
HAL Id: tel-01557555
https://theses.hal.science/tel-01557555

Submitted on 6 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling of nominal strength prediction for
quasi-brittle materials : application to discrete element
modelling of damage and fracture of asphalt concrete

under fatigue loading
Xiaofeng Gao

To cite this version:
Xiaofeng Gao. Modelling of nominal strength prediction for quasi-brittle materials : application to
discrete element modelling of damage and fracture of asphalt concrete under fatigue loading. Civil
Engineering. Université de Strasbourg, 2017. English. �NNT : 2017STRAD007�. �tel-01557555�

https://theses.hal.science/tel-01557555
https://hal.archives-ouvertes.fr


 

UNIVERSITÉ DE STRASBOURG 
 

 

ÉCOLE DOCTORALE MSII (ED N°269) 

laboratoire des sciences de l’ingénieur, de l’informatique 

et de l’imagerie (ICUBE)-UMR 7357 

 
 

THÈSE  présentée par : 

Xiaofeng GAO 
 

soutenue le : 6 Mars 2017 
 

 

pour obtenir le grade de : Docteur de l’université de Strasbourg 

Discipline/ Spécialité : Mécanique/ Génie Civil 
 

Modèle pour la prévision de la 
résistance nominale des matériaux 

quasi-fragiles. Application à la 
modélisation de l'endommagement et 
de la rupture des enrobés bitumineux 

sous sollicitations de fatigue par la 
méthode des éléments discrets. 

 
 

THÈSE dirigée par : 
M. CHAZALLON Cyrille Professeur, INSA de Strasbourg 
M. DESCANTES Yannick Chargé de recherches (HDR), IFSTTAR 

 
RAPPORTEURS : 

M. RAGUENEAU Frederic Professeur, ENS Cachan 
M. ROUX Jean-Nöel IPEF-DR (HDR), IFSTTAR 
 
 

AUTRES MEMBRES DU JURY : 
M. DAOUADJI Ali Professeur, INSA Lyon 
M. KOVAL Georg Maître de conférences, INSA de Strasbourg 







 



UNIVERSITY OF STRASBOURG

Modelling of nominal strength
prediction for quasi-brittle materials.

Application to discrete element
modelling of damage and fracture of

asphalt concrete under fatigue loading.

by

Xiaofeng GAO

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Doctoral School of MSII

March 2017





Acknowledgments

My deepest gratitude goes first and foremost to my advisers, Georg KOVAL,

thesis director Cyrille CHAZALLON, and co-director Yannick DESCANTES,

who provided helpful advice, and continuous encouragement and support. I am

very grateful to Georg KOVAL for his instructive advice and useful suggestions to

improve my thesis. Besides my advisers, I would like to thank the rest of my thesis

committee: Frederic RAGUENEAU, Jean-Nöel ROUX, and Ali DAOUADJI, for

their encouragement and insightful comments.

I would like to thank my colleagues in the Group of Civil Engineering and

Energy at INSA Strasbourg, Bernard MIGAULT, Säıda MOUHOUBI, Hossein
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Résumé étendu

Contexte

Les matériaux quasi-fragiles, comme les bétons hydrauliques ou bitumineux,

les roches et certains types de céramiques, sont largement utilisés dans la

construction moderne. La prédiction de comportement en fatigue et en rupture

de ces matériaux est essentielle à la conception et à l’entretien des structures. La

gestion d’un projet demande naturellement, le développement d’outils théoriques

et numériques efficaces.

De nombreux résultats expérimentaux démontrent que la rupture quasi-fragile

dépend de la taille, c’est-à-dire, qu’elle dépend de la taille physique de la struc-

ture, de la taille des défauts existants, en plus de leur forme (fissures, vides,

rainures, etc.). La conception d’une structure réelle est basée sur les propriétés

mécaniques obtenues expérimentalement avec des spécimens relativement pe-

tits. Par conséquent, les effets de la taille doivent être pris en compte pour

des prédictions réalistes de la résistance des grandes structures telles que les

grands éléments en béton, ou même des glaciers. La théorie des distances cri-

tiques, les approches basées sur le champ de contraintes élastiques, les approches

basées sur la mécanique de la rupture et les modèles combinant les contraintes

et l’énergie, incorporent une dimension pour caractériser les matériaux. Cette

longueur (dite critique), qui dépend globalement des propriétés du matériau,

telles que la résistance et la ténacité, associe un comportement non local à la

rupture. Pour certains géo-matériaux (béton, béton bitumineux, maçonnerie...),

la longueur critique peut atteindre quelques centimètres, ce qui est dans l’ordre de

grandeur de la dimension des spécimens expérimentaux, ou encore de l’épaisseur

des couches supérieures de chaussées et des dalles en béton, par exemple. Par

conséquent, de tels modèles ne peuvent pas être appliqués directement dans de

nombreux cas pratiques.

Dans le cas de chargement de fatigue (cycle en forces ou déplacements imposés,

ou en température...) les efforts qui se développent au sein de la structure sont

bien en deçà de la résistance ultime des matériaux ou de la limite d’élasticité.

Cependant, ils sont responsables de la dégradation continue de la rigidité et de

la propagation des fissures, ce qui conduit finalement à la défaillance de la struc-

ture. Au début de la vie d’une structure, le matériau qui la compose ne présente

iii
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que des défauts internes (microfissures, vides, discontinuités...). En raison du

chargement cyclique (normalement de faible intensité, mais de longue durée), ces

petits défauts ont tendance à crôıtre en taille et en quantité, ce qui endommage

le matériau, réduisant ainsi sa rigidité. Avec un nombre relativement élevé de

cycles, les micro défauts se relient et deviennent des fissures, qui précèdent la rup-

ture. D’un point de vue théorique, les deux mécanismes sont traités différemment.

La fracture est habituellement décrite localement, avec la propagation de fissures

définie par la valeur du facteur d’intensité de contraintes en pointe de fissure,

alors que l’endommagement est habituellement associé à des approches non lo-

cales. Certains modèles fusionnent les deux approches avec la représentation des

fissures comme des zones fortement endommagées. Cependant, cette stratégie

est habituellement sensible aux effets de discrétisation, ce qui peut générer des

réponses non physiques des modèles.

Dans ce travail, la modélisation de l’apparition des fissures et leurs propaga-

tions en chargement monotone est d’abord étudiée. Les prédictions du modèle

de rupture sont comparées à des résultats expérimentaux de la littérature pour

divers spécimens (intacts ou pré-fissurés) constitués de différents matériaux

et de différentes tailles. Des échantillons présentant des défauts initiaux en

forme de V et en forme de trou illustrent les capacités de la formulation.

Ensuite, l’endommagement et la fissuration induite par des chargements cy-

cliques en fatigue sont discutés. Un modèle local en éléments discrets est alors

développé, qui permet de coupler les deux mécanismes (endommagement et fis-

suration). Les prédictions numériques sont comparées aux résultats théoriques et

expérimentaux. À la fin, des applications associées au comportement du béton

bitumineux, présentent l’effet de renfort par des grilles en fibres de verre.

Plan du Mémoire

Le contexte et les objectifs de la thèse étant fixés, ce mémoire est découpé

en sept chapitres :

Le chapitre 1, “Introduction”, présente les objectifs, la portée de l’étude, et les

grandes lignes de la thèse.

Le chapitre 2, “Revue de la littérature”, contient quatre parties. La première

partie résume brièvement les théories fondamentales de la mécanique de la rup-

ture. La deuxième partie présente la dépendance de la résistance nominale des
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matériaux quasi-fragiles par rapport à la taille physique de la structure, la taille

des défauts (fissures, vides...) et leur forme (rainure, trous...), ainsi que l’analyse

des modèles utilisés pour caractériser ces effets. La troisième partie compare un

modèle d’endommagement continu avec un modèle de propagation de fissures par

fatigue pour un béton bitumineux. Enfin, la quatrième partie présente la méthode

aux éléments discrets et introduit les définitions de déformation et de contraintes

pour un motif hexagonal de particules.

Le chapitre 3, “Résistance nominale des structures fissurées”, présente un modèle

de rupture capable d’analyser efficacement les effets de la taille sur la base de

l’information locale du taux de restitution d’énergie en pointe de fissure et son

évolution durant la propagation de celle-là. La dérivée du taux de restitution

d’énergie est introduite pour caractériser le mécanisme de résistance, qui domine

la rupture en absence de fissures ou lorsque elles sont petites. Avec le critère

d’énergie classique pour le mécanisme énergétique, un modèle asymptotique est

établi pour caractériser l’ensemble du processus de défaillance (initiation et prop-

agation de fissures). Une expression pour des échantillons géométriquement sim-

ilaires est directement établie, ce qui permet de comparer le modèle proposé avec

les résultats expérimentaux présentés dans la littérature (ex.: essais de flexion

trois points de poutres pré-fissurés) et d’autres modèles capables de caractériser

les effets de la taille.

Le chapitre 4, “Généralisation du modèle de rupture quasi-fragile”, introduit une

généralisation du modèle de rupture locale présenté dans le chapitre précédent,

basée sur les quantités locales évaluées en pointe de fissure. Le modèle généralisé

permet une analyse de la rupture des structures présentant des défauts plus

complexes. Les prévisions de la résistance nominale données par le modèle pro-

posé sont comparées aux résultats expérimentaux de la littérature pour différents

échantillons (intacts ou pré-fissurés), constitués de différents matériaux, et de

différentes tailles. Des échantillons présentant des défauts initiaux en forme de V

et en forme de trou sont étudiés et modélisés.

Le chapitre 5, “Modélisation de l’endommagement et fissuration du béton bitu-

mineux”, développe un modèle local en éléments discrets qui permet de coupler

les deux mécanismes (endommagement et fissuration). Les résultats numériques

sont comparés à des essais de fatigue de poutres en flexion 4 points.

Le chapitre 6, “ Application au béton bitumineux renforcé par des grilles en

fibre de verre”, utilise les modèles proposés pour l’étude des effets des renforts
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par grille en fibre de verre dans la résistance et la durée de vie des structures des

chaussées. La capacité de la grille en fibre de verre à ralentir l’ouverture de fissures

transversales en conditions de déformation imposée est étudiée. Ces résultats en

conditions monotones sont associés à l’évaluation de l’effet des renforts dans la

durée de vie en fatigue, notamment en fonction de la quantité de fibres.

Le chapitre 7, “Conclusions et perspectives”, contient un résumé des conclusions

de cette étude et traite des travaux futurs envisageables.

Le mémoire se termine avec trois annexes. L’annexe A présente une comparai-

son des différentes formules de facteur de correction géométrique pour le taux de

restitution d’énergie des poutres en flexion trois points. L’annexe B introduit la

méthode de fermeture de fissure modifiée, qui sert à calculer le taux de restitu-

tion d’énergie numériquement. L’annexe C présente l’algorithme de calcul de la

méthode des éléments discrets.

Résistance nominale de structures fissurées

La résistance nominale des structures constituées de matériaux quasi-fragiles est

généralement liée à la taille physique de la structure (effet de taille) et la taille

des fissures existantes (effet de bord). Dans cette partie, un modèle de rupture

capable de prendre en compte ces deux effets à partir du taux de restitution

d’énergie en pointe de fissure et son évolution durant la propagation de celle-là

est établie :

σN =
1.12ft
H(α)

(

1 +
ae
at

)

−1/2

, (1)

où σN est la résistance nominale, ft est la résistance en traction du matériau, H(α)

est un facteur de correction géométrique pour la dérivée du taux de restitution

d’énergie (Équation 3.9, α est le ratio entre la taille de la fissure a et la hauteur

de la poutre h, ae est la longueur de fissure équivalente (Équation 3.13) et at est

la longueur de fissure de transition (Équation 2.21).

Une expression pour des spécimens géométriquement similaires est directement

établie :

σN =
1.12ft
H(α)

(

1 +
h

ht

)

−1/2

, (2)
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où ht est la longueur de transition de la poutre (Équation 3.19).

Afin de valider le modèle proposé, trois séries de résultats expérimentaux ont été

utilisées à partir de recherches existantes sur le calcaire, le béton et la pâte de

ciment durci. La Figure 1 (Figure 3.23) montre les prédictions de la charge de rup-

ture en fonction de la hauteur de la poutre h en comparaison avec les prédictions

de la loi de l”effet de la taille (Équation 2.41), les prévisions du modèle d’effet

de bord (Équation 3.21) et les résultats des essais des échantillons de pâte de

ciment durcie. Les résultats indiquent que les prédictions des résistance nomi-

nale obtenues à partir du modèle proposé concordent très bien avec les résultats

expérimentaux.
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Figure 1: Prédictions du modèle de la charge de rupture Fmax par rapport à la

hauteur de la poutre h en comparaison avec les prédictions de la loi de l’effet de

la taille, les prévisions du modèle d’effet de bord, et les résultats des essais des

échantillons de pâte de ciment durcie.

Généralisation du modèle de rupture quasi-fragile

La caractérisation locale du processus de rupture, présentée dans le chapitre

précèdent à partir des quantités évaluées en pointe de fissure, demande une

fine description de la transition entre les mécanismes de résistance et celui de

propagation de fissures. L’utilisation d’un paramètre supplémentaire r dans le

modèle (c’est-à-dire, en plus de la résistance en traction et de la ténacité) permet
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l’analyse de la rupture pour des structures présentant des défauts plus complexes

qu’une fissure. Le modèle généralisé s’écrit de la façon suivante :

(

G

Gc

)r

+

(

G′

Ḡc

)r

= 1, (3)

où G est le taux de restitution d’énergie, Gc est l’énergie de rupture, G′ est la

dérivée du taux de restitution par rapport à la taille de la fissure a, and Ḡc est

la valeur critique de la dérivée du taux de restitution d’énergie.

Les prédictions du modèle de rupture sont comparées à des résultats

expérimentaux de la littérature pour divers spécimens (intacts ou pré-fissurés)

constitués de différents matériaux etde différentes tailles. Des échantillons

présentant des défauts initiaux en forme de V et en forme de trou (Figure 2)

illustrent les capacités de la formulation.

Modélisation de l’endommagement et fissuration du
béton bitumineux

Les processus de défaillance par fatigue de certains géomatériaux (comme le

béton bitumineux) sont responsables de la plupart des dysfonctionnements des

chaussées, soumises à des chargements répétés (véhicules, température...). Le

modèle d’endommagement de Bodin a été implanté dans le code aux éléments

discrets et comparé à la prédiction théorique et montre un bon accord dans des

conditions de contraintes homogènes. Une comparaison des approches non lo-

cales et locales appliquées au test de flexion à quatre points indique les limites de

chaque cas. La plupart des approches non locales peuvent produire une réponse

raisonnable à l’échelle de l’échantillon, résultant d’un comportement à l’échelle du

matériau qui est irréaliste. D’autre part, une approche purement locale présente

une cinématique de rupture plus cohérente, mais fortement affectée par des effets

de maillage.

Afin de réduire cette limitation des approches locales, un schéma numérique sim-

ple couplant endommagement et fissuration dans un modèle par éléments discrets

est proposé. L’association de ces différentes formulations mécaniques permet de

bien reproduire le comportement expérimental : avant l’apparition de fissures par
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Figure 2: (a) Géométrie des échantillons avec des défauts initiaux en forme de V.

(b) Charges de rupture Fmax pour différents angles d’ouverture d’encoche γ. (c)

Géométrie des plaques avec trous circulaires. (d) Prévision de la contrainte de

rupture pour différents diamètres D. Comparaison des résultats experimentaux

avec des modèles.

le modèle d’endommagement ; pendant l’apparition et propagation des fissures

par le modèle de fissuration. Des inconvénients importants de chaque approche

sont ainsi évités, tels que les effets de discrétisation, comme le montre le com-

portement convergeant des résultats ; et des résultats non physiques des modèles

de croissance des fissures pour de très courtes ou tout simplement d’absence de

fissures. Les résultats numériques sont comparés aux prédictions théoriques de

la mécanique de la rupture et aux résultats expérimentaux de la littérature. La

Figure 3 montre un exemple de la distribution d’endommagement et de la prop-
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agation des fissures d’une plaque pré-fissurée avec une longueur de fissure initiale

a0 = 5mm après 166 cycles de charge de fatigue. L’augmentation du nombre de

cycles, provoque l’évolution de la zone d’endommagement élevé due à l’extension

de la fissure de fatigue, comme le montre la Figure 4. La taille de la zone de

processus de fracture semble dépendre de la taille de la fissure.

Nc=166 Cycles

Fissure initiale

Zone 
d’endommagement

 élevé
Zone de processus 

de fracture

Pointe de fissuration 
propagée

Zone 
d’endommagement

 faible

Endommagements 
homogènes

Figure 3: Distribution de l’endommagement et de la propagation des fissures

d’une plaque pré-fissurée avec une longueur de fissure initiale a0 = 5mm après

166 cycles de charge de fatigue.

Application au béton bitumineux renforcé par des grilles
en fibre de verre

Dans cette partie, on étudie l’effet du renfort des couches bitumineuses

par des grilles en fibre de verre sur l’initiation et propagation de fissures. Les

structures renforcées sont analysés par un modèle bidimensionnel. On considère

les fissures dans différentes couches de béton bitumineux (représentées dans la

Figure 5), qui représentent soit une nouvelle chaussée intacte, soit une chaussée

fissuré qui reçoit un renfort et une nouvelle couche de béton bitumineux. L’effet
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(a)

Nc=179 Cycles

Fissure initiale

Zone 
d’endommagement

 élevé

Zone de processus 
de fracture

Pointe de fissuration 
propagée

Zone 
d’endommagement

 faible

Endommagements 
homogènes

(b)

Nc=187 Cycles

Fissure initiale

Zone 
d’endommagement

 élevé

Zone de processus 
de fracture

Pointe de fissuration 
propagée

Zone 
d’endommagement

 faible

Endommagements 
homogènes

(c)

Nc=215 Cycles

Fissure initiale

Zone 
d’endommagement

 élevé

Zone de processus 
de fracture

Pointe de fissuration 
propagée

Zone 
d’endommagement

 faible

Endommagements 
homogènes

Figure 4: Distribution de l’endommagement et de la propagation des fissures

d’une plaque pré-fissurée avec une longueur de fissure initiale a0 = 5mm après

(a) 179, (b) 187 and (c) 215 cycles de charge de fatigue.

de la quantité de fibres sur la résistance nominale du matériau renforcé est

ensuite analysé sur la base du modèle de rupture proposé dans le Chapitre 4. Le

facteur de correction géométrique pour la dérivée du taux de restitution H est

tracé par rapport aux quantités de fibres SfEf/Eac pour les différents cas dans

la Figure 6. On a observé un faible effet des fibres vis-à-vis de l’initiation des

fissures alors que les fissures sont loin du renfort. Cependant, l’effet protecteur

des renforts est évident lorsque les fissures traversent la grille de fibre de verre.
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Grilles en 

fibre

Béton 
bitumineux
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Positions des fissures

Grilles en 

fibre

Béton 
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Figure 5: Déclenchement par fissuration à partir de la limite inférieure de la

deuxième couche de béton bitumineux (cas 1) et du fond de la première couche

de béton bitumineux (cas 2).

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0.6

0.7

0.8

0.9

1.0

1.1

� 	����� �������� ��� ����

	����� �������� ������� �

� 
��� �

� 
��� ����� � ���������� ����

� 
��� ����� ������ ����� �H

��������� (�
�
��)

Figure 6: Facteur de correction géométrique H par rapport à la quantité de

fibres SfEf/Eac pour différents cas.

Conclusions et perspectives

Dans le cadre d’une meilleure estimation de la durée de vie et de la ca-
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pacité des structures à supporter des charges, la modélisation de l’apparition

des fissures et leur propagation en chargement monotone est d’abord étudiée.

Une expression permetant l’analyse des effets de taille basée sur des quantités

localement définies (à partir du taux de restitution d’energie en pointe de fissure)

pour des spécimens préfissurés est initiallement établie. Ceci a permis des

comparaisons avec des résultats expérimentaux issus de la littérature (flexion

de poutres geometriquement similaires à trois points) et d’autres modèles.

L’utilisation d’un paramètre supplémentaire dans le modèle a rendu l’analyse de

la rupture pour des structures présentant des défauts plus complexes (cavités,

encoches...) possible. Les prédictions du modèle de rupture ont été comparées

à des résultats expérimentaux de la littérature pour divers spécimens (intacts

ou pré-fissurés) constitués de différents matériaux et de différentes tailles. Des

échantillons présentant des défauts initiaux en forme de V et en forme de trou

ont été traités avec des résultats consistants. Ensuite, l’endommagement et

la fissuration induite par des chargements cycliques en fatigue sont discutés.

Un modèle local en éléments discrets est développé afin de coupler les deux

mécanismes. Les prédictions numériques sont comparées aux résultats théoriques

et expérimentaux de la litérature. À la fin, des applications associées au

comportement du béton bitumineux et l’effet des renforts par des grilles en fibres

de verres sont analysés plus en détail.

Les modèles théoriques et numériques proposés permettent de prédire efficace-

ment la résistance nominale et la durée de vie en fatigue des matériaux quasi-

fragiles au niveau local. D’un point de vue théorique, les modèles proposés

présentent de nombreuses extensions possibles. Le modèle de rupture monotone

peut être simplement adapté au mode mixte à partir de la définition de la direction

de l’initiation ou de l’extension d’une fissure. Une version tridimensionnelle du

modèle de fatigue peut être obtenue par au moins deux façons. La première est de

continuer avec une approche par éléments discrets. Néanmoins, une distribution

aléatoire des particules peut diminuer le temps de calcul nécessaire, moyennant

une procédure de calibration des paramètres. La seconde est d’adapter la formu-

lation à un code aux éléments finis, considérant que toute la théorie utilisée est

fondée sur la mécanique des milieux continus.
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pages).

PAPERS

1. X. Gao, G. Koval, and C. Chazallon. Energetical formulation of size

effect law for quasi-brittle fracture. Engineering Fracture Mechanics, 2017.

http://dx.doi.org/10.1016/j.engfracmech.2017.02.001. (en publication, 14 pages)

2. X. Gao, G. Koval, and C. Chazallon. A size and boundary effects model for

quasi-brittle fracture. Materials, 9(12):1-20, 2016.



Contents

Acknowledgments i
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This work was undertaken at the National Institute of Applied Sciences of Stras-

bourg (INSA de Strasbourg), in the Engineering Science, Computer Science and

Imaging Laboratory (ICUBE, UMR7357). Firstly, the general background and

motivation of the thesis are given in this chapter. Then, the objectives and re-

search scope are discussed. Finally, an outline of the remainder of the thesis is

presented.

1.1 General background and motivation

Quasi-brittle materials (measurable plastic deformation before failure), such as

hydraulic or asphalt concretes, rocks, and certain types of ceramics, are widely

used in modern construction. The prediction of the fatigue life and fracture of

structures composed of these materials is essential to their design and mainte-

nance. The high complexity of the material properties requires the development

of theoretical and numerical tools in order to achieve effective structures.

Numerous experimental results have shown that quasi-brittle rupture is size de-

pendent, i.e., it depends on the physical size of the structure, the size of existing

defects (cracks, voids, etc.) and their shape (notches, holes, etc.). The design of

a real structure is based on material properties obtained for much smaller exper-

imental specimens. Hence, size effects must be taken into account for realistic

predictions of the strength of big structures such as large concrete elements, nu-

clear facilities, large load-bearing parts of aircraft, and floating sea ice carrying

1
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loads. Existing non-local critical distance theories, including elastic stress field

based models, fracture mechanics based models, and combined stress and energy

models, are associated with a length scale parameter. This length scale depends

globally on material properties such as strength and toughness . For some geo-

materials (concrete, asphalt concrete, masonry, etc.), the critical length can reach

the scale of centimeters; which is comparable to the size of experimental speci-

mens or the thickness of upper pavement layers, for example. Consequently, such

models cannot be directly applied in many practical cases.

Under fatigue loading (cyclical loads or temperature cycling) the applied efforts

are far below the ultimate strength of the materials, but are responsible for the

continuous degradation of the stiffness and propagation of cracks, etc., which fi-

nally result in the failure of the structure. At the beginning of the lifetime of a

structure, the material contains only intrinsic defects (microcracks, voids, etc.).

Due to the effect of cyclic loading, these small defects tend to grow in size and

number, damaging the material and reducing its stiffness. With a relatively high

number of cycles, these growing microcracks become large cracks, which deter-

mine the fracture behavior. From a theoretical point of view, the two mechanisms

are treated differently. Fracture is usually described locally, with the propagation

of cracks defined by the range of the stress intensity factor at the crack tip, while

damage is usually associated with non-local approaches. Most of the existing

models merge both approaches with the representation of cracks as highly dam-

aged zones. However, this strategy is usually sensitive to discretization effects,

which may generate non-physical responses of the models.

1.2 Objectives and scope

The main purpose of this study was to merge local and non-local aspects of the

rupture of quasi-brittle materials into simple local approaches. The following

objectives are considered:

1. Development of an energetic size effect model, which allows a local definition

of the monotonic rupture of pre-cracked structures.

2. Generalization of the local model for more complex defects such as holes and

V-notches.

3. Combine damage with crack propagation under fatigue loading and propose a



1.3. Outline of the thesis 3

local model developed in a discrete element environment.

4. Application of the models for the analysis of asphalt concrete behavior.

1.3 Outline of the thesis

This thesis is organized in seven chapters:

Chapter 1, “Introduction”, presents the objectives, scope of the study, and outline

of the thesis.

Chapter 2, “Literature review”, contains four parts. The first part briefly sum-

marizes basic theories of fracture mechanics. The second part introduces the

nominal strength dependency of quasi-brittle materials on the physical size of

the structure, the size of existing defects (cracks, voids, etc.) and their shape

(notches, holes, etc.), and reviews models used to characterize these effects. The

third part compares a continuum damage model with a fatigue crack growth

model for asphalt concrete. Finally, the fourth part presents a discrete element

method and introduces the definitions of strain and stress in the close-packed

assembly.

Chapter 3, “Nominal strength of cracked structures”, presents a local failure

model which is able to effectively analyze the size and boundary effects based on

the local information of energy release rate and its derivative at the crack tip. The

derivative of the energy release rate is introduced to predict the nominal strength

for the strength mechanism, which dominates the rupture in the absence of cracks

or when only short cracks are present. Along with the classical energy criterion

for the energy mechanism, an asymptotic model is established to characterize

the entire failure process (crack initiation and crack propagation). An expression

for geometrically similar specimens is directly established, which allows compar-

ison of the proposed model with experimental results presented in the literature

(e.g. cracked three point bending tests of concrete, limestone and hardened ce-

ment paste beams) and other models that are capable of characterizing size and

boundary effects.

Chapter 4, “Generalization of the quasi-brittle rupture model”, discusses a gen-

eralization of the local failure model presented in the previous chapter, based

on the local quantities evaluated at the crack tip. The generalized model allows

rupture analysis of structures with more complex defects. The nominal strength
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predictions given by the proposed model are compared with experimental results

from the literature for various specimens (intact or pre-cracked) made of differ-

ent materials and in different sizes. The comparison with samples with initial

V-shaped and hole-shaped defects demonstrate the capabilities of the model.

Chapter 5, “Modelling of damage and fracture of asphalt concrete”, develops a

local model in discrete elements that couples two different failure mechanisms

(damage and fatigue crack growth). The numerical results are compared with

the results of four point bending beam fatigue tests.

Chapter 6, “Application to fiber glass reinforced asphalt concrete”, uses the pro-

posed models to the study of the effects of fiber glass reinforcement on the strength

of pavement materials. The capacity of the fiber glass grid to avoid the opening

of transverse cracks under imposed deformations is studied. These results derived

under monotonic conditions are compared to those measuring the effect of the

reinforcement on the fatigue lifetime, in particular according to the quantity of

fibers.

Chapter 7, “Conclusions and perspectives”, contains a summary of the findings

of this study and discusses potential future work.

