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General introduction: the new problematic of load
models in the smart grid context
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Abstract

Ground-breaking evolutions have been brought to traditional electrical distribution grids
by the concept of “smart grids”. The smart meter system, as one of the most impor-
tant infrastructures in the smart grids, gives us detailed information on electricity
consumption of an individual customer. In this context, we aim at designing forecast-
ing models and estimation models based on these information for needs in distribution
network operation and network planning. The contributions, a quick overview of the
scope, and the organization of this dissertation are also presented in this chapter.
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1.1 Background: smart grid and smart meters for load mod-
eling

The smart-grid concept combines advanced communication technologies with traditional
electrical distribution grids in order to improve the transparency and the controllability
of distribution grids. Facing several ground-breaking evolutions in the electricity systems,
such as the large penetrations of the renewable power generation, the rapid load growth
due to plug-in electric vehicles, to name a couple, numerous advanced algorithms appear
in this circumstance to enhance the stability and the efficiency of the system. These Ad-
vanced Distribution Automation (ADA) functions include Volt VAR Control (VVC) [1],
self healing, and direct load control [2] (to name a few). The ADA functions are calcu-
lated in real-time or in ahead of time in order to help making decisions. Generally, the
monitoring and the control process of distribution networks are performed at the Medium
Voltage (MV) level.

One of the smart-grid goals is to make distribution systems economically efficient with
reliable energy supplies and less costs. Distribution network planning involves developing a
schedule of future additions that ensure the quality of energy delivery as well as the lowest
possible cost. On the one hand, the electricity infrastructure must meet the needs of peak
loads. On the other hand, over-dimensioned systems can be very expensive. Thus, reli-
able load estimation models are required to tighten distribution margins and optimize the
planning investment by performing distribution network calculations, i.e., carrying out the
power flow calculation in critical situations so as to identify poor electricity supply zones.
Nevertheless, the complexity in the problem is related to the uncertainty and randomness
in the clients’ electricity consumptions.

In the current state, the scarcity of measurements on the distribution system introduces
bottlenecks in carrying out the ADA functions as well as the network optimization calcu-
lations. The available measurements in distribution networks are mainly on the secondary
of source substations. It is economically non-feasible to implement electric meters in all
738000 Medium Voltage/ Low Voltage (MV/LV) substations. Today, for the operation
need, applying very approximate probabilistic models with 50% of precision seriously af-
fects the efficiency of the ADA functions, resulting dubious analysis results. In order to
comply with the planning need, the actual model applied by the French electricity com-
pany, termed BAGHEERA, depends mainly on the client’s individual information, which
becomes less and less available. Thus, a new model must be designed at the request of
replacing the BAGHEERA model.

Starting from 2010, the Electricité Réseau Distribution France (ERDF) (French Dis-
tribution System Operator (DSO)) launched the “Linky” (baptized name for the smart
meter in France) project, which aims at installing 35000000 smart meters in France. On
the one hand, end users will pay electricity bills based on their real consumptions rather
than on the estimated ones as in the today’s case in France. On the other hand, thanks
to these measurements, distribution network operators can have a better vision of the
current situation on networks. Actually, there are no available measurements on MV /LV
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substations on the French distribution networks. In the experimental phase of the “Linky”
project, the consumption information of each individual is sampled on a 30-minute basis
and transferred once a day to the correspondent data center. However, as data are gathered
in packages and sent with a certain frequency [3], some delay is found in the measurements.

Therefore, using the accurate information provided by the smart meters to develop load
models is the silver bullet that makes key smart-grid applications feasible.

1.2 Motivation and objectives

The supervision of the power and voltage dispatching of the networks is a critical task
in distribution exploitation. It guarantees an economical optimum and a dynamic sta-
bility of the networks. Unlike transmission networks, on which abundant measurements
exist, distribution networks have much less measurements. As a matter of fact, because of
the complex structure and a great number of nodes (MV /LV substations) in distribution
networks, it is economically impossible to install meters in a great quantity on these sub-
stations in distribution networks. Thus, the distribution system is considered as “blind” or
“non observable”. One solution to improve the “ observability ” of distribution networks is
to introduce load models in order to replace the measurements.
In terms of loads in distribution networks, we distinguish two types:

e MYV clients directly connected to MV networks

e Numerous Low Voltage (LV) clients connected to MV networks through the public
MV/LV substations

|U1J’|I1| MV

\
HV |U2|$||2|

PG | Vsl
. LV

[UnlL 1]
v

Figure 1.1: Available measurements (marked in red) [1] in the French distribution networks.
| -| represents the norm notation, equivalent to the magnitude.

Currently, the measurements in the French distribution networks are (figure 1.1):

e The active and the reactive power on the secondary High Voltage/Medium Voltage
(HV/MV) substations

e The mean voltage value on head of every MV feeder sampled every 10 minutes
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e The magnitude of the current on head of every MV feeder
e The active and the reactive power of some MV clients

On the LV clients’ side, the only available data are limited to the subscribed power in
the supply contract and billing information of the clients connected to the public MV /LV
substations.

With the new available individual consumption data collected by smart meters, the
objective of the research program presented in this thesis is to build new load models
for the need in operation and in planning in distribution networks. This context makes
possible the design of accurate models for the distribution network planning, monitoring
and control, in absence of the costly measuring equipments in distribution networks.

1.2.a For network operation need

For the sake of control and configuration in distribution systems, the evolution of the
MV/LV substation load needs to be known. Mainly, we can point out three different
reasons described as follows:

e During a failure: in order to efficiently restore electricity in regions where a fault
occurs, loads in the affected regions should be known in the following three minutes.

e During network maintenance: the variation of the consumption needs to be known
to restore the power supply. Generally, a two-day period is considered by the French
electricity distributor ERDF as a normal repairing time. In this case, a two-day load
forecast with its standard error is needed.

e As inputs for the SE: the SE [5] is the core function of any energy management
system. It aims at estimating the network variables, such as the voltage magnitudes
and angles. Figure 1.2 shows the schematic of the relationship among forecasting
models, SE, and ADA functions. The forecasting models as well as the network data
are considered as inputs for the SE. The network data [5] includes the information
about the network topology, line resistance, reactance, tap setting, and line charging,
etc. The output of the SE will lead the Distribution Management System (DMS)
control scheduling block to perform concerned ADA functions for operational deci-
sions. These decisions enable the monitoring and control of various devices in the
networks such as capacitor banks, Distributed Generators (DG), on-load tap chang-
ing transformers, and switches/breakers, etc.

The idea is then to design forecasting models for MV /LV substations relying on the
aggregated smart metering data for the next two days.
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Figure 1.2: Relationship among forecasting models, SE, and ADA functions

1.2.b For network planning need

Designing a reliable distribution network is challenging since it needs to guarantee a sta-
ble and continuous power supply to the customers. As a matter of fact: a wutility must
maintain the voltage delivered to each customer within a narrow range centered within the
voltages that the electric equipment is designed to tolerate [0]. In the European electricity
regulation, for the LV networks, a 10% out-of-range voltage is acceptable. Beyond this
range, the customer is defined as a “poorly supplied customer”.

For the sake of planning, network calculations are performed under extreme situa-
tions in order to handle worst case scenarios 7, 8]. More specifically, these calculations
are carried out when either of these two cases occurs: maximum demand with minimum
generation, and maximum generation with minimum demand [9]. With the arrival of a
considerable portion of DGs into the networks, the later case can be expected. Because
of the customers’ various behaviors, in a same geographic zone, peak demands of different
customers seldom happen at the same moment. Therefore, estimation of customer daily
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load pattern at every hour is required. Uncertainty of the load estimation also needs to be
considered [10]. Generally, for the voltage-drop calculation, the excess probability, which
defines the threshold power bounds, is fixed to 10% [I11]. Consequently, in the network
planning, a client’s total supply demand includes the client’s daily load pattern and his
10% excess probability uncertainty.

Moreover, in the distribution network planning process, a list of standards and criteria
for equipments, such as distribution lines and MV /LV transformers, to name a couple, is
also defined. Reliable load models are also required in the following cases in order to carry
out distribution network calculations:

e Distribution line losses
e Currents in line segments
e Network voltage-drops

e MV/LV transformers: two-hour equivalent power! | voltage-drops, and electrical losses

Therefore, the objective is to define an individual customer’s maximum and minimum
load limits of a year with 10% excess probability.

1.3 Contributions of the thesis

The major purposes of this dissertation are twofold: designing new load forecasting models
for the network operation and load estimation models for the network planning in distri-
bution networks. The contributions of the thesis can be summarized as follows:

e Load forecast is an extensively investigated subject on the transmission level [12,
13, 14, 15, 16, 17, 18, 17, 19, 20]. However on the distribution level, with the same
characteristic consumption data (several dozen kW), to the best of our knowledge,
few works have been done.

We can think of three plausible reasons explaining this fact: first, more attention
has been paid to the transmission level, as the transmission grid extents on longer
distances and covers larger territories. The transmission grid, involving huge costs,
is the backbone of the power systems. Second, the higher voltage level consumption
has a more regular load curve pattern, which makes it easier to forecast. Third,
there were no available measurements on the MV /LV substations relying on which
the forecasting models can be designed and validated.

In this research project, two models based on time series and neural networks have

been proposed, for the network operation need.

e The different load types (residential, commercial, and industrial) are examined in
this research, and their different properties are pointed out.

1 .
Define a transformer’s capacity
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The two methods are designed and evaluated on real measurements collected from
the French distribution grids in the framework of the “Linky” project. Reference case
is established in order to be compared to the two proposed models. Advantages and
drawbacks of the two methods are drawn through the comparison. The two methods
are alternative and, at the same time, compliment to each other to set the precision
limit due to the intrinsic characteristics of the substation load data.

e Time series method presented in this dissertation is an original work, where numerous
statistical tools are integrated in for the pursuing of precision. Residual of the model
is looked through in details to ensure the model’s well being.

e Neural network method, on the other hand, is inspired by the selection procedure
proposed by Gérard Dreyfus [21], a renowned expert in the neural network modeling.
We focus on the Neuronal Network (NN) model design, which has been fully exploited
for the first time in the short-term load forecast.

e Until the implementation of the smart meters, usually there were no available histor-
ical load data besides the demand survey data on a limited number of clients. In the
load modeling field, most of the works concerning the distribution network planning
aim at estimating the peak demand for a group of customers during the peak demand
of the system, namely the coincident peak demand [6]. For this purpose, some re-
searches based on end-use method [9, 22| decompose the load model of the residential
customer into appliance elementary units. Others focus on the classification method,
sorting customers into different categories, and on the representation each category
with a Typical Load Profile (TLP). In the smart metering context, we are the first
to propose the concept of individual data-driven load model for customers, for the

network planning need.

e To build an individual estimation model, the relationship between the electricity con-
sumption and the temperature is deduced by nonparametric estimators. The method
is applied to real consumption data of individual customers in France. Performance is
compared to the current load model (termed BAGHEERA) of the electricity company
EDF through different validation studies.

1.4 Scope and organization of the dissertation
The dissertation is organized as follows:

e Chapter 1 states that the smart grid and the smart meters are in rapid development
to improve the efficiency and the controllability of distribution networks. The revo-
lutionary changes in distribution network systems urge the accurate load forecasting
models. Recording individual consumption information, the smart meters enable the
building of these models. The thesis is encouraged by the “Linky” project launched by
the French electricity distributor ERDF, aiming at installing 35000000 smart meters
in France. Two main objectives are evoked in the smart metering context: short-term
load forecasting models for the network operation and the estimation models for the
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network planning. Reasons for the development of these two objectives are declared.
Contributions of the thesis are highlighted.

The rest of the dissertation is divided into two parts, dealing with two distinct ob-
jectives. Part A tackles the forecasting load models for the operation need, and includes
chapters 2,3 and 4.

e Chapter 2 gives a review of the load forecasting methods in literatures and set up
basic framework for the performance evaluation. Load forecasts are stratified into
different objectives according to their lead time scale. Different objectives are devoted
to different applications. More input information is needed for a longer lead time
forecast. Forecasting methods are divided into two categories: the classical approach
and the artificial intelligent approach. Hybrid models that possess the advantages
of both categories gain more and more popularity in the applications. Data used
in our study are thoroughly analyzed, suggesting influence factors to our short-term
load forecasting models. We argue for our choices of time series and neural network
methods. Performance criteria and a reference model (termed naive model) are also
established in this chapter, building a solid framework base for the presentation of
the applied methods in the next two chapters.

e Chapter 3 presents the short-term load forecasting model based on the time series
method. The forecasting procedure is detailed. The additive time series model
contains three components: a trend, a cyclic and a random error. The first two
components are deterministic, and are designed into models respectively. The trend
model is temperature-dependent, linear, and dummy variables integrated, indicating
day types. Cyclic model is composed by the Fourier components, whose frequen-
cies are found by a smoothed periodogram. Numerous statistical tools are applied
pursuing a better precision: sliding window strategy is adopted so that the model is
updated during each forecasting period; ANalyse Of VAriance (ANOVA) nullity test
is applied to estimate the significance of variables. Available data are divided into a
learning set and a test set. Important parameters of the model are defined thanks
to the learning set. Whereas the test set is reserved for the performance evaluation.
Residual is examined, making sure the well fit of the models. Weather uncertainty
impact on the precision of the forecasting model is discussed in the end of the chap-
ter. We concluded that even with the weather uncertainty, our proposed time series
model still outperforms the naive model.

e Chapter 4 introduces the neural network model from the artificial intelligent ap-
proach family. In our study, we focus on the design of the neural network model,
choosing the optimal model that has the best achievable predictive ability. A general
concept of the machine learning technique is stated, and difficulties such as finding
the relevant variables and the bias-variance dilemma, are explained. The orthogonal
forward regression and the Virtual Leave-One-Out (VLOO) technique are proposed
as solutions to these difficulties. Experiments on the same data show that the pro-
posed methodology behaves better than the time series model in term of accuracy.
A comparison in divers properties is made between the two models in the end of this
chapter.
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Part B introduces the load estimation problem for the planning need, and proposes
solutions. It contains chapters 5 and 6.

e Chapter 5 focuses on the load research projects in distribution networks. Load re-
search projects aim at providing hourly load estimation models for individual client.
Three steps, i.e., technical analysis, economical analysis, and final decision, for the
decision makings in distribution network planning are presented. The outputs of
the load research projects contribute to the technical analysis, devoting to finding
solutions in network planning. The mechanism of the aggregation of loads, the co-
incident load, is explained. Common methods of finding TLP, which represents the
daily load pattern of a certain group of clients, are presented. Load models used by
electrical unities in Finland, Denmark, Norway, and Taiwan are described. Finally,
the components of the BAGHEERA model applied by the French DSO are detailed
and the method is demonstrated with real measurements.

e Chapter 6 proposes a novel approach for the individual load estimation in the context
of smart meters. With the abundant individual consumption information, in our
opinion, the load model is ready to be individualized rather than estimated through
the TLPs. Thus, in this chapter, the individual load estimation model based on the
nonparametric estimators is put forward. Numerous statistical tools, such as binary
hypothesis tests, kernel density estimation, CUmulative SUM (CUSUM) algorithm,
and Cross-Validation (CV) technique, are integrated in the proposed method. Three
kernel regressors, i.e., Nadaraya-Watson (NW), Local Linear (LL), and Adapted
Local Linear (LL2) are applied to deduce the relationship between the load and
the temperature variations. Different application cases according to the quality and
quantity of the data are suggested. The method is illustrated with real measurements
and compared with the BAGHEERA model. The validity of the method is examined
with extensive examples. In the end of the chapter, a discussion on the definition of
the uncertainty bound of the estimation model is carried out.

e Chapter 7 concludes the dissertation and proposes perspectives for the future research
interests.
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Abstract

Load forecast plays an important role in decision makings in power systems. This
chapter begins with the review of load forecasting models in literatures. The second
part of the chapter contributes to a framework consisting of data description, method
selection, performance criteria, and reference case introductions. In the reviewing part,
we classify a wide range of approaches of load forecast into two categories: classical
approach, and artificial intelligent approach. Methodologies in each category are briefly
presented. Their advantages, disadvantages, applications and pertinent research works
are also developed. Popular hybrid models combining two or more different approaches
are also involved. In the framework part, data used for the design and the evaluation
of our methodologies are analyzed. Certain behavioral “components” in the data are
pointed out. The choices of the methodologies based on the time series and the neural
networks are arqued. These two methodologies are going to be detailed in the following
two chapters. Performance criteria and reference case are stated so as to lay a good
foundation for the presentation of the models in the next two chapters.
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2.1 Literature review

The quality of the decision making in electric power systems strongly depends on the
accuracy of the power load predictions. Various decisions require reliable and accurate
load forecasting models with different time-scales as well as on different hierarchical levels
in network systems [23].

A wide range of approaches have been proposed to the load forecasting problems. In
this section, we aim at presenting briefly the different approaches found in literatures, their
specificities, applications and techniques applied to load forecast.

The organization of the section is as follows: first, we start by introducing definitions,
applications and influence factors of different lead time load forecasts. Then, a two di-
mensional digest in lead time and in voltage hierarchy scales summarizes load forecasting
methods, followed by the descriptive presentation of every method. Related works are also
depicted. Finally, we conclude the literature review in a table.

Note that for the sake of clarity and ease of understanding, mathematical notations in
the referenced works and internal reports have been adapted in order to keep coherence
through the entire dissertation.

2.1.a Forecasting lead times and influence factors

Different forecasting lead times result into different forecasting models as well as their
input variables. Numerous factors, such as weather conditions, seasonal effects, and social,
economic, demographic factors explain the variations in the load [23]. Table 2.1 summarizes
the applications and influence factors for different time horizon forecasting models |23, 24,
18].

Notice that more input variables are included when the time horizon becomes longer.
For a VSTLF, univariate (only the historical power samples are considered as inputs) mod-
els can offer satisfactory results. These VSTLF's often participate to improve the efficiency
and reliability of the real-time electrical systems. For longer lead time forecast, multivari-
ate models with exogenous variables are favored. The STLF needs mainly three categories
of inputs: weather, calendar, and historical variables [25]. Due to some measurement de-
lays, or the computational time for the execution of the ADA functions, the STLFs often
replace VSTLFs to fulfill needs in network operations. STLF forecasts also help reducing
equipment failures and system blackouts by indicating the operational margins in power
systems. The MTLF models help making financial decisions, such as evaluation of the price
of energy products and investment interests. In such cases, the forecasting models need
additional inputs as social and economical factors. The LTLF, concerning energy system
capital expenditures and more important economic investments, needs to take into account
more socio-economic factors, and sometimes even their future evolutions.

The herein description is in a general way, as in section 2.2.a, we will talk about an
industrial MV /LV substation load that is independent to weather conditions. Thus, what-
ever the forecasting lead time is, for this load example, weather variable is not considered
as an influence factor.

As described in the table 2.1, for our application in network operations, especially to
cooperate with the ADA functions, we focus on the STLF. Weather, calendar and historical
data inputs are the most concerned influence factors.
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Table 2.1: Different time horizon load forecasts

Time horizon

Applications

Influence factors

Very Short-Term Load
Forecast (VSTLF)

(1Min ~ 1h)

ADA functions in DMS, Load
Frequency Control (LFC) in
Energy Management System
(EMS)

Historical consumptions

Short-Term Load Fore-
cast (STLF) (1h ~ 1
week)

Operation (ADA functions),
estimation of load flows, rep-
resentation of saving potential
for economic and secure oper-
ation of power systems

Historical consumptions, cal-
endar factors (day type and
hour of the day), weather con-
ditions (*)

Negotiation of electricity con-

(*) + population, economic

Medium-Term Load tract heduli £ fuel fact e (o)
racts, scheduling of fuel sup- | factors, etc (o
Forecast (MTLF) (1 . e P ’
plies and maintenance opera-
week ~ 1 year) :
tion
Capital expenditures and | (¢) + more information such

Long-Term Load Fore-
cast (LTLF) (1 year ~
several years)

as: population growth, Gross
Domestic Product (GDP)

planning operations

(#) and (¢) represent respectively influence factors for short-term and medium-term fore-
casts.

For a weather sensitive load, including the credible forecasting weather information as
input is recommended as it can improve the performance of the forecasting model. Tem-
perature and humidity are the most frequently used load predictors. Composite weather
variables such as Temperature-Humidity Index (THI), Wind Chill Index (WCI) [24], and
smoothed weather variables [20] are often adopted. THI and WCI indicate respectively
the discomfort caused by summer heat and winter wind chill. The smoothed weather vari-
able represents the effects of changes in weather accumulated over the time. In practice,
regarding STLF, weather forecasting data are applied to calculate the performance of the
model [27].
the predicted weather forecast is not available. In this case, most authors in the load fore-

However, for the most of the time, in the construction phase of the model,

casting field run simulations with the realized weather data [28]. One should bear in mind
that using forecasting weather information will surely decrease the model’s overall precision

26,

a conservative solution, since it would bring large variance to the model. A promising way

|. Therefore, some authors [30] proposed omitting imprecise weather information as
to handle the uncertainty in weather variables is the weather ensemble predictions that
generate the load forecasts in a probabilistic form [29]. In chapter 3, we will re-discuss and
show empirical evidence addressing to this issue.

The calendar inputs include the time of the year, the day of the week, the hour of
the day as well as day types (working days, weekends or national holidays). There are

important differences in load between weekdays and weekends. Weekends and holidays are
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often more difficult to forecast than working days due to their relative infrequent occurrence
and the clients’ irregular behaviors. Some authors work on the classification methods [19]
in order to find or even create similar days [31] for these “anomalous” day forecasts.

Historical data inputs are also very important to the STLF, from which the seasonality
information can be extracted [14].

2.1.b Forecasting methods

This subsection gives an overview of various approaches for load forecasts. Many of them
are developed for STLF on the High Voltage (HV) level, although MV and LV levels began
to attract more attention with the expansion of the smart grids during the past years.
Figure 2.1 gives a two dimensional digest on the methods and the models in the load
forecasting field both in the lead time and the voltage hierarchical scales.

Mainly, two classes of approaches can be distinguished [14, 23]: classical approach and
Artificial Intelligence (AI) approach. Classical approach requires an explicit mathematical
model which interprets the relationship between load and its influence factors. This family
includes regression model, time series method, similar day approach, end-use method and
econometric approach. Al approach, on the other hand, extracting non linear relation-
ships between input factors and load has become very popular nowadays. This family of
algorithms includes Artificial Neuronal Network (ANN), fuzzy logic, and expert systems.

In the sequel, we introduce these different approaches.
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Univariable time series:
<— (1) Exponential smoothing ———— >
(2)Box-Jenkins (AR, ARMA,

ARIMA)
< Multivariable time series ———
ARIMAX (3)
Regression method >
T (4)
ANN
< >
(6)
f«——Fconometric approach —>
()
«<— FL or Fuzzy Neural Networks ——
(FNN) (7)
SVM
(8)

Similar days+NN correction model

9)

Expert system
(10)

= >
ANN (11)

(Inputs: 1. Historical load data
2. Estimated load pattern)

>

«—— End use method > Classification method
(13) (Client typical pattern)
+ANN (15)
1 ANN ANN (14)
(12) (MAPE 4.9-7.74%
depending on the
< forecast season)
Very short-term  Short-term Medium-term Long-term)

Figure 2.1: Summary of load forecasting methods in two dimensions: time horizon and
voltage hierarchy. HV: High Voltage, MV: Medium Voltage and LV: Low Voltage. Numbers
appear in the figure correspond to the related works.®

SO0, 1AL (2):[13, 15, T4] (3):[16] (4): 17, 18, 17] (B):[24] (6):[19, 20] (7):[32, 33, 34] (8):[35, 36] (9):[31]
(10):37, 38] (11):[39] (12):22] (13):[40] (14):[*1]
*Univariate time series model refers to the model with only one observation series, i.e., load data.
“Multivariate time series model corresponds to the model containing both the exogenous variables and the
historical load data.
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2.1.b-i Classical approach

Regression model. Regression is one of the most widely used statistical techniques.
Electric load forecasting regression methods are usually used to express the relationship
between load consumption and external factors [24, 12]:

Yi = i + € (2.1)

where y; is the i-th load sample, x; is the influence variable vector correspondent to the
i-th load sample, a; is the transposed regression coefficient vector, and e; is a Gaussian
error.

The advantages of regression methods are relatively easy implementation and inter-
pretation for the relationship between input and output variables. Another advantage of
the method is that it is easy to compute the prediction interval through estimation error
of the model. The disadvantage of regression methods is the need to identify a correct
form including effective inputs and output. This is hard due to the complex non-linear
relationship [23].

C.L. Hor et al. [13] developed several multiple regression models incorporating weather-
related and socio-economic variables on the load demand for England and Wales. Monthly
data from 1989 to 1995 are used for the coefficient estimation of the model and monthly
data from 1996 to 2003 are used to evaluate the accuracy of the forecasting model. The
non-linear relationship between weather-related factors (mean monthly temperature value)
and load suggests introducing other weather composite variables, such as Heating Degree
Days (HDD), Cooling Degree Days (CDD), and Enthalpy Latent Days (ELD). The socio-
economic variable GDP has evidently an impact on the trend. One of their regression
model is set up as: Ej = (EA +a7GDP)Foq;(y), where E is the predicted electricity de-
mand, EA = ag + @1CDD + asHDD + asELD + a4V, + as Mg + ag M., which represents the
weather-related model. V,, stands for the mean monthly wind speed, M, stands for the
mean monthly sunshine hours, and M, stands for the monthly rainfall. «,,,n =0,---,7 are
constant coefficients. F,q;(y) is the adjustment factor for each year. The Mean Abso-
lute Percentage Error (MAPE) of the model, which represents the average portion of the
absolute forecasting errors to the real forecasting values, was around 2%.

A. Bruhns et al. [17] designed a non-linear regression model for MTLF. This hourly
load prediction model termed “Eventail” has been applied by the French electricity company
EDF since 2001. They decomposite the load F; into three components: P; = Phc; +
Pc; + e;, where Pc; and Phc; are respectively the weather-dependent and the weather-
independent parts, e; is a Gaussian error. The weather-dependent part is fitted by a non-
linear model of the observed temperature, the exponential smoothing temperature, and
the cloud cover. Two thresholds for heating and cooling temperatures are also adopted in
order to cope with the non-linearity. The exponential smoothing on temperature reflects the
inertia of temperature inside buildings to the outside temperature variation. The weather-
independent part integrates trends, day, week, year periods, and day type information. The
dummy variables are used to indicate day types and four terms of Fourier series are used
to model the seasonality pattern. Despite of the computational difficulty in estimation
due to the temperature smoothing parameters, thresholds, and strong non-linearities, they
declared that with the known weather data, a MAPE of around 2% for one-year-ahead
forecast and a MAPE of 1.5% for one-day-ahead forecast have been achieved.



2.1. Literature review 19

W. Charytoniuk et al. [20] introduced a nonparametric regression model for STLF.
They considered load as a weighted average of past loads. The specific weights are de-
fined by a multivariate kernel and its smoothing parameters. The optimal values of these
smoothing parameters are calculated using CV technique. A conditional expectation of
Sa{P I K(5)

S (T K (20

J
where hq,---, h, are smoothing parameters and K (u) is a normal kernel. j denotes the j-th

the load is built based on the local neighborhood loads P;: P(x) =

influence variable in the exogenous variable vector x and ¢ denotes the i-th observation
sample. They have obtained with accurate temperature values, up to one-week-ahead, a
MAPE of 2.78% compared to an ANN model of 2.64%. They argued that even the errors
are slightly higher than the ANN, the errors obtained by the regression model have better
properties compared to those of the ANN model.

Time series method. Time series method is a linear model based on the assumption
that there exists an internal structure within data. This structure consists of autocorre-
lation, trend and periodic variations. Time series methods detect and explore these rela-
tionships between the current load value, historical data and sometimes exogenous factors.
A distinctive property of time series models is to consider time as one of the explanatory
variables. As a linear model, time series method is suitable for VSTLF and STLF and
it is able to provide the prediction interval. Whereas for MTLF and LTLF, these inter-
nal relationships are no longer linear and the model becomes complicated. Thus, it is no
longer efficient to use a linear time series model for the MTLF or the LTLF application.
In particular, Box-Jenkins models and exponential smoothing models are the most widely
used time series methods.

1. Box-Jenkins models [11] include AutoRegressive (AR), Moving Average (MA), Au-
toRegressive Moving Average (ARMA), AutoRegressive Integrated Moving Aver-
age (ARIMA), Periodic AutoRegressive Moving Average (PARMA), and AutoRe-
gressive Moving Average with eXogenous inputs (ARMAX). They are adapted for
STLF, since they allow for the explicit modeling of time dependence. The basic el-
ement of these models are AR and MA models. AR model aims at estimating the
current load by the moving average of historical load. MA model, on the other hand,
explains the current load with the past errors committed by the model.

In some cases, where the stationary condition' is not met, the trend and the periodic
effects can be removed by carrying out transformations as follows:

Let 3 be a stochastic process. With a first difference, the linear trend is removed:
Zt =Yt — Y1 (2-2)

With a second difference, quadratic trend is removed:
Zy = (Yt = yt-1) = (Yt-1 — yt-2) (2.3)

For periodic series, it is possible to adjust observation seasonal effect by carrying out

1 - .
Mean and variance values stay the same over the time
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the transformation:

z, =" (2.4)
Ot

where ¥, is the mean value, and oy is the standard deviation of y;.

Being a rather complete model, ARIMA(p,d,q) is chosen herein to represent the Box-
Jenkins family. It denotes the relationship between the load y; at the time “t”, and
its historical data y;;,4 = 1,---, p, historical errors e;_;,j = 1,---,q¢ committed by the
model and the error e; at time “t”, [15] :

P q
Ay = Z GiAY; + Z ejet—j +ét (2.5)
=1

i=1 7
The above model is decomposed of the following parts: AR(p)I(d)MA(q)

e AR(p): pis the order of autocorrelation (indicate using weighed moving average
over the p latest observations).

e I(d): d is the order of integration (differencing) (indicate a linear trend or d
order polynomial trend).

e MA(q): q is the order of moving averaging(indicate using weighted moving
average over the p latest errors of the model).

e A refers to the transformations (equations 2.2 and 2.3) in order to achieve
stationary.

Thus, an AR model equals to ARIMA (p,0,0) and a MA model equals to ARIMA(0,0,q).
When the introduction of some explicative variables is necessary, transfer func-
tion becomes AutoRegressive Integrated Moving Average with eXogenous inputs
(ARIMAX). “X” signifies the integration of exogenous variables.

A practical way of estimating the orders of an ARMA model is to calculate its
AutoCorrelation Function (ACF) and Partial AutoCorrelation Function (PACF) [14].
Applying on the load data, the ACF expresses the linear predictability of the load
data y; at time “t”, by using only the value 7 instants before y;_, [11]:

tt—7)= Yy(tt-7) 2.6
oy ) \/'yy(t,t)’yy(t—T,t—T) (2:6)

where v, (t,t - 7)= E[(y: - E(yt))(yt-r — E(yi-r))] is the autocovariance function,

vy(t,t) and ~, (t—7,t—7) are respectively the variance function of y at time t and t—7.
E(-) refers to the expected value. If the y; process is stationary, p,(t,t —7) = py(7)
Ayttt =7) =y (1) and v, (t,t) = v, (t - 7,t = 7) = 7,(0). Equation 2.6 becomes:

Yy(7)
2 (0) (2.7)

The PACF, on the other hand, measures the additional correlation between y; and
yi—r after adjustments being made to exclude the dependence between the interme-

py(T) =

diate observations 1, ¥1—r-1. Let y; be a stationary process, the PACF is [11]:
Yy(7) = py (t,t - 7)
where gy =y = E(ye | Ye-1, Yer-1)
yg—f =Yt—r — E(yt—T | Yt-1, yt—T—l) (28)
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Both ACF and PACF are within {-1,1}. The PACF of the AR(p) process is near
zero from the p-th lagged value. The ACF of the MA(q) process is near zero from
the g-th lagged value. A good fitness of model demands a Gaussian noise. Let e,

be a Gaussian noise, the coefficients of the ARMA model are calculated relying on
Maximum Likelihood Estimation (MLE) [11].

J. Nowicka-Zagrajek et al. [11] applied a two-step procedure to address the load
modeling and forecasting issue. First, weekly and annual seasonalities are removed
by the moving average technique. Then, the deseasonalized data are fitted with an
ARMA model. The performed residual analysis suggests that the residual follows a
hyperbolic distribution. By comparing to a 1.7% error committed by the official fore-
cast of the CAlifornia Independent System Operator (CAISO), the proposed model
yields a 1.2 — 1.25% error. However, this ARMA model cannot capture the holiday
structure.

M. Zhou et al. [16] proposed an ARIMA approach to electricity price forecast with
accuracy improvement by predicting errors. Besides a conventional ARIMA model for
the electricity price forecast, several ARIMA models are also established for the resid-
ual error forecast. Results show that the method requires some easy-implemented
low-order models instead of one complex model and the accuracy of the forecast is
improved significantly. They argued that choosing the same or different kinds of ap-
proaches for the model forecast and the error forecast does not potentially influence
the forecasting accuracy but the time of modeling.

2. Exponential smoothing [17, 12] is a univariate time series method that assigns expo-
nentially decreasing weights to the historical loads. With a forgetting parameter, it
corrects the previous smoothed load value by the new load measurement. According
to the number of smoothing components, three models are the mostly used: simple,
double, and triple exponential smoothing models.

Simple smoothing model assumes that load data vary around a stable mean with
no trend [18]: r = ay + (1 — a)ri—1, where the smoothed value r; is the weighted
average of the current load y; and the previous smoothed value r;_;. The forgetting
parameter « € [0,1] controls the exponentially decreasing weights. The greater this
parameter is, the greater influence the current load measurement has on the current
smoothing value. The initial smoothing value 7 is often chosen as y; or the average
of the first four or five load values.

Double exponential smoothing works with the load data with trend. The smoothing
is done on the “level” and “trend” components of the time series data [15]:

Level: ry=ay+ (1 —a)(re1 +bi-1)
Trend: by =B(re—ri-1) + (1 - B)bs—q (2.9)

where the forgetting parameters {«, 3 € [0,1]} respectively control the level and the
trend components’ decreasing weights. The initial values for these two components
— Yn—Y1

are: 71 =y1 and by =y -y (or by = =),

Triple exponential smoothing (also known as Holt-Winters (HW) method) works with
“trend”, “seasonal”, and “level” components of the data set. Mainly, two kinds of mod-
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els exist: multiplicative seasonal model and additive seasonal model. Multiplicative
seasonal model assumes that the original data value in the data set is the product of
the seasonal pattern and the average level. While additive seasonal model suggests
that the seasonal pattern is independent to the average level of the data set and their
sum equals to the original data set.

The multiple model can be expressed as follows [18]:
Y= (re + o)l + e

Level: r; = ali +(1=-a)(re1 +bi-1)

t-L
Trend: by = B(ry —7r4-1) + (1 = B)b—1
Seasonal: [y = 'y& + (1 =)l (2.10)
Tt

where {«, 8,7 € [0,1]} are three forgetting parameters and L is the length of a period.
Dividing the new load measurement y; by the estimated seasonal component value of
the last period I, gives us the deseasonalized level, which participates of updating
its old value estimated in the last round r;_1 + b;_1. The trend variable is corrected
by the difference of the level and its old value. The seasonal factor is updated by
the most recently observed seasonal component given by y; divided by the smoothed
level estimate. For the initialization of these three components, a minimum of two
full seasons data (2L-period data) are required.

The multiple-step-ahead load forecast for T' periods is given by:
Gtar = (e + Th)livr-1 (2.11)
The additive model can be expressed as follows:

Yr=re+ bt +1l + €
Level: ry=a(ys—li-r) + (1 -a)(re-1+b-1)
Trend: by =p(ry —ri-1) + (1= B)bi—q
Seasonal: Iy =~vy(yr —r¢) + (1 =v)l-, (2.12)

Compared to the multiplicative model, the additive model simply changes the sea-
sonal component multiple relationship by the additional relationship. The multiple-
step-ahead load forecast for 1" periods is given by:

Yo =1t + Top + L7, (2.13)

According to the different ways of assigning values to its parameters {«, 8,7}, there
exist two techniques: non-adaptive and adaptive. Non-adaptive technique fixes the
parameter values, once they are initialized. The advantages of the non-adaptive
technique are twofold:

e one, it is economic in terms of computational time. Once the parameters have
been established, the forecast can proceed without any delay in re-computation
of the parameters.
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e Two, that no historical data needs to be recorded saves the storage space.

On the other hand, the adaptive technique keeps adapting the parameters to the
changes in the undergoing process. The newly computed parameters may be com-
puted using: all available data till that time or only k& most recent data values. Thus,
a certain amount of data need to be memorized.

J.W. Taylor [13] proposed a new triple seasonal exponential smoothing approach that
captures intraday, intraweek, and intrayear seasonal cycles for a 24-hour-ahead load
forecast. Single, double, triple seasonal ARMA, single, double, triple seasonal HW
exponential smoothing and double, triple Intraday Cycle (IC) exponential smoothing
methods were compared. The IC exponential smoothing method omits the occurrence
of the intraweek seasonal cycle, but introduces some dummy variables in order to
distinct different intraday cycles during a week (Monday, Saturday, and Sunday, etc.).
The approaches were tested on the British and the French national data. He showed
that for prediction up to a day-ahead, the triple seasonal methods outperform the
single and double seasonal methods, and also a univariate ANN approach. Moreover,
he concluded that there was little difference among the same seasonal versions of
ARMA, HW, and IC exponential smoothing. He concluded that a simple average
combination of these methods led to a better accuracy than any of the single method.

Similar day approach (also referred as K-Nearest Neighbor(s) (KNN) method).
This is a data-based nonparametric approach that simply consists in searching past obser-
vations of the process for k events, which are most likely to be similar to the forecasting
situation on some characteristics, such as the weather, the day of the week, and the day
type [24]. A forecast is considered as a linear combination or a regression procedure of
these k events with unequal weights. These specific weights are defined by the distance in
characteristics between the similar days and the forecasting day. The task of calibrating
these specific weights is delicate but crucial to the precision of the method. It mainly
relies on the choices of the comparison characteristics and the distance metrics. In order to
get a satisfactory result, this approach requires a large database and a stationary process.
However, the required computational time, to calibrate and to get the output forecasts,
increases rapidly with the size of the database [12].

T. Senjyu et al. [19] designed a Recurrent Neural Network (RNN) model for the next
day load curve forecast by correcting the output of the similar day approach. FEuclidean
norm D with weighted factors is applied to evaluate the similarity of similar days:

D =/t (ALy)2 + a(ALi_1)? + 3 (ALy_o)?
ALy =Liy-IF (2.14)

where AL; ;. is the deviation between the load on the forecasting day L;_j and the load
on a similar day Zf_k, and w;,i = 1,---, 3 are the weighted factors. The weighted factors are
estimated in a regression model of historical temperature and load data by the least-square
method.
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A load correction method by correcting the data of historical days with the load correc-
tion rates was proposed to generate new similar days in case of the shortage in the training
data. The load correction rate ZAL,? is determined by the following least-square method based
on the regression model.

L= 1L
Ttr — Ttsl /Ttst

A

L; = ’LDO + QﬂthHt + UAJQT[ + 1D3Day
ld 7
Lyew - gl (2.15)

where Lfl and Tfl are respectively the load and temperature data of similar days selected
by using equation 2.14, L' and T} are respectively load and temperature data of past days
selected by using a forecasting maximum temperature, Ly is the deviation rate between
L and L', and T} is the deviation rate between T; and T'. Hy,t = 1,---,24 is time,
Day indicates the day of the week. LY and LfOld are respectively corrected load data
and original load data of past days. w;,i = 0,--+,3 is the weighted factor and W; is the
weighted factor on each hour. These new load data LP"“" were then used to train the
neural network.

This method gained an improvement on forecasting accuracy for special days such as
weekends and national holidays. A MAPE of 2.78% was reported being obtained during a
year.

End-use method. The assumptions underlying end-use methods consider that every
electrical housing device (light, cooling, heating, refrigeration, cooking, and so on) has a
specific electrical signature. Such signature consists of a unique temporal and spectral
pattern that can be separated, classified and detected. Every time a given electrical device
is switched on, specific sensor can detect its activity. Prior knowledge of the expected
energy consumption of the housing electrical device enables an easy estimation of the user’s
electrical consumption [24]. Finally, a specific profile for every end-user, consisting of his
age, income, the size of the house as well as the usage frequency of the different considered
devices, is designed. It would be possible to accurately forecast the power consumption of
the whole network.

Gathering all these necessary information is usually a cumbersome yet necessary step
to build end-use models. Several steps in the process can be identified: first, relying on the
historical data, energy consumption of every device needs to be identified (i.e., find out its
power consumption as well as its expected usage time for every house). Ideally speaking,
the forecaster estimates the number of houses having these devices in the region of interest
as well as the probability of the usage of the devices at a specific time. Finally, summing
up all the estimated energy consumption for all the considered houses, the estimation of
the electricity in the region can be made. If all these above influence factors are projected
into the future, the forecaster can provide an estimation for the future energy consumption.
Of course, such approach is generalizable to residential, commercial and industrial sectors
with no restrictions [50].

