]. The fact that con-
temporary software applications widely use icons indi-
cates that many users are able to build arbitrary mappings
between commands and icons. For example, a compass
icon is used for launching the Safari browser, a curved
arrow is for reversing the last action (undo) and a floppy
disk, now an obsolete concept, is used as an icon for sav-
ing the current file on the hard drive. More theoretically,
human memory research suggests that deeper or more lev-
els of encoding and processing help memory [3]. The
spatial and iconic information in a stroke may better en-
able users to imagine (encode) an association between the
stroke and its corresponding commands. For example,
when an upward straight stroke was arbitrarily assigned
to the object “bat”, the user may make up the association
of a bat flying upwards.

• Letters are special symbols which are strongly linked to
words in which they appear so it can be very difficult to
link a letter to a command name that does not start with
this letter (such as Ctrl+V for paste).

Results
We used three measures in our analyses:

• T ime, the total time interval (in ms) from the command
icon being presented to the completion of the correct com-
mand. Note that this was the total duration including both
recall and execution time.

• Errors, the number of times the participant entered a
wrong shortcut before typing or stroking the correct one.

• Recall, a binary measure which is equal to 1 when the
participant was able to activate the right command with a
shortcut without opening the menu and without any error,
0 otherwise.

The main results lie in the measures collected for the test
blocks in which Shortcut=Stroke and Shortcut=Keyboard
were balanced and compared. Variance analysis on the T ime,
Error and Recall data showed that the interaction effect
of Presentation Order × Shortcut was not significant,
confirming that the counterbalancing strategy for minimiz-
ing presentation order effect was successful. We also veri-
fied that the participants followed the instructions and indeed
used the shortcuts instead of relying solely on menu selec-
tion. Across the 8 blocks they used shortcuts in 96% of the
trials for Shortcut = Stroke and in 88.5% of the trials
for Shortcut = Keyboard, indicating that the participants
switched from menu selection to stroke shortcuts more often
or earlier than to keyboard shortcuts. This measure already
suggests that stroke shortcuts were easier to learn.

Our hypothesis was also supported by the three main mea-
sures from the 8 test blocks. First, on average the trials in the
Stroke condition were completed faster than the trials in the
Keyboard condition (F1,13 = 36, p < .0001). Second,
the participants had significantly better recall scores with
stroke shortcuts than with keyboard shortcuts (F1,13 = 32,
p < .0001). Third, the participants made significantly fewer
errors with stroke shortcuts than with keyboard shortcuts
(F1,13 = 23, p < .0003)3. Figure 4 summarizes these re-
sults.

To compare the learning speed for each type of shortcut, we
plotted the mean T ime and Recall performances as a func-
tion of the number of times an item was tested from the be-
ginning of the experiment (Figure 5). The results also sup-
ported our hypothesis: T ime decreased faster with stroke
shortcuts than with keyboard shortcuts; Recall accuracy in-
creased faster with stroke shortcuts than with keyboard short-
cuts. Note that the performance difference between the two
types of shortcuts is primarily cognitive (learning and recall-
ing the shortcuts). With enough practice, when the user per-
formance is more likely to be limited by motor execution
(around the 25th exposure in this experiment), the difference
in both time and recall between the two types of shortcuts
became indistinguishable.

Data collected in the re-test blocks on the second day al-
lowed us to evaluate users’ memory retention of the short-
3Note that this result is actually even more favorable to stroke
shortcuts since some participants reported that some of their errors
were due to a lack of accuracy in the stroke recognizer.
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cuts learned and to see which type of shortcuts they pre-
ferred. Figure 6 shows each individual participants percent-
age of use for each technique (Keyboard,Stroke andMenu).
Although varied by individual, on average significantly more
stroke shortcuts than keyboard shortcuts were used (F1,13 =
43, p < .0001). The overall mean percentages of use for the
three techniques were: 77.7 % Stroke, 20.3 % Keyboard,
2 % Menu.

Finally, answers to the post hoc questionnaire showed that
all of the participants had intensive previous experience with
keyboard shortcuts in their everyday activity (about 15-20
different shortcuts) and that none of them had ever used strokes.

Despite this experience bias in favor of keyboard shortcuts,
the answers to the final question where they had to fill the
table revealed that they had learned stroke shortcuts better
than keyboard shortcuts in this study. On average 11.6 stroke
shortcuts and 4 keyboard shortcuts were correctly answered.
The participants’ confidence level was also higher with stroke
shortcuts (11.7/14 on average; 14 means complete confi-
dence on all commands tested) than with keyboard shortcuts
(4.2/14 on average).

The participants’ open remarks confirmed some of the anal-
yses that led to our hypothesis. Strokes gave them richer
clues to make up an association (more levels of process-
ing) between a command and its arbitrarily assigned stroke:
“I thought of this stroke as fish because the shape’s stroke
makes me think about a basin” or “I associated this stroke
with a jump and I see karate as a sport where people jump”.
Interestingly, no two people mentioned the same trick to as-
sociate a stroke with a command.

In summary, although the purpose of stroke shortcuts is not
to replace or compete against either menu selection or key-
board shortcuts, the experiment clearly shows that stroke
shortcuts can be as efficient as or more advantageous than
keyboard shortcuts. After enough practice, the total trial
completion times including both recall and execution were
indistinguishable between the two types of shortcuts. How-
ever with the same fixed amount of practice, the participants
successfully recalled more shortcuts and made fewer errors
in the Stroke condition than in the Keyboard condition.
On the second day the participants chose to use stroke short-
cuts significantly more often than keyboard shortcuts, and
correctly recalled about 3 times as many stroke shortcuts as
keyboard shortcuts.

STROKE SHORTCUTS AND UI DEVELOPMENT
The study we conducted suggests that stroke gestures can be
used as command shortcuts that are as effective as, or even
more effective than, keyboard shortcuts. However, imple-
menting stroke shortcuts in real applications is more chal-
lenging than implementing keyboard shortcuts because com-
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monly used graphical toolkits do not support stroke input. In
order to encourage the adoption of stroke shortcuts in a wide
range of applications, we articulate a set of guidelines for
stroke shortcuts development based on an analysis of previ-
ous literature and our own experience. We then introduce
Stroke Shortcuts Toolkit (SST), an extension to Java Swing
that we have developed to support stroke shortcuts.

Guidelines to make stroke shortcuts easy to implement
(1) template-based recognition algorithm
Several tools for implementing stroke recognition already
exist. For example, Satin [7] is a Java toolkit that uses a
special component, a Sheet, on which strokes can be drawn
and sent to a recognizer. Satin’s recognizer is built on Ru-
bine’s training-based recognition algorithm [20]. To accu-
rately train the different features representing a stroke in the
algorithm (e.g. size, orientation, speed), enough examples
(about 15) must be given for each stroke and these examples
must reflect the variance along these feature dimensions. Ei-
ther the interface designer or the end user has to enter these
examples. On the one hand, it is difficult for the designer to
foresee the stroke variations that can occur among all users
4. On the other hand, if the training task is left to the end
user, another set of difficulties arises: when and how should
the interface ask the user to enter these examples? Users
tend to be reluctant to invest time and effort upfront to train
or adjust software before using it. A third approach is to
train the recognizer with examples from a large standardized
stroke corpus. However, without a firmly established user
community and stroke standard, such a corpus is difficult to
collect.

While training-based recognition handles different styles and
habits in natural handwriting fairly well, it may not be neces-
sary with novel stroke gestures that can be explicitly defined
with unique templates. In fact the work of ShapeWriter has
shown that template-based recognition can handle thousands
of stroke gestures if multiple channels of information are ap-
propriately integrated ([9]). More recently, Wobbrock et al
[22] formally evaluated template matching methods (with
and without elasticity [21]) in comparison to Rubine’s al-
gorithm for recognizing strokes similar to those used in this
paper. In their favored method, the $1 recognizer, each tem-
plate is represented by a set of equally spaced points, scaled
to a given bounding box and rotated to an indicative an-
gle (i.e. the angle formed between the first point and the
centroid of the template). When a stroke is entered, it is
resampled, scaled and rotated to its indicative angle so its
distance to each template can be computed by summing the
distances between pairs of corresponding points. Their ex-
periment results show that such a simple template match-
ing approach in fact has better performance than Rubine’s
algorithm. By eliminating training issues while still being
accurate, a template-based algorithm is the best choice to
implement stroke shortcuts.

(2) Simplify the task of designing a set of strokes
4This was a challenge that we faced during the experiment pre-
sented in the previous section in which the Rubine’s recognizer was
trained by the experimenter.

In [15], Long et al. studied the task of designing a set of
strokes for Rubine’s recognition algorithm. Participants were
asked to obtain the best recognition accuracy they could. Re-
sults showed that it is a very difficult task and no one partic-
ipant was able to go beyond the 95.4% recognition rate. A
typical problem they observed is that participants tend to add
strokes that are too similar to those already defined. This
shows that designers’ imagination must be stimulated by
providing them with a design space for defining a set of
strokes for the commands of the application they want to en-
hance.

Most of the other problems Long et al. identify in the task
of defining a set of strokes are specifically dependent on
Rubine’s algorithm [15]. They concluded that participants
(including computer science students) were not able to get
a high recognition rate because they do not understand the
principles of the algorithm. It is very difficult to get a men-
tal model of how Rubine’s algorithm works: it represents a
gesture as a set of features and not as a series of points and
uses a covariance matrix that evolves each time an exam-
ple or a new stroke class is added with the potential unpre-
dictable consequence of degrading the recognition accuracy
between the old stroke classes. The study in [15] suggests
that the underlying mechanisms in the recognition engine
must be transparent to the interface designers.The simple
shape matching algorithm used in the $1 recognizer is prob-
ably better from that perspective. However, the rotation in-
dependence property can be hard to anticipate since the no-
tion of indicative angle is not straightforward. This rotation
step can also be a limitation: for example, the rotationa-
independent recognizer cannot distinguish among lines in
different directions which are convenient for invoking re-
ciprocal commands (e.g. “previous” and “next” in a web
browser). Furthermore, Long et al. [16] showed that stroke
initial angle and angle formed by first and last stroke points
are important to perceive two strokes as different while the
rotation independence limits variations that can be expressed
along these two dimensions. Thus the most comprehensive
and permissive recognition algorithm is probably the one
used in the $1 recognizer without the rotation independence
which in fact was also the algorithm used in the shape chan-
nel of ShapeWriter ([9]).

(3) Make stroke shortcuts visible to end users
A well-known and important drawback of using strokes to
activate commands is that these strokes are not self-revealing
[13, 6, 1]. In other words, as opposed to buttons and menus,
the user cannot guess which stroke-based commands are avail-
able and which stroke triggers which command. Often novel
features of an interface are unused not because they are dif-
ficult to use, but because the users are not aware of them.
Therefore interfaces should offer visual clues to available
strokes to make end users able to discover and learn their
effect.

(4) Integrate stroke shortcuts in graphical toolkits
Because interface developers are not willing to change their
development environment or rewrite their existing applica-
tions, interface toolkits should support the implementation
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Figure 7. A simple Java Swing interface for a music player.

Figure 8. The Design Shortcuts application

of stroke shortcuts. Of course, the implementation capabili-
ties should be high-level enough to minimize developer pro-
gramming effort. As a baseline, developers typically need to
only add one line of code per command to implement a key-
board shortcut. Implementing a stroke shortcut should not
involve much more programming effort.

SST: stroke shortcuts in Java Swing
In this section, we present SST5, a Java Swing extension to
simplify the addition of stroke shortcuts to any Swing appli-
cation. To illustrate, lets consider that we want to add stroke
shortcuts to the music player window shown on Figure 7 and
built with the instruction:

SimplePlayer player = new SimplePlayer();

To define the mappings between the commands and their
shortcut strokes, the developer can invoke the Design Short-
cuts graphical design environment shown on Figure 8. Launch-
ing this environment on the application windows for which
he wants to map commands with stroke shortcuts requires
the single line:

// Launch Design Shortcuts environment on the main player
window and its About dialog shown on Figure 10
1 new DesignShortcuts(player, player.about);

5SST is an open source project containing about 3000 lines of code
and is available online: http://code.google.com/p/strokesshortcuts/.

The Design Shortcuts interface (Figure 8) is divided into
three areas: the stroke dictionary (left panel), the set of short-
cuts (middle panel) and the testing area (right panel). To
define a new shortcut, the developer clicks on the ’+’ button
displayed on the right of a stroke in the dictionary. This pops
up the list of commands found in the attached windows. He
can either (i) pick one of these commands in the list or (ii)
type a new command name. Callbacks for these new com-
mands are handled through the use of Java listeners as ex-
plained later in this section. At any time, the developer can
test the recognition accuracy by drawing in the testing area.
As soon as a stroke ends, the application displays the list
of the distances between the input stroke and each template,
the recognized stroke being the template with the shortest
distance.

