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When you are studying any matter, or considering any philosophy, ask yourself only,

what are the facts and what is the truth that the facts bear out.

Never let yourself be diverted either by what you wish to believe, or by what you think

would have beneficent social effects if it were believed.

But look only, and solely, at what are the facts.

— Bertrand Russell
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Abstract

Solvation properties play an important role in chemical and bio-chemical issues. The
molecular density functional theory (MDFT) is one of the frontier numerical methods to
evaluate these properties, in which the solvation free energy functional is minimized for an
arbitrary solute in a periodic cubic solvent box. In this thesis, we work on the evaluation
of the excess term of the free energy functional under the homogeneous reference fluid
(HRF) approximation, which is equivalent to hypernetted-chain (HNC) approximation in
integral equation theory. Two algorithms are proposed: the first one is an extension of a
previously implemented algorithm, which makes it possible to handle full 3D molecular
solvent (depending on three Euler angles) instead of linear solvent (depending on two
angles); the other one is a new algorithm that integrates the molecular Ornstein-Zernike
(OZ) equation treatment of angular convolution into MDFT, which in fact expands the
solvent density and the functional gradient on generalized spherical harmonics (GSHs).
It is shown that the new algorithm is much more rapid than the previous one. Both
algorithms are suitable for arbitrary three-dimensional solute in liquid water, and are
able to predict the solvation free energy and structure of ions and molecules.

Résumé

Les propriétés de solvatation jouent un rôle important dans les problèmes chimiques et
biochimiques. La théorie fonctionnelle de la densité moléculaire (MDFT) est l’une des
méthodes frontières pour évaluer ces propriétés, dans laquelle une fonction d’énergie libre
de solvatation est minimisée pour un soluté arbitraire dans une boîte de solvant cubique
périodique. Dans cette thèse, nous travaillons sur l’évaluation du terme d’excès de la
fonctionnelle d’énergie libre sous l’approximation du fluide de référence homogène (HRF),
équivalant à l’approximation de la chaîne hypernettée (HNC) dans la théorie des équations
intégrales. Deux algorithmes sont proposés : le premier est une extension d’un algorithme
précédent, qui permet de traiter le cas d’un solvant moléculaire à trois dimensions (en
fonction de trois angles d’Euler) au lieu d’un solvant linéaire (selon deux angles) ; L’autre
est un nouvel algorithme qui intègre le traitement de la convolution angulaire de l’équation
Ornstein-Zernike (OZ) moléculaire dans MDFT, et en fait développe la densité du solvant
et le gradient fonctionnel en harmoniques sphériques généralisées (GSHs). On montre que
le nouvel algorithme est beaucoup plus rapide que le précédent. Les deux algorithmes
sont appropriés pour des solutés arbitraires tridimensionnels dans l’eau liquide, et pour
prédire l’énergie libre et la structure de solvatation d’ions et de molécules.
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µ‹,‰(k), 37

7 angular convolution, a better algorithm 38

7.1 Angular convolution using Blum’s reduction, 38
7.2 Fast generalized spherical harmonic transform, 40

7.2.1 Equivalence of order in angular quadratures and projections, 40
7.2.2 Integration of Φ, Ψ using FFT, 41

7.3 Operational algorithm, 43
7.3.1 Commutativity between operations, 44
7.3.2 Reduction by symmetry, 45

8 solvation properties 47

8.1 Free energy correction for single ions, 47
8.1.1 Correction of type B, 47
8.1.2 Correction of type C, 48

8.2 Solvation structure, 48
8.2.1 Radial and site-site distribution function, 49
8.2.2 Radial polarization function, 49
8.2.3 Rotational invariant expansion, 50
8.2.4 Equivalence between the curves, 50

iii implementation 51

9 algorithms and branches 53

9.1 Branches “naive”, 54
9.2 Branches “convolution”, 55
9.3 Testing branches for nmax = 1, 55
9.4 Other paths, 55

10 numerical accuracy 56

10.1 Significant digits and curve resolution, 56
10.2 Generalized spherical harmonics transform, 57

10.2.1 mmax and nmax of projections, 58
10.2.2 From ρ to γ, 58

10.3 Comparison between branches, 60
10.3.1 Difference in energy evaluation, 61
10.3.2 A single k-kernel, 62



contents vii

10.3.3 k-border effect, 62
10.3.4 Difference in γ for “naive” and “convolution” methods, 63

10.4 Intrinsic variation of free energy, 64
10.5 Series of charged LJ centers, 66

10.5.1 Box length dependance and charge dependance of free energy, 66
10.5.2 Comparison with IET after corrections, 69
10.5.3 Dependence on mmax and nmax, 70

10.6 Uncharged LJ centers, 73
10.7 Linear solutes, 74
10.8 First conclusion, 75

11 computing performance 77

11.1 FFT, 77
11.2 FGSHT, 78
11.3 k-kernel, 79
11.4 Entire iteration of Fexc evaluation, 80

11.4.1 “naive” methods and “convolution_pure_angular”, 80
11.4.2 “convolution_standard” and “convolution_pure_angular”, 81
11.4.3 “convolution_standard” and “convolution_asymm”, 81
11.4.4 Distinction of mmax and nmax, 82

11.5 Global view of the code performance, 82

iv applications 83

12 comparison to md simulation 85

12.1 LJ centers, 85
12.2 Charged CH4 series, 86
12.3 Solvation free energy of single ions, 86
12.4 Small molecules, 88

v conclusion and perspectives 95

13 conclusion 97

14 perspectives 99

14.1 Reduce memory footprint in MDFT, 99
14.2 Site-based grid, 99
14.3 Theories beyond the HRF approximation and other improvements, 99
14.4 MDFT Viewer, 100
14.5 Application to real biological systems, and entropy, 100

vi appendix 101

a basics of algorithm complexity 103



viii contents

b direct correlation function of water 104

b.1 Dipole DCF from molecular dynamics simulation, 104
b.2 DCF projections from bulk Monte Carlo simulation, 105
b.3 Comparison between DCFs, 105

c error evaluation of interpolation strategies
for dcf in local frame 107

d angular convolution using blum’s reduction 109

e equivalence of quadrature-projection order 112

e.1 Gaussian quadrature, 112
e.2 Angular integration in GSHT, 112

f rotational invariant expansion 114

f.1 Orthogonality of Φ, 114
f.2 Rotational invariance of Φ, 115
f.3 Transform in local frame, 116
f.4 Transform in fixed frame, 118
f.5 Symmetry, 119

f.5.1 Symmetric rules of F (ω1, ω2) in intermolecular form, 119
f.5.2 Symmetric rules of rotational invariant projections, 119

g calculation of rotation matrix elements Rm
µµÕ

by recurrence 121

g.1 Case of mmax Æ 1, 121
g.2 Case of mmax > 1, 122

h properties of wigner 3j-symbol and gsh 124

h.1 Properties of Wigner 3j-Symbol, 124
h.2 Properties of GSH, 125
h.3 Convention of GSH, 126

bibliography 127



List of Figures

Figure 1.1 The solvation process, 2
Figure 2.1 Continuum solvent model, 7
Figure 2.2 Definition of cavity surfaces, 8
Figure 2.3 Euler angles, 11
Figure 2.4 LJ pair potential, 12
Figure 2.5 Water models, 13
Figure 2.6 Interactions in a flexible model, 14
Figure 2.7 Hierarchy of solute models, 15
Figure 4.1 Solute charge density projected onto grids, 23
Figure 5.1 Main structure of code MDFT, 29
Figure 6.1 Molecules 1 and 2 in different coordinate systems, 33
Figure 6.2 Rotation matrices, 34
Figure 6.3 Rotation to k-frame, 34
Figure 6.4 φ1 ≠ φ2 distribution, 36
Figure 7.1 Indices arrangement in a complete forward-backward FFT-2D pro-

cess of m’◊m elements, 43
Figure 7.2 Commutativity of operations, 44
Figure 7.3 Distribution of points to be calculated according to symmetry in

a 2D plan, 46
Figure 8.1 IQ model and summation scheme, 48
Figure 9.1 Process “find equilibrium density” in MDFT, 53
Figure 9.2 Possible algorithms for γ evaluation, 53
Figure 10.1 RDF with different resolution parameter, 57
Figure 10.2 The minimum value of ∆ρ(r, Ω)/ρ0 after a forward-backward GSHT

process, 60
Figure 10.3 ρ0nl

0‹ (r) and γ0nl
0‹ (r) of an artificial charged LJ center CH+0.4

4 , 61
Figure 10.4 A k-kernel, 62
Figure 10.5 k-border effect, 63
Figure 10.6 Absolute differences in γ̂(k, Ω) and γ(r, Ω), 64
Figure 10.7 Comparison of projections γ0nl

0‹ (r) for branches “naive_standard”
and “convolution_standard”, 65

Figure 10.8 Space-grid and Ψ dependence of code MDFT, 65
Figure 10.9 Original free energy of charged CH4, “naive_nmax1”, 67
Figure 10.10 Original free energy of charged CH4, “naive_interpolation” with

DCF of nmax = 5, 68
Figure 10.11 Original free energy of charged CH4, “convolution_standard” with

DCF of nmax = 1, 68
Figure 10.12 Quadratic charge dependence of free energy in CHq

4 series, 69
Figure 10.13 Free energy of charged CH4 compared to IET, without P-scheme

correction, 69
Figure 10.14 Free energy difference of CHq

4 series compared to IET, with all
corrections, 70

Figure 10.15 Free energy of CHq
4 series, with all corrections, 70

ix



Figure 10.16 Free energy of CHq
4 series (with corrections) for different nmax

(mmax = 5), 71
Figure 10.17 The projections ρ0nl

0‹ (r) of some selected charges of CHq
4 series com-

paring to IET, 72
Figure 10.18 RDF and RPF of some selected charges of CHq

4 series with different
mmax and nmax, 73

Figure 10.19 Test linear solutes, 74
Figure 10.20 The projections ρmnl

µ‹ (r) of CO2 comparing to IET, 75
Figure 11.1 Timing of FFT for real-to-complex and complex-to-complex pro-

cesses with respect to grid number N , 77
Figure 11.2 Timing of real-to-complex FFT processes with respect to its complex-

to-complex process of the same grid number N , 78
Figure 11.3 Computing time of GSHT and FGSHT, 78
Figure 11.4 Timing of real-to-complex FGSHT processes with respect to its

complex-to-complex process of the same mmax and nmax, 79
Figure 11.5 Timing of a k-kernel, 79
Figure 11.6 Entire iteration of Fexc evaluation, 80
Figure 11.7 Performance comparison of “convolution_standard” and “convo-

lution_pure_angular”, 81
Figure 11.8 Performance comparison of “convolution_standard” and “convo-

lution_asymm”, 81
Figure 11.9 Performance comparison of “convolution_standard” for mmax =

nmax and mmax = 5, 82
Figure 11.10 Timing of the whole F iteration, 82
Figure 12.1 RDF of rare gases compared to MD result, 85
Figure 12.2 RDF of charged CH4 series compared to MD result, 86
Figure 12.3 Test solutes, 89
Figure 12.4 Site-O RDF of test solutes, 91
Figure 12.5 Volume slice of solvent number density n(r) for pyrimidine, 94
Figure 12.6 Iso-surface of solvent number density n(r) = 2.4 for test water

molecules, 94
Figure 14.1 Site-site grid model, 100
Figure A.1 Function growth, 103
Figure B.1 Comparison between DCF projections, 106
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1
Introduction

This thesis aims to develop an original numerical toolkit for physical chemists and struc-
tural biologists based on the molecular density functional theory (MDFT), which makes
it possible to predict the solvation properties of arbitrary molecular objects in arbitrary
molecular solvents (mainly water) efficiently and with microscopic accuracy. The intro-
duction will seek to highlight the objective of this thesis and help explain such topics as
why theorists are interested in the nature of solvation, what are the present computing
trends in solvation simulations, and where our work situates in this frame of solvation
theories.

1.1 modeling of solvent effects

Solvation is a fundamental phenomenon in chemistry. The chemical behavior of numer-
ous systems strongly depends on the nature of solvation; for example, this is the case
for the reaction mechanisms in metal-organic reacting centers [1, 2], or pharmaceutical
studies [3–5]. The solvation properties demanded by scientific studies are highly diverse;
they include the free energy of solvation, solubility, concentration, partition coefficient,
saturated vapor pressure, pH value, the 3D solvation structure, etc. Overall, interest in
these solvation properties touches many fields of study such as chemistry and biochem-
istry, as well as pharmaceutical, environmental, and agrochemical industries. Unlike the
well-studied quantum mechanics (QM) for chemical interactions at a microscopic scale,
and the finite element models for macroscopic physical processes, the theories of solvation
lie in-between these description scales and are still under development, owing to the am-
biguous compromise between accuracy and computing cost, and the rapid development
of computer hardware which makes complicated calculations more and more accessible.
In a word, the studies in this domain are quite vibrant.

To change a phenomenon into a model, we must first understand its process. Solvation
is defined as the process of moving a molecule from the gas phase (or vacuum) to a
condensed phase (figure 1.1), which builds a stabilizing interaction with the solute (or
solute moiety, e.g., residues, interfaces, etc.) [6]. Such interactions are mostly classical
interactions, involving electrostatic and van der Waals forces; but there are also additional
specific chemical effects such as hydrogen bond formation, and quantum effects for some
small solvent molecules whose vibrational or rotational energy states are at the same
magnitude as kBT , as well as other effects, etc.

As not all kinds of interactions are important in applications, different models and
methods have been developed according to the usage.

For most of the 20th century, the study of solvation effects has been dominated by
continuum (implicit) models [7, 8], which mostly rely on the continuum dielectric de-
scription of the solvent and are not costly in terms of computation resources. They
provide an accurate way to treat the strong, long-range electrostatic interactions which
dominate many solvation phenomena, but lack detailed information on the first solvation
shell. This information mainly includes the cavity formation energy and solute-solvent
van der Waals interactions, which are often roughly treated by introducing an artificial
form of cavity that links to the form of the solute. The methods for testing electrostatic

1





1.2 scope of this thesis 3

model (RISM), which discretizes the distribution and correlation functions into site-site
functions, and solves somewhat phenomenological OZ and closure equations in a matrix
form [15]. On the other hand, Blum [16–18], Fries and Patey [19] extend the OZ equation
into a full molecular form, where the distribution and correlation functions depend on both
position and orientation. In their theory, the orientation part of OZ equation is simplified
by expanding the distribution and correlation functions onto rotational invariants, which
can be expressed in terms of Wigner generalized spherical harmonics.

The classical density functional theory approach deals with inhomogeneous liquids, and
uses the same variation principle and minimization strategy [20–22] as electronic density
functional theory (eDFT) for electron-electron interactions. The latter has received im-
mense success in computational chemistry. Classical DFT gives the solvation free energy
of the grand potential (usually named as free energy for simplification) and the equilib-
rium solvent density by minimizing the free energy functional of the solvent density in the
presence of a given external potential. Borgis and collaborators [23–32] have recently gen-
eralized it into the molecular case, leading to molecular density functional theory (MDFT),
where the solvent density depends on both position and orientation, ρ(r, Ω). The main
theoretical difficulty lies in the definition of well-funded and reliable functionals of the ex-
cess free energy Fexc [ρ], accounting for the geometric complexity of the solvent molecule.
Some recent research has shown that MDFT is capable of describing linear solvents like
acetonitrile, but still has some caveats for the most complex solvent, water [32]. MDFT

can be proven as mathematically equivalent to the two-component molecular IET, in the
limit that the functional is continuous (grid infinitely fine) and in an infinite system.

The majority of work of all these theories has been focused on water, since it is one
of the most difficult systems to model due to its molecular geometry, unavoidable multi-
body character, quantum effects, and hydrogen bonds, to name a few. The importance
of including instantaneous polarization in potential functions is also an issue [33, 34].
However, since polarizable force fields are not yet in common use, the simulations by
micro-states and the liquid theory which feed on force fields also have their own limits,
compared to the continuum model which can be totally polarizable. The advantages and
disadvantages of each branch of theory are listed in table 1.1.

theory speed long-range first-shell polarizable solvent

Continuum model fast yes no fully

Classical molecular simulations costly yes yes partially, very costly

Theory of liquids fast yes yes partially

Table 1.1: Solvation theories

1.2 scope of this thesis

This thesis aims at developing the theory and the code of MDFT, focusing on the gener-
alization and algorithmic acceleration of the excess free energy functional Fexc evaluation
under homogenous reference fluid (HRF) approximation, which will be discussed in detail
in later chapters.

Chapter I reviews a selection of models and methods to describe solvent effects. It
includes the implicit and explicit models, the basics of liquid-state theory, as well as its
two frontier research domains, MDFT and IET. Some details of the code MDFT, associated
to the MDFT approach, on which all the developments of this thesis are based, are also
included.



4 introduction

Chapter II presents all the theory developed and newly used in this thesis. Two algo-
rithms for the excess energy functional evaluation under HRF approximation are proposed.
One is an extension of the previous algorithm which could be applied to only linear sol-
vents (or linearized molecular solvents), to a full 3D molecular solvent case; while the
other is a new algorithm that integrates the molecular OZ equation treatment of angu-
lar convolution into MDFT. The solvation properties that the code generates are also
presented, mainly containing the corrections of free energy and solvent structure profiles.

Chapter III reports all the implementation results, which are divided into two aspects:
the “accuracy”, which involves the error evaluations, comparisons between algorithms,
and with IET results; and the “performance”, which evaluates the computing cost, from
the parts of the code to the entire branches.

Chapter IV gives applications to some LJ centers, ions and small molecules. Some
works that remain unachieved are put in the perspectives.



Chapter I

State of the Art: Solvation, Models
and Methods

This chapter gives a brief review of all the basic concepts and previous work
that this thesis is based on.

In section 2, we begin by introducing the frequent models of solvent in a
simulation, from the simplest implicit continuum model to the most complex
explicit one. The overview of these models then helps to understand the choice
of description scale used in our study, as well as its limits.

Once the model is chosen, all the theories become mathematical problems.
Section 3 reviews some basic concepts of statistical mechanics for liquids (i.e.
theory of liquids), which present some brief formalisms deduced for an atomic
solvent model. Two frontier approaches are introduced with a few deductions:
the classical density functional theory (cDFT), and the integral equation the-
ory (IET). A mathematical equivalence between these two theories is also
presented.

The following section 4 gives the extension of the two theories to the molecular
solvent case, i.e. the molecular density functional theory (MDFT) that this
thesis works upon, and the molecular Ornstein-Zernike (MOZ) approach for
IET. The equivalence between these two theories gave us the idea to use the
expansion techniques in IET to serve MDFT.

Section 5 gives some supplementary presentation of the initial code MDFT,
which the development of this thesis is based on.







8 model of solution system

which polarizes the medium, and the action back of the medium on the molecule (reaction
field).

The initial two terms in eq. (2.1) are linked to the configuration of the first solvation
shell (cavity). The definition of cavity varies from the simplest sphere or ellipsoid to
the ensemble of atomic surfaces defined by the van der Waals radii in the solute. It is
somewhat reasonable to consider the cavity area as proportional to the number of solvent
molecules in the first solvation shell. This number can be calculated as the area passing
through the middle region of first shell solvent. This area, named the solvent-accessible
surface area (SASA) [36, 37], can be calculated by adding the radius of the probe solvent
ball to the solvent excluded surface area (figure 2.2).

Van der Waals
surface

solvent-accessible
surface (SAS)

solvent excluded
surface (SES)

probe sphere

Figure 2.2: Definition of cavity surfaces. The solvent accessible surface (SAS) traced out by the
center of the probe representing a solvent molecule. The solvent excluded surface (SES)
is the topological boundary of the union of all possible probes that do not overlap with
the molecule.

The energy required to create such a cavity and the stabilization due to van der Waals
interactions between the solute and solvent, assumed to be proportional to the surface
area of the cavity, is expressed as

∆Gcavity + ∆Gdispersion = γSSASA + β (2.2)

or parameterized by having a constant ξ specific for each atom type, with the ξ parameters
being determined by fitting to experimental solvation data:

∆Gcavity + ∆Gdispersion =
atomsÿ

i

ξiSi (2.3)

The models and methods employed to calculate the electrostatic contribution ∆Gelec

have varied greatly according to their usage. The sections below list the most common
examples. On another topic, the integration of continuum models into QM calculations
is also a very important field; these developments will not be detailed here as they do not
connect yet to our work. Such kinds of methods are called the self-consistent reaction
field (SCRF) models, which integrate the calculation of the solute-solvent interaction in
addition to that of the solute wave function by an iterative procedure. Some examples
are presented in the list of Gaussian keyword SCRF [38], and the field is well reviewed
by, for example, Tomasi [9, 10] and Jensen [7].

2.1.1 Poisson-Boltzmann methods

The Poisson-Boltzmann equation (PBE) [39] makes it possible to calculate the position-
dependent electrostatic potential Velec(r) in the continuum model, such that the electro-
static component of the free energy can be written as

∆Gelec =
1
2

⁄

drρq(r)Velec(r) (2.4)
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where ρq is the charge distribution of the solute.
The Maxwell-Gauss equation in SI units convention gives

Ò · D(r) =
ρq(r)

ε0
(2.5)

where D(r) = ε0E(r) + P (r) is the electric displacement field, P (r) is the system po-
larization, E(r) the electric field, and ε0 the vacuum permittivity. D(r) can also be
expressed in terms of the position-dependent dielectric constant ε(r), D(r) = ε(r)E(r),
which thus gives

Ò · ε(r)E(r) =
ρq(r)

ε0
(2.6)

or in terms of electrostatic potential:

Ò · [ε(r)ÒVelec(r)] = ≠ρq(r)

ε0
(2.7)

This second-order differential equation (2.7) is called the Poisson equation.
This equation cannot be solved analytically for complex geometries (such as a protein).

Therefore it is done numerically using appropriate methods; for example, as mentioned in
the article of Roux and Simonson [40] or Holst [39]. A density functional approach based
on the minimization of the polarization density can also be used to solve this equation
[41, 42].

If the solvent is ionic, the Poisson equation can be modified by taking into account a
(thermal) Boltzmann distribution of ions in the solvent, i.e.,

ρtot(r) = ρq(r) ≠ 2qnion sinh(
q

kBT
Velec(r)) (2.8)

for a salt composed of ions of charge +q and ≠q and of density nion. Replacing in eq.
(2.7) leads to the Poisson-Boltzmann Equation:

Ò · (ε(r)ÒVelec(r)) ≠ 2qnion

ε0
sinh

3
qVelec(r)

kBT

4

= ≠ρ(r)

ε0
(2.9)

2.1.2 Born / Onsager / Generalized Born models

For simple geometries, the Poisson equation (2.7) can be solved analytically. The simplest
model is a spherical cavity. For a net charge q in a cavity of radius a, the electrostatic
free energy of a medium with a dielectric constant of ε is given by the Born formula:

∆Gelec(q) = ≠ 1
8πε0

3

1 ≠ 1
ε

4
q2

2a
(2.10)

Other similar models include the Onsager model, in which a point dipole (characterized
by the dipole moment µ) is put in a spherical cavity. The Kirkwood model refers to a
general multipole expansion in a spherical cavity, while the Kirkwood-Westheimer model
arises for an ellipsoidal cavity. Those simplified models are not fully able to predict the
solvent behavior in many realistic cases [7].

The generalized Born (GB) model is an empirical model based on the superposition
of several net charges in spherical cavities as the Born model describes, with a similar
formula:

∆Gelec = ≠ 1
8πε0

3

1 ≠ 1
ε

4
ÿ

i

ÿ

j

qiqj

fij
(2.11)
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where the function fij depends on the internuclear distance rij between the centers of
atoms i and j and on the Born radii for each pair of atoms ai and aj :

fij =

ˆ
ı
ı
Ùr2

ij ≠ aiaj exp

A

r2
ij

4aiaj

B

(2.12)

The key (empirical) point is to be able to attribute an effective Born radius ai to each
atom inside the complex, non-spherical cavity formed by the solute. Once this is accom-
plished, the GB model provides a very fast method, with an overall accuracy comparable
to that of Poisson-Boltzmann calculations. That makes it widely used in computational
structural biology to perform structure optimization and molecular dynamics simulations.

2.2 model potential of explicit molecules

The model potential frequently used in the theory of liquids is a classical, rigid, pairwise
additive model [12, 13]. It is based on three assumptions.

1. Firstly, the quantum effects should be ignored. It is assumed that the rotational and
transitional motion of solvent particles are continuous and classical, which means
the separation of both transitional and rotational states are largely inferior of kBT .
For light molecules, that is not always convincing. Some molecules containing hy-
drogen (e.g. H2O, NH3, and particularly H2) exhibit obvious quantum effects at low
temperatures in the liquid state. Gaseous H2O and NH3 also need quantum effect
corrections. However, for the liquid of most interest to us, H2O at room tempera-
ture, the contribution of this effect is small enough to be neglected. And obviously,
there should not be any chemical interaction of the solvent with the solute.

2. Secondly, the intramolecular movement (vibration and internal rotation) shouldCompared to

atomic models

that only depend

on r
N , the

angular

correlations can

give influence on

both structural

and

thermodynamic

proprieties. That

is why our theory

is extended to

linear case,

Ω ≡ (Θ, Φ), then

molecular case,

Ω ≡ (Θ, Φ, Ψ).

be either independent of transitional and rotational movement or absent. This
rigid molecule approximation assumes that the intermolecular potential U(rN , ΩN )

for N particles only depends on the positions of the N molecular centers rN ©
(r1, r2, . . . , rN ) and on their orientations ΩN © (Ω1, Ω2, · · · , ΩN ), where Ω ©
(Θ, Φ, Ψ) represents the Euler angles (figure 2.3). The natural choice for the molec-
ular center is the center of mass. This is, however, arbitrary if only equilibrium
properties are considered.

The rigid approximation is quite realistic for molecules in which the separation
of vibrational states largely exceeds kBT , implying that the molecule stays in its
ground vibrational state. This is the case for many small solvent molecules such as
N2, CO2, C6H6, and indeed for the bending and stretching modes of water.

3. Finally, the intermolecular forces have to be assumed as pairwise additive:

U(rN , ΩN ) =
1
2

ÿ

i”=j

u(rij , Ωi, Ωj) =
ÿ

i<j

u(rij , Ωi, Ωj) (2.13)

This means that the model potential only depends on the intermolecular separation
r and on the molecular orientations Ω1 and Ω2. This approximation is quasi-exact
for low density gases, where the contribution of the three and more body terms
decreases rapidly. But for dense fluids, in most of the cases the multi-body potential
cannot be ignored. The complete model potential with higher-order corrections can
be written in the form of

U(rN , ΩN ) =
ÿ

i<j

u(ij) +
ÿ

i<j<k

u(ijk) +
ÿ

i<j<k<l

u(ijkl) + ... (2.14)
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Figure 2.3: Euler angles. The basis vectors of the new orientation are obtained by 3 sequential
operations: (1) A rotation φ (0 < φ < 2π) about the z-axis, bringing the frame of axes
from the initial position S into the position SÕ (2) A rotation θ (0 < θ < π) about the
y-axis of the frame SÕ, which is transformed into SÕÕ (3) A rotation ψ (0 < ψ < 2π)
about the z-axis of the frame SÕÕ.

where u(ij) = u(rij , Ωi, Ωj) and u(ijk) = u(rij , rjk, rki, Ωi, Ωj, Ωk), etc. The
omission of the three-body and higher-order terms can cause errors, for example, in
surface tension and surface energy calculation [43]. However the higher order terms
are often accounted for by an effective pair potential (measured by experiments or
calculated by simulations), which reduces considerably the computational cost for
simulations, or the degree of theory needed. Such models are presented below, going
from simple to molecular liquids. For the molecular solvent considered in this thesis,
water, most publications have stayed at this two-body level of description.

2.2.1 Interaction of spherical particle

The simplest model of a fluid is the hard sphere model. With d the hard-sphere diameter,
the pair potential is defined as:

u(r) =

Y

_]

_[

Œ r < d

0 r > d

(2.15)

This model is indeed a fundamental reference model in statistical mechanics, and it can
represent some physical systems, such as neutral colloidal suspensions [44]. However, the
absence of attractive force, which precludes the existence of a liquid-gas transition, makes
it too simple for realistic fluids. More realistic neutral particle models, like the Lenard-
Jones (LJ) model, exhibit a potential energy curve that has the same shape as the real
interaction of rare gas, as shown in figure 2.4.

The Lennard-Jones (LJ) interaction gives

uLJ (r) = 4ε

C3
‡

r

412

≠
3

‡

r

46
D

(2.16)

where r is the distance from centre to centre, ‡ is the collision diameter or the particles
separation where u(r) = 0, and ‘ is the well depth of the potential (of unity of energy).
The well minimum occurs at rmin = 21/6‡ and u(rmin) = ≠‘. The parameters ‡ and ‘

can be extracted from experiments.
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attractive

r
repulsive

200

100

0

-100

-200
3 4 5 6 7

r [Å]

u(
r)
[K

]

Figure 2.4: LJ pair potential. The plot gives the potential energy u(r) versus internuclear distance
r of two particles. At large distances, both attractive and repulsive interactions are
small. As the distance between the atoms decreases, the attractive electron-proton
interactions dominate, and the energy of the system decreases. At the observed bond
distance, the repulsive electron-electron and proton-proton interactions just balance
the attractive interactions, preventing a further decrease in the internuclear distance.
At very short internuclear distances, the repulsive interactions dominate, making the
system less stable than the isolated atoms.

Theoretically, all terms in the multipole series represent attractive contributions to
the potential. The leading term, varying as r≠6, describes the quantum dipole-dipole in-
teraction. Higher-order terms represent dipole-quadrupole (r≠8), quadrupole-quadrupole
(r≠10) interactions, and so on, but these are negligible compared to r≠6. The short-range
interaction is difficult to define properly, and for the sake of simplicity and numerical
efficiency, it is defined as r≠12 in the LJ model.

If the spherical particles are charged (as in molten salts), the electrostatic interaction
between them is described by the Coulomb point charge interaction:

uCoul(r) =
q1q2

4fiÁ0r
(2.17)

For such charged simple fluids, the overall pair u(r) is a sum of LJ and Coulomb
interactions. Such decomposition can be extended to molecular fluids in terms of site-site
interactions, which are discussed in the following section.