Three appendices are included to provide supplementary information. Appendix

A presents a comparison of the different empirical geometrical correction factor

formulas for the energy release rate of the cracked three point bending beams

with different span to height ratios. Appendix B introduces the modified crack

closure method, which can be used to calculate the energy release rate and its

derivative of the structure with complex geometry and/or boundary conditions.

Appendix C presents the algorithm of discrete element method calculation.
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2.1 Introduction

The fundamental aspects of linear elastic fracture mechanics (LEFM) have been

extensively applied to the analysis of structures with sufficiently large cracks.

The mixed mode crack propagation criteria, including the maximum tensile stress

criterion, minimum energy density criterion, and maximum energy release rate

criterion, are well developed for predicting the fracture load and extension angle

for large crack propagation.

Based on the LEFM fracture criteria, predictions of the nominal strength of

quasi-brittle materials with sufficiently large cracks can be easily achieved. How-

ever, when the size of the crack or the crack-like defect is not large enough or

visually identifiable (intermediate defects), the crack initiation and propagation

from the defect is not dominated by LEFM. These intermediate states, including

the rupture of small cracked specimens or structures with defects others than

cracks (heterogeneities, complex shaped notches, etc.), are very common in mod-

ern structures. Therefore, it is very important to study the dependence of the

nominal strength on the defect size.

Experimental studies have shown that the nominal strength of quasi-brittle mate-

rials is not just defect size and shape dependent, but also specimen size dependent.

This means that on a small scale the nominal strengths obey the strength theory,

characterized by the material strength, and on a large scale follow LEFM, char-

acterized by the toughness. It is very important to consider this phenomenon in

structural failure analysis, because real structures made from the same materials,

but with different sizes, can show very different properties. Many specimen size

based models have been developed to consider such behavior.

In addition to predictions of the nominal strength, the damage evolution and

fatigue crack propagation of the material are also significant in structural failure

analysis. For example, fatigue cracking is the most common failure observed for

asphalt pavements due to repeated traffic loading, which could decrease the ser-

vice life of the structure. In order to predict the lifetime of damage evolution,

fatigue crack initiation, and small and large fatigue crack propagation, some con-

tinuum damage models and fatigue crack propagation models have been devel-

oped . These models have been validated by experimental results and some have

been implemented as numerical codes, using finite element (FEM), discrete ele-

ment (DEM), or boundary element methods . Among all the numerical methods,

DEM is attractive for simulating crack propagation, since it can accurately simu-
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late the contact problem (crack opening and closing) and can manage composite

materials.

In this literature review chapter, the theory of fracture mechanics is briefly intro-

duced in the first part. Then experimental evidence of the size effect related to

the physical size of the structure, the size of existing defects and their shape, and

the existing analytic models are reviewed. In the third part, damage and frac-

ture models for damage evolution and fatigue crack propagation, respectively, are

explored. Finally, the advantages and disadvantages of the most common numer-

ical methods are discussed, and the stress and strain definitions in the discrete

element method are presented.

2.2 Basic knowledge of fracture mechanics

A better understanding of structural failure is a very important issue for modern

construction. The failure of structures can have various forms, where excessive

permanent deformation and material fracture are the most common. The former

has been studied and applied to structural designs for more than a century, and

can be viewed as an extension of elasticity for characterizing the mechanical

behavior beyond yielding. The latter is usually related to the strength of the

material, which can cause crack initiation and propagation in the material.

Classical phenomenological approaches were used for strength prediction of solid

materials before the inception of fracture mechanics, which assumes the materials

to be free of cracks or crack-like defects. Classical approaches can generally

predict the failure of engineering materials with acceptable accuracy when the

stress field is relatively uniform. However, they are not capable of predicting the

strength in the presence of high stress gradients caused by a crack or crack-like

defects. Therefore, fracture mechanics was developed, where the major objective

is to study the load-carrying capacity of structures in the presence of intrinsic

defects.

2.2.1 History

Fracture mechanics is a relatively young scientific branch of solid mechanics,

which concerns the failure of materials caused by crack initiation and propagation.

The beginning of fracture mechanics is usually associated with the pioneering
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work of Griffith on brittle fracture of glass [1]. Griffith used an energy balance

approach to determine the strength of cracked solids, which assumes the work

done during crack growth must be equal to the surface energy stored in the

newly created surfaces. He thus introduced a variable (later called the energy

release rate) for characterizing the fracture failure; the critical energy release rate

is a material constant.

Although Griffith presented the basic energy concept of fracture mechanics in

1920, it was only after the 1950s that fracture mechanics was accepted as an

engineering science with successful practical applications. This was mainly as a

result of the work of Irwin [2], who defined the stress intensity factors , and derived

the relationship between the energy release rate, G, and the stress intensity factor,

K. Based on this relationship, Irwin proposed using K as a fracture parameter,

which is a more direct approach.

Between 1960 and 1980, fracture mechanics proved to be a great scientific suc-

cess, including the emergence of nonlinear fracture mechanics that allowed better

consideration of the behavior of nonlinear elastic materials or elastic-plastic ma-

terials. Many studies were published during this time, including the theoretical

concept of the J-integral, which was developed in 1967 by Cherepanov [3] and

independently in 1968 by Rice [4]. The latter generalized the energy release rate

concept to describe deformation plasticity and found that G can be represented by

a line integral, the so called path-independent J-integral. The J-integral method

reduces to the Griffith theory for linear-elastic behavior. All theoretical devel-

opments made at this time were used to determine the exact form of singularity

and asymptotic crack tip fields necessary for the analysis and interpretation of ex-

perimental results. Furthermore, such methods provide exact solutions to many

problems with simple geometries, and can therefore be applied when approaching

more complex problems.

In recent years, LEFM has been applied to many new materials, such as non-

homogeneous and anisotropic fiber-reinforced composites [5]. In addition, a new

form of fracture model called the cohesive zone model (CZM) has evolved from

LEFM [6], and many research groups have reported successful results using this

approach [7]. The stress singularity is avoided in CZM, and material failure is

controlled by quantities such as displacements and stresses, which are consistent

with the usual strength of materials theory.
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2.2.2 Basic modes of fracture

A crack in a solid consists of disjointed upper and lower crack surfaces, which are

the dominating influence on the stress distribution near the crack tip. There are

three different ways to load a plate containing a crack, and each load orientation

has its own designation. The problems associated with these different loading

configurations can be divided into three basic types. Each type associates with a

local mode of deformation as presented in Figure 2.1. These basic fracture modes

are called Mode I, Mode II, and Mode III, respectively, and any fracture mode in

a cracked body may be viewed as a superposition of these basic modes.

Mode I Mode II Mode III

Z

X
Y

Z

X
Y

Z

X
Y

Figure 2.1: Schematic of the basic fracture modes (Modified from [8]).

The three basic fracture modes are defined as follows:

(1) Mode I (Opening Mode): The two crack surfaces have the displacement only

in Y direction. They move away symmetrically with respect to the XZ plane,

which is the crack plane.

(2) Mode II (Sliding Mode): The two crack surfaces have the displacement only

in X direction. They slide against each other along directions perpendicular to

the crack front but in the same plane (XZ plane).

(3) Mode III (Tearing Mode): The two crack surfaces have the displacement only

in Z direction. They tear over each other in the directions parallel to the crack

front but in the same plane (XZ plane).

2.2.3 The elastic stress field around a crack tip

Among various mathematical methods in plane elasticity, the Westergaard func-

tion method [9,10] is more convenient than the other methods for discussing the



2.2. Basic knowledge of fracture mechanics 11

basic crack problems, which is used to find the elasticity solutions for an infinite

plane with a center crack under uniform tension (mode I), in-plane shear (mode

II), and anti-plane shear loading (mode III), respectively. The Westergaard so-

lutions are given below for each of the three modes in relation to the coordinate

system shown in Figure 2.2. The origins of the coordinate system (r, θ) and (X, Y )

are located at the crack tip, K terms are the stress intensity factor for each mode,

E is the Young’s modulus, ν is Poisson ratio, shear modulus µ = E/[2(1 + ν)],

κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for plane stress.

xx
yy

xy

rr
r


r

X

Y

Upper surface

Lower surface

Figure 2.2: The rectangular and polar coordinate components of stress field

around the crack tip (Modified from [8]).

A center cracked infinite plate subjected to mode I loading (uniform tension) is

presented in Figure 2.3. The stress and displacement fields given by the Wester-

gaard Function Method in polar coordinate system are given by:

σrr =
KI√
2πr

cos
θ

2

(

1 + sin2 θ

2

)

(2.1)

σθθ =
KI√
2πr

cos2
θ

2
(2.2)

σrθ =
KI√
2πr

sin
θ

2
cos2

θ

2
(2.3)
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2a

σ0

σ0


r

X

Y

Figure 2.3: A center cracked infinite plate subjected to mode I loading.

ur =
KI

8µπ

√
2πr

[

(2κ− 1) cos
θ

2
− cos

3θ

2

]

(2.4)

uθ =
KI

8µπ

√
2πr

[

(2κ+ 1) sin
θ

2
− sin

3θ

2

]

(2.5)

Figure 2.4 shows a center cracked infinite plate subjected to mode II loading (in-

plane shear). In polar coordinate system, the stress and displacement fields are

given by the Westergaard Function Method as follows:

σrr =
KII√
2πr

sin
θ

2

(

1 − 3 sin2 θ

2

)

(2.6)

σθθ =
KII√
2πr

− 3 sin
θ

2
cos2

θ

2
(2.7)

σrθ =
KII√
2πr

cos
θ

2

(

1 − 3 sin2 θ

2

)

(2.8)



2.2. Basic knowledge of fracture mechanics 13

2a
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r

X

Y

τ0

τ0τ0

Figure 2.4: A center cracked infinite plate subjected to mode II loading.

ur =
KII

8µπ

√
2πr

[

− (2κ− 1) sin
θ

2
+ sin

3θ

2

]

(2.9)

uθ =
KII

8µπ

√
2πr

[

− (2κ+ 1) cos
θ

2
+ 3 cos

3θ

2

]

(2.10)

Mode III is a tearing mode (see Figure 2.5). The two crack surfaces have the

displacement only in Z direction:

uz =
KIII

µπ

√
2πr sin

θ

2
(2.11)

The stress fields in polar coordinate systems are:

σrz =
KIII√

2πr
sin

θ

2
(2.12)

σθz =
KIII√

2πr
cos

θ

2
(2.13)

Equation 2.1 to 2.13 present the stress and displacement fields of the three basic

modes, solved by Westergaard Function Method. Any fracture mode in a cracked
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2a


r

X

Y

S0

S0

Figure 2.5: A center cracked infinite plate subjected to mode III loading.

body may be viewed as a superposition of these basic modes. Hence, the expres-

sions of stress and displacement fields near the crack tip in mixed mode can be

easily obtained.

2.2.4 Energy release rate

The near-tip stress field method and energy method are two basic methods of

linear elastic fracture mechanics. In the near-tip stress field method, crack growth

is dominated by the local stress field around the crack tip, which is characterized

by the stress intensity factor K. Fracture occurs when the stress intensity factor

reaches its critical value Kc (fracture toughness). In the energy method, the

fracture behavior of a material is described by the energy variation of the cracked

system during crack extension, which is characterized by the energy release rate

G. Fracture occurs when the energy release rate reaches its critical value Gc

(fracture energy). For linear elastic materials, the energy and the stress field

approaches can be considered equivalent.
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2.2.4.1 The concept of energy release rate

The energy release rate is the energy dissipated during fracture per unit of newly

created fracture surface area. According to Griffith’s original concept [1], the

work done during a crack extension must be equal to the surface energy stored in

the newly created surfaces. Hence, the energy release rate is defined as follows:

G = −∂(U − V )

∂Q
, (2.14)

where U is the potential energy available for crack growth, V is the work asso-

ciated with any external forces acting, and Q is the extended crack area for 3D

problems and crack length for 2D problems.

2.2.4.2 The relation between G and K by crack closure method

For linear elastic materials, the energy and the stress field approaches can be con-

sidered equivalent, therefore, there exists a unique relation between the energy

release rate G and the stress intensity factor K. This relationship can be estab-

lished by Crack Closure Method (CCM). CCM assumes that the energy released

during crack extension is equal to the work done in closing the opened surfaces.

Consider a plate in model I, Figure 2.6 shows its singular stress field in y direction

along x axis, and the displacement field after an infinitesimal crack extension of

da.

The singular stress distribution can be written as follows (Equation 2.2 with r = x

and θ = 0◦):

σyy =
KI(a)√

2πx
(2.15)

The surface displacement after an infinitesimal extension of da can be simplified

from Equation 2.5 and written as:

uy =
κ+ 1

4µπ
KI(a+ da)

√

2π(da− x) (2.16)

The energy released during the extension can be computed by the integral of

stress and displacement over 0 to da. And energy release rate is the released
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Before extension: a
x

y

x’

y’

After extension: a+da

Figure 2.6: Stress distribution before extension and surface opening after exten-

sion.

energy of unit surface. Assuming KI(a+ da) = KI(a), the relation of GI and KI

can be computed as follows:

GI =
2

da

∫ da

0

1

2
σyyuydx =

κ+ 1

8µ
K2

I (2.17)

For plane stress condition, this expression can be simplified as GI = K2
I /E.

Following the same procedure and assuming the infinitesimal extension da is

always in the original direction of the main crack, the similar relation of G and

K can be found for mode II and mode III, respectively:

GII =
κ+ 1

8µ
K2

II , (2.18)
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GIII =
1

2µ
K2

III , (2.19)

2.2.5 Mixed mode crack propagation criteria

It involves two aspects to predict the crack propagation, including when the crack

would propagate, and along which direction. For mode I failure, it is known that

the crack would propagate in its original direction, and the critical moment for

the crack starts to propagate when the stress intensity factor K and energy release

rate G reach their critical values. However, for mixed mode crack propagation,

the crack would no longer propagate in its original direction, because KII also

plays a role in crack growth (see Figure 2.7). Therefore, in order to study the

crack propagation of mixed mode, the appropriate fracture criteria need to be

established.

2a

β θ
θ

σ0

σ0

Figure 2.7: A plate containing an inclined crack under uniform tensile loading

(mixed mode).

Erdogan and Sih [11] proposed a maximum tensile stress criterion for mixed mode

fracture. The criterion assumes that crack extension occurs in the direction at

which the circumferential stress takes the maximum with respect to near the crack
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tip, and fracture takes place when maximum tensile stress is equal to the stress

that leads to Mode I fracture. Sih [12] proposed a mixed mode fracture criterion

based on the strain energy density concept. The fundamental hypotheses of the

strain energy density are the crack will extend in the direction of the minimum

strain energy density; and the crack extension occurs when the minimum strain

energy density factor reaches its critical value Scr. The maximum energy release

rate criterion is an extension of the Griffith fracture theory in that the crack will

grow in the direction along which the maximum potential energy is released. In

this study, only mode I crack propagation will be studied for simplicity.

2.2.6 Summary

The fracture mechanics is developed to study the load-carrying capacity of struc-

tures in the presence of initial defects with high stress gradients. In this section,

the fundamental aspects of the linear elastic fracture mechanics are presented.

2.3 Nominal strength - size effects in quasi-

brittle fracture

2.3.1 Overview

For the fracture of quasi-brittle materials like concretes, rocks, fiber composites,

some types of ceramics, sea ice etc., two main failure criterion are generally taken

into account. The former one is stress criterion, assumes that failure happens if

the stress σ reaches the tensile strength ft. This criterion can predict good nom-

inal strength (defined as the mean stress at failure plane) for crack-free bodies,

but provides a null failure stress for a body containing a crack, because the stress

is singular in front of the crack tip. The latter one is the energy criterion (LEFM

fracture criterion), which assumes failure takes place if the energy release rate

G equals the fracture energy Gc. The energy criterion works for structures with

sufficiently large cracks, but provides an infinite failure load for a crack-free body,

because the energy release rate being zero in absence of a crack. Therefore, the

above mentioned criteria work only for the extreme cases (i.e. no crack or large

crack), but are no longer valid for short and intermediate cracks.
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Figure 2.8 shows a center cracked infinite plate subjected to the failure stress

σmax. The failure stress σmax according to the energy criterion is dependent on

the crack length, which equals to σmax =
√

GcE/πa. For a small crack length a,

one may obtain σmax > ft, which is unrealistic becasue the failure stress cannot

be higher than the material tensile strength ft. The combination of the ft and

fracture energy Gc yields Irwin’s [2] characteristic length:

lch =
GcE

f 2
t

=
K2

c

f 2
t

. (2.20)

where E is Young’s modulus, Kc is the fracture toughness. Based on a length

scale usually proportional to Irwin’s characteristic length lch, several non-local

failure criteria have been proposed in the literature [13–16], for the purpose of

giving a better prediction of the nominal strength for quasi-brittle materials.

2a

σmax

σmax

Gc =(σmax)
2πa/E

(a/w→0)w

Figure 2.8: Center cracked infinite plate subjected to the failure stress σmax.

The difficulties of nominal strength predictions for quasi-brittle materials is not

only the invalidation of conventional stress and energetic criteria for short and

intermediate cracks, but also the dependencies of nominal strength on the physical

sizes of the specimens and defect types (v-notches, holes etc.), which have been

proved by plenty of experiment results. The influences of crack sizes, specimen
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sizes and defect types on the nominal strength can be summarized as the size

effects.

In this section, the experimental evidences (from the literature) of size effects

induced by crack size, specimen size and defect type will be reviewed. Then the

nominal strength prediction models, including the non-local Theories of Critical

Distance (TCDs), and the asymptotic approaches are studied to better under-

stand the advantages and limitations of the existing models.

2.3.2 Size effect induced by defect size at constant speci-

men size

Figure 2.9 shows typical test results measuring the nominal strength of specimen

of silicon carbide (SiC) containing different crack sizes and the model predic-

tions [15]. The model predictions given along with the experimental results will

be discussed in detail in Sections 2.3.5, 2.3.6 and 2.3.7. The energy criterion of

LEFM works for sufficiently large crack, while the tensile strength seems to be

the failure stress when the crack length is below 0.001mm. Between these two

conditions, both stress criterion and energy criterion are not applicable. The

stress criterion would provide a null strength due to the stress singularity at the

crack tip, while the energy criterion would give a unreal nominal strength, which

is higher than the material tensile strength. The test results shown in Figure 2.9

indicate that the nominal strength transits smoothly from the tensile strength

to LEFM. The intersection of the LEFM line and the line corresponding to the

tensile strength is defined as the transition crack length, which can be calculated

by the following expression [17]:

at =
GcE

(1.12ft)
2 π

=
lch

1.122π
. (2.21)

The transition crack length at is proportional to Irwin’s characteristic length lch.

Therefore, it is also a material dependent parameter relating to toughness Gc

and tensile strength ft. It should be noticed that SiC is a brittle material with

a small value of at. Quasi-brittle materials commonly have larger values of at,

which can be around 40 mm for concrete material. The example of SiC is taken

here to illustrate the influence of crack length on the nominal strength, which is

the same for brittle and quasi-brittle materials.
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Figure 2.9: Test results and model predictions of nominal strengths versus crack

length in SiC (Modifed from [15]).

2.3.3 Size effect induced by specimen size

Bažant et al. [18,19] carried out a series of experiments with Cracked Three Point

Bending (C-TPB) specimen with similar geometry, to investigate the size effects

in geometrically similar concrete specimens. The specimens have the same crack

to height ratio α = 0.33, the same span to beam height ratio S/h = 4 (h varies

from 38.1mm to 533.4mm) and a fixed thickness t = 25.4mm (shown in 2.10a).

The test results and model predictions of nominal strength for different specimen

sizes are plotted in 2.10b, shows a decrease of nominal strength as the increase

of specimen size.

2.3.4 Size effect induced by different type of defects

2.3.4.1 Nominal strength dependence on the v-notch opening angle

at constant specimen size

The tests of Nominal strength dependence on the v-notch opening angle at con-

stant specimen size have performed by many reserchers [20–22]. Figure 2.11a

shows an example of v-notched three point bending beam with notch opening

angle γ. The ratio of nominal strength σN(γ)/σN(γ = π) with respect to dif-

ferent notch opening angles is plotted in Figure 2.11b [20], where σN(γ = π) is
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Figure 2.10: (a) Cracked three point bending beam and (b) Test results and

model predictions of nominal strength σN for different specimen sizes [18, 19].

material tensile strength ft. For γ = 0◦, the v-notch becomes a crack, therefore,

the failure behavior is dominated purely by fracture mechanics. As the increase

of γ, the nominal strength would increase accordingly and transit smoothly to be

dominated by material tensile strength. When γ = 180◦, the v-notch becomes a

straight edge, where fracture mechanics doesn’t work because of the zero energy

release rate for un-notched sample, and therefore σN(γ = π) = ft. To sum up,

the nominal strength of the v-notched three point bending beam specimen with

constant size is dependent on the v-notch opening angle, which transits smoothly

from LEFM dominant to material strength dominant.
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Figure 2.11: (a) V-notched three point bending beam and (b) Test results and

model predictions of nominal strength ratio σN(γ)/σN(γ = π) for different notch

opening angles γ [20].

2.3.4.2 Nominal strength dependence on the specimen size of open

hole plate specimen

Camanho et al. [23] performed open-hole tensile tests using the [90/0/ ± 45]3s
lay-up IM7-8552 in carbon epoxy. Specimens presenting the same aspect ratio

based on the hole diameters D (2.0mm, 4.0mm, 6.0mm, 8.0mm and 10.0mm)

were adopted (for widths w = 6D, as shown in Figure 2.12a).

The nominal strength dependence on the specimen size of open hole plate speci-

men is presented in Figure 2.12b), shows a decrease of nominal strength as the

increase of specimen size (proportional to hole diameter). For plates with circu-
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lar holes, although the stress concentration factor (the ratio of the highest stress

σmax to a reference stress σ0 of the gross cross-section) is 3, which is independent

with the hole diameter (specimen size), the nominal strength of the open-hole is

ft/3 only for sufficiently large specimen sizes. As the decrease of hole diameter,

the nominal strength will increase and tend to the material tensile strength ft
(hole size being smaller or in the same magnitude of material’s micro defect size).
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Figure 2.12: (a) Geometry of the plates with open holes and (b) Test results and

model predictions of nominal strength for various hole diameters D [24].

2.3.4.3 Notion of crack band

The transition from the crack initiation (dominated by the strength of the ma-

terial) and its propagation (described by fracture mechanics) can be analyzed

conceptually by the notion of crack band (defined by its thickness T ) as pro-

posed in [25–27]; high-stress gradients (at the vicinity of a crack, for example)

induce small values of T , whereas in homogeneous stress, T contain all the sample

(Figure 2.13).

2.3.5 Theories of critical distance (TCDs)

In order to reproduce the observed size effects, several elastic stress field based

models, fracture mechanics based models, combined stress and energy models,
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Figure 2.13: Crack band T according to the stress gradient: (a) under high

gradient, near a crack, (b) under low gradient, near a geometric defect, and (c)

under absence of gradient, in uniform stress. Figure present in reference [28],

modified from Zhang and Li [27].

and asymptotic approaches have been established by the researchers. The first

three models are classified as Theories of Critical Distance (TCDs), because they

are associated to a length scale usually proportional to characteristic length lch.

This length scale is needed because of the singular stress state near the crack

tip, which makes a pure evaluation of the stress is useless when predicting the

nominal strength.

Based on the stress criterion, TCDs were initially proposed in 1930’s by Neu-

ber [29] and Peterson [30], using a punctual evaluation of the stress at a certain

distance from the crack tip (PSM: Point Stress Method) and the average of the

stress over a certain length (ASM: Average stress Method) respectively to ana-

lyze the failure of metallic structures. After that, TCDs have been developed to

a group of methods which have certain features in common, that is, principally

the use of a characteristic material length parameter, which is proportional to

the material characteristic length lch (Equation 2.20) [15]. In recent years, TCDs

have gained popularity, due to the easiness of the elastic stress field computation

by finite element method. TCDs have been employed for different materials, such

as ceramics [31], polymers [32], composites [33], etc.

According to Taylor [15] and Maimi [16], TCDs can be classified in three cate-

gories: the elastic stress field based models, the fracture mechanics based models,

and the combined stress and energy models. The elastic stress field based models,
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such as PSM and ASM, only use the elastic stress field to predict the nominal

strength, while the fracture mechanics based models usually use only the energy

criterion of LEFM. The combined stress and energy models couple both criteria

to predict the nominal strength.

2.3.5.1 Elastic stress field based models of TCDs

(a) Point Stress Method (PSM): Point stress method is the simplest form

of the TCDs. It assumes that failure will occur when the stress at a distance

lPSM from the notch tip is equal to material tensile strength ft. The PSM can

be written as:

σ(lPSM) = ft (2.22)

Consider a center cracked infinite plate subjected to pure tensile stress σ0 (See

Figure 2.3), the full expression of stress field ahead of the crack tip for any crack

length a (Westergaard’s solution) in rectangular coordinate system is:

σ(x) = σ0

[

1 −
(

a

a+ x

)2
]

−1/2

. (2.23)

When a ≫ x, this expression is reduced to σ(x) = σ0
√

a/(2x). Recall the

definition of mode I stress intensity factor KI = σ0
√
πa, the expression of stress

field will be the same as the one presented in Section 2.2.3, which is:

σ(x) =
KI√
2πx

. (2.24)

The material length scale parameter lPSM is obtained when K = Kc and σ(x) =

ft:

lPSM =
1

2π

(

Kc

ft

)2

=
lch
2π
. (2.25)

According to PSM, the nominal strength of middle cracked plate with any crack

length a can be solved using 2.23 as:
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σN = ft

[

1 −
(

a

a+ lPSM

)2
]1/2

. (2.26)

When a = 0, σN = ft, as the increase of a, the nominal strength σN would

decrease and after a certain crack length, the failure of the structure is dominated

mainly by LEFM.

For other defect types, such as v-notched specimens, specimens with circular

holes, once the stress distribution is known, the nominal strength then can be

easily predicted by PSM. Figure 2.9 shows the nominal strength of cracked plate

predicted by PSM and compared with the test results, indicates that the PSM

can capture the transition effectively and give the predictions in good agreement

with the test results for any crack length. In term of open hole tests shown in

Figure 2.12, PSM can also give the acceptable predictions of nominal strengths

for various hole diameters. However, it should be pointed out that, in order to

fit the test results, lPSM is calculated from the test results of the specimen with

a 6mm diameter hole, instead of calculating from the material parameters [24].

(b) Average Stress Method (ASM): Average stress method uses the average

stress over some distance lASM starting at x = 0. The ASM criterion can be

written as:

1

lASM

∫ lASM

0

σ(x)dx = ft (2.27)

Substituting Equation 2.24 into Equation 2.27 when KI = Kc, the ASM length

scale lASM can be solved as lASM = 2lch/π, which is 4 × lPSM .

In order to generalize ASM criterion to any crack length a, the full stress filed of

Equation 2.23 should be substituted into ASM criterion (Equation 2.27). Hence,

the nominal strength of the center cracked plate can be solved as:

σN = ft

√

lASM

2a+ lASM

. (2.28)

For long cracks subjected to tensile loading, the predictions given by PSM and

ASM would be identical. When the crack length is in the same magnitude of

transition crack length at, shown in Figure 2.9, PSM and ASM give the predictions

of nominal strength with small differences. Figure 2.11b and Figure 2.12b show
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respectively, the nominal strength predictions given by the ASM, for v-notched

beams and plates with circular holes, which show good agreements with the test

results.

(c) Area Stress Method and Volume Stress Method: These two methods

average the stresses over some area or some volume around the tip of defect, and

their critical value is tensile strength ft. The predictions of these two methods

are dependent on the shape of the area or volume chosen to calculate the mean

stress. These two methods are also able to predict the nominal strength for various

defect types, however, in contrast to PSM and ASM, they are more difficult to

be implemented and cannot provide the higher accuracy [15].

