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Le but de cette these est de proposer une modélisation mathématique des
stimulations visuelles afin d’analyser finement des données expérimentales en
psychophysique et en electrophysiologie. Plus précisément, afin de pouvoir ex-
ploiter des techniques d’analyse de données issues des statistiques Bayésiennes
et de I'apprentissage automatique, il est nécessaire de développer un ensemble
de stimulations qui doivent étre dynamiques, stochastiques et d'une complexité
paramétrée. Il s’agit d’un probléme important afin de comprendre la capacité
du systeme visuel a intégrer et discriminer differents stimuli. En particulier, les
mesures effectuées a de multiples échelles (neurone, population de neurones,
cognition) nous permette d’étudier les sensibilités particulieres des neurones,
leur organisation fonctionnelle et leur impact sur la prise de décision. Dans ce
but, nous proposons un ensemble de contributions théoriques, numériques et
expérimentales, organisées autour de trois axes principaux : (1) un modele de
synthése de textures dynamiques Gaussiennes spécialement parametrée pour
I'étude de la vision; (2) un modele d’observateur Bayésien rendant compte
du biais positif induit par fréquence spatiale sur la perception de la vitesse;
(3) T'utilisation de méthodes d’apprentissage automatique pour l'analyse de
données obtenues en imagerie optique par colorant potentiométrique et au
cours d’enregistrements extra-cellulaires. Ce travail, au carrefour des neuro-
sciences, de la psychophysique et des mathématiques, est le fruit de plusieurs
collaborations interdisciplinaires.

Mots-clés: stimulation visuelle, synthese de textures, inférence Bayésienne in-
verse, discrimination de vitesse, apprentissage supervisé, imagerie optique par
colorant potentiométrique, enregistrement extra-cellulaire, cartes d’orientations,
selectivité a l'orientation, neurones.

The goal of this thesis is to propose a mathematical model of visual stim-
ulations in order to finely analyze experimental data in psychophysics and
electrophysiology. More precisely, it is necessary to develop a set of dynamic,
stochastic and parametric stimulations in order to exploit data analysis tech-
niques from Bayesian statistics and machine learning. This problem is impor-
tant to understand the visual system capacity to integrate and discriminate
between stimuli. In particular, the measures performed at different scales (neu-
rons, neural population, cognition) allow to study the particular sensitivities
of neurons, their functional organization and their impact on decision making.
To this purpose, we propose a set of theoretical, numerical and experimental
contributions organized around three principal axes: (1) a Gaussian dynamic
texture synthesis model specially crafted to probe vision; (2) a Bayesian ob-
server model that accounts for the positive effect of spatial frequency over
speed perception; (3) the use of machine learning techniques to analyze volt-
age sensitive dye optical imaging and extracellular data. This work, at the
crossroads of neurosciences, psychophysics and mathematics is the fruit of
several interdisciplinary collaborations.

Keywords: visual stimulation, texture synthesis, inverse Bayesian inference,
speed discrimination, supervised learning, voltage sensitive dye optical imag-
ing, extracellular recordings, orientation maps, orientation selectivity, neurons.
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1 Grandes Lignes

Aperu. Lebut de cette these est de développer un environnement mathematique
propice a la stimulation visuel stochastique et 'analyse statistiques de données
pour la psychophysique et 1’électrophysiologie du cortex visuel.

Contexte Scientifique. Ce travail est le fruit d’'une collaboration entre
I’équipe de Gabriel Peyré initialement au laboratoire CEREMADE (Université
Paris-Dauphine, France) et maintenant au DMA (Ecole Normale Supérieure de
Paris), et I’équipe de neuroscience de la vision d’Yves Frégnac au laboratoire
UNIC (Gif-sur-Yvette, France). En tant que projet a forte dimension interdis-
ciplinaire, mon travail était encadré par Gabriel Peyré en mathématiques et
par Cyril Monier en neurosciences. J’ai également travaillé en psychophysiques
de la vision avec Laurent Perrinet de I'INT (Marseille, France) et Andrew
Meso initially at INT and now at the CCNRC (Bournemouth University,
Bournemouth UK).

Cette collaboration m’a conduit a travailler dans de multiple domaines en
plus de ma formation mathématique initiale. Ce manuscrit est destiné a étre
lu par des mathématiciens, des neuroscientifiques et des psychophysiciens. Au
dela de la promotion de telles interactions, je démontre comment elle peuvent
bénéficier aux neurosciences expérimentales et a la psychophysique. En parti-
culier, lorsque 'on étudie la vision, il est important de construire des modeles
mathématiques de stimulation visuelle plus complexes. Cette complexité of-
fre de nouvelles possibilités pour imaginer des protocoles expérimentaux inno-
vant alors que les mathématiques participeront de la bonne compréhension des
stimuli. Cette compréhension est nécessaire pour mener a bien ’analyse des
données collectées. Enfin, 'augmentation de la quantité de données disponibles
stimule le développement des techniques basées sur ’apprentissage automa-
tique dont doivent bénéficier les neurosciences expérimentales.

Plan du Manuscrit. Ce manuscrit est organisé en six parties parmis lesquelles
trois axes principaux peuvent étre dégager.

e Chapitre I: description du modéle Motion Cloud pour la stimulation vi-
suel. Dans le Chapitre I, nous détaillons les propriétés mathématiques
du modele de textures dynamiques spécifiquement conu pour étudier la
vision. Ce travail a été réalisé en collaboration avec Laurent Perrinet et
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Andrew Meso a 'INT. Gérard Sadoc (UNIC) a implémenté notre algo-
rithme dans le logiciel Elphy utilisé a 'UNIC pour la stimulation et les
enregistrements. Cela constitue une premiere contribution. Initialement
développé par Léon [169] comme un champ Gaussien spatio-temporel,
nous avons redéfini ce modele dans un cadre plus général nous permet-
tant de donner trois formulations équivalentes. Premierement, ces trois
formulations offrent une justification du modele qui est biologiquement
fondée; deuxiemement, elles offrent un algorithme de synthese en temps
réel.

Chapitres II and I1I: une approche Bayésienne des tches de discrimina-
tion en psychophysique et une application a [’étude de la perception du
mouvement. Dans le Chapitre II et III, nous décrivons une formulation
mathématique d'un modele d’observateur Bayésien idéal and nous mon-
trons comment 1'utiliser pour analyser des données issues d’expériences
de psychophysique. Nous nous attaquons a la question de l'inférence
Bayésienne inverse ie sachant les décisions prises en utilisant le modele
Bayésien, nous tentons d’inférer la vraisemblance et 'apriori. Dans le
Chapitre I1II, nous utilisons cette approche pour expliquer les résultats
obtenus lors une expérience de choix forcé a deux alternatives en discrim-
ination de vitesse utilisant de stimulation MC. Ce travail a été effectué en
collaboration avec Laurent Perrinet et Andrew Meso a I'INT et constitue
un deuxieme ensemble de contributions. Nous confrontons notre modele
a des données réelles et nous décrivons avec succes 'effet positive de la
fréquence spatiale sur la perception de la vitesse en utilisant un apriori
bi-varié.

Chapitres IV, V and VI: utilisant de méthodes d’apprentissage automa-
tique pour l’analyse de données en électrophysiologie. Dans le Chapitre IV,

nous rappelons quelques bases de I'apprentissage supervisé et nous définissons

une nouvelle mesure de d’erreur de classification. Ensuite, dans les
Chapitres V et VI, nous utilisons 'apprentissage supervisé pour anal-
yser des données obtenues en Imagerie Optique par Colorant Sensible
au Potentiel (VSDi) et en Enregistrement Extracellulaires (ER). Ce tra-
vail a été réalisé en collaboration avec Cyril Monier, Luc Foubert, Yan-
nick Passarelli et Margot Larroche de 1’équipe vision de I'UNIC. Mal-
heureusement, les expériences utilisant des MCs lors d’enregistrement en
VSDi n’ont pas portées leurs fruits, cependant nous avons obtenu des
résultats intéressants en utilisant des réseaux sinusoidaux en translation.
Au contraire, les résultats obtenus avec des MCs en ER sont promet-
teurs. L’apprentissage supervisé se révele tres pertinent pour l'analyse
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de la dynamique spatio-temporelle du signal VSDi et cela nous a permis
de développer une méthodologie permettant d’analyser différents proto-
coles et de conclure sur un modele simple du signal VSDi. Nous menons
des analyses similaires sur les ER, and nous montrons que des popula-
tions de neurones de V1 contiennent assez d’information pour différencier
des MCs ayant des parametres différents (dispersion en orientation et en
fréquence spatiale). Nous concluons en montrant que ces résultats sont
compatibles avec un modele simple de calculs neuronaux.

2 Probleme étudier et Travaux Antérieurs

2.1 Etudier le Systeme Visuel: de la Stimulation a I’Analyse
de Données

Le systeme visuel peut étre vu comme une machine qui reoit des entrées
externes (les photons qui atteignent les yeux) et produit des sorties internes
(les signaux électriques du cerveau). Afin de comprendre comment cette ma-
chine transforme ses entrées en ses sorties nous avons besoin de comprendre
clairement ces entrées et ces sorties. Les entrées sont physiquement bien com-
prises and nous avons été capable de construire des instruments optiques qui
capturent la lumiere visible de notre environnement. Cependant, nous avons
encore une bien pietre compréhension des images naturelles car nous ne dis-
posons pas d’'un modele mathématique de faible de dimension qui rend compte
de la complexité de ces images. En effet, la majorité de la littérature a ce sujet
se concentre sur I’établissement de propriétés statistiques ou sur 'identification
de caractéristiques clés des images naturelles [86, 163, 195, 206]. De plus,
le probleme de la modélisation de la dynamique est moins étudié, voir par
exemple les travaux antérieurs de Dong [44]. Méme si la conception d'un
modele générique semble hors de portée, la modélisation statistique de texture
a été appliquée avec succes au probleme de synthese de texture (voir la Sec-
tion 1.1). Nous mentionnons ici le travail de Portilla et al. [149] qui conoit
un algorithme de synthese basé sur la physiologie et la psychophysique. Nous
nous référons également le travail de Galerne et al. [63] qui pose les bases
théoriques de notre modele dynamique Motion Cloud. Concernant les sorties,
les mécanismes biophysiques en jeu dans les neurones et les synapses sont au-
jourd’hui bien connus. Bien que les instruments et techniques aient beaucoup
progressé, l'enregistrement d’un tres grand nombre de neurones uniques reste
impossible. Par conséquent, nous avons seulement acces a des échantillons par-
tiels des signaux du cerveau et les techniques expérimentales n’offrent qu'une
petite fenétre d’observation a différentes échelles sur ces signaux. L’étude du
systeme visuel correspond donc a la compréhension des relations qu’il existe
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entre des entrées ayant une complexité énorme et des sorties qui ne sont pas
trés bien comprises et qui sont seulement partiellement accessibles [53, 176].

La question du type de stimulation devant étre utilisé pour étudier le
systeme visuel est un vieux débat qui cours toujours. Celui-ci oppose la stimu-
lation artificielle [164] & la stimulation naturelle [68]. Ces 60 dernieres années,
des stimuli artificiels ont été couramment utilisés. Ils consistent généralement
en des bars, des points, des sinusoides ou du bruit en mouvement. Ces stimuli
artificiel sont bien contrlés et permettre de tester des caractéristiques par-
ticulieres présentes dans les images naturelles telles que des bords orientés,
telle ou telle fréquence spatiale ou temporelle ou bien encore la direction du
mouvement. Les stimuli artificiels jouent un rle essentiel dans la conception
des courbes de préférences qui représentent la quantité moyenne de potentiel
d’action émis par un neurone en fonction d’un des parametres du stimulus. Le
bruit en tant que stimulation stochastique apparait comme fondamental pour
I’estimation des champs récepteurs par des méthodes des moyennes et covari-
ances déclenchés par potentiel d’action (STA/STC) [177]. Les images naturels
sont moins utilisés mais I’'amélioration des instruments optiques et la large dif-
fusion d’images dans les environnements numériques actuels les a rendu de plus
en plus attractives pour ’expérimentation. La stimulation naturelle est princi-
palement motivée par I'idée que notre cerveau s’est adapté a son environnement
a travers des mécanismes d’adaptation a long terme [175]. Par conséquent, en
utilisant des stimuli naturels nous évitons les biais qui peuvent provenir d’une
stimulation artificielle [140]. Cependant, choisir des stimulations naturelles
leve le probleme de la grande complexité statistique des images naturelles.
Pour gérer cette complexité, il faut nécessairement faire des hypotheses sim-
ples sur les caractéristiques spécifiques qui génerent une réponse neuronale.
Par conséquent, il y a un risque de négliger des facteurs multiples pouvont
expliquer les réponses obtenues. Finalement, la question fondamentale réside
dans l'espace qui sépare les stimulations artificielles et naturelles. Plusieurs
solutions existent pour combler cet espace: soit par 'augmentation de la com-
plexité des modeles paramétriques existants [149, 58] soit par la détérioration
des images naturelles [160, 115]. Notre travail est fondé sur ce genre de ten-
tatives en essayant d’augmenter la complexité des stimulations artificielles et
stochastiques tout en conservant un nombre raisonnable de parametres.

En neurosciences expérimentales les techniques d’enregistrements sont mul-
tiples: enregistrements intracellulaires et extracellulaires, électroencéphalographie,
imagerie par résonance magnétique fonctionnelle (IRMf/fMRI), imagerie a
deux photons, imagerie optique par colorant sensible au potentiel (VSDIi), etc.
Ces instruments de mesure ont des avantages et inconvénients spécifiques et
sont généralement associés a différentes échelles spatio-temporelles. Par exem-
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ple, 'TRMf enregistre une signal a 1’échelle du cerveau entier avec une faible
résolution temporelle alors que les enregistrements intracellulaires mesurent
lactivité électrique d’un neurone unique a haute résolution temporelle. Sous
de telles contraintes il devient difficile d’enchsser des ensembles de données
issus de différentes techniques dans un cadre commun. En fait, pour chaque
échelle il existe un cadre mathématique adapté. Par exemple, Hodgin-Huxley
ont modélisé le signal d’'un neurone seul; lorsque 1'on s’attaque a des popula-
tions neuronales I'utilisation de champs moyen, de la théorie des systemes dy-
namiques ou la constrution d’un réseau de neurones deviennent plus adaptées [50,
31]. En psychophysique, la collecte de données est restreinte; celle-ci consiste
a poser des questions a un observateur pour connaitre sa capacité a détecter
ou discriminer différents stimuli. De cette maniere, il est possible de mesurer
des seuils de discrimination ou de détection et des biais a 1’échelle cognitive.
Au cours de ce travail, nous essayons de rendre compte de données collectées
avec différentes techniques, a différentes échelles et avec des stimuli d'un méme

type.

2.2 Modélisation Bayésienne de la Perception Visuel du
Mouvement

Une explication normative de la perception est d’inférer des parametres
pertinents () de notre environnement a partir de nos entrées sensorielles et
d’un modele génératif [74]. équipé d’une distribution apriori des parametres,
(typiquement appris et reflétant la connaissance de notre environnement) la
représentation émergente correspond a I'hypothese du cerveau Bayésien [103,
46, 34, 102]. Celle-ci suppose que pour une information sensorielle donnée
S, le cerveau prend une décision a partir de la distribution postérieure de se
parametre sachant 'information sensorielle qui d’apres le théoreme de Bayes
peut étre obtenue par:

Psiq(sla)Po(q)
]Ps(S) .

ol Pgg est la vraisemblance et Py représente la connaissance apriori. Cette
hypothese est tres bien illustrée dans le cadre de la perception de vitesse [211].
Ce travail utilise une paramétrisation Gaussienne du modele génératif et un
apriori (Gaussien) uni-modal afin d’estimer la vitesse v peru en regardant un
stimulus I. Cependant, une telle hypothese Bayésienne — basé sur la for-
malisation d’un apriori et d’une vraisemblance Gaussiens et uni-modaux par
exemple — ne permet pas toujours de s’ajuster aux résultats issus de la psy-
chophysique [209, 79]. Ainsi, un défit majeur est de réviser la définition des

Pgis(qls) = (2.1)
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modeles génératifs pour qu’ils soient en accord avec un plus grand ensemble
de résultats expérimentaux.

Le probleme de l'estimation inhérent a la perception peut d’une certaine
maniere étre outre passé par la définition d’'un modele génératif adéquate. Le
modele génératif le plus simple pour décrire les mouvement visuel est prob-
ablement 1’équation de conservation de la luminance [3]. Il établit que la
luminance I(x,t) pour (z,t) € R? x R est approximativement conservé le long
des trajectoires définies comme les lignes intégrales d’un champ de vecteurs
v(z,t) € R*> x R. Le modele génératif correspondant définit des champs
aléatoires qui sont solutions de I’équation stochastique aux dérivées partielles,

oI
(v, VI) 4 5 = W, (2.2)

ol (-, -) est le produit scalaire Euclidien dans R? VI est le gradient spatial
de I. Dans le but de faire correspondre les échelles spatiales ou les statistiques
fréquentielles des scenes naturelles (ie décroissance en 1/f) ou encore d’autres
catégories de textures, le terme source W est défini comme un bruit Gaussien
coloré correspondant a la moyenne des corrélations spatio-temporelles locales,
et est paramétré par une matrice de covariance X, quand le champ de vitesse
est généralement un champ constant représentant des translations globales a
vitesse constantes.

Enfin, I'utilisation de ce modele génératif est essentielle pour étudier le
systeme visuel, par exemple pour quelqu’un cherchant a comprendre comment
un observateur détecte le mouvement dans une scene. En effet, comme le mon-
trent les travaux suivant [135, 211], la log-vraisemblance de la distribution de
probabilité des solutions I a 1’équation de conservation de la luminance (4.2),
sur un domaine d’observation donné par €2 x [0, 7], et pour une vitesse sup-
posée constante v(z,t) = vy, est proportionelle a la valeur du motion-energy
model [3]

// (v, V(K*I)(m,t))+W(x,t)ﬁdtdx (2.3)
QJO0

ou K est le filtre de blanchissement correspondant a la racine carrée de 'inverse
de X, et x est 'opérateur de convolution. Ayant un savoir apriori sur la distri-
bution attendue du mouvement (préférence pour les basses vitesses par exem-
ple), un formalisme Bayésien peut étre appliqué a ce probleme d’inférence [210,
211]. L’un des buts de cette these est revoir cette classe de modele stochastique
et dynamique pour estimer le mouvement en utilisant les modeles énergies as-
sociées a la stimulation.