Designing such forecasting methods can be time consuming however the benefits of
such accuracy could be worth the effort. As a matter of fact, the bottom-up method can
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provide means to optimize the grid’s energy demand, such as improving certain appliance
efficiencies, and improving insulation levels of some apartments. Thus, energy can be
saved, installations can be preserved and developed depending on the accurate knowledge
regarding the local demand, and so on.

Due to the amount of data and prior information on the end-user as well as on all
electrical device usages in the considered sectors, these methods are proved to be difficult
to implement. The shortage of such information usually discards end-use methods from
the set of possible choices. As a matter of fact, the reliability of the forecast highly depends
on the amount of data collected as well as their quality.

Econometric approach. FEconometric approach usually refers to a mathematical
formulation that incorporates statistical tools in order to explicit the complex relationships
that exist between electricity demand with economic, demographic and other influence
factors mentioned previously [24, 51|. For instance, econometric tools can provide a piece
of explanation regarding the electricity consumption behavior of a target population on
the electricity price fluctuations.

Besides the economic theories, an econometric forecasting model is established relying
on statistical assumptions about the joint distribution of explanatory variables and a set
of unobservable variables [51]. The economic theory is used to specify the explanatory
variables and the dependent variable, and to clarify how institutional and economic condi-
tions can affect their relationships. Joint distribution density of the load and explanatory
variables can then be estimated by the functional forms, such as parametric, nonparamet-
ric or semiparametric statistical models. The estimation of the models largely depends
on the assumptions made about the unobservable, which impacts the consistency of the
estimation criterion [51].

The main advantage of such approaches is explicative, such that they can explain how
the evolution of the influence factors working on the load demand [50]. Namely, they fit
the behavior of targeted populations relying on past observations, and thus can adapt to
various populations. In our case, it can help designing a load forecasting model that adapts
to different sectors, e.g., residential, commercial, and industrial sectors.

Unfortunately, what represents its strength, i.e., relying solely on past observations, can
also be seen as its weakness. As a matter of fact, usually, econometric based forecasters
assume that the relationship between the electricity load and influence factors is stationary
and thus remains the same during the forecasting process [50]. Such assumption is usu-
ally justified for short periods, not for a long-term forecasting processes. Similarly, such
designed models are not efficient when the real observations follow a highly fluctuating dy-
namism such as in small regions. It behaves better on a national scale where electricity load
fluctuations are steadier. Consequently, the econometric model needs to be reevaluated on
regular bases in order to maintain its reliability.

2.1.b-ii Artificial intelligent approach

ANN (also known as NN and RNN). Over the past two decades, the ANN in the Al
technique group has been applied in various fields, e.g., pattern recognition, robotics, and
load forecast, to name a few. Thanks to its non-linearity and great learning ability, ANN
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quickly gained its popularity in load forecast. It is widely used in all forecasting lead times
and all electrical voltage hierarchies. Compared to the classical approaches, it is often
considered as a benchmark of performance [13, 39], or more often as a complimentary to
enhance their abilities facing dynamic varying environments.

The nonlinear model can interpret complex relationships between multiple inputs and
outputs. Its ease of implementation, automatic mapping ability, and generalization ability
are often commented as principal advantages. Generalization ability allows the network to
provide satisfactory responses to new inputs after its learning phase [52]. The use of the
ANN is often divided into two phases: a learning phase and a prediction phase. In the
learning phase (also known as training phase), ANN adapts its parameters, namely the
synaptic weights and biases, to learn the knowledge within inputs and outputs containing
in the historical data set (also known as learning data). In the prediction phase, the
parametered ANN is used as a transfer function to produce the output(s). ANN is very
flexible as when the operating environment changes, with the same structure, it is capable
of rapidly adapting its interconnection weights to respond to the changing situation after
the training process. ANN is also said to have great skills coping with the noisy data set
[39].

The disadvantages are related to its large-scale choices, such as for the architecture
(feedforward or recurrent, etc.), for the structure (number of hidden layers and number of
hidden neurons on each layer), for the learning set, and the number of iterations for the
training (to avoid overflow). The justification of the choices is not systematically argued
or commented in a clarified way [39].

The ANN is considered as a class of algorithms capable of approximating any transfer
function, provided that the activation functions of neurons in the intermediate layer are
not polynomials, are bounded and piecewise continuous [53].

There are a great variety of ANNs found in the literature. Here, we present some
frequently encountered structures: Multi Layer Perceptron (MLP), RNN, Wavelet Neu-
ronal Network (WNN), Radial Basis Function Networks (RBFN) and Self-Organizing
Maps (SOM).

1. As a universal approximator and having the simplest structure, the Multi Layer
Perceptron (MLP) is the most widely used ANN model. It has one input layer,
where the influence factors are introduced and one output layer for the estimated
value, the load data. Between the input and the output layers situate the hidden
layers with neurons represented by nonlinear activation functions. Figure 2.2 shows
a single layer perceptron’s structure, which is the simplest of the feedforward layered
structures.

Single Layer Perceptron (SLP) consists a layer of input neurons {p;, j = 1,---, R},
associated weights {wy j, j = 1,---, R}, a weight wyo related to a constant py termed
“bias”, which equals to 1, an activation function g, and an output c¢;. The single
perceptron compares the weighted sum of the inputs with the weighted bias, and
the comparison result n goes through one activation function g in order to get the
output. Lots of activation functions exist, such as step functions, linear functions,
and sigmoid functions. For the approximation of a non linear model, the sigmoid

function g(n) = is the most commonly used for the hidden neurons. The

1
l+em
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R inputs Neural model

o 1

c1=g(Q"P)

Figure 2.2: Single perceptron structure |54]

weights €4, {w1 4, j = 0,---, R} of the neuron represent the efficiency of the synaptic
connection. A negative weight inhibits its correspondent input, while a positive
weight accentuates its correspondent input. The bigger the absolute value of the
synaptic weight is, the more important the input is to the result. The extension to
the SLP is the MLP (figure 2.3).

Hidden Layer
M hidden neurons

Input
Layer

Output
Layer

P,
Output
(SN f(P,Q)
(o]
pR

Figure 2.3: One-hidden-layer network structure, where P is the vector of variables {p;,j =

0,--, R}, and Q is the vector of parameters {w; jandw;,i =1,---,M,j =0,---, R}. Therefore,

the total number of variables is (R+ 1)M + (M +1).

The most popular artificial neural network architecture for electric load forecast is
the back propagation [55, 24]. Back propagation neural networks use continuously
valued functions and supervised learning. Under the supervised learning, the actual
numerical weights and bias assigned to element inputs are determined by matching N
historical data inputs/outputs pairs {F;,y;} (regarded as “learning set” or “training
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set”) in the training process.

The objective of the learning is to match the output of the MLP to the desired out-
put, given the same inputs. This objective is reached by tuning the parameters €2
of the neural network, i.e., interconnection weights and bias. The learning proce-
dures are grouped into three different categories: supervised learning, unsupervised
learning, and hybrid learning. The essential element that differs supervised learning
from other categories of learning is the presence of a “teacher”. In the supervised
procedure (figure 2.4), the teacher has some prior knowledge about the environment.
Thus, when an input P; in the learning set is presented, the teacher is capable of pro-
viding the perfect output y;. The “supervised neural network” presents the student
who tries to learn from the teacher by providing a close answer to the same input.
The knowledge of the student is gained by the adjustment of his parameters under
the influence of the deviation from the teacher’s answer, ¢;. The learning process
stops when the difference between two responses is under a certain threshold, or the
maximum number of iteration reached.

: Yi
Environment . Teacher

ad

f(Pi,Q)
> Supervised ANN —téi
7 o

Figure 2.4: Supervised learning procedure [54]

When to our load forecasting issue, let a set of N past historical data {P;,i = t—1,-,t—
N}, such as time and weather, be the training set inputs, historical consumption
samples {y;,i =t —1,---;t — N} that are collected with a regular time step be the
desired outputs, and 2 be the set of ANN’s parameters. Prediction is solved by
minimizing errors in the training procedure presented in figure 2.4:

) 1 t-1
mén{gith_N(yi - f(P,Q))*} (2.16)

A. Kusiak et al. [10] have developed a building steam load predicting model based
on MLP. This load is used to represent heating and cooling loads of buildings. First,
boosting tree algorithm and correlation coefficients between input variables are used
to deduce the most important input variables. Then, among several data-mining
algorithms [56], namely, CART, CHAID, exhaustive CHAID, boosting tree, MAR-
Splines, random forest, Support Vector Machine (SVM), MLP, MLP Ensemble and
KNN, that map input variables to output steam load, MLP Ensemble performs the
best. This latter involves five MLPs. Five different activation functions are selected,
namely, logistic, identity, hyperbolic tangent, exponential, and sine functions. The
number of hidden units is set between 5 and 18, and the bias for both the hidden
and output layers varies from 0.0001 to 0.001. Many ANN has been applied to the
load forecasting field, this example is chosen to state here since it is one of the rare
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research working on the individual load forecast. It reveals the great ability of ANN
coping with all kinds of forecasting issues.

2. Recurrent Neural Network (RNN) are equivalent to Nonlinear AutoRegressive Mov-
ing Average (NARMA) models. There are a variety of different RNN structures. We
present here the most commonly used structure in the RNN family: complete RNN
[57]. In this structure, the intermediate outputs or the final outputs are introduced
as inputs for the model. This brings in unity delay factors to the model.

T. Senjyu et al. [19] employed the RNN coordinating with similar day’s data for the
next day 24-hourly load forecasts. Figure 2.5 shows the given structure. The inputs
of the RNN include the deviation of load AL, deviation of temperature AT between
forecasting day and similar day, and previous output of the RNN values AC. The
output of the RNN is the correction value ACy,1 applying to correct the similar days’
value. Each block represents one unit discrete delay. They are used to memorize the
previous activations and re-injected as the inputs for the RNN.

Actual data
Forecasted load Lisq
P
Lt+1

Similar days

L—+>+Q

Correction,ACy.4

Figure 2.5: Recurrent neural network structure [19]

3. Wavelet transformation is frequently used in the signal preprocessing by decomposing
the original signal into a set of better-behaved constitutive series. This transformation
can isolate the outliers, and convert series into stationary, etc. The Discrete Wavelet
Transform (DWT) can capture high and low frequency information by producing fine
and broad scale coefficients [58]. For a given signal y(t), a DWT can be expressed
as [59]:

y(t) = Y cjorPion(t) + Y. D wir22(2t - k) (2.17)
k 7>50 k
where 1 is a mother wavelet function, j is the dilation or level index, k is the transla-
tion or scaling index, ®;q 1, is a scaling function of broad scale coefficients, c;o.x, wj i
are the scaling function of fine scale coefficients, and all functions of ¥ (27t — k) are
orthonormal.
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Wavelet based signal processing relies on a decomposition step and a reconstruction
step. On the one hand, the decomposition step filters the data through a high
pass/low pass filter. This operation is usually performed by computing a convolution
between the data and the designed filter. On the other hand, the construction step
performs the inverse of the decomposition step [55].

Wavelet processing serves as an efficient filter that can be integrated with any other
method such as Box-Jenkins [60], ANN [58, 61, 62], and Kalman filtering [63]. ANN
based on wavelets inherits this advantage.

Ajay Shekhar Pandey et al. [59] applied the wavelet decomposition to, and compared
with, classical and artificial intelligent approaches. Different from other works, which
have used the wavelet coefficients of the data set as input data, the proposed approach
used the wavelet pre-processed data set after removing the highest frequencies (fast
changing) components. They showed the superiority of the proposed wavelet based
approach over the non-wavelet methods for the same set of data.

Wavelet Neuronal Network (WNN) combines the wavelet theory and NN into one. A
WNN generally consists of a feedforward NN, with one hidden layer, whose activation
functions are drawn from an orthonormal wavelet family. The outputs of WNN can
be expressed as [(61]:

M
y(u) = ;Wiw/\i,ti(u) +7 (2.18)

where ¥ value is to deal with functions whose mean is nonzero. The 3 value is a sub-
stitution for the scaling function ¢(u) at the largest scale. Parameters {w;, \;,t;, 7}
are adjustable by learning procedure.

The WNN is believed to behave better than the MLP in nonlinear systems and
variant environment such as electricity load forecasting.

. Radial Basis Function Networks (RBFN) structures often have one radial hidden layer

and one linear output layer. The hidden neurons compute the similarity between any
input pattern and the neurons assigned point by means of a distance measure. The
underlying idea is to make each hidden neuron represents a given region of the input
space. When a new input signal is received, the neuron representing the closest region
of input space activates a decisional path inside the network leading to the final result.
Radial functions are applied as activation functions on the hidden layer. There are
several radial functions, among which the most frequently used is the multi-variant
Gaussian type function [54]:

(x— 1) "5 (@ - pg)
2

9(x) = exp(- ) (2.19)

where p; and ¥; are respectively the centre and the covariance matrix of the radial
neuron. These two parameters are defined before the training process.

Architecture of the RBFN can be found in [65]. The RBFN owns the same universal
approximation capacity as the MLP and the calibration of its parameters is less time
consuming [65]. The RBFNs are flexible, simple in structure and tolerant to Gaussian
noise of the inputs.
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Despite of its simple structure, RBFN suffers several drawbacks related to the learning
process. On the one hand, since the learning step deals with two different activation
functions (radial and linear), the convergence rates of the different layers are different.
More specifically, the convergence on the parameters of the radial functions is much
slower than that on the parameters of the linear functions. Moreover, the number
of hidden neurons depends exponentially on the input space. For large input spaces,
the structure of the neural network might become intractable.

5. Self-Organizing Maps (SOM) is an unsupervised ANN [66]. The learning process
aims at exhibiting neighborhood relationships among vectors of an unlabeled data
set. The neurons in the SOM are organized in one, two or three dimensional arrays.
Each neuron ¢ has a weight vector w; with the same dimension as the input vector
x. Moreover, this weight vector stores the information about the inputs and outputs
of the mapping being studied. The network weights are trained according to a com-
petitive cooperative scheme, in which the weight vectors of a wining neuron ¢* and
its neighbors in the output array are updated after the presentation of a new input
vector. The learning procedure of the SOM consists of a set of training steps. During
the learning stage, the wining neuron ¢* at step n is determined based on the input
of the training sample x [60]:

7" (n) = arg(min{|lz —w;(n)[}) (2.20)

The learning rules update the weights of the wining neuron ¢* that has the minimal
distance among all neurons on the output layer A between the weight vector w; and
the input vector x:

wi(n+1)=w;(n)+a(n)ki.(n)(x -—w;(n)) (2.21)

where a(n) is the learning rate, and k;;.(-) is a kernel function that spreads the
updates to the neighborhood region. The neighborhood kernel defines the influence
region that the input sample has on the SOM. Finally, the neurons on the grid
become ordered: neighboring neurons have similar weight vectors [67].

Thus, SOM is a classification method that is able to decompose the input training
data into several subsets with specific characteristics in an unsupervised manner [66].

Support Vector Machine (SVM). Introduced in 1995 [68], SVM (or Support Vec-
tor Regression (SVR)) is a nonlinear kernel based machine learning algorithm applied to
data classification and regression. Its underlying mathematical concept is based on the
transformation of the input data into a much higher dimensional feature space. In this
new feature space, the original problem appears as a linear optimization problem with
constraints:

f(z)=wm(x)+b (2.22)

where w is the weight vector, b is the threshold value, m(-) is the mapping function. The
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SVM solves an optimization problem [23, 30, 66]:

1 T N *
min —w w+C i+ &
Jmin o ;(& &)

subject to
yi — (wim(z;) +b) <e+ &
(@ m@s) +b) —y < €+
&,6 >0,i=1,- N (2.23)

The optimization equation is composed of two terms: a regularization term %wTw and a

term added to control the error margin of the algorithm C' Y.V, (& + &) in order to avoid
over-fitting or under-fitting phenomena, where all input data x; are mapped to a feature
space with a much higher dimension than the original one. & and &; are optimization
variables introduced to take into account the optimization constraints on the error margin.
Such margin is further modeled through the variable €, such that | (w”m(z;)+b) -yl <€ .
Finally, the cost of the classification or regression errors are quantified through the variable
C > 0. Note that the overall accuracy of the training is controlled by m(-), € and C.

Hence, relying on Lagrange multipliers, the problem is transformed into an uncon-
strained Lagrange equation [69]:

R :%wTw ; c%(gi Fe) - iw w & — g+ (W) + b))
=1 =1

N N
= 2oai (e &+ yi— (Whm(i) +0)) = 3 (ni&i +11;€;) (2.24)
i=1 i=1

where {a;,a;,n;,n;} are Lagrange coefficients.
By assigning the partial differential equation of each parameter {b,w,§;, &’} zero, we
obtain:

orR & .
5 —Z;(ai -a;)=0

N

g—i :w_;(a; —a;)r; =0
OR
I -t = =0
85@ a’l 77
OR

=C-a;-n'=0 2.25
o€ a; = n; (2.25)

Bring the above equations into equation 2.24, this later is equivalent to maximize [69]:
1 T N N
* *
QW w=-ey (aj +a;)+ > yi(a; —a;) (2.26)
i=1 i=1

where a; and a} are Lagrange multipliers with 0 < a;,a’ < C and ¥, (a;) = ©N, (a}).
Substitute w = YN, (a¥ - a;)z; into equation 2.22, the regression function becomes:

N
f(x)= ;(ai —a; )k(zi,z)+b (2.27)
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where k(z;,x) = m(z;)m(x) is a kernel function, which is the inner product of two vectors
in feature space m(x;) and m(z).

One kernel function should respect that after the transformation, the function must
have the same result than the product of the projection. Common kernels include linear
kernels m(z;)"m(z;) = x7'x;, polynomial kernels m(z;)"m(z;) = (yal z;+b)?, and Radial
Basis Function (RBF) kernels m(x;)m(z;) = exp(-|z;~2;]|?/20?). In the load forecasting
context, the RBF kernels are the most commonly used.

In addition to its strong and reliable mathematical foundations, the SVM is found to
behave well in practice. The ANN structure minimizes the deviation between every output
of the ANN and the desired value in the learning data, whereas the SVM searches to
minimize the upper error bound of the generalization error [70]. Moreover, the SVM is
commented having the ability reaching the global optimum. Therefore, it is indeed able
to avoid over-fitting and thus offers interesting classification or regression generalization
properties [66]. Compared to the numerous choices to be made before applying the ANN
structure, the choices for the SVM restrain to the kernel function selection and its associated
parameters [71]. These later are often solved by CV technique applying to the learning
data set.

In 2001, Bo-Juen Chen et al. [30] obtained the first price at load forecasting competition
organized by EUNITE 2 relying on a SVM based forecaster. The participants aim at
predicting daily maximum load demand of the next month. Bo-Juen Chen et al. [30] chose
the calendar dates as well as historical load data as inputs of the SVM optimizer. The
model was implemented with the software LIBSVM, a library for SVM.

Fuzzy Logic (FL). Fuzzy logic based systems rely on approximated or fuzzy infor-
mation rather than precise values or descriptions [32]. Figure 2.6 depicts the different
steps of a fuzzy logic based system. Mainly, we observe five steps: first, the model begins
with defining the set of input(s)/output(s), the parameters as well as their relationships.
Then, the input values are mapped to a set of fuzzy variables that represent a qualitative
range rather than a quantitative data. For instance, a classic example when dealing with
temperature data is to associate their values to a set of fuzzy variables: “Low”, “Medium”
and “High”. Each measurement is equivalent to a degree of truth (also called degree of
membership) ranging from 0 to 1. The degree of truth represents the percentage that the
measurement belongs to each fuzzy variable, i.e., a given temperature can be 0.2 “High” and
0.8 “Medium”. This step is usually called fuzzification. The next step consists of building a
set of rules, depending on which the fuzzy variables are affected to the fuzzy outputs. The
number and complexity of these rules mainly rely on the number of input parameters as
well as the number of fuzzy variables associated to each input parameter. This is followed
by an inference step that aims at evaluating the degree of fulfillment (firing strength) of the
different rules. Finally, the defuzzification step transforms the fuzzy output of a control
order or forecasting process into a crisp value.

FL based forecasters have many advantages. There is no need for a mathematical
model to explicit input/output functional relationship [21] and it can extract similarity
information from a large set of data as long as such data exist. Thus, K.Liu and al. [32]
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Figure 2.6: Fuzzy Logic process [72]

identified the similarities present in their data relying on two descriptions of the differences
defined as first-order difference (Vi) and second-order difference (Ag):

— Y Vi-Vi_
:yt Yt-1 A, = t t-1

1%
t T T

(2.28)
where y; is the load sample at time “t” and T is the size of a period. (m—1) former samples
before t-th sample and n samples after t-th sample are respectively used as fuzzy inputs
and outputs.

FL has also been used to design load correction models (along with a RNN correction
model) [31]. T. Senjyu et al. [31] chose, in their study, special day, precipitation and
discomfort index values as fuzzy data. The input and output membership functions are
further depicted in figures 2.7 and 2.8. The membership function parameters (a;,7 =1,---,7
and bj,j =1,--,8) of the fuzzy sets are also defined. Fuzzy rules are formulated based on
the gained experience [31]. The firing strength is calculated base on the Mamdani method
[72]. The output of the FL is the correction rate that applies to correct the selected similar
days’ data, which have already been corrected by the RNN correction model. This method
by adding the FL correction is reported having an improvement from 1.63% to 1.43% on
a whole year data.

Fuzzy linear regression [12] can be seen as an alternative approach to the statistic
regression, when this latter fails due to unfulfilled requirements. The general model assumes
a linear model such that:

n
Y = AQ + ZAz(mz _Ei) (229)
i-1
where Agand A;,7 = 1,---,n are the fuzzy coefficients and ;,7 = 1,---,n is a vector in the
space chosen at first that we consider as the most accurate sample. The main advantage
of the fuzzy regression model resides in its less restrictive application condition compared
to the classic linear regression model. However, it suffers many disadvantages: it is very
sensitive to extreme values and the estimation of the coefficients is usually a complex task.
As a matter of fact, 2" inequalities need to be solved with 2(n + 1) unknown coefficients
and 2N constraints where N is the number of samples.
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Expert systems. An expert system is a computer program that has the ability to
reason, explain and has its knowledge base expanded as new information becomes available
[73]. Building such systems relies on extensive knowledge gathered by human experts and
transformed into simple IF-THEN rules. Its basic form does not allow the evolution of
the rules while acquiring new knowledge. Since such systems show poor performances
when dealing with new environments, new rules need to be coded into the systems in
order to keep a good reliability on their decision making. Expert systems can handle
thousands of rules [24] in order to take into account a large set of possible input scenarios.
Forecasters based on such methods can be as reliable as the human experts designing
them. Consequently, they perform very well when an extensive knowledge is available
about the functional relationship between input and outputs. However, when dealing with
very complex problems with insufficient knowledge about the model to be built, it appears
as a poor choice.

2.1.b-iii Hybrid models

Hybrid models aim at taking advantage of the assets of various tools by combining them.
Thus, they can avoid some of the drawbacks of the original methods. We can classify the
hybrid models into three classes:

e Classical methods combined with classical methods: James W. Taylor mentioned in
his work [13] that combining has particular appeal in cases when the methods are
based on different information. He combined a weather-based method with those
univariate methods [15] for one-hour-ahead load forecasts, and a simple average of
the forecasts from the triple season ARMA and the Holt-winter methods [13] for
a-day-ahead load forecasts.

e Artificial methods combined with artificial methods: [19] proposed combining the
SOM and the ANN models for the STLF during the anomalous situations (holidays
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and long weekends). S. Fan et al. have successfully applied a two-stage hybrid
network of the SOM and the SVM for the next day’s electricity price [71] and the
electricity load forecasts [06]. In their works, the SOM clusters the input data set
into several subsets and then a group of SVMs is used to fit the training data of
each subset. [.Drezga et al. [75] have presented a new ANN based STLF. The
ensemble of local ANN predictors was used to produce the final forecast, whereby
the iterative forecasting procedure used a simple average of ensemble ANNs. A.A.
Kusiak et al. [10] also suggested a five MLP ensemble model for the steam load
forecast of buildings. I.Drezga et al. argued that by averaging individual forecasts
that are generated by the identical modules over one and the same set of input data,
the generalization of an ANN predictor can be improved [75].

e Classical methods combined with artificial methods: [76] described an approach to
identify the best similar day parameters for ANN based electricity price forecast.
T. Senjyu et al. presented several works by combing the RNN with the similar days
approach. The forecasting load is obtained by adding a correction generated by RNN
to the selected mean similar days’ data (cf. figure 2.5). The load correction method
was proposed to generate new similar days. The main purpose is, on the one hand,
to train the neural network, and on the other hand, to deal with cases of shortage of
similar day’s data. They have successfully applied the method for one- [77], six-hour-
ahead [78] and one-day-ahead [19] electricity load forecasts. In one of their studies,
besides the RNN correction on the similar day’s base, authors have added the FL
approach that integrates other input parameters such as special days, precipitation
and discomfort index values in order to refine the forecasting precision [31].

Apart from these methods, there exist also several artificial intelligence optimization
methods that determine model’s coefficients, such as gradient descent, Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO) (also known as swarm-based optimization
method), Artificial Fish Swarm Algorithm (AFSA), and Immune Algorithm (IA). The first
one is a deterministic method, while the others are stochastic ones. According to the litera-
tures, these stochastic methods adapt to extreme nonlinear situations and are particularly
efficient in the dynamic environment, which the gradient descent cannot follow.

These stochastic algorithms begin with a random population and a fitness function,
with which the efficiency of each solution can be evaluated and after each generation, the
fittest survive. Their random, yet structured, search and parallel evaluation of the points
are their main advantages. Therefore, they are capable of exploring and exploiting a given
operating complex search space. Their operation on an encoded parameter string, but
not directly on the parameters, enables the user to treat any optimization problem [79],
such as regression models [30, 79|, time series models [16, 81|, and SVM [35]. Xuejun
Chen et al. [82] have pointed out that GA methods have several disadvantages such as:
slow convergence speed, sensitive to initial values, easily trapping into local optimum,
premature convergence, and parameter selection problems. With the increasing length
of number of individual parameters in the GA algorithm, the speed for optimal solution
becomes unacceptable.

Compared to the similar optimization method GA, PSO is appreciated by its advantage,
which is the rapid convergence to the global optimum, without being trapped in local
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optima. However, the disadvantages of PSO are about its low precision, slow convergence
in the later stage of the evolution, and parameter selection problems. They proposed AFSA
for the SVM parameter estimation. According to them, AFSA can efficiently avoid local
optimal operating points and thus can reach global optimality.

The usage of AFSA is flexible and shows a rather quick convergence rate. Nevertheless,
none of them guarantees a convergence to the optimal solution at the end of the procedure.
For further information we invite the reader to refer to paper [33], where the basic principles
of GA and [36] of TA are described at length.

To conclude this subsection, it is worth mentioning that a comparison of some of these
approaches is proposed in the literature. Indeed, paper [30] argues that SVR models
combined with IA outperforms the SVR models with GA (proposed in [35]).

2.1.c Literature review conclusions and perspectives

The conclusions of this survey are threefold: firstly, researches seem to focus their energy
towards techniques borrowed from the Artificial Intelligence community. As a matter of
fact, we noticed during this last decade, the rise of new techniques in the field of power
systems such as FL, SVR as well as variant forms of ANN models. Secondly, some authors
still try to improve the traditional classical methods, although some of them seem to lose
some interests because of their limited success [23], e.g., state space and Kalman filter
modeling [27], and cubic splines [34, 85]. These latter gave hope to possible improvements,
which could lead to promising results capable of competing with Artificial Intelligence
based algorithms. Last but not least, hybrid methods become more and more popular
as they combine the strength of several techniques (e.g., different models are cooperated
in order to model the linear/non-linear parts, the rapidly fluctuating/slow fluctuating; to
remove outliers, and to adapt coefficients of the models). These approaches lead to very
interesting and promising results that may be confirmed in the next years.

In this chapter, we mainly discussed the classical approaches and artificial approaches
applied to the load forecasting field. For the sake of clarity, we summarized the models
and their features in table 2.2.

The literature review provides some interesting clues that could possibly improve the
load forecasting result:

e Decomposing the original load data into a set of better-behaved constitutive series,
the wavelet transformation can be used as a pre-treatment to filter noise data or
outliers in the learning set for whatever load forecasting method.

e The clustering method, such as SOM, K-Means, and hierarchical clustering (the last
two techniques haven’t been discussed here, as they do not belong to load forecasting
methods. They are very popular approaches for cluster analysis) can be applied
to historical data to divide them into different categories, relying on which specific
model to each category can be built.

e Fuzzy logic is based on the fuzzification and the defuzzification. The fuzzification con-
verts the accurate information into fuzzy information and the defuzzification quan-
tifies the fuzzy result into crisp values. This technique can be applied to uncertain
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intrinsic variables such as the weather variables, which then can be used as inputs
for various methods (for example, times series or neural networks, etc.).
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Table 2.2: Summary of load forecasting approaches and their features. “\/” signifies that
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2.2 Data description

For the sake of building short-term load forecasting models on the MV level, we have in
possession the measurements on seven MV /LV substations and on four MV feeders. Before
selecting the forecasting approach, we start by observing these data. The purpose of the
observing is to give some evidence on the nature of the data: what certain behavioral “com-
ponents” present in the data, what influencing factors can possibly explain the variation
of the data, etc. These specifications in the data can help us in selecting the models with
potentials to produce the best forecasts.

2.2.a MV/LV substation

The data used to validate our methodology are the real measurements collected from the
French distribution network in the experimental phase of the “Linky” project. Mainly,
there are seven load curves, and each one represents the consumption of a specific MV /LV
substation, sampled every thirty minutes, in a same region, during the same period from
September 9, 2009 to October 27, 2010. As an important factor affecting the consumption
level, the temperature of the region is also provided on an hourly basis during the corre-
sponding period (figure 2.9). Hourly temperature data are linearly interpolated to obtain
the thirty minute temperature data. Each substation load curve represents the sum of all
connected clients’ consumption.

g ©

O+ ~—
=R @
© S
=g =
5 S o
= <+ @
N o
o |

S e

87\ T T T T T @

— 0 100 200 300 400

Time(xlday)

Figure 2.9: Daily average load and temperature data through 414 days (from Sept. 9, 2009
to Oct. 27, 2010) of substation CE_MOU (mainly residential)

Figures 2.9 , 2.10 and 2.11 are examples of daily average substation loads and the
temperature variation through 414 days. We can observe that the load variation can
significantly differ from substations. We aim, in this subsection at explaining these different
behaviors in order to identify the impact factors for the forecasting model design. The
mainly residential substation CE_ MOU (figure 2.9), including 61% domestic , 23% service
sector, and 16% industrial clients, where the percentage refers to the total power supply
provided for the clients in each category, follows the variation of the temperature. The
substation VI_LOG (figure 2.10), composing of one third service sector clients and two
thirds industrial clients, follows a weekly cycle and varies with the temperature. The
substation CE_FRO (figure 2.11) suppling electricity to a particular industrial client stays
stable all year long and follows an evident weekly cycle.
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Figure 2.10: Daily average load through 414 days (from Sept. 9, 2009 to Oct. 27, 2010) of
substation VI_LOG (mixed service sector and industrial)
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Figure 2.11: Daily average load through 414 days (from Sept. 9, 2009 to Oct. 27, 2010) of
substation CE_FRO (an industrial client)

2.2.a-i Temperature influence

A correlation coefficient is computed to illustrate the substation’s sensitivity regarding the
temperature:

cov(X,Y) E(X-E(X))E(Y -E(Y))
oxX0y - O0X0y

pxy =corr(X,Y) = (2.30)
Where E(-) is the expected value operator, cov(-,-) represents the mean covariance, E(X)
and E(Y') are the expected values of the random variables X and Y, ox and oy are the
correspondent standard deviations. The value of the correlation coefficient is between -1
and 1, and it indicates the linear dependence between the two variables X and Y. The
closer is to the values -1 or 1, the stronger the correlation is.

Thus, relying on equation 2.30, the correlation coefficient computed between the CE_ MOU’s
load curve and the temperature equals —0.78, where the minus sign indicates that the en-
ergy consumption and the temperature evolves in an opposite direction. Indeed, when the
temperature drops, it becomes colder and people tend to turn on their electric heaters,
which increases electricity consumption.

The clients’ compositions as well as the correlation coefficients with temperatures of
the seven substations are summarized in table 2.3.
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Table 2.3: Seven substation clients’ compositions and correlation coefficients with temper-

atures

Substation Correl.ation Residential Service sector Industrial

coefficient Number of clients/ Total power (Percentage)
CE_MOU | -0.78 40/351 KVA (93.6%) | 2/24 KVA (6.4%) 0/0 KVA (0%)
CE_CHA | -0.78 26/229 KVA (97.5%) | 1/6 KVA (2.5%) 0/0 KVA (0%)
CE_FRO | 0.07 0/0 KVA (0%) 0/0 KVA (0%) 1/1600 KVA (100%)
CE_CER | -0.78 73/629 KVA (88.6%) | 6/81 KVA (11.4%) 0/0 KVA (0%)
VI_LOG | -0.24 1/3 KVA (1%) 5/108 KVA (36.4%) | 3/186 KVA (62.6%)
VI_PRI -0.81 35/285 KVA (69.3%) | 2/18 KVA (4.4%) 1/108 KVA (26.3%)
VI_PAU | -0.83 62/545 KVA (61.2%) | 16/201 KVA (22.6%) | 3/ 144 KVA (16.2%)

We can see from the table 2.3 that according to the correlation coefficient’s magnitude,
three categories can be divided: one, the industrial substation CE_FRO is independent to
the temperature variations. Two, the mixed substation VI LOG is relatively influenced by
the temperature. Three, all other mainly residential substations are sensitive to the tem-
perature variations. This preliminary analysis suggests that we should establish different
forecasting models (with or without taking into account the temperature variations) for
these three categories of substations. We will explain in chapter 3 that time series method
has a limit on the weather non-sensitive substations.

2.2.a-ii Day type influence

Another type of information that can be exploited is the calendar information. As a matter
of fact, different patterns depending on the type of day, e.g., a working day or a public
holiday, can be easily distinguished in the “industrial” substation’s case.

Notice (figure 2.12) that the level of power consumption during a public holiday is
more similar to weekends than normal working days. However, for the weather sensitive
substations, it is hard to draw a conclusion by a simple observation on the load curves,
since the load level varies with the temperature.

2.2.a-1ii Time influence

The last impact factor that we intend to examine is the “time”. In order to find out whether
day of the week has some impact on the load curve, a similarity indez is designed. This
later indicates a similarity degree between the current day with the previous days. Here,
we aim at figuring out the cyclic patterns in the load data. Therefore, the temperature
influence is exempt by removing the daily average from the data. The similarity index is
based on the Euclidean distance between two zero-centered days.

Let © = (x1,22,,2n), ¥y = (y1,Y2,", Yn) be two vectors. Their Euclidean distance is

defined as:
d(z,y) = \‘ (i — x4)?
i=1

(2.31)
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Figure 2.12: Normal week compared to the “Armistice” week (from Nov. 9, 2009 to Nov.
15, 2009) of Substation CE_FRO (an industrial client). Each pair of dotted lines separates
a day.

In our case, z and y represent the vectors of 30-minute-step measurements collected
in the days to compare. Thus, the size of the vector is n = 48, which is the number of
electricity consumption samples recorded during a day. The smaller the Euclidean distance
is, the more similar the two vectors (days) are. The similarity index is calculated as follows:

1. Remove the daily average from each day samples: x} = x; — T4, {i € A}, where T4 is
the correspondent daily average of day A.

2. Calculate an Euclidean distance matrix with all the zero-centered sample days. e.g.,
“N” is the total number of days, the Euclidean matrix is of “NxN” dimension.

3. For each row in the Euclidean distance matrix, choose the 5 smallest Euclidean
distances, which represent the 5 most similar days to the chosen day, and record
their lagged-day numbers relative to this day.

4. The similarity index equals the number of lagged day divided by its total possible
number. e.g., for the number of lagged day equal to 5, the similarity index is the
number of selected similar pairs divided by its total number “N-5".

Since the daily average power is removed from the data, the distances in the Euclidean
matrix only reflect the similarity in the intraday variation of the load pattern, independent
to their consumption levels.

Figure 2.13 shows the similarity index for all lagged days. Furthermore, we withdraw
the influence of the day type from the data as well. Figure 2.14 shows the similarity index
for lagged days without weekends and holidays. The high similarity indexes in both figures
on the one lagged day and on the multiplicative weekly lagged days indicate daily and
weekly cyclic patterns. The cyclic patterns can also be observed in the frequency domain
by plotting a sample analog of spectral density, i.e., the periodogram [!4]. We consider
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Figure 2.13: Similarity index calculated based on all days of substation CE__MOU. The
dashed lines represent the multiplicative values of 7 lagged days. They stand for the
similarity degrees with the same day of the previous week, the same day of the previous
two weeks, etc.
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Figure 2.14: Similarity index without weekends and public holidays of substation
CE_MOU. The dashed lines represent the multiplicative value of 5 lagged days.

that as the first step, examining periodicities in the time domain is more comprehensive
than in the frequency domain. More details concerning the periodogram will be presented
in the section 3.2.c.

We can conclude that the load pattern of a substation depends largely on the compo-
sition of the clients connected. The residential, service sector and industrial clients have
their own specific load curve pattern:
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e Residential load curve varies with the temperature: the electricity consumption level
increases as the temperature drops because the use of the electrical heating device.

e The industrial client is not influenced by the change of seasons or the temperature
variation, but has an evident weekly period and is sensible to the national holidays.

e The service sector client is between the two types: being influenced by the tempera-
ture as well as having a weekly pattern.

Thus, being the sum of a mixed categories of clients, the substation’s electricity load
mainly depends on the temperature, the day type ,and the time.

2.2.b MYV feeder

A more aggregated level, load curves of MV feeders are also used for the validation of
our methods. Four MV feeders’ loads are considered in the study. Figure 2.15 shows
the composition of two MV feeders as examples. Each represents the electricity demand
of several MV /LV substations presented in section 2.2.a. The observations are collected
on a half-hourly basis from September 9, 2009 to September 22, 2010. The other two MV
feeders not included in the figure are also in the same region. Being a mixture of residential,
service sector and industrial clients, patterns of these MV feeders’ loads are more similar
to the VI_LOG substation’s case (figure 2.10), namely, having weekly patterns and being
influenced by the temperature.

T411_VI feeder

T411_CE feeder

VI_PRI

CE_cEr VI_LOG

CE_MOU

VI_PAU

Figure 2.15: MV feeders and position of connected MV /LV substations

2.3 Choices of Time series and NN methods

Most forecasting models and methods presented previously have already been tried out on
load forecast, with varying degrees of success. According to our objectives, our focus is on
the short-term MV level. We can see in figure 2.1 that most of the models exist on the
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HV level. The idea is to borrow algorithms on the HV level and adapt to the MV data.
Compared to the HV level data, MV level data have more irregular patterns.

The choice of the model depends mainly on the nature of the data [36]. From the section
2.2, we concluded that our load examples are influenced by the nature of the customers
connected, the temperature, the time (of the day and of the week), as well as the calendar
information. Thus, from the presented two categories of methods, we have selected the time
series method and the ANN model to address to our issue. Different from the Box-Jenkins
method, we formulate our time series model in a regressional way, in which the physical
interpretation can be attached to the components and explanation can be easily reached.
Advanced signal processing tools are integrated in the time series method in order to get
the best accuracy. Another method chosen from the artificial intelligent method family is
the ANN method, more precisely, the Multi Layer Perceptron (MLP) structure ANN. It is
the feed-forward ANN, the simplest to implement and the less computationally expensive
to run. Moreover, A. Khotanzad et al. have declared in [20] that according to their
investigation of the use of different structures of ANNs, no major advantage over the MLP
of adopting a more complicated structure has been discovered. Different from most of the
implementations in the literatures, the efforts are concentrated on the optimal structure
selection. As explained, ANNs are often accused for its large architecture possibility and
lack validity of its model [387]. Furthermore, both selected methods have sound basis for
the confidential interval computation. This later gives indication to the uncertainty of the
forecasting model.

2.4 Performance criteria and reference case

2.4.a Performance criteria: MAPE and MAE

The comparison of the model’s performance relies on the computation of two quantities:
MAPE and Mean Absolute Error (MAE). They are presented throughout this paper as
performance indexes.

On the one hand, MAPE represents the average ratio between the absolute errors and
real observations. The result is given in percentage:

MAPE(%) = % Y= Bt| 100 = 1 % 1 %100 (2.32)
0) = — ] = — - .
N=ZD y N =y

where N is the total number of forecasting samples, ¢, is the forecasting value, y; is the real
measured value and e; is the error of the model which is the difference between forecasting
values and real values.

MAPE represents the accuracy of the forecasting models in the percentage of the real
observations. Thus, the value of the MAPE is dependent to the real observations. More
specifically, committing the same magnitude of errors, during the winter, when the electric-
ity consumption level is high, the MAPE is low; during the summer, when the electricity
consumption level is low, the MAPE would have an important value. In order to avoid
this drawback mainly caused by the forecasting magnitude, another performance indicator
is introduced.
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The MAE indicates the average absolute error result. The result given in our example
is in Watt:

1 & 1 X
MAE(W) = N > lye =9l = I > ledl (2.33)
t=1 t=1

The MAPE and MAE are the most widely used performance quantities in the load
forecasting field.