2.3.5.2 Fracture mechanics based models

(a) Imaginary Crack Models (ICM): This model was firstly developed in-

dependently by Waddoups et al. [34] for the static failure analysis of composite

materials, and by El Haddad et al., for the fatigue analysis of short cracks [35].

ICM predicts the failure by introducing a sharp crack with length lICM at the

root of the defect and applying LEFM. The length of the crack lICM is assumed

to be a material constant. The critical stress intensity factor of the introduced

crack is fracture toughness Kc.

Consider a plate under tensile stress σ0, and contains a crack of length a. Applying

ICM, the stress intensity factor at the imaginary crack tip is:

K = A(α)σ0
√

π(a+ lICM), (2.29)

where A(α) is the geometrical correction factor dependent on the crack to width

ratio α = a/w, A(α) = 1 and A(α) = 1.12 respectively for a center crack and

edge crack, when α → 0. The empirical equations of A(α) with high accuracy

for different structures can be found in [36]. For a ≫ lICM , the length of lICM

has a negligible effect on K, hence, failure is dominated by LEFM. For another

extreme case, when a = 0, in order to obtain the material tensile strength ft as

the failure stress, the following equation must be satisfied:

Kc = A(α = 0)ft
√

πlICM . (2.30)

Therefore, the length of lICM can be solved as:
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lICM =
1

π

[

Kc

A(α = 0)ft

]2

=
lch

A2(α = 0)π
. (2.31)

By relating Equations 2.29 and 2.30, the nominal strength for any crack length

a can be obtained:

σN =
ftA(α = 0)

A(α)

√

lICM

a+ lICM

. (2.32)

It is noticed that the nominal strength predicted by ICM (Equation 2.32) is

identical with the ASM (Equation 2.28), for the case of A(α = 0) = A(α) = 1

(lICM = 1/2lASM). An application shown in Figure 2.12 indicates that ICM is

capable of characterizing the size effect.

(b) Finite Fracture Mechanics (FFM): The finite fracture mechanics method

(FFM) [14,37] computes the mean energy release rate necessary for a crack growth

at a distance lFFM . Failure will occur if there is sufficient energy available to allow

this finite amount of crack growth. The value of lFFM is a material constant,

which equals to 2lch/π. FFM model can be expressed in two ways, either in

terms of the strain energy release rate:

∫ a+lFFM

a

Gda = GclFFM , (2.33)

or in terms of the stress intensity:

∫ a+lFFM

a

K2da = K2
c lFFM . (2.34)

For a center crack in a infinite plate subjected to tensile loading (A(α) = 1), the

nominal strength given by FFM can be expressed as:

σN = Kc

√

2

π(2a+ lFFM)
. (2.35)

When a≫ lFFM , Kc ≈ σN
√
πa, being identical as the predictions of LEFM. On

the other hand, when a = 0, the length scale in FFM lFFM can be solved as:
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lFFM =
2

π

K2
c

f 2
t

=
2lch
π
, (2.36)

which is equal to lASM .

2.3.5.3 Combined stress and energy models

The combined stress and energy models assume that failure is reached when stress

and energy criteria are fulfilled simultaneously. To enforce the accomplishment

of both criteria at the same time, it is required to consider the characteristic

material length as variable [16].

(a) Combined PSM and FFM (Leguillon’s model [13,38]): Leguillon pro-

posed a criterion to predict the crack initiation in a v-notch tip, assuming that

when fracture occurs the energy criterion and stress criterion are fulfilled simul-

taneously, even if one often hides the other. An increment length l0 depending

on the material properties and the notch opening angles is determined to ensure

that the two criteria hold true, then the failure load can be calculated by either

the stress criterion or the energy criterion.

(b) Combined ASM and FFM (Coupled Finite Fracture Mechanics [14,

24]): In Coupled Finite Fracture Mechanics (CFFM), the value of the finite crack

extension lCFFM is determined by the fulfillment of both the stress and energy

criteria:

∫ a+lCFFM

a
σy(x)dx = ft × lCFFM ,

∫ a+lCFFM

a
K2dx = K2

c × lCFFM .
(2.37)

The two unknowns values in Equation 2.37, including the failure load σmax, and

the finite crack extension lCFFM , can be solved when the stress distribution and

stress intensity factor expression are known. Two applications of CFFM are

presented in 2.11b and 2.12b. The better nominal strengths are obtained than

the other models, for v-notched beam and holed plate subjected to tension.
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2.3.6 Boundary Effect Model (BEM)

2.3.6.1 Boundary effect on fracture of a large plate with an edge crack

The Hu-Duan Boundary Effect Model (BEM) [17,39,40] attributes the size effect

on structural strength to the interaction between the Fracture Process Zone (FPZ)

and the structural boundary. Figure 2.14a shows a plate with an edge crack. The

nominal strength σN is defined without considering the presence of the crack,

while σn represents the stress for peak load at the crack tip under the hypothesis

of a linear stress distribution across the ligament, without considering the stress

concentration and singularity at the crack tip. The relationship of σN and σn is

σN = B(α)σn. B(α) is a non-dimensional factor depending on the crack to width

ratio α (α = a/w), B(α) = (1 − α)2/(1 + 2α) for single edged cracked plate, and

B(α) = (1 − α)2 for cracked three point bending specimen.

When the crack length a→ 0, the nominal strength σN is considered to approach

the material tensile strength ft, and when a and (W − a) are sufficiently large,

the nominal strength is dominated by LEFM. Hence, Hu and Duan proposed the

following expression to describe the dependence of specimen strength σN on the

crack length a for a large plate with an edge crack:

σN = ft

[

1 +

(

a

at

)]

−1/2

, (2.38)

where at is the transition crack size (Equation 2.21. For the large plate case, the

crack size a represents the distance of the crack-tip to the specimen front free

surface. Eq. 2.38 indicates that when the distance of the crack-tip to the front

boundary is comparable to at, the specimen strength will be subjected to the

boundary effect. When the crack-tip is very far away from the front boundary,

the LEFM criterion prevails and the specimen strength is mainly determined by

its toughness Gc (see Figure 2.14b) [17].

2.3.6.2 Boundary effect on fracture of a finite width plate with an

edge crack

Equation 2.38 is developed for an large plate with an edge crack. while for a

finite width plate with an edge crack, B(α) ≈ 1 is no longer valid for any crack
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Figure 2.14: (a) An edge crack in a plate and (b) its nominal strength σN as a

function of crack length a (modified from [17]).

size. In order to extend Equation 2.38 to the cracked finite width plate, Hu and

Duan introduced the following modification of Equation 2.38:

σN = B(α)ft

[

1 +

(

ae1
at

)]

−1/2

, (2.39)

where B(α) = (1 − α)2/(1 + 2α) for single edged cracked plate, ae1 is referred to

as the equivalent crack length, and its value depends on specimen geometry and

crack length, which reads:

ae1 =

[

B(α) × A(α)

1.12

]2

. (2.40)

Equation 2.39 can be used to predict the nominal strengths of finite or infinite

width specimen containing different crack sizes. The applications of BEM can be

found in [17,39, 40].

2.3.7 Size Effect Law (SEL)

2.3.7.1 Type 2 Size Effect Law

On a small scale, quasi-brittle materials obey the strength theory that is char-

acterized by the material strength ft, while on a large scale, they conform to
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Linear Elastic Fracture Mechanics (LEFM) and are characterized by the fracture

energy Gc. The combination of ft and Gc yields Irwin’s [2] characteristic length

lch = GcE/f
2
t , where E is the Young’s modulus, and divides the small and large

scales [41]. Based on an approximate energy release analysis, SEL was derived for

geometrically similar specimens (Figure 2.15a) in 1984 [42] and reformulated in

1991 [43]. For type 2 failures, which are occurring when there is a notch or large

stress-free crack formed before reaching the maximum lading, the law reads:

σN = B̂ft

(

1 +
h

h0

)

−1/2

, (2.41)

where B̂ is a positive dimensionless constant depending on the geometry of the

structure; ft is the material tensile strength; h0 is a constant proportional to Ir-

win’s characteristic length lch, at which the failure laws based on material strength

and LEFM intersect, as shown in Figure 2.15b. h0 and B̂ characterize the struc-

ture geometry.
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Figure 2.15: (a) Similar cracked structures and (b) SEL bridging the failure

mechanisms of material strength and LEFM.

2.3.7.2 Type 1 Size Effect Law

Since Type 2 SEL is not valid when crack to height ratio α tends to 0, the Type

1 SEL [44] was proposed after Type 2 SEL, and applied to structures failing at

crack initiation from a smooth surface. The Type 1 SEL reads [45]:
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σN = fr,∞

(

1 +
rhb
h+ lp

)1/r

, (2.42)

where fr,∞, hb, lp, and r are constants of the model whose values need to be

determined empirically.

2.3.7.3 Universal Size Effect Law (USEL)

Type 1 SEL is developed for failures at crack initiation from a smooth surface, and

Type 2 SEL is for failures starting from a deep notch or crack. In order to describe

the continuous transition between these two types of size effects, the Universal

Size Effect Law (USEL) was firstly defined by Bažant [46], and then improved

by Bažant and Yu [47]. USEL has been validated by the various experimental

results, shows to fit the test results quite well [48].

2.3.8 Summary

The experimental evidences of size effects induced by defect size at constant spec-

imen size and induced by specimen size have been reviewed in this section. The

non-local models for nominal strength predictions, which are associated with a

length scale usually proportional to material characteristic length lch is then stud-

ied. TCDs are capable of predicting the nominal strength in good agreement with

the test results. However, for certain building materials (such as concrete), the

value of the characteristic length scale can become too large compared to the

specimen size (sometimes even exceeding it), which makes the direct implemen-

tation of these approaches impossible [15]. The asymptotic approaches, such as

Hu-Duan’s Boundary effect model, and Bažant’s Size Effect Law, are all able to

characterize the size effect induced by the defect size and specimen size. The

detailed comparison of these two models can be found in [45,47,49].
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2.4 Damage and fatigue crack growth

2.4.1 Overview

Fatigue is the weakening of a material caused by repeatedly applied loads (moving

forces, cycles of temperature, etc.). The intensity of the applied loads are usually

far below the strength of the material, but it is responsible by the degradation of

the mechanical behavior of the material. Most laboratory fatigue tests consist of

applying constant amplitude sinusoidal displacement or force at the boundary of

an asphalt concrete sample. During the tests, the variation in global stiffness is

monitored. Figure 2.16 shows the stiffness degradation during a fatigue bending

test. The global stiffness is calculated by the ratio of the force to the displace-

ment amplitude, which decreases following three stages as shown in Figure 2.16:

stage I is characterized by a rapid decrease in the stiffness and the nucleation of

micro cracks. It is followed by stage II that corresponds to a quasi-linear decay

in stiffness. During this phase the changing stiffness stabilizes and there dissem-

ination and distribution of micro cracks in the whole volume. Fracture occurs

during stage III, due to damage acceleration and to ultimately to the propagation

of macro cracks.
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Figure 2.16: Evolution of stiffness during typical fatigue test.

Fatigue life is very important for the structure design, which is the number of

stress cycles of a specified character that a specimen sustains before failure of a

specified nature occurs. Its prediction is still an empirical science rather than a
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theoretical one [50]. Considering the duration of fatigue life, the cyclic behavior

can be classified as High Cycle Fatigue (HCF) and Low Cycle Fatigue (LCF). For

HCF, where stress is low and deformation is primarily elastic. The performance

of the material is commonly characterized by an Stress-cycle curve (S-N curve

or Wöhler curve). For LCF the stress is high enough for plastic deformation to

occur, hence, the fatigue life is much lower.

The continuum damage model (CDM) is capable of predicting the fatigue life of

the asphalt concrete samples; however, CDM neglects the existence of large cracks

in the damaged material. In reality, the macro cracks can be observed during the

end of stage II and stage III, which indicate that the continuum damage model

is not appropriate to describe all the stages of fatigue life. On the other hand,

the fatigue crack growth model, such as Paris’ law, can predict the fatigue life of

the structure with sufficiently large crack, but fails to capture the regime of crack

initiation and small crack propagation.

It is still difficult today to capture all of the stages with one single fatigue model.

In other words, the fatigue life prediction of all the stages might be inaccurate

and need to be better understood. In this section, continuum damage models

(usually more adapted for stages I, II) are presented. Then, fatigue crack growth

modelling is introduced in order to better represent stage III.

2.4.2 Continuum damage models (CDMs)

CDMs are capable of predicting the fatigue life of the specimen without large

cracks. During the fatigue tests, as the material is deformed, the initiation,

growth and coalescence of micro defects decrease the stiffness (degradation of

material properties), which is represented by the growth of the damage variable

D. D is a scalar ranges from 0 to 1. For the virgin, undamaged material, D is

0. While D = 1 corresponds to a completely damaged with zero stiffness. The

stress strain relation can be written as Equation 2.43:

σij = Cijklεkl = (1 −D)C0
ijklεkl, (2.43)

where σij and εkl are the elastic stress and strain tensor components, = Cijkl and

C0
ijkl are damaged and initial (elastic) secant stiffness of the material. C0

ijkl is a

function of Young’s modulus E and Poisson ratio ν.



2.4. Damage and fatigue crack growth 37

Several stress and strain based continuum damage models have been established

by the researchers, including the models established by Castro and Sanchez [51],

Di Benedetto [52], Lee [53], Bodin et al. [54, 55]. All the models are capable of

predicting the fatigue life of asphalt concrete. However, the damage evolution

law for D and stress, strain adopted in the damage models might be different. In

this study, the local version of continuum damage model proposed by Bodin et

al. will be utilized, which is widely used for asphalt mixtures [54, 56, 57].

2.4.2.1 Bodin’s model

Bodin et al. proposed an elastic isotropic continuum damage model for fatigue,

which characterizes the decrease in stiffness with cyclic loading. The damage

growth criterion is based on a modified Rankine criterion with zero threshold

damage growth. Evolution of damage (local version of the model) is controlled

by the strain state of the material by a scalar equivalent strain, which can be

written as follows:

ε̃ =

√

√

√

√

i=3
∑

i=1

( 〈σi〉+
E(1 −D)

)2

(2.44)

In the nonlocal version of Bodin’s model, the ”local” equivalent strain ε̃, is re-

placed by its weighted average strain. The expressions for weighted average strain

calculation can be found in [54,55,58].

The rate of damage growth is defined as a function of local equivalent strain rate:

Ḋ = f(D)ε̃β
〈

˙̃ε
〉

, (2.45)

where f(D) is function of damage. The exponent β is a material parameter,

which relates to the slope ( equals to−1−β) of S-N curve in the log-log diagram.

The function of damage f(D) given by Paas [59] can capture two regimes shown

in Figure 2.16 very well:

f(D) = CDα. (2.46)
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The occurrence of the third stage, with significant acceleration of damage growth,

cannot be described properly by Equation 2.46. Therefore, Bodin proposed a new

damage function (Equation 2.47) [54] which can describe all of the three stage

law:

f(D) =
α2

α1α3

(

D

α2

)1−α3

exp

(

D

α2

)α3

(2.47)

where α1 , α2 , and α3 are three model parameters. Figure 2.17 shows the effects

of these parameters on the damage evolution of a uni-axial fatigue test subjected

to sinusoidal displacement cycles with constant amplitude ε.
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Figure 2.17: Sensitivity of parameters (a) α1, (b) α2 and (c) α3 in damage model

to uni-axial fatigue [54].

2.4.2.2 Numerical calculation of damage increment by cycle

In the case of uni-axial fatigue test, the fatigue life prediction based on Bodin’s

model can be achieved by a simple integration of Equation 2.45. While for the
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cases of multi-axial fatigue tests, such as two-point bending (2PB) test and four-

point bending (4PB) test, the numerical method is needed to predict the damage

evolution and fatigue life of the material. For each cycle, the increment of damage

can be calculated based on the equations of the damage model presented in the

previous section.

The damage calculation is done using a step by step approach. Consider a local

point in the structure subjected to sinusoidal cyclic loading. A loading cycle

(cycle N) is discretized in different time intervals as shown in Figure 2.18. Recall

the relationship of damage growth rate and local equivalent strain rate:

d(D)

f(D)
= ε̃βd 〈ε̃〉 . (2.48)

Only during the time that local equivalent strain is increasing, the damage value

of this local point increases too, otherwise, damage remains unchanged. In cycle

N , from ti to ti+1, the local strain varies from ε̃i to ε̃i+1. By integration of

Equation 2.48:

∫ ti+1

ti

1

f(D)
dD =

∫ ti+1

ti

ε̃βd 〈ε̃〉 , (2.49)

one can easily obtain the damage increment from Di to Di+1. The function of

f(D) is given by Paas (Equation 2.46) or Bodin (Equation 2.47).
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Figure 2.18: Cycle N.
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The local equivalent strain can be obtained easily by the numerical methods, such

as Finite Element Method and Discrete Element Method, etc. The number of

time intervals during one cycle is decided based on the accuracy needed for the

calculation.

2.4.2.3 Jump in cycles procedure in fatigue damage modelling

As has been introduced in the previous section, the damage increment by cycle

can be calculated based on the evolution of the local equivalent strain, hence

technically, the damage at the end of cycle N can be calculated cycle by cy-

cle. However, for high cycle fatigue computations, the fatigue life can be greater

than 106 cycles. Therefore, it does not seem to be realistic to perform a nu-

merical computation over the entire number of cycles. To avoid the integration

of the model on each cycle, the so-called “jump-in-cycle” procedure devised by

Lemaitre [60] and improved by Peerlings et al. [61] has been implemented in

Bodin’s work [54,55].

Consider an initial state defined at the beginning of cycles N − 1, each point in

the material has its damage state D(N − 1). After performing one cycle, one can

obtain the increment of damage per cycle dD/dN = M [D(N)]. Integration of

damage growth between cycle N and cycle N + ∆N is approximated with the

help of a trapezoidal rule:

D(N + ∆N) = D(N) +
1

2
{M [D(N)] +M [D(N + ∆N)]}∆N. (2.50)

This integration is implicit as it requires the computation of M [D(N+∆N)]. This

term can be obtained by performing a cycle of cycle (N + ∆N − 1), the damage

state at the beginning of cycle (N + ∆N − 1) is predicted by DP (N + ∆N − 1) =

D(N)+(∆N−1)M [D(N)] [54]. An alternative way to calculate M [D(N +∆N)]

is evaluated following Euler forward prediction [55]:

M [D(N + ∆N)] = M [D(N)] +
∂M

∂N
∆N. (2.51)

In order to limit the error of this jump in cycles procedure, the increment of

cycles ∆N should be satisfied ∆N = ϕ× ∂D/∂M , ϕ is a fixed parameter in the

computation [54,55, 61].
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2.4.2.4 Non-local damage approaches

Non-local continuum damage is a consistent general concept for macroscopic mod-

elling of failure in quasi-brittle materials. In these approaches, the internal length

plays a pivotal role as it controls the size of damage localization zone, and the

larger this parameter, the longer the fatigue life of bending beams [54,62]. Some

variables (stress, strain etc.) in the constitutive equation for a point of the con-

tinuum are related through spatial averaging integrals to the field of these or

other variables in a certain neighborhood of the point [63]. This average of the

variables avoids the problems existed in most of the local models when the state

of strain is not homogeneous, such as localization of the stresses, mesh effects,

and unreal low fatigue life etc.

Bodin’s damage model was used for the prediction of fatigue damage of asphalt

concrete in the configurations of the tensile compression (T/C) test [54], shear

test [54], two-point bending (2PB) test [54–56], and four-point bending (4PB)

test [54, 57, 64,65].

Arsenie [57, 64, 65] performed the 4PB tests of non-reinforced and fiber glass

grid reinforced asphalt concrete. Figure 2.19 presents a typical beam specimen

subjected to imposed sinusoidal displacement. Based on Bodin’s damage model,

Arsenie predicted the fatigue lives of non-reinforced and fiber glass reinforced

specimens, and compared with the test results, showed good agreements.

Z0 Z0

Z0 Z0

Asphalt concrete

Asphalt concrete

Asphalt concrete

Fiber glass grid

Figure 2.19: Fiber glass grid reinforced four-point bending specimen made of

asphalt concrete.

Figure 2.20 shows the final damage distributions in the beam of the non-reinforced

and reinforced specimens, respectively. The modelling results showed that at the

moment of failure, there exited two symmetric large zones that damage D = 1

(red area). For fiber glass grid reinforced specimen, the material damage D ≈ 0

(blue layer) between the fiber glass gird. With the calibrated material parameters,
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the good fatigue life can be predicted based on Bodin’s damage model, however,

the failure pattern is not close to reality, that the cracks should appear instead

of two large zones where the materials are nonfunctional.

(a)

Z0 Z0

Z0 Z0

(b)

Z0 Z0

Z0 Z0

Figure 2.20: Modelling results of damage distributions at failure for (a) non-

reinforced and (b) reinforced specimens [57, 64,65].

The non-local continuum damage approaches are widely used for the fatigue life

predictions, however, it introduces the non-physical effects because of the internal

length. In fact, it has been shown for monotonic loads that there is an infinite

set of model parameters, with arbitrary values of internal length that can fit

a single structural response with the same very good accuracy [66]. In order

to obtain a unique set of model parameters, including the internal length, tests

on several specimens subjected to different boundary conditions, with different

geometries, or size effect tests must be available [55,67]. For the layered structure

with different materials, such as the pavement structures, a simple average of the

stress or stain in a region defined by the internal length is inappropriate, due to

the different damage behaviors and inconsistency of the averaging process.

2.4.3 Fatigue Crack Growth Models (FCGMs)

The existence of cracks can significantly reduce the fatigue life of a component

or the whole structure. Some physical evidences are quite intuitive: at higher
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stresses, a crack tends to propagate “faster” (with respect of the number of cy-

cles); at similar stress levels, a bigger crack tends also to propagate “faster”. The

propagation of localized cracks depends on many parameters and is not well char-

acterized by damage models. Fatigue crack growth models (FCGMs) take into

account the variation of the stress intensity factor during the cycles to describe

the crack propagation [68]. By simplicity, only Paris’s law is discussed.

Paris’ law: Fatigue crack growth in a wide variety of brittle and quasi-brittle

materials [69–71] is described well by the well-known Paris (or Paris–Ergodan)

law [68], which relates the stress intensity factor range ∆K to crack growth rate

da/dNc via a power law, with ∆K = Kmax −Kmin. The basic formula reads:

da

dNc

= c∆Km, ∆K > ∆Kth, Kmax < Kc (2.52)

where da/dNc is the crack growth rate, a is the crack length and Nc is the number

of load cycles, c and m are material constants. ∆Kth and Kc are the fatigue

threshold and fracture toughness of the material, respectively. Paris’ law works

for sufficiently large cracks, where ∆K is higher than the fatigue threshold ∆Kth,

and the maximum value of the stress intensity factor Kmax remains below the

material fracture toughness Kc.

2.4.4 Summary

In this section, Bodin’s continuum damage model and the fatigue crack growth

model of Paris’ law are reviewed. The continuum damage model is able to predict

the fatigue life in good agreement with the test results, however, the numerically

obtained failure pattern differs from the experimental observations, and the non-

physical effects are introduced because of the internal length. While for Paris’

law, it can predict the rest fatigue life of a specimen containing a sufficiently large

crack, but it is inapplicable for the un-cracked specimen or specimen containing

small crack with the range of stress intensity factor ∆K < ∆Kth.
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2.5 Discrete element modelling of quasi-brittle

rupture

2.5.1 Overview

The discrete element method (DEM) was originally developed by Cundall for

modeling granular and particulate systems [72]. Nowadays, DEM is becoming

widely accepted as an effective method of addressing engineering problems in

granular and discontinuous materials, especially in granular flows, powder me-

chanics, and rock mechanics. The method is based on the use of a numerical

scheme in which the interaction of the particles is monitored at every contact

and the motion of the particles modeled for every particle.

Both continuous and discrete numerical methods have their own advantages and

shortcomings. In contrast to finite element method (FEM), as shown in Fig-

ure 2.21a, DEM is particularly attractive for modeling geo-materials due to its

ability to construct a mesh that is not completely continuous and homogeneous.

Since the mesh is constructed from rigid elements that interact with each other at

points of contact, the DEM mesh is able to construct a medium with voids, imper-

fections, and heterogeneities, which commonly exist in rocks, concretes, asphalt

mixtures, and other geo-materials (Figure 2.21b) [73].

(a)

σ0

(b)

σ0

Figure 2.21: (a) Finite element mesh and (b) discrete element mesh [73].

Despite the advantages of DEM, the constitutive parameters for the contacts be-

tween the discrete elements, such as stiffness and strength, influence the behavior

of the model at the macroscopic scale. These parameters are usually calibrated

in order to reproduce experimental results.
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Challenges related to calibration between the macro and micro material param-

eters can be avoided if a close-packed assembly (regular hexagonal packing), as

shown in Figure 2.22b, is adopted. The close-packed assembly is composed of

particles with identical size. The mechanical properties of the specimen (see Fig-

ure 2.22a) depend on the mechanical parameters of the particles. This regular

hexagonal packing has been used Le et al. [28,74–76] and Liu et al. [77] for brittle

failure of rocks and crystals.

(a)

E, ν
(b)

Figure 2.22: Equivalent (a) continuous and (b) discrete medium (close-packed

assembly).

2.5.2 Contact model

DEM discretizes a material using elements of simple shapes (circles, spheres, or

blocks) that interact with neighboring elements according to laws of interaction

that are applied at points of contact. At each time step, the computation of

all contact forces is followed by the application of Newton’s second law to the

particles. Each contact force has normal and tangential components, N and T ,

respectively (Figure 2.23). The contact behavior follows a standard linear spring

and dash-pot model. When the value of the damping parameters, cn and ct, are

a sufficiently small fraction of
√
mkn (where m is the particle mass), the inelastic

effect is negligible [28]. In this study, only the elastic contribution of the contact

force, the relative displacements, δn and δt (see Figure 2.23) will be considered.

Young’s modulus E, and Poisson ratio ν, are the two elastic constants used to

characterize the macroscopic linear elastic behavior of isotropic materials. A

direct relationship between these macroscopic parameters and discrete elastic

parameters (normal and tangential stiffness, kn and kt, respectively) has been

established by Taverez [73,74], which for plane stress is as shown in Equation 2.53.
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Figure 2.23: (a) Unit cell and (b) contact law (modified from [74]).
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Et,

(2.53)

where t is thickness of the discrete element model.

2.5.3 Definition of strain and stress in discrete medium

2.5.3.1 Mean strains and stresses

The mean values of the components of the tensors of stress and strain are based on

the behavior of one pair of contacts (ki and kj) associated with three particles (i,

j, and k). A local coordinate system (n; t) is defined, where t virtually connects

both contacts for which n is an orthogonal axis (see Figure 2.24a). The normal

and tangential (relative) displacements associated with contacts ki and kj (δnik
and δtik, δnjk and δtjk, respectively, as shown in Figure 2.24a) give rise to mean

strain values, εnn and εtt:



















εnn =
1

4

(

δnik
√

3 + δnjk
√

3 + δtik − δtjk

) 2√
3d
,

εtt =
1

2

(

δnik + δnjk − δtik
√

3 + δtjk
√

3
) 1

d
,

(2.54)

The normal and tangential components of each contact (Nik and Tik, Njk and Tjk,

respectively, as indicated in Figure 2.24b) can be projected over the directions

(n; t) giving rise to the resultant forces. Considering of a particle with diameter
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Figure 2.24: (a) Adjacent particles, respective contact displacements and (b)

contact forces. (c) Mean stresses and the orientation of their principal values [74].

d and thickness of t (t = d), mean stresses (Figure 2.24c) may be associated with

these forces:











σn =
(

Nik

√
3 + Tik +Njk

√
3 − Tjk

)

/(2dt),

σt =
(

−Nik + Tik
√

3 +Njk + Tjk
√

3
)

/(2dt).

