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Spécialité : Signal - Images - Parole - Télécoms (SIPT)

Arrêté ministérial : 07/08/2006

Présentée par

M. Weiyuan NI
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Abstract

Face alignment is an important step in a typical automatic face recognition sys-
tem. This thesis addresses the alignment of faces for face recognition application
in video surveillance context. The main challenging factors of this research include
the low quality of images (e.g., low resolution, motion blur, and noise), uncontrolled
illumination conditions, pose variations, expression changes, and occlusions. In order
to deal with these problems, we propose several face alignment methods using dif-
ferent strategies. The first part of our work is a three-stage method for facial point
localization which can be used for correcting mis-alignment errors. While existing
algorithms mostly rely on a priori knowledge of facial structure and on a training
phase, our approach works in an online mode without requirements of pre-defined
constraints on feature distributions. The proposed method works well on images un-
der expression and lighting variations. The key contributions of this thesis are about
joint image alignment algorithms where a set of images is simultaneously aligned
without a biased template selection. We respectively propose two unsupervised joint
alignment algorithms : “Lucas-Kanade entropy congealing” (LKC) and “gradient cor-
relation congealing” (GCC). In LKC, an image ensemble is aligned by minimizing a
sum-of-entropy function defined over all images. GCC uses gradient correlation coef-
ficient as similarity measure. The proposed algorithms perform well on images under
different conditions. To further improve the robustness to mis-alignments and the
computational speed, we apply a multi-resolution framework to joint face alignment
algorithms. Moreover, our work is not limited in the face alignment stage. Since face
alignment and face acquisition are interrelated, we develop an adaptive appearance
face tracking method with alignment feedbacks. This closed-loop framework shows
its robustness to large variations in target’s state, and it significantly decreases the
mis-alignment errors in tracked faces.

Keywords : Face alignment, facial point localization, joint image alignment, Lucas-
Kanade entropy congealing, gradient correlation congealing, face tracking.
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Chapitre 1

Introduction

Face recognition is one of the most active tasks in computer vision. For a typi-
cal automatic face recognition system, face detection and face recognition are two
main steps. Face detection algorithms aim at locating face regions in input images.
Face recognition methods then identify those detected faces by comparing them
with reference images based on certain criteria. Within the last decades, researchers
have proposed numerous face detection and face recognition methods [126, 128, 131].
Unfortunately, face detectors are still not error-free, i.e., it remains some spatial mis-
alignments in detected faces, such as translation, scaling and rotation errors. The
studies in [72, 103, 122, 96] demonstrated that mis-alignments inevitably lead to an
obvious decrease in performance of face recognition approaches.

One possible solution to mis-alignment is developing face recognition methods
robust to mis-alignment, such as invariant features and mis-alignment modeling.
Invariant features based methods attempt to represent face images using features
robust to scale, rotation, and translation errors. Some typical features adopted in
face recognition, e.g., Local Binary Pattern (LBP) [1], Eigenfaces [111], and Gabor
wavelets [69], have certain robustness to small mis-alignments. Mis-alignments mo-
deling approaches try to take into account these geometric errors during the training
of face models. In [86, 103], additional training samples are generated by manually
perturbing images to model spatial mis-alignment. However, these approaches cause
a huge increase of training data, and they still cannot fully handle the effect of misa-
lignment. Take [103] as example, although using expanded training data can improve
the face recognition performance when test faces undergo mis-alignment errors, there
exists a decrease of recognition accuracy when input faces are well aligned.

Another solution to mis-alignment is introducing face alignment as a middle stage
between face detection and face recognition. The main steps of this face recognition
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system are shown in Figure 1.1. The purpose of face alignment is to transform detec-
ted faces into a standard pose. Aligned faces are then output to the face recognition
phase. Some researches, e.g., [53], have indicated that the use of face alignment
methods can significantly improve face recognition accuracy. Based on the above
analysis, we choose to adopt face alignment algorithms to deal with mis-alignment.

 

Face 

detection 

 

Face 

alignment 

 

Face 

recognition 

 

Unaligned 
faces 

Aligned 
faces 

Images 

Figure 1.1 – Main steps of a face recognition system.

1.1 Impact of mis-alignment on face recognition

In computer vision, face recognition can be seen as a classification or matching
problem of face images regarding their represented features. Simply, an unknown
face ( named probe image) is compared with all registered faces (gallery images) and
it will be assigned to the identity (class) with shortest distance. Evidently, spatial
mis-alignments cause unwanted differences between images, an example is shown in
Figure 1.2 where (b) contains three images generated from (a) respectively using
translation, rotation, and scaling transformation and (c) consists of the difference
images between (a) and (b). It is clear that differences appear after simple trans-
formations, even if these faces are cropped from the same image. If the differences
caused by mis-alignment are larger than the differences between facial appearances,
mis-classification eventually occurs.

The work of [103] tests the impact of mis-alignment on the recognition rates
of a typical face recognition method, Fisherface based method [11], which projects
faces in a low-dimensional subspace using Linear Discriminant Analysis (LDA). To
model mis-alignments, the probe images were manually perturbed by translation,
rotation, and scale transformations. The rank-1 recognition rates of Fisherface based
face recognition method under different mis-alignments are shown in Figure 1.3. It is
clear that small perturbations result in an obvious decrease in the performance of the
face recognition method. For example, the recognition rate decreases from 90% to 60
% when probe images are 4.2 degrees rotated. With the increasing of mis-alignment
intensity, the recognition accuracy tends to be zero.
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translation 

rotation 

scaling 

(a) original image    (b) transformed images   (c) difference images   

Figure 1.2 – Unwanted differences caused by mis-alignments.

Moreover, [72] evaluates the recognition performance of an Eigenfaces based me-
thod on image under downsampling, scaling, rotation , morphing, and luminance
changes. In [96], six different face recognition methods, Eigenfaces, Fisherfaces, Elas-
tic Bunch Graph Matching (EBGM) [123], pseudo Two-dimensional Hidden Markov
Models (2D-HMM) [101], correlation filters [20], and Laplacianfaces [49], are compa-
red on randomly perturbed images. Also, the work of [122] presents the relationship
between face recognition accuracy of a Principal Component Analysis (PCA) base-
line algorithm [94] and eye localization error on images from FRGC 1.0 database
[94]. According to the presented results, spatial mis-alignments inevitably lead to
performance degradation in face recognition tasks.

In the last few years, some efficient face recognition algorithms have been propo-
sed based on more sophisticated facial feature extraction (e.g., Local Binary Pattern
(LBP) [1], Histogram of Oriented Gradients (HOG) [74], and Patterns of Oriented
Edge Magnitudes (POEM) [119, 120]), nevertheless, the effect of mis-alignment is
still far from negligible.
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one up, the other down). Similarly, in figure 4 (c), each 

graduation (about 0.07 scale change) comes from one 

pixel deviation of each eye from its ground-truth position 

along the opposing horizontal direction (that is, one left, 

the other right). 

(a) (b) (c) 
Fig. 3 Normalization error due to mis-alignment 
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Fig. 4. Relationship between the rank-1 recognition rate of 
the Fisherface and the mis-alignment of translation, rotation 
and scale 

From Figure 4, one can see clearly that the rank-1 

recognition rate of the Fisherface method degrades 

abruptly with the increase of the mis-alignment. For 

example, 10 percents’ decrease is observed for a pixel 

translation, while 20 percents for 4.2 degrees of rotation, 

and almost 30 percents for 0.07 scale changing also 

caused by a pixel deviation. Such abrupt degradation of 

the performance is hardly acceptable for a practical face 

recognition system, in which mis-alignment of one or two 

pixels is almost unavoidable. Therefore, it is really a 

problem that must be paid more attention seriously.  

2.2 Problem analysis and possible solutions 

To address the mis-alignment problem clearly and 

highlight the significance of the problem, in this paper, we 

explicitly define the “curse of mis-alignment” problem as 

follows. We then discuss the sources of curse of mis-

alignment, as well as the possible solutions.  

Definition 1: Curse Of Mis-Alignment (Hereinafter 

abbreviated as COMA)

Curse of mis-alignment is defined as the abrupt 

degradation of the recognition performance when small 

mis-alignment occurs which is caused by the inaccurate 

localization of the facial landmarks.  

The purpose of alignment is to build the semantic 

correspondence between the pixels in different images, 

and eventually to classify by matching the pixels with the 

same semantic meanings. Therefore, mis-alignment 

implies that the classification may base on totally 

meaningless matching. Figure 5 (a) through (c) illustrate 

this point clearly in an extreme but intuitive way, in which 

one attempts to match two uniform single-pixel rectangle 

with one (red and dashed line) being the shifted, rotated, 

and scaled version of the other (blue and real line). 

Evidently, the matching would be meaningless even with 

only one pixel of mis-alignment. Figure 5 (d) through (g) 

show the similar case for face images, in which (e) is a 

scaled version of (d), (f) is their blend and (g) is the result 

of absolute subtracting (e) from (d). Much unexpected 

difference appears that may lead to mis-classification 

eventually.

(a) (b) (c) 
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Figure 1.3 – Relationship between the rank-1 recognition rate of Fisherface based
algorithm and the mis-alignment of translation, rotation, and scale [103].
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1.2 The main challenges for face alignment

Our work focuses on face alignment under uncontrolled conditions of image ac-
quisition. In particular, we are very interested in face recognition in case of video
surveillance applications. In those cases, we will have to cope with the following
problems :
• Variations in subject’s pose : Since human faces are 3D objects, variations in
subject’s pose or viewpoint usually result in nonrigid changes in facial features, and
sometimes self-occlusions. These factors make face alignment very difficult.
• Occlusions : Apart from the self-occlusions due to poses, there are various other
reasons for occlusions, like sun glasses, scarfs, etc. In those cases, face alignment
methods need to be robust to outliers.
• Variations in illumination conditions : Aligning faces under uncontrolled illu-
mination conditions is a difficult problem, because lighting changes in any factors
(e.g., intensity, direction and color) may cause dramatical changes in the appearance
of a face.
• Variations in expression : Faces of different expressions may have significantly
different appearances in facial features. It is always difficult to align a laughing face
with open mouth (closed eyes) to a neutral face with closed mouth (open eyes).
• Low resolution : Faces extracted from video surveillance images are usually of
low resolution (e.g., only 30×30). Detailed information about face is not contained
in such a small region. This is challenging for accurate face alignment.
• Motion blur : Motion blur often occurs when recording moving objects with a
surveillance camera. In that case, blurry facial features make face alignment very
difficult.
• Image noise : A well-known issue of camera surveillance footages is image noise.
Especially for a low resolution image, noise is able to dramatically change the appea-
rance of facial features. Hence, image noise is an unignorable factor in face alignment.

1.3 Main contributions

The work of this thesis focuses on face alignment in video surveillance applica-
tions, i.e., faces may undergo occlusion, low image quality, and variations in pose,
expression, and illumination, etc. Specifically, we propose the following contribu-
tions :

(1) The first important contribution of this work is the development of an un-
supervised joint face alignment algorithm, referred to as “Lucas-Kanade entropy
congealing” (LKC), where an image ensemble is aligned by minimizing a sum-of-
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entropy function defined over all images. We solve this minimization problem using
both forward and inverse Lucas-Kanade formulations. Unlike the canonical entropy
congealing [53] which estimates transformation parameters sequentially, our LKC al-
gorithms are able to estimate all the transformation parameters at the same time.
Also, in a joint alignment manner, there is no requirement of pre-defined templates.

(2) We also propose another efficient unsupervised joint face alignment algorithm
named “gradient correlation congealing” (GCC) which uses gradient correlation co-
efficient as similarity measure. While most existing face alignment methods suffer
from outliers, e.g., occlusions, GCC is able to align faces undergoing partial occlu-
sions. Moreover, our algorithm can cope with non-uniform illumination changes (even
extremely difficult ones).

(3) In order to align images with large mis-alignment errors, we propose a multi-
resolution solution to joint face alignment : in coarse levels, images are processed with
lower resolutions to remove major mis-alignment errors ; in fine levels, alignment is
refined using higher resolutions.

(4) Since face alignment and face acquisition are interrelated, we develop an
adaptive appearance face tracking method with alignment feedbacks. We first apply
a self-adaptive dynamical model to predict target candidates in a particle filtering
framework. Hence, our tracker is able to work with identical parameters for various
situations. In order to decrease the impact of mis-alignment, we employ a multi-view
joint face alignment phase based on LKC. Aligned faces are further used as feedbacks
to update the appearance model of target face.

(5) Apart from these joint alignment algorithms, a three-stage method is propo-
sed for facial point localization. While existing algorithms mostly rely on a priori
knowledge of facial structure and on a training phase, our approach works in an on-
line mode without requirements of pre-defined constraints on feature distributions.
Instead of training specific detectors for each facial feature, a generic method is
first used to extract a set of interest points from test images. Using POEM histo-
gram, a smaller number of these points are picked as candidates. Then we apply a
game-theoretic technique to select facial points from the candidates, while the global
geometric properties of face are well preserved.

1.4 Report plan

The remainder of this report is arranged as follows :
• Chapter 2 first reviews classic and recent face alignment methods which are

classified into three categories : feature point based, direct alignment, and joint ali-
gnment. For each category, there is an overview of relevant alignment approaches,
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and the basic knowledge of some important algorithms, i.e., Active Shape Model
(ASM) [24], Active Appearance Model (AAM) [22], Lucas-Kanade algorithm [83],
Learned-Miller congealing [71], and least squares congealing [26]. Also, introduced in
this chapter are several famous face databases (AR [87], FERET [95], Yale B [40],
SCface [42], and LFW (Labeled Faces in the Wild) [54]), and common evaluation
criteria for face alignment algorithms.
• Chapter 3 presents an online approach without requirements of pre-defined

constraints on feature distributions, while existing algorithms mostly rely on a priori
knowledge of facial structure and on a training phase. More precisely, Section 3.3 first
introduces the robust POEM (Patterns Oriented Edge Magnitude) feature which
is often used to catch image information in this report. Section 3.4 discusses an
effective solution to matching problem using game theory. In section 3.5, we detail the
information about a three-stage facial point localization method. The experimental
results are discussed in Section 3.6.
• Chapter 4 first respectively discusses two formulations of Lucas-Kanade entropy

congealing (LKC), forward (4.2.1) and inverse (4.2.2), which are different in the role
of “template”. Comparison results on images under different conditions are given in
Section 4.2.4. In order to improve the robustness to large mis-alignment errors, we
then present a multi-resolution framework for LKC in Section 4.3.1. Experiments in
Section 4.3.2 prove the efficiency of the multi-resolution strategy.
• Chapter 5 proposes another unsupervised joint face alignment framework named

“gradient correlation congealing” (GCC) which uses gradient correlation coefficient
as similarity measure. There are two formulations of this method regarding the selec-
tion of “template” : GCC-1 (5.3.2) and GCC-2 (Section 5.3.3). Experimental results
in Section 5.4 prove the efficiency of our approaches under different conditions, es-
pecially when faces are partially occluded, the proposed GCC-2 algorithm performs
much better than other considered methods.
• Chapter 6 presents an adaptive appearance method for tracking faces in uncon-

trolled environments. Section 6.2 first introduces an incremental update algorithm
for target’s appearance model. Section 6.3 discusses the details of our adaptive ap-
pearance face tracking method using alignment feedbacks. We test the proposed
algorithm on outdoor surveillance videos and real-world YouTube videos, and expe-
rimental results are given in Section 6.4.
• In Chapter 7, we discuss the conclusions and perspectives of this thesis.
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Chapitre 2

Review of Face Alignment Methods, Databases, and
Evaluation Criteria

2.1 Introduction

Face alignment is a specific subject of image alignment/registration which has
been widely researched within the last decades. The work of [50] reviews classic me-
dical image alignment methods. In [134, 30], image alignment methods are classified
regarding their basic steps, e.g., feature detection, similarity measure, transforma-
tion model, and optimization process. [107] divides image alignment methods into
direct (pixel-based) alignment, feature-based registration, and global registration.
More precisely, approaches using pixel-to-pixel matching are called direct methods,
as opposed to the feature-based methods which are usually relied on feature detec-
tors. Global alignment mentioned in [107], referred to as “bundle adjustment” [110],
is usually employed for the registration of multiple 3D images.

Be different from general objects, faces possess certain characteristics, e.g., the
structure of facial features. Therefore, some specific methods can be used for face
analysis, e.g., face models. According to ways of application, we divide face alignment
algorithms into three main categories, i.e., feature point based, direct alignment,
and joint alignment, which cover most existing relevant methods. There are some
relations between different types of face alignment methods, e.g., joint alignment
methods may be based on face models (point detection based) or direct alignment
cost functions. Sections 2.2 to 2.4 respectively introduce the three categories of face
alignment approaches. Section 2.5 introduces several famous face databases, and
Section 2.6 presents the main solutions used in literature to evaluate the performance
of face alignment algorithms. Conclusion of this chapter is given in Section 2.7.
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2.2 Feature point based face alignment

In research community, well-aligned faces are usually cropped from images ac-
cording to their manually labeled landmarks, e.g., eye centers, nostrils, and mouth
corners. Hence, an intuitional solution to mis-alignment is detecting facial feature
points and then transforming them to standard positions. An overview of classic and
recent feature point based face alignment methods is presented in Section 2.2.1, and
two important face models, Active Shape Model (ASM) [24] or Active Appearance
Model (AAM) [22], are respectively introduced in Sections 2.2.2 and 2.2.3.

2.2.1 Overview

According to [115], facial feature point detection can be divided into two cate-
gories : texture-based and shape-based. Texture-based approaches model the local
texture around a given facial point, e.g., the pixel values in a small region around
an eye center. Shape-based methods consider all facial landmarks as a shape model,
which is trained from labeled faces, and try to find the shapes for unknown faces.

2.2.1.1 Texture-based methods

Some early researches localize two eyes by extracting distinct features, e.g., image
gradient [66], projection function [133], template [64, 34], and wavelet [55]. Figure 2.1
illustrates an example of face alignment using detected eye centers. In this case, we
can fit a similarity warp which transforms the detected eye centers to their canonical
positions. Then, the face can be aligned by this estimated transformation. The work
of [122] proves the efficiency of eye detection by applying it to face recognition. In
order to improve the face recognition accuracy, [44] also aligns test facial images
using an adaptive thresholding based eye center detector.

Eye 
detection Transformation 

Figure 2.1 – Face alignment using detected eye centers.

Many texture-based detectors aim at locating multiple facial feature points, and
prior knowledge about facial feature distribution is often used to improve the per-
formance of the detector. In [12], five facial points (corners of the left and right

10



eyes, corners of the mouth, and the tips of the nose) are localized by multiple Sup-
port Vector Machines (SVM). [121] divides faces into several regions of interest(ROI)
regarding the geometric information about face, then individual feature patch tem-
plates based on Gabor filters are used to detect points in the relevant ROI. [100]
proposes a coarse-to-fine facial landmarking detection method using Gabor features
and Discrete Cosine Transform (DCT) coefficients. The work of [32] first localizes
two eyes using textural information of both feature point and its context, and then
estimates the approximate positions of other features with a priori knowledge about
face. [115] locates 22 fiducial points using a combination of support vector regression
and Markov Random Fields where pairwise spatial relations between facial point
positions are learned for detection. To improve the performance of high level face
analysis application (e.g., face recognition) using these detected feature points, one
way is to directly align the face using a similarity transformation [48] or an affine
transformation [12, 15] which best maps detected points to standard positions. Ano-
ther possible solution is to represent face using a set of feature descriptors and match
detected points with their corresponding features separately. For example, [13, 84]
adopts Scale-Invariant Feature Transform (SIFT) descriptor [82] for face authen-
tication. Figure 2.2 shows the comparison between gallery and probe faces using
extracted SIFT features.

Figure 2.2 – SIFT features are extracted and matched between gallery and probe
faces [84].
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2.2.1.2 Shape-based methods

Shape-based (or model-based) methods try to detect shapes of facial features
instead of separate facial points. Typical shape-based algorithms include detectors
based on Active Shape Model (ASM) [24] or Active Appearance Model (AAM) [22].
ASM [24] models shape and gray-level appearance to locate flexible objects in new
images. This approach was first applied to detect facial feature points in [70]. AAM
[22] builds a statistical appearance model using both facial shape and texture. Shape
based methods usually construct face models using Principal Component Analysis
(PCA) techniques and then fit these trained models to new faces. Figure 2.3 illus-
trates an example of face alignment using a shape model s0 where a new face in the
canonical pose can be generated regarding estimated parameters p.

Figure 2.3 – Illustration of face alignment using shape-based methods [78].

Within the last decades, many researches have been done to improve the perfor-
mance of ASM and AAM. In the early work of [25], the use of multi-resolution stra-
tegy increases both speed and quality of ASM. To improve the robustness of texture
feature in ASM, different type of methods such as Gabor wavelets [61], AdaBoos-
ted histogram classifiers[75], hierarchical classifier network [129] have been employed
for discriminating local texture. [132] proposes the Bayesian Tangent Shape Mo-
del (BTSM) where shape analysis is formulated in Bayesian framework and tangent
shape parameters are estimated using an expectation maximization (EM) method.
Hu et al. [52] replaces the eigenspace-based appearance model in AAM with a wavelet
network to improve the robustness to illumination changes and occlusions. The work
of [33] presents a fast AAM search approach using canonical correlation analysis. In
[124, 78], the fitting of face model is formulated as classification problem. [76, 56]
employ shape constraints for accurate face alignment. [63] aims at eliminating the
negative effect of illumination variations by learning both identity and illumination
models. To cope with partial occlusion, [97] proposes a shape-based face alignment
algorithm based on multiple feature detectors and random sample consensus (RAN-
SAC) strategy [37]. Shape-based algorithms are often combined with other point
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detectors to form a coarse-to-fine approach to facial feature detection. For example
in [29], facial points are first predicted by a detector called pairwise reinforcement of
feature responses (PRFR) and then are refined using an AAM search.

Canonical shape-based algorithms train face models from manually labeled images,
i.e., they work in a supervised manner. Annotating each of training images involves
labeling 50–70 facial landmarks, this makes annotation of a large database tedious
and time consuming. To reduce the cost of annotation, statistical models have been
built using a semi-supervised solution where training images are incompletely labeled
[43]. Recently, automatic face annotation approaches [102, 5] and other unsupervised
methods such as [31] have been presented.

After fitting the face shape, we can deform the face to a canonical pose using
non-rigid transformation (as shown in Figure 2.3), then apply these new faces to
high level applications. In [58], facial images are first fitted with the face model, then
average images of multiple deformed faces are used for face recognition.

2.2.2 Active Shape Model (ASM)

In [70], a set of labeled facial images are used to train a flexible shape model (see
some shape examples in Figure 2.4). Each training image Xi is represented :

xi = (x1i, y1i, x2i, y2i, ..., xNi, yNi) (2.1)

where N is the number of labeled landmarks, (xki, yki) stands for the coordinates of
kth landmark in the ith training image.

Figure 2.4 – Examples of training shapes [70].
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We can apply a principal component analysis (PCA) to the data [24]. First, the
average shape is calculated by :

x =
1

M

M∑
i=1

xi (2.2)

where M is the number of training examples.
Then, the covariance matrix of training data can be obtained using :

S =
1

M

M∑
i=1

dxidx
T
i (2.3)

where dxi is the deviation of xi from the mean shape : dxi = xi − x.
The eigenvectors and eigenvalues are defined by :

Spk = λkpk (2.4)

where pk and λk are respectively the kth eigenvector and eigenvalue of S, and pTk pk =
1.

In Equation (2.4), each eigenvector is related to a “mode of variation”, and the
effect of the first three modes on face shape is shown in Figure 2.5. This way, a shape
x in the training set can be approximated using the mean shape and a vector of
weights :

x = x+ Pb (2.5)

where P = (p1p2...pt) is the matrix of the first t eigenvectors with highest eigenva-
lues, and b = (b1b2...bt) is a vector of weights.

In [70], when fitting the shape model to a new face, a gray-level profile perpendi-
cular to the boundary is extracted at each model point, and a new preferred position
for the point is selected along the profile. According to the movement of landmarks,
we can obtain the new shape parameters using the deformation of Equation (2.5) :

b = P T (x− x) (2.6)

2.2.3 Active appearance model

Active appearance model (AAM) [22] is extended from the ASM described in
Section 2.2.2. In order to distinguish the symbols, we rewrite the shape model in
Equation (2.5) as :
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Figure 2.5 – The effect of the main modes of shape variation [70].

x = x+ Psbs (2.7)

where Ps and bs are respectively the vector of shape variation modes and the vector
of shape parameters.

Based on the shapes of training faces, we can obtain their shape-normalized
images : gi, i ∈ [1,M ] (see some examples in Figure 2.6). Similar to the way of
forming the shape model in Section 2.2.2, a PCA method is applied to these shape-
normalized images, and we obtain a linear model :

g = g + Pgbg (2.8)

where Pg and bg are respectively the vector of gray-level variation modes and the vec-
tor of gray-level parameters. Normally, to minimize the effect of global illumination
variation, shape-free images are normalized before the PCA process.

Figure 2.6 – Examples of shape-normalized images [70].
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Combining both shape and gray-level models, a concatenated vector can be ge-
nerated as follows :

b =

(
Wsbs
bg

)
=

(
WsP

T
s (x− x)

P T
g (g − g)

)
(2.9)

where Ws is a diagonal matrix of weights for shape parameters, allowing for the
difference in units between the shape and gray-level models.

By applying PCA to these vectors, we can obtain a new model :

b = Qc (2.10)

where Q is the matrix of eigenvectors and c is the vector of appearance parameters
controlling both the shape and gray-level variations.

The effect of varying first four appearance model parameters is shown in Figure
2.7.

Figure 2.7 – The effect of varying first four appearance model parameters, c1 − c4

by ±3 standard deviations from the mean [22].

In [22], the AAM search for a new image is achieved by iteratively minimizing
the difference between model texture and image.

2.2.4 Advantages and drawbacks

Numerous robust and efficient features, e.g., SIFT [82], POEM (Patterns Oriented
Edge Magnitude) [120], can be used for keypoint detection. This advantage makes
texture-based detectors remarkably robust. However, existing facial point detectors
mostly rely on a priori knowledge of facial structure and on a specific training phase.
That is, the construction of training data is complex which makes this type of me-
thods not easy to implement.
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The main advantage of shape-based algorithms is that they are able to locate
multiple facial points (e.g., 68 points for the canonical AAM) under expression and
pose changes. However, training of these statistical models requires numerous la-
beled images, therefore the application of model-based methods is complicated and
computationally expensive. Moreover, faces extracted from video surveillance images
usually of low resolution, e.g., 30×30. It is difficult to localize 68 facial landmarks in
such a small region.

2.3 Direct face alignment

Direct face alignment approaches aim at warping a test facial image to match
a pre-defined template (shown in Figure 2.8). Section 2.3.1 is an overview of direct
face alignment methods, and Section 2.3.2 introduces the famous Lucas-Kanade’s
alignment methods [83, 10].

Figure 2.8 – Direct alignment tries to warp a test image regarding a pre-defined
template.

2.3.1 Overview

Important components of direct face alignment include a similarity measure and
an optimization method. More precisely, face alignment task is casted into the opti-
mization of a cost function based on the similarity/difference between images.

2.3.1.1 Similarity measures

The most familiar similarity measure is the sum of squared differences (SSD)
which has been widely used for image registration, e.g., [83, 10]. To make error me-
tric more robust to outliers, robust functions such as Geman-McClure function [16]
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and the median of absolute differences (MAD) [105] are often used to replace the
squared error terms. Also, weighted SSD function is proposed for image matching in
[9]. Recently, [4] aligns two faces by minimizing the SSD based function in Fourier
domain using Gabor filters. Apart from these intensity differences, another type of
similarity measure is correlation. More precisely, images can be aligned by the maxi-
mization of correlation function. Common correlation functions include normalized
cross-correlation, phase correlation [67], and normalized gradient correlation [112],
et al. Among them, normalized gradient correlation has been proved robust to par-
tial occlusion in face alignment application. Mutual information (MI) is also used
to measure the correlation between a pair of images where face alignment can be
achieved by maximizing the mutual information [118].