2.4.b Reference case: the naive model

In order to realize a first benchmark, a naive model [12, (0] is designed to do the load
forecast. The naive model does not exploit explanatory information such as weather,
neither does it rely on sophisticated statistical or machine learning techniques.

The naive model replaces the forecasting result (for day D) by its most similar historical
consumption pattern (day D-£), where “¢” is the general delay between the most similar
days which are defined by computing the euclidean distances among all days.

The naive model behaves in two different ways depending on the clients’ composition.
For the substation principally connected to domestic clients, as the consumption’s level is
mainly due to the variation of the temperature, its load pattern is most similar to the day
before. As a result, in this case £ = 1. While for an industrial substation, because of its
weekly pattern, the most similar day is more likely to be the same day of a week before.
Therefore, £ =17.

2.5 Conclusion

This chapter is served as an introduction to our short-term load forecasting objective.
Firstly, the various approaches in the literatures are presented. Their applications in the
related works are briefly introduced. Next, the data of the MV /LV substations and the MV
feeders that are used in our study are examined. We pointed out that the main influence
factors for the variations in those load curves are the temperature, the day type, and the
time. Consequently, the choices of load forecasting methods being the time series and the
NN methods are argued. Performance criteria, based on which the accuracy of different
methods is compared, and the reference case are also set up.
In the next two chapters, the chosen methodologies are thoroughly stated.
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Abstract

After a thorough scrutiny into the different load forecasting methods, we have chosen
the time series and the neural network methods to answer the request of the short-
term load forecast. We tackle in this chapter an additive time series method, dividing
our analysis into three parts; namely, a trend component, a cyclic component, and
a random error component. The first two parts are deterministic and are estimated
separately with dummy variable regression models. The random error part is looked
through in detail to ensure the well being of the designed model. Advanced signal
processing tools are integrated in the proposed method such as ANOVA nullity test and
smoothed periodogram. The result of the suggested method is encouraging, compared
with the naive model. Weather uncertainty as an important aspect to the load forecast
is also discussed at the end of the chapter.
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In this chapter, we address the short-term load forecasting issue with an additive time
series method. Being a linear model, the additive time series model is widely used for
modeling for its ease of implementation, understanding, high precision and computational
efficiency. In section 3.1, we introduce the additive time series model and the overall
procedure of our designed methodology. Next, two sections are developed respectively
describing theories and techniques including in the proposed procedure, and showing every
step in the application of the model on a substation load example. In section 3.4, we confirm
the conclusion obtained in some works that the weather uncertainty decreases the model’s
forecast precision and argue that our proposed methodology still largely outperforms the
naive model.

3.1 Additive time series model and procedure overview

Time series [98] represents the evolution of a set of observations sampled at a regular
interval along time. The specificity of time series models, compared with other statistic
methods, is the introduction of “time” as one of its explicative variables.

The considered time series model contains three parts: a trend component, a cyclic
component and a random error. Let y; denote the measured load at time ¢, the additive
model then can be written as:

Ye=Jfe+St+e (3.1)

where f; denotes the trend component at time ¢, .S; denotes the cyclic component at time
t and €; denotes the random error at time ¢. The first two components are deterministic
parts, while the random error part can be examined after the model estimation to guarantee
its good performance. We aim at building two parametric models representing the two
deterministic parts, which are termed respectively the trend and the cyclic models.

Figure 3.1 describes the process to build the time series forecaster. The historical
consumption loads, the correspondent historical temperatures, and the historical day types
are used for the conception and parameter estimation of the models. The forecasting
temperature data and the forecasting day types are applied as inputs for the parameterized
model in order to get the forecasting results. The categorical variables, i.e., the dummy
variables, are integrated to distinguish the different day types in the trend model. The
cyclic model is composed of Fourier components, whose main frequencies are found by the
smoothed periodogram. Additive time series model considers the sum of the forecasting
results of the two models as the final load forecast (equation 3.1). At the end of the
forecasting step, the estimation window, indicating the length of the historical data, with
which the parameters are estimated, is shifted to the next period, ready to get the next
forecasting process started.
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Input data: Historical consumption loads
Correspondent historical temperatures
Forecasting temperatures
Forecasting day type

Trend component estimation ft
Dummy variable regression

Cyclic component estimation St
1. Test for stationarity in order to perform Fourier
decomposition.
2. Smoothed periodogram: find a set of significant
frequencies impacting the variation of the analyzed data.
3. Dummy variable regression design based on the
set of frequencies: Analysis of Variance (ANOVA).
4. Regression model coefficients estimation.

Output data: Load forecasts

Slide the estimation window to the next period
and repeat the process

Figure 3.1: Steps of the designed time series forecasting method

3.2 Statistical tools

3.2.a Dummy Variable Regression

We have concluded in the chapter 2 that one of the most important influence factors that
explain the variations in the load curves is the day type. Here, in our specific example,
the load curves can be classified into three day-type categories: the working days, the Sat-
urdays, and the Sundays and national holidays. The explanation of this category division
is later carried on in subsection 3.3.a. Categorical variables are often employed for the
injection of categorical information to models.

Dummy variable regression is a method for incorporating categorical variables into
a regression model. Dummy variable takes the value of either 0 or 1, and indicates the
presence of its coefficient in the equation. Let I'(-) denote a regression equation, the dummy
variable regression can be written as:

k-1
yr =T(z) + ) Dl (1) (3.2)

a=1
where D,,,a = 1,--,k — 1 are dummy variables, I',(-) denotes the regression equation associ-
ated to the dummy variable D,  is the number of different categories and x, y; represent
respectively the independent variable vector and the studied variable. The number of the
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dummy variables in the equation is k — 1, as the category that all dummy variables equal
to zero is considered as the other categories’ reference. For a given category, at most one
dummy variable is equal to 1.

The dummy variable regression is applied both for the trend component and for the
cyclic component.

3.2.b Trend Component Estimation

The trend function f; usually represents a slow variation of the analyzed quantity ;. It is
usually modeled by a linear function, a polynomial function or an exponential function. In
section 2.2.a-1, the load variation (except the industrial substations) is mainly proved to be
very linearly dependent to the temperature data. As a first approach, the simplest form,
the linear trend model is conceived. Thus, here we suggest both a time and temperature
correlated linear trend function.

k-1
fr=at+b+cTi+ > Dava (3.3)

a=1
where t refers to the time index whose value is from 1 to the estimation window size, T}
refers to the temperature of the region where the measurements took place, and Zgj Dyva
represents the dummy regression part. The parameters a, b, ¢ and 4,0 =1,---,k — 1, are
the coefficients of the regression model.

Thus, in this section, we aim at evaluating the k + 2 regression coefficients {a,b, ¢, v, }
relying on the Ordinary Least Square (OLS) approach. To that purpose as a first approx-
imation, the sum of the cyclic part during one period is assumed to be zero. In order to
adapt to our short-term forecasting problem, a sliding window is performed, within which
we estimate the coefficients. With the computed coefficients, the day type of the forecast
day as well as its temperature prevision, the trend component can be predicted. Then the
sliding window is shifted for one day to the next period, within which the coefficients are
recalculated. This procedure is repeated until the end of the data. Since we do not pos-
sess the temperature forecasts, we use the real temperature measurements instead. This
is a common practice [26, 27, 28]. We analyze the impact of the weather uncertainty on
forecasting model’s accuracy later in section 3.4.

3.2.c Cyclic Component Estimation

Here, we complete our forecasting model by taking into account the periodicity of the
observations. The cyclic part captures the cyclic behaviors of the load y;. Namely, let p
denote the periodicity of the function without trend, then we can write for all samples t:
St+p = St, where S; represents the cyclic component at . The sum of the cyclic components
over an entire period equals zero: Zle Sy =0.

Once the trend model has been determined, it can be removed from the raw data y;.
Let W; denote the detrended series:

W=y~ fir=Si+e (3-4)

Sum of the sine and cosine functions, the Fourrier series can fully describe the dynamism
of the stationary periodic signals. Thus, we suggest performing the cyclic estimation using
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a Fourier component regression. To do so, four steps are needed (figure 3.1). First, we test
the detrended series W, to see whether they are stationary. Then, a smoothed periodogram
is performed in order to find out the harmonic frequencies that explain the variations in W;.
Next, with these harmonic frequencies, a regression model of the Fourier components can
be constructed. Last, an ANOVA nullity test [89] integrated OLS approach is applied to
the coefficient estimation in the sliding window for the cyclical part. The ANOVA nullity
test is used for the discrimination of the significant regression coefficients. This technique
will be presented in subsection 3.2.g.

3.2.d Tests of Stationarity

The purpose of performing tests of stationarity is to find out whether the detrended series
W; is stationary in order to ensure the primary condition of carrying out the smoothed
periodogram presented in the next subsection. Several approaches exist, among which we
chose two: the Kwiatkowski-Phillips-Schmidt-Shin tests (KPSS) test [90] and the Aug-
mented Dickey-Fuller test (ADF) test [91]. The KPSS tests the null hypothesis of station-
ary time series against non-stationarity, while the ADF tests in the time series samples the
existence of a unit root, which signifies the non-stationarity against stationarity. These
two tests are jointly used to ensure a reliable result. For more information, readers can
refer to appendix B.

Both tests confirm that the analyzed load data set is well detrended and is stationary
with any size of the sliding window.

3.2.e Smoothed Periodogram

The purpose of using the smoothed periodogram is to find the main harmonic frequencies
of the cyclic component in order to constitute the cyclic regression model. For a stationary
data set, its periodogram can be defined as [38]:

2

1 > —2iTv;
In(yj)zE S Wie ™t = d2(v;) + d2(v;y) (3.5)
t=1

where n is the sample size, v; = %, j={0,1,---,n—1} are the fundamental frequencies of the
Discrete Fourier Transform (DFT) of the data set W;. d.(vj) and ds(v;) are respectively
the normalized real and imaginary component of the performed DFT.

1 n
dc(vj) = N > Wy cos(2mtv;)
t=1

ds(vj) = Ln é Wy sin(2nty;) (3.6)

We have: . . .
2 (WemW)* =2 3 [de(v) + d5()] =2 321 (5) (3.7)

t= J= J=

where m = ”771, and W stands for the average of the data set ;. Equation 3.7 indicates
that the sum of squares can be partitioned into harmonic components represented by
the periodogram’s amplitude at frequency v;. In other words, if there exist peaks in the
periodogram, these frequencies explain the variation of the data.
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However, the raw periodogram usually has a large variance at a given frequency. Con-
sequently, its raw form is not directly used as an estimator of the spectral density function.
One solution to reduce the estimator’s variance is to use the smoothed periodogram.

It is assumed that the spectral density is fairly constant in the considered frequency
band, and the adjacent frequencies have asymptotically independent values. We can set
up a symmetric smoothing filter B of size 2]+ 1 << n, which is centered around a frequency
vj such that:

B:{y:yj—%SVSI/j+£} (3.8)

n

The Daniell kernel [92] is a set of symmetric positive weights that center in the estimated
frequencies. The sum of all weights is 1 :

l
hi=h_p>0and Y hy=1 (3.9)
k=—

Thus, the smoothed periodogram becomes

B !
I(vj) :k;lhkfn(l/j +k/n) (3.10)

Through the smoothed periodogram plot, frequencies F with the most significant am-
plitudes can be identified.

3.2.f Regression Model with Fourier Components

We build the cyclic component based on the set of frequencies F = {vq,vs,... ,Z/Nf} such
that:
Ny Ny
Sy = Z ci cos(2my;t) + Z s;sin(27y,t)+
i=1 i=1
k=1 Ny Ny
Z D, Z Ci,o cOs (2myt) + Z Si o sin (2my;t) (3.11)
a=1 i=1 i=1

where Ny is the total number of frequencies in F, and Zgj D,, x (-) stands for the dummy
variable regression part. As described in Equation 3.11, every frequency of the set F
provides two contributions: a sine component and a cosine component. The 2xN; un-
known coefficients in the equation are to be determined in a sliding window using the OLS
approach.

3.2.g ANOVA Nullity Test

In order to determine the relevancy of the coefficients, and improve the efficiency of coef-
ficient estimation, an ANOVA nullity test is performed.

Mainly the ANOVA test aims at partitioning the observed variance into several vari-
ances due to each explicative variable and the residual. The significance of every coefficient
is identified by its ratio of within-group variance to the global variance. As the value of
the ratio is larger, the coefficient is more significant (cf. appendix C).
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Practically speaking, we start with an ANOVA nullity test with all parts of the regres-
sion model. Then, after the removal of non significant parts according to the test’s result,
the rest of the coefficients are re-estimated.

3.2.h Complete Forecasting Model

As described in the beginning of the section, the forecasting result of the time series model
is the sum of the trend part forecast and the cyclic part forecast.
Thus, the complete forecaster can be expressed as:

Ut = [t + St
N N
=at+b+cT; + Z cicos(2my;t) + Z s;sin(27y;t)+
i=1 i=1

k-1 Ny Ny
Y Do 7Va+ Y, ciacos (2mvit) Y 8; 0 sin (27v;t) (3.12)
a=1 i=1 i=1

The error part: € =y — f; — St is examined in Section 3.3.c.

3.3 Application example results

The results has been realized with the open source software “R” [93], which is dedicated
to statistical computing and graphics. We chose “R”, since it has a variety of up-to-date
packages |94] that support all our functional statistic techniques. The sample period of
consumption and temperature data is from September 9, 2009 to October 27, 2010. The
available data is divided into two parts: a training set and a test set (figure 3.2). A training
set is used to define the value of some important variables such as number of categories, the
length of the sliding window, and the important frequencies. A test set is the data based
on which the performance of method is evaluated and compared with the naive model.
The choice of the size of these two sets is arbitrary: about one third of data (117 days) for
the training set and two thirds (297 days) for the test set.

Jan. 03,2010 .
Sept. 09, 2009 Training et i | Test set o 27|’ ol

Figure 3.2: Training set and test set periods of the available data.

3.3.a Training set

Figure 3.3 shows the load variation from October 5, 2009 to October 11, 2009 (a whole week
from Monday to Sunday) as an example and suggests three apparent categories: weekdays,
Saturdays, and Sundays. Notice that in France, activities related to service sectors are
closed on both Sundays and holidays, whereas usually, most of them are open on Saturdays.
Consequently, national holidays are included in the same category as Sundays.

As presented in the section 3.2.b, a sliding window is performed to estimate coefficients
of both the trend and cyclic parts. The size of the sliding window obviously has an impact
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Figure 3.3: A weekly consumption pattern (October 5, 2009 to October 11, 2009) of a
mixed industrial and service sector substation VI LOG. Each pair of dotted lines defines
one day.

on the forecast precision. With a larger window size, the trend model takes into account
the slow variation of the time and temperature, which leads to a higher accuracy.

The sliding window size is selected by the MAE criteria computed on the intermediate
performance of the trend forecasts with different window sizes. The smallest unit of the
sliding window length is a week within which at least one day of each category can be
found. In this chapter, the mixed industrial and service sector Substation VI LOG is used
as an illustrative example. Figure 3.4 presents the MAE criteria for the different sliding
window size results.

o o o

MAE (W)
17600 18200 18800

2 4 6 8 10

Sliding window size (x 1 week)

Figure 3.4: Substation VI _LOG, MAE criteria calculated on the training set (117 days)
for different sliding window sizes (weeks)

Based on the above results, the sliding window length is fixed up to five weeks.
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The estimation of the trend component is removed once determined. The detrended
series W, is proved to be stationary by both KPSS test and ADF test.

A smoothed periodogram is performed on the detrended series, with a Daniell kernel
(7,7) filter [95, 96], which is a Daniell filter of size 7 (length 15) applied twice. The length
of the filter is selected by trial and error.

2.0e+10

Spectrum
1.0e+10

)

o
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Figure 3.5: Periodogram of the detrended training data set smoothed by the Daniell kernel
(7,7). The dotted lines indicate the considered harmonic frequencies, which are {1/48 =
0.021,1/24 = 0.042,1/16 = 0.063,1/12 = 0.083,1/9.6 = 0.104,1/8 = 0.125,1/6.85 = 0.146, ---}.

Based on equation 3.10, the smoothed periodogram of the detrended training data set
is shown in figure 3.5. The dotted lines point out the set of the most significant frequencies
F={v1 =148, = 1/24,v5 = 1/16,v4 = 1/12,v5 = 1/9.6,v5 = 1/8,v7 = 1/6.85,v5 = 1/6, 19 =
1/5.35,119 = 1/4.8,v11 = 1/4.35}. They represent the periodicities of one day, half day,
8 hours, and 6 hours, etc. These frequencies are then assigned to build the cyclic part
according to the equation 3.11.

3.3.b Test set

With the parameters defined by the training data set, in this subsection, we present the
performance of the designed forecasting model compared with the naive model on the test
data set. The trend estimation model and the cyclic estimation model are independently set
up according to the equations 3.3, 3.4 and 3.11. The coefficients are estimated with the past
five weeks sliding window for the different three day type categories. The ANOVA nullity
test is integrated into both the trend and the cyclic models to remove the irrelevant parts.
Combining the trend and the cyclic forecasts, the final forecasting results are computed
with the correspondent coefficients depending on the forecasting day type.

Figure 3.6 shows the overall results of the average daily forecasting results compared
with the real measurements. Figures 3.7 and 3.8 show some more detailed results on a
30-minute basis of the forecasting model on the weekdays and weekends compared with
the real measurements.

Composing of one third service sector clients and two thirds industrial clients, the
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Figure 3.6: Substation VI _LOG, comparison of the forecasting results with the real mea-
surements on the test set period (297 days).
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Figure 3.7: Substation VI _LOG, two-day-ahead load forecasting results on weekdays (Tues-
day and Wednesday: Jan. 12, 2010- Jan. 13, 2010). The vertical dotted line separates two
days.

illustration example substation VI LOG is more strongly influenced by the weekly pattern
than the temperature variation. Thus, the loads of the same day of a week before are used
to replace the forecasts in the naive model. In this case, as shown in table 3.1, the one-day-
ahead and two-day-ahead forecasting performances of the naive model are the same. Table
3.1 demonstrates that the presented method based on time series improves load forecast on
a MV/LV substation level. Similar results have been found with the other mixed substation
examples with an improvement of 2—3% compared with the naive model (Complete results
in Appendix A). Considering the 738000 MV /LV substations in France [97], a marginal
improvement on one MV /LV substation in precision can have a significant gain in both
efficiency and economy of the whole electrical system. The method is also successfully
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Figure 3.8: Substation VI_LOG, two-day-ahead load forecasting results on weekends (Sat-
urday and Sunday: Jan. 30, 2010- Jan. 31, 2010). The vertical dotted line separates two
days.

applied to a more aggregated level, specifically to four Medium Voltage (MV) feeders’ load
forecast. For one-day-ahead forecast, the results have an improvement of 2 — 5% compared
with the naive model (Complete restults in appendix A). Moreover, bigger improvement of
3 - 11% is found on the two-day-ahead forecasting scenarios (table 3.2, complete restults
in appendix A). Representing a mix of all types of clients, the load curve of a MV feeder
is influenced by both day type and temperature variation. In other words, neither last
day’s load (“D-1") nor the same day of the last week’s load (“D-77) can properly replace
the forecasting results. It is the reason that with the forecasting period becoming longer,
the naive model deteriorates more or less rapidly on the feeders depending on the clients’
composition. The designed time series model on the other hand, taking these influencing
factors into account, is more robust compared with the naive model for a longer period
load forecast.

Table 3.1: Forecasting results: comparison between the naive model and the complete time
series model on the test set period (297 days) of Substation VI LOQG.

Naive model Time series
model

MAPE (%) 18.9 16.4
One-day-ahead

MAE (kW) 8.82 7.13

MAPE (%) 18.9 16.6
Two-day-ahead

MAE (kW) 8.82 7.23
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Table 3.2: Forecasting results: comparison between the naive model and the complete time
series model during the period: Mar. 9, 2010~ Sept. 21, 2010 (197 days) of MV feeder CL

Naive model Time series
model
MAPE (%) 16.7 12.2
One-day-ahead
MAE (kW) 166.48 117.60
MAPE (%) 25.8 14.2
Two-day-ahead
MAE (kW) 248.50 135.51

3.3.c Residual Analysis

Residual contains the variation that has not been explained by the fitted model. It is
mainly due to the random irregularities of the sampled observations.

In this section, we examine the residual in two aspects:

e Normality is examined by the Probability Density Function (PDF) and the Cumu-
lated Distribution Function (CDF) plot. A normal distributed error guarantees the
goodness fit of the model.

e Independence is examined by the ACF. An independent residual argues that there
remains no useful information in the historical data for the forecasting model.

3.3.c-i  Normality

We usually expect the residual to follow a normal distribution. When the errors are nor-
mally distributed, OLS regression is known to be optimal for coefficient estimations [93].
Moreover, if the residual does not follow a normal distribution, wrong intervals could be
set up; for example, the prediction interval.

The PDF of the residual p(e) at a specific value is the probability that the residual e
will have that value.

The CDF F,(x) represents the probability that the residual variable takes a value less
than or equal to x, such that:

Fo(z) = f p(€) de (3.13)

The PDF plot as well as the CDF plot is used to compare the residual distribution with
other known distribution functions. In our case, we compared the residual distribution with
the standard normal distribution. These plots are built by plotting the specific values of the
residuals versus the correspondent theoretical values from the standard normal distribution.
This standard normal distribution is built by a large number of random samples with same
mean and standard deviation as the residual. If the residual is normally distributed, its
curves must be close to the normal distribution curve. Instead, if the residual density
function has some significant deviations from the standard normal distribution curve, it
suggests that the residual series are probably not normally distributed.
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Both, the probability density function plot and the empirical cumulative distribution
function plot of the residual (figure 3.9) indicate that it is reasonable to believe the residual
of the regression process to be approximately a normal distribution.
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Figure 3.9: Substation VI LOG, density function plot and cumulative density function
plot of the residual.

3.3.c-ii Independence

The independence of the data set is measured by the AutoCorrelation Function (ACF)
[38]. ACF of the residual measures the linear predictability of €;, the value of the residual
at time ¢, by using the previous residual values. The computed ACF takes values between
-1 and 1. The closer the value is to one of the two limits (-1 and 1), the greater linear
predictability we can get. If the residual set is random, its autocorrelation should be near
zero for all time-lags. If there are significant non-zero values, the residual set probably has
no randomness.

Our plots of residual autocorrelation function in figure 3.10 show the independence
evolution through the designed process. At the top, the ACF plot of the original data
indicates that the raw data should be differenced at least once. In the middle, the ACF
plot of the detrended data shows the strong evidence of periodicities. At the bottom, the
ACEF plot of residual is much closer to an independent data compared with the former ones.
It indicates that the residual of the complete model is not random, and there still exists
some moderate degrees of autocorrelation between residual at time t and the residuals at
time (t—1),(t-2),---, (t—18). However, since the load consumption data is available once
per day, when forecast at time ¢ is computed, the real values at time (¢-1), (¢-2),---, (t—48)
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Figure 3.10: Substation VI_LOG, evolution of autocorrelation functions of each step. Re-
garding equation 2.6, lag is the variable 7.

are unknown. As a result, it is difficult to obtain any improvement from these remaining
correlations.

3.4 Weather uncertainty

Since the forecasting temperature data are not in our possession, the above results are
calculated based on the actual realized temperature data. W. Charytoniuk et al. [26] have
clearly pointed out that their results are also obtained by using the actual temperature
values instead of forecasting ones. At the same time, they explained that using tempera-
ture forecasts would decrease the forecasting precision. Henrique Steinherz Hippert et al.
[28] have explained in their short-term load forecasting review that using observed weather
values instead of forecasting values which we don’t usually have for the research use, is a
common practice. They also concluded that in the real industrial use, when using forecast-
ing weather values, the forecasting result is less accurate. V. Dordonnat et al. [27] have
made experiments both with the actual and one-day-ahead forecasting temperature data.
They found that temperature uncertainty influences results in respect to the methods and
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to the seasons. Some methods are more resistant to the temperature errors than others
during certain periods of the year. In the actual French electricity system, temperature
forecasting errors have smaller impacts on summer than other seasons due to the rarely
air-conditioners’ use [27].

Temperature uncertainty histogram

25

20

Frequency
15

10

3 -2 -1 0 1 2 3 4

Temperature (°C)

Figure 3.11: Histogram of the Gaussian distributed temperature uncertainty adding to the
actual temperature. Frequency: occurrence during two days (96 points in total)

In this section, we aim at analyzing the temperature errors’ impact on the proposed
time series method. According to the French weather forecast bureau, the one-day-ahead
temperature forecasts have a precision of 1.5°C' on an hourly basis [98]|. Therefore, in order
to create the uncertainty effect, a Gaussian noise zero centered with standard deviation of
1.5°C is added to the actual temperature values. The same procedure of the model design
(figure 3.1) has been carried out. For the coherence, the example borrowed here is still
based on substation VI LOG. Figure 3.11 illustrates the histogram of the one day’s (48
points) temperature uncertainty. Figure 3.12 demonstrates the forecasting temperatures
and actual temperatures on three successive days. Table 3.3 shows the overall performance
comparison among time series model with forecasting temperatures, time series model with
actual temperatures and the naive model.

The results in table 3.3 shows that with the “forecasting” temperature, the time se-
ries model still largely outperforms the naive model. The obtained results also confirm
the conclusion drawn by other researchers [26, 28, 27| that the precision suffers from the

imprecision in the weather data.
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Figure 3.12: Three-day forecasting temperatures compared to the actual temperatures.
The “1” represents the real temperature, while the red circle represents the forecasting
temperature.

Table 3.3: Performance comparison among Time Series (TS) models with forecasting tem-
perature, actual temperature, and naive model.

MAPE (%) MAE (kW)
TS model with forecasting temperature | 16.9 7.32
TS model with actual temperature 16.4 7.13
Naive model 18.9 8.82

3.5 Conclusion

This chapter proposes a short-term forecasting model based on time series method for the
MV /LV substations. The time series model divides the load curve into 3 separate parts:
trend, cyclic and random errors. The first two deterministic parts are built with dummy
variable regression models. The sliding window and ANOVA nullity test are combined with
the regression models to give a better accuracy to the coefficient estimation. The model
can be used to all types of mixed substations as it takes into account both the day type



3.5. Conclusion 65

and temperature information. The time series model is also successfully applied to the MV
feeders’ load forecasts.

Residual is examined by its independence in order to ensure the model with a reliable
behavior. The results show that the residual is greatly uncorrelated compared with the
original data despite of the small remained correlation. The residual analysis shows that
there is hardly any possible amelioration on the forecasting results with statistical tools.

The weather uncertainty is also examined in this chapter. A Gaussian noise is at-
tached to the actual measured temperature with an official published standard deviation
to simulate the forecasting weather data. Experiments show that even with the forecasting
weather data, our time series method still largely outperforms the naive model.

The proposed time series model has taken into account numerous explanatory variables,
such as day type, temperature and periods. It is simple to implement, and easy to interpret.
It shows great efficiency in computation that with little computational effort, the obtained
forecasting results are satisfactory. Supplying electricity to a single industrial client, sub-
station CE_FRO (figure 2.11) is independent to the temperature variation. Moreover,
except the week periodicity, which has been taken into account by the naive model, its
periodicities are not evident, relying on the productivity plan of the client. Therefore, the
time series model, which exploit these information, cannot deal with this single industrial
client’s case. In the next chapter, we present the model based on neural networks in the ar-
tificial intelligent family. It is a promising candidate to answer the load forecasting request,
since it gives better results than classical approach according to literatures [99] and it is
capable of dealing with all types of load forecasts. Our work concentrates on the neural
network model’s structure selection strategies.
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Neural network model

CONTENTS

4.1 MACHINE LEARNING TECHNIQUE . . . . . . . . o it it et et 68
4.2 Murti LAYER PERCEPTRONS AND TRAINING PROCESS . . . ... ....... 69
4.3 MODEL DESIGN . . . .ttt e e e 71
4.3.a Variableselection . ... ... ... . .. ... 71
4.3b Model selection . . . . . . .. .. 73
4.3.b-i  Model selection methodology . . ... ... ... .......... 73

4.3.b-ii  Assessment of the generalization ability of the models . . .. .. 74

4.4 NUMERICAL ILLUSTRATION . . . . . . .. ittt 76
4.4.a  Framework . . . .. . . .. 76
4.4b Model design: an illustrative example . . . . ... ... ... ... .. ... 7
4.4b-i  Variable selection example . . . . . ... ... oL L. 7

4.4.b-ii  Selecting the best model for a given complexity . .. ... .. .. 81

4.4.b-iii  Complexity selection example . . . . .. ... ... ... ... ... 81

44.c Results. . . .. . 83

4.5 OVERALL COMPARISON WITH THE TIME SERIES MODEL . .. ......... 85
4.6 CONCLUSION AND PERSPECTIVE . . . . . .ottt ittt 86

Abstract

The chapter describes the design of a class of machine learning models, namely neural
networks, for the load forecasts of electrical substations. Real measurements collected
in French distribution systems are used to validate our study. We focus on the method-
ology of model design, in order to obtain a model that has the best achievable predictive
ability given the available data. Principled methods are applied for variable selection
and model selection. The results show that the neural network based models are more
accurate than the time series models for load forecast, based on the same data. Com-
parison between the neural network and the time series models in various aspects is
made in the end of the chapter.
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4.1 Machine learning technique

We address the load forecasting problem with neural networks, a popular class of machine
learning methods. One of the purposes of machine learning is the design of predictive
models from data whenever prior knowledge on the process to be modeled is unavailable,
or not accurate enough. Such situations being very frequent, machine learning pervaded
essentially all scientific and technical fields during the past few years. In particular, neural
networks have become very popular as nonlinear regression methods, for reasons that will
be developed in section 4.2. Naturally enough, they have been frequently advocated as
load forecasting tools [28, 99].

The simplest machine learning models for load forecast are AR models, whereby the
future load is modeled as a parameterized function of selected past values, either linearly
as a linear combination of its past values (usually termed AR model), or nonlinearly. More
elaborate models make use, in addition, of past values of exogenous variables such as
ARX and NARX models (cf. subsection 2.1.b-i). In the linear case, the estimation of the
parameters of the linear models is performed by least squares fitting or variants thereof.
In the nonlinear case, a family of parameterized nonlinear functions must be postulated,
and the estimation of the parameters requires more elaborate optimization procedures than
standard least squares fitting.

In the present work, we postulate that the family of functions known as neural networks
can be used appropriately for power consumption prediction on the basis of both past
consumptions and exogenous variables. In other words, we expect neural networks to
provide nonlinear functions that can map past consumption values and exogenous variables
at a given time to a future value of the consumption. The mapping is expected not only
to explain the data from which the model is designed (termed training set), but also
to generalize to “fresh” data (termed test set), i.e., to data that have not been used for
designing the model. Therefore, in order to build an efficient model by machine learning,
one must address two problems:

¢ Find the endogenous and exogenous variables that are relevant for predicting the
power consumption. This is known as the variable selection problem.

e Find the appropriate model complexity given the available data. This is known as
the model selection problem.

Note that the variable selection problem is not specific to nonlinear models, and must
be addressed similarly for traditional linear models. By contrast, the model selection
problem is ubiquitous for nonlinear models, be they simple (such as polynomial models),
or more elaborate (such as neural networks [21], SVM [100], hidden markov models [101]).
The following universal property is observed experimentally and explained theoretically: a
model that is not complex enough is unable to explain the available data and to generalize
to previously unseen data; conversely, a model that is too complex fits the available data
very well, but is unable to generalize because it is “specialized” on the training data and fails
to capture the deterministic behavior of the process. This is known as the bias-variance
dilemma. Complexity selection aims at solving the dilemma, i.e., finding the optimal model
complexity, given the available data, in order to build an optimal predictive model. The
complexity of a model is defined rigorously by its Vapnik-Cervonenkis dimension [68]; for
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practical purposes, it can be roughly described by the number of parameters of the model:
the more parsimonious the model (i.e., less number of parameters of the model), the lower
its complexity. The ratio of the complexity to the number of training examples is also
crucial: it must be kept as low as possible.

According to the literatures and the number of devoted researches, the NN is the most
popular model in the load forecasting applications [39]. Other methods such as SVM and
hidden markov models could also accommodate to the load forecasting issue. However, as
a first approach, they go beyond the scope of this dissertation. In the present work, we
address the problems of variable selection and model selection by statistically principled
methods that proved successful in the past for many applications in a wide variety of fields
21]. Variable selection is performed by the random probe method, which will be outlined
in section 4.2. Model selection is based on the Virtual Leave-One-Out (VLOO) score,
an empirical estimator of the generalization error and the state of the neural network’s
Jacobian matrix. The VLOO score requires the computation of the leverages of the training
data. The leverage reflects the influence of each training example on the model. The
Jacobian matrix examines the effectiveness of the complexity of models. These methods
will be described in section 4.3.

In addition to making use of a full model design methodology, the main contributions
of our work are the following :

e The load curve is decomposed into the daily average power and the intraday power
variation parts, each part being separately forecast by a dedicated model.

e The procedure is validated with real data collected from the French distribution
network. Results are compared to the time series models [102] on the same data sets.

The rest of the chapter is organized as follows: section 4.2 presents briefly neural
networks. Section 4.3 details the statistical tools of the design procedure. Section 4.4
presents the applications of the designed models on the prediction of the load data of
French MV /LV substations. Section 4.5 compares the time series and the neural network
models in various aspects. Research perspectives in the application of neural networks are
proposed. Section 4.6 concludes the chapter.

Note that this work is in close collaboration with G. Dreyfus, author of the book [21]
where the principled methods of neural network are thoroughly presented. Thanks are
also due to doctor engineer G. Foggia and research engineer C. Benoit for their great
contributions respectively in the development of theoretical and application results.

4.2 Multi Layer Perceptrons and training process

The purpose of the present study is to perform a 24 hour-ahead load prediction in a
black-box fashion, i.e., without incorporating prior knowledge into the model. Therefore,
one must postulate a family of parameterized functions that have sufficient flexibility for
implementing the unknown mapping between variables and the load to be predicted. One-
hidden layer Multi Layer Perceptron (MLP)s in the neural network family are nonlinear
functions that were proved to be universal approximators, i.e., to be able to approximate a
sufficiently regular function to an arbitrary degree of accuracy [103]; in addition, they were
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proved to be parsimonious. Therefore, MLPs are good candidates for solving our problem.
In this section, we first recall the definition of these functions.

A one-hidden layer MLP with M “hidden neurons” is a linear combination of M pa-
rameterized nonlinear functions called neurons. A neuron is a nonlinear, bounded function
of a linear combination of its variables, usually an s-shaped (sigmoid) function such as
the hyperbolic tangent (tanh). Therefore, the i-th “hidden neuron” of an MLP can be
conveniently written as:

q(FﬂQi):tanh(fiaqdpj):tanh(ﬁffﬁ (4.1)
§=0
where P denotes the (R + 1) vector of the variables {p;,j = 0,---, R} of the model, and
2; denotes the vector of the parameters (or weights) {w; j,j = 0,--, R} of hidden neuron
1,5 =1,---, M. Note that variable pg is a constant equal to 1, termed “bias” of the hidden
neurons.
Thus, the MLP function can be written as:

M
F(P,Q) = Y wici(P,) =w' C (4.2)
i=1
where  denotes the set of the (R+ 1)M + (M + 1) parameters (cf. figure 2.3) of the
model, w denotes the (M + 1) vector of weights of the linear combination, and C' denotes
the vector of the outputs of hidden neurons {c¢;(P,€;),i = 1,---, M} with an additional
component ¢y = 1, named the output bias.

Note that f(P,2) is a linear function of the parameters of vector w and a nonlinear
function ¢;(+) of the parameters of vectors {§;,4 = 1,--, M'}. The nonlinearity with respect
to some of the parameters is the origin of the parsimony of the models, the price to be
paid being an increased complexity of training algorithms.

In the present work, f(P,) is the 24-hour ahead load prediction, P is the set of
endogenous and exogenous variables, selected as described in subsection 4.3.a, and €2 is the
set of parameters of the model, which are estimated by training the neural network from a
set of past measurements, the training set. No attempt is made at designing a model that
provides simultaneously predictions of all 24 hours of the next day, i.e., a neural model
with 24 outputs [104]. It is a very difficult task that cannot conceivably be performed by
a parsimonious model, leading to an overparameterized model with dubious generalization
capability.

The training set consists of N pairs {F;,y;}, where P; denotes the set of variables
related to example ¢, and y; is the corresponding load measurement. The training process
consists of estimating the parameters of the model {2 by minimizing the distance between
the output of the neural networks f(F;,2) and load values y; (figure 2.4). For nonlinear
regression problems such as investigated here, the usual distance is the least squares cost
function:

N
J() = ;(yz' - f(P,2))? (4.3)

Since the MLP function is nonlinear with respect to its parameters, the cost function is
not quadratic with respect to the parameters of the model, so that the usual least squares
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fitting algorithm cannot be applied: one has to resort to nonlinear, iterative optimization
algorithms, based on the computation of the gradient of the cost function. At each iter-
ation, the gradient of the cost function is computed, and a parameter-update procedure
that makes use of the value of the gradient of the cost function is applied, until conver-
gence to a minimum of the cost function. This procedure can be accomplished efficiently
by the so-called “backpropagation” algorithm. In the present study, the gradient of the
cost function was computed by backpropagation, and the parameter update procedure
was the Levenberg-Marquardt algorithm, a well-documented [105] second-order nonlinear
optimization algorithm .

4.3 Model design

A model design procedure aims at providing the model that has the best generalization
capability, given the available data. As outlined in section 4.1, this requires a search for
the optimal model complexity. Since the number of parameters is linear with respect to
the number of model variables and to the number of hidden neurons, the design procedure
requires discarding all candidate variables that are not relevant for the prediction task at
hand, and finding the appropriate number of hidden neurons.

Several related works exist: V.H. Ferreira et al. developed method based on Bayesian
approach that has solved the problems of Neural Network (NN) complexity and variable
selection in a coupled way [99]. N. Amjady et al. proposed a feature selection technique
based on mutual information and a cascaded neuro-evolutionary algorithm (CNEA) [104].
The number of variables and the number of hidden neurons of the 24 NNs are determined
by an iterative search procedure. I. Drezga et al. set up the pilot simulation, where the
nearest neighbor target days are used instead of the original target days, to determine the
number of hidden neurons [75]. In their works, the input variable selection for NN is based
on the phase-space embedding method (Integral Local Deformation (ILD)) and the final
forecast is the average of the forecasts provided by two identically structured networks
[106].

In this section, we describe the statistical tools used for variable selection and model
selection in the present study.

4.3.a Variable selection

There are two categories of variable selection methods: filters and wrappers. Filters aim at
finding relevant variables irrespective of the model. By contrast, wrappers take into account
the model, so that variable selection is “wrapped around” the model training procedure.
In this manner, variable selection and model selection are performed simultaneously. An
in-depth discussion of variable selection procedures can be found in [107]. Wrappers tend
to be more computationally costly than filters, but they are of more general applicability.
In the present study, as a first approach, a filter was implemented.

The principle of the method is the following [108] : in order to discriminate between
irrelevant and relevant variables, a set of realizations of a random, hence irrelevant, vari-

! Unfortunately, the term backpropagation is frequently used for the computation of the gradient of the
cost function followed by simple gradient descent, a training method that is less efficient.
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able, called “probe variable”, are generated by randomly shuffling the components of the
vectors of candidate variables. The probe variables, together with the candidate variables,
are ranked in order of decreasing relevance by orthogonal forward regression [109]. The
cumulative probability distribution of the rank of the probe variable is estimated, and the
threshold rank r( is determined such that the probability for an irrelevant variable to be
selected is smaller than a threshold § chosen by the model designer:

p(rprobe < TO) <4 (44)

where 7.0 is the rank of a realization of the probe variable. Therefore, ¢ is the risk
of selecting a variable although it is irrelevant. Since the ratio of the complexity to the
number of examples is a crucial figure, a low value of § must be chosen if data are sparse
in order to maintain a low complexity, while one may afford to choose a higher value of §
if data are abundant.

We denote by &; the vector whose components are the N measured values of the i-th
candidate variable (i = 1,---,n), and by y the vector whose components are the N measured
values of the quantity to be predicted. If the variables have zero mean, the square of the
correlation coefficient between the i-th candidate variable and the quantity of interest is
given by [21]

(&l'y)?
(&'&)Wy)

where ; is the angle between vectors &; and y in the observation space. The smaller ¢;,

cos® ; = (4.5)

the larger the correlation between the candidate variable and the quantity to be predicted.

Ranking is performed by orthogonal forward regression, based on Gram-Schmidt or-
thogonalization [110, 21]: as illustrated in figure 4.1, the candidate variable whose vector
& has the smallest angle with vector y is first selected; the vectors of all other candidate
variables, and the output vector y are projected onto the null space ? of the variable ranked
first, thereby eliminating the contribution of the first variable. The same computation is
then carried out in that space, providing the second variable in the ranking. The process
is iterated until all variables are ranked, or until another stopping criterion is satisfied as
described below. In order to take nonlinearities into account, the candidate variables are
the primary variables (i.e., the variables that are considered by the process experts to be
probably relevant) and their pairwise cross-products.