(2.55)

2.5.3.2 Principal stresses

The stress tensor (in two dimensions) can be defined by the values of the principal

stresses σI and σII , and their orientations. Hence ψ is defined as the angle

between (n; t) and the coordinate system associated with the principal stresses

(Figure 2.24c). Consequently, the principal stresses may be written as:



48 Chapter 2. Literature review











σI = σn + σt tan(ψ),

σII = σn − σt/ tan(ψ).

(2.56)

The value of ψ is determined based on the information from mean strains and

mean stresses at a pair of contacts, which can be written as:

ψ = −1

2
arctan

(

2σt

A

)

, (2.57)

where A =
E

1 − ν
(εnn + εtt) − 2σn.

2.5.4 Effective stress intensity factor

According to the maximum tensile stress criterion for mixed mode fracture [11],

crack propagation occurs in the direction θ0, where the circumferential stress

σθθ(θ0) takes the maximum with respect to θ near the crack tip, and fracture

occurs when the maximum tensile stress is equal to the stress leading to Mode

I fracture. Hence, the maximum circumferential stress σθθ(θ0) is defined as fol-

lows [74]:











σθθ = σI , if ψ ≤ π/4,

σθθ = σII , if ψ > π/4.

(2.58)

The mean stress over the length of one particle diameter in the direction of θ0
can be obtained by the integration of the stress field, as shown in Equation 2.2.

σθθ(θ0) =
1

d

∫ d

0

σθθ(r, θ0)dr =
1

d

∫ d

0

Kθθ(θ0)√
2πr

dr =

√

2

πd
Kθθ(θ0) (2.59)

Using the σθθ(θ0) value obtained from Equation 2.58, the stress intensity factor

Kθθ(θ0) can be calculated using the following expression:

Kθθ(θ0) = σθθ(θ0)

√

πd

2
. (2.60)
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when Kθθ(θ0) reaches the material fracture toughness Kc, the contact under the

highest tension of the contact pair will be broken, according to LEFM.

2.5.5 Summary

In this section, the discrete element method is reviewed briefly. The definition

of strain and stress in the close-packed assembly is introduced, which has been

implemented in the discrete element code and will provide the strain values for

the fatigue damage calculations, as presented in Section 2.4.2.

2.6 Conclusions of the chapter

The basics of fracture mechanics theory is firstly presented, as it is the basis of

this study. Experimental measurements of the nominal strength of quasi-brittle

materials indicate that the nominal strength is dependent on the sizes of both

the defects and specimens. The existing models aiming to predict size effects

in quasi-brittle materials have scope for further improvement as they still have

various shortcomings.

The failure process of a structure under fatigue loading is another important

aspect of this research work. The review of the continuum damage approach

and fatigue crack growth models suggests that it is necessary to develop a more

realistic model that can consider both mechanisms. The discrete element method

will be adopted in this analysis due to its advantages in comparison with other

numerical methods.
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3.1 Introduction

Typically, nominal strengths of quasi-brittle materials including concretes, rocks,

and some types of ceramics are dependent on specimen size and crack size. A

literature review suggests that generally accepted models for nominal strength

predictions can capture size effects induced by crack size (which is also defined as

boundary effect) and specimen size. Non-local critical distance theories, such as

elastic stress field based models, fracture mechanics based models, and combined

stress and energy models, are associated with a length scale parameter that can

reach the same order of magnitude of the specimen size for some quasi-brittle

materials. Therefore, such models are not always applicable.

Asymptotic models, such as Bažant’s Size Effect Law and Hu-Duan’s Bound-

ary effect model, can also characterize size effects. Size effect models including

Bažant’s Size Effect Law emphasizes the influence of physical size of the speci-

men on the nominal strength. However, the dependence of fracture properties on

crack length is not emphasized. Each size effect model has at least two experi-

mental parameters that can be adjusted to fit the experimental results, and thus,

the models can effectively characterize the transition of quasi-brittle failure from

the tensile strength mechanism to the LEFM criterion for geometrically similar

specimens. In a different manner, the Boundary Effect Model (BEM) does not

consider the physical size of a specimen as the most fundamental measurement.

Instead of it, the size effect induced by the crack length is determined by the size

of a fully developed fracture process zone, its distance to the front boundary is

measured by the crack length, and its distance to the back boundary is measured

by the un-cracked ligament. The dependences of fracture behavior on the crack

length or ligament, explicitly point out the influence of specimen boundaries on

quasi-brittle fracture [17]. The boundary effect model is not restricted to geo-

metrically similar specimens, proving that the size effect induced by crack-length

can exist even in large specimens. Based on this, Hu and Duan concluded that

the common size effect, associated with geometrically similar specimens, is only

a special case of the boundary effect [17]. A model of Universal Size Effect Law

proposed later by Bažant and Yu [47] considered that the dependence of the

nominal strength of structure on the crack length at constant specimen size is a

special case of the Universal Size Effect Law (USEL), and USEL is more realistic

than the boundary effect model.

The size effect and boundary effect models can predict effectively the nominal
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strength for cracked structures made of quasi-brittle materials. However, for size

effect models, the model parameters needs to be adjusted to fit the experimental

results, instead of being calculated from the material parameters measured from

the standard tests. On the other hand, the assumptions in the boundary effect

model are debatable, and the application of this model is restricted to a certain

crack to width range α [49].

In this chapter, a new crack size based failure model is developed to character-

ize the boundary and size effects, which works also for the crack to width ratios

where Type 2 Size Effect Law and boundary effect model are not recommended.

The model parameters can be directly decided by the measured material ten-

sile strength and fracture toughness, or calibrated from the geometrically similar

specimen tests, same as the other asymptotic models. The proposed model is

compared comprehensively with the Boundary Effect Model, Type 2 Size Effect

Law and validated by three sets of experimental results of Cracked Three-Point

Bending (C-TPB) beam specimens composed of concrete, limestone, and hard-

ened cement paste.

3.2 Proposed failure model

As widely known, it is not possible to predict the failure of specimens containing

a relatively small or intermediate cracks [15, 17] with the local stress criterion

and energy criterion. In this section, the derivative of energy release rate G′ is

introduced to predict the nominal strength given by the strength mechanism.

Conversely, the energy criterion is sufficient to provide a good prediction for ma-

terial ruptures dominated by the energy mechanism. Based on the energy release

rate and its derivative, the results indicate that the asymptotic model covers the

nominal strength prediction for any crack size. The proposed model is estab-

lished based on the edge cracked plate and cracked three point bending beam

specimen. However, the model could be easily generalized to several other struc-

tures and different boundary conditions, such as a center-cracked plate, cracked

pure bending specimen, and compact tension test specimen.
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3.2.1 Infinite width plate analysis

3.2.1.1 Derivative of energy release rate

With respect to a cracked structure subjected to mode I loading, the energy

release rate at the crack tip can be expressed as follows:

G =
[A(α)σ]2πa

E
, (3.1)

where α denotes the crack to width ratio a/w for the plate or crack to height

ratio a/h for the beam; A(α) denotes the geometrical correction factor for energy

release rate that can be calculated analytically or numerically [36]; σ denotes the

applied loading; and E denotes the Young’s modulus of the material.

With respect to an edge cracked infinite width plate (α = a/w → 0) under

uniform tensile stress σ (as shown in Figure 3.1), the energy release rate at the

crack tip can be expressed as follows:

G =
(1.12σ)2πa

E
. (3.2)

The geometrical correction factor A(α) ≈ 1.12 for α → 0. For sufficiently large

crack sizes, the energy criterion of linear elastic fracture mechanics can provide

good nominal strength predictions. However, both stress criterion and energy

criterion would fail when the crack size is smaller than the transition crack size

at as previously demonstrated in Section 2.3.2. The stress criterion provides a

null strength due to stress singularity at the crack tip, while the energy crite-

rion provides an unreal nominal strength that is higher than the material tensile

strength.

In order to overcome this problem, the non-singular value of the derivative of

energy release rate G′ = dG/da is adopted in this study, and this can be expressed

as follows for an infinite width plate:

G′ =
dG

da
=

(1.12σ)2π

E
. (3.3)

The critical value ofG′ is related to tensile strength ft of the material and obtained

when σ = ft. With respect to an infinite plate, Ḡc is defined as follows:
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a

σ

a/w→0

σ
Figure 3.1: Infinite width plate subjected to uniform tensile stress σ.

Ḡc =
(1.12ft)

2π

E
. (3.4)

By using the derivative of energy release rate G′ as the fracture parameter of

strength mechanism, for the infinite plate, one can obtain σN = ft for any crack

size. The real failure behavior is described by both mechanisms. That is, prior

to transition crack length at, the failure is dominated by the strength mechanism

and nominal strength σN = ft, while for crack length a > at, the nominal strength

decreases following the prediction of linear elastic fracture mechanics. The failure

envelop is shown in Figure 3.2, in which the horizontal dotted line is predicted

by the strength mechanism (derivative of energy release rate), and the inclined

dash line is given by the energy mechanism (energy release rate).

3.2.1.2 Asymptotic model

In order to obtain a smooth transition from one mechanism to another, a simple

asymptotic model is proposed as follows:
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G

Gc

+
G′

Ḡc

= 1. (3.5)

A smooth transition is obtained from a strength mechanism to an energy mech-

anism (linear elastic fracture mechanics) as shown in Figure 3.2.

In case of rupture of an infinite width plate, the energy release rate G =

(1.12σN)2πa/E, critical energy release rate Gc = (1.12ft)
2πat/E, the derivative

of energy release rate at failure G′ = (1.12σN)2π/E, and critical derivative of

energy resale rate Ḡc = (1.12ft)
2π/E can be easily obtained. Substituting these

expressions into Equation 3.5, one gets:

σN = ft

(

1 +
a

at

)

−1/2

, (3.6)

identical to Hu-Duan’s Boundary Effect Model for an infinite size plate. The

advantage of Equation 3.5 is that basic quantities G and G′ are defined locally,

at the crack tip.
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3.2.2 Finite width plate

3.2.2.1 Derivative of energy release rate

With respect to a single edge cracked finite width plate subjected to mode I

loading, the geometrical correction factor A(α) shown in Equation 3.1 is no longer

a constant that corresponds to 1.12. The empirical expression of A(α) is given

by Tada [36] with an error lower than 0.5% for any crack to width ratio α = a/w

as follows:

A(α) =

√

2

πα
tan

πα

2
· 0.752 + 2.02α + 0.37 [1 − sin(πα/2)]3

cos(πα/2)
(3.7)

The product rule is used to find the derivative of the energy release rate with

respect to the crack length a. In Equation 3.1, σ2π/E is a constant, and the

derivative of A2(α)a corresponds to A2(α)+2A(α)A′(α)α′a, with α′ = 1/w (α′a =

α). Therefore, the derivative of energy release rate with respect to the crack length

a can be written as follows:

G′ =
[H(α)σ]2π

E
, (3.8)

where H(α) is defined as the geometrical correction factor for the derivative of

the energy release rate G′ as follows:

H(α) =
√

A2(α) + 2A(α) × dA(α)/dα× α. (3.9)

The evolution of A(α) and H(α) with respect to α is presented in Figure 3.3.

When α < 0.1, then A(α) ≈ H(α) ≈ 1.12. Both correction factors tend to

infinity when α approaches to 1.

The derivative of the energy release rate as shown in Equation 3.8 is proportional

to the geometrically corrected stress value H(α)σ, in which σ is obtained as the

stress at the bottom of the mid-span without considering the crack; H(α) can be

regarded also as a correction factor, which can take the crack into consideration.

The critical value of the derivative of energy release rate Ḡc for the finite plate

is obtained when σ → ft and a → 0. That is, the critical value for the corrected

stress H(α)σ corresponds to 1.12ft.
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Figure 3.3: Correction factors A(α) and H(α) versus crack to width ratio α.

Ḡc =
[H(α → 0)ft]

2π

E
≈ [A(α → 0)ft]

2π

E
≈ (1.12ft)

2π

E
, (3.10)

This is identical to the Ḡc for an infinite width plate. In fact, Ḡc corresponds

to a material constant related to the tensile strength ft and Young’s modulus E.

This is because when α → 0, for edge cracked structure, H(α → 0) ≈ A(α →
0) ≈ 1.12.

Equations 3.8 and 3.10 are related to calculate the nominal strength σN based

on the derivative of energy release rate G′ as follows:

σN =
1.12ft
H(α)

. (3.11)

In other words, it could be simply considered that failure occurs when the cor-

rected stress value H(α)σ = 1.12ft. Hence, the nominal strength σN of strength

mechanism could be predicted by Equation 3.11. When α < 0.1, as shown in

Figure 3.3, H(α) ≈ 1.12, and therefore, σN ≈ ft. It should be noted that H(α)

has different expressions for different structures, and this is related to A(α) and

could be found analytically or numerically.
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3.2.2.2 Asymptotic model

With respect to relatively large cracks, the material rupture is dominated by the

energy criterion. Given the definition of H(α), the expression for energy release

rate as shown in Equation 3.1 can be written as follows:

G =
[A(α)σH(α)/H(α)]2πa

E
=

[H(α)σ]2πae
E

, (3.12)

where

ae =
A2(α)

H2(α)
a, (3.13)

ae is defined as the equivalent crack length, which depends on the initial crack

length a and crack to height ratio α. After introducing the concept of equivalent

crack length ae, the cracked plate with initial crack length a and stress σ (as

shown in Figure 3.4a) is equivalent to the plate with crack length ae and loading

[H(α)/A(α)]σ (as shown in Figure 3.4b). Hence, the energy release rate at the

tip of the equivalent crack is identical to the value of the initial crack.

(b)

a

σ

Finite width w

σ
(b)

ae

H(α)/A(α)σ

Finite width w

H(α)/A(α)σ
Figure 3.4: (a) Finite width plate and (b) its equivalent model

Figure 3.5 illustrates the variation of equivalent crack length ae with respect to
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real crack length a for a plate with w = 1m. ae tends to 0 when α → 0 and

α → 1.
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Figure 3.5: Equivalent crack length ae versus real crack length a for a finite

width plate.

The critical energy release rate corresponds to the material toughness Gc. In

conjunction with the definition of transition crack length at as shown in Equa-

tion 2.21, the nominal strength given by the energy criterion can be written as

Equation 3.14 given below:

σN =
1.12ft
H(α)

(

ae
at

)

−1/2

. (3.14)

It should be noted that Equation 3.11 and Equation 3.14 can be combined to-

gether to predict the material rupture from strength mechanism to the energy

mechanism. Thus, an asymptotic model for a finite width plate is developed as

shown in Equation 3.15:

σN =
1.12ft
H(α)

(

1 +
ae
at

)

−1/2

. (3.15)

In a manner similar to the Hu-Duan boundary effect model [17], Equation 3.15

is also a crack size based model that estimates the effect of crack length on the
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nominal strength. Despite the similarity in the shapes, the definitions and expres-

sions of equivalent crack length and geometrical correction factor in Equation 3.15

are fundamentally different from those in the boundary effect model. The differ-

ences between the proposed model and the Hu-Duan Boundary Effect Model are

presented in Section 3.3.1.

It is interesting to note that the ratio of nominal strength σN given by Equa-

tion 3.15 and Equation 3.11, tends to 1 for very small and very large crack to

width ratios α, as shown in Figure 3.6. This phenomenon indicates that with

respect to these two extreme cases, the derivative of the energy release rate G′

corresponds to the dominant factor for the rupture. For example, in the edge

cracked plate shown in Figure 3.4a for instance when the real crack length ap-

proaches to 1, the equivalent crack length ae in contrast tends to 0. Hence, the

contribution of the energy release rate part in Equation 3.15 on the nominal

strength σN is considerably weaker than the derivative of the energy release rate

G′ and could be eventually neglected at a certain moment.
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Figure 3.6: Ratio of nominal strength σN given by Equation 3.15 and Equa-

tion 3.11 versus crack to width ratio α.

Figure 3.7 presents the ratios of nominal strength to tensile strength σN/ft of the

single edge cracked plate versus equivalent crack length ae (plate width w = 1m).

When α < 0.031 and α > 0.901, the rupture behavior is mainly dominated by

the strength mechanism (derivative of energy release rate) that is previously dis-

cussed. This phenomenon is attributed to the boundary effect [17] because the
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distances of the Fracture Process Zone to the left boundary measured by the crack

length (α < 0.031) and to the right boundary measured by the un-cracked liga-

ment (α > 0.901) are too small. Therefore, the fracture behaviors are influenced

by the specimen boundaries and dominated by the strength mechanism. When

equivalent crack length ae exceeds the transition crack length at, the rupture be-

havior is mainly dominated by the energy mechanism. α = 0.32 corresponds to

the strongest contribution of the strength mechanism to the failure of the plate.
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Figure 3.7: Nominal strength to tensile strength ratios relative to equivalent

crack length ae.

3.2.3 Finite size beam

Size effect tests are commonly performed with cracked three point bending spec-

imens with similar geometry (identical span to height ratios). The finite size

beam is examined in this section to validate the proposed asymptotic model

(Equation 3.15) with test results in extant studies.

With respect to a cracked three point bending beam (Figure 3.8) under loading

F with crack to height ratio α = a/h, the energy release rate G can be written

as Equation 3.1 [36] with σ = 3FS/(2h2t). Additionally, h, S, and t denote the

height, span, and thickness of the beam respectively. For the beam with span to

height ratio S/h = 4, Equation 3.16 results in 0.5% accuracy of G for all crack

to height ratios α,
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A(α) =
1√
π

1.99 − α(1 − α)(2.15 − 3.93α + 2.7α2)

(1 + 2α)(1 − α)3/2
, (3.16)

S

F
t

h

a

Figure 3.8: Cracked three point bending beam specimen.

In a manner similar to the finite width plate, the derivative of energy release

rate with respect to the crack length a can be written as Equation 3.8, with the

geometrical correction factor H(α). Figure 3.9 shows the values of two correction

factors A(α) and H(α) for G and G′ with respect to the crack to height ratio α.

When α < 0.01, the difference between the two factors is very small, and they all

tend to infinity when α → 1.
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Figure 3.9: Correction factors A(α) and H(α) versus crack to height ratio α.

The critical value of the derivative of energy release rate Ḡc for the cracked three
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point bending specimen with a span to height ratio corresponding to 4 is identical

to that of infinite and finite width plates. This is calculated as follows:

Ḡc =
(1.99ft/

√
π)2π

E
≈ (1.12ft)

2π

E
, (3.17)

Hence, the nominal strength σN based on the derivative of energy release rate

G′ can be computed by Equation 3.11. When α < 0.01, as shown in Figure 3.9,

H(α) ≈ 1.12, and therefore σN ≈ ft. It should be noted that for the cracked

three point bending beam specimen, Equation 3.11 does not provide the nominal

strength predictions for intermediate cracks because H(α) experiences a slight

decrease before it increases towards to infinity. This lead to unrealistic nominal

strength predictions that exceed the material tensile strength by simply using

Equation 3.11 for intermediate crack sizes.

With respect to relatively large cracks, the material rupture is dominated by

the energy mechanism. Following the introduction of the definition of equivalent

crack length ae, the nominal strength is calculated by Equation 3.14. Figure 3.10

illustrates the variation of equivalent crack length ae with respect to the real crack

length a for the beam with h = 1m and S = 4m. In a manner similar to the

case of finite plate, ae tends to 0 when α → 0 and α → 1.

The asymptotic model for the finite size beam is shown in Equation 3.15 and is

identical to that of the finite width beam. Figure 3.11 shows the ratio of nominal

strength σN as given by Equation 3.15 and Equation 3.11 relative to the crack to

height ratio α. This indicates that for two extreme cases, the derivative of energy

release rate G′ is the dominant factor that lead to the rupture.

Figure 3.12 presents the nominal strength to tensile strength ratios of the cracked

beam structure relative to the equivalent crack length ae (Beam height h =

1m. The rupture behavior is mainly dominated by the strength mechanism

(derivative of energy release rate). When α < 0.0279 and α > 0.909. This is

due to the boundary effects. The rupture behavior is mainly dominated by the

energy mechanism when the equivalent crack length ae exceeds the transition

crack length at. Additionally, α = 0.275 provides the strongest contribution of

strength mechanism to the failure of the beam.

The asymptotic model shown in Equation 3.15 is used to predict the failure

stress for any crack size (or any crack to height ratio α). This provides a smooth

transition from small and intermediate cracks to large cracks. Figure 3.13 presents
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Figure 3.10: (a) Beam with equivalent loading and equivalent crack length ae and

(b) equivalent crack length ae relative to the real crack length a.

an example of the nominal strength relative to the crack to height ratio α for

beam height h = 0.1 m, 1 m, 10 m, 100 m. The nominal strengths could be

easily predicted by using Equation 3.15 and the information on the material

parameters, including tensile strength ft = 3.0 MPa, fracture toughness Kc =√
GcE = 1.0 MPa

√
m, and transition crack length at = 28.2 mm. They are

plotted in Figure 3.13. With respect to beam height h = 100 m, a smaller crack

to height α is necessary to obtain a nominal strength approximately equal to the

tensile strength ft.



66 Chapter 3. Nominal strength of cracked structures

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
a
ti
o
 o

f 
σ Ν

Crack to height ratio α

Ratio=Equation 3.15 / Equation 3.11

Figure 3.11: Ratio of nominal strength σN given by Equation 3.15 and Equa-

tion 3.11 relative to the crack to height ratio α.
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3.2.4 Material parameter identifications

The material parameters may vary for different specimen shapes and sizes due

to the size effects. In a manner analogous to SEL, the material and geometrical
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Figure 3.13: Nominal strengths relative to the crack to height ratio α for various

beam heights.

information including H(α)/(1.12ft) and at can be identified from the test results

(geometrically similar tests) if they are not sufficient or not easy to be calculate.

By setting Y = 1/(σ2
N), Equation 3.15 results in a linear regression plot Y =

JX + C as shown in Equation 3.18, from which J and C could be identified as

the slope and intercept as follows:

Y =
1

σ2
N

=

[

H(α)

1.12ft

]2
ae
at

+

[

H(α)

1.12ft

]2

, (3.18)

with ae = X , [H(α)/(1.12ft)]
2/at = J , [H(α)/(1.12ft)]

2 = C

It should be noted that J and C are constants only for geometrically similar

specimens (shapes with identical crack to height ratios α), due to the identical

correction factor H(α).

3.2.5 Model for geometrically similar specimens

The asymptotic model in Equation 3.15 can predict the nominal strength for

different crack sizes, and it has a shape similar to the Type 2 SEL shown in

Equation 2.41. Given that a = αh, the equivalent crack length ae in Equation 3.15

can be replaced by ae = [A(α)/H(α)]2αh. Thus, a transition beam height ht can
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be defined as follows:

ht =
at
α

[

H(α)

A(α)

]2

, (3.19)

ht denotes a function of transition crack length at and crack to height ratio α that

is proportional to the characteristic length lch. Hence, an asymptotic model for

geometrically similar specimens of the proposed model is developed as follows:

σN =
1.12ft
H(α)

(

1 +
h

ht

)

−1/2

, (3.20)

Equation 3.20 possesses the same shape as Type 2 SEL. Additionally, ht and

h0 correspond to the transitional size at which the material strength and LEFM

intersect and are all proportional to Irwin’s characteristic length lch. Further-

more, B̂ in Equation 2.41 corresponds to a positive dimensionless constant that

is based on the geometry of the structure in a manner similar to 1.12/H(α) in

Equation 3.20. Therefore, the proposed model could predict the rupture of ge-

ometrically similar specimens in a manner similar to Type 2 SEL. A detailed

comparison of the proposed model and Type 2 SEL is presented in Section 3.3.2.
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Figure 3.14: Nominal strengths versus beam height for various crack to height

ratios.

Figure 3.14 presents an example of the nominal strengths with respect to beam

heights for various crack to height ratios. The material parameters are identical
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as the parameters adopted in Figure 3.13. By using Equation 3.15 or 3.20, the

nominal strength could be predicted for both geometrically similar specimens

(Figure 3.14) and certain beam sizes with different crack to height ratios α (Figure

3.13). However, the proposed model of Equations 3.15 and 3.20 differs from the

Type 1 SEL as it could not predict the size effect of crack initiation from the

free surface. This is because it calculates the same nominal strength for different

specimen sizes.

3.3 Comparison of the proposed model with ex-

isting models

3.3.1 Comparison of proposed model with BEM

Based on the boundary effect and using an equivalent crack length, Hu and

Duan [17, 40] proposed a Boundary Effect Model (BEM) that could be used to

predict the nominal strengths of finite or infinite width specimens with different

crack sizes. It may be recalled that the boundary effect model for the rupture of

finite size specimen is as follows:

σN = B(α)ft

(

1 +
ae1
at

)

−1/2

, (3.21)

where B(α) = (1 − α)2 for cracked three point bending beam. Additionally,

ae1 denotes the equivalent crack length in boundary effect model, and its value

depends on the specimen geometry and crack length as follows:

ae1 =

[

B(α) × A(α)

1.12

]2

. (3.22)

Equation 3.21 and Equation 3.15 correspond to crack size based models that

estimate the effect of crack length on the nominal strength. Figure 3.15 shows

the variation of equivalent crack length with respect to the real crack length a

(beam height h = 1m). With respect to the same crack length, the equivalent

crack length ae in the proposed model exceeds the definition of equivalent crack

length ae1 in the boundary effect model. The transition crack length at shares

the same definition in both models. Thus, the higher equivalent crack length
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ae (higher ae/at) in the proposed model indicates that the use of the proposed

model lead to the domination of the rupture of the beam with a wider range of

the crack length a by the energy criterion.
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Figure 3.15: Equivalent crack length in the boundary effect model and the

proposed model.

The nominal strength given by the strength mechanism σstrength
N in boundary

effect model corresponds to B(α)ft. In contrast, in the proposed model, it is

assumed that the strength mechanism is characterized better by the derivative

of the energy release rate. Figure 3.16 presents the nominal strength predicted

by strength mechanism to tensile strength ratios σstrength
N /ft for various crack to

height ratios α. The derivative of the energy release rate provides a nominal

strength σstrength
N that exceeds that in the boundary effect model for the same

crack to height ratio α. Conversely, with respect to the energy mechanism, both

models results in the same nominal strength σenergy
N because a simple energy

criterion is used in both the models.

The difference in the nominal strength given by the strength mechanism σstrength
N

finally lead to the prediction of different nominal strengths by the boundary effect

model and proposed model. Figure 3.17 shows the nominal strength predicted by

boundary effect model and proposed model relative to the tensile strength ratios

σN/ft for various crack to height ratios. As shown in the figure, the proposed

model results in a nominal strength that exceeds that in the boundary effect

model.
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Figure 3.16: The ratio of nominal strength predicted by strength mechanism and

tensile strength σstrength
N /ft for various crack to height ratios.
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Figure 3.17: The ratio of nominal strength predicted by BEM and proposed

model and tensile strength σN/ft for different crack to height ratios.

Figure 3.18 shows the percentages of differences in the nominal strength calculated

by the boundary effect model and proposed model. The difference in the nominal

strengths calculated by the two models increased with increases in crack length

(fixed beam height) and could exceed 40% when α approached 1.
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Figure 3.18: Percentages of differences in the nominal strengths calculated by

boundary effect model and proposed model.

In a manner similar to the proposed model, BEM could also identify the material

information from the test results. By setting Y ′ = 1/(σ2
N), Equation 3.21 gives a

linear regression plot Y ′ = J ′X ′ + C ′, with X = ae1, J
′ = 1/[at(B(α)ft)

2], and

C ′ = 1/[(B(α)ft)
2. Hence, transition crack length at = C ′/J ′, material tensile

strength ft =
√

1/C ′/B(α), and fracture toughness Kc = (1.12ft)
√
atπ.