2.3.1.2 Optimization methods

The usual approach to the optimization of face alignment problem is gradient
descent where transformation parameters are obtained by iteratively estimating an
update. Gradient descent algorithms have several different formulations. While the
classic work of Lucas and Kanade [83] estimates an additive increment to parame-
ters, Shum and Szeliski [104] update parameters in a compositional manner. In [10],
Baker and Matthews presented an overview of Lucas-Kanade’s algorithms, and they
proposed an inverse compositional formulation for intensity based image alignment.
This formulation can yield a constant Hessian matrix which can be pre-computed
(Detailed information is introduced in Section 2.3.2). Hence, the inverse compositio-
nal method can decrease the computational cost of the iterative estimation without
any significant loss of efficiency. Recently, [35] employs this inverse Lucas-Kanade
method for mutual information based face tracking.

2.3.2 Lucas-Kanade’s methods

Lucas-Kanade’s methods [83, 10] aim at minimizing the sum of squared error
between the template image T and the test image I :

∑
x

[I(W (x;p))− T (x)]2 (2.11)

where x = (x, y) represents the coordinates of a pixel, W (x;p) is the parameterized
set of allowed warps, p = (p1, p2, ..., pn)T is a vector of transformation parameters.
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2.3.2.1 Forward additive formulation

The minimization of Equation (2.11) is a non-linear optimization task. To obtain
the desired transformation parameters, the classic Lucas-Kanade [83] assumes that a
current estimate of p is known and then iteratively searches an increment ∆p, hence
the cost function becomes :∑

x

[I(W (x;p+ ∆p))− T (x)]2 (2.12)

To solve the minimization problem, Equation (2.12) is first linearized by perfor-
ming a first order Taylor expansion on I(W (x;p+ ∆p)) (which supposes that ∆p
is a very small increment) :∑

x

[I(W (x;p)) +∇I ∂W
∂p

∆p− T (x)]2 (2.13)

where ∇I = ( ∂I
∂x
, ∂I
∂y

) is the gradient of image I, ∂W
∂p

is the Jacobian of the warp. For
example, the affine warp has the Jacobian :

∂W

∂p
=

(
x 0 y 0 1 0

0 x 0 y 0 1

)
(2.14)

Then, we can calculate the partial derivative of the expression in Equation (2.13)
with respect to ∆p :∑

x

[∇I ∂W
∂p

]T [I(W (x;p)) +∇I ∂W
∂p

∆p− T (x)] = 0 (2.15)

Easily, we can obtain ∆p by setting Equation (2.15) equal to zero :

∆p = H−1
∑
x

[∇I ∂W
∂p

]T [T (x)− I(W (x;p))] (2.16)

where H is the Hessian matrix :

H =
∑
x

[∇I ∂W
∂p

]T [∇I ∂W
∂p

] (2.17)

At each iteration, p is updated using :

p← p+ ∆p (2.18)
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2.3.2.2 Inverse compositional formulation

Many researches (e.g., [104]) point out there is a huge computational cost in
re-calculating the Hessian matrix at each iteration of the classic Lucas-Kanade algo-
rithm. Hence, the inverse formulation has been developed to yield constant Hessian
matrix which can be pre-computed. The inverse compositional algorithm aims at
minimizing : ∑

x

[T (W (x; ∆p))− I(W (x;p))]2 (2.19)

The first order Taylor expansion on Equation (2.19) is :∑
x

[T (W (x; 0)) +∇T ∂W
∂p

∆p− I(W (x;p))]2 (2.20)

Similar to the previous forward additive formulation, we can obtain the increment
∆p :

∆p = H−1
∑
x

[∇T ∂W
∂p

]T [I(W (x;p))− T (x)] (2.21)

where the Hessian matrix is :

H =
∑
x

[∇T ∂W
∂p

]T [∇T ∂W
∂p

] (2.22)

It is clear that Equation (2.22) is constant across all iterations, hence we can
pre-compute the Hessian matrix to reduce the computational cost.

The update process of p using ∆p is :

W (x;p)←W (x;p) ◦W (x; ∆p)−1 (2.23)

2.3.3 Advantages and drawbacks

The major advantage of direct face alignment methods is that they make use
of all the image information, since they measure the contribution of every pixel in
the image [107]. Nevertheless, direct face alignment methods require a pre-defined
template which limits their applications. More precisely, templates related to the
same subjects as the test images are often used to present experimental results, i.e.,
the identities of test images are already known. This seems not so logical in face
recognition, because the final objective of face recognition is to identify the input
facial images.
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2.4 Joint face alignment

This section discusses joint alignment methods which work on an image ensemble.
Section 2.4.1 presents a review of important joint face alignment algorithms. Back-
ground knowledge about two major joint alignment methods, Learned-Miller Congea-
ling [71, 53] and Least Squares Congealing [26, 27], is introduced in Sections 2.4.2
and 2.4.3.

2.4.1 Overview

Be different from above feature point based and direct approaches, joint face
alignment methods work by simultaneously aligning a set of facial images. Figure 2.9
illustrates an example of joint alignment process where original (unaligned) faces are
located by Viola-Jones face detector [117].

(a) original faces                             (b) joint alignment                            (c) aligned faces  

Figure 2.9 – Example : joint alignment of four facial images.

The early work of joint alignment [38, 39] aligned basis images using an expec-
tation maximization (EM) algorithm and a finite set of allowable transformations.
The so-called “congealing” method was first proposed by Learned-Miller for the ali-
gnment of binary images and magnetic resonance images [71, 89]. In congealing, the
only assumption is the type of geometric mis-alignment, and transformation para-
meters are obtained by minimizing a sum-of-entropy function. Later, Congealing has
been applied to more complex images, faces and cars [53], using scale-invariant fea-
ture transform (SIFT) [82] descriptor as the feature. Since SIFT descriptor are of
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high dimension, a dimension reduction stage is used to decrease the dimension of
features in these entropy congealing methods [53].

As mentioned in Section 2.3, the classic Lucas-Kanade’s algorithm [83] was propo-
sed for iterative image-to-image alignment using gradient-descent optimization. Least
Squares Congealing (LSC) [26, 27] is an extension of Lucas-Kanade’s algorithm, in
which entropy function is replaced with a SSD cost function and in which the trans-
formation parameters are all estimated at the same time using a Gauss-Newton
gradient descent approach. Storer et al. [85] aligned a set of images using mutual
information (MI) as the measure of mis-alignment. Being both intensity-based, the
two methods might be more sensitive to variations in illumination, scale, and occlu-
sion. To improve the robustness of alignment, Liu et al. [79] applied HOG feature
(histogram of oriented gradients [74]) to LSC, instead of pixel intensity. LSC methods
were also combined with face models to localize facial landmarks [80, 108, 130].

Some researches pay attention to the rank of data matrix containing all images.
More precisely, well-aligned images are supposed to be correlated to each other, hence
the matrix of aligned images should have low rank. [116] minimizes a log-determinant
measure that can be viewed as a smooth surrogate for the rank function. The work of
[92] decomposes original facial images as a low-rank matrix with certain corruption
and mis-alignment errors, then the alignment problem is solved by scalable convex
optimization techniques. In [7, 125], mis-alignment parameters are simultaneous es-
timated during the learning of feature subspace. Another interesting joint alignment
approach named RASL [93] aligns images by sparse and low-rank decomposition.
RASL is able to handle both spatial mis-alignments and corruptions (e.g., occlusion
and shadows), and it generates an aligned image and a low-rank (corruption reco-
vered) image for each input sample. However, the reconstruction of low-rank images
is valid only when all input images are related to the same individual. Therefore, if
RASL is applied to unknown faces of different individuals, only the aligned images
are useful.

2.4.2 Learned-Miller Congealing

In [71], congealing algorithm was proposed for transforming a set of images to
make them more similar, according to some measure of similarity. This method can
be defined as the minimization of a sum-of-entropy function :

argmin
Φ
−
∑
x

∑
j∈J

pj(x)log2(pj(x)) (2.24)
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where Φ = {v1,v2, . . . ,vN} is the set of warp parameter vectors for different images
(N is the number of images), x = (x, y)T is a column vector containing the pixel
coordinates, J is the set of image features, e.g., intensity values, and pj(x) is the
probability of feature j in the pixel set at x.

For the alignment of binary images, the sum-of-entropy function can be calculated
by :

−
∑
x

(
N0

N
log2

N0

N
+
N1

N
log2

N1

N
) (2.25)

where N0 and N1 are respectively the number of occurrences of 0 (black) and 1
(white) in the binary-valued pixel set at x. As illustrated in Figure 2.10, N0

N
and N1

N

respectively calculate the probabilities of black and white pixels at x.

Figure 2.10 – A pixel set is a collection of pixels drawn from the same location in
each of a set of N images. [71].

In the application to gray level images, Huang et al. [53] pointed out that the
high variations of intensity in the foreground object as well as the variations due to
lighting will cause high entropy even under a proper alignment. Therefore, instead of
intensity values, some robust feature descriptors can be used with Congealing, e.g.,
SIFT descriptor. To reduce the dimension of feature space, pixel’s descriptors are
modeled as being generated from a mixture of Gaussians model by clustering. Hence,
pixel at position x of the ith image can be represented by a vector of probabilities :

((pi1(x), pi2(x), ..., piM(x)) (2.26)

where M is the number of clusters, pik(x) is the probability that this pixel belongs
to cluster k.

Then the sum-of-entropy function in Equation (2.24) can be rewritten as :
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−
∑
x

M∑
k

Dk(x)log2(Dk(x)) (2.27)

Here Dk(x) is called “distribution field” which is the probability of the kth ele-
ment in the pixel set at x :

Dk(x) =
1

N

N∑
i=1

pik(x) (2.28)

Considering Equations (2.27) and (2.28) together, for the ith image in the set,
the alignment can be achieved by maximizing :

∑
x

M∑
k

pik(x)log(Dk(x)) (2.29)

In [53], the maximization of Equation (2.29) is based on an iterative sequential
searching procedure. Each transformation parameter relates to a pre-defined step
size and an estimation order. To estimate the update for one parameter, an increase
and a decrease equaling to the relative step size are applied respectively. Only the
variation that increases the value of Equation (2.29) is updated to the parameter.
Otherwise, the parameter is not changed. After one parameter has been estimated,
the estimation moves to the next. Figure 2.11 shows an illustration of congealing
procedure in which the entropy value over aligned distribution field n is lower than
that of original distribution field 1.

Figure 2.11 – An illustration of congealing procedure [53].
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2.4.3 Least Squares Congealing

Least Squares Congealing (LSC) [26, 27] is based on the classic Lucas-Kanade’s
algorithm described in Section 2.3.2. In LSC, the alignment problem is defined as
the minimization of a SSD function calculated over a set of images :

M∑
i=1

M∑
j=1
j 6=i

[Ij − Ii]2 (2.30)

where M is the number of images, Ii stands for the ith image in the set.
Hence, for one image Ii in the set, we aim at estimating the transformation which

minimizes :
M∑
j=1
j 6=i

[I(W (x;p))j − Ii]2 (2.31)

Similar to the image-to-image Lucas-Kanade’s algorithm, we can iteratively solve
the optimization problem in Equation (2.31) by calculating an update ∆p :

M∑
j=1
j 6=i

[Ij(W (x;p)) +
∂Ij(p)

∂p

T

∆p− Ii]2 (2.32)

where
∂Ij(p)

∂p
is the steepest descent image :

∑
x
∂W
∂p
∇Ij .

Then, we can obtain ∆p using :

∆p = H−1
∑
j=1
j 6=i

[
∂Ij(p)

∂p
(Ij(p)− Ii)] (2.33)

where H is the Hessian matrix :

H =
∑
j=1
j 6=i

∂Ij(p)

∂p

∂Ij(p)

∂p

T

(2.34)

At each iteration, p is updated to the rest of images Ij using :

pj ← pj + ∆p, where j 6= i (2.35)

This is a forward additive formulation of Least Squares Congealing, an inverse
compositional solution is also introduced in [27] to deal with some specific problems,

25



i.e., inequality between additive and compositional updates and object loss of outlier
images.

2.4.4 Advantages and drawbacks

The main advantage of joint alignment methods is that they are able to simulta-
neously align a set of images without a biased template selection. Hence, this type
of methods can be used for aligning unknown faces in a face recognition application.
Moreover, many joint alignment methods, e.g., Learned-Miller Congealing (LMC),
Least Squares Congealing (LSC), work in an unsupervised manner. Hence, they are
easy to implement. However, there are certain limitations in current existing joint
alignment methods. For example, LMC needs of pre-defined step size of updates and
the estimation of parameters is sequential. This results in slow convergence ability,
and this method is easily to get stuck in undesired local minima. LSC is sensitive
to variations in illumination, scale, and occlusion, because it is an intensity based
method.

2.5 Face databases

This section introduces several famous face databases on which we conduct com-
parison experiments in the following chapters. We divide these face databases into
two groups : “controlled” and “uncontrolled”. The controlled databases, including
AR face [87], FERET [95], and Yale B [40], are used for “ideal performance evalua-
tion”. The uncontrolled databases, containing SCface [42] and LFW (labeled Faces
in the Wild) [54], are more challenging for face alignment and more suited to mimic
a video surveillance environment.

2.5.1 Controlled databases

2.5.1.1 AR face database

AR database [87] was created by Aleix Martinez and Robert Benavente in the
Computer Vision Center (CVC) at the U.A.B. This database contains over 4,000
frontal facial images of 126 people (70 men and 56 women) with different facial
expressions, lighting conditions, and occlusions. These pictures were taken under
strictly controlled conditions. No restrictions on wear (clothes, glasses, etc.), make-
up, hair style, etc. were imposed to participants. Figure 2.12 shows examples of AR
face images related to one person under different conditions. Each person partici-
pated in two sessions. Images in Session 1 were taken under different conditions :
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neutral (Figure 2.12 (a)), expressions (Figure 2.12 (b)), illumination (Figure 2.12
(c)), sun glasses + illumination (Figure 2.12 (d)), scarf + illumination (Figure 2.12
(e)). Session 2 consists of images taken under the same conditions as in Session 1
but separated by two weeks (Figure 2.12 (f)-(j)). The images in this database are all
labeled with three feature points (two eyes and nose tip), and a part of images pro-
vide manual annotations of 22 facial landmarks (see Figure 2.13). These landmarks
can be used for performance evaluation.

(a) 1 (b) 2-4 (c) 5-7

(d) 8-10 (e) 11-13

(f) 14 (g) 15-17 (h) 18-20

(i) 21-23 (j) 24-26

Figure 2.12 – Examples of AR face images related to one individual.

2.5.1.2 FERET

FERET database [95] is a standard dataset used for facial recognition system
evaluation. The related face recognition technology program is managed by the De-
fense Advanced Research Projects Agency (DARPA) and the National Institute of
Standards and Technology (NIST), USA. This database has facial images related
to more than 1,000 subjects. Each individual is related to 5 to 11 images. Figure
2.14 shows example images related to one individual : two frontal view images with
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Figure 2.13 – 22 landmarks manually labeled in the AR face images.

different facial expressions (“fa” and “fb”), one image (“fc”) taken with a different
camera and different lighting condition, and two images taken after certain intervals
(duplicate).

Figure 2.14 – Examples of different types of image in FERET database. The dupli-
cate I image was taken within one year of the “fa” image and duplicate II was taken
at least one year of the “fa” image.

2.5.1.3 Yale B

Yale B database [40] provides 5,760 single light source images related to 10 sub-
jects each seen under 576 viewing conditions (64 lighting conditions × 9 poses). For
each pose, the 64 images are divided into five different subsets according to the direc-
tion of lighting source under which the considered image is taken (see some examples
in Figure 2.15). Regarding this division, the images belonging to subset 1 is quite
easy (the illumination is equally frontal) whilst subsets 4 and 5 are very challenging.
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Also, provided in the Yale B database, for each face, are the coordinates of three
landmarks : two eye centers and mouth center.

2.5.2 Uncontrolled databases

2.5.2.1 SCface

SCface database [42] was designed mainly as a means of testing face recognition
algorithms in real-world conditions. This database contains 4160 static facial images
taken in uncontrolled indoor environment using several video surveillance cameras of
various qualities. Some example images of one person taken by different cameras are
shown in Figure 2.16. For each camera, images were taken with different distances
and viewpoints. This database also provides the coordinates of two eye centers, nose
tip, and mouth for each face. In other words, there are 4 landmarks per image for
the evaluation on this database.

2.5.2.2 LFW (Labeled Faces in the Wild) database

LFW database [54] contains more than 13,000 images of faces collected from the
web. Each face has been labeled with the name of the person pictured. 1680 of the
people pictured have two or more distinct photos in the data set. The only constraint
on these faces is that they were detected by the Viola-Jones face detector. LFW
database is challenging for face recognition research because faces in this database
undergo uncontrolled variations. The operational goal of this set is to study the
problem of pair matching (given two facial images, decide whether they are related
to the same individual or not). Examples of matched pairs from this database are
shown in Figure 2.17.

2.6 Evaluation criteria for face alignment

This section discusses the main solutions used in literature to evaluate the per-
formance of face alignment methods. We will also employ some of these evaluation
criteria to verify the ability of our methods in the following chapters.

1. Convergence rate of landmarks

During the alignment process, the new positions of landmarks in cropped faces
can be obtained using the estimated transformation parameters. If the Euclidean
distance between a landmark and its relevant groundtruth is smaller than a pre-
defined threshold, the landmark is taken as converged. Hence, the convergence rate
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(a) Subset 1 (0◦ to 12◦)

(b) Subset 2 (13◦ to 25◦)

(c) Subset 3 (26◦ to 50◦)

(d) Subset 4 (51◦ to 77◦)

(e) Subset 5 (more than 78◦)

Figure 2.15 – Examples of images from one individual under different conditions.
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Camera 1 Camera 2

Camera 3 Camera 4

Camera 5

Figure 2.16 – Examples of images from SCface database.

can be calculated by :

rate =

∑M
i=1

∑Nl

j=1

(∥∥xij − x̃ij∥∥ < t
)

M ×Nl

, (2.36)

where xij and x̃ij respectively represent the new coordinates and the groundtruth
of landmark j from the ith image, M and Nl are respectively the numbers of test
images and of landmark points, t stands for the threshold.

Convergence rates can be reported in different ways : e.g., with respect to itera-
tions, thresholds, and deviation of perturbations. The detailed information will be
introduced in the experiment settings.

2. Average of cropped faces

Since the goal of alignment is to transform faces into a standard pose, the average
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Figure 2.17 – Examples of matched image pairs from LFW database.

of the cropped (aligned) faces should have clear facial features. Therefore, the average
images before and after alignment are calculated and compared. This criterion is
usually used for the evaluation of joint alignment methods. Figure 2.18 is an example
of averages images calculated from unaligned and aligned faces.

(a) (b)

Figure 2.18 – Gray-level average images of (a) unaligned faces and (b) aligned faces.

3. Improvement in face recognition

To verify the benefits of alignment, face recognition rates on original and aligned
images can be respectively calculated and compared.

4. Complexity

The computational cost or running speed of face alignment algorithm is also
important, especially for real-time applications.

32



2.7 Conclusion

This chapter mainly introduces classic and recent works about face alignment.
However, the results of most existing face alignment methods are presented on high
quality still images taken under controlled conditions, and these methods usually do
not perform well in uncontrolled environments where images undergo low resolution,
motion blur, noise, occlusion, large variations in pose, expression, and illumination.
All these challenging factors exist in our target data which are video frames from
surveillance cameras. That is, there is still a lot of work to do to improve the perfor-
mance of face alignment in video surveillance context.

In this chapter, image alignment algorithms are divided into three categories,
i.e., feature point based, direct alignment, and joint alignment. Also, feature point
based methods consist of texture-based methods and shape-based methods. In this
thesis, we do not work on shape-based methods because they are too complicated
and computationally expensive for video surveillance applications. Since direct face
alignment methods are not suitable for face recognition applications due to the re-
quirement of a pre-defined template, we do not adopt this type of methods in our
work. Hence, in this thesis we focus on the study of texture-based point detection
and joint face alignment. While existing texture-based detectors are mostly based on
a priori knowledge of facial structure and a training phase, the first part of our work
presented in Chapter 3 is an online approach without requirements of pre-defined
constraints on feature distributions. Then, we respectively propose two new joint ali-
gnment methods in Chapters 4 and 5 to cope with the challenges for video-based face
alignment. Our methods circumvent many of the limitations existing in the previous
joint alignment methods. Moreover, in Chapter 6 we combine joint alignment with
a face tracker for accurate face extraction.
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Chapitre 3

An Online Three-stage Method for Facial Point Loca-
lization

3.1 Introduction

An intuitional solution to mis-alignment is detecting facial feature points and
then transforming them to standard positions. As discussed in Chapter 2, the main
advantage of this type of methods is that numerous robust and efficient features
can be adopted for accurate keypoint detection. Hence, this chapter focuses on the
problem of facial point localization.

Finding facial features respectively under expression and illumination variations
is always a difficult problem. One popular solution for improving the localization
performance is to use the spatial relation between facial feature positions. Existing
algorithms mostly rely on a priori knowledge of facial structure and on a training
phase. In [29, 115], pairwise spatial relations between facial point positions are learned
for detection. With the knowledge of facial feature distributions, [121] divides faces
into several regions of interest (ROI), then individual feature patch templates are
used to detect points in the relevant ROI. Ding et al.[32] first localize two eyes and
estimate the approximate positions of other features with a priori knowledge about
face. However, the construction of training data for these methods is complicated
and computationally expensive.

To circumvent the training stage, this chapter describes an online approach wi-
thout requirements of pre-defined constraints on feature distributions. Instead of
training specific detectors for each facial feature, a generic method is first used to
extract a set of interest points from test images. With a robust feature descriptor
named Patterns Oriented Edge Magnitude (POEM) histogram [119], a smaller set of
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these points are picked as candidates. Then we apply a game-theoretic technique to
select facial points from the candidates, while the global geometric properties of face
are well preserved. The experimental results demonstrate that our method achieves
satisfactory performance on face images under expression and lighting variations.

The remainder of this chapter is arranged as follows : Section 3.2 first discusses
four invariant feature detectors. Background information about POEM descriptor
and game-theoretic matching is respectively introduced in Sections 3.3 and 3.4. The
details of our online three-stage method for facial point localization are discussed in
3.5. The experimental results are analyzed in Section 3.6 and conclusions are given
in Section 3.7.

3.2 Invariant Feature Detectors

Facial images contain some basic types of features : blobs (e.g., eye centers and
nostrils) and corners (e.g., eye corners and mouth corners). To avoid training specific
facial point detectors which are not easy to implement, here we adopt generic inva-
riant feature detectors to locate these keypoints in faces. According to the studies
in [88], we choose four efficient invariant feature detectors including Laplacian-of-
Gaussian (LoG) [77], Difference-of-Gaussian (DoG) [81], Harris-Laplacian [88], and
Hessian-Laplacian [88] for further evaluation on faces. These algorithms aim at fin-
ding interest points invariant to scale, rotation, and translation as well as not sensitive
to changes of illumination and viewpoint. Being different from detectors specifically
trained for facial features, these methods work in an online manner.

3.2.1 Laplacian-of-Gaussian (LoG)

In [77], the Laplacian-of-Gaussian (LoG) operator is used to detect blob-like fea-
tures. An input image I(x, y) ((x, y) is the vector of coordinates) is first smoothed
by a Gaussian filter :

g(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(3.1)

where σ is the Gaussian smoothing parameter.

Then we have a scale-space representation :

L(x, y, σ) = g(x, y, σ) ∗ I(x, y) (3.2)

The Laplacian operator is defined by :
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∇2L = Lxx(x, y, σ) + Lyy(x, y, σ) (3.3)

where Lxx and Lyy respectively denote second derivative of L in direction x and y.
In order to obtain a multi-scale blob detector with automatic scale selection, the

scale-normalized Laplacian operator is used :

∇2
normL = σ2(Lxx(x, y, σ) + Lyy(x, y, σ)) (3.4)

Based on Equation (3.4), interest points are found by attaining the local maxima
of : ∣∣∇2

normL
∣∣ = σ2 |(Lxx(x, y, σ + Lyy(x, y, σ))| (3.5)

3.2.2 Difference-of-Gaussian (DoG)

The computational cost of Equation (3.5) is relatively high since it needs to
estimate second derivatives in x and y direction respectively. Later, Lowe [82] proved
that :

∇2
normL ≈

L(x, y, kσ)− L(x, y, σ)

k − 1
(3.6)

where k is a constant multiplicative factor.
Hence, a cheaper way to approximate LoG is the use of Difference-of-Gaussian

(DoG) [81] :

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3.7)

As shown in Figure 3.1, local extrema of DoG images are detected by comparing a
pixel (marked with X) to its 26 neighbors at the current and adjacent scales (circles).
These extrema determine the location and scale of interest points.

3.2.3 Harris-Laplacian detector

Harris-Laplace detector [88] consists of two steps : a multi-scale point detection
and a scale selection.

1. Multi-scale initial point detection

Harris-Laplacian detector is developed from the algorithm of Harris and Stephens
[47] which is mainly based on a second moment matrix defined by :
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Figure 3.1 – Detection of local extrema across DoG images [82].

µ(x, y, σI , σD) = σ2
Dg(x, y, σI) ∗

[
L2
x(x, y, σD) LxLy(x, y, σD)

LxLy(x, y, σD) L2
y(x, y, σD)

]
(3.8)

where σI is the integration scale, σD is the differentiation scale.
The selection function is defined by :

cornerness = det(µ(x, y, σI , σD))− αtrace2(µ(x, y, σI , σD)) (3.9)

where α is a constant.
Location of initial points at different scales are obtained by calculating local

maxima of Equation (3.9).

2. Scale selection

Scale selection has been studied in [77], the idea is to find the characteristic
scale of a point, for which a given function attains an extremum over scales. To this
purpose, LoG function in Equation (3.5) is often used for scale selection. The work
of [88] verify for each initial points whether the LoG attains a maximum at the scale
of the point. The points for which LoG attains no extremum or the response is lower
than a threshold are rejected.

3.2.4 Hessian-Laplacian detector

Hessian-Laplacian detector [88] is based on Hessian matrix which is second order
derivatives. The Hessian matrix for point at (x, y) is defined by :
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H(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]
(3.10)

Initial interest points are localized spatially by finding local extrema of both the
determinant and trace of Equation (3.10) :

det(H(x, y, σ)) = σ2(Lxx(x, y, σ)Lyy(x, y, σ)− L2
xy(x, y, σ)) (3.11)

trace(H(x, y, σ)) = σ(Lxx(x, y, σ) + Lyy(x, y, σ)) (3.12)

We can notice that the trace of Hessian matrix in Equation (3.12) is identical to
the LoG in Equation (3.4). The scale selection process of Hessian-Laplacian detector
is similar to that of Harris-Laplacian algorithm in Section 3.2.3.

3.3 POEM : Patterns of Oriented Edge Magnitudes

POEM (Patterns of Oriented Edge Magnitudes) is a robust feature descriptor
which catches both the edge information of local patches and the relation between
this information in a neighboring region. POEM was first used in face recognition
[119, 120], and has shown its ability for a good representation of facial features. The
main steps of calculating POEM descriptor are (see Figure 3.2) :

r
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(a) Pixel oriented 
  magnitudes

(b) Accumulation of spatial 
magnitudes in cell

(c) Calculation of self similarities
upon oriented magnitudes 

Figure 3.2 – Main steps of POEM extraction [119].
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(1) The first step is the calculation of the gradient image. The gradient orien-
tation of each pixel is then evenly discretized over 0-π (“unsigned” type) or 0-2π
(“signed” type). Hence, for each pixel, the gradient is a 2-dimension vector with
its original magnitude and its discretized direction. Take the pixel p in Figure 3.2
(a) for example, the length and direction of the continuous arrow emitting from p
respectively represent the magnitude and the discretized direction.