The next step is the definition of the threshold rank such that all variables that are
ranked below the threshold are discarded. To that end, n, vectors of random variable
(“realizations of the probe variable”) are generated by randomly shuffling the components
of each vector of candidate variables, so that they have the same probability distributions as
the original candidate variables. Those n, realizations of the probe variables are appended
to the set of candidate variables and ranked with the latter. The cumulative distribution
function of the rank of the probe is estimated as follows: the estimated probability that
the probe rank is smaller than or equal to a given rank r is the ratio n,,/n,, where n,,
is the number of realizations of the random probe whose rank is smaller than or equal to
r. During the ranking process, when a rank r is reached such that n,,/n, > ¢ (where ¢ is

?Orthogonal subspace
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Orthogonal forward ranking process
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Figure 4.1: Orthogonal forward ranking process

the risk chosen by the designer as described above), the procedure is terminated and the
threshold rank rg is set equal to r — 1.

A general presentation of the above method, put into the perspective of alternative
variable selection methods, is provided in [111].

4.3.b Model selection

As mentioned in subsection 4.3.a, variable selection by filter methods separates variable
selection from model selection. In this section, we describe the model selection method
that was used in the present study.

4.3.b-i Model selection methodology

Since the cost function used for training neural networks is not quadratic with respect
to the parameters of the model, it has local minima. The optimization algorithms being
iterative, initial values of the parameters are required: they are generally drawn randomly
from a probability distribution with zero mean and variance 1/R [21]. The minimum
reached by the optimization algorithm depends on the initial value of the parameters.
Therefore, for a given number of hidden neurons, a variety of models can be obtained,
each of these corresponding to a minimum of the cost function. Due to the bias-variance
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dilemma mentioned in section 4.1, there is no reason why the model corresponding to the
global minimum of the cost function should generalize better than a model pertaining to a
local minimum. Therefore, a specific methodology must be used, as illustrated graphically
in figure 4.2: the number of hidden neurons is increased from zero (linear model) to a
maximum value (typically smaller than 10 in real applications); for each number of hidden
neurons, many models are trained with different initial parameter values, and the model
with the best generalization ability is selected as described below; if, at the end of step i (i.e.,
when models with i hidden neurons have been trained), it is found that the generalization
ability of the best model with i hidden neurons is significantly worse than that of the
best model with i-1 hidden neurons, the procedure is stopped, and i-1 hidden neurons is
considered to be the optimum complexity given the available data.

1.Variable selection:
Orthogonal regression process+ risk (probe variable)

fornb_hidden neurons=a:b

fornb_different itializations= 0:c

c
o
"8' Selection of best generalization ability for a given complexity
]
(7))
) end
u . .
‘53 Complexity selection
o

end

Figure 4.2: Neural network selection procedure({a,b}:{min, max} number of hidden neu-

rons; c: max number of initializations)

4.3.b-ii Assessment of the generalization ability of the models

The methodology described in the previous section relies on the assessment of the general-
ization ability of the models. The present section describes the assessment methods used
in the present study.

Leave-One-Out (LOO) (also termed Jackknife) is a procedure that provides an unbiased
estimation of the generalization error of a model [68]. It consists of withdrawing an example
from the available dataset, training a model from the N — 1 remaining examples, and
computing the prediction error on the left-out example. The procedure is iterated by
withdrawing each example in turn from the training set. The leave-one-out score is defined
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as :

1 X .
Eroo = N ;(yi - 7P, 0))? (4.6)

f74(P;, ) is the model obtained when example i is withdrawn from the training set. If
the number of examples N is large, this is a computationally expensive procedure, since
the number of models is equal to the number of examples. However, if the model is linear
with respect to its parameters, the exact value of the leave-one-out score is obtained by
training a model from all training examples (withdrawing none) and using the Predicted
REsidual Sum of Squares (PRESS) statistics [112] defined as:

yi — f(P,8)
;( - )2 (4.7)

where f(P;,€2) is the model trained from all examples and h;; is the i-th diagonal element
of the “hat matrix” H = X(XT X)) X7 where X is the observation matrix, i.e., the (N, p)
matrix whose general element x; ; is the measured value of variable j in example 7 and p
is the number of set of parameters, which equals (R+1)M + (M +1) (cf. figure 2.3). h;; is
termed the leverage of example ¢. If matrix X has full rank, H is the orthogonal projection
matrix onto the subspace defined by the columns of matrix X. As a result, the leverages
have the following properties: 0 < hy;; <1 ;V1¢ Zl 1 hii =

Therefore, the leverage of example i can be viewed as the proportion of the parameters
of the model that is devoted to fitting the model to example 1.

VLOO [113, 114] is a generalization of the PRESS statistic. It differs from the PRESS
statistic in two respects:

e [, is an approximation of the leave-one-out score Froo

e The leverages are the diagonal elements of H = Z(ZTZ)™1ZT, where Z is the Jaco-
bian matrix of the model.

Therefore, the model selection procedure is the following (figure 4.2): starting from a
linear model (zero hidden neuron), the number of hidden neurons is gradually increased.
For each number of hidden neurons, different models are trained with different initial values
of the parameters; the VLOO score of each model is computed, and the model with the
smallest VLOO score is selected. When, upon addition of a number of hidden neurons,
the VLOO score starts increasing significantly, the procedure is stopped and the number
of hidden neurons giving the minimum value of VLOO is retained.

It may happen, however, that the VLOO does not vary significantly around the min-
imum value, in a certain range of number of hidden neurons. If such is the case, an
additional selection criterion is taken into account. As mentioned above, the leverage of
example ¢ represents the proportion of the parameters of the model that is devoted to
fitting the model to example i. Therefore, a model that has one or more examples with
leverages close to 1 is certainly very dependent on the specific measurement errors on these
examples; thus, it will generalize poorly. On the contrary, a model whose leverages are
close to their mean value p/N will be influenced equally by all the examples, hence will
have a good generalization capacity. Therefore, as a final selection criterion, the quantity
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W= % Zi’L \ /%hn’ is computed. g is always smaller than 1, and it is equal to 1 if and only
if all leverages are equal to p/N. Among the models with similar VLOO scores, if any, the
model with the highest value of p is favored.

4.4 Numerical illustration

4.4.a Framework

In this section, we illustrate the design procedure of section 4.3 by applications to power
consumption prediction on the MV /LV substations. We compare in the end of the section
the performance of the NN based model to the time series method presented in chapter 3.
We also explain the limitations of the time series method on the industrial case, which NN
based model can properly handle.

The data set used to test and validate our methodology is the measurements collected
from the French distribution network. Each measurement represents an MV /LV substation
load sampled every 30 minutes during the period from 09 Sept., 2009 to 02 March, 2011
(540 days). This period is longer than the period used in chapter 3 for the time series
method study, since new data are collected as time goes by 3. The period is divided into
two parts: a training set and a test set. All reliable statistical predictions are made on
the basis of a data set that samples appropriately the space of variables of the model,;
therefore, the training set must contain at least one whole period in order to guarantee a
good performance on the test set. We assume that the consumption scenario has a one-year
cycle: therefore, at least one year of data is assigned to the training set. The rest of the
data set is the test set, on which the MAE and the MAPE are computed as performance
indicators in the same way that for time series in the previous chapter. Since temperature
is known to be an influential variable, temperature data and normal temperature data
(i.e., average temperature of the same moment during the past 30 years) are also provided
on a one-hour basis. The objective is to forecast the loads 24h ahead (sampled every 30
minutes).

Two MV/LV substation load curves are chosen as the study examples. Substation
CE_MOU is a “mixed” substation with 61% domestic, 23% service sector and 16% in-
dustrial customers. The percentage indicates the total subscribed power supply in each
customer category. Substation CE_FRO is a substation dedicated to an industrial cus-
tomer. As a result, the electricity consumption of substation CE_MOU varies with the
temperature while the consumption of substation CE_FRO stays stable all along the year
[102].

For substation load modeling, we propose to split the power consumption into two
parts: the daily average power and the intraday power variation (figure 4.3). These two
parts are modeled independently for two reasons:

e We separate the temperature-dependent part (daily average power) from the part
mainly influenced by calendar information, thereby reducing the input complexity of
the neural networks.

®Between the design of the time series model and the design of the neural network model, new data are
collected and provided for the study.
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e For the intraday variation part, the same number of samples is observed in a smaller
scale, thereby providing a better accuracy.

The price to pay is the fact that the design procedure must be applied twice. In
addition, for the daily average power part, the amount of training data decreases to 1/48
(2%) of the original data size. This limits the acceptable model complexity.
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Figure 4.3: Separation of the load curve into the daily average power and the intraday
power variation

During training, the cost function is optimized by the Levenberg-Marquardt algorithm,
the gradient of the cost function being computed by backpropagation. These algorithms
are implemented in the Matlab neural network toolbox.

4.4.b Model design: an illustrative example

In this subsection the various steps of the model design procedure, described in section 4.3
are illustrated on the substation CE_MOU example.

4.4.b-i Variable selection example

As described in subsection 4.3.a, the set of candidate variables is the set of the primary
variables and of their pairwise cross-products. Let X;, (i = 1,---,1) be the primary variables:
the secondary variables are {X;X;}, (¢ # j,7,j = 1,---,1). Figure 4.4 illustrates the process
of generating the secondary and the probe variables.

In our case, three types of primary candidate variables are proposed: load variables,
temperature variables and calendar variables. The first two types are numerical variables,
while the calendar variables are categorical, but are transformed to numerical variables.

According to the cyclic behavior of the data described in subsection 2.2.a-iii, we have
chosen six load variables as the primary candidate variables: load at time ¢ — lday, t —
lday — 30Min, t — lweek, maximum load of the previous day, mean load of the previous



78 4. Neural network model

X, X X, X,)1(2 X, X; X,_IX{
1 1 1 1
X, 'xz Xy x1x2 x1x3 'xl—lxl
N N N N
X, X X, XX, XX, Xr1%1
[ Primary variables (/-1)l/2 secondary variables
[+(l-1)//2 candidate variables
[72]
< I
n © \VA
% S Probe variables
S —
. 1 1 1 1 1 X !
© g () X1 X1 Xy X 11X 5 X11Xg4 (D1 Xy
> o= , . . . . : :
2 - ; ) -
g = g X _)2‘ X _){,‘\l X X N
oE= © N N N 11X 54 1173 (I-1)1 Xy,
= H_:i > x11 x21 xl‘l
Oco
» T
S >o : : :
L ET : .- : . :
5SS S
O8O
5 /X, X, 1 1 X 1)nX)
> E_GC) x1np 2n, lnp x1nx2n 1npx3n (l—])np lnp
Q>H ' ' P P , . ,
S22 < : ; .
= ' N N
I % x1np xznp xlnp 1ng2n, 1nz3n, )C(l'l)'“pxln':l
S— S —
+ © —
- C
()
o

Figure 4.4: Generation of secondary variables and probe variables. Random vector
{:c}j, ,:cg},z =1,--,1,j =1, n, is generated by randomly shuffling the candidate vari-
able {z}, - 2V}

%

day, and power consumption measured on the previous day at 11 : 30pm (last sample
collected before the forecast, assuming that the prediction for the next 24h is carried out
at Oam).

Temperatures as well as normal temperatures are included in the set of primary can-
didate variables. In fact, because of the thermal inertia of the buildings, the response of
the load demand to a temperature change may have a time constant that is much larger
than the sampling period. Therefore, the average temperature over a sliding window of m
hours was considered as an additional primary candidate variable [26]:

m~—1
Tin(t) = ZO T(t-7) (4.8)

1
m ¢
As stated above, the temperature is sampled every hour; therefore, in order to provide
data every 30 minutes, both constant and linear interpolations were used. As a result,
fourteen temperature variables are included: temperature at time ¢, t — lday, past 3,6, 24-
hour average temperatures (7,,, m = 3,6,24), normal temperature at time ¢, maximum
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and minimum temperatures of the previous day. Sequences of the first six variables are
provided both with constant and linear interpolations, thereby yielding fourteen candidate
variables.
As usual, the variables are centered and normalized, in order to avoid the problems due
to the fact that different variables may have very different magnitudes:
, T-T

x = (4.9)

Oz

where T and o, are the mean and the standard deviation of .

The calendar variables contain cyclic variables and day type variables. The cyclic
variables are designed in order to facilitate capturing cycles [106, 115]. The dominant
frequencies of the load data have been determined with spectrum analysis [102]. Half-day,
day, week, and year have been identified to be the dominant periods. A pair of variables
is represented for every frequency [106]:

c1(t) = sin (27t/T)
co(t) = cos (2mt/T) (4.10)

where t is the time index of the measurement sampled every 30 min: it ranges from 1 to
17 520 for one year; T is the cycle period (17 520 for a year cycle, 336 for a week cycle, 48
for a day cycle, and 24 for a half-day cycle).

Working days and non-working days (weekends and national holidays) are also discrim-
inated and represented by 1 and 0 in the day type variable.

As the daily average power model has one sample per day and the intraday power
variation model has forty eight samples per day, their primary candidate variables are
different. We suggested different candidate variables for the average power and the intraday
power variation NNs: for the daily average power model, all the load variables and the
temperature variables are averaged over 24 hours (g Y8, 2/(t)). By contrast, for the
intraday power variation model, we have taken the previously presented candidate variables
2'(t), and the “daily average removed” candidate variables such that: z'(¢) - % Y8, 2/ (t).

For the variable selection, ten realizations of the probe variable are generated from
each primary and secondary candidate variable (cf. figure 4.4). In our case, for the average
power model, 24 primary variables are designed. In consequences, 276 (24x23/2) secondary
varaibles and 3300 ((24 + 276) x 10) realizations of the probe variable are built. For the
intraday power variation model, 43 primary variables, 903 (43 x 42/2) secondary variables
and 9460 ((43+903) x 10) realizations of the probe variable are generated. Figure 4.5 shows
the cumulative probability for a probe variable to have a better rank than a candidate
variable for the daily average power model. We observe in the zoom window that from the
10th rank onward, the risk of retaining a variable although it is not relevant is larger than
1/n,. More specifically, it signifies that in the orthogonal forward ranking, a probe variable
is classed on the 10th position. In this example, 5 primary variables and 4 secondary
variables are selected as the result of the ranking process. As explained, only the primary
variables are used as the variables in the NN model. Therefore, the set of selected variables
is the set of primary variables selected as such, and the set of primary variables that appear
in the secondary variables, without duplication. Table 4.1 shows the selected variables with
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Figure 4.5: Cumulative probability for a probe variable to have a better rank than a
candidate variable.

Table 4.1: 9 variables for the average power model. “mean” indicates that the candidate
variables are averaged over 24 hours (48 values). “ci” indicates that the temperature vari-
able has been constantly interpolated and “li” indicates the linear interpolation operation.
hist T stands for historical temperature variables.

Category Variable

1. Prnean(t-1day)
Load variables 2. Pirean(t-1day-30Min)

3. Prnean(23:30pm)

4. histean  T(t)

5. TlnileanGh (t)

6. Tinean(max)

Temperature variables

7. Tmean(min)

8. sin(27t/7)
Cycle variables

9. cos(27t/365)

a risk smaller than pgyerage = 1/3300 for the daily average model. In the later of the chapter,
we'll see that because of the random shuffling effect in creating the probe variables, the
outcome of the ranking result could be different (i.e., different numbers of variables are
selected, taken a same risk). For the intraday power variation model, over 30 variables are
selected with a risk smaller than pinsradey = 1/9460. Here, for clarity, we only show the top
nineteen variables in the ranked list in table 4.2. In subsection 4.4.c, forecast performances
with different risks in both models are shown and discussed.
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Table 4.2: 19 variables for intraday power variation model. Pygriation and Tyariation are
daily average removed load and temperature variables.

Category Variable

P(t-1day)
P(t-1day-30Min)
Pmax (t'lda'Y)
Pmean (t'lda'Y)
Pvariation (t' lda'Y)
P

P

Load variables

variation (t' 1day—30min)
variation (t‘ 1W€ek)

hist _ T¢(t)

Tg), (t)

. T (t-1day)

- hist — Tg)lqriation (t)

: hlSt — ch)zczriation (t)

' TlBZh_variation (t)

. Tglh variation (t)

. cos(2mt/336)

. sin(27t/48)

. sin(27t/24)

. cos(2mt/24)

. sin(27t/17520)
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4.4.b-ii Selecting the best model for a given complexity

As explained in subsection 4.3.b-i, model selection requires finding the optimal model for
a given complexity. For a given number of hidden neurons, ten models are trained, the
models with rank-deficient Jacobian matrix are discarded, and the models with the smallest
VLOO score are stored in memory.

Figure 4.6 illustrates the model selection result on the intraday variation power model.
The MAE is computed on the test set. For a given number of hidden neurons, all trained
models are applied to the test data, and their MAE is computed. Figure 4.6 shows the
maximum, minimum and average values of the MAE, together with the MAE obtained by
the model selected by model selection. With the proposed model selection strategy, the
performance of the selected model follows well that of the minimum error model for all
numbers of hidden neurons. Thus, the VLOO score and the rank of the Jacobian matrix
are good criteria for assessing the generalization ability of models of a given complexity.

4.4.b-iii Complexity selection example

In subsection 4.4.b-ii, we showed how model selection was performed among models having
the same complexity (corresponding to local minima of the cost function). In the present
subsection, we show how to select the model that generalizes best, among the models
selected in the previous section. As explained in subsection 4.3.b-ii, for models whose
VLOO scores are roughly equal, models with the most peaked leverage distribution (values
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Figure 4.6: Model selection for the intraday power variation model

of 1 closest to 1) should be favored. We describe the heuristic that was used to that end.
Two different strategies are applied to the daily average power model and to the intraday

power variation model.
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Figure 4.7: Neural network complexity selection strategies with VLOO score and leverage

distribution

The daily average power model has a limited number of examples in the training set
and very relevant input variables as temperatures, etc. Therefore, low complexity models
must be favored. The following heuristic is used. Assume that a model with r hidden
neurons has the smallest VLOO score E,y with a leverage distribution of parameter pp.

The most parsimonious model that satisfies the three conditions:
e Number of hidden neurons < r

® [y < Ep < EpO + 06(MCLIL’(Ep) - EpO)
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® (1> L, is selected

In the example shown in figure 4.7, a neural network with 10 hidden neurons had the
smallest VLOO score; a model with 6 hidden neurons had @ > pp and its VLOO score was
in the prescribed range. Therefore, it was considered that a network with 6 hidden neurons
had the appropriate complexity for the prediction of the daily average power, given the
available data.

By contrast, intraday power variation model, has a large training set so that one can
afford a larger complexity. In this heuristic, the optimal model satisfies three conditions:

e Number of hidden neurons < r
e o< E, SEp0+0.2(MCLIL’(Ep)—Ep0)
e The model that has the maximum g is selected

In the example shown in figure 4.7, the model with 7 hidden neurons had the maximum
i in the prescribed range. Therefore, it was considered that a network with 7 hidden
neurons had the appropriate complexity for the prediction of the intraday power variation
(figure 4.6), given the available data. That the neural network with 7 hidden neurons gives
one of the best performances among all the structures confirms the heuristic choice of the
0.2 threshold.

4.4.c Results

In this subsection, the final results, obtained by adding the prediction results of the daily
average power model and the intraday power variation model, are presented and discussed.
The MAPE and the MAE are chosen as the performance indicators. The results are
compared with the naive model [102] as well as the time series model presented in chapter
3 [102]. The naive model replaces the daily prediction results by the most similar historical
day’s real consumption data. The similar historical day is often selected as the last day or
the same day of the last week. Time series model is a regression model that combines a
dummy variable integrated indicating day types, temperature-time dependent trend model
and a Fourier component periodic model. The test period is from September 16, 2010 to
March 01, 2011 (167 days). Table 4.3 shows the results.

The number of variables is varied both for the daily average power model and for the
intraday power variation model. It is unnecessary to use too many hidden neurons for
simple structure (low number of variables). As in such conditions, for most of the time,
a model with a rank deficient Jacobian matrix is obtained. The selected complexity for
every applied model is indicated after colon (table 4.3). In fact, since the daily average
power model has a much larger mean value than the intraday power variation model, its
performance has a much more important impact on the final result. Therefore, we focused
mainly on the daily average power model.

In table 4.3, 5 different cases are presented. For the first case, with a risk smaller than
p =1/n,, 6 variables are selected for the daily average power model, and 40 variables for the
intraday power variation model. Allowing a 5% and a 10% risks of keeping an irrelevant
variable, 10 variables are selected for the daily average power model in both the second and
third cases. While with a risk smaller than pj,tredey for the intraday variation model, for
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Table 4.3: Substation CE_MOU, forecasting results: comparison among the naive model,
time series model and NN models. “Hn”: Hidden neuron(s). “NNa”: Neural Network for
average power, and “NNi”: Neural Network for power variation. “Var”: Variable(s).

Naive | Time NNa: 6 | NNa: NNa: NNa: NNa: 6
model | series | Var, 1|10 Var,| 10 Var, |24 Var, | Var, 1
model | Hn +|/1Hn + {1 Hn + |2 Hn + | Hn —+
NNi: 40 | NNi: 37 | NNi: 37 | NNi: 32 | NNi: 19
Var 6 | Var 4 | Var 5 | Var 7 | Var 9

Hn Hn Hn Hn Hn
MAE | 4.80 4.16 3.62 3.58 3.53 3.68 3.68
(kW)
MAPE| 12.9 11.0 10.2 10.2 10.1 10.3 10.5
(%)

both trials, 37 variables are selected. In the fourth case, a 50% risk is taken for the daily
average power model and a risk smaller than p;niredey for the intraday variation model.
In the fifth case, we keep a risk smaller than pgyerqge for the daily average power model
but a limited number of variables for the intraday variation model, less than the number
allowed with a risk smaller than p;nraday taking. Two conclusions can be drawn: first, in
all cases, our model design methodology yields more accurate predictions than the time
series model and the naive model. Second, our proposed neural network model design is a
robust methodology. With the various risks taken, the precisions stay steady.

We have explained in chapter 3 that the time series method cannot be applied efficiently
to the single industrial client’s case. In order to show the great capacity of neural networks
in dealing with all types of substations, we also chose the industrial substation CE_FRO as
an illustrative example. Table 4.4 shows the result on substation CE_FRQO. The number
of variables for the daily average power model and the intraday power variation model
are both defined by a risk smaller than p. For such an industrial substation, the time
series method [102] is unable to extract further information other than the day type and
the main periods. More information is needed by the time series method to provide a
better result than the naive model. By contrast, the neural network models providing a
non linear input-output mapping yields 4.7% improvement compared to the naive model.
We are planning to adapt this neural network model design approach on reactive power
forecasts as well.

Table 4.4: Substation CE_FRO, forecasting results: comparison between the naive model
and the neural network model. “Hn” stands for “Hidden neuron(s)”.

Naive model 14 variables average
model(1Hn)+28 variables
variation model (10Hn)

MAE (kW) 99.49 75.07
MAPE (%) 20.2 15.5
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4.5 Overall comparison with the time series model

In this section, we aim at comparing the neural network method with the time series method
for the short-term load forecast. Six aspects are compared and results are summarized in
table 4.5.

Table 4.5: Summary of comparison aspects between neural network models and time series
models for the short-term load forecasting application. © indicates the model that has the
better attribute.

Neural network model ‘ Time series model

Precision ©
Ease of interpretation ©
Computational complexity ©
Learning data quantity ©
Update frequency ©
Adaptability ©

e Precision

Results on CE__MOU and CE_FRO substations are detailed in appendix D. In
general, the neural network models have a better precision compared to the time
series models and to the naive models.

¢ Ease of interpretation

Both the neural network models and the time series models are divided into two
parts. One part representing the slow variations due to the exogenous factors, such
as the temperature, often indicates the consumption level. The other part, on the
other hand, involving the rapid variations, refines the final results.

Being a parametric model, the time series method is easy to interpret. The relation-
ship between power and other influence factors can be easily deduced. Following a
black-box fashion, the neural network model, on the other hand, is difficult to draw
an explicit equation between power and other influence factors [99].

e Computational complexity

Both methods have two periods to output the forecasting results: the learning period
and the test period. The learning period for the time series method aims at defining
the values of several important variables, such as, the main periods, and the width of
the sliding window. While during the test period, with the sliding window strategy,
the time series model adapts the values of its parameters iteratively.

Whereas, the neural network model, during the learning period, calibrates its param-
eters and, at the same time, selects the optimal model and the variables regarding
the learning set. It’s a very long process [99]. Independently, for the daily average
and the intraday variation power models, the process is performed twice.
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e Learning data quantity

For the time series model, the learning data quantity is determined during the learn-
ing period. It is often of the size of one week to some weeks. The neural network,
requiring an entire period as the learning set, needs to have one year as the learning
set to perform correctly.

e Update frequency

Update leads to the changes in the model’s structure or parameters. For the time
series model, the structure is fixed, but the parameters are re-estimated during each
forecasting period, i.e., each day.

One-year data are set to train the neural networks. Compared to the time series model
results, the precision of the neural network forecasting results begins to decrease from
May, 8 months after the model training. An appropriate update frequency needs to
be chosen for the neural network models. Tables in appendix D show the detailed
results of two substations on each month of the forecasting period.

e Adaptability

Having a great adaptability refers to that the model is capable of being easily applied
to other similar situations. Time series models, due to their invariant structure,
can only extract the simple day type, the temperature, and the principal periods.
The model cannot deal with the industrial substations because these substations are
independent to the temperature variations and the most important period, the week
pattern, has already been exploited by the naive model. Thus, the performance of
the time series model can hardly compete with that of the naive model.

Known for its great learning ability, the neural network model can handle all kinds
of load forecasts. It can adapt its structure to the learning set by the variable
and the structure selections. Therefore, it behaves better than the naive model in
the industrial substation’s case (appendix D). It is also a promising solution to the
reactive power forecasts.

4.6 Conclusion and perspective

We present a new approach to the forecast of MV /LV substation loads by neural networks.
By using separate predictive models for the daily average power and the intraday power
variation, and by focusing on the methodology of model design, with principled statistical
methods for variable and model selection, we improved the prediction accuracy with respect
to those of the naive model and the time series model presented in chapter 3 [102], for an
extensive database of actual measurements. In the end of the chapter, a comparison in
various aspects is made between the time series and neural network methods.

The future work will focus on the update frequency of the neural network models. An
adaptation of the method to the prediction of the reactive power can be envisaged.

In Part A, we have tackled the STLF for operation need in distribution networks
respectively with two models based on the time series and the neural networks. Next,
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in Part B, we are presenting the second objective of the dissertation, namely the design of
load estimation models for the planning need in distribution networks.






Part B

Load estimation models for
distribution network planning






Chapter 5

Load research projects in distribution networks:

state of the art

CONTENTS

5.1 DECISION MAKING IN DISTRIBUTION NETWORK PLANNING . ......... 92
5.1.a Coincident load . . . . . . . .. ... L 93
5.1.b  Typical Load Profile (TLP) . .. ... ... ... ... ... . ........ 95

5.2 LOAD RESEARCH PROJECTS IN DIFFERENT COUNTRIES . . ... ........ 96
5.2.a Finland DSO model . . . . . . . ... ... .. 97

5.2.b  Denmark Dong Energy . . . . . . ... ... .. 98

5.2.c  Norway SINTEF Energy Research . . .. ... ... .. ... . ..., 99
5.2.d Taipower system . . . . . . . .. ... e e e e 99

5.3 FRENCH LOAD RESEARCH PROJECT . . . . ...ttt 100
5.3.a Data description . . . . . . . ... L 102
5.3.b EDF BAGHEERA model . ... ... ... ... ... ... ..., 103
5.3.b-i TMB temperature and basic model . . ... ... ......... 104

5.3.b-ii  Common coefficient estimation . . . ... ... ... ... ... .. 105

5.3.b-iii  Specific parameter estimation . . . . ... ... ... ... ..... 105

5.3.b-iv  Illustrative example and model’s output . .. ... ... ... .. 107

5.4 CONCLUSION . . . 0ttt e e e e e e e e e e e e e e e e 111

Abstract

Network planning plays an important role in electricity distribution systems in both
of economical and technical terms. It impacts the most important decisions in the in-
vestment as well as the quality of the electricity supply. The accurate load estimation
model is the main key to reduce the network planning uncertainty so as to make the
best strategy among various design alternatives. With the development of smart me-
ters, in part B, we aim to build accurate power estimation models in order to improve
the efficiency of the network planning. This chapter serves as a brief introduction in
the part B. The chapter first talks about the decision making procedure and problems
of measurement scarcity. Solutions adopted by most of DSOs, such as integrating TLP
recognition and aggregation method using coincidence factor, are introduced. Secondly,
the chapter presents the load research projects in four countries: Finland, Denmark,
Norway and Taiwan. At the end, French load research project is presented in de-
tails. The load estimation model BAGHEERA is carefully scrutinized. For the sake
of demonstration, survey client’s data are borrowed as the illustrative examples to the
method. Advantages and drawbacks of the model are also commented.
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The design of an electrical network is a vital but a hard task presented in front of
the planners. On the one hand, it defines where the most important investment in the
energy sector goes, as well as the quality of the electricity supply to the end-users in
the following future years. On the other hand, there are so many uncertain factors in the
current distribution system, which makes it a dynamic changing system hard to take under
control. These factors mainly include power consumptions, and distributed generations.
Therefore, the essential core of the task is to reduce the uncertain factors and provide
accurate information so as to make the best strategy among various design alternatives.

With the development of smart grid and the widely opening electricity market, great
changes are taking place in the electrical networks. This brings new producers, services,
thus introducing new flexible relationships among consumers, regulators, and operators.
The smart meter enables collecting accurate “real time” information about individual
client’s power consumption. These information can draw a detailed energy behavior pro-
file that interests both customers and planners. For customers, the profile can help them
to reduce electricity bills by adjusting their behaviors and by choosing the best supply
agreement. For planners, they can postpone the expansion of their network by minimizing
the margin between the peak demands and the network’s capacity and invest money more
wisely. The arrival of the smart meter enables building reliable load estimation models,
which solve the above problems.

In this chapter, we argue the importance of load estimation models for decision making
in distribution network planning and show the state of the art for some models applied
in different countries. Section 5.1 firstly presents the dilemma encountered in the decision
making: on the one hand, the load information is in need for the technical analysis in order
to work out solutions for network reinforcement. On the other hand, till occurrence of the
smart meter, that only a limited number of survey clients’ consumption data are collected
raises difficulties in the design of the load models. A common way to solve the problem
is also introduced in section 5.1 by construction TLPs, which represent the homogeneous
clients’ load patterns and aggregate the TLPs with coincident factors in an upper lever.
The coincident factors reflect the fact that not all the individual peak occur at the same
time. Load research projects are stated in section 5.2 and specificities of every model are
commented. At last, French load research project is thoroughly presented in section 5.3.
The BAGHEERA model in consistency with the general solution idea is detailed and shown
with illustrative examples.

5.1 Decision making in distribution network planning

The distribution network planning is applied to give a vision of the optimal network in
the future so as to help decision makers making investment decisions such as the feeder’s
and transformer’s capacity, size, and location of substations. The decisions are mainly
based on the technical and economical analysis. Figure 5.1 describes the three steps of
the decision making procedure in the network planning. In the technical analysis, the load
estimations, the topology of the existing network as well as the network data (transformers,
transmission lines) are taken into consideration. Next, the economic analysis integrating
the component’s prices, the line losses and the maintenance costs evaluates the cost of
each solution proposed by the former step. At last, based on these results and the network
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yearly budgets, the plans for investment are made.

Load
Technical analysis [“€——— Topology
[ Network data
¢So|utions

Component's prices
Economical analysis [«&———— Line losses
Maintenance costs

lCost of solutions

Evaluations < Yearly budget

y

Final decisions

Figure 5.1: Network decision making procedure

As a matter of fact, the technical analysis can be considered as an optimization problem
of the losses in the network in maintaining the voltage at each node of the network in an
authorized range. In France, the accessible voltage is defined as +10% of the nominal
voltage value. The client, whose connection node is outside this scale, is regarded as poorly
supplied client. To define the voltage at the connection node, the losses and the voltage
calculation need to be carried out. A part from the formerly mentioned information,
these calculations require other factors, i.e., the unbalance coefficient, the capability of
new producers and consumers, to name a few. In this chapter, we focus on the techniques
providing load estimation models to these technical calculations for network planning.

Till the occurrence of the smart meters, the only available measurements in the dis-
tribution systems are active and reactive power, voltage and current level of the HV/MV
substations as well as several energy consumption readings per year of each customer for
billing’s use. The consumption of a MV /LV substation is estimated by the proportion
of the maximum values between MV /LV substation and its head HV/MV substation. In
order to estimate load models on a lower hierarchy for the planning’s sake, most of the
electricity companies also collect some survey data on a regular basis, i.e., 10 minute, 15
minute, half hourly or hourly, on a limited number of clients.

A common practice applied by most of the electricity companies is to form TLP that rep-
resents approximately an individual client’s consumption and then aggregate these roughly
estimated consumptions to an upper voltage level. For the ease of presentation, the plan-
ning method is organized into two steps and presented in an up-down aggregation direction.
Firstly, we talk about the coincidence effect of clients so as to deduce the MV /LV sub-
station’s capacity. Secondly, attention is focused on the various classification methods in
finding T'LPs that represent the homogeneous clients’ groups.

5.1.a Coincident load

The coincident load reveals the variety in the clients’ load behaviors. It describes the
fact that the peak demand of each client does not occur simultaneously. As a matter
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of fact, because of their different housing appliances, as well as their different life styles,
household load patterns are rarely the same. Moreover, industrial, commercial clients’ load
curves are different from that of residential clients. The industrial load depends mainly
on the production schedule, and their load curve is often flat during a day because of the
continuous manufacturing activity. The commercial clients are more influenced by the hour
and the peak demand usually appears during business hours. The residential peak demand
often happens in the evening time [116]. Therefore, if a substation provides energy supply
to different categories and large number of clients, there is a coincident effect that the
peak demand of the substation’s load is inferior to the sum of all peak demands of clients
connected.

In terms of equation, the coincident effect is expressed by a proportion named as “coin-
cident factor” (also known as “reduction factor”). It divides the observed maximum power
of the HV/MYV substation by the sum of all the estimated maximum power of MV /LV sub-
stations connected. The capacity of every connected substation is adjusted by the product
of the coincident factor and the estimated maximum power. Thus, in example of figure
5.2, the coincidence factor= 300+1500+f888+200+2000 = 0.8. The adjusted estimated value for
the peak demand of MV /LVs are: 300 -0.8 =240 kW, 1500 - 0.8 = 1200 kW, etc.

HV/MV substation
Pmax=4000 kW

MV/LV

‘@ substation

Pmax 359 4500 1000 200 2000
(kW)

Figure 5.2: Example of coincidence factor calculation

In [9], J. Dickert et al. have summarized several variants of the coincident factors
that exist in the literature by taking influence of variety of customers as well as degree of
aggregation (number of customers) into account.

The estimated power of the MV /LV substations are calculated by aggregating individ-
ual load patterns. If there’s no correlation among clients’ consumptions, the mean power
of the substation P,,(t) equals to the sum of all clients’ load curves P;(t),i = 1,---,n and
its standard deviation o, equals to the sum square of all clients’ standard deviations
UZ',Z‘:L---,TL [ y y ]:

Pag(t) = Pi(t) + Po(t) + -+ Py(t)
Tag(t) = Vo1 ()2 + a2 (t)2 + - + 0, (1)2 (5.1)

An excess probability [117] representing the probability of the defined limit being exceeded

is integrated into the estimation of maximum power [117, 11, |:
Py(t) = Pag(t) + 2poag(t) (5.2)

where z, is the standard normal deviate corresponding to the excess probability p.
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Otherwise, the mean and standard deviation of substation’s load are directly modeled.
V. Neimane presented a probabilistic load modeling on the substation level in her Ph.D
dissertation [117] which separates the three year’s 110 kV and 33 kV substations data into
three seasonal modes (winter, spring and autumn, and summer) and two day type modes
(working day and weekend), resulting in six modes. The central moments are calculated
in order to affect each mode into an appropriate distribution according to Pearson’s chart.

5.1.b Typical Load Profile (TLP)

Typical Load Profile (TLP) refers to a daily load curve pattern that represents the load
behavior of a group of coherent clients. As a matter of fact, all clients are not metered
on a regular time interval basis due to the expenses, and load measurements are only
collected on a limited number of clients as survey data. Because of the scarcity of the
individual regular sampling load measurements, the only way that each customer can have
a representative daily load pattern is to use classification methods. These classification
methods assign every non survey client to a TLP group predetermined by the survey data
at an early stage. According to the TLP of his group, a client’s annual energy consumption
can be disaggregated into time interval segments, i.e., hourly, half-hourly, quarter hourly
and into day types, i.e., working day, weekend, public holiday. These individualized profiles
will then participate to the network calculations.

The classification must follow the practical criteria such as [119]: each customer is
affected to one unique class. In condition that the number of the classes is reasonable (not
too much), the variance within each class must be as small as possible. Each class should
be representative.

[120] explains the process from load survey data to the TLP (also called Class Repre-
sentative Load Pattern (CRLP) in this article). The survey load data is first normalized
with respect to a reference value in order to form the Representative Load Pattern (RLP).
This later represents the pattern of the survey client and assumes the maximum power
as the reference value. Thus, the RLP ranges in the [0,1] scale. The effectiveness of the
classification methods such as hierarchical clustering, K-means, Fuzzy C-Means (FCM),
modified follow-the-leader and SOMs are compared while assigning the RLP into different
client’s classes. As a result, the modified follow-the-leader and the hierarchical clustering
outperform other clustering techniques. Then, the CRLP is computed as a weighted aver-
age of the original survey data of the clients affected in the group. The weights are defined
by the reference values (the maximum power values of the survey client).

G. Chicco et al. [121] summarized the procedure of obtaining TLPs (referred as class
representative load diagrams in the article) for electricity tariff structure. The procedure
begins by collecting the sampling data, through bad data detection, and ends with cluster-
ing feature selection and clustering techniques. The clustering techniques are grouped into
two systems: time domain approaches and frequency domain approaches. The clustering
performance is indicated by the adequacy indicators.

Various classification methods exist. According to D. Gerbec et al. [122], methods of
estimating TLP are derived into two systems: one is by predefining consumer’s groups from
the load survey information. The other one is by using the pattern recognition of the load
curves. The first category is mainly based on the qualitative information to stratify clients,
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whereas the second category depends mainly on the sampled data for the classification and
the adjustment automatically according to the new data are often allowed. It is worth
mentioning that end-use method can also be served for the TLP characterizing [123, 9].
Nevertheless, the end-use method requires extensive information about end-use appliances
and end-users. Considering the great difficulty getting these information, this method is
beyond scope in this chapter. For further information, readers can reference to subsection
2.1.b-i.

In the first system, customers are classed in different groups according to their specific
characteristics, such as the subscribed power in the supply agreement, the electricity usage
(customer’s activity) [118], monthly consumption [I18], to name a few. Each class has
its TLP presented by different statistically calculated coefficients. Load curves are often
considered following the Gaussian distribution that is simply represented by its mean and
variance [118]. A given client’s daily load profile can be obtained by scaling the average
unit pattern of the group to its annual energy consumption. The results showed that the
aggregated mean and standard deviation estimation of the power on the transformer level
are close to the actual measurements [118]. Later in this section, we will present in details
the actual load estimation method BAGHERRA applied by the French electricity company
EDF, which belongs to this category of methods.

In the second system, numerous algorithms of clustering appear in recent years with
the development of smart meters. These later provide detailed indexed consumption of
individual client and enable the pattern recognition methods for clustering.

D. Gerbec et al. [122] proposed a clustering method integrating wavelet method for
denoising, FCM method for creating the clusters from the client’s survey data and Prob-
ability Neural Network (PNN) for attributing business code to the clusters deduced by
the former FCM method. Finally, the cluster formed by PNN conducted the sub-TLPs
representing several business codes attributing to the same cluster.

T. Zhang et al. [124] have proposed a stability index and priority index for choosing
the most suitable clustering algorithms as well as the optimal number of clusters among
K-means, fuzzy c-means and the SOM.

A. Mutanen et al. [11] proposed a customer pattern recognition classification method
named Iterative Self-Organizing DATA-analysis technique algorithm (ISODATA). With
at least 80% of the Automatic Meter Reading (AMR) covering by the end of 2013 in
Finland, they suggested an iterative process to reclassify and update the customer classes.
The clustering is based on the weighted Euclidean distance on temperature dependency
parameters and three-month actual load data. The algorithm includes a variant of the
K-mean procedure, a splitting and a merging procedure. The efficiency of the proposed
clustering algorithm and adopting pattern vector instead of direct measurements are argued
in the end of [11].