2.2.2 Site-site interactions

Indeed, a spherical description of interactions is not sufficient to fully describe molecular
fluids. The site-site model is a further extension of atomic models in which the solvent
molecule is represented by a set of discrete interaction sites. The total potential energy
is a sum of spherical interaction potentials:

u(1, 2) =
ÿ

–

ÿ

—

u–—(|r2— ≠ r1–|) (2.18)

where ris is the coordinates of site s in molecule i, u–—(r) the interatomic potential energy
of pairs of sites – and —, as discussed above. More specifically, it is generally decomposed
into a Lennard-Jones and a Coulombic contribution:

u(1, 2) =
ÿ

–

ÿ

—

Y

]

[
4‘–—

S

U

A

‡–—

r
–—
12

B12

≠
A

‡–—

r
–—
12

B6
T

V +
1

4fiÁ0

q–q—

r
–—
12

Z

^

\
(2.19)
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modeled using Coulomb’s Law and the dispersion and repulsion forces using the Lennard-
Jones potential, as described above.

With respect to the original SPC model, the SPC/E model takes into account the
polarization in an implicit and phenomenological way, re-normalizing the dipole of the
effective pair model, and thus increasing the partial charge slightly compared to SPC
(table 2.1; the center of water molecule has been placed at atom O, for convenance). The
SPC/E model gives a better radial distribution function and diffusion constant than the
SPC model. It is the most commonly used model for applications.It should be noted

that any rigid

solvent model is

compatible with

the theory that

this thesis is

based on, e.g.

acetonitrile used

in [32].

model ‡ [Å] Á [kJ · mol≠1] l1 [Å] q1 [qe] q2 [qe] ◊ [°]

SPC [48] 3.166 0.650 1.0000 +0.410 -0.8200 109.47

SPC/E [47] 3.166 0.650 1.0000 +0.4238 -0.8476 109.47

experiment [49] - - 0.991 - - 105.5

Table 2.1: Structural parameters of SPC and SPC/E water

2.2.5 Flexible and polarizable models

Up to this point, molecules were considered as rigid bodies. Flexible models give extra
degrees of freedom in vibration and internal rotation. In that case, the interaction po-
tential contains several extra terms, yielding typically five kinds of forces: three for the
direct interactions in addition to the two indirect interactions (LJ and Coulomb).

stretch terms bend terms torsional terms non-bonded interactions

U =
X

bonds

Kr(r − req)
2 +

X

angles

Kθ(θ − θeq)
2 +

X

dihedrals

Vn

2
[1 + cos(nφ− γ)] +

X

i<j

"

Aij

r12ij
−

Bij

r6ij
+

qiqj

"rij

#

+ −
b θ φ

r r

Figure 2.6: Interactions in a flexible model

The flexible yielding can deal with the non-rigidity of the solvent, which is partially
polarized owing to the vibrational degrees of freedom (the so-called atomic polarizability).
On the other hand, electronic polarizability (the deformation of the molecule electron
cloud under the action of the external electric field) can be taken into account even in
a rigid model. This polarizability can be described by introducing a modifiable charge
distribution, for example by adding an induced dipole at the molecular center of the
molecule, or even on each of its atomic sites, and by solving the set of induced dipoles
self-consistently. Introducing variable atomic charges is possible too [50]. Optimizing the
induced charges/dipoles has a large computational overhead compared to fixed charges.

Complex models require expensive computing cost, but still can have large fluctuations
due to use of imposed small system size. There is a compromise between the choice of
model and the choice of system size. For this reason, the rigid models are still the most
popular nowadays. On the other hand, computing technologies have greatly developed
compared to the theories themselves, which makes it possible to use more and more precise
models in computation.





3
Statistical Mechanics of Atomic Fluids

Statistical mechanics serves to deduce thermodynamic quantities from the Hamiltonian
of any given system. In this section, we present some basic formalism for a classical atom-
like spherical solvent model in grand canonical ensemble (µ,V ,T ). Firstly, we introduce
the relations between the statistical mechanics and thermodynamic quantities. Then we
change the view to the structure of the solvent. The two theories we use in this thesis,
here referred to as IET and cDFT, as well as their equivalency, are presented with brief
derivations in the following content. The majority of this section is based on the book
by Hansen & McDonald [12, 51], and the articles and notes of Evans [21, 52, 53]. A very
detailed review is done by Wu et al. [54] to the same purpose, thus here we only introduce
the concepts that will be useful to understand this thesis.

3.1 hamiltonian and ensemble properties

Once we define a spherical solvent model, of which the movement only depends on its
position and momentum (r, p), the instantaneous state (phase point, micro-state) of an N -
particle solvent system is specified by 3N coordinates rN © r1, . . . , rN and 3N momenta
pN © p1, . . . , pN . The internal energy of particles in a system is characterized by its
Hamiltonian:

HN (rN , pN ) = KN (pN ) + VN (rN ) + V ext
N (rN ) (3.1)

where

KN (pN ) =
Nÿ

i=1

p2
i

2m
is the kinetic energy;

VN (rN ) =
Nÿ

i<j

u(|ri ≠ rj |) + 3 body + . . . is the interatomic potential energy U(rN );

V ext
N (rN ) =

Nÿ

i=1

Vext(ri) is the potential energy arising from the interaction of the

particles with the external field (e.g. a solute).

The grand potential, characteristic thermodynamic state function for the grand canon-
ical ensemble, which depends on the chemical potential µ, the volume V and the temper-
ature T , is linked with the statistical mechanics quantities with the relation:

œ(µ, V, T ) = ≠kBT ln … (3.2)

where

… =
Œÿ

N=0

e—µN

h3N N !

⁄

drN dpN e≠—HN (rN ,pN ) (3.3)

=
Œÿ

N=0

1
N !

⁄

drN e≠—VN (rN )

A
NŸ

i=1

e—Vint(ri)

Λ3

B

(3.4)

16
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is the grand partition function, with Λ =
1

2fi— h̄2/m
2≠ 1

2 the de Broglie thermal wave-
length, and

Vint(ri) = µ ≠ Vext(ri) (3.5)

the intrinsic chemical potential.
We can also define the intrinsic free energy: N =

s
drn̄(r) is

the number of

particles in

canonical

ensemble, but the

formulae (3.6)

and (3.8) are

also available for

grand canonical

ensemble.

Fint = F ≠
⁄

drn̄(r)Vext(r)

= œ + µN ≠
⁄

drn̄(r)Vext(r)

= œ +
⁄

drn̄(r)Vint(r) (3.6)

where F is the Helmholtz free energy and

n̄(r) = ÈÍ(r)Í =
K

Nÿ

i=1

”(r ≠ r1)

L

(3.7)

is the density profile of instantaneous density Í(r) distribution at equilibrium.
The differential form of Fint is

”Fint = ≠S”T +
⁄

dr”n̄(r)Vint(r) (3.8)

with S the entropy.
The internal energy of the solvent contains two contributions, one due to the kinetic

energy of the particles, KN (pN ), and the other linked to the interaction between particles,
VN (rN ). When the fluid is a perfect gas, which means VN = 0, it can be easily derived
from eq. (3.2-3.5) that Fint has the following expression:

Fid = kBT

⁄

drn̄(r)
Ë

ln
1

Λ
3n̄(r)

2

≠ 1
È

(3.9)

When interactions between particles are accounted for, the total expression of Fint is:

Fint = Fid + Fexc (3.10)

and the form of Fexc will be detailed in later sections.

3.2 functional derivatives and distribution functions

The structure of the solvent in the grand canonical ensemble can be characterized by its
n-particle density

fl(n)(rn) =
1
…

Œÿ

N=n

1
(N ≠ n)!

⁄

dr(N≠n)e≠—VN (rN )

A
NŸ

i=1

e—Vint(ri)

Λ3

B

(3.11)

which means the probability to find n particles in a volume element drn. In particular, the
probability to find one particle in a volume element is the solvent density fl(1)(r) = n̄(r),
that ⁄

fl(1)(r)dr = ÈNÍ (3.12)

where ÈNÍ is the ensemble average of the number of particles, that is to say the average
number of particles at equilibrium. fl(n)(rn) becomes fln if the system is homogeneous. It
can be proven that

”œ

”Vint(r)
= ≠fl(1)(r) (3.13)
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The corresponding n-particle distribution function is defined as:

g(n)(rn) =
fl(n)(rn)

rn
i=1 fl(1)(ri)

(3.14)

such that g(n)(rn) æ 1 when all pairs of particles becomes sufficiently large.
The two-particle pair distribution function (PDF), g(2)(r1, r2), is one of the most im-

portant quantities in the theory of liquids. Its corresponding pair correlation function
(PCF) is defined as:

h(2)(r1, r2) = g(2)(r1, r2) ≠ 1 (3.15)

which vanishes when |r1 ≠ r2| æ Œ.
If we define the density-density correlation function as:For any

ensemble.

H (2)(r1, r2) = fl(1)(r1)fl
(1)(r2)h

(2)(r1, r2) + fl(1)(r1)”(r1 ≠ r2) (3.16)

which means the correlation [55] between the instantaneous fluctuation of particle density
from its ensemble average, it can be proven that

”œ2

”Vint(r1)”Vint(r2)
= ≠—H (2)(r1, r2) = ≠”fl(1)(r1)

”Vint(r2)
(3.17)

As an analogue, the direct correlation function (DCF) is defined as the derivative of the
excess free energy functional Fexc[fl]:

c(1)(r) = ≠”(—Fexc[fl(1)])

”fl(1)(r)
(3.18)

c(2)(r1, r2) =
”c(1)(r1)

”fl(1)(r2)
= ≠ ”2(—Fexc[fl(1)])

”fl(1)(r1)”fl(1)(r2)
= c(2)(r2, r1) (3.19)

c(n)(r1, . . . , rn) =
”c(n≠1)(r1, . . . , rn≠1)

”fl(1)(rn)
(3.20)

According to the definition of Fint, as well as the expression of ”Fint in eq. (3.8):

—Vint(r) = —
”Fint[fl(1)]

”fl(1)(r)
= —

”Fid[fl
(1)]

”fl(1)(r)
+ —

”Fexc[fl(1)]

”fl(1)(r)

= ln
1

Λ
3fl(1)(r)

2

≠ c(1)(r) (3.21)

The functional derivative chain rule leads to

⁄

dr3
”Vint(r1)

”fl(1)(r3)
· ”fl(1)(r3)

”Vint(r2)
=

⁄

dr3
”Vint[fl(1)(r1)]

”fl(1)(r3)
· —H (2)(r3, r2)

=
⁄

dr3

C

1
fl(1)(r1)

”(r1 ≠ r3) ≠ c(2)(r1, r3)

D

· H (2)(r3, r2)

= ”(r1 ≠ r2) (3.22)

in addition to the definition of H in eq. (3.16) gives

h(2)(r1, r2) = c(2)(r1, r2) +
⁄

dr3

1

c(2)(r1, r3)fl
(1)(r3)h

(2)(r3, r2)
2

(3.23)

which is called the Ornstein-Zernike (OZ) equation.
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3.3 classical density functional theory

The density functional theory is based on two theorems :

1. For a given choice of VN , T and µ, the intrinsic free energy Fint is a unique functional
of the equilibrium one-particle density n̄(r), expressed by Fint[n̄].

2. Let n(r) be some arbitrary one-particle microscopic density, and define the grand
potential functional œ[n] as:

œ[n] = Fint[n] ≠
⁄

drn(r)Vint(r) (3.24)

Then the variational principle states that

œ[n] Ø œ[n̄] (3.25)

with the equal sign takes at n(r) = n̄(r). The differentiation of eq. (3.24) with
respect to n(r) gives

”œ[n]

”n(r)

-
-
-
-
n=n̄

=
”Fint[n]

”n(r)

-
-
-
-
n=n̄

≠ Vint(r) = 0 (3.26)

The fact that the right hand vanishes at equilibrium is agreed with eq. (3.8).

The solvation free energy functional F is defined as the difference between the grand Here the

character F is

used for

“free-energy

functional”; it is

a free energy of

grand ensemble,

but differs from

Helmholtz free

energy F .

However, it can

be proven that all

the free energies

become the same

when the

fluctuations in N

and V are

negligible [56].

potential functional of the solution system œ[n] and of the correspondent reference bulk
solvent at equilibrium œ[n̄0]:

F [n] = œ[n] ≠ œ[n̄0] (3.27)

As the external potential is absent for bulk solvent, we define:

Fint[n] = F [n] ≠
⁄

drn(r)Vext(r) (3.28)

= Fint[n] ≠ Fint[n̄0] ≠ µ

⁄

dr∆n(r)

= kBT

⁄

drn(r)
Ë

ln
1

Λ
3n(r)

2

≠ 1
È

+ Fexc [n(r)] (3.29)

≠kBT

⁄

drn̄0

Ë

ln
1

Λ
3n̄0

2

≠ 1
È

≠ Fexc [n̄0] ≠ µ

⁄

dr∆n(r)

where ∆n(r) = n(r) ≠ n̄0.
If we write the external free energy Fexc [n(r)] in Taylor expansion around n̄0:

Fexc [n] © Fexc [n̄0] +
⁄

dr
”Fexc [n]

”n(r)

-
-
-
-
n=n̄0

∆n(r)

+
1
2

⁄

dr1dr2
”2Fexc [n]

”n(r1)”n(r2)

-
-
-
-
-
n=n̄0

∆n(r1)∆n(r2) + O(∆n3)

= Fexc [n̄0] ≠ kBT

⁄

drc
(1)
0 (r)∆n(r)

≠kBT

2

⁄

dr1dr2c
(2)
0 (r1, r2)∆n(r1)∆n(r2) + O(∆n3) (3.30)

where c
(n)
0 (r) is the corresponding bulk DCF at equilibrium defined in eq. (3.20). Accord-

ing to eq. (3.21):

c
(1)
0 (r) = ln

1

Λ
3n̄0

2

≠ —µ (3.31)
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we can find

Fint[n] = kBT

⁄

dr

5

n(r) ln
3

n(r)

n̄0

4

≠ n(r) + n̄0

6

(3.32)

≠kBT

2

⁄

dr1dr2c
(2)
0 (r1, r2)∆n(r1)∆n(r2) + O(∆n3)

Therefore, if we define:

Fid[n] = kBT

⁄

dr

5

n(r) ln
3

n(r)

n̄0

4

≠ n(r) + n̄0

6

(3.33)

Fexc[n] = ≠kBT

2

⁄

dr1dr2c
(2)
0 (r1, r2)∆n(r1)∆n(r2) + O(∆n3) (3.34)

Fext[n] =
⁄

drn(r)Vext(r) (3.35)

the free energy functional can be written as:

F [n] = Fint + Fext = Fid + Fexc + Fext (3.36)

Up to this point a brilliant approach has been built, in that for a given choice VN ,
T and µ, one can obtain the equilibrium density of solvent n̄(r) by minimizing the free
energy functional:

”F [n]

”n(r)

-
-
-
-
n=n̄

= 0 (3.37)

Note that the two terms Fid[n] and Fext[n] are physically exact, while the excess term
Fexc[n], which can be rewritten as:

Fexc[n] = ≠kBT

2

⁄

dr1dr2C(r1, r2)∆n(r1)∆n(r2) (3.38)

depends on the exact correlation function C(r1, r2) which is a priori unknown.
If we ignore the three-body and higher order terms in eq. (3.34), C(r1, r2) becomes

that of the homogeneous reference fluid, which only depends on the relative distance, i.e.
c(2)(r1, r2) = c(r12), so that

Fexc [n] ƒ ≠kBT

2

⁄

dr1dr2c(r12)∆n(r1)∆n(r2) (3.39)

This was called the homogenous reference fluid (HRF) approximation. The generalization
to a molecular, non-spherical solvent for which orientations matter is described in §4.

3.4 integral equation theory

Similar to the DFT approach which aims to find the equilibrium solvent density fl(1) =

n̄ and the free energy functional F , the integral equation theory (IET) can also give
structural and energetic informations by solving a pair of integral equations of h(2)(r1, r2)

and c(2)(r1, r2) to find the pair distribution function g and the difference of correlation
functions “ = h ≠ c which is directly linked to the free energy. One of the relations for h

and c is the OZ equation shown as eq. (3.23). Note that in k-space eq. (3.23) can take
advantage of the convolution properties to give a simple product relation:

“(k) = h(k) ≠ c(k) = fl (“(k) + c(k)) c(k) (3.40)
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The second relation is a closure equation, which can be deduced from eq. (3.37), giving
the minimum density

fl(1)(r1) = fl
(1)
0 exp

3

≠—Vext(r1) +
⁄

dr2∆fl(1)(r2)c
(2)(r1, r2) + O(∆fl2)

4

(3.41)

which gives, for example, when O(∆fl2) = 0, one of the simplest closure equations, the
hypernetted-chain HNC approximation:

g(1, 2) = 1 + h(1, 2) = exp [≠—u(1, 2) + h(1, 2) ≠ c(1, 2)] (3.42)

Here u corresponds to Vext in eq. (3.41) when the particles 1 and 2 are respectively the
solute and solvent.

The general form of OZ closure is:

g(1, 2) = exp [≠—u(1, 2) + h(1, 2) ≠ c(1, 2) + b(1, 2)] (3.43)

where the b is the bridge function. Other closures are also possible, such as Percus-
Yevick (PY) approximation (a linear expansion of the second exponential term in HNC)
specifically for systems with short-range forces, or mean-spherical approximation (MSA)
in the limit of low density.

3.5 equivalence between cdft and iet for a dilute solution system

The generalization of the OZ equation in eq. (3.23) to n components can be written as

h‹µ(1, 2) = c‹µ(1, 2) + fl
ÿ

⁄

x⁄

⁄

h⁄µ(1, 3)c‹⁄(2, 3)d3 (3.44)

where x‹ = N‹/N is the number concentration of species ‹ œ [1, n].
For a two-component homogeneous solute-solvent mixture, where the solute (M) is

infinitely diluted in the solvent (S) (xS æ 1), the coupled OZ relations are written as

hSS(1, 2) = cSS(1, 2) + fl

⁄

hSS(1, 3)cSS(2, 3)d3 (3.45)

hSM(1, 2) = cSM(1, 2) + fl

⁄

hSS(1, 3)cSM(2, 3)d3 (3.46)

hMS(1, 2) = cMS(1, 2) + fl

⁄

hMS(1, 3)cSS(2, 3)d3 (3.47)

hMM(1, 2) = cMM(1, 2) + fl

⁄

hMS(1, 3)cSM(2, 3)d3 (3.48)

Eq. (3.45) is the OZ equation for bulk solvent. Eqs. (3.46) and (3.47) describe the
correlations between the solute and solvents, which are equivalent. From eq. (3.47) we
can deduce eq. (3.34) for the DFT approach, if we impose O(∆fl3) = 0, i.e. the HNC

approximation. And in IET, eq. (3.46) is normally used for two-component solution. Eq.
(3.48) is rarely used. The difficulty to solve such equation lies in finding a proper closure
equation. As the approximations like HNC are already quantitatively far from sufficient
to describe solute-solvent correlation, it becomes very bad for solute-solute.



4
Approach to Molecular Solvents

In the case of non-spherical solvents like water, the solvent particle carries a molecu-
lar structure described by a collection of distributed atomic interaction sites (LJ and
Coulombic). The two theories mentioned in the previous section are now formulated in
the molecular picture in which each solvent molecule is considered as a rigid body and
characterized by its position r (e.g. the position of center of mass), and its orientation
Ω. In MDFT, the solvent is characterized by an angle-dependent inhomogeneous den-
sity, fl(r, Ω); in IET, an angle-dependent form of the pair distribution function g(X1, X2)

(X © (r, Ω)) is proposed, while the molecular OZ equation is expanded on rotational
invariants. The reference interaction site model (RISM) [15], which provides another way
for IET to treat molecular solvents, will not be discussed here for the sake of simplicity.

4.1 molecular density functional theory

In molecular density functional theory (MDFT), the free energy functional is rewritten as:

F [fl(r, Ω)] = œ[fl(r, Ω)] ≠ œ[fl0] (4.1)

where œ[fl0] is the correspondent reference bulk fluid grand potential at equilibrium.
fl(r, Ω) is the angle-dependent fluid density function, depending on 3 variables for spatial
coordinates r, and also 3 for orientation Ω © (Θ, Φ, Ψ). In the case of linear solvents,
this number can be reduced to 2, i.e. Ω © (Θ, Φ). The homogeneous bulk density fl0 is
normalized to n0/

s
dΩ, to keep coherent with the relation
⁄

dΩfl(r, Ω) =
⁄

d cos ΘdΦdΨfl(r, Ω) = n(r) (4.2)

which reduces eq. (4.1) to eq. (3.27) in §3.3.
According to the variation principle described in §3.3, the equilibrium density can be

found by minimizing the free energy functional

F [fl] = Fid[fl] + Fext[fl] + Fexc[fl] (4.3)

regarding to fl(r, Ω):
”F [fl]

”fl(r, Ω)

-
-
-
-
fl=fl̄

= 0 (4.4)

4.1.1 The ideal term

The ideal term Fid[fl] deduced from the particle interaction-free condition is:

Fid[fl] = kBT

⁄

drdΩ

5

fl(r, Ω) ln
3

fl(r, Ω)

fl0

4

≠ fl(r, Ω) + fl0

6

(4.5)

The differentiation of Fid[fl] used for the minimization, which will be discussed later,
has the form:

”Fid[fl]

”fl(r, Ω)
= kBT ln

3
fl(r, Ω)

fl0

4

(4.6)

22
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4.1.2 The external term

The solute, like the solvent, is described in microscopic detail by a molecular non-polarizable
force field involving atomic Lennard-Jones and partial charge parameters, creating at each
point in space an external potential Vext(r, Ω), containing two components:

Vext(r, Ω) = VLJ(r) + Vcoul(r, Ω) (4.7)

The external potential term calculates the contribution of Vext:

Fext[fl] =
⁄

drdΩfl(r, Ω)Vext(r, Ω) (4.8)

The Lennard-Jones potential is given by:

VLJ(r) =
ÿ

u

ÿ

v

4‘uv

C3
‡uv

ruv

412

≠
3

‡uv

ruv

46
D

(4.9)

where u stands for solute, v stands for solvent, ‘uv =
Ô

‘u‘v and ‡uv = (‡u + ‡v) /2
are the geometric and arithmetic average Lennard-Jones parameters between solute and
solvent, according to the Lorentz-Berthelot mixing rules. ruv is the norm of relative
site-site vector

ruv = r + R(Ω)sv ≠ ru (4.10)

where ru and sv are the coordinates of solute/solvent molecules in the molecular frame,
and R(Ω) is the rotation matrix of the Euler angles Ω. In cases where the solvent site
wears only one LJ centre, eq. (4.10) reduces to

ruv = r ≠ ru (4.11)

which is actually what we use in the code as the solvent is SPC/E water.
The Coulomb interaction is calculated by solving the Poisson equation. The charge

density of the solute is projected onto a space grid r,

flq(r) =
ÿ

u

qijk/∆v (4.12)

where qijk is the charge on the space grid distributed by its nearby point charge as shown
in figure 4.1, and ∆v is the volume of the unit cube that this point charge situates in.

Figure 4.1: Solute charge density projected onto grids

The electrostatic potential created by the charge distribution flq(r), Vq(r), can thus be
computed using a periodic Poisson Solver. The Poisson equation (2.7)

Ò2Vq(r) = ≠flq(r)

Á0
(4.13)
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gives in Fourier space

V̂q(k) =
fl̂q(k)

Á0k2 (4.14)

where V̂q(k) and fl̂q(k) are the Fourier transform of Vq(r) and flq(r) respectively. These
two equations provide a fast way to calculate Vq(r) from flq(r).

The Coulomb potential is expressed as a sum of solvent partial charge contributions at
each grid node:

Vcoul(r, Ω) =
ÿ

v

qvVq(rv) (4.15)

where qv is the point charge of solvent, and

rv = r + R(Ω)sv (4.16)

is the Cartesian coordinate of a solvent site v; Vq(ru) is the electrostatic potential, given
by a linear interpolation of the nearby point of Vq(r) obtained in the last step from the
Poisson solver.

Another method to calculate Vcoul(r, Ω) is direct summation, which gives a non-periodic
external potential, but in the implementation it usually leads to better convergence for
non-spherical molecules. Here we describe its expression, without going into the reasonIn this thesis we

only work on the

Fexc term.
behind the convergence:

Vcoul(r, Ω) =
ÿ

uœsolute

ÿ

vœsolvent

3
quqv

4fiÁ0ruv

4

(4.17)

where ruv is calculated as in eq. (4.10). For this thesis, the direct summation is only used
in the minimization of non-spherical solutes, specifically in the chapters of implementation
and application.

4.1.3 The excess term

As shown in §3.3, we invoke here the HRF approximation which amounts to a second-order
Taylor expansion around the homogeneous fluid at density fl0:

Fexc[fl] = ≠kBT

2

⁄

dr1dΩ“(r1, Ω)fl(r1, Ω) (4.18)

where “ is the normalized gradient of the excess functional:

“(r1, Ω1) = ≠”—Fexc

”fl
=

⁄

dr2dΩ2∆fl(r2, Ω2)c(r12, Ω1, Ω2) (4.19)

which can be related to the solute-solvent 2-component IET with its definition:

“MS(1, 2) = hMS(1, 2) ≠ cMS(1, 2) (4.20)

To evaluate the integration
s

dr2dΩ2 for each gradient “(r1, Ω1) in eq. (4.19), a total
number of N2 © N2

r N2
Ω = O(N2) function evaluations (FE) are required, which, with

typically Nr = 643 and NΩ = 50 ≥ 100, is far too costly for current computing technology.
For this reason, Fourier transform is used to treat the spatial convolution.

A convolution

h(x1) © f(x2) ¢ g(x2) ©
⁄

f(x2)g(x1 ≠ x2)dx2 (4.21)

has the property that
F[h(x1)] = F[f(x2)]F[g(x2)] (4.22)
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F being the Fourier transform operation. As r12 = r1 ≠ r2, eq. (4.19) is a 3D convolution,
which leads to

“̂(k, Ω1) =
⁄

dΩ2∆fl̂(k, Ω2)ĉ(k, Ω1, Ω2) (4.23)

Here we put the hat symbol on the physical quantities to represent the Fourier transform
of their original function.

In eq. (4.23), the integral
s

dr2 of eq. (4.19) is transformed into a simple product; only
NrN2

Ω FE are needed to obtain “̂(k, Ω1) with given ∆fl̂(k, Ω2). To this computational cost
should be added the transform from ∆fl(r, Ω) to ∆fl̂(k, Ω) and the backward transform
from “̂(k, Ω) to “(r, Ω) which are both of order NΩ · O(Nr log2 Nr) due to the properties
of Fast Fourier Transform (FFT). The total number of FE is thus reduced from quadratic
complexity O(N2

r N2
Ω) to NrN2

Ω + 2NΩ · O(Nr log2 Nr) = O(Nr log2 NrN2
Ω). As the total

number of spatial grid Nr is of magnitude 105 ≥ 106, this procedure, which is mathe-
matically equivalent to the direct evaluation (4.19), offers a great advantage in terms of
computational efficiency (figure A.1 in appendix A).

The angular-dependent DCF of the homogeneous solvent, ĉ(k, Ω1, Ω2), is an input data
which can be obtained from MD or MC simulations. A detailed presentation of the DCFs
used in this thesis is available in appendix B.

4.2 molecular integral equation theory

To adapt the IET formalism to non-spherical solvent, Blum [16–18] proposed to expand
the angle-dependent correlation functions F (X1, X2) © F (r1, r2, Ω1, Ω2) onto rotational
invariants, such that the OZ equation can be reduced to only a few FE. This theory
is then adopted by Fries & Patey [19], who proposed a numerical solution for full HNC

closure. The test below describes the theory of Blum, but based on the convention of
Fries & Patey, where Messiah’s definition of generalized spherical harmonics (GSHs) is
used. A detailed explication of different conventions of GSH is given in appendix H.

4.2.1 Translational and rotational invariance

If F describes a homogeneous fluid, the translational invariance (r12 © r1 ≠ r2) should be
presented, then the number of independent variables is reduced from 12 to 9:

F (X1, X2) = F (r12, Ω1, Ω2) = F (r, r̂12, Ω1, Ω2) (4.24)

We can further expand F on Wigner GSHs of the three orientations; then F becomes a
sum of an infinite number of projections that depending on r and 8 indices:

F (X1, X2) =
Œÿ

m,n,l=0

ÿ

|µÕ,µ|Æm,|‹Õ,‹|Æn,|⁄Õ|Æl

F mnl
µÕµ‹Õ‹⁄Õ(r)Rm

µÕµ(Ω1)R
m
‹Õ‹(Ω2)R

l
⁄Õ0(r̂12) (4.25)

Assuming that this expansion converges, which is normally the case for correlation
functions, the expansion can be expressed in a limited number of projections. If we also
take into account the rotational invariance by recombining some terms, only r and 5
independent indices are necessary to describe all the projections:

F mnl
µ‹ (r) =

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b F mnl
µÕµ‹Õ‹⁄Õ(r) (4.26)

The projections F mnl
µ‹ (r) with a finite order of expansion have much fewer of terms

compared to the angular form in eq. (4.24) with the same precision of description.
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We can define a basis set of rotational invariant as:

Φ
mnl
µ‹ (Ω1, Ω2, r̂12) = fmnl

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(Ω1)R

n
‹Õ‹(Ω2)R

l
⁄Õ0(r̂12) (4.27)

where the normalization factor fmnl can be any arbitrary non-zero constant, depending
only on indices m, n, l. In Blum’s convention, it is taken as [(2m + 1) (2n + 1)]

1
2 .

With these definitions, the relation between the projections and the original function
is:

F (X1, X2) =
ÿ

mnlµ‹

F̃ mnl
µ‹ (r)Φmnl

µ‹ (Ω1, Ω2, r̂12) (4.28)

where F̃ mnl
µ‹ (r) = F mnl

µ‹ (r)/fmnl.