(2) Magnitude Accumulation. For a pixel p, a local histogram of gradients over
all pixels within a cell centered on p (the light region in Figure 3.2 (a)) is calculated
and assigned to p. Vote weights are the gradient magnitude and the number of bins
equals to the number of orientations. As shown in Figure 3.2 (b), the feature is now
a vector of m values where m is the number of discretized directions, and each value
stands for the accumulated magnitude in one direction.

(3) Computation of self-similarity-based operator. At each orientation θi, the
magnitude at pixel p is compared with l surrounding pixels (e.g., C0 - C7 in Figure
3.2 (c)) in a radius r :

POEM θi(p) =
l∑

j=1

(Iθip − Iθicj > τ)2j (3.13)

where Iθip , Iθicj are the magnitudes of central and surrounding pixels p, cj, and the
threshold τ is 0.2. This procedure is similar to the calculation of LBP operator [90],
more information can be found in Appendix B.

So for each pixel, there will be a set of m values :

POEM(p) =
{
POEM θ1(p), ..., POEM θm(p)

}
(3.14)

(4) Finally, for a pixel, we calculate m histograms of POEM (one for each orien-
tation) over a small window, centered on that pixel. These m histograms are conca-
tenated and used as the feature descriptor of the considered pixel.

As pointed out in [119], POEM presents the following properties : POEM (1)
is an oriented, spatial multi-resolution descriptor capturing rich information about
the original image, (2) is a multi-scale self-similarity based structure that results in
robustness to exterior variations, (3) is of low complexity.

3.4 Game-theoretic matching

This section discusses a game-theoretic matching approach where the matching
problem is cast into a strategic game. Section 3.4.1 introduces the basic knowledge
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about game theory, and Section 3.5 presents the details of matching as a strategic
game.

3.4.1 Game theory

3.4.1.1 Traditional game theory

Game theory is a method of studying the mathematical models of conflict and co-
operation between intelligent rational decision-makers. In a traditional game, decision-
makers pursue well-defined exogenous objectives (they are rational) and take into
account their knowledge or expectations of other decision-makers’ behavior (they
reason strategically) [91]. Game theory is mainly used in economics, political science,
and psychology, as well as logic and biology.

In a strategic game, players compete against with their adversaries by selecting
a strategy from an allowed set, and each player will get a payoff defined by the
relationship between two plays’ choices. Table 3.1 describes a canonical example of
a two-player game, “Prisoner’s dilemma” : Two suspects in a crime are put into
separate cells. If they both confess, each will be sentenced to 2 years in prison. If
only one of them confesses, he will be freed and the other will receive a sentence of 3
years. If both stay silent, each of them will only need to serve 1 year in prison. Here
two prisoners can be taken as players, (stay silent, confess) is the set of available
strategies (or pure strategies in the language of game theory), and the results of
sentence are payoffs.

Prisoner 2 stays silent Prisoner 2 confesses

Prisoner 1 stays silent Each serves 1 year
Prisoner 1 : 3 year

Prisoner 2 : goes free

Prisoner 1 confesses
Prisoner 1 : goes free

Prisoner 1 : 3 year
Each serves 2 years

Table 3.1 – The prisoners’ dilemma.

A game is called symmetric when the payoffs for playing a particular strategy
depend only on the other strategies used, not on the players. That is, if the payoff is
invariant to the change of players’ identities, then a game is symmetric. For example,
Prisoner’s dilemma in Table 3.1 is a symmetric game.
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If each player has chosen a strategy and no player can benefit by changing his/her
strategy while the other players keep theirs unchanged, then the current set of
strategy choices and the corresponding payoffs constitute a Nash equilibrium. For
example, the game in Table 3.1 has a unique Nash equilibrium (confess, confess)
because whatever one player does, the other prefers confess to stay silent.

Here, we define a pure strategy set O = {1, 2, ..., n}, and a related n × n payoff
matrix C = (cij) where cij (i, j ∈ O) represents the payoff of an individual playing
strategy i against one choosing strategy j. In contrast to pure strategy, a mixed
strategy is a probability distribution x = (x1, ..., xn)T over the strategy set O. This
means that the plays’ actions are not deterministic but regulated by probabilistic
rules. Clearly, mixed strategies lie in a n-dimensional space :

∆ =

{
x ∈ Rn :

n∑
i=1

xi = 1 and xi ≥ 0, i = 1, ..., n

}
(3.15)

The support of a mixed strategy σ(x) = {i ∈ O|xi > 0} defines the set of elements
with non-zero probability. If a player plays pure strategy i against a mixed strategy
x, the payoff will be :

(Cx)i =
∑
j

cijxj (3.16)

Hence, the expected payoff by adopting a mixed strategy y against x is yTCx.
The best replies against a mixed strategy x are :

β(x) =
{
y ∈ ∆ : yTCx = maxzz

TCx
}

(3.17)

A mixed strategy x is a Nash equilibrium if it is the best reply to itself, i.e. :

∀y ∈ ∆,yTCx ≤ xTCx (3.18)

An important property of mixed strategy Nash equilibria x is that [91] :

Theorem 3.1 Every pure strategy i in the support of a mixed strategy Nash equili-
brium x is a best response to x.

Theorem 3.1 can be proofed as follows : (1) Suppose that there is a pure strategy
i in σ(x) that is not a best response to x. Then a player can increase his/her payoff
by transferring probability from i to a pure strategy that is a best response ; hence
x is not a best response to itself. (2) Suppose that a mixed strategy x

′
that gives a

higher payoff than does x in response to itself. Then at least one pure strategy in
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support of x
′

must give higher payoff than some strategies in σ(x), so that not all
strategies in σ(x) are best responses to x. This implies that :

Corollary 3.1 For every pure strategy i in the support of a mixed strategy Nash
equilibrium x yields the same payoff (Cx)i = xTCx, while all strategies outside the
support of x earn a payoff that is less than of equal xTCx.

3.4.1.2 Evolutionary game theory

Considering an idealized scenario where pairs of players repeatedly drawn at
random from a large population to participate in a symmetric two-player game (i.e.,
a continuous iterative process), this is the conception of evolutionary game theory. Be
different from traditional game theory, players are not supposed to behave rationally
or to have complete knowledge of the details of the game. Players either inherit
modes of behavior from their forebears or are assigned them by mutation. During
the evolutionary process, only the strategies with high support will survive, and
strategies with low support are driven to extinction.

In evolutionary game theory, a strategy is said to be an evolutionary stable strategy
(ESS) if it is a Nash equilibrium and :

∀y ∈ ∆,xTCx = yTCx⇒ xTCy > yTCy (3.19)

3.4.2 Matching as a strategic game

In [2], the matching problem is cast into a strategic game. Let A1 and A2 be
the two sets of features for matching, hence the set of candidate feature pairs is
A = A1 × A2. Assuming that there are n candidate pairs and a n× n matrix C can
be calculated for measuring the compatibilities between candidate pairs. Our purpose
is to find a subset Amatch ⊆ A which contains only matched pairs. This match subset
should satisfy two criteria : high internal compatibility, i.e., pairs belong to Amatch are
mutually highly compatible, and low external compatibility, i.e., pairs outside Amatch

are scarcely compatible with those inside.
To this point, we can find that the match subset have similar characteristics to

Nash equilibria which satisfy both the internal and external compatibility criteria.
More precisely, in Corollary 3.1, for any strategy i ∈ σ(x), (Cx)i = xTCx, hence
the payoff of every strategy in the support of a Nash equilibrium x is constant,
while all strategies outside the support σ(x) earn a payoff ≤ xTCx. Considering the
calculation of (Cx)i in Equation (3.16), strategies in σ(x) are compatible with each
other. However, the external criterion is not strict : there could exist feature pairs
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not in σ(x) that earn a payoff equal to xTCx in the match set, this may lead to a
ambiguous match. Therefore, we use ESS as a good solution, as in Equation (3.18)
a constraint has been added to guarantee that external criterion is strictly satisfied.

In order to cast the matching problem into a strategic game, we can take candidate
pairs as pure strategies : O = {1, ..., n}, where n = |A|. Hence, matched pairs belong
to the support of an ESS which can be estimated iteratively by [3] :

xi(t+ 1) = xi(t)
(Cx(t))i
x(t)TCx(t)

(3.20)

where t is the iteration number.
This game theoretic solution has also been applied for feature grouping [109] and

surface registration [2].

3.5 Online Three-stage Facial Point Localization

Inspired by the work of [2], where the game-theoretic technique is used for 3D
image registration and where the global consistency between correspondences is well
preserved, we propose here an online, three-stage method for facial point localization.
While [2] matches the features of images for the same scene/object, we try to find the
correspondences between feature points of two different face images with different
identities and even of different expressions and illuminations. We cast the feature
point localization problem into a coarse-to-fine matching task, an illustration of our
algorithm is shown in Figure 3.3. In our model, the template (T ) is an image with
manually labeled target points and for each test image (I), we aim at finding the
corresponding feature points. In the first step, instead of training specific detectors for
each facial feature, as commonly used in other algorithms [29, 121], a generic method
is applied to extract a set of interest points from I. Then, for each target point in T , a
smaller set of these interest points are picked as candidates, using the robust feature
descriptor POEM histogram [119]. Finally, we apply the game-theoretic technique
to select desired facial points from candidates, without requirements of pre-defined
constraints on feature distributions.

3.5.1 Step 1 : Detection of interest points

Unlike some approaches requiring trained detectors for specific facial features
[29, 121], we first use a more generic method to extract a set of interest points
which are invariant to scale, rotation and translation and which are also robust
to illumination changes. A smaller set of these points will be picked as candidates

44



Template (T) 

Step 1 

Test image (I) 

Step 2 Step 3 

Interest points  Candidate pairs Match pairs 

Figure 3.3 – Overview of our method. For clarity, only 3 facial target points are
located as examples. In Step 1, interest points are found by a generic detector. For
each point in the template, a small set of points are picked as candidates in Step 2.
The desired facial points are selected from candidates in Step 3.

in the following step. The fundamental idea behind this is that we believe some
facial features, e.g. eye corners, mouth corners and nostrils are invariant to similarity
transformations with respect to the change of identity, expression and illumination.
We have tested the following interest point detectors based on Laplacian-of-Gaussian
(LoG) [77], Difference-of-Gaussian (DoG) [81], Hessian-Laplacian [88], and Harris-
Laplacian [88]. Detailed information about these detectors has been introduced in
Section 3.2. According to the visual results on several images (see an example in
Figure 3.4), we adopt Harris-Laplacian detector here, since it can find more desired
facial feature points, e.g., mouth corners, eyes corners, and nostrils.

3.5.2 Step 2 : Candidate points Screening

After the extraction of interest points, the localization of facial points turns into a
matching problem between the target points from T and the interest points from (I).
Considering the efficiency of matching, for each target point, only K (e.g. K ≤ 10)
points in I with the nearest descriptor are picked as candidates.

Hence, a robust feature is required to distinguish the interest points. We propose
here to use the POEM feature descriptor [119]. The main steps of calculating POEM
histogram have been introduced in Section 3.3. Depending on the distances between
histograms, K interest points with the nearest descriptor are picked as candidates
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(a) (b) (c) (d)

Figure 3.4 – Interest points detected by different methods : (a) LoG, (b) DoG, (c)
Hessian-Laplacian and (d) Harris-Laplacian detector.

for each target point.

3.5.3 Step 3 : Multi-template game-theoretic matching

Up to this point, there are several candidate points in I for each target point
in T . Let A1 = {a1, ...,aN} and A2 = {b1, ..., bL} be the target and candidate
point sets respectively, where ai,bj represent the coordinates. Thus a target point ai
corresponds to K candidate point pairs : (ai, b1),...,(ai, bK). In this stage, we aim
at finding the match pairs for every target point, e.g. (a1, b1),(a2, b2), and (a3, b3)
in Figure 3.3. As facial features have certain geometric structure, there exists a
compatible transformation for all these match pairs. The selection process can be
seen as a matching game [2], in which candidate pairs (ai, bj) are defined as pure
strategies available to players and the payoffs for every combination of strategies are
calculated as :

π((a1, b1), (a2, b2)) =
min(‖a1 − a2‖ , ‖b1 − b2‖)
max(‖a1 − a2‖ , ‖b1 − b2‖)

(3.21)

where ‖·‖ represents the Euclidian distance.

With Equation 3.21, strategies that correspond to rigid transformation have
high payoff values, while less compatible pairs get lower scores. Take Figure 3.3
for example, π((a1, b1),(a2, b2)) and π((a1, b1),(a3, b3)) are higher than π((a1, b2),
(a2, b3)). Since players always want to get higher payoffs, they prefer to pick stra-
tegies that are compatible with their opponents’ choices. As the game is repeated
by a large population of players, a set of strategies with high mutual compatibility
will be assigned to high weights. The compatible set of strategies can be obtained

46



by calculating evolutionary stable states (ESS’s), see Section 3.4 for details. Finally,
the point pairs with high weights are taken as match pairs.

Since facial features in test images vary with the change of identity and expres-
sion, the matching problem will suffer from the error of candidate screening. More
precisely, the correspondence bi of one target point ai may not be involved in the
candidate set of ai. In that case, all pairs that contain ai will get low weights after
the matching game, i.e. this facial point is miss-located. To increase the robustness
of game-theoretic matching, we apply multiple templates to match with test images.
Only if one of these templates gives a match point of target point ai, this facial point
can be successfully located. Hence, the probability of “miss-located” is very low. If a
facial point is located by several templates, the average location is used as the final
result.

3.6 Experimental results

3.6.1 Experiment settings

Database : AR face database [87].

Evaluation criterion. Let bi and b+
i be the predicted and manually labeled loca-

tions (ground truth), the localization error is calculated as : mi =
∥∥bi − b+

i

∥∥ /deye,
where deye is the average distance between two eye pupils in ground truth.

If we choose a threshold c, the correct localization rate will be :

rate =

∑M
j=1

∑N
i=1

(
mj
i < c

)
M ×N

(3.22)

where M is the number of test images and N is the number of target points per
template.

3.6.2 Matching of labeled points

In order to verify the effectiveness of our method for facial features, with the
assumption of perfect selection of candidates, we first applied our method to match
two sets of labeled points from two different images. We randomly selected 20 images
of different individuals with neutral expression from AR-face database and ran game-
theoretic matching between every two images, i.e. 190 image pairs. Original images
with the resolution 768× 576 are used directly in this experiment.

For each image pair, we take one image as template (T ) and calculate feature
descriptors for all labeled points in both images. For each point in T , 5 points with
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nearest descriptor in another image (I) are used as candidates. AR-face images have
been manually labeled with 22 landmarks, so there are 110 point pairs which are
then regarded as strategies in the matching game.

A point in image I assigned to the corresponding point in T , means a correct
match. We adopted different POEM parameters to determine the closest neighbors,
and the matching results can be seen in Figure 3.5. The average match rate is about
98% and the results are not sensitive to parameter selection. Hence, our method
works well for the matching of facial points.

  

Match rates(%)

(c=5; r=3) (c=7; r=5) (c=9; r=7) (c=11; r=9) (c=13; r=11) (c=15; r=13) (c=19; r=17)
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Figure 3.5 – Labeled points matching with POEM descriptor of different parame-
ters. “3-unsigned” means that the POEM descriptor has 3 orientations discretized
over 0−π, and “8-signed” stands for a descriptor of 8 orientations over 0−2π. c and
r respectively represent the cell size and the radius of the POEM descriptor.

3.6.3 Facial features localization

Here, we aim at locating 10 facial points in test images (Figure 3.8). We form
two image sets for evaluation : Data 1 consists of frontal faces with neutral, smile
and anger expression and Data 2 is a set of face images under side illumination (see
Section 2.5.1.1). All the face areas are extracted by Viola-Jones detector [117].

3.6.3.1 Using different number of templates

We first evaluated the impact of adopting different numbers of templates. The
templates and 350 test images were randomly selected from Data 1. The localization
results can be seen in Figure 3.6. It is clear that matching with single template gets
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lower accuracy than multiple templates, due to the high probability of “miss-located”.
While the results with 10, 15 and 20 templates are very similar, the accuracy of using
5 templates is slightly worse. For efficiency, we adopt 10 templates in the following
experiments, which have no overlap with test images.
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Figure 3.6 – Localization results using different numbers of templates.

3.6.3.2 Verification of the importance of game-theoretic matching

To show the importance of game-theoretic matching, we also tried to localize
points without this step, i.e. we directly picked the points with closest descriptor
in I as the correspondence of a target point in T . Suffering from the variation of
facial features, the closest-feature-based method is more like a random selection from
detected interest points (Figure 3.7, Data 1), while game-matching-based method
achieves a good performance. Hence the game-theoretic technique, which carries the
information of face structure, is very important to facial point localization.
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Figure 3.7 – Localization results with or without game matching step.

3.6.3.3 Using different feature descriptors under neutral condition

This section compares the performance of our method when different feature
descriptors are used : intensity, SIFT [82] (the calculation of SIFT descriptor is in-
troduced in Appendix A) and POEM descriptor. When using intensity values, the
sum of squared differences (SSD) between two sub-regions is computed as the mea-
sure of distance. We calculated the three feature descriptors with the same window
size, and the localization results can be seen in Figure 3.9 (Data 1). The facial point
localization method works better with POEM than with SIFT, and SSD does not
seem to be suitable in this case. Using a threshold m < 0.15, our approach is success-
ful in 95% of points (see some examples in Figure 3.8), while localization accuracy
with SIFT only reaches 82%. The rates of other methods, e.g. 96% for PRFR [29] and
TST [28], 95% for [115], are very close to our result. Considering that our approach
runs without specific trained detectors nor face models, the localization performance
is satisfactory.
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Figure 3.8 – Examples of localized facial points, where “+” is the output of our
method and “×” is the manually labeled location.
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Figure 3.9 – Result of using Data 1 under neutral condition.

3.6.3.4 Using different feature descriptors under illumination changes

Few evaluations have been done specifically for locating facial points under ligh-
ting changes. Here, 100 images were selected randomly as test images from Data
2, and template set consists of 5 images from Data 1 and 5 images from Data 2.
Three kinds of features are also compared in this case, and the results are shown in
Figure 3.10. The game-theoretic method with POEM still gives better result than
with other two features. For m < 0.15, our method reaches a success rate of 90% and
the method with SIFT gets 81%. The accuracies are slightly lower than in neutral
condition but still acceptable.
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Figure 3.10 – Result of using Data 2 under lighting changes.

3.7 Conclusion

Figure 3.11 – Localization facial points on low quality video images.

This chapter presents an online approach to locating facial points, requiring no
pre-defined constraints on feature distributions. We cast the localization problem in
a matching game which preserves global geometric consistency of facial points. The
experimental results demonstrate that the proposed algorithm achieves satisfactory
performance on controlled AR images with expression and illumination changes. As
discussed in Section 1.2, there are other challenging factors for face alignment in
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video surveillance context : occlusion, pose, noise, motion blur, and low resolution.
Unfortunately, point-based methods seem not to perform well on low quality video
surveillance images. Figure 3.11 show several examples of locating feature points on
faces cropped from surveillance videos. Even the state-of-the-art facial point detectors
such as BoRMaN [115] are not capable of working on these images. This is because
point-based methods rely on local features which are sensitive to noise and blurs,
i.e., local features may vary intensively with image quality. Also, occlusion and pose
are still difficult factors for texture-based detectors.

To this end, the following work is focused on joint alignment methods which are
more suitable for low quality images.
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Chapitre 4

Lucas-Kanade Entropy Congealing for Joint Face Ali-
gnment

4.1 Introduction

This chapter presents our joint image alignment algorithm, referred to as Lucas-
Kanade entropy congealing (LKC), in which images are simultaneously aligned by
minimizing a sum-of-entropy function. The canonical entropy congealing was first
proposed by Learned-Miller for joint alignment of binary images and magnetic reso-
nance images [71, 89]. In congealing, the only assumption is the type of geometric
mis-alignment. Later, congealing has been applied to more complex images, faces
and cars [53], using SIFT descriptor [82] as the feature. This joint alignment method
has certain advantages, it is unsupervised and not sensitive to image quality. Ho-
wever, the minimization of the entropy function is based on a sequential searching
estimation with a pre-defined step size of updates (see details in Section 2.4.2). This
usually results in slow convergence speed.

To deal with these limitations, we propose a Lucas-Kanade [10] based optimiza-
tion algorithm to estimate all transformation parameters at the same time rather
than in a sequential way as in Learned-Miller Congealing. More precisely, transfor-
mation updates are obtained by calculating the Jacobian and Hessian matrice of cost
function. This chapter respectively presents two formulations of LKC, i.e., forward
and inverse methods, which are different in the role of “template”. Since the distribu-
tion field is invariant during one iteration, it is taken as the template in the forward
formulation. However, there exists a huge computational cost in re-calculating the
Jacobian and Hessian at each iteration. Baker and Matthews [10] pointed out that
usually the key of efficiency is to switch the role of template and test data. Therefore,
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we exchange the roles of template and test image, this inverse compositional formu-
lation yields constant parts of Jacobian and Hessian which can be precomputed to
decrease computational complexity. Another contribution of our work is that POEM
descriptor [119] is combined with congealing to catch more information about face.

Most optimization methods (including Lucas-Kanade algorithm) aim at finding
the local minima of a cost function. Unfortunately, large mis-alignment errors in
images (e.g., substantial translation and scaling, high-angle rotation) often lead to
undesirable local minima. The optimization process might get stuck in wrong minima,
i.e., images are not correctly aligned. Hence, a multi-resolution framework is applied
to LKC to improve its robustness to large mis-alignment errors : in coarse levels,
images are processed with low resolutions to remove major mis-alignment errors ; in
fine levels, alignment is refined using higher resolutions. Moreover, the use of multi-
resolution strategy brings an improvement of computational speed.

The remainder of this chapter is arranged as follows : Sections 4.2.1 and 4.2.2 res-
pectively introduce forward and inverse formulations of LKC, and their comparison
results are given in Section 4.2.4. In Section 4.3.1, we present the details of multi-
resolution framework for joint alignment, and its experimental results are discussed
in Section 4.3.2. Section 4.4 is the conclusion of this chapter.

4.2 Lucas-Kanade entropy congealing

As introduced in Section 2.4.2, entropy congealing [53] aligns an image by mini-
mizing a sum-of-entropy function :

argmin
Φ
−
∑
x

∑
j∈J

pj(x)log2(pj(x)) (4.1)

where Φ = {v1,v2, . . . ,vN} is the set of warp parameter vectors for different images,
N is the number of images, x = (x, y)T is a column vector containing the pixel
coordinates, J is the set of image features, and pj(x) is the probability of feature j
in the pixel set at x.

In the application to gray level images, [53] pointed out that the high variations of
intensity in the foreground object as well as the variations due to lighting will cause
high entropy even under a proper alignment. Therefore, instead of intensity values,
some robust feature descriptors can be used with Congealing. In [53], SIFT [82] is
used as the feature descriptor. Here, we combine Congealing with the robust feature
descriptor POEM [119] which catches both the edge information of local patches
and the relation between this information in a neighboring region (the main steps
of calculating POEM descriptor have been introduced in Section 3.3). Be different
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from [119], here each pixel is represented by a vector of POEM values in Equation
(3.14). As pointed out in [119], POEM presents the following properties : POEM (1)
is an oriented, spatial multi-resolution descriptor capturing rich information about
the original image, (2) is a multi-scale self-similarity based structure that results in
robustness to exterior variations, (3) is of low complexity. Compared to SIFT used
in [53] which only extracts local shape information, POEM descriptor considers both
local shape information and relationship between this information of different local
structures. Indeed, in [119, 120], POEM catches better details about face than SIFT,
and its performance for face recognition is considerably higher than this of SIFT on
both FERET [95] and LFW [54] datasets.

However, it is difficult to directly calculate probabilities pj(x) of POEM descrip-
tor. Hence, similar to [53], all feature descriptors are modeled as being generated from
a mixture of Gaussians model by K-mean clustering. In this way, pixel at position x
of the ith image can be represented by a vector of probabilities :

(pi1(x), pi2(x), ..., piM(x)) (4.2)

where M is the number of clusters, pik(x) is the probability that this pixel belongs
to cluster k.

Then the sum-of-entropy function in Equation (4.1) can be rewritten as :

−
∑
x

M∑
k

Dk(x)log2(Dk(x)) (4.3)

where Dk(x) is called “distribution field” calculated by :

Dk(x) =
1

N

N∑
i=1

pik(x) (4.4)

Obviously, the alignment of ith image can be achieved by maximizing :

∑
x

M∑
k

pik(x)log(Dk(x)) (4.5)

4.2.1 Forward compositional LKC

Here, we first present a forward Lucas-Kanade method for facial image align-
ment. Since the distribution field Dk(x) is updated only when all the images are
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transformed after an iteration, Dk(x) can be taken as invariable during the estima-
tion of transformation parameters for one image. Therefore, we can take Dk(x) as
the template and pk(x) as test data, and Equation (4.5) is rewritten as :

∑
x

M∑
k

pik(w(x,vi))log(Dk(x)) (4.6)

where w(x,vi) denotes the warp for the ith image. In order to optimize Equation
(4.6), assuming that the current estimation of vi is known, we iteratively update the
parameters with an increment ∆vi, then Equation (4.6) becomes :

∑
x

M∑
k

pik(w(x,vi ◦∆vi))log(Dk(x)) (4.7)

Hereafter, to save space, the transformation parameters and the sequence number
of image are not presented. The Jacobian and Hessian of Equation (4.6) can be
obtained using chain and product rules :

G =
∑
x

M∑
k

∂pk
∂v

log(Dk)

=
∑
x

M∑
k

∇pk
∂w

∂v
log(Dk)

(4.8)

H =
∑
x

M∑
k

[(
∂w

∂v
)T∇ · ∇pk

∂w

∂v
log(Dk)

+∇pk
∂2w

∂v2
log(Dk)]

=
∑
x

M∑
k

(
∂w

∂v
)T∇ · ∇pk

∂w

∂v
log(Dk)

(4.9)

where ∇pk is the gradient of probability, ∂w
∂v

is the Jacobian of the warp.
Because it is a maximization problem in this situation, ∆v is calculated by :

∆v = H−1G (4.10)

Then v is updated using :
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v = v ◦∆v (4.11)

As summary, the main steps of forward compositional LK Congealing are shown
in Figure 4.1.

repeat
(Pre-computed :)
(1) Calculate new distribution field D(x) using Equation (4.4)
for i = 1 to N do

(2) Warp pi(x) with w(x, vi) to compute pi(w(x, vi))
(3) Calculate the gradient ∇pi(w) of pi(w(x, vi)
(4) Calculate the gradient ∇ · ∇pi(w) of ∇pi(w)
(5) Calculate ∇pi(w)∂w

∂v

(6) Calculate (∂w
∂v

)T∇ · ∇pi(w)∂w
∂v

(7) Calculate G using Equation (4.8)
(8) Calculate H using Equation (4.9)
(9) Calculate ∆vi using Equation (4.10)
(10) Update vi using Equation (4.11)

end for
until Equation (4.3) is converged.

Figure 4.1 – Main steps of forward compositional LK Congealing.