5.2 Load research projects in different countries

The load research converts customer’s annual energy consumption into hourly load values
through load models or patterns. In this section, we present the load research in four
different countries: Finland, Denmark, Norway, and Taiwan. In Scandinavian countries,
for example, the most usual method to estimate the annual peak of a client’s load is the
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“Velander’s formula”. The method is based on the correlation between the yearly energy
consumption (kWh) E,, and the maximum power (kW) Py,q4z, such as [117, 9]:

Praz = K1 Eyy + Ko\/E,, (5.3)

where K7 and Ky are two coefficients depending on the category of the client.

The “Velander’s formula” (equation 5.3) is a very approximative estimation model that
transforms energy consumption to maximum power with correspondent coefficients. It
assumes that the connected clients are homogeneous, more specifically, have the similar
behavior. Next, it simply sums up the maximum power of each client as the maximum
power for the substation. Thus, the more the clients’ behaviors are homogeneous, the more
accuracy this method will get. As a result, it is only applicable to big scale systems (at
least medium voltage network) and this method often overestimates the maximum power.

The TLPs are often obtained on a national wide range, which signifies that they may
not adapt to the local circumstances. Thus, local DSO sometimes create new load models
based on TLPs in a Distribution Load Estimation (DLE) process.

Load research

Customer qualitative information
(Yearly energy, billing information,
subscribed power, customer activity, etc.)

n Customer survey data
(Regular time step)

Distribution Load Estimation (DLE)

Local distribution network
Load measurements (SCADA)

Customer regular time step =
load power

Corrected customer regular time step load power

Figure 5.3: Distribution Load Estimation (DLE) process. Regular time step refers to
hourly, half-hourly or quarter-hourly load power.

The load measurements in the DLE process are often referred to the current and active
power metering at the primary substations [119]. Weighted Least Squares Estimation
(WLSE) method is widely applied for the new customer class load estimations [119] in
the DLE process. Errors are shared among models and measurements depending on their
variances.

5.2.a Finland DSO model

The load research program in Finland started in 1983 [119]. The load power of over 1000
customers is hourly recorded as survey data. The annual energy consumption is used as
criteria to class non survey customers into 46 groups. The output of the model can give
the load power of any client at any hour of the year. In the actually used model by Finnish
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DSOs, the individual client’s hourly load P(¢) and the standard deviation o(¢) are modeled
as a linear function of the annual energy consumption E,,. in two ways: topography and
index series, such that [11]:

Topography : P(t) = Ltopo(t)Eyr/Ebase
U(t) = StOpO(t)EyT/Ebase (54)
where Liopo(t),{t = 1,---,8760} and Siopo(t), {t = 1,---,8760} are respectively the coeffi-

cients of the expectation value and the standard deviation, depending on the geographic
information for a base energy consumption Ejp,se of 10 MWh /yr.

Eyr Q) q(t)
8760 100 100

_ s%(t)
o(t) = P() i (5.5)

where Q(t) is a two-week index of seasonal variation, ¢(t) is an hourly power variation for

Index series: P(t) =

three day types (working day, Saturday, and Sunday). Thus the overall power expectation
of a year is modeled by 26 Q(t) values and 1872 (=26 x 3 x 24) ¢(t) values. The standard
variation of a client’s load is proportional to the average load by the percentage index
So(t).

Both forms give the power expectation values and standard deviations for each hour of
the year. They take special holidays into account, but in different manners. For topography
model, they’re independently defined, whereas in the index series, the eves and special
holidays are respectively mixed with Saturday and Sunday indexes.

The temperature dependent part is the product of the individual client’s hourly load
P(t), the difference between the average temperature of the previous day Ty, and normal
temperature hist T(t) (long-term historical temperature at a given time on a given day
of the year), and a seasonal temperature-dependency parameter «:

AP(t) = aToye - hist_T(t))P(t) (5.6)

In Finland, with the widespread of the smart meter implementation, the ancient cus-
tomer classification based on their qualitative information becomes out of date. Methods of
classification based on the accurate measurements collected by AMR systems are popular
[11].

5.2.b Denmark Dong Energy

In 2008, Dong Energy, the Denmark leading company teamed with IBM and proposed a
“SmartPIT” solution for distribution network planning [125]. Two stages are included in
the solution. First, the energy sale of each category is converted to peak loads. Number
of categories is increased to 27 from the traditional 6 categories. Velander’s formula is
adopted but the K; and Ky parameters are independently calculated for each category
and updated regularly. Second, the peak load is modeled by 22 different season patterns
according to the category into hourly consumption estimations. The estimated load values
on a MV feeder compared to the real measurement on 5 weeks from 7th December 2007 to
14th January 2008 gave an MAPE of 9%. It is reported that the business unit estimated
to have a reduction in the network reinforcement of 80% with SmartPIT.
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5.2.c Norway SINTEF Energy Research

SINTEF Energy Research has developed a program named “USELOAD” based on sta-
tistical analysis. Fach end user ¢ is modeled with a normal distribution, whose PDF is
[126]:

1 7;(1:’1'(1)—#1',1 )

———e 2 it 5.7
05tV 2m (5.7)

where P;(t) is the load of client  at time ¢. y;; and o;; are independently the mean value

p(P;(t)) =

and the standard deviation of client i’s load at time ¢. Thus, the peak demand of client i,
P nar with a given excess probability is [126]:

Pi,maa: = Wi r t kUi,T (58)

where k corresponds to the standard normal cumulative function value for a given excess
probability. 7 is the expected moment when the peak demand occurs.

Let p1,i and pg; . be the expected loads at time 7' for category 1 and category 2,
ny category 1 clients’ and no category 2 clients’ aggregated load Py (7") follows a normal
distribution such that:

N(NE,T” O'E,T’) (5-9)

where the expected value py, -7 = Z?:ll M7 +Z?:21 2,7 and the standard deviation oy, ;- =

\/Z?:l Z?:l pijr0i 0. The total number of aggregated clients is n = ny +na. p; - €

“” and “5” at time 7'

[-1,1] is the correlation coefficient between load of client
The peak demand of ny category 1 clients and ns category 2 clients is then obtained
by equation 5.8 by changing j; » and o; » with the correspondent expected value py r and
standard deviation oy, ;.
The advantage of this program is commented to have a great capacity dealing with a
mixed of great variety of customer’s loads. Apart from estimating the coincident demand
of a given number of clients described above, the program can also segment metered energy

consumptions collected in a large scale into small scaled end uses or different customers

[127].

5.2.d Taipower system

Since 1993, Taipower system has built up TLPs by surveying 1500 customers on a quarter-
hourly basis using smart meters. The active and reactive power of survey customers are
recorded in the local meter’s memory and transferred to the DSO’s data center every
three months [128]. The total period of survey is of four years. These survey data enable
multiple functions such as system planning, operation, maintenance, marketing, rate tariff
structure and load management [128]. An iterative stratified algorithm is adopted in order
to determine the number and location of the survey clients. The stop criterion is defined
as matching the system’s power profile with the real time Supervisory Control And Data
Acquisition (SCADA) system data. In this way, the derived TLPs represent effectively
the actual customer’s consumption [128]. In each class, a multiple regression analysis
between load and temperature variation is carried out to design the load model, i.e., P, (t) =
ao(t) + a1 ()T, (1) + az ()T, (t)?, where {ag(t),a1(t),az(t)} are coefficients at time t, P, (t)
and T,,(t) are respectively the normalized power and temperature data at time ¢ [129, 116].
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In [116], C.S. Chen et al. have analyzed the effect of the temperature on different customer’s
class. The temperature sensitivity of each class is found by first order derivative of the
multiple regression equation of the correspondent class. The power loss on load buses under
the temperature variation is solved by the temperature sensitivity of each client’s class as
well.

5.3 French load research project

The French load research program was set up for the technical analysis, which is an im-
portant step for the investment decision making. The good electricity supply is defined
by the voltage scale. In the MV network, all nodes must be within +5% of the nominal
voltage value and in the LV network, the scale is defined as +10% of the nominal value
[130, 131]. With more and more clients connected to the networks and rising of the con-
sumption, the voltage drops, especially for the clients at the end of the distribution line.
Their voltage is most likely to drop off the admissible scale. As explained before, these
clients that are outside the permitted scale are called “poorly supplied clients”. In this
circumstance, two devices run to rescue: HV/MV transformer’s on-load tap changer (also
known as under-load tap changers) and MV/LV transformer’s no-load tap changer (also
known as de-energized tap changers) [130]. Let Uy denote the nominal value i.e., 20 kV
(occasionally 15 kV) for the MV network, and 400V for the LV network. The HV/MV
transformer’s on-load tap changer varies Uy +2% ~ Uy +4% [97]. The MV /LV transformer’s
no-load tap changer has five step switch values: +5%, 0 and +2.5% (new generations have 3
step values: +5%, 0 and +2.5%). The reference value for the HV/MV transformer’s on-load
tap changer is normally Uy +4%. When a great number of productions connect to the MV
network, the reference value varies and can reduce till to Uy + 2%.

For the reason of coherence and ease of computation, the voltage calculations in French
DSO systems are carried out in terms of percentage to the nominal values. Figure 5.4
[97] shows two critical voltage-drop situations: no MV production and maximum MV
production. In the first situation, the HV/MV transformer’s tap changer is at the maximum
value +4% in order to provide the maximum capacity to connect clients. The voltage-drop
on the MV level is limited to —5%. Thus, in the most unfavorable situation, where we have
the maximum voltage-drop on the MV level, the primary voltage of the MV /LV transformer
is of =1%. The MV /LV’s no-load tap changer is often set up at +2.5% in order to connect
most client’s load possible and at the same time guarantees a certain LV production’s
connection [97]. With a margin of 1.5% kept for the voltage-drop due to the client’s
in-house connection, the maximum voltage-drop on the LV level (including transformer’s
voltage-drop) is 10% (4% — 5% + 2.5% + 8.5%) [97]. In the second situation, where there
is a massive production penetrating into the MV network, the HV/MV transformer’s tap
changer is reduced to +2% to avoid the over voltage situation in the MV network [97]. In
the mean time, the MV network is heavy loaded with a voltage-drop of 5%. The MV /LV
transformer’s tap changer is placed at +2.5% [97]|. Therefore, the total voltage-drop is 8%
(2% - 5% + 2.5% + 8.5%).

Each regional DSO computes the percentage of the “poorly supplied clients” connected
to his network. This percentage should not exceed 5% in any department [131]. If this
standard is not respected, the regional DSO needs to reinforce his local network.
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Figure 5.4: Voltage-drop and tap changer adjustment.

From 1997, EDF adopted an estimation model named BAGHEERA for clients con-
nected to public MV/LV substations. Like most of the load research models, it clusters
the clients into groups according to their billing information, such as client’s social activity
(residential, agriculture, commercial, industrial, etc.), and tariff option (base, off-peak/on-
peak, Tempo !). It aims at estimating the peak demand and provides 48 hourly power
estimations for working days and weekends of an individual LV client. The advantages of
BAGHEERA model can be summarized as [132]:

e A universal model that adapts to all categories of clients
e The on-peak/off-peak period information of every client is taken into consideration

e The output of the model evolves 48 power values. Thus when carrying out the
electrical computation, the coincident effect is already included.

As a matter of fact, in the voltage-drop calculation, the consumption MV client is often
directly measured while LV client’s measurements are replaced by the 48 hourly estimations
of BAGHEERA model. Information such as network data (the conductor’s standard,
network topology), location of the clients, and connection mode (single, bi- or three phases)
is provided by a data base called “GDO” (network infrastructure management). The output
of the calculation gives 48 images of the voltage map of the network. In the absence of the
information on which phase each client is connected, an imbalance coefficient is applied in
the voltage-drop calculation. The imbalance coefficient is independently computed for each
LV feeder. The line losses are calculated according to the voltage dispatching situation of
the network.

'Three day tariffs combining with off-peak/on-peak periods, i.e. six different tariff rates
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5.3.a Data description

Mainly, there are three contract types in France: basic option, off-peak /on-peak option, and
Tempo option. Each of them associates with a standing charge and a particular tariff rate.
The standing charge is a fixed part paid by clients to connect to the electricity network.
While the tariff rate is the price paid for one unit energy (1 kWh) consumed. Clients are
free to choose any kind of contract with the usage of their house appliances. Samples from
the first two types are used for the analysis sake. The basic option is the simplest type
with the cheapest standing charge and a uniform tariff rate for all the times of the year. It
is more suitable for housings without electric heater or holiday homes with only occasional
usage. The off-peak/on-peak option has a higher standing charge than basic option but
offers an eight-hours-cheaper tariff rate during a day. This option is suitable for families
having hot water tank which turns on automatically when switch to the off-peak rate.
Generally the off peak hours are in the night and in the middle afternoon. The Tempo
option is the most complicated charging system among all. The system has six rates of
electricity pricing depending on EDF’s load forecast on that day. This option is mainly for
large households with electric heating and full time occupation.

In France, over 2000 clients’ load consumptions are regularly collected as the survey
data. These consumptions are sampled on a 10-minute basis. Other clients have three
meter recordings a year for billing’s use. For our analysis sake, 70 load curves from the
survey data are collected from different regions in France during 2 years from July 01,
2004 to June 30, 2006. These load curves represent the power consumption of 35 basic
option clients and 35 off-peak/ on-peak option clients. Clients are numbered from 1 to
35 in each group in the database. These numbers are simply to identify the clients in
the group. The numbers have no specific meaning in terms of load consumption. Thanks
to these identification numbers, each client is related to some useful information, such as
geographical location, subscribed power, and activity category, to name a few. As a critical
factor, the temperatures of the correspondent region are provided during the same period.
Figures 5.5 and 5.6 illustrate representatively the daily average loads of clients subscribing
to the two types of contract. We can easily notice the increase in the power consumption of
client no.5 (figure 5.5) during winters due to the use of electrical heating devices. On the
other hand, because alternative heating devices powered by gas, oil, or wood are used, for
instance, instead of electrical heating devices connected to the distribution grid, the energy
consumption pattern of client no.18 (figure 5.6) appears stable during the year. For the
ease of the demonstration, hereinafter client no.5 from the off-peak/on-peak option and
client no.18 from the basic option are the main examples for demonstration and comparison
of the methods.
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Figure 5.5: Two-year (July 01, 2004 ~ June 30, 2006) daily average loads of off-peak/
on-peak option client no.5. The vertical line separates the two-year period.
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Figure 5.6: Two-year (July 01, 2004 ~ June 30, 2006) daily average loads of basic option
client no.18. The vertical line separates the two-year period.

5.3.b EDF BAGHEERA model

BAGHEERA model is an estimation model collaborate with temperature. Like the most
of the models presented previously, it works with the clustering groups and TLPs. There
are four steps to build the model [133]. Firstly, cluster the clients into coherent groups by
their qualitative information. Secondly, estimate 48 couples of values (mean and variance
for weekdays and weekends) for every individual survey client. A model describing the load
at hour “h” required by a single client in respect of the temperature and the chronological
pattern is built. Thirdly, estimate the TLP of the group based on the mean and variance
values of the survey client in the group. In the end, the mean and variance of each client’s
load pattern is scaled with his specific coefficients i.e. daily energy, temperature sensibility
and yearly energy.

In this section, we aim at presenting the BAGHEERA model in details. The results are
demonstrated with data examples introduced in the section 5.3.a. Firstly the Minimum
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Temperature Base (TMB) temperature? and basic form of the model are revealed. As
a matter of fact, the estimation values at TMB temperature are applied for the decision
makings in network planning. The BAGHERRA model is composed by two parts: the mean
power and the margin. Next, the common coefficient estimation based on which the TLP
of the group is defined is explained. Then, the estimation of specific parameters of each
client is depicted in distinctive situations: with sufficient historic data, with insufficient
historic data and with no historic data. In the end, the output of the model is shown
through demonstrative examples.

5.3.b-i TMB temperature and basic model

Cooperating with electrical calculation in a worst-case situation, the BAGHEERA model
estimates an individual client’s load at TMB temperature. The French electricity company
EDF defines TMB as the temperature threshold for every region. This latter is defined such
that there exists only one day per year with an equal or lower temperature®. Consequently,
the probability of observing a day with a temperature equal to or lower than TMB is, in
general, 1/365, i.e., 0.3%. The model provides hourly estimations of weekday and weekend
load profile (48 points) for every individual client. There are two components in the basic
model: the mean power P(t,T;) at temperature Ty and the margin v(t¢). For each hour,
we have:

P(t, Td) = a(t)E() + b(t)S(Td - TNh)le<TNh (510)

v(t) = o(t)*E, (5.11)

where {a(t),b(t),o(t)} are coefficients statistically calculated and shared with clients in
the same class. The parameters { Ey, s, E,, } are specific to each client and respectively stand
for daily non-heating energy use, gradient, and annual energy use adjusted to the normal
climatic condition. Ty is the daily average temperature. Equation 5.10 assumes that above
the “non-heating temperature” Ty, which differs from region to region, the consumed
power (a(t)Ey) is independent of the temperature and that below this temperature, the
relationship between consumed power and temperature variation is linear. The linear
relationship is indicated by the gradient s (s< 0).

The mean power represents the expected hourly load estimation at temperature 7Ty,
while the margin represents the uncertainty of the estimation. The confidence bound fixed
for the distribution network planning study is 10%, which signifies that the upper bound
has a 10% chance of being exceeded. The 10% upper bound is defined as:

PlO%(t’Td) = P(t’Td) + ClO%V(t) (512)

where c¢jgy is called the risk coefficient at 10%. Therefore, theoretically, the planning
confidence bound at TMB temperature is exceeded during 8760h/year * (10% * 0.3%) ~ 2.5
hours per year.

’In French: Temperature Minimum de Base

3In practice, EDF defines the TMB based on a 30-year historical period. The probability of one day
per year is an average value: in reality, during a warm year, we would probably find no daily temperature
below this TMB value, while during a cold year, several daily temperatures would be found below this
value.
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5.3.b-ii Common coefficient estimation

The power measurement y; can be divided into two independent parts: the thermosensitive
power p(T}), which is a power function depending on the temperature at the same moment
T} and the non thermosensitive power P, ¢, such that [133]:

Yt = Pt70 + QO(Tt) (513)
Thus, the correspondent energy consumption is
Ed = Eo + f(Td) = Eo + S(Td - TNh)|Td<TNh (5.14)

where Fj is the daily energy consumption and f(-) is the function of the daily heating
energy consumption influenced by daily temperature.
Bring equation 5.13 and 5.14 into equation 5.10, we have [133]:

Pio
=T,
_p(Th)
b(t) = () (5.15)

where a(t) and b(t) can be respectively considered as the coefficient that converts non-
heating daily energy and heating daily energy to the correspondent hourly power. In fact,
coefficients a(t) and b(t) depict the reduced scale pattern of the heating and non-heating
power pattern.

o(t) stands for the standard deviation of the error term. This later is the difference
between the observed power y; and estimated power P(¢,Ty).

5.3.b-iii Specific parameter estimation

The specific parameters include the temperature sensibility s, non-heating daily energy
consumption Fy and yearly energy consumption F,. For clients that do not belong to the
survey group, there are three categories according to their data’s availability. Here, we
present how these specific coefficients are estimated for different categories of clients.

1. Client with sufficient historical data

This category represents the situation where at least six meter recordings during two
years (three recordings per year) of an individual client are available. These record-
ings must be regularly taken and represents the heating and non-heating periods’
consumption of the client. Fy and s are defined based on the six consumption loads
of every four months.

Integrate equation 5.14 on n; days (a four-month period, in this case) [133]:

n; n;
Z Ed = niEO +S Z (Td - TNh)|Td<TNh (516)
d=1 d=1

Divide equation 5.16 by n;, we get:

E: .
== EQ + SDdl
n; n;

(5.17)
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where E;= Y7", Eq is the meter recording for the given period, and the degree days

Dd;, which is the sum of the temperature degrees inferior to the non-heating tem-

perature Ty, during the given period: Dd; = Y%, (Ta = Tnn)|1,<Ty, - As a matter of

fact, a fitter correlation is found with the exponentially smoothed temperature data

than with the actually measured data regarding to the power [133]. In consequence,

the exponentially smoothed temperature is used for the Dd; calculation. Fy and s
E; Dd;

are estimated by the ordinary least square on the six-couple data (-, =*).

The annual energy consumption adjusted to the normal climatic condition F, can
be estimated by integrating equation 5.14 on a year period [134]:

E, = 365E0 + SDd365 (518)

where Ddsgs is the degree days of a year period on the normal climatic condition.

Since off-peak and on-peak periods’ consumptions are measured with two electricity
meters seperately, the off-peak/on-peak option clients often have twelve recordings
instead of six. Therefore, with the equation 5.17, we obtain two couples of specific
coefficients: {syp, EOgp}* for the on-peak period, and {sgc, EOyc)}® for the off-
peak period. In this way, differences in temperature sensibility due to the heating
device modes as well as due to the day/night modes can be figured out [133]. The
off-peak /on-peak clients have also two sets of common coefficients {a(t), b(t), o(t)}.
They’re respectively calculated following equations 5.13 ,5.14 and 5.15. When re-
construct the group’s TLP, the off-peak period variation replaces the on-peak period
variation on the off-peak periods. The clients that subscribe the off-peak/on-peak
tariff option have an overall eight-hour off-peak period a day. The eight hours can
be allocated to one, two or even three distinct periods in the afternoon and at night,
when the network is not heavily loaded. The off-peak common coefficients are applied
each time the off-peak periods occur.

. Client with insufficient historical data

Sometimes, the six meter recordings are not complete due to the incorrect readings or
data absence. In this case, the clients are considered not having sufficient historical
data [135]. For this category of clients, equations (5.10, 5.11) estimating the power
and the variance depend on the specific variable E,,, such that [135]:

P(t, Td) = a(t),En + b(t),En(Ts - Td)
v(t) = o(t)*E, (5.19)
where the client’s annual energy consumption adjusted to the normal climatic condi-
tion F, is expressed as a function of the mean daily non-heating energy consumption

values of the clients in the same category F and the heating period in proportion to
estimated temperature sensibility of the client (E, — (nqEo))/Dd,, such that [135]:

E, =365Eq + (E; - (n;E0))(Ddses | Dd;) (5.20)

“The index “HP” means in French “Heure Pleine” (on-peak).
®The index “HC” means in French “Heure Creuse” (off-peak).
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E; is the meter recording during the given period. n; is the correspondent number
of days during the period and Dd; is the number of degree days during this period.

{a(t)’, b(t)’, o(t)’} are correspondent common coefficients. Ty is the temperature
threshold where the client’s annual degree days equal to 50. More detailed informa-
tion is described in [133].

3. Client with no historical data

For this category of clients, the only possible estimated parameter F,, is calculated
based on the subscribed power P, such that:

E, =c+dP, (5.21)

where {c,d} are parameters depending on the client’s activity and tariff option [135].

Their mean power values and margins are also computed following the equations
5.19.

5.3.b-iv  Illustrative example and model’s output

The survey load data of the clients are recorded on a 10-minute basis. The temperature
data are recorded on an hourly basis. These two data are converted to a daily basis in
order to estimate the specific parameters. As previously stated, the specific parameters
{Ey,s} are obtained by curve fitting the daily energy measurements with the temperature
variations (equation 5.14). Given an equation with parameters and samples to be fitted,
the curve fitting tools can calculate the values of the parameters by minimization of the
Sum of Square Residuals (SSR). Being an open source Matlab toolbox, which is simple,
quick and direct for the curve fitting, the ezyfit toolbox [136] is applied in our study. The
above Ty, part data are fitted with a constant Ey function and the below T part data
are fitted with a linear function (s(7; — Tnp) + E) using least square error criteria. E,, is
calculated according to equation 5.18, which equals the integration of the consumed energy
on the normal condition basis.

As explained, the off-peak/on-peak option client has two electricity meters, which
record separately the energy consumed during on-peak hours and that consumed during
off-peak hours. Figures 5.7 and 5.8 show the curve fittings to daily energy measurements
of off-peak hours and on-peak hours. The consumed energy is observed to vary with the
temperature. In other words, the off-peak/on-peak option client often has an important
gradient value. We can see from the figures that the off-peak/on-peak option client no.5
is more sensitive to the temperature during the on-peak periods than the off-peak periods.
In fact, as the Ty, reflects the region’s mean non-heating temperature, this factor would
vary among different clients in the same region. We can see in figure 5.7 that the average
energy value during non-heating days (those whose temperature is superior to Tny,) EOgc
is different from the regression non-heating energy value Egc. The same situation is found
in figure 5.8, i.e., EOgp # Exp for the on-peak period. Basic option client, using other
means of heating rather than electricity stays stable with the temperature variation (figure
5.9). Thus a small s value is often found in this category of clients. For the same reason,
the average non-heating energy EO is different from the regression non-heating energy value
E.
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Figure 5.7: Off-peak/on-peak option client no.5: curve fitting on off-peak daily energy use
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Figure 5.8: Off-peak/on-peak option client no.5: curve fitting on on-peak daily energy use
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Figure 5.9: Basic option client no.18: curve fitting on daily energy use.
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The common coefficients {a(t), b(t), o(t)}, on the other hand, are known based on the
category the client belongs to. Equations 5.10, 5.11, and 5.12 are carried out to calculate
the 48 estimation values and their upper bounds. Notice that different groups of {a(t),
b(t), o(t)} values exist for weekdays and weekends, and for on-peak and off-peak hours.
To calculate the off-peak /on-peak option clients’ load estimations, the on-peak estimations
are replaced with the off-peak estimations during the off-peak periods. If there is more
than one off-peak period, the estimated power is the same at the beginning of each period.
For example, the client no.5 has two off-peak periods: 01:00 to 07:00 and 12:00 to 14:00.
We can see in figure 5.10 that two peaks at the beginning of each off-peak period have the
same magnitude. The method also limits the 10% upper bound by the subscribed capacity
of the client. In figure 5.10, the bound estimations higher than 9 kW are replaced by 9 kW,
the subscribed capacity of the client no.5. Figure 5.11 shows the differences in the shape
of mean powers between weekday and weekend day type. These differences are depicted
by their different common coefficients of the day type.

TMB weekday
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Figure 5.10: Off-peak/on-peak option client no.5: outputs of the BAGHEERA model,
TMB load estimations on weekdays
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Figure 5.11: Off-peak/ on-peak option client no.5 : comparison of TMB weekend’s and
weekday’s load estimation

5.4 Conclusion

In this chapter, we briefly described the decision making process and explained that the
load estimation model is vital to the first step of the process: the technical analysis. We
discussed the solutions to the measurement scarcity in the actual distribution network.
Coincident loads are used to estimate the MV/LV substation’s capacity and TLPs are
used to replace the individual measurements.

Load research projects in different countries were introduced. Widely used “Velander’s
formula” for the individual’s maximum power estimation is depicted. DLE process is often
applied to adapt national TLPs to local TLPs according to the SCADA measurements.
Finland DSO models the mean load power and the standard deviation in both topography
and index means. Temperature dependence is also associated to the model. Denmark Dong
Energy company proposed a “SmartPIT” solution that updated the “Velander’s formula”
and modeled the peak loads by 22 different season patterns. They reclaimed to have a
reduction of 80% in the network reinforcement. The Norway SINTEF energy research
modeled the end user’s load with a normal distribution. The Taipower system built up the
power as a regression function of the temperature, so that the temperature sensitivity can
be easily analyzed.

The French load research project is carefully scrutinized. The “poorly supplied clients”
are defined and the voltage-drop plan with the tap changers’ adjustment is explained. The
BAGHEERA model actually applied by the EDF is thoroughly presented, including the
estimation model as well as the coefficients’ estimations. The model’s outputs are shown
through illustrative examples.

In fact, the BAGHEERA model assumes that the influence of the consumption by the
temperature is linear. However, this is not realistic due to the limited maximum power
of heating devices. Moreover, the smart grid concept leads to a great dynamism in the
client’s behavioral consumption as well as flexible relationships among electricity producer,
distributor and client. Thus, it is no longer reasonable to prefix a client to a certain group.
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Furthermore, with the air-conditioner gaining its popularity, load consumption will grow
when the weather gets hot. The assumption made in BAGHEERA that the load stays
unchanged above a certain non-heating temperature is no longer real. Hence, our idea is
to build an individual model for each customer without clustering step. This model must
be completely data-driven and independent to the qualitative information of the client
whose quality is decreasing. Especially with the development of smart meters, providing
detailed individual consumption information, we are convinced that the clustering step
is no longer necessary. As a result, in the next chapter, we propose a non parametric

individual estimation model.
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Abstract

In this chapter, we tackle client load estimation in a smart grid network. For that
purpose, we propose an individual model based on nonparametric estimators. The
model is designed for voltage-drop calculations for use in network planning. Com-
pletely data-driven, the proposed methodology can be applied to both thermosensitive
and non-thermosensitive clients. Real measurements collected in French distribution
systems are used to validate our methodology. The proposed approach produces more
reliable estimation results than the current model BAGHEERA of the French electricity
company EDF does on the same data. A discussion on the definition of the threshold
power estimations is carried out in the end of the chapter.
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Distribution network planning involves developing a schedule of future additions that
ensure the quality of energy delivery as well as the lowest possible cost. On the one hand,
the electricity infrastructure must meet the needs of peak loads. On the other hand,
over-dimensioned systems can be very expensive. Thus, reliable load models are required
to perform distribution network calculations, such as power flow calculations in critical
situations so as to identify poor electricity supply zones for investment planning.

Individual load is mostly influenced by two main factors: day types and weather con-
ditions. The daily load pattern can be very different from weekdays to weekends. Tem-
perature is a primary weather factor that affects load variation. The customer model is
designed for worst-case calculations [7, 8], namely, the time of maximum demand and min-
imum supply as well as the time of minimum demand and maximum supply contrawise [9].
As the peak loads of several customers rarely occur at the same time, estimation of the cus-
tomer consumption load at every hour is required. Uncertainty regarding load estimations
also needs to be taken into account [10]. Generally, for the voltage-drop calculation the
excess probability is fixed at 10% [!1|. Therefore, the objective is to define an individual
customer’s maximum and minimum load limits at different day types of a year with 10%
excess probability.

As stated in section 5.3, the BAGHEERA model [137] is actually applied by the French
electricity company EDF for its distribution network planning. Over 2000 demand survey
load curves sampled every 10 minutes all over France are collected to predefine 66 classes.
According to some qualitative information, such as supply agreement and client activity
category, to name a couple, every client in the French territory is associated with a prede-
fined class. Clients in the same class share some statistically calculated coefficients defining
a daily profile pattern for weekdays and for weekends. The load estimations of a specific
client are computed by scaling the average shape of his particular group to his annual unit
consumption. The output of the model is the one hour interval power consumption (48
points: 24 for weekdays and 24 for weekends) of each client at minimum temperature of
the region, i.e., Minimum Temperature Base (TMB).

However, the smart grid paradigm introduces three ground-breaking changes to cur-
rent electricity networks. Firstly, it enables new products, services, and markets, and
thus establishes a more flexible relationship among operators, clients and regulators [138].
Consequently, the qualitative information of each client is less and less precise. Secondly,
customers are encouraged to modify their behavior to interact with the real-time electricity
market [139]. Therefore, it is difficult to assign a client to a predefined class. Thirdly, in
2009 the ERDF (French electricity distributor) launched the “Linky” project to install 35
million smart meters in France. These smart meters collect the power consumed by indi-
vidual clients on a 30-minute basis and automatically transfer the electricity consumption
information to the data center of the ERDF at the end of every day. The data archive
system is designed to keep the two-year historical consumption data of every client [3]. The
extensive consumption information collected by smart meters enables us to build more ac-
curate individual estimation models. Within this context, this chapter aims to design a
universal individual load estimation model for the interests of distribution network plan-
ning.

Before the implementation of the smart meter, historical load data were not usually
available, apart from the demand survey data of a limited number of clients. Most of
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the works concerning distribution network planning aimed to estimate the peak demand
for a group of customers during periods of peak system demand, namely, coincident peak
demand [6]. For this purpose, three categories can be identified. Some methods provide
a relationship between the maximum demand of a group of clients and individual clients
by some correction factors [9] , such as coincidence factor, Velander’s formula, etc. Others
concentrate on classification methods [11, 122, 140] to sort clients into TLPs. Still others
apply the end-use method [9, 22] by composing the residential customer model into appli-
ance elementary units. The drawback of the end-use method is the extensive demand for
input data. Our work, inspired by [111], proposes the building of nonparametric regressors
to express the relationship between load demand and temperature and the application of
nonparametric probability density function to model the random nature of demand of a
customer.

The main contributions of our work are threefold. First, the method can be adapted
to any client’s load, regardless of his load thermosensibility, and is entirely data driven.
Second, nonparametric methods are applied so that the model is independent from the
client’s qualitative information as well as from assumptions made on load functions. Third,
the outputs of the method include both maximum and minimum daily power consumption
patterns.

The rest of the chapter is organized as follows. Section 6.1 details the nonparametric
model procedure as well as the coordinate statistical tools. A computational example is
presented and the performance of different models is discussed in section 6.2. Validation
study in section 6.3 compares the precision of the models on the extensive examples. In
section 6.4, we carried out a discussion on the definition of the threshold power estimations.
Section 6.5 concludes the chapter.

6.1 Nonparametric model

Figure 6.1 illustrates the procedure of the nonparametric model. First, the load curve of a
given client is associated with the local temperature. Second, statistical tests are performed
to examine whether the client is thermosensitive. If the client’s power consumption is
not influenced by temperature, there will be no difference between minimum power and
power at TMB temperature. Thus a Kernel Density Estimation (KDE) method is applied
to determine the median values as well as the 10% upper boundary and the 10% lower
boundary. If the client is thermosensitive, the CUSUM chart algorithm is employed to
separate the heating season from the non heating season. Next, the non-heating season
data are used to compute the minimum power, and the heating season data are used to
compute the power at TMB temperature. Notice that the TMB temperature is the coldest
temperature that happens on average one day per year; basic knowledge of electricity
demand in this extreme weather condition is often insufficient. This lack of knowledge
may cause a problem for the TMB load estimation. Our strategy is to include past years’
consumption information if the compatibility of the data is proven by statistical tests. At
the end of the tests, compatible data are brought in and the relationship between the
temperature and the load consumption is defined with a nonparametric kernel regression
method. The smoothing parameter required by the kernel regression method is computed by
the Cross-Validation (C'V) technique. Once the relationship between temperature and load
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consumption is established, all the heating season data are brought to the TMB condition
in maintaining their uncertainties. In the end, the median power and the excess probability
boundaries can be computed at TMB temperature. These statistical tools applied in the
procedure are thoroughly presented in the following subsections.

Associate the load curve with its temperature

Thermosensitive? N
v R
Seperate heating season/ non heating season Min power=
- > > TMB power

! Y

| Non-heating season | | Heating season |

X

Min power
N ompatible with the previous year's da

VY

| Include previous year's data when temperature<0°C|

Y
—>| Deduce the relationship between temperature and load |

Y
Bring all the heating season data to the TMB situation
in maintaining the uncertainty

TMB power

Figure 6.1: Overview of the nonparametric model

6.1.a Statistical tests

Statistical tests are often used for decision making by examining basic sample information.
We aim to test if there is any significant difference between the mean of two different
groups. In such a situation, Student’s t-test for difference of means is applied. However,
one assumption in carrying out Student’s t-test is that the variance of the two populations
is equal; if not, then Welch’s t-test is used. An F-test can be used to test the hypothesis
that the population variances are equal. Figure 6.2 states the relationships between the
above statistical tests.

Practically speaking, at the beginning of these tests, two complementary hypotheses
are set up, namely, the null hypothesis and the alternative hypothesis. The null hypothesis
often indicates that no significant difference is found between two examined groups. The
decision is made by comparing a p-value indicating the probability to accept the null
hypothesis with a type I error percentage referring to the risk of wrongly rejecting the
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Equal variance?
F-test

Equal|variance

Unequal|variances

Figure 6.2: Statistical tests procedure

null hypothesis. This type I error is often set at 0.05. In other words, if the p-value of
a statistical test is greater than 0.05, one may accept the null hypothesis. Otherwise, the
alternative hypothesis is accepted.

6.1.b Kernel density estimation

KDE is a nonparametric method that estimates the density directly from the data without
making any parametric assumption about the underlying distribution. In our applications,
KDE is used to define the 7, (0 < 7 < 1) upper and lower bounds of the data set. Let
X;,i =1,---,n be independent samples drawn from a distribution g(zx), the kernel density
estimator gp,(x) is defined as:

n

1 T — XZ
g =— > K 6.1
(@) = 5 2K (6.1
where K(u) = %ﬂe_%uz is a normal kernel function. The smoothing parameter is h.
The adaptive KDE method [142] is applied, where the smoothing parameter is chosen

automatically. The reliable kernel estimator based on the smoothing properties of linear
diffusion processes deals well with multimodal densities. Readers who want to have more
details on the adaptive KDE method can refer to [112].

Thus, the bound limits {Zmin, Tmae } of 100(1 —~)% probability are defined as:

/gh(:c)d:c:’y and/ﬁh(x)dle—'y (6.2)

6.1.c CUSUM algorithm

The idea of the CUmulative SUM (CUSUM) algorithm is to automatically detect the
breaking points in the data set that separate the heating season and the non-heating
season. Afterwards, the non heating season data are used to estimate the minimum power,
and the heating season data are used to estimate the power in TMB condition.

As the name suggests, CUSUM calculates the accumulated deviations of the sampled
values y;,i = 1,---, N from the mean value 3 [113]:

N
S = ;(yz- -7) (63)
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The CUSUM plot is centered on zero. During the heating period, consumption is
supposed to be superior to the mean value of the year and the CUSUM points drift upwards;
during the non-heating period, the consumption is likely to be inferior to the mean value
of the year and the CUSUM points drift downwards. Thus, the breaking points of the two
periods correspond to the maximum and the minimum values of the CUSUM plot.

6.1.d Kernel regression

Kernel regression is a nonparametric approach using historical data to define the relation-
ship between load y {y;,i=1,---, N} and temperature variation X {X;,i=1,---, N}. Three
kernel-type regressors are introduced in this subsection: the NW, the LL, and the LL2
estimators. Being the zero- and the first-order nonparametric estimators, the NW and
the LL estimators have gained large popularity in function estimations [1441]. The LL2
estimator is an adapted estimator originating from the LL estimator in order to adapt the
special situation, which will be presented later in this subsection.

Unlike the parametric estimation, the nonparametric approach imposes no assumption
on the functional form, and thus, is much more flexible than parametric regressions. The
method requires the smoothing parameter h, which can be calculated by applying the CV
technique [26]. Estimating the conditional expectation of the random variable x, the kernel
regression can be defined as:

E(ylX =2) = f(2) (6.4)

where the E(-|-) is the conditional expectation operator.
By using local constant approximations, namely a local polynomial regression of degree
0, the estimator f(z) = So(z) minimizes the kernel weighted least-squares:

N T — Xz
Z{yi—ﬁo(@}gK(T) (6.5)
i=1

We have the Nadaraya-Watson (NW) estimator:

Zi\; K(Jg_hxl )yz
S K (5)

fvw (@) = Bo(z) =

Equation 6.6 shows that the load estimation fNW(x) at temperature x is a local
weighted average of the historical neighborhood samples. The size of the local neigh-
borhood and specific weights are defined by its smoothing parameter h.

However, the NW estimator applied to define the relationship between load variation
and temperature has certain drawbacks. It may have a large bias in the “boundary region”
due to the non positive sample distribution function and in the interior points due to
unequal spacing of the samples [115]. Therefore, we propose another kernel-type estimator,
the LL estimator of degree 1. The idea is to fit the load temperature relationship with
local model f(z) = a(z) + 8(z)(x - X;) to minimize

.’E—Xl'
h

N
>t = o) = X0) (@)K () (6.7)
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We have the explicit expressions:

Sp TNy (S2) - 81 2Ny K (55 (- X0)
N (S350 - S%)
So XNy K (324 (2 - X;) - S1 DNy K (5554)

a(r) =

- 6.8
o) N (525 - 57 o9
N (z-X;)) K (22X
where S; = Zizal X}\);K( L ), J=0,1,2.
Thus, the Local Linear (LL) estimator can be written as
; SR K (550)(82 = Si(x - Xi)yi
fro(x) = ==—24 (6.9)

N(SoS; - 52)

The LL estimator preserves the linear trend and stays invariant to the first derivative to
frr(z). According to the literatures [146, 147, 144], the LL estimator also has much better
properties at the boundary than the NW estimator has. High-order estimation functions
have better performance on steeper and curvier regression functions. However, when the
regression function is quite flat, the NW estimator behaves better.

The nonparametric estimators depend mainly on samples. If there is a declining trend
shown by the data, the nonparametric estimators will follow this trend. Even though in
the reality, it has no actual physical meaning. Lack of samples in the cold conditions,
every sample under such condition has a big influence on the nonparametric regression.
Due to the imprecision in measurements or special family occasions, the few samples can
sometimes cause an unreasonable trend: i.e, when the temperature decreases, the load
trend decreases. However, it is known that when the temperature drops, the electricity
consumption rises because of the use of electrical heaters. Thus, we propose the LL2
estimator to correct the flaw in the trend caused by these “misleading” scarce samples.
Two steps are followed to establish this LL2 estimator. First, we identify the cutoff point
that separates uprising trends and declining trends of the LL estimator. Second, we filter
the points on the left side of the cutoff point and conserve the local trend of the points on
its right side.