4.2.2 Blum’s reduction of molecular OZ equation

The molecular Ornstein-Zernike (MOZ) equation is defined as:

“(X1, X2) = h(X1, X2) ≠ c(X1, X2) =
fl

8fi2

⁄

dX3h(X1, X3)c(X3, X2) (4.29)

The rotational invariant expansion gives:

c(X1, X2) =
ÿ

mnlµ‹

cmnl
µ‹ (r)Φmnl

µ‹ (Ω1, Ω2, r̂12) (4.30)

“(X1, X2) =
ÿ

mnlµ‹

“mnl
µ‹ (r)Φmnl

µ‹ (Ω1, Ω2, r̂12) (4.31)

and also in k-space:

ĉ(k, Ω1, Ω2) =
ÿ

mnlµ‹

ĉmnl
µ‹ (k)Φmnl

µ‹ (Ω1, Ω2, k̂) (4.32)

“̂(k, Ω1, Ω2) =
ÿ

mnlµ‹

“̂mnl
µ‹ (k)Φmnl

µ‹ (Ω1, Ω2, k̂) (4.33)

The relation between these projections in r and k-space is built by the Hankel transform:

ĉmnl
µ‹ (k) = 4fiil

⁄

dr r2jl(kr)cmnl
µ‹ (r) (4.34)

“̂mnl
µ‹ (k) = 4fiil

⁄

dr r2jl(kr)“mnl
µ‹ (r) (4.35)

where jl(kr) are the spherical Bessel functions of order l. Eq. (4.34) and (4.35) are built
in the same purpose as eq. (3.40) in atomic case, where FFT is used. As an analogue to
FFT, the fast Hankel transform is available for such a process.

Note that if function f(X1, X2) is real and the molecules processes a symmetry axis
C2v, like water, the projections fmnl

µ‹ (r) are real, therefore f̂mnl
µ‹ (k) is real if l is even, and

pure imaginary if l is odd. The complete symmetry relations are listed in §F.5.
The MOZ equation based on the rotational invariants f̂mnl

µ‹ (k) can be found in the
article of Blum [16], but the form is a bit complicated. To provide a simpler form, Blum
defined the ‰-transform:

ĉÕmn

µ‹,‰(k) =
m+nÿ

l=|m≠n|

Q

a
m n l

‰ ≠‰ 0

R

b ĉmnl
µ‹ (k) (4.36)
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“̂Õmn

µ‹,‰(k) =
m+nÿ

l=|m≠n|

Q

a
m n l

‰ ≠‰ 0

R

b “̂mnl
µ‹ (k) (4.37)

where we use the apostrophe to represent functions in an intermolecular frame.
The result MOZ equation is:

“̂Õmn

µ‹,‰(k) = fl
ÿ

n1

n1ÿ

‹1=≠n1

(≠)‰+‹1

Ë

“̂Õmn1

µ‹1,‰(k) + ĉÕmn1

µ‹1,‰(k)
È

ĉÕn1n

‹1‹,‰(k) (4.38)

This simple form of MOZ equation reduces the calculation of
s

dX3 for each (X1, X2)

in eq. (4.29) to only a sum of terms of n1, ‹1 for each index of projection.
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Code MDFT

The code MDFT upon which all the development in this thesis is based is a Fortran 95
sequential code developed by Maximilien Levesque, Daniel Borgis et al. [23–32], which
implements the MDFT theory. It reads the force field (Lennard-Jones and Coulomb
parameters) describing the solute and the solvent as input, as well as necessary parameters
like the temperature T , number density of solvent n0, etc. It minimizes the functional
and gives the equilibrium density fl(r, Ω), then computes output properties.

5.1 supercell discretization

Lx ◊ Ly ◊ Lz

Ë

Å
3
È

space is discretized on a regular grid of nfft1 ◊ nfft2 ◊ nfft3 nodes. The

solute center is at rT =

3
Lx

2
,
Ly

2
,
Lz

2

4

of the box. If the internal coordinates of solute

rM , the solute coordinates in the box r = rM + rT .
Angular grid is discretized with Lebedev (L) quadrature for Ω © (Θ, Φ), Θ œ [0, fi],

Φ œ [0, 2fi], or Gauss-Legendre (GL) quadrature for Θ and trapezoidal quadrature for Φ.
Ψ œ [0, fi] as we used the code mainly for water, is discretized with trapezoidal quadrature.
The number of each angular dimension is linked to the order of quadrature, mmax, which
is discussed mainly in the chapter of theory.

5.2 minimizer l-bfgs-b

The minimizer adopted by MDFT is the L-BFGS-B [57, 58] package version 3.0 writ-
ten in Fortran 77, implementing the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm with constraints of the form l Æ x Æ u to the variable x.

The functional F [xi] and the gradient of functional ÒF [xi] =
”F
”x

(xi) are required by

L-BFGS to minimize the functional. It saves the variables xi and gradients of the past m

iterations, which requires a lot of memory.
The functional in MDFT to be minimized is eq. (4.3):

F [fl] = Fid[fl] + Fext[fl] + Fexc[fl] (5.1)

and its gradient is

”F [fl]

”fl(r, Ω)
= kBT ln

3
fl(r, Ω)

fl0

4

+ Vexc(r, Ω) + Vext(r, Ω) (5.2)

where fl0 is the angular density of bulk solvent,

fl0 =

Y

__]

__[

n0 if atomic, Ω © 1

n0/4fi if linear, Ω © (Θ, Φ)

n0/8fi2 if non-linear, Ω © (Θ, Φ, Ψ)

(5.3)

such that
s

dΩfl(r, Ω)/fl0 = n(r)/n0 is normalized to 1 when r æ Œ.
28
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5.3 treatment to avoid unphysical density

During minimization, the density variable fl(r, Ω) can have unphysical negative numbers,
which also cause the divergence of the minimization. To avoid this phenomenon, a nor-
malized Ï(r, Ω) is used as the variable during the minimization in place of fl(r, Ω), so
that:

fl(r, Ω) = fl0Ï2(r, Ω) (5.4)

According to the definition (5.4), we see:

”fl(r, Ω)

”Ï
= 2fl0Ï(r, Ω) (5.5)

Therefore the gradient to feed the L-BFGS minimizer is:

”F
”Ï

=
”F
”fl

· ”fl

”Ï
= 2fl0Ï(r, Ω) ·

Ë

—≠1 ln Ï2 + Vexc + Vext

È

(5.6)

The main structure of the code is shown in figure 5.1.

dft.in solute.in solvent.in

1) Initialize simulation

read input

pre-calculate reusable data

initialize work arrays

initialize '
(0)(r;Ω)

&

2) Find equilibrium density

evaluate F ['(i)] and δF ['(i)]
δ'(i)

'
(i)

'
(i+1)

minimizer L-BFGS-B

converge?
yes

no

3) Process output

free energy
& corrections

solvent structure

other properties

OK!

Figure 5.1: Main structure of code MDFT

5.4 fast fourier transform

The fast Fourier transform (FFT) is used, for example, in the evaluation of excess func-
tional in eq. (4.23); in this thesis, the FFTW3 library [59] is used for implementation,
which performs discrete Fourier Transform (DFT) as defined below:

Yk =
n≠1ÿ

j=0

Xje≠2fiijk/n
(forward) (5.7)

Xj =
n≠1ÿ

k=0

Yke2fiijk/n
(backward) (5.8)

Note that after a forward-backward Fourier transform, the original function is multi-
plied by a normalization factor Nk, which is the total number of nodes k.

For input function Yk (k = 0, . . . , n ≠ 1) in real numbers, FFTW3 only outputs elements
k = 0, . . . , Ân/2Ê ( Ân/2Ê + 1 complex numbers of Xj are stocked; Ân/2Ê being the floor
function of n/2), with the “Hermitian” symmetry

Yk = Y ú
n≠k (5.9)
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used to regenerate elements of k > Ân/2Ê. The resulting Xj issued from the corresponding
backward transform is purely real.

The definition of FFT can differ in some literature, with the “+” sign in the exponential
of forward transform and “≠” sign in the exponential of backward transform. According
to the Hermitian symmetry, we should use the quantities in k-space issued from the
definition with its conjugate form.



Chapter II

Theory: HRF Approximation, For
Molecular Solvent

This chapter presents a complete theory of the Fexc evaluation under HRF

approximation.

As presented in section 5, to complete the minimization process of MDFT, we
need to evaluate the excess functional

Fexc = ≠kBT

2

⁄

dr1dr2dΩ1dΩ2∆fl(r1, Ω1)∆fl(r2, Ω2)c(r12, Ω1, Ω2) (II.1)

as well as its gradient (normalized as dimensionless)

“(r1, Ω1) =
⁄

dr2dΩ2∆fl(r2, Ω2)c(r12, Ω1, Ω2) (II.2)

As discussed in §4.1.3, eq. (II.2) is a 3D convolution, which leads to

“̂(k, Ω1) =
⁄

dΩ2∆fl̂(k, Ω2)ĉ(k, Ω1, Ω2) (II.3)

such that the integral
s

dr2 in eq. (II.2) is transformed into a simple product
in eq. (II.3), giving a great advantage in terms of computational efficiency for
huge spatial grids.

From the previous work [32], ĉ(k, Ω1, Ω2) in eq. (II.3) is evaluated with a pre-
tabulated intermolecular DCF, ĉ(k, cos ◊1, cos ◊2, „12), which is appropriate for
linear molecules. Section 6 gives a complete evaluation of ĉ(k, Ω1, Ω2) using
either a full intermolecular DCF ĉ(k, cos ◊1, cos ◊2, „12, Â1, Â2) or rotational
invariant projections.

On the other hand, the increased precision of DCF evaluation makes the com-
puting cost of the original algorithm no longer reasonable. Section 7 presents
a new algorithm to treat the angular convolution in eq. (II.3), which takes ad-
vantage of the rotational invariance by expanding the density variable fl(r, Ω)

on Wigner generalized spherical harmonics. In this algorithm, the OZ equa-
tion is largely simplified, and the memory needed for the storage of DCF is no
longer important.

The solvent properties involved in this thesis are presented in section 8 and
organized in two aspects, the energy and the structure. The solvation free
energy corrections and some forms of structure are presented.
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As discussed in last chapter, the Fourier transform of the excess functional gradient is:

“̂(k, Ω1) =
⁄

dΩ2∆fl̂(k, Ω2)ĉ(k, Ω1, Ω2) (6.1)

It should be pointed out that the direct correlation function (DCF), ĉ(k, Ω1, Ω2), used
as input data in eq. (6.1) is very memory-costly. In the previous work [23, 32, 60], the
DCF was stocked in the intermolecular form ĉ(k, ω1, ω2) to take advantage of an economy
of memory, where (ω1, ω2) © (cos ◊1, cos ◊2, „12), and the correspondence of (Ω1, Ω2) to
(ω1, ω2) is calculated directly in the code. These works adapt well with linear solvents,
but are proven less powerful for molecular solvents such as water. However, in the case
of full Euler angles intermolecular DCF (fig. 6.1),

ĉ(k, ω1, ω2) © ĉ(k, cos ◊1, cos ◊2, „, Â1, Â2) (6.2)

neither the storage of ĉ(k, Ω1, Ω2) which is definitively impossible, nor the direct cal-
culation of correspondence (Ω1, Ω2) to (ω1, ω2) due to the increased complexity and
resulting cost, can be regarded as possible solutions. For instance, with a normal setting
of 643 spatial grid and a Lebedev quadrature of order 2 (14 angles for Θ and Φ), and
3 Ψ-angles, even if the DCF is stocked in simple precision (complex number), it takes
643 ◊ 422 ◊ 4 bytes ◊ 2 = 3.52GB, and for a Lebedev quadrature of order 5 and corre-
spondingly 5 Ψ-angles, it takes 643 ◊ 2502 ◊ 4 bytes ◊ 2 = 131GB. As a normal PC has
only 4 to 16 GB of RAM, this can cause a memory leak.

Therefore, two strategies are developed to treat the full DCF case. The first one is a
direct extension of the previous work, which uses the full intermolecular DCF with a more
complicated angle correspondence pre-tabulated in the beginning of the implementation.
The other calculates the DCF directly from rotational invariant projections. Here we give
a complete discussion of these two strategies.

~r or ~k

(0, 0, 0)

Ω ≡ (Θ,Φ,Ψ)

!2 ≡ (✓2, φ2,  2)

!1 ≡ (✓1, φ1,  1)

r or k

φ12 ≡ φ1 − φ2

intermolecular
coordinate system

laboratory frame
with particle 1 at origin

Ω2 ≡ (Θ2,Φ2,Ψ2)

laboratory
coordinate system

Ω1 ≡ (Θ1,Φ1,Ψ1)

~r or ~k

(k,Ω1,Ω2) (k,Ω) (k, ✓1, ✓2, φ12,  1,  2)

Figure 6.1: Molecules 1 and 2 in different coordinate systems. The laboratory coordinate system
is the system of our grid with a fixed reference view. When one of the molecules is
considered as the reference, e.g. the solute in the case of fl(r, Ω), only one Ω needs to
be described. For the intermolecular frame, in r-space, the z axis is oriented along the
vector r12 = r2 ≠ r1, or in k-space along the vector k. An orientation Ω © (Θ, Φ, Ψ)
in laboratory frame corresponds to ω © (◊, „, Â) in intermolecular frame.

33
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6.1 using full intermolecular dcf

For the full DCF in intermolecular coordinates system, ĉ(k, ω1, ω2), only 6 variables
are needed instead of 9 for ĉ(k, Ω1, Ω2), and the storage is considerably reduced. The
transformation from ĉ(k, Ω1, Ω2) to ĉ(k, ω1, ω2) relies on the correspondence ω(k, Ω) ©
(cos ◊, „, Â), which is here pre-calculated as a table of data.

Finding ω from Ω amounts to defining the correspondence between the rotation ma-
trices of the two coordinate systems. The rotation matrix R̂Ω that rotates the solvent
molecule from I to its orientation R̂Ω

R̂ΩI = R̂Ω (6.3)

can be expressed by 3 rotation operations R̂Φ, R̂Θ, and R̂Ψ which rotate along z-y-z axes
(the same convention as defined in Messiah [61] and Gray-Gubbins [13]):

R̂Ω =

S

W
W
U

Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

T

X
X
V

(6.4)

=

S

W
W
U

cos Φ ≠ sin Φ 0

sin Φ cos Φ 0

0 0 1

T

X
X
V

S

W
W
U

cos Θ 0 sin Θ

0 1 0

≠ sin Θ 0 cos Θ

T

X
X
V

S

W
W
U

cos Ψ ≠ sin Ψ 0

sin Ψ cos Ψ 0

0 0 1

T

X
X
V

=

S

W
U

cos Φ cos Θ cos Ψ − sin Φ sin Ψ − cos Φ cos Θ sin Ψ − sin Φ cos Ψ cos Φ sin Θ

sin Φ cos Θ cos Ψ + cos Φ sin Ψ − sin Φ cos Θ sin Ψ + cos Φ cos Ψ sin Φ sin Θ

− sin Θ cos Ψ sin Θ sin Ψ cos Θ

T

X
V

As shown in fig. 6.2, the rotation matrix to transform the DCF from the intermolecular
coordinates to laboratory coordinates R̂ω can be written as:

R̂ω = R̂≠1
k R̂Ω (6.5)

with the rotation matrix related to k vector:

R̂≠1
k =

S

W
W
U

cos ◊k cos „k cos ◊k sin „k ≠ sin ◊k

≠ sin „k cos „k 0

sin ◊k cos „k sin ◊k sin „k cos ◊k

T

X
X
V

(6.6)

MΩI = MΩ

Mk
−1

Mk = I

MωI = Mω

Mk
−1

MΩ = Mω

~k

~k ~k

Figure 6.2: Rotation matrices
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✓
φ

φ

~e0
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= ~e3 × ~e00

3

~e00
1
= ~e0

2
×

~e00
3

Figure 6.3: Rotation to k-frame
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Here we fix Âk = 0. ◊k and „k are calculated from Cartesian coordinates (kx, ky, kz).
In extreme cases where we cannot define ◊k (for ÎkÎ = 0) and „k (for k2

x + k2
y = 0), we

can arbitrarily fix those angles to zero.
A faster way to find the rotation matrix of k, avoiding the evaluation of trigonometric

functions, is shown in figure 6.3, where the matrix can be calculated by the cross products
of basis vectors from z axis and k vector (k = e

ÕÕ

3):
Ë

e
ÕÕ

1 e
Õ

2 e
ÕÕ

3

È

=
Ë

e1 e2 e3

È

R̂k = R̂k (6.7)

The two ways to calculate k differ only in the case of k̂ =
Ë

0 0 ≠1
ÈT

, where one

is the inverse of the other. This is due to the different definitions of „k (0 or fi when
≠æ
kÕ

z

superposes with
≠æ
kz) in the two cases. Tests have shown that it has no influence on the

final result of the excess functional evaluation.
The elements of R̂ω can be calculated according to eq. (6.5), which possesses the form:

R̂ω =

S

W
W
U

ux vx wx

uy vy wy

uz vz wz

T

X
X
V

(6.8)

=

S

W
U

cos φ cos θ cos ψ − sin φ sin ψ − cos φ cos θ sin ψ − sin φ cos ψ cos φ sin θ

sin φ cos θ cos ψ + cos φ sin ψ − sin φ cos θ sin ψ + cos φ cos ψ sin φ sin θ

− sin θ cos ψ sin θ sin ψ cos θ

T

X
V

The angles ω are thus found as:

cos ◊ = wz

„ = arccos(wx/(w2
x + w2

y)
1
2 ) (6.9)

Â = arccos(≠uz/(u2
z + v2

z)
1
2 )

The resulting angles are between normal intervals, cos ◊ œ [≠1, 1], „ œ [0, 2fi]. As water
possesses C2v symmetry, we take Â œ [0, fi].

Here the DCF c(k, ω1, ω2) © c(k, cos ◊1, cos ◊2, „12, Â1, Â2) is stored in a discrete set of
angles for each value of k (typically (8, 8, 8, 8, 8) in the case of water, which uses the sym-
metries in §F.5.1 to reduce the number of „ and Â by two) such that the correspondence
from (Ω1, Ω2) to (ω1, ω2) usually falls in between angular grid points of the intermolec-
ular grid. An interpolation can be done at different orders: zeroth order interpolation,
which directly takes the nearest point, or linear interpolation.

6.1.1 Zero-order interpolation of DCF

At this order, for each possible value of k and Ω, the corresponding cos ◊ and Â which
relate to a single solvent molecule are stored as an index (single precision integer), which
gives the nearest angle in a pre-defined table:

icos ◊ = Â(cos ◊ + 1)(ncos ◊/2)Ê + 1

iÂ = mod(ÂÂ(nÂ/fi)Ê , nÂ) + 1
(6.10)

where ÂfÊ is the floor function. For the angle „ which relates to two solvent molecules,
the operation „ = „1 ≠ „2 introduces a double error when integer indices are used, as
shown in figure 6.4.

In the actual implementation, as an integer takes 4 bytes and a real takes 8 bytes, there
is no profit to tabulate „ in integer form two times, thus „ is stored directly in real.
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Figure 6.4: „1 ≠ „2 distribution: Test 0.1 is the direct subtraction of „ established in the same
way with ◊ and Â, as shown in the top first schema. Test 0.2 tabulates „2 by taking
the nearest point in another manner, as shown in the second schema. In test 0.3-0.4,
all „ or only „2 is doubled.

6.1.2 Linear interpolation of DCF

At this order, ω(k, Ω) is stored in double precision. All angles are stored in real number
form, and the corresponding DCF is calculated as

c(Ê) = w0c(Ê0) + w1c(Ê1) (6.11)

where w0 =
Ê1 ≠ Ê

Ê1 ≠ Ê0
and w1 =

Ê ≠ Ê0

Ê1 ≠ Ê0
. Here Ê is one of the 5 dimensions in ω̃(k, Ω1, Ω2) ©w is the weight,

and ω is the

angle set. (cos ◊1, cos ◊2, „, Â1, Â2), Ê0 and Ê1 are the 2 nearest value points, while other variables
are fixed. If we express the weight for each dimension as wi

ni
where i = 1, 2, 3, 4, 5 is the

ith variable, the total equation with 5 variables is:

c(ω̃) =

S

U

1ÿ

n1=0

1ÿ

n2=0

1ÿ

n3=0

1ÿ

n4=0

1ÿ

n5=0

A
5Ÿ

i

wi
ni

c(ω̃n1,n2,n3,n4,n5
)

BT

V (6.12)

These two equations are available for both interpolation and extrapolation, where the
latter applies, e.g., for cos ◊1 and cos ◊2.

An error evaluation of the two strategies of interpolation presented in §6.1.1 and §6.1.2
is shown in appendix C. Results demonstrate that the linear interpolation scheme is
absolutely essential. On the other hand, as seen in eq. (6.12), it is computationally much
more expensive than the simple histogram scheme as it requires 25 = 32 times the number
of operations.

6.2 direct calculation of dcf from rotational invariant projections

Another strategy to calculate ĉ(k, Ω1, Ω2) is to use the DCF expressed in terms of ro-
tational invariant projections, which takes far less memory than in the intermolecular
function form thanks to their angular independence and symmetric properties.
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6.2.1 Using projections in the form of ĉmnl
µ‹ (k)

As described by Blum [16], ĉ(k, Ω1, Ω2) can be expanded as

ĉ(k, Ω1, Ω2) =
ÿ

mnlµ‹

ĉmnl
µ‹ (k)Φmnl

µ‹ (k̂, Ω1, Ω2) (6.13)

where Φmnl
µ‹ (k̂, Ω1, Ω2) are rotational invariants that depend on both the spatial and

angular coordinates of the two particles (detailed in appendix F).
For projections of order nmax = 1 (n, m Æ 1), the DCF can be expressed in very simple

form. Only 4 projections ĉmnl(k) are independent: ĉS © ĉ000, ĉ∆ © ĉ110, ĉD © ĉ112

and ĉ011 = ≠ĉ101, with the corresponding rotational invariants expressed below both in
laboratory and intermolecular frames:

Φ
000 = 1

Φ
011 = ik · Ω1 = i cos ◊1

Φ
101 = ik · Ω2 = i cos ◊2

Φ
110 = ≠

Ô
3Ω1 · Ω2 = ≠

Ô
3(sin ◊1 sin ◊2 cos „12 + cos ◊1 cos ◊2)

Φ
112 =

Ú

3
10

[3(k · Ω1)(k · Ω2) ≠ Ω1 · Ω2] (6.14)

=

Ú

3
10

(2 cos ◊1 cos ◊2 ≠ sin ◊1 sin ◊2 cos „12)

where the orientations in laboratory frame Ω are here expressed as an orientational vector
Ω = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) in the Cartesian coordinate system.

To express the DCF at higher orders, the number of FE needed for Φmnl
µ‹ (k̂, Ω1, Ω2)

becomes huge and the DCF should be calculated in intermolecular frame as indicated
below.

6.2.2 Using projections in the form of ĉÕmn

µ‹,‰(k)

Compared to the expression of Φmnl
µ‹ (k̂, Ω1, Ω2) in laboratory frame (eq. (F.2)), its inter-

molecular form has far fewer terms (eq. (F.18)), such that

ĉ(k, ω1, ω2) =
1

2l + 1

ÿ

mnµ‹‰

ĉÕmn

µ‹,‰(k)r
m
‰µ(◊1)r

n
‰‹(◊2)e

≠i‰(„12©„1≠„2)e≠iµÂ1e≠i‹Â2 (6.15)

where r is the generalized Legendre polynomial, m, n Æ nmax, |µ| Æ m, |‹| Æ n, and
‰ œ [≠min(m, n), min(m, n)]; ‰ = ≠‰.

rm
‰µ(◊), e≠i‰„(„) and e≠iµÂ(Â) can be separately pre-tabulated for each given k, to

avoid repetitive evaluation of each term.
Eq. (6.15) replaces the interpolation of eq. (6.12) by an exact formula, and it requires

the projections ĉÕmn

µ‹,‰(k) to be stored in memory rather than the full angular representa-
tion ĉ(k, ω1, ω2). It also requires the passage from orientations in laboratory frame to
orientations in intermolecular frame, i.e. use of the formulae (6.9) for each k vector.
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Angular Convolution, A Better Algorithm

In previous sections, the spatial convolution in the excess functional gradient is treated
by FFT thanks to the transitional invariance that leads to r12 = r1 ≠ r2. However, as
the angular grid is not homogeneous, the relative coordinates of two angles cannot be
simply represented Ω12 = Ω1 ≠ Ω2, therefore for the angles we cannot take advantage
of the convolution property shown in eq. (4.21-4.22). On the other hand, these two-
particle quantities have rotational invariance. As proposed by Blum [16, 17], a rotational
invariant expansion technique is used to reduce the molecular Ornstein-Zernike (MOZ)
equation into smaller irreducible matrix equations (§4.2). Owing to the mathematical
equivalence between IET and DFT approach (§3.5), where eq. (6.1) about the Fourier
transform of the excess functional gradient can be regarded as the MOZ equation, the
formalism of Blum can also be applied to MDFT.

7.1 angular convolution using blum’s reduction

Here the

projections

F Õmn
µν,χ are

defined as in [19].

Eq. (7.1) is

mathematically

identical with

those in [16, 17]

but using

Rm
µÕµ = Dmú

µµÕ .

The difference

between the

conventions of

GSH are listed in

§H.3.

To build an analogue of the irreducible form of MOZ equation for homogeneous fluid
deduced by Blum (detailed in §4.2)

“̂Õlm
⁄µ,‰(k) =

nmaxÿ

n=0

nÿ

‹=≠n

(≠) ‰+‹
∆fl̂Õln

⁄‹,‰(k)ĉ
Õnm

‹µ,‰(k) (7.1)

for the MDFT formalism, a generalized spherical harmonic transform (GSHT) treatment
is proposed by developing the functional gradient “̂ and the density fl̂ in eq. (6.1) on
Wigner generalized spherical harmonics (GSH):

“̂(k, Ω1) =
ÿ

mµÕµ

fm“̂m
µÕµ(k)R

m
µÕµ(Ω1) (7.2)

∆fl̂(k, Ω2) =
ÿ

n‹Õ‹

fn∆fl̂n
‹Õ,‹(k)R

n
‹Õ,‹(Ω2) (7.3)

where 0 Æ m, n Æ nmax, |µÕ| , |µ| Æ m and |‹ Õ| , |‹| Æ n. fm = (2m + 1)
1
2 =

.

.

.Rm
µÕµ

.

.

.

≠1
is

the normalization factor.
The DCF can also be expanded on rotational invariants:

ĉ(k, Ω1, Ω2) =
ÿ

mnlµ‹

fmfnĉmnl
µ‹ (k)

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(Ω1)R

n
‹Õ‹(Ω2)R

l
⁄Õ0(k̂) (7.4)

As GSHs possess orthogonality eq. (H.21) and symmetry eq. (H.15), eq. (6.1) can
be rewritten by (7.2, 7.3, 7.4), which gives (here we omit the detailed demonstration for
simplicity, which is put in appendix D):

“̂m
µÕµ(k) =

ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

‹Õ⁄Õ

(≠) ‹Õ+‹
∆fl̂n

‹Õ‹(k)

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂) (7.5)

thus the OZ equation is expanded on GSHs and rotational invariants.
38
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Note that eq. (7.5) is reducible. Blum’s ‰-transform [17] defines:

ĉÕmn

µ‹,‰(k) =
m+nÿ

l=|m≠n|

Q

a
m n l

‰ ≠‰ 0

R

b ĉmnl
µ‹ (k) (7.6)

ĉmnl
µ‹ (k) = (2l + 1)

min(m,n)
ÿ

‰=≠ min(m,n)

Q

a
m n l

‰ ≠‰ 0

R

b ĉÕmn

µ‹,‰(k) (7.7)

Invariants of form F̂ Õmn

µ‹,‰(k) have a very simple relation with their combined function
F (k, ω1, ω2) in the intermolecular coordinate system (see appendix F, eq. (F.26, F.27));
that is how the OZ equation can be reduced. In MDFT, we can also take advantage of
this quantity by defining the projections of “̂ and fl̂ in the local frame (ωi = k̂≠1Ωi):

“̂(k, ω1) =
ÿ

m‰µ

fm“̂Õm
‰µ(k)R

m
‰µ(ω1) (7.8)

∆fl̂(k, ω2) =
ÿ

n‰‹

fn∆fl̂Õn
‰‹(k)R

n
‰‹(ω2) (7.9)

and with the rotation formula of GSH (eq. (H.23)), we have

“̂Õm
‰µ(k) =

ÿ

µÕ

“̂m
µÕµ(k)R

m
µÕ‰(k̂) (7.10)

∆fl̂n
‹Õ‹(k) =

ÿ

‰

∆fl̂Õn
‰‹(k)R

nú
‹Õ‰(k̂) =

ÿ

‰

∆fl̂Õn
‰‹(k) (≠) ‰+‹Õ

Rn
‹Õ‰(k̂) (7.11)

Using eq. (7.5), (7.7), (7.10), (7.11) and GSH products relation eq. (H.24) and 3j-
symbol orthogonality eq. (H.7), we deduce that: This OZ

equation

formalism is the

main result of the

new theory. A

step-by-step

operational way

to make use of

this equation for

γ evaluation is

shown in §7.3.

“̂Õm
‰µ(k) =

ÿ

n‹

(≠) ‰+‹ ĉÕmn

µ‹,‰(k)∆fl̂Õn
‰‹(k) (7.12)

Eq. (7.12) is essential to the new algorithm. It states that, for the terms with the same
index ‰, the OZ equation is a simple product of matrix:

“̃Õ
‰ =

Ë

(≠) ‰+‹ c̃Õ
‰

È

∆fl̃Õ
‰ (7.13)

The index ‰ shares the same role with k in the treatment of spatial convolution, where
the recombination of projections on the exponential orthogonal bases gives, for each k, a
simple product form of the OZ equation.

If we consider the solute is the same as the solvent, and take ĉÕnm

‹µ,‰(k) in the place of

ĉÕmn

µ‹,‰(k), eq. (7.12) is mathematically identical to eq. (7.1), as:

“̂Õm
‰µ(k) =

ÿ

l⁄

f l“̂Õlm
⁄µ,‰(k)R

l
‰⁄(k̂) (7.14)

fl̂Õn
‰‹(k) =

ÿ

l⁄

f l
∆fl̂Õln

⁄‹,‰(k)R
l
‰⁄(k̂) (7.15)

according to the rotational invariant transform in eq. (F.26). In fact, it can be proven
(with §F.5) that:

ĉÕnm

‹µ,‰(k) = ĉÕmnú
µ‹,‰(k) (7.16)

The incompatibility in the conjugate is yet to be explained. In the code, when we use the
ĉÕmn

µ‹,‰(k) issued from IET, we also need to take its conjugate to obtain the same result
as IET. Note that the demonstration from eq. (7.2) to eq. (7.12) does not contain any
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mmax 0 1 2 3 4 5

NΘ 1 2 3 4 5 6

Nang (Gauss-Legendre) 1 (1) 18 (6) 75 (45) 196 (84) 405 (225) 726 (330)

Nang (Lebedev◊Â) 1 (1) 18 (6) 70 (42) 182 (78) 342 (190) 550 (250)

Nproj 1 (1) 10 (4) 35 (19) 84 (40) 165 (85) 286 (140)

FE for eq. (6.1) 1 (1) 324 (36) 5625 (2025) 38416 (7056) 164025 (50625) 527076 (108900)

FE for eq. (7.5) 1 (1) 262 (34) 4787 (1459) 36588 (8116) 175989 (47221) 633490 (150566)

FE for eq. (7.12) 1 (1) 34 (6) 259 (75) 1092 (252) 3333 (877) 8294 (2002)

Table 7.1: Number of FE needed by OZ equation of different form for arbitrary solvent (outside
the parentheses) and solvent possessing C2v symmetry (inside the parentheses)

incompatibility; it only occurs in comparison with the IET formalism for homogeneous
liquids.