The stroke dictionary contains an initial set of 9 predefined
strokes for the developer to choose from. With these prede-
fined strokes, the developer can already define a large set of
shortcuts by combining several of these strokes and/or ap-
plying geometrical transformations to them. One can use
the transformation buttons displayed on top of each stroke
to rotate or mirror (horizontally or vertically) a stroke before
adding it to the set of shortcuts (using the ’+’ button dis-
played to the right of the stroke). In the example shown in
Figure 8, the developer has used the same shape for Ok and
Play: the orientation of the Ok shortcut suggests a check
mark while the Play shortcut suggests the symbol usually
dedicated to the play command in many music players. Se-
lecting several strokes before pressing one of the ’+’ but-
tons will build a new stroke that is the concatenation of the
selected strokes. For example, the stroke for the About
command has been defined by concatenating the predefined
“arch” stroke with a mirrored copy of it6. Once added to the
set of shortcuts, the transformation buttons remain displayed
for further modifications. If needed, the ’-’ button displayed
to the right of each stroke allows the shortcut to be removed.

Compared with starting with a “blank page”, providing a set
of primitive strokes and a set of operations on these strokes
opens a structured design space that can be systematically
explored. However, there is no reason to constrain the de-
veloper to this set of primitives. Developers can expand the
stroke dictionary with additional custom strokes: a “Free
stroke” button at the bottom of the list of primitives opens
a separate frame for drawing a stroke to be added to the dic-
tionary. This is how the developer has defined a question
mark stroke for the Help command in our example (Fig. 8).

Once designed, the set of shortcuts can be saved as a file
(“player.strokes” here) and enabled on a given Swing inter-
face through a few lines of code. In our music player ex-
ample, only 10 lines of code (Figure 9) are needed to ac-
complish this. SST connects the shortcuts to a Swing GUI
using a central object, the stroke shortcuts manager (m, line
1). This object is in charge of integrating stroke shortcuts to
the Java Swing toolkit and is used to register:

• the mappings (stroke to command name) (line 2),

6A pop up menu allows to duplicate any stroke in the dictionary.
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1 StrokeShortcuts m = new StrokeShortcuts(
player, player.dialogAbout);

2 m.addShortcuts("player.strokes",
MENU_PREVIEW, TOOLTIP_PREVIEW);

3 m.setCriterion(player.playlist, new Criterion(){
4 public boolean startStroke(MouseEvent event) {
5 return event.getButton() == MouseEvent.BUTTON3;
6 }
7 });
8 m.disableStrokes(player.sliderSong);
9 m.disableStrokes(player.sliderVolume);

10 m.enableStrokesSheet();

Figure 9. Complete code to add keyboard shortcuts to the music player
interface.

Figure 10. Strokes in different windows.

• the windows that contain commands that can be invoked
through these shortcuts (lines 3 and 4) and

• the “strokable” components, i.e. the Swing widgets on
which strokes can be drawn (lines 5 to 13, detailed below).

In SST, a stroke is defined as a series of points sent by an
analog input device (a mouse or a digital pen) that starts with
a press event and ends with a release event. Each stroke
occurring on a “strokable” component is entered into the
recognizer to get the name of the command that is then in-
voked through the Java accessibility interface. In our ex-
ample, line 1 registers both the main frame and the About
dialog as “strokable” components so the user can draw on
any of the two windows as illustrated in Figure 10. By de-
fault, all children components of a “strokable” component
are also “strokable”. Since press, drag and release are events
that may already be used by standard widgets, SST allows
the developer (i) to associate a criterion on the mouse press
event that specifies when the stroke recognition must be en-
abled or (ii) to disable stroke recognition on specific compo-
nents. For example, no criterion is required when the user
wants to stroke on the interface background while one is re-
quired for a list box on which a drag is already an action
dedicated to selecting items in the list. In this latter case,
the developer can decide to accept only strokes drawn when
the right mouse button is pressed (lines 3 to 7). Finally, he
disables stroke recognition on the sliders for adjusting the
playing point in a song and the volume (lines 8 and 9).

By default, in SST, a stroke leaves a visible ink trail (by
means of the transparent overlay available in the window
containing the component). At the end of a stroke, its ink
trail is either smoothly morphed into the template it matches
(in case of recognition, as ShapeWriter does [9]) or flashes

red (if it is not recognized). Note that the ink is morphed
into a template scaled to the same size as the stroke to min-
imize visual change. Also, the morphing animation stops
as soon as the user starts a new stroke so expert users can
enter strokes in rapid succession. The morphing animation
(or beautification) not only provides a feedback of recogni-
tion result but also helps novice users learn the correct stroke
shape and discourages expert users from departing too much
from the ideal shape. If the transparent overlay is already
used for another purpose, stroke ink can be disabled and
a different feedback mechanism can be implemented. One
or several stroke listeners can be attached to the shortcut
manager which will be notified each time the user begins a
stroke, adds a point to a stroke or ends a stroke. When ending
a stroke, the event can be of one of the three types: recog-
nized shortcut, recognized stroke or non recognized stroke.
In all cases, the current input stroke can be retrieved from
the received event so that it can easily be used for other in-
teractions. For example, a non recognized stroke could be
used for drawing in a graphical editor.

To address the visibility problem (i.e. users do not have a
way to discover the available strokes and their meaning),
SST offers three types of visual clues to make the user dis-
cover and learn the mappings: Tooltip, Menu preview and a
Strokes Sheet. The first two types of visual clues are turned
on or off by the parameters of addShortcuts (line 2 on Fig-
ure 9). If Tooltip is turned on, any graphical component that
provides a shortcut will display it in a tooltip that pops up
when the mouse cursor dwells over this component. If this
component already has a tooltip associated with it, the ex-
isting tooltip is augmented with the stroke illustration while
preserving its original text. Similarly, if the Menu preview is
turned on, any menu item that is invokable by a stroke dis-
plays a preview of this stroke beside its label as is usually
done with keyboard shortcuts. Finally, a Strokes Sheet can
be enabled in the stroke shortcuts manager (line 10, Figure
9). A strokes sheet is an independent window that displays
the list of shortcuts and the name of their associated com-
mands found in the current opened windows. The behavior
of the strokes sheet has been inspired by the Tivoli system
in [13]: this sheet pops up each time the user pauses during
a stroke (at the beginning or at any moment while stroking)
and remains visible until the user enters a shortcut that is
successfully recognized or closes the sheet.

In this section, we showed how SST allows a developer to
add stroke shortcuts to a Java Swing interface in only 10
lines of code without having to modify the basic code for
the music player. The 3000 lines of code in SST offload the
developer not only from having to implement or train any
recognizer but also from developing visual displays (morph-
ing feedback, tool tips or crib sheet). We have also shown
how the Design Shortcuts environment helps developers to
map a set of strokes by offering a structured design space.

Recognition accuracy in SST
Since the recognizer implemented in SST skips the rotation
step of the $1 recognizer evaluated in [22], one may wonder
to what extent it affects recognition accuracy. Although we
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have not observed a noticeable degradation during our in-
formal tests, we decided to conduct a controlled experiment
that measures the recognition accuracy of our simple match-
ing algorithm on the set of strokes shown in Figure 11. We
chose to use a set of 16 strokes since the answers to the post
hoc questionnaire of Experiment 1 revealed that our partic-
ipants use roughly 15 different keyboard shortcuts in their
everyday use of computers.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 11. The 16 strokes used in our experiment.

This experiment involved 6 of the participants that had al-
ready served in our first experiment and the same apparatus.
The task was very simple: one stroke was displayed on the
screen and the participant was told to reproduce it as fast
as possible and as accurately as possible. As soon as the
participant started to draw, the sample stroke disappeared to
avoid turning the reproduction task into a copy task. At any
time (except during stroking), the participant could have the
stroke displayed again by pressing the space bar and start the
task again. We implemented this possibility to avoid the sit-
uation where the recognition failed and the participant had
forgotten what stroke to produce. A trial ended only if the
right stroke was recognized.

The experiment had two Input device conditions: Pen and
Mouse. We included a regular mouse for two reasons. First,
since the mouse is less dexterous than a pen in articulat-
ing shapes (drawing one’s signature with a mouse vs. a pen
shows the difference), the mouse condition would add more
stress to the recognizer. Second, it is also practically useful
to know if stroke shortcuts can be used with a mouse. In the
experiment the participants had to perform 11 blocks in each
condition that were grouped to avoid successive changes of
input device. Each block consisted of 16 trials, one per
Stroke, presented in a random order. The presentation order
of input devices was counterbalanced between participants
so 3 participants started in the Mouse condition while the 3
others started in the Pen condition. In each condition, the
first block was a practice block.

We measured the Stroking time, i.e. the time between the
press and the release event when drawing the right stroke,
and the number of Recognition errors. Analysis of vari-
ance revealed a significant effect of both Input device (F1,5 =
34, p < 0.002) and Stroke (F15,75 = 25, p < 0.0001) on
Stroking time. Users were faster with a pen (394 ms on
average) than with a mouse (704 ms on average). Also, the
Stroking T ime increased with the complexity of the stroke,
supporting the results reported in [2]. More surprisingly,
we observed a significant interaction effect of Stroke ×
Input device on Stroking time (F15,75 = 5, p < 0.0001):
differences between input devices seem to increase with the
complexity of the stroke (particular more curves). All these
results are illustrated on Figure 12.
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Figure 12. Stroke time by Stroke× Input Device

Analysis of variance also revealed a significant effect of Input
device (F1,5 = 9, p < 0.03) on Recognition errors. In the
Mouse condition, the participants made 7.4% errors on the
first attempt at each stroke sample presented. Among these,
they succeeded 73% of the time with the second attempt,
10% with the third attempt, and 17% with the subsequent
attempts. In the Pen condition, only 3% of the trials failed
with the first attempt, of which 76% were corrected with the
second attempt, 7% with the third attempt, and 17% with the
subsequent attempts. There was also a significant main ef-
fect of Stroke (F15,75 = 3, p < 0.001) on Recognition
errors: the error rates drastically changed when remov-
ing the 3 more complex strokes from our data: less than
0.001% of the trials in the Mouse condition and 0% of
the trials in the Pen condition on the first attempt. Finally,
for Recognition errors, the interaction effect Stroke ×
Input device was not significant. Overall this study shows
that the recognizer used in the StrokeShortcuts library is ac-
curate. Although users’ stroke articulation speed was con-
siderably slower with a mouse than with a pen, the shape-
matching based recognition algorithm could accurately rec-
ognize mouse strokes as well.

CONCLUSION
Menu selection has been, and will likely continue to be, the
basic and dominant way of activating commands in human-
computer interaction. Ubiquitous in modern software ap-
plications, keyboard shortcuts provide a faster alternative to
frequently used commands. The investigation presented in
this paper encourages the use of stroke gesture as shortcuts
for touch screen-based devices without a physical keyboard.
The conceptual and empirical study in the first part of the
article shows that stroke shortcuts can be as effective as key-
board shortcuts in eventual performance, but have cognitive
advantages in learning and recall. With the same amount
of practice, about three times as many stroke shortcuts were
learned as keyboard shortcuts. Following a set of develop-
ment guidelines articulated in the second half of the paper,
we have shown a simple way to implement stroke shortcuts
in Java Swing by providing developers with SST. Requir-
ing no training by the developer or the end user, the built-
in shape matching-based recognizer in SST can yield high
accuracy for simple strokes, even if the strokes are articu-
lated with a mouse. SST offers a structured yet open design
environment and simplifies the implementation of strokes’
visibility in applications.
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Integrating stroke shortcuts in the Java / Swing platform-
independent framework is a first step, we now plan to de-
velop extensions to other frameworks like Objective C / Co-
coa or C# to cover most of the applications developed for
touch screen devices ranging from Apple’s iPhone to HP’s
TouchSmart desktop PCs.
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ABSTRACT 
Substantial amount of research in Psychology has studied 
how people manipulate objects in the physical world. This 
work has unveiled that people show strong signs of prospec­
tive motor planning, i.e., they choose initial grasps that avoid 
uncomfortable end postures and facilitate object manipula­
tion. Interactive tabletops allow their users great flexibility in 
the manipulation of virtual objects but to our knowledge pre­
vious work has never examined whether prospective motor 
control takes place in this context. To test this, we ran three 
experiments. We systematically studied how users adapt their 
grasp when asked to translate and rotate virtual objects on a 
multitouch tabletop. Our results demonstrate that target posi­
tion and orientation significantly affect the orientation of fin­
ger placement on the object. We analyze our results in the 
light of the most recent model of planning for manipulating 
physical objects and identify their implications for the design 
of tabletop interfaces. 

Author Keywords 
Movement planning; acquisition and manipulation; range of 
motion; end-state comfort effect; multitouch; tabletops 

ACM Classification Keywords 
H.5.2 [Information Interfaces and Presentation]: User Inter­
faces - Graphical user interfaces; 

INTRODUCTION 
The manipulation of virtual objects has a central role in in­
teraction with tabletops. For example, users move and rotate 
documents and pictures around the surface to share them with 
other users. Graphical designers manipulate information and 
graphical objects to create new content. Multiple users work 
collaboratively to create schedules, make decisions, or solve 
complex problems. In all these scenarios, users interact with 
their hands and their fingers; they grasp, translate, and rotate 
virtual documents as they would do with physical objects. 