Since the estimation is made by local averaging of historical load data in a correspondent
neighborhood, it is obvious that its ability of extrapolation beyond the available historical
data domain is rather limited. Hence, the estimations on the “boundary” are rather sensitive
to the boundary samples. In our application, as TMB load needs to be estimated, but very
few load samples are collected under this very cold weather condition, we propose to add
previous years’ data with cold weather conditions to the estimation samples if the data
characteristics are similar to those of the current year, having the same mean and variance.

6.1.e Smoothing parameter selection: cross-validation technique

It is well known that the result of kernel regression depends crucially on the bandwidth
h selection. A large h would give an oversmoothed estimation with a large bias, whereas
a too small h would give an undersmoothed estimation with a large variance. The CV
technique aims at finding the parameter h., that minimizes the CV function defined as
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follows [144]:

1

G 1 ¢ .
52— 2= ful@)))? (6.10)

i=1 9i j=1

CV(h) =

where fh(xj) is the kernel-type estimator, G is the number of parts and g; is the number
of elements in the i-th part.

The idea is to randomly divide the data into T equal or quasi-equal parts and to
estimate the regression function by using G — 1 parts while calculating the square error on
the left part called validation data. The procedure is repeated G times till every part has
been used once for the validation. The CV function is a mean square error estimator.

6.2 Computational example

For ease of demonstration and in coherence with the previous sections, the off-peak /on-peak
option client no.5 is selected to illustrate a more complex example. We aim to estimate
the maximum and minimum loads of client no.5 during the first year. In this section, we
first present the process in subsection 6.2.a. Subsection 6.2.b illustrates and comments on
the results as compared with the BAGHEERA model. All the presented results are run in
the Matlab environment.

y \

Hisltorical year 1st year | 2nd year

Figure 6.3: Data diagram: historical data, 1st-year data, and 2nd-year data.

As mentioned previously, the French legislation permits a period of maximum two-year
consumption data being recorded [3]. The recording data used in our study are from July
1, 2004 to June 30, 2006. The overall two-year data are used both for the estimation and
the validation of the model. Data diagram indicating the utilization of the available data
is shown in figure 6.3. The 1st-year data are used for the model estimation. The 2nd-year
data have two practical applications: as the historical year data and as the test data. In
the proposed methodology, because of the scarce samples in cold conditions (temperature
< 0°C), we suggested joining coherent historical year data in such condition to the current
year data for a more accurate estimation (cf. figure 6.1). We assume that the consumption
data have a one-year period and that there is no difference if the year data are taken before
or afterwards. Thus, the 2nd-year data are borrowed as the historical year data for the
model estimation. In the future practice, we suggest the utilities to record historical data,
so that this problem won’t exist. In the validation phase, the 2nd data are used as the test
data. Since the test data cannot be used during the learning process, the 2nd data are not
joined to the 1st data to compute the kernel regression in the validation phase. Therefore,
hereafter, when we mention historical (also termed “past”) year data and test data, they
actually mean the 2nd-year data.
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6.2.a Illustrative example results

As previously described, after the local temperature is associated with the client’s load
curve, the statistical tests are carried out to check whether the examined client is ther-
mosensitive. The statistical tests are performed by comparing the mean values between
the load samples inferior to 0°C and those superior to 20°C. The choice of these two tem-
perature degrees is arbitrary. We assign 0.05 to the type I error in the statistical test. As
described in subsection 5.3.a, the off-peak/on-peak option client no.5 has probably some
electrical heating device at home. Figure 6.4 shows the tests result. The p-value of Welch’s
t-test rejects the equal mean hypothesis and confirms that this client is thermosensitive.

Equal variance?
F-test

P-value=0.00012<0.05
Variances are different.

P-value=0.00000<0.05
The client is thermosensitive.

Figure 6.4: Off-peak/on-peak option client no.5: statistical tests result of thermosensitive
check

Then, the thermosensitive client’s load data (one entire year) are divided chronologically
by the CUSUM algorithm. The pair of dotted lines indicates the maximum and minimum
values in the CUSUM plot (Fig. 6.5). They are interpreted as the breaking points of the
heating season and the non-heating season (Fig. 6.6).

x 10°

-1.5 ‘ ‘
0 100 200 300 400

Time (day)

Figure 6.5: Off-peak/on-peak option client no.5: CUSUM chart of daily average power

On the one hand, the minimum power load pattern can be estimated once the heating
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Figure 6.6: Off-peak/on-peak option client no.5: separation result of one year’s power data
by CUSUM algorithm

season and the non-heating season are separated. As the consumption during this period
is considered independent of temperature, all days’ loads are overlapped and the median '
value of a specific hour and its 10% excess probability upper and lower bounds are estimated
by KDE [142]. The median value rather than the mean value is calculated because of the
former’s statistical robustness to the large dispersion samples. Similar to the BAGHEERA
model, three categories of different day types are made, namely, weekday, Saturday, and
Sunday and holiday. Moreover, “Linky” in the future will collect load samples averaged
every 30 minutes [3], and the estimation will also be made in 30-minute intervals. Figure
6.7 shows the result of the minimum power estimation on weekdays.

Min power estimation (Weekday loads)

8000 ‘ ‘ ‘ ‘
= \edian
: — Upper bound
6000 . i = | ower bound |
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Figure 6.7: Off-peak/on-peak option client no.5: weekday minimum power estimations.
The points represent the real measurements.

!'Sorting data into increasing order, median is the middle entry or the mean of the two middle entries.
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On the other hand, the estimation for TMB power or rather maximum power of the
year involves three steps. First, statistical tests are performed between the group of load
samples inferior to 0°C of the examined year and those of the past years to check whether
the consumption behavior of the client under cold weather conditions stays unchanged. In
other words, whether the information collected during extreme conditions in past years
can be used for the estimation of the current year. Figure 6.8 shows the statistical test
results and suggests that the data of past year have the similar characteristics (mean and
variance values) to those of the current year. As a result, the past year’s inferior 0°C data
are joined.

Equal variance?
F-test

P-value=0.70412>0.05
Variances are equal.

Equal mean ?
Student's t-tes

P-value=0.77340>0.05
Means are equal.

Figure 6.8: Off-peak/on-peak option client no.5: statistical tests result for the data coher-
ence check

Second, the kernel regression method is applied in order to define the nonparamet-
ric relationship between power consumption and temperature. Before this is done, the
smoothing parameter has to be selected. The CV function in equation 6.10 is applied with
10 parts. Figure 6.9 illustrates the Mean Square Error (MSE) variation of the different
smoothing parameters. We choose h., = 0.9, which corresponds to the minimum MSE.

We propose herein three kernel-type estimators, referred to as: NW, LL, and LL2.
These estimators are computed to deduce the relationship shown in figure 6.10.

Notice that the NW and the LL curves are rather close to each other except near
the “boundary zone”. The “boundary zone” is defined as the region where a very limited
number of samples are taken. In fact, the nonparametric estimators are very sensitive to
these samples.

Third, all the heating season data y; at temperature X; are brought to the TMB
condition with their uncertainty level maintained. The estimated power at TMB condition
yrumB i can be defined as

yrms i = fw(TMB) = fr(X;) +yi (6.11)

where f'hf(-) is the kernel-type estimator with its optimal smoothing parameter h’.

Figure 6.11 explains the uncertainty level, which represents the difference between the
estimated power and the real measurement, given a NW estimator as an example. Figure
6.12 shows the maximum power in the TMB condition estimated by the kernel density
method.
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Figure 6.9: Off-peak/on-peak option client no.5: cross-validation result on the smoothing
parameter selection of the kernel estimation
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Figure 6.10: NW, LL, and LL2 regressors, indicating the relationship between the variation
of temperature and the client’s daily power consumption

6.2.b Comparison with the BAGHEERA model

In this subsection, we compare the proposed nonparametric models with the BAGHEERA
model. Since the objective is to estimate the power consumed in the TMB condition, where
in our example there is no measurement, the performance criteria are hard to establish.
However, the accuracy of the model can be computed in cold weather conditions instead

of the TMB condition.

We believe that if the power is more accurately estimated in

the neighborhood of the TMB temperature by one model, this model could possibly also

provide a more credible estimation in the TMB condition.
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Figure 6.11: Off-peak/on-peak option client no.5: presentation of uncertainty of the red
circled sample. The dotted red curve represents the kernel estimation result of the rela-
tionship between power consumption and temperature.
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Figure 6.12: Off-peak/on-peak option client no.5: maximum power estimation of weekday
loads. The points represent the heating season data brought to the TMB condition.

More specifically, the first-year data are used to establish the models respectively. The
data of the second year, when the temperature is inferior to 0°C, serve as the test data.
This latter correspond to seventeen days, situated on the right side of the cutoff line as
illustrated in figure 6.10. As previously explained, the second-year data are used as the
test data but not as the past year data, thus they do not participate to compute the kernel
regression.

The results of the Sum Square Error (SSE) shown in the figure 6.13 are calculated on
a one-hour data base.

The results indicate that the three nonparametric estimators (NW, LL and LL2) give
a better estimation than BAGHEERA does on the test data. There are three plausible
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Figure 6.13: SSEs of the BAGHEERA estimator, NW, LL, and LL2 estimators on the test
data

explanations:

e one, the hypothesis on which BAGHEERA is based, that the relationship between
temperature and power consumption during cold weather is linear, is not verified. Our
analysis according to figure 6.11 argues that below a certain temperature, the power
consumption saturates, which is closer to the reality. Since very cold temperatures
urge users to exploit their heating devices at maximum, assuming a linear relationship
between the power and temperature variation does not seem very appropriate.

e Two, the BAGHEERA model calculates its coefficients with a group of clients. Hence,
its estimation on one individual client may possibly be less accurate than a data-
driven individual estimation model.

e Three, through our 70 examples, we find several clients misplaced in the groups
with the qualitative information: the observations in the data base show that the
qualitative information is not a satisfactory criterion for group discrimination. As a
matter of fact, relying on qualitative information to assign clients to different groups
can lead to assignment errors that impact the validity of the BAGHEERA model.

The difference in SSE between the NW and the LL estimators is fairly small with this
example, as only one-year cold-temperature data were used as the test data. In other
words, the LL estimator presents many advantages with respect to the NW estimator.
Nevertheless, the improvements with LL fit do not necessarily produce a better fitness load
function in our case. We believe that since near the TMB temperature the power function
is rather flat, there is no necessity to try local polynomial regressions of higher degree.

An adapted estimator, LL2, is also proposed. It isolates the area where scarce samples
are collected. As it continues the local trend drawn by the “credible data”, in our example it
gives a slightly higher estimation than the other two nonparametric estimators. We believe
that with enough data, especially with the arrival of smart meters, the NW and the LL
estimators can give accurate estimations in the TMB condition. On the other hand, if we
do not have sufficient data, particularly near the TMB region, it is better to adapt the LL2
estimator, which gives more reliable estimation values for distribution network planning.

Since our model is individualized and completely data-driven, compared with the
BAGHEERA model and most of the pre-defined group methodologies, the proposed method-
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ology is more flexible in facing new types of consumption patterns. As a matter of fact,
pre-processing steps such as discrimination of clients in groups are omitted, leading to a
reduced computational complexity. Since the computational time is short, the model can
be frequently updated. Thus, compared with the BAGHEERA model, whose coefficients
are updated every one or two years, the accuracy of the proposed estimation model is
guaranteed.

6.3 Validation study

In this section, we validate our methodology by exploiting all the clients’ data. Two study
cases are set up in order to check the accuracy of the nonparametric estimators for the
“median” models. As explained, we have two-year recording load data of 35 off-peak/on
peak clients, in these studies, the first-year data of the client are used to build up models,
while the second-year data are used as the test data.

Learning data: 1st year data
Test data: 2nd year data

Study case no.1: T(Average daily temperature)< 0°C

Scenario 1: 24-hour data with T< 0°C
Scenario 2: 8-hour off-peak data with T< 0°C

Study case no.2: 30 coldest days

Scenario 1: 24-hour data during the 30 coldest days
Scenario 2: 8-hour off-peak data during

the 30 coldest days

Figure 6.14: Study cases and scenarios in the validation study

As explained in the subsection 6.2.b, we aim at validating the models in the neigh-
borhood conditions of the TMB temperature, for the reason of scarce samples collected
in the TMB condition. Figure 6.14 summarizes the designed study cases and scenarios
in the validation study. The first study case is an extension of the example introduced
in subsection 6.2.b, i.e., the test data being the second-year data when the temperature
is inferior to zero degree. Two scenarios are compared: during the whole test period and
during the off-peak test period. The off-peak period is interesting for the validation study,
since the peak loads mostly happen during this period.

Figures 6.15 and 6.16 show the comparison results of the two scenarios. Only the
clients who have the coherent data during the two years are included in the study, i.e., the
first year inferior to zero degree data and that of the second year having the same mean
and standard deviation values proved by the statistical tests. In both scenarios, most of
cases, the nonparametric estimators have a better precision than the BAGHEERA model,
committing less SSE.

As a matter of fact, regarding the first study case, the number of days in the test set
depends on the temperature variation of the test year. For instance, sometimes, only two
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Figure 6.15: Study case no.l, scenario 1: off-peak/on-peak option clients, comparison of
SSEs of BAGHEERA, NW, LL and LL2 estimators on the days below 0 degree during the
second year

Comparison with below O degree

15x 1Q7 qff—peqk hours qlata -

y,g Bl BAGHEERA
2 CINW

§ 10+ [ JLL |
5 ¥

Qo

S

o St |
n

e

>

n

3 51314181921 24252632333435
Client 's number

Figure 6.16: Study case no.l, scenario 2: off-peak/on-peak option clients, comparison of
SSEs of BAGHEERA, NW, LL and LL2 estimators on the off-peak hours of the days below
0 degree during the second year

days in the second year are inferior to zero degree. As a result, in such cases, we compared
the estimators based on very few data, and the compare results are far to be pertinent.
Therefore, in the second study case, we compare the estimators on a 30 day database,
where the coldest temperatures occurred. Same as the first study case, only the clients
having the coherent data during the 30 coldest days are included. Figures 6.17 and 6.18
show the results on the whole test period and off-peak test period scenarios. The results
indicate that the nonparametric estimators have a better precision.
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Figure 6.17: Study case no.2, scenario 1: off-peak/on-peak option clients, comparison of
SSEs of BAGHEERA, NW, LL and LL2 estimators on the 30 coldest days of the second-
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Figure 6.18: Study case no.2, scenario 2: off-peak/on-peak option clients, comparison of
SSEs of BAGHEERA, NW, LL and LL2 estimators on the off-peak hours of the 30 coldest
days of the second-year data

6.4 Discussion

In this section, we open a discussion on the definition of the upper bound for planning
needs in distribution networks. First, we present some citations from the internal memo
reports of the French electricity company EDF. Next, we focus on the calculation of the
upper bound in our proposed method. In the end, we give some clues for the validation
study for both our proposed methods and the BAGHEERA model. The first trial results
are shown. We hope that this discussion can help readers getting a better understanding
on the definition and the utilization of the upper-bound estimations. At the same time,
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we hope to attract the attention of the load estimation model designers and the network
planners to the validity of the models.

6.4.a Citations of the upper-bound definitions in EDF reports

We have found the following citations in the internal memo reports of the French electricity
company EDF:

e [133]: “the new (BAGHEERA) model will provide the 10-minute maximum power
having a risk of v being exceeded, for a given temperature. Furthermore, it will give,
for each network section and for a given temperature, one mean value estimation
and one variance estimation of the 24 powers averaged from 10-minute data for every

hour for the concerned group of clients.” 2

e [132]: “thus, the network planer accepts to take a certain risk -, an arbitrary choice.
The model results a power level P,, which has the « probability being exceeded.”
“The load model produces 48 powers required by each load point, that the electric
calculation takes into account for the calculation of 48 voltage-drops and deduce
the maximum value. Thus, the assumption of the power synchronization can be
canceled.” 3

e In [118], the risk (also called margin) calculation in the BAGHEERA model is stated
in details.

The objective of the BAGHEERA model indicated in [148] is “to estimate the risk
of the actual power required by a group of clients exceeding the maximum power.”
“The quality of the network planning is measured by the maximum voltage-drop on
the MV feeder among 48 voltage-drops.” “The idea is to define a planning power or
a power for a group of clients, which must not be exceeded with a risk inferior to or
equal to 10%.” *

[118] shows the mathematical demonstration of the risk v, and argues that:
VI'>TMB, ~-= p(P > Pthreshold) < {OH-(l—CM)p(P > })threshold|T = TMB)} (612)

where o = p(T < TMB) = 0.003. Since a < 1, we have v= p(P > Pipreshold) ~» p(P >
Pinreshord|T = TM B), which signifies that the probability of the powers P excess the

2Original sentences in French: “Le nouveau modéle fournira, pour une température donnée, la puissance
10 minutes maximale ayant un risque v d’étre dépassée. En outre, il donnera pour chaque troncon de réseau
et pour une température donnée, une estimation de la moyenne et de la variance des 24 puissances moyennes
10 minutes appelées heure par heure par ’ensemble des clients concernés.”

®Original sentences in French: “Le planificateur acceptant donc de prendre un certain risque -, résultat
de son arbitrage, le modéle lui donne un niveau de puissance P, qui a cette probabilité v d’étre dépassée.”
“Le modeéle de charge produit 48 puissances appelées par point de charge, que le calcul électrique prend en
compte pour calculer 48 chutes de tension et en déduire la valeur maximale. Il n’y a plus d’hypothéses sur
le synchronisme des puissances.”

4Original sentences in French: “Contexte: estimer le rique de dépassement de la puissance maximale
appelée par un groupe de clients.” “la qualité est appréciée par la chute de tension maximale sur le
départ, maximum des 48 chutes de tension horaires” “L’arbitrage se fait en définissant << une puissance de
planification > ou puissance d’un groupe de clients qui ne peut étre dépassée qu’avec un risque inférieur
ou égal a 10%.”
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power threshold Pipreshola €quals to the probability of the powers excess the power
threshold under the TMB temperature, as long as attaining the TMB temperature
being a rare occurrence. In other words, the probability of going beyond a certain
threshold power in all temperature conditions is equivalent to the probability of
going beyond the same threshold power in the TMB condition, as the probability of
occurrence below the TMB temperature is near zero.

Next, in this report [118], the hourly model is built, they assume that for a given
temperature, a given day type and a same tariff period (off-peak or on-peak period),
the average 10-minute power require by the client in a same category follows a same
distribution.

Since the distribution followed by one particular client’s power is hard to be identified
as a known distribution, a group of clients’ power in a given category is written as a
linear model:

Po(t) = me(t) + Koo (t) (6.13)

where m.(t) is the mean value of the power of the group of clients at time “t”, o.(t)
is the standard deviation of the power. k/ is the coefficient different from category
to category. Its value is estimated by bootstrapping method.

As a matter of fact, from the above citations, we can conclude that the required upper
bound is actually composed by hourly values and the assumption that the power at the
same hour of the clients in the same category, at the same temperature, and for the same
day type, follows a same distribution is made in the BAGHEERA model. Thus, a 10% risk
is actually taken for every time step. In order to comply with the voltage-drop calculation
presented in the section 5.3, detailed estimated power thresholds at every time step are
required, taking coincident effect into consideration (subsection 5.1.a). The definition of
the upper bound in the reports of EDF, in our opinion, should highlight that the 10% ()
rigk is taken for every time step.

6.4.b Upper bound in the nonparametric models

The upper-bound estimation of our method is inspired by the BAGHEERA model. The
10% threshold power is calculated for every time step. After bring all the heating period
samples to the TMB condition (figure 6.11), we assume that the hourly power consumption
of a client on a given day type follows a same distribution. Figure 6.19 shows the samples,
which are extrapolated to the TMB condition, being overlapped. The kernel density es-
timation (subsection 6.1.d) is applied in order to calculate the 10% border for each time

step °. In figure 6.19, ngmn,m =1,---,48 stands for the estimated median value curve,
(m)

hrosholgs T = 1,48 stands for the estimated 10% upper-bound curve.

and

°In order to be coherent with the Linky’s sampling time, the time step herein is equal to 30 minutes,
whereas the output of the BAGHEERA model is on an hourly basis.
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Figure 6.19: 10% hourly power excess probability threshold and median value for every time
step (30 min/step) (e.g.: the Off-peak/on-peak option client no.5). Asterisks: estimated
powers under TMB condition. Solid curve: estimated threshold powers, dotted curve:
estimated median powers.

6.4.c Validation trial on the upper-bound estimation

Same to the “median” models (section 6.3), we try to analyze the validity of the upper-
bound models by comparing some critical values in the measurements, with the upper
bounds estimated by the BAGHEERA model and the nonparametric models. The first-
year data is used as the learning data, building models, and the second-year data is used
as the test set. The critical values we choose are the “2.5h data” and the “0.03% data”.

As explained in subsection 5.3.b-i, theoretically, the power threshold that we define is
in average exceeded during 2.5 hours, or 0.03% of a year’s data. The test data, second-
year 30-minute data are arranged in decreasing order, and the 5th largest is assigned as
the “2.5h data”. The “0.03%” data is correspondent to the value calculated by the kernel
density estimation on the second-year data. In figure 6.20, the BAGHEERA, the NW, the
LL, and the LL2, respectively correspond to the most important values in the upper-bound
estimations with the first-year data.

The ideal case is that the four estimated upper bounds (obtained by the BAGHEERA,
the NW, the LL, and the LL2) are close to the critical measurement values. This means
that the estimations of the upper bound based on the first-year data are compatible with
the second-year data. However, in figure 6.20, it is not often the case. We can find some
plausible explanations in their plots of power data.

Figure 6.21 plots the average daily power consumption of client no.22 during two years.
We can see from figure 6.20 that for client no.22, the measurement critical values of the
second-year data are higher than output of any estimation model based on the first-year
data. As stated in the first two subsections, the daily upper-bound estimation is composed
by 24 (or 48 in models with 30-minute step time) mean average estimations and 24 (or
48 in models with 30-minute step time) risk (margin) estimations. The mean average
estimations are mainly dependent on the daily average, and the risk (margin) estimations
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Figure 6.21: Power consumption of client no.22 during two years (July 01, 2004 ~ June
30, 2006). The vertical line separates the two-year period.
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are in close relationship with the dispersion (uncertainty) on every time-step. Thus, it is
easy to understand that because of the incompatibility in the data, more specially, the
consumption level of the first year being much lower than the second year, the estimation
of the upper bound based on the first-year data cannot cover the measurement critical
values collected in the second year.

Let the client no.17 be another example. We can see in figure 6.20 that the measurement
critical values collected in the second year are smaller than the upper-bound estimations
provided by the 4 estimators. Figure 6.22 shows daily average power plot of client no.17
during two successive years. The first-year consumption level is slightly higher than the
second year. Figure 6.23 illustrates the standard deviation values on every 30-minute. The
standard deviation value Sd,, on time step m is defined such that:

K
Sdm = \j i E(Xi,m _Yi)z (614)
K i=1

where X, is a measurement collected on the i-th day, m-th time step, K is the total
number of days participating to the calculation, and X; is the i-th daily average.

We can see in the figure 6.23 that the first-year standard deviations are also slightly
higher than those of the second year. Thus, both the higher daily average values and the
higher standard deviations result higher estimated values than the measurement critical
values taken in the second year.

Of course, here we presented the simplified explanations for the examples. A more
precise explanation takes into account numerous factors applied in the constitution of the
upper-bound estimation, such as the correlation between the daily average power and the
daily temperature, and the distribution followed by samples on each time step, etc. In
this subsection, we aim at giving an idea for the validation of the upper-bound estimation.
Even though that the BAGHEERA model has been put into service for more than 20
years, and that we can nearly say that the validity of the model is approved in practice,
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Figure 6.22: Power consumption of client no.17 during two years (July 01, 2004 ~ June
30, 2006). The vertical line separates the two-year period.
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Figure 6.23: 30-minute time step standard deviation(sd) of client No.17
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we believe that for the optimal balance of the network security and the economic benefice,
the question of the validation of the estimation model output should be raised.
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6.5 Conclusion and perspective

This chapter presents a novel individual load estimation model based on nonparamet-
ric methods for power distribution network planning. Making no hypothesis on the load
function and being completely data-driven, the method is more objective in providing
accurate maximum and minimum individual load estimations. Three different nonpara-
metric estimators are proposed, and the choice of estimator under different data conditions
is discussed. The nonparametric models are compared with the current industrial model
BAGHEERA on the test data. Validation study cases are designed and carried out for
the comparison of precisions of different estimators. We argue that our method is more
adapted and gives more reliable estimations. Discussion dedicated to the upper-bound
estimations is brought up.

As presented in the subsection 5.3.b-i, the threshold power has a 0.03% (0.3% attaining
TMB temperature and taking a 10% excess probability at TMB temperature) probability
being exceeded by the measurements. Therefore, without extrapolating data to the TMB
temperature, the problem can be converted into the calculation of an extremal event, which
includes finding extreme values whose probability of occurrence is more extreme than any
sampled observation. Ezxtreme value distribution can be determined based on sound math-
ematical principals, such as the Generalized Extreme Value (GEV) distribution [119, 150],
Generalized Pareto Distribution (GPD) [151] and Quantile based methods (Hill’s estimator
[152], Pickands estimator [153], Moment estimator [154], to name a few). Comparison then
is to be made among threshold powers obtained by different methods.

For further industrial implementation, however, more considerations need to be taken
into account, such as the feasibility of 35 million individual models on French territory and
the frequency to update these models, among others.






Chapter 7

General conclusion and perspective

7.1 Conclusion

In this report, we tackled two distinct load model problems in distribution networks for
operation need and planning need. Recording detailed individual loads, the smart meters
in smart-grid context enable the design of the accurate forecast models on the LV level,
and the individual load estimation models.

Thus, after a first general introduction in chapter 1, we divided the report into two
parts to answer respectively the two needs: chapters 2, 3, and 4 contribute to the short-
term load forecasting issue in the need of network operation; chapters 5 and 6 deal with
the load estimation model in the need of network planning. Three models are developed,
and the validity of the models is tested with real measurements collected in the French
distribution networks.

In the first part, we selected the time series method from the classical approach family
and the neural network method from the AI approach family after a thorough review of
the load forecasting literatures in chapter 2. These two methods are respectively depicted
in chapters 3 and 4.

e The time series method divides the data into three parts: the trend, the cyclic com-
ponents, and the random errors. The first two deterministic parts are designed into
parametric models. The trend model takes into account the temperature, the time,
and the day types. The cyclic model is composed of Fourrier components, whose
frequencies are found by the smoothed periodogram technique. The residual analysis
shows that there is hardly any possible amelioration on the forecasting results with
other classical approach.

The weather uncertainty results a decrease in precision in the load forecasting model.
We showed that despite of the weather uncertainty, our proposed time series model
still largely outperforms the reference model: the naive model.

e Having a universal approximation capacity and a great mapping capacity in dealing
with complex nonlinear relationship, neural network can provide superior forecasting
performance to classical methods [99]. In most of works dedicating in applying neural
networks to the short-term load forecast, it is declared that there is no consistent
methodology for variable selection for neural network model [106] and it is often
observed that choices of the model are not systematically justified and the results are
not well commented or not presented in a clarified way [39, 28].

We focus on the methodology of model design, i.e., variable and model selections,
for the neural network model. The variable selection is based on the orthogonal
forward regression, ranking the variable candidates in the order of the pertinence
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to the predicted load. The model selection is based on the VLOO process, which
estimates the generalization capacity of the model. The load curve is decomposed
into the daily average power and the intraday power variation parts, in order to
reduce the complexity of the load model. The efficiency of the selection strategy is
proven with the real MV /LV substation loads.

In the second part, we tackled the individual load estimation model. After a review
of the load models applied in some countries, and a detailed presentation of the load
estimation model of the French DSO in chapter 5. We introduced the idea of building the
individualized load estimation model.

e A completely data-driven nonparametric model, making no prior hypothesis to the
relationship between load and variation of the temperature, is proposed in chapter
6. Three different nonparametric regressors are designed, for the different data con-
ditions. Validation study by comparing the estimation precision of the BAGHEERA
and the nonparametric models on the same data shows that the nonparametric es-
timators have a better precision than the BAGHEERA model. A discussion of the
definition of the uncertainty threshold for the voltage-drop calculation is developed.

These three load models answer the total requests of the objectives described in chapter

7.2 Perspective

e The proposed short-term load forecasting models have a better precision than the
naive model. However, in terms of efficiency and benefit brought to the ADA func-
tions, they are not yet quantified. Thus, further study of integrating the designed
load forecasting models to the ADA functions can be conceived.

e The proposed neural network design methodology seems a very promising way for the
short-term load forecast, providing a more accurate load forecast than the time series
method. It can be extended to all types of load forecast, for instance, the reactive
power. This first study is quite satisfactory. However, some research efforts are still
required for the following reasons:

In the dissertation, we have presented using the orthogonal forward regression for
the variable selection of neural network model. I. Drezga and S. Rahman commented
in their paper [106] that there is no consistent methodology for determining relevant
variables for ANN based STLF. They explained that the neural network models
are designed for modeling nonlinear complex functions, whereas the input variables
are for most of the time selected based on the linear or the local-linear correlation
coefficients.

In our methodology, the secondary candidate variables are conceived in order to
take into account the nonlinearity of the model. The secondary candidate variable
represents only the product effect between two primary variables. Nevertheless, other
nonlinear combination forms are ignored.
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Moreover, the risk of selecting one non effective variable is estimated by the generation
of the probe variables. Due to the randomly shuffling effect, the number of retained
variables with the same risk is varied in different trials.

Other input variable design methodologies, such as the entropy analysis [115] and
phase-space embedding technique [106] could open some possible ways to improve
the efficiency of the model.

Wrapper presented in the subsection 4.3.a, on the other hand, being very computa-
tional costly, does not seem to perform well in our first trials.

We have observed a declining precision in the forecasting results in Appendix D
over time. As a non-stationary process, the forecasting model is suffered from slow
changes, because of the gradual load growths [20], etc. Therefore, the update fre-
quency for the model needs to be figured out in order to get the optimal performance.

e In subsection 6.3, we have shown that the nonparametric model has a better precision
compared to the BAGHEERA model on the mean value estimations. A discussion
was held, aiming to clarify the definition of the upper bound, whose value(s) directly
participate in the voltage-drop calculation. This discussion should be continued with
engineers in the DSO. The validation of the methodology for the upper bound
estimation is also a difficult task. Since few samples are recorded under the TMB
condition during the two-year period [3], the 10% excess probability is hard to validate
with the real measurements. The proposed methodology needs to gain the validation
from the industrial implementation.

Today, large amount of renewable energy integrate to the electrical network. Their
occurrences change the transits of the electrical lines. They can be considered as negative
electricity consumptions to the network.

Different from the traditional power generations (nuclear, fuel, and hydrogenation, etc.),
these distributed renewable energies (mainly from wind, photovoltaic, and biomass) so far
connected to the electricity distribution systems are intermittent, very dependent to the
weather conditions and can change instantly [155]. The accuracy of the forecast for these
power generations depend more on the quality of the forecasted influence factors than on
the efficiency of the predictive algorithm.

The influence factors for the photovoltaic energy for instance depend directly on the
cloud covering, the solar radiation, and the temperature [156]. Other parameters such
as the wind, the rain and the snow indirectly impact the photovoltaic energy generation
[155]. The great challenge is the accurate prediction on the cloud covering based on some
complex physical process, since it is much more difficult to predict than the mean daily
temperature. The wind power generation on the other hand, depend mainly the wind force,
the direction, geography situation and the type of the wind turbine. The prediction of the
influence parameters is beyond scope of this dissertation.

In order to correctly carry out the voltage-drop calculation for the operation need and
for the planning need, the renewable power generations need to be predicted. Two ways
are possible:

e a predictive model dedicated to the power generation
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e a model that predicts the aggregated value of the generation and consumption

Most of researches concentrate on the first track. There are mainly three categories
of models for the power generation predictive model: based on a physical model, on a
statistical model or on a hybrid model that combines the advantages of the two previous
ones [155]. The methods are similar to that of the load forecasting [155, 157, 158].

We suggest two models developed in this dissertation, the neural network model and
the nonparametric model to reply the demand in the second way. Because of the good
learning ability of the neural network model, if the influence factors are properly handled,
it is capable to map the complex nonlinear relationship between inputs and outputs. In
this case, the output of the model would be the forecast of the difference between power
production and electricity consumption. The variable and the model selection strategies
(sections 4.3.a and 4.3.b) can be easily implemented. Regarding the nonparametric model,
making no priori hypothesis on the load function and being completely data driven, can
be easily applied to the situation with the integration of the renewable power generations.

For future work, real consumption and power generation data should be tested on these
two models.
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Appendix A

Time series model’s result summary

The forecasting results of the time series method on the different MV /LV substations are
shown (table A.1, A.2) during the period from September 16, 2009 to October 27, 2010.

Table A.1: MV/LV substations, forecasting results: comparison between the naive model

and the complete Time Series (TS) model of one-day-ahead forecasts.

Substation

Naive model

MAPE(%)/MAE (kW)

TS model
MAPE(%)/MAE (kW)

ber 26, 2010)

VI_PAU(to June 29, 2010) 13.8/10.92 11.5/8.91
CE_MOU 17.1/4.12 15.1/3.65
CE_CHA 16.0/3.77 14.5/3.34
CE_CER 12.7/8.28 11.7/ 7.29
VI_PRI 13.3/8.66 11.5/7.18
VI_LOG (January 3, 2010 to Octo- | 18.9/8.82 16.4/7.12

Table A.2: MV/LV substations, forecasting results: comparison between the naive model

and the complete Time Series (TS) model of two-day-ahead forecasts.

Substation

Naive model

MAPE(%)/MAE (kW)

TS model
MAPE(%)/MAE (kW)

ber 27, 2010)

VI_PAU(to June 30, 2010) 16.2/13.17 12.8/10.25
CE_MOU 18.9/4.70 17.09/4.29
CE_CHA 18.7/4.57 16.3/3.86
CE_CER 14.9/10.05 13.2/8.53
VI_PRI 15.8/10.82 12.9/8.48
VI_LOG (January 4, 2010 to Octo- | 18.9/8.82 16.6/7.23

The forecasting results of the time series method on the different MV feeders are shown
(table A.3, A.4) during the period from September 16, 2009 to September 22, 2010. Due to
the data missing in the MV feeder’s data set, the results are given in discontinued periods.
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A. Time series model’s result summary

Table A.3: MYV feeders, forecasting results: comparison between the naive model and the

complete Time Series (T'S) model of one-day-ahead forecasts.

Foeder period Naive model TS model
MAPE(%)/MAE (kW) | MAPE(%)/MAE (kW)
AL Sept.16, 2009~ Sept.21, 2010 | 9.7/157.26 9.3/145.84
Sept.16, 2009~ Feb. 26, 2010 | 10.8/164.97 7.8/124.14
VI Apr.1, 2010~ Jun.30, 2010 12.2/125.98 10.7/101.93
Jul.14, 2010~ Sept.21, 2010 10.5/88.70 8.5/70.70
CL Sept.16, 2009~ Feb. 23, 2010 | 13.4/179.39 10.8/145.38
Mar.9, 2010~ Sept.21, 2010 16.7/166.48 12.3/119.94
Sept.16, 2009~ Feb. 26, 2010 | 13.2/386.80 9.9/299.83
CE Apr.1, 2010~ Jun.30, 2010 15.3/312.88 13.6/265.56
Jul.24, 2010~ Sept.21, 2010 15.4/270.57 11.6/197.94

Table A.4: MV feeders, forecasting results: comparison between the naive model and the

complete Time Series (T'S) model of two-day-ahead forecasts.

Foeder period Naive model TS model
MAPE(%)/MAE (kW) | MAPE(%)/MAE (kW)
AL Sept.17, 2009~ Sept.22, 2010 | 13.3/214.61 10.7/171.48
Sept.17, 2009~ Feb. 27, 2010 | 16.0/243.88 9.2/149.25
VI Apr.2, 2010~ Jul.1, 2010 18.8/188.02 12.3/116.14
Jul.14, 2010~ Sept.22, 2010 15.0/125.80 9.7/79.90
CL Sept.17, 2009~ Feb. 24, 2010 | 20.0/264.68 12.7/173.69
Mar.10, 2010~ Sept.22, 2010 | 25.8/248.50 14.6/140.92
Sept.17, 2009~ Feb. 27, 2010 | 19.9/570.99 12.0/365.20
CE Apr.2, 2010~ Jul.1, 2010 24.6/490.67 15.0/289.31
Jul.25, 2010~ Sept.22, 2010 23.9/419.01 13.5/225.45




Appendix B

Binary hypothesis test

Hypothesis test is one of the most important tools in the statistic applications. Decisions
are often required to make after carrying out binary hypothesis tests on the sample based
information.

In a general case, people formulate two complementary hypothesis on the studied pop-
ulation: null hypothesis and alternative hypothesis. Null hypothesis denoted by Hy often
states that there’s no difference between the procedures. The alternative hypothesis de-
noted by H 4 on the other hand, supposes that there are differences between the examined
procedures.

o KPSS test

In the KPSS tests, the null hypothesis states that an observable time series is sta-
tionary around a deterministic trend. Let Xy,t = 1,2,---, N be the observed series,
it is decomposed into the sum of a deterministic trend ¢, a random walk ; and a
stationary error ¢, such that:

Xi=y+Bt+e

The random walk 4 = y4_1 + ¢, where i is an independent and identically distributed
(ii.d.) Gaussian distribution A(0,07%). To test the stationarity of X; around the
deterministic trend Ft, the null hypothesis Hy is set as 03 = (0. Tt means that the
random walk 7, is stationary against the alternative hypothesis H 4: 02 > 0.

The decision of whether or not we accept Hp is made by comparing a calculated
p-value with a predefined type I error. The bigger the p-value is, the greater chance
that we accept Hp. The consistency is measured by calculating the probability of
getting the test statistic value greater than the observed value from our sample data,
assuming the Hy is true [159]. The type I error symbolizes the false rejection of the
null hypothesis Hy. Conventionally, 5% is chosen as the type I error (also known
as the significance level), which corresponds to 1 in 20 chances being wrong. Based
upon the sample distribution of the estimator for the parameter, the critical value
is obtained by using the probability tables. The acceptance region and the rejection
region are defined by the critical value. Results of the KPSS test on the trend removal
series is presented as follows:

KPSS Test for Level Stationarity data: trend removal consumption data
KPSS Level = 0.147, Truncation lag parameter = 32, p-value = 0.1
Message d’avis :

In kpss.test (W}) : p-value greater than printed p-value

“p-value greater than printed p-value”, which certificates the stationary of the series.
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B. Binary hypothesis test

o ADF test

ADF test is a test for a unit root in a time series sample. The tests are based on the
following three regression forms:

1. Without constant and trend AX; = 6X;_1 + Zf:l ;i AX_; + €
2. With constant AXy =+ 06X, + X0 | ;AX;; + €
3. With constant and trend AX; = a+ Gt +06X; 1 + ¢

where X; is the studied series, and A represents the difference operator. The number
of maximum lags p is determined by minimizing the Bayesian information criterion
(BIC) [160] or Akaike information criterion (AIC) [161]. Parameters {a, 3,0, ; } are
computed with OLS. ¢ corresponds to the random error.

The null hypothesis of the ADF test is § = 0 (The data needs to be differenced to
be stationary) versus the alternative hypothesis 6 < 0 (The data is stationary). An
example of ADF test is given below:

Augmented Dickey-Fuller Test

data: trend removal consumption data

Dickey-Fuller = -22.1512, Lag order = 26, p-value = 0.01
alternative hypothesis: stationary

Message d’avis :

In adf.test (W}) : p-value smaller than printed p-value

“p-value smaller than printed p-value”, which confirms that the data is stationary.
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Example of ANOVA nullity test

Suppose that we have the following equation:

Wi = ¢1 cos(2mwit) + s18in(2mwit) + o cos(2mwat) + sosin(2wwat)

+ 3 cos(2mwst) + s3sin(2mwst) + ¢4 cos(2mwyt) + s4sin(2mwwyt) (C.1)

The ANOVA nullity test can be applied on the estimated parameters c;,s;(i = 1,---,4) to
check if each regression part is significant for the response variable. The following shows
the output of the test in “R” environment:

Analysis of Variance Table

Response: Trend removal data

Df Sum Sq Mean Sq F value Pr(>F)

C1 1 4.8271e+10 4.8271e+10 392.9564 <2.2e-16 * % %
S1 1 3.1526e+4-07 3.1526e+07 0.2566 0.612450

) 1 1.3067e+10 1.3067e+10 106.3697  <2.2e-16 * % %
S2 1 1.1836e+09 1.1836e+4-09 9.6355 0.001913  *=
c3 1 1.8030e+11 1.8030e+11 1467.7810 <2.2e-16 * % %
S3 1 8.7868e+09 8.7868e+09 71.5296 <2.2e-16 * % %
cq 1 1.1978e+11 1.1978e+11 975.0600 <2.2e-16 * % %

Sa 1 6.6406e+09 6.6406e+09 54.0584 2.072e-13  * % *
Residuals 12087 1.4848e-1-12 1.2284e--08

Signif.codes: 0 ‘x % *” 0.001¢*%” 0.01‘+’ 0.05¢.” 0.1’ 1

The analysis of variance table is organized in lines, each of which denotes the variation
assigned to every regression part. In our example, there are 8 regression parts and one
residual part. The “Df” in the table stands for “degree of freedom”. Every independent
input/output vector that participates for the model estimation is counted as one Df. In the
regression model, each regression part occupies one degree of freedom, and the residuals
keep all the rest of the Df of the data set. In this example, we have 12087 Df on the
residuals, plus 8 Df, and we must also count 1 for the intercept part. Thus the number of
input/output examples for the estimation use is 12096 (12087+8+1). “Sum Sq” denotes
the sum of square, which represents the sum of squared deviations. “Mean Sq” denotes
the mean of square, which is an estimator of average squared error between the estimated
value and the real value. These two terms indicate how where the correspondent regression
part explain the variability of the final observations. The greater value they are, the bigger
variability the correspondent regression part explains.
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The F' value is the ratio between Mean sq of regression part and Mean sq of the residual.
As a matter of fact, for each line, we compare the variability explained by the regression
part with the one explained by the residuals. Hy is set up as: There’s no difference between
Mean sq of regression part and that of the residuals. The alternative hypothesis H4 on the
other hand defines that there are differences in means, so the regression part is significant
to the response variable. The critical value can be found in the F distribution table with
a give a level, the Df of the regression part and the residuals’. In our example, the critical
value is FO.O5;8,12087 =1.94.