With the approach described above, the integral of the angular part in eq. (6.1) can be
reduced to a sum of a few terms. Table 7.1 shows some parameters linking to computing
cost of different algorithms. It shows that the expansion on GSHs (eq. (7.5)) does not*Only if we do

not need to

calculate

ĉ(k, Ω1, Ω2).

give any reduction of FE compared to its 6D function form (eq. (6.1))*; but after Blum’s
‰-transform, the OZ equation is largely reduced. The fact is that as the treatment of
spatial convolution takes advantage of the transitional invariance r12, the ‰-transform
makes use of the rotational invariance.

7.2 fast generalized spherical harmonic transform

The algorithm above for angular convolution takes advantage of the orthogonality and
symmetries of GSHs. To use this algorithm as analogous to the treatment of the convo-
lution with FFT for spatial grids, the transform described in eq. (7.2) and (7.3), here
defined as the generalized spherical harmonic transform (GSHT), a priori should be fast.
This is possible owing to the exponential components in the definition of GSH, that will
be discussed later as the fast generalized spherical harmonic transform (FGSHT).

GSHT provides a forward-backward transform between a general angular function F (Ω) ©
F (cos Θ, Φ, Ψ) and its projections F m

µÕµ (|µÕ| , |µ| Æ m):

F m
µÕµ =

fm

8fi2

⁄

dΩF (Ω)Rmú
µÕµ(Ω) (forward) (7.17)

F (Ω) =
ÿ

m,µÕ,µ

fmF m
µÕµRm

µÕµ(Ω) (backward) (7.18)

where
Ó

Rm
µÕµ(Ω)

Ô

are the Wigner generalized spherical harmonics (Appendix H), which
form a complete orthogonal set, being defined as:

Rm
µÕµ(Ω) = rm

µÕµ(Θ)e≠i(µÕΦ+µΨ) (7.19)

7.2.1 Equivalence of order in angular quadratures and projections

Suppose that F (Ω) is a polynomial of both cos Θ, cos Φ and cos Ψ of order n, (n + 1
polynomial terms). To completely expand this function as shown in equation (7.18), at
least mmax = n is needed, where mmax is the highest order of projections F m

µÕµ in the
expansion. Note that mmax = n is not always sufficient to completely expand F (Ω),
while a discussion of this issue will be given in §10.2.
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To evaluate exactly the integration in equation (7.17), at least n + 1 for cos Θ (Gauss-
Legendre grid), 2n+ 1 for Φ (equal-spaced grid), 2n+ 1 for Ψ (equal-spaced grid) points
of angular grid are needed (c.f. appendix E). In the case of water which possesses a C2

symmetry F (Ψ + fi) = F (Ψ), only projections of even µ are nonzero:

Fµ =
⁄

dΨF (Ψ)eiµΨ =
⁄

d(Ψ + fi)F (Ψ + fi)eiµ(Ψ+fi)

= eiµfi

⁄

dΨF (Ψ)eiµΨ = eiµfiFµ (7.20)

Fµ =

Y

_]

_[

0 µ = 2n + 1, n œ Z

Fµ µ = 2n, n œ Z

(7.21)

Therefore the function
F (Ψ) =

ÿ

µ

Fµe≠iµΨ (7.22)

can be rewritten as:
F (Ψ2/2 © Ψ) =

ÿ

µ2©µ/2

F2µ2
e≠iµ2Ψ2 (7.23)

As |µ2| Æ n/2, F (Ψ2/2 © Ψ) is a polynomial of cos Ψ2 of order floor(n/2) © Ân/2Ê,
in the forward transform

F2µ2©µ =
⁄

dΨF (Ψ)eiµΨ =
1
2

⁄

dΨ2F (Ψ2/2 © Ψ)eiµ2Ψ2 (7.24)

the total degree cos Ψ2 polynomial in the integrand is 2 Ân/2Ê, then 2 Ân/2Ê+ 1 points of
Ψ2 (or Ψ) are needed.

For further implementation, we take these conclusions, but distinguish the order of
quadrature mmax (linked to the angular grid) and the order of projection nmax (linked to
the GSH transform) for numerical reason.

7.2.2 Integration of Φ, Ψ using FFT

Here we write eq. (7.17, 7.18) in an explicit way:

F m
µÕµ =

fm

8fi2

mmaxÿ

i=0

wi

2mmaxÿ

j=0

2Âmmax/sÊ
ÿ

k=0

F (Θi, Φj , Ψk)R
mú
µÕµ(Θi, Φj , Ψk) (7.25)

F (Θi, Φj , Ψk) =
nmaxÿ

m=0

fm

mÿ

µÕ=≠m

mÿ

µ=≠m
mod (µ,s)=0

F m
µÕµRm

µÕµ(Θi, Φj , Ψk) (7.26)

where wi is the weight of Gauss-Legendre quadrature (mmax + 1 points of Θi), normalized
to the total angular integration; and s is the molecule rotation symmetry order (MRSO),
s = 1 or 2 according to the symmetry Cs of solvent.

To integrate eq. (7.25) in a direct way, (mmax + 1)(2mmax + 1)(2 Âmmax/sÊ + 1) =

NΘNΦΨ = N FE are needed for each F m
µÕµ, an overall O(N2

F E) process is needed and
vice versa. Therefore, a faster algorithm proposed by Numerical Recipes [62] proposes to
reduce this cost to O(N2

Θ
NΦΨ ln NΦΨ ƒ N4/3) by FFT.

Following this idea, eq. (7.25) can be rewritten as:

F m
µÕµ =

fm

8fi2

mmaxÿ

i=0

wir
m
µÕµ(Θi)FµÕµ(Θi) (7.27)
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where FµÕµ(Θi) is the Φ, Ψ integration evaluated using trapezoid (or Gauss-Chebyshef)
quadrature:

FµÕµ(Θi) =
2mmaxÿ

j=0

2Âmmax/sÊ
ÿ

k=0

F (Θi, Φj , Ψk)e
i(µÕΦj+µΨk) (7.28)

=
2mmaxÿ

j=0

2Âmmax/sÊ
ÿ

k=0

F (Θi, Φj , Ψk)e
2fiiµÕj/(2mmax+1)e2fiiµk/(2Âmmax/sÊ+1)

that shares the same formula with an FFT-2D process of (2mmax + 1) (2 Âmmax/sÊ + 1)
elements.

Similarly, the backward process (7.18) can be rewritten as:

F (Θi, Φj , Ψk) =
nmaxÿ

m=0

fm

mÿ

µÕ=≠m

mÿ

µ=≠m
mod (µ,s)=0

F m
µÕµRm

µÕµ(Θi, Φj , Ψk) (7.29)

=
nmaxÿ

µÕ=≠nmax

nmaxÿ

µ=≠nmax

mod (µ,s)=0

nmaxÿ

m=max(|µÕ|,|µ|)

fmF m
µÕµRm

µÕµ(Θi, Φj , Ψk)

=
nmaxÿ

µÕ=≠nmax

nmaxÿ

µ=≠nmax

mod (µ,s)=0

FµÕµ(Θi)e
2fiiµÕj/(2mmax+1)e2fiiµk/(2Âmmax/sÊ+1)

with

FµÕµ(Θi) =
nmaxÿ

m=max(|µÕ|,|µ|)

fmF m
µÕµrm

µÕµ(Θi) (7.30)

Note that the

GSHT is able to

treat the case

nmax > mmax.

When nmax Æ mmax, the double sum in eq. (7.29) is included in the FFT-2D process of
(2mmax + 1) (2 Âmmax/sÊ + 1) elements. However, if nmax > mmax, the FFT-2D process
only gives a partial sum of |µÕ| , |µ| Æ mmax, the other terms in eq. (7.29) can only be
calculated by a GSHT process, as FµÕµ(Θi) is not periodic for µÕ and µ. There can be
further approximations to treat this problem, but for practical usage, we only consider
the case of nmax Æ mmax.

As the angular function F (Ω) is real, and the GSHs possess symmetry of eq. (H.15):

Rm
µÕµ(Ω) = (≠1)µÕ+µ

Rmú
µÕµ(Ω) (7.31)

the symmetry relation between the projections are

F m
µÕµ = (≠1)µÕ+µ

F mú
µÕµ (7.32)

Therefore only the projections of µ Ø 0 need to be stocked, which can be calculated
with only these FFTW3 output elements reduced by the Hermitian symmetry (5.9). The
full process of FFTW3-2D real to real transform is illustrated in figure 7.1.

As the output array of FFTW3 is periodic,

e2fiiµk/n = e2fii(µ≠n)k/ne2fiik = e2fii(µ≠n)k/n (7.33)

the indices µ = mmax + 1, . . . , 2mmax actually correspond to µ = ≠mmax, . . . , ≠1. Note
that eq. (7.28) and (7.29) do not possess the periodicity of eq. (7.33), only in the domain
of definition of µÕ and µ some intermediary functions share the same formula with FFT.

Moreover, from eq. (7.28), (7.30) and (7.32), we can verify that

FµÕµ(Θ) = F ú
µÕµ(Θ) (7.34)

The latter is used in the code since, according to the definition in eq. (5.7) and (5.8),
FµÕµ(Θ) is calculated instead of FµÕµ(Θ).
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1 2 3 m+2

1 2

in forward / out backward (complex)

in forward / out backward (real)

in backward / out forward (complex)

in backward / out forward (complex)

dim 2

dim 1

array index

array index

real index

j ↔ µ0

real index

k ↔ µ

0

1 2 3 2m 2m+1

1 2 3 ...

1 2 ...0

1 2 3 ...

2m 2m+1

2m-1 2m

2m’ 2m’+1

2m’ 2m’+1

2m’-1 2m’

1 2 3

1 20

2m 2m+1

2m-1 2m

1 20 ... m -m -1-m+1 ...

...

... m

m+1

m+1

...

...

...

m+2m+1 ...

m+2...

... m

m+1

m+1
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m’+2

m’

m’+1 ...
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m’+1

m’+1 m’+2

1 2 3

1 20

1 20 ...

...

...

m’+1

m’

m’

Figure 7.1: Indices arrangement in a complete forward-backward FFT-2D process of m’◊m ele-
ments. The DFT of dim 1 (k to µ) and dim 2 (j to µÕ) are done sequentially and vice

versa. Array index is the one used by Fortran array, real index is the one shown in eq.
(5.7) and (5.8), k and j indices shown in the left as well as µ and µÕ in the right are
those in eq. (7.28) and (7.29). Here m = mmax and mÕ = Âmmax/sÊ.

7.3 operational algorithm

As described above, the whole process of “ and Fexc functional evaluation proposed by
this algorithm can be concluded as 8 operations:

1. Firstly, the Fourier transform of the density is computed:

∆fl̂(k, Ω) =
⁄

dr∆fl(r, Ω)e≠ik·r (7.35)

2. Then ∆fl̂(k, Ω) is expanded on GSHs:

∆fl̂m
µÕµ(k) =

fm

8fi2

⁄

dΩ∆fl̂(k, Ω)Rmú
µÕµ(Ω) (7.36)

Note that these two steps, as with their backward transform, are commutable, which
will be discussed later.

3. Afterwards the projections in k-frame are then rotated into the local coordinate
system along the unit vector k̂:

∆fl̂Õm
‰µ(k) =

ÿ

µÕ

∆fl̂m
µÕµ(k)R

m
µÕ‰(k̂) (7.37)

where the rotation matrix elements Rm
µÕ‰(k̂) should be calculated directly because

of the huge memory required by its storage. The algorithm by recurrence used to
evaluate Rm

µÕ‰(k̂) in this thesis is detailed in appendix G.

4. Next, computing the OZ equation with Blum’s reduction:

“̂Õm
‰µ(k) =

ÿ

n,‹

(≠1)‰+‹ ĉÕmn

µ‹,‰(k)∆fl̂Õn
‰‹(k) (7.38)

5. The “ projections are then transformed back to global coordinates system:

“̂m
µÕµ(k) =

ÿ

‰

“̂Õm
‰µ(k)R

mú
µÕ‰(k̂) (7.39)
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6. From here the function in angular frame can thus be rebuilt:

“̂(k, Ω) =
ÿ

m,µÕ,µ

fm“̂m
µÕµ(k)R

m
µÕµ(Ω) (7.40)

7. Then the inverse Fourier transform of these projections is:

“(r, Ω) =
⁄

dk“̂(k, Ω)eir·k (7.41)

8. Finally, the functional Fexc is computed by:

Fexc = ≠kBT

2

⁄

drdΩ∆fl(r, Ω)“(r, Ω) (7.42)

7.3.1 Commutativity between operations

As mentioned in the operational algorithm, three types of operations are being done before
and after the OZ equation. They are:

1. Fast Fourier transform for 3-dimensional spatial grid (FFT3D): implemented by
package FFTW3 [59], mathematically leading to no accuracy loss;

2. Fast generalized spherical harmonics transform (FGSHT): has real or complex input,
is exact if F (Ω) can be given as an expansion of GSHs of order at most mmax;

3. Rotation between laboratory coordinate system and local system linked to vector k

(RotS): can be done for both function and projections. It introduces a minus error
in accuracy at origin and border of the box, which will be discussed in §10.3.3.

Their commutativity is shown in figure 7.2.

f̂(k,Ω)

fm
µ0µ(r) f̂m

µ0µ(k) f̂m
µ0µ(k)

f̂(k,Ω)

f̂ 0
m

χµ(k)

f(r,Ω)

f(r,ωr)

f̂(k,Ω)f̂(k,ωk)

f̂(k,ωk)

f(r,Ω)

(a) (b) (c)

Figure 7.2: Commutativity of operations. (a) FFT3D and FGSHT; (b) RotS and FGSHT; (c)
FFT3D and RotS.

As shown in figure 7.2, the FFT3D does not depend on the angular part of the function,
and the FGSHT does not depend on the spatial part of the function. The two operations
are commutative.

It can be also proven that the passage from the function f̂ in laboratory frame f̂(k, Ω)

to the projections in local frame f Õm
‰µ(k) can be achieved either by a rotation to the

function f̂(k, ωk) in intermolecular frame followed by an GSH expansion as eq. (7.8), or
an GSH expansion that gives the projections fm

µÕµ(k) following by a rotation as eq. (7.10).
However, the rotation from f(r, Ω) to f(r, ω) depends on the vector r, of which the

information is totally lost after FFT3D. The rotation from f(k, Ω) to f(k, ω) can only
depend on the vector k; they are not the same rotation, therefore non-commutative.
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7.3.2 Reduction by symmetry

A further reduction of computing cost can be made by performing about only half of the
operations, thanks to the symmetric relations between the projections.

In eq. (7.36), ∆fl(r, Ω) is real. With the property of GSH (eq. (H.15)):

Rm
µÕµ(Ω) = (≠)µÕ+µRmú

µÕµ(Ω) (7.43)

we find
∆flm

µÕµ(r) = (≠)µÕ+µ
∆flmú

µÕµ(r) (7.44)

Therefore only the projections of µÕ Ø 0 or µ Ø 0 are needed to generate all information.
When ∆fl̂m

µÕµ(r) is transformed into k-space, replacing

∆fl̂m
µÕµ(k) =

⁄

dr∆flm
µÕµ(r)e

≠ir·k (7.45)

with eq. (7.44) gives
∆fl̂m

µÕµ(k) = (≠)µÕ+µ
∆fl̂mú

µÕµ(≠k) (7.46)

Therefore only the projections of µÕ Ø 0, µ Ø 0, or half of k where one of the dimensions
ki Ø 0 are independent.

In the implementation, it is a natural choice to keep only half of the projections
∆fl̂m

µÕµ(k), as either the real-to-complex FFT3D (k3 Ø 0) or the real-to-complex FGSHT

(µ Ø 0) gives implicitly half of the information. As the OZ equation (7.12) is separable
for each k, but not on µ (‹ in equation), it is more natural to compute half of k, which is
actually the choice in our code. All the rest we should prove is that the “̂m

µÕµ(k) calculated
from this half of known density is still able to generate all the informations.

The relation deduced from the symmetries of GSH (appendix H):

rm
µÕµ(◊) = (≠)m+µÕ

rm
µÕµ(fi ≠ ◊) (7.47)

Rm
µÕµ(„◊Â) = (≠)m+µÕ

eiµÕfiRm
µÕµ(fi + „, fi ≠ ◊, ≠Â) (7.48)

= (≠)mRm
µÕµ(fi + „, fi ≠ ◊, ≠Â) (7.49)

gives that
Rl

⁄Õ0(k̂) = (≠)lRl
⁄Õ0(≠k̂) = (≠)l+⁄Õ

Rlú
⁄Õ0(≠k̂) (7.50)

If we replace eq. (7.5) by eq. (7.46) and (7.50), with symmetry of 3j-symbol (H.6) and
symmetry of ĉ [16]:

ĉmnl
µ‹ (k) = (≠)m+n+µ+‹

ĉmnlú
µ‹ (k) (7.51)

we have the same symmetry property for “̂ as for ∆fl̂:

“̂m
µÕµ(k) = (≠)µÕ+µ

“̂mú
µÕµ(≠k) (7.52)

which means the half “̂m
µÕµ(k) is sufficient to generate “̂(k, Ω) or “(r, Ω). Thus the OZ

equation can be safely reduced by a factor of two.
We can also find

Rm
µÕ‰(k̂) = (≠)mRm

µÕ‰(≠k̂) = (≠)m+µÕ+‰Rm
µÕ‰(≠k̂) (7.53)

which gives
∆fl̂Õm

‰µ(k) = (≠)m+µ+‰
∆fl̂Õmú

‰µ (≠k) (7.54)
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“̂Õm
‰µ(k) = (≠)m+µ+‰“̂Õmú

‰µ (≠k) (7.55)

If we replaced the OZ equation by these two equations, we can find the symmetries of
ĉÕmn

µ‹,‰(k) in eq. (F.51):

ĉÕmn

µ‹,‰(k) = (≠)m+n+µ+‹
ĉÕmnú

µ‹,‰(k) (7.56)

It should be noted that not exactly half of the points are calculated. If we choose to
calculate half of k, as shown in figure 7.3, where the 2D plan corresponds to two of the
three dimensions in k-space grid, the green points can be generated from the black points
by the symmetries of eq. (7.46), but the red points should be all calculated, of which the
corresponding points are also a red point or even itself. This ever caused a huge problem
in the implementation, as we put ∆fl̂m

µÕµ(k) and “̂m
µÕµ(k) in the same array for purposes of

memory. It should be assured that these points are calculated only once.

0 1 2 3 -2 -1

0

1

2

3

-2

-1

point calculated

point generated by symmetry

special point

Figure 7.3: Distribution of points to be calculated according to symmetry in a 2D plan



8
Solvation Properties

The solvation free energy and solvent structure are the most important properties that
we seek; as shown in previous sections, they can both be obtained by the minimization of
the free energy functional F [fl]. Here is a discussion about some corrections needed for
charged solutes and some profiles of structures deduced from the solvent density.

8.1 free energy correction for single ions

In the calculation of external potential as well as the total solvation free energy, the use of
different conventions can lead to a charge-independent offset, which introduces error for
charged solutes [63–65]. This offset is mainly caused by two sources: (1) resulting from
the use of a finite system size; in our case, it is a system with cubic periodic boundary
conditions, which presents artificial interactions between the ion and its own periodic
copies, as well as between the solvent and the periodic copies of the ion (Type-B); (2)
resulting from the choice of convention for summing up the contributions of solvent charges
to the electrostatic potential in the sample system (Type-C).

8.1.1 Correction of type B

Type B correction should be added for systems with finite size or periodic boundary
conditions, accounting for the error in the solvent polarization: Another way to

evaluate this

error is to make

a numerical

extrapolation of

the inverse of the

box size (1/L); it

is more accurate,

but demands

much more

calculation.

∆GB =
1

8fiÁ0

1

1 ≠ Á≠1
2 q2

L

C

› +
4fi

3

3
RI

L

42

≠ 16fi

45

3
RI

L

45
D

(8.1)

where
Á0 is the vacuum permittivity;

Á is the solvent permittivity (dielectric constant), here Á = 71 for water [47, 66];

q is the solute charge;

L is the box length;

RI is the ionic radius;

› is the energy per particle in a simple cubic lattice, › ƒ ≠2.837297 [67].

As RI is significantly smaller than the size of the computational box, i.e. RI π L,
its quadratic as well as higher order of (RI/L) is considered negligible, thus eq. (8.1)
becomes:

∆GB =
›

8fiÁ0

1

1 ≠ Á≠1
2 q2

L
(8.2)

which has the same form as the Born model in eq. (2.10).

47
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8.1.2 Correction of type C

Type-C corrections are needed when the systems to be compared use different electrostatic
summation schemes: on the basis of point charges within entire solvent molecules (M
scheme) or on the basis of individual point charges (P scheme), shown in figure 8.1 (c)
and (d), which brings a fixed free energy difference at the boundary.

(a)

(b)

outside

inside

outside

inside

(c) - M scheme (d) - P scheme

Figure 8.1: IQ model and summation scheme. (a) The solvent molecule. (b) The equivalent
isotropic quadrupole (IQ) fluid model. (c) In the M scheme, one evaluates the Coulom-
bic potential generated by the solvent charges belonging to all molecules within the
boundary. (d) In the P scheme, one evaluates the Coulombic potential generated by
all solvent charges within the boundary.

It can be deduced analytically by considering the solvent as a canonical ensemble under
the orientational disorder limit (ODL) [63], which becomes an isotropic quadrupole (IQ)
fluid, whose solvent molecule (figure 8.1 (b)) possesses the same quadrupole traceγ is elsewhere

referred to as the

spheropole

moment [68, 69],

which is the

spherical

component of the

quadrupole

moment, and is

invariant with

respect to

rotations.

“ = tr(Q) = Qxx + Qyy + Qzz (8.3)

where the quadrupole moment of the solvent molecule can be calculated by its definition
[70]

Qij =
⁄

V
rirjfl(r)dv =

Nÿ

–=1

q(–)r
(–)
i r

(–)
j (8.4)

It can be shown that the charge density of the solvent located within the boundary of
the sample system vanishes everywhere, except at the boundary in the M scheme, which
results in a uniform normal surface polarization. The correction needed is:

∆GC = ≠q

A

1 ≠ 4fiR3
I

3L3

B

∆ΦODL (8.5)

where ∆ΦODL = (6Á0)
≠1

÷“, ÷ being the solvent number density.
In the same way, when we consider RI π L, eq. (8.5) becomes

∆GC = ≠ (6Á0)
≠1

÷“q (8.6)

8.2 solvation structure

In MDFT, all the information about solvation structure can be deduced from the solvent
density fl(r, Ω). Here we present some examples of structure which are used in later
chapters.
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8.2.1 Radial and site-site distribution function

When the solvent is homogeneous, the PDF can be reduced to g(r12), which is sometimes
referred to as the radial distribution function (RDF). However, it can be also used as a key
character of the structure for inhomogeneous fluids, which can be calculated equivalently
as:

g(r) = Èfl(r, r̂)Í /fl0 =

s
fl(r, r̂)dsr

fl0
s

dsr
(8.7)

To do this integration, it is required to transform fl(r, Ω) into spherical coordinates.
But as fl(r, Ω) in the code is a N -point discrete space grid:

fl(r) =
⁄

dΩfl(r, Ω)/fl0 =
Nÿ

i=1

fli”(r ≠ ri) (8.8)

The best way to do the integration is to use a histogram approach.
The grid points are assumed to be homogenous in space, such that the number of points

entering in an arbitrary volume v is proportional to this volume. Obviously the grid of
fl(r, Ω) satisfies this assumption.

The average value of g(r) between an interval ”r is

g(ri) = Èg(r)Ír+”r
r =

s r+”r
r g(r)dr

”r
(8.9)

Thus

g(ri) =
1

”vi

⁄ r+”r

r

⁄

s
fl(r, r̂)drdsr =

1
”vi

⁄

vi

Nÿ

i=1

fli”(r ≠ ri)dvi (8.10)

where ”vi = ”r · sri
=

s

vi
”(r ≠ ri)dvi (as the points are homogeneous).

The total function is

g(ri) =

s

vi

qN
i=1 fli”(r ≠ ri)dvi

s

vi
”(r ≠ ri)dvi

(8.11)

and it becomes necessary to sum up the point values fli in the interval ”v = ”r · Sr, and
divide it by the number of points in this interval.

A site-site distribution function is the same type as RDF, but the origin for the calcula-
tion of r is no longer at the center of the solute; instead it is now at the site coordinate ru,
such that the new coordinates are calculated as rÕ = r ≠ ru. Calculation of solvent site
outside the solvent center requires more complicated calculations, involving the rotation
of solvent coordinate to Ω-frame. It has equivalent information of the structure to the
rotational invariant projections of higher order, the implementation of which we have not
done here.

8.2.2 Radial polarization function

Radial polarization function (RPF) is defined as

p(r) = ÈP(r) · r̂Í /fl0 (8.12)

where P(r) is the polarization P(r) =
s

dΩΩ · fl(r, Ω)/fl0. It can be calculated in the
same way as g(r).
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8.2.3 Rotational invariant expansion

If the solute is simple, like a spherical ion or little molecule, it is convenient to expand
the density on rotational invariants which possess numerous symmetries:

fl(r, Ω)/fl0 =
ÿ

mnlµ‹

flmnl
µ‹ (r)Φmnl

µ‹ (0, Ω, r̂) (8.13)

=
ÿ

mnlµ‹

flmnl
µ‹ (r)fmfn

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b Rn
ην(Ω)Rl

≠µ≠η,0(r̂)(8.14)

Here the form of Φmnl
µν (0, Ω, r̂) is reduced for the laboratory coordinate system.

The forward transform to obtain the projections is:

flmnl
µν (r) = fmfn

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b

⁄

dr̂Rlú
≠µ≠η,0(r̂)

⁄

dΩfl(r, r̂, Ω)Rnú
η,ν(Ω)/fl0

(8.15)
Like the RDF and PDF, histogram approach is used in this process to evaluate the

integration
s

dr̂ to take advantage of the Rlú
λ0(r̂) in regular spatial space calculated by re-

currence (appendix G). A detailed deduction for these generalized formulae is in appendix
F.

Note that if the solvent is water, that processes a symmetry axis C2v, the projections
flmnl

µν (r) are purely real.

8.2.4 Equivalence between the curves

The relation between these profiles of structure can be proven mathematically.
Firstly, as

Φ
000
00 (r, Ω) = 1 (8.16)

there is only one expansion term in eq. (8.13). The projection is thus

fl000
00 (r) =

⁄

dr̂dΩfl(r, Ω)/fl0 = g(r) (8.17)

Then, according to appendix F we can calculate

Φ
011
00 (r, Ω) = ≠Ω · r̂ (8.18)

such that:

fl011
00 (r) =

⁄

dr̂dΩfl(r, Ω)Φ011ú
00 (r, Ω)/fl0 = ≠

s
dr̂P(r) · r̂

s
dr̂dΩ

.

.Φ011
00 (r, Ω)

.

.2 (8.19)

Note that the orthogonality in eq. (F.6) gives
s

dr̂dΩ
.
.Φ011

00 (r, Ω)
.
.2

= (2l + 1)≠1 = 1
3 ;

we can find:
fl011

00 (r) = ≠3p(r) (8.20)



Chapter III

Implementation

The code MDFT developed in this thesis is based on the master branch of Git
project MDFT (https://github.com/maxlevesque/MDFT/), version [Fri Jun
20 19:05:52 2014 +0200]. All the tests of computing performance are run on
POINCARE machines of IDRIS, which involve nodes of kind:

poincare[001-092]: 2 processors Sandy Bridge E5-2670 (2.60GHz, 8 cores per
processor, with 16 cores per node); 32 GB of memory per node.

Core P#0

PU P#0

L1i (32KB)

L1d (32KB)

L2 (256KB)

L3 (20MB)

Core P#1

PU P#1

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#2

PU P#2

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#3

PU P#3

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#4

PU P#4

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#5

PU P#5

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#6

PU P#6

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#7

PU P#7

L1i (32KB)

L1d (32KB)

L2 (256KB)

Socket P#0

NUMA Node P#0 (16GB)

Core P#0

PU P#8

L1i (32KB)

L1d (32KB)

L2 (256KB)

L3 (20MB)

Core P#1

PU P#9

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#2

PU P#10

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#3

PU P#11

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#4

PU P#12

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#5

PU P#13

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#6

PU P#14

L1i (32KB)

L1d (32KB)

L2 (256KB)

Core P#7

PU P#15

L1i (32KB)

L1d (32KB)

L2 (256KB)

Socket P#1

NUMA Node P#1 (16GB)

Machine (32GB)

This chapter presents the implementation results of the theories established
in chapter II. Firstly in section 9, we summarize all the possible algorithms
to evaluate “(r, Ω) from ∆fl(r, Ω), and name a selection of branches in or-
der to facilitate further discussions. In the following sections, the results are
regrouped into two aspects, the accuracy and performance:

Section 10 examines all the possible accuracy loss in the implementation com-
pared to the theoretical model, which is in a general sense continuous and
infinite. The accuracy loss is mainly due to the discretization of the system:
the finite expansion of GSHT, the effects linking to a discretized grid, as well as
finite size of sample box. The factors linked to these effects are thus analyzed
in order to determine their acceptable minimum number to give a reasonable
result.

Section 11 discusses the computing performance of the code, from subroutines
to entire algorithms. The goal is to show that the new algorithms are much
faster than the old ones, according to the theory, but also to give a detailed
evaluation of timing of all algorithms for further code development.

https://github.com/maxlevesque/MDFT/




9
Algorithms and Branches

As discussed in section 5, in code MDFT, we evaluate the functional F [Ï] and its gradient
”F [Ï]/”Ï in each iteration. Figure 9.1 shows a detailed portion of the total MDFT flow
chart in figure 5.1, including the functional evaluation and minimization.