Literature in experimental Psychology contains a large body 
of work that studies the manipulation of physical objects. 
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In particular, several experiments have shown that the ini­
tial grasp when acquiring an object is influenced by the sub­
sequent planned actions so as to optimize end-state com­
fort [20]. Research in Human-Computer Interaction has never 
validated or tested these results, which suggest that we could 
possibly anticipate people’s intentions as soon as they grab an 
object and before its actual manipulation starts. 

Given that multitouch interaction techniques [5, 12, 28] usu­
ally simulate object manipulation in the physical world, we 
hypothesize that movement planning also takes place when 
users directly manipulate virtual objects with their hands. If 
this hypothesis is supported, we could possibly infer infor­
mation about users’ prospective movement to improve user 
experience during the manipulation phase. Interface design­
ers could, for example, develop techniques that adapt their 
graphical layout to improve visual feedback, avoid potential 
occlusion issues [4, 25] or reduce interference [10] when mul­
tiple users interact in close proximity in collaborative settings. 
We could also derive directions about how to design grips and 
visual guides to facilitate both the acquisition and the manip­
ulation of virtual objects. 

We test this planning hypothesis by observing how people 
grasp objects prior to moving them to specific positions and 
orientations on a horizontal screen. We present three experi­
mental studies that examine a simple two-dimensional dock­
ing task on the surface of a multitouch tabletop. The first 
experiment tests translation-only tasks. The second experi­
ment tests rotation-only tasks. Finally, the third experiment 
examines tasks that combine both translational and rotational 
movements. The results of all the three experiments confirm 
the planning hypothesis. They show that the placement of 
the fingers at acquisition time is influenced by both the initial 
and the final state (position and orientation) of the virtual ob­
ject. They also provide valuable information about how users 
grasp objects at different positions of a multitouch tabletop. 

We analyze our results in the light of the Weighted Integration 
of Multiple Biases model [6], a very recent model in Psychol­
ogy research. The model helps us to explain how the orien­
tation of a user’s initial grasp is influenced by a combination 
of several factors or biases, where each bias pulls the grasp 
orientation towards a certain orientation. We examine how 
our experimental results conform to this model. Finally, we 
discuss the design implications of our findings and identify 
several future directions. Our work focuses on multitouch 
tabletops but could serve as a framework for studying object 
manipulation in a larger range of user interfaces, including 
multitouch mobile devices and tangible interfaces. 
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wanti · panti + wdef ault · pdef ault 
pinitial = (1) 

wanti + wdef ault 

RELATED WORK 

Manipulating Objects on Multitouch Surfaces 
Previous work has studied a range of multitouch gestures for 
manipulating objects on interactive surfaces. Wu and Bal­
akrishnan [28] defined a set of gestures that make use of both 
hands and multiple fingers. Among others, they demonstrated 
how to perform freeform rotations using the thumb and index 
finger. Moscovich and Hughes [17] proposed multi-finger in­
teractions that allow users to control a larger number of de­
grees of freedom to translate, rotate, and deform an object in 
a single manipulation. Kruger et al. [12], on the other hand, 
proposed single-touch rotation and translation mechanisms 
relying on physics-based metaphors for manipulating objects. 
Hancock et al. have discussed advantages and disadvantages 
of different rotation and translation techniques [5]. Studies 
reported in [16, 27] have proposed sets of gestures defined by 
end-user elicitation methods and concluded that people pre­
fer conceptually and physically simpler gestures than the ones 
created by HCI researchers. Finally, Hinrichs and Carpendale 
[8] examined how adults and children naturally interact with 
tabletops and observed significant variations among gestures 
of different users. 

Discussing the properties of graspable user interfaces, Fitz­
maurice and Buxton [3] identify two main phases of inter­
action: acquisition and manipulation. Although these two 
phases can be studied separately [3, 24], previous results 
[9] indicate that manipulation performance may depend on 
proper acquisition. Multitouch gestures are subject to the 
physical constraints imposed by the user’s arm, wrist and fin­
ger joints. As a result, they can result in joint stress and dis­
comfort. Hoggan et al. [9] studied the extent and comfort of 
90◦ rotational movements at different locations on a horizon­
tal surface starting from different angular postures. Lozano et 
al. [13] measured muscle activation using electromyography 
and observed that gestures involving two fingers can result in 
high levels of muscle activation. They concluded that “multi­
touch interaction has impact on the entire hand shoulder sys­
tem and in some cases the impact can be at risk level”. 

Planning when Manipulating Physical Objects 
How people plan their acquisition and grasp to facilitate 
movement and optimize comfort has been the focus of a large 
body of work within the fields of Psychology and Motor Con­
trol. This work can be expressed using the notion of orders 
of planning [18]. Within that system, the last task in a se­
quence that influences the behavior defines the planning or­
der. First order planning occurs when a grasp is influenced 
by the immediate task, for example the objects shape. Sec­
ond order, when the grasp is influenced by the subsequent 
task, e.g., grasping an object to rotate or translate it to a given 
position, and so on. Research studying first order planning of 
grasp have revealed that the kinematics of the hand depend, 
for example, on the size, orientation, and shape [11, 22] of 
the object of interest. 

Several studies have considered second or higher order plan­
ning. Marteniuk et al. [14] showed that the kinematics, i.e., 
the shape of a grasp, is influenced by the intended use of the 
object. Rosenbaum and colleagues have extensively studied 

how people orient their hand when grasping an object. They 
revealed that individuals favor initial hand placements that 
result in end positions that are either comfortable, i.e, opti­
mize end-state comfort [19, 21], or yield the most control 
[20]. Short and Cauraught have corroborated these results 
[23]. This type of planning behavior is termed prospective 
movement control [1]. 

The above studies have mainly focused on discrete tasks 
where participants had to choose one of two grasps (e.g., 
grabbing a cylinder with the thumb up or down). Choos­
ing one grasp yields an uncomfortable end position while the 
other one a comfortable, hence optimizes end-state comfort. 
However manipulating physical or user interface objects usu­
ally involves more continuous tasks. 

Other studies, reviewed by Herbort [6], have examined con­
tinuous tasks, in particular rotations of physical knobs for a 
range of angles. Their results suggest that end-state com­
fort planning alone cannot sufficiently explain the observed 
grasp selection in such tasks. Herbort [6] argues that it is un­
clear how precisely someone can anticipate a final posture of 
a movement and its associated costs, and therefore, optimal 
planning may not always be feasible. To account for the var­
ious biases that determine a grasp selection, he proposes the 
Weighted Integration of Multiple Biases (WIMB) model [7]. 
In its simplest form, the model can be expressed as follows: 

According to the model, two different biases contribute to the 
initial grasp orientation pinitial. An anticipatory bias pulls 
the initial grasp toward a pronated or supinated angular po­
sition panti, depending on the intended direction of rotation. 
A second bias pulls the initial grasp toward a preferred task-
independent orientation pdef ault . The contributing weights 
wanti and wdef ault of the two biases can vary, for example, 
depending on the difficulty of the task or the required end 
precision. The above model can be extended with additional 
bias terms, such as one that accounts for the effect of previ­
ous movements in a sequence of tasks that involve different 
rotation directions and angles [6]. 

To the best of our knowledge, HCI research has never vali­
dated or tested the above results. The most relevant contri­
bution in this direction belongs to M ̈ollers et al. [15]. They 
tested the hypotheses of a predecessor and a successor (i.e., a 
planning) effect on the offset and angle of a touch point in a 
sequence of pointing tasks. They observed that finger posture 
is influenced by the previous pointing action but not by the 
next pointing action. This suggests that prospective control 
does not occur in this specific pointing case. 

GOALS AND APPROACH 
Our hypothesis is that movement planning plays a determi­
nant role in tabletop interaction as movements extend to a 
large space and object manipulation involves the coordination 
of multiple limbs, often in constrained positions and postures. 
Our goal was to test this hypothesis but also understand and 
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starttarget
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(a) (b) (c) (d) (e) 

Figure 1. Experimental task scenario: The task requires the user to (b) grab the green object with the thumb and the index finger, (c) move it towards 
the red target and then align it with it, and (d) hold the object in the target for 600 ms to (e) complete the task. 

r

Figure 2. The position of interactive objects expressed in polar coordi­
nates (r, θ), where r is the radial distance and θ is the clockwise angle 
with respect to the vertical axis of the screen. The grip orientation is 
expressed by the clockwise angle φ defined by the thumb and the index. 

describe how planning affects how users grasp virtual objects 
to facilitate their manipulation. 

We conducted three experiments. The experiments tested un­
constrained translation and rotation tasks on different loca­
tions of a multitouch surface. As opposed to Hoggan et al. 
[9] who express screen location in x and y coordinates, we 
use a polar coordinate system and express the location of an 
object in terms of its distance r and angle θ with respect to 
the front-center of the screen, close to where the user stands 
(see Figure 2). This design configuration was driven from 
the observation that the orientation of a neutral hand posture 
changes in circular manner around the user. Although the po­
lar coordinate system presented in Figure 2 is not an accurate 
representation of the user’s biomechanical coordinate system, 
it offers a reasonable approximation and simplifies data anal­
ysis. As we see later in this paper, our approach allows for 
better experimental control and a simpler interpretation of the 
observed grasp orientations. As Hoggan et al. [9], we focus 
on one-hand two-finger interaction, where objects are grasped 
and rotated with the thumb and the index finger (Figures 1-2). 

Our studies are mostly inspired by the continuous-tasks ap­
proach [6, 7] rather than discrete-tasks approach of Rosen­
baum et al. [18, 19, 20]. The former is more generic and 
can describe situations with uncertainty about the final grasp 
orientation of a movement and the costs associated with a cer­
tain object acquisition strategy. In such cases, optimal plan­
ning is difficult or even impossible. We analyze our data in 

the light of the WIMB model [6], which predicts the initial 
grasp orientation given the anticipatory target-orientation bias 
and the default task-independent orientation bias (see Equa­
tion 1). The WIMB model was based on results from pure 
rotation tasks with tangible objects. Here, we examine trans­
lation in addition to rotation. 

EXPERIMENTAL METHOD 
The task of all the three experiments consists of grasping and 
moving an object. Each experiment, however, focuses on a 
different movement component. In Experiment 1, we test a 
translation task where participants have to change the posi­
tion of the object while keeping its initial orientation. Experi­
ment 2 involves rotations, requiring participants to change the 
objects’ orientation but not their position. In Experiment 3, 
we combine translations and rotations so participants need to 
both change the position and orientation of the object. 

Apparatus 
The experiments were performed on a 3M Multi-Touch Dis­
play C3266P6 with 698.4×392.85 mm display area, a refresh 
rate of 120 Hz, and a native resolution of 1920 × 1080. The 
display was placed flat on a table in landscape orientation, re­
sulting in the multitouch surface to be at a height of 95 cm. A 
digital video camera on a tripod above the display monitored 
the participant’s hand and arm movements. 

The experimental software was developed in Java 2D (JDK 
6) and ran on a Macbook Pro 2.66 GHz Intel Core i7 with 
4GB memory, running Mac OS X 10.6.8. Touch noise was 
reduced with a complementary filter. 

Common Task Features 
Figure 1 illustrates a typical scenario for our experimental 
tasks. In all three experiments the touch display shows a cir­
cular start object, which can be moved and rotated, and a 
static circular target. The start object is green and has a di­
ameter of 60 mm. The target object is red and has a diameter 
of 70 mm. To start a trial the user presses a touch button at 
the bottom half of the display. The user has then to grab the 
start object with the thumb and the index of the right hand 
and manipulate it to make its position and orientation match 
the target. The user can freely translate and rotate but not 
resize the object. Translations follow displacements of the 
center of the segment connecting the touch points of the two 
fingers. Rotations follow changes in the angular position of 
this segment. The orientation of both object and target are 
indicated by a handle (small open circles). Grasping the start 
object triggers the appearance of a secondary handle (small 
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r = 157 mm

45°45°

r = 314 mm

Figure 3. Extreme range of grip angles for various tabletop positions. 
Average ranges for the right hand of 10 right-handed participants. 

closed circles) located 180◦ from the primary (Figure 1-b). 
To complete a task the start object has to be held in the tar­
get for 600 ms. The precision tolerance for placing the object 
into the target is ±5◦ in angular direction and 5 mm in diam­
eter. The angular positions (θstart and θtarget ) of objects, their 
radial distances (rstart and rtarget ) and their rotation angles β 
are specific to each experiment and will be detailed later. 

The user interface provides visual feedback to indicate that 
the object was correctly placed into the target. It also pro­
vides visual and audio feedback to inform the user about the 
completion of the task and errors, which occur when the user 
lifts a finger before task completion. 

Procedure 
Prior to each experiment, participants had to wash their hands 
and dry carefully in order to minimize screen friction and fa­
cilitate object sliding. Participants were positioned standing 
at the center of the long side of the display and were not al­
lowed to walk. The operator asked them to only use the thumb 
and the index finger of the right hand to interact with the ob­
ject, while keeping their left hand down by their side. Par­
ticipants were not explicitly encouraged to plan their grasps 
and were not aware of the experimental goals. They were 
instructed not to rush and avoid errors. 