The p-value represents the probability that we accept Hy. In a word, the greater the F
value is, the smaller the p-value will be. This later signifies that Hy has a greater possibility
to be rejected. In the software “R”, the significance is both expressed by the p-value and
asterisks. The result is flagged with“#”, when p-value is less than 0.05, with “*”, when
p-value is less than 0.01, and with three “* % *” when p-value is less than 0.001.

The ANOVA table in our example indicates that the “s;” regression part is not signif-
icant for the variability of the studied variable. As a result, the regression equation C.1 to
the ANOVA nullity test is adjusted as:

Wi = ¢1 cos(2mwit) + co cos(2mwat) + so sin(2mwat)

+ 3 cos(2mwst) + s3sin(2mwst) + ¢4 cos(2mwyt) + s48in(2mwwyt) (C.2)
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Comparison results of naive model, time series
model and neural network model

In this appendix, we compare the detailed results of three models. Results on CE__MOU
and CE FRO substations are shown. The first one is a substation constituted mainly by
residential clients. The other one is a substation that only supplies to an industrial client.
Lack of information, time series model is not suitable for the industrial substation short-
term forecast. Therefore, for substation CE_FRO, the comparison is made only between
naive model and neural network model. The entire available data for this study is from
September 9, 2009 to April 5, 2012 (940 days). We applied the maximum data in this study
since that we wanted to show the performance of the models over time and to support the
discussion on the update frequency of the neural network model in chapter 4. The testing
period can only begin one year after the beginning of the available data for considering
that the neural network model takes one-year period as the learning data. The testing
period is from September 16, 2010 to April 5, 2012 (568 days).

As explained in chapter IV that with different risks taken in selecting one non effective
variable can lead to different number of variables to both the daily average power model
and the intraday power variation model. We have also explained in chapter 4 that even
with the same risk taken, because of the random shuffling effect in creating the probe
variables, the variable numbers of different trials can be varying. We present the result on
the substation CE__MOU in the following:

1. 0% risk for the average power model and the 20 top ranking variables for the power
variation model

Table D.1: 6 variables for the daily average power model and 19 variables for the
intraday power variation model. “NM”, “T'S”, and “NN” respectively stand for Naive
model, Time Series model, and Neural Network model. “PH” stands for Public Holi-

day(s).

MAE (kW) MAPE (%)

NM |TS [NN |NM [TS |[NN
Sept. 2010 (15 days) 333 273 [289 [229 [180 [21.2
Oct. 2010 409 [341 |316 |180 [152 |147
Nov. 2010 513|479 [3.77 |133 [123 [101
Nov. 2010 (without PH) 514 464 [3.61 |132 [1L7 [97
Dec. 2010 527 448 [4.09 |83 [71 |66
Dec. 2010 (without PH) 519 444 413 |83 |71 |67
Jan. 2011 512 | 457 [3.97 |91 [81 |72
Jan. 2011 (without PH) 510 455 [3.99 |91 [81 [72
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Table D.1 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Feb. 2011 517 | 427 [379 [109 |88 8.2
Mar. 2011 479 413 [373 |[133 [11.3 | 103
Apr. 2011 338 [3.19 [292 |187 |[175 |175
Apr. 2011 (without PH) 339 [323 [294 |184 [174 |173
May 2011 266 |225 [266 |198 |16.7 |221
May 2011 (without PH) 257 223 [260 |191 [163 |216
June 2011 3.02 [269 [261 |228 [203 |1938
June 2011 (without PH) 298 268 [264 |225 [204 |201
July 2011 252 220 [202 |200 [176 |16.0
July 2011 (without PH) 238 219 [215 |194 |178 |174
Aug. 2011 3.06 |272 [246 |24 [231 |205
Aug. 2011 (without PH) 3.05 |272 [248 |251 [229 |206
Sept. 2011 2.75 236 [228 |217 [188 | 186
Oct. 2011 361 [293 [317 |192 [165 |19.0
Nov. 2011 440 |353 [381 |[158 [129 | 14.2
Nov. 2011 (without PH) 440 349 [382 [157 [127 | 142
Dec. 2011 459 |376 |427 |107 |87 10.4
Dec. 2011 (without PH) 471 379 [421 [110 |88 10.3
Jan. 2012 484 | 4.05 [429 [102 |86 9.6
Jan. 2012 (without PH) 485 |4.04 [432 [102 |86 9.6
Feb. 2012 473 | 489 [444 |92 9.7 9.1
Mar. 2012 480 |429 [380 [151 [138 | 124
Sept. 16, 2010 ~ Mar. 01, | 480 [4.16 |[3.68 |129 |[11.0 | 105
2011 (Total 167 days)
Sept. 16,2010 ~ Apr. 05,2012 | 4.09 |[3.56 |3.55 |159 |138 |13.9
(Total 568 days)

2. 0% risk for the average power model and the 30 top ranking variables for the power
variation model

Table D.2: 6 variables for the daily average power model and 23 variables for the
intraday power variation model

MAE (kW) MAPE (%)

NM |[TS |[NN [NM |[TS |NN
Sept. 2010 (15 days) 333 273 [293 |229 |180 [2L5
Oct. 2010 409 341 [315 [180 |152 | 147
Nov. 2010 513 | 479 [377 [133 |[123 [10.1
Nov. 2010 (without PH) 514 [4.64 [363 [132 [117 [9.6
Dec. 2010 527 448 [406 [83 |71 [6.6
Dec. 2010 (without PH) 519 444 [410 |83 |71 |67
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Table D.2 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Jan. 2011 512 | 457 [395 |91 8.1 7.2
Jan. 2011 (without PH) 510 | 455 [3.96 |9.1 8.1 7.2
Feb. 2011 517 | 427 [372 |109 |88 8.5
Mar. 2011 479 413 [379 [133 [11.3 |105
Apr. 2011 338 [319 [279 |187 [175 |165
Apr. 2011 (without PH) 339 [323 |28 |184 |[174 | 164
May 2011 266 225 [260 |198 |16.7 |216
May 2011 (without PH) 257 223 [254 |191 [163 |21.1
June 2011 3.02 [269 [270 |228 [203 |207
June 2011 (without PH) 298 268 [273 |225 [204 |21.0
July 2011 252 220 [209 |200 |176 |16.8
July 2011 (without PH) 238 [219 [222 |194 [178 | 182
Aug. 2011 3.06 |272 [252 |24 [231 [2009
Aug. 2011 (without PH) 3.05 |272 [253 |251 [229 |208
Sept. 2011 2.75 | 236 [223 |217 |188 | 180
Oct. 2011 361 [293 [312 |192 [165 |18.7
Nov. 2011 440 |353 [383 [158 [129 | 142
Nov. 2011 (without PH) 440 349 [385 [157 [127 | 143
Dec. 2011 459 | 376 |4.32 [107 |87 10.5
Dec. 2011 (without PH) 471 379 [427 |[11.0 |88 10.5
Jan. 2012 484 1405 [453 [102 |86 10.2
Jan. 2012 (without PH) 485 |4.04 [456 [102 |86 10.3
Feb. 2012 473 | 489 432 |92 9.7 9.0
Mar. 2012 480 1429 [38 |[151 |138 | 126
Sept. 16, 2010 ~ Mar. 01, | 480 [4.16 [3.69 |[129 [11.0 | 105
2011 (Total 167 days)
Sept. 16,2010 ~ Apr. 05,2012 | 4.09 |[3.56 [3.41 |[159 [138 | 14.0
(Total 568 days)

3. 0% risk both for the average power model and for the power variation model

Table D.3: 6 variables for the daily average power model and 40 variables for the

intraday power variation model

MAE (kW) MAPE (%)
NM [TS |[NN NM [TS |NN
Sept. 2010 (15 days) 333 [273 [284 [229 [180 |[2009
Oct. 2010 409 |341 [299 |[180 [152 | 138
Nov. 2010 513 | 479 [356 |133 [123 |95
Nov. 2010 (without PH) 514 | 464 [343 |132 [11.7 |91
Dec. 2010 527 | 448 [392 |83 7.1 6.3
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Table D.3 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Dec. 2010 (without PH) 519 |4.44 ]398 |83 7.1 6.4
Jan. 2011 512 | 457 [388 |9.1 8.1 7.1
Jan. 2011 (without PH) 510 |455 [3.89 |9.1 8.1 7.1
Feb., 2011 517 | 427 [415 |109 |88 9.0
Mar. 2011 479 1413 [398 [133 [11.3 |[11.2
Apr. 2011 338 [3.19 [291 |187 |175 |174
Apr. 2011 (without PH) 339 [3.23 [291 |184 |174 |17.1
May 2011 266 225 [270 |198 [16.7 |225
May 2011 (without PH) 257 223 [260 |191 [163 |21.7
June 2011 3.02 269 [272 |228 [203 |207
June 2011 (without PH) 298 268 [274 |225 [204 |21.0
July 2011 252 220 [206 |200 |176 | 164
July 2011 (without PH) 238 [219 [225 |194 [178 | 182
Aug. 2011 3.06 |272 [258 |254 [231 |21.2
Aug. 2011 (without PH) 3.05 |272 [260 |21 [229 |21.3
Sept. 2011 2.75 | 236 [215 |217 [188 |177
Oct. 2011 361 [293 [3.090 |192 [165 | 189
Nov. 2011 440 353 [384 [158 [129 | 143
Nov. 2011 (without PH) 440 |349 [387 |[157 |127 | 144
Dec. 2011 459 | 376 |455 |10.7 |87 11.1
Dec. 2011 (without PH) 471 379 [452 [11.0 |88 11.1
Jan. 2012 484 405 [483 [102 |86 10.8
Jan. 2012 (without PH) 485 |4.04 [484 [102 |86 10.9
Feb. 2012 473 | 4.89 432 |92 9.7 9.0
Mar. 2012 480 429 [4.07 |151 [138 |133
Sept. 16, 2010 ~ Mar. 01, | 480 [4.16 [3.62 [129 [11.0 | 102
2011 (Total 167 days)
Sept. 16, 2010~ Apr. 05,2012 | 4.09 |[3.56 |3.45 |159 |[138 | 14.2
(Total 568 days)

4. 5% risk for the average power model and 0% risk for the power variation model

Table D.4: 10 variables for the daily average power model and 37 variables for the
intraday power variation model

MAE (kW) MAPE (%)
NM |[TS |[NN [NM |[TS |NN
Sept. 2010 (15 days) 333 273 [281 |229 |180 [20.7
Oct. 2010 409 341 [3.23 [180 |152 | 147
Nov. 2010 513 | 479 [356 [133 [123 |96
Nov. 2010 (without PH) 514 [4.64 [342 [132 [117 [9.1
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Table D.4 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Dec. 2010 527 | 448 [388 |83 7.1 6.2
Dec. 2010 (without PH) 519 |4.44 [3.90 |83 7.1 6.3
Jan. 2011 512 | 457 [388 |9.1 8.1 7.1
Jan. 2011 (without PH) 510 455 [391 |91 8.1 7.1
Feb. 2011 517 | 427 [372 |109 |88 8.0
Mar. 2011 479 |4.13 |38 [133 [11.3 | 108
Apr. 2011 338 [319 [298 |187 |175 |1738
Apr. 2011 (without PH) 339 [323 [298 |184 [174 |[175
May 2011 266 225 [264 |198 [16.7 |21.9
May 2011 (without PH) 257 | 223 [255 |191 [16.3 |21.1
June 2011 3.02 |269 [262 |228 [203 |202
June 2011 (without PH) 298 [268 [263 |225 [204 |203
July 2011 252 220 [211 [200 [176 |17.0
July 2011 (without PH) 238 219 [219 |194 |17.8 | 180
Aug. 2011 3.06 |272 [260 |24 [231 |223
Aug. 2011 (without PH) 3.05 272 [260 |251 [229 |[222
Sept. 2011 2.75 236 [233 |217 [188 |196
Oct. 2011 361 [293 [325 |192 [165 |203
Nov. 2011 440 |353 [411 |[158 [129 | 156
Nov. 2011 (without PH) 440 |349 |4.17 |157 |127 | 157
Dec. 2011 459 | 376 |473 |107 |87 11.7
Dec. 2011 (without PH) 471 | 379 [468 |[11.0 |88 11.6
Jan. 2012 484 |4.05 [533 [102 |86 12.1
Jan. 2012 (without PH) 485 |4.04 [535 [102 |86 12.2
Feb. 2012 473 | 489 [443 ]92 9.7 9.4
Mar. 2012 480 |429 [420 [151 [138 | 14.1
Sept. 16, 2010 ~ Mar. 01, | 480 [4.16 |[3.58 |129 [11.0 | 10.2
2011 (Total 167 days)
Sept. 16,2010 ~ Apr. 05,2012 | 4.09 |[3.56 [3.50 |159 [138 | 146
(Total 568 days)

5. 10% risk for the average power model and 0% risk for the power variation model

Table D.5: 10 variables for the daily average power model and 37 variables for the
intraday power variation model

MAE (kW) MAPE (%)
NM |TS [NN |NM [TS |[NN
Sept. 2010 (15 days) 333 273 [278 [229 [180 [206
Oct. 2010 409 [341 |320 |180 [152 |148
Nov. 2010 513 479 353 |133 |123 [95




166  D. Comparison results of naive model, time series model and neural network model

Table D.5 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Nov. 2010 (without PH) 514 464 [337 [132 [11.7 |89
Dec. 2010 527 | 448 [381 |83 7.1 6.2
Dec. 2010 (without PH) 519 |4.44 [385 |83 7.1 6.2
Jan. 2011 512 | 457 [381 |91 8.1 6.9
Jan. 2011 (without PH) 510 |455 [382 |91 8.1 7.0
Feb. 2011 517 |4.27 [370 |109 |88 8.0
Mar. 2011 479 | 413 [3.83 [133 |113 |10.7
Apr. 2011 338 [3.19 [294 |187 [175 |176
Apr. 2011 (without PH) 339 [323 [293 |184 [174 [172
May 2011 266 225 [262 |198 [167 |215
May 2011 (without PH) 257 223 [252 |191 [163 |206
June 2011 3.02 [269 [267 |228 [203 |206
June 2011 (without PH) 298 [268 [260 |225 [204 |2009
July 2011 252 220 [214 |200 |176 |16.8
July 2011 (without PH) 238 219 [225 |194 |178 | 183
Aug. 2011 3.06 |272 [252 |254 [231 |211
Aug. 2011 (without PH) 3.05 272 [253 |251 [229 |211
Sept. 2011 2.75 236 [232 |217 [188 |193
Oct. 2011 361 [293 [314 |192 [165 |295
Nov. 2011 440 1353 [394 |[158 [129 | 148
Nov. 2011 (without PH) 440 349 [401 |[157 [127 | 148
Dec. 2011 459 |376 |456 |107 |87 11.1
Dec. 2011 (without PH) 471 379 |448 |[11.0 |88 11.0
Jan. 2012 484 |4.05 [5.13 [102 |86 11.7
Jan. 2012 (without PH) 485 |4.04 [514 [102 |86 11.7
Feb. 2012 473 | 489 456 |92 9.7 9.7
Mar. 2012 480 429 [4.19 [151 |138 | 14.1
Sept. 16, 2010 ~ Mar. 01, [ 4.80 |4.16 |3.53 |129 |11.0 |10.1
2011 (Total 167 days)
Sept. 16,2010 ~ Apr. 05,2012 | 4.09 |[3.56 |3.46 |159 |[138 | 14.3
(Total 568 days)

6. 50% risk for the average power model and 0% risk for the power variation model

Table D.6: 24 variables for the daily average power model and 32 variables for the
intraday power variation model.

MAE (kW) MAPE (%)
NM [TS |[NN |NM [TS |NN
Sept. 2010 (15 days) 333|273 |280 |229 [180 [203
Oct. 2010 409 [341 |301 |180 [152 |138
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Table D.6 — continued from previous page

MAE (kW) MAPE (%)

NM [TS |[NN NM [TS |NN
Nov. 2010 513 | 479 [331 [133 [123 |91
Nov. 2010 (without PH) 514 |4.64 [321 |132 |11.7 |87
Dec. 2010 527 | 448 [381 |83 7.1 6.0
Dec. 2010 (without PH) 519 |444 [386 |83 7.1 6.1
Jan. 2011 512 | 457 [4.16 |91 8.1 7.7
Jan. 2011 (without PH) 510 455 [4.15 |91 8.1 7.7
Feb. 2011 517 | 4.27 [463 |109 |88 10.2
Mar. 2011 479 1413 [397 [133 [11.3 |115
Apr. 2011 338 [319 [261 |187 [175 |15.1
Apr. 2011 (without PH) 339 [323 [260 |184 |174 | 1438
May 2011 266 225 [235 |198 |[16.7 | 184
May 2011 (without PH) 257 223 [224 |191 [163 |174
June 2011 3.02 [269 [255 |228 [203 195
June 2011 (without PH) 2938 268 [256 |225 [204 |19.38
July 2011 252 220 [205 |200 |176 | 166
July 2011 (without PH) 238 [219 [221 |194 [178 |183
Aug. 2011 3.06 |272 [250 |254 [231 |206
Aug. 2011 (without PH) 3.05 |272 [251 |21 [229 |207
Sept. 2011 2.75 | 236 [221 |217 [188 |17.38
Oct. 2011 361 293 [302 |192 [165 |18.1
Nov. 2011 440 |353 [461 [158 [129 |175
Nov. 2011 (without PH) 440 |349 [467 |157 |127 |177
Dec. 2011 459 | 376 |556 |10.7 |87 13.7
Dec. 2011 (without PH) 471 | 379 |448 |[11.0 |88 13.6
Jan. 2012 484 1405 [684 [102 |86 15.5
Jan. 2012 (without PH) 485 |4.04 [687 [102 |86 15.6
Feb. 2012 473 | 489 [589 |92 9.7 12.3
Mar. 2012 480 1429 [5.13 [151 |138 |17.0
Sept. 16, 2010 ~ Mar. 01, | 480 [4.16 [3.68 |[129 [11.0 |10.3
2011 (Total 167 days)
Sept. 16,2010 ~ Apr. 05,2012 | 4.09 [3.56 [3.75 |159 [13.8 | 147
(Total 568 days)

Table D.7 shows the comparison results in months of the industrial substation CE_ FRO

during the testing period. Notice that the NN model has a much better precision than the

naive model.
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Table D.7: Substation CE_FRO: 14 variables for the daily average power model and 28
variables for the intraday power variation model.

MAE (kW) MAPE (%)
NM | NN NM | NN

Sept. 2010 (15 days) 88.57 74.81 18.3 15.8
Oct. 2010 100.38 74.31 20.2 15.5
Nov. 2010 104.30 70.39 21.8 15.1
Nov. 2010 (without PH) 94.40 70.10 18.6 14.7
Dec. 2010 112.23 85.90 231 17.3
Dec.2010 (without PH) 113.81 88.01 221 17.3
Jan. 2011 93.31 72.81 18.2 14.4
Jan. 2011 (without PH) 94.85 72.82 18.3 14.2
Feb. 2011 91.92 71.58 18.4 14.9
Mar. 2011 63.28 68.47 12.2 13.2
Apr. 2011 106.71 83.88 24.9 21.0
Apr. 2011 (without PH) 103.21 82.31 22.2 19.2
May 2011 116.65 87.78 23.7 18.8
May 2011 (without PH) 118.36 89.14 23.5 18.6
June 2011 143.22 94.54 36.5 25.6
June 2011 (without PH) 129.98 89.26 28.0 21.5
July 2011 129.87 93.34 31.2 23.3
July 2011 (without PH) 108.85 84.79 21.7 19.0
Aug. 2011 131.44 95.40 28.8 21.7
Aug. 2011 (without PH) 123.39 93.20 24.7 20.2
Sept. 2011 90.44 78.83 19.1 18.4
Oct. 2011 99.07 82.08 23.0 21.1
Nov. 2011 138.16 84.07 32.3 21.2
Nov. 2011 (without PH) 123.05 77.91 23.2 17.1
Dec. 2011 94.41 80.97 22.5 19.91
Dec. 2011 (without PH) 98.48 83.97 22.5 19.8
Jan. 2012 89.35 78.22 94.3 18.5
Jan. 2012 (without PH) 91.01 78.17 19.4 17.9
Feb. 2012 94.63 72.73 19.8 15.7
Mar. 2012 104.21 94.83 21.3 21.0
Sept. 16, 2010 ~ Mar. 01, | 99.49 75.07 20.2 155
2011 (Total 167 days)
Sept. 16, 2010 ~ Apr. 05, 2012 | 105.20 81.79 23.0 18.6
(Total 568 days)




Appendix E

Résumé francais

E.1 Introduction générale: la nouvelle problématique du mod-
éle de charge dans le contexte du réseau intelligent

E.1.a Réseau intelligent et compteurs intelligents pour les modéles de
charge

La conception du réseau intelligent (smart grid en anglais) combine les nouvelles technolo-
gies de communication et ’ancien réseau électrique de distribution. Le but du développe-
ment de ce réseau intelligent est d’améliorer ’observabilité et le moyen de controle dans le
réseau électrique de distribution. Face aux évolutions révolutionnaires dans les systémes
électriques, telles que la quantité importante d’énergie renouvelable connectée au réseau,
I’augmentation de la demande d’énergie due aux véhicules électriques, etc., de nombreux
algorithmes avancés sont apparus pour renforcer la stabilité et 1’efficacité du systéme. Ces
Fonctions Avancées du Réseau (FAR) incluent notamment le réglage de tension [1], 'auto-
cicatrisation, et le controle directe de la consommation électrique [2]. Les FARs peuvent
étre calculées en temps réel ou & l'avance pour aider la prise des décisions. Généralement,
le contréle et la conduite des réseaux de distribution sont effectués sur le réseau moyenne
tension.

Un des objectifs du réseau intelligent est de rendre les réseaux de distribution effi-
caces du point de vue économique, et d’obtenir une alimentation d’énergie & faible cofit.
La planification du réseau de distribution consiste en le développement d’un programme
des investissements futurs qui garantissent la distribution de 1’énergie ainsi que les coiits
les plus faibles possibles. D’un coté, les infrastructures électriques doivent répondre aux
exigences du réseau pendant les pointes de consommation. D’autre part, un réseau surdi-
mensionné cotiite trés cher. Par conséquent, des modeéles d’estimation de charge les plus
fiables possibles sont nécessaires pour minimiser la marge et optimiser les investissements
dans le réseau de distribution en mettant en place des calculs électriques. L’exécution du
calcul de calcul de répartition de charge sous des conditions critiques afin d’identifier des
zones mal-alimentées est un exemple concret. La complexité de ce probléme est aussi liée
aux incertitudes sur la consommation électrique des clients.

Dans I’état actuel, un nombre trés limité de mesures dans le réseau de distribution
introduit des difficultés pour la mise en place des FARs ainsi que des calculs d’optimisation
du réseau. Les mesures disponibles dans les réseaux de distribution sont généralement dans
les postes sources. Il est économiquement infaisable d’installer des capteurs de mesure sur
les 738000 postes HTA/BT. Aujourd’hui, dans la conduite, on remplace ces mesures par
des modeles probabilistes avec 50% de précision. Cet acte influence 'efficacité des FARs
et génére des analyses peu crédibles. Pour répondre aux besoins de la planification, un
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modele intitulée BAGHEERA est actuellement appliqué par I’Electricité de France (EDF).
Ce modele dépend principalement des informations qualitatives du client individuel, qui
deviennent de moins en moins disponibles et précises. En conséquence, un nouveau modéle
pour remplacer le modéle BAGHEERA est demandé.

En 2010, ERDF a démarré un projet nommé « Linky », qui envisage d’installer 35000 000
compteurs intelligents en France. D’un c6té, les clients vont payer leurs factures d’électricité
selon leurs consommations réelles au lieu des consommations estimées comme cela est le cas
actuellement. D’autre part, grace a ces mesures, les opérateurs de réseau de distribution
peuvent surveiller de prés la situation en temps réel des réseaux. Aujourd’hui, il n’y a
pas de mesures disponibles dans les postes HTA /BT en France. Dans la phase expérimen-
tale du projet « Linky », les consommations individuelles des clients sont échantillonnées
toutes les 30 minutes et transférées une fois par jour aux concentrateurs correspondants.
Néanmoins, puisque les données sont assemblées en paquets et transférées a une certaine

fréquence [3], il y a des retards dans ces données de mesure.

E.1.b Objectifs et plan du résumé francais

Avec 'arrivée des données détaillées de la consommation individuelle du client fournies par
les compteurs intelligents, I'objectif des travaux de recherche présentés ici est la conception
de nouveaux modéles de charge pour la conduite et la planification des réseaux de distri-
bution. Ce contexte permet d’envisager des modeéles plus précis pour la planification, le
controle et la conduite du réseau, en 1’absence de capteurs des mesures couteux pour le
réseau de distribution.

Pour la conduite, nous avons besoin de la prévision de charge sur une ou deux journées
(« J+1» et « J+2») pour les postes HTA /BT, basée sur les données agrégées des compteurs
intelligents. Nous considérons trois raisons pour cet objectif:

e En cas de défaut: pour la réalimentation, le département de conduite aimerait avoir
le total de charge & reprendre pour les 3 minutes suivantes.

e En cas de travaux sur le réseau: 1'objectif est similaire & la prévision en cas de défaut,
il faut réaliser une estimation de la courbe de charge & reprendre durant les travaux.
Le programme de reprise s’établit en général & « J+2 » ( sur le lendemain). Donc il
faut faire une prévision avec dispersion d’erreur pour « J+2 ».

e Pour le réglage de la tension de consigne (étant une entrée pour estimateur d’état
[5] ): Pestimateur d’état est une fonction clé pour tous les systémes de gestion de
I’énergie. Il estime les grandeurs du réseau, telles que 'amplitude et I'angle de la
tension. La Figure E.1 montre la relation entre les modéles de charge, ’estimateur
d’état et les fonctions avancées du réseau. Les modéles de charge prédictifs et les
données du réseau sont considérés comme des entrées pour ’estimateur du réseau.
Les données du réseau [5] incluent les informations sur la topologie du réseau, les im-
pédances (résistances et réactances) des lignes, les réglages des prises, et les charges
des lignes, etc. La sortie de I’estimateur d’état active le module de controle de la ges-
tion avancée des systémes de distribution afin de pouvoir prendre des décisions pour
la conduite. Ces décisions concernent les controles commandes des dispositifs dans le
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Figure E.1: Relation entre les modéles de charge prédictifs, 1'estimateur d’état, et les
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fonctions avancées du réseau

réseau, tels que les batteries de condensateurs, les Générateurs Electriques Décentral-
isés (GEDs), les réglages en charge des transformateurs, les interrupteurs/sélecteurs,

etc.

La planification d’un réseau fiable est un défi puisque cela signifie que ses clients ali-
mentés doivent avoir une bonne fourniture d’électricité stable et continue. Les opérateurs
des réseaux doivent garantir la tension de chaque client dans une échelle admissible. En
Europe, pour les réseaux Basse Tension (BT), la tension admissible est définie a £10%
de la tension nominale. En dehors de ces limites, les clients sont considérés comme des «
Clients Mals Alimentés » (CMAs).

Pour la planification, les calculs électriques sont effectués dans les conditions les plus
critiques [7, &]. Plus précisément, ces calculs sont réalisés pour deux situations : une
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demande maximale de consommation électrique avec une production minimale et une pro-
duction maximale avec une consommation minimale [9]. Avec une grande pénétration de
GEDs, on peut envisager le deuxiéme cas. Etant donné les comportements variés des
clients, dans une méme zone géographique, les pics de demande ont rarement lieu au méme
moment. En tenant compte de ce fait, I’estimation de la charge du client heure par heure
est nécessaire. Il faut aussi tenir compte de l'incertitude de I’estimation de charge [10].
Généralement, pour le calcul de la chute de tension, il faut prendre un risque de 10%
[L1]. C’est ce risque qui définit les seuils des puissances. Ces seuils sont utilisés ensuite
pour identifier les CMAs. En conséquence, pour la planification du réseau, la puissance
demandée par un client est équivalente & la somme de la journée type moyenne de ce client
et de 10% de son risque de puissance.

Pour conclure, ’objectif est de définir les puissances limites maximales et minimales de
Pannée avec 10% de risque de dépassement.

Ce résumé est découpé en quatre parties. Tout d’abord, le contexte du réseau intelligent
et des compteurs intelligents est mis en avant comme une opportunité pour développer des
modeéles de charge plus performants. Les objectifs ainsi que les contributions de la thése
sont soulignés. FEnsuite, deux sections sont consacrées pour répondre aux deux objectifs
de la theése : la conception des modéles de charge pour la conduite et pour la planification
du réseau de distribution. Les théories de chaque méthodologie sont détaillées et les résul-
tats comparatifs sont commentés. A la fin, ce résumé est terminé par des conclusions et

perspectives générales.

E.1.c Contribution de thése

Les contributions de la thése peuvent étre résumées ci-dessous :

1. La prévision de charge est un sujet trés étudié au niveau des réseaux de transport
[12, 13, 14, 15, 16, 17, 18, 17, 19, 20]. Cependant, dans les réseaux de distribution et
avec les caractéristiques de données considérées dans notre étude (quelques dizaines kW),
a notre connaissance, il existe peu de travaux.

De notre point de vue, trois raisons peuvent étre utilisées pour expliquer ce fait :
Premiérement, une attention particuliére a été apportée au réseau de transport, puisque
celui-ci s’étend sur une distance plus grande, et couvre un territoire plus large. Le réseau
de transport est la « colonne vertébrale » du systéme électrique. Deuxiémement, le volume
de charge considéré dans le transport rend la forme de la courbe réguliére, par un effet
de foisonnement trés important. Cette caractéristique de la courbe de charge la rend plus
facile & prévoir & ce niveau. Troisiemement, il n’y a encore aujourd’hui pas ou peu de
mesures disponibles sur les postes HTA/BT, sur lesquels les modeéles de charge pour la
distribution peuvent étre congus.

Dans ce projet de recherche, deux modéles sont proposés pour la prévision de charge
des postes HTA/BT. L’un est basé sur les séries chronologiques et l'autre est basé sur les
réseaux de neurones.

2. Les différents types de charge (résidentielle, commerciale, et industrielle) sont étudiés

dans le cadre de la thése et leurs différentes propriétés sont illustrées.
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Les deux méthodes sont congues et évaluées grace aux données provenant du réseau de
distribution francais dans le cadre du projet « Linky ». Un modéle référentiel est établi
pour la comparaison des modéles. Les avantages et les inconvénients des deux modéles sont
soulignés dans la comparaison. Les deux méthodes sont alternatives et en méme temps,
complémentaires. Elles permettent de définir avec une précision limitée les caractéristiques
intrinséques des données de charge du poste.

3. La méthode basée sur la série chronologique est un travail original. Elle intégre de
nombreux outils statistiques pour atteindre une meilleure précision. Le résidu du modéle
série chronologique est examiné en détail pour assurer un bon comportement du modéle.

4. La méthode basée sur le réseau de neurones est inspirée par la procédure de sélection
proposée par le Professeur Gérard Dreyfus, un spécialiste reconnu dans le domaine des
réseaux de neurones. Nous nous focalisons sur la méthodologie de conception du modéle,
qui est pour la premiére fois exploitée entiérement dans la prévision de charge a court
terme.

5. Avant la mise en ceuvre des compteurs intelligents, il n’avait pas de données his-
toriques a part pour un nombre limité de clients. Dans le domaine de la prévision de
charge, la plupart des travaux se concentre sur ’estimation de la demande de pointe pour
un groupe de clients pendant la pointe du systéme, i.e., la demande coincidente. Quelques
travaux ont aussi été effectués sur la technique « end-use », méthode décomposant la courbe
de charge d’un client résidentiel en unité d’appareil électrique. Les autres se concentrent
sur la méthode de classification pour diviser les clients en différents groupes, et sur la
présentation de chaque groupe avec un profil de charge typique. Dans le contexte des
compteurs intelligents, nous sommes les premiers & proposer la conception du modéle de
charge individuel dirigé par les données pour le besoin de la planification.

6. La relation entre la consommation électrique et la température est définie par les
estimateurs non-paramétriques dans notre modéle d’estimation de charge individuel. La
méthode est appliquée aux vraies courbes de charge individuelle en France. La performance
comparée avec le modeéle actuel d’électricité de France (EDF) s’intitule BAGHEERA dans
différents cas d’étude.

E.2 Modéle de charge prédictif court terme pour la conduite
et I’estimateur d’état

La prévision de charge joue un role important dans la prise de décision dans le systeme
électrique. Cette partie est consacrée au modéle de charge prédictif. Dans un premier
temps, nous présentons rapidement des méthodes appliquées & la prévision de charge, leurs
spécificités ainsi que leurs applications. Ensuite, les données utilisées pour la conception
et I’évaluation de nos méthodologies sont étudiées. Certains composants importants dans
la courbe de charge pour sa modélisation sont précisés. Nos choix de méthodes pour la
série chronologique et le réseau de neurones sont argumentés. Les critéres de performance
et un modéle de référence sont aussi établis. Puis, les deux modéles de charge prédictifs
sont détaillés. Les applications sur les vraies données de charge sont illustrées, et une
comparaison de ces deux méthodes est faite & la fin de cette partie.
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E.2.a Meéthodes de la prévision de charge dans la littérature

Différentes techniques et différentes entrées sont appliquées & la prévision de charge avec un
horizon de temps varié. De nombreux facteurs tels que les conditions météo, les variables
saisonniéres, et les facteurs sociaux, économiques et démographiques font partis des entrées

pour les techniques de prévision de charge |

|. Tableau E.1 résumé des applications et des

facteurs d’influence pour les modeles avec différents horizons de temps [23, 24, 18].

Table E.1: Différents horizons de temps pour la prévision de charge

Horizon de temps

Applications

Facteurs d’influence

Tres court terme (1 Min
~ 1h)

Fonctions avancées du réseau,
le réglage fréquence-puissance

Charges historiques

Court terme (lh ~ 1 se-
maine)

Conduite (fonctions avancées

du réseau), calculs de ré-

partition de charge pour
I’estimation, de l’estimation
d’épargne pour l’économie et
la sécurité opérationnelle du

systéme électrique

Charges historiques, infor-
mations calendaires (journée
type et heure), conditions

météo (*)

Moyen terme (1 semaine
~ 1 an)

des
planification de la fourniture

Négociation contrats,

de d’énergie primaire et

travaux de maintenance

(*) + population, facteurs

économiques, etc. (©)

Long terme (1 an ~
plusieurs ans)

Dépenses en capital et planifi-
cation des investissements

(¢) + plus d’informations tels
que : augmentation de la pop-

ulation, produit intérieur brut

(#) et (o) représentent respectivement les facteurs d’influence pour la prévision a court
terme et & moyen terme.

Pour notre application de la conduite du réseau, surtout pour coopérer avec les fonctions
avancées du réseau, nous nous focalisons sur la prévision a court terme. Selon le tableau E.1,
les conditions météo, le calendrier et les charges historiques sont des entrées essentielles.

La figure E.2 donne une vue globale en deux dimensions (horizon de temps et hiérarchie
de la tension) sur les méthodes appliquées pour la prévision de charge. La plupart d’entre
elles est développée pour le court terme et la haute tension. Cependant, ces derniéres
années, I’expansion des réseaux intelligents attire de plus en plus ’attention sur les réseaux
moyenne tension et basse tension.

Généralement, les méthodes prédictives peuvent étre classées en deux catégories : les
approches classiques et les approches « intelligence artificielle ». La premiére catégorie
exige un modéle avec des équations mathématiques qui interprétent la relation entre la
charge et les autres facteurs d’influence. Cette famille inclue le modele de régression, la
série temporelle, les jours similaires, la méthode end-use et ’approche économétrique. Alors
que la famille des méthodes d’intelligence artificielle exploite la relation non linaire entre
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la charge et les entrées. Cette catégorie comprend les réseaux de neurones (RN), la logique
floue et les systémes experts.
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Série temporelle univariable:
IS (1) Lissage exponentiel ———————— >
(2)Box-Jenkins (AR, ARMA,
ARIMA)
< Série temporelle multivariable ——
ARIMAX (3)

Y

Méthode de régression
(4)

Réseau de neurones (RN)

(6)

A

d1lH

t«<—— Approche économétrigque —>

®)

<— Logique floue ou Réseau neuronal flou—>
(FNN) (7)
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Jours similaires+
Modéle de correction RN

9)
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T >
— RN (11)
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<«——Vléthode end-use > Méthode de
(13) classification
(client profil type)
o RN +RN (15)
RN (14)
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Trés court terme Court terme Moyen terme  Long terme

Figure E.2: Résumé des méthodes de charge prédictives en deux dimensions: horizon de
temps et hiérarchie de la tension. HTB: haute tension et trés haute tension, HTA: moyenne
tension et BT: basse tension. Les numéros qui apparaissent dans la figure correspondent
aux travaux liés.®

©(1):[13, 14] (2):[13, 15, 14] (3):[16] (4):[17, 18, 17] (5):[24] (6):[19, 20] (7):[32, 33, 34] (8):[35, 36] (9):[31]
(10):[37, 38] (11):[39] (12):[22] (13):[40] (14):[*1]
*Le modéle série temporelle univariable n’exploite que les informations de la courbe de charge historique.
“Le modéle série temporelle multivariable exploite non seulement les informations de la courbe de charge
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Nous résumons trois points sur 1’état de 'art des modéles de charge prédictifs:

1. Les méthodes d’intelligence artificielle deviennent de plus en plus populaires.

2. Des chercheurs essayent d’améliorer les méthodes classiques, telles que 'espace d’état

et le filtre de Kalman, et 1’algorithme de spline cubique, malgré les succés limités de

ces méthodes. Ces méthodes améliorées peuvent parfois atteindre la méme précision

que les méthodes d’intelligence artificielle.

3. Les méthodes hybrides deviennent de plus en plus populaires également puisqu’elles

combinent les avantages de plusieurs techniques. Par exemple, appliquer différents

modéles pour modéliser séparément des parties linéaires et non linéaires, des fluctu-

ations rapides et lentes; supprimer les données aberrantes ; et calculer les coefficients

des modéles.

Les caractéristiques des modeéles sont résumées dans le tableau E.2.

Table E.2: Résumé des modeles de charge prédictifs et leurs caractéristiques. « / » signifie

que la propriété correspond a l’attribut; « x » signifie que la propriété ne correspond pas

a ’attribut.

Méthode

Trés
court
terme

Court
terme

Moyen
terme

Long
terme

Linéaire

Historiques
impor-
tantes

Caractéristiques

Modéle de ré-
gression

v

Vv

Vv

v

Simple, relation ex-

plicite avec vari-

ables exogénes

Série tem-

porelle

Extraire
icités,

périod-
données
historiques et
erreurs, inclure
Box-Jenkins,
lissage exponentiel,

etc.

Similar  day

approach

Non paramétrique,
ajustement difficile
des

fournir

coefficients,
données
d’apprentissage
pour les méth-
odes d’intelligence
artificielle

Méthode end-
use

De bas en haut,
chaque équipement
électrique, exige des
informations exten-
sives

Suite & la page suivante
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Table E.2 — Suite du tableau présenté page précédente

Méthode

Trés
court

terme

Court
terme

Moyen
terme

Long
terme

Linéaire

Historiques
impor-
tantes

Caractéristiques

Approche
économétrique

X

Vv

Vv

v

inclut les  vari-

ables sociales et
économiques, équa-

tions complexes

RN

Approximateur
universel, bonne ca-
pacité d’apprendre,
établit des relations
complexes,
breux choix pour la
structure, temps de
calcul important

nom-

SVM

Fonction non

linaire transforme
les entrées en un
espace d’une plus

grande dimension

Logic Floue

(LF)

Fuzzification,
défuzzification,
dispensé du modéle
mathématique,
similarité, ré-
gression linéaire
floue,
compliquée
parametres

estimation
des

Systéme
expert

Ordinateur assisté,
régle Si-Alors,
mises a jour
fréquentes

E.2.b Description de données

Dans cette sous-section, nous examinons les courbes de charge des postes HTA /BT, et
décrivons les caractéristiques de ces données. Ces spécificités vont nous aider & faire des
choix parmi les nombreuses méthodes de prévision présentées précédemment.