2. PROBLEME ETUDIER ET TRAVAUX ANTERIEURS 15

2.3 Analyse de Données en électrophysiologie

Imagerie Optique par Colorant Potentiométrique La technique VSDi
est un moyen d’enregistrement mésoscopique de I'activité cortical tres promet-
teur. Celle-ci consiste en I'application d’un colorant sensible au potentiel sur
la surface du cortex qui est ensuite filmé [75]. En présence d’activité électrique
et de lumiere, le colorant ré-émet de la lumiere. Il est donc possible d’identifier
les zones d’activité sous différentes conditions de stimulations. Cependant, ce
signal est connu pour étre corrompu par différents artefacts conduisant de nom-
breux chercheurs a s’intéresser a la question [159, 216, 156]. Ces inconvénients
n’ont pas empeché les expérimentateurs de reproduire des résultats obtenus en
imagerie optique intrinseque. Ils ont utilisés des réseaux sinusoidaux orientés
comme stimuli générant des réponses dans différentes zones du cortex pri-
maire (see eg [174]). Cela a confirmé l'existence de carte d’orientations dans
le cortex primaire de plusieurs mammiferes: la surface du cortex est divisée en
différents domaines dans lesquels les neurones partagent la méme préférence a
I'orientation. Le principal intérét est en fait sa résolution temporelle. L’article
de Sharon [174] met en lumiere la dynamique croissante-décroissante de la
différence entre les réponses a 'orientation préférée et son orthogonal. Parmis
d’autres données, nous analysons des données particulierement relié au tra-
vail de Chavane et al. [32] dans lequel le VSD est utilisé pour comprendre la
propagation latéral de la sélectivité a 'orientation en comparant des réponses
évoquées par stimuli locaux et plein champs ainsi que centre et pourtour. Nous
nous attaquons aussi au probleme de la dynamique de transition provoquée par
un changement dans la direction du mouvement comme dans l'article de Wu et
al. [212] otu il est montré que la dynamique corticale combinée au codage de
population est adapté a I’encodage de ces changements. Remarquons enfin que
seulement quelques travaux font usage de méthode issues de 'apprentissage su-
pervisé pour analyser les signaux VSDi [7, 8, 24]. L’un des buts de cette these
et de btir des analyses du signal VSD basé sur I’apprentissage automatique.

Enregistrement Extracellulaire La technique d’enregistrement extracel-
lulaire est l'une des plus anciennes modalités d’enregistrements. Elle con-
siste a enregistrer 1'activité électrique des neurones dans petite zone autour
de 1’électrode. Aujourd’hui, il est possible d’enregistrer plusieurs neurones
en méme temps sur de larges et profonds volumes de cortex [36, 47]. En
ER le signal d’'une double nature: la composante a haute-fréquence (400Hz
a quelques milliers) qui correspond aux potentiels d’actions des neurones in-
dividuels et est aussi connue sous le nom d’activité multi-unitaires (MUA);
la composante a basse fréquence (fréquence de coupure a environ 300Hz)
qui représente l'activité moyennes d’un ensemble de neurones et est connue
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sous le nom de champs de potentiel local (LFP). Dans cette these, nous
nous intéressons principalement a la composante a haute fréquence c’est-a-
dire l'activité sous forme de potentiels d’actions. Cette activité, propre a
chaque neurone, permet de calculer sa courbe de préférence et son champ
recepteur [87]. La courbe de préférence est la représentation la plus sim-
ple de l'activité d’un neurone comme fonction d’un parametre de stimula-
tion. Elle doit étre comprise comme une courbe de sensibilité. Un champ
récepteur représente la région du champ visuel dans laquelle un stimulus mod-
ifie 'activité du neurone. Différentes méthodes de corrélation inverse existe et
permettent d’estimer les champs récepteurs [98, 40]. Aussi connu sous le nom
de Spike-Triggered Analysis (STA) and Spike-Triggered Covariance (STC), ces
méthodes sont classiques. Il convient aussi de mentionner le travail de Park et
al. [145] qui réalise une estimation Bayésienne des champs récepteurs et ob-
tient d’impressionnants résultats. Basés sur ces concepts, différents modeles
de réseaux de neurones sont construits. Ils consistent généralement en un
premiere étape linéaire suivi d'un seuillage non-linéaire, la valeur obtenue
est ensuite convertie en potentiels d’actions grce a une distribution de Pois-
son [172]. De tels modeles sont connus sous le nom de Linear/Non-linear
Poisson spiking models (LNP). Quelques travaux font usages de méthode is-
sus de apprentissage supervisé. En particulier, Hung et al. [90] utilise une
régression linéaire a noyau pour classer les réponses neuronales de l'aire I'T du
cortex visuel afin de pouvoir prédire la stimulation sachant la réponse des neu-
rones. Plus récemment, Yamins et al. [215] classifie les réponses de neurones
et fait également des prédictions sur le stimulus. Finalement, a notre connais-
sance, le papier de Goris et al.[71] est le seul a utiliser des stimulations de
type Motion-Clouds dans une étude utilisant des enregistrements extracellu-
laires pour étudier l'origine de la diversité des préférences a 1’orientation dans
le cortex visuel. Un de nos buts est d’analyser des données ER obtenues avec
des stimulations Motion-Clouds avec des méthodes issues de ’apprentissage
automatique et de comparer ces résultats a 'analyse de données synthétiques
générées en utilisant un modele LNP.



3 Outline

Overview. The goal of this PhD is to develop a mathematically sound frame-
work to perform both stochastic visual stimulation and statistic data analysis,
for psychophysics and electrophysiology of the visual brain.

Scientific Context. This work is a collaboration between the team of Gabriel
Peyré initially at the research center CEREMADE (Université Paris-Dauphine,
France) and now at DMA (Ecole Normale Supérieure de Paris), and the visual
neuroscience team of Yves Frégnac at the UNIC lab (Gif-sur-Yvette, France).
As a strong interdisciplinary project, my work was supervised by Gabriel Peyré
in mathematics and Cyril Monier in neurosciences. I have also developed a
strong collaboration in psychophysics of vision with Laurent Perrinet from INT
(Marseille, France) and Andrew Meso initially at INT and now at the CCNRC
(Bournemouth University, Bournemouth, UK) .

This collaboration led me to work in various fields in addition to my initial
mathematical background. The target readers of this manuscript are mathe-
maticians, neuroscientists and psychophysicists. In addition to promote such
interactions, I intend to show how they benefit to experimental neurosciences
and psychophysics. In particular, when studying vision, it is important to
go trough more complex, mathematically grounded visual stimulation mod-
els. Increasing the complexity of these models allows us to build innovative
experimental protocols and the mathematical description provides a clear un-
derstanding of the stimuli. Such an understanding is necessary in order to be
able to make sense of the collected data. Moreover, the increasing amount
of available data stimulates the development of machine learning based tech-
niques that experimental neurosciences should benefit from.

Manuscript Organization. This manuscript is organized into six chapters
among which three principal parts can be distinguished:

o Chapter I: description of the Motion Cloud (MC) wvisual stimulation
model. In Chapter I, we detail the mathematical description of a dy-
namic texture model specially crafted to probe vision. This work was
done in collaboration with Laurent Perrinet and Andrew Meso at INT.
Gérard Sadoc (UNIC) implemented our algorithm into the Elphy soft-
ware used at UNIC for stimulation and recording. This constitutes our
first contribution. Initially developed by Leon [169] as a spatio-temporal



18

INTRODUCTION

Gaussian field, we embed this model in a general framework which en-
ables us to give three equivalent formulations. On the one hand, these
three formulations provide a biologically plausible justification of the
model; on the other hand, they provide a real-time synthesis algorithm.

Chapters II and III: a Bayesian approach to discrimination tasks in psy-
chophysics and an application to the study of motion perception. In
Chapter II, we describe a mathematical formulation of an ideal Bayesian
observer model and we show how to use it to analyze data in psy-
chophysics. We tackle the question of inverse Bayesian inference ie
knowing decisions made using a Bayesian model, we intend to infer the
likelihood and prior. In Chapter III, we use this approach to explain
the results obtained in a two-alternate forced choice (2AFC) speed dis-
crimination experiment using MC stimulations. This work was done in
collaboration with Laurent Perrinet and Andrew Meso at INT and con-
stitutes our second sets of contributions. We confront our model to real
data and successfully describe the positive effect of spatial frequency over
speed perception using a bi-variate prior.

Chapters IV, V and VI: the use of machine learning techniques to an-
alyze electrophysiological data. In Chapter IV, we recall the basics of
supervised learning and define a new classification error measure. Then,
in Chapters V and VI, we make use of supervised learning to analyze
Voltage Sensitive Dye optical Imaging (VSDi) data and Extracellular
Recordings (ER). This work was done in collaboration with Cyril Monier,
Luc Foubert, Yannick Passarelli and Margot Larroche from the vision
team at UNIC. Unfortunately, experiments using MCs and VSDi were
not fruitful, however we obtained some interesting results using stan-
dard grating stimuli. In contrast, the results obtained by using MCs
and ER are promising. Supervised learning appears relevant to analyze
the spatio-temporal dynamic of the VSDi signal, and this allows us to
provide a methodology to analyze different types of protocols and to con-
clude on a simple model of VSDi signal. We conduct similar analysis on
ER, and we show that neural populations contain enough information
to discriminate between stimuli that differ with regards to parameters of
the MC stimulations (orientation and spatial frequency bandwidth). We
conclude by showing that these findings are compatible with a simple
neural computational model.
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4 Problem under Study and Previous Works

4.1 Probing the Visual System: from Stimulation to
Data Analysis

The visual system can be viewed as a machine that receives external inputs
(the photons that reach the eyes) and produces internal outputs (electrical sig-
nal in the brain). In order to understand how this machine transforms inputs
into outputs we need to have a clear understanding of both inputs and out-
puts. The inputs are physically well understood and we have been able to
build some optical instruments to capture visible light from our environment.
However, we still have a poor understanding of natural images as we have no
low dimensional mathematical model to account for the complexity of natural
images. Indeed, the vast majority of the litterature focuses on establishing
statistical properties or on identifying key features of natural images [86, 163,
195, 206]. Furthermore, the problem of dynamical modeling is much less stud-
ied, see for instance the previous work of Dong [44]. Even if the design of
generic natural model is out of reach, the statistical modeling of texture was
succesfully applied to the problem of texture synthesis (see Section 1.1). We
mention here the work of Portilla et al. [149] who design an algorithm based
on physiology and psychophysics. We also highlight the work of Galerne et
al. [63] who settle the theoretical basis of our dynamic Motion Cloud model.
Concerning the outputs, the biophysical mechanisms at stake in neurons and
synapses are now well understood. While experimental instruments and tech-
niques have progressed a lot, recording very large assemblies of single neurons
is impossible. Therefore, we only have partial samples of brain outputs, and
experimental techniques open small windows at different scales on these out-
puts. Probing the visual system thus corresponds to understanding the relation
between inputs that have an enormous complexity and outputs that are not
fully understood and are only partially accessible [53, 176].

The question of the class of stimulation that should be used to probe the
visual system is a long standing debate. This debate opposes artificial stimu-
lation [164] to natural stimulation [68]. For the last 60 years, artificial stimuli
have been most commonly used. Generally, they consist of moving bars, dots,
sine waves or noise. These artificial stimuli are well controlled and allow to test
particular features present in natural images such as oriented edges, spatial and
temporal frequencies, and movement directions. They play an essential role in
the concept of tuning curve which represents the firing activity of a neuron as
a function of some stimulus parameter. Noise as a stochastic stimulus appears
fundamental to the estimation of receptive fields using Spike Triggered Average
(STA) and Spike Triggered Covariance (STC) methods [177]. Natural stimuli
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are less used but the improvement of optical instruments and the spreading of
images in the numerical environment make them more and more attractive to
be used as stimuli. Natural stimulation is mainly motivated by the idea that
our brain has adapted to its environment through long term evolution mech-
anisms [175]. Therefore, by using natural stimulation we prevent unnatural
bias that can emerge from artificial stimulation [140]. However, choosing nat-
uralness raises the issue of the high statistical complexity of natural images.
Handling this complexity requires to make simple hypotheses about the spe-
cific features of natural images that elicit neural responses. Therefore, there is
a risk to miss some multifactorial features that explain the responses. Finally,
the fundamental question lies in the gap that separates artificial and natural
stimulation. There are ways to fill the gap on whether it consists in building
more complex parametric model [149, 58] or deteriorating natural images [160,
115]. Our work is rooted in these attempts by trying to increase the complex-
ity of artificial and stochastic stimulations, yet keeping a reasonable number
of parameters.

In experimental neurosciences the recording techniques are multiple: intra-
cellular and extracellular recordings (ER), electroencephalography, functional
magnetic resonance imaging (fMRI), two-photons imaging, voltage sensitive
dye optical imaging (VSDi), etc. These measuring instruments have specific
advantages and drawbacks and are generally associated to different spatio-
temporal scales. For example, fMRI records signal at the scale of the entire
brain with a low temporal resolution while intracellular recording measures the
electric activity of a single neurons at a high temporal resolution. Under such
constraints it becomes difficult to embed datasets from different techniques in
a common framework. In fact, for each scale there exist an adapted math-
ematical framework. For instance, Hodgkin-Huxley modeled the signal of a
single neuron; when moving to a neural population it becomes more adapted
to use mean-fields combined with dynamical systems theory [50, 31] or build
a neural network. In psychophysics, data collection is restricted; it consists in
asking an observer if she detects or discriminates different stimuli. In such a
way, we are able to measure detection or discrimination thresholds and bias at
cognition scale. Along this work, we try to make sense of data collected with
different techniques at different scales under similar stimulation.

4.2 Bayesian Modeling Visual Motion Perception

A normative explanation for the function of perception is to infer relevant
unknown real world parameters ) from the sensory input, with respect to a
generative model [74]. Equipped with a prior about the distribution of the
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parameter (typically learned and which reflects some knowledge about the
surrounding world) the modeling representation that emerges corresponds to
the Bayesian brain hypothesis [103, 46, 34, 102]. This assumes that when given
some sensory information S, the brain takes a decision using the posterior
distribution of the parameter given the sensory information, which, by Bayes
theorem, can be obtained as :

Psiq(sl9)Po(q)
Ps(s) .

where Pg|q is the likelihood and Pg represents prior knowledge. This hypoth-
esis is well illustrated with the case of motion perception [211]. This work uses
a Gaussian parameterization of the generative model and a unimodal (Gaus-
sian) prior in order to estimate perceived speed v when observing a visual
input /. However, such a Bayesian hypothesis — based on the formalization
of unimodal Gaussian prior and likelihood functions for instance — does not
always fit psychophysical results [209, 79]. As such, a major challenge is to
refine the definition of generative models so that they are consistent with a
larger set of experimental results.

The estimation problem inherent to perception can be somehow be alevi-
ated by defining an adequate generative model. The simplest generative model
to describe visual motion is probably the luminance conservation equation [3].
It states that luminance I(x,t) for (z,t) € R? x R is approximately conserved
along trajectories defined as integral lines of a vector field v(z,t) € R* x R.
The corresponding generative model defines random fields as solutions to the
stochastic partial differential equation (sPDE),

Pais(als) = (4.1)

(v, VI) + g =W, (4.2)
ot

where (-, -) denotes the Euclidean scalar product in R? VI is the spatial
gradient of I. To match the spatial scale or frequency statistics of natural
scenes (ie 1/f amplitude fall-off) or of some alternative category of textures,
the driving term W is usually defined as a stationary colored Gaussian noise
corresponding to the average localized spatio-temporal correlation (which we
refer to as spatio-temporal coupling), and is parameterized by a covariance
matrix 3, while the field is usually a constant vector v(x,t) = vy accounting
for a full-field translation with constant speed.

Ultimately, the application of this generative model is essential for probing
the visual system, for instance for one seeking to understand how observers
might detect motion in a scene. Indeed, as shown by [135, 211], the negative
log-likelihood of the probability distribution of the solutions I to the luminance
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conservation equation (4.2), on some space-time observation domain € x [0, T,
for some hypothesized constant speed v(z,t) = g, is proportional to the value
of the motion-energy model [3]

// (v, V(K*])(z,t))Jr%(m,t)ﬁdtdx (4.3)
QJO

where K is the whitening filter corresponding to the inverse square root of ¥,
and * is the convolution operator. Using a prior knowledge about the expected
distribution of motions (preference for slow speeds, for instance), a Bayesian
formalization can be applied to this inference problem [210, 211]. One of
the purposes of this dissertation is to refine this class of dynamic stochastic
models to perform motion estimation using energy models associated to the
stimulation.

4.3 Data Analysis in Electrophysiology

Voltage Sensitive Dye Optical Imaging The VSDi technique is a promis-
ing recording modality for the cortical activity at meso-scale. It consists in
staining the cortical surface with some voltage sensitive dye and filming this
surface [75]. In presence of electrical activity and light, the dye re-emits light.
It is therefore possible to identify some areas of activity under different stim-
ulations. However, the signal is known to be corrupted by many artifacts,
which leads many people to tackle this question [159, 216, 156]. These draw-
backs have not prevented experimentalists to reproduce results obtained in
intrinsic optical imaging. They use oriented drifting gratings as stimuli that
elicit responses in different areas of the primary visual cortex (see eg [174]).
This reveals the existence of orientation maps in the primary cortex of many
mammals: the surface of the primary visual cortex is clustered in different
domains where neurons share the same orientation tuning. The main interest
of VSDi is its high temporal resolution. The paper by Sharon [174] highlights
the increasing-decreasing dynamic of the difference between preferred and or-
thogonal orientation responses. Among other data set, we analyze data that
is particularly related to the work of Chavane et al. [32] where VSDi is used
to understand the lateral spread of orientation selectivity by comparing re-
sponses evoked by local/full-field and center /surround stimuli. We also tackle
the problem of the transient dynamic due to changes in motion direction as
in the paper of Wu et al. [212] where it is shown that cortical dynamic com-
bined with population coding is well suited to encode these changes. Let us
remark that only a few previous works make use of supervised machine learn-
ing techniques to analyze VSDi signals [7, 8, 24]. One of the purposes of this
dissertation is to design some machine learning based analyses of VSDi data.
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Extracellular Recordings The ER technique is one of the oldest recording
modalities. It consists in recording the electrical activity of cells in the small
area surrounding an electrode. Today, it is possible to record multiple neu-
rons at the same time over large and deep volumes of cortex [36, 47]. In ER
the signal is twofold: the high-frequency component (400Hz to few thousands)
which corresponds to spikes of single neurons and is known as multiunit activ-
ity (MUA), and the low-frequency component (cut off at about 300Hz) which
represents an average activity of multiple neurons and is known as local field
potential (LFP). In this dissertation, we focus on the high-frequency compo-
nent corresponding to the neurons’ spiking activity. The spiking activity of
one neuron allows to compute their tuning curve and receptive field [87]. A
tuning curve is the simple representation of the spiking activity as a function
of one stimulation parameter. It should be understood as a sensitivity curve.
A receptive field is the region of the visual field in which a stimulus modi-
fies its firing rate. Different reverse correlation techniques exist to estimate
receptive fields [98, 40]. Also known as Spike-Triggered Analysis (STA) and
Spike-Triggered Covariance (STC), they constitute the standard methods. Let
us also single out the paper of Park et al. [145] who perform a Bayesian estima-
tion of receptive fields and provide impressive results. Based on these concepts,
different neural network models are built. They generally consist in a first lin-
ear step followed by a non-linear thresholding step that is then converted to
spiking activity by using a Poisson distribution [172]. Such models are also
known as Linear/Non-linear Poisson spiking models (LNP). Few papers make
use of standard supervised learning techniques. In particular, Hung et al. [90]
use a kernel linear regression to classify the responses of IT neurons to dif-
ferent stimuli and make stimulus predictions knowing the neurons’ response.
More recently Yamins et al. [215] use a classifier to classify the responses of
neurons and make predictions about the stimulus. Finally, to our knowledge,
the paper of Goris et al.[71] is the only one to use MC-like stimulations in ER
to study the origin of tuning diversity in the visual cortex. One of our goals is
to perform some machine learning based analyses of ER data obtained under
MC stimulations that we subsequently compare to analysis of synthetic data
using a LNP model.