Measures 
We recorded detailed information about the position of the 
fingers on the multitouch screen and their movements. Our 
two main dependent variables are: 

1. The initial grasp orientation φinit  [ 180◦ , 180◦], mea­
sured as the clockwise angle between 

∈
the 
−

vertical axis and 
the vector from the thumb to the index finger (see Figure 
2). Our 3M multitouch display could not differentiate be­
tween fingers. We derived the correct grasp orientation 
from the range of attainable grasp orientations, measured 
at each screen position in a pre-study with 10 participants 
(see Figure 3). We also used detailed logs and recorded 
video to ensure that grasp orientation was derived correctly. 

2. The default task-independent grasp orientation φdef ault  
[−180◦ , 180◦] for each position of the display. To measure 

∈

it, we only consider trials where start and target configura­
tions are the same. 

We also measure E rrorRate and the reaction time RT par­
ticipants need to plan their grasp before touching the screen. 

Hypotheses 
We hypothesize that φinit is determined by both the start and 
target object configurations. We expect that planning will oc­
cur for both rotational and translational movements. Since the 
orientation of ergonomic hand gestures changes along differ­
ent locations of the tabletop [9], we predict that users will 
plan appropriately in order to reduce the occurrence of un­
comfortable end-postures. Influenced by the WIMB model 
[6], we hypothesize that φinit will be affected by three fac­
tors of postural bias: φdef ault of the start position, φdef ault 
of the target position, and the object’s angle of rotation β. 

EXPERIMENT 1: TRANSLATIONS 
We first tested translation tasks, where participants had to 
grab and move an object, keeping its initial orientation. 

Participants 
Twelve volunteers (four women and eight men), 23 to 32 
years old, participated in the experiment. All were right-
handed and had normal or corrected-to-normal vision. 

Task and Conditions 
We tested six screen positions for both the start and the tar­
get objects. One was located close to the user, centered on 
the vertical axis of the display, 35 mm from the front edge. 
We refer to it as the User position. The other five positions 
were located around the User position with an angular posi­
tion θstart of −90◦ , −45◦ , 0◦ , 45◦, and 90◦, and a radial dis­
tance of r = 314 mm. The start and the target objects could 
appear at the same position. In this case, the user should hold 
the start object and keep it inside the target. 

To test whether and to what extent planning occurs for trans­
lation tasks, there were two main conditions: 

Known Target. The target appears with the start object at the 
beginning of the task. Users are aware of the end position of 
their movements, and therefore, they can plan the orientation 
of their grasps. 

Hidden Target. This is a control condition. The target is ini­
tially hidden. It appears after the user acquires the start ob­
ject. Thus, users cannot plan the orientation of their grasp. 

Design 
We followed a within-participants full-factorial design, which 
can be summarized as follows: 

12 participants 
× 2 Conditions (Known, Hidden Target) 
× 2 Blocks 
× 6 θstart (User, −90◦ , −45◦ , 0◦ , 45◦ , 90◦) 
× 6 θ (User, −90◦ 

target , −45◦ , 0◦ , 45◦ , 90◦) 
× 3 Replications 

= 5184 tasks in total 

In addition, participants completed 15 practice tasks for each 
condition. The order of presentation of the two conditions 
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Figure 4. Mean reaction time for each of the three task replications 

was fully balanced among participants. Start and target po­
sitions were randomized within each block. Tasks were 
grouped by three but in a different way for each condition. In 
the Known Target condition, groups contained the three repli­
cations of the same task, allowing participants to re-plan and 
possibly revise their grasp orientation. In case of an error, the 
participant had to restart the task. In the Hidden Target condi­
tion, groups contained a random selection of tasks. When an 
error occurred, the task was not repeated immediately. It was 
moved to the end of the block and was replaced by the follow­
ing in the list. This design eliminates planning effects for this 
condition. Experimental sessions lasted 50 to 60 minutes. 

Results 
For error comparisons, we used the Wilcoxon signed-rank 
test. For RT, we conducted a 5-way Repeated Measures (RM) 
ANOVA with the complete set of factors. For φdef ault , we 
conducted a 3-way ANOVA, where we included only Known 
Target tasks for which θtarget was identical to θstart . Finally, 
for φinit, we split our data into three sets: 

1. PE R I P H E RY: The start and target objects are at the periph­
ery of the display. 

2. OU T WA R D: The start object is close to the user. 

3. IN WA R D: The target object is close to the user. 

We conducted a 5-way RM ANOVA for the first set and 4­
way RM ANOVAs for the second and third set, as the factors 
θstart and θtarget , respectively, were not relevant for these 
sets. We only report on main effects and two-factor inter­
actions that are meaningful and relevant to our hypotheses. 
When possible, we use a 95% confidence interval (CI) [2] to 
report on the estimated difference between two means. 

Errors 
E rrorRate was 3.6% (S D = 1.9%) and 5.3% (S D = 
3.5%) for Known and Hidden targets, respectively. Yet, this 
difference was not statistically significant (Z = −1.37, p = 
.17). Interestingly, leftward movements, starting from the 
right half (45◦ , 90◦) and ending to the left half ( 45◦ , 90◦) 
of the display resulted in more errors than rightw

−
ard 

−
move­

ments (Z = 3.06, p = .002). Their error rate was 15.3% 
(S D = 7.8%) 

−
compared to a 3.0% (SD = 4.0%) of the exact 

opposite movements. We believe that there are two causes of 
this difference. First, fingers of the right hand may produce 

Figure 5. The default grasp orientation φdef ault at each position θstart 

more friction when moved leftwards. Second, the right arm is 
more constrained by the user’s body when moving leftwards. 
Similarly, we found that outward movements starting close to 
the user produced more errors than the reverse inward move­
ments (Z = −2.32, p = .021), where E rrorRate was 6.4% 
(S D = 3.8%) and 3.5% (S D = 3.1%), respectively. We be­
lieve that increased finger friction and movement constraints 
due to the anatomy can also explain this difference. 

Reaction Time 
RT was not significantly different between Known and Hid­
den targets (CI: [−112 ms, 15 ms], p = .12). However, 
we found a significant interaction Condition × Replication 
(F2,22 = 76.78, p < .001). Figure 4 presents the estimated 
mean values. The results suggest that planning only occurred 
for the first instance of each series of replicated tasks. 

Grasp Orientation 
θstart had a significant effect on the default grasp orientation 
φdef ault (F2.2,23.9 = 84.79, p < .001)1 . Figure 5 presents 
how φdef ault varied along different angular positions. 

PE R I P H E RY. φinit was not significantly different between 
Known and Hidden targets (CI: [−9.9◦ , 2.5◦], p = .22). 
However, the interaction Condition × θtarget was signifi­
cant (F4,44 = 13.25, p < .001), which indicates a plan­
ning effect. We found a significant main effect of both θstart 
(F1.2,12.8 = 71.24, p < .001) and θtarget (F1.9,21.0 = 12.83, 
p < .001). Surprisingly, Replication did not significantly af­
fect the grasp (F2,22 = 1.51, p = .242). This seconds our re­
sults on response time for Known Target: participants planned 
their grasp for the first task in the group but did not refine it 
after. As shown in Figure 6, φinit was mainly determined by 
the start position. The target position contributed less, mainly 
for target positions at the left half of the display. 

IN WA R D . Again, φinit was not significantly different be­
tween Known and Hidden targets (CI: [−5.2◦ , 2.1◦], p = 
.36). The effect of θstart was significant (F1.6,17.2 = 37.90, 
p < .001). However, Condition × θstart was only marginally 
significant (F12.2,24.5 = 3.15, p = .056). As shown in Figure 
6, planning only occurred as a slight bias towards lower grasp 
angles for start positions at the right half of the display. 

1When sphericity is violated, the degrees of freedom have been cor­
rected by using Greenhouse-Geisser correction. 
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Figure 6. Experiment 1: Effect of start θstart and target θtarget angular positions on φinit for peripheral, inward and outward translations 

OU T WA R D . φinit was significantly lower for Known Tar­
get (CI: [−18.1◦ , −2.9◦], p = .011). The effect of θtarget 
was significant (F2.0,22.0 = 4.66, p = .02), as was the in­
teraction Condition × θtarget (F1.7,18.7 = 4.34, p = .033). 
Figure 6 shows that planning occurred, but not as expected. 
The orientation bias added by the target positions θtarget =0◦ 

and θtarget =45◦ has a direction opposite to the one suggested 
by their default orientations (see Figure 5). This means that 
participants chose a grasp away from both the start and end-
state comfort position. For the −45◦ target position, results 
are more unclear because different participants chose differ­
ent strategies. Our interpretation is that comfort is not always 
determined by the start and end state of the movement. As the 
arm and hand have multiple segments and joints that need to 
coordinate in order to accomplish a movement, transitions be­
tween intermediate states can play an important role. In this 
particular case, we observed that participants adapted their 
grasp to optimize the flow of their movement. 

EXPERIMENT 2: ROTATIONS 
The second experiment tested pure rotation tasks that are 
closer to the physical rotation tasks reviewed by Herbort [6]. 

Participants 
Twelve volunteers (four women and eight men), 22 to 46 
years old, participated in the experiments. Three had also 
participated in Experiment 1. All were right-handed and had 
normal or corrected-to-normal vision. 

Task 
Participants performed rotations in two directions βdir ∈ 
{clockwise, counterclockwise}. Rotations β had three lev­
els: 40◦ , 80◦ , 120◦. As the task did not involve translations, 
the start and target positions overlapped. We tested the same 
angular positions θ as in Experiment 1 but added a closer ra­
dial distance r = 157 mm. We discarded the U ser position, 
as rotational movements are uncomfortable when the hand is 
too close to the body. 

Contrary to Experiment 1, the target object was always dis­
played. Our pilot tests showed that completing the most diffi­
cult tasks (β ≥ 80◦) with no previous knowledge of the target 
was hard or impossible. 

Design 
We followed a within-participants full-factorial design, which 
can be summarized as follows: 

12 participants 
× 3 Blocks 
× 5 θ (−90◦ , −45◦ , 0◦ , 45◦ , 90◦) 
× 2 r (157 mm, 314 mm) 
× 2 βdir (clockwise, counterclockwise) 
× 3 β (40◦ , 80◦ , 120◦) 

= 2160 tasks in total 

Prior to the experiment, participants completed 15 practice 
tasks. The order of tasks within each block was randomized. 
The experiment took approximately 20 minutes to complete. 

Results 
For error comparisons, we used the Wilcoxon signed-rank (2 
related samples) or the Friedman test (k related samples). For 
RT and φinit, we conducted full 5-way RM ANOVAs. 

Errors 
The angle of rotation β had a significant effect on errors 
(χ2(2) = 11.35, p = .003). ErrorRate was 3.5% (S D = 
3.7%), 2.6% (SD = 2.4%), and 6.4% (S D = 3.3%) for 40◦ , 
80◦, and 120◦, respectively. Differences were significant be­
tween 40◦ and 120◦ (p = .024) and between 80◦ and 120◦ 

(p = .013). ErrorRate was 4.6% (S D = 3.0%) for clock­
wise and 3.6% (SD = 3.2%) for counterclockwise rotations, 
but this difference was not significant (Z = −1.03, p = .31). 

Reaction Time 
The mean RT was 1057 ms. It was significantly longer (CI: 
[6 ms, 157 ms], p = .038) for clockwise than for counter­
clockwise rotations. Larger angles also took longer to plan 
(F2,22 = 20.80, p < .001). More specifically, 120◦ rotations 
took 208 ms (CI: [120 ms, 269 ms]) more than 40◦ rotations 
(p = .001) and 151 ms (CI: [75 ms, 226 ms]) more than 80◦ 

rotations (p = .003). Block did not have any significant effect 
on RT (F2,22 = .51, p = .61), i.e., no learning occurred. 

Grasp Orientation 
φinit was significantly higher for counterclockwise rotations 
(CI: [21.1◦ , 27.5◦], p < .001). The effects of β (F1.4,15.2 = 
20.76, p < .001) and the interaction βdir × β (F1.1,12.5 = 
50.76, p < .001) were also significant. As shown in Figure 7, 
the effect of clockwise rotations was more pronounced. This 
result is not surprising. It can be explained by the fact that 
the right range of grasp orientations, which is used for the 
planning of counterclockwise rotations, is more constrained 
compared to the the left range of orientations (see Figure 3). 
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Figure 7. Experiment 2: Effects of the rotation angle β and the angular position θ on the grip orientation φinit 

Figure 7 illustrates the effects of θ (F1.6,17.4 = 257.84, 
p < .001), r (F1,11 = 23.13, p < .001), and θ × r 
(F2.3,25.5 = 42.26, p < .001). The effect of θ decreases 
as r becomes shorter, and we can expect that it converges to 
zero as interaction approaches the user’s position. Finally, 
we found no learning effects. The main effect of Block was 
not significant (F2,22 = 1.68, p = .21) and neither was its 
interaction with other factors (p > .7). 

EXPERIMENT 3: TRANSLATIONS AND ROTATIONS 
Experiments 1 and 2 showed planning effects for both trans­
lations and rotations. Experiment 3 tests how users plan their 
grasp orientation in preparation to more complex tasks where 
rotation and translation occur in parallel. 