3.3.2 Comparison of the proposed model with Type 2 SEL

In the expression for the Type 2 SEL, h0 denotes a constant proportional to

Irwin’s characteristic length lch, and B̂ denotes a dimensionless constant charac-

terizing the structure geometry. The expressions of the fore-mentioned two values

are given as follows [78]:

h0 =
cfg

′(α)

g(α)
(3.23)

B̂ft =

√

EGc

g′(α)cf
(3.24)

where g(α) = K2
I (α)h(t/F )2 = A2(α)πα denotes the dimensionless energy release

function of linear elastic fracture mechanics. Additionally, cf denotes the effective
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size of the fracture process zone that is proportional to the characteristic length

lch and transition crack length at. It corresponds to the total crack length that

either results in the same (according to LEFM) specimen compliance as the actual

crack with its process zone minus the initial crack length or traction free crack

length [78], or it is approximately equal to half length of FPZ [79]. Normally, cf is

identified from the tests results of geometrically similar specimens in conjunction

with the transitional size h0. It should be noted that when cf is known, Type 2

SEL can be applied to structures or specimens that are not geometrically similar.

Given the definition of the correction factor for the derivative of the energy release

rate H(α) (Equation 3.9), g′(α) can be simplified as follows:

g′(α) = H2(α)π (3.25)

After substituting Equations 2.21, 3.13, 3.23, 3.24 into Equation 2.41, calculations

are performed to result in the following expression:

σN =
1.12ft

√

at/cf
H(α)

(

1 +
ae
cf

)

−1/2

, (3.26)

When cf = at, the proposed failure model shown in Equations 3.15 and 3.20

and Type 2 SEL are identical. However, the proposed model is presented in two

different forms. However, cf is a fitted parameter from the test results, and it

is not guaranteed as equal to the transition crack length at [45]. This implies

that the two models will provide different nominal strength predictions when

cf 6= at. It should be noted that at can also be identified from the test results, as

opposed to calculating the same from the material tensile strength ft and fracture

energy Gc. In such cases, the proposed model and Type 2 SEL provided the same

nominal strengths, but the material properties (ft and Gc) fitted from the test

results could be different.

3.4 Model validations

3.4.1 Concrete experiments

Bažant et al. [18, 19] conducted a series of experiments with cracked three

point bending beam specimens with similar geometries to investigate the size ef-

fects in concrete specimens. Specifically, 8 specimens exhibited identical crack
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to height ratios α = 0.33, identical span to height ratios S/h = 4, and a

fixed thickness t = 25.4 mm. The concrete presents the following mechani-

cal properties: average tensile strength ft = 3.0 MPa and fracture toughness

Kc =
√
GcE = 1.23 MPa

√
m. The corresponding transition crack length

at = 42.66 mm. Two correction factors A(α) and H(α) correspond to 1.08 and

1.42 respectively, and thus the equivalent crack length ae for each beam could be

calculated accordingly.

The beam dimensions, equivalent crack length ae, failure loads Fmax and the

nominal strengths σN for the 8 specimens are listed in Table 3.1. The nominal

strengths σN for the cracked three-point bending beam specimen are defined as

follows:

σN =
3FmaxS

2h2t
. (3.27)

Table 3.1: Concrete specimen and test results.

Specimen dimensions (mm) [18] ae (mm) Fmax (N) [18] σN (MPa)

152.4 × 38.1 × 25.4 7.32 366.53 2.27

304.8 × 76.2 × 25.4 14.63 721.28 2.24

609.6 × 152.4 × 25.4 29.27 1065.79 1.65

914.4 × 228.6 × 25.4 43.90 1759.72 1.82

1219.2 × 304.8 × 25.4 58.53 2179.63 1.69

1524 × 381 × 25.4 73.16 2288.61 1.42

1828.8 × 457.2 × 25.4 87.80 2470.99 1.28

2133.6 × 533.4 × 25.4 102.43 3113.76 1.38

Given the geometrical information and mechanical parameters, the failure load

Fmax is calculated by Equations 3.15 and 3.27. The predicted failure loads are

plotted in Figure 3.19 and illustrate a good agreement with the test results and the

predictions of Type 2 SEL. B̂ft and h0 in Type 2 SEL are obtained from the linear

regression, and thus the predictions of the Type 2 SEL deviate slightly from the

predictions of the proposed model. However, if the length parameter cf in Type 2

SEL corresponds to the transition crack length at and the material tensile strength

ft is known, then without necessitating any experimental work, the Type 2 SEL

and the proposed model provide identical predictions of the failure loads. With

respect to the given material parameters, the boundary effect model results in
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predictions that are consistently smaller than the test results and the predictions

of proposed model and Type 2 SEL. This implies that the boundary effect model

could underestimate the load bearing capacity of the cracked structure if the

material parameters used in the model, including the tensile strength ft and

fracture toughness Kc, were measured from standard tests.
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Figure 3.19: Model predictions of failure load versus beam height comparing

with Type 2 SEL predictions, Boundary effect model predictions and test results

of concrete.

With respect to geometrically similar specimens, the mechanical properties

could be identified from the test results. Figure 3.20 shows the fitted lin-

ear curve with slope J = [H(α)/(1.12ft)]
2/at = 4.04 × 10−3 and intercept

C = [H(α)/(1.12ft)]
2 = 1.72 × 10−1. The calculated values are: transition crack

length at = 42.70 mm, tensile strength ft = 3.06 MPa, and fracture toughness

Kc =
√
GcE = 1.21 MPa

√
m. All the fore-mentioned values are extremely close

to the experimental measurements. With respect to the Type 2 SEL, the transi-

tional height h0 = 22.24mm is obtained by the best fit that included information

with respect to the length parameter cf = h0A
2(α)α/H2(α) = 42.70 mm. The

measured transition crack length at = 42.66mm ≈ cf , and thus, the predictions

given by the proposed model and Type 2 SEL are almost identical. In terms of the

boundary effect model, in order to obtain the optimal fit for the test results, the

fitted material parameters correspond to ft = 5.42 MPa, Kc = 1.26 MPa
√
m,

and at = 13.61 mm. The fitted tensile strength considerably exceeds the direct
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measurement, and this indicates that the predictions of the strength mechanism

in the boundary effect model are not necessarily accurate.
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Figure 3.20: Linear regression of the test results of concrete.

3.4.2 Limestone experiments

Bažant et al. [80] tested 4 different sizes of the cracked three point bending beam

specimens made of Indiana limestone to investigate the size effect. The specimens

possessed identical crack to height ratio α = 0.4, identical span to height ratio

S/h = 4, and a fixed thickness t = 13 mm. The measured fracture toughness

corresponded to Kc =
√
GcE = 0.97 MPa

√
m. The tensile strength ft exhibited

different values, since Bažant obtained a value of 3.45 MPa with splitting tensile

test, Jenq and Shah [81] obtained a value of 5.0 MPa from a large double edge

cracked direct tensile test, and Schmidt obtained [82] a value of 5.38 MPa by 6

”direct pull” tests on ”dog-bone specimens”.

The two geometrical correction factors A(α) and H(α) correspond to 1.18 and

1.72 respectively. The beam dimensions, equivalent crack length ae, failure loads

Fmax, and the nominal strengths σN are listed in Table 3.2.

In order to obtain reasonable materials tensile strength ft, the linear regres-

sion plot as shown by the solid line in Figure 3.21 provides the slope J =

[H(α)/(1.12ft)]
2/at = 1.08 × 10−2 and intercept C = [H(α)/(1.12ft)]

2 =
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Table 3.2: Limestone specimens and test results.

Specimen dimensions (mm) [80] ae (mm) Fmax (N) [80] σN (MPa)

52 × 13 × 13 2.35 78 2.77

82 2.91

85 3.02

100 × 25 × 13 4.52 134 2.47

140 2.58

140 2.58

204 × 51 × 13 9.22 238 2.15

243 2.20

243 2.20

408 × 102 × 13 18.44 394 1.78

405 1.83

418 1.89

1.02 × 10−1. The calculated transition crack length at = 9.39 mm and the ten-

sile strength ft = 4.91 MPa are within the range of the measured results. The

calculated fracture toughness Kc =
√
GcE = 0.99 MPa

√
m is extremely close

to the experimental measurement of 0.97 MPa
√
m. With respect to the bound-

ary effect model, the fitted material parameters correspond to ft = 8.72 MPa,

Kc = 0.95 MPa
√
m and at = 29.83 mm. Tensile strength ft is not close to or

within the range of the measured values from the standard tests.

With respect to the transition crack length at and tensile strength ft obtained

from the linear regression of the proposed model, the failure loads Fmax could then

be estimated and compared with the experimental results, predictions of Type 2

SEL, and the boundary effect model as shown in Figure 3.22. In keeping with

expectations, the proposed model provides predictions that are almost identical to

those of the Type 2 SEL because in Equation 3.20, the fitted ht and (1.12ft)/H(α)

are identical to the h0 and B̂ft in Equation 2.41.

3.4.3 Hardened Cement Paste Experiments

Karihaloo et al. [83] performed the C-TPB tests on cracked beams composed of

hardened cement paste with a span to height ratio of S/h = 4. The heights of

the beams corresponded to 50 mm, 100 mm, and 200 mm, respectively, and the
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Figure 3.21: Linear regression on the test results of limestone.
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Figure 3.22: Model predictions of failure load relative to beam height when com-

paring Type 2 SEL predictions and test results of limestone.

thickness t = 100 mm was fixed for all the specimens. The crack to height ratios

α corresponded to 0.1, 0.3, and 0.5. The hardened cement paste exhibited the

following mechanical properties: averaged tensile strength ft = 3.53 MPa, Young’s

modulus E = 20.8 GPa, and fracture energy Gc = 13.5 N/m, that is calculated

by Equation 3.1 based on the measured failure load of the largest specimen. The
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corresponding transition crack length at = 5.72 mm. The predicted failure loads

given by the proposed model, Type 2 SEL and the boundary effect model, and

the test results are plotted in Figure 3.23. As shown in the figure, all the models

are capable of predicting acceptable results albeit with different accuracies.

The Type 2 SEL parameters were provided by Yu et al. [49] and were calibrated

for a/h = 0.3. The fracture energy Gc = 18.1 N/m, length scale cf = 7.2 mm,

B̂ft, and transition size h0 in Equation 2.41 are calculated by Equation 3.23

and Equation 3.24 for crack to height ratios α = 0.1, α = 0.3, and α = 0.5,

respectively. With respect to the SEL, the results for small crack to height ratios

α = 0.1 are worse than the predictions of the proposed model and the boundary

effect model. This is because the Type 2 SEL is not recommended for such small

crack to height ratios as it belongs to the transition of Type 1 SEL to Type 2

SEL. It should be noted that the results for small crack to height ratios α ≤ 0.1

should be properly fitted by the universal size effect law that can describe this

transition albeit with considerably complicated formulas [47, 49]. In contrast to

Type 2 SEL, the proposed model is easier to implement and acceptable model

predictions could be obtained for large crack to height ratios as well as small

ratio, for which the Type 2 SEL is not recommended.

In terms of the boundary effect model, the material parameters Gc = 18.2 N/m

and ft = 4.58 MPa are obtained by the optimal fit. As shown in Figure 3.23,

the proposed model works better than the boundary effect model for α = 0.1. A

smaller tensile strength ft ≈ 3.50 MPa, which is almost equal to Karihaloo’s direct

measurement is required to better fit the test results for α = 0.1. However, if

this tensile strength is adopted, then the predictions given by the boundary effect

model for larger α values deviate more from the test results than the predictions

given by the proposed model and Type 2 SEL. The boundary effect model is

easy to implement in a manner similar to the proposed model. However, a higher

material tensile strength is required ( for example 29.7%) than the measured

result for the hardened cement paste experiments examined in this section.

3.5 Conclusions of the chapter

This chapter presented a new failure model to investigate the size effect and

boundary effect in quasi-brittle materials. The model adopted the derivative of

energy release rate G′ to predict the failure of the strength mechanism and the
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Figure 3.23: Model predictions of failure load relative to beam height when com-

paring with Type 2 SEL predictions, boundary effect model predictions, and test

results of hardened cement paste. The error bars indicate the standard deviations

of the experimental results.

energy criterion for the failure of the energy mechanism. An asymptotic model

was proposed to capture the effect of all crack sizes on the nominal strength

σN . Additionally, its expression for geometrically similar specimens was also

established, and this could characterize the size effect induced by the specimen

size.

The proposed model was compared with the boundary effect model and Type 2

SEL. The first expression (Equation 3.15) of the proposed model was similar to

the boundary effect model that effectively captured the boundary effect. However,

the two models were fundamentally different because of the different assumptions

for the strength mechanisms. The strength mechanism is better characterized by

the derivative of energy release rate than the linear assumption in the Boundary

effect model. An alternative expression (Equation 3.20) of the proposed model

for geometrically similar specimens was established and then compared with the

Type 2 SEL. The results indicated that both models resulted in the same predic-

tions when the length scale parameters in the proposed model and Type 2 SEL

were identical. In contrast to the Type 2 SEL, the proposed model possessed an

advantage as the length parameter could be directly calculated from the mea-



3.5. Conclusions of the chapter 81

sured material parameters of the standard tests as opposed to being fitted from

geometrically similar tests. The model could be used for both geometrically sim-

ilar specimens in a manner similar to the Type 2 SEL as well as for the finite

width specimen including different crack sizes. Furthermore, the proposed model

also provided good predictions for small crack to height ratios (α ≤ 0.1) in cases

where the Type 2 SEL was not recommended and much considerably complicated

formulas of USEL were required. Therefore, the scope of Type 2 SEL was ex-

tended. However, the proposed model is not a universal model like USEL, since

it is unable to predict all the size effects. For example, it could not predict the

size effect observed in uncracked geometrically similar specimen tests. That is,

the crack initiation from the free surface.

In order to validate the proposed model, three sets of experimental results were

used from extant research for limestone, concrete and hardened cement paste.

The results indicated that the predictions of the nominal strengths obtained from

the proposed model were in very good agreement with the experimental results.

The proposed model was established based on two local quantities (the energy

release rate and its derivative), which has been proved that it can work very well

for the nominal strength predictions of cracked structures made of quasi-brittle

materials. The defects other than the crack, which present the stress singularity

weaker than a crack (v-notches) or only the stress concentrations (circular holes),

are very common in the real structures. The structures contain such defects also

presents size effects, therefore, the special analytic models are needed for the

nominal strength predictions. Due to local feature of the proposed failure model,

it may be possible to generalize the model to study the quasi-brittle failure for

both singular and regular stress conditions. These will be discussed in the next

chapter.

The following paper summarizes the main results of this chapter:

X. Gao, G. Koval, and C. Chazallon. A size and boundary effects model for

quasi-brittle fracture. Materials, 9(12):1-20, 2016 [84].
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4.1 Introduction

The stress and energy release are basic elements found in most of rupture criteria

where the failure is characterized by the initiation and propagation of cracks.

A literature review suggests that intermediate situations, such as the rupture

of a small cracked specimen or structures presenting “imperfections” other than

cracks (e.g. heterogeneities, complex shaped notches, etc.) are not well described

by either of these two criteria. These difficulties have given rise to different

approaches in order to predict the rupture behavior of quasi-brittle materials.

The Critical Distance Theories (CDTs) are still the effective ways to predict the

nominal strength of the intermediate situations. Based on the stress criteria,

Novozhilov [85] proposed a simple failure criterion based on the average normal

stress along the anticipated path of the crack formation. This model has been

expanded by Seweryn [22,86–88] to study both regular and singular stress concen-

trations under mode I or mixed mode loading. Leguillon [13] proposed a criterion

for failure initiation at a sharp v-notch under mode I loading, which requires the

stress condition and energy condition to be fulfilled simultaneously. This crite-

rion was compared with several known failure initiation criteria and validated

in [13, 89] for mode I loading. It was improved by Leguillon and Yosibash [90]

by introducing a correction due to the small notch tip radius, later extended by

Yosibash et al. [91] to mixed mode loading and validated by experimental ob-

servations. The concept of Finite Fracture Mechanics was used in Leguillon’s

criterion, which assumes the instantaneous formation of cracks of finite size at

initiation [92]. Instead of the point-wise stress criterion adopted in Leguillon’s

criterion, Cornetti et al. [14] proposed a similar criterion, based on the evalua-

tion of stresses prior to fracture averaged over the crack. These coupled criterion

allows for the general analysis of arbitrary stress concentrations [20, 24, 93], and

has been used by many researchers to establish general failure criteria for a wide

range of engineering problems in the last 14 years [92].

The cohesive zone models [94–96] simulate the damage that occurs in the process

zone located ahead of the crack tip. This approach, which involves nonlinear

constitutive laws that are described by a displacement jump and correspond-

ing traction along the interfaces, provides a phenomenological model with which

to simulate complex fracture behavior, such as crack nucleation, initiation and

propagation [7]. The extension of the classical cohesive model to quasi-brittle

materials usually shows fractal patterns in the failure process. This fractal ap-
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proach leads to a scale-invariant cohesive crack model which is able to predict the

size effects even in tests where the classical approach fails, e.g. the direct tension

test [97].

Most of the methods are associated with a length scale that is usually propor-

tional to Irwin’s [2] characteristic length lch, which depends on the properties of

the material, such as the stiffness, strength and fracture toughness. However, for

certain building materials (such as concrete, rocks, some types of ceramics, etc.),

the value of the characteristic length scale can become too large when compared

to the specimen size (as already discussed in Chapters 2 and 3), which makes the

direct implementation of these approaches impossible [15]. In the discrete ele-

ment methods, the materials are organized into assemblies of particles in contact.

Initially developed by Cundall [72] for modelling granular and particulate sys-

tems, these methods were further adapted to study the fracture of quasi-brittle

materials, such as concrete [98, 99] and rocks [100]. Despite the simple (and

physical) local point of view of ruptures, the intrinsic scale effects related to the

particle size and characteristic length lch) also affect the response of the model to

quasi-brittle rupture [28, 75,76].

This chapter presents an alternative description of quasi-brittle failure based only

on local quantities that are related to the energy release rate G, which can be

regarded as a generalization of the proposed failure model presented in Chapter 3

for more complex defects (other than cracks) or boundary conditions and different

materials. The model is compared to experimental results in the literature in the

opening mode for: cracked three-point bending beams, v-notched tensile and

bending samples, and plates with a circular hole in tension.

4.2 Local approach

4.2.1 Model

Equation 3.15 is developed for characterizing the size and boundary effects on

fracture of a finite width plate with an edge crack. In this section, a more general

form of Equation 3.15 is used to provide a more concise representation of the

failure behavior:
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σN =
1.12ft
H(α)

[

1 +

(

ae
at

)r]−1/2r

, (4.1)

where r is a parameter that describes the transition between a failure that is

defined by the material strength (a → 0) and one defined by LEFM (a ≫ at).

The effect of this parameter is presented in Figure 4.1a and traduces some complex

consequences of the microstructure of the material such as granulometry, voids,

etc. Lower values of r lead to smoother transitions between the two mechanisms,

which are related to lower rupture values for cracked structures. As already

discussed in Chapter 3, Equation 4.1 is identical to Type 2 Size Effect Law when

the same r value is introduced in Type 2 SEL and transition crack length at is

equal to the length scale parameter cf in Type 2 SEL.

After substituting Equations 3.13 and 2.21 into Equation 4.1 and some algebraic

work, the crack size dependence in Equation 4.1 can be as the contribution of

two mechanisms:

[

H(α)σN
1.12ft

]2r

+

(

G

Gc

)r

= 1, (4.2)

The ratio σN/ft denotes the activation of the material strength, while G/Gc is

related to the fracture mechanics. Hence, the rupture of a quasi-brittle mate-

rial (represented by Equation 4.1) is rewritten as the contribution of the two

mechanisms.

It is noticed that ratio of the local quantities G′/Ḡc can be used to replace the

non-local quantity [H(α)σN/1.12ft]
2 in Equation 4.2. Then, similar to the simple

asymptotic model proposed for infinite plate (Equation 3.5), the failure criterion

(Equation 4.2) may be finally rewritten as:

(

G′

Ḡc

)r

+

(

G

Gc

)r

= 1, (4.3)

which is a function of quantities obtained exclusively at the crack tip and the

parameters of the material. This failure criterion (Equation 4.3) is identical to

the one (Equation 3.15) presented in the previous chapter when r = 1. The

advantage of the new variable r is to give more liberty defining the transition

between each mechanism (as shown in Figure 4.1a). This is shown necessary to

describe more complex problems as it will be seen during the chapter. For the
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complex boundary and loading conditions, the explicit expression for the gradient

of energy release rate G′ is not always available, so that a numerical calculation

like modified crack closure method (see Appendix B) of crack extension da from

the tip of the defect may be required.

The values of (G′/Ḡc)
r and (G/Gc)

r depend on the crack size, as shown in Fig-

ure 4.1b. The ratio (G′/Ḡc)
r dominates the failure behavior for very small cracks

(a → 0), which is in the region where fracture mechanics is not adapted for

quasi-brittle materials; however its effects diminish for longer cracks. By def-

inition, Equation 4.3 predicts the initiation of a crack under nominal stresses

reaching the tensile strength ft and crack propagation G = Gc for long cracks.

The transition between these two mechanisms occurs at a = at, which is the

transition crack size.

The main advantage of Equation 4.3 is that it is independent of geometrical

parameters. The values of G and its derivative G′ can be quantified for defects

that induce stress singularities, such as cracks or v-notches, or do not induce

stress singularities, such as holes, as shown in Section 4.3.

4.2.2 Failure load for elastic structures

The relation represented by Equation 4.3 is defined for a failure load FN . If a

different load F0 is applied, the equation becomes

(

G′

0

Ḡc

)r

+

(

G0

Gc

)r

= µ0, (4.4)

where G0 and G′

0 are the corresponding energy release rate and its derivative at

the crack tip under the loading F0. Considering that F0 is a fraction of the failure

loading (FN = ρF0), by linearity, G = ρ2G0 and G′ = ρ2G′

0. The value of ρ =

µ
−1/(2r)
0 can be obtained by substituting the relation for G, G′, and Equation 4.4

into Equation 4.3. Finally, the failure load FN can be calculated based on the

results of any given load F0 based on the expression

FN = µ
−1/(2r)
0 F0. (4.5)
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4.3 Comparison to experimental results from

the literature

The failure criterion proposed in Equation 4.3 was compared to the experimental

results given in the following section. The tensile strength ft and fracture energy

Gc adopted in the predictions are associated to measured values. However, the

parameter r is adjusted in order to minimize the error between predictions and

experimental results. The size and boundary effects were clearly visible on the

three-point bending tests presented first. The generality of the proposed formula-

tion was then analyzed using the results of the rupture tests of v-notched samples

in different configurations. Finally, the crack initiation under a local stress gra-

dient was verified in the tensile tests of samples with circular holes of different

sizes.

4.3.1 Cracked Three-point Bending (C-TPB) tests

4.3.1.1 Evaluation of G and G′

The stress intensity factor K0 of the Cracked Three-point Bending (C-TPB) spec-

imen can be directly calculated by

K0 =
3F0S

2h2t

√
πaA2, (4.6)

where F0 is the applied load, S, h, and t are the span, height, and thickness of

the beam respectively, and a is the crack length (see Figure 4.2a). The function

A2 adopted in this Chapter is an approximation with high accuracy derived by

Pastor [101–103], which is applicable to an arbitrary height to span ratio:

A2 =
PSh√

π(1 + 2α)(1 − α)3/2
, (4.7)

where PSh depends on the height to span ratio h/S and crack to height ratio α,

which reads:

PSh = P∞ +
4h

S
(P4 − P∞), (4.8)
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with

P4 = 1.9 − α[−0.089 + 0.603(1 − α) − 0.441(1 − α)2 + 1.223(1 − α)3], (4.9)

P∞ = 1.989 − α(1 − α)[0.448 − 0.458(1 − α) + 1.226(1 − α)2]. (4.10)

Once the height to span ratio h/S is fixed, A2(α) is only dependent on the crack

to height ratio α. A comparison of Equation 4.7 and Equation presented in [104]

for any h/S ratio, with the empirical expressions presented in [36] for certain h/S

ratio is performed and presented in Appendix A. The value of the energy release

rate was obtained from the LEFM relation for plane stress G0 = K2
0/E, and G′

0

was calculated by deriving G0 with respect to the crack size a. These values are

related to the material fracture energy Gc and material strength ft, as shown in

Section 4.2.2, and characterize the failure of the structure.

4.3.1.2 Birchall’s experiments

Figure 4.2 illustrates the nominal strength results (σN = 1.5FNS/(h
2t)) predicted

by the proposed model and compared to the test results of the C-TPB specimens

tested by Birchall et al. [105] that had a span to height ratio of S/h = 4 and were

made of Portland cement paste. In the figure, the model results were obtained

for a beam with dimensions of h = 1m, t = 1m, and S = 4m. The material

parameters were measured by Birchall et al. [105]. The mean tensile strength

ft = 10.5MPa and mean fracture energy Gc = 23.8N/m were calculated by

measuring the failure loads of uncracked and cracked specimens, respectively,

which resulted in a transition crack size of at = 1.1mm. The transition between

the failure mechanism associated with the material strength and that due to the

fracture mechanics (visible in Figure 4.2b) is quite sharply delineated, which is

well described by a high value of the parameter r (r = 10 in this case).

4.3.1.3 Karihaloo’s experiments

The C-TPB tests performed by Karihaloo et al. [83] were conducted on cracked

beams made of hardened cement paste with a span to height ratio of S/h = 4.

The geometrical information and mechanical properties of the specimens have
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Figure 4.2: The nominal strength σN versus the crack length a for C-TPB speci-

mens [105].

already presented in Section 3.4 (Chapter 3). The predicted failure loads given

by the proposed model and Bažant’s Type 2 Size Effect Law (Equation 2.41), and

test results are plotted in Figure 4.3a as a function of the crack to height ratio

α. In this example, the value of r = 1 seems adequate, which indicates a smooth

transition between the mechanisms of failure based on fracture mechanics and

material strength. In fact, Equation 3.15 presented in Chapter 3 and Equation 4.3

in this chapter are equivalent when r = 1. r parameter is important considering

the range of crack sizes a (5mm < a < 100mm). The model parameters of

Type 2 SEL Gc = 18.1N/m and the length scale cf = 7.2mm were calibrated
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for α = 0.3 [49].

4.3.1.4 Higgins’ experiments

Higgins and Bailey [106] tested C-TPB specimens of a hardened cement paste with

heights h that varied from 5mm to 110mm, and a crack to height ratio α that var-

ied from 0.02 to 0.5. The span to height ratio was equal to S/h = 5 for all beams,

and the thickness was equal to t = 25mm. Figure 4.3b shows the comparison

between the test results and the predicted failure loads obtained by the proposed

model and by the Boundary Effect Model (BEM) [17] as functions of the crack to

height ratio α. The proposed model and boundary effect model are both able to

characterize size and boundary effects in this example. The mechanical properties

obtained by optimizing the rupture model (for r = 0.5) were: tensile strength

ft = 12MPa and fracture toughness
√
GcE = 0.83MPa

√
m (the Young’s modu-

lus E was not provided), resulting in a transition crack size at = 1.21mm. These

results are consistent with the values obtained by the authors. The highest value

of strength obtained in direct tensile tests on uncracked specimens was 12.5MPa,

associated with an estimated fracture toughness of 0.8MPa
√
m. The material

parameters adopted by Duan et al. [17] in BEM model were: tensile strength

ft = 10.29MPa and fracture toughness Kc = 0.65MPa
√
m.

4.3.2 V-Notched tests

The results for the failure of the C-TPB specimens (Section 4.3.1) indicates the

ability of Equation 4.3 to locally characterize the strength of structures displaying

cracks of different sizes. In the following section, the failure of structures asso-

ciated with other imperfections that induce singular stresses is analyzed. The

experiments of v-notched plate performed by Seweryn et al. [22], and v-notched

three point bending specimen performed by Dunn et al. [21] subjected to mode

I loading are adopted as the reference, to validate the proposed model for the

nominal strength prediction when the stress singularity factor is differ from 1/2.