5 Contributions
5.1 Chapter I: A Model of Visual Stimulation

In Chapter I, we seek to reach a better understanding of human percep-
tion by improving generative models for dynamic texture synthesis. From that
perspective, we motivate the generation of visual stimulation within a station-
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ary Gaussian dynamic texture model 1.2.1. We develop the proposed model
by extending, mathematically detailing and robustly testing previously intro-
duced dynamic noise textures [169, 178, 194] coined “Motion Clouds” (MC or
MCs). Our main contribution is a complete axiomatic derivation of the model
(see Section 1.2). We detail three equivalent formulations of the Gaussian dy-
namic texture model. First, the composite dynamic textures are constructed
by the random aggregation of warped patterns (“textons”), which can then
be viewed as 3D Gaussian fields. Third, these textures are cast as solutions
to a stochastic partial differential equation (sPDE). A second contribution is
the mathematical proof of the equivalence between the two first formulations
and a class of linear sPDEs (see Section 1.3). This shows that our model is a
generalization of the well-known luminance conservation Equation (4.2). This
sPDE formulation has two chief advantages: it allows for a real-time synthesis
using an AR recurrence and allows one to recast the log-likelihood of the model
as a generalization of the classical motion energy model, which in turn is cru-
cial to allow for Bayesian modeling of perceptual biases. Finally, we provide
the source code! of this model of dynamic textures as an open source software
development and reproducible research, which is crucial to advance the state
of the art of real time stimulation for neurosciences. Some additional examples
of MCs and texture synthesis from examples are available online?.

5.2 Chapter II: Probabilistic and Bayesian Approach in
Psychophysics

In Chapter II, first, we briefly review the Bayesian approaches in neu-
rosciences and psychophysics. Then, we introduce the problem of “inverse
Bayesian inverse”. We formalize the concept of observer’s internal represen-
tations in a probabilistic model. In this model, we are able to formulate the
“Bayesian brain” hypothesis: our brain estimates external parameters as if
they have generated their sensory representations. Then, we are able to de-
fine in mathematical terms the notion of psychometric curve obtained in a
two-alternate forced choice (2AFC) experiment. This general definition, com-
bined with our ideal Bayesian observer model appears intractable in absence
of specific assumptions. We thus exemplify the psychometric curve by making
simplifying assumptions on the likelihood and prior and we give numerical ex-

'http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
motion_clouds
’https://jonathanvacher.github.io/mc_examples.html
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amples (see online®). Finally, we provide an algorithm which allows to solve
the inverse Bayesian inference problem. The algorithm is illustrated in the
following chapter.

5.3 Chapter III: Effect of Spatial Frequency over Speed
Perception

In Chapter III, we present and analyze the result of psychophysical experi-
ments that we performed to probe speed perception in humans using zoom-like
changes in MCs spatial frequency content. We simplify the general Bayesian
model developed in Chapter II by assuming a Gaussian likelihood and a Lapla-
cian prior (see Section I11.2.2). As the MC model allows for the derivation of
a local motion-energy model, we use it to estimate speed in the experimental
stimuli. We then validate the fitting process of the model using synthesized
data in Section II1.4.2. The human data replicates previous findings that rel-
ative perceived speed is positively biased by spatial frequency increments. By
comparing the estimated variances of likelihoods to the distribution of the
motion-energy model estimates of speed, we show that they are not compat-
ible (see Section II1.3). The effect cannot be fully accounted for by previous
models, but the current prior acting on the spatio-temporal likelihoods has
proved necessary in accounting for the perceptual bias (see Section I11.5). We
provide an online* example of data synthesis and analysis.

5.4 Chapter IV: Supervised Classification

Chapter IV is addressed to readers that are not familiar with supervised
classification. From a mathematical point of view this Chapter provides very
few contributions. We review in Section III.2 the different approaches to su-
pervised classification. We give some useful and sometimes original examples
to the different supervised classification approaches. In Section II1.5, we give
precise definitions of the different tools we use in the following chapters. In
summary, this Chapter is closer to a graduate course in machine learning than
to a contribution to research. However, within an interdisciplinary study, we
feel it is necessary to set up the general problem of supervised classification
and to introduce the different algorithms as particular cases of a common

3http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
bayesian_observer/

‘http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
bayesian_observer/
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framework before we apply them in Chapters V and VI. The goal is to intro-
duce these tools to experimental neuroscientists and psychophysicists so they
can properly understand the subsequent analysis we perform. Finally, having
a better understanding of supervised data analysis will be useful for experi-
mentalists to better craft their experiments. We provide the source code® of
Examples 6 and 7 that illustrate Section 2.

5.5 Chapter V: Analysis of VSDi Data

Chapter V presents the visual system organization and its intracortical
connectivity. Then, we review the VSDi technique and its processing. We also
summarize the different machine learning approaches used to analyze func-
tional Magnetic Resonance Imaging (fMRI) and VSDi data. The first major
contribution of this chapter is an automatic method to select the number of
components of the Principal Component Analysis (PCA) based on the classi-
fication performances (see Section V.4.1). The second main contribution is a
methodology of local space-time analysis of classification performances, which
enables to identify the most predictive pixels and to precisely quantify the
temporal dynamic (see Section V.4.2). The third major contribution is the
definition of a simple and efficient model of the VSDi signal obtained using
oriented stimuli (see Section V.5). In addition, we make several minor bio-
logical contributions related to the experimental protocols that we analyze.
In particular, we find that activation of neural populations is faster when
stimulated after a blank than when stimulated after a first stimulus (see Sec-
tion V.4.3.2). Moreover, the simple proposed model supports the role of lateral
connections for a neural population to handle an abrupt change of stimulus
orientation (see V.5.3). We provide an online® example of data synthesis using
the proposed model. Moreover, additional Figures are also available online”.

5.6 Chapter VI: Analysis of ER Data

Chapter VI introduces the Extracellular Recording (ER) technique, the
standard processings that are applied to this signal and the few machine learn-
ing approaches that have been used to analyze this type of data. The first
major contribution results from the use of MCs as stimuli. We find that small

Shttp://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
examples_classif/

Shttp://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
model_vsd/

"https://jonathanvacher.github.io/chapV-supp.html
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neural populations (few dozens of neurons) contain enough information to dis-
criminate between homogeneously and heterogeneously oriented stimuli. Such
populations also contain enough information to discriminate between stimuli
with narrow and broad spatial frequency bands (see Section VI.4). The sec-
ond major contribution is a methodology of temporal analysis of prediction
performances. We find that neural populations systematically have better
classification performances than any single neurons when stimulated by MCs
(see Section VI.5). However, when stimulated with natural movies, some neu-
rons that provides classification performances that are similar to these of the
entire population. The third major contribution is a simple Linear/Non-linear
Poisson (LNP) spiking neurons model that generates synthetic data (see Sec-
tion VI.6). When generated with MCs, the synthetic data provides results that
are similar to the these obtained on the experimental recordings. We provide
an online® example of data synthesis using the proposed model and MCs.

Shttp://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
lnp_spiking_neurons/
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Dynamic and Stochastic Models
for Visual Stimulation

In this chapter, we give a mathematical description of a dynamic texture
model specifically crafted to probe vision. It is first derived in a set of axiomatic
steps constrained by biological plausibility. We then detail contributions by
detailing three equivalent formulations of the Gaussian dynamic texture model.
First, the composite dynamic textures are constructed by the random aggrega-
tion of warped patterns, which can be viewed as 3D Gaussian fields. Second,
these textures are cast as solutions to a stochastic partial differential equation
(sPDE). This essential step enables real time, on-the-fly, texture synthesis us-
ing time-discretized auto-regressive processes. Finally, we use the stochastic
differential equation formulation from which the parameters are inferred from
texture examples, in order to perform synthesis.
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1 Introduction
1.1 Dynamic Texture Synthesis.

The model defined in (4.2) is quite simplistic with respect to the com-
plexity of natural scenes. It is therefore useful here to discuss solutions to
generative model problems previously proposed by texture synthesis methods
in the computer vision and computer graphics community. Indeed, the liter-
ature on the subject of static textures synthesis is abundant (eg [208]). Of
particular interest for us is the work of Galerne et al. [64, 63|, which pro-
poses a stationary Gaussian model restricted to static textures and provides
an equivalent generative model based on Poisson shot noise. Realistic dynamic
texture models are however less studied, and the most prominent method is
the non-parametric Gaussian auto-regressive (AR) framework of Doretto [45],
which has been thoroughly explored [213, 218, 35, 54, 91, 1]. These works
generally consists in finding an appropriate low-dimensional feature space in
which an AR process models the dynamics. Many of these approaches focus on
the feature space where decomposition such as Singular Value Decomposition
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(SVD) and its Higher Order version (HOSVD) [45, 35] has shown their effi-
ciency. In [1], the feature space is the Fourier frequency, and the AR recursion
is carried over independently over each frequency, which defines the space-time
stationary processes. A similar approach is used in [213] to compute the av-
erage of several dynamic texture models. Properties of these AR models are
studied by Hyndman [91] where they found that higher order AR processes
are able to capture perceptible temporal features. A different approach aims
at learning the manifold structure of a given dynamic texture [110] while yet
another deals with motion statistics [157]. All these works have in common the
will to reproducing the natural spatio-temporal behavior of dynamic textures
with rigorous mathematical tools. In addition, our concern is to design a dy-
namic texture model that is precisely parametrized for experimental purposes
in visual neurosciences and psychophysics.

1.2 Stochastic Differential Equations (sODE and sPDE).

Stochastic Ordinary differential equation (SODE) and their higher dimen-
sional counter-parts, stochastic partial differential equation (sPDE) can be
viewed as continuous-time versions of these 1-D or higher dimensional auto-
regressive (AR) models. Conversely, AR processes can therefore also be used
to compute numerical solutions to these sPDE using finite difference approx-
imations of time derivatives. Informally, these equations can be understood
as partial differential equations perturbed by a random noise. The theoreti-
cal and numerical study of these sDE is of fundamental interest in fields as
diverse as physics and chemistry [196], finance [49] or neuroscience [56]. They
allow the dynamic study of complex, irregular and random phenomena such
as particle interactions, stocks’ or savings’ prices, or ensembles of neurons. In
psychophysics, SODE have been used to model decision making tasks in which
the stochastic variable represents some accumulation of knowledge until the
decision is taken, thus providing detailed information about predicted response
times [181]. In imaging sciences, sSPDE with sparse non-Gaussian driving noise
has been proposed as model of natural signals and images [192]. As described
above, the simple motion energy model (4.3) can similarly be demonstrated to
rely on the sPDE (4.2) stochastic model of visual sensory input. This has not
previously been presented in a formal way in the literature. One key goal of the
current work is to comprehensively describe a parametric family of Gaussian
sPDEs which generalize the modeling of moving images (and the correspond-
ing synthesis of visual stimulation) and thus allow for a fine-grained systematic
exploration of visual neurosciences and psychophysics.
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1.3 Contributions

In this chapter, we attempt to engender a better understanding of hu-
man perception by improving generative models for dynamic texture synthesis.
From that perspective, we motivate the generation of optimal visual stimula-
tion within a stationary Gaussian dynamic texture model. We develop our
current model by extending, mathematically detailing and robustly testing
previously introduced dynamic noise textures [169, 178, 194] coined “Motion
Clouds” (MC or MCs). Our first contribution is a complete axiomatic deriva-
tion of the model, seen as a shot noise aggregation of dynamically warped
“textons”. Within our generative model, the parameters correspond to av-
erage spatial and temporal transformations (ie zoom, orientation and trans-
lation speed) and associated standard deviations of random fluctuations, as
illustrated in Figure 2.1, with respect to external (objects) and internal (ob-
servers) movements. A second contribution is the explicit demonstration of
the equivalence between this model and a class of linear sPDEs. This shows
that our model is a generalization of the well-known luminance conservation
equation 4.2. This sPDE formulation has two chief advantages: it allows for a
real-time synthesis using an AR recurrence and allows one to recast the log-
likelihood of the model as a generalization of the classical motion energy model,
which in turn is crucial to allow for Bayesian modeling of perceptual biases.
Finally, we provide the source code! of this model of dynamic textures as an
open source software development and reproducible research, which is crucial
to advance the state of the art of real time stimulation for neurosciences. Some
additional examples of MCs and texture synthesis from examples are available
online?.

2 Axiomatic Construction of the Dynamic
Textures

Efficient dynamic textures to probe visual perception should be naturalistic
yet low-dimensional parametric stochastic models. They should embed mean-
ingful physical parameters (such as the effect of head rotations or whole-field
scene movements, see Figure 2.1) into the local or global dependencies (e.g. the
covariance) of the random field. In the luminance conservation model (4.2),
the generative model is parameterized by a spatio-temporal coupling encoded
in the covariance ¥ of the driving noise and the motion flow vy. This localized
space-time coupling (e.g. the covariance if one restricts its attention to Gaus-

'http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
motion_clouds
’https://jonathanvacher.github.io/mc_examples.html
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sian fields) is essential as it quantifies the extent of the spatial integration area
as well as the integration dynamics. This is an important issue in neuroscience
when considering the implementation of spatio-temporal integration mecha-
nisms from very small to very large scales i.e. going from local to global visual
features [162, 17, 42]. In particular, this is crucial to understand the modular
sensitivity within the different lower visual areas. In primates for instance,
this is evident in the range of spatio-temporal scales of selectivity for generally
smaller features observed in the Primary Visual Cortex (V1) and in contrast,
ascending the processing hierarchy, for larger features in Middle Temple area
(MT). By varying the frequency bandwidth of such dynamic textures, distinct
mechanisms for perception and action have been identified in humans [178].
Our goal here is to develop a principled, axiomatic definition of these dynamic
textures.

2.1 From Shot Noise to Motion Clouds

We propose a mathematically-sound derivation of a general parametric
model of dynamic textures. This model is defined by aggregation, through
summation, of a basic spatial “texton” template g(x). The summation reflects
a transparency hypothesis, which has been adopted for instance in [64]. While
one could argue that this hypothesis is overly simplistic and does not model
occlusions or edges, it leads to a tractable framework of stationary Gaussian
textures, which has proved useful to model static micro-textures [64] and dy-
namic natural phenomena [213]. The simplicity of this framework allows for a
fine tuning of frequency-based (Fourier) parameterization, which is desirable
for the interpretation of psychophysical experiments with respect to underlying
spatio-temporal neural sensitivity.

We define a random field as

def.

I (1) % S glea (@ — X, — Vi) (2.1)

peN

where ¢, : R? — R? is a planar warping parameterized by a finite dimensional
vector a. The parameters (X, V,, A,)pen are independent and identically dis-
tributed random vectors. They account for the variability in the position of
objects or observers and their speed, thus mimicking natural motions in an
ambient scene. The set of translations (X,)yen is a 2-D Poisson point pro-
cess of intensity A > 0. This means that, defining for any measurable A,
C(A) = t{p; X, € A}, one has that C'(A) has a Poisson distribution with
mean A|A| (where |A| is the measure of A) and C(A) is independent of C(B)
if ANB=0.
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Figure 2.1: Parameterization of the class of Motion Clouds stim-
uli. The illustration relates the parametric changes in MC with
real world (top row) and observer (second row) movements. (A)
Orientation changes resulting in scene rotation are parameterized
through 6 as shown in the bottom row where a horizontal a and
obliquely oriented b MC are compared. (B) Zoom movements, ei-
ther from scene looming or observer movements in depth, are char-
acterized by scale changes reflected by a scale or frequency term
z shown for a larger or closer object b compared to more distant
a. (C) Translational movements in the scene characterized by V/
using the same formulation for static (a) slow (b) and fast moving
MC, with the variability in these speeds quantified by oy. (£ and
7) in the third row are the spatial and temporal frequency scale
parameters. The development of this formulation is detailed in the
text.

Intuitively, this model (2.1) corresponds to a dense mixing of stereotyped,
static, textons as in [64]. The originality is two-fold. First, the components of
this mixing are derived from the texton by visual transformations ¢4, which
may correspond to arbitrary transformations such as zooms or rotations, illus-
trated in Figure 1. Second, we explicitly model the motion (position X, and
speed V})) of each individual texton.

In the following, we denote P4 the common distribution of the i.i.d. (A4,),,
and we denote Py the distribution in R? of the speed vectors (V,),. Section 2.3
instantiates this model and proposes canonical choices for these variabilities.

The following result shows that the model (2.1) converges for high point
density A — +00 to a stationary Gaussian field and gives the parameterization
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of the covariance. Its proof follows from a specialization of [63, Theorem 3.1]
to our setting.

Proposition 1. I, is stationary with bounded second order moments. Its
covariance is X(x,t, 2’ ') = v(x — ', t — ') where v satisfies

V(z,t) €R®  y(w,t) = ///]R2 co(a(x — vt))Py(v)Pa(a)drda (2.2)

where ¢, = g * g 1is the auto-correlation of g. When A — 400, it converges
(in the sense of finite dimensional distributions) toward a stationary Gaussian
field I of zero mean and covariance ..

This proposition enables us to give a precise definition of a MC.

Definition 1. A Motion Cloud (MC) is a stationary Gaussian field whose
covariance is given by (2.2).

Note that, following [65], the convergence result of Proposition 1 could be
used in practice to simulate a Motion Cloud I using a high but finite value of
A in order to generate a realization of I,. We do not use this approach, and
rather rely on the sPDE characterization proved in Section 3, which is well
tailored for an accurate and computationally efficient dynamic synthesis.