Participants and Task 
This study involved the same participants as Experiment 2. 
We tested six start and target positions, where θstart , θtarget 
∈ {−60◦ , 0◦ , 60◦} and rstart , rtarget ∈ {157 mm, 314 mm}. 
In addition to these positions that define the translational 
movement component, we tested three angles of rotation β 
∈ {−90◦ , 0◦ , 90◦}. 

Design 
We followed a within-participants full-factorial design: 

12 participants
 
× 3 Blocks
 

, 0◦
× 3 θstart (−60◦ , 60◦) × 2 rstart (157 mm, 314 mm) 
× 3 θtarget (−60◦ , 0◦ , 60◦) × 2 rtarget (157 mm, 314 mm) 
× 3 β (−90◦ , 0◦ , 90◦) 

= 3888 tasks in total 

Participants performed 15 practice tasks prior to the experi­
ment. The order of tasks within each block was randomized 
and the experiment took 30-35 minutes to complete. 

Results 
For errors, we used the Wilcoxon signed-rank and the Fried­
man tests. For RT and φinit, we conducted full 6-way RM 
ANOVAs. For φdef ault , we conducted a 3-way RM ANOVA, 
where θtarget = θstart , rtarget = rstart , and β = 0. 
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Figure 8. Experiment 3: φdef ault in different screen locations 

Errors 
ErrorRate was 5.5% (S D = 3.5%). As in Experiment 1, 
leftward movements produced more errors (Z = −2.10, 
p = .036). More specifically, ErrorRate for movements start­
ing from 60◦ and ending at −60◦ was 12.0% (SD = 11.2%) 
compared to a 4.6% (S D = 4.6%) for the reverse move­
ments. ErrorRate for outward and inward movements was 
8.7% (S D = 7.1%) and 4.0% (S D = 4.1%), respec­
tively, but this difference was not significant (Z = −1.91, 
p = .056). Similarly, the effect of the rotation angle β was 
only marginally significant (χ2 = 5.91, p = .052). 

Reaction Time 
The effect of β was significant (F2,22 = 11.57, p < .001). 
Clockwise rotations were again 60 ms longer (CI: [12 ms, 
107 ms], p = .019) to plan than counterclockwise rotations, 
increasing RT from 1068 to 1128 ms. The effect of Block was 
significant (F1.2,13.3 = 8.25, p = .01) for this experiment. 
The increased task difficulty could explain this result. 

Grasp Orientation 
Figure 8 presents our results for the default grasp orienta­
tion φdef ault . We found a significant effect of both θstart 
(F1.3,14.0 = 18.24, p < .001) and its interaction θstart 
× rstart (F2,22 = 7.04, p = .004). As in Experiment 1, 
φdef ault increases with θstart . The effect is stronger for dis­
tant (r = 314 mm) than for close objects (r = 157 mm). 

We then analyzed the initial grasp orientation φinit. We found 
significant effects for θstart (F1.3,14.7 = 81.9, p < .001), rstart 
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Figure 9. Experiment 3: Effects of the rotation angle β, the start position θstart and the target position θtarget on the grip orientation φinit 

(F1,11 = 26.73, p < .001), and θtarget (F1.4,15.2 = 27.19, 
p < .001). The effect of rtarget was not significant (F1,11 = 
3.25, p = .099). However, its interaction rtarget × θtarget 
was significant (F2,22 = 8.44, p = .002), as was the interac­
tion rstart × θstart (F2.5,27.4 = 5.96, p = .004). Overall, 
grip adaptation was more pronounced for distant positions 
(r = 314 mm). Figure 9 illustrates these effects. Results 
are consistent with the findings of Experiment 1. Participants 
adapted their grasp orientation based on both the start and the 
target position of their movement. Again, the bias of the start 
position was stronger than the bias of the target position. 

Finally, the effect of the rotation angle β was significant 
(F1.1,11.7 = 61.43, p < .001). As shown in Figure 9, results 
follow closely results of Experiment 2. Participants antici­
pated how to adapt their initial grasp despite to the translation 
movement that occurred in parallel with the rotation task. As 
in Experiment 2, we did not observe any learning effect. 

SYNTHESIS OF FINDINGS 
Our results support our hypothesis, being in accordance with 
the general principles of Herbort’s WIMB model for physi­
cal objects [6]. Users plan their grasp orientation in prepa­
ration for the manipulation of virtual objects. Planning takes 
place under the influence of several biases that include at least 
a task-independent preferred bias and an anticipatory bias. 
When planning is not possible, as in the Hidden target condi­
tion of experiment 1, participants adopt the strategy of using 
a “standard” initial grip for all target positions (see Figure 6). 

In all the three experiments, we found that the initial grasp 
orientation φinit is influenced by both the start and target 
configurations. Experiment 1 showed that users adapt their 
φinit to account for the difference between the start and tar­
get value of φdef ault , which varies across distant angular po­
sitions (see Figures 5 and 8). Experiment 2 showed that users 
adapt their φinit in preparation for rotations so that they do 
not end up in uncomfortable positions. Experiment 3 exam­
ined both translations and rotations and showed that both of 
the above effects occur in parallel, with planning for rotations 
having a stronger effect. Finally, we observed that in special 
cases the start and target configurations are not the only fac­
tors to affect grasp orientation. In Experiment 1, Outward 
tasks, participants used noticeably different planning strate­
gies for the −45◦ target position, demonstrated by the large 
confidence interval of φinit (see Figure 6). Some participants 
chose to “push” the object with a positive φinit while others 

preferred to “pull” it using a negative φinit. This suggests 
that in some situations, different planning strategies can be 
appropriate for the same task. We plan to further investigate 
this observation in future work. 

As the studies reviewed by Herbort [6] considered only ro­
tational tasks, we can check if our results of rotations fit the 
same formal model. Figure 10 presents the results of Ex­
periment 2 through WIMB’s mathematical formulation (see 
Equation 1) for r = 317 mm. We have normalized the ini­
tial and default grasp orientations by setting pinit = φinit − 
φdef ault and pdef ault = 0, where the default orientations 
φdef ault are the values measured by Experiment 1. Following 
Herbort’s [6] approach, we examine clockwise and counter­
clockwise rotations separately. Our results are consistent with 
previous results on the manipulation of physical objects, sum­
marized in his survey. As WIMB predicts, we observe that 
users tend to compensate small angles proportionally more 
than large ones. We also observe that the effect of the an­
ticipatory bias is stronger for clockwise rotations. We hy­
pothesize that this is due to the fact that the range of motion 
is smaller in clockwise than counter-clockwise direction at 
most screen positions (see Figure 3). When a task involves 
a clockwise rotation, participants are required to do a larger 
(than if the task was a counter-clockwise rotation) prepara­
tory rotation in the opposite direction to avoid uncomfortable 
or even impossible hand and arm positions. This asymmetry 
in movement direction may also explain why we observe a 
longer planning time (i.e., reaction time) for clockwise rota­
tions in Experiments 2 and 3. 
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Figure 11. Using movement planning to improve feedback and prevent occlusion in an object-matching scenario. (a) The user acquires an object along 
its main graspable axis. (b) The system anticipates an anticlockwise rotation and indicates exact matches between its short edge and edges of the top 
object. The “alerts” box moves upwards, avoiding hand occlusion. (c) A pinch gesture over the object creates a circular grip that allows the user to grasp 
and rotate it clockwise. The system anticipates the planned rotation and indicates matches of it long edge. It also moves the ”alerts” box downwards to 
minimize occlusion during the manipulation of the object. (d) The user has rotated the object in order to move it to the hole of the object at the top. 

Finally, we found that clockwise rotations were more error 
prone than counterclockwise rotations. These results are in 
agreement with the results of Hoggan et al. [9] who con­
cluded that performance is significantly inferior for clockwise 
rotations. The planning effect we observe in our experiment 
seems to be at odds with those of M ̈ollers et al. [15], which 
did not observe prospective planning in a sequential point­
ing task on a multi-touch screen. However, looking closer at 
their task, we can see that comfort plays a minor role while 
start and target finger orientations are not constrained by each 
other. We suspect that movement planning in this case adds 
cognitive overhead without necessarily aiding the task. 

IMPLICATIONS AND FUTURE DIRECTIONS 
Our results open a new space for innovation with design im­
plications for several application scenarios. First, they can in­
form the design of the form and affordances of virtual objects 
around a tabletop. Different surface positions are associated 
with different ranges of motion and different default grasps. 
Designers can make use of this information to appropriately 
position objects on the surface or design grips and interaction 
techniques that facilitate grasping (Figure 11-c). 

Getting knowledge about the planned movement early 
enough when the user acquires an objet can be also valuable 
for improving user experience during its manipulation. 
We are particularly interested in exploring the design of 
new occlusion-aware techniques [4, 25]. Enhancing ex­
isting hand-occlusion models for multitouch [25] with a 
movement-planning model could possibly provide more 
reliable estimation about the occluded areas at acquisition 
time or during manipulation. Such information could be 
useful for optimizing the display of feedback and visual 
content at visible locations of the screen. It could be also 
useful for improving motor control, e.g., by avoiding object 
snapping around positions that are away from predicted 
targets. We do not encourage designs that make blind use 
of such predictions, as this could be the source of user 
frustration in case of false predictions. Figure 11 illustrates 
a simple scenario where movement planning is used to 
optimize visual feedback and reduce hand occlusion. 

Our results could be also useful in collaborative scenarios 
where spatial interference and conflicts between the actions 
of collaborators are frequent [10]. We can foresee conflict-
resolution techniques that make use of information about 
prospective movement. In addition, when users organize 
pieces of information collaboratively, the system could de­
tect potential relationships between objects located in differ­
ent personal workspaces and assist users with appropriate vi­
sual feedback. For example, it could display handles around 
an object that suggest a grasp and thus a specific movement 
that would bring this object close to other related ones. 

Finally, we are interested in studying the role of movement 
planning for other multitouch devices, such as tablets, espe­
cially in connection with how users grasp and hold them [26]. 
Future work also needs to explore its implications for tangible 
user interfaces, where grasping and acquisition are determi­
nant factors of user performance [3, 24]. 

CONCLUSION 
Translational and rotational tasks are manipulations com­
monly performed on multitouch tabletops. We have inves­
tigated whether prospective planning is present when peo­
ple perform such manipulations. We have shown that users 
choose a grip orientation that is influenced by three factors: 
(1) a preferred orientation defined by the start object position, 
(2) a preferred orientation defined by the target object posi­
tion, and (3) the anticipated object rotation. We have exam­
ined these results in the view of the WIMB model, which has 
been recently introduced by Herbort [6] to explain planning 
for the manipulation of physical objects. We have shown that 
our results are consistent with the WIMB model. 

We have also shown that relative to the geometry of the table­
top, upwards, leftwards movements and clockwise rotations 
are more difficult for users to perform. While the effects of 
planning on interaction with multitouch interfaces are not yet 
fully understood, our results provide a first look at a phe­
nomenon that should be taken into account when designing 
tabletop applications. 
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Figure 1. TOUCHTOKENS are passive tokens that guide users’ fingers to specific spatial configurations, resulting in distinguishable touch patterns.

ABSTRACT
TOUCHTOKENS make it possible to easily build interfaces
that combine tangible and gestural input using passive tokens
and a regular multi-touch surface. The tokens constrain users’
grasp, and thus, the relative spatial configuration of fingers
on the surface, theoretically making it possible to design al-
gorithms that can recognize the resulting touch patterns. We
performed a formative user study to collect and analyze touch
patterns with tokens of varying shape and size. The analysis
of this pattern collection showed that individual users have
a consistent grasp for each token, but that this grasp is user-
dependent and that different grasp strategies can lead to con-
founding patterns. We thus designed a second set of tokens
featuring notches that constrain users’ grasp. Our recognition
algorithm can classify the resulting patterns with a high level
of accuracy (>95%) without any training, enabling applica-
tion designers to associate rich touch input vocabularies with
command triggers and parameter controls.

Author Keywords
Tangible interaction; Multi-Touch input

ACM Classification Keywords
H.5.2 : User Interfaces - Graphical user interfaces.

INTRODUCTION
The main characteristics of multi-touch gestures performed
on the capacitive screens that typically equip tablets, smart-
phones, touchpads, as well as some tabletops, are the num-
ber of fingers involved and the individual trajectories of those
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CHI’16, May 07–12, 2016, San Jose, CA, USA.
Copyright © 2016 ACM. ISBN 978-1-4503-3362-7/16/05...$15.00.
http://dx.doi.org/10.1145/2858036.2858041

fingers. Examples include 2- or 3-finger slide, and 2-finger
pinch. But to the exception of a few research projects that
consider touch points as chords [19, 21], interactive systems
ignore the relative spatial configuration of contact points;
what we call a touch pattern.

Our goal is to enable users to perform gestures based on a set
of distinct touch patterns, thereby increasing the richness of
input vocabularies for tactile surfaces. Our approach relies on
physical guidance, as it would be unrealistic to expect touch
patterns to be executed consistently across users, or even over
time by the same user. As the literature suggests that users
adopt grasp strategies that depend on the object to manipu-
late [39, 47], we investigate the potential of tangible tokens
held on the surface to act as physical guides constraining the
relative position of users’ fingers.