4.3.2.1 Evaluation of G and G′

The vertical stress along the x-axis (see Figure 4.4) in the vicinity of the notch

tip can be expressed as σy(x) = (KN
0 )/(2πx)1−λ [20], where λ is the order of the
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Figure 4.3: Failure loads FN versus crack to height ratio α for various speci-

men sizes in the experiments of (a) Karihaloo et al. [83], and (b) Higgins and

Bailey [106]. The error bars in (a) indicate the standard deviations of the exper-

imental results.

stress singularity, which depends on the notch opening angle γ. λ is equal to 1/2

for γ = 0◦ (crack) and 1 for γ = π (straight edge). The λ values for different

notch opening angles are tabulated in Table 4.1. KN
0 is the Generalized Stress

Intensity Factor (GSIF) whose physical dimensions depend on the notch opening
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Figure 4.4: V-notched plate under tension loading and the corresponding ema-

nating crack.

The stress intensity factor K0 corresponding to a short crack emanating from the

notch tip depends on the generalized stress intensity factor KN
0 , notch opening

angle γ, and crack length a [107]. The relation between the two stress intensities

and the crack length is given by [108] for cracks that are much shorter than the

notch depth, which reads

K0 = Λ(γ)
√
π

KN
0

(2π)1−λ
aλ−1/2, (4.11)

where Λ is plotted and tabulated in [108]. It should be noted that there is a

difference of 1/(2π)1−λ between Equation 4.11 and the original equation presented

in [108] due to the different formal definition of generalized stress intensity factor.

The substitution of Equation 4.11 into the well-known Irwin’s relation in plane

stress (E∗ = E) and plane strain (E∗ = E/(1 − ν2)) yields:

G0 = η

(

KN
0

)2

E∗
a2λ−1, (4.12)
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where η = Λ2(γ)π/(2π)2−2λ is a dimensionless parameter that depends only on

the notch opening angle γ [108], which can be calculated based on the highly

accurate Λ values given by Philipps et al. [108] for the mode I case.

The generalized stress intensity factor KN
0 is related to the remote loading F0

by KN
0 = ξF0, where the coefficient ξ for different specimens can be obtained

numerically. The values of ξ for v-notched plates with different notch opening

angles γ are tabulated in [88]. For v-notched beams, ξ values are calculated from

the values of KN
c /(2π)1−λ and σmax tabulated in [21] (ξ = KN

c /[σmax2h2t/(3S)],

where h, t, and S are the height, thickness, and span of the beams, respectively).

Table 4.1 presents the values of λ, ξ, Λ and η for different notch opening angles

for v-notched plates and beams. The unit of ξ is Pa ·m1−λ/N .

Based on the known values of λ, ξ, Λ and η for different notch opening an-

gles, the energy release rate G0 corresponding to a short crack emanating

from the notch tip can be calculated by Equation 4.12. The value of G′

0 =

η(2λ− 1)(KN
0 )2a2λ−2/E∗ is obtained by derivation of Equation 4.12 with respect

to the emanated crack length a.

Table 4.1: Parameters λ, ξ, Λ and η for v-notched plates and beams. The values

with ∗ were not originally tabulated but have been calculated by linear interpo-

lation.

γ λ [21, 88, 109] ξ of plates [88] ξ of beams [21] Λ [108] η

0 0.5 613.3 n/a 1.414 1.000

20 0.5004 616.6 n/a 1.417∗ 1.005

30 0.5015 n/a n/a 1.418 1.011

40 0.5035 632.3 n/a 1.414∗ 1.013

60 0.5122 667.3 2335.5 1.407 1.035

80 0.5304 735.0 n/a 1.389∗ 1.079

90 0.5445 n/a 2964.6 1.380 1.121

100 0.5628 853.7 n/a 1.362∗ 1.168

120 0.6157 1057.6 4703.8 1.327 1.347

140 0.6972 1424.6 n/a 1.270∗ 1.665

150 0.7520 n/a n/a 1.241 1.944

160 0.8187 2153.5 n/a 1.201∗ 2.327

180 1 6314.6 n/a 1.120 3.941
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4.3.2.2 Failure identification

At the notch tip (a = 0), the value of the energy release rate G0 tends to zero, as

indicated by Equation 4.12, while its derivative G′

0 tends to infinity. According

to Equations 4.4 and 4.5, in these conditions, the failure load FN tends to zero,

as shown in Figure 4.5a. The propagation of the crack induces an increase of G0

and a decrease of G′

0, which leads to the rapid growth of the FN value. For very

short propagation lengths, the rupture is dominated by the strength mechanism

σstrength
N = σ0

√

Ḡc/G′

0, as shown in Figure 4.5b. After a certain length, the

fracture toughness of the material is mobilized and the rupture behavior follows

the prediction of the LEFM, and depends only on the energy release rate. During

the transition between the two mechanisms, a maximum value of the failure load

Fmax is observed, which defines the failure limit of the sample.

4.3.2.3 Seweryn’s experiments

Seweryn et al. [22] carried out tensile experiments using symmetric v-notched

polymethyl methacrylate (PMMA) specimens with the following mechanical

properties: Young’s modulus E = 3.3GPa, Poisson ratio ν = 0.35, tensile

strength ft = 102.8MPa, and fracture energy Gc = 437.82N/m. The fracture

energy Gc was calculated by Seweryn et al. based on the relation between the

fracture toughness and critical generalized stress intensity factor KN
c for notch

opening angles γ = 20◦, 40◦, and 60◦ [88]. Samples with v-notch opening angles γ

of 20◦, 40◦, 60◦, 80◦, and 100◦ were studied, and their dimensions are indicated in

Figure 4.6a with a thickness of 5mm. The results for γ = 180◦ were based on the

tensile strength ft as determined with a sample presenting a double semicircular

indentation.

The predicted failure loads Fmax with different notch opening angles are com-

pared to the experimental results in Figure 4.6b. A more detailed description

of the behavior between 100◦ < γ < 180◦ is provided by the predictions of the

strain energy release criterion [88], which are also presented in Figure 4.6b. Good

agreement with the complete set of results was observed for r = 4.
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Figure 4.5: Failure load FN during crack extension and the definition of the

maximum failure load Fmax for v-notches in (a) linear, and (b) semi-log scales.

4.3.2.4 Dunn’s experiments

Dunn et al. [21] performed a series of three-point bending tests on notched

specimens (N-TPB) in polymethyl methacrylate (PMMA) with dimensions of

L = 76.2mm, t = 12.7mm, and h = 17.8mm, as indicated in Figure 4.7a. The
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Figure 4.6: (a) Failure loads Fmax for different notch opening angles γ. (b) The

model prediction is compared to the results of references [22, 88].

tests were performed under plane strain conditions following the procedures out-

lined in ASTM E-399. The specimens were machined with three different notch
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opening angles γ: 60◦, 90◦, and 120◦. For each notch opening angle, four notch

depths c were used: 1.78mm, 3.56mm, 5.33mm, and 7.11mm. This choice of

dimensions resulted in notch depth to height ratios c/h of 0.1, 0.2, 0.3, and 0.4,

respectively. The PMMA had a Young’s modulus E = 2.3GPa, Poisson ratio

ν = 0.36. The average failure stress ft = 124MPa was based on the bending tests

of unnotched specimens. The fracture toughness Kc = 1.25MPa
√
m adopted in

the model predictions was calculated based on the relation between this quan-

tity and the critical generalized stress intensity factor for the notch opening angle

γ = 60◦, as proposed by Seweryn et al. This value was expected to be more precise

than the results obtained from cracked three-point bending (C-TPB) specimens

(Kc = 1.02MPa
√
m with a standard deviation of 0.12MPa

√
m) [86].

The comparison between the predicted failure load Fmax (for r = 4) and the

experimental data is presented in Figure 4.7b for different notch opening angles

γ.

4.3.3 Crack initiation in a finite width plate with a circu-

lar hole

4.3.3.1 Geometry and failure mechanism

Green et al. [110] performed open-hole tensile tests using the quasi-isotropic

carbon-epoxy laminate IM7-8552 with stacking sequence [45/90/ − 45/0]4s (for

laminates with a nominal thickness of 4mm). Specimens presenting the same

aspect ratio based on the hole diameters D (3.175mm, 6.35mm, 12.7mm, and

25.4mm) were adopted (for widths w = 5D and lengths 20D, as shown Fig-

ure 4.8a). The tensile strength ft = 929MPa was measured in the unnotched

tests, and the fracture toughness
√
GcE = 42.3MPa

√
m was estimated by Ca-

manho et al. [24].

A post-rupture analysis showed that all specimens with the adopted stacking

sequence failed due to fiber failure, which indicates that the effect of the lami-

nate stiffness reduction caused by the progressive matrix failures on the ultimate

strength of the laminate was insignificant. Hence, the rupture of these uncracked

samples depended on the crack initiation and subsequent propagation thereof due

to the stress concentration at the lateral edges of the holes. The failure scheme

adopted in this case is presented in Figure 4.8b, and is consistent with the failure

pattern observed experimentally by the authors.
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Figure 4.7: Model predictions of the failure load Fmax compared to the experi-

mental results of reference [21] as a function of the notch to height ratio c/h for

various notch opening angles γ.

4.3.3.2 Evaluation of G and G′

The energy release rate corresponding to two symmetric cracks emanating from

a plate with a central circular hole of radius R is given by [111] for an isotropic

plate as

G0 =
σ2
0πa

E
A2

3A
2
4, (4.13)

where σ0 is the applied stress, a is the extended crack length from the hole, and

A3 is the boundary correction factor for the circular hole. The equation for A3 is
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Figure 4.8: (a) Geometry of the plates with circular holes (modified from the il-

lustration by [110]), and (b) the corresponding failure mechanism (two symmetric

cracks emanating from two sides of the hole).
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with d = a + R as indicated in Figure 4.8b. The quantity A4 is the finite width

correction factor and is equal to

A4 =

√

sec

(

πR

w

)

sec

(

πd

w

)

. (4.15)

The value of G′ is obtained by derivation of the expression for G (Equation 4.13)

with respect to a.
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4.3.3.3 Failure identification

When the hole diameter is sufficiently large, two limit failure mechanisms may

be observed when considering the rupture of the plate: one associated with the

material strength (d → R,G → 0), and another associated with the fracture

mechanics (d ≫ R). The hole induces a stress concentration of 3σ0, which may

be inferior to the tensile strength of the material ft. Hence, in the absence of any

cracks, the failure may occur for σN = ft/3, which defines the initiation of the

crack. On the other hand, after a relatively long crack propagation, the structure

may behave as a simple middle-cracked plate of crack length 2(R + a) and be

governed solely by the fracture mechanics (G ≤ Gc). The transition between

these two mechanisms is presented in Figure 4.9a. The individual prediction of

the strength mechanism σstrength
N = σ0

√

Ḡc/G′

0 tends to be almost independent

of the extended crack size a, as is expected for a quasi-brittle material, until the

transition to LEFM behavior.

For small diameters, the stress gradient near the edges of the holes affects the

strength results [112,113]. This effect is described by Equation 4.3 as an increase

in the load limit of the plate during crack initiation, following the trend of σstrength
N

up to a maximum value before decreasing following the LEFM behavior, as shown

in Figure 4.9b. This apparent nonphysical behavior is probably an “artifact” due

to the simplicity of Equations 4.1 and 4.3. Consider the effect of the stress

gradient that would theoretically prevent this increase in the sample strength.

One may then predict a behavior similar to that shown in Figure 4.9a for any

hole size, which is a stable failure stress for small cracks, and is followed by a

decrease as predicted by LEFM. However, it seems much simpler to define the

failure load based on the maximum value σmax = max σN for all cases. The error

associated with this simplification will be reduced in practical situations that

concern relatively small crack sizes a < at (e.g. at ≈ 0.5mm for the laminated

sample used in this example).

4.3.3.4 Comparison to experimental results

The predictions of the proposed model for r = 15 are compared to experimen-

tal results and other model predictions in Figure 4.10. The theoretical results

coincide with the predictions using the average stress method given by Green et

al. [110] for the failure stress σmax, as shown in Figure 4.10a. For the smallest hole
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Figure 4.9: Nominal strength σN in a plate (a) with a big hole, and (b) with a

small hole as function of the extended crack size a.

diameters D (3.175mm and 6.35mm), the failure mechanism was associated with

the fiber pull-out across the width, which may explain the relative deviation of

the results. It should be noted that this also happens with respect to the average

stress criterion. The predictions of finite fracture mechanics given by Camanho

et al. [24] also present an offset between the results of the smallest hole and the

others.

Holes with bigger diameters induce a failure stress σmax near ft/3, as is expected
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due to the stress concentration of approximately 3σ0 at the edge of the holes.

Figure 4.10b illustrates the difference between the predictions of the proposed

model and the size effect law. Type 2 SEL fits well the test results, but predicts

a failure stress σmax which fades to zero for large holes. The extended size effect

law [16,114] corrects this trend for the holed specimens, which is also the case of

the proposed model.

4.4 Failure process and length scales

The criterion represented by Equation 4.3 characterizes the rupture as continuous

process. It defines the crack initiation and its propagation based on energetical

quantities. In some cases, such as structures presenting weak singularities (e.g. v-

notches) or stress concentrations (e.g. holes), the maximum value of the load FN

was obtained after a propagation length af . At this length scale, FN is maximized,

which means that af mathematically minimizes the quantity µ0 (Equation 4.4)

with respect to the crack length a. After some algebraic work, the equation

dµ0/da = 0 can be rewritten as

[ −(G0)
r−1

(G′

0)
r−2G′′

0

]1/r

=
Gc

Ḡc

=
lch

1.122π
, (4.16)

where lch = GcE/f
2
t is the characteristic length of the material. The length af ,

solution of Equation 4.16, is easily obtained for a v-notch plate (af = 0.254lch(2−
2λ)1/r(2λ−1)(1−1/r)). In Figure 4.11a, the value of af/lch is plotted as a function of

the notch opening angle γ for r = 4. The ratio af/lch can be obtained numerically

for a finite width plate with a circular hole. In Figure 4.11b, af/lch is presented

for different hole diameters D (r = 5 and width w = 5D).

The analysis of the length avr = {−(G)r−1/[(G′)r−2G′′]}1/r (based on the left-

hand side of Equation 4.16) can technically remedy the nonphysical increase of

the failure load observed during crack initiation in v-notched (Figure 4.5) or holed

plates (Figure 4.9). Only if avr ≥ lch/(1.122π), which corresponds to a ≥ af ,

the failure load should be considered as physically consistent. Otherwise, the

propagated crack a would only present a mathematical meaning on the crack

initiation process. Consider a finite crack length absolutely bigger than af for

the calculations, similar to finite fracture mechanics approaches [14, 24, 92] can

also prevent any increase on the failure load.
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Figure 4.10: Prediction of the failure stress σmax for various hole diameters D

compared to the experimental [110] and model-based results. (a) Comparison

between the proposed model, average stress criterion and finite fracture mechan-

ics [24]. The insets depict the rupture patterns for different hole diameters. (b)

Comparison between the proposed model and two versions of the size effect law

(SEL).

Despite all possible approaches to avoid this apparent problem of the increase of

the failure load, it should be noted that the length scale af is directly related to

the characteristic length lch, usually associated to the size of the fracture process
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Figure 4.11: Ratio af/lch (a) versus notch opening angle γ for a v-notched plate

and (b) as a function of the hole diameter D for a holed plate (lch = 2.07mm).

zone (FPZ), and the parameter r. The FPZ is an important element in many

models [13,14,87], physically associated to a region containing micro-cracks near

the crack tip. In small scales (a → 0), the size effect behavior is particular and

alternative models are proposed under these conditions [44,47]. The improvement

of Equation 4.3 based on these effects for avr ≤ lch/(1.122π) may provide a finer

and more realistic description of the crack initiation.
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4.5 Conclusions of the chapter

The local model proposed in this chapter consistently reflects the main rupture

trends from crack initiation to crack propagation based on its agreement with

the experimental results for different geometries. In all analyzed cases, the fail-

ure was induced by an opening mode wherein the value of the energy release

rate G controlled the propagation of the crack, and its derivative with respect to

the crack size G′ controlled the crack initiation. The competition between these

two quantities was related to the material parameters, namely, the fracture en-

ergy Gc, tensile strength ft, and parameter r, which characterizes the transition

between the crack initiation and propagation states. Despite the clear physical

sense of r, only further testing with the same material and completely different

geometries would definitively allow the association of this parameter exclusively

to this material.

The principal feature of the model is to identify the effects of the nominal stress

(a non-local quantity) through the evolution of the energy release rate G (in a

local sense) specifically at the initiation of the crack. This leads to an alternative

description of the rupture, which allows a relatively simple analysis of struc-

tures with any size of crack, or no cracks at all. For complex geometries and/or

boundary conditions, a numerical implementation of the present formulation may

produce convergent results with respect to the mesh sizes, depending only on the

precision of the G and G′ values. The scope of LEFM is extended to a certain

extent, considering that neither plasticity nor damage are necessarily associated

with the model to describe crack initiation.

Size effects caused by stress concentration (e.g. at the edges of the holes), were

theoretically quantified using the value of G′. Despite the simplicity of Equa-

tion 4.3, the equation provides good insight into the competition between the

failure mechanisms at a local level. Information regarding this point of view as-

sociated to the existing background may contribute to the improvement of rupture

analysis.

The following paper summarizes the main results of this chapter:

X. Gao, G. Koval, and C. Chazallon. Energetical formulation of size ef-

fect law for quasi-brittle fracture. Engineering Fracture Mechanics, 2017.

http://dx.doi.org/10.1016/j.engfracmech.2017.02.001. Article in press [115].
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5.1 Introduction

Besides the complexities in failures under monotonic loading condition, fatigue is

also one of the most common yet complicated failures that can cause damage to

mechanical structures [116]. The fatigue loading (repeated moving loads, cycles of

temperature, etc.) applied to structures made of geo-materials (concrete, asphalt

concrete, masonry, etc.), generates efforts that are far below the strength or

the fracture toughness of the material. However, they are responsible of the

degradation of the material properties and fatigue crack growth, which may lead

to the final failure state of these structures. The number of cycles, of a specified

character that a specimen sustains before failure of a specified nature occurs,

is defined as the fatigue life. Fatigue life is very important for the structure

design, however, its prediction is still an empirical science rather than a theoretical

one [50].

The fatigue behavior can be studied experimentally and numerically. The ex-

perimental study is commonly expensive and time consuming and sometimes

impossible in the case of huge structures, while the numerical study is time and

cost efficient and can effectively enable researchers to optimise the experimental

effort required [116]. A review of the literature (see Section 2.4) suggests that the

continuum damage models are able to effectively characterize the fatigue life of

the specimen without large cracks, including the stages of crack nucleation and

short crack propagation. Once a large crack appears, the existence of a stress sin-

gularity at the crack tip leads the stress based or strain based continuum damage

model to a fast and unreal propagation of the damaged zone, a representation

of the crack. The non-local continuum damage models [54, 58] intend to solve

this problem, however, these models are not able to indicate the damage or the

evolution of the damage during the fatigue loading [64]. Therefore, the residual

strength cannot be determined using these models. Moës et al. proposed an

alternative non-local damage model called Thick Level Set (TLS) [117–120] ap-

proach and implemented it in extended finite element code to model the damage

growth in solids. The undamaged zone and the damaged zone are separated by

a level set, and in the damaged zone, the damage variable is an explicit function

of the level set. The damage growth is expressed as a level set propagation [117].

This model can be considered as a continuous transition from damage to frac-

ture [120], which is able to handle initiation, growth, branching and coalescence of

crack-like patterns. Latif et al. [121] developed an interface damage model based
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on the Thick Level Set approach, for simulating fatigue-driven delamination in

composite laminates using finite element method. It provides a link between

damage mechanics and fracture mechanics through the non-local evaluation of

the energy release rate, which is able to predict the fatigue crack growth rate

and the delamination growth pattern accurately. Thick Level Set approach was

compared with cohesive zone models in [122], which are the crack based models

that deal with crack evolution in elastic materials. The cohesive zone models rep-

resent quasi-brittle behaviors with good accuracy but require extra equations to

determine the crack path. These models were widely used to predict the fatigue

crack growth [123–125], and also improved to study the damage initiation and

evolution in the interconnects [116,126–128].

Both continuous and discrete numerical methods have their own advantages and

shortcomings. The extended finite element method (XFEM) was developed in

1999 by Belytschko and Black [129] and improved by Moës et al. [130], to help

alleviate shortcomings of the finite element method (FEM) and has been used to

model the propagation of various discontinuities. XFEM has been successfully

adopted for simulation of various engineering problems, which have been reviewed

in detail in [131]. Discrete element method (DEM) is particularly attractive for

modelling geo-materials due to its ability to construct a mesh that is not com-

pletely continuous and homogeneous. Since the mesh is constructed by rigid

elements that interact with each other at points of contact, the DEM mesh has

the capability of easily constructing a medium with voids, imperfections and het-

erogeneities, which are commonly existing in rocks, concretes, asphalt mixtures,

and other geo-materials [73]. The XFEM and DEM were compared in [132] for

the simulations of crack initiation, propagation and coalescence in brittle materi-

als. It shows that DEM yields the better results compared to the XFEM, which

is able to predict the crack propagation and coalescence in good agreement with

the test results, while XFEM failed to model the shear cracks and is difficult to

generate the crack coalescence [132].

In this chapter, a discrete element approach is proposed, based on a local de-

scription of damage and fracture. Bodin’s damage model is implemented in a

discrete element code and verifies the theoretical prediction and is compared to

test results. In Section 5.3, the continuum damage model is coupled with a fa-

tigue crack growth model. This feature allows crack initiation to be induced by

localized damage and a progressive transition to a fracture behavior with the

crack propagation. Furthermore, independent parameters for the damage and
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the crack propagation laws are admitted without any previous calibration. Intact

and pre-cracked samples are analyzed under fatigue loading to show the consis-

tent coexistence of fractured and damaged zones in a single model. Finally, the

numerical results are compared to theoretical predictions of fracture mechanics

and experimental results of the literature.

5.2 Discrete element fatigue damage model

Most of fatigue laboratory tests of high number of cycles consist of applying a

sinusoidal displacement (or force) with constant amplitude at the boundary of

the sample. During testing, the variation of global stiffness is monitored, which

is defined as the ratio between the amplitudes of the force and the displacement.

In order to numerically model these time-consuming laboratory tests, Bodin et

al. [54, 55] proposed a non-local damage model to predict the material behavior.

The model was implemented in a finite-element code, along with a self-adaptive

jump-in-cycle procedure for high cycle fatigue computations.

In this section, a local version of Bodin’s damage model is implemented in a

discrete element code. A close-packed assembly (regular hexagonal packing)

is adopted, due to the direct relationship between the macroscopic parameters

(Young’s modulus E and Poisson ratio ν) and discrete elastic parameters (normal

and tangential stiffness, kn and kt, respectively). During damage modeling, the

Young’s modulus of the material decreases as the evolution of damage value D,

which can be characterized by the decrease of local contact stiffness.

5.2.1 Model implementation

The damage of all the contacts in the assembly are calculated in the same way

and updated at the same time. The evaluation of the damage per contact can be

summarized by the following operations:

(1) DEM elastic analysis and identification of the stress and strain fields (see

Section 2.5.3). The contact forces N and T and contact displacements δn and δt
are the direct values can be obtained from a discrete element analysis, based on

these information, the stress and strain of each contact pair in the close-packed

assembly (see Figure 2.24) can be calculated as follows:
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(2) Evaluation of the principal stresses (Equation 2.56). The stress tensor σn and

σt (in two dimensions) can be defined by the value of the principal stresses σI

and σII , and their orientation as follows:











σI = σn + σt tanψ,

σII = σn − σt/ tanψ,

(5.3)

with ψ = −1/2 arctan (2σt/A) and A = [E/(1 − ν)](εnn + εtt) − 2σn.

(3) Calculation of the equivalent strain (Equation 2.44) for each contact pair.

The evolution of damage is controlled by the strain state of the material by a

scalar equivalent strain, which can be written for 2D structure as follows:

ε̃ =

√

[ 〈σI〉+
E0(1 −D)

]2

+

[ 〈σII〉+
E0(1 −D)

]2

. (5.4)

(4) Local equivalent strain of the contact: average the equivalent strains of the

contact pairs to contact points. Since damage is associated with the single con-

tact, the mean equivalent strain of the contact pairs around a certain contact (cal-

culated during the previous operation) is adopted as the local equivalent strain

for the contact. Only the existing contact pairs of the scheme shown in Figure 5.1

are considered in the averaging.

(5) Evaluation of the damage growth (Equations 2.45, 2.46 and 2.47). The damage

growth rate is defined as a function of local equivalent strain rate ˙̃ε:

Ḋ = f(D)ε̃β
〈

˙̃ε
〉

, (5.5)
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Contact 
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C

Figure 5.1: Contact pairs associated with the average of the equivalent strain of

the contact C.

where ˙̃ε = ε̃i+1 − ε̃i is the increment of local equivalent strain from t = i to

t = i + 1; f(D) is function of damage; β is a material parameter which can be

calculated directly from the slope of the fatigue curve in log–log coordinates [64].

The damage functions f(D) given by Paas [59] and Bodin [54] are:

Paas Law : f(D) = CDα, (5.6)

Bodin L3R : f(D) =
α2

α1α3

(

D

α2

)1−α3

exp

(

D

α2

)α3

. (5.7)

(6) Evaluation of the damage and update of the value of the Young’s modulus

(E = E0(1−D)); and finally the update of the values of the normal and tangential

stiffness (Equation 2.53):























kn =
Et√

3 (1 − ν)
,

kt =
1 − 3ν

1 + ν
kn =

1 − 3ν√
3 (1 − ν2)

Et.

(5.8)
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5.2.2 Model verification

5.2.2.1 Damage of a plate under fatigue loading

Consider an un-cracked plate with dimensions w = 80mm and h = 117.8mm

subjected to sinusoidal fatigue loading with amplitude ε0 = 1.25 × 10−4 (Fig-

ure 5.2), the frequency of the loading f = 25Hz, the corresponding angular

frequency ω = 2πf . The material presents Young’s modulus E0 = 30GPa and

Poisson ratio ν = 1/3. The damage function (Equation 5.6) proposed by Paas [59]

is adopted in this analysis. The model parameters are α = −2.25, β = 4.0 and

C = 5.0×1016. The higher value of parameter C is adopted in order to ensure the

fatigue life of applied loading condition is around 100 cycles (E/E0 = 0.5 [133]),

avoiding the jump in cycle procedure in this calculation.

εt=ε0sin(ωt)

w = 80 mm

h =
 117.8 m

m

εt=ε0sin(ωt)

ε0=1.25×10-4

f=25Hzω=2πf

Figure 5.2: An un-cracked plate subjected to imposed sinusoidal strain.

The discrete element model is shown in Figure 5.3. The particle radius is r =

1mm, each row has 39 or 40 particles according to its position, and there are 69

rows in total. There are 2726 particles and 7961 contacts. For this discretization

level, boundary effects are very reduced, therefore accurate stress and stain can be

obtained in the whole geometry [74, 75]. According to Equation 5.8, the contact

stiffness are calculated as kn = 5.2 × 107N/m and kt = 5.2 × 104N/m. A time

step ∆t = 5 × 10−7 s and a low viscous damping cn = ct = 0.0295Ns/m are
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Figure 5.3: The discrete element model of an un-cracked plate subjected to

imposed sinusoidal strain.

adopted in the simulations, to ensure stable calculations. The lower boundary

is fixed at each particle center in vertical direction, and the sinusoidal velocity

v = ε0hω cos(ωt) is applied at the upper boundary. In order to apply the strain

rate ε0 = 1.25 × 10−4 during all cycles, the amplitude of the displacement of the

upper boundary is constant and equal to 14.7mm.