2.2 Toward “Motion Clouds” for Experimental Purposes

The previous Section provides a theoretical definition of MC 1 that is char-
acterized by ¢, ¢4, P4 and Py,. The high dimension of these parameters has to
be reduced for experimental purposes, therefore it is essential to specify these
parameters to have a better control of the covariance . We further study this
model in the specific case where the warpings ¢, are rotations and scalings
(see Figure 2.1). They account for the characteristic orientations and sizes (or
spatial scales) in a scene with respect to the observer. We thus set

Va=(0,2) € [-m,7m) xR%, @u(z) = 2R_(2),

where Ry is the planar rotation of angle . We now give some physical and
biological motivation underlying our particular choice for the distributions of
the parameters. We assume that the distributions P, and Pg of spatial scales
z and orientations 6, respectively (see Figure 1), are independent and have
densities, thus considering

Va=(0,z2) € [—m,m) xR}, Pala)=Pz(2)Po().
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The speed vector v is assumed to be randomly fluctuating around a central
speed vy € R?, so that

Vv e Rz, ]PV(V) = P"Vﬂ)g"(”’/ — U()”). (23)

In order to obtain “optimal” responses to the stimulation (as advocated by [217])
and based on the structure of a standard receptive field of V1, it makes sense
to define the texton to be equal to an oriented Gabor which acts as the generic
atom

() = - cos ((a, &) e~ F P 24)

where o is the inverse standard deviation and &, € R? is the spatial frequency.
Since the orientation and scale of the texton is handled by the (6, z) parameters,
we can impose without loss of generality the normalization &, = (1,0). In the
special case where 0 — 0, g, is a grating of frequency &y, and the image [
is a dense mixture of drifting gratings, whose power-spectrum has a closed
form expression detailed in Proposition 2. It is fully parameterized by the
distributions (Pz,Pg,Py) and the central frequency and speed (&y,v). Note
that it is possible to consider any arbitrary textons g, which would give rise to
more complicated parameterizations for the power spectrum ¢, but we decided
here to stick to the simple asymptotic case of gratings.

Proposition 2. Consider the texton g, , when o — 0, the Gaussian field
I,(x,t) defined in Proposition 1 converges toward a stationary Gaussian field
of covariance having the power-spectrum

Pz (1€l

V(€7 € R xR A(67) = o) w)

where the linear transform L is such that

VueR, L(f der/f —u/ cos(p))de
and € = (J€] cos(Z€), [€] sin(€)).

Proof. We recall the expression (2.2) of the covariance

V(z,t) €R®, (1) ///R (az = )Py ()Pa(a)drda (2.6)

We denote (6, ¢,z,r) € I' = [—m,m)* x R% the set of parameters. Denoting
h(z,t) = cg, (2Rg(xz — vt)), one has, in the sense of distributions (taking the
Fourier transform with respect to (z,t))

ﬁ(ﬁ,T} = 2 20,(27 Ry(€))?00(v) where Q= {l/ ER*; 74+ (& V) = 0} )
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Taking the Fourier transform of (2.6) and using this computation, the result
is that 4(&, 7) is equal to

/]F 190 (2 Ro () 2 5oty + 1(cos(), sin(9))Pe (0P (2)Bpy—uy () dfdzdrde.

22
Therefore when o — 0, one has in the sense of distributions

97 (27 Ro()) " — 05(0,2)  where B ={(0,2); 2" Ro(&) = &0} -
Observing that do(v)dp (0, z) = dc(0, z,7) where

C = {((9 z 7”) C oy = ||£” 0=s6 r=— T B ||U0||COS(Z§—4UO)}

[€] cos(£8 — ¢) cos(ZE — o)
one obtains the desired formula. O

Remark 1. Note that the envelope of 4 as defined in (2.5) is constrained to
lie within a cone in the spatio-temporal domain with the apex at zero. This
15 an important and novel contribution when compared to a classical Gabor.
In particular, the bandwidth is then constant around the speed plane or the
orientation line with respect to spatial frequency. Basing the generation of
the textures on all possible translations, rotations and zooms, we thus provide
a principled approach to show that bandwidth should be parametrically scaled
with spatial frequency to provide a better model of moving textures.

2.3 Biologically-inspired Parameter Distributions

We now give meaningful specialization for the probability distributions Py,
Pe, and Py _,,, which are inspired by some known scaling properties of the
visual transformations relevant to dynamic scene perception.

Parameterization of P;. First, small, centered, linear movements of the
observer along the axis of view (orthogonal to the plane of the scene) generate
centered planar zooms of the image. From the linear modeling of the observer’s
displacement and the subsequent multiplicative nature of zoom, scaling should
follow a Weber-Fechner law stating that subjective sensation when quantified
is proportional to the logarithm of stimulus intensity. Thus, we choose the
scaling z drawn from a log-normal distribution Pz, defined in (2.7). The
bandwidth o, quantifies the variance in the amplitude of zooms of individual
textons relative to the characteristic scale z5. We thus define

\?
Zo In <%>

P — —— 2.
2(2) o ;P 2In(14+46%) |’ 27
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where o means that we ignored the normalizing constant.

In practice, the parameters (Zy, 5z) are not convenient to manipulate be-
cause they have no “physical meaning”. Instead, we use another, more intu-
itive, parametrization using mode and variance (zg, 0z)

20 = argmax, Py(2) and 0% = E(Z2) —E(Z)%

Once (zg,07) are fixed, it is easy to compute the corresponding (Zy,5z) to
plug into expression (2.7), simply by solving a polynomial equation (2.8), as
detailed in the following proposition.

Proposition 3. One has

20

_ 2 _ s =9 ~2
=1362 and oy = Z505(1 +3).

20

Such formula can be inverted by finding the unique positive root of

2

GL(1462) — ‘:—Z =0 and Z = 2(1+52). (2.8)
0

Proof. The primary relations are established using standard calculations from
the probability density function Py [97]. The relations (2.8) follow standard
arithmetic.

O

Parametrization of P, by mode and octave bandwidth Differences in
perception are often more relevant in a log domain, therefore it is useful to
parametrize P by its mode 2, and octave bandwidth By which is defined by

In (Z—+)
(g‘ Z_

In(2)

Z

where (z_,z,) are respectively the successive half-power cutoff frequencies,
that is, which verify Pz (z_) =Pz(zy) = w with z_ < z,.

Proposition 4. One has

81In(1+ %) . In(2)
z In(2) and conversely Gz exp | —— Bz (2.9)
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Proof. Using the fact that Pz(z_) = Pz(24) = w, one shows that X, =

In (%) and X_ = In (2—;) are the two roots of the following polynomial (with

X_ < X,).
1
Q(X)=X*+2In(1+5%)X —2In(2)In(1 +5%) + 3 In(1+67%)

This allows to compute By. O

Through Proposition 4 it is possible to obtain the parametrization of band-
width prevalent in manipulations used in visual psychophysics experiments.

Parameterization of Pg. Similarly, the texture is perturbed by variations
in the global angle # of the scene: for instance, the head of the observer may
roll slightly around its normal position. The von-Mises distribution — as a good
approximation of the warped Gaussian distribution around the unit circle — is
an adapted choice for the distribution of # with mean 6, and bandwidth og,

cos(2(6—6p))

Po(f) xe & (2.10)

Parameterization of Pjy_,,;. We may similarly consider that the position
of the observer is variable in time. On first order approximation, movements
perpendicular to the axis of view dominate, generating random perturbations
to the global translation vy of the image at speed v — vy € R2. These per-
turbations are for instance described by a Gaussian random walk: take for
instance tremors, which are constantly jittering, small (< 1 deg) movements
of the eye. This justifies the choice of a radial distribution (2.3) for P,. This
radial distribution Py _,, is thus selected as a bell-shaped function of width
oy, and we choose here a Gaussian function for simplicity

2

Py oy (1) x € 20y, (2.11)

Note that, as detailed in Section 3.2 a slightly different bell-function (with a
more complicated expression) should be used to obtain an exact equivalence
with the sPDE discretization.

Putting everything together. Plugging these expressions (2.7), (2.10)
and (2.11) into the definition (2.5) of the power spectrum of the motion cloud,
one obtains a parameterization which shares similarities with the one originally
introduced in [178].
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Figure 2.2: Graphical representation of the covariance v (left) —
note the cone-like shape of the envelopes— and an example of syn-
thesized dynamics for narrow-band and broad-band Motion Clouds
(right).

The following table recaps the parameters of the biologically-inpired MC
models. It is composed of the central parameters (vg) for the speed, ()
for orientation and (z) for the frequency modulus, as well as corresponding
“dispersion” parameters (oy,0g, Bz) which account for the typical deviation
around these centers.

Speed | Freq. orient. | Freq. amplitude
(mean, dispersion) | (vo, ov) (6o, 00) (20, B7)

Figure 2.2 shows graphically the influence of these parameters on the shape of
the MC power spectrum #.

We show in Figure 2.3 two examples of such stimuli for different spatial
frequency bandwidths. In particular, by tuning this bandwidth, in previous
studies it has been possible to dissociate its respective role in action and per-
ception [178]. Using this formulation to extend the study of visual perception
to other dimensions, such as orientation or speed bandwidths, should provide
a means to systematically titrate their respective role in motion integration
and obtain essential novel data.

3 sPDE Formulation and Synthesis Algorithm

In this section, we show that the MC model (Definition 1) can equally be
described as the stationary solution of a stochastic partial differential equa-
tion (sPDE). This sPDE formulation is important since we aim to deal with
dynamic stimulation, which should be described by a causal equation which
is local in time. This is crucial for numerical simulations, since this allows
us to perform real-time synthesis of stimuli using an auto-regressive time dis-
cretization. This is a significant departure from previous Fourier-based imple-
mentation of dynamic stimulation [169, 178]. Moreover, this is also important
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oz =0.25 oz = 0.0625

Figure 2.3: Comparison of the broadband (left) vs. a narrowband
(right) stimulus. Two instances (left and right columns) of two
motions clouds having the same parameters except the frequency
bandwidths oz, which were different. The top column displays iso-
surfaces of 4 in the form of enclosing volumes at different energy
values with respect to the peak amplitude of the Fourier spectrum.
The bottom column shows an isometric view of the faces of a movie
cube, which is a realization of the random field I. The first frame
of the movie lies on the (z1,x2,t = 0) spatial plane. The Motion
Cloud with the broadest bandwidth is often thought to best repre-
sent stereotyped natural stimuli, since, it similarly contains a broad
range of frequency components.
to simplify the application of MC inside a Bayesian model of psychophysical
experiments (see Chapters II and III). In particular, the derivation of an equiv-
alent sSPDE model exploits a spectral formulation of MCs as Gaussian Random
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fields. The full proof along with the synthesis algorithm follows.

To be mathematically correct, all the sPDE in this article are written in
the sense of generalized stochastic processes (GSP) which are to stochastic
processes what generalized functions are to functions. This allows the consid-
eration of linear transformations of stochastic processes like differentiation or
Fourier transforms as for generalized functions. We refer to [193] for a recent
use of GSP and to [69] for the foundation of the theory. The connection be-
tween GSP and stochastic processes has been described by previous work [122]

3.1 Dynamic Textures as Solutions of sPDE

In the following, we first restrict our attention to the case vy = 0 in order
to define a simple sPDE, and then detail the general case.

sPDE without global translation, vy = 0. We first give the definition of
a sPDE cloud I making use of another cloud I, without translation speed.

Definition 2. For a given stationary spatial covariance o,,, 2-D spatial filters
(o, B) and a translation speed vy € R?, a sPDE cloud is defined as

I(z,t) = Iy(z — vot, t). (3.1)
where Iy is a stationary Gaussian field satisfying for all (z,t)

ow aer. 021 ol

D([O) = W where D([o) = W + ax E + ﬁ*[o (32)
where the driving noise %—Vf is white in time (i.e. corresponding to the tem-

poral derivative of a Brownian motion in time) and has the spatial stationary
covariance oy and * is the spatial convolution operator.

The random field Iy solving (3.2) thus corresponds to a sPDE cloud with
no translation speed, vg = 0. The filters («, ) parameterizing this sSPDE cloud
aim at enforcing an additional correlation in time of the model. Section 3.2
explains how to choose (o, 5,0 ) so that these SPDE clouds, which are sta-
tionary solutions of (3.2), have the power spectrum given in (2.5) (in the case
that vy = 0), i.e. are motion clouds.

Defining a causal equation that is local in time is crucial for numerical
simulation (as explained in Section 3.3) but also to simplify the application of
MC inside a Bayesian model of psychophysical experiments (see Section 3).
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The sPDE equation (3.2) corresponds to a set of independent stochastic
ODEs over the spatial Fourier domain, which reads, for each frequency &,

2A [ ~ A
vier, ZED a0 | g n = awie)

W(s.t) (3.3)

where fo(§ ,t) denotes the Fourier transform with respect to the spatial variable
x only. The Fourier transform of the stationary spatial covariance oy (£)? is
the spatial power spectrum of %—‘f and W (&, t+6t)—W (£, t) ~ CN(0, 0t) where
CN (0, 6t) denotes the complex normal distribution of variance &t ie W (€, t +
5t) — W (£, t) is a white noise in space and time. While the equation (3.3)
should hold for all time t € R, the construction of stationary solutions (hence
sPDE clouds) of this equation is obtained by solving the sODE (3.3) forward
for time t > ty with arbitrary boundary conditions at time ¢t = t;, and letting
to — —oo. This is consistent with the numerical scheme detailed in Section 3.3.

While it is beyond the scope of this paper to study theoretically the equa-
tion (3.2), one can show the existence and uniqueness results of stationary
solutions for this class of sSPDE under stability conditions on the filers («, )
(see for instance [192, 25]) that are automatically satisfied for the particular
case of Section 3.2.

Theorem 1. If (d,B) are non-negative and % € L', then Equation (3.2) has

a unique causal and stationary solution, i.e. it defines uniquely the distribution
of a sPDE cloud.

Proof. Consider (3.3), the Fourier transform of (3.2) which has causal and
stationary solutions (see the general case of Levy-driven sPDE, Theorem 3.3
in [25]). Hence ‘;—Vg € L', these solutions have an integrable spatial power
spectrum. Then, one could take their inverse Fourier transform and get the
solution which is unique by construction. O]

Remark 2. There are different ways to define uniqueness of solution for
sPDE. In Theorem 1, uniqueness has to be understood in terms of sample path,
meaning that two solutions (X, X) of Equation (3.2) verifies P(Vt € R, X; =
Xt) = 1. This notion of uniqueness is strong and it implies uniqueness in dis-
tribution meaning that X and X have the same law.

sPDE with global translation. The easiest way to define and synthe-
size a sSPDE cloud I with non-zero translation speed v is to first define I
solving (3.3) and then translating it with constant speed using (3.1). An al-
ternative way is to derive the sSPDE satisfied by I, as detailed in the following
proposition. This is useful to define motion energy in Section 3.
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Proposition 5. The MCs noted I with parameters («, 3, 0,) and translation
speed vy are the stationary solutions of the sPDE

ow
ot

where D is defined in (3.2), 0*I is the Hessian of I (second order spatial
derivative), where

D(I) +(G(1), vo) + (H(I)vo, vo) = (3.4)

G(I) = axV,I+20,V,] and H(I)= VI, (3.5)

Proof. This follows by computing the derivative in time of the warping equa-
tion (3.1), denoting y = x + vot

at[O(‘ra t) = at[(yv t) + <VI(y7 t)? U0>7
015210 ($’ t) = a§[<y7 t) + 2<atv1(y7 t)a UO> + <agl(y7 t)UOa UO>

and plugging this into (3.2) after remarking that the distribution of %7 (x,t)
is the same as the distribution of 2 (z — vot, t). O

3.2 Equivalence between the spectral and sPDE formu-
lations

Since both MCs and sPDE clouds are obtained by a uniform translation
with speed vg of a motionless cloud, we can restrict without loss of generality
our analysis to the case vy = 0.

In order to relate MCs to sPDE clouds, equation (3.3) makes explicit that
the functions (&(€), 5(€)) should be chosen in order for the temporal covari-
ance of the resulting process to be equal (or at least to approximate well) the
temporal covariance appearing in (2.5). This covariance should be localized
around 0 and be non-oscillating. It thus makes sense to constrain (&(€), 3(€))
for the corresponding ODE (3.3) to be critically damped, which corresponds
to imposing the following relationship

1
v3(£)

for some relaxation step size v(£). The model is thus solely parameterized by
the noise variance oy (§) and the characteristic time 2(§).

The following proposition shows that the sPDE cloud model (3.2) and the
motion cloud model (2.5) are identical for an appropriate choice of function

and B(€) =

Pyv—vo-
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Proposition 6. When considering
Vr >0, Py (r)=L""(h)(r/oy) where h(u)=(1+u*)"> (3.6)

where L is defined in (2.5), equation (3.2) admits a solution I which is a
stationary Gaussian field with power spectrum (2.5) when setting
9 4 . 1

Proof. For this proof, we denote I™° the motion cloud defined by (2.5), and [
a stationary solution of the sPDE defined by (3.2) which exists according to
Theorem 1 because 6%,0° € L', indeed P and Pg are probability distributions
and & — " §"2 does not change the continuity at 0. We aim to show that under
the specification (3.7), they have the same covariance. This is equivalent to
showing that I}'°(x,t) = IM°(x + ct, t) has the same covariance as Iy. For any
fixed &, equation (3.3) admits a unique stationary solution Iy(¢,-) (Theorem
1) which is a stationary Gaussian process of zero mean and with a covariance
which is 6%, (&)r+T where r is the impulse response (i.e. taking formally a = §)
of the ODE " 4+ 21 /u + r/u* = a where we denoted u = £(£). This impulse
response can be shown to be r(t) = te™"/*“Ig+(t). The covariance of Iy(€, )
is thus, after some computation, equal to 63,(&)r x 7 = 63,(€)h(-/u) where
h(t) = (1 +|t|)e~*l. Taking the Fourier transform of this equality, the power
spectrum Ao of Iy thus reads

(6. 7) = ROHEPRHEr) where i(s) =

(3.7)

1
(1+ s%)?
and where it should be noted that this function A is the same as the one

introduced in (3.6). The covariance yM° of IM° and ' of I)'° are related by
the relation

0 (&) =77 T = (& w)) =

(3.8)

1 T
P AlePe (0 (~25g ). @9

where we used the expression (2.5) for 4M° and the value of L(Py_,|) given
by (3.6). Condition (3.7) guarantees that expression (3.8) and (3.9) coincide,
and thus 4y = A'¢. m

Expression for Pjy_,,. Equation (3.6) states that in order to obtain a
perfect equivalence between the MC defined by (2.5) and by (3.2), the function
L71(h) has to be well-defined. It means we need to compute the inverse of the
transform of the linear operator £

VueR, L(f —2/ f(=u/cos(p))dp
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to the function h. The following proposition gives a closed-form expression
for this function, and shows in particular that it is a function in L'(R), i.e.
it has a finite integral, which can be normalized to unity to define a density
distribution. Figure 3.1 shows a graphical display of that distribution.