We present TOUCHTOKENS, a novel interaction technique
based on a set of easy-to-make passive tokens and a fast and
simple recognition algorithm that can discriminate the unique
touch pattern associated with each token in the set.1 The ap-
proach features several advantages. First, physical tokens can
provide space-multiplexed input by associating different con-
trollers with different functions [18]. Second, tokens can alle-
viate issues related to discovery, exploration and learning in-
herent to gesture-based interaction [56]. Finally, tokens pro-
vide haptic feedback that promotes eyes-free interaction [28].

TOUCHTOKENS make it easy to implement applications that
combine multi-touch and tangible input at low cost. Such a
combination has the potential to foster collaboration, support
distributed cognition, and enhance the user experience [1, 29,
46]. As opposed to other tangible systems that require elec-
tronic instrumentation (e.g., [9, 34]) or specific conductive
material (e.g., [17, 33]), our system relies on an algorithm

1Implementations of the algorithm and vector descriptions of the
tokens ready for 3D-printing or laser-cutting are available at
https://www.lri.fr/~appert/touchtokens/.
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that relies on standard multi-touch APIs and on passive tokens
thats can be made of any non-conductive material, including
wood or transparent acrylic.

We performed a formative user study to collect touch pat-
terns, in which participants had to grasp and manipulate a set
of twelve tokens of varying shape and size on a tabletop sur-
face. The analysis of this pattern collection showed that peo-
ple grasp the same token consistently across trials, but that it
is quite difficult to identify a set of tokens and to design a ro-
bust recognition algorithm that works for all users. The two
main sources of confusion are that different users may adopt
different grasp strategies for the same token, and that one user
may adopt the same strategy for distinct tokens. Based on
these observations, we designed a second set of six tokens
featuring notches that constrain users’ grasp. These notches
are designed to ensure a comfortable grasp while serving two
purposes: 1) minimizing, for a given token, the variability of
the contact points’ relative position; and 2) maximizing the
distinctiveness of touch patterns. We performed a summative
study in which participants had to grasp and manipulate this
set of tokens on both a tabletop and a tablet. Results show
that our algorithm recognizes these touch patterns with an ac-
curacy higher than 95%, and does so without any training
or calibration. Application designers can map the gestures
performed with these tokens to any command or parameter
control, as illustrated in the examples introduced before the
concluding discussion about limitations and future work.

RELATED WORK
TOUCHTOKENS makes use of physical tokens to augment the
power of expression of multi-touch input, building upon tan-
gible interaction and touch input research. Our review of re-
lated work is structured accordingly, giving an overview of
projects that considered tangible tokens above interactive sur-
faces, or leveraged the power of expression of touch input.

Tangible tokens for tactile surfaces
Some tactile surfaces rely on diffuse illumination, which
makes it possible to recognize both objects and hands in con-
tact with the surface, using computer-vision algorithms to an-
alyze the frames captured by IR cameras. Such techniques
have been used, e.g., to track mice and keyboards [24] or to
design physical widgets [50]. The Conté tool [49] is an artis-
tic crayon that consists of an acrylic block that emits and re-
flects IR light. When tethered, its location and orientation can
be tracked on diffuse illumination surfaces. Several projects
rely on fiducial markers to ease the image-based analysis,
such as the ReacTable [30, 31], which offers a tangible envi-
ronment for music composition. Tokens can also be stacked
on top of one another, using fiducial markers with transparent
areas [3] or optical fiber bundles [5] to track them. Diffuse
illumination hardware setups are somewhat bulky, however,
and are thus mostly used for large surfaces such as tabletops.

Most touchscreens are capacitive: they detect a drop in capac-
itance when one or more fingers touch them. Various projects
have investigated conductive objects. These objects contain a
circuit of conductive material that links the areas that are in
contact with the user’s fingers to the areas that are in contact

with the capacitive surface (the object’s “feet"). As soon as
the user touches an object, its feet become grounded and gen-
erate a drop in capacitance similar to a multi-touch pattern.
Physical widgets [33] rely on this technique, as do physical
button pads that can be clipped to the edges of a device [55],
or more advanced objects that feature moving parts [17, 28]
or that can be stacked [17]. Designing conductive tokens is
challenging: the feet must be positioned carefully and the cir-
cuit must be stable so that the generated touch pattern can
be recognized consistently. As capacitive screens have been
designed for human fingers, properties such as the feet’s min-
imal size and the minimal distance between two feet, which
depend on the device, must be carefully chosen [55].

Other projects have explored more cost-effective ways of
building conductive objects. Wiethoff et al. [51] use card-
board and conductive ink. This works well for low fidelity
prototyping, but does not scale with real usages. Blagoje-
vic et al. [11] report on a design experience where they have
built a small set of geometric tools (ruler, protractor and set
square) for a tabletop drawing application. They tested dif-
ferent construction strategies by combining different low-cost
conductive materials (e.g., conductive ink, conductive foam,
aluminium tape, copper wires). Their experience shows that
making a physical tool conductive is quite difficult, as many
factors have to be considered (consistent circuit, stability,
friction with the screen, good grasp, etc.). In the end, the
best design consisted of drilling holes in the tool and using
conductive foam to cover the tool and fill the holes. In the
panorama of capacitive tokens, PUCs [48] are an exception:
they rely on the principle of mutual capacitance so as to be
detected even when users do not touch them. However, most
systems have to be augmented with an additional calibration
clip to cheat the implemented adaptive filtering that tends to
interfere with the PUCs’ detection.

Some tangible systems work with magnetic tokens that mod-
ify the magnetic field incoming to the magnetometer built in
mobile devices [8]. However, as a magnetometer reflects the
sum of the magnetic fields it senses, supporting multiple to-
kens requires putting more than a simple magnet inside the to-
kens. Bianchi and Oakley [9] propose to use a more elaborate
electronic system that features a motor to make the mounted
magnet spin at a specific frequency. Putting a grid of Hall
sensors behind the surface, Liang et al. [34] get a 2D image
of the magnetic field that can be analyzed to track the location
and orientation of objects above the surface. Each object can
also be shielded with a case made of galvanized steel to avoid
attraction and repellence effects between several tokens [35].

Multi-touch input and power of expression
Researchers have considered several avenues to increase the
power of expression of touch input, including finger identifi-
cation, finger pressure, or finger impact in order to multiplex
input by assigning one command per finger, pressure level, or
impacting zone. Finger identification relies on pattern recog-
nition techniques coupled with advanced sensors such as fin-
gerprint scanners [43] or fiber optic plates [27]. Projects such
as SimPress [7] or FatThumb [12] capture the size of the fin-
ger’s contact area and assign two different meanings to a soft
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tap and a hard tap. It is even possible to capture both the
normal and tangential components of the force applied on the
surface using extra pressure sensors [25]. Identification and
amount of pressure of the finger in contact can also be as-
sessed by classifying muscle activity in the forearm [6]. Fi-
nally, TapSense [22] discriminates which part of the finger
(nail, knuckle, pad or tip) hits the surface by using acous-
tic sensing. With the exceptions of SimPress and FatThumb,
that capture two pressure levels based on the size of the con-
tact area, all of the above techniques rely on tactile surfaces
that are augmented with additional sensors.

Some systems make use of whole-hand gestures (e.g., hori-
zontal vs. vertical hand, straight vs. curved hand) for ma-
nipulating virtual objects [16, 40, 52, 53], or invoking virtual
tools by mimicking the hold of their physical counterparts [4,
23]. Most of these projects rely on tactile surfaces that give
access to the shape of the whole contact region, and cannot
run on regular capacitive surfaces, which have been devel-
oped for finger input and consequently deliver standard point-
based multi-touch coordinates only. One notable exception is
the TouchTools system [23] that uses machine learning to rec-
ognize up to seven touch patterns associated with seven hand
postures on a capacitive screen. A few systems can also rec-
ognize chord gestures. Finger-Count [2] counts the number
of contact points on the surface. Arpège [21] supports more
chords by relying on the contact points’ relative position. The
technique requires per-user calibration to record the fingers’
natural position when the hand rests in a comfortable posture.

TOUCHTOKENS take a different approach and does not make
the assumption that the fingers’ relative position is always the
same. The technique relies on different relative finger posi-
tions that users would adopt naturally when grasping a tan-
gible token on a surface. Recognizing typical hand postures
when people grasp objects has been investigated in experi-
mental psychology to identify everyday objects and then in-
fer users’ activities (such as holding a mug or typing at the
keyboard) [39]. Experimental studies show that it is possi-
ble to distinguish objects that differ in their size [14], shape
(e.g., cylinder, pyramid, etc.) [42] or both [39, 47]. However,
these studies assume that the system provides access to the
whole hand posture, using advanced motion capture systems
that can provide the position and orientation of all hand joints.

TOUCHTOKEN
The primary objective of TOUCHTOKENS is to guide the reg-
istration pose [19] of multi-touch gestures on an interactive
surface. TOUCHTOKENS take advantage of users’ ability to
grab physical objects in the real word. Our idea is that the ge-
ometry (shape and size) of an object impacts how users grab
it. Different objects will thus have different touch patterns on
the tactile surface, which can be discriminated. Touch pat-
terns are recognized at registration and remain active until all
contact points have left the surface. In particular, users can
relax their grasp in the execution phase of their gesture [54],
thus reducing finger occlusion and enabling a larger range of
motion. In this section, we describe how to build a system
based on TOUCHTOKENS. Applications and limitations of
the approach are discussed at the end of the paper.

Fabrication
TOUCHTOKENS require neither embedding electronics in
the tokens nor augmenting the tactile surface with addi-
tional hardware (such as, e.g., a computer vision system),
which makes setup easy. Tokens can be built from any non-
conductive material such as wood, plastic, metal or glass,
since the system only relies on the fingers’ relative position,
which is already provided by the tactile surface. This flexi-
bility allows designers to easily prototype and test different
TOUCHTOKENS variants with a 3D printer or a laser cutter.
In particular, designers have a lot of control on the tokens’
appearance. For tokens that have permanent roles associated
with them, interface designers can engrave an icon or a label
on them, or use a specific color. For temporary associations,
end-users could adopt more volatile solutions, such as adding
stickers or writing with an erasable pen if the chosen material
affords it (e.g., pencil on a wooden token). Tokens can also
be made of transparent material such as glass or acrylic, to
avoid occluding the content displayed on the tactile surface.

Recognition
When grabbing a token with more than two fingers in con-
tact with the surface, TOUCHTOKENS can infer its identity,
and thus the corresponding registration pose, from the rela-
tive spatial configuration of the touch points. The recognition
engine is initialized with one or more typical touch patterns
per token and, when a touch pattern of at least three points
occurs, the algorithm computes the distance between this in-
put pattern and the set of template patterns. The recognized
token is the one associated with the template that minimizes
this distance metric.

Computing the distance between two touch patterns (input
I:{I1, ..., In} and template T :{T1, ...,Tn}) is not straightforward,
however. First, most tactile surfaces do not provide finger
identification. Second, tokens have an arbitrary orientation on
the surface. Figure 2 illustrates how our algorithm processes
touch patterns in order to identify the best alignment between
the reference template and actual input patterns, from which
the distance is computed.

The key steps for identifying the best alignment are as fol-
lows: (1) compute the centroid CI of the three (or more) touch
points; (2) generate all sequences of touchpoint labels (per-
mutations) so that their IDs always appear in counterclock-
wise order; (3) rotate all these touch patterns so as to align
vector

−−−→
CI I1 with the x-axis. (4) The algorithm then translates

touch patterns to align the input (CI) and template (CT ) cen-
troids. (5) It finally pairs the points in the permutation with
the template’s points in order to compute the distance, simply
by summing all distances between paired points. The dis-
tance between reference template and actual input is given by
the best input alignment, which is the permutation that mini-
mizes this distance metric.

A typical implementation of the recognition engine amounts
to about a hundred lines of code, and will work on any capac-
itive surface. The engine relies on simple geometrical fea-
tures, which makes it easier to understand recognition errors
compared to less transparent techniques such as those based
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Figure 2. Template and input touch pattern alignment process.

on machine learning, that work as black boxes. The algorithm
is very fast: recognition time scales linearly with the number
of candidate templates. A Java implementation will be made
available publicly, featuring both TUIO and Android APIs2.

REGULAR TOKENS
TOUCHTOKENS rely on the hypothesis that the geometry of
tokens impacts how users grasp them, resulting in distin-
guishable touch patterns. In order to test this hypothesis and
identify a set of tokens that can actually be discriminated, we
first ran a formative study in which participants had to grasp
a set of twelve tokens that vary in shape and size.

Experiment design
Token Set
We selected a set of 4 × 3 = 12 tokens (Figure 3) that vary
in their shape (square, circle, rectangle, and triangle) and size
(3cm, 4cm and 5cm). The choice of size was informed by
informal tests, taking into account both human and techno-
logical constraints. The tokens should remain comfortable to
grasp with at least three fingers, which entails bio-mechanical
constraints on the minimum and maximum token size. Ca-
pacitive surfaces also impose a minimal distance between fin-
ger tips, which will be seen as a single point if too close to one
another. Our tokens are made of wood and are 6mm thick. We
had initially considered tokens 3mm thick, but those were too
difficult to grab. The tokens’ corners are also slightly rounded
so as to avoid sharp wedges that could have hurt participants.