'
(i)

'
(i+1)

yes
no

converge? minimizer L-BFGS-B

F ['(i)] = 0 add Fid to F

δF ['(i)]
δ'(i) = 0 add δFid

δ'(i) to δF

δ'(i)

add Fext to F

add δFext

δ'(i) to δF

δ'(i)

add Fexc to F

add δFexc

δ'(i) to δF

δ'(i)

Figure 9.1: Process “find equilibrium density” in MDFT. After the “initiation” process, the flow
chart begins at the black point. The three terms of functional and their gradients
are then accumulated in order. The process ends at the white point, which then goes
through the “output” process.

As shown in figure 9.1, the three functional terms and their gradients can be both
calculated separately. With the first two terms well presented in section 5, this section
aims to summarize all the algorithms to evaluate the excess functional gradient “(r, Ω)

from ∆fl(r, Ω), knowing that
fl(r, Ω) = fl0Ï2(r, Ω) (9.1)

”Fexc

”Ï
= ≠kBTfl0Ï(r, Ω)“(r, Ω) (9.2)

and the functional Fexc can be calculated as:

Fexc = ≠kBT

2

⁄

drdΩ∆fl(r, Ω)“(r, Ω) (9.3)

According to the commutativity of operations (see §7.3.1), the only possible algorithms
to evaluate “(r, Ω) from ∆fl(r, Ω) are shown in the figure 9.2. We recall here that Ω and
fm

µÕµ refer to orientations in the laboratory frame whereas ω and f Õm
‰µ refer to orientations

in the intermolecular frame (axis
≠æ
Oz in the direction of k).

a

b

c

d

e

f

i

j

m

n

g l

h

k

o r

p

q

∆ρ(r,Ω) ∆ρ̂(k,Ω)

∆ρ
m

µ0µ
(r) ∆ρ̂

m

µ0µ
(k) ∆ρ̂0

m

χµ
(k)

∆ρ̂(k,ω) γ̂(k,ω)

γ̂0
m

χµ
(k) γ̂

m

µ0µ
(k)

γ̂(k,Ω) γ(r,Ω)

γ
m

µ0µ
(r)

Figure 9.2: Possible algorithms for “ evaluation

Several branches are built to test and compare between algorithms, which are shown
below in table 9.1. These branches should give numerically the same result in certain
conditions, that will be discussed in later sections.
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method sub-method description theory

reference dipole calculate n(r) and P(r) separately Ref [32]

naive standard use ĉÕmn

µ‹,‰(k) as input DCF §6.2.2

zero-order use ĉ(k, ω1, ω2) and take the nearest point §6.1.1

interpolation use ĉ(k, ω1, ω2) with linear interpolation §6.1.2

dipole use ĉS , ĉ∆, ĉD issued from [71] §6.2.1

nmax1 use ĉS , ĉ∆, ĉD, ĉ011 issued from [72] §6.2.1

convolution standard algorithm with symmetry reduction §7.3.2

asymm algorithm without symmetry reduction §7.3.2

pure_angular swap FFT and FGSHT §9

Table 9.1: Branch option in MDFT

9.1 branches “naive”

Branches naive are the algorithms mentioned in section 6, which go through the path

(b) ! (h) ! (p)

in figure 9.2, calculating directly “̂(k, Ω) from ∆fl̂(k, Ω) with

“̂(k, Ω1) =
⁄

dΩ2∆fl̂(k, Ω2)ĉ(k, Ω1, Ω2) (9.4)

The DCF in laboratory frame, ĉ(k, Ω1, Ω2), is reconstructed from the intermolecu-
lar DCF, ĉ(k, ω1, ω2), by a pre-established relation ω(Ω1, Ω2). The difference between
branches is the method to calculate ĉ(k, ω1, ω2). Branch naive_standard uses ĉÕmn

µ‹,‰(k)

as input DCF, and calculates ĉ(k, ω1, ω2) directly (eq. (6.15)) during the evaluation of
eq. (9.4) with these coefficients. Branch naive_zero-order and naive_interpolation

use a pre-tabulated ĉ(k, ω1, ω2) as input, either calculated from ĉÕmn

µ‹,‰(k) or in another
way. Branch naive_zero-order takes the neatest point of ĉ(k, ω1, ω2) according to the
pre-established correspondence ω(Ω1, Ω2), while naive_interpolation gives a linear in-
terpolation on ω. The former is rejected in the implementation due to a lack of precision
(appendix C), thus only naive_standard and naive_interpolation are practically in
use, apart from the nmax = 1 cases discussed later. For all naive methods, we always
take the nearest point of ÎkÎ in ĉÕmn

µ‹,‰(k) or in ĉ(k, ω1, ω2), i.e. zeroth order interpolation
for k.

It should be noted that although the intermolecular form of DCF (function or projec-
tions) is used in every branch naive, the DCF in laboratory form ĉ(k, Ω1, Ω2) needs to
be calculated. To exactly take the path

(b) ! (e) ! (i) ! (m) ! (p)

with (k, ω1, ω2) numbers of FE for OZ equation, the density variable ∆fl̂(k, Ω) should be
interpolated on ∆fl̂(k, ω), which seems not to be a wise choice.
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9.2 branches “convolution”

The methods convolution, which are developed in the objective of this thesis and detailed
theoretically in section 7, contains three branches.

Branches convolution_asymm and convolution_standard go through the path

(a) ! (c) ! (f) ! (j) ! (n) ! (q) ! (r)

with convolution_asymm using the original algorithm (§7.3) without symmetry reduction
(§7.3.2), i.e. artificially generating all the projections ∆flm

µÕµ(r) from the projections of µ Ø
0 given implicitly by the real-to-complex FGSHT process; while convolution_standard

takes only the projections µ Ø 0, and calculates the projections in local frame (eq. (7.37))

∆fl̂Õm
‰µ(k) =

ÿ

µÕ

∆fl̂m
µÕµ(k)R

m
µÕ‰(k̂) (9.5)

for all µ and k3 Ø 0, with the symmetry relation (eq. (7.46))

∆fl̂m
µÕµ(k) = (≠)µÕ+µ

∆fl̂mú
µÕµ(≠k) (9.6)

Branch convolution_pure_angular goes through the path

(b) ! (d) ! (f) ! (j) ! (n) ! (o) ! (p)

which swaps the FFT and FGSHT processes. It takes implicitly k3 Ø 0 from the real-to-
complex FFT process, thus implementing the same number of FE for the OZ equation as
convolution_standard.

Theoretically, convolution_standard should be the fastest convolution method as
its number of FE for FFT process depends on the number of projections ∆flm

µÕµ, which is
smaller than the number of FE for convolution_pure_angular depending on the number
of angles (Θ, Φ, Ψ).

9.3 testing branches for nmax = 1

To show the mathematical equivalence between the branches, several testing branches for
nmax = 1 are built.

Branches naive_dipole and naive_nmax1 go through the path (b) ! (h) ! (p), cal-
culating ĉ(k, Ω1, Ω2) directly with the projections ĉmnl(k) as shown in §6.2.1, with sepa-
rately the DCF of the references [71] and [72], whose slight difference is shown in §B.3.

Branch reference_dipole uses DCF in [71], which is the original method in MDFT to
calculate Fexc via multipole expansion, and is mathematically equivalent to naive_dipole.
In addition with branch convolution_standard that can also use the two DCFs men-
tioned above, a test of validation can be performed, which should in any case be exactly
the same numerically if the same DCF is used.

9.4 other paths

Considering the necessity, other paths such as those passing by (k) are only built for local
test usage (c.f. §10.3.2 and §11.3).
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Numerical Accuracy

Theoretically, if a process is mathematical equivalent to another one (for instance the
different algorithms for Fexc evaluation mentioned previously), the numerical differences
should be always zero, in the perfect condition that all the quantities are continuous
(with infinite points of grid), the basis sets of FFT and FGSHT are complete (infinite
number of k or order of expansion nmax), and the system is border-free (infinite length
of box). However, this is obviously impossible, and the errors due to such effects can
be far from imperceptible within the level of discretization allowed by the computing
capacity nowadays. This section works on all the possible effects and parameters that
have an influence on the accuracy, e.g. the usage of different algorithms, or different
discretizing parameters or convergence criteria. The goal of this study is to determine in
which conditions the errors can be regarded as negligible; it thus gives a global view of
the credibility for the results given by this code.

10.1 significant digits and curve resolution

Before we examine the effects of discretization and limited orders, let us first have a
discussion concerning precision that the code can achieve. The implementation can always
give numbers at machine precision (approximatively 10≠13), but not all the digits that
the machine gives have a physical meaning. For example, if the input DCF is at simple
precision (10≠7), it is not necessary to look at numbers after the 7th decimal in the
functional.

During the minimization of the functional, the convergence of final free energy is con-
trolled by imposed criteria. Two criteria are used in code MDFT: ÁF is the difference
between the free energies of the last two iterations, and ÎprojgÎŒ is the norm of the
projected gradient in L-BFGS-B [57, 58]. The minimization is thought to converge if one
of the criteria is met. We use the code implementation to measure how much significant
digits we can obtain with such criteria. As shown in table 10.1, the normal convergence
criteria (well converged) that we use in this thesis can give a free energy at two decimals.
In case of convergence difficulty, as for some molecular solutes, looser criteria can be used.

criteria, well converged loose very strict
functional converged (chem. accuracy) convergence criteria

ÁF < 0.00001 < 0.001 < 0.01 < 0.00000001

ÎprojgÎ
Œ

< 0.00001 < 0.0001 < 0.001 < 0.000000001

Fnmax3 (CH4) 27.24(-0.02) 28(-1) 60(-33) 27.21916

Fnmax3
!

CH+0.33
4

"
20.560(-0.004) 22(-1) 40(-19) 20.55578

Fnmax3
!

CH+
4

"
-129.050(-0.002) 128.8(-0.3) -118(-11) -129.05278

Fdipole (H2O) -70.601(-0.003) -70.4(-0.2) -68(-3) -70.60436

Fnmax3 (O2) 21.90(-0.02) 23(-1) 49(-27) 21.88995

Table 10.1: Minimized free energy F (kJ · mol≠1) given by different convergence criteria, compar-
ing to those converged with very strict criteria. Test of water SPC/E uses Lebedev
quadrature of mmax = 1, with dipole DCF; and others use Gauss-Legendre quadrature
with DCF of nmax = 3. All tests are done in a box of L = 24 Å, nfft = 72.

56
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Note that although the convergence criteria allow several decimals, if the result is for
chemical usage, it is better to take no decimal or at most only one, as the error of normal
simulations of chemical system is already at 1 to 2 kJ/mol.

The output curves (RDF, RPF, etc.) with respect to r that this code provides, always
pass through a histogram process (§8.2). Therefore, the number of bins (nbin) of the
histogram (which determines ”r) can have an influence on the shown results. Implicitly
(without specification) the number of bins is determined by the Rice rule:

nbin = 2n
1
3 (10.1)

where n is the total number of grid points to be counted. The curves obtained with this
setting are smooth enough for LJ centers and ions, but for non-spherical solutes, nbin

seems to be too large in view of the fluctuations of the sample. In figure 10.1, we give an
example of RDF with different resolution parameters for the site O of the O2 molecule. It
is shown that the curves do not vary too much within nbin to 1

8nbin, and from 1
3nbin, the

noise is well avoided.

0 
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Figure 10.1: RDF of site O in O2 molecule (nmax = 4, L = 24 Å, nfft = 72) with different
resolution parameter. The curves take 1

N nbin as number of bins, with nbin determined
by the Rice rule, N varying from 1 to 8. The square box on the left is zoomed and
smoothed (with Catmull-Rom spline implicitly used by Excel) in the right box.

10.2 generalized spherical harmonics transform

As discussed in §7.2, a discretized function F (Θ, Φ, Ψ) after a forward-backward GSHT

process (eq. (7.25-7.26))

F m
µÕµ =

fm

8fi2

mmaxÿ

i=0

wi

2mmaxÿ

j=0

2Âmmax/sÊ
ÿ

k=0

F (Θi, Φj , Ψk)R
mú
µÕµ(Θi, Φj , Ψk) (10.2)

F (Θi, Φj , Ψk) =
nmaxÿ

m=0

fm

mÿ

µÕ=≠m

mÿ

µ=≠m
mod (µ,s)=0

F m
µÕµRm

µÕµ(Θi, Φj , Ψk) (10.3)

only remains the same when:

1. F can be expanded on GSHs of order at most nmax in eq. (10.3), thus it is always
the case that F is a polynomial of both cos Θ, cos Φ and cos Ψ of order n, where
n Æ nmax;
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2. The order of quadrature mmax used in the GSH expansion in eq. (10.2) should be
larger than the order of the polynomial F , which means n Æ mmax;

The two rules are quite evident. It should be also noted that as we do first a forward
then a backward transform, when mmax < nmax, even the input function is of order at
most mmax; the output function is of order nmax in the presence of Rm

µÕµ which is of order
nmax. That means F is no longer the same. Therefore, the forward-backward error is also
controlled by the relation between the two discretizing parameters:

3. mmax Ø nmax is needed to ensure the absence of accuracy loss.

In reality, the density variable fl(r, Ω) and the gradient “(r, Ω) that should be expanded
via FGSHT are never a simple polynomial. It is important to understand how much
the choice of mmax and nmax will affect the accuracy, as they are tightly linked to the
performance. Therefore we chose some simple functions below to see what happens when
the function does not meet the three conditions. Note that the FFT process leads to
strictly no accuracy loss (at machine precision, approximatively 10≠13), which means the
FGSHT process will have strictly the same result with the GSHT process. Here we do not
need to distinguish the two.

10.2.1 mmax and nmax of projections

The numerical error tests of a forward-backward GSHT process with different order nmax

of GSH and mmax of quadrature are shown in table 10.2 for various polynomials; the
absolute error

Ea(Ω) =
-
-
-fbefore(Ω) ≠ fafter(Ω)

-
-
- (10.4)

being defined as the norm of difference in function f(Ω) after a forward-backward GSHT

process. The maximum absolute error Emax
a is the maximum value in Ea(Ω).

From table 10.2 we can see that for function f(Ω) = 1 = R0
00, mmax Ø 0, nmax Ø 0

and mmax Ø nmax give a null difference. Similarly, function f(Ω) = cos 3Θ = 4 cos3 Θ ≠
3 cos Θ is a polynomial of cos Θ of order 3, which can be expanded on R3

00 and R1
00 terms;

it should satisfy mmax Ø nmax Ø 3. f(Ω) = cos 3Φ is a polynomial of cos Φ of order 3,
but it cannot be expanded on GSHs. In fact, all the functions in which the order of cos Φ

and cos Ψ is greater than cos Θ cannot be expanded on a finite number of GSHs. R3
30 can

be expanded on itself, and indeed a polynomial of order 3 requiring mmax Ø nmax Ø 3.
We can see that all the Emax

a where mmax < nmax is are rather large, and fortunately we
use only mmax Ø nmax in FGSHT for numerical reasons. Yet the Emax

a for mmax Ø nmax

may not be negligible either, knowing that the values of trigonometric functions are in
between [≠1, 1]. However, if the greatest portion of the function is a polynomial within
the required order, the extra part does not play a great role, and the total mean error
will not be as significant as seen now.

10.2.2 From fl to “

In the same way, the maximum absolute error of the density variable fl(r, Ω), which is not
a combination of GSHs, can be huge. It even gives the appearance of unphysical density
fl(r, Ω) < 0 (i.e. ∆fl(r, Ω)/fl0 < ≠1) at certain points after a forward-backward GSHT

process, as shown in figure 10.2.
Theoretically, we expect this minimum value to approach zero when increasing mmax

or nmax. This is not exactly the case. That means the order of expansion within the
computing capacity (nmax Æ 5) is still far from finding a tendency. If we look at the
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m\n 0 1 2 3 4 5

0 0.00 (0.00) 9.00 (3.00) 34.00 (18.00) 83.00 (39.00) 164.00 (84.00) 285.00 (139.00)

1 0.00 (0.00) 0.00 (0.00) 0.00 (1.67) 4.34 (6.07) 7.06 (13.63) 14.88 (17.30)

2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 5.65 (2.71)

3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(a) f(Ω) = 1

m\n 0 1 2 3 4 5

0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

1 0.96 (0.96) 0.00 (0.00) 0.00 (0.00) 2.56 (6.99) 10.76 (14.15) 13.83 (21.21)

2 0.46 (0.46) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.36 (0.50)

3 0.86 (0.86) 0.66 (0.66) 0.66 (0.66) 0.00 (0.00) 0.00 (0.00) 0.66 (0.66)

4 0.99 (0.99) 0.80 (0.80) 0.80 (0.80) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

5 0.83 (0.83) 1.01 (1.01) 1.01 (1.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(b) f(Ω) = cos 3Θ

m\n 0 1 2 3 4 5

0 0.00 (0.00) 9.00 (3.00) 34.00 (18.00) 83.00 (39.00) 164.00 (84.00) 285.00 (139.00)

1 0.00 (0.00) 0.00 (0.00) 0.00 (1.67) 4.34 (6.07) 7.06 (13.63) 14.88 (17.30)

2 1.00 (1.00) 1.00 (1.00) 0.50 (0.50) 1.53 (1.53) 1.15 (1.15) 3.65 (0.89)

3 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.83 (0.83) 1.10 (1.10) 1.11 (1.11)

4 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.90 (0.90) 0.90 (0.90) 0.69 (0.69)

5 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 0.94 (0.94) 0.94 (0.94) 0.80 (0.80)

(c) f(Ω) = cos 3Φ

m\n 0 1 2 3 4 5

0 0.00 (0.00) 5.03 (1.68) 19.01 (10.06) 46.40 (21.80) 91.68 (46.96) - (77.70)

1 0.00 (0.00) 0.00 (0.00) 0.00 (0.51) 1.32 (1.85) 2.15 (4.15) 4.53 (5.26)

2 0.56 (0.56) 0.56 (0.56) 0.07 (0.07) 0.55 (0.55) 0.76 (0.76) 2.05 (1.00)

3 0.47 (0.47) 0.47 (0.47) 0.47 (0.47) 0.00 (0.00) 0.46 (0.46) 0.46 (0.46)

4 0.56 (0.56) 0.56 (0.56) 0.56 (0.56) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

5 0.51 (0.51) 0.51 (0.51) 0.51 (0.51) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(d) f(Ω) = R3
30(Ω)

Table 10.2: Maximum absolute error Emax
a of some function f(Ω) introduced by a forward-

backward GSHT process, with s = 1 outside the parentheses and s = 2 inside the
parentheses; s being the MRSO defined in §7.2 concerning the C2v symmetry. Dif-
ferences that should be theoretically null (at machine precision) are shown in bold
character and double underlined; which are null in fact at machine precision and here
presented with 2 decimals for simpleness.

rotational invariant expansion of fl(r, Ω), which gives the projections fl0nl
0‹ (r) (0 as the It is normal that

the curves in

figure 10.3a and

10.3b are a little

noised (with

nbin) as

discussed above.

solute is spherical) shown in figure 10.3a, we observe that the first peaks of higher order
projections are still non-negligible. That gives the tendency in figure 10.2. The first
projection fl000

00 (r) is purely positive, such that the minimum of fl is zero; when the more
negative projections are added on to the combined function, this error will go to negative.
The minimum will have a tendency to converge only if the order of projections are above
the current order 5.
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Figure 10.2: The minimum value of ∆fl(r, Ω)/fl0 after a forward-backward GSHT process with
respect to nmax. Computed for a 453 grid (L = 25) for a converged density of an
artificial charged LJ center CH+0.4

4 .

That means within the computing capacity, we cannot correctly expand the density fl

on GSHs. However, in the code MDFT, the density fl is generated by the minimizationNote that the

projections fmnl
µν

are purely real if

f is real and µ, ν

are even numbers.

process determined by the gradient of energy “. Note that “̂(k, Ω) is a convolution
product, where ∆fl̂(k, Ω) and the DCF ĉ(k, Ω1, Ω2) can be both expanded on GSHs and
rotational invariants. Therefore, the higher order terms vanish more easily in “̂, as they
are the product of higher order terms of ∆fl̂(k, Ω) and ĉ(k, Ω1, Ω2). We see in figure 10.3b
that the first terms of “ are much stronger than the terms of n = 3, 4, 5. Therefore we
can consider that the expansion of “ already converges within nmax Æ 5, even nmax Æ 3.

10.3 comparison between branches

The algorithms mentioned in section 9 should give the same result if the same DCF

is used, on the condition that the error due to discretization is not fatal. The most
direct comparison can be done with the free energy and structure obtained at the end of
minimization. To be more strict, it is also worthwhile to study only the Fexc functional
evaluation during one iteration without minimization, i.e. the process shown in figure 9.2.
In this scope, “(r, Ω) becomes a better detailed criteria than Fexc to be compared.

method nmax dcf free energy (kJ/mol)

dipole 1 [71] 13.965

naive_dipole 1 [71] 13.965

convolution_standard 1 [71] 13.965

naive_standard 1 [72] 19.224

naive_interpolation 1 [72] 19.434

naive_nmax1 1 [72] 19.225

convolution_standard 1 [72] 19.225

convolution_asymm 1 [72] 19.225

convolution_pure_angular 1 [72] 19.225

naive_standard 3 [72] 26.105

naive_interpolation 3 [72] 26.971

convolution_standard 3 [72] 26.105

convolution_asymm 3 [72] 26.105

convolution_pure_angular 3 [72] 26.105

Table 10.3: Minimized free energy via different branches MDFT of a charged CH+0.33
4 LJ center

calculated for a 333 (L = 20Å) grid. Gauss-Legendre quadrature is used as Θ angle
grid, with mmax = nmax.
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10.3.2 A single k-kernel

If we want to compare within one evaluation of Fexc as shown in figure 9.2, we can first
examine the local paths from ∆fl̂m

µÕµ(k) to “̂m
µÕµ(k) that can be tested independently for a

given k. Referring to figure 10.4, four algorithms are available for such a purpose:

2

4

1

3

∆ρ̂(k;Ω)

∆ρ̂
m
µ0µ

(k) ∆ρ̂0
m

χµ
(k)

!(k;Ω)

γ̂0
m

χµ
(k) γ̂

m
µ0µ

(k)

γ̂(k;Ω)

ĉ(k;Ω1;Ω2)

ĉ(k; !1; !2)

ĉmn
µν;χ(k)

ĉmnl
µν

(k)

Figure 10.4: A k-kernel

A program to compare each element of “̂m
µÕµ(k) issued from these four algorithms for

a given ∆fl̂m
µÕµ(k) shows that the “̂m

µÕµ(k) for the four algorithms are strictly identical, i.e.
the maximum error is at machine precision. This means the final result of energy and
structure is independent to the choice of path inside a k-kernel, if ∆fl̂(k, Ω) can be fully
expanded on GSHs.

10.3.3 k-border effect

The next step is to test the whole process shown in figure 9.2. Theoretically, if ∆fl(r, Ω)

is generated from a recombination of GSH projections ∆flm
µÕµ(r), all the branches should

give mathematically the same gradient “(r, Ω).The detailed

error value of γ

here has not been

noted, as it was

regarded as a bug

in the code at

that time, then

the code has since

been modified.

But in fact, the

choice to add

corrections or not

on the even

number grid is

not a matter of

right and wrong.

Firstly, we compare the three convolution algorithms passing by GSH expansion. For
a 643 grid, nmax = 3, the three algorithms convolution_standard, convolution_asymm,
and convolution_pure_angular give the same Fexc at first sight, but somewhat differ-
ent results when comparing each element of “(r, Ω). The perceived difference seems to
decrease when increasing the number of grid points. Moreover, “(r, Ω) recombined from
projections “m

µÕµ(r), which should be purely real as explained in §7.3.2, have a slight imag-
inary part. Surprisingly, for a 653 grid, it gives numerically the same “(r, Ω) for all three
algorithms at machine precision. The theory behind this behavior is found to be a special
k-border effect linking to an even number of nodes in any dimension of the grid.

As the symmetry
∆fl̂Õm

‰µ(k) = (≠)m+µ+‰
∆fl̂Õmú

‰µ (≠k) (10.5)

is generated by two symmetries

∆fl̂m
µÕµ(k) = (≠)µÕ+µ

∆fl̂mú
µÕµ(≠k) (10.6)

Rm
µÕ‰(k̂) = (≠)m+µÕ+‰Rm

µÕ‰(≠k̂) (10.7)

For the k points “at border”, i.e. after the FFT where the point having ±ki = kmax
i ,

i = 1, 2, 3, for example for k1,

∆fl̂m
µÕµ(±k1, k2, k3) = ∆fl̂m

µÕµ(k
max
1 , k2, k3) (10.8)

is naturally put in the same array by FFT for the grids of an even number, as shown in
figure 10.5.
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0 1 ... k − 1 k −k + 1 ... -1

−k

Figure 10.5: k-border effect

For example, for

a grid 1D, the

FFT having 6

points gives the

values for indices

0,1,2,3,-2,-1, and

the FFT having

7 points gives the

values for

0,1,2,3,-3,-2,-1.

As FFT possesses periodicity, the symmetry (10.6) can always be respected at the
border. However, as

Rm
µÕ‰(≠k̂ © (≠k1, ≠k2, ≠k3)) ”= Rm

µÕ‰(k
max
1 , ≠k2, ≠k3) (10.9)

the symmetries (10.7) and (10.5) are not respected for these points. In the backward
process, if we account for all the “m

µÕµ(k), as

“m
µÕµ(≠k̂ © (≠k1, ≠k2, ≠k3)) ”= “m

µÕµ(k
max
1 , ≠k2, ≠k3) (10.10)

the symmetry
“m

µÕµ(k) = (≠)µÕ+µ“mú
µÕµ(≠k) (10.11)

is not totally respected, and this imposes that “m
µÕµ(r) has an imaginary part. This imag-

inary part has been omitted implicitly in the “real to complex” FFT process used in, for
example, FGSHT in convolution_standard, or FFT3D in convolution_pure_angular.
That is to say, we keep only the part of nonnegative k or nonnegative µ, supposing that
the part we omit respects the symmetry.

For the purpose that the three algorithm gives the same result, we can artificially impose
at the border:

Rm
µÕ‰(k

max
i ) =

1
2

Ë

Rm
µÕ‰(ki) + Rm

µÕ‰(≠ki)
È

(10.12)

where i is the conflict index in figure 10.5. If more than one dimension is in conflict,
this process can be done twice (4 terms for “edges” of the cube) or three times (8 terms
for “vertices”). The point k = 0̂ is different; as it is defined along the z-axes to avoid
underdetermination, it does not respect eq. (10.7) or (10.5), neither. However, this point
is proven to be negligible compared to the hundreds of thousands of total points.

10.3.4 Difference in “ for “naive” and “convolution” methods

In the same way, we compare the Fexc and “(r, Ω) given by branches naive_standard

and convolution_standard. The Fexc of these two branches are identical for a 653 and
nmax = 3 grid, but the elements of “(r, Ω) have a difference at order of 10≠2 to 10≠3

which seems to be random. A test redone for a 453 grid is shown in figure 10.6.
According to figure 10.6, we can hypothesize that this error depends on the angular

quadrature mmax. The dependence is natural, as the difference between algorithms naive

and convolution is the treatment of the angular part. There is also a dependence on
L in the k-space, but after FFT it is mixed. The increase of error in the nmax chart is
unnatural, implying there is still something theoretical that we have missed, or a bug in
the code.

In short, this troublesome difference cannot be yet explained, as the naive methods
do not have a k-border effect linked to symmetry, and in fact we used an odd grid. The
projections “mnl

µ‹ (r) of these two algorithms seem to be identical (figure 10.7), which is
to say that the global profile of the two should be almost the same, and thus the error
would not be very decisive. Knowing that the difference is even further compensated with
many iterations as shown in table 10.3, we can consider that this slight difference has no
consequence to the final result.
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(a) δ [kBT ρ0γ̂(k, Ω)]

(b) δ [kBT ρ0γ(r, Ω)]

Figure 10.6: Maximum (blue) and average (red) absolute difference in “̂(k, Ω) and “(r, Ω) (nor-
malized with kBTfl0), for tests of: (1) different box length L, with nfft = 65, mmax =
nmax = 2; (2) different number of grid nfft3, with L = 25 Å, mmax = nmax = 2; (3)
nmax = 1 to 4 for mmax = nmax with 453 grid (L = 25 Å); (4) nmax = 1 to 4 for
mmax = 5 with 453 grid (L = 25 Å). The test of mmax = nmax = 5 with 453 grid
(L = 25 Å) is dropped as it takes too long. All the tests uses a converged density
fl(r, Ω) of an artificial charged LJ center CH+0.4

4 , recombined from GSH projections
of corresponding order mmax and nmax.

10.4 intrinsic variation of free energy

The comparison between branches shows that there is no significant difference between the
branches, if other parameters are all fixed. Therefore we are free to study the dependence
on discretizing parameters with one or another algorithm.

Before studying the dependence on expansion order mmax and nmax, we are interested
in the spatial grid dependance, as well as the Ψ grid dependance if it is not automatically
fixed by mmax (figure 10.8), which can have an influence on the tests later.
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Looking at figure 10.8 (a) and (b), we show that the resolution of the spatial grid has
an effect on the calculated free energy. For the charged solute CH+0.33

4 , the energy has a
tendency to decrease when increasing the resolution of grid (nfft). This decrease does not
link to the border correction mentioned in §8.1, as both the box length and the charge
remain the same for the whole set of tests. From (b) we consider that at least a 3-points
grid in 1 dimension (each direction) per Angstrom is needed to reduce the uncertainty
due to grid resolution. The molecule in Figure (c) is neutral (although dipolar), i.e. it
does not need any border correction neither. We see that the energy also varies with
respect to the box length (with direct summation this time), and has the same tendency
for different resolutions nfft/L. The curves of nfft/L = 3 and nfft/L = 4 do not give
too much difference. Figure (d) fixed the Lebedev quadrature for Θ and Φ, but left
varying the Ψ. We can also see a dependence on Ψ which does not completely vanish
when increasing the resolution of angular grid. Since throughout the whole thesis the Ψ

is theoretically fixed by the order of the quadrature in Θ and Φ, this remains an issue
requiring further verification. We can roughly conclude that an error around 1-2 kJ/mol
is common for this code. The spatial grid dependence will not be treated in this thesis as
it may come from other terms of the functional.