Proposition 7. One has

. 2= u?(u? + 4)(log(u) — log(vu2 + 1+ 1))
L7(h)(u) = (1 + u?)2 - 7(u? 4 1)5/2 :

In particular, one has

CU0) =2 and L£7N(B)(w) ~

— when u© — +00.
T

2mus

Proof. The variable substitution = cos(¢) can be used to rewrite (3.2) as

T dx
V1i—22 v

In such a form, we recognize a Mellin convolution which could be inverted by
the use of Mellin convolution table [137]. O

u

VueR, L(h)(u) :2/01h<——>

X

Figure 3.1: Functions h and £71(h).
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3.3 AR(2) Discretization of the sPDE

Most previous works for Gaussian texture synthesis (such as [64] for static
and [169, 178] for dynamic textures) have used a global Fourier-based approach
and the explicit power spectrum expression (2.5). The main drawbacks of such
an approach are: (i) it introduces an artificial periodicity in time and thus can
only be used to synthesize a finite number of frames; (ii) these frames must be
synthesized at once, before the stimulation, which prevents real-time synthesis;
(iii) the discrete computational grid may introduce artifacts, in particular when
one of the included frequencies is of the order of the discretization step or when
a bandwidth is to small.

To address these issues, we follow the previous works of [45, 213] and make
use of an auto-regressive (AR) discretization of the sPDE (3.2). In contrast
with these previous works, we use a second order AR(2) regression (in place
of a first order AR(1) model). Using higher order recursions is crucial to make
the output consistent with the continuous formulation (3.2). Indeed, numer-
ical simulations show that AR(1) iterations lead to unacceptable temporal
artifacts: in particular, the time correlation of AR(1) random fields typically
decays too fast in time.

AR(2) synthesis without global translation, vy = 0. The discretization

computes a (possibly infinite) discrete set of 2-D frames (Ié@) >4, Separated by
a time step A, and we approach at time t = ¢A the derivatives as

Io(- _ 2Io(- _
0 oa(t, t) . A=Y — 1¥Y)  and 0 aot(z,t) ~ A2 4 D _op0)
and oW (1)
OWED A1 _ e
BT (W w )

which leads to the following explicit recursion V¢ > £,
I = 20— Aa—A2B) 1" + (=0 +Aa)« ISV + AWO —w D)y (3.10)

where ¢ is the 2-D Dirac distribution and where (W — W), are i.i.d.
2-D Gaussian field with distribution A(0, Aoy ), and (I8, 1"V} can be
arbitrary initialized.

One can show that when 45 — —oo (to allow for a long enough “warmup”
phase to reach approximate time-stationarity) and A — 0, then & defined
by interpolating I3 (-, Af) = I¥) converges (in the sense of finite dimensional
distributions) toward a solution Iy of the sPDE (3.2). Here we choose to use
the standard finite difference however we refer to [191, 26] for more advanced
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discretization. We implemented the recursion (3.10) by computing the 2-D
convolutions with FF'T’s on a GPU, which allows us to generate high resolution
videos in real time, without the need to explicitly store the synthesized video.

AR(2) synthesis with global translation. The easiest way to approxi-
mate a sPDE cloud using an AR(2) recursion is to simply apply formula (3.1)

to (I(()Z))g as defined in (3.10), that is, to define
1O(2) < 10z — vy AL).

A second alternative approach would be to directly discretized the sPDE (3.4).
We did not use this approach because it requires the discretization of spatial
differential operators G and H, and is hence less stable. A third, somehow
hybrid, approach, is to apply the spatial translations to the AR(2) recursion,
and define the following recursion

I = Uy 5 1O + V5 17D + AW — 1), (3.11)
def. - o 2
where sy det. (20 = Ao =A%) 0-au; (3.12)
V’Uo = <—6 + AO[) * 6—2A'L)07

where Js indicates the Dirac at location s, so that (65 x [)(z) = I(x — s)
implements the translation by s. Numerically, it is possible to implement (3.11)
over the Fourier domain,

~

D) = U (OT(€) + Vi (TV(E) + A () (09(€) — 7V (€)).

Ung(€) = (2 = AG(E) — A2B(€))e s,
where { Qoo (€) E (—1 + AG(E))e 20,

and where w(® — w*=Y is a 2-D white noise with distribution A(0, A).

4 Synthesis from Examples

When developing a generative model of dynamic textures, it is important to
quantify how well it is able to synthesize real dynamic textures. In this section,
we present a way to perform dynamic textures synthesis from examples based
on the sPDE model. Although the formulation is continuous, the approach
is similar to the several AR methods presented in Section 1.1. However, as a
continuous model the inference of sPDE coefficients can be improved, see [26].
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4.1 sPDE with convolution coefficients

First let 7= R?/Z? Then, for all (f,g) € F(T? C)? where F(T? C) is
the space of functions from 72 to C, we denote Py (X) = X*+ fX +g. We
now define the stability set

8 ={(f.g9)lVa € T,V= € P}, ({0}), R(z) < 0}. (4.1)

The set S is the space of function that ensure the stability of solutions of a
set of second order linear stochastic equations. One must think to the simple
second order linear non-stochastic case where the stability is ensured when the
eigenvalues of the linear operator have negative real part. We consider the
second order linear sSPDE with convolutive coefficients as in Equation (3.2):

O*F 8 ow
Lor _ 4.2
g T g T ot (4.2)
where x is the spatial convolution and (&, B) € S. The source term %—Vf is

a Gaussian process white in time and with spatial stationary covariance oy .
As we work on the torus T. We do not use space Fourier transform but a
space Karhunen-Loeve representation of the Gaussian process. The goal is the
same as using the Fourier transform, it allows to rewrite Equation (4.2) in the
frequency domain.

Proposition 8. Karhunen-Loeve Transform of a Gaussian Process Let N be
a Gaussian process white in time and with spatial stationary covariance oy .
Then there exist N,

VteR, N(z,t)= Z N(n,t)exp (2im(n, z))
nez?
where N(n,t) ~ CN(0,6w(n)) and CN (0, 6w (n)) denotes the complex normal

distribution of variance oy (n).

Proof. See [207] for details. O

Applying the Karhunen-Loeéve transform to Equation (4.2) is useful because
it “diagonalizes” the convolution operators. The Karhunen-Loeve transform
of the solution of Equation (4.2) can therefore be obtained in the frequency
domain by solving a set of second linear stochastic differential equations. We
have the following proposition.

Proposition 9. For all n € 72, F(n,-) is solution of

PF(n,t)  OF(n,t) - oW (n,t)
52 + Y + fF(n,t) = 5

where N(n,t) ~ CN (0, 6w (n)).

vVt eR,

(4.3)
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Proof. The proof is the direct application of the Karhunen-Loeve transform
and use the linearity of Equation (4.2). O

It useful to derive the probability distribution at a fixed time and frequency
(t,n) e R x Z.

Proposition 10. The solution F(n,t) has the following probability density
function:

where Lo g(F)(n,t) = 2L 4 5(n)2L0D 4 B(n) F(n, t).

Proof. As an invertible linear operator £, s allows to express F (n,t) as a linear

OW (n,t)
f ot

function o which gives the expected distribution. O

The probability density function expressed in Proposition 10 allows to
adopt a maximum likelihood estimation strategy. The log-likelihood and the
parameters (G, Bin, C '») that minimize it are summarized in the following
proposition.

Proposition 11. Assume that we have samples (F(n,t))(n et xy,, Where
A ’ T
Qn ={1,...,N}* and Qn, = {1,..., Nr}. The log-likelihood writes

@ p.C) = 3 Y o Mm(m)\ + 5105 (C(n)

teQNT TLGQN

The triplet (G, B, C ') that minimizes | verify

Wn ey, AM) ( Z:EZ? ) — b(n)

where ¥Yn € QN,

92F (nt)
E: a2

teQ teQ
A(n) = N N

S Fn 2o 37 ‘F(n,t)‘

teEQN, tEQN,

8F(n,
QD (1, t)
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and
OF (n,t) 2 F (n,t)
ot ot?

b(n) _ tEQNT R
_ Z F(n,t)%

tEQNT

The parameter C. thus writes

~ 1 A 2
ey, Cul) =57 D [Lonsn(F)n.1)

tEQNT

Thus, we can implement a texture synthesis algorithm from examples based
on Proposition 11.

4.2 Examples of Synthesis

We display here some examples of dynamic textures. Videos are available
online!. We detail below the different steps of the algorithm. In particular,
we follow the preprocessing used in [23]: we perform color synthesis by using
a PCA on the RGB color channels and we handle edges by using the “Peri-
odic+Smooth” decomposition [127].

Algorithm Assume that we have a dynamic texture sample (F(,1)) @ )ean x Ny
projected on the first component of the PCA color space.

e For each time ¢ € Qy,., compute the 2D Fast Fourier Transform (fft)
F(7t)) of F(7t>7

e For each time ¢t € Qy,., compute the fft of the periodic component F (1))
of F(a t))7

e Use Proposition 11 to infer (é,, Bin,s é’m) (time derivative are approxi-
mated by finite differences),

e Use the algorithm describe in Section 3.3 to perform synthesis.

In Figure 4.1, we show frames extracted from natural texture examples wvs
frames extracted from synthesized textures. We observe that the model is
not able to reproduce spatial edges and sharp contrasts unless they arise from
approximate spatial periodicity. This is not surprising as our model suppose

lhttps://jonathanvacher.github.io/mc_examples.html
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that textures are Gaussian and stationary which is generally not verified by
natural textures. This remark is also valid for the temporal dynamic.
Our code is commented and available online?.

5 Conclusion

We have proposed and detailed a generative model of dynamic textures
based on a formalization of small perturbations from the observer’s point of
view during parameterized rotations, zooms and translations. We connected
these transformations to descriptions of ecologically motivated movements of
both observers and the dynamic world. The fast synthesis of naturalistic tex-
tures optimized to probe motion perception was then demonstrated, through
fast GPU implementations applying auto-regression techniques with much po-
tential for future experiments. Indeed, even if there exists some mathematical
issues (delay,...) that we do not mention in details, the real-time synthesis
algorithm allows to modify the model parameters over time (ze the covariance
can be time dependent). We can imagine in a the future to control delay and
to modify the parameters in real time to maximize the responses of neurons.
This extends previous work from [169] by providing an axiomatic formulation.
Finally, we detail a way to perform texture synthesis by maximum likelihood
estimation of the sPDE coefficients. Such a synthesis algorithm can be useful
for visual stimulation as it allows one to run experimental protocols that test
natural dynamic textures versus their synthesis.

’http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
motion_clouds


http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds/
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
http://nbviewer.jupyter.org/github/JonathanVacher/projects/tree/master/motion_clouds
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Figure 4.1: From top to bottom: alternating of five frames ex-
tracted from original textures and five frames of their synthesis
(clouds, fire, goldenline, motion clouds).
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*x 11 %

Bayesian Inference Models for
Psychophysics

In this chapter, we describe a mathematical formulation of an ideal Bayesian
observer model. We develop a probabilistic formalism in order to properly de-
fine the concept of an observer’s internal representations. In particular, we
define in mathematical terms the notion of psychometric curve obtained in a
two-alternate forced choice (2AFC) experiment. This general definition, com-
bined with our ideal Bayesian observer model appears intractable in absence
of specific assumptions. We thus exemplify the psychometric curve by mak-
ing simplifying assumptions. Finally, we provide an algorithm which allows to
solve the inverse Bayesian inference problem and we give numerical examples.
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1 Introduction

This chapter aims at introducing a probabilistic framework for the analysis
of psychophysical data that goes from stimulation parameters to their repre-
sentation in the brain of an observer. In particular we focus on the modeling
of discriminating tasks such as 2AFC or staircase procedure. While in this
manuscript we focus on vision, we develop ideas that are not restrictive and
can often be applied to other perception. This modeling is very much inspired
by several recent work on the notion of inverse Bayesian inference (see bellow
for the relevant litterature) and is in particular aiming for a rigorous formula-
tion of the problem and a specific instantiation of a numerical inverse problem
solver, that we use in chapter III to address speed discrimination.
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1.1 Bayesian Brain

The “Bayesian brain” hypothesis is first a probabilistic theory. Among the
probabilistic approaches to vision, it is important to mention the book of Des-
olneux, Moisan and Morel [41] who develop a set of statistical tools for image
analysis based on Gestalt theory. The Bayesian interpretation of perception
comes from the Helmholtz Machine principle [38]. The perceptual system is
viewed as a statistical inference machine whose role is to infer the causes of
sensory input. There is now a great interest for the Bayesian approaches as it
is well suited to handle uncertainty, ambiguity and complexity [46, 34, 102].
However, when it comes to say that the brain performs Bayesian computa-
tions, there is still a lot of experimental data to confront [103, 106, 150]. The
claim that the brain is Bayesian optimal is wisely criticized and discussed by
Bowers [21]. Finally, we highlight some interesting works in physiology that
formulates a way neural populations could perform Bayesian computations [94,
72, 151].

1.2 Inverse Bayesian Inference

The stochastic and dynamic generative models developed in Chapter I are
closely related to the likelihood and prior models which serve to infer motion
estimates from the dynamic visual stimulation [3] . In order to account for
perceptual bias, a now well-accepted methodology in the field of psychophysics
is to assume that observers are “ideal observers” and therefore make decisions
using optimal statistical inference (typically a maximum-a-posteriori or MAP
estimator) which combines this likelihood with some internal prior (see Intro-
duction Equation (4.1)). Several experimental studies use this hypothesis as
a justification for the observed perceptual biases by proposing some adjusted
likelihood and prior models [46, 34|, and more recent works pushes this ideas
even further. Observing some perceptual bias, is it possible to “invert” this
forward Bayesian decision making process, and infer the (unknown) internal
prior that best fit a set of observed experimental choices made by observers?
While a few previous works have raised similar questions (see below), its pre-
cise formulation and resolution is still an open problem both theoretically and
numerically. Indeed, in traditional Bayesian inference approaches an estimator
is computed from given likelihood and prior [22]. In contrast, here we have
access to parameters and estimates from which we want to infer a likelihood
and prior. Following [184], we coined this promising methodology “inverse
Bayesian inference”. This is of course an ill-posed inverse problem, in par-
ticular there is multiplicative ambiguity between the likelihood and prior. In
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addition, it is a highly non-linear. For all these reasons, it is clear that addi-
tional constraints on both the prior and the likelihood are needed to make it
tractable. For instance [182, 184, 96] impose smoothness constraints in order
to be able to locally fit the slope of the prior.

1.3 Contributions

We formalize the concept of observer’s internal representations in a prob-
abilistic model. In this model, we are able to formulate the “Bayesian brain”
hypothesis: our brain estimates external parameters as if they have generated
the sensory representation. Then, we are able to define in mathematical terms
the notion of psychometric curve obtained in a two-alternate forced choice
(2AFC) experiment. This general definition, combined with our ideal Bayesian
observer model appears intractable in absence of specific assumptions. We thus
exemplify the psychometric curve by making simplifying assumptions on the
likelihood and prior and we give numerical examples. Finally, we provide an
algorithm which allows to solve the inverse Bayesian inference problem and we
also give a numerical example.

2 From Stimulation to Internal Representation

2.1 Model Description and Bayesian Assumptions

In a typical experimental context, the experimenter only knows the param-
eters of the stimulation ¢ € Q, the stimuli ¢« € Z and the yes-no answers of
the different subject to some discrimination tasks. Chapter I deals with the
connection between parameters and stimulation which we addressed by build-
ing a random generative model of stimulation. Figure 2.1 depicts the current
situation. In order to understand what happens between the perception of an

a1 il
Yes-no

unknown steps ———
answers

q2 ig

Figure 2.1: The partial knowledge provided by a psychophysics
experiment. In the ideal case, parameters ¢; and ¢, allow to gener-
ate stimuli ¢; and 75 from which the subject answers to an experi-
mental yes-no question.

observer and the answer he produces, it is important to make some assump-
tions based on our current understanding of the brain architecture. Indeed,
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we know that some neurons respond or not to a particular stimulation. A typ-
ical example is the mostly known case of orientation selectivity in the primary
visual cortex of many mammals [87]. It is thus reasonable to assume that the
brain is making some measurements m € M based on the perceived stimulus.
Such measurements allow the observer to perform an estimation ¢ € Q of the
parameters questioned by the experimenter. Finally, these estimations are used
to provide a yes-no answer to a detection or a discrimination task. In a prob-
abilistic setting, the variables ¢, i, m and ¢ are realizations Q(w), I(w), M (w)
and Q(w) of the random variables ), I, M and Q For simplicity, we assume
that Q only depends on M which only depends on I, which only depends on
() and that these random variables have respectively the following densities
]P’Q|M, Puir, Pro and Pg. Hence, we complete the “unknown steps” box of
Figure 2.1 by abstract measurement and estimation steps that we suppose to
be performed by an observer, see Figure 2.2. This modeling pipeline is close
to those presented in recent literature, see for instance [184]. However, it is
not Bayesian yet.

abstract completion
@ = QW) — i1 = h(w) — i = M) —— ¢ = Q1(w)
Q1 ~ Pg, I ~Pr, My ~ Pan 1y Q1 ~Pg py YT
answer

2 = Qa(w) — iz = h(w) — ma = Ma(w) —— G = Qs(w)

Q2 ~ Pg, I ~ Prq, My ~ Pagy1, Q ~ P

Figure 2.2: An abstract completion of the partial knowledge pro-
vided by a psychophysics experiment. The observer makes mea-
sures m; and mqy of the stimulation which provides information to
compute estimates ¢; and ¢y of the parameters questioned by the
experiment.

First, let us focus on the underlying hypothesis of the model: the generative
model of of stimulation (movies in the case of MC), the measurement and
estimation steps. Obviously, the main underlying hypothesis in such Bayesian
approaches is that the brain is able to encode probability distribution. Some
works tackles this question experimentally in electrophysiology [94, 72, 111].

Generative Model First, we assume that stimuli came from a generative
model conditioned by some relevant parameters that have their proper distri-



60 II. BAYESIAN INFERENCE MODELS FOR PSYCHOPHYSICS

bution. This perfectly fit the class of MC model designed in Chapter 1. Such
an assumption is strong because when confronted to natural images, their high
complexity cannot be captured by a small number of parameters (see Intro-
duction, Section 4.1). Therefore, generative models of natural movies are still
out of reach.

Measurement Second, we assume that the measurement depends only on
the stimulus. This hypothesis is based on the idea that neurons respond to
certain stimulus features like spatio-temporal frequency, speed, orientation,
motion direction, ...) [120, 153, 39, 13]. Although — a large part of neurons
activity is still not understood, this assumption is reasonable.