4.2.2 Inverse compositional LKC

There is a huge computational cost in re-calculating the Jacobian and Hessian
at each iteration. Usually the key to efficiency is switching the role of template and
test data [10]. Following this idea, after a change of variables, our goal becomes to
find a transformation for the distribution field Dk to maximize :

∑
x

M∑
k

pk(w(x,vp))log(Dk(w(x,vd))) (4.12)

where vp, vd are the transformation parameters for pk(x) and Dk(x).
Similarly, the optimization of Equation (4.12) can be solved by iteratively calcu-

lating an update ∆v in the following equation :
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∑
x

M∑
k

pk(w(x,vp))log(Dk(w(x,vd ◦∆v))) (4.13)

The Jacobian and Hessian of Equation (4.12) can also be obtained using chain
and product rules :

G =
∑
x

M∑
k

pk
∂log(Dk)

∂vd

=
∑
x

M∑
k

pk
Dk

∇Dk
∂w

∂vd

(4.14)

H =
∑
x

M∑
k

pk[−
1

D2
k

(∇Dk
∂w

∂vd
)T∇Dk

∂w

∂vd

+
1

Dk

(
∂w

∂vd
)T∇ · ∇Dk

∂w

∂vd
]

(4.15)

Then, the transformation parameters ∆v for Dk(x) is calculated by :

∆v = H−1G (4.16)

∆vd will be updated to vp after an inverse transformation, see Equation (4.17),
i.e., Dk will not be changed in this step. Also, the main steps of inverse compositional
LK Congealing are shown in Figure 4.2.

vp = vp ◦∆v−1 (4.17)

In inverse compositional LKC, since the distribution field Dk is invariable during
an iteration, the following parts of Jacobian and Hessian in Equations (4.14) and
(4.15) are also invariable :

1

Dk

∇Dk
∂w

∂vd
(4.18)

− 1

D2
k

(∇Dk
∂w

∂vd
)T∇Dk

∂w

∂vd
+

1

Dk

(
∂w

∂vd
)T∇ · ∇Dk

∂w

∂vd
(4.19)
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repeat
(Pre-computed :)
(1) Calculate new distribution field D(x) using Equation (4.4)
(3) Calculate the gradient ∇D(x) of D(x)
(4) Calculate the gradient ∇ · ∇D(x) of ∇D(x)
(5) Calculate 1

D(x)
∇D(x) ∂w

∂vd

(6) Calculate − 1
D(x)2

(∇D(x) ∂w
∂vd

)T∇D(x) ∂w
∂vd

+ 1
D(x)

( ∂w
∂vd

)T∇ · ∇D(x) ∂w
∂vd

for i = 1 to N do
(2) Warp pi(x) with w(x, vi) to compute pi(w(x, vi))
(7) Calculate G using Equation (4.14)
(8) Calculate H using Equation (4.15)
(9) Calculate ∆vi using Equation (4.16)
(10) Update vi using Equation (4.17)

end for
until Equation (4.3) is converged.

Figure 4.2 – Main steps of inverse compositional LKC.

Therefore, Equations (4.18) and (4.19) can be pre-computed at the beginning of
each iteration (see Steps (3)-(6) in the outer loop of Figure 4.2). The computatio-
nal costs of Jacobian and Hessian for the forward and inverse LKC based methods
at each iteration are shown in Table (4.1). In the inverse formulation, the com-
plexity of computing Hessian decreases from O(MNxN

2
v ) to O(MNxNv). Given N

images, the costs of forward and inverse methods are respectively O(MNNxN
2
v )

and O(MNNxNv + MNxN
2
v ) at each iteration. Since N is much bigger than Nv

(N >> Nv, e.g., Nv = 4, N > 100), O(MNNxN
2
v ) >> O(MNNxNv) >>

O(MNxN
2
v ). As a result, O(MNNxN

2
v ) > O(MNNxNv +MNxN

2
v ). In other words,

if running on a large number of images, the computational cost of inverse method
will be much lower than that of the forward method.

4.2.3 Parameter drift

Learned-Miller [71] pointed out that there exists a problem called parameter
“drift” in joint alignment application. More precisely, some estimated transformation
parameters increase the value of cost function, but they can not align the images
as desired. For example, iteratively shrinking all images will cause all the pixels
containing useful information to disappear, and at the meantime the joint gradient
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Forward method Inverse method

Pre-computation
G - O(MNxNv)

H - O(MNxN
2
v )

Per image
G O(MNxNv) O(MNxNv)

H O(MNxN
2
v ) O(MNxNv)

N images
G O(MNNxNv) O(MNNxNv)

H O(MNNxN
2
v ) O(MNNxNv)

Table 4.1 – Computational costs of Jacobian and Hessian for forward and inverse
LKC based algorithms at each iteration. Nx and Nv are respectively the numbers of
pixels and of warp components.

correlation coefficient will reach the maximum value. The example in Figure 4.3
shows that there is a clear shrinkage in images suffering of parameter drift.

In order to avoid parameter drift, we adopt a similar process to [26]. First we
select several corner points (e.g., left-top, right-bottom) of the images and record
their initial positions. After one iteration, we calculate the average positions of se-
lected points, then find a warp pd to transform the average of points to their initial
positions. Based on the type of mis-alignment, different numbers of points are selec-
ted for this estimation (two points for similarity transformation and three for affine
transformation). Finally, pd is composed with the transformation parameters of all
images at the end of this iteration. In this way, the average of transformations is
always close to identity transformation, and the parameter drift case can be avoided.

4.2.4 Experimental results

4.2.4.1 Experiment data

We conduct comparison experiments on gray images from AR [87], SCface [42],
FERET [95], LFW (Labeled Face in the Wild) [54] databases, and a set of video
surveillance images. Whilst the first two databases, AR and SCface, are used to
verify the strength of the proposed algorithm regarding two evaluation criteria :
average image and convergence rate (detailed information about evaluation methods
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(a) 

(b) 

(c) 

Figure 4.3 – Parameter drift phenomenon in joint alignment process. (a) Original
images, (b) Desired aligned images, (c) Images suffering from parameter drift.

is introduced in 2.6), FERET and LFW are used to show the advantage of our
algorithm for different face recognition methods. The video surveillance images are
tested using average image as evaluation method.
(1) In order to evaluate the alignment performance under illumination variations,
we first form two image sets from AR database : Data 1 is a set of 120 images under
neutral conditions with uniform illumination and Data 2 contains 60 images under
neutral conditions and 60 images under side illumination (see examples in Section
2.5.1.1). All the images are randomly selected and related to different identities.
Thanks to the previous work 1, we can collect 22 landmarks per face of this database
(see Figure 2.13).
(2) To prove the strength of our algorithm in real-world conditions, we also evaluate
its performance on the SCface database. 130 images with low resolution and noise
are selected from this database (see examples in Figure 4.4). For each image, there
are 4 landmarks (two eye centers, nose tip, and mouth center) for the evaluation on
this database.
(3) FERET is a classic database for face recognition experiments. 1,000 frontal face

1. http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/tarfd_

markup/tarfd_markup.html
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Figure 4.4 – Examples of test images from SCface database.

images of 500 persons are randomly selected, each person with 2 images : 1 “fa”
image and 1 “fb” image (more information can be found in Section 2.5.1.2).

(4) Facial images from LFW database are also used for face recognition evaluation.
In our experiments, we randomly selected 500 pairs of images from view 2 subset
1 for training, and 500 pairs from view 2 subset 2 for testing (250 matched and
250 mismatched, respectively). Details of LFW database are introduced in Section
2.5.2.2.

(5) We also extract a set of facial images from the surveillance videos collected by
the laboratory LASMEA in France. Since general face detectors do not perform well
on these video surveillance images, we roughly crop the face regions for evaluation.
This test set contains 90 images (6 subjects) which undergo variations in poses and
expression, low resolution, noise, and motion blur (several examples are shown in
Figure 4.5).

Figure 4.5 – Examples of faces extracted from video surveillance images.

4.2.4.2 Parameter settings

Parameters include the number of clusters, parameters of POEM and SIFT des-
criptors (the calculation of SIFT descriptor is introduced in Appendix A). The num-
ber of clusters in Gaussian mixture models is an important parameter for entropy
Congealing. We evaluate the effect of cluster number on AR-face Data 1. Conver-
gence rates with different numbers of clusters calculated using Equation (2.36) are
shown in Figure 4.6. If the cluster number ≥ 10, convergence rates are very similar.
That is, alignment performance is robust to cluster number in a certain range. In
the following test, we adopt 10 clusters for Congealing methods.
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Figure 4.6 – Convergence rates with different numbers of clusters.

Concerning the parameters of POEM, we use here the parameters suggested in
[119], that is, we adopt POEM feature with 3 unsigned orientations, a cell size of
7×7 and a radius of 5. Actually, according to our tests, the performance of proposed
method is not sensitive to the selection of POEM parameters in a certain range.
The code of original Learned-Miller Congealing is available on Internet 2, it uses 8
orientations for SIFT descriptor. For a fair comparison, we report here the results of
LMC obtained with 4 orientation SIFT descriptors, rather than 8 orientations as in
[53], because this results in better performance.

Here, we assume that the type of geometric mis-alignment is a similarity transfor-
mation, i.e., there are four parameters : x-translation, y-translation, in-plane rotation
and scaling. Other transformations, e.g., affine transformation, are also adaptable for
the proposed algorithm, but they may cause unwanted deformation of face.

4.2.4.3 Average image

To compare the performance of alignment methods and feature descriptors, we
align images using Learned-Miller Congealing (LMC) [53], forward compositional (fc-
LKC) and inverse compositional Lucas-Kanade entropy Congealing (ic-LKC) com-

2. http://vis-www.cs.umass.edu/code/congealingcomplex/
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bined with POEM and SIFT descriptors respectively. Also, the results of RASL [93]
are included for comparison 3.

The average images of AR-face Data 1 after different alignments are shown in
Figure 4.7. Intuitively, both face shape and facial features are unclear in the average
of original images. The average of images aligned by LMC with SIFT has clearer face
shape contours than original images, but is still blurry inside the face. We can see
that the remaining five congealing based methods show similar performance in this
visual evaluation. They all perform better than LMC with SIFT, since their average
images have more distinct eye, nose and mouth contours. Similar conclusions are
obtained from results on AR-face Data 2 (see Figure 4.8) when compared with those
on Data 1. This means that our methods are robust to illumination variations. RASL
shows certain improvement on average images, e.g., eyebrows and eyes in Figure 4.7
(b) and lips in Figure 4.8 (b) are clearer than those of unaligned images. However,
compared with the results of LKC methods, the average images generated by RASL
are obviously blurrier.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7 – Average images of AR-face Data 1 aligned by (a) original (unaligned),
(b) RASL (c) LMC with SIFT, (d) LMC with POEM, (e) fc-LKC with SIFT, (f)
fc-LKC with POEM, (g) ic-LKC with SIFT, (h) ic-LKC with POEM.

We turn now to the alignment results obtained from the SCface database with
more difficult images of low quality, e.g., low resolution and strong noise. The related
average images are shown in Figure 4.9. As we can see from this figure, the face
shape and features are blurry in the average of original images. LMC with SIFT

3. The Matlab code of RASL is available at http://perception.csl.uiuc.edu/matrix-rank/
rasl.html
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.8 – Average images of AR-face Data 2 aligned by (a) original (unaligned),
(b) RASL (c) LMC with SIFT, (d) LMC with POEM, (e) fc-LKC with SIFT, (f)
fc-LKC with POEM, (g) ic-LKC with SIFT, (h) ic-LKC with POEM.

just makes the face shape contour clearer, but the facial features are still unclear.
Besides, RASL does not show obvious improvement on this image set. Intuitively,
the remaining methods have no significant differences in performance and they yield
more distinct average images with clearer facial feature contours, e.g., nostrils and
mouth. Based on these results, we can conclude that the proposed methods work
well on low quality images.

Figure 4.10 shows the average images of the challenging video surveillance data.
The average of original images is very blurry. It is interesting to see that all considered
joint alignment methods produce clearer average images (e.g., the regions of mouth
and nose). Due to the motion blurs and noises in original images, it is difficult to make
further comparison. Even though, these results prove that our LKC based methods
are capable of aligning low quality video surveillance images.

4.2.4.4 Convergence rate

(1) With different thresholds

We further evaluate the alignment performance by calculating the convergence
rates with different thresholds, using Equation (2.36). Here, the same approaches as
those mentioned in Section 4.2.4.3 are compared. As can be seen from the results on
the AR-face Data 1 (Figure 4.11), all the alignment approaches significantly improve
the convergence rates over original images, and the four LKC methods have higher
convergence rates than the two LMC methods. The overall convergence rates of RASL
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9 – Average images of SCface aligned by (a) original (unaligned), (b) RASL
(c) LMC with SIFT, (d) LMC with POEM, (e) fc-LKC with SIFT, (f) fc-LKC with
POEM, (g) ic-LKC with SIFT, (h) ic-LKC with POEM.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10 – Averages of video surveillance images aligned by (a) original (unali-
gned), (b) RASL (c) LMC with SIFT, (d) LMC with POEM, (e) fc-LKC with SIFT,
(f) fc-LKC with POEM, (g) ic-LKC with SIFT, (h) ic-LKC with POEM.

are close to those of LMC with SIFT. When threshold ≤ 2, the LKC methods show
similar performance ; when threshold ≥ 3, ic-LKC with POEM works better than
other three LKC methods. It is also interesting to find that POEM improves align-
ment performance, compared to SIFT descriptor. More precisely, convergence rates
of LMC with POEM are higher than those of LMC with SIFT ; convergence rates
of fc-LKC with POEM are higher than those of fc-LKC with SIFT and convergence
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rates of ic-LKC with POEM are higher than those of ic-LKC with SIFT.
Results on AR-face Data 2 can be seen in Figure 4.12. Ic-LKC with POEM

always produces better alignment accuracy than other alignment methods. And there
is a distinct decrease in the convergence rates of LMC with SIFT, which are close
to original rates when threshold ≤ 2. Besides, RASL performs better than LMC
with SIFT, but worse than the rest methods. Other conclusions are similar to those
obtained from Data 1, except that the overall convergence rates are slightly lower
(this is easy to understand since Data 2 is more difficult than Data 1 ), but the
performance of our methods is still satisfactory.

Concerning convergence rates of different alignment methods on SCface images,
as can be seen from Figure 4.13, all methods still improve the convergence rates
over original images, except LMC with SIFT which has lower rates when threshold
≥ 4. The reason is that the landmarks of SCface are all inside feature points, while
LMC with SIFT just improves the consistency on face shape. Besides, the differences
between results of other congealing based methods on this dataset are less than those
on the AR-face images. This might be because the number of landmarks are smaller,
only 4 landmarks are provided for calculation. Since the convergence rates generated
by RASL are even lower than those of unaligned images, this method does not work
at all on the low quality image set. Among all the methods, ic-LKC always performs
the best.
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Figure 4.11 – Convergence rates with different thresholds on AR-face Data 1.
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Figure 4.12 – Convergence rates with different thresholds on AR-faceData 2.
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Figure 4.13 – Convergence rates on the SCface database with different thresholds.

(2) In different iterations
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We also calculate the convergence rates of landmarks at different iterations to
analyze the convergence ability of alignment methods. Landmarks are tracked throu-
ghout the Congealing process, and we calculate the convergence rates using Equation
(2.36) at each iteration. The convergence curves of AR Data 1, Data 2 and SCface
are respectively shown in Figures 4.14, 4.15 and 4.16. It is clear that LKC methods
require less iterations to reach a termination criterion than LMC algorithms and
significantly increase the convergence rate especially during the first iterations of the
process. This is because the updates of LKC methods have no certain limits, while
there is a pre-defined step size for LMC. RASL shows a similar convergence speed to
LMC methods, but this approach is not stable for aligning low quality SC images.
It is also interesting to see that POEM based methods show more stable trends to
convergence on images with lighting changes (AR Data 2, Figure 4.15) and images
with low quality (SCface, Figure 4.16) when compared with SIFT based approaches.
That is, POEM descriptor is more robust to variations in illumination and image
quality.
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Figure 4.14 – Convergence curves of tracking landmarks on AR-face Data 1.

4.2.4.5 Improvement in face recognition

In this section, we evaluate the performance of alignment method regarding their
improvement in face recognition accuracy. In order to reduce the impact of face
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Figure 4.15 – Convergence curves of tracking landmarks on AR-face Data 2.
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Figure 4.16 – Convergence curves of tracking landmarks on the SCface database.
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recognition algorithm, results of two different face recognition methods respectively
based on correlation coefficient and LBP (Local Binary Patterns) [1] are compared
respectively.

Correlation coefficient measures the similarity between two face images, and a
higher score implies a closer match. The correlation coefficient between images I
and J is calculated by :

r =

∑
x(I(x)− Ī)(J(x)− J̄)√

(
∑

x(I(x)− Ī)2)(
∑

x(J(x)− J̄)2)
(4.20)

where x = (x, y) is a vector of coordinates, I(x) and J(x) represent the pixel values
at x in I and J , respectively, Ī =

∑
x I(x) and J̄ =

∑
x J(x) are the mean values

of pixels.
LBP algorithm is widely used for face recognition. Detailed information about

this descriptor is introduced in Appendix B. Here, we use the same LBP parameters
as those in [1], and the face images are divided into 12 × 12 pixel subwindows. A
face image is represented by concatenating histograms of LBP code estimated from
all these subwindows. Chi-square distance of two histograms is used as similarity
measure between two images.

(1) Results on FERET

In the FERET database, the “fa” face images are taken as the target set, and the
“fb” face images form the query set. The target set contains known facial images, and
the images in the query set are unknown facial images to be identified. We compute
the face recognition accuracy using the output images of different alignment methods.
We first consider three Congealing methods : Learned-Miller Congealing with SIFT,
forward compositional and inverse compositional Lucas Kanade Congealing with
POEM. We also include the results obtained by the alignment approach based upon
BoRMaN facial point detector [115], whose code is available on Internet 4.

Here, we compute the rate that the correct answer is in the top n matches. The
performance statistics are reported as cumulative match scores (see Figure 4.17).
The horizontal axis of the graph is the rank and the vertical axis is the percentage
of correct matches (face recognition rate). It is clear that using images aligned by
the two LKC methods yields similar recognition accuracies which are obviously hi-
gher than the rate of using original unaligned images. The improvement of first-rank
accuracy is around 10 percent. Besides, the results of our LKC methods are better
than result LMC with SIFT within rank 10. This can be already predicted from the

4. http://www.doc.ic.ac.uk/~mvalstar/page5/page3/page3.html
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average images : if a query face is in a closer pose to a target one, face features can
be better compared, and then a higher match score will be obtained. In our test,
using images aligned by the BoRMaN algorithm does not give better recognition
results than using unaligned images. This can be explained by the fact that transfor-
mation parameters are calculated from 2 simple mappings of points, the alignment
performance is sensitive to point detection accuracy. That is, small errors produced
by point detector will cause huge mis-alignment which has directly a great impact
on recognition performance.
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Figure 4.17 – Face recognition rates on the FERET database using correlation
coefficient based algrithm.

The previous discussion has already shown the benefits of our alignment algo-
rithm for face recognition regarding a very basic recognition method. We check now
the performance of our alignment method regarding the more sophisticated LBP
based face recognition approach. In fact, as pointed out in [1], LBP histogram is
already robust to small mis-alignment, illustrating by a good recognition rate even
on unaligned faces (see Figure 4.18). Even so, using our alignment algorithm, we
still improve the final recognition rates : the 1-rank match rate is 97.8%. Also, our
ic-LKC with POEM is slightly better than LMC with SIFT. Using images aligned by
BoRMaN decreases the recognition accuracy as before, and this indicates that point
detectors are not so reliable for face alignment.
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Figure 4.18 – Face recognition rates on the FERET database using LBP based
algorithm.

(2) Results on LFW

In the previous experiment on FERET images, the point-based alignment method
does not make expected effect. Besides, LKC in both forward and inverse formulation
achieve similar performance. Therefore, here we concentrate on the comparison of
ic-LKC and original LMC. The images aligned by LMC can be downloaded on the
web 5. The training set is used to find a threshold of distance which produces the
highest correct classification rate. Using this threshold, we report the recognition
rate on test image pairs. Also, correlation coefficient based and LBP based face
recognition are respectively used 6, and the recognition rates are reported in Table
4.2. Compared with the results on unaligned images, the use of LMC improves the
accuracy by 1% with correlation coefficient based algorithm, and 1.4% with LBP
based algorithm, while the improvements by ic-LKC are respectively 2.6% and 4%.
Hence, our alignment method is able to make significant positive effect in the task
of identifying “uncontrolled” faces.

5. http://vis-www.cs.umass.edu/lfw/

6. When using correlation coefficient, a pair is matched (mismatched) if the value is higher
(smaller) than the threshold. When using LBP, a pair is matched (mismatched) if the distance is
smaller (higher) than the threshold.
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Unaligned LMC ic-LKC

Correlation coefficient 58.6% 59.6% 61.2%

LBP 66.2% 67.6% 70.2%

Table 4.2 – Correct classification rates on LFW images.

4.2.4.6 Complexity

Our alignment algorithm has three main steps : feature extraction, clustering and
estimation of transformation parameters.

(1) Feature extraction

The complexity of this step obviously depends on the feature types. As pointed
in [119], POEM and SIFT descriptors have similar complexity, but note that we use
here only POEM codes not POEM histogram, that is why the extraction of POEM
features in our LKC algorithms is faster than the extraction of SIFT in LMC.

(2) Clustering

The two factors affecting the time cost of this step are : feature dimension and
number of clusters. While the dimension of SIFT feature in LMC is 16, POEM
descriptor has 3 dimensions. Since we always adopt the same number of clusters, the
clustering step in our LKC algorithms is considerably faster than that of LMC.

(3) Estimation of transformation parameters

The most important part of our alignment algorithm is the estimation of transfor-
mation parameters. Here, we compare the computing costs of parameter estimation
with LMC, forward and inverse LKC on AR-face Data 1. This experiment was im-
plemented in Matlab on a PC with CoreTM 3.06G CPU, and the results are shown
in Table 4.3. For each image at one iteration, LMC needs 0.4857s to estimate ∆v,
while forward and inverse LKC respectively consume only 0.0944s and 0.0728s. The
high computational cost of LMC is due to the searching procedure described in Sec-
tion 2.4.2, in which deciding an update for one parameter requires recalculations of
Equation (4.5). Between the two LKC approaches, inverse LKC is more computing
efficient, it uses about 0.02s less than forward LKC, while the pre-computation time
is only 0.02s for all images. That is, speed improvements of 20 percent are obtained
by the inverse method. As discussed above, Least Squares Congealing is more com-
putationally intensive than our algorithm, because at each iteration an estimation
between every two images in the set is run. If running on a large number of images
for multiple iterations, the proposed alignment method can significantly save time.
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Moreover, the proposed ic-LKC costs less than five minutes to align 120 images
of size 100 × 100, whereas RASL requires about ten minutes. Based on the above
analysis, our method is more computational efficient than other approaches.

Mean Time (seconds)

LMC Forward LKC Inverse LKC

Pre-computation - - 0.0202± 0.0017

Per image 0.4857± 0.0763 0.0944± 0.0208 0.0728± 0.0063

1000 images 485.7± 76.3 94.4± 20.8 72.8± 6.3

Table 4.3 – Mean time for estimation of ∆v at each iteration.

4.3 Multi-resolution Lucas-Kanade Entropy Congealing

Most existing methods cast the joint alignment problem into a minimization of
a discrepancy function calculated over all images, and then estimate transformation
parameters by finding the local minimum of this function. For example, [53] defines
an entropy function over images, and transformation parameters are estimated by
iteratively searching updates which decrease the value of entropy. In [26], images are
aligned by the minimization of a SSD function using gradient descent algorithms [10].
Unfortunately, large mis-alignment errors in faces (e.g., substantial translation and
scaling, high-angle rotation in Figure 4.19 (a)) often lead to undesirable local minima
in the cost function. The optimization process might get stuck in wrong minima, i.e.,
faces are not correctly aligned.

Section 4.2 presents a joint image alignment algorithm (LKC) where images are
simultaneously aligned by minimizing an entropy function. This algorithm also suf-
fers from the “local minima” problem when images undergo large mis-alignments.
Here, we propose a multi-resolution solution to LKC where major mis-alignments
are removed in coarse levels (images with lower resolution), and alignment is refined
in finer levels (see an illustration in Figure 4.19). The new algorithm is referred to
as multi-resolution LKC (MLKC). The idea of multi-resolution can also be applied
to other joint alignment methods.
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(a) Original images (b) Images aligned 

with low resolution 

(d) Averages of (a), (b), (c), respectively 

(c) Images aligned 

with high resolution 

Figure 4.19 – Illustration of multi-resolution joint alignment.

4.3.1 Multi-resolution joint alignment

The formulation in Section 4.2 works well on roughly aligned images cropped
by Viola-Jones face detector [117]. Here, we focus on the alignment problem where
faces undergo large mis-alignment errors, e.g., substantial translation and scaling,
high-angle rotation as shown in Figure 4.19 (a). LKC estimates the update ∆v
using a first-order optimization algorithm which finds the local maximum of the cost
function in Equation (4.5). However, large mis-alignment errors in faces probably
cause unwanted local maxima of the cost function, i.e., images can not be aligned as
desired.

In this situation, our interest is to increase the step size of update ∆v in the
first iterations to jump out of unwanted local maxima. Hence, a multi-resolution
framework is applied to LKC : in coarse levels, images are processed with lower
resolution to remove major mis-alignment errors ; in fine levels, alignment is refined
using higher resolution. From the original images, we can easily obtain images of
different smaller sizes using Gaussian smoothing and bicubic downsampling. Images
in Level 0 are with original, high resolution. Level 1 consists of images with half the
number of pixels along each axis. The downsampling rate for Level 2 is a quarter,
and so on 7. Similar coarse-to-fine method has been also used in other applications,
e.g., facial point localization [25] and age simulation [106]. In our multi-resolution
framework, the decision to change levels is made automatically, if the increase of
cost function ξ() is less than a pre-defined threshold T , or the maximum iteration

7. Here, without loss of generality, we set the downsampling factor to 2, but it can take other
values.
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number Itermax is reached, the alignment process will change to next level with
finer resolution. At the end of each level, the estimated parameters v are used as
initial ones of the next level (since we use the downsampling factor of 2, translation
parameters in v need to be doubled to fit larger images). The main steps of the
multi-resolution ic-LKC are shown in Figure 4.20. The new algorithm is referred to
as multi-resolution LKC (MLKC).

(1) Generate images for each level by downsampling ;
for level = L to 0 do

(2) Calculate POEM descriptor ;
(3) Clustering and soft assignment ;
repeat

for i = 1 to N do
(4) Calculate ∆v using Equation (4.16)

end for
(5) Update v using Equation (4.17)
(6) Calculate new entropy ξt using Equation (4.3)

until ξt−1 − ξt < Tlevel or Itermax is reached
(7) Calculate initial parameters for the next level

end for

Figure 4.20 – Main steps of proposed multi-resolution ic-LKC.

Another advantage of this multi-resolution framework is the improvement of com-
putational speed. Suppose that Nx, Nv are respectively the numbers of pixels in ori-
ginal images and of warp components. In Level 0, the computational complexity for
aligning N images at each iteration is O(MNNxN

2
v ). The complexity of running an

iteration in Level 1 decreases to O(MNNxN
2
v /4).

The idea of multi-resolution can also be applied to other joint alignment methods.
Here, based on Least Squares Congealing (LSC) [26], we form multi-resolution LSC
(MLSC) for comparison.

4.3.2 Experimental results

We evaluate the performance of proposed MLKC against four joint alignment
methods including LKC, RASL [93], LSC [26], and MLSC. The maximum iteration
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number for all considered methods is 20, and we use two levels for multi-resolution
alignment, i.e., 10 iterations for each level.

In our experiments, images are selected from two databases AR [87] and Yale B
[40]. Face regions are first cropped manually from original images, and then aligned
by transforming their eye centers to standard positions. Finally, these facial images
are randomly warped for evaluating alignment algorithms (the acquisition of test
data is similar to the way in [10]). The image size is 100× 100. Here, we assume the
type of mis-alignment is similarity, i.e., there are four transformation parameters :
x-translation, y-translation, rotation, and scale.