10.5 series of charged lj centers

To validate the method by comparing with IET, as well as to study the dependance on
mmax and nmax, we firstly chose a series of charged LJ centers, which possess the LJ
parameters of CH4 [73], and have a variable charge from -1.0 to 1.0 (table 10.4).For both IET and

DM results in

this thesis, 298K

is used according

to habitude

instead of 303K

recommended in

reference [47].

For MDFT,

300K and 298K

are used.

solute q ‡ [Å] ‘ [kJ · mol≠1]

CH4 -1.0 to 1.0 3.73 1.23

Table 10.4: Parameters of charged CH4 LJ centers for test usage

10.5.1 Box length dependance and charge dependance of free energy

As discussed in section 8.1, for single ions, two types of corrections need to be added on
the free energy, which depend on the box length and charge of the ion. To verify these
dependencies, we implement a systematic calculation with variable charge and box length
using 3 different methods, the parameters of which are shown in table 10.5. It should be
noted that the naive_interpolation only used 14 Lebedev and 3 Ψ angles to converge,
which gives exactly the same result with 26 Lebedev and 4 Ψ angles. That means the
naive methods do not need an order of quadrature mmax to be greater than the order of
DCF nmax.Some points of

negative charge

diverged; (in

IET, the negative

charges also have

difficulty

converging), and

all the converged

results are

presented.

method surname L nfft/L mmax nmax

naive_nmax1 nmax1_lmn 24 to 60 3 1 (Leb), 3 angles for Ψ 1

naive_interpolation nmax5_inter 24 to 60 3 2 (Leb), 3 angles for Ψ 5

convolution_standard nmax1_convo 24 to 60 3 1 1

Table 10.5: Methods and parameters for charged CH4 series test. Leb is Lebedev quadrature (6
angles of Θ and Φ for mmax = 1 and 14 for mmax = 2), which is mathematically
equivalent to Gauss-Legendre quadrature but requires only ~2/3 angles.
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Figure 10.9: Free energy (without correction) of charged CH4 center (-1.0 to 1.0) with respect to
the box length, for naive_nmax1 method, with 6 angles of Lebedev quadrature angles
for Θ and Φ, 3 for Ψ, DCF of nmax = 1, at 300K.

The collections of the raw results issued directly from the code MDFT are shown in
figure 10.9, 10.10 and 10.11. We can see that the dependence of box length for each
charge is almost linear, except for the charge between [≠0.2, 0.2] (where grid dependence
dominated compared to other effects). This means the influence of box length is much
greater than the intrinsic variation of result mentioned in 10.4. The charge dependency
of the slopes in these figures is traced in figure 10.12 with respect to q2, square of the
corresponding number charge. A linear regression is done to give the slope in figure 10.12
at 1937.8 kJ · mol≠1 · Å. This slope corresponds to the correction of type-B:

fQ›

2

3

1 ≠ 1
Á

4

= 1943.2 kJ · mol≠1 · Å (10.13)

where fQ = q2
e10≠3NA/(4fiÁ010≠10) is the electrostatic potential unit so that fQ · q2/r is

in [kJ · mol≠1].
The intercept values in each of figures 10.9 to 10.11 correspond to the free energy of an

infinite box. The IET results to be compared were obtained using the 1D-HNC formalism
(1 distance, 5 angles) developed by Belloni and collaborators [74]. The calculations were
done with a cut-off distance of Rmax = 102.4Å and an additional Born-like correction
of ≠2.556kBT to obtain the free energy in the infinite system. The difference in free
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Figure 10.10: Free energy (without correction) of charged CH4 center (-1.0 to 1.0) with respect
to the box length, for naive_interpolation method, with 14 angles of Lebedev
quadrature angles for Θ and Φ, 3 for Ψ, DCF of nmax = 5, at 300K.

Figure 10.11: Free energy (without correction) of charged CH4 center (-1.0 to 1.0) with respect
to the box length, for convolution_standard method, with mmax = nmax = 1, at
298.15K.
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Figure 10.12: Quadratic charge dependence of free energy in CHq

4 series

Figure 10.13: Free energy (extrapolated to infinite box length) of charged CH4 compared to IET,
without P-scheme correction

energy between MDFT and IET of the infinite system are given in figure 10.13. The linear
regression is done with all existing points in this figure, and its slope 87.653 kJ · mol≠1

corresponds to the correction of type-C:

2fi

3
fQ÷“ = 82.104kJ · mol≠1 (10.14)

The measured number and the theoretical one are a little different, which can be princi-
pally due to the lack of point at the -1 charge side.

10.5.2 Comparison with IET after corrections

The points in figure 10.13 after correction with eq. (10.14), as well as the difference be-
tween results of mmax = nmax = 5 given by convolution_standard (with L = 24 Å,
nfft = 72) using theoretical corrections and IET with infinite corrections (nmax5_convo)
are shown in figure 10.14. Note that the curves for the same DCF are not perfectly
in agreement with each other, despite what is shown in table 10.3. The fact is that
in “nmax1_lmn”, Lebedev quadrature is used, and in “nmax1_convo”, Gauss-Legendre
quadrature is used, as we know the different angular grid can have an effect on the energy;
and for nmax = 5, as we have taken by chance the +0.4 as charge in table 10.3, the differ-
ence between the naive_interpolation and convolution_standard results are acciden-
tally small. The troublesome energy shift of about 2 kJ · mol≠1 between “nmax5_inter”
and IET result is yet to be understood, as well as the dependence on q for “nmax5_convo”
after correction. But if we look at the free energies without comparing them in figure
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Figure 10.14: Free energy difference of CHq

4 series compared to IET, with all corrections

Figure 10.15: Free energy of CHq

4 series, with all corrections

10.15, we can see that these differences are almost negligible compared to the total energy
they possess, and the curves only differ with different DCFs.

10.5.3 Dependence on mmax and nmax

As we see, the free energy of charged CHq
4 series depends a lot on the order of DCF,

nmax. To study systematically the influence of mmax and nmax, we chose a series of tests
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charge -0.6 0 1

nmax\mmax IET = nmax = 5 IET = nmax = 5 IET = nmax = 5

1 -157.48 diverge -163.35 27.33 27.47 27.97 -382.34 -365.89 -379.01

2 -84.32 -87.56 -87.71 27.82 27.94 28.12 -301.74 -298.95 -298.67

3 -66.25 -69.58 -69.70 27.16 27.24 27.50 -294.77 -292.12 -291.87

4 no data -69.41 -69.50 no data 27.85 27.91 no data -289.19 -289.04

5 -66.50 diverge diverge 27.25 27.47 27.47 -291.60 -288.54 -288.54

Table 10.6: Free energy of CHq

4 series (with corrections) for IET, mmax = nmax and mmax = 5,
using convolution_standard, with L = 24 Å, nfft = 72.

Figure 10.16: Free energy of CHq

4 series, with all corrections of IET results and MDFT mmax = 5,
nmax = 0, . . . , 5.

with three charges: -0.6, 0, and +1, using convolution_standard, as shown in table
10.6. Three types of energy are listed: the results issued from IET, and the case when
mmax = nmax and mmax = 5. As we said previously the gradient “ is smoother than fl; it
is worthwhile to study the case when the order of quadrature mmax for the expansion of
fl is larger than the order of DCF nmax used in equation OZ to solve “, in order to save
computing cost.

From table 10.6 we can see that the free energy becomes stable in any case when
nmax Ø 3; the free energies are quite in agreement with IET results; and there is almost
no difference between mmax = nmax and mmax = 5. That means, the quadrature of fl

has no influence on the final energy, which is yet comprehensible, as the extra order of
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Figure 10.17: The projections fl0nl
0‹ (r) of some selected charges of CHq

4 series comparing to IET,
with mmax = nmax.

quadrature gives no influence on the functional gradient, and the fl used to evaluate the
functional is given by minimization, i.e. without expansion on GSHs.

A scheme of free energy evaluation with respect to nmax (mmax = 5, as some of the
points of mmax = nmax have difficulty converging and if convergence is achieved they
usually give the same result) is made in figure 10.16. We see that from nmax = 3 to
higher order, the curves do not vary a lot. We can conclude that within nmax Ø 3 to
nmax = 5, the error in free energy is acceptable.We take

solute-solvent

formalism for

MDFT, and

IET takes the

solvent-solute

formalism. Thus

in MDFT the

gmnl
µν corresponds

to the gnml
νµ in

IET. In figure

10.17 it is

converted to give

better

understanding.

Some selected projections fl0nl
0‹ (r) (0 as solute is spherical) are compared to IET in figure

10.17. We can see that they are well in agreement.
If we compare one charge in one graph with all the nmax, we can determine which nmax

is sufficient to have a good structure of the density fl. Figure 10.18 gives the RDFs and
RPFs for the three charges, as well as their zoomed parts, in order to have a clear view of
the differences. Firstly we can see that in most cases, apart from uncharged CH4 and some
nmax = 1, the curves of mmax = 5 and mmax = nmax are superposed. That means even
for structures of single ions, extra order of mmax is useless. For -0.6, the curves converge
from nmax = 3, and for +1, nmax = 4. For CH4 it seems to be a mess, but looking at
the scale of the schema, we consider that it converges from nmax = 4. To conclude, for
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Figure 10.18: RDF and RPF of some selected charges of CHq

4 series with different mmax and nmax

CHq
4 series, we think nmax = 3 is sufficient for energy, and nmax = 4 is sufficient for the

structure to converge (without considering higher order projections).

10.6 uncharged lj centers

As there is an energy shift between naive_interpolation and IET results even for un-
charged CH4 (figure 10.14), we have calculated some other uncharged LJ centers. Results
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solute ‡ ‘ dipole 1 2 3 4 5 inter IET

Neon 3.035 0.15432 18.61 18.79 19.03 18.56 18.99 18.86 20.04 18.82

Argon 3.415 1.03931 22.16 22.47 22.86 22.15 22.72 22.39 24.24 22.27

Krypton 3.675 1.4051 25.36 25.76 26.23 25.48 26.14 25.73 27.82 25.49

Xenon 3.975 1.7851 29.68 30.24 30.77 30.13 30.74 30.25 32.66 29.92

Table 10.7: Free energy [kJ · mol≠1] of rare gases, for respectively reference_dipole,
convolution_standard with mmax = nmax = 1, . . . , 5, and naive_interpolation

with DCF of nmax = 5; ‡ in [Å], ‘ in [kJ · mol≠1], with L = 24 Å, nfft = 72.

in table 10.7 show that this energy shift is common in any uncharged LJ centers; and in
these cases, even nmax = 1 can satisfy the requirement of chemical precision.

10.7 linear solutes

To complete the story of mmax and nmax convergence, we choose some linear solutes shown
in figure 10.19 and table 10.8. The direct summation method (§4.1.2) is used for Fext

evaluation, as O2 always diverges with the Poisson method. We can make a hypothesis
that this is because the distance between the charges is too short, as shown in figure
10.19; therefore the interpolation in Fext evaluation can cause divergence. There is a
better version of Poisson solver that is developed in parallel of this code, which has been
reported to have better convergency. We consider that this divergency problem does not
come from the evaluation of Fexc.

CO2 O2 N2

N NO OO OC

Lennard-Jones center Point charge

Figure 10.19: Test linear solutes

solute site q ‡ [Å] ‘ [kJ · mol≠1] x [Å]

CO2 [75] 1 0.6512 2.76 0.234 0.000

(20.48 [kJ · mol≠1]) 2 -0.3256 3.03 0.67 -1.149

3 -0.3256 3.03 0.67 1.149

O2 [76] 1 0.0 3.1062 0.36 -0.485

(22.05 [kJ · mol≠1]) 2 0.0 3.1062 0.36 0.485

3 -2.1 0.00 0.00 -0.200

4 -2.1 0.00 0.00 0.200

5 4.2 0.00 0.00 0.000

N2 1 -0.5075 3.30 0.30 -0.549

(26.75 [kJ · mol≠1]) 2 -0.5075 3.30 0.30 0.549

3 1.0150 0.00 0.00 0.000

Table 10.8: Parameters of test solutes. Reference free energy by IET in parentheses.

Table 10.9 shows the free energy of solute with respect to nmax. We also find that from
nmax = 3, the free energy seems to converge, and there is almost no difference between
mmax = 5 and mmax = nmax.
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the minimization, its expansion has no influence on the final result. The different
branches produce almost the same result with the same DCF, compared to the error
introduced by spatial grid dependence; while naive_interpolation seems to be
a bit more stable compared to convolution methods in terms of convergence for
negative molecules, but exhibits a small energy shift about 2 kJ/mol for neutral LJ
centers. For charged solutes, the two types of free energy corrections mentioned in
this thesis are needed.

• As for structure, MDFT can also produce the same result as IET. It requires about
nmax = 4 to have a converged curve of g(r) projections. For solutes, we are obliged
to use a looser sampling rate to have a smooth curve; as the spatial grid is cubic, but
not in spherical coordinates as IET. Indeed MDFT has the great advantage to be
generalizable to produce 3D solvent structures for complicated molecules, but IET

is ideal, and much more efficient when giving information about small symmetric
molecules using functions with respect to r.



11
Computing Performance

This section evaluates the computing performance (timing) of the code. Our goal is to
show that the new algorithm of angular convolution is much faster than the old naive one;
the huge amount of simulation during this thesis has proven that it is indeed the case.
The purpose of this section is to substantiate this statement by a proper and systematic
performance evaluation.

In this section, we will evaluate the performance only concerning the Fexc term, knowing
that the two other terms of the functional, the Fid and Fext contribution, require a
computer time of the same magnitude as the new algorithms for Fexc part. The spatial
and angular grid dependence of the various branches are discussed.

11.1 fft

The FFT, which is used by the spatial convolution and the FGSHT process, play an
important role in the implementation.

Figure 11.1: Timing of FFT for real-to-complex and complex-to-complex processes with respect
to grid number N

Referring to figure 11.1, the expected dependance on O(N log2 N ) [62] does not totally
exist, but it appears to be of the same form, depending on the algorithm of FFT [77]. It
should be noted that a grid of prime number is always at one of the peaks in the figure,
which means it can be twice or more times slower than that of a nearby composite number.
Therefore it is better to use an even number grid, for which the k-border correction in
§10.3.3 should absolutely be accounted for. Apart from this, to compare the algorithms
for angular integration involved in this thesis, we are not really interested in computing
performance with respect to the number of spatial grid. However, the ratio of real and
complex FFT timing is important, as illustrated in figure 11.2, where the ratio between

77
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real-to-complex and complex-to-complex FFT processes is measured as 0.54, near the
theoretical ratio 0.5. For example, we may process nangle real to complex FFT, then
nspatial/2 complex to complex FGSHT. Or we may process nspatial real to complex FGSHT,
then nproj/2 complex to complex FFT. This should not give a significant difference if
nangle ≥ nproj for small nmax. If the ratio is not 1:2, it will have an influence on the choice
of algorithm.

Figure 11.2: Timing of real-to-complex FFT processes with respect to its complex-to-complex
process of the same grid number N

11.2 fgsht

The computing times of GSHT and FGSHT are shown in figure 11.3. There is no reason
to view in detail how much FFT has accelerated the GSHT process, but clearly FGSHT

can be 100 times faster than GSHT. Besides, looking at the influence of the symmetry in
Ψ on GSHT, s = 1 is on average 5 times longer than s = 2 (s being the MRSO defined in
§7.2). As accuracy tests show that GSHT and FGSHT give exactly the same result, and
as the case mmax < nmax is never needed, it is possible to utilize FGSHT in all the cases
to have a faster performance.

Figure 11.3: Computing time of GSHT and FGSHT (per 10000 times), between parentheses is the
order of symmetry axes s

However, it is important to know the ratio between real and complex FGSHT processes
for the same reason as FFT. It is demonstrated that this number is 0.3 in all cases, and



11.3 k-kernel 79

it does not depend on mmax, nmax or s. The difference between these two is that the
real one performs real-to-complex FFT for the Φ, Ψ grid and calculates only slightly more
than half of projections (µ Ø 0) than the complex one. Theoretically, the ratio should
be greater than 0.5. This could mean there may be an extra process in the complex
one, or it is controlled by the memory. Ultimately, the final result 0.3 means that doing
nspatial real to complex FGSHT should take only 0.6 the time of doing nspatial/2 complex
to complex FGSHT, which means in convolution_standard we should use less time to
compute FGSHT than in convolution_pure_angular; which is in fact not observed in
the following tests.

Figure 11.4: Timing of real-to-complex FGSHT processes with respect to its complex-to-complex
process of the same mmax and nmax, for s = 1 and s = 2

11.3 k-kernel

As discussed in the previous section, the final result of energy and structure is independent
of the choice of path inside a k-kernel. That means we are free to choose the fastest path.
Path (1) passing directly by ĉ(k, Ω1, Ω2) in figure 10.4 has no interest in timing, as the
memory limit does not support such a direct algorithm for the entire k-space. Here we
only compare the paths (2), (3) and (4), which correspond to eq. (6.1), (7.5) and (7.12).

The theoretical predictions for the computing time of OZ equation with mmax = nmax

are listed in table 7.1. If the OZ equation is the most time-consuming part, the observed
result should have the same tendency. Figure 11.5 shows the experimental timing of
the three paths, where path (3) is 100 times longer than (4), corresponding well to the
theoretical value. Path (2) is much longer than path (3) because apart from the OZ

equation, the reading in memory and calculation of the DCF mentioned in §6 also takes
time.

Figure 11.5: Timing of a k-kernel (log scale)
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11.4 entire iteration of Fexc evaluation

Apart from all the naive methods that will be discussed in §11.4.1, figure 11.6 shows all
the comparable convolution timing data. We can see that convolution_standard is
the fastest algorithm, and OZ equation is not the longest part in the iteration. All the
tests are performed for a L = 24, nfft = 72 grid with 4 series: the three convolution

methods with mmax = nmax, and convolution_standard with mmax = 5, varying nmax.
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Figure 11.6: Entire iteration of Fexc evaluation: timing overall / decomposition of timing for 1
iteration evaluation

11.4.1 “naive” methods and “convolution_pure_angular”

The naive_standard, naive_interpolation, and convolution_pure_angular methods
share the same processes out of the k-kernel. Table 11.1 shows the timing of loop k of
these three methods. It indicates that convolution_pure_angular takes far less time
than the other two methods, of which the loop k takes time on the same order of magnitude
as the rest of the iteration. And once mmax Ø 2, naive_interpolation is faster than
naive_standard. Note that order 2 of naive_interpolation can give good results for
a DCF of nmax = 5. So in every case of naive methods, naive_interpolation should
be used. This verifies the conclusion of k-kernel test in that the path (4) in figure 10.4 is
the fastest.

mmax naive_standard naive_interpolation convo_pure_angular other

1 2.34 4.42 0.26 0.15

2 365.95 209.12 1.09 1.43

3 3295.00 752.70 2.37 1.85

4 too long too long 5.93 6.73

5 too long too long 10.36 7.73

Table 11.1: Timing [sec] of loop k of “naive_standard”, “naive_interpolation” and “convolu-
tion_pure_angular”, and the rest of iteration
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11.4.2 “convolution_standard” and “convolution_pure_angular”

The comparison of convolution_standard and convolution_pure_angular appears in
figure 11.7. Their difference lies in the inversion of FFT and FGSHT. We can see the other
parts are almost identical, but the implementation of FFT is different in terms of time,
because in convolution_standard the number of FE we need for FFT is the number of
projections, and in convolution_pure_angular it is the number of angular grid nodes.
As there are fewer projections than angular nodes, convolution_standard reasonably
takes less time. The stepwise form of the pure_angular curve is due to the grid in Ψ,
which requires Âmmax/2Ê points in the case of C2v symmetry. Projections are less sensitive
to this effect.

Figure 11.7: Performance convolution_standard vs convolution_pure_angular

11.4.3 “convolution_standard” and “convolution_asymm”

We compare convolution_standard and convolution_asymm in figure 11.8. The differ-
ence is that standard calculates half of the k’s in the k-loop and asymm calculates all k’s
in the k-loop. They share the same process of FGSHT, while for the processes in a k-loop
(rotM, OZ) asymm always takes longer. Since in asymm we calculate the FFT for all the
projections and in standard we calculate only a half projections with µ Ø 0, the time
consumed by FFT is also different.

Figure 11.8: Performance convolution_standard vs convolution_asymm
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11.4.4 Distinction of mmax and nmax

The comparison of mmax = nmax and mmax = 5 for convolution_standard is shown
in figure 11.9. We see that the choice of quadrature order mmax only affects the FGSHT

process and the reading/storage of density variable (other). The time taken by extra
order mmax is not cost-free, so as discussed in the last section, it is fully recommended to
use mmax = nmax.

Figure 11.9: Performance convolution_standard for mmax = nmax and mmax = 5

11.5 global view of the code performance

Figure 11.10 gives the timing of the whole F iteration. We can see that the evaluation of
Fexc is at the same order of magnitude as the other two terms and the same dependency
on angular grid. That means that considering the priority of code optimization, the Fexc

is no longer an absolute bottleneck to the whole process, owing to the new algorithm.

Figure 11.10: Timing of the whole F iteration with nfft/L = 72/24 grid (log scale), using
convolution_standard algorithm

In conclusion, we stress that:

• convolution_standard is the fastest algorithm among those that we have tested.
The convolution methods are orders of magnitude faster than naive methods. It
means that we have been able to reduce a complex spatial and angular convolution
process to roughly the same computer cost as a local calculation in both space and
angles, which can be seen as the major accomplishment of this thesis.

• The attempt to fix mmax considerably damages the efficiency; in addition to the
necessity, mmax = nmax is absolutely recommended.



Chapter IV

Applications

In chapter III, we have studied the numerical accuracy of the code (through
MDFT/HRF approximation) compared to IET. In this chapter, we are inter-
ested in the physical accuracy comparing to MD and experimental results. A
few applications are made for this purpose in section 12, involving some LJ
centers, ions and small molecules. The results are also compared to the dipolar
reference method, which is the method corresponding to nmax = 1 for linear
or pseudo-linear molecules that was fully implemented so far, to show that
this increase of computing cost has made an improvement on the results.
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12.2 charged CH4 series

The comparison between the RDFs obtained from MDFT with MD results for charged
CH4 series are shown in figure 12.2. We can see that for positive charges, the complete
nmax = 5 gives much better results compared to the dipole method, which itself almost
agrees with MD results. For negative charges, nmax = 5 gives nearly the same result as
dipole method, while the MD results are more smooth. Still the first peak of the MDFT

results seems to be in the good position. We can conclude that the complete DCF gives
a large improvement for positive charged ions.
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Figure 12.2: RDF of charged CH4 series compared to MD result

12.3 solvation free energy of single ions

We consider that

in a macroscopic

system, the

fluctuation of N

and V are

negligible, and all

kinds of free

energies become

the same. [56]

From the previous paragraph we can see the RDF for positive ions are in good agreement
with MD results. However, the free energy is more difficult to compare, as there are
several finite-size corrections for single ions, depending on for example box length and
charge; besides, the free energy depends largely on the input LJ parameters of the ions,
which is independent to the method.

Table 12.1 gives from literatures some experimental and MD simulation results of sol-
vation free energy as well as the positions of the first maximum of the RDF for alkali and
halide ions. We can see that the experimental data themselves vary a lot. Furthermore
the LJ parameters for ions in the literature are extremely dispersed. Therefore, we fo-
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cused on a single series of force field parameters for halide anions and alkali cations taken
from ref [79] based on SPC/E water, as shown in table 12.1 and 12.2.

Ion ≠∆G
exp

solv
(a) ≠∆F

exp

solv
(b) ≠∆G

exp

solv
(c) R1

(d) ‡ [Å](e) ‘ [kJ · mol≠1](e) ≠∆GMD
solv

(e) RMD
1

(e)

F≠ 465 374.5 428.8 2.08 3.434 0.465 430 2.74

Cl≠ 340 318.4 304.2 2.36 4.394 0.416 306 3.23

Br≠ 315 289.5 227.4 2.80 4.834 0.211 279 3.35

I≠ 275 252.3 240.0 2.89 5.334 0.158 241 3.55

Li+ 475 511.0 529.4 3.14 2.874 0.000615 520 1.91

Na+ 365 411.5 423.8 2.63 3.814 0.000615 414 2.28

K+ 295 337.2 352.0 3.19 4.534 0.000615 347 2.54

Rb+ 275 316.0 329.3 3.37 no data no data no data no data

Cs+ 250 283.8 no data 3.65 5.174 0.000615 300 2.79

Table 12.1: Free energy [kJ · mol≠1] and first maximum of ion-water oxygen RDF [Å] for alkali
and halide ions from experimental and MD simulation result. (a). Ref [80]. (b). Ref
[81]. (c) Ref [82]. (e) Ref [79] from MD simulation. (d) Ref [83].

Ion ‡ [Å](e) ‘ [kJ · mol≠1](e) ∆GMD
solv

∆œ
dipole

solv
∆œnmax3

solv
RMD

1 R
dipole
1

Rnmax3
1

F≠ 3.434 0.465 -430 -805 -351 2.74 2.71 2.71

Cl≠ 4.394 0.416 -306 -521 -233 3.23 3.21 3.21

Br≠ 4.834 0.211 -279 -464 -205 3.35 3.37 3.37

I≠ 5.334 0.158 -241 -388 -166 3.55 3.54 3.54

Li+ 2.874 0.000615 -520 -870 -480 1.91 2.13 2.13

Na+ 3.814 0.000615 -414 -742 -412 2.28 2.29 2.38

K+ 4.534 0.000615 -347 -623 -358 2.54 2.54 2.54

Cs+ 5.174 0.000615 -300 -528 -317 2.79 2.79 2.79

Li+ 1.374 1.538 -521 -889 -492 1.96 2.13 2.13

Na+ 2.134 1.538 -415 -749 -419 2.34 2.46 2.38

K+ 2.774 1.538 -345 -610 -360 2.68 2.71 2.71

Cs+ 3.334 1.538 -300 -512 -318 2.98 3.04 3.04

Li+ 1.474 0.65 -523 -891 -490 1.96 2.13 2.13

Na+ 2.234 0.65 -416 -753 -415 2.33 2.38 2.37

K+ 2.894 0.65 -344 -612 -358 2.65 2.63 2.71

Cs+ 3.434 0.65 -299 -517 -318 2.93 2.96 2.96

Table 12.2: Free energies [kJ · mol≠1] and first RDF maximum [Å] of single ions from MDFT
results compared to MD results

The results shows in table 12.2 are calculated with L = 32 Å, nfft = 96; and mmax = 3
to ensure that the Fid and Fext terms calculated by using the DCF at nmax = 3 or the
dipole DCF are exactly the same. The free energies given by MDFT with nmax = 3 are not
perfect, but lie in the same order of magnitude as MD. For negative ions, there is always
a shift at ≥ 80 kJ · mol≠1 (knowing that the correction of type-C is at 82 kJ · mol≠1 but
we cannot tell what the shift is). For positive ions, the magnitude of free energy is slightly
underestimated with small ‡, and slightly overestimated for large ‡. On the other hand,
the free energies given by dipole DCF is too large in magnitude. In contrast, the position
of the first solvation maximum for the three methods do not vary between them (apart
from Li+ which is very small). But if we look at the RDF of charged CH4 series, we can
see that nmax = 3 still works better. We can conclude that the results in energy with a
DCF at nmax = 3 work better than the dipolar approximation, which is a positive sign
for our developments.
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12.4 small molecules

MDFT calculations involving some small molecular solutes were also generated to compare
to MD; the chosen solutes are shown in figure 12.3 and defined in table 12.3. Note that
a certain proportion of them have a non-linear, 3-dimensional geometry which could not
be handled by the molecular IET; this shows the advantage of the general 3D-MDFT

approach adopted in this thesis and the new algorithm that we have developed in this
context.

Figure 12.4 gives the site-site RDFs (solute site to water O site) for nmax = 4, the
dipolar approximation (nmax = 1), and MD for these test solutes. It is shown that in
most of the cases, nmax = 4 does give equivalent or better results than the dipolar order,
apart from the cases of water, and especially SPC/E water. In methanol, the dipole
method diverges. For most solutes, the comparison to MD is far from perfect but can be
qualified as satisfactory in reproducing the - sometimes complex - shape of the RDFs and
the main peaks positions. This statement is especially true for benzene and pyrimidine,
for example. For hydrophobic molecules or molecules with hydrophobic sites (alkanes,
oxygen, nitrogen, ...) one recovers the slight underestimation of the first peak position
and the overestimation of peak height already remarked for rare gases; this is a clear defect
of HNC. The case of molecules giving rise to hydrogen bonds to water (e.g. methanol,
or water in water) is more problematic and subtle. Here the dipolar approximation gives
a first peak for the water oxygen around the O-site that is too high but has the correct
width, whereas nmax = 4 shifts the first peak to higher values and makes it too wide (a
sort of merge of the first and second peak, an effect even clearer for methanol). The H-O
first peak, on the other hand, is at a correct position but underestimated, both for water
and methanol. The tetrahedral order around a water solute is not correctly reproduced,
although the correct balance to get the right structure is subtle and does not appear too
far.