Estimation Finally, we suppose an estimation step. Although it appears
natural to perform an estimation from measurement, to the best of our knowl-
edge, there is no clear experimental evidence that some neural circuits directly
implements this function. This step can be understood as taking into account
a direct comparison of the measurement made on different stimuli. We refer
to the of Acuna et al. [2] that discuss the related question of whether the brain
activity can be interpreted as rather sampling from some posterior distribution
or only seeks for a maximum likelihood-type estimate.

Bayesian Assumptions Our model allows to formulate two different as-
sumptions that are commonly made in Bayesian observer modeling: the Bayesian
estimation and the natural prior hypotheses [150]. We formulate these hypoth-
esis using our notations.

Assumption 1 (Bayesian Estimation). The random variable Q is estimating
q as if it had directly generated the measurement m ie

Pyio(mla) = Pang(mlq).

Assumption 1 combined with Bayes theorem allows to compute the distri-
bution of @) knowing M as:

IP)MAT”A]P)”A Paio(m|g)PA (G
Ptiim) =~ A _ PuglmiDPg(0)

Before we impose this assumption, our model was only probabilistic because
the probability P ,,(¢/m) does not assume any estimation strategy but only

a causal relation between M and Q Assumption 1 is the key that make our
model a Bayesian one.
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Assumption 2 (Natural Prior). The internal observer prior is supposed to
reflect the natural environment ie

Po(9) = Polg).

Assumption 2 means that the random variable Q, which is internal to the
observer, has the same distribution as ) which is external. Obviously here, Pg
is considered to represent the frequencies of different values taken by @ in a
natural environment and not during an experiment. Therefore, when studying
vision, the expected priors on image features is expected to ressemble those
estimated from natural movies see [150, 67].

In order to analyze data using this model, one still needs to specify at least
two distributions:

e the prior Pg(q),
e and the likelihood Py (m|q).

We will exemplify these choices in Sections 3 and detail how they leads to
several (closely related but different) data analysis methodologies in Section 4.

2.2 Psychometric Curve

A discrimination task experiment always involves at least two parameters
(one for each of the two replications to discriminate between), so, for read-
ability, we denote in bold any couple of variables & = (z1,22). We call the
estimated parameters ¢ “outputs” as opposed to the experimental parameters
q called “inputs”. Following the model described above (see also Figure 2.2),
two stimuli ¢ generated with inputs q are presented to a subject, the former
makes some internal measurement m and estimates the inputs by ¢. He can
therefore compare them to answer the yes-no question that actually represents
one sample of a binary event £ C Q2 specific to the subject. What is impor-
tant to note is that the sample is obtained knowing that the stimulation have
been generated independently using two “input” parameters q. Then, we can
define the abstract psychometric curve as a function of the input parameters.

Definition 3. The psychometric function is the probability that Q belongs to
E Eknowing that Q = q

v(q) = Pgo(Elg) = Ego(lelq).
where we denoted 1g the indicator function of E

_J 1 4 q€kF,
Lr(q) = { 0 otherwise.
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Example 1. A typical example, if ¢ denotes a speed, is to test for speed dis-
crimination by setting

E= {(@1,G2) ; &1 > G2},

i.e. whether the first stimulation appears faster than the second one to the
user.

Now, we give a decomposition formula of the psychometric curve by taking
into account the full model described in Figure 2.2 and the Bayesian Assump-
tions 1 and 2.

Proposition 12. The psychometric curve verifies

ool = [ [ 1p@PretmtEmelmafold) gq,,

with
Para(mla) = | Paa(mliProfil)di
T
and where we denoted 1g the indicator function of K

_J 1 4 q€eE,
Lr(q) = { 0 otherwise.

Proof. First, we write

cela) = | 1@ qqldla)ia

Then, we plug successively the two following decompositions

Pa(dla) = [ Pou(dimPrq(mia)im

M2
and
Pang(ml) = | Pans(mli)Piiqila)di
_’2:2
Finally, Assumptions 1 and 2 lead to the result. O

Proposition 12 is crucial to understand the Bayesian inverse inference prob-
lem. Indeed, we make the connection between the psychometric curve, which is
a fundamental function usually sampled in a psychophysical experiment, and
the likelihood Pazq and prior Pg. The Bayesian inverse inference problem
consists in determining the likelihood Ppsq and prior Pg from the samples
of psychometric curve ¢g(q). In the form expressed in Proposition 12 and in
absence of any assumption the inverse Bayesian inverse problem appear too
difficult. In the following section, we make strong hypothesis that allow for
closed form computations.
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2.3 A Closed Form Example

In this section, we adopt the same assumption as Stocker [184] by assum-
ing a Gaussian measure and a Laplacian prior. This allows for closed-form
approximate of IP’Q|Q and thus of the psychometric curve. Although we do not
assume any estimator, these assumptions allow for the computation of the bias
ac? that is equal to the one introduced in [184].

Proposition 13. Suppose that

o Pyio(mlq) = 2m exp < “;;;”) with ¢ € R and 0 > 0,

o and Pg(q) = aexp (—aq) with a > 0.
When o — 0, one has

. 1 1 . 212
Poioldla) = mexp (—W(q —q+ac?) ) (1+o0(1)).

This formula corresponds intuitively to the fact that the prior shifts the
likelihood to give the posterior. Here, the posterior is approximately a Gaus-
sian of standard deviation v/2¢ and mean q — ac?. The shift comes from the
combination of the prior parameter a and hkehhood (v,0). This is expected if
one wants to explain perceptual bias.

Proof. First, we use the standard decomposition of probabilities and the Bayes
formula combined with Assumption 1 and 2. Therefore,

Poioldle) = /M P (@m)Pasig(mlg)dm

_ / Pasjo(m|d)Pq(d)
M Par(m)

_p (o [ PmemdPue(mle)
—PQ(q)/M Bor () dm. (2.1)

In the expression above Py o(.|g) is known and we need to compute Py, then,

Pas(m) = /M Pasio(mle)Bo()dg

a (m — q)*
2no /Rexp ( 20? ) exp(~aq) R+(Q) ¢
a CL20'2 +00 <q_ (m_a02>>2
= — — d
\/%0 exp ( am + 5 ) /0 exp ( 552 ) q

— aexp(— am)exp(aQUQ)erfc( 7 \ﬁa)/z

PM (m|q)dm
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Finally, when ¢ — 0 we have

aexp(—am)(1+o(c?)) si m >0,
Pyr(m) ~ ¢ §exp(—am)(1+4o(c)) si m =0,
0 st m <0.

In order to avoid heavy technical details that are hidden in o(c?), we choose
to replace Py (m) by

Py (m) = aexp(—am)lg, (m).

By pluging the expression of P above into the integrand of Equation (2.1) and

we obtain X
2 Pario(md)Parig(m|g)

P(m)

faq(m) = exp (— (m=a7 (m=o°, am) 1 (m).

202 202

Consequently, we can write IP’Q‘ Q s

2mac

= fg.3(m)

where

; 1 .
Paoliln) 2, 57z | fadlm)Pod)dm. (22)
Using the equality

(m—4)?* (m-g)? 1 <m_w)2

202 952 A= 5 2

1 ~ 2\2 1 2 ~2
+@(q+q+aa) —@(q +¢°),

we can finally compute the integral in Equation (2.2) and when ¢ — 0, we
obtain

g oo ex L e ac?)? 0
Poolla) = = Vo (2o) p( 2NEJ)Q(Q q+ ))(1+ (1)).

]

In order to illustrate this proof, we run a numerical simulation that approx-
imate ]P)Q|Q(d|q). We use the following values a = 1.0, 0 = 1.2 and ¢ = 10 and

compare the results obtained with P and Pj;. This shows that when o is not
too large the approximation holds as the proposition indicates. In addition,
the numerical simulation highlights the fact that Py, (cyan in Figure 2.3) does



3. SIMPLIFIED MODEL: DETERMINISTIC MEASURES AND ESTIMATION 65

1.0
Theoretical results: —_— P
. QlQ
ao? =1.4400,  UQ|Q) =1.6971
0.8} — Pun
Numerical results using P;;: — Py
ac? =1.4407, \/ UQ|Q) =1.6969 ~
0.6} — Py
USing ﬁ]\[:
0.4 \ao?=1.4390, V UQ|Q) =1.6971
0.2}
1 1
g0
1 1
0.0 — '
0 5 10 15 20

Figure 2.3: Numerical simulation of Proposition 13. The blue
curve is obtain using P,;, however the numerical results displayed
for ac? and /V(q|q) indicates that the results for Pp|q is very close

when computed using Py;.

not need to be very close to the approximation we use in the proof P (red in
Figure 2.3). This indicates that this step is probably not necessary but we do
not expand more on this.

By knowing an estimate of the posterior IP’Q|Q, we can estimate the psycho-
metric curve, see the following example.

Example 2. Let us define the set E as given in Example 1. Assume different
likelihoods respectively parametrized by (q1,01) € RxRY and (g2, 02) € RxRY
and different priors respectively parametrized by a; > 0 and ay > 0. We have

2

2
Q1 — @2 — a107 + a0
QDE(QD%) =1 ( L 2)

2(07f + 03)

where Y(t) = \/LZ? ffoo e=%/2ds is the cumulative normal function of sigmoid
shape. See Proposition 16 in the following chapter for a demonstration. An
example of psychometric curve is shown in Figure 2.J.
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2 2
Q2 + a107 — Q205

Figure 2.4: An example of the psychometric curve given in Ex-
ample 2. It is shown as function of ¢; while ¢, is fixed.

3 Simplified Model: Deterministic Measures
and Estimation

In this section, we assume that the estimation ¢ is deterministic e ¢ is in
fact computed from an estimation mapping ¥ : m +— ¥(m) = ¢ € Q and the
probability density is therefore Py ,/(|m) = dy(m). Such an asumption is the
most frequent in the literature, see for instance [184], most likely because it
leads to the simpler computations and numerical schemes. In the same way,
we assume that the measurement is computed from an image by a mapping
P ;i (i) = m € M and that the probability density is therefore P ;(|i) =
dp(;). These assumptions do not rule out the Bayesian estimation hypothesis
as one can still use a Bayesian estimator to design W(m). In the following, we
give few standard examples for the mapping ¥ and ®.

3.1 Examples of Mapping

3.1.1 Measurement

In order to design the mapping ® that computes the measurement m the
most natural way to proceed is to use the concept of neuron’s receptive field
(see Introduction, Section 4.3 or Section V1.1.3 for further details). The mea-
surement performed on an image ¢ by a neural population of size n € N is
typically modeled as a succession of a linear transform and a non-linear rec-
tification, for instance m = (max({p1, 7),0),..., max({¢n, i),0)) where (-, -)
denotes the Euclidean scalar product on Z = R™” for an image of size N € N.
oriented multiscale filters. We refer to the book of Mallat [113] for mathe-
matical details about wavelet transform.
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3.1.2 Estimation

A class of estimation mapping is defined in variational form as

W(m) =t argmin /L(q,cj)PQ|M(q|m)dq.

Ggeo

where L is some loss function. In our framework Pgys is not given but com-
puted by the Bayes rule

Parq(m|a)Po(q)

]P)Q|M(q,m) =

where the normalization probability Py, can be computed from Pg and Py g
alone through the integration

MmmzéﬁMmma%MM1

Maximum A Posteriori For instance, choosing L(q, §) = 1 — d4(q), where
4 is the Dirac located at ¢, one obtains the Maximum A Posteriori (MAP)
estimator

Unap(m) = argmax Pgas(g)m) = argmin —log Pasg(m|¢) —logPq(q). (3.1)
qeQ GeQ

Mean Square Error Choosing L(q,4) = |q — |* one obtains the Mean
Square Error (MSE) estimator (the conditional expectation)

Jo @Puio(m|9)Pq(q)dg
Jo Pario(ml|d)Pq(g)dg

wmwmﬂjﬁ%w@mmz
Q

It is more intricate to compute than the MAP, mainly because of the integra-
tion, and of the normalizing constant, that itself depends on Py.

3.2 Psychometric curve

As before, to ease of notations, we denote the estimation mapping on pairs
as
Vm = (my,my) € M X M, ®(m) = (¥(m),¥(my)) € Q°.

The following proposition give a simplified expression for the psychometric
curve associated with an event FE.
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Proposition 14. Assume that there exists mappings ¥ : m— ¥(m) =4¢ € Q
and ® :i— V(i) =m € M. Then,

vr(q) = /I 12(0 0 ®(i))Prq(ilq)di

Proof.
Yo wo@= | [ 1@Pau(d®6)Pralilaiag
_ /Q 2 /Z 15(@)0wen(0 (@)Prialila)idd
_ /I 1(¥ 0 &(i))Pro(i]q)ds
where dwos(i)(d) = Owon(iy) (G1)dwon(in) (G1)- =

Proposition 14 is useful as it expresses the psychometric curve as a function
of (¥,®,Prg). We have given some examples of mappings in the section
above. Moreover the generative model Prq can be for instance the Motion
Cloud model developed in Chapter 1.

4 Inference Bayesian Inference Algorithms

After having detailing the structure of the psychophysical function ¢g un-
der several Bayesian model, we are now in the position to formally define an
inverse Bayesian inference procedure to estimate the prior from the output of
psychophysical experiments.

4.1 Prior fitting

Let us first put in statistical terms the outcome of n independent replica-
tions of 2AFC tests {(£1,1,G), - - -, (Ens %0, q,,) } € ({0, 1} xZ?x Q?)" where for
all k € {0,...,n}, i is a pair of stimulations generated with density Py q(.|q;)
and g is a Bernoulli random variable equals to 1 with some probability p if
qr € E. Following Chapter 3, for each pair of stimulation 2, the brain mea-
sures my, = ®(4;) from which it computes a pair of estimations q, = ¥(my).
For simplicity of the exposition, we assume that measures are directly the
image’s pixels ie ® = Id. Moreover, we restrict our attention to a MAP esti-
mator, but similar derivations can be carried out in the general setting. Using
a MAP estimator leads to gy = Vpyap(mi) = Yarapo P(ix) = Varap(ix) which
can be written as

Gk = argrgin — log Prq(iklq) — log Po(q)-
q€
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However, the output of an 2AFC experiment is not ¢, but only the Bernouilli
random variable ;. For the moment, we can only expect to simulate an
experiment ¢e generating two stimuli, estimating their parameters and decide
whether these estimates belong to E or not.

Example 3. As a typical example of instantiation of this formula, consider
MC stimulation (see Proposition 2). In this case, the stimuli are Gaussian and
have the power spectrum

V(E,7) € B2 X R, 44(6,7) = %P (£8) L(Pyy—uy) (—

where the linear transform L is such that

7+ (vo, §)
€] )’

VueR L™ [ " F(euf cos())de

and q = (vg, 0v, by, 00, 20, Bz) is the vector of the MC parameters. One can
therefore compute log P (ik|q).

4.2 Prior fitting when samples from ¢(m) is accessible.

Let us here rephrase in our language the approach detailed in [144]. It shed
some lights on the (convex!) class of constraints that a prior should typically,
so it is quite informative. Unfortunately, it cannot be used for psychophysical
studies because one never have direct access to the internal estimate hat g
made by the brain. The goal is to estimate the prior function g(g) from
psychophysical experiments. As remarked by [144], if one directly has access
to values ¢(m) for some set m € M of stimulations, then finding g can be
obtained by solving a convex program, since g is only constrained to satisfy

{9;920, /gzl,v(m,w)EMXQ, <g,hw,m><0}

where Ay = (L(-, ¢(m)) — L(-,w))P(m|-).

An even simpler set-up is obtained when using the MAP estimator. In this
case, the first order optimality conditions of (3.1) reads

VG(G(m)) = =VF(G(m), m) (4.1)
where V is the gradient with respect to the ¢ variables, and where we denoted
G(q) = log(g(¢)) and F(¢,m) = log(P(m|g)). Interestingly, the optimality

conditions (4.1) can be integrated which constitute an natural improvement
of [144] for the special case of a MAP estimator.
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Proposition 15. Assume a series of stimulations/measures (my)}_, between
mqg and my, one has

G(Cﬁ) - G(@o) - /01<VF(@t,mt)a Cﬂ>dt

where G, = G(my) and thus also §; (time derivative of §;) is supposed to be
known.

4.3 Prior fitting when samples from ¢y are accessible.

We now detail the much more complicate (but realistic for psycophysics)
setting where one only has access to the output of a 2AFC experiment, so
when one has at its disposal an approximation ¢z of the true psychophysical
function. In order to make the process computationally tractable, we assume
that the prior belongs to a parametric family P(q) = g.(q) parametrized by
some «. According to Proposition 12, the psychometric curve thus also depends
on «, which we denote as pg(q) = ¢pr(q, a).

We denote ¢; € {0, 1} for i € Z the output of the psychophysical experiment
for the " trial, which is obtained by a stimulation with some parameters
q; € Q. We set ¢; = 1 if he estimated for this trial that (¢;,¢2) € E, and
g; = 0 otherwise. Then, according to our model, the e; are samples from
independent Bernoulli distributions of parameter ¢g(q;, «). The parameter «
can thus be estimated using a maximum likelihood estimate

IIEI] Z g(giv @E(qw Oé)) (42)

where we denoted £(-,p) the anti-log likelihood of the Bernoulli variable of
parameter p

[ —losp) i <=0,
é(e’p)_{—log(l—p) if e=1.

Assuming for simplicity that for each tested ¢ € V = {g;}iez, the cardinal
of trials |{i; g, = q}| is the same, the optimization (4.2) can be elegantly
rewritten as a Kullback-Leibler minimization

min Y KL(¢x(q)lor(g, @) (4.3)

qev

) L
where KL(p|p) = plog (73) +(1—p)log (1—p) ,
p p
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where we denoted ¢g(q) the empirical psychometric curve

o l{ieT:ie-ta,—a}l
Yr\gq) = ;
@ ="TieTia a1

The problem (4.3) is a non-convex, but typically smooth and low dimensional
optimization problem. We thus advocate the use of standard quasi-newton
technics (LBFGS) in order to capture a local optimal a.