4.3.2.1 Results on the AR database

100 AR facial images under neutral condition are selected for evaluation, and all
faces are labeled by 22 landmarks (see Figure 2.13).

We calculate the new positions of landmarks in aligned images using estimated
parameters. If the distance between a landmark and its relevant average position is
smaller than a fixed threshold, the landmark is taken as converged. Regarding this
criterion, a higher convergence rate stands for a better alignment. Considered align-
ment methods are run on images randomly warped with different standard deviations
σ (mis-alignment magnitude increases with the value of σ), and the convergence rates
are shown in Figure 4.21. RASL performs well on images with minor mis-alignments
(σ ≤ 8), but the convergence rates drop quickly when σ ≥ 9. Although the overall
convergence rates of LSC and MLSC are obviously lower than other three methods,
we can still see the benefit of using a multi-resolution framework, i.e., MLSC works
significantly better than LSC. Both LKC and MLKC achieve satisfactory results in
a large range of mis-alignments (σ ∈ [1, 14]). However, there is a sharply decrease in
the convergence rates of LKC when σ ≥ 15 while the proposed MLKC is still able
to perform stably.

To intuitively evaluate the alignment performance, averages of images aligned by
different methods are shown in Figure 4.22, the standard deviation σ of random warp
is 15 pixels. We can see that only the two LKC based methods are able to generate
average images with distinct facial features, which means that faces are well aligned
to a close pose. In some specific areas, e.g., mouth lips, the average image of MLKC
is clearer than that of LKC.

The computational costs of these alignment methods on the AR images are shown
in Table 4.3.2.1. It is clear that the proposed MLKC is more computationally efficient
than other considered methods. The use of multi-resolution brings a significant speed
improvement : MLSC and MLKC are respectively 20% and 30% faster than LSC
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Figure 4.21 – Convergence rates with different standard deviations (AR).

and LKC. Two LSC based methods are computationally intensive because at each
iteration an estimation between every two images in the set is run.

4.3.2.2 Results on the Yale B database

From the Yale B database [40] we select 100 frontal images of 10 subjects under
10 extremely difficult lighting conditions (examples are shown in Figure 4.23). Also,
provided in this database, for each face, are the coordinates of three landmarks (
centers of two eyes and mouth) which are used for calculating the convergence rates.

(a) (b) (c) (d) (e) (f)

Figure 4.22 – Averages of AR images aligned by (a) original (unaligned), (b) RASL
(c) LSC, (d) MLSC, (e) LKC, (f) MLKC.
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RASL LSC
MLSC

(level 1/0)
LKC

MLKC

(level 1/0)

Per iter. 16.17 156.55 91.49/150.78 14.49 5.99/14.59

20 iter. 323.4 3131.0 2422.7 289.8 205.8

Table 4.4 – Computational cost of alignment methods (second).

Figure 4.23 – Examples of Yale B images used in our experiments.

Since LSC and MLSC are both intensity-based methods which are sensitive to
illumination changes, they are not capable of working on this set. The convergence
rates of RASL, LKC, and MLKC are presented in Figure 4.24. RASL does not per-
form well on this challenging dataset, its overall convergence rates are clearly lower
than those of the two LKC based methods. LKC and MLKC produce similar conver-
gence rates when the standard deviation σ ≤ 9. Then, MLKC shows its advantage
when σ ≥ 10. More precisely, there is a clear improvement when σ = 10, and LKC
fails to achieve convincing results on extremely warped images (σ ≥ 11) while MLKC
still generates satisfactory convergence rates.

Averages of aligned images from this dataset are shown in Figure 4.25, and the
standard deviation σ of random warp is 10 pixels. It is obviously that RASL fails to
align these images with large mis-alignments. The result of LKC is acceptable, but
the average image produced by the proposed MLKC has much clearer facial features
(eyes, nose, and lips) than those in the average image of LKC.

4.4 Conclusion

This chapter first presents two Lucas-Kanade formulations of entropy congea-
ling for joint image alignment (LKC), in which transformation parameters can be
estimated simultaneously rather than in a sequential searching way as in Learned-
Miller Congealing. In the forward formulation, the distribution field is taken as the
template because it is invariant at each iteration. The inverse compositional LKC
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Figure 4.24 – Convergence rates with different standard deviations (Yale B).

method is obtained by switching the roles of template and test image. This yields
constant parts of Jacobian and Hessian, which can be precomputed to decrease com-
puting complexity. Moreover, we improve the alignment performance by combining
Congealing with POEM descriptor, instead of SIFT. We conduct comparison expe-
riments on five image sets respectively from AR, SCface, FERET, LFW databases,
and surveillance videos. The benefits of LKC have extensively been verified using
different evaluation protocols, including average image, convergence rate, face recog-
nition performance, and complexity. The experimental results indicate the proposed

(a) (b) (c) (d)

Figure 4.25 – Averages of Yale B images aligned by (a) original (unaligned), (b)
RASL (c) LKC, (d) MLKC.
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LKC shows better performance than other alignment methods, and it has certain ro-
bustness to variations in illumination and image quality. Concerning the complexity,
the inverse LKC is more efficient than other considered approaches. Compared to
the forward formulation, the inverse method produces a speed improvement of 20
percent.

In order to increase the robustness to large mis-alignments, this chapter then
proposes a multi-resolution solution to entropy congealing. In coarse levels, images
are processed with lower resolution to remove major mis-alignment errors, and then
alignment is refined in finer levels. We test the proposed algorithm against several
single resolution methods including LKC, Least Squares Congealing (LSC), RASL,
and multi-resolution LSC. We conduct comparison experiments on images from two
databases, AR and Yale B (under non-uniform illumination changes). Experimental
results prove that the proposed algorithm outperforms other considered methods
on images with large mis-alignment errors. The use of multi-resolution framework
obviously improves both the robustness to mis-alignment and computational speed.

Up to this point, our LKC based methods are able to cope with most of the
challenging factors for face alignment in video surveillance context mentioned in
Section 1.2. More precisely, our methods are able to cope with a certain range of pose
variation and expression changes, because they perform well on uncontrolled LFW
images. The results on the AR Data 2 and Yale B images prove the robustness of
the LKC methods to illumination variations. The experiments on SCface and video
surveillance images show that our methods are able to align low quality images
where faces undergo low resolution, motion blur, and noise. In other words, the
only remaining difficulty is occlusion. However, the LKC based methods require
a clustering process for feature dimension reduction. When aligning images with
occlusions, outlier pixels from occluded regions have negative impact on the clustering
accuracy and may further lead to a decrease in performance of alignment. Hence, in
the following chapter, we focus on finding a solution to align faces with occlusion.
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Chapitre 5

Unsupervised Joint Face Alignment with Gradient Cor-
relation Coefficient

5.1 Introduction

Faces usually suffer from occlusions and large lighting changes in video sur-
veillance applications. However, most existing face alignment methods have just
been evaluated in controlled environments without concerning occlusions nor ligh-
ting changes. For example, the LKC based methods presented in Chapter 4 require
a clustering process for feature dimension reduction. When aligning images with
occlusions, outlier pixels from occluded regions inevitably have negative impact on
the clustering accuracy and further lead to a decrease in performance of alignment.
Actually, common face detectors do not perform well under these challenging condi-
tions, which makes face alignment phase more necessary. Recently, Roh et al. [97]
proposed an occlusion-robust face alignment approach based on a set of feature de-
tectors and the random sample consensus (RANSAC) strategy [37]. However, it is
based on a shape model which is too complex for video surveillance applications. In
the researches of [113, 114], gradient correlation coefficient, an efficient feature for
face analysis under occlusions and illumination changes, was employed as a perfor-
mance criterion for image-to-image alignment. Nevertheless, this approach requires
pre-defined templates, and the experiment results are presented using templates re-
lated to the same subjects as the test images, i.e., the identities of test images are
already known. This seems not so logical in a face recognition task, because the final
objective of face recognition is to identify the input facial images.

In this chapter, the use of gradient correlation coefficient is extended to the align-
ment of an image set. For this purpose, we propose an unsupervised joint alignment
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framework, referred to as “Gradient Correlation Congealing (GCC)”, which aligns
an image ensemble by maximizing a sum of gradient correlation coefficient function
defined over all images. Two different formulations (GCC-1 and GCC-2) are deve-
loped respectively regarding the role of template. More precisely, GCC-1 uses the
rest of images as templates within an iteration, while GCC-2 employs the held out
image as template. The main advantages of GCC based methods are : (1) they work
in an unsupervised manner, (2) they have no requirement of pre-defined templates,
(3) they are robust to both occlusions and non-uniform illumination changes. The
proposed algorithms are tested against four typical joint alignment methods inclu-
ding Least Squares Congealing [26], Learned-Miller Congealing [53], Lucas-Kanade
entropy Congealing, and RASL (robust alignment by sparse and low-rank decom-
position) [93] on images taken from two challenging face databases : AR [87] and
Yale B [40]. Experimental results prove the efficiency of the proposed alignment
approaches under different conditions, especially when faces are partially occluded,
our algorithms perform much better than other considered methods. Compared with
GCC-1, GCC-2 is more robust to large mis-alignment errors.

The remainder of the chapter is arranged as follows : we first introduce the gra-
dient correlation coefficient and its application to image-to-image alignment in Sec-
tion 5.2. The details of our joint alignment algorithm are presented in Section 5.3.
The experimental results are analyzed in Section 5.4, and conclusions are finally
given in Section 5.5.

5.2 Image-to-image Alignment with Gradient Correlation Coef-
ficient

The feature we adopt in this work is gradient orientation which has been proved
as an illumination-robust feature for face analysis in [19, 23, 51]. The work of [112]
employed a FFT-based correlation of gradient orientation for image registration.
Recently, this gradient correlation coefficient has been applied for the alignment
of two facial images with occlusions [113, 114]. This section introduces the basic
knowledge of gradient correlation coefficient (Section 5.2.1) and its application to
image-to-image alignment (Section 5.2.2).

5.2.1 Gradient-based correlation coefficient

Given an image Ii(x) where x = [x, y]T denotes a vector containing the pixel
coordinates, its gradient can be calculated by :
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Gi(x) = [Gi,x(x),Gi,y(x)] =

[
∂Ii(x)

∂x
,
∂Ii(x)

∂y

]
(5.1)

For representation convenience, we storeGi,x,Gi,y in lexicographic ordering, then
we have N -dimensional vectors gi,x, gi,y where gi,x(k) = Gi,x(xk), gi,y(k) = Gi,y(xk),
k ∈ [1, N ], N is the number of pixels in Ii.

The gradient-based correlation coefficient between two images Ii and Ij can be
defined by :

ψ(Ii, Ij) =
N∑
k=1

ri(k)rj(k)cos(φi(k)− φj(k)) (5.2)

where ri(k) and φi(k) are respectively the gradient magnitude and orientation of the
kth pixel in Ii :

ri(k) =
√
g2
i,x(k) + g2

i,y(k) (5.3)

φi(k) = arctan
gi,y(k)

gi,x(k)
(5.4)

Chen et al. [19] pointed out that gradient magnitude varies drastically with the
changes in illumination conditions. To improve the robustness of gradient-based cor-
relation coefficient, normalized gradient g̃i = [g̃i,x, g̃i,y] can be used, where g̃i,x(k) =
gi,x(k)/ri(k) and g̃i,y(k) = gi,y(k)/ri(k). Hence, normalized gradient correlation co-
efficient is (ri(k) = 1,∀i, k) :

ψ(Ii, Ij) =
N∑
k=1

cos(φi(k)− φj(k)) (5.5)

Now we discuss the properties of gradient correlation coefficient in Equation (5.5)
between images with occlusions. Figure 5.1 (a) and (b) show a pair of facial images,
one of which is partially occluded by a scarf. Since the occluded regions are mostly
dissimilar to faces, it is not unreasonable to assume that the difference in gradient
orientation ∆φ(k) = φi(k) − φj(k) can take any value in the range [0, 2π] with
equal probability. That is, we can assume that ∆φ(k) is generated by a uniform
distribution defined over [0, 2π]. Hence, it is not difficult to find out that Equation
(5.5) approximately equals to zero when it is calculated over occlusions. (As shown
in Figure 5.1 (c) and (d), the distribution of ∆φ(k) in occluded region is very similar
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Figure 5.1 – (a) is the template image, and (b) is the image to be aligned. (c) is the
distribution of ∆φ(k) calculated over the occluded rectangle region of (b). (d) shows
an uniform distribution of samples obtained with Matlab’s rand function [114].

to an uniform distribution.) That is, occlusions do not bias the overall measure of
similarity between two faces.

Using the normalized gradient g̃i, we can easily obtain :

ψ(Ii, Ij) =
N∑
k=1

[g̃i,x(k)g̃j,x(k) + g̃i,y(k)g̃j,y(k)] (5.6)

5.2.2 Image-to-image alignment with gradient correlation coefficient

Image-to-image alignment algorithms assume that a test image and a pre-defined
template image (Figure 5.2) are related by a transformation :

Ij(x) = Ii(W (x;p)) (5.7)

where Ij, Ii respectively denote the template and the test images, p is the vector of
transformation parameters, and W (x;p) stands for a warp.
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Figure 5.2 – An example of image-to-image alignment problem.

The goal of image-to-image alignment algorithms is to find the transformation
which maximizes the similarities between two images. Section 5.2.2.1 introduces the
formulation of alignment problem with gradient correlation coefficient, and Section
5.2.2.2 discusses an optimization algorithm of this alignment problem.

5.2.2.1 Alignment problem definition

In [114], gradient-based correlation coefficient was used as similarity measure, the
alignment problem can be defined as the maximization of :

ψ(Ii(W (x;p)), Ij) (5.8)

where Ij, Ii respectively denote the template and test images, W (x;p) stands for a
warp.

Using the Lucas-Kanade algorithm [10], we assume that the current p is known,
then p can be iteratively updated using ∆p :

p← p+ ∆p (5.9)

However, a first order Taylor expansion of g̃i with respect to ∆p yields a linear
function of ∆p which is maximized when ∆p → ∞. To solve this problem, a new
gradient correlation coefficient function which exactly equals to Equation (5.6) can
be used :

ψ(Ii, Ij) =

∑N
k=1 [g̃i,x(k)g̃j,x(k) + g̃i,y(k)g̃j,y(k)]√∑N

k=1

[
g̃2
i,x(k) + g̃2

i,y(k)
] (5.10)

Equation (5.10) can also be written in a vector expression :

ψ(Ii, Ij) =
g̃Ti,xg̃j,x + g̃Ti,yg̃j,y√
g̃Ti,xg̃i,x + g̃Ti,yg̃i,y

(5.11)
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5.2.2.2 Optimization of cost function

In Lucas-Kanade framework, the cost function Equation (5.8) becomes :

ψ(Ii(W (x;p+ ∆p)), Ij)

=
g̃Ti,x [p+ ∆p] g̃j,x + g̃Ti,y [p+ ∆p] g̃j,y√

g̃Ti,x [p+ ∆p] g̃i,x [p+ ∆p] + g̃Ti,y [p+ ∆p] g̃i,y [p+ ∆p]

(5.12)

where the symbol gi,x [p] represents a vector obtained by writing Gi,x(W (x;p)) in
lexicographic ordering.

Because g̃i,x [p] ≡ cosφi [p], g̃i,y [p] ≡ sinφi [p], the first order Taylor expansion
of g̃i,x [p+ ∆p] (k) is :

g̃i,x [p+ ∆p] (k) ≈ cosφi [p] (k) +
∂cosφi [p] (k)

∂p
∆p

= cosφi [p] (k)− sinφi [p] (k)j [p] (k)∆p

(5.13)

where ji [p] (k) is a 1× n (n equals to the number of parameters of W (x;p)) vector
defined by :

ji [p] (k) =
cosφi [p] (k)

∂gi,y [p](k)

∂p
− sinφi [p] (k)

∂gi,x[p](k)

∂p√
g2
i,x [p] (k) + g2

i,y [p] (k)
(5.14)

Equation (5.13) can be rewritten in a vector expression :

g̃i,x [p+ ∆p] ≈ cosφi [p]− Sφ [p]� Ji [p] ∆p (5.15)

where Sφ [p] stands for a N × n matrix whose kth row has n elements all equal to
sinφi [p] (k), Ji denotes a N × n matrix whose kth row equals to ji [p] (k), and � is
the Hadamard product. Similarly, g̃i,y [p+ ∆p] (k) can be written as :

g̃i,y [p+ ∆p] ≈ sinφi [p] +Cφ [p]� Ji [p] ∆p (5.16)

where Cφ [p] stands for a N × n matrix whose kth row has n elements all equal to
cosφi [p] (k).

By plugging Equations (5.15) and (5.16) into (5.12), we have a target function of
∆p :
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ψ(∆p) =
qp + STi,jJi∆p√
N + ∆pTJTi Ji∆p

(5.17)

where qp = cosφTj cosφi + sinφTj sinφi and Si,j represents a N × 1 vector whose kth
element equals to sin(φj(k)− φi [p] (k)).

The maximization of Equation (5.12) can be achieved by using the result in [36].
In particular, the maximum value is attained when [114] :

∆pi,j = λi,j(J
T
i Ji)

−1JTi Si,j (5.18)

where λi,j is the reciprocal of normalized gradient correlation coefficient between
Ii(W (x;p)) and Ij.

5.3 Proposed Algorithm : Gradient Correlation Congealing

Most image-to-image face alignment approaches are based on pre-defined tem-
plates. In [114], templates related to the same subjects as the test images are used
to present experiment results, i.e., the identities of test images are already known.
This seems not so logical in facial biometrics, because the final objective of face re-
cognition is to identify the input facial images. To circumvent this template selection
stage, we formulate an unsupervised joint alignment method called “Gradient Corre-
lation Congealing (GCC)” which uses gradient correlation coefficient as the measure
of alignment. Section 5.3.1 introduces the definition of GCC. We then respectively
present two formulations to solve the alignment problem : GCC-1 in Section 5.3.2
and GCC-2 in Section 5.3.3.

5.3.1 Problem formulation

Congealing can be defined as a maximization/minimization of a simila-
rity/discrepancy function ξ() which is calculated over a set of images. The researches
in [71, 53] use a sum-of-entropy as the cost function and in [26], a SSD function is
employed as the measure of misalignment. Since we use correlation coefficient as the
cost function where higher value means that images are more correlated, the joint
alignment problem is written as :

argmax
P

ξ(P) (5.19)

where P = {p1,p2, ...,pM} stands for the set of warp parameters for different images,
M is the number of images.
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In the present work, the cost function is defined as a sum of separate functions,
and the alignment problem in Equation (5.19) is solved by maximizing ξi(pi) for each
image in the set, that is :

ξ(P) =
M∑
i=1

ξi(pi) (5.20)

Intuitively, there are two ways to formulate the cost function ξi(pi) depending on
the definition of “template”. More precisely, since joint alignment methods require
no pre-defined template, at each time we can assume one image (or some images) as
the template(s), and apply transformation to the rest. During the alignment process,
the role of template is always changing. To make a clear distinction, the two dif-
ferent formulations are respectively referred to as GCC-1 (Section 5.3.2) and GCC-2
(Section 5.3.3).

5.3.2 GCC-1

In the first formulation, we try to find a warp W (x;pi) for the held out image
Ii and the rest of images are taken as templates. Hence, the cost function is defined
as :

ξi(pi) =
M∑
j=1
j 6=i

ψ(Ii(W (x;pi)), Ij) (5.21)

where ψ() stands for gradient correlation coefficient function in Equation (5.10).
Since Equation (5.21) is non-linear, we can solve the maximization problem in

the Lucas-Kanade framework. Supposing the current pi is known, our goal is to
iteratively find an update ∆pi which maximizes :

ξi(∆pi) =
M∑
j=1
j 6=i

ψ(Ii(W (x;pi + ∆pi)), Ij) (5.22)

Here, we obtain ∆pi by averaging the warps estimated between Ii and each image
in the rest of the set :

∆pi =
1

M − 1

M∑
j=1
j 6=i

∆pi,j (5.23)
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where ∆pi,j denotes the update in Equation (5.18) which maximizes ψ(Ii(W (x;p+
∆p)), Ij).

At each iteration, an estimated ∆pi is updated to the current transformation
parameter pi :

pi ← pi + ∆pi (5.24)

The main steps of GCC-1 are shown in Figure 5.3. Note that during the calcula-
tion of ∆pi across the rest of image set at each iteration, there is an invariant part
(JTi Ji)

−1JTi which can be pre-computed at the beginning of each iteration in order
to reduce the computing time (Step (5) in Figure 5.3). Moreover, in our implemen-
tation, Steps (4) and (8) are optimized by directly calculating Ji and Si,j from the
gradients of images. This can improve the speed of our algorithm, because the inverse
trigonometric functions in these two steps are slow and not necessary.

repeat
for i = 1 to M do

(1) Warp Ii with W (x;pi) to calculate Ii(W (x;pi))
(2) Calculate the gradient of Ii(W (x;pi))
(3) Calculate the gradient orientation φi using Equation (5.4)
(4) Calculate the Jacobian matrix Ji using Equation (5.14)
(5) Calculate (JTi Ji)

−1JTi
for j = 1 to M , j 6= i do

(6) Warp Ij with W (x;pj) to calculate Ij(W (x;pj))
(7) Calculate the gradient of Ij(W (x;pj))
(8) Calculate the gradient orientation φj using Equation (5.4)
(9) Calculate Si,j and λi,j
(10) Calculate ∆pi,j using Equation (5.18)

end for
(11) Calculate ∆pi using Equation (5.23)
(12) Update pi using Equation (5.24)

end for
until ξ() has converged

Figure 5.3 – Main steps of GCC-1.

However, the formulation of GCC-1 may not work well when images undergo large
mis-alignment errors, e.g., substantial translation and scaling, high-angle rotation.
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More precisely, the estimation of ∆pi in GCC-1 has similar effect to align Ii to the
average image 1

M−1

∑M
j=1
j 6=i
Ij, since the rest of images are invariant within an iteration.

Larger mis-alignments in Ij mean a blurrier average image, hence aligning Ii to this
average image may result in a worse alignment performance. To circumvent this
limitation, GCC-2 is proposed in Section 5.3.3.

5.3.3 GCC-2

In contrast to GCC-1, the alternative solution is to use the held out Ii as the
template. Hence, the new cost function is formulated by :

ξi(∆p−i) =
M∑
j=1
j 6=i

ψ(Ii, Ij(W (x;pj + ∆p−i))) (5.25)

In Equation (5.25), the objective is to find a transformation ∆p−i which is applied
to the rest of images. In this way, the alignment process is able to use more details
of the image ensemble. Similarly, ∆p−i is calculated using :

∆p−i =
1

M − 1

M∑
j=1
j 6=i

∆pj,i (5.26)

Then, the update process is defined by :

pj ← pj + ∆p−i (5.27)

The main steps of GCC-2 are shown in Figure 5.4. One major difference from
GCC-1 is that the Jacobian matrix of GCC-2 is calculated in the inner loop. That is,
GCC-2 is more computational intensive than GCC-1, but the increment of running
time (around 20%) is acceptable comparing to the whole cost. Also, the update of
transformation is different in Step (12). Note that ∆pj,i, Sj,i, and λj,i are not equal
to the symbols ∆pi,j, Si,j, and λi,j in Figure 5.3.

5.4 Experimental Results

This section evaluates the performance of proposed Gradient Correlation Congea-
ling (GCC). It is compared with three joint alignment methods including Least
Square Congealing (LSC) [26], Learned-Miller Congealing (LMC) [53], Lucas-Kanade
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repeat
for i = 1 to M do

(1) Warp Ii with W (x;pi) to calculate Ii(W (x;pi))
(2) Calculate the gradient of Ii(W (x;pi))
(3) Calculate the gradient orientation φi using Equation (5.4)
for j = 1 to M , j 6= i do

(4) Warp Ij with W (x;pj) to calculate Ij(W (x;pj))
(5) Calculate the gradient of Ij(W (x;pj))
(6) Calculate the gradient orientation φj using Equation (5.4)
(7) Calculate the Jacobian matrix Jj using Equation (5.14)
(8) Calculate (JTj Jj)

−1JTj
(9) Calculate Sj,i and λj,i
(10) Calculate ∆pj,i using Equation (5.18)

end for
(11) Calculate ∆p−i using Equation (5.26)
for j = 1 to M , j 6= i do

(12) Update pj using Equation (5.27)
end for

end for
until ξ() has converged

Figure 5.4 – Main steps of GCC-2.

entropy Congealing (LKC), and with RASL (robust alignment by sparse and low-
rank decomposition) [93]. Section 5.4.1 first introduces the databases, parameters,
and evaluation methods used in the comparison experiments. Section 5.4.2 to Section
5.4.5 respectively present and discuss comparison results on images under different
conditions.

5.4.1 Experiment Settings

1. Databases
We use the images from AR [87], Yale B [40] databases, and surveillance videos

to design five scenarios for conducting comparison experiments :
• Test 1 : Images are taken under the neutral condition.
• Test 2 : Images are taken under extremely large illumination variations.
• Test 3 : Images are taken with occlusion under neutral illumination conditions.
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• Test 4 : Images undergo both occlusion and non-uniform illumination variations.
• Test 5 : Video surveillance images undergo low resolution, motion blur, noise, and
variations in pose and expression.

Here, we form three image sets from the AR database : Data 1 consists of 100
frontal facial images corresponding to different subjects with neutral expression and
homogeneous illumination (see an example in Figure 5.5 (a)) ; Data 2 contains 100
frontal facial images of 50 subjects, and each subject has two images under the neutral
illumination : one with sun glasses (Figure 5.5 (b)) and the other without occlusion
(Figure 5.5 (a)) ; Data 3 is composed of 100 frontal facial images of 25 subjects, and
each subject has one image under the same neutral condition as in Data 1 and three
images with occlusion (sunglass) and non-uniform illumination changes (examples
are shown in Figure 5.5 (b)∼(d)). In the following experiments, we use Data 1 for
Test 1, Data 2 for Test 3, and Data 3 for Test 4.

Figure 5.5 – Examples of test images from AR-face database. (a) is a face un-
der neutral conditions and (b)∼(d) are faces with occlusion under different lighting
conditions.

We also select 100 frontal images of 10 subjects under 10 extremely difficult
lighting conditions from the Yale B database (three from the subset 4 and seven
from the subset 5), images of one subject are shown in Figure 5.6 as example. These
images are used for Test 2.

Figure 5.6 – Yale B images under 10 different illumination conditions used in our
experiments.

The video surveillance image set used in Section 4.2.4 is also adopted here to
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evaluate the alignment performance on images of low resolution, motion blur and
noise as well as variations in pose and expression (see examples in Figure 4.5.

In AR database, three feature points (two eyes and nose tip) have been labeled
manually. Also, provided in the Yale B database, for each face, are the coordinates
of three landmarks : two eye centers and mouth. These landmarks are used for
evaluation in our experiments.

Occlusion is one of the most difficult factors in face analysis. A direct influence
of occlusion is that there is no useful information in occluded regions. In fact, some
lighting conditions may also result in this kind of influence. Take the image in Figure
5.5 (c) as example, gray values of pixels around the left cheek all equal to 255, i.e.,
no information can be caught in the overexposed region. This information losing
problem makes our test data more challenging.

Because common face detectors do not work on these challenging images, face
regions are cropped manually and then the eye centers are aligned to standard posi-
tions. In our experiments, the image size is 100 × 100. As shown in Figure 5.2, the
gradient correlation coefficient is calculated over a center region of images. The size
of this region of interest (ROI) is 60× 60.

Similar to [10], randomly warped images are used as test data in our experiments.
The left-top and right-bottom corner points of the ROI are selected as canonical
points which are randomly perturbed with additive white Gaussian noise of a certain
deviation σ. Then we can fit a similarity warp which transforms these canonical points
to their perturbed positions. Finally, test images are warped using these randomly
generated warps.