For the purpose of showing the ability of MDFT to calculate 3D solute structure, we
display 3D solvent densities for specific solutes in figure 12.5 and 12.6. Figure 12.6 com-
plements the discussion given just above concerning the expected tetrahedral structure
around a water molecule in water. That structure can indeed be detected for SPC/E wa-
ter and even more so for the TIP4P model. In SPC/E water, there is more density than
expected on the north pole, and this piece of density disappears with the extra charge
added on the TIP4P water.
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Acetone Acetonitrile Ammonia Benzene

Propane Pyrimidine Water SPC/E Water TIP4P

Carbon dioxide Oxygen Ethane Methanol Nitrogen

Figure 12.3: Test solutes
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solute site q ‡ [Å] ‘ [kJ · mol≠1] x [Å] y [Å] z [Å]

Acetone [84] CH3 0.062 3.91 0.6694 1.2810 0.7024 -0.0002

C 0.300 3.75 0.4393 0.0101 -0.0872 0.0106

O -0.424 2.96 0.8796 0.0103 -1.3171 -0.0102

CH3 0.062 3.91 0.6694 -1.2813 0.7019 -0.0002

Acetonitrile CH3 0.269 3.6 1.590 0.0000 0.0000 -1.3254

C 0.129 3.4 0.416 0.0000 0.0000 0.1346

N -0.398 3.3 0.416 0.0000 0.0000 1.3046

Ammonia [85] N 0.000 3.4 1.164 0.000000 0.000000 0.000000

X -1.386 0.0 0.000 0.000000 0.000000 -0.156000

H 0.462 0.0 0.000 -0.937790 0.000000 -0.381449

H 0.462 0.0 0.000 0.468895 0.812150 -0.381449

H 0.462 0.0 0.000 0.468895 -0.812150 -0.381449

Benzene [86] C -0.138 1.908 0.35980 1.386 0.000 0.000

(charged) C -0.138 1.908 0.35980 0.693 -1.200 0.000

C -0.138 1.908 0.35980 -0.693 -1.200 0.000

C -0.138 1.908 0.35980 -1.386 0.000 0.000

C -0.138 1.908 0.35980 -0.693 1.200 0.000

C -0.138 1.908 0.35980 0.693 1.200 0.000

H 0.138 1.459 0.06276 2.462 0.000 0.000

H 0.138 1.459 0.06276 1.231 -2.132 0.000

H 0.138 1.459 0.06276 -1.231 -2.132 0.000

H 0.138 1.459 0.06276 -2.462 0.000 0.000

H 0.138 1.459 0.06276 -1.231 2.132 0.000

H 0.138 1.459 0.06276 1.231 2.132 0.000

CO2 [75] C 0.6512 2.76 0.234 0.000 0.000 0.000

O -0.3256 3.03 0.67 -1.149 0.000 0.000

O -0.3256 3.03 0.67 1.149 0.000 0.000

O2 [76] O 0.0 3.1062 0.36 -0.485 0.000 0.000

O 0.0 3.1062 0.36 0.485 0.000 0.000

X -2.1 0.00 0.00 -0.200 0.000 0.000

X -2.1 0.00 0.00 0.200 0.000 0.000

X 4.2 0.00 0.00 0.000 0.000 0.000

Ethane [84] CH3 0.0 3.775 0.8661 -0.756 0.000 0.000

CH3 0.0 3.775 0.8661 0.756 0.000 0.000

Methanol [87] CH3 0.24746 3.7543 1.0027 -1.42460 0.000000 0.000000

OH -0.67874 3.0300 0.7307 0.00000 0.000000 0.000000

X 0.43128 0.0000 0.0000 0.30035 0.896104 0.000000

N2 N -0.5075 3.30 0.30 -0.549 0.000 0.000

N -0.5075 3.30 0.30 0.549 0.000 0.000

X 1.0150 0.00 0.00 0.000 0.000 0.000

Propane CH3 0.0 3.905 0.732 -1.25 -0.4417 0.0

CH2 0.0 3.905 0.494 0.0 0.4417 0.0

CH3 0.0 3.905 0.732 1.25 -0.4417 0.0

Pyrimidine [84] N -0.490 3.25 0.7113 1.2035 -0.6989 0.0000

N -0.490 3.25 0.7113 -1.2063 -0.6943 0.0000

C2H 0.410 3.75 0.4602 -0.0026 -1.2980 0.0001

C3H 0.245 3.75 0.4602 1.1692 0.6499 -0.0001

C4H 0.245 3.75 0.4602 -1.1666 0.6543 -0.0001

C5H 0.080 3.75 0.4602 0.0028 1.3870 0.0001

SPC/E [47] O -0.8476 3.165 0.65 0.000000 0.000000 0.0000000

H 0.4238 0.000 0.00 0.816495 0.000000 0.5773525

H 0.4238 0.000 0.00 -0.816495 0.000000 0.5773525

TIP4P [88] O 0.0000 3.1589 0.775 0.00000 0.00000 0.00000

H 0.5564 0.0000 0.000 0.75695 0.58588 0.00000

H 0.5564 0.0000 0.000 -0.75695 0.58588 0.00000

X -1.1128 0.0000 0.000 0.00000 0.15460 0.00000

Table 12.3: Parameters of test solutes
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Figure 12.4: Site-O RDF of test solutes, with mmax = nmax = 4, L = 24 Å, nfft = 72. 1
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Figure 12.4: Site-O RDF of test solutes (continued)
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Figure 12.4: Site-O RDF of test solutes (continued)
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Figure 12.4: Site-O RDF of test solutes (continued)

Figure 12.5: Volume slice of solvent number density n(r) for pyrimidine

(a) SPC/E water (b) TIP4P water

Figure 12.6: Iso-surface of solvent number density n(r) = 2.4 for test water molecules



Chapter V

Conclusion and Perspectives

In the framework of the molecular density functional theory (MDFT) theory,
this thesis presents a complete study of the excess free energy functional evalu-
ation under the homogeneous reference fluid (HRF) approximation (equivalent
to the hypernetted-chain (HNC) approximation in integral equation language):

Fexc = ≠kBT

2

⁄

dr1dr2dΩ1dΩ2∆fl(r1, Ω1)∆fl(r2, Ω2)c(r12, Ω1, Ω2) (IV.1)

where the orientations span the three Euler angles, Ω © (Θ, Φ, Ψ). It gives a
new method to evaluate solvation properties (grand-canonical free energy and
microscopic solvent density) within the framework of liquid-state theory. It
is more complete and accurate compared within the development of molecu-
lar density functional theory (MDFT) presented so far. The approach is yet
limited to rigid molecules and the neglect of three-body correlations.

To complete this work, we conclude all the achievements done in this thesis,
and some unfinished work and related theories remaining due to the time limit.
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Conclusion

In this thesis, we have firstly improved the original angular integration algorithm devel-
oped previously in the group, which uses FFT to deal with the spatial convolution, and
a direct integration over angles. For practical reasons, this initial approach was limited
to linear or pseudo-linear solvents in order to reduce the number of angular variables. In
this work, it has been extended to deal with arbitrary 3D molecular solvents, which is
mainly about writing out the expression of the more complicated rotation matrix which
corresponds to the 3-Euler-angle case.

A new algorithm by generalized spherical harmonic (GSH) expansion, which aims to
produce the same result as the algorithm mentioned above for molecular solvent but
much faster, is then built for the treatment of the angular convolution part, inspired
by Blum’s ‰-reduction of the MOZ equation. This algorithm takes advantage of the
rotational invariance, separating the OZ equation in irreducible terms according to a
series of ‰ values; those can be seen as an analogue of the k-vectors in FFT transform
that takes advantage of translational invariance.

Theoretically and practically the new algorithm has been proven much faster than the
previous one, with an acceptable accuracy lost.

The tests that have been performed show that the proposed methods are suitable for
fast and accurate calculations of solvation free energies. The accuracy was assessed by
comparing the results to a mathematical equivalent 1D-integral equation theory (IET)
code for simple (spherical or linear) solutes. For the solvent structure, the relatively loose
cubic spatial grid that has to be adopted in molecular density functional theory (MDFT)
(3-4 points per Angstrom) prevents the theory to produce radial curves that are as smooth
as those produced by IET for simple solutes. But indeed molecular density functional
theory (MDFT) has much more capacity to deal with complex 3D solutes, and produce
the 3D solvent structure on a regular grid.

Compared to MD and/or experimental results, it is shown that the new method works
better in most cases than the previously implemented “dipolar-like” method. Concerning
the solvent structure, the agreement with MD is far from perfect but can be qualified as
satisfactory for solute molecules with limited hydrogen-bonding to the solvent. For small
ions (in particular anions), or H-bonded molecules such as water itself or alcohols, the
HRF/HNC theory has to be improved or corrected. Concerning thermodynamic properties
such as solvation free energies, some small monovalent ions have been tested in this
purpose. In this case we showed that it is very important to account for finite size
effects through two types of corrections: a Madelung correction reminiscent of the Born
correction for spherical systems, scaling as q2/L, and a much less intuitive correction
scaling as the ion charge q and accounting for the proper treatment of boundary charges
in periodic systems. The tests need now to be extended to relevant databanks of organic
molecules in order to fully assess the relevance of the method. One can anticipate that
it will require the introduction of ad-hoc pressure corrections, or three-body correction
terms in the functional, in order to compensate for the overly high pressure given by the
HRF/HNC functional, a defect that has been pointed out previously.

In short, the new algorithm is now ready for chemical applications usage. However,
there are still some minor problems needing to be addressed. Firstly, there are some
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slight incompatibilities within the theory and through the implementation, notably the “

problem and the conjugate form of DCF which is explained as clearly as possible in the
main text. There are also some sign and normalization factor issues of the projections
fmnl

µ‹ . The grid dependence of free energy is somewhat worrying; it might be due to a
slight deficiency in the calculation of the external potential, present in the initial version of
the molecular density functional theory (MDFT) code used. Such an issue is not deepened
as this thesis mainly treats the excess Fexc term of the functional.
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Perspectives

Since no work is ever perfect, a great deal of unfinished work and theories linked to this
thesis are presented here for consideration.

14.1 reduce memory footprint in mdft

The total CPU time to implement a MDFT minimization using the convolution algo-
rithms is typically 1 to 30 minutes according to the resolution of grid. But the memory
consumed for such a process is typically 1 to 20 GB of RAM. This is mainly due to the
minimizer L-BFGS-B, which firstly needs to store several steps of information during the
iterations, and secondly is in double precision. It is to say that the density variable fl(r, Ω)

and the gradient also need to be stored in double precision, and if not, as tested, it leads
to divergence. In addition, during the evaluation of the functional, the memory for at
most 3 times fl(r, Ω) needs to be open simultaneously.

There are two ways to get over this memory limit, and both of them involve modifying
the L-BFGS-B minimizer, which is a “blackbox”, in Fortran 77. The simplest method
is to change the double precision to single in the L-BFGS-B minimizer; this action can
reduce the memory needed by a factor of 2. Another way to completely pass this limit is
to parallelize the code to several nodes using MPI. This requires only to modify the FFT

and L-BFGS-B process, where there is a mixing of variables fl(r, Ω). A third route would
be to define a minimizer with much less memory requirements.

14.2 site-based grid

The IET approach uses intermolecular spherical coordinates, and cannot describe large
molecules. As for MDFT it uses a homogeneous spatial grid, which has the same resolution
near and far from the solute. The caveat of MDFT is that the 3D grid needed should be
relatively fine to produce satisfactory results (typically 3-4 points per Angstrom); for
large solutes this may lead to a very huge number of grid points. A natural idea would
be to use non-uniform grids. One way to think about the construction of the grid is like
in 14.1, a set of spherical grids centered at each solute site. This could be understood
as expanding the density into a set of “atomic-like orbitals”, fl(r) =

q

– c–fl–(r). Each
“’orbital” could be possibly expanded onto a local basis set, such as spherical harmonics,
fl–(r) =

q

l,m flm
–,l(|r ≠ Rff |)Y m

l (◊, „).

14.3 theories beyond the hrf approximation and other improvements

In terms of Fexc, there can still be development beyond the HRF approximation, such as
3-body corrections.

Apart from the Fexc term, still many fields of study remains to be developed in MDFT.
For example, the evaluation of the external potential Vext still poses occasional problems
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Figure 14.1: Site-site grid model

of convergence for molecular solutes and needs to be improved. Note also that the solute
can be made polarizable, so that Vext itself becomes a functional of the solvent density
and varies during the minimization. The polarization can be introduced, for example, by
an extra induced dipole on the solute center or on the solute sites.

14.4 mdft viewer

This thesis originally contained a contribution on visualization. Due to time limitation,
it had to be removed. The Viewer is an important part of the code development; it
provides insightful visualization and easier analysis, and may help to popularize the code.
GaussViewer is a good example.

14.5 application to real biological systems, and entropy

From this thesis we can see that MDFT is presently capable of dealing with small chemical
systems, but it is still far from satisfying for common usage in the domain of bio-chemistry,
or as a solvent model for QM. For example, for real applications, enthalpy and entropy
are also important, as discussed in ref [1]. The properties of [1] cannot be repeated with
QM calculations using simply a continuum model for solvent corrections (research subject
of my university diploma), which cannot reproduce the correct tendency of entropy with
respect to temperature (in DMSO). It is my intention to re-investigate this problem
using the MDFT approach. It is not clear yet how (beyond the estimate by the Fid

term), the solvation entropy rather than the free energy can be estimated from the MDFT

calculations.
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B
Direct Correlation Function of Water

The bulk DCF, which is an input for MDFT and does not depend on the solute, can be
extracted from numerical simulations. In this thesis, the SPC/E water is used as a solvent.
Two sources of bulk DCF are used:

1. The DCF at dipolar order (ĉ000
S , ĉ110

∆
, ĉ112

D ) by Zhao et al. [71] using MD;

2. The complete DCF up to a given order, for instance nmax = 5, by Puibasset et al.

[72] using MC.

b.1 dipole dcf from molecular dynamics simulation

The DCF produced by Zhao et al., namely the dipole DCF, contains three primary rota-
tional invariant projections that correspond to nmax = 1. They are calculated with the
angular dependent PCF in intermolecular frame, h(r, cos ◊1, cos ◊2, Â1, Â2, „12), which is
directly extracted from MD simulation.

As the primary projections do not depend on the Â angles, the intermolecular frame
DCF can be simplified as:

h(r, ω1, ω2) © h(r, cos ◊1, cos ◊2, „12) = Èh(r, cos ◊1, cos ◊2, Â1, Â2, „12)ÍÂ1,Â2
(B.1)

and in k-space:

h(k, Ω1, Ω2) =
⁄

drd cos ◊rd„reikr cos ◊r h(r, ω1, ω2) (B.2)

where ◊r and „r are the orientations in spherical coordinates for r and Ω is in laboratory
coordinate system.

The correlation functions are then projected onto a basis of rotational invariants:

hnml(k) = fnml
e

h(k, Ω1, Ω2)Φ
nml

f

Ω1,Ω2

(B.3)

with

Φ
000 = 1

Φ
110 = Ω1 · Ω2 (B.4)

Φ
112 = 3(k̂ · Ω1)(k̂ · Ω2) ≠ Ω1 · Ω2

and f000 = 1, f110 = 3, f112 = 3/2, according to the convention of Wertheim and Hansen.
To obtain the DCF, the OZ equation must be solved. It is shown that the isotropic

(nmax = 0) and dipolar (nmax = 1) components are decoupled:

ĉ000(k) =
ĥ000(k)

1 + n0ĥ000(k)
(B.5)

ĉ+(k) =
ĥ+(k)

1 + 2
3n0ĥ+(k)

(B.6)
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ĉ≠(k) =
ĥ≠(k)

1 ≠ 1
3n0ĥ≠(k)

(B.7)

where
ĥ+(k) = ĥ112(k) +

1
2

ĥ110(k) (B.8)

ĥ≠(k) = ĥ112(k) ≠ ĥ110(k) (B.9)

and idem. for ĉ.

b.2 dcf projections from bulk monte carlo simulation

The complete DCF up to nmax = 5, which is the default DCF used in this thesis, is
calculated from the gmnl

µ‹ (r) accumulated from MC simulation [72] by resolving the inverted
MOZ equation

ln y–(r) =

K

ln

C
–maxÿ

–Õ=1

g–Õ(r)Φ–Õ(Ω̃)

D

Φ
ú
–(Ω̃)

L

+ —v–(r) (B.10)

with the closure

g–(r) =

Y

_]

_[

gMC
– (r), r Æ rMC

max
e

exp
Ë

≠—v(r, Ω̃) +
q

–Õ “–Õ(r)Φ–Õ(Ω̃)
È

Φú
–(Ω̃)

f

, r > rMC
max

(B.11)

where ln y = “ + b is the cavity function (b the bridge function), – the projection number,
and rMC

max is the maximum radius of the MC simulation. Beyond rMC
max, g can be obtained

by the usual HNC closure, and it is shown that the projections are continuous at rMC
max,

which means HNC closure is enough to cope with long range correlation functions. Note
that the –max’s for different nmax’s lead to slightly different DCF results according to eq.
(B.10,B.11).

The DCF in k-space is obtained by Hankel transform.
The convention of rotational invariants adapts those of Blum, which gives, for example,

for nmax = 1:

Φ
000 = 1

Φ
011 = ik · Ω1

Φ
101 = ik · Ω2

Φ
110 = ≠

Ô
3Ω1 · Ω2 (B.12)

Φ
112 =

Ú

3
10

[3(k · Ω1)(k · Ω2) ≠ Ω1 · Ω2]

b.3 comparison between dcfs

The comparison between the primary projections of the DCFs is given in figure B.1.
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Figure B.1: Comparison between the DCF projections of nmax = 1 (dipole) from ref [71] and
nmax = 1, 5 from ref [72] (in convention of Wertheim and Hansen)



C
Error evaluation of interpolation

strategies for DCF in local frame

The error introduced by the two interpolation orders for a DCF of order nmax = 1 (for
which the exact DCF can be computed directly; see details later) is shown in figure C.1.

Absolute error is the histogram that counts the number of times that the calculated
DCF gives the corresponding absolute error Ei

a with a resolution of 0.01, in range of [0, 10]:

Ei
a =

-
-
-ci

k ≠ ck

-
-
- (C.1)

where ci
k is any element of ĉ(k, Ω1, Ω2) of unity Å

3
calculated as described and ck is the

one calculated directly as the reference.
Log absolute error is treated the same way as Ei

a, with Ei
l defined as:

Ei
l = log

-
-
-ci

k ≠ ck

-
-
- (C.2)

Relative error is defined as:

Ei
r =

-
-
-ci

k ≠ ck

-
-
- / |ck| (C.3)

with resolution of 0.1%, in range of [0, 1].
In all three figures, the 4 curves given by zero-order interpolation do not diverge a

great deal compared with the linear interpolation one. The result of MDFT also shows
that zero-order interpolation gives large energy error with a DCF of nmax = 1, and has
convergence problems in certain cases. We conclude that the linear interpolation scheme
is absolutely necessary. On the other hand, as seen in eq. (6.12), it is computationally
much more expensive than the simple histogram scheme, as it requires 25 = 32 times the
number of operations.
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Figure C.1: Error of finding ĉ(k, Ω1, Ω2) by interpolation compared to direct calculation: Test
0.1-0.4 is zero-order interpolation with „ tabulated as in figure 6.4. Test 1 is linear
interpolation.



D
Angular convolution using Blum’s

reduction

To make an analogue to the FFT treatment for the convolution of spatial part of the
integral, a fast generalized spherical harmonics transform (FGSHT) treatment is proposed
by developing “̂ and fl̂ in eq. (II.3)

“̂(k, Ω1) = ≠—≠1
⁄

dΩ2∆fl̂(k, Ω2)ĉ(k12, Ω1, Ω2) (D.1)

on generalized spherical harmonics:

“̂(k, Ω1) =
ÿ

mµÕµ

fm“̂m
µÕµ(k)R

m
µÕµ(Ω1) (D.2)

∆fl̂(k, Ω2) =
ÿ

n‹Õ‹

fn∆fl̂n
‹Õ‹(k)R

n
‹Õ‹(Ω2) (D.3)

where |µÕ| , |µ| < m and |‹ Õ| , |‹| < n; fm = (2m + 1)
1
2 is the normalization factor.

The DCF can also be expanded on rotational invariants [16], with the normalization
factors according to Blum’s definition:

ĉ(k, Ω1, Ω2) =
ÿ

mnlµ‹

fmfnĉmnl
µ‹ (k)

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(Ω1)R

n
‹Õ‹(Ω2)R

l
⁄Õ0(k̂)

(D.4)
Replace eq. (D.1) by (D.2, D.3, D.4), as GSHs possess orthogonality [13, 61]

⁄
dΩ2

8fi2 Rm
µÕµ(Ω2)R

nú
‹

Õ
‹
(Ω2) =

”m,n”µÕ,‹Õ”µ,‹

2n + 1
(D.5)

and symmetry
Rnú

‹Õ‹(Ω2) = (≠) ‹Õ+‹Rn
‹Õ‹(Ω2) (D.6)

Eq. (D.1) becomes
ÿ

mµÕµ

“̂m
µÕµ(k)R

m
µÕµ(Ω1) (D.7)

=
ÿ

mnlµ‹

ĉmnl
µ‹ (k)

ÿ

µÕ‹Õ⁄Õ

(≠) ‹Õ+‹
∆fl̂n

‹Õ‹(k)

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(Ω1)R

l
⁄Õ0(k̂)

As the basis sets are orthogonal,

“̂m
µÕµ(k) =

ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

‹Õ⁄Õ

(≠) ‹Õ+‹
∆fl̂n

‹Õ‹(k)

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂) (D.8)

According to Gubbins eq. (A.41-43) and Messiah eq. (C.76):

Rm
‰µ(ω) =

ÿ

µÕ

Rmú
µÕ‰(k̂)R

m
µÕµ(Ω) (D.9)
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Rm
µÕµ(Ω) =

ÿ

‰

Rmú
‰µÕ(k̂≠1)Rm

‰µ(ω) =
ÿ

‰

Rm
µÕ‰(k̂)R

m
‰µ(ω) (D.10)

where ω = k̂≠1Ω. Suppose “̂ has rotational invariance, and

“̂(k, ω1) =
ÿ

m‰µ

fm“̂Õm
‰µ(k)R

m
‰µ(ω1) (D.11)

Compared to (D.2), we have:

“̂Õm
‰µ(k) =

ÿ

µÕ

“̂m
µÕµ(k)R

m
µÕ‰(k̂) (D.12)

Idem.

∆fl̂n
‹Õ‹(k) =

ÿ

‰

∆fl̂Õn
‰‹(k)R

nú
‹Õ‰(k̂) =

ÿ

‰

∆fl̂Õn
‰‹(k) (≠) ‰+‹Õ

Rn
‹Õ‰(k̂) (D.13)

as the symmetry (D.6).
As there is an equivalence of OZ equation and the gradient “, we can be inspired by

Blum’s reduction of the OZ equation [17] by proposing

ĉmnl
µ‹ (k) = (2l + 1)

ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b ĉÕmn

µ‹,‰(k) (D.14)

Thus replacing (D.12) by (D.8), gives

“̂Õm
‰µ(k)

=
ÿ

µÕ

S

U
ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

‹Õ⁄Õ

(≠) ‹Õ+‹
∆fl̂n

‹Õ‹(k)

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂)

T

V Rm
µÕ‰(k̂)

=
ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

µÕ‹Õ⁄Õ

(≠) ‹Õ+‹
∆fl̂n

‹Õ‹(k)

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂)R

m
µÕ‰(k̂) (D.15)

then with eq. (D.13):

“̂Õm
‰µ(k) =

ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

µÕ‹Õ⁄Õ

S

U
ÿ

‰Õ

∆fl̂Õn
‰Õ‹(k) (≠) ‰Õ+‹Rn

‹Õ‰Õ(k̂)

T

V

◊
Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂)R

m
µÕ‰(k̂)

=
ÿ

nl‹

ĉmnl
µ‹ (k)

ÿ

‰Õ

∆fl̂Õn
‰Õ‹(k) (≠) ‰Õ+‹ (D.16)

◊
S

U
ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rl
⁄Õ0(k̂)R

m
µÕ‰(k̂)R

n
‹Õ‰Õ(k̂)

T

V

Gubbins eq. (A.91) gives the symmetry relation:

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕ‰(k̂)R

n
‹Õ‰Õ(k̂)Rl

⁄Õ0(k̂) =

Q

a
m n l

‰ ≠‰Õ 0

R

b (D.17)

Thus with eq. (D.14), eq. (D.16) becomes
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“̂Õm
‰µ(k) =

ÿ

nl‹

(2l + 1)
ÿ

‰Õ‰ÕÕ

(≠) ‰Õ+‹

Q

a
m n l

‰ÕÕ ≠‰ÕÕ 0

R

b

Q

a
m n l

‰ ≠‰Õ 0

R

b (D.18)

◊ĉÕmn

µ‹,‰ÕÕ(k)∆fl̂Õn
‰Õ‹(k)

=
ÿ

n‹

(2l + 1)
ÿ

‰Õ‰ÕÕ

(≠) ‰Õ+‹ ĉÕmn

µ‹,‰ÕÕ(k)∆fl̂Õn
‰Õ‹(k) (D.19)

◊
S

U
ÿ

l

Q

a
m n l

‰ÕÕ ≠‰ÕÕ 0

R

b

Q

a
m n l

‰ ≠‰Õ 0

R

b

T

V

As the 3-j symbols possess the symmetry [61]

ÿ

l

Q

a
m n l

‰ÕÕ ≠‰ÕÕ 0

R

b

Q

a
m n l

‰ ≠‰Õ 0

R

b = (2l + 1)≠1
”‰ÕÕ‰”‰ÕÕ‰Õ (D.20)

Eq. (D.18) becomes

“̂Õm
‰µ(k) =

ÿ

n‹

(≠) ‰+‹ ĉÕmn

µ‹,‰(k)∆fl̂Õn
‰‹(k) (D.21)

In this way, the integral of the angular part in eq. (D.1) is reduced to a sum of few
terms.



E
Equivalence of Quadrature-Projection

Order

e.1 gaussian quadrature

Theorem:

Let Pn(x) be a nonzero polynomial of degree n, and w(x) a positive weight function so
that

⁄ b

a
xkPn(x)w(x)dx = 0, (k = 0, . . . , n ≠ 1) (E.1)

If {xi} (i = 1, . . . n) are the zeros of Pn(x), then

⁄ b

a
f(x)w(x)dx ƒ

nÿ

i=1

Aif(xi) (E.2)

with

Ai =
⁄ b

a
li≠1(x)w(x)dx (E.3)

is exact for all polynomials f(x) of degree at most 2n ≠ 1, where {li} are the usual
Lagrange interpolating polynomials.

Proof:

Assume that f(x) is a polynomial of degree at most 2n ≠ 1. Using long division

f(x) = Pn(x)p(x) + r(x) (E.4)

p(x) and r(x) are obtained as polynomials of degree at most n ≠ 1.
By taking {xi} as the zeros of Pn(x), we can easily find f(xi) = r(xi), (i = 1, . . . n),

then
⁄ b

a
f(x)w(x)dx =

⁄ b

a
[Pn(x)p(x) + r(x)]w(x)dx

ƒ

=0
˙ ˝¸ ˚

nÿ

i=1

Pn(xi)p(xi)wi +
nÿ

i=1

Air(xi) (E.5)

is exact for r(x) of degree at most n ≠ 1 (c.f. Numerical Recipes [62] p.118), and thus
exact for f(x) of degree at most 2n ≠ 1.

e.2 angular integration in gsht

To expand a function onto GSHs, as in eq. (7.17), quadrature is needed. Assume that
F (Ω) is a polynomial of cos Θ, cos Φ and cos Ψ of order n. As Rmú

µÕµ(Ω) is also a polynomial
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of order n, the total degree of integrand is 2n. It should be noted that the surface area
element is:

dΩ = sin ΘdΘdΦdΨ = d cos ΘdΦdΨ (E.6)

For cos Θ integration, considering w(x) = 1 and x = cos Θ, Gauss-Legendre quadrature
should be used. Thus n + 1 points on x should be taken, with {xi} given by Legendre
polynomials Pn+1(x).

For Φ and Ψ integration, taking w(x) =
!
1 ≠ x2"≠ 1

2 , the abscissae are given by the
N = n + 1 roots of the Chebyshev polynomial of the first kind:

TN (x) = cos(N cos x) ∆ xi = cos
Ë
(2i≠1)fi

2N

È

, i œ 1, . . . , N (E.7)

with weight wi =
fi
N

, it corresponds to points in Φ œ [0, fi] regularly distributed. However,
for Φ œ [0, 2fi], two times of function evaluation should be calculated:

⁄ 1

≠1
f(cos Φ)

1Ô
1 ≠ cos2 Φ

d cos Φ

=

Y

_]

_[

s 0
fi f(cos Φ)dΦ = -

s fi
0 f(cos(Φ))dΦ Φ œ [0, fi]

s 0
≠fi f(cos(Φ))d(Φ) =

s fi
0 f(cos(-ΦÕ))dΦÕ ΦÕ œ [0, fi]

(E.8)

so that
⁄ 2fi

0
f(cos Φ)dΦ =

⁄ fi

≠fi
f(cos Φ)dΦ =

⁄ fi

0
[f(cos(≠Φ)) ≠ f(cos Φ)] dΦ (E.9)

It corresponds to 2n + 2 points in Φ œ [0, 2fi] regularly distributed. However, it’s
not the minimal number of points necessary to do the exact integration. Suppose that
Φ2 © Φ/2,

⁄ 2fi

0
f(cos Φ)dΦ =

⁄ fi

0
f(cos(2Φ2))dΦ2 =

⁄ fi

0

Ë

f(2 cos2
Φ2 ≠ 1)

È

dΦ2 (E.10)

As f(2 cos2 Φ2 ≠ 1) is a polynomial of Φ of degree 2n, it’s a polynomial of Φ2 of degree
4n. Thus only 2n + 1 points are needed.



F
Rotational Invariant Expansion

If a function F (X1, X2), Xi © (ri, Ωi) has transitional and rotational invariance [16], it
can be expanded as

F (X1, X2) =
ÿ

mnlµ‹

F mnl
µ‹ (Îr12Î)Φmnl

µ‹ (Ω1, Ω2, r̂12) (F.1)

where r12 © r1 ≠ r2 according to the transitional invariance, and

Φ
mnl
µ‹ (Ω1, Ω2, r̂12) = fmnl

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(Ω1)R

n
‹Õ‹(Ω2)R

l
⁄Õ0(r̂12) (F.2)

where Rm
µÕµ is the Wigner generalized spherical harmonics or Wigner D-symbol defined

in the same convention as Messiah [61] (different than Edmonds [90]). fmnl can be
any arbitrary non-zero constant [19]. Here we keep the same definition as Blum, where
fmnl = fmfn =

Ô
2m + 1

Ô
2n + 1.