€ [0,1].
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Speed Discrimination in
Psychophysics

To exploit biologically-inspired parameterization of the MC model and pro-
vide a proof of concept of its usefulness based on motion perception, we con-
sider here the problem of discriminating the relative speed of moving dynam-
ical textures. The overall aim is to characterize the impact of both average
spatial frequency and average duration of temporal correlations on perceptual
speed estimation based on the empirical evidences. By simplifying the general
Bayesian framework developed in Chapter II, we assume a Gaussian likelihood
and we estimate a Laplacian prior to account for the bias observed in the
psychophsysical experiment. We focus here our attention on the use of a max-
imum a posteriori (MAP) estimator, which leads to a numerically tractable
fitting procedure.
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1 Introduction
1.1 Previous Works

Previous works of Brooks [27] and Smith [179] have revealed that spatial
frequency positively bias our speed perception. In the following, we reproduce
these experiments and embed into the Bayesian framework exposed in the pre-
vious chapter. In particular, our approach is mainly based on the works [184,
182, 96]. Stocker et al. [184] develop a Bayesian inverse methodology to infer
both parametric likelihood and prior that are able to explain the well known
negative effect of contrast on speed perception. By testing a large range of
speed, they are able to integrate the prior that appears to favor slow speed.
Their work has been reproduced by Sotiropoulos [182] that gives further prac-
tical details. More recently, Jogan and Stocker [96] successfully adapt this
methodology to account for multiple spatial frequency channels. Finally, our
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experiment is conducted using MCs developed in Chapter I and it is important
to highlight the work of Schrater et al. [171, 170] that use MC-like stimulation.
In [171], they use stimuli with decreasing spatial frequencies to study how hu-
mans estimate expansion rates from scale-changes information. In [170], they
use homogeneously oriented and heterogeneously oriented stimuli to probe the
mechanisms of energy summation over orientation during the estimation of
motion.

1.2 Contributions

We run psychophysical experiments to probe speed perception in humans
using zoom-like changes in MCs spatial frequency content. We simplify the
general Bayesian model developed in Chapter II by assuming a Gaussian like-
lihood and a Laplacian prior. As the MC model allows for the derivation of
a local motion-energy model, we use it to estimate speed in the experimental
stimuli. By comparing the estimated variances of observers’ likelihood to the
distribution of the motion-energy model estimates of speed we show that they
are not compatible. We validate the fitting process of the model using synthe-
sized data. The human data replicates previous findings [27, 179] that relative
perceived speed is positively biased by spatial frequency increments. The ef-
fect cannot be fully accounted for by previous models, but the current prior
acting on the spatio-temporal likelihoods has proved necessary in accounting
for the perceptual bias. We provide an online! example of data synthesis and
analysis.

2 Experimental Settings and Model
2.1 Methods

The task is to discriminate the speed v € R of a MC stimuli moving
with a horizontal central speed v = (v,0). We refer to Section 12.3 for the
parameter notations. We assign as independent experimental variable the
most represented spatial frequency zy, that we denote in the following z for
easier reading. The other parameters are set to the following values

1

Tk

(e

oy = E

™
0y = 57 0o

Note that oy is thus dependent of the value of z to ensure that t* = #

stays constant. This parameter t* controls the temporal frequency bandwidth,

'http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
bayesian_observer/
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as illustrated on the middle of Figure 12.2. We used a two alternative forced
choice (2AFC) paradigm (see Section I1)2). In each trial, a gray fixation screen
with a small dark fixation spot was followed by two stimulus intervals of 250 ms
each, separated by an uniformly gray 250 ms inter-stimulus interval. The first
stimulus had parameters (vq, z1) and the second had parameters (vg, 25). At
the end of the trial, a gray screen appears asking the participant to report
which one of the two intervals was perceived as moving faster by pressing one
of two buttons, that is whether v; > vy or vy > vy.

Given reference values (v*, z*), for each trial, (vq,z1) and (v, 25) are se-
lected such that

Ui:U*, z €25+ Ay -

{ v; €V + Ay, 2 = 2" where Ay ={-2,-1,0,1,2},

where (i,7) = (1,2) or (i,5) = (2,1) (i.e. the ordering is randomized across
trials), and where z values are expressed in cycles per degree (¢/°) and v
values in °/s. The range Ay is defined below. Ten repetitions of each of the 25
possible combinations of these parameters are made per block of 250 trials and
at least four such blocks were collected per condition tested. The outcome of
these experiments are summarized by sampled psychometric curves @« .« (see
Definition 3), where for all (v — v*, z — 2*) € Ay X Ay, the value P« .« (v, 2)
is the empirical probability (each averaged over the typically 40 trials) that
a stimulus generated with parameters (v*, z) is moving faster than a stimulus
with parameters (v, 2*).

To assess the validity of our model, we tested different scenarios summa-
rized in Table 2.1. Each row corresponds to 35 minutes of testing per partic-
ipant and was always performed by at least two of the participants. Stimuli
were generated on a Mac running OS 10.6.8 and displayed on a 20” Viewsonic
p227f monitor with resolution 1024 x 768 at 100 Hz. Routines were written
using Matlab 7.10.0 and Psychtoolbox 3.0.9 controlled the stimulus display.
Observers sat 57 c¢cm from the screen in a dark room. Four observers, three
male and one female, with normal or corrected to normal vision took part in
these experiments. They gave their informed consent and the experiments re-
ceived ethical approval from the Aix-Marseille Ethics Committee in accordance
with the declaration of Helsinki.

To increase the statistical power of the data set during analysis, psycho-
metric functions were generated following the observed effect in the data and
a sampling was carried out to obtain a synthetic data set for the validation
of the Bayesian fitting procedure (see Chapter I114). The steps involved are
detailed in section 4.2.
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Case t* oz By v* z* Ay

Al | 200 ms | 1.0 ¢/° 5°/s | 0.8¢/° | {—0.27,-0.16,0,0.27,0.48}

A2 | 200ms | 1.0 ¢/° 5°/s | 1.28 ¢/° | {—0.48,—0.21,0,0.32,0.85}

A3 | 200 ms | 1.0 ¢/° 10°/s| 0.8 ¢/° | {-0.27,-0.16,0,0.27,0.48}

A4 [ 200 ms | 1.0 ¢/° 10 °/s | 1.28 ¢/° | {—0.48,—0.21,0,0.32,0.85}

X X|X|X|X

BI | 100 ms | 1.0 ¢/° 10 °/s | 0.8¢/° | {—0.27,—0.16,0,0.27, 0.48}

B2 | 100ms | 1.0¢/° | x | 10°/s| 1.28 ¢/° | {—0.48,—0.21,0,0.32,0.85}

Cl | 100ms | x | 128] 5°/s | 1.28¢/° | {—0.48,—0.21,0,0.32,0.85}
C2 | 100ms | x | 1.28]10°/s| 1.28¢/° | {—0.48,—0.21,0,0.32,0.85}
C3 [200ms | x | 128] 5°/s | 1.28¢/° | {—0.48,—0.21,0,0.32,0.85}
C4 | 200ms | x | 1.28]10°s]| 1.28¢/° | {—0.48,—0.21,0,0.32,0.85}

Table 2.1: A and B are both bandwidth controlled in °/s with
high and low t* respectively, C is bandwidth controlled in octaves.

2.2 Bayesian modeling

To make full use of our MC paradigm in analyzing the obtained results,
we follow the methodology of the Bayesian observer used for instance in [184,
182, 96] that we have formalized and refined in Chapter II. We assume the
observer makes its decision using a Maximum A Posteriori (MAP) estimator

0,(m) = arginin [—log(Pasv,z(mlv, 2)) — log(Pyz(v]2))] (2.1)

computed from some internal representation m € R of the observed stimulus
(see Section II3.1). For simplicity, we assume that the observer estimates z
from m without bias. To simplify the numerical analysis, we assume that the
likelihood is Gaussian, with a variance independent of v. Furthermore, we
assume that the prior is Laplacian as this gives a good description of the a
priori statistics of speeds in natural images [43]:

1 _m—v?

IP>M|V,Z(7n|vuz) = \/%O' € :

20%
where v, > 0 is a cutoff speed ensuring that Py, is a well defined density
even if a, > 0.

and Py z(v]z) o< €19 ,.0(0).  (2.2)

Both a, and o, are unknown parameters of the model, and are obtained from
the outcome of the experiments by a fitting process we now explain.

3 Experimental Likelihood vs. the MC Model

The approach we propose in this chapter is to use the model (2.2), which
thus corresponds to directly fitting the likelihood Py v,z (m|v, 2) from the ex-
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= Puv.z(mlv, 2): likelihood
= Pyz(m]z): prior probability
Posterior probability

—> m

v+ a0

Figure 2.1: Multiplying the likelihood by such a prior gives a
posterior that looks like a shifted version of the likelihood. Such an
idea shows that the prior is responsible for bias when a Bayesian
inference is performed.
perimental psychometric curve. While this makes sense from a data-analysis
point of view, this required strong modeling hypothesis, in particular, that the
likelihood is Gaussian with a variance o2 independent of the parameter v to
be estimated by the observer.

Before actually analyzing the output of the experiments in Section 4 and 5,
we first propose in this section to derive a likelihood model directly from the
stimuli. We assume the hypothesis that the observer uses a standard motion
estimation process, based on the motion energy concept [3], an idea we incor-
porate here into the MC distribution. In this setting, this corresponds to using
a MLE estimator, and making use of the sPDE formulation of MC.

3.1 MLE Speed Estimator.

We first show how to compute this MLE estimator. To be able to achieve
this, we use the sSPDE formulation provided by Proposition 5. Equation (3.4)
is useful from a Bayesian modeling perspective, because, informally, it can be
interpreted as the fact that the Gaussian distribution of MC has the following
appealing form, for any video Z : 2 xT — R observed on a bounded space-time
domain © x [0, 77,

—log(P;(Z|vy)) ZI+// D(Kw *I)(x,t)

+ (G(Kw *I)(x,1), vo) + (H(Kw % I)(x, t)vg, vo)|*dtda
(3.1)

where Ky is the spatial filter corresponding to the square-root inverse of the
covariance Yy, i.e. which satisfies Ky (€) %X 6y (€)~", where D is defined
n (3.2), G and H are defined in (3.5), where Z; is a normalization constant
which is independent of vy where oy is defined in (3.7). Equation (3.1) can
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be seen as a direct generalization of the initial energy model (4.3), when the
first order luminance conservation sPDE (4.2) is replaced by the second order
MC sPDE model (3.4).

It is however important to realize that the expression (3.1) is only formal,
since the rigorous definition of the likelihood of infinite dimensional Gaussian
distribution is more involved [70]. It is possible to give a simple rigorous ex-
pression for the case of discretized clouds satisfying the AR(2) recursion (3.11).
In this case, for some input video Z = (ZV)L_, | the log-likelihood reads

—1log(P;(Z)) = Z; + K,,(T) where

L
o« 1
K, (I)= EZ /Q | K+ LD (1) = Uy %k Ky kL9 (2) =V s K+ () [2d
(=1

where U, and V,, are defined in (3.12). This convenient formulation can be
used to re-write the MLE estimator of the horizontal speed v parameter of a
MC as

oMUE(T) = argmax P;(Z) = argmin K, (Z) where vy = (v,0) € R* (3.2)

v v

where we used the fact that Z; is independent of vg. The solution to this
optimization problem with respect to v is then computed using the Newton-
CG optimization method implemented in the python library scipy.

3.2 MLE Modeling of the Likelihood.

Following several previous works such as [184, 182], we assumed the exis-
tence of an internal representation parameter m, which was assumed to be a
scalar, with a Gaussian distribution conditioned on (v, z). We explore here the
possibility that this internal representation could be directly obtained from the
stimuli by the observer using an “optimal” speed detector (an MLE estimate).

Denoting 1, ., a MC, which is a random Gaussian field of power spec-
trum (2.5), with central speeds vy = (v,0) and central spatial frequency z
(the other parameters being fixed as explained in the experimental section of
the paper), this means that we consider the internal representation as being
the following scalar random variable

M,. = oME(1,,) where oME(T)= argmax Pu,z(Zlv, 2), (3.3)

z

which corresponds to the optimization (3.2) and can be solved efficiently nu-
merically.
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As shown in Figure 3.1(a), we observed that M, , is well approximated by a
Gaussian random variable. Its mean is very close to v, and Figure 3.1(b) shows
the evolution of its variance for different spatial frequencies z. An important
point to note here is that this optimal estimation model (using an MLE) is
not consistent with the experimental finding because the estimated standard
deviations of observers do not show a decreasing behavior as in Figure 3.1(b).
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Figure 3.1: Estimates of M, , for z = 0.8 ¢/° defined by (3.3) and
its standard deviation as a function of z.

4 Model Fitting Evaluation
4.1 Likelihood and Prior Estimation

Adopting an approach from previous literature [184, 182, 96] and developed
in Section 112, the theoretical psychometric curve obtained by a Bayesian de-
cision model is

Spv*,z* (Ua Z) déf. ]E(@z*(Mv,z*) > @Z(MU*,Z>>

where M, . ~ N (v, 0?) is a Gaussian variable having the distribution Py, 2 (+|v, 2).

z
The definition corresponds to the one introduced in Definition 3, however we

adapt the notations to the experimental context.

The following proposition shows that in our special case of Gaussian prior
and Laplacian likelihood, it can be computed in closed form. Its proof follows
closely the derivation of [182, Appendix A]. This proposition must be related
to Proposition 13. The difference is that here we assume a MAP estimator
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Figure 4.1: The shape of the psychometric function follows the
estimation of the two speeds by Bayesian inference 2.1. This fig-
ure illustrates Proposition 16. The bias ensues from the difference
between the bias on the two estimated speeds.
whereas in Proposition 13 the posterior is obtained by integration. Impor-
tantly, in both cases the bias is the same while the standard deviation of the
posterior is not scaled by v/2 in the following Proposition.

Proposition 16. In the special case of the estimator (2.1) with a parameter-
ization (2.2), one has

vaﬂz*(’l}? Z) = l/f ( (41)

v — V" — a0k + awf)

N

where P(t) = \/%7 ffoo e=%*/2ds is the cumulative normal function of sigmoid
shape.

Proof. One has the closed form expression for the MAP estimator

0,(m) =m — azog,

and hence, denoting N (p1, 0?) the Gaussian distribution of mean y and variance

o2,

0,(M,.) ~ N(v— azaf, 03)

where ~ means equality of distributions. One thus has
Ve (My o) — 0o(Mye ) ~ N(v — v* — a-0% + a,02, 02 + 02),

which leads to the results by taking expectation. O
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Fitting procedure In order to fit this model to our data we use a two-
step method each consisting in minimizing the Kullback-Leibler divergence
between the model and its samples (see Section 114.3). Numerically, the Nelder-
Mead simplex method implemented in the python library scipy has been used.
Before going further let us introduce

P (v,2) = ¢ (

v — V" — a0k + azag)
Y

o2 + 02

U=V A [l
8051,2*(% z) =1 (E—*)

. 1_ 5
and KL(p|p) = plog (]—)> + (1 —p)log (_p)
p L=p
where fi,« . = 0,07 — a.+0%, X2, , = 02 + 02 and KL is the Kullback-Leibler
divergence between samples p and model p.

e Step 1: for all z, z*, initialize at a random point, compute

~

(f1, %) = argmin Z KL(@v*,z*ngi*)

y2 "

A

e Step 2: solve the linear relation shown above between (/i,Y) and (a, 6)

e Step 3: initialize at (G, ), compute

(d,0) = argmin Y > KL(Gpr o+ [7:%0)

a,o
’ z,2% v

Remark 3. This method is coupled with a repeated stochastic initialization
for the first step in order to overcome the number of local minima encountered
during the fitting process. The approach was found to exhibit better results
than a direct and global fit (third point). The potential problem of KL fits pro-
ducing misleading results after convergence to local minima made it necessary
to extend the empirical data by generating synthetic analogous data from the
psychometric fits. Through this process detailed in Section 4.2 a more robust
test of the validity of the analysis can be carried out.

Remark 4. Note that in practice we perform a fit in a log-speed domain ie we
consider g .+ (0, z) where 0 = In(1 + v/vy) with vy = 0.3°/s following [184].
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4.2 Results on Synthetic Data

To avoid the dangerous aspect of undefined local minima convergence dur-
ing KL fitting to empirical data, the quality of fitting can be assessed more
objectively on derived synthetic data. The parameters a, and o, were cho-
sen so that they reproduce the increasing behavior of fi.« , = a,0? — a0,
Then, the values of the psychometric functions ;... (v, 2) at the experimental
points (v1, z1) and (vg, 22) described in Section 2.1 and rows (A1) and (A2) of
Table 2.1 were used as the parameters of a binomial distribution from which we
can generate any number n; of blocks of 10 repetitions. The ten corresponding
psychometric curves are shown in Figure 4.2 along with their fitted version.
Following the fitting procedure described above in 4.1, we show in Figures 4.3

1.0 1.0
s
S 0.8+ 0.8 .
1D
&£ 0.6 F 0.6 .
2
= 0.4 F 0.4 .
o
g 0.2 0.2 .

0.0 L= 1 1 L 0.0

26 2.8 3.0 32 34 26 2.8 3.0 32 34

Log-speed (v)

Figure 4.2: On the left the psychometric curves that simulate case
Al, on the right the psychometric curves that simulate A2. Sim-
ulated psychometric curves resulting from the synthetic data are
represented by the plain lines and the empirically fitted psychome-
tric curves are represented by the dotted lines.

and 4.4 our results for (é,6) and (a,5). The quality of fitting naturally in-
creases with the number of blocks, this effect is most striking for the likelihood
width. The fitted log-prior slope shows a significant offset that is due to the
under determination of the linear relations between (fi, %) and (&, ). Indeed
solutions of the associated linear system lies in one dimensional affine space.
However, even though the true values of a, remain intractable the decreasing
behavior of a is well captured within the trends generated by the synthetic

data sets and by implication the same trends are valid in the empirical data.
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Figure 4.3: On the left the likelihood width & obtained after
the first optimization step 4.1, on the right the likelihood width o
obtained after the third optimization step 4.1. These estimations
are represented for different numbers of block with one standard
deviation error. The black line represents the ground truth values
of the likelihood widths used to generate the synthetic data.
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Figure 4.4: On the left the prior slope a obtained after the first
optimization step 4.1, on the right the prior slope a obtained after
the third optimization step 4.1. These estimations are represented
for different numbers of block with one standard deviation error.
The black line represents the ground truth values of the prior slopes
used to generate the synthetic data.

5 Experimental Data and Discussion

5.1 Results on Experimental Data

Estimating speed in dynamic visual scenes is undoubtedly a crucial skill for
the successful interaction of any animal with its environment. Human judge-
ments of perceived speed have therefore generated much interest, and been
studied with a range psychophysics paradigms. The different results obtained
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in these studies suggest that rather than computing a veridical estimate, the
visual system generates speed judgements influenced by contrast [189], speed
range [190], luminance [79], spatial frequency [27, 178, 180] and retinal ec-
centricity [80]. There are currently no theoretical models of the underlying
mechanisms serving speed estimation which capture this dependence on such
a broad range of image characteristics. One of the reasons might be that the
simplified grating stimuli used in most of the previous studies do not shed light
on the possible elaborations in neural processing that arise when more com-
plex stimulation. Such elaborations, such as nonlinearities in spatio-temporal
frequency space can be seen in their simplest form even with a superposition
of a pair gratings [152]. In the current work, we used our formulation of mo-
tion cloud stimuli which allowed the separate parametric manipulation of peak
spatial frequency (z), spatial frequency bandwidth (B., o,) and stimulus life-
time (¢*) which is inversely related to the temporal variability. The stimuli are
all broadband, closer resembling visual inputs under natural stimulation. In
the plotted data, we avoid cluttering by restricting traces to a subset of data,
S1/S2, from the pair of participants who completed the full set of parametric
conditions. Our approach was to test fewer participants (4) but under several
parametric conditions using a large number trials analyzed alongside the syn-
thetic data. The data that is not plotted here shows trends that lie within the
range of patterns seen from S1/S2.