The numerical results are compared with damage model (Paas law) predictions,

as shown in Figures 5.4 and 5.5. For an imposed strain condition, the global

damamge increse and stiffness decrease are calculated from the decrease of the

reaction force of the fixed support, which are in good agreement with the the-

oretical Paas law (Equation 5.6) prediction. No effects of the particle diameter

are observed under homogenous conditions. According to the European fatigue

standards [133], when the stiffness ratio reaches its critical value 0.5, the corre-

sponding fatigue life Nf = 105Cycles is identified.

The calculation speed of the discrete element modelling depends on the discretiza-
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tion level and computing power. This calculation was performed on an Intel Core

i7-6700K 4.0GHz with 4 cores and 8 threads running on a Windows 8.1 64 bit

operation system. The calculation required around 48 hours, using parallel calcu-

lation with all 8 CPU threads, to run 350 fatigue loading cycles when the particle

diameter is d = 2mm (without jump in cycles procedure). More than 72 hours

and around 12 hours were needed respectively, for d = 1mm and d = 4mm.

Hence, it is necessary to enhance the efficiency of the discrete element fatigue

modelling, in order to perform large number of cycles with an appropriate dis-

cretization level.
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Figure 5.4: The theoretical and numerical predictions of the increase of damage

for an un-cracked plate subjected to fatigue loading.

5.2.2.2 Damage of a four point bending beam under fatigue loading

In this section, the DEM damage calculations of four point bending beams

made of asphalt concrete are performed. The predictions are compared with

the test results and finite element results. A total of 36 fully reverse 4PB

fatigue tests were performed by Arsenie et al. [57, 64, 65], with displacement

control (constant strain), at 10◦C with f = 25Hz. Among the 36 specimens,

there were 18 non-reinforced specimens and 18 fiber glass grid reinforced spec-

imens. The non-reinforced specimens, which are studied in this section, were

loaded under three strain levels (ε0 = 150µm/m, ε0 = 135µm/m and the range
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Figure 5.5: The theoretical and numerical predictions of the decrease of global

stiffness for an un-cracked plate subjected to fatigue loading.

ε0 = (111, 116)µm/m) with six replicates per strain level. The geometry and

boundary conditions are shown in Figure 5.6a. The span, height and thickness

of the beam were 600mm, 100mm, 100mm receptively. The initial dynamic

modulus E0 = 13.5GPa was obtained at 10◦C and 25Hz.

In Figure 5.6b, the half discrete element model is adopted due to the symmetry of

the beam and applied loading. The particle radius is r = 1.25mm, each column

has 39 or 40 particles according to its position, and there are 139 columns in

total. In the model, there are 5491 particles and 16116 contacts. According to

Equation 5.8, the contact stiffness are calculated as kn = 2.6×107N/m and kt =

2.6 × 103N/m. A viscous damping cn = ct = 0.065Ns/m and a time step ∆t =

5×10−7 s are adopted in the simulations. The left boundary of the half structure

is fixed at each particle center in horizontal direction, while the right boundary

is fixed in vertical direction. The maximum applied displacement at S/3 of the

beam Z0 = 2/3ε0, where ε0 is the applied strain rate measured at the bottom of

mid-span, which are ε0 = 150µm/m, ε0 = 135µm/m and ε0 = 115µm/m [57] in

the numerical calculations. The corresponding maximum applied displacements

at S/3 are Z0 = 100.0µm, Z0 = 90.0µm and Z0 = 76.7µm, respectively. The

loading is only applied on a certain range (h/4) of the particles at S/3 of the beam,

as shown in Figure 5.6b. This differs from Bodin’s calculation [54], who applied

loading on the full length between the two loading points in a non-local finite
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element model. This loading condition is used here to avoid the possible damage

concentrations appeared near the loading points in a local discrete element model.

(a)

Z0 Z0

Z0 Z0

Asphalt concrete
E0=13.5GPaν =0.35 

S=600 mm

h=100 mm

h

(b)

h

S/3=200mm

Fixed in x 
direction

Applied velocity
Length=h/4

Fixed in y 
direction

S/6=100mm

h/d=40 (d=2.5mm)x

y

Figure 5.6: (a) Four point bending beam subjected to imposed sinusoidal dis-

placement and (b) the half structure of discrete element model.

Like Arsenie et al. [57,64,65], the damage evolution law (Equations 5.5 and 5.7)

proposed by Bodin is adopted in the four point bending simulations. The model

parameters are α1 = 8.0 × 10−16, α2 = 1.9 α3 = 1.6 and β = 4.3. β value is

calculated directly from the slope of the fatigue curve in log–log coordinates [64],

while α1, α2 and α3 are obtained by the best fit. The jump in cycles procedure,

which has been introduced in Section 2.4.2.3, is implemented in the code in order

of simulate the large number of cycles.

The discrete element results are compared with the experimental results and

finite element predictions given by Arsenie et al., which are plotted in Fig-

ures 5.7, 5.8 and 5.9 for three strain levels ε0 = 150µm/m, ε0 = 135µm/m

and ε0 = 115µm/m, respectively. It is not surprising that the local continuum

damage model provides a fast drop of the global stiffness due to the stress con-

centration induced by the reduction of the effective cross section. The non-local
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finite element parameters, defined in the original version of the Bodin’s model [54]

are α1 = 1.6 × 10−16, α2 = 0.95, α3 = 1.6, β = 4.3, and the internal length of

the non-local continuum lc = 30mm is chosen to calculate the average equivalent

strain. α1, α2 and α3 values were calibrated for ε = 135µm/m based on the

experiments performed by Arsenie [57, 64]. Before the global stiffness is below

0.85 of its initial value, the discrete element results coincide with the finite ele-

ment predictions for all of the three strain levels. In Figure 5.7, it shows that the

numerical results are close to the average test result for ε = 150µm/m. However,

it should be pointed out that for ε = 115µm/m, the discrete element and finite

element predictions all deviate from the test results. Although the non-local finite

element model can provide a fatigue life close to the test results, the evolution

of the global stiffness matches neither of the test curves. This may indicate that

the model needs to be further improved.
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Figure 5.7: Numerical fatigue curves of the non-reinforced four point bending

beam versus experimental fatigue damage curves (minimum, average and maxi-

mum) under applied strain ε = 150µm/m.

The effect of discretization level on the numerical fatigue curves of the non-

reinforced four point bending beam under applied strain ε = 150µm/m is illus-

trated in Figure 5.10. For similar fatigue parameters, the decrease of the particle

diameter d induces a shorter fatigue life of the sample. It can be explained by the

fact that, in DEM, the efforts are averaged over a particle diameter; under stress

gradients, it means higher stresses for smaller particles. Consequently, a higher

value of stress leads to more damage per cycle, which accelerates the degradation
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Figure 5.8: Numerical fatigue curves of the non-reinforced four point bending

beam versus experimental fatigue damage curves (minimum, average and maxi-

mum) under applied strain ε = 135µm/m.
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Figure 5.9: Numerical fatigue curves of the non-reinforced four point bending

beam versus experimental fatigue damage curves (minimum, average and maxi-

mum) under applied strain ε = 115µm/m.
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of the stiffness of the sample.
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Figure 5.10: Effect of discretization level on the numerical fatigue curves of the

non-reinforced four point bending beam under applied strain ε = 150µm/m.

In contrast to the non-local finite element modelling, the failure pattern of the

local discrete element model seems more realistic, suggesting the effect of a clear

middle crack, observed during the calculation, as shown in Figure 5.11. While

for non-local finite element model, as the number of cycles increases, two large

zones where damage D = 1 appear instead of a crack (see Figure 2.20).

5.3 Coupled DEM model for damage and fa-

tigue crack growth

In view of the crack initiation and propagation, the failure modes of geo-materials

subjected to fatigue loading can be described by four stages, including crack

nucleation (Stage I), short crack growth (Stage II), large crack growth (Stage III),

and ultimate failure (Stage IV)(see Figure 5.12). In the beginning of the lifetime,

the material presents only inner defects (micro cracks, voids, etc.). Due to the

effect of the cyclic loading, these small defects tend to grow in size and quantity

which damage the material, reducing its stiffness. When the inner defects become

short cracks, the failure process turns into its second stage of short crack growth.

With a relatively high number of cycles, these growing short cracks become large
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(a)

Z0 Z0

Z0 Z0

Nc = 130000 cycles
h/d=20 (h=100mm; d=5mm)

(b)
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Figure 5.11: Damage distribution of a non-reinforced four point bending beam

under applied strain ε = 150µm/m for particle diameter (a) d = 5mm, (b)

d = 2.5mm and (c) d = 2mm.

cracks, which characterize the fracture behavior.

In Section 5.2.2.2, the crack nucleation stage and most of the short crack growth

stage were shown to be well described by the continuum damage model. How-

ever, as the crack length increases, the decrease in the global stiffness becomes

dominated by crack propagation. At this point, the continuum damage model

failed, resulting in fast propagation due to the stress singularity at the crack tip.

Hence, it is necessary to adopt a fatigue crack growth model (e.g. Paris’ law) to

better estimate the fracture behavior during the end of stage II, as well as stages

III and IV.
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Figure 5.12: The four stages of the fatigue failure process.

5.3.1 Model implementation

Damage models (see Section 2.4.2) describe the effect of distributed (micro) de-

fects over a certain region. The rupture is caused by the coalescence of these

defects, giving rise to cracks which subsequently propagate. This phenomenon is

not well described by standard fatigue models, which suffer from discretization

effects due to the stress gradients.

In the present work, a damage approach (see Section 2.4.2) is adopted to describe

the behavior before contact rupture. The rupture of a contact resulting in crack

propagation is limited by a crack growth criterion (see Section 2.4.3).

5.3.1.1 Local identification of the position of crack tips

The propagation of a crack can be analyzed as the creation or extension of the

boundaries of a given geometry. In fracture mechanics, this transformation is

usually controlled by the energy release during the process. Despite the differ-

ent existing criteria of crack propagation, roughly a crack may be created or

propagated where the stress (and/or strain) are maximized (see Figure 5.13).

In an elastic system, a simple verification of the local maximum value of the

principal stress may be enough to identify potential localization of crack tips.
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(a)

Local maximum of 
the stress/strain

a σ0

σy
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(b)

Local maximum of 
the stress/strain

Figure 5.13: Localization of the local maxima of the stress/strain for (a) a cracked

plate and (b) a simply supported beam.

However, during fatigue, the value of the stress tends to decrease due to the

degradation of elastic properties of the material where the stress is concentrated.

A better indicator, in this case, is shown to be the damage increment per cy-

cle dD/dNc, which depends on the stress value but also on damage itself, and

can be calculated numerically (see Section 2.4.2.2). Figure 5.14 shows an exam-

ple of damage increment per cycle obtained from DEM simulation for a center

cracked plate subjected to sinusoidal fatigue loading. The maximum dD/dNc in

Figure 5.14 is located at the crack tip.

In the present model, the possibility of crack propagation will be only considered

on contacts which locally maximizes the damage increment per cycle, as shown

in Figure 5.14. For these two contacts at the crack tip, when the damage reaches

D = 1, indicating the total degradation of the stiffness, the energy release rate is

calculated as shown in Section 5.3.1.2.

5.3.1.2 Evaluation of the range of the energy release rate ∆G

A damage value D = 1 indicates the possibility of crack propagation, if it happens

at a crack tip (as described in Section 5.3.1.1, or indicates an overestimated dam-

age value. This is usually the case at the neighborhood of crack tips, for example,

where the damage grows until unrealistic values due to the stress concentration.
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Damage
 Increment 
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Figure 5.14: Damage increment per cycle of a center cracked plate.

In crack growth models, the energy release is considered to be localized exclusively

at the crack tip. An over damaged zone near a crack tip, leads automatically to

inconsistent evaluations of the energy release rates at the crack tip. In order to

avoid these disturb due to un-physical damage values, if damage reaches D = 1

in a contact not identified as a crack tip, the value of D is automatically set

to zero until this point eventually becomes a crack tip. Mathematically, this

point is treated as an intact point, considering that it recovers its initial elastic

properties. Physically, it indicates a scale decrease on the rupture process due to

the proximity with a crack (see Section 2.3.4.3). As suggested in Figure 5.15a,

damage is defined as the effect of certain number of defects inside a certain zone;

however, in a smaller scale, there is only intact material. In Figure 5.15b, the

damage value reaches D = 1 in contact C1, a crack tip. The energy release rate

is evaluated and a potential crack extension is identified.

The principal components of the contact forces N and T , and contact displace-

ments δn and δt, can be written as Equations 5.9 and 5.10. For a certain contact,

when it is the first contact (defined clockwise) in a pair of contacts (see Fig-

ure 5.16a), the principal components can be obtained by Equation 5.9, and when

it is the second contact in a pair (see Figure 5.16b), Equation 5.10 should be used

to calculate the principal components.
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Figure 5.15: (a) Scale effect on the damage value and (b) contact points in the

potential crack path.

{

FI = N sin (π/3 + ψ) − T cos (π/3 + ψ)

δI = δn sin (π/3 + ψ) − δt cos (π/3 + ψ) ,
(5.9)

{

FI = N sin (π/3 − ψ) + T cos (π/3 − ψ)

δI = δn sin (π/3 − ψ) + δt cos (π/3 − ψ) ,
(5.10)

where ψ is defined as the angle between (n; t) and the coordinate system asso-

ciated to the principal stresses (Figure 2.24c). During a fatigue test, FI and δI
oscillates between a minimum and a maximum level, which depends on the shape

of the cyclic loading. For a sinusoidal loading centered at zero stress, the positive

values of FI and δI naturally vary from 0 to maxFI and max δI , respectively. In

this case, the damage of a contact induces a maximum energy release rate [10]

Gmax. The minimal energy release rate Gmin is equal to zero; consequently, the

variation of the energy release rate is simply defined as

∆G =

∑NcD

1 gi
d2 cosψ/2

, (5.11)
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Figure 5.16: Principal components of force and displacement for a certain contact

being (a) the first contact (defined clockwise) in a pair and (b) the second contact

in a pair.

where NcD is the number of cycles to reach D = 1 (total release of the

contact energy), gi is the surface of the triangle formed by the points (0, 0),

(max δI(i−1),maxFI(i−1)) and (max δI(i),maxFI(i)) as shown in Figures 5.17.
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Figure 5.17: Evaluation of the energy release at the crack tip (contact C1) during

a fatigue test.
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The second contact C2 is not identified as a crack tip. The degradation of the

elastic properties of the contact C1 induces an increase of the contact force in

C2, in spite of the own damage of this contact as shown in Figure 5.15. After

contact C1 is totally released, in the case of a crack propagation, contact C2

becomes the new crack tip. The value of the damage of C2 is set back to zero

D = 0 and the value of the number of cycles NcD starts to be incremented. Once

D = 1 for contact C2, the surface of the full triangle can then be computed,

which is substituted into Equation 5.11 to estimate the range of energy release

rate. Following the same principle, the range of the energy release rate can be

obtained systematically at the crack tip during crack propagation (discussed in

Section 5.3.1.3).
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Figure 5.18: Evaluation of the energy release at the second contact close to the

crack tip during a fatigue test.

Based on the relation between the energy release rate and the stress intensity

factor in plane stress [10], the stress intensity range is simply defined as ∆K =

E
√

∆G.

5.3.1.3 Crack initiation and propagation

The evolution of the damage variable D characterizes the weakening of a contact

before rupture. The rupture, associated with the propagation of a crack is defined

by the value of da/dNc (Equation 2.52):
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da

dNc

= c∆Km. (5.12)

A contact which presents D = 1, is definitely broken (and ceases to exist) only if

da

dNc

Nc ≥
d cosψ

2
, (5.13)

which represents a crack growth da equals to d cosψ/2 for one contact break.

Otherwise, D is set to 0, and the fatigue loading continues, until the number of

cycles Nc increases sufficiently to fulfill the rupture condition. This rupture cri-

terion prevent deviations from the crack growth criterion induced by the damage

model (Section 2.4.2) in conditions of a stress singularity at the crack tip.

5.3.2 Numerical modeling results for a center cracked

plate

5.3.2.1 Geometry, loading and material properties

A center cracked plate with dimensions w = 80mm and L = 120mm (as in-

dicated in Figure 5.19) is tested under sinusoidal fatigue loading with an am-

plitude σ0 = 1.25MPa and frequency f = 25Hz. The material presents

Young’s modulus E0 = 30GPa and Poisson ratio ν = 1/3. A viscous damping

cn = ct = 0.0295Ns/m and a time step ∆t = 5×10−7 s are adopted in the simula-

tions. The damage model parameters are α = −2.25, β = 4.0 and γ = 5.0× 1016;

the fatigue crack growth model parameters are c = 3.0×10−10m/cycle[(Pa
√
m)m]

and m = 1.03. Negligible effects of the frequency indicate very low dynamic ef-

fects (quasi-static regime) on the presented results.

5.3.2.2 Evaluation of the stress intensity range ∆K

In Figure 5.20, the numerical evaluation of the stress intensity range ∆K is

compared to the theoretical result for different particle diameters d. Deviations

are observed only for very large cracks (2a > 50mm) and tend to decrease for

smaller values of d, which indicates a convergence of the data.
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Figure 5.19: Center cracked plate subjected to imposed sinusoidal stress.
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Figure 5.20: Comparison of the range of stress intensity factor ∆K calculated

using numerical and theoretical methods for different crack lengths a (a0 = 5mm)

and particle diameters d.
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5.3.2.3 Stiffness degradation

The amplitude of the displacements at the edges of the sample tends to increase

during a fatigue test with constant amplitude of the imposed stress. This behavior

is due to the damage of the material and the propagation of the crack which

decrease the stiffness of the sample. The stiffness degradation can be quantified by

the ratio between the initial amplitude of the displacements and its instantaneous

value at a time during the test (which is a function of the number of cycle Nc).

In Figure 5.21 the degradation of the fatigue stiffness obtained for plates with

different initial crack sizes a0 is compared to theoretical predictions. For the un-

cracked plate, the numerical solution accurately follows the theoretical damage

prediction. When the plate present a long crack, e.g. a0 = 10mm, the numerical

results behave according to prediction of Paris’ law. However, a smaller crack

(a0 = 2mm) deviates from Paris’ law because of the additional contribution of

the material damage on the stiffness degradation.
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Figure 5.21: Stiffness degradation as a function of number of cycles Nc for

different initial crack sizes.

5.3.2.4 Damage field

Figure 5.22 illustrates the damage distribution of a pre-cracked plate with an

initial crack length a0 = 5mm after 166 fatigue loading cycles. The red values

correspond to D = 1, and indicates the propagation of the crack. The deep blue
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correspond to very low values of damage, which happens near the initial crack

surface, where the stresses (and strains) are low during the whole test. Far from

the crack, the damage value tends to be homogeneous, excepting two points on

the top of the sample, due to boundary effects. The damage tends naturally to be

higher near the crack path, induced by the increase of the stresses (and strains).

However, very close to crack tip, an undamaged zone (D = 0) is observed. The

value itself should not be considered as damage quantity, but it indicates where

the damage model fails to describe the material behavior, leading to unrealistic

fast rupture. It can be associated to a fracture process zone (FPZ) [78,79], acting

as a bridging zone between cracked region and un-cracked region.

Nc=166 Cycles

Initial crack

High damage 
zone

Fracture Process 
Zone

Propagated 
Crack tip

Low damage 
zone

Homogeneous 
damage

Figure 5.22: Damage distribution and crack propagation of a pre-cracked plate

with initial crack length a0 = 5mm after 166 fatigue loading cycles.

The increase of the number of cycles, causes the evolution of the high damage

zone due to the extension of the fatigue crack, as shown in Figure 5.23. The size

of the fracture process zone seems to depend on the crack size.

The reduction of the global stiffness of the structure (Figure 5.21) is indeed con-

trolled by the propagation of the crack associated to the damage of the un-cracked

zone as shown in Figures 5.22 and 5.23.
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Figure 5.23: Damage distribution and crack propagation of a pre-cracked plate

with initial crack length a0 = 5mm after (a) 179, (b) 187 and (c) 215 fatigue

loading cycles.

5.4 Conclusions of the chapter

Continuum damage model was implemented in the discrete element code and

compared to the theoretical prediction showing good agreement under homoge-

neous stress conditions. A comparison of non-local and local approaches applied

in four point bending test indicates the limits of each case. Non-local approaches

may produce reasonable sample behavior, based on unrealistic material behavior.

On the other hand, a pure local approach presents reasonable rupture patterns,

but it is affected by mesh effects.
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In order to reduce this limitation, a simple numerical scheme coupling damage

and fracture mechanics in a discrete element environment was proposed. The

association of these different mechanical formulations allows the reproduction of

experimental evidences: before material rupture by damage models; during crack

propagation by crack growth models. In parallel, important drawbacks of each

approach are avoided, such as discretization effects, as shown by the convergent

behavior of the results; and the nonphysical results of crack growth models for

very short or simply no cracks.

The following paper summarizes the main results of this chapter:

X. Gao, G. Koval, and C. Chazallon. A discrete element model for damage and

fracture of geomaterials under fatigue loading. Accepted by 8th International

Conference on Micromechanics of Granular Media [134].
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6.1 Introduction

Fiber glass grids have been used as reinforcement materials in different pavement

structures subjected to fatigue cracking since the late 1960s [57]. They are gener-

ally used for the rehabilitation of cracked pavements, such as semi-rigid, asphalt,

and flexible pavements. Nowadays, they are also applied in new pavements as

a result of the impressive pavement performance observed in the reinforced old

pavements. The reinforcement can delay fatigue crack propagation in newly built

pavements. For the reinforced old pavements, fiber glass grids are normally ap-

plied between the old pavement and new asphalt concrete overlay, which can

prevent the crack propagation from the old pavement and improve the overall
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fatigue resistance [57, 64, 65]. However, the mechanism for the improved per-

formance of pavements with fiber glass reinforcements is not well understood.

Hence, it is necessary to quantify the benefits of fiber glass reinforcement, for the

purpose of improving the structural design of pavements.

In this Chapter, the effect of fiber grid reinforcement on crack initiation and

propagation of pavements is studied. The three dimensional (3D) fiber glass grid

reinforced structures are simplified as two dimensional (2D) models. The crack

positions in different asphalt concrete layers are considered, which represent either

a new pavement or a reinforced old pavement. The effect of fiber quantity on the

nominal strength of the reinforced material is then analyzed based on the failure

model proposed in this study.

6.2 Effect of fiber glass grid reinforcement on

crack initiation

In this section, the failure model presented in Chapter 3 is used to study the effect

of fiber grid reinforcement on crack initiation and propagation in asphalt concrete.

In a real reinforced structure, the fiber glass grid is implemented between the

asphalt concrete layers, as shown in Figure 6.1a. In this study, an equivalent

2D model is adopted, in which the grid is treated as a continuous wire (see

Figure 6.1b).

(a) (b)

Fiber glass grid

Figure 6.1: Schematic diagrams showing (a) the fiber reinforced structure and

(b) its equivalent 2D model.
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In a 2D model, the propagation of the crack across the fiber grid is not trivial,

hence, two cases of problems are considered. The first are two new asphalt layers,

shown in Figure 6.2a, which presents a crack that initiates from the bottom of

the second asphalt concrete layer. The second is the reinforcement of an old

pavement (second layer) by a new layer, shown in Figure 6.2b. In this case, a

crack from the old layer crosses the fiber grid and affects the new layer.

(a)

Asphalt concrete layer

Asphalt 
concrete layer (b)

Asphalt 
concrete layer

Asphalt concrete layer 
(Cracked layer)

Figure 6.2: Crack initiates from the bottom of (a) the second layer and (b) the

first layer.

In order to quantify the effect of fiber grid on the crack initiations from the

bottom of the two asphalt concrete layers, case 1 and case 2 are further simplified

as the reinforced plates subjected to uniform tensile loading (see Figure 6.3).

Fiber Grid

Asphalt 
Concrete

Asphalt 
Concrete

Case 1 Case 2

Fiber Grid

Crack positions

Figure 6.3: Crack initiates from the lower boundary of second asphalt concrete

layer (case 1) and the bottom of the first asphalt concrete layer (case 2).
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6.2.1 Non-reinforced plate

For the non-reinforce plate, the theoretical energy release rate expression is avail-

able in [36]:

G =
[A(α)σ]2πa

E
. (6.1)

The derivative of energy release rate with respect to the crack length a, as already

discussed in Chapter 3, can be written as follows:

G′ =
[H(α)σ]2π

E
. (6.2)

When a → 0 for an edge crack in a large plate, the crack to width ratio α → 0

too, hence H(α) → 1.12 and the rupture is dominated only by the derivative of

energy release rate G′. The expression of G′ can be simplified as G′ = (Hσ)2π/E,

with H = 1.12 for an edge cracked non-reinforced plate. For a middle crack with

same crack length a in a large plate, one can identify H = 0.707, hence, it is easier

to initiate the same crack length a at the boundary than inside the material.

6.2.2 Reinforced plates

For the fiber grid reinforced plate, the analytic solution for the energy release

rate is not available in the literature. In this Section, the plane stress models

are calculated with finite element method. The values of energy release rate are

obtained by the crack closure method, a local method based on the release of a

small segment at the crack tip [10], which has been introduced in Appendix B.

Several segments are released to obtain an evolution curve of energy release rate

with respect to crack length a. The derivative of energy release rate G′ is the slope

of the energy release rate curve and H then can be computed by H =
√

G′E/π/σ,

as well as the nominal strength for the crack initiation at different positions (see

Figure 6.3). The effect of the cross section of the fiber quantity Sf (m2/m) is

studied, and generalized by SfEf/Eac, where Ef and Eac are the Young’s modulus

of the fiber and the asphalt concrete, respectively.



6.2. Effect of fiber glass grid reinforcement on crack initiation 141

6.2.3 Numerical models

In the finite element calculation, only one half of the structure is modeled, due

to the bilateral symmetry of the plate, as shown in Figure 6.4. The height of the

plate is h = 100mm, the width of the plate is w = 400mm, and the unit thickness

t = 1m is adopted. The mesh size is chosen as 0.5mm. The nodes at the right

boundary are fixed in horizontal direction and can be released to calculate energy

release rate. The applied strain is ε = 1µm/m. The mechanical properties

of the asphalt concrete material are: Young’s modulus Eac = 4.0GPa [135],

Poisson ratio ν = 0.35, tensile strength σt = 2.7MPa, fracture toughness Kc =

0.12MPa
√
m. The Poisson ratio of the fiber glass grid element is the same as

the asphalt concrete, while Young’s modulus Ef is chosen as a variable to model

the different fiber quantities. The Young’s modulus provided by Arsenie et al.

is Ef = 44GPa [65]. The cross section of the fiber glass element is fixed as

Sf = 0.15 × 10−3m2/m, so that the different ratios of SfEf/Eac represent the

different fiber quantities.

Figure 6.4 presents the finite element model of the first case, a new pavement,

where a crack initiates from the lower boundary of the second asphalt concrete

layer and propagates towards the fiber glass.

The second case represents the rehabilitation of cracked pavements; that crack

initiates from the lower boundary of the first asphalt concrete layer. This case

can be separated in two different configurations, namely case 2.1 and case 2.2,

according to the different conditions of the cracked layer. If there is only one

crack is presented in the second layer, an extreme condition may be consider the

fiber grid perfectly bonded to the asphalt layers, which can be represented by a

fixed support at the level of the fiber grid, as shown in Figure 6.5a (case 2.1).

In case 2.2, as shown in Figure 6.5b, the second layer is totally cracked, which

means, that the fiber grid tends to be under uniform strain ε and under a tension

force F = εEfAf .

6.2.4 Numerical results

6.2.4.1 Energy release rate G

For case 1, the energy release rate G versus the crack length a for crack initiation

from the lower boundary of the second asphalt concrete layer is plotted in Fig-
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Figure 6.4: Crack initiation from the lower boundary of the second asphalt

concrete layer (case 1).

ure 6.6. The energy release rate G increase linearly as the increase of the crack

length. The derivative of the energy release rate is the slope of the linear curve,

equals to G′ = 0.0139N/m2 in Figure 6.6. A further study on the effect of fiber

quantity SfEf/Eac on the derivative of energy release rate indicates that, for case

1, the derivative of energy release is almost invariant with respect to the fiber

quantity. It can be concluded that the effect of fiber glass on the crack initiation

from the lower boundary of the second asphalt concrete is insignificant.