Two special cases are adopted in this thesis (as shown in figure 6.1):

1. F (X1, X2) in laboratory coordinate system with particle 1 at origin (fixed frame);

2. F (X1, X2) in intermolecular coordinate system (local frame).

Their formalism and symmetry properties will be given later.

f.1 orthogonality of Φ

The rotational invariants Φ in eq. (F.2) form an orthogonal basis set, as proven below:

ÈΦ | Φ2Í =
⁄

dΩ1dΩ2dr̂Φ
mnl
µ‹ (Ω1, Ω2, r̂12)Φ

m2n2l2ú
µ2‹2

(Ω1, Ω2, r̂12)

= fmfnfm2fn2
ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b
ÿ

µÕ

2
‹Õ

2
⁄Õ

2

Q

a
m2 n2 l2

µÕ
2 ‹ Õ

2 ⁄Õ
2

R

b

◊{
⁄

dΩ1Rm
µÕµ(Ω1)R

m2ú
µÕ

2
µ2
(Ω1)

5⁄

dΩ2Rn
‹Õ‹(Ω2)R

n2ú
‹Õ

2
‹2
(Ω2)

3⁄

dr̂Rl
⁄Õ0(r̂12)R

l2ú
⁄Õ

2
0(r̂12)

46

}

= (2l + 1)≠1 ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b
ÿ

µÕ

2
‹Õ

2
⁄Õ

2

Q

a
m2 n2 l2

µÕ
2 ‹ Õ

2 ⁄Õ
2

R

b

◊”m,m2
”n,n2

”l,l2”µ,µ2
”‹,‹2

”µÕ,µÕ

2
”‹Õ,‹Õ

2
”⁄Õ,⁄Õ

2

= (2l + 1)≠1 ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b (F.3)

◊”m,m2
”n,n2

”l,l2”µ,µ2
”‹,‹2

(F.4)

and using the orthogonality of 3j-symbol [90]
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ÿ

µÕ‹Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b

Q

a
m n l2

µÕ ‹ Õ ⁄Õ
2

R

b = (2l + 1)≠1
”ll2”⁄Õ

1
⁄Õ

2
(F.5)

it gives
ÈΦ | Φ2Í = (2l + 1)≠1 ◊ ”m,m2

”n,n2
”l,l2”µ,µ2

”‹,‹2
(F.6)

f.2 rotational invariance of Φ

In any coordinate system, the value of Φmnl
µ‹ remains the same. Here is a partial demon-

stration with the fixed and local frame mentioned above, described in figure 6.1.
Let’s use the definition in eq. (F.2):

Φ
mnl
µ‹ (ω1, ω2, 0) = fmnl

ÿ

µÕÕ‹ÕÕ⁄ÕÕ

Q

a
m n l

µÕÕ ‹ ÕÕ ⁄ÕÕ

R

b Rm
µÕÕµ(ω1)R

n
‹ÕÕ‹(ω2)R

l
⁄ÕÕ0(0) (F.7)

Φ
mnl
µ‹ (0, Ω, r̂) = fmnl

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(0)R

n
‹Õ‹(Ω)Rl

⁄Õ0(r̂) (F.8)

The spherical harmonics have property [61, 90]

Rm
µÕµ(0) =

ÿ

µÕÕ

Rm
µÕµÕÕ(r̂)Rm

µÕÕµ(ω1) (F.9)

Rn
‹Õ‹(Ω) =

ÿ

‹ÕÕ

Rn
‹Õ‹ÕÕ(r̂)Rn

‹ÕÕ‹(ω2) (F.10)

Rl
⁄Õ0(r̂) =

ÿ

⁄ÕÕ

Rl
⁄Õ⁄ÕÕ(r̂)Rl

⁄ÕÕ0(0) (F.11)

so

Φ
mnl
µ‹ (0, Ω, r̂) = fmnl

ÿ

µÕÕ‹ÕÕ⁄ÕÕ

Rm
µÕÕµ(ω1)R

n
‹ÕÕ‹(ω2)R

l
⁄ÕÕ0(0)◊

S

U
ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµÕÕ(r̂)Rn

‹Õ‹ÕÕ(r̂)Rl
⁄Õ⁄ÕÕ(r̂)

T

V (F.12)

According to eq. (4.3.3) in Edmonds [90] or (A.91) in Gray & Gubbins [13]

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rmú
µÕµÕÕ(r̂)Rnú

‹Õ‹ÕÕ(r̂)Rlú
⁄Õ⁄ÕÕ(r̂) =

Q

a
m n l

µÕÕ ‹ ÕÕ ⁄ÕÕ

R

b (F.13)

where we can also prove

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµÕÕ(r̂)Rn

‹Õ‹ÕÕ(r̂)Rl
⁄Õ⁄ÕÕ(r̂) =

Q

a
m n l

µÕÕ ‹ ÕÕ ⁄ÕÕ

R

b (F.14)

Φmnl
µ‹ remains identical in the two cases

Φ
mnl
µ‹ (0, Ω, r̂) = fmnl

ÿ

µÕÕ‹ÕÕ⁄ÕÕ

Q

a
m n l

µÕÕ ‹ ÕÕ ⁄ÕÕ

R

b Rm
µÕÕµ(ω1)R

n
‹ÕÕ‹(ω2)R

l
⁄ÕÕ0(0)

= Φ
mnl
µ‹ (ω1, ω2, 0) (F.15)

Therefore, the projections F mnl
µ‹ (r) also remain rotational invariant in these two coor-

dinate systems.
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f.3 transform in local frame

In the intermolecular (local) coordinate system, the 2 molecules are both positioned along
the z axis. Using the properties of generalized spherical harmonics [13, 61, 90]:

Rm
µÕµ(Θ, Φ, Ψ) = ”µÕµ if Θ = Φ = Ψ = 0 (F.16)

and of 3j-symbol
Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b ”= 0 only if µÕ + ‹ Õ + ⁄Õ = 0 (F.17)

Φmnl
µ‹ (Ω1, Ω2, r̂12) in eq. (F.2) can be simplified to

Φ
mnl
µ‹ (ω1, ω2, 0) =

ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b fmfnRm
‰µ(ω1)R

n
‰‹(ω2) (F.18)

Thus eq. (F.1) becomes

F (ω1, ω2, r) =
ÿ

mnlµ‹

F mnl
µ‹ (r)Φmnl

µ‹ (ω1, ω2, 0)

=
ÿ

mnlµ‹

F mnl
µ‹ (r)fmfn

ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b Rm
‰µ(ω1)R

n
‰‹(ω2) (F.19)

and the inverse equation is:

F mnl
µ‹ (r) =

⁄

dω1dω2F (ω1, ω2, r)Φmnlú
µ‹ (ω1, ω2, 0)

= fmfn
ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b ◊
⁄

dω1Rmú
‰µ (ω1)

⁄

dω2Rnú
‰‹(ω2)F (ω1, ω2, r) (F.20)

The function F (ω1, ω2, r) and the projections F mnl
µ‹ (r) can be transformed into each

other by 2 simple steps.

Transform between F mnl
µ‹ (r) and F Õmn

µ‹,‰(r)

Suppose

F Õmn
µ‹,‰(r) =

ÿ

l

Q

a
m n l

‰ ≠‰ 0

R

b F mnl
µ‹ (r) (F.21)

Using property of 3j-symbol [61]

ÿ

‰

Q

a
m n lÕ

‰ ≠‰ 0

R

b

Q

a
m n l

‰ ≠‰ 0

R

b =
”lÕl

2l + 1
(F.22)

we have as the inverse transform

F mnl
µ‹ (r) = (2l + 1)

ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b F Õmn
µ‹,‰(r) (F.23)
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Thus eq. (F.19) becomes

F (ω1, ω2, r) =
ÿ

mnlµ‹

(2l + 1)
ÿ

‰Õ

Q

a
m n l

‰Õ ≠‰Õ 0

R

b F Õmn
µ‹,‰Õ(r) ◊

ÿ

‰

Q

a
m n l

‰ ≠‰ 0

R

b fmfnRm
‰µ(ω1)R

n
‰‹(ω2)

=
ÿ

mnµ‹

ÿ

‰Õ

ÿ

‰

F Õmn
µ‹,‰Õ(r)fmfnRm

‰µ(ω1)R
n
‰‹(ω2) ◊

ÿ

l

(2l + 1)

Q

a
m n l

‰Õ ≠‰Õ 0

R

b

Q

a
m n l

‰ ≠‰ 0

R

b (F.24)

As
ÿ

l

(2l + 1)

Q

a
m n l

‰Õ ≠‰Õ 0

R

b

Q

a
m n l

‰ ≠‰ 0

R

b = ”‰Õ‰ (F.25)

we have
F (ω1, ω2, r) =

ÿ

mnµ‹‰

F Õmn
µ‹,‰(r)f

mfnRm
‰µ(ω1)R

n
‰‹(ω2) (F.26)

and
F Õmn

µ‹,‰(r) =
⁄

dω1dω2F (ω1, ω2, r)fmfnRmú
‰µ (ω1)R

nú
‰‹(ω2) (F.27)

Thus eq. (F.26, F.27) can be performed either by fast generalized spherical harmonic
transform (FGSHT), or by being developed into

F (ω1, ω2, r) =
ÿ

mnµ‹‰

F Õmn
µ‹,‰(r)f

mfnrm
‰µ(◊1)r

n
‰‹(◊2)e

≠i‰(„12©„1≠„2)e≠iµÂ1e≠i‹Â2 (F.28)

and transformed with FFT-3D.

Rotational invariant transform with FFT-3D

Suppose
F Õm

µ‹,‰(r, ◊2) =
ÿ

n

F Õmn
µ‹,‰(r)f

nrn
‰‹(◊2) (F.29)

then we have

F (ω1, ω2, r) =
ÿ

mµ‹‰

F Õm
µ‹,‰(r, ◊2)f

mrm
‰µ(◊1)e

≠i‰„12e≠iµÂ1e≠i‹Â2 (F.30)

The inverse transform should be

F Õmn
µ‹,‰(r) =

1
2

⁄

d(cos ◊2)F
Õm
µ‹,‰(r, ◊2)r

n
‰‹(◊2) (F.31)

In the same way, suppose

F Õ
µ‹,‰(r, ◊1, ◊2) =

ÿ

m

F Õm
µ‹,‰(r, ◊2)r

m
‰µ(◊1) (F.32)

and the inverse transform

F Õm
µ‹,‰(r, ◊2) =

1
2

⁄

d(cos ◊1)F
Õ
µ‹,‰(r, ◊1, ◊2)r

m
‰µ(◊1) (F.33)

then we have

F (r, ω1, ω2) =
ÿ

µ‹‰

F Õ
µ‹,‰(r, ◊1, ◊2)e

≠i‰„12e≠iµÂ1e≠i‹Â2 (F.34)

which can be treated as a normal FFT of 3 dimensions.
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f.4 transform in fixed frame

Similarly, in the laboratory coordinate system

Φ
mnl
µ‹ (0, Ω, r̂) =

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b fmfnRn
η,ν(Ω)Rl

≠µ≠η,0(r̂) (F.35)

The rotational invariant does not take advantage of the ‰ transform as µ ”= 0. The
expansion on rotational invariants should be calculated directly.

Expansion of F (r, Ω) on rotational invariants

The total equation of the forward transform is:

F mnl
µν (r) = fmfn

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b

⁄

dr̂Rlú
≠µ≠η,0(r̂)

⁄

dΩF (r, r̂, Ω)Rnú
η,ν(Ω)

(F.36)
Firstly, the FGSHT is performed:

F n
ην(r) =

⁄

dΩfnF (r, Ω)Rnú
η,ν(Ω) (F.37)

Then the spherical harmonic transform by histogram should give

F nl
ην,λ(r) =

⁄

dr̂Rlú
λ0(r̂)F

n
ην(r, r̂) (F.38)

As F n
ην(r) values are tabulated in the Cartesian grid, we cannot use a quadrature

approach without interpolation, so the histogram approach is used.
Histogram for a function f gives:

f(r) =
⁄

d◊rd„rf(x, y, z) (F.39)

so if we want to compute

F (r) =
⁄

d◊rd„rRlú
λ0(x, y, z)F (x, y, z) (F.40)

we just need to propose

f(x, y, z) = Rlú
λ0(x, y, z)F (x, y, z) (F.41)

For complex numbers F n
ην(r), the real and imaginary parts can be calculated separately.

The rotational matrices Rlú
λ0(r) in Cartesian coordinate system can be pre-generated

by recurrence as detailed in appendix G.
Finally, the combination of projections gives:

F mnl
µν (r) = fm

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b F nl
ην,≠µ≠η(r) (F.42)

Rebuilding of F (r, Ω) from projections

and the rebuilding of F (r, Ω) in a certain orientation is as simple as its definition

F (r, Ω) =
ÿ

mnlµν

F mnl
µν (r)fmfn

ÿ

η

Q

a
m n l

µ ÷ ≠µ ≠ ÷

R

b Rn
ην(Ω)Rl

≠µ≠η,0(r̂) (F.43)
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f.5 symmetry

In IET and MDFT, the rotational invariants are used to describe the solvent. It possesses
symmetric rules, introduced by the indistinguishability of the two particles, symmetry
properties of the single particle, and its real number property as a physical quantity.
Here we list all the symmetric rules concerning the 2-molecule system.

f.5.1 Symmetric rules of F (ω1, ω2) in intermolecular form

θ1

θ2

φ12

ψ1

ψ2

θ1

θ2

−φ12

−ψ1

−ψ2

π − θ2

π − θ1

−φ12 −ψ2

−ψ1

ψ1

ψ2

vertical
mirror

horizontal
mirror

inversion

φ12

π − θ1

π − θ2

Figure F.1: Symmetry operations of a 2-molecule system

As shown in figure F.1, if a function in intermolecular coordinate system F (ω1, ω2) ©
F (cos ◊1, cos ◊2, „, Â1, Â2) is a physical quantity in r-space, it possesses symmetry rules:

1. Symmetry of vertical mirror (if the molecule possesses a vertical mirror v):

F (◊1, ◊2, „, Â1, Â2) = F (◊1, ◊2, ≠„, ≠Â1, ≠Â2) (F.44)

2. Symmetry of inversion (if the molecules are interchangeable):

F (◊1, ◊2, „, Â1, Â2) = F (fi ≠ ◊2, fi ≠ ◊1, „, Â2, Â1) (F.45)

And an additive symmetric rule is owned by particles having

3. Symmetry axe C2:

F (◊1, ◊2, „, Â1, Â2) = F (◊1, ◊2, „, Â1 + fi, Â2 + fi) (F.46)

f.5.2 Symmetric rules of rotational invariant projections

We can deduce all the symmetries with the definition of F (r, ω1, ω2) … F Õmn
µ‹,‰(r) in eq.

(F.26,F.27), F mnl
µ‹ … F Õmn

µ‹,‰ in eq. (F.21,F.23), and the definition of Hankel transform:

F̂ mnl
µ‹ (k) = 4fiil

⁄

dr r2jl(kr)F mnl
µ‹ (r) (F.47)
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1. With the symmetry of GSH (eq. (H.12)) and the fact that F (r, ω1, ω2) is real,

F Õmn
µ‹,‰(r) = (≠)µ+‹

F Õmnú
µ‹,‰(r) (F.48)

F mnl
µ‹ (r) = (≠)m+n+l+µ+‹

F mnlú
µ‹ (r) (F.49)

As the the spherical Bessel function jl(kr) is real and
1

il
2ú

= (≠)l
il,

F̂ mnl
µ‹ (k) = (≠)m+n+µ+‹

F̂ mnlú
µ‹ (k) (F.50)

Therefore
F̂ Õmn

µ‹,‰(k) = (≠)m+n+µ+‹
F̂ Õmnú

µ‹,‰(k) (F.51)

2. With the symmetry in eq. (F.45), which adapts to pure solvents, as well as the
symmetry of GSH:

rm
‰µ(fi ≠ ◊) = (≠)m+µ

rm
‰µ(◊) (F.52)

we can find
F Õnm

‹µ,‰(r) = (≠)m+n+µ+‹
F Õmn

µ‹,‰(r) (F.53)

F nml
‹µ (r) = (≠)m+n+µ+‹

F mnl
µ‹ (r) (F.54)

Of course, if the particles 1 and 2 belong to two different species – and —, the term
on the right refers to the PDF of –— and the one on the left refers to the PDF of —–.

3. With C2v symmetry as water, according to the C2 symmetry, µ, ‹ is even; then as
the molecule possesses a symmetry of vertical mirror v, with the symmetry in eq.
(F.44),

F Õmn
µ‹,‰(r) = F Õmnú

µ‹,‰(r) (F.55)

which implies that F Õmn
µ‹,‰(r) and F mnl

µ‹ (r) are real, and according to eq. (F.47),
F mnl

µ‹ (k) is real if l is even, and pure imaginary if l is odd. According to Blum [16],
we also have:

F mnl
µ‹ (r) = F mnl

µ‹ (r) (F.56)

F Õmn
µ‹,‰(r) = F Õmn

µ‹,‰(r) (F.57)

And in k-space,
F̂ mnl

µ‹ (k) = (≠)l
F̂ mnlú

µ‹ (k) (F.58)

F̂ Õmn

µ‹,‰(k) = (≠)m+n
F̂ Õmnú

µ‹,‰(k) (F.59)



G
Calculation of Rotation Matrix Elements

Rm
µµÕ by Recurrence

Rm(Ω) ©
Ó

Rm
µÕ‰(Ω)

Ô

is the rotation matrix of dimension (2m + 1) ◊ (2m + 1), defined
in Messiah and other books [13, 61, 90].

In MDFT, evaluation of Rm
µÕ‰(k̂) for each m, µÕ, ‰ and k by its definition:

Rm
µÕ‰(k̂) = rm

µÕ‰(◊k)e
≠iµÕ„k (G.1)

is too costly to be done in iterations; on the other hand, to directly stock the value
of every element is taxing in terms of memory. An algorithm of Rm

µµÕ(k̂) evaluation by
recurrence described by Choi et al. [91] suggests an acceptable cost during the computa-
tion, by generating the rotation matrix elements from these of lower order to avoid extra
calculation.

g.1 case of mmax Æ 1

According to the definition in eq. (G.1), it is easy to find

R0
00 = 1 (G.2)

For m = 1, R1(k̂) depends only on the 3 ◊ 3 orthogonal matrix R that defines the
rotation from the basis vectors of laboratory frame to those of k-frame:

R =

S

W
W
U

Rxx Ryx Rzx

Rxy Ryy Rzy

Rxz Ryz Rzz

T

X
X
V
=

S

W
W
U

cos ◊k cos „k ≠ sin „k sin ◊k cos „k

cos ◊k sin „k cos „k sin ◊k sin „k

≠ sin ◊k 0 cos ◊k

T

X
X
V

(G.3)

The matrix R can be calculated by the cross products of basis vectors as shown in
figure 6.3 Ë

e
ÕÕ

1 e
Õ

2 e
ÕÕ

3

È

=
Ë

e1 e2 e3

È

R = R (G.4)

The rotation matrix Rm can be separated into the real Fm and imaginary Gm parts,
which can be given by the relations

Rm
‰‰Õ = F m

‰‰Õ + iGm
‰‰Õ (G.5)

S

W
W
W
U

F 1
11 F 1

10 F 1
11

F 1
01 F 1

00 F 1
01

F 1
11 F 1

10 F 1
11

T

X
X
X
V
=

S

W
W
U

(Ryy + Rxx) /2 Rxz/
Ô

2 (Ryy ≠ Rxx) /2

Rzx/
Ô

2 Rzz ≠Rzx/
Ô

2

(Ryy ≠ Rxx) /2 ≠Rxz/
Ô

2 (Ryy + Rxx) /2

T

X
X
V

(G.6)

S

W
W
W
U

G1
11 G1

10 G1
11

G1
01 G1

00 G1
01

G1
11 G1

10 G1
11

T

X
X
X
V
=

S

W
W
U

(Ryx ≠ Rxy) /2 Ryz/
Ô

2 ≠ (Ryx + Rxy) /2

≠Rzy/
Ô

2 0 ≠Rzy/
Ô

2

(Ryx + Rxy) /2 Ryz/
Ô

2 (Rxy ≠ Ryx) /2

T

X
X
V

(G.7)
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µµÕ by recurrence

g.2 case of mmax > 1

Recurrence relation for ≠m + 1 Æ ‰Õ Æ m ≠ 1

The recurrence relation for ≠m Æ ‰ Æ m, ≠m+ 1 Æ ‰Õ Æ m ≠ 1 between matrix elements
is:

Rm
‰‰Õ = am

‰‰ÕR1
00Rm≠1

‰‰Õ + bm
‰‰ÕR1

10Rm≠1
‰≠1,‰Õ + bm

≠‰,‰ÕR1
-1,0Rm≠1

‰+1,‰Õ (G.8)

where

am
‰‰Õ =

5
(m + ‰) (m ≠ ‰)

(m + ‰Õ) (m ≠ ‰Õ)

6 1
2

(≠m + 1 Æ ‰ Æ m ≠ 1)

bm
‰‰Õ =

5
(m + ‰) (m + ‰ ≠ 1)
2 (m + ‰Õ) (m ≠ ‰Õ)

6 1
2

(≠m + 2 Æ ‰ Æ m ≠ 2)

(G.9)

To separate the real and imaginary parts, suppose

Hm
‰‰Õ(i, j) = F 1

ijF m≠1
‰‰Õ ≠ G1

ijGm≠1
‰‰Õ (G.10)

Km
‰‰Õ(i, j) = F 1

ijGm≠1
‰‰Õ + G1

ijF m≠1
‰‰Õ (G.11)

therefore

F m
‰‰Õ = am

‰‰ÕHm
‰‰Õ(0, 0) + bm

‰‰ÕHm
‰≠1,‰Õ(1, 0) + bm

≠‰,‰ÕHm
‰+1,‰Õ(≠1, 0) (G.12)

Gm
‰‰Õ = am

‰‰ÕKm
‰‰Õ(0, 0) + bm

‰‰ÕKm
‰≠1,‰Õ(1, 0) + bm

≠‰,‰ÕKm
‰+1,‰Õ(≠1, 0) (G.13)

In the case of ‰ = ±m, certain terms in eq. (G.8) are out of definition. They are
supposed to be zero. Another way is to suppose that

am
‰‰Õ = 0 for ‰ = ±m

bm
‰‰Õ = 0 for ‰ = ±m and ‰ = û(m ≠ 1)

(G.14)

Recurrence relation for ≠m + 2 Æ ‰Õ Æ m

For the case ‰Õ = ±m that are not covered in eq. (G.8), another recurrence relation
supposes that:

Rm
‰‰Õ = cm

‰‰ÕR1
0,1Rm≠1

‰,‰Õ≠1 + dm
‰‰ÕR1

1,1Rm≠1
‰≠1,‰Õ≠1 + dm

≠‰,‰ÕR1
-1,1Rm≠1

‰+1,‰Õ≠1 (G.15)

F m
‰‰Õ = cm

‰‰ÕHm
‰,‰Õ≠1(0, 1) + dm

‰‰ÕHm
‰≠1,‰Õ≠1(1, 1) + dm

≠‰,‰ÕHm
‰+1,‰Õ≠1(≠1, 1) (G.16)

Gm
‰‰Õ = cm

‰‰ÕKm
‰,‰Õ≠1(0, 1) + dm

‰‰ÕKm
‰≠1,‰Õ≠1(1, 1) + dm

≠‰,‰ÕKm
‰+1,‰Õ≠1(≠1, 1) (G.17)

with

cm
‰‰Õ =

5
2 (m + ‰) (m ≠ ‰)

(m + ‰Õ) (m + ‰Õ ≠ 1)

6 1
2

(≠m + 1 Æ ‰ Æ m ≠ 1)

dm
‰‰Õ =

5
(m + ‰) (m + ‰ ≠ 1)
(m + ‰Õ) (m + ‰Õ ≠ 1)

6 1
2

(≠m + 2 Æ ‰ Æ m ≠ 2)

(G.18)

and
cm

‰‰Õ = 0 for ‰ = ±m

dm
‰‰Õ = 0 for ‰ = ±m and ‰ = û(m ≠ 1)

(G.19)

which is available for ≠m + 2 Æ ‰Õ Æ m.
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Symmetries

The symmetries of Rm
‰‰Õ allow us to calculate only half of the elements:

Rl
mmÕ = (≠1)m+mÕ

Rlú
mmÕ (G.20)

which gives

F l
mmÕ = (≠1)m+mÕ

F l
mmÕ (G.21)

Gl
mmÕ = ≠ (≠1)m+mÕ

Gl
mmÕ (G.22)



H
Properties of Wigner 3j-Symbol and GSH

The properties of Wigner 3j-symbol and Wigner generalized spherical harmonics (GSH,
Wigner D-symbol) play a huge role in the reduction of molecular Ornstein-Zernike equa-
tion as well as finding the relation between rotational invariant projections. Their main
properties, presented in Messiah [61], Gray & Gubbins [13] and Edmonds [90], are listed
here.

h.1 properties of wigner 3j-symbol

Wigner 3j-symbols are equivalent to Clebsch-Gordon (CG) coefficients multiplied by the
phase factor:

Q

a
m n l

µ ‹ ≠⁄

R

b =
(≠)m≠n+⁄

Ô
2l + 1

< mnµ‹ | l⁄ > (H.1)

and can be calculated with the Racah formula [61].

Reality

The 3j-symbols are real.
Q

a
m n l

µ ‹ ⁄

R

b =

Q

a
m n l

µ ‹ ⁄

R

b

ú

(H.2)

Selection rules

Q

a
m n l

µ ‹ ⁄

R

b = 0 if

Y

_]

_[

µ + ‹ + ⁄ = 0

|m ≠ n| < l < m + n
(triangular inequalities)

are not meet. (H.3)

Permutation

1. Even permutation
Q

a
m n l

µ ‹ ⁄

R

b =

Q

a
n l m

‹ ⁄ µ

R

b =

Q

a
l m n

⁄ µ ‹

R

b (H.4)

2. Odd permutation

(≠)m+n+l

Q

a
m n l

µ ‹ ⁄

R

b =

Q

a
n m l

‹ µ ⁄

R

b

=

Q

a
m l n

µ ⁄ ‹

R

b =

Q

a
l n m

⁄ ‹ µ

R

b (H.5)
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3. Simultaneous change of signs of µ, ‹ and ⁄

Q

a
m n l

µ ‹ ⁄

R

b = (≠)m+n+l

Q

a
m n l

≠µ ≠‹ ≠⁄

R

b (H.6)

Orthogonality

m+nÿ

l=|m≠n|

lÿ

⁄=≠l

(2l + 1)

Q

a
m n l

µ ‹ ⁄

R

b

Q

a
m n l

µÕ ‹ Õ ⁄

R

b = ”µµÕ”‹‹Õ (H.7)

mÿ

µ=≠m

nÿ

‹=≠n

Q

a
m n l

µ ‹ ⁄

R

b

Q

a
m n lÕ

µ ‹ ⁄Õ

R

b = (2l + 1)≠1
”llÕ”⁄⁄Õ (H.8)

h.2 properties of gsh

There are many different definitions of GSH given in lectures. Here we adopt the definition
proposed by Messiah:

Rm
µÕµ(„◊Â) = e≠iµÕ„rm

µÕµ(◊)e
≠iµÂ (H.9)

where rm
µµÕ is the generalized Legendre polynomial (GLP), which is real, and can be

evaluated using the Wigner formula:

rm
µÕµ(◊) = [(m + µÕ)! (m ≠ µÕ)! (m + µ)! (m ≠ µ)!]

1
2 ◊

ÿ

i

(≠)i (cos ◊/2)2m+µÕ≠µ≠2i (sin ◊/2)2i≠µÕ+µ

(m + µÕ ≠ i)! (m ≠ µ ≠ i)!i! (i ≠ µÕ + µ)!
(H.10)

Symmetries of rm
µÕµ(◊)

rm
µµÕ(◊) = (≠)µÕ≠µrm

µÕµ(◊) (H.11)

rm
µÕµ(◊) = (≠)µÕ≠µ

rm
µÕµ(◊) (H.12)

rm
µÕµ(◊) = rm

µµÕ(≠◊) (H.13)

rm
µÕµ(◊ + fi) = (≠)m+µrm

µÕµ(◊) (H.14)

where µ © ≠µ.

Symmetries of Rm
µÕµ(„◊Â)

Rm
µÕµ(„◊Â) = (≠)µÕ≠µ

Rmú
µÕµ(„◊Â) (H.15)

Rm
µÕµ(„◊Â) = (≠)µÕ≠µ

Rmú
µµÕ(„◊Â) (H.16)

Rm
µÕµ(„◊Â) = (≠)m+µÕ

Rm
µÕµ(≠„, ◊ + fi, Â) = (≠)m+µRm

µÕµ(„, ◊ + fi, ≠Â) (H.17)
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Unitarity and orthogonality
ÿ

µÕ

Rm
µÕµ(„◊Â)Rmú

µÕµÕÕ(„◊Â) = ”µµÕÕ (H.18)

ÿ

µ

Rm
µÕµ(„◊Â)Rmú

µÕÕµ(„◊Â) = ”µÕµÕÕ (H.19)

ÿ

mµÕµ

Rm
µÕµ(„◊Â)Rmú

µÕµÕ(„Õ◊ÕÂÕ) = ”„„Õ”◊◊Õ”ÂÂÕ (H.20)

1
8fi2

⁄

d cos ◊d„dÂRm
µÕµ(„◊Â)Rnú

‹Õ‹(„◊Â) =
”mn”µÕ‹Õ”µ‹

2n + 1
(H.21)

rm
µÕµ(◊) in terms of cos ◊ and sin ◊

1. If (≠)µÕ+µ = +1, rm
µÕµ(◊) is a polynomial of degree m in cos ◊.

2. If (≠)µÕ+µ = ≠1, rm
µÕµ(◊)/ sin ◊ is a polynomial of degree (m ≠ 1) in cos ◊.

Rotation and product

Rm
µÕµ(ω) =

ÿ

‰

Rm
µÕ‰(ω2)R

m
‰µ(ω1) (H.22)

where ω is the result of the successive application of ω1 and ω2 in order.

Rm
‰µ(ω) =

ÿ

µÕ

Rmú
µÕ‰(k̂)R

m
µÕµ(Ω)

Rm
µÕµ(Ω) =

ÿ

‰

Rmú
‰µÕ(k̂≠1)Rm

‰µ(ω) =
ÿ

‰

Rm
µÕ‰(k̂)R

m
‰µ(ω)

(H.23)

Composition relation for GSHs

ÿ

µÕ‹Õ⁄Õ

Q

a
m n l

µÕ ‹ Õ ⁄Õ

R

b Rm
µÕµ(„◊Â)Rn

‹Õ‹(„◊Â)Rl
⁄Õ⁄(„◊Â) =

Q

a
m n l

µ ‹ ⁄

R

b (H.24)

h.3 convention of gsh

The convention of GSH in books and articles used in this thesis varies depending on the
source. In Messiah [61] and Gray & Gubbins [13], it is defined as in eq. (H.9). In Edmonds
[90], it is defined as:

Dm
µÕµ(„◊Â) = eiµÕÂdm

µÕµ(◊)e
iµ„ (H.25)

which can be seen as the inverse rotation matrix of Rm
µÕµ.

In Blum [16, 17], the equation

Dl
m0(„◊Â) = (≠)m

3
4fi

2l + 1

4 1
2

Y l
m(◊„) (H.26)

is adopted, which means it shares the same definition as Edmonds, where

Rm
µÕµ(„◊Â) = Dmú

µµÕ(„◊Â) (H.27)

In Fries & Patey [19], the definition of Messiah is used.
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