Before going into the details of analysis let us introduce convenient abbre-
viations.

e NTF/BTF: Narrow/Broad band Temporal Frequency;

e LSF/HSF: Low/High Spatial Frequency.

Cycle-controlled bandwidth conditions The main manipulation in each
case was the direct comparison of the speed of a range of five stimuli in which
the central spatial frequency was varied between five values, but all other
parameters were equated under the different conditions. In a first manipulation
in which bandwidth was controlled by fixing it at a value of 1 ¢/° for all
stimuli (conditions A* and B* in Table 2.1), we found that lower frequencies
were consistently perceived to be moving slower than higher frequencies (see
Figure 5.1). The bias was generally smaller at 5 °/s than at 10 °/s (compare
first column on the left with remaining two columns). This trend was the same
for both the lower and the higher spatial frequency ranges used in the tasks
(see Table 2.1 for details) when we compare the top row, Figure 5.1(a) with
the bottom row, Figure 5.1(b). This means the effect generalizes across the
two scales used. The temporal variability of the stimulus manipulated via ¢*
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was found to increase the variability of the bias estimates, though this did not
significantly increase the biases (compare the shaded errors in the pair of plots
in both the second and the third columns of Figure 5.1).
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Figure 5.1: Relative perceived speeds from the Point of Subjective
FEquality (PSE). (a) From left to right A1, A3, B1. (b) From left
to right A2, A4, B2. Task generates psychometric functions which
show shifts in the point of subjective equality for the range of test z.
Stimuli of lower frequency with respect to the reference (intersection
of dotted horizontal and vertical lines gives the reference stimulus)
are perceived as going slower, those with greater mean frequency are
perceived as going relatively faster. This effect is observed under all
conditions but is stronger for subject 1. Error bars are computed
from those obtained for (G, &) which explains their amplitude. In
case of a direct fitting of p, .« they are significantly smaller (not
shown).

Octave-controlled bandwidth conditions The octave-bandwidth con-
trolled stimuli of conditions C* (see Table 2.1), allowed us to vary the spatial
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frequency manipulations (z) in a way that generated scale invariant band-
widths exactly as would be expected from zooming movements towards or
away from scene objects (see Figure 2.1). Thus if trends seen in Figure 5.1
were the result of ecologically invalid fixing of bandwidths at 1 ¢/° in the
manipulations, this would be corrected in the current manipulation. Only the
higher frequency comparison range was used. We found that the trend was the
same as that seen in Figure 5.1, indeed higher spatial frequencies were consis-
tently perceived as faster than lower ones, shown in Figure 5.2. Interestingly,
for the bandwidth controlled stimuli, the biases do not change across speed
conditions (compare left column with right hand side columns of Figure 5.2).
A small systematic change in the bias is seen with the manipulation of ¢*,
reducing temporal variability going from the upper to the lower row reduces
the measured biases. The bias at the highest frequency averaged for S1/S2 is
equal to 0.13 for ¢* = 100 ms (BTF) and equal to 0.08 for t* = 200 ms (NTF).
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Figure 5.2: Relative perceived speeds from the Point of Subjective
FEquality (PSE). Top: C1, C2. Bottom: C3, C4. Same comment
as Figure 5.1. The effect does not appear for subject 2 in case C2
and C3. Error bars are computed from those obtained for (a.,d,)
which explains their amplitude. In case of a direct fitting of 1, .«
they are significantly smaller (not shown).
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Measured biases and corresponding sensory likelihoods and priors
We used the Bayesian formulation detailed in Section 4.1 to estimate the like-
lihood widths and the corresponding prior slopes under the tested experimental
conditions. There is no systematic trend within the likelihoods in the cycle-
bandwidth controlled condition fits in Figure 5.3(a) and there is also individ-
ual variability in the trends. We conclude that the sensory variability of the
speed estimates obtained from the Bayesian modeling cannot explain the spa-
tial frequency driven bias in perceived speed that is measured. The log prior
slopes show a systematic reduction as spatial frequency is increased, see in Fig-
ure 5.3(b). Under all conditions, the data is best explained by a decreasing log
prior as spatial frequencies are increasing. Under the octave-bandwidth con-
trolled stimulus condition, the trends in changes in the best fitted likelihoods
as the spatial frequency is increased are again not systematic (Figure 5.4(a)).
The log prior slopes do however show a small systematic reduction as spatial
frequencies are increased, in Figure 5.4(b). The slopes are less steep than
under the cycle-bandwidth manipulations (linear regression gives an average
of —2.08 for the log-prior slopes in Figure 5.3(b) and —1.31 for the log-prior
slopes in Figure 5.4(b)). Under both bandwidth configurations, we conclude
that the prior slope explains at least part of the systematic effect of spatial
frequency on perceived speed.

5.2 Insights into Human Speed Perception

We exploited the principled and ecologically motivated parameterization of
MC to study biases in human speed judgements under a range of parametric
conditions. Primarily, we considered the effect of scene scaling on perceived
speed, manipulated via central spatial frequencies in a similar way to previ-
ous experiments which had shown spatial frequency induced perceived speed
biases [27, 179]. In general, our experimental result confirmed that higher
spatial frequencies were consistently perceived to be moving faster than com-
pared lower frequencies; the same result reported in a previous study using
both simple gratings and compounds of paired gratings, the second of which
can be considered as a relatively broadband bandwidth stimulus [27]. In that
work, they noted that biases were present, but slightly reduced in the com-
pound (broadband) stimuli. That conclusion was consistent with a more recent
psychophysics manipulation in which up to four distinct composite gratings
were used in relative speed judgements. Estimates were found to be more
veridical as bandwidth increased by adding additional components from the
set of four, but increasing spatial frequencies generally biased towards faster
perceived speed even if individual participants showed different trends [96].
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Figure 5.3: Likelihood widths and log-prior slopes. (a) Likelihood
widths for A1-A2, A3-A4 and B1-B2. Likelihood widths do not
show any common behavior, different behavior are observed for
subject 1 whereas it is almost constant for subject 2. (b) Log prior
slopes for A1-A2, A3-A4 and B1-B2. Despite the amplitude of error
bars the log prior slopes have a common decreasing behavior in all
subjects and in all cases.

Indeed, findings from primate neurophysiology studies have also noted that
while responses are biased by spatial frequency, the tendency towards true
speed sensitivity (measured as the proportion of individual neurons showing
speed sensitivity) increases when broadband stimulation is used [152, 147].

It is increasingly being recognized that linear systems approaches to in-
terrogating visual processing with single sinusoidal luminance grating inputs
represents a powerful, but limited, approach to studying speed perception as
they fail to capture the fact that naturalistic broadband frequency distribu-
tions may support speed estimation [27, 124, 125]. A linear consideration for
example would not account for the fact that estimation in the presence or
multiple sinusoidal components results in non-linear optimal combination [96].
The current work sought to extend the body of previous work by looking at
spatial frequency induced biases using a parametric configuration in the form
of the motion clouds which allowed a manipulation across a continuous scale
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Figure 5.4: Likelihood widths and log-prior slopes. (a) Likelihood
widths. Top: Cl, C2. Bottom: C3, C4. Same as Figure 5.3(a).
(b)Log prior slopes. Top: C1, C2. Bottom: C3, C4. Same as
Figure 5.3(b) except for subject 2 in case C3.

of frequency and bandwidth parameters. The effect of frequency interactions
across the broadband stimulus defined along the two dimensional orthogonal
spatio-temporal luminance plane to allowed us to measure the perceptual effect
of the projection of different areas (e.g. see Figure 2.2) onto the same speed
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line. The measurement should rely on proposed inhibitory interactions which
occur during spatio-temporal frequency integration for speed perception [178]
which cannot be seen with component stimuli separated by octaves [96].

We used a faster and slower speed because previous work using sinusoidal
grating stimuli had shown that below the slower range (< 8 °/s ), uncertainty
manipulated through lower contrasts caused an under estimation of speeds
while at faster speeds (> 16 °/s) it caused an overestimation [190, 79]. Our
findings show that under the cycle-controlled bandwidth conditions, biases
were larger at the faster speed than the slower ones while under the octave
controlled bandwidths, the biases were almost identical for both speeds. The
projections made from the frequency plane onto the speed line at these two
speeds, once corrected with a scale invariance assumption, was therefore the
same at these two speeds which typically show differences in contrast manipu-
lations. Indeed the Bayesian fitting did not identify a systematic shift of either
likelihood or prior slope parameters that could explain the biases observed par-
ticularly for the bandwidth controlled condition. While the current work does
not resolve the ongoing gaps in our understanding of speed perception mech-
anisms particularly as it did not tackle contrast related biases, it showed that
known frequency biases in speed perception also arise from orthogonal spa-
tial and temporal uncertainties when RMS contrast is controlled. Bayesian
models such as the one we applied, which effectively project distributions in
the spatiotemporal plane onto a given speed line in which a linear low speed
prior applies [184] may be insufficient to capture the actual spatiotemporal
priors. Indeed the Bayesian models which successfully predict speed percep-
tion with more complex or composite stimuli often require various elaborations
away from simplistic low speed priors [96, 182]. Indeed even imaging studies
considering the underlying mechanisms fail to find definitive evidence for the
encoding of a slow speed prior [202].

5.3 Conclusions

We used the MC stimuli in a psychophysical task and showed that these
textures allow one to further understand the processes underlying speed esti-
mation. We used broadband stimulation to study frequency induced biases in
visual perception, using various stimulus configuration including octave band-
width and RMS contrast controlled manipulations which allowed us to manip-
ulate central frequencies as scale invariant stimulus zooms. We showed that
measured biases under these controlled conditions were the same at both a
faster and a slower tested speed. By linking the stimulation directly to the
standard Bayesian formalism, we demonstrated that the sensory representa-
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tion of the stimulus (the likelihoods) in such models can be described directly
from the generative MC model. The widely accepted Bayesian model which
assumes a slow speed prior showed that the frequency interactions could not
be fully captured by the current formulation. We conclude that an extension
to that formulation is needed and perhaps a two dimensional prior acting on
the frequency space and mediated by underlying neural sensitivity has a role to
play in computational modeling of complex spatiotemporal integration behind
speed perception. We propose that more experiments with naturalistic stimuli
such as MCs and a consideration of more generally applicable priors will be
needed in future.
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A Review of Supervised
Classification Techniques

This Chapter presents techniques from supervised machine learning clas-
sification to further analyze two types of brain recordings in Chapters V and
VI. First, we introduce classification as a statistical inference problem and
describe three different approaches: a deterministic approach, and two prob-
abilistic approaches. The difference between the probabilistic approaches lies
in the fact that one of them uses a discriminative probability model while
the other uses a generative model combined with Bayes formula. We then
details four different algorithm based on the generative approach — Quadratic
Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), Gaussian
Naive Bayes (GNB), Nearest Centroid (NC) — and one based on the discrimi-
native approach — Logistic Classification (LC). We use these approaches in the
following chapters. Finally, we define useful tools for the analysis conducted
in the following chapters, as well as an original error classification measure.
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1 Introduction

1.1 Generalities on Classification

In statistics and machine learning, supervised learning tackles the problem
of modeling the relationship between features x in X to labels y in Y. To put
it briefly, it aims at inferring a function that maps any feature z to its label
y based on the knowledge of (z;,¥;)ic;. In absence of any assumption over
the set ), the problem is known as supervised regression or simply regression.
When we assume that ) is finite the problem becomes a classification issue,
also known as supervised classification. Contrary to unsupervised classification
(also called clustering) the class of features is known a priori. There is a great
diversity of approaches and algorithms that are explored both theoretically and
practically; we refer to the following handbooks for detailed descriptions [198,
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199, 197, 93, 81]. There are approaches that search for empirical rules based
on the data to build a decision tree [166]. Others aim at separating the data
by a frontier; this is the principle of Support Vector Machine (SVM). Finally,
some methods rely on simple estimations of statistics of each class like Nearest
Centroid (NC) or k-Nearest Neighbors (kNN), when others are built on a
parametric probabilistic model like Logistic Classification (LC) or Quadratic
and Linear Discriminant Analysis (QDA/LDA). The performances of these
methods might vary significantly and depend largely on the type of data and
the evaluation criteria that are used. We refer to [30, 29, 107] and the references
therein for an exemple of empirical evaluations. As a statistical tool, supervised
learning is used in a variety of fields like social sciences [123], geology [138],
finance [186], medicine [62], biology [85], etc..

1.2 Contributions

From a mathematical point of view this Chapter provides very few contri-
butions. We give some useful and sometimes original examples to the different
supervised learning approaches. At the end, we give precise definitions of the
different tools we use in the following chapters. In particular, we define a
notion of distance between labels (y;);c; and predicted labels (g;);c; based on
optimal transport that takes into account the structure (when it exists) of
labels. In summary, this Chapter is closer to a graduate course in machine
learning than to a contribution to research. However, as an interdisciplinary
work, this manuscript is not only addressed to mathematician and we find
it necessary to set up the general problem of supervised classification and to
introduce the different algorithms as particular cases of a common framework
before we apply them in Chapters V and VI. The goal is to introduce these
tools to experimental neuroscientists and psychophysicists so they can imag-
ine relevant data analysis based on supervised learning. We provide the source
code! of Examples 6 and 7 that illustrate Section 2.

2 Classification as a Statistical Inference
Problem

For simplicity purposes in this section, we assume that X is a subset of
R™ and Y is a finite subset of N. We denote (z;,¥;)ic; C X X ) the features
extracted from the data and their associated labels. One can use the observed
data as features but it is often necessary to process the raw data to remove

'http://nbviewer. jupyter.org/github/JonathanVacher/projects/tree/master/
examples_classif/
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at least outliers and obvious recorder noise. We detail the PCA feature selec-
tion technique in Section 5. In the following subsections, we introduce three
approaches that tackle the problem of classification; the first is deterministic,
the two others are probabilistic and based on either a discriminating model or
a generative model.

2.1 Deterministic Approach

The goal is to find a deterministic function f : X — ) that maps any
features (x;);e;r to their label (y;);c; as well as possible in order to be able
to predict the class y = f(x) for any unknown observation z € X. Such a
mapping f can be determined by minimizing a loss function V' : Y x Y — R
that penalizes the distance between the two labels

f: arg;nin ZV(yz,f(mz)) (2.1)

i€l

In such a form, this problem is ill-posed and unstable due to potential noise
in the data. For that reason, it is common to assume that functions f lie in a
parametric space Fp = {fy|0 € P} where P is a space of parameters. Under
such a hypothesis we obtain

f = argmin Z V (i, fo(zi))- (2.2)

Example 4. In the binary classification case Y = {—1,1}, the desired mapping
can be chosen as a linear function even if it does not take its value in Y. In
this case the parameters is 0 = w and it lies in P = X, therefore we have
fuw(®) = (w, x). By taking the loss to be the squared difference V (y, f,(x)) =
(y — fu())?, the problem comes down to a linear regression and it is therefore
simple to estimate w. Finally, we can make predictions using sign(fy) as the
line defined by (w, x) =0 aims at separating the two classes, see Figure 2.1.

2.2 Discriminative Approach

The discriminative approach relies on a conditional probabilistic model for
a feature to belong to a particular class. We denote the associated density
Py x. Therefore, the function mapping f emerges in a maximum likelihood
framework, for all z € X,

f(x) = argmax Py x (y|x). (2.3)

yey
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Figure 2.1: Two illustrations of the method introduced in Ex-
ample 4. The gray levels are the values of the linear function
xr — (w, x) and the black line represents its zeros set. Left: the
two classes are linearly separable. Right: the two classes are not
linearly separable.

Although the function mapping — being defined as a maximum over a finite set
— is easy to compute, the difficulty lies in designing the probabilistic model.
Again, it is appropriate to assume that the desired densities are parametrized
{]Py|X’9|9 € 73} and that the data (x;,v;)ies are ii.d.. Hence, the problem
becomes tractable and the parameter 0 that best represents the density that

generates the data can be estimated using a Maximum Likelihood Estimation
(MLE).

Definition 4. Assume that observations (x;,y;)ic; are i.i.d. and have the
conditional density Py xg. Their associated likelihood is

L(0) = T Pyixo(yila:). (2.4)
iel
Denoting V (y, z,0) = — log (Py|X79(y|x)), the negative log-likelihood is
(0) = >V (yi, i, 0). (2.5)
icl

Given these definitions, the maximum of the likelihood or equivalently the
minimum of the negative log-likelihood are written

0 = argmax £(f) = argmin £(f). (2.6)
9P 9eP
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In the form of a minimum, the optimization is consistent with Equation (2.2).
As a consequence, V can be interpreted as a modified loss function. In partic-
ular when there exists a loss function V', a parameter 6, a function fy and two
constants (c1, ¢2) such that

V(y,z,0) = aV(y, fo(x)) + c2 (2.7)

the deterministic approach and the discriminative approaches are equivalent,
see Example 5. However, these are strong hypotheses that are generally not
verified, see Example 6 below.

Example 5. In the binary classification case, although this does not respect
the binary assumption, we can assume that the label y is the realization of a
Gaussian random variable with unknown mean (w, x) and known variance o*.
The parameter 8 = w lies in the space P = X. In short, the density is written

Prisalole) = o exp (150

which yields to the following loss

V(y,7,w) = loa(v/Z10) + 55y~ (w, ))"

Thus, V(y, z,w) = a1V (y, fo(x)) + c2 with V(y,y') = (y —¢/)?, 0 = w, fy =
0, w), ¢, = 1/(20%) and cy = log(v/2no). This probabilistic approach is
therefore equivalent to Example 4.

Example 6. Again, consider a binary classification problem. We assume a
paremetrization 0 = (w_1,w;) = (—w,w) € P = X? and that the discrimina-
tive probability is given by
1 1
Pyixolylr) = ~ arctan ((w,, 2)) + 5.
This assumption is more realistic for a binary variable than in Example 5 since
it is discrete. In this case the loss is

- 1 1
V(y,z,w) = —log (; arctan ((w,, x)) + 5)

which cannot be set in the form of Equation (2.7). However the line (wq, x) =0
can still be used to separate the two classes, see Figure 2.2.
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Figure 2.2: Two illustrations of the method introduced in Ex-
ample 6. The gray levels are th