Types of interaction
Participants are seated in front of the tabletop (at the center of
the long edge) and perform a series of trials with the different
tokens (Figure 4). As illustrated in Figure 5, the graphical
display always features a progress bar in the top-left corner
and a picture of the token to use in the current trial in the top-
right corner. The action to be done with the token depends
on the type of interaction (INTERACTION). The Global con-
dition operationalizes the case where users invoke a global
command with the token (e.g., launching an app); the Local
2It is part of the earlier-mentioned supplemental material made
available to reviewers.

Figure 3. Set of tokens used in the first study (size ∈ 3cm, 4cm, 5cm).

Figure 4. Experimental setup.

condition corresponds to the case where users apply a com-
mand at a specific location on screen (e.g., copying a graph-
ical object); and the Path condition captures the case where
users invoke a command and set its parameter value with a
gesture (e.g., adjusting the opacity of a layer in a visualiza-
tion). The progress bar indicates for how long participants
have dwelled. It starts filling-in as soon as a stable touch pat-
tern is detected on the surface. The dwell’s duration depends
on the type of interaction. If the number of fingers in contact
changes, or if the touch pattern’s centroid drifts away from
its initial position by more than 30 pixels, the progress bar is
reset and participants have to perform the trial again.

The experiment was divided into three phases, one per IN-
TERACTION condition, always presented in the same order:

1. In the first phase (INTERACTION = Global), participants
have to select the right token, put it anywhere on the table-
top, hold it with at least three fingers, and hold still for at
least 1 second.
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INTERACTION = Global INTERACTION = Local INTERACTION = Path

Figure 5. Types of interaction (INTERACTION).

Figure 6. In the INTERACTION = Local condition, participants have to
put the token at a specific location (LOCATION ∈ 0◦, 45◦, 90◦, 135◦, 180◦).

2. In the second phase (INTERACTION = Local), participants
have to select the right token, put it on the cross (Figure 6),
holding it still with at least three fingers for at least 1 sec-
ond. The cross can be in five different LOCATION. These
locations are chosen on a semi-circle roughly centered on
the participant as in [38] (see Figure 6), as the token’s lo-
cation on the surface (relative to the participant) may in-
fluence the neutral hand posture and thus how the token is
grasped. The distance between the touch pattern’s centroid
and the center of the cross must be at most 50px. If this dis-
tance is greater, the progress bar turns red and participants
must perform the trial again.

3. In the third phase (INTERACTION = Path), participants
must hold the token still with at least three fingers for a
short period of 100ms. The background turns from gray to
white. Participants then have to slide the token along the
path indicated by purple arrows. In this condition, partic-
ipants can plan a manipulation with the token, which may
influence their initial grasp [38]. When sliding the token,
they can lift some fingers but must keep at least one finger
in contact with the surface. If they lift all fingers before
having performed the whole gesture, the background turns
back to gray and they have to start again. Figure 7 shows
the six types of paths that participants had to follow with
each token. We chose these tasks based on the taxonomy
of multi-touch gestures from [37]. For external circular
gestures (Ext-CCW and Ext-CW), participants have to slide
the token along a clockwise or counterclockwise circular
path. As soon as the touch pattern’s centroid has completed
one full circle, the background turns green and participants
can proceed to the next trial. For internal circular gestures

Ext-CCW Ext-CW

Int-CCW Int-CW

Lin-Left Lin-Right

Figure 7. In the INTERACTION = Path condition, the participant has to
put the token on the surface and slide it along a specific path (PATH ∈
{Ext-CCW, Ext-CW, Int-CCW, Int-CW, Lin-Left, Lin-Right}).

(Int-CCW and Int-CW), participants have to rotate the to-
ken around its center, as they would do with a physical
circular knob. As soon as the touch pattern has been ro-
tated by at least 45◦ around its centroid, the background
turns green to indicate that the trial has been successfully
completed. Finally, for linear gestures (Lin-Left and Lin-
Right), participants simply have to slide the token to match
the amplitude and direction indicated by the arrow.

Participants and Apparatus
Twelve volunteers (3 female), aged 23 to 33 year-old (aver-
age 26.5, median 25.5), participated in the experiment. The
experiment software was running in full screen mode on a
3M C3266P6 capacitive screen (display dimensions: 698.4 x
392.85 mm, resolution: 1920 x 1080 pixels) placed horizon-
tally on a desk (Figure 4). A digital video camera on a tripod
recorded participants’ hand and arm movements. The exper-
imental software was developed in Java 2D (JDK 7) and ran
on a Mac Pro 2.8 GHz Intel Quad Core with 16GB memory,
running Mac OS X 10.7.5.

Procedure
Participants are seated at the center of the long side of the
tabletop. They receive instructions detailing the goal of the
experiment and the different experimental tasks they will
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have to perform. In particular, the operator initially informs
participants that the goal is to design a system that is able to
recognize tokens based on users’ grasp. He encourages them
to be consistent in their grasp across trials with tokens that
have the same shape. In order to identify which grasp is com-
fortable, the operator gives participants four tokens, one per
shape with size = 4cm (Square4, Circle4, Rectangle4 and Tri-
angle4), and asks them to manipulate each token a bit on the
surface in order to choose a comfortable grasp. The operator
then notes this grasp in his logs and the experiment starts.

As mentioned above, the experiment consists of three phases
that are always presented in the same order:

• Phase 1 (INTERACTION = Global): 12 TOKEN × 5 repeti-
tions = 60 trials. In this phase, the presentation order for
the trials is randomized in order to observe if people are
actually able to grasp the same token consistently across
different trials that are not consecutive. To minimize the
visual search time associated with identifying the right to-
ken to take, the operator printed 5 copies of each individual
token and initially sorted the 60 tokens on the table, on the
right side of the screen (Figure 4).

• Phase 2 (INTERACTION = Local): 12 TOKEN × 5 LOCA-
TION × 2 repetitions = 120 trials. The order of TOKEN ×
LOCATION is randomized across participants. The 2 rep-
etitions per TOKEN × LOCATION condition are presented
one after another to limit the length of the experiment.

• Phase 3 (INTERACTION = Path): 12 TOKEN × 6 GESTURE
× 2 repetitions = 144 trials. As in phase 2, the order of TO-
KEN × GESTURE conditions is randomized across partici-
pants, with the 2 repetitions presented one after another.

After completion of these three phases, participants receive
a questionnaire where they have to give a comfort score for
each of the twelve tokens. The questionnaire features 12
Likert-scale type questions where participants have to give
a rating between 0 (not comfortable to grasp at all) to 5 (very
comfortable). The overall procedure lasted about an hour.

Results
We first tested if participants’ grasps of the different tokens
can be distinguished using the recognition strategy described
in the previous section. To that end, we train our recognition
algorithm using the first three trials of Phase 1 as templates
for each token. This training strategy corresponds to what a
system relying on a light training phase would require.3 We
then evaluate our algorithm on the remaining trials, i.e., (2 ×
12 + 2 × 12 × 5 + 2 × 12 × 6) × 12 participant = 3456 trials.

A χ2 analysis reveals that both INTERACTION (χ2(2,N =

3456) = 12, p = 0.002, φ = 0.06) and TOKEN (χ2(11,N = 3456) =
109, p < 0.001, φ = 0.18) have a significant effect on RECOG-
NITION RATE. Figure 8 illustrates the observed differences
between conditions. A finer analysis of TOKEN’s effect on
RECOGNITION RATE per INTERACTION shows that TOKEN

3We tested our algorithm with different training strategies to accom-
modate more variability (e.g., considering templates picked from
the three experiment phases) but there was no clear gain compared
against the training cost it would entail for end-users.
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Figure 8. Recognition rate per INTERACTION (left) and per TOKEN
(right). Error bars represent the 95% confidence interval.

has a significant effect on RECOGNITION RATE in all INTER-
ACTION conditions (Global: χ2(2,N = 288) = 25, p = 0.009, φ =
0.3, Local: χ2(2,N = 1440) = 58, p < 0.001, φ = 0.2 and Path:
χ2(2,N = 1728) = 85, p < 0.001, φ = 0.2). The effect of sec-
ondary factors (LOCATION for Local and GESTURE for Path)
on RECOGNITION RATE is not significant (p = 0.4 and p = 0.2).

We then wanted to investigate the impact of the token sub-
set’s size on recognition rate. In order to identify the largest
number of grasps that can be accurately discriminated for
each participant, we computed all possible subsets of tokens
among the initial set of 12. The total number of subsets com-
prising at least two tokens (TOKENCOUNT >= 2) is:

12∑

TokenCount=2

(
12

TokenCount

)
= 212 − 12 − 1 = 4083

For each subset, we ran our recognition algorithm with the
same training strategy (only the first three trials from exper-
iment phase INTERACTION = Global) in order to compute,
for this subset, the recognition rate per participant. We ob-
serve that the per-subset recognition rate across participants
exhibits a very high variability. For example, if we consider
subsets that have 7 tokens (TOKENCOUNT = 7), the “worst”
subset has a recognition rate of 63% on average across partic-
ipants (worst-performing participant: 31%, best-performing
participant: 98%), while the “best” subset has a recognition
rate of 81% on average across participants (worst-performing
participant: 57%, best-performing participant: 100%).

Recognition rate per participant
In order to test how many distinguishable grasps can be
recognized per participant, we report the maximal recog-
nition rate for each value of TOKENCOUNT ∈ {2, ..., 12}.
If a participant P gets a maximal recognition rate R for
TOKENCOUNT=N, this means that there exists at least one
set of N tokens that are recognized with R% accuracy on aver-
age for participant P. Figure 9 reports these recognition rates
for the best-performing and worst-performing participants, as
well as the average over all participants. The charts illustrate
that our algorithm can accurately discriminate a high number
of grasps for some participants (the best-performing partic-
ipant has a recognition accuracy higher than 90% for up to
10 tokens in all INTERACTION conditions), while it performs
quite poorly for others (the worst-performing participant has
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Figure 9. Recognition rate per INTERACTION × TOKEN

Participant #1 Participant #9

Triangle4 Triangle4

Figure 10. Touch patterns (aligned by our algorithm) for a participant
who adopts very consistent grasps for token Triangle4 (left) and for a
participant who adopts varying grasps (right). Red dots belong to touch
patterns that are used as templates.

a recognition accuracy lower than 90% even for sets of only
three tokens in condition INTERACTION = Path). This vari-
ability comes from two sources: intra-grasp variability and
inter-grasp similarity.

Figure 10 displays the 27 touch patterns we have collected
for Triangle4 for two participants. It illustrates two extreme
levels of intra-grasp variability. Participant 1 (left) grasps
token Triangle4 in a very consistent manner, while Partici-
pant 9 (right) demonstrates much more variation in how he
grasps it, challenging our recognition strategy. The second
source of confusion comes from inter-grasp similarity: if
a user chooses one grasp strategy for a given token that is
very similar to the one he uses for another token in terms of
similarity of the touch patterns, the two tokens will get con-
founded. Together, these two phenomena explain why we ob-
serve such a large variability across participants regarding the
composition of the token sets that are recognized accurately.

Recognition rate between participants
Figure 9 reports the best set of tokens for each participant,
and thus does not reflect the fact that the same subset of to-
kens can be very accurately recognized for one participant
while it will be poorly recognized for another participant. We
report the biggest sets of tokens that reach consensus among
all our participants below (i.e., the sets of tokens that have a
recognition accuracy of at least 90% for all participants):

• for INTERACTION=Global, we find 6 sets of 5 tokens ;

• for INTERACTION=Local, we find 13 sets of 3 tokens ;

• for INTERACTION=Path, we find 6 pairs of tokens ;

Figure 11. The nine grasp strategies observed in Experiment 1

• for all INTERACTION conditions undifferentiated, we find
8 sets of 3 tokens with an average of at least 90% accuracy
for all participants.

Grasp strategies
Figure 11 summarizes the different grasp strategies that par-
ticipants adopted for the different token shapes (extracted
from an analysis of the operator’s logs and video sequences
recorded during the experiment). We observed that all partic-
ipants use the same strategy for circles (C). Squares and rect-
angles receive less consensus, with three different strategies
observed for each of them. The main strategy for squares uses
three edges (S 1; 6/12). The two other strategies use only two
edges, and differ in the distance between the two fingers on
the same edge: small (S 2; 4/12) or large (S 3; 2/12). For rect-
angles, one strategy uses the two long edges only (R1; 5/12).
The two other strategies use three edges: two contact points
on the short edges (R2; 4/12) or on the long edges (R3; 3/12).
One of the grasp strategy for triangles makes use of a cor-
ner (T2; 2/12), which was quite surprising. Two participants
adopted it, but actually rated it as very uncomfortable.

To understand what kind of confusions occur in the recogni-
tion process, we implemented a visualization that displays all
collected touch patterns using the best alignment computed
by our recognition algorithm (Figure 10 was built with this
tool). We computed the confusion matrix by considering the
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Figure 12. Comfort score per token. Error bars represent the 95% con-
fidence interval.