Considering case 2, the energy release rate versus the crack length for crack

initiation from the lower boundary of the first asphalt concrete layer for various

fiber quantities are plotted in Figures 6.7 and 6.8. In both cases (2.1 and 2.2),

an improvement of the fiber quantity induces a decrease of the derivative of the

energy release rate G′, which corresponds to a lower correction factor H and a

higher nominal strength (see Equation 3.11).
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Figure 6.5: Crack initiation from the lower boundary of the first concrete layer

for (a) fixed displacement (case 2.1) and (b) imposed force (case 2.2).
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Figure 6.7: G versus a for crack initiation from the lower boundary of the first

asphalt concrete layer for various fiber quantities when the displacement at the

end of fiber grid element is fixed (case 2.1).
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Figure 6.8: G versus a for crack initiation from the lower boundary of the first

asphalt concrete layer for various fiber quantities when a concentrated force is

imposed at the end of fiber (case 2.2).
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6.2.4.2 Interpretation

The geometrical correction factor for the derivative of energy release rate H is

plotted with respect to the fiber quantities SfEf/Eac for different cases in Fig-

ure 6.9. According to the simulations, the crack initiation on the lower boundary

of the second layer (case 1), the value of H ≈ 1.12 seems independent on the

fiber quantity, which suggests a low effect of the fiber reinforcement against crack

initiation. On the second case, the propagation of a longer crack beyond the

fiber grid is studied. Two different contributions of the fiber against the crack

opening are presented: as an imposed force and as a fixed displacement; the first

underestimate the effect of the fiber and the second overestimate it. The real

behavior is inside these two bounds but cannot be obtained without a tridimen-

sional representation of the crack and the grid. In any case, the increase of the

reinforcement quantity SfEf/Eac leads to a decrease of the value of H, and a con-

sequent improvement on the local strength against crack initiation. The value of

H is limited at 0.64 for very high quantities of fiber. However, H = 1/
√

2 ≈ 0.71

corresponds to the value obtained for a crack initiated at any point far from the

boundaries; beyond this value, the cracks may initiate (relatively) far from the

reinforcement (independently on the fiber quantity).
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Figure 6.9: Geometrical correction factor H with respect to the fiber quantities

SfEf/Eac for different cases.
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6.3 Conclusions of the chapter

A bi-dimensional analysis was adopted to quantify the contribution of fiber grid

reinforcement near a boundary. Low effect of the fibers was observed against

crack initiation while the cracks are far from the reinforcement under imposed

strain. However, the protective effect of the reinforcements is clear against cracks

crossing the fiber glass grid. The effectiveness of the grid reinforcement (described

by the evolution of the parameter H) seems to depend quasi-logarithmically on

the fiber cross section Sf , its Young’s modulus Ef and the Young’s modulus of the

asphalt concrete Eac (through the relation SfEf/Eac). This trend stabilizes for

high quantities of fiber; however the fact that cracks may appear elsewhere (for

H < 0.71), and not at the boundaries of the asphalt sample, imposes a practical

limit for the fiber quantity. Considering these results, the usual quantities of

fiber grid reinforcement 0 < SfEf/Eac < 0.003 [64] are technically inside the

effectiveness range identified in these tests.

The following paper summarizes the main results of this chapter:

X. Gao, G. Koval, and C. Chazallon. Effect of fiber grid reinforcement on crack

initiation and propagation in asphalt concrete. In 8th RILEM International Con-

ference on Mechanisms of Cracking and Debonding in Pavements, pages 55-60.

Springer, 2016 [136].
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7.1 Conclusions

Building materials such as concrete, masonry, etc. are usually assemblies of

different components of different size (aggregates, asphalt, cement hydrates, sand,

clay, etc.). The mechanical behavior of these composite materials is naturally

dependent on the size and shape of the structures where they are employed.

These effects are generally referred as size effects. These size effects are not only

important for the transposition of the results of laboratory tests (small scale) to

real structures (large scale), but may appear on the interaction of the material

with other elements of the structure such as localized reinforcements (steel bars,

fiber grids, etc.), supports, connections, etc. The prediction of the behavior

of a structure considering the type of loading (monotonic, cyclic, dynamic, etc.)

during its life time depends necessarily on a precise understanding of the material

behavior in different scales.

The degradation of the characteristics of a structural element, such as stiffness

and strength, depends strongly on the rupture process. The propagation of intrin-

sic micro-defects of the material leading to the coalescence of bigger cracks, in the

case of quasi-brittle materials, is often associated to different theoretical perspec-

tives which are not always automatically compatible (i.e. properties like strength

and toughness; rupture mechanisms like damage and fracture). This conceptual

difficulty is also due to the scale difference associated to each phenomenon.
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A theoretical solution adopted by many authors in order to bridge multiple ap-

proaches is to consider that the rupture of the material is related to the be-

havior of a limited amount of matter by means of a characteristic dimension.

This non-local principle is physically consistent with the existence of a limited

representative element volume necessary to characterize a composite material.

However, this characteristic dimension can reach some centimeters in the case of

building materials, which limits considerably the analysis of laboratory tests, or

the behavior of structural components such as some type of reinforcements, often

presenting centimetric dimensions.

The drawbacks associated to non-local theoretical approaches, outlined in Chap-

ter 2, such as non-physical damage distributions under stress gradients or the

complexity to handle crack initiation (specially at the proximity of different ma-

terials), motivated the study of local solutions to describe the failure process.

The hardest conceptual problem of most of local rupture approaches is the sensi-

tivity of the results with respect to the discretization. The average of quantities,

such as stress and strain, over the scale of a finite or discrete element affects

directly the results, especially under strong gradients. The solution was to base

the rupture criteria on the energy release rate, a punctual quantity, in order to

obtain convergent results for finer discretization. Two cases were analyzed during

this work: monotonic and fatigue loading.

In Chapter 3, size (and boundary) effects were examined in quasi-brittle rup-

ture of pre-cracked samples. The basic ingredients of the proposed local model

are the contribution of the material toughness and tensile strength on the fail-

ure load. The relation between toughness and the energy release rate G at the

rupture is similar to typical linear elastic fracture mechanics criterion. However,

an important feature of the model is to identify the effects of the nominal stress

(a non-local quantity) by means of the evolution of the energy release rate G

(in a local sense). This leads to an energetic definition of the tensile strength,

which allows a relatively simple analysis of structures with any size of crack, or

no cracks at all. A comparison of the proposed local formulation with boundary

and size effect models (non-local approaches by definition) put the capabilities of

the model into context, which are confirmed by the successful confrontation with

experimental results.

Hence, the presented energetic relation was generalized to compose a simple local

criterion of rupture in Chapter 4. A finer description of the transition between
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strength and fracture mechanisms (by means of the additional parameter r) was

shown to be necessary to locally relate the material behavior to structural size

effects. The initiation and propagation of cracks was analyzed in structures con-

taining different types of defects such as cracks, v-notches and holes, where the

obtained failure load was consistent with a series of experimental results. The

scope of LEFM was somewhat extended, considering that neither plasticity nor

damage were necessarily associated with the model to describe crack initiation

in monotonic case. However, an apparent non-physical increase on the strength

of the specimens was observed during this rupture phase, explained by the fact

that for very short cracks, different size effects are relevant under localized stress

gradients.

Fatigue loading is characterized by very low intensity efforts that are repeated

for a large number of cycles. Neither strength, nor toughness is in fact mobi-

lized. However, the material behavior presents different aspects depending on

the stress/strain distribution. Under homogenous stress/strain, a global reduc-

tion of the material stiffness can be experimentally observed due to the effect of

distributed micro cracks, which tends increase in number and propagate during

cyclic efforts (damage). When these cracks become long enough or due to ge-

ometrical properties of a structural element, singular stress/strain distributions

may be induced. In these conditions, concentrated effects are observed such as

crack initiation or growth of pre-existing cracks (fatigue crack growth).

Three key elements were then considered in the proposed local fatigue model of

Chapter 5: 1) before local rupture, the material is described by a damage be-

havior; 2) a localized rupture, characterized by crack initiation (or propagation),

may occur only where stress (or strain) are locally maximized; 3) the energy

release rate at a crack tip must obey a fatigue crack growth behavior. The to-

tal damage of a given point is conceptually equivalent to a contact rupture. It

allows the evaluation of the energy release rate range, specially consistent un-

der singular concentrations of stress, a fundamental parameter to any fatigue

crack growth model. Considering all these conditions, a simple numerical scheme

coupling Bodin’s damage model to Paris’ law in a discrete element environment

could then be implemented. Simulations of cracked plates and four point bend-

ing beams compared to numerical and experimental results have shown the ca-

pabilities of the formulation in reproducing the structure response associated to

consistent material behavior. The notion of fracture process zone, an interme-

diate space between cracked and un-cracked portions, is well distinguished and
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automatically generated during the simulation process. Furthermore, important

individual drawbacks of each approach could be avoided, such as discretization

effects, as shown by the convergence of the results; and the non-physical behavior

of crack growth models for very short cracks (or simply no cracks).

The model presented in Chapter 4 is shown to be well adapted to analyze the

monotonic rupture behavior near complex boundary conditions. Finally, a sim-

ple estimation of the protective effect of fiber grid reinforcements is discussed in

Chapter 6. The values of the energy release rate and its derivative were calcu-

lated by finite element bi-dimensional simulations. Low effect of the fibers was

observed against crack initiation when the cracks are far from the reinforcement

under imposed strain. However, the protective effect of the reinforcements is

clear against cracks crossing the fiber glass grid. The effectiveness of the grid

reinforcement depends on the fiber cross section Sf , its Young’s modulus Ef and

the Young’s modulus of the asphalt concrete Eac (through the relation SfEf/Eac).

The numerical results suggest that the quantity of fiber grid should be limited

in practice by the strength of the concrete, what imposes an effective range of

0 < SfEf/Eac < 0.003.

7.2 Perspectives

From a theoretical point of view, the proposed models present many possible

extensions. The monotonic rupture model can be simply adapted to mixed mode

if the direction of the potential crack initiation or extension is defined. One

strategy is to combine the proposed model with other fracture criteria, such as

maximum tensile stress criterion, minimum strain energy density criterion etc.,

which can predict the propagation angle. Another possibility is to define the

direction of propagation as the one which minimizes the failure load.

The local model for monotonic loading was defined based on a formulation for

size effects of the second type, which is associated to developed cracks. However,

the trace of size effects of the first type could be visualized for v-notches and holes

by means of an unnatural increase of the nominal strength, observed during crack

initiation. Once the transition between both types of size effects was perfectly

identified, a local expression for type 1 size effect law can be proposed, improving

the characterization of crack initiation under stress gradients.

A tridimensional version of the fatigue model can be obtained by, at least, two
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ways. The first is to continue with a discrete element approach; nevertheless, a

random particle distribution may decrease the necessary computation time. The

second is to adapt the formulation to a finite element code, considering that the

theory is founded on continuum mechanics.

From a practical point of view, many engineering applications can be envisaged.

The local model for monotonic loading can replace complex structural analysis,

if an expression of stress intensity factor is available. Size effects can be easily

identified in standard laboratory tests, which allow a precise identification of

material strength parameters even for small samples.

Fatigue tests are usually performed under heterogeneous stress conditions, which

often demand a numerical analysis in order to identify the parameters of the

material. A local model leads to a more reliable extrapolation to the structure

behavior, undisturbed by scale limitations.





Appendix A

Comparison of different A(α)

formulas for beams

A.1 Empirical Formulas in the literature

The empirical formulas are required to calculate the stress intensity factor analyt-

ically for the cracked three point bending beam specimen. Various formulas have

been proposed, which have different accuracy for different beam span to height

ratios S/h.

For pure bending condition (S/h = ∞), Tada at al. [36] derived the following

expression for any α with accuracy better than 0.5%:

A(α) =

√

2

πα
tan

πα

2

0.923 + 0.199
(

1 − sin πα
2

)4

cos πα
2

. (A.1)

Brown and Srawley [137] used the least square fitting method to derive an poly-

nomial expression with 0.2% accuracy for α ≤ 0.6, which reads:

A(α) = 1.122 − 1.40α + 7.33α2 − 13.08α3 + 14.0α4. (A.2)

For the beam cases with span to height ratio S/h = 2.5, the following expression

was proposed by Gettu et al. [138], which was obtained by fitting the results of

linear elastic finite element analysis:

A(α) =
6.647(1 − 2.5α + 4.49α2 − 3.98α3 + 1.33α4)

3.75
√
π(1 − α)3/2

, (A.3)

For span to height ratio equals to 4, Srawley [139] derived the empirical equation

with 0.5% accuracy for any crack to height ratio α as follows:
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A(α) =
1√
π

1.99 − α(1 − α)(2.15 − 3.93α + 2.7α2)

(1 + 2α)(1 − α)3/2
, (A.4)

Brown and Srawley [137] utilized the least squares fitting method and proposed

the expression for span to height ratio S/h = 8. The equation can provide 0.2%

for α < 0.6, which reads:

A(α) = 1.106 − 1.552α + 7.71α2 − 13.53α3 + 14.23α4. (A.5)

In order to find a general expression for an arbitrary ratio of beam span S to span

h, an approximation with high accuracy has been derived by Pastor, Guinea and

their co-workers [101–103]:

A(α) =
PSh√

π(1 + 2α)(1 − α)3/2
, (A.6)

where PSh depends on the height to span ratio h/S and crack to height ratio α,

which reads:

PSh = P∞ +
4h

S
(P4 − P∞), (A.7)

with

P4 = 1.9 − α[−0.089 + 0.603(1 − α) − 0.441(1 − α)2 + 1.223(1 − α)3], (A.8)

P∞ = 1.989 − α(1 − α)[0.448 − 0.458(1 − α) + 1.226(1 − α)2]. (A.9)

Based on Pastor’s work, Guinea, Pastor and their co-workers [104] rewrote later

a simple and general approximate closed-form expression for the geometrical cor-

rection factor. This result is claimed to be valid for any crack length and span to

height ratios larger than 2.5:

A(α) =
P ′

Sh√
π(1 + 3α)(1 − α)3/2

, (A.10)
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where P ′

Sh depends on the height to span ratio h/S and crack to height ratio α,

which reads:

P ′

Sh = P ′

∞
+

4h

S
(P ′

4 − P ′

∞
), (A.11)

with

P ′

4 = 1.9 + 0.41α + 0.51α2 − 0.17α3, (A.12)

P ′

∞
= 1.99 + 0.83α− 0.31α2 + 0.14α3. (A.13)

Although the previous two set of expressions are slightly different, they can pro-

vide the same correction factors for span to height ratios larger than 2.5. Hence,

only Guinea’ expressions are used for the comparison.

A.2 Comparison of different formulas

For pure bending condition, the formulas given by Tada at al. (Equation A.1),

Brown and Srawley (Equation A.2) are compared with the one derived by Guinea

at al. (Equation A.10). The values of (1−α)3/2A(α) are calculated based on the

different formulas. These values are presented in Figure A.1, which confirms that

Brown and Srawley’s expression is only valid for α < 0.6.

The percentages of difference with respect to Guinea’s equation are plotted in Fig-

ure A.2. The difference is always below 2.5% between Tada at al.’s equation and

Guinea’s equation, while in the valid range of Brown and Srawley’s expression,

the difference with Guinea’s equation is smaller than 1.0%.

The same comparison are performed for beam span to height ratio equals to 2.5,

4 and 8. Figure A.3 illustrates the values of (1 − α)3/2A(α) calculated based on

Equation A.3 and Equation A.10.

The differences of the finite element method results [104] and Equation A.3 with

respect to the results of Equation A.10 are presented in Figure A.4, shows that

Guinea’s equation provides a better solution by comparing with the FEM results.
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Figure A.1: (1 − α)3/2A(α) calculated by different formulas for pure bending

specimen.
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Figure A.2: Percentage of difference between the different formulas for pure

bending specimen.

Figure A.5 shows the (1 − α)3/2A(α) values calculated by Equation A.4 and

Equation A.12. A slight difference is observed in the range of α < 0.1. It can

be concluded that Equation A.4 is better than Equation A.12, because it can

provide the better values ((1 − α)3/2A(α) ≈ 1.12) when α → 0.
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Figure A.3: (1 − α)3/2A(α) calculated by different formulas for beams with

S/h = 2.5.
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Figure A.4: Percentage of difference between the different formulas and FEM

results for beam with S/h = 2.5.

For beam span to height equals to 8, Brown and Srawley’s expression (Equa-

tion A.5) can provide the values of (1 − α)3/2A(α) as good as Guinea et al.’s

equation when α is in its valid range α < 0.6. The difference is always below

1%. While for α > 0.6, Guinea et al.’s equation can still provide the acceptable
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Figure A.5: (1 − α)3/2A(α) calculated by different formulas for beams with

S/h = 4.

correction factors.
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Figure A.6: (1 − α)3/2A(α) calculated by different formulas for beams with

S/h = 8.

The differences of the finite element method results [104] and Equation A.5 with

respect to the results of Equation A.10 are presented in Figure A.7, shows that

in their valid ranges, both equations provide very accurate results with respect
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to the FEM calculations.
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Figure A.7: Percentage of difference between the different formulas and FEM

results for beam with S/h = 8.

A.3 Summary

In this appendix, a detained comparison of the different formulas of geometrical

correction factor A(α) for stress intensity factor of cracked three point bending

beam is performed. Guinea et al.’s formula is valid for any crack length and span

to height ratios larger than 2.5. For S/h = 4, Srawley’s equation is better than

Guinea et al.’s formula when the crack to height ratio is small.





Appendix B

Numerical evaluation of energy

release rate

When the geometries and/or boundary conditions are too complicated to compute

the stress intensity factor K or energy release rate G analytically, an alternative

way is to calculate them numerically. Finite element method is the most popular

numerical method to calculate K and G. Based on the stress or displacement

fields near the crack tip, the stress intensity factor can be obtained by stress

extrapolation or displacement extrapolation based on the theoretical expressions

in elasticity presented in Section 2.2.3. The stress or displacement extrapola-

tion methods are conceptually simple, however, the accuracy of these methods is

sensitive to the mesh size, therefore, an appropriate mesh size is required.

Another strategy is the use of the local information, including the nodal force

at the crack tip and the nodal displacement after releasing this node (shown

in Figure B.1), to calculate the energy release rate. This method is known as

modified crack closure method, which has been proved to be insensitive with the

mesh size. Following the nodal release algorithm [140], the energy release rate

GA is given by:

GA =
F 0
yA∆u1yA
2t da

, (B.1)

where F 0
yA is the nodal force at node A (at the crack tip) before releasing this

node, ∆u1yA is the opening displacement of node A after its release, da is the

propagation length of the crack (directly associated to the mesh size) and t is the

thickness of the structure (see Figure B.1).

A second value of the energy release rate GB is obtained after a second nodal

release:
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GB =
F 1
yB∆u2yB
2t da

, (B.2)

where F 1
yB is the nodal force at node B (following notch tip) before releasing this

node and ∆u2yB is the opening displacement of node B after its release. For a

sufficiently small da: G0 ≈ GA and G′ ≈ (GB −GA)/da. The value of derivative

of energy release rate G′ can also be obtained as the slope of the linear curve of

G with respect to crack length a, when the geometrical correction factor H(α)

(Equation 3.9) for G′ keeps almost constant.

X

Y

A

Before releasing node A After releasing node A

B

da

X

Y

A B

da
A’

FyA
0

∆uyA
0

Figure B.1: Numerical evaluation of G.



Appendix C

Algorithm of DEM calculation

Discrete element method (DEM) is a numerical model capable of describing the

mechanical behavior of assemblies of discs and spheres. It allows finite displace-

ments and rotations of discrete particles, detects new contacts automatically as

the calculation progresses, and solves the time evolution of this discrete system

using an explicit dynamic solution to Newton’s laws of motion. The fundamental

elements for calculation are the dimensions of the particles, their spatial positions

and properties.

Being a time-stepping formulation, as the simulation progresses, the model state is

advanced in time by a series of calculation cycles. In each single calculation cycle,

five operations are executed successively, including the timestep determination,

law of motion, advance time, contact detection and force-displacement law, as

shown in Figure C.1 [141].

Force-displacement 

law

Timestep

determination 

Law of Motion

Advance Time

t=t+dt

Contact Detection 

Start of cycle

Figure C.1: Operations executed during each calculation cycle.

The detailed information about the operations are well described in the docu-

163



164 Appendix C. Algorithm of DEM calculation

mentation of Particle Flow Code 5.0 and summarized as follows [141]:

1. Timestep determination: The DEM calculation requires a valid, finite

timestep to ensure the numerical stability of the model. The critical timestep

for one contact is tcrit =
√

m/ktran or tcrit =
√

I/krot, where m is the mass, I

is the moment of inertia of the particle, ktran and krot are the translational and

rotational stiffnesses. The critical timesetp for the whole structure is decided by

the smallest tcrit among all the contacts.

2. Law of motion: The position and velocity of each body is updated according

to Newton’s laws of motion using the current timestep and the forces calculated

during the previous cycle.

3. Advance time: The model time is advanced by adding the current timestep

to the previous model time.

4. Contact detection: Contacts are dynamically created/deleted based on the

current particle positions.

5. Force-displacement law: The forces developing at each contact are updated

by the appropriate contact model using the current state of the particles.



Bibliography

[1] A.A. Griffith. The phenomena of rupture and flow in solids. Philosophical

transactions of the royal society of london. Series A, containing papers of a

mathematical or physical character, 221:163–198, 1920. (Cited on pages 9

and 15.)

[2] G.R. Irwin. Analysis of stresses and strains near the end of a crack traversing

a plate. J. of Applied Mechanics, 24:361–364, 1957. (Cited on pages 9, 19,

33 and 85.)

[3] G.P. Cherepanov. Crack propagation in continuous media. Journal of

Applied Mathematics and Mechanics, 31(3):503 – 512, 1967. (Cited on

page 9.)

[4] J.R. Rice. A path independent integral and the approximate analysis of

strain concentration by notches and cracks. Journal of applied mechanics,

35(2):379–386, 1968. (Cited on page 9.)

[5] S. Li, M.D. Thouless, A.M. Waas, J.A. Schroeder, and P.D. Zavattieri.

Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced

polymer–matrix composite. Composites Science and Technology, 65(3):537–

549, 2005. (Cited on page 9.)

[6] G.I. Barenblatt. The mathematical theory of equilibrium cracks in brittle

fracture. Advances in applied mechanics, 7:55–129, 1962. (Cited on page 9.)

[7] S.H. Song, G.H. Paulino, and W.G. Buttlar. Simulation of crack propa-

gation in asphalt concrete using an intrinsic cohesive zone model. Journal

of Engineering Mechanics, 132(11):1215–1223, 2006. (Cited on pages 9

and 84.)

[8] B.R. Lawn. Fracture of brittle solids. Cambridge solid state science series.

Cambridge University Press, Cambridge ; New York, 2nd ed edition, 1993.

(Cited on pages 10 and 11.)

[9] H.M. Westergaard. Bearing pressures and cracks. SPIE MILESTONE

SERIES MS, 137:18–22, 1997. (Cited on page 10.)

[10] C.T. Sun and Z.H. Jin. Fracture Mechanics. Academic Press. Academic

Press, 2012. (Cited on pages 10, 127, 129 and 140.)

165



166 Bibliography

[11] F. Erdogan and G.C. Sih. On the crack extension in plates under plane

loading and transverse shear. Journal of basic engineering, 85(4):519–525,

1963. (Cited on pages 17 and 48.)

[12] G.C. Sih. Strain-energy-density factor applied to mixed mode crack prob-

lems. International Journal of fracture, 10(3):305–321, 1974. (Cited on

page 18.)

[13] D. Leguillon. Strength or toughness? a criterion for crack onset at a notch.

European Journal of Mechanics-A/Solids, 21(1):61–72, 2002. (Cited on

pages 19, 30, 84 and 106.)

[14] P. Cornetti, N. Pugno, A. Carpinteri, and D. Taylor. Finite fracture me-

chanics: a coupled stress and energy failure criterion. Engineering Fracture

Mechanics, 73(14):2021–2033, 2006. (Cited on pages 19, 29, 30, 84, 104

and 106.)

[15] D. Taylor. The theory of critical distances: a new perspective in fracture

mechanics. Elsevier, 2007. (Cited on pages 19, 20, 21, 25, 28, 34, 53 and 85.)
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fragiles. PhD thesis, Université de Strasbourg, 2013. (Cited on pages 45,

46, 47, 48 and 115.)

[75] B.D. Le, G. Koval, and C. Chazallon. Discrete element approach in brittle

fracture mechanics. Engineering Computations, 30(2):263–276, 2013. (Cited

on pages 45, 85 and 115.)

[76] B.D. Le, G. Koval, and C. Chazallon. Discrete element model for crack prop-

agation in brittle materials. International Journal for Numerical and Ana-

lytical Methods in Geomechanics, 40(4):583–595, 2016. (Cited on pages 45

and 85.)

[77] C. Liu, D.D. Pollard, and B. Shi. Analytical solutions and numerical tests

of elastic and failure behaviors of close-packed lattice for brittle rocks and

crystals. Journal of Geophysical Research: Solid Earth, 118(1):71–82, 2013.

(Cited on page 45.)
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Xiaofeng GAO 

Modelling of nominal strength prediction for 
quasi-brittle materials. Application to discrete 
element modelling of damage and fracture of 

asphalt concrete under fatigue loading. 

 

 

Résumé 
L’estimation de la durée de vie et de la rupture de structures composées par des matériaux quasi-
fragiles nécessite le développement de nouveaux modèles théoriques et numériques. Dans ce 
travail, la modélisation de l’apparition des fissures et leur propagation en chargement monotone est 
d'abord étudiée. Un modèle d'effet de taille pour les structures fissurées et sa forme généralisée 
pour les structures présentant des défauts plus complexes qu’une fissure sont développés. Les 
prédictions du modèle de rupture sont comparées à des résultats expérimentaux de la littérature 
pour divers spécimens composés de différents matériaux et de différentes tailles. Des échantillons 
présentant des défauts initiaux en forme de V et en forme de trou illustrent les capacités de la 
formulation. Ensuite, l’endommagement et la fissuration induite par des chargements cycliques en 
fatigue sont discutés. Un modèle local en éléments discrets est développé, qui permet de coupler 
les deux mécanismes (endommagement et fissuration). Les prédictions numériques sont 
comparées aux résultats théoriques et expérimentaux. À la fin, les applications associées au 
comportement du béton bitumineux renforcé par des grilles en fibres de verres sont analysées en 
détail. 

Mots-clés: quasi-fragiles; résistance nominale; la durée de vie en fatigue; modélisation par 

éléments discrets 

 

Abstract 
The prediction of the fatigue life and the rupture of structures made of quasi-brittle materials requires 
the development of new theoretical and numerical models. In this work, the modelling of the crack 
initiation and propagation under monotonic loading is firstly investigated. A size effect model for 
cracked structures and its generalized form for structures with defects more complex than a crack 
are developed. The predictions of the proposed model are compared with experimental results from 
the literature for various specimens of different materials and sizes. Samples with initial V-shaped 
and hole-shaped defects exemplify the formulation's capabilities. Then, the damage and cracking 
induced by cyclic fatigue loads is discussed. A local model using discrete elements is developed, 
that allows the coupling of two mechanisms (damage and fatigue cracking). The numerical results 
are compared to those of experimental bending fatigue tests. Finally, applications associated with 
the behavior of fiber glass reinforced asphalt concrete are analyzed in detail. 

Key words: quasi-brittle; nominal strength; fatigue life; discrete element modeling 
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