2. Parameter settings

We compare the performance of Gradient Correlation Congealing (GCC) with
four joint alignment methods including Least Square Congealing (LSC) [26], Learned-
Miller Congealing (LMC) [53], Lucas-Kanade entropy Congealing (LKC), and RASL 1

[93]. The code of original LMC is available on Internet 2, it uses 8 orientations for
SIFT descriptor. For a fair comparison, we report here the results of LMC obtained
with 4 orientations SIFT descriptors [82], because this results in better performance.
In our experiments, results of all approaches are presented after 20 iterations unless
they can converge within fewer iterations.

Here, we assume that the type of geometric mis-alignment is a similarity transfor-
mation, i.e., there are four parameters : x-translation, y-translation, in-plane rotation
and scaling. Other transformations, e.g., affine transformation, are also adaptable for

1. The Matlab code of RASL is available at http://perception.csl.uiuc.edu/matrix-rank/
rasl.html

2. http://vis-www.cs.umass.edu/code/congealingcomplex/
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the proposed algorithm, but they may cause unwanted deformations in cropped (ali-
gned) faces.

Here, we use standard deviations σ = [1, 5] to generate random warps for evalua-
tion.

3. Evaluation methods

By applying alignment algorithms to the randomly warped images, we evaluate
the performance based on the two following criteria : average of cropped faces and
convergence rates of landmarks (details of these evaluation methods are presented
in Section 2.6). The facial images used here are difficult for face recognition because
they undergo extreme illumination conditions or occlusion. In other words, face re-
cognition accuracy may not be improved even after faces are well aligned. Hence, we
do not use face recognition result as evaluation criterion in this chapter.

In the following experiments, all convergence rates are computed using a fixed
threshold of two pixels. More precisely, we present the convergence rates of considered
methods in two different ways : one is to track the convergence rates at each iteration
to verify the convergence ability during alignment procedure ; the other option is to
compare the convergence rates produced by aligning images warped with different
deviations σ = [1, 5].

5.4.2 Scenario 1 : Facial images under the neutral condition

We first assess the alignment performance on AR face Data 1 which contains
images taken under neutral conditions.

The averages of unaligned and aligned image sets are shown in Figure 5.7, here
the standard deviation σ of randomly generated warps is three pixels. Intuitively,
both face contour and facial features are unclear in the average of unaligned images.
All the six alignment methods show the similar performance regarding this visual
evaluation criterion, they yield average images with clearer facial features, e.g., eyes,
nostrils, and lips. For further evaluation, the convergence rates of these alignment
approaches at different iterations are drawn in Figure 5.8. It is obvious that the
proposed GCC-2 is stable across the alignment process and it achieves the highest
convergence rate at the end. The results of GCC-1 on this data are also satisfactory,
its convergence rates are higher than those of other four methods. RASL works well
within the first iterations, but there is a clear decrease in its performance after three
iterations. The rest three methods are also capable of aligning images under this less
challenging condition and their final convergence rates are sightly lower than that of
GCC-1 and GCC-2.

We also test the alignment methods on images randomly warped with standard
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.7 – Average images of AR face Data 1 which are (a) unaligned, (b) aligned
by LSC, (c) aligned by LMC, (d) aligned by LKC, (e) aligned by RASL, (f) aligned
by GCC-1, (g) aligned by GCC-2.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

P
er

ce
nt

ag
e 

of
 p

oi
nt

s 
co

nv
er

ge
d

 

 

LSC
LMC
LKC

 

 

RASL
GCC−1
GCC−2

Figure 5.8 – Convergence rates at different iterations on the AR face Data 1 (σ = 3).

deviations which range from 1 to 5. The convergence rates of landmarks can be seen
in Figure 5.9. Our GCC-2 obviously produces higher convergence rates than other
considered alignment methods over different values of standard deviation. GCC-1
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performs well on images with minor mis-alignment errors (σ ≤ 2), but the conver-
gence rates decrease quickly with the increasing of mis-alignment magnitude. This
can be explained by the discussion in Section 5.3.2. LKC, LSC, and RASL achieve
similar convergence rates which are slightly higher than those of LMC. All these re-
sults prove the advantage of GCC-2 algorithm over other methods under the neutral
condition.
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Figure 5.9 – Convergence rates with different standard deviations on the AR face
Data 1.

5.4.3 Scenario 2 : Facial images under non-uniform illumination variations

In order to show the robustness of our algorithm to illumination changes, this
section evaluate the alignment performance on the challenging Yale B images taken
under non-uniform lighting variations (see Figure 5.6).

Using test images warped with a standard deviation of three pixels, the averages of
unaligned and aligned images are shown in Figure 5.10. Due to the random warping,
the average of unaligned images yields blurs around the facial features. It is clear that
LSC does not work in this case. This can be predicted because LSC is an intensity-
based method which is very sensitive to illumination changes. LMC and RASL seem
not to be suitable for images under these extreme lighting changes, because the left
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and right parts of their average faces are not symmetrical. LKC and the two GCC
based algorithms produce similar average images with clear inside and outside facial
contours. The corresponding convergence rates of landmarks at different iterations
are presented in Figure 5.11. As can be predicted from the average images, LSC,
LMC, and RASL can not work stably on this image set. LKC is able to converge using
fewer iterations and reaches a satisfying result. The two GCC based methods always
show a stable convergence trend during the alignment procedure and it generates a
final convergence rate similar to LKC.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.10 – Average images of Yale B sets which are (a) unaligned, (b) aligned
by LSC, (c) aligned by LMC, (d) aligned by LKC, (e) aligned by RASL, (f) aligned
by GCC-1, (g) aligned by GCC-2.

Stated in Figure 5.12 are the convergence rates obtained by aligning randomly
warped images with different standard deviations. It is clear that LSC and LMC
still do not perform well on images warped with other standard deviations. The re-
sults of RASL are better than those of LSC and LMC, but obviously worse than the
other three methods. In this case, LKC achieves the best performance over different
deviations. This is because LKC adopts an effective feature descriptor POEM [119]
which is robust to large variations in lighting conditions. The two GCC based algo-
rithms produce similar convergence rates which are slightly lower than these of LKC,
but still satisfying, i.e., our method performs well under non-uniform illumination
changes.
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Figure 5.11 – Convergence rates at different iterations on Yale B Set (σ = 3).
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Figure 5.12 – Convergence rates with different standard deviations on Yale B set.
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5.4.4 Scenario 3 : Facial images with occlusion under neutral illumination
conditions

This section evaluates the performance of proposed algorithms on face with oc-
clusion (sun glasses) taken under neutral lighting conditions.

Figure 5.13 shows average images of unaligned and aligned AR Data 2. After
the random warps of a three-pixel deviation, the unaligned set has a blurry average
image. LSC does not make an obvious improvement on these occluded images. The
rest five methods are able to generate clearer average images which are visually
similar. For further evaluation, the corresponding convergence rates of facial feature
points at different iterations are presented in Figure 5.14. GCC-1 and GCC-2 show
stable convergence trend, and their final convergence rates are higher than those
of rest methods. Between the two proposed methods, GCC-2 performs better than
GCC-1. RASL, LMC and LKC generate similar final results, but they do not work
stably during the alignment procedure. Take RASL for example, it improves the
convergence rates within first iterations, but there is an obvious decrease after four
iterations. It seems that LSC is not able to work on these images, its final convergence
rate is close to that of the unaligned images.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.13 – Average images of AR face Data 2 which are : (a) unaligned, (b)
aligned by LSC, (c) aligned by LMC, (d) aligned by LKC, (e) aligned by RASL, (f)
aligned by GCC-1, (g) aligned by GCC-2.

Convergence rates obtained by aligning randomly warped images with different
standard deviations are shown in Figure 5.15. LSC are not able to align images war-
ped with other values of standard deviation. RASL, LMC and LKC produce similar
performance. GCC-1 is able to generate satisfactory results on images with minor
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Figure 5.14 – Convergence rates at different iterations on the AR face Data 2
(σ = 3).

mis-alignments, but its performance decreases sharply when σ ≥ 4. The convergence
rates of GCC-2 are satisfactory over all values of standard deviation.

5.4.5 Scenario 4 : Facial images with occlusion under non-uniform illumination
variations

This section aims at proving the strength of our algorithm in the most challenging
scenario where images undergo both occlusion (sunglass) and non-uniform illumina-
tion changes. Indeed, there is scarcely any specific results reported on joint image
alignment with occlusions.

The averages of unaligned and aligned images sets are presented in Figure 5.16,
and the standard deviation of randomly generated warps is three pixels. After the
random warping, the average of unaligned images shows unclear face shape and inside
features. It is clear that LSC does not work in this case, the average image becomes
blurrier. Hence, this kind of intensity-based method is not capable of aligning images
with occlusions. LMC has certain improvement in the average image, but there is
still some blurs around the mouth and nose. The rest four alignment methods yield
clear average images, and they perform similarly according to this visual evaluation.

104



1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Point Standard Deviation σ

P
er

ce
nt

ag
e 

of
 P

oi
nt

s 
C

on
ve

rg
ed

 

 
LSC
LMC
LKC

 

 
RASL
GCC−1
GCC−2

Figure 5.15 – Convergence rates with different standard deviations on the AR face
Data 2.

The corresponding convergence rates of landmarks at different iterations are shown
in Figure 5.17. Obviously LSC is not able to align this image set. The convergence
rates of LMC and LKC decrease after the first few iterations, this instability might
be because both methods are based on a clustering stage which is sensitive to outlier
pixels. RASL does improve the convergence rates within the first few iterations, but it
shows a clear decrease after three iterations. In contrast, the proposed GCC-2 always
shows a stable convergence trend during the alignment procedure and it reaches the
highest convergence rate. The results of GCC-1 are slightly worse than those of GCC-
2. Here, the good performance of proposed algorithms is owing to the use of gradient
correlation coefficient which is robust to occlusion (analyzed in Section 5.2.1).

Figure 5.18 illustrates the convergence rates obtained by aligning randomly war-
ped images with different standard deviations. LSC still does not work on images
warped with other values of standard deviation. LMC and LKC produce similar
performance, and the convergence rates of RASL are clearly higher than these two
methods. GCC-1 is able to generate satisfactory results on images with minor mis-
alignments, but its performance decreases sharply when σ = 5. The convergence rates
of GCC-2 are higher than those of the others over all values of standard deviation.
That is, GCC-2 algorithm performs better than other considered methods on images
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.16 – Average images of AR face Data 3 which are : (a) unaligned, (b)
aligned by LSC, (c) aligned by LMC, (d) aligned by LKC, (e) aligned by RASL, (f)
aligned by GCC-1, (g) aligned by GCC-2.
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Figure 5.17 – Convergence rates at different iterations on the AR face Data 3
(σ = 3).

undergoing both occlusion and non-uniform illumination variations.
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Figure 5.18 – Convergence rates with different standard deviations on the AR face
Data 3.

5.4.6 Scenario 5 : Facial images extracted from surveillance videos

Here we evaluate the performance of these alignment methods on video sur-
veillance images. Averages of unaligned and aligned images are shown in Figure
5.19. We can see that LSC does not work at all on this challenging set. It is interes-
ting to see that the rest five joint alignment methods produce clearer average images
than that of the original set (e.g., the regions of mouth and nose). Due to the motion
blurs and noises in original images, it is difficult to make further comparison. Even
though, these results prove that our GCC based methods are capable of working on
video surveillance images.

5.5 Conclusion

In this chapter, we propose an unsupervised joint alignment framework where an
image ensemble is aligned by maximizing a sum of gradient correlation coefficient
function defined over all images. Two different formulations (GCC-1 and GCC-2) are
developed respectively regarding the role of template. The novel algorithms are tes-
ted against four typical joint alignment methods including Least Squares Congealing,
Learned-Miller Congealing, Lucas-Kanade entropy congealing, and RASL on images
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.19 – Averages of video surveillance images which are : (a) unaligned, (b)
aligned by LSC, (c) aligned by LMC, (d) aligned by LKC, (e) aligned by RASL, (f)
aligned by GCC-1, (g) aligned by GCC-2.

taken from two challenging face databases (AR and Yale B) and surveillance videos.
Experimental results prove the efficiency of the proposed alignment approaches un-
der different conditions, especially when faces are partially occluded, our algorithms
perform much better than the other considered methods. Compared with GCC-1
which uses the rest of images as templates, GCC-2 (employing the held out image as
template) is more efficient when faces undergo large mis-alignment errors. Although
LKC performs slightly worse than GCC-2 on occluded images, the performance of
LKC is still satisfactory.

Up to this point, the proposed methods (LKC and GCC-2) have shown certain
robustness to all the challenging factors mentioned in Section 1.2. More precisely,
our methods are able to cope with low resolution, motion blur and noise as well as a
certain range of pose variation and expression changes, because they perform well on
video surveillance images. The results on the Yale B images prove the robustness of
LKC and GCC-2 methods to illumination variations (even extremely difficult ones).
The experiments on the AR images illustrate that our algorithms are robust to partial
occlusion.

Since face alignment and face acquisition (i.e., face detection or face tracking) are
interrelated, in the following chapter we combine our joint alignment method with a
face tracker for accurate face extraction in videos.
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Chapitre 6

Adaptive Appearance Face Tracking with Alignment
Feedbacks

6.1 Introduction

In a video-based face recognition system, simply applying face detection in each
frame is not stable. Usually, face detectors are used to find the initial position of
a face, then this target face is continuously located by the tracker across different
frames. Since face alignment and face tracking are interrelated, we trace the source
of mis-alignments (i.e., face tracking errors) rather than limiting our work in the face
alignment stage.

Numerous approaches have been proposed for visual tracking [127]. These al-
gorithms are conventionally developed on object representation methods and pre-
diction schemes. Typical representation methods include contours [57], view-based
appearance models [17], integration of shape and color [14], mixture models [60], his-
tograms [21], etc. Prediction schemes are usually based on optical flow [83], kernel-
based filters [21], particle filters [57], support vector machines (SVM) [6], etc. Since
most existing tracking methods use fixed appearance models of the target, they of-
ten fail in uncontrolled environments where objects undergo large variations in pose,
scale and illumination.

To solve these problems, trackers have been combined with adaptive appearance
models. Jepson et al. [60] employed three components to account for appearance
changes during tracking. Incremental Visual Tracker (IVT) [98] represents objects
in a low-dimensional incremental subspace with a mean update. Babenko et al. [8]
proposed an online instance learning approach to deal with appearance ambiguity.
Recently, Kwon et al. [68] tracked the target by sampling trackers. However, these
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approaches usually lack direct mechanisms for correcting spatial mis-alignments (e.g.,
translation, scaling and rotation errors) existing in their tracking outputs. The un-
wanted errors are then accumulated in the target’s appearance model. This inevitably
has negative effects on tracking performance, even leads to lose-target. The work of
[65] introduced pose and alignment constraints to the target model, in which align-
ment confidences are determined by a two-class SVM classifier. Same as IVT, this
method predicts the target’s state using a fixed dynamic model which is sensitive to
gross changes in target’s state such as scale and speed.

 

video 
Aligned 

faces 

update 

Unaligned 

faces 

Face 

Alignment 

Face 

Tracking 

Figure 6.1 – Pipeline of the proposed algorithm

This chapter presents an adaptive appearance method for tracking faces in uncon-
trolled environments (the pipeline of our approach is shown in Figure 6.1). Section 6.2
first introduces an incremental update algorithm for target’s appearance model. Sec-
tion 6.3 discusses the details of our adaptive appearance face tracking method using
alignment feedbacks. We first apply a self-adaptive dynamical model to predict target
candidates in a particle filtering framework (Section 6.3.1). This improvement brings
two main advantages : our tracker (1) is able to work with identical parameters for
various situations, (2) is more robust to large changes in target’s scale. In order to
decrease the impact of mis-alignment, we then employ a multi-view joint face ali-
gnment method which performs well on low resolution, noisy video frames (Section
6.3.2). Aligned faces are further used as feedbacks to update the appearance model of
target face (Section 6.3.3). In Section 6.4, we test the proposed algorithm on outdoor
surveillance videos and real-world YouTube videos. Experimental results prove the
effectiveness of the proposed algorithm in tracking faces undergoing large variations
in pose, expression and scale. Compared to IVT, faces tracked by our algorithm are
clearly better aligned.
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6.2 Incremental update of appearance model

In a video sequence, the appearance of the target may change drastically due to
both intrinsic (e.g., pose variation and shape deformation) and extrinsic (e.g., illumi-
nation change, camera viewpoint, and occlusion) factors. Therefore, it is necessary
to update the appearance model online to produce a tracker which is robust to these
changes. In this chapter, we choose an eigenbasis as appearance model. Typically, in
order to learn an eigenbasis from a set of training images {I1, ..., In} (for convenience,
let Ii be an N -dimensional image vector, where N is the number of pixels in each
image), we first calculate a N ×N covariance matrix :

C =
1

n− 1

n∑
i=1

(Ii − Ī)(Ii − Ī)T (6.1)

where Ī = 1
n

∑n
i=1 Ii is the mean of training images.

Then, eigenvectors U = [u1...uN ] and eigenvalues {λ1, ..., λN} of the covariance
matrix are computed by :

Cuk = λkuk (6.2)

In the eigenspace, an image Ii can be represented by :

Yi = UT
r (Ii − Ī) (6.3)

where Ur consists of r eigenvectors corresponding to the largest eigenvalues.
Equivalently, this principal component analysis (PCA) procedure can be done

by computing the singular value decomposition (SVD) of the centered data matrix.
More precisely, we attain eigenvectors U using :

[(I1 − Ī), ..., (In − Ī)] = UΣV T (6.4)

where Σ is an N × n diagonal matrix and V is an n× n matrix.
Updating the appearance model to deal with novel changes of the target can be

taken as retraining the eigenbasis with an additional image set {In+1, ..., In+m}. Of
course this update can be performed by computing the singular value decomposition
U

′
Σ

′
V

′T of the matrix [(I1− Ī ′), ..., (In+m− Ī ′)], where Ī ′ is the average of all n+m
images. Unfortunately this procedure is not satisfactory for online visual tracking,
due to its storage and computational requirements.

Numerous algorithms have been proposed to efficiently update an eigenbasis as
more images arrive [41, 45, 73, 18, 46]. Here we employ an incremental PCA algorithm
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1. Calculate the mean vectors ĪB = 1
m

∑n+m
i=n+1 Ii, and ĪC = n

n+m
ĪA + m

n+m
ĪB.

2. Form the matrix B̂ = [(Im+1 − ĪB), ..., (In+m − ĪB),
√

nm
n+m

(ĪB − ĪA)].

3. Compute B̃ = orth(B̂ − UUT B̂) and R =

[
Σ UT B̂

0 B̃(B̂ − UUT B̂)

]
, where orth()

performs orthogonalization.

4. Compute the SVD of R : R
SVD
= ŨΣ̃Ṽ T .

5. Finally U
′
= [UB̃]Ũ and Σ

′
= Σ̃.

Figure 6.2 – The incremental PCA algorithm with mean update [98].

with mean update [98] which is developed based on the Sequential Karhunen-Loeve
(SKL) algorithm [73]. Let A = {I1, ..., In}, B = {In+1, ..., In+m} respectively be the
existing data matrix and new data matrix and C = [A B] be their concatenation.
ĪA, ĪB, ĪC represent the mean vectors of A, B, C. Suppose that we have already
computed the SVD : (A− ĪA) = UΣV T , where the notation (A− ĪA) stands for the
matrix [(I1−ĪA), ..., (In−ĪA)]. Our goal is to compute the SVD : (C−ĪC) = U

′
Σ

′
V

′T .
The main steps of the employed update algorithm are listed in Figure 6.2.

6.2.1 Forgetting factor

In a time-varying scene, the appearance of a target is more related to recently-
acquired images than to earlier observations. Hence, a forgetting factor [73, 98] can be
used to down-weight the contribution of earlier images during the tracking procedure.
To do this, at each update the previous singular values are multiplied by a scalar
factor f ∈ [0, 1], where f = 1 means that no forgetting is to occur. In order to use a
forgetting factor, two main modifications are made to the algorithm in Figure 6.2 :
(1) In Step 1, the mean update becomes ĪC = fn

fn+m
ĪA + m

fn+m
ĪB ; (2) In Step 3, the

calculation of R changes to R = [ fΣ UT B̂

0 B̃(B̂−UUT B̂)
].

6.3 Face tracking with alignment feedbacks

In a typical face recognition system, face alignment is the following stage of face
acquisition (e.g., detection, tracking). Normally, face alignment and face acquisition
are run in an open-loop manner i.e., there is no feedback to restrict the output of
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face acquisition methods. For an adaptive appearance method, spatial mis-alignments
(e.g., translation, scaling and rotation errors) existing in faces will be accumulated
in the target’s appearance model. This inevitably has negative effects on tracking
performance, even leads to lose-target. Here we present a closed-loop solution to
adaptive appearance face tracking where aligned faces are used as feedbacks to up-
date the appearance model of target. Section 6.3.1 introduces a sequential inference
model for tracking where a self-adaptive dynamical model is applied to predict target
candidates. Section 6.3.2 discusses a multi-view joint face alignment method. Aligned
faces are further used as feedbacks to update the appearance model of target face
(see Section 6.3.3).

6.3.1 Sequential inference model for tracking

Based on Markov process and Bayesian recursion, the tracking problem can be
formulated as an inference task :

p(ut|Ft) ∝ p(Ft|ut)
∫
p(ut|ut−1)p(ut−1|Ft−1)dut−1 (6.5)

in which Ft, ut are respectively the video frame and target state at time t, and
Ft = {F1, ...,Ft}. Suppose that the initial state u0 is known, the aim is to estimate
the hidden state variable ut. Here we use similarity transformation parameters ut =
[xt, yt, st, θt], where (xt, yt) is the center position of tracking box, st, θt are respectively
scale and rotation angle.

Two major elements in Equation (6.5) are the observation model p(Ft|ut) and
the dynamical model p(ut|ut−1). In a particle filter framework, candidate particles
predicted by p(ut|ut−1) are weighted according to p(Ft|ut).

(1) Self-adaptive dynamic model

Be different from [98] where the dynamic model is relied on fixed variances, we
introduce a self-adaptive dynamical model based on a Gaussian distribution :

p(ut|ut−1) = N (ut;ut−1,Ψt) (6.6)

where Ψt is a diagonal covariance matrix defined by :

Ψt = ϕ(ut−1) (6.7)

Using this dynamical model, the prediction of particles is adaptive to target’s
recent state. Hence, our tracker is able to work with identical parameters for all
situations, and it is more robust to large changes in target’s state. A simple and
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reliable example of Equation (6.7) is to adjust translation variances regarding target’s
scale :

Ψt = diag(st−1 · ψx, st−1 · ψy, ψs, ψθ) (6.8)

in which ψx, ψy, ψs, ψθ stand for constant values.

(2) Observation model

The cropped face image It can be obtained by (see an illustration in Figure 6.3) :

It = w(Ft,ut) (6.9)

( , )t t tI w F u( , , , )t t t t tu x y s 

Figure 6.3 – Crop image It from video frame Ft using state parameters ut.

Similar to [98], we build a low-dimensional subspace to represent the target :

M(I1, ..., It−1) = (µ,U) (6.10)

where µ, U respectively denote the mean and the basis of subspace.
The likelihood of It being generated from this target model is defined as :

p(Ft|ut) = N (It;µ,UU
T ) (6.11)

According to [99], the likelihood in Equation (6.11) is proportional to the negative
exponential distance from It to the subspace, i.e., we can use the following equation
to estimate the likelihood :
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p(Ft|ut) ∝ exp(−
∥∥(It − µ)−UUT (It − µ)

∥∥2
) (6.12)

6.3.2 Multi-view face alignment

This section discusses (1) the basic knowledge of the employed joint image align-
ment method, (2) a solution to align new images efficiently, and (3) the estimation
of face poses.

(1) Joint image alignment

Since video images are usually with low resolution, blur and noise, here we employ
the joint face alignment approach, referred to as “Lucas-Kanade entropy congea-
ling”, in which the alignment problem is defined as a minimization problem of a
sum-of-entropy function. First, POEM descriptor [119] is used to represent faces.
The transformation parameters are then iteratively estimated using a Newton opti-
mization method (see details in Chapter 4). Also, we assume the type of geometric
mis-alignment is a similarity transformation.

(2) Alignment of new images

As shown in Figure 6.1, tracked faces are output to the alignment stage. If we
simply insert new tracked faces into the image set and repeat the joint alignment
procedure on all images, it will be very computationally intensive. Inspired by [53],
we first selected hundreds of face images from different videos to form a training
set. Then, transformation parameters related to the training images are recorded
at each iteration of the alignment procedure. To align new face images, we insert
them into the training set and “re-run” the alignment algorithm. Actually, by using
the saved transformation parameters, there is no more computational cost for the
training images. The main steps of this alignment process are shown in Figure 6.4.

All face regions are expanded by 1.4 before alignment. There are two reasons
for expanding the face region : (1) some facial features may be outside the original
tracking box (e.g., bad crops), and expanding allows including these facial features
into the new face region ; (2) alignment often causes outlier (black) pixels at the
border of images, cropping the expanded margins after alignment will decrease the
impact of outlier pixels.

(3) Multi-view model

Considering the large changes in target’s pose, we build a multi-view model for
face alignment. More precisely, we detect about 3,500 facial images of different poses
from Youtube videos [65] to estimate a PCA-based pose subspace model : Mi =
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Figure 6.4 – Overview of alignment process.

(µi,Ui), where i means a pose. Since our alignment method performs well on frontal
and near-frontal faces, here we roughly categorize the poses into three clusters : near-
frontal, left and right profile (see some examples in Figure 6.5). The pose of a new
face image It can be estimated by :

pose = arg minid(It, (µi,Ui)) (6.13)

where the distance is calculated using :

d(It, (µi,Ui)) =
∥∥(It − µi)−UiU

T
i (It − µi)

∥∥2
(6.14)

For each pose cluster, we can form a training set and record their transformation
parameters during joint alignment (the offline process in 6.4). After pose estimation,
new faces are aligned according to the related training set.

(a) Left profile (b) Near-frontal (c) Right profile

Figure 6.5 – Examples of faces across different poses.
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6.3.3 Appearance model updating

Let vt represent the vector of the transformation parameters for Ft estimated by
the alignment stage, the final cropped face image I

′
t is calculated by :

I
′

t = w(Ft,ut ◦ vt) (6.15)

where “◦” stands for the composition of two warps.
Then, the aligned faces

{
I

′
t1, ..., I

′
t2

}
are used as feedbacks to update the appea-

rance model of target defined in Equation 6.10 every n frames (n = t2− t1 +1). Here,
we incrementally update eigenbasis and mean of target model using the solution
proposed in [98] (see details in Section 6.2).

6.4 Experimental results

We test the proposed method against Incremental Visual Tracker (IVT) 1 [98] on
surveillance videos (Section 6.4.1) and real-world YouTube videos (Section 6.4.2).
The frame sizes range from (180 × 240) to (240 × 320). Manually marked target
states in the first frames were used as the initial states for tracking. For target
representation, tracked faces were resized to 48×48, and the appearance models were
updated every 10 frames. For simplicity, here we only track one face in the video. The
tracking of multiple targets can be achieved by using multiple appearance templates.
Our algorithm implemented in Matlab is able to process 2-3 frames per second with
600 particles.

6.4.1 Tracking on surveillance videos

We first tested the proposed method on surveillance videos 2 which were collected
in uncontrolled outdoor environments to mimic the real-world conditions. In these
videos, people walk from far to near, accompanying with large variations in the face’s
scale and translation speed.