Triangle 5cm Circle 4cm

Rectangle 5cm
Square 5cm

Square 4cm

Circle 5cm

notch center

touch point in 
universal template

(a) (b)

Figure 13. (a) The 6 tokens with notches. (b) The touch point’s location
in the template is offset by 5mm along the normal to the token’s edge.

27 types of touch patterns (3 size × 9 grasp strategies). The
visualization tool was a good complement to the confusion
matrix as (1) some confusions do not appear in the matrix
if a template for one token is too close to a template for an-
other token; and (2) the different grasp strategies were not
adopted the same number of times, leading to numbers in the
confusion matrix that could not be compared in an absolute
manner. From this analysis, we draw a few take-away mes-
sages. The flat isosceles triangle of grasp strategy R2 is very
representative and well-recognized. T2 is also representative,
but is too uncomfortable to be further considered. In contrast,
some postures are difficult to distinguish. For instance, touch
patterns R1 and R3 often form an equilateral triangle similar
to the one of T1. Finally, S 1 and C can also cause confusions.

TOKENS WITH NOTCHES
Our foundational hypothesis was that physical tokens con-
strain users’ grasp in a consistent manner, which leads to
consistent touch patterns that can be recognized with a high
level of accuracy. The results of our formative experiment re-
vealed that our hypothesis was only verified for some partici-
pants. We also observed significant variations in grasp strate-
gies among users, which means that a set of tokens that works
well for one user might not work so well for another user. As
we aim at devising a solution that works effectively for all
users in a consistent manner, we investigated a solution to
decrease the different sources of variability.

We designed a new set of tokens, illustrated in Figure 13, sim-
ilar to those considered in the formative study, but that feature
notches. The purpose of these notches is to afford a particular

Figure 14. Experimental setup in the Tablet condition.

grasp strategy, i.e., to suggest a specific way of positioning
the fingers to grab a given token. The design of these tokens
was guided by the following requirements. We wanted the to-
ken set to feature a wide range of shapes, as tokens should be
easy to identify by visual and tactual perception [36]. Sets
that feature different shapes also provide better mnemonic
cues, making it easier for users to remember token-command
associations. Finally, the tokens should remain comfortable
to grasp. Based on these requirements, we picked the most
comfortable size for each shape (5cm), and added the circular
and square tokens of 4cm, which were also rated as very com-
fortable (Figure 12). We limited our summative study to this
set of six tokens which, together with all token manipulation
gestures, already provides a rich input vocabulary.

The grasp strategies observed during our formative experi-
ment (Figure 11) informed the positioning of notches on to-
ken shapes. The notches’ dimensions were refined through
trial and error: narrow and deep notches introduce corners
under finger tips, which make them uncomfortable; large and
shallow notches are more comfortable, but introduce tangen-
tial variability in finger position. Our final design tries to
strike a balance, and consists of notches 15mm wide and
1.5mm deep. Tokens whose shape afforded variable grasp
strategies in the previous experiment feature a dot that indi-
cates where to put the thumb, as illustrated in Figure 13-a.

These new tokens are designed to strongly constrain how
users grasp them. We hypothesize that this will result in
significantly reduced level of variability, which should en-
able our approach to work without any training. For each
token, we compute a representative touch pattern that will act
as a universal template for all users. The touch pattern is
derived from the notches’ position, slightly offset from the
token’s edge along the normal to that edge, so as to better
capture users’ grasp (Figure 13-b). The exact value of this
offset (5mm) is calculated from the average offset measured
in trials performed with circular tokens in the previous exper-
iment, comparing the radius of the circle that passes through
the three touch points with the radius of the actual physical
token. (The precise, vector-based description of these tokens,
ready for laser-cutting or 3D printing, will be distributed pub-
licly and is also part of the earlier-mentioned supplemental
material available to reviewers.)
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EXPERIMENT
We ran a controlled experiment to test users’ ability to ma-
nipulate tokens with notches, and to evaluate our algorithm’s
accuracy when provided with the above-mentioned universal
templates in combination with this particular kind of tokens.
The experimental design is similar to that of the previous
study, but uses the set of 6 tokens of Figure 13. We also in-
clude an additional DEVICE condition: participants perform
the tasks on both the tabletop and a tablet. Because of the
smaller size of the tablet, we exclude the Local condition
when DEVICE=Tablet, as the different locations (Figure 6)
are clearly too close to one another to impact users’ grasp.
Contrary to our formative experiment, participants did not re-
ceive any other instructions than to grasp the tokens using the
notches. In particular, the operator never asked them to adopt
a consistent grasp across trials for a given token.

Experimental design
Procedure
Half of the participants started with the Tabletop, while the
other half started with the Tablet. The strategy for counterbal-
ancing the presentation order of trials is exactly the same as
in the first experiment. The only difference lies in the Tablet
condition, in which participants only performed Global and
Path tasks (in this order), but not the Local task.

In the Tabletop condition, we collected 12 participants × 6
TOKEN × (5 [Global] + 2 × 5 LOCATION [Local] + 2 × 6
GESTURE [Path]) = 1944 trials. In the Tabletop condition,
we collected 12 participants * 6 TOKEN × (5 [Global] + 2 ×
6 GESTURE [Path]) = 1224 trials.

Participants & Apparatus
12 volunteers (3 female), aged 23 to 39 years-old (average
26.4, median 24.5), one left-handed, participated in this ex-
periment. Five of them had participated in the previous study.
The experimental setup for the Tabletop condition was ex-
actly the same as in the previous experiment. In the Tablet
condition, participants were seated at the same table, but had
to hold the tablet during the whole experiment, as illustrated
in Figure 14. The tablet (Samsung GT-P5110 Galaxy Tab 2)
had a 256.7 x 175.3 mm display area with a resolution of 1280
x 800 pixels.

Results
As illustrated in Figure 15, the recognition rate in both DE-
VICE conditions is very high: 98.7% on the Tabletop and
99.3% on the Tablet. A χ2 analysis reveals that the effect of
INTERACTION on RECOGNITION RATE is significant neither
in the Tabletop condition (p = 0.8) nor in the Tablet condition
(p = 0.3). However, TOKEN has a significant effect in both
DEVICE conditions (Tabletop: χ2(5,N = 1944) = 30, p < 0.001, φ =
0.12 and Tablet: χ2(5,N = 1224) = 30, p < 0.001, φ = 0.16)). Actu-
ally, in the Tabletop condition, the RECOGNITION RATE is a
bit lower for Circle4 (95.6%) than it is for all other tokens (>
98.7%). The same is true for token Square4 (96.5%) in com-
parison with all other tokens (> 99%) in the Tablet condition.

Interestingly, even if we realized a posteriori that the thumb
marker (dot) is meant for right-handed users, our left-handed
participant did not have any trouble manipulating the tokens.
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Figure 15. Recognition rate per TOKEN in the Tabletop (left) and Tablet
(right) conditions. Error bars represent the 95% confidence interval.

He simply put his thumb in the notch opposite to the dot, ig-
noring the latter. Of course, he was able to do so because our
tokens feature an axis of symmetry. However, we expect that
TOUCHTOKENS’s approach can be used for arbitrary-shape
tokens, including some that would not feature a symmetric
touch pattern. In that case, users can still flip them to accom-
modate their handedness, provided that the tokens are flat.
If a token cannot be flipped easily, a solution would consist
in designing two variants: same shape but pattern of notches
mirrored. When the pattern cannot be mirrored because of the
shape’s geometry, it is still possible to design two patterns,
one for each handedness.

APPLICATIONS
The above results show that, using tokens with notches, it
is possible to build robust applications that will take advan-
tage of both gesture-based and tangible interaction. Applica-
tion domains that would benefit from such type of input are
quite varied and have already been discussed in the literature,
including: geographical information systems [32], database
querying [29, 45], information management [41, 44] and mu-
sic composition [30]. We developed a set of proof-of-concept
applications4 to illustrate the different roles that TOUCHTO-
KENS can play in an interactive system (see Figure 16).

TOUCHTOKENS can act as controllers or filters, and can be
used to manipulate both the content of an application or the
presentation of this content. For instance, they can be used
to adjust the parameters of a visualization, enabling users to
focus more on the result of their actions as the manipula-
tion of physical tokens decreases the demand on visual at-
tention [45]. We have developed a simple scatterplot visual-
ization in D3 [13] to illustrate this idea. The different cat-
egories in the data (e.g., countries grouped by continent) are
associated with different symbols (which have distinct shapes
and colors), as is typically the case when visualizing multi-
variate datasets. One TOUCHTOKEN, with matching shape
and color, is associated with each category and can be used
to adjust the visual representation of the corresponding data
points in the scatterplot: changing their size by rotating the
token, and their opacity by sliding it. TOUCHTOKENS can
be transparent, in which case they will typically be used as
physical see-through tools [10, 15], altering the content that
falls below the token (e.g., filtering) or changing its visual
attributes (e.g., rendering). For instance, we have developed
a simple mapping application in which tokens are associated
with different layers. The tokens act as magic lenses [10] that
4All demonstrated in the companion video.
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Figure 16. Proof-of-concept applications: access control, tangible magic lenses, character controllers in a game, data visualization.

reveal the corresponding layer while leaving the context un-
touched. See-through tools can also be used to move content
in the workspace, as demonstrated in our simple game, where
transparent tokens control the location and orientation of in-
dividual characters.

TOUCHTOKENS can also act as a receptacle for, or tangible
representative of, digital content. Tokens then give access
to the associated content [26]. One of our demo application
illustrates how TOUCHTOKENS can be used for access con-
trol. Tokens can be used, e.g., to launch applications whose
icons are otherwise invisible or disabled on the tablet’s home-
screen, enabling the device to be shared with family (parental
control) and friends with some restrictions. Access to private
content can be made even more secure by requiring that the
token be put in a specific location, or that a particular gesture
be performed with it. Our last application demonstrates the
use of TOUCHTOKENS as digital containers. Users can reify
photo albums into tokens, and add a picture to an album by
holding the corresponding token above it. They can then dis-
play an album’s content as a grid of thumbnails by rotating
the token on the surface, or launch a slideshow by sliding it.

DISCUSSION AND FUTURE WORK

Main findings
We ran a formative experiment to investigate the possibility of
recognizing individual tokens by categorizing their associated
touch patterns. We were hypothesizing that differences in to-
ken shape and size might be sufficient to accurately discrimi-
nate those patterns. Our results revealed significant inter-user
variability in terms of accuracy: our algorithm can recognize
up to ten touch patterns with more than 90% accuracy for
some users, while for other users, its accuracy falls down as
soon as three or more tokens are in the set. This variabil-
ity comes from two sources: 1) some users employ different
grasp strategies for the same token; 2) some users employ
grasp strategies for different tokens that yield very similar
touch patterns.

Based on these observations, we then designed a set of six
tokens featuring notches aimed at reducing this variability
while remaining comfortable to grasp. A summative exper-
iment showed that with this set of tokens, our recognizer has
a minimum accuracy over all participants higher than 95%
(avg. 98%), and this without any training. Augmented with
notches, TOUCHTOKENS offer a low-cost, yet reliable, solu-
tion for enabling tangible interaction on multi-touch surfaces.

As mentioned earlier, we make this recognizer freely avail-
able, along with vector-based templates for the tokens.

Alternative recognition strategies
Our algorithm is fast, robust, and easy to implement. It also
features the best recognition rate among all alternatives that
we implemented and tested on the data collected during our
formative study. Alternative approaches we considered led
to significantly poorer performance. In particular, we tested
k-Nearest-Neighbour (k=1 and k=3) and SVM algorithms,
using both raw data and describing features. The raw data
was pre-processed to make it independent from rotation an-
gle and finger identification. The describing features we con-
sidered included the touch envelope’s area, as well as various
descriptive statistics (min, max, mean, median and standard
deviation) for measures such as point-centroid distance, dis-
tance between successive points, distance between any pair
of points, etc. These machine learning approaches yielded
recognition rates ranging from 50% to 85% per participant.
Compared to this, the analytical approach detailed in this pa-
per, which consists in aligning touch patterns using their cen-
troid as a reference point, works much better. We also consid-
ered using as a reference point the center of the best-fit circle
(i.e. the circle that passes through three touch points while
minimizing the distance to all remaining points) rather than
the centroid, but results were slightly worse. The recognition
rate was lowered by about 3% on average.

Future work
After this first investigation, we plan to study more system-
atically the limits of our approach, to see how it can scale to
larger sets of tokens and/or to tokens that have varying ge-
ometries. We want to better characterize the minimal differ-
ence between two touch patterns, in order to be able to auto-
matically position notches that meet our requirements: create
tokens that are comfortable to grasp and that our algorithm
can recognize with a high level of accuracy.

We also plan to conduct a fine-grained analysis of the fingers’
traces on the surface at the precise moment they are lifted off.
We want to investigate if these traces provide enough data to
find out whether the token is still on the surface or not. In-
deed, when lifting her fingers off the surface, the user might
leave the token on it, or she might remove it. This would al-
low us to support additional interactions, such as when plac-
ing multiple tokens on the tactile surface to express, e.g.,
layout and alignment constraints [20] or advanced database
queries with networks of tokens [29].
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