Both IVT and the proposed tracker were run on these surveillance videos, and
some example results are shown in Figures 6.6 to 6.8. It is clear that our algorithm
is able to stably track both objects while IVT turned to lose-target (object 1 in
Figure 6.6 (a)) or bad-crop (object 2 in Figure 6.7 (b)). This is because IVT uses a
fixed dynamic model to predict target’s position, whereas our algorithm is based on
a self-adaptive dynamic model which is more robust to the changes in target’s state.

1. The code of IVT can be found at http://www.cs.toronto.edu/~dross/ivt/
2. Collected by the laboratory LASMEA in France.

117

http://www.cs.toronto.edu/~dross/ivt/


Figure 6.6 – Tracking results of IVT (dotted line) and our method (solid line) on
surveillance videos : Object 1.

According to the target states estimated by our tracker, we can obtain a set
of cropped faces using Equation (6.15). Similarly, the cropped faces of IVT can be
acquired using Equation (6.9). The tracked faces of object 3 in Figure 6.8 cropped
from frame 20 and 33 are shown in Figure 6.9. In these frames, both IVT and the
proposed approach are able to track the face region, but the cropped faces contain
clear spatial mis-alignments while faces generated by our method are much better
aligned.
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Figure 6.7 – Tracking results of IVT (dotted line) and our method (solid line) on
surveillance videos : Object 2.

6.4.2 Tracking on YouTube videos

Our algorithm was also evaluated on a large set of noisy real-world videos contai-
ning 1910 video clips of 47 celebrities from YouTube [65]. We used identical parame-
ters for all these data, and our approach successfully tracked faces in 85% of these
video clips. Here, we consider lose-target and obviously bad crops as failed cases.
Figure 6.10 shows several examples of tracking faces with different poses. We can
see that there exist many mis-alignments in the outputs of IVT. More precisely, the
faces tracked by IVT have large variations in poses (e.g., in Figure 6.10 (c), from
frame 61 to 85), and they are often bad cropped (e.g., in Figure 6.10 (b), frame 78).
Compared to IVT, the proposed approach is much more stable.
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Figure 6.8 – Tracking results of IVT (dotted line) and our method (solid line) on
surveillance videos : Object 3.

(a) frame 20 (b) frame 33

Figure 6.9 – Cropped faces of object 3. For each sub-figure, the result of IVT is on
the left, and the result of our method is on the right.

For better evaluation, we respectively calculated the average images of cropped
faces produced by IVT and our tracker. Since well-aligned faces are in a standard
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(a) Elvis Presley (Left profile)

(b) Victoria Beckham (Near-frontal)

(c) Sarah Mclachlan (Right profile)

Figure 6.10 – Tracking results of IVT (dotted line) and our method (solid line) on
YouTube videos with different poses.

pose, their average image should have clearer facial features. Figure 6.11 presents the
average face images related to the same videos as in Figure 6.10. It is clear that the
average images of our algorithm have clearer facial features (e.g., eyes, mouth) than
those of IVT.

(a) Left profile (b) Near-frontal (c) Right profile

Figure 6.11 – Average images of cropped faces. For each sub-figure, the result of
IVT is on the left, and the result of our method is on the right.

Besides these visual evaluations, we also respectively calculated the convergence
rates of facial landmarks in two sets of cropped faces. Five facial landmarks (eyes,
nose tip and mouth corners) were manually labeled in all the frames of “Victoria
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Beckham” video. New positions of landmarks in cropped faces were computed using
the target’s states. We can easily obtain the average positions of landmarks over a set
of face images. If the distance between a landmark and its relevant average position
is smaller than the threshold, the landmark is taken as converged. The convergence
rates are shown in Figure 6.12, the size of cropped faces is 48× 48. We can find that
our algorithm significantly improves the convergence rates over all threshold values.
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Figure 6.12 – Convergence rates of landmarks in cropped faces.

Real-world face tracking often encounters occlusions of target. Figure 6.13 is an
example of face tracking with temporary occlusions. It is clear that our algorithm
performs well in this situation and the tracked faces are better aligned than those of
IVT (e.g., frame 61 and 63).

Figure 6.13 – Tracking results of IVT (dotted line) and our method (solid line) on
YouTube videos with temporary occlusions.
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6.5 Conclusion

This chapter describes an adaptive appearance method for tracking faces in un-
controlled environments. We first apply a self-adaptive dynamical model to predict
target candidates in a particle filtering framework. This makes our tracker able to
work with identical parameters for different situations, and be more robust to large
changes in target’s state. In order to decrease the impact of mis-alignment, we then
employ a multi-view joint face alignment method named “Lucas-Kanade entropy
congealing” which performs well on low resolution, noisy video frames. Instead of
re-running the congealing process on all images, we propose a solution to align new
faces efficiently based on the transformation parameters recorded in the training
phase. Aligned faces are further used as feedbacks to update the appearance mo-
del of target. We tested the proposed algorithm on outdoor surveillance videos and
real-world YouTube videos. Experimental results prove the effectiveness of the pro-
posed algorithm in tracking faces undergoing large variations in pose, expression and
scale. Compared to IVT, faces tracked by our algorithm are clearly better aligned.
This indicates that the use of alignment feedback is able to dramatically improve the
performance of visual tracker.

Since face alignment and face tracking are interrelated, our work is not limited in
the face alignment stage. Here we use aligned faces as feedbacks to update the face
tracker, i.e., our method runs in a closed-loop manner. A key idea of this strategy is
that we trace the source of mis-alignment errors rather than just passively aligning
images.
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Chapitre 7

Conclusions and Perspectives

7.1 Conclusions

This thesis studies face alignment algorithms which are capable of working in the
context of video surveillance. We address our work as a part of an automatic face
recognition system. The main challenging factors of this research include the low
quality of images (e.g., low resolution, motion blur, and noise), uncontrolled illumi-
nation conditions, pose variations, expression changes, and occlusions. In order to
deal with these problems, we propose several face alignment methods using different
strategies. Our methods are evaluated on image sets which are selected from different
databases under different conditions for mimicing the real-world video context. We
conclude our main contributions as follows :

• Feature point detection : We first present a three-stage method to locate facial fea-
ture points in Chapter 3. While existing algorithms mostly rely on a priori knowledge
of facial structure and on a training phase, our approach works in an online mode
without requirements of pre-defined constraints on feature distributions. Instead of
training specific detectors for each facial feature, a generic method is used to extract
a set of interest points from test images in the first step. Then, using POEM descrip-
tor, a smaller set of these points are picked as candidates. In the final step, we apply
a game-theoretic technique to select facial points from the candidates. The experi-
mental results prove that (1) our method achieves satisfactory performance on AR
face images under expression and lighting variations, (2) the use of game-theoretic
technique is able to preserve the global geometric of face, and (3) POEM descriptor
is efficient for facial feature representation.

• Joint alignment with entropy : A key contribution of this work is the development
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of an unsupervised joint face alignment algorithm, referred to as “Lucas-Kanade en-
tropy congealing” (LKC), where an image ensemble is aligned by minimizing a sum-
of-entropy function defined over all images. As discussed in Chapter 4, we solve this
minimization problem using both forward and inverse Lucas-Kanade formulations.
Unlike the canonical entropy congealing which estimates transformation parameters
sequentially, our LKC based algorithms are able to estimate all the transformation
parameters at the same time. In the comparison experiments on images of different
illumination conditions and qualities, our algorithms outperform other considered
joint alignment methods regarding both alignment performance and computational
speed. Moreover, using images aligned by LKC-based algorithms is able to signifi-
cantly improve the accuracy of generic face recognition methods.
• Joint alignment with gradient correlation coefficient : In Chapter 5, we also pro-
pose another efficient unsupervised joint face alignment algorithm named “gradient
correlation congealing” (GCC) which uses gradient correlation coefficient as simila-
rity measure. While most existing face alignment methods suffer from outliers, e.g.,
occlusions, GCC is able to align faces undergoing partial occlusions. Moreover, our
algorithm can cope with non-uniform illumination changes (even extremely difficult
ones from the Yale B database).
• Combination of face tracking and face alignment : Our work is not limited in the
face alignment stage. Since face alignment and face acquisition are interrelated, we
developed an adaptive appearance face tracking method with alignment feedbacks
in Chapter 6. We first apply a self-adaptive dynamical model to predict target can-
didates in a particle filtering framework. Hence, our tracker is able to work with
identical parameters for various situations and it is robust to large changes in tar-
get’s state. Then, we employ a multi-view joint face alignment phase based on LKC.
Aligned faces are further used as feedbacks to update the appearance model of target.
This significantly decreases the mis-alignment errors in tracked faces.

In order to show the abilities of our algorithms clearly, we respectively list the
names of the three algorithms and the main challenges for face alignment in Figure
7.1. The notation “O” means that one method has certain robustness to the corres-
ponding challenge. For the LKC based algorithms, there is no specific design to cope
with occlusion, but they are still able to achieve acceptable performance. Hence, we
use the notation “∆” for this case.

7.2 Perspectives

In this thesis, we mainly investigate joint alignment algorithms for a set of images.
In order to expand the applications of our work, it is interesting to find a solution
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 Method 

Challenge Facial feature detection LKC GCC 

Expression O O O 

Illumination O O O 

Pose  O O 

Noise  O O 

Low resolution  O O 

Motion blur  O O 

Occlusion  Δ O 

 

Figure 7.1 – The abilities of our face alignment methods regarding different challen-
ging factors. “O” means that one method has certain robustness to the corresponding
challenge. “∆” stands for that one method is able to achieve acceptable performance
under the corresponding challenge.

to align a single image. Of course, we can insert the new image into the set, then
re-run the joint alignment process. Unfortunately, this is time consuming and not
suitable for video surveillance application. One possible solution has been presented
in Chapter 6, we align a small set of images using transformation parameters recorded
in the training stage with less computational cost. But this strategy still does not
work well on separate images. Hence, the alignment of a single image using joint
algorithms can be further investigated.

Face analysis methods including face alignment suffer from expression and pose
variation in uncontrolled environments. Chapter 6 roughly divides faces into three
pose clusters using a PCA based subspace. To improve the performance of face align-
ment, more sophisticated algorithms, e.g., Kernel Entropy Component Analysis [59]
and a multi-view face detector [62], can be used to estimate the pose and expres-
sion of faces. Similar to [79], another possible extension is to combine the proposed
method with a clustering function. In this way, pose/expression estimation and face
alignment can be achieved simultaneously.

There is also a notable problem of face alignment regarding the face recognition
application. In general, face alignment methods first estimate geometric transfor-
mations which correct the mis-alignment errors in faces. Then, aligned images are
produced by using an interpolation method with respect to the estimated transfor-
mations. If the faces to be processed are of low quality (with low resolution and
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noise), the interpolation procedure will introduce undesired noises into the aligned
images. In this case, even if faces are “well” aligned, face recognition accuracy will
not be improved due to the image differences caused by new noises. One possible
solution to this problem is using super-resolution algorithms to improve the quality
of images. Otherwise, we may try to avoid directly applying interpolation methods to
low quality images. For example, if gallery images are of high quality whereas probe
images are of low quality, we can apply inverse transformations to gallery images,
then compare these warped gallery images with unaligned probe images.

This work focuses on the alignment of facial images. Actually, our alignment
methods (LKC and GCC) can be also used in other applications. For example, we
can align MR (magnetic resonance) images of brains for medical applications, or
align images of cars in a traffic control system.
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Chapitre 8

Résumé en Français

8.1 Introduction

Dans un système typique de reconnaissance automatique de visage, la détection de

visage et la reconnaissance de visage sont les deux étapes principales. Les algorithmes

de détection de visage visent à localiser les régions du visage dans les images d’entrée.

Les méthodes de reconnaissance de visage identifient ensuite les visages détectés en

les comparant avec les images de visages de référence selon certains critères. Au

cours de la dernière décennie, les chercheurs ont proposé de nombreuses méthodes

de détection et de reconnaissance de visage. Malheureusement, les détecteurs de

visage ne sont toujours pas exempts d’erreurs, autrement dit, il y a des erreurs

d’alignement dans les visages détectés, telles que des erreurs de translation, d’échelle

et de rotation. Plusieurs études ont démontré que ces erreurs d’alignement conduisent

inévitablement à une dégradation des performances des méthodes de reconnaissance

de visage. En effet, toutes ces méthodes procèdent à base de comparaison d’images

qui n’a de sens que si les différents visages à comparer sont alignés.

Une solution possible au non-alignement est de développer des méthodes de re-

connaissance de visage robustes aux erreurs d’alignement en faisant intervenir des

invariants à ces erreurs ou en essayant de modéliser les erreurs d’alignement. Cepen-

dant, ces approches nécessitent un nombre important de données d’apprentissage, et
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elles ne peuvent pas éliminer complètement l’effet du non-alignement.

Une autre solution au non-alignement est d’introduire l’alignement de visage

comme une étape de traitement supplémentaire, intermédiaire entre la détection

et la reconnaissance de visage. L’objectif de l’alignement de visage est de transfor-

mer les visages détectés en une pose standard. Plusieurs recherches ont montré que

l’application de méthodes d’alignement de visage peut améliorer considérablement

la précision de l’étape de reconnaissance de visage.

Par voie de conséquence, nous avons choisi de travailler sur le développement

d’algorithmes d’alignement de visage pour traiter le problème du non-alignement

dans un système de reconnaissance de personnes.

8.1.1 Impact du non-alignement sur la reconnaissance de visage

En vision artificielle, la reconnaissance de visage peut être considérée comme un

problème de classification ou de mise en correspondance de caractéristiques d’images

de visage. Pratiquement, un visage inconnu (dénommé visage à reconnâıtre) est com-

paré avec tous les visages enregistrés dans une base de données (visages de référence)

et il sera affecté à l’identité (classe) conduisant à la mesure de similarité la plus

élevée. De toute évidence, un non-alignement spatial engendre des différences arti-

ficielles entre les visages à comparer. Et si les différences engendrées par le non-

alignement prévalent sur les différences entre deux individus, il en résultera des

erreurs de classification. Au cours des dernières années, quelques algorithmes effi-

caces de reconnaissance de visage ont été proposés sur la base de l’extraction de

caractéristiques pertinentes du visage (par exemple, Local Binary Pattern (LBP),

Histogram of Oriented Gradients (HOG), et Patterns of Oriented Edge Magnitudes

(POEM)). Malgré tout , l’effet du non-alignement est encore loin d’être négligeable.

8.1.2 Les principaux défis pour l’alignement de visage

Ce travail se focalise sur l’alignement de visage en conditions non contrôlées

d’acquisition des images de visage. En particulier, nous sommes très intéressés par la
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reconnaissance de visage en cas d’applications de vidéosurveillance. Dans ce contexte,

nous avons à faire face aux problèmes suivants :

• Variations de la pose du sujet ;

• Occultation du visage ;

• Variations des conditions d’éclairement ;

• Variations de l’expression ;

• Faible résolution ;

• Flou ;

• Bruit engendré par le capteur.

8.1.3 Contributions principales

Le travail de cette thèse porte sur l’alignement de visage pour des applications

de vidéosurveillance. Spécifiquement, nous proposons les contributions suivantes :

(1) La première contribution importante de ce travail est le développement d’un

algorithme non supervisé d’alignement conjoint de visage, dénommé ”Lucas-Kanade

entropy congealing”(LKC), où une image entière est alignée en minimisant une fonc-

tion d’entropie définie sur toutes les images de la base d’apprentissage. Nous résolvons

ce problème de minimisation en utilisant à la fois les formules directes et inverses

de Lucas-Kanade. Contrairement au congealing canonique de l’entropie qui estime

séquentiellement la transformation des paramètres, nos algorithmes LKC sont en

mesure d’estimer tous les paramètres de transformation en même temps. D’ailleurs,

dans la méthode d’alignement conjoint, il n’est pas nécessaire d’avoir des modèles

prédéfinis.

(2) Nous proposons également un autre algorithme efficace non supervisé d’ali-

gnement conjoint de visage dénommé ”Gradient Correlation Congealing” (GCC),

qui utilise le coefficient de corrélation de gradient comme mesure de similarité. Alors

que la plupart des méthodes existantes d’alignement de visage souffrent de valeurs

aberrantes, le GCC permet d’aligner les visages qui subissent des occultations par-

tielles. De plus, notre algorithme peut s’affranchir des changements non-uniformes
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d’illumination (même ceux très difficiles).

(3) Dans le but d’aligner des images comportant des erreurs importantes de non-

alignement, nous proposons une solution multi-résolution à l’alignement conjoint

de visage : les images sont d’abord traitées à basses résolutions pour supprimer les

erreurs importantes d’alignement ; ensuite, l’alignement est affiné avec les résolutions

plus hautes.

(4) Comme l’alignement et l’acquisition de visage sont liés, nous développons une

méthode adaptative de suivi du visage avec les retours d’alignement. Nous appliquons

d’abord un modèle dynamique d’auto-adaptation pour envisager les cibles candidates

dans un cadre de filtrage à particules. Notre tracker est capable de fonctionner avec

des paramètres identiques pour les diverses situations. Afin de diminuer l’impact du

non-alignement, nous mettons en place une phase d’alignement de visage basée sur

le LKC. Les visages alignés sont ensuite utilisés comme retour pour mettre à jour le

modèle d’apparence du visage cible.

(5) En dehors de ces algorithmes d’alignement conjoint, une méthode en trois

étapes est proposée pour la localisation de points caractéristiques sur le visage. Alors

que les algorithmes existants s’appuient principalement sur les connaissances acquises

de la structure du visage et sur une phase d’apprentissage, notre approche fonctionne

dans un mode en ligne sans contraintes prédéfinies sur la distribution des points

recherchés. Au lieu de développer un détecteur spécifique pour chaque trait du visage,

une méthode générique est d’abord utilisée pour extraire un ensemble de points

d’intérêt des images de test. En utilisant l’histogramme des POEM, un plus petit

nombre de ces points sont repris en tant que candidats. Ensuite, nous appliquons la

théorie des jeux pour sélectionner les points du visage parmi les candidats, tout en

préservant les propriétés géométriques globales du visage.

8.2 Classification des méthodes d’alignement de visage

Nous divisons les algorithmes d’alignement de visage en trois catégories, à sa-

voir, ceux basés sur l’extraction de points caractéristiques, ceux qui procèdent par
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alignement direct et enfin ceux qui procèdent par alignement conjoint.

8.2.1 Alignement de visage basé sur l’extraction de points caractéristiques

Un alignement parfait de visages est généralement issu d’une phase d’alignement

basée sur des repères extraits et mis en correspondant manuellement, par exemple, les

centres des yeux, les narines et les coins de la bouche. Par conséquent, une approche

intuitive au non-alignement est de détecter des points caractéristiques du visage et

de les transformer en position standard. La détection de points caractéristiques du

visage peut être divisée en deux catégories : les méthodes basées sur la texture et

celles basées sur la forme. Les approches à base de texture modélisent la texture locale

autour d’un point donné du visage, par exemple, les valeurs de luminance dans une

petite zone autour du centre d’un œil. Les méthodes à base forme considèrent tous les

repères du visage comme un modèle de forme, qui est développé à partir des visages

marqués, et essaient de trouver la bonne forme pour des visages inconnus.

8.2.2 Alignement direct de visage

Les approches d’alignement direct de visage visent à déformer une image test

de visage pour faire la paire avec une image prédéfinie. Les éléments importants de

l’alignement direct de visage comprennent une mesure de similarité et une méthode

d’optimisation. Plus précisément, l’alignement de visage est réalisé par optimisation

d’une fonction de coût basée sur la similarité entre les deux images considérées.

8.2.3 Alignement conjoint de visage

Contrairement aux approches à base de points caractéristiques ou aux approches

directes, les méthodes d’alignement conjoint de visages fonctionnent en alignant si-

multanément une série d’images faciales. Les méthodes récentes d’alignement conjoint

comprennent le Learned-Miller Congealing (LMC) et le Least Square Congealing

(LSC). Dans le cas du congealing, la seule hypothèse est le type de non-alignement
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géométrique, et les paramètres de transformation sont obtenus en minimisant une

fonction de coût.

8.2.4 Discussion

Dans cette thèse, nous ne travaillons pas sur les méthodes à base de forme

car elles sont trop compliquées et coûteuses en calcul pour des applications de

vidéosurveillance. Comme les méthodes d’alignement direct de visage ne conviennent

pas pour des applications de reconnaissance de visage en raison de l’exigence d’un

modèle prédéfini, nous n’adoptons pas ce type de méthodes dans notre travail. Ainsi,

dans cette thèse, nous nous concentrons sur l’étude de la détection de point à base

de texture et sur l’alignement conjoint de visage.

8.3 Une méthode en trois étapes pour la localisation de points

caractéristiques du visage

Trouver des points caractéristiques sur un visage expressif ou non uniformément

éclairé est toujours un défi. Une solution populaire pour améliorer les performances

de localisation est d’utiliser la relation spatiale entre les positions des différents

traits du visage. Les algorithmes existants comptent essentiellement sur une connais-

sance acquise de la structure du visage et sur une phase d’apprentissage. Cependant,

la construction des données d’apprentissage pour ces méthodes est compliquée et

coûteuse en calcul.

Pour contourner l’étape d’apprentissage, nous proposons une approche en ligne

sans exigences prédéfinies sur la distribution des points caractéristiques à extraire.

Au lieu d’appliquer un détecteur spécifique pour chaque trait du visage, une méthode

générique est utilisée pour extraire un groupe de points d’intérêt à partir des images

de test. Avec un descripteur robuste de traits dénommé l’histogramme Patterns

Oriented Edge Magnitude (POEM), le nombre de points candidats est réduit. En-

suite, nous appliquons la théorie des jeux pour sélectionner les points de visage parmi
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les candidats, tout en conservant les propriétés géométriques globales du visage.

8.3.1 Étape 1 : Détection des points d’intérêt

Contrairement à certaines approches nécessitant des détecteurs calibrés pour les

traits spécifiques du visage, nous utilisons une méthode générique pour extraire un

ensemble de points d’intérêt qui sont invariants à l’échelle, à la rotation et à la trans-

lation et qui sont également robustes aux changements d’éclairage. Un sous-ensemble

de ces points est sélectionné en tant que candidats dans l’étape suivante. L’idée fon-

damentale derrière est que nous croyons que certains traits du visage, tels les coins

des yeux, les coins de la bouche et les narines sont invariants aux transformations

de similarité relativement aux changements d’identité, d’expression et d’éclairage.

Nous avons testé les détecteurs de points d’intérêt suivants : Laplacian-of-Gaussian

(LoG), Difference-of-Gaussian (DoG), Hessian-Laplacian et Harris-Laplacian. Après

plusieurs séries de tests, nous adoptons ici le détecteur Harris-Laplacien, car il per-

met trouver plus de points caractéristiques du visage, tels que les coins de la bouche,

les coins des yeux et les narines.

8.3.2 Étape 2 : Cribalge de points candidats

Après l’extraction de points d’intérêt, la localisation des points de visage se trans-

forme en un problème de correspondance entre les points cibles du modèle et les points

d’intérêt de l’image de test. Compte tenu de l’efficacité de la reconnaissance, pour

chaque point cible, seulement K (par exemple, K ¡= 10) points dans l’image de test

avec le descripteur le plus proche sont pris comme candidats. Un descripteur robuste

est nécessaire pour distinguer les points d’intérêt. Nous proposons ici d’utiliser le

descripteur POEM. En fonction de la distance entre les histogrammes, les K points

d’intérêt associés au descripteur le plus proche sont pris en tant que candidats pour

chaque point cible.
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8.3.3 Etape 3 : Adaptation multi-modèle de la théorie des jeux

Jusqu’ici, il y a plusieurs points candidats dans l’image de test pour chaque point

cible dans le modèle. A ce stade, nous cherchons à trouver les paires correspon-

dantes pour chaque point cible. Puisque les traits de visage ont une certaine struc-

ture géométrique, il existe une transformation compatible pour toutes ces paires. Le

processus de sélection peut être considéré comme un jeu d’adaptation, les paires de

points avec des probabilités élevées sont pris comme paires correspondantes.

Comme les traits de visage des images de test varient en fonction du changement

d’identité et d’expression, la question d’adaptation souffrirait de l’erreur de criblage

des candidats. Plus précisément, la correspondance d’un point cible peut ne pas être

incluse dans le groupe de candidats. Dans ce cas, toutes les paires contenant ce point

cible obtiendront une faible probabilité après le jeu d’adaptation, et donc ce point de

visage est mal localisé. Pour augmenter la robustesse de l’adaptation de la théorie des

jeux, nous appliquons plusieurs modèles pour correspondre aux images de test. C’est

seulement si l’un de ces modèles donne un point de correspondance au point cible que

ce point de visage peut être localisé avec succès. Par conséquent, la probabilité de

“mauvaise localisation” est très faible. Si un point de visage est localisé par plusieurs

modèles, la localisation moyenne est utilisée comme résultat final.

8.3.4 Résumé

Nous avons présenté d’abord une approche en ligne pour localiser les points ca-

ractéristiques du visage, qui ne nécessite pas de contraintes prédéfinies sur la distri-

bution de traits. Nous modélisons le problème de localisation en un jeu d’adaptation

qui préserve la cohérence géométrique globale des points du visage. Les résultats

expérimentaux montrent que l’algorithme proposé permet d’obtenir des performances

satisfaisantes sur les images AR qui présentent des varations d’expressions et d’illumi-

nation. Comme indiqué dans la section précédente, il existe d’autres facteurs difficiles

pour l’alignement de visage en contexte de vidéosurveillance : l’occultation, la pose,

le bruit, le flou, et la basse résolution. Malheureusement, les méthodes à base de point
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ne sont pas performantes pour les images de vidéosurveillance de mauvaise qualité,

parce que les méthodes à base de point dépendent des caractéristiques locales qui

sont sensibles au bruit et au flou. En outre, le problème des occultations et des varia-

tions de pose sont encore des facteurs difficiles pour les détecteurs à base de texture.

Dans cette perspective, le travail suivant est focalisé sur les méthodes d’alignement

conjoint qui sont plus adaptées aux images de faible qualité.

8.4 Lucas-Kanade Entropy Congealing pour l’alignement conjoint

de visage

Le congealing à base d’entropie a d’abord été proposé par Learned-Miller pour

l’alignement conjoint d’images binaires et d’images de résonance magnétique. Cette

méthode d’alignement conjoint a ses propres avantages : elle est automatique et

insensible à la qualité d’image. Toutefois, la minimisation de la fonction d’entro-

pie est basée sur une estimation de recherche séquentielle avec une taille d’incrément

prédéfinie pour la mise à jour. Ceci entrâıne généralement une faible vitesse de conver-

gence. Afin de surmonter ces limitations, nous proposons l’utilisation de l’algorithme

d’optimisation de Lucas-Kanade pour estimer en même temps tous les paramètres

de transformation, plutôt que de façon séquentielle comme pour le congealing de

Learned-Miller.

8.4.1 Lucas-Kanade entropy congealing

Dans cette méthode, une image est alignée via la minimisation d’une fonction

d’entropie. Ici, nous combinons le congealing avec le descripteur facial robuste POEM.

Cependant, il est difficile de calculer directement les probabilités du descripteur

POEM. Par conséquent, tous les descripteurs de caractéristiques sont modélisés

comme étant générés par une combinaison de modèles gaussiens en utilisant l’al-

gorithme des k-moyennes. De cette manière, chaque pixel est représenté par un vec-

teur de probabilités qui peut être utilisé pour calculer la valeur d’entropie parmi les
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images.

Au lieu d’utiliser la méthode canonique de congealing, nous employons l’algo-

rithme de Lucas-Kanade pour optimiser la fonction de coût. Plus précisément, nous

calculons d’abord la matrice Jacobienne et Hessienne de la fonction de coût. Ensuite,

on peut facilement obtenir un incrément de transformation qui est utilisé pour mettre

à jour de manière itérative la transformation courante. Dans ce travail, nous avons

respectivement développé deux formules de congealing, c’est-à-dire, les méthodes di-

recte et inverse, qui se distinguent par le rôle du modèle. Lorsque le “champ de la

distribution” est invariant au cours d’une itération, il est pris pour modèle dans la

formule directe. Cependant, il existe un énorme coût de calcul en recalculant la ma-

trice Jacobienne et Hessienne à chaque itération. Certaines études font remarquer que

généralement la clé pour l’efficacité est d’inverser les rôles du modèle et des données

de test. Par conséquent, nous inversons les rôles du modèle et de l’image de test. Cette

formule de composition inverse permet de pré-calculer les matrices Jacobienne et Hes-

sienne ce qui diminue la complexité de calcul. Nous menons une étude comparative

de performances sur cinq groupes d’image des bases de données AR, SCface, FERET,

LFW et vidéos de surveillance respectivement. Les avantages de nos méthodes ont

été évalués à l’aide de différents protocoles : comparaison visuelle à l’image moyenne,

estimation du taux de convergence, taux de reconnaissance de visage et complexité.

Les résultats expérimentaux indiquent que le LKC proposé montre de meilleures

performances que d’autres méthodes d’alignement, et qu’il a une certaine robustesse

aux variations d’éclairage et de qualité d’image. En ce qui concerne la complexité,

le LKC inverse est plus efficace que d’autres approches considérées. Par rapport à la

formule directe, la méthode inverse produit une amélioration de la vitesse de 20%.

8.4.2 Multi-resolution Lucas Kanade entropy congealing

La plupart des méthodes existantes transforment le problème d’alignement

conjoint en un problème de minimisation d’une fonction de coût calculée sur toutes

les images, et estiment ensuite les paramètres de transformation en trouvant le mini-
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mum local de cette fonction. Malheureusement, les erreurs importantes d’alignement

de visages conduisent souvent à une convergence de la fonction de coût dans un

minimum local car la fonction de coût est a priori non convexe. Le processus d’op-

timisation peut se coincer dans un minimum local, ce qui signifie que les visages ne

sont pas correctement alignés.

L’algorithme LKC proposé souffre également du problème de minimum local.

Pour y remédier, nous proposons une solution multi-résolution pour laquelle les non-

alignements les plus importants sont éliminés dans les hauts niveaux (images de

résolution inférieure), et l’alignement est affiné dans des niveaux plus fins.

Les résultats expérimentaux sur les images des bases de données AR et Yale

B prouvent que l’algorithme proposé est (1) robuste aux grandes erreurs de non-

alignement, (2) plus efficace que les méthodes de résolution unique au niveau du

coût de calcul (convergence plus rapide).

8.4.3 Résumé

Jusqu’ici, nos méthodes à base de LKC sont en mesure de traiter la plupart

des cas difficiles pour l’alignement de visage en contexte de vidéosurveillance. Plus

précisément, nos méthodes sont capables de traiter une certaine gamme de variation

de pose et changements d’expression, parce qu’ils fonctionnent bien sur les images

non contrôlées de la base de données LFW. Les résultats sur les images des bases

de données AR et Yale B prouvent la robustesse des méthodes LKC aux variations

d’éclairage. Les expérimentations sur les images de la base de données SCface et de

vidéosurveillance montrent que nos méthodes sont capables d’aligner les images de

mauvaise qualité où les visages ont une mauvaise résolution, sont flous ou bruités.

Autrement dit, la seule difficulté restante est le cas d’occultation partielle des vi-

sages. Or les méthodes à base de LKC requièrent d’un processus de clustering pour

réduire la dimension des vecteurs de caractéristiques. Lors de l’alignement d’images

avec occultations, les pixels aberrants provenant de régions cachées ont un impact

négatif sur la précision du clustering ce qui conduit à une baisse de performance de
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l’alignement. Ainsi, dans le travail suivant, nous nous concentrons sur la recherche

d’une solution pour aligner les visages partiellement occultés.

8.5 Alignement conjoint de visage par coefficient de corrélation

de gradient

En cas d’occultation partielle des visages, les détecteurs de visage ne fonctionnent

pas très bien dans ces conditions difficiles, ce qui rend la phase d’alignement de visage

plus nécessaire encore.

Dans ce travail, nous proposons un cadre d’alignement conjoint non supervisé,

appelé “Gradient Correlation Congealing (GCC)”, qui aligne un ensemble d’images

en maximisant la somme des coefficients de corrélation de gradient définie sur toutes

les images. Deux formulations différentes (GCC-1 et GCC-2) sont respectivement

développées en fonction du rôle du modèle. Plus précisément, le GCC-1 utilise le

reste des images comme modèle au sein d’une itération, tandis que le GCC-2 utilise

l’image sélectionnée comme modèle. Les avantages principaux des méthodes à base

du GCC sont : (1) elles travaillent de manière non supervisée, (2) elles ne nécessitent

aucun modèle prédéfini, (3) elles sont robustes à la fois aux occultations et aux

variations non-uniformes d’éclairage.

8.5.1 Gradient Correlation Congealing

La caractéristique que nous utilisons dans ce travail est l’orientation du gradient

car il a été prouvé que c’est une caractéristique robuste à l’éclairage pour l’analyse

de visage. Le travail de Tzimiropoulos et al. a utilisé une corrélation d’orientation

du gradient à base de FFT pour l’enregistrement d’images. Récemment, ce coeffi-

cient de corrélation du gradient a été appliqué pour l’alignement de deux images

faciales avec occultation. Mais cette approche nécessite des modèles prédéfinis, et

les résultats expérimentaux sont présentés à l’aide de modèles relatifs aux mêmes

sujets que les images de test, autrement dit, les identités des images de test sont
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déjà connues. Cette démarche ne semble pas logique en reconnaissance de visage,

puisque l’objectif final de la reconnaissance de visage est justement d’identifier les

visages à l’entrée du système. Pour contourner cette étape de sélection de modèle,

nous créons une méthode d’alignement conjoint non supervisée appelée ”Gradient

Correlation Congealing (GCC)”. Puisque nous utilisons le coefficient de corrélation

comme fonction de coût pour laquelle une valeur élevée signifie que les images sont

plus corrélées, le problème d’alignement conjoint est défini par la maximisation d’une

fonction de similarité qui est calculée sur un ensemble d’images.

Intuitivement, il y a deux façons pour formuler la fonction de coût en fonction de

la définition du modèle. Plus précisément, puisque les méthodes d’alignement conjoint

ne nécessitent pas de modèle prédéfini, à chaque fois nous pouvons choisir une image

(ou des images) pour modèle(s) et effectuer une transformation pour le reste. Pendant

le processus d’alignement, le choix du modèle change tout le temps. Pour établir une

distinction claire, les deux formulations différentes sont respectivement nommées

GCC-1 et GCC-2.

Dans l’algorithme GCC-1, nous essayons de trouver une déformation pour l’image

sélectionnée, le reste des images étant prises comme modèle. Cependant, cette for-

mulation ne fonctionne pas correctement lorsque les images subissent de grandes

erreurs d’alignement. Plus précisément, l’estimation des paramètres de transforma-

tion dans la méthode GCC-1 a un effet similaire à aligner une image sur la moyenne

de l’ensemble des images, puisque le reste des images est invariant dans une itération

donnée. Des non-alignements plus importants engendrent une image moyenne plus

floue et aligner une image à cette image moyenne plus floue entrâıne un alignement

de moins bonne qualité.

Pour remédier à cette limitation, nous proposons alors l’algorithme GCC-2.

Contrairement au GCC-1, la solution alternative est d’utiliser l’image sélectionnée

comme modèle. Dans ce travail, nous utilisons une méthode d’optimisation similaire

pour les deux formulations : une mise à jour des paramètres de transformation est

obtenue en calculant la moyenne des déformations estimées entre l’image sélectionnée
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et chaque image du reste de l’ensemble.

Les algorithmes proposés sont testés et comparés à quatre méthodes typiques

d’alignement conjoint : LSC, LMC, LKC et RASL et ce sur trois groupes d’images

qui sont respectivement tirées des bases de données AR, Yale B et des vidéos de

surveillance. Les résultats expérimentaux prouvent l’efficacité des approches pro-

posées d’alignement dans les conditions différentes. En particulier, lorsque les visages

sont partiellement cachés, nos algorithmes sont bien plus performants que les autres

méthodes considérées. En comparaison avec le GCC-1, le GCC-2 est plus robuste

aux grandes erreurs d’alignement.

8.5.2 Résumé

Les méthodes proposées (LKC et GCC-2) ont montré une certaine robustesse face

à l’ensemble des facteurs de défi. Plus précisément, nos méthodes sont capables de

traiter la basse résolution, le flou et le bruit ainsi qu’une certaine gamme de variations

de pose et de changements d’expression. Les résultats sur les images Yale B prouvent

la robustesse des méthodes LKC et GCC-2 aux variations d’éclairage (même les cas

très difficiles). Les expérimentations sur les images AR montrent que nos algorithmes

sont robustes aux occultations partielles.

8.6 Tracking adaptatif de visage avec boucle de retour d’aligne-

ment

Dans un système de reconnaissance de visage à base de la vidéo, la détection de

visage dans chaque image n’est pas stable. Habituellement, les détecteurs de visage

sont utilisés pour trouver la position initiale d’un visage, ce visage cible est ensuite

localisé en permanence par suivi à travers les images successives. Comme l’alignement

et le suivi de visage sont interdépendants, nous proposons de coupler un système de

suivi et d’alignement de visages.

De nombreuses approches ont été proposées pour le suivi visuel. Ces algorithmes
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sont conventionnellement développés suivant les méthodes de représentation des ob-

jets et les systèmes de prédiction. La plupart des méthodes existantes de suivi uti-

lisent des modèles figés d’apparence de la cible, d’où des erreurs en environnements

non contrôlés où les objets subissent de grandes variations d’apparence (pose, échelle

et éclairage). Pour résoudre ces problèmes, les trackers ont été combinés avec des

modèles adaptatifs d’apparence. Cependant, ces approches manquent souvent de

mécanisme direct pour corriger les non-alignements spatiaux qui peuvent survenir

lors du suivi. Les erreurs indésirables s’accumulent ensuite dans le modèle d’appa-

rence de la cible. Cela a inévitablement des effets négatifs sur la performance du

suivi et cela engendre une perte de la cible. Nous présentons ici une méthode adap-

tative d’apparence pour le suivi de visages en environnement non contrôlé. Nous

appliquons d’abord un modèle dynamique d’auto-adaptation pour prédire les cibles

candidates dans un cadre de filtrage de particules. Afin de diminuer l’impact du non-

alignement, nous utilisons ensuite une méthode d’alignement conjoint de visage qui

fonctionne bien en basse résolution. Les visages alignés sont d’ailleurs utilisés comme

information pour mettre à jour le modèle d’apparence du visage cible.

8.6.1 Suivi du visage

Basé sur le processus Markov, le problème de suivi peut être formulé comme une

tâche d’inférence. Les deux éléments majeurs de cette tâche sont le modèle d’obser-

vation et le modèle dynamique. Dans un cadre de filtre à particules, les particules

candidates prédites par le modèle dynamique sont pondérées selon le modèle d’ob-

servation.

Ici, nous présentons un modèle dynamique d’auto-adaptation basé sur une distri-

bution gaussienne dans lequel la prédiction des particules est adaptée à l’état récent

de la cible. Par conséquent, notre tracker est capable de fonctionner avec des pa-

ramètres identiques pour toutes les situations, et il est aussi plus robuste aux grands

changements d’état de la cible. Un exemple simple et fiable de notre modèle dyna-

mique d’auto-adaptation consiste à ajuster les variations de translation en fonction
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de l’échelle de la cible.

Pour le modèle d’observation, nous construisons un sous-espace de faible dimen-

sion pour représenter la cible. La probabilité pour un candidat d’être généré à partir

de ce modèle cible est définie par une fonction exponentielle négative de la distance.

8.6.2 Alignement de visage multi-vues

Comme les images de la vidéo sont souvent de faible résolution, floues et bruités,

nous utilisons ici l’approche d’alignement conjoint de visage, LKC, dans lequel le

problème d’alignement est défini comme un problème de minimisation d’une fonction

d’entropie. Tout d’abord, le descripteur POEM est utilisé pour représenter les visages.

Les paramètres de transformation sont ensuite estimés de façon itérative en utilisant

une optimisation de Newton. De plus, nous supposons que le type de non-alignement

géométrique est une transformation de similarité.

Durant le processus de suivi, les visages suivis sont envoyés en sortie pour la

phase d’alignement. Si nous insérons simplement les nouveaux visages suivis dans

l’ensemble d’images et répétons la procédure d’alignement conjoint sur toutes les

images, le coût de calcul sera très important. Dans ce travail, nous avons d’abord

sélectionné quelques centaines d’images de visage issues de différentes vidéos pour for-

mer un ensemble d’apprentissage. Ensuite, les paramètres de transformation liés aux

images d’apprentissage sont enregistrés à chaque itération de la procédure d’aligne-

ment. Pour aligner les nouvelles images de visage, nous les insérons dans l’ensemble

d’apprentissage et relançons l’algorithme d’alignement. En fait, en utilisant les pa-

ramètres de transformation enregistrés, il n’y a plus de surcoût de calcul pour les

images d’apprentissage.

Compte tenu des changements importants dans la pose de la cible, nous construi-

sons un modèle multi-vues pour l’alignement de visage. Plus précisément, nous

détectons environ 3500 images faciales de différentes poses dans les vidéos sur You-

tube afin d’estimer un modèle de sous-espace de poses à base de PCA. Etant donné

que notre méthode d’alignement fonctionne bien sur les visages frontaux, nous clas-
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sons ici de manière approximative les poses en trois catégories : frontal, profil gauche

et profil droite.

Pour chaque catégorie de poses, nous pouvons former un ensemble d’apprentissage

et enregistrer leurs paramètres de transformation au cours de l’alignement conjoint.

Après l’estimation de la pose, les nouveaux visages sont alignés selon leur propre

ensemble d’apprentissage.

8.6.3 Mise à jour du modèle d’apparence

Dans un système typique d’analyse de visage, l’alignement de visage est l’étape

suivante au suivi de visage. Normalement, l’alignement et le suivi de visage s’en-

châınent en boucle ouverte, sachant qu’il n’y a pas de retour pour restreindre la

sortie des méthodes de suivi de visage. Pour une méthode adaptative d’apparence,

les non-alignements spatiaux existants dans les visages seront accumulés dans le

modèle d’apparence de la cible. Cela aura inévitablement des effets négatifs sur les

performances de suivi. Nous présentons ici une solution en boucle fermée pour le

suivi adaptatif de l’apparence de visage où les visages alignés sont utilisés comme

retour pour mettre à jour le modèle d’apparence de la cible.

8.6.4 Résumé

Comme l’alignement et le suivi de visage sont liés entre eux, notre travail ne se

limite pas à la phase d’alignement de visage. Nous utilisons ici les visages alignés

en tant que retour pour mettre à jour le suivi de visage, c’est-à-dire, notre méthode

s’exécute en boucle fermée. Nous avons testé l’algorithme proposé sur des vidéos

de surveillance extérieure et sur des vidéos d’actualités sur YouTube. Les résultats

expérimentaux démontrent l’efficacité de l’algorithme proposé pour le suivi de vi-

sages subissant de grandes variations de pose, d’expression et d’échelle. Par rapport

à un tracker en boucle ouverte, les visages suivis par notre algorithme sont claire-

ment mieux alignés. Cela indique que l’utilisation du retour d’alignement permet

d’améliorer considérablement la performance du suivi visuel.
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8.7 Conclusions et perspectives

8.7.1 Conclusions

Cette thèse s’intéresse au développement d’algorithmes d’alignement de visage

capables de fonctionner en contexte de vidéosurveillance. Cette phase d’alignement

s’intègre directement dans les systèmes de reconnaissance de personnes par analyse

de visage. Nous proposons plusieurs méthodes d’alignement de visage en utilisant

des stratégies différentes. Nos méthodes sont évaluées par des ensembles d’images

qui sont sélectionnées à partir de différentes bases de données pour leurs conditions

spécifiques d’acquisition proches d’une acquisition réelle. Nous concluons nos princi-

pales contributions comme suit :

Détection de points caractéristiques : Nous présentons d’abord une méthode en

trois étapes pour localiser les points caractéristiques du visage. Alors que les algo-

rithmes existants s’appuient principalement sur les connaissances acquises de la struc-

ture de visage et sur une phase d’apprentissage, notre approche fonctionne dans un

mode en ligne sans contraintes prédéfinies sur la distribution des caractéristiques. Au

lieu d’appliquer les détecteurs spécifiques pour chaque caractéristique de visage, une

méthode générique est utilisée pour extraire un ensemble de points d’intérêt à partir

d’images de test dans la première étape. Ensuite, en utilisant le descripteur POEM,

un sous-ensemble de ces points est sélectionné comme candidats. Dans la dernière

étape, nous appliquons une technique de la théorie des jeux pour sélectionner les

points du visage parmi les points candidats. Les résultats expérimentaux montrent

que (1) notre méthode permet d’obtenir une performance satisfaisante sur les images

avec variations d’expression et d’éclairage, (2) l’utilisation de la technique de théorie

des jeux est en mesure de préserver la géométrie globale du visage, et (3) le descrip-

teur POEM est efficace pour la représentation des caractéristiques du visage.

L’alignement conjoint avec l’entropie : Une contribution essentielle de ce travail

est le développement d’un algorithme non supervisé d’alignement conjoint de vi-

sage, dénommé “Lucas-Kanade entropy congealing” (LKC), dans lequel un ensemble
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d’images est aligné en minimisant une fonction de la somme des entropies définies

sur toutes les images. Nous résolvons ce problème de minimisation en utilisant à la

fois les formulations directe et inverse d’optimisation de Lucas-Kanade. Contraire-

ment au congealing classique qui estime les paramètres de transformation de façon

séquentielle, nos algorithmes basés sur LKC permettent d’estimer tous les paramètres

de transformation en même temps. Dans les expérimentations comparatives sur les

images de différentes conditions d’éclairage et de différentes qualités, nos algorithmes

surclassent les autres méthodes d’alignement conjoint considérées au niveau de la per-

formance d’alignement et de la vitesse de calcul. En outre, l’utilisation des images

alignées par les algorithmes à base de LKC permet d’améliorer considérablement la

précision des méthodes génériques de reconnaissance de visage.

L’alignement conjoint avec coefficient de corrélation du gradient : Nous propo-

sons également un autre algorithme efficace non supervisé d’alignement conjoint de

visage dénommé “gradient correlation congealing” (GCC), qui utilise le coefficient

de corrélation du gradient comme niveau de similarité. Alors que la plupart des

méthodes existantes d’alignement de visage souffrent de valeurs aberrantes en cas

d’occultation, le GCC permet d’aligner les visages qui subissent les occulations par-

tielles. De plus, notre algorithme peut traiter le cas des images avec des variations

d’éclairage non-uniformes (même celles extrêmement difficiles de la base de données

Yale B).

La combinaison du suivi et de l’alignement de visage : Notre travail ne se limite

pas à la phase d’alignement de visage. Comme l’alignement et l’acquisition de vi-

sage sont interdépendants, nous avons développé une méthode adaptative de suivi

de l’apparence de visage. Nous avons d’abord appliqué un modèle dynamique d’auto-

adaptation pour prédire les candidats cibles dans un cadre du filtrage de particules.

Ainsi, notre tracker est capable de fonctionner avec des paramètres identiques pour

diverses situations, et il résiste aux grands changements dans l’état de la cible. En-

suite, nous appliquons une phase multi-vues d’alignement conjoint de visage à base

du LKC. Les visages alignés sont ensuite utilisés comme retour pour mettre à jour le
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modèle d’apparence de la cible. Cela réduit considérablement les erreurs d’alignement

dans les visages suivis.

8.7.2 Perspectives

Dans cette thèse, nous nous intéressons principalement à des algorithmes d’ali-

gnement conjoint pour une série d’images. Afin d’élargir les applications de notre

travail, il est intéressant de trouver une solution pour aligner une seule image. Bien

sûr, on peut insérer la nouvelle image dans l’ensemble, puis relancer le processus

d’alignement conjoint. Malheureusement, cela prend du temps et ne convient pas

pour les applications de vidéosurveillance. Une solution possible a été présentée dans

notre travail, nous alignons une petite série d’images en utilisant les paramètres de

transformation enregistrés pendant l’étape d’apprentissage avec un coût inférieur de

calcul. Mais cette stratégie ne fonctionne pas vidéosurveillance bien sur les images

séparées. Par conséquent, l’alignement d’une seule image en utilisant les algorithmes

conjoints peut être davantage étudié.

Les méthodes d’analyse de visage, y compris l’alignement de visage, souffrent

des variations d’expression et de pose dans les environnements non contrôlés. Nous

divisons grossièrement les visages en trois catégories à l’aide d’un sous-espace à base

de PCA. Pour améliorer la performance d’alignement de visage, des algorithmes

plus sophistiqués, tels que Kernel Entropy Component Analysis peuvent être utilisés

pour estimer la pose et l’expression des visages. Une autre extension possible est

de combiner la méthode proposée avec une fonction de clustering. De cette façon,

l’estimation de la pose / de l’expression et l’alignement de visage peuvent être réalisés

simultanément.

En général, les méthodes d’alignement de visage estiment d’abord les transfor-

mations géométriques qui corrigent les erreurs de non-alignement dans les visages.

Ensuite, les images alignées sont produites en utilisant une méthode d’interpolation

par rapport aux transformations estimées. Si les visages à traiter sont de faible qua-

lité, la procédure d’interpolation induira du bruit indésirable sur les images alignées.
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Dans ce cas, même si les visages sont “ bien” alignés, la précision de reconnaissance

de visage ne sera pas améliorée en raison des différences d’images engendrées par le

nouveau bruit. Une solution possible à ce problème est l’utilisation d’algorithmes de

super-résolution pour améliorer la qualité des images. Sinon, nous pouvons essayer

d’éviter l’application directe des méthodes d’interpolation sur les images de faible

qualité. Par exemple, si les images de référence sont de haute qualité alors que les

images à reconnâıtre sont de faible qualité, nous pouvons appliquer les transforma-

tions inverses sur les images de référence, puis comparer ces images de référence

déformées avec les images non alignées à reconnâıtre.

Bien que ce travail ait porté sur l’alignement d’images de visage, nos méthodes

d’alignement (LKC et GCC) peuvent également être utilisées dans d’autres applica-

tions. Par exemple, nous pouvons aligner des images RM (résonance magnétique) du

cerveau pour les applications médicales, ou aligner les images de voitures dans un

système de contrôle de circulation.
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Annexe A

Scale-Invariant Feature Transform (SIFT)

Scale-Invariant Feature Transform (SIFT), proposed by Lowe [82], is an algorithm
for detecting and describing local features in images. SIFT aims at finding distinctive
features which are invariant to scale, rotation, illumination, and viewpoint. The main
steps of this algorithm include scale-space extrema detection, keypoint localization,
orientation assignment, and descriptor building. In this report, our interest is to use
SIFT descriptor to represent pixels or local regions in images, i.e., the last stage of
canonical SIFT algorithm.

Figure A.1 – This figure shows a 2×2 SIFT descriptor computed from an 8×8
region [82].

The computation of SIFT descriptor is illustrated in Figure A.1. First the image
gradient magnitudes and orientations are sampled around the target pixel. These
gradients are shown with small arrows at each sample location on the left side of
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Figure A.1. A Gaussian function (a circular window on the left side of Figure A.1) is
used to weight the magnitude of each sample point. The use of this Gaussian window
can avoid sudden changes in the descriptor with small changes in the position of the
window, and to give smaller weights to points that are far from the center of the
descriptor.

These gradients are then accumulated into orientation histograms summarizing
the contents over subregions of a pre-defined size. The example on the right side of
Figure A.1 is a 2×2 SIFT descriptor computed from an 8×8 region, i.e., the size
of subregions is 4×4. In general, histograms have eight directions. For example, [82]
uses 4×4 descriptors from 16×16 which leads to a 1×128 (4×4×8=128) vector.

Finally, the feature vector is normalized to unit length to improve the robustness
to uniform illumination changes. To deal with non-linear illumination variations,
large gradient magnitudes in unit feature vector are set to a pre-defined value (0.2
in [82]). After that, the vector is renormalized.
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Annexe B

Local Binary Pattern (LBP)

The LBP operator was originally proposed by Ojala et al. [90] for representing
the texture of an image. For each pixel in the image, the operator thresholds its eight
neighbor of a fixed radius with the center value. All the neighbors will then have a
value of 1 if their value is greater than or equal to the current pixel, and 0 if the
value is lower (see Figure B.1). LBP code of the current pixel is then generated by
concatenating the 8 values to form a binary code which is between 0 and 255. In this
way, we can obtain a new gray level image containing LBP values of pixels.
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Figure B.1 – LBP operator [120].

The LBP was further extended by using neighborhoods of different sizes. In this
case, a circle of radius R around the center pixel is considered. Values of P points on
the edge of the circle are taken and compared with the value of central pixel. To obtain
the values of points exactly locating on the circle of any radius R, an interpolation is
necessary. We use the notation (P,R) to represent the neighborhood with P sampling
points on a circle of radius of R. Figure B.2 (a) shows three neighborhoods for
different values of R and P .

Let gc be the gray value of central pixel, gp(p = 1, ..., p) be the gray levels of its
neighbors, the LBP index of the current pixel is calculated as :
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Fin de la ligne CoinBordSpot Spot
(b)

Figure B.2 – (a)Three neighborhoods for different values of R and P , (b) special
textures detected by LBP u2

LBPP,R(xc, yc) =
P∑
p=1

s(gp − gc)2p−1 (B.1)

where (xc, yc) are the coordinates of the current pixel, LBPP,R is the LBP code for
the neighborhood (P,R), and function s() is :

s(x) =

{
1 if x ≥ 0

0 if x < 0
(B.2)

The LBP operator obtained with P = 8 and R = 1 (LBP8,1) is very close
to the original LBP operator. The main difference is that the pixels must first be
interpolated to obtain values of points on the circle.

Another extension to the original operator is the uniform LBP. A LBP code is
called uniform if it contains at most two bitwise transitions from 0 to 1 or vice versa
when the binary string is considered circular. For example, 00000000, 00011110 and
10000011 are uniform codes. Using a uniform LBP code, noted LBP u2 has two ad-
vantages. The first is the save of computation time and memory. In the computation
of the LBP labels, uniform patterns are used so that there is a separate label for each
uniform pattern and all the non-uniform patterns are labeled with a single label. For
example, when using (8, R) neighborhood, there are a total of 256 patterns, 58 of
which are uniform, which yields in 59 different labels. The second is that LBP u2
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detects only significant local textures, such as spots, end of line, edges, and corners
(examples of these special textures are shown in Figure B.2 (b)). Indeed, Ojala et al.
[90] showed that uniform LBPs contain over 90% of the information of an image.

An important property of LBP is that the code is invariant to global uniform
changes of illumination, because the LBP of a pixel depends only on the differences
between its gray level and those of its neighbors.

B.1 Face recognition with LBP

After obtaining the LBP codes for all pixels of a facial image, we calculate the
histogram of the image LBP to form a feature vector representing the facial image.

In order to incorporate more spatial information into the descriptor, the facial
image is divided into local regions and LBP texture descriptors are extracted from
each region independently. The descriptors are then concatenated to form a global
description of the face, as shown in Figure B.3.

Figure B.3 – Using LBP histograms to represent a facial image.

Given two LBP histograms H1, H2 of two faces, the next step is to use a metric
to calculate the similarity between these two histograms. By testing three metrics
χ2, Histogram intersection, and Log-likelihood statistic, Ahonen et al. [1] found that
the first metric provides the best results :

χ2(H1, H2) =
∑
i

(H i
1 −H i

2)2

H i
1 +H i

2

(B.3)

where i is the number of a local region.
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