Les données utilisées pour nos études sont des mesures des postes HTA/BT dans le
réseau de distribution francais. Plus concrétement, il s’agit de 7 courbes de charge de
postes HTA /BT d’une méme zone géographique échantillonnées par points 30 minutes. La
période de mesure est du 9/9/2009 au 27/10/2010. Etant un des facteurs d’influence, les
données de température sont aussi fournies heure par heure. Ces données de températures
sont interpolées linéairement pour étre sur la méme fréquence que les données de la charge
(points 30 minutes). Figure E.3 montre la variation journaliére de la charge et de la

température pendant la période de mesure. Chaque courbe de charge d’un poste HTA/BT
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représente la somme des consommations des clients connectés en aval.

e
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Figure E.3: Courbe de charge et température journaliére pendant 414 jours (du 9/9/2009
au 27/10/2010) du poste HTA/BT CE_MOU (connecté principalement a des clients rési-
dentiels)

Les figures E.4 et E.5 montrent deux autres exemples de courbes de charge journaliéres
de postes HTA/BT. Le poste CE_MOU (figure E.3) alimente 61% de clients résidentiels,
23% de clients tertiaires, et 16% de clients industriels. Le pourcentage représente la puis-
sance souscrite totale des clients dans cette catégorie par rapport a la puissance totale
souscrite en aval de ce poste HTA/BT. La courbe de charge du poste CE_MOU suit
I’évolution de la température. Le poste VI LOG (figure E.4) contient un tiers de clients
tertiaires et deux tiers de clients industriels. Sa courbe a une périodicité hebdomadaire
et suit également la variation de la température. La courbe de charge du poste CE_FRO
(figure E.5), qui n’alimente qu’un client industriel, reste stable toute année et posséde une
périodicité hebdomadaire.

Puissance (W)

20000 60000

T T T T T
Temps (x1jour)

Figure E.4: Courbe de charge journaliére pendant 414 jours (du 9/9/2009 au 27/10/2010)
du poste HTA/BT VI LOG (connecté aux clients mixtes tertiaires et industriels)

En analysant ces données, nous concluons que la courbe de charge d’un poste HTA /BT
dépend principalement de la composition des clients connectés. Les courbes de charge des
clients résidentiels, tertiaires, et industriels ont leurs propres spécificités:

e Une courbe de charge de type résidentiel varie avec la température : le niveau de
consommation d’électricité augmente quand la température chute. Cela est di a
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Figure E.5: Courbe de charge journaliére pendant 414 jours (du 9/9/2009 au 27/10/2010)
du poste HTA/BT CE_FRO (connecté a un seul client industriel)

I'utilisation du chauffage électrique.

e Une courbe de charege de type industriel ne dépend pas de la saison ni de la tem-
pérature. Cependant, elle a une périodicité hebdomadaire claire et est sensible aux
jours fériés.

e Une courbe de charge de type tertiaire se situe entre les deux premiers types : sa
courbe de charge varie avec la température et elle a une périodicité hebdomadaire.

Un poste HTA/BT est souvent connecté a un mix de catégories de clients. Il dépend
donc la plupart du temps de facteurs tels que la température, le calendrier (le type de jour),
et le temps (les périodicités, I'heure, etc.).

Afin de pouvoir tester la pertinence des modeéles de charge prédictifs, 4 courbes de
charge mesurées en téte de départs HTA (un niveau d’agrégation plus élevé, au niveau du
poste source HTB/HTA) sont aussi utilisées pour I’étude des méthodes développées. La
période de mesure est du 9/9/2009 au 22/9/2010.

E.2.c Choix des méthodes: série chronologique et réseau de neurones

Les méthodes présentées dans la sous-section E.2.a ont été appliquées aux différents cas de
prévision de charge avec plus ou moins de succés. Selon ’objectif, notre intérét se trouve
dans la prévision de charge a court terme au niveau du poste HTA/BT. Nous percevons
dans la figure E.2 que la plupart des modéles peuvent étre appliqués au niveau HTB.
L’objectif est d’emprunter ces méthodes appliquées au niveau HTB et de les adapter aux
niveaux HTA et BT. Comparées aux données HTB, les données HTA et BT sont plus
irréguliéres car 'effet de foisonnement est moindre.

Le choix des méthodes est issu du résultat des analyses de la nature des données [36].
Dans la section E.2.b, nous avons conclu que la courbe de charge d’un poste HTA /BT
dépend de la nature des clients connectés, de la température, de la météo et du calendrier.
Ainsi, des deux catégories présentées, nous avons choisi la série chronologique et le réseau
de neurones pour modéliser nos charges. Nous formulons le modéle série chronologique
(différent de la méthode Box-Jenkins) avec une régression, dans laquelle on trouve une
interprétation physique et une explication attachée a chaque composant. Les outils avancés
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du traitement du signal sont intégrés dans cette méthode pour avoir la meilleure précision
possible. L’autre méthode choisie, venant de la famille « intelligence artificielle » est le
réseau de neurones, plus concrétement, la structure Perceptron MultiCouche (PMC) [21].
C’est un réseau type « feed forward », le plus simple & mettre en ceuvre et dont le calcul
est le moins couteux. De plus, A. Khotanzad et al. arrivent & la conclusion [20] que
selon leurs investigations sur les différentes structures des réseaux de neurones, il y n’a pas
d’avantage évident dans l'utilisation d’une structure plus compliquée. Contrairement aux
applications trouvées dans la littérature, nos efforts se sont concentrés sur la sélection de
la structure optimale d’'un PMC, puisque le réseau de neurones est souvent critiqué pour
sa complexité et le manque de la validité de son modeéle [37]. De plus, les deux méthodes
choisies peuvent facilement estimer l'intervalle de la prévision. Cette derniére donne une
indication sur l'incertitude du résultat.

E.2.d Critéres de performance et modéle de référence

MAPE et MAE sont choisis comme les critéres de performance, puisqu’ils sont les plus
utilisés dans le domaine de la prévision de charge. Ils sont les bases de comparaison pour
les modéles concus.

MAPE représente ’erreur prévisionnelle absolue relative a la grandeur mesurée. Le
résultat est donné en pourcentage :

1 N

*100:NZ

t=1

‘14100 (E.1)
Yt

Yt — Ut

Yt

1 N
MAPE(%) = ¥ >

t=1

Ou N est le nombre totale des échantillons de la prévision, g; est la puissance prévisionnelle,
y; est la mesure, et e; est 'erreur du modéle, qui représente la différence entre la puissance
prévisionnelle et la mesure.

MAPE représente une erreur relative, ce qui signifie que sa valeur dépend de la grandeur
de la mesure. Autrement dit, ayant les mémes valeurs d’erreur, pendant ’hiver, quand la
consommation électrique est élevée, I'indice MAPE est petit ; et pendant 1’été, quand la
consommation électrique est basse, le MAPE est grand. Pour corriger ce biais, nous avons
introduit un autre indice, MAE.

MAE correspond & une erreur absolue en unité Watt :

1 X R 1N
MAE(W) = N Z lye — Ue| = N Z lex| (E.2)
t=1 =1

Pour avoir un premier repére de performance, nous avons établi un modéle de référence
intitulé modele naif [12, 60]. Ce modeéle n’exploite pas les informations exogénes telles
que la température et le type de jour, Il n’utilise pas non plus d’outils mathématiques
complexes. Il remplace simplement le résultat de la prévision (Jour J) par son historique
(Jour J- £) le plus similaire du jour de la prévision, ou ¢ est le décalage général entre les
jours les plus similaires.

D’apres nos exemples, le modeéle naif d'un poste HTA /BT se comporte de deux maniéres
différentes selon la composition des clients. Pour un poste principalement constitué de
clients résidentiels, sa courbe de charge varie avec la température, et son modéle naif se
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base donc sur la veille pour la prévision (/=1). Etant donné qu’un poste industriel a une
évidente cyclicité hebdomadaire, le méme jour de la semaine derniére (¢=7) est utilisé
comme prévision dans le modéle naif.

Dans cette premiére partie, nous avons choisi les méthodes, les critéres de performance
ainsi que le modéle de référence. Dans les prochaines deux sous-sections, nous allons dé-
tailler ces modéles de prévision de charge basés indépendamment sur la série chronologique
et sur le réseau de neurones. Différents aspects des modeéles sont aussi comparés et dévelop-
pés dans les sous-sections.

E.2.e Modéle série chronologique

La série chronologique représente ’évolution d’un set d’observations échantillonnées dans
un intervalle régulier de temps. La spécificité de la série chronologique par rapport aux
autres méthodes statistiques est qu’elle introduit le temps comme une de ses variables
explicatives.

Nous avons choisi la série chronologique additive qui contient trois parties : une ten-
dance, une périodicité et une erreur aléatoire. Supposons que la mesure de la puissance a
temps t est y;, le modéle est :

Y= fr+Se+e (E.3)

Ou f; représente la composante de tendance, S; représente la composante cyclique et €
représente ’erreur aléatoire au temps t. Les deux premiéres parties sont déterministes et
a partir d’elles, deux modéles paramétriques sont concus.

Figure E.6 donne un apercu de la procédure de la prévision de charge avec le modéle
série chronologique. Nous allons ensuite décrire les outils mathématiques qui ont servis
dans cette procédure.

1. Régression des variables catégoriques

Nous avons conclu dans la section E.2.b que I'un des facteurs d’influence les plus
importants qui expliquent la variation dans la courbe de charge est le type du jour.
Dans nos courbes exemples, nous avons distingué trois types : « jour ouvrable », «
samedi », et « dimanche et jour férié ». Des variables catégorielles sont utilisées pour
intégrer ce type d’information dans le modéle. Ces variables prennent des valeurs
0 ou 1, et indiquent la présence de la partie correspondante dans 1’équation. La
régression des variables catégorielles s’écrit :

k-1
e =T(x) + ) Dol (1) (E.4)
a=1
Ou Dy,a=1,--,k —1 sont les variables catégorielles, T'() est une régression, 'y ()
est la régression associée aux variables catégorielles Dy,  est le nombre de catégories
et x¢, y; représentent indépendamment le vecteur des variables indépendantes et la
variable dépendante.

Le nombre de variables catégorielles dans I’équation est x— 1, puisque la catégorie ou
toutes les variables catégorielles sont égales & zéro est considérée comme la référence
des autres catégories. Pour une catégorie donnée, il y a au maximum une variable
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Données d'entrée: Puissances historiques
Températures historiques correspondantes
Types de jour historiques
Températures prévisionnelles
Type de jour de la prévision

Modéle de tendance ft
Régression des variables catégoriques

Modeéle de cyclicité St

1. Teste de stationnarité pour effectuer la décomposition de Fourier

2. Periodogram lissé: trouver un jeu des fréquences significatives
qui influencent la variation des données

3. Régression des variables catégoriques basée sur le jeu des fréquences trouvé

4. Estimation des coefficients du modéle de régression:
méthode des moindres carrés ordinaires (OLS)+analyse de la variace (ANOVA)

Données de sortie: Puissances prévisionnelles

L__Glisser la fenétre d'estimation a la prochaine période et répéter la procédure

Figure E.6: Etapes pour construire le modéle série chronologique pour la prévision de
charge

catégorielle égale a 1. La régression des variables catégorielles est appliquée a la
composante de tendance ainsi qu’a la composante cyclique.

2. Estimation de la composante de tendance

La fonction de tendance f; représente une variation lente de la variable étudiée y;. Elle
est souvent représentée par une fonction linéaire, polynomiale ou exponentielle. Dans
nos exemples, la courbe de charge est linéairement dépendante de la température
(tableau 2.3). En tant que premiére approche, nous avons donc pris une fonction
de tendance linéaire. Nous suggérons une fonction linéaire corrélée au temps et a la

température :

k=1
fe=at+b+cTi+ Y Dava (E.5)

a=1

O t correspond au temps, dont la valeur est de 1 & la taille de la fenétre d’estimation.
T; correspond & la température de la région ou les mesures sont faites. Zgj Dova
correspond & la partie de la régression catégorielle.
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Les k+2 coefficients de la régression {a,b,c,7, } sont estimés avec le critére des moin-
dres carrés. La somme de la partie cyclique pendant une période est supposée étre
0. Nous avons adopté la stratégie de la fenétre glissante pour notre problématique
de prévision court terme. Les données dans la fenétre glissante sont utilisées pour
estimer les coefficients. Etant donné que les coefficients sont estimés, et qu’on con-
nait la journée type du jour prévisionnel, ainsi que la température prévisionnelle,
nous pouvons calculer la prévision de la partie tendance. Ensuite, la fenétre va étre
glissée d’une journée pour prévoir en « J+1 », et les coefficients vont étre recalculés
dans cette fenétre. Puisque nous n’avons pas les températures prévisionnelles des
postes HTA /BT, nous appliquons les températures réalisées pour cette étude. Cette
approximation est souvent utilisé [26, 27, 28]. La section 3.4 est consacrée a ’analyse
de 'impact de cette incertitude sur la température prévisionnelle pour la précision
de la prévision.

. Estimation de la composante cyclique

Dans cette section, nous complétons le modéle de prévision en ajoutant la partie
cyclique. La partie cyclique décrit les comportements cycliques de la charge ;.
Supposons que p est la période des données sans tendance, pour chaque observation,
nous avons Sy, = S¢, ou Sy représente la composante cyclique a ¢. La somme des
composantes cycliques pendant une période compléte est 0 : Y5 ;.S = 0.

Aprés avoir déterminé le modeéle de tendance, nous le retirons des données originales
Ye *
Wi=yi—fi=5+¢ (E.6)

Ou W; représente la série aprés avoir retiré la tendance.

La somme des fonctions sinus et cosinus peut trés bien décrire le dynamisme des sig-
naux périodiques stationnaires. Nous suggérons de modéliser la partie cyclique avec
une régression des composantes de Fourier. Quatre étapes sont nécessaires pour con-
struire le modele cyclique (figure E.6). Premiérement, nous testons la stationnarité
de la série aprés avoir retiré la tendance W;. Ensuite, un périodogramme est effectué
pour identifier les fréquences harmoniques qui expliquent les variations dans la série
W;. Puis, avec ces fréquences, nous établissons une régression avec les composantes
de Fourier. Enfin, Nous intégrons le test de nullité ANOVA dans 'estimation des
coefficients de la partie cyclique avec le critére des moindres carrés. Le test de nullité
ANOVA permet de discriminer des coefficients de régression significatifs.

Tests de stationnarité

Le but d’effectuer les tests de stationnarité est de vérifier si la série, aprés avoir retiré
la tendance W%, est vraiment stationnaire puis d’appliquer un périodogramme lissé.
Parmi les approches existantes, nous en avons choisi deux : le test KPSS [90] et le test
ADF [91]. Le KPSS teste une hypothése nulle de la stationnarité de la série contre
la non stationnarité. D’un autre coté, le ADF teste la présence d’une racine unitaire,
ce qui signifie la non stationnarité. Ces deux tests sont utilisés conjointement pour
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assurer un résultat fiable. Plus de détails sur cette méthode sont fournis dans annexe
B.

Les résultats des deux tests montrent que notre série (aprés avoir retiré la tendance
W) est stationnaire avec n’'importe quelle taille de fenétre d’estimation.

5. Périodogramme lissé

Le périodogramme lissé est appliqué pour identifier les fréquences harmoniques prin-
cipales dans la composante cyclique. Ces fréquences sont ensuite utilisées pour con-
struire la régression de la composante cyclique. Pour une série stationnaire, son
périodogramme est défini [38]:

2

I() = - a2 () + () (7

n
Z Wt672z7wjt
t=1

Ou n est la taille d’échantillons, v; = %, j =1{0,1,---,n — 1} sont des fréquences
harmoniques de Transformée de Fourier Discréte (TFD) de la série W; . d.(v;) et
ds(v;) sont des composantes normalisées réelles et imaginaires de la transformée :

1 n
dc.(vj) = N > Wy cos(2mtv))
t=1

1 n
ds(vj) = —= > Wysin(2rty;) (E.8)
N1
Nous avons :
Z(Wt_W) ZQZ[dC(l/j)-i-ds(l/j)] ZQZI(V]') (Eg)
=1 j=1 j=1
Oum = "74, et W correspond & la valeur moyenne de la série W;. Equation E.9

indique que la somme des carrés peut étre partitionnée en composants harmoniques
représentés par 'amplitude du périodogramme & fréquence v;. Autrement dit, s’il
existe des pics dans le périodogramme, ces fréquences expliquent la variation des
données.

Néanmoins, le périodogramme brut a souvent une grande variance & une fréquence
donnée. Cette forme est rarement utilisée directement comme un estimateur dans la
fonction de la densité spectrale. La solution pour réduire la variance de 1’estimateur
est d’employer un périodogramme lissé.

La densité spectrale est supposée étre constante dans une bande de fréquence, et les
fréquences adjacentes sont indépendantes asymptotiquement. Nous établissons un
filtre glissant symétrique B de taille 21+ 1 << n, qui est centré autour d’une fréquence
Z/j .

B:{l/:yj—igl/31/j+£} (E.10)
n n

Le noyau Daniell [92] est un jeu de poids positifs symétriques centrés autour des
fréquences estimées. La somme des poids est 1 :
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l
hk:h,k>0€t Z hk:1 (E.ll)
k=-l

En conséquence, le périodogramme lissé devient :
- l
I(vj) = Y haln(vj+k[n) (E.12)
k=-1

Au travers de la présentation graphique du périodogramme lissé, les fréquences F
avec les amplitudes les plus significatives sont identifiées.

. Modéle de régression avec composantes de Fourier

Nous construisons la composante cyclique basée sur le jeu de fréquences F = {1y, 15, . ..
tel que:

N N
S; = Zci cos(2my;t) + Z s;sin(27y,t)+
i=1 i=1

i=1 i=1

k-1 Ny Ny
Z D,, Z Cio COs (2my;t) + Z Si o sin (2my;t) (E.13)
a=1

Ot Ny est le nombre total de fréquences dans le jeu F, et Yr1 D, % (-) correspond
a la partie régression des variables catégorielles.

Comme décrit dans ’équation E.13, chaque fréquence dans le jeu F a deux contri-
butions : une composante sinus et une composante cosinus. Les 2kN; coefficients
inconnus dans I’équation sont déterminés dans une fenétre glissante avec les critéres
des moindres carrés.

Test de nullité ANOVA

Le test de nullité ANOVA est effectué pour déterminer la pertinence des coefficients,
et améliorer I'efficacité de ’estimation des coefficients.

Le test ANOVA partitionne la variance observée en plusieurs variances des variables
explicatives et celle du résidu. L’'importance de chaque coefficient est identifiée par
son rapport entre l'intra-groupe variance et la variance globale. Plus ce rapport est
grand, plus le coefficient concerné est important. Pour plus de détails, les lecteurs

peuvent consulter ’annexe C.

En pratique, nous commencons le test de nullité ANOVA avec toutes les parties du
modeéle de régression. Ensuite, selon le résultat du test, nous retirons de ’équation
des parties non significatives, les coefficients restants sont réestimés.

. Modéle de prévision complet Le résultat de la prévision finale est la somme des

prévisions de la partie tendance et de la partie cyclique. Le modéle complet est

7Z/Nf}
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exprimé de la facon suivante :

Ut = ft + St
Ny Ny
=at+b+cl; + Z cicos(2my;t) + Z s;sin(2my;t)+
i=1 i=1

k-1 Ny N
Y Do Va+ Y. Ciacos (2mit) Y 8; o sin (27v;t) (E.14)
a=1 i=1 i=1

La partie erreur est: e =y, — fi — S;.

Pour les résultats des applications, les lecteurs sont invités a lire les chapitres corre-
spondants en anglais.

E.2.f Modéle réseau de neurones

Nous proposons dans cette partie de résoudre le probléme de la prévision de charge avec
les réseaux de neurones. Un avantage d’utiliser cet outil est qu’il est efficace méme si les
connaissances a priori sur le processus ne sont pas requises ou pas précisées.

Dans ces travaux, nous proposons d’exploiter nos connaissances dans les consomma-
tions historiques et les variables exogénes pour prévoir la consommation. Autrement-dit,
nous utilisons les réseaux de neurones pour construire une relation non-linéaire entre les
valeurs de la consommation historique, les variables exogénes et la future valeur de la con-
sommation. Cette relation doit étre vraie non seulement pour les données avec lesquelles
elle est construite, mais aussi peut étre généralisée pour les données fraiches (« données
de test », qui ne sont jamais utilisées pour construire la relation). Ce probléme peut étre
découpé en deux parties :

1. Trouver les variables endogénes et exogénes qui sont pertinentes pour la prévision de
la consommation. C’est ce qu’on appelle la sélection des variables.

2. Trouver la complexité appropriée pour le modéle compte tenu des données disponibles.
C’est ce qu’on appelle la sélection du modéle.

Dans nos travaux, la sélection des variables est effectuée par la méthode de la variable
sonde et la sélection du modele est basée sur le score de Leave-One-Out Virtuel (LOOV),
un estimateur empirique de la généralisation d’erreur et 1’état de la matrice jacobienne
du réseau [21]. Le score LOOV exige le calcul du levier des données d’apprentissage. Le
levier représente 'influence de chaque exemple d’apprentissage pour le modéle. La matrice
jacobienne examine 'efficacité des modeéles de différentes complexités. Ces méthodes vont
étre détaillées dans la partie suivante.

Ici, nous n’allons pas présenter la structure d’un Perceptron MultiCouche (PMC) et
son processus d’apprentissage. Pour plus d’information, nous inviterons les lecteurs & se
référencer a la section 4.2.
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E.2.f-i Conception du modéle

L’objectif de la conception est de concevoir un modéle qui a une meilleur capacité de
généralisation. Cette tache contient une recherche de la complexité optimale du modéle,
puisque le nombre de paramétres est linéaire par rapport au nombre de variables du modéle
et au nombre de neurones cachés. La procédure de la conception doit rejeter les variables
candidates non pertinentes a la prévision et définir le nombre de neurones sur la couche
cachée. Cette procédure est présentée en deux étapes dans la partie qui suit: la sélection
des variables et la sélection du modéle.

(1) Sélection des variables

La méthode pour la sélection des variables est la suivante : afin de distinguer les vari-
ables pertinentes et non pertinentes, une série de variables aléatoires nommeées « variables
sondes » sont créées & partir du vecteur des variables candidates. Elles sont générées en
mélangeant aléatoirement des composantes dans le vecteur de la variable candidate. Les
variables sondes vont étre classées avec les variables candidates dans un ordre décroissant
de pertinence par une régression orthogonale. La probabilité cumulative du rang des vari-
ables sondes est estimée et un seuil de rang r est déterminé de fagon a ce que la probabilité
pour une variable non pertinente sélectionnée soit plus petite que le seuil rg choisit par le

concepteur :

P(Tprobe < 7o) <0 (E.15)

Ot 7prope est le rang d’une variable sonde. En conséquence, d est le risque de choisir une
variable méme si elle est non pertinente.

Notons &; le vecteur dont les composants sont N valeurs mesurées du iéme variable
(i =1,--,n), et y le vecteur dont les composants sont N valeurs mesurées de la variable
a prévoir. Si les variables ont une moyenne égale & zéro, le carré du coefficient de la
corrélation entre la iéme variable candidate et la variable a prévoir est [21]:

(&'y)?
&renmy)

Ou p; est 'angle entre vecteurs &; et y dans ’espace d’observation. Plus ; est petit, plus

cos® p; = (E.16)

grande est la corrélation entre la variable candidate et la variable & prévoir.

La procédure de classement basée sur la projection orthogonale de Gram-Schmidt est
décrite dans la figure E.7. La variable candidate dont le vecteur £ a le plus petit angle
avec le vecteur y est classée en premier. Les vecteurs des autres variables candidates et
le vecteur étudié y sont projetés sur ’espace nulle de la variable classée pour éliminer sa
contribution. Le méme calcul continue dans cet espace. Cette procédure est répétée jusqu’a
ce que toutes les variables candidates soient classées ou qu’un critére d’arrét soit atteint.
Afin de tenir compte de la non linéarité, les variables candidates contiennent les variables
primaires et leurs produits vectoriels.

La prochaine étape est la définition du seuil du rang tel que toutes les variables classées
derriére soient rejetées. n, vecteurs des variables sondes sont générés et la distribution
cumulative du rang est estimée de la maniére suivante : la probabilité estimée que le rang
de la variable sonde soit supérieur ou égal au rang r est le rapport n,p,/n,, ou n,, est le
nombre de variables sondes dont le rang est inférieur ou égal a r. Pendant la procédure de
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Calculer cosch entre tous les vecteurs j dans le groupe
des variables candidates et le vecteur étudié y

v

>Supposons que le vecteur £ a une valeur cosz(p* la plus importante

—> Rang ¢*

Projecter les restes des variables candidates et le vecteur étudié
sur l'espace nulle du vecteur &*

Supprimer ¢* du groupe des variables candidates

Calculer cosz<p entre tous les vecteurs projectées &'
et le vecteur étudié projecté y'

Oui

ncore des variables candidates non classées dans le groupe?
et
Le seuil du risque non dépassé?

Arréter

Figure E.7: Procédure du classement par la projection orthogonale de Gram-Schmidt

classement, quand le rang r est atteint tel que n,,/n, >, la procédure s’arréte et le rang
ro est fixé a r—1.

(2) Sélection du modéle

Puisque la fonction objectif appliquée pour I'apprentissage des réseaux de neurones
n’est pas quadratique par rapport aux paramétres du modéle, elle a des minimums lo-
caux. Les algorithmes d’optimisation sont itératifs et les initialisations de leurs paramétres
sont nécessaires. Ces valeurs sont souvent aléatoirement générées par une distribution de
probabilité avec une moyenne nulle et une variance 1/R [21]. La valeur minimale des al-
gorithmes d’optimisation dépend de la valeur initiale des parameétres. En conséquence,
pour un nombre fixe de neurones cachés, nous pouvons obtenir différents modéles. Chaque
modeéle correspond & un minimum local de la fonction objectif. Il n’y a pas de théorie
qui montre que le modéle obtenu par le minimum global de la fonction objectif généralise
mieux que les modéles obtenus par des minimums locaux. Par conséquent, nous proposons
la stratégie décrite dans la figure E.8 : le nombre de neurones cachés augmente & par-
tir de zéro (modele linéaire) jusqu’a un nombre maximal (typiquement plus petit que 10
dans la plupart des applications); pour chaque complexité donnée, plusieurs modeéles sont
entrainés avec des initialisations des paramétres différentes. Le modeéle avec la meilleure
capacité de généralisation est sélectionné. En augmentant le nombre de neurones cachés,
si la capacité de généralisation du meilleur modéle avec i neurones cachés se dégrade de
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fagon importante, la procédure s’arréte. La complexité avec i-1 neurones cachés est donc
considérée optimale avec les données disponibles.

1.Sélection des variables:
Procédure du classement par la projection orthogonale
+ variables sondes

—fornb_hidden neurons=a:b
for nb_initialisations différentes= 0:c

Sélection du modéle avec une meilleur capacité
de généralisation avec une complexité donnée

end
Sélection de la complexité

2. Sélection du modéle

end

Figure E.8: Procédure de sélection du réseau de neurones ({a,b}:{min, max} nombre de

neurones cachés; c: nombre d’initialisations maximal)

Leave-One-Out (LOO) (connu aussi sous le nom « Jackknife ») est un estimateur non
biaisé de l'erreur de la généralisation du modele [68]. Le concept consiste a retirer un
exemple des données disponibles, faire ’apprentissage sur le reste des N — 1 exemples, et
ensuite calculer I'erreur de la prévision sur 'exemple retenu. Cette procédure est répétée
jusqu’a ce que tous les exemples aient été retirés une fois des données d’apprentissage. Le
score de LOO est :

N
Broo =\| 7 200~ (P )’ (E.17)

f74P;, Q) est le modéle obtenu quand l'exemple 4 est retiré des données d’apprentissage.
Si le nombre d’exemple N est grand, cette procédure devient trés lourde, puisque le nombre
de modéles est égal au nombre d’exemples. Néanmoins, si le modéle est linéaire par rapport
a ses paramétres, le score de LOO est obtenu par I'apprentissage d’un modéle de toutes les
données d’apprentissage et estimé par PRESS [112] :

Ly, ©.1
z 1 (2
ou f(P;,Q) est le modele obtenu avec tous les exemples et h;; est le i-iéme élément de la
matrice H = X(XTX)™'X7T, oit X est la matrice d’observation, i.e., la matrice de taille
(N,p), dont les éléments x; ; sont les valeurs mesurées de la variable j dans ’exemple i et
p est le nombre des parameétres, p = (R+ 1)M + (M + 1) (cf. figure 2.3). h;; est le levier
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de I'exemple i. Si la matrice X est de rang plein, H est la projection orthogonale sur le
sous espace défini par les colonnes de la matrice X. En conséquence, les leviers ont les
propriétés suivantes : 0 < hy <1 V¢ Zf\il hii = p.

Le levier d’exemple ¢ peut étre considéré comme la proportion des parameétres du modéle
qui est dédiée pour calibrer le modéle avec ’exemple 1.

Virtual Leave-One-Out (VLOO) [113, 114] est une généralisation du PRESS. 1l est
différent de PRESS en deux aspects :

e [, est une approximation de score LOO Ero0

e les leviers sont des éléments diagonaux de la matrice H = Z(Z72)71ZT, ou Z est la

matrice jacobienne du modéle

La procédure de sélection du modéle est décrite dans figure E.8 : on commence par
un modele linéaire (avec zéro neurone caché), le nombre de neurones cachés augmente un
par un. Pour chaque complexité (nombre de neurones cachés) donnée, différents modeéles
sont calculés avec différentes valeurs initiales des paramétres ; le score de VLOO de chaque
modeéle est évalué et le modele avec le plus petit score VLOO est choisi. Quand on atteint
un certain nombre de neurones cachés, le score VLOO commence & s’accroitre considérable-
ment, la procédure s’arréte et la complexité du modeéle qui donne la plus petite valeur du
score VLOO est retenue.

Il peut arriver que le score de VLOO ne varie pas considérablement autour d’une valeur
minimum, dans une certaine plage de nombres de neurones cachés. Si c’est le cas, un critére
supplémentaire est pris en compte. Comme décrit auparavant, le levier de I'exemple %
représente la proportion des paramétres du modéle qui contribue & caler le modeéle avec
I’exemple 7. Le modeéle qui a un ou plusieurs exemples avec levier proche de 1 dépend des
erreurs de mesures de ces exemples, et doit donc étre éliminé. Au contraire, le modeéle dont
les leviers sont proches de leurs valeurs moyennes p/N est dépendant également de tous
ces exemples, il a donc une bonne capacité de généralisation. En conséquence, la quantité
W= % Zf\il \ /%hn’ est calculée, ou p est toujours plus petit que 1, et il est égal & 1 si et
seulement si tous les leviers sont égaux a p/N. Parmi tous les modeéles avec un petit score
de VLOO, le modéle avec la plus grande valeur de p est préféré.

Les détails des exemples numériques et les performances des modéles ne sont pas donnés
dans ce résumé. Pour les lecteurs intéressés, veuillez-vous référencer a la section 4.4.

E.2.f-ii Comparaison globale avec le modéle de série chronologique

A Tissu de la présentation des deux modeéles pour la prévision de charge a court terme,
nous allons comparer les performances de la série chronologique et du réseau de neurones
selon les six critéres décrits dans le tableau E.3.

e Précision de la prévision

Les résultats de la prévision sur les postes CE__MOU et CE_FRO sont listés dans
annexe D. Dans le cas général, les réseaux de neurones ont une meilleure précision
de la prévision que les modéles de série chronologique et les modéles naifs.

e Facilité d’interprétation
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Table E.3: Résumé de la comparaison entre le modéle du réseau de neurones et le modéle
de la série chronologique pour la prévision de charge court terme.@ signifie que le modéle

a une meilleure propriété.

Réseau de neurones ‘ Modéle série chronologique

Précision de la prévision ©
Facilité d’interprétation ©
Complexité du calcul ©
Quantité des données d’apprentissage ©
Fréquence de mise & jour ©
Adaptabilité ©

Les modéles basés sur le réseau de neurones et la série chronologiques sont découpés
en deux parties. Une partie représente les variations lentes de la consommation issue
des facteurs exogénes, tels que, la température, la journée type, etc. et indique le
niveau de la consommation. L’autre partie concerne les variations rapides et raffine
les résultats finaux.

Etant paramétrique, le modeéle série chronologique est facile & interpréter. La relation
entre la puissance et les autres facteurs d’influence peut étre déduite sans effort. Etant
une boite noire et non linéaire, le modéle réseau de neurones a des difficultés pour
formuler une équation explicite entre la puissance et les autres facteurs d’influence

[99]-

e Complexité du calcul

Les méthodes ont toutes deux périodes : la période d’apprentissage et la période de
test. La période d’apprentissage pour la méthode série chronologique est consacrée
& définir les valeurs de plusieurs variables importantes pour le modeéle, telles que,
les fréquences principales, la largeur de la fenétre glissante, etc. Ensuite, pendant la
période de test, le modéle ajuste les valeurs de ses paramétres itérativement grace a
la technique de la fenétre glissante.

De I'autre coté, pour le modéle réseau de neurones, les données d’apprentissage sont
en méme temps utilisées pour calculer les valeurs de ses paramétres, pour sélectionner
le modéle optimal, et pour choisir les variables d’influence. Néanmoins, c’est un long
processus. Il faut entrainer deux réseaux indépendamment : un pour prévoir la

moyenne journaliére, et I’autre pour prévoir la variation intra-journaliére.

¢ Quantité de données d’apprentissage

: " ) ) ) < cal
Ici, la quantité de données correspond au nombre de données consacrées aux cal
culs des paramétres dans un modeéle. Pour le modéle chronologique, cette quan-
tité est définie pendant la période d’apprentissage. Celle-ci peut durer d’une a
plusieurs semaines. Le modeéle de réseau de neurones a besoin d’une période com-
pléte pour apprendre correctement. Une année de données historiques est utilisée
pour 'apprentissage de ce modéle.
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e Fréquence de mise a jour

La mise & jour d’'un modéle change sa structure ou ses paramétres. Pour le modéle
série chronologique, la structure est figée, mais les paramétres sont réestimés pendant
chaque période de la prévision, i.e., chaque jour.

Une année de données est utilisée pour 'apprentissage des modéles du réseau de
neurones. Comparé au modéle de série chronologique, la précision de la prévision du
modeéle de réseau de neurones se dégrade & partir du mois de Mai, c’est-a-dire 8 mois
apres 'apprentissage. La fréquence optimale de mise a jour doit donc étre choisie
pour les modéles de réseau de neurones. Le tableau en annexe D montre les résultats
détaillés de deux postes pour chaque mois de la période de prévision.

e Adaptabilité

Avoir une bonne adaptabilité signifie que le modeéle a la capacité d’étre facilement
appliqué & d’autres situations similaires. Le modéle de série chronologique, lié a la
structure fixée, peut seulement extraire des informations simples telles que la journée
type, la température, et les périodes principales. Le modéle ne peut pas prévoir la
charge des postes industriels puisque ces postes ne dépendent pas de la température,
et la période principale, hebdomadaire, a déja été exploitée par le modéle naif. La
performance d’un modéle de série chronologique est donc un peu meilleure que celle
du modeéle naif.

Reconnu pour sa bonne capacité d’apprentissage, le modéle du réseau de neurones
peut traiter toutes les sortes de prévision de charge. Le modéle adapte sa structure
aux données d’apprentissage par la sélection de ses variables et de sa structure. Ce
modele est donc mieux adapté dans le cas industriel (annexe D). C’est aussi une
solution prometteuse pour la prévision de la puissance réactive.

La section E.2 a présenté deux méthodes appliquées & la prévision de charge court
terme pour la conduite et ’estimateur d’état. Différentes applications et différentes méth-
odes de la prévision de charge dans la littérature sont briévement introduites au début
de cette section. Ensuite, les différents types de courbe de charge sont illustrés, et leurs
caractéristiques sont commentées afin de choisir des méthodes adaptées a notre besoin de
la prévision court terme. Deux méthodes ont été choisies parmi de nombreux choix : série
chronologique et réseau de neurones. A l'issue de la présentation théorique détaillée de ces
deux méthodes, une comparaison sur différents aspects est effectuée. Dans la prochaine
section, nous allons traiter le deuxiéme objectif de la thése, la conception des modéles
d’estimation pour la planification dans le réseau de distribution.

E.3 Modéle d’estimation de charge pour la planification du
réseau de distribution

La planification joue un réle important dans les réseaux de distribution en termes économique
et technique. Elle impacte les décisions d’nvestissements ainsi que la qualité de la fourni-
ture d’électricité. La précision du modéle d’estimation de charge est essentielle pour ré-
duire l'incertitude afin de choisir la meilleure stratégie parmi toutes les alternatives. Dans



194 E. Résumé francais

cette section, nous argumentons 'importance des modéles d’estimation de charge dans la
procédure de prise de décision pour la planification des réseaux de distribution. Le modéle
nommé BAGHEERA appliqué actuellement par le distributeur d’électricité francais ERDF
est détaillé. A partir de celui-ci, notre modeéle est proposé, commenté et comparé.

Les décisions pour la planification des réseaux de distribution sont basées sur les analy-
ses technique et économique. La Figure E.9 décrit des trois étapes de la procédure de prise
décision dans la planification des réseaux. Dans ’analyse technique, les estimations de la
charge, la topologie du réseau existant et des données du réseau (des transformateurs, des
lignes et des cébles, etc.) sont prises en compte. Ensuite, analyse économique intégre les
prix des composants, les pertes des lignes, le cotit de maintenance et estime le cott pour
chaque solution issue de la derniére étape. Celle-ci combine ces résultats avec le budget

annuel pour faire des plans d’investissement.

Puissance
Analyse technique |<€——— Topologie
Donées du réseau
¢Solutions
Prix des composants

Analyse économique <& Perte des lignes
Colt d'entretien

¢Coﬂt des solutions

Evaluations ««——— Budget annuel

Y

Décisions finales

Figure E.9: La prise des décisions dans le réseau de distribution

Les modéles d’estimation de charge sont appliqués dans 1’étape d’analyse technique.
Celle-ci est considérée comme un probléme d’optimisation des pertes électriques dans les
réseaux de facon & ce que la tension sur chaque nlJud des réseaux reste dans une bande
normalisée. Les clients dont la tension du point de raccordement est en dehors de cette
bande sont considérés comme des CMAs (Client Mal Alimenté). Pour définir la tension du
point de raccordement, les calculs des pertes et du plan de tension doivent étre effectués.
Avant I'apparition des compteurs intelligents, les seules mesures disponibles dans les réseaux
de distribution étaient les puissances actives et réactives, la tension et le transit dans les
postes sources et quelques relevés par an et par client pour la facturation. La consommation
d’un poste HTA /BT est estimée par la proportion des valeurs maximales entre les postes
HTA /BT et le poste source en amont. Afin d’estimer des modéles de charge sur un plus bas
niveau de tension pour la planification des réseaux, la plupart des entreprises d’électricité
collectent aussi des données de sondage sur une base réguliére, i.e., 10 minutes, 15 minute,
une demi-heure ou une heure, pour un nombre limité de clients.

La plupart des entreprises d’électricité établissent les profils de charge typiques qui
représentent & peu prés la consommation d’un client individuel. Ces profils sont ensuite
agrégés a un niveau de tension plus élevée. Pour plus d’informations, les lecteurs peuvent
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se référencer aux sous-sections 5.1.a et 5.1.b.

E.3.a Modéle BAGHEERA

Depuis 1997, Electricité de France (EDF) emploie un modeéle nommé BAGHEERA pour
ses clients connectés aux postes publiques HTA /BT. Il classifie les clients dans des groupes
selon leurs informations qualitatives, telles que son code d’activité (résidentiel, agriculture,
commercial, industriel, etc.) et son option tarifaire (base, heure creuse/pleine, Tempo).
Ce modeéle est utilisé pour I’estimation des pics de consommation et fournit 48 estimations
de puissance (deux par heure) pour les jours ouvrables et les weekends pour chaque client
individuellement. Ses avantages peuvent étre résumés comme :

e Un modéle universel qui adapte aux clients de toutes catégories
e L’information de la période heure creuse/pleine de chaque client est prise en compte

e La sortie du modéle inclut 48 puissances. Quand nous faisons le calcul électrique,
Peffet coincidence (sous-section 5.1.a), ou effet de foisonnement, est pris en compte.

En collaboration avec le calcul électrique dans les cas les plus défavorables, le modéle
BAGHEERA estime la charge d’un client individuel sous la condition TMB !. Il y a deux
composants dans ce modeéle : la puissance moyenne P(¢,Ty) sous la température T, et la
marge v(t). Pour chaque heure, nous avons :

P(t, Td) = a(t)Eo + b(t)S(Td - TNh)|Td<TNh (Elg)

v(t) =o(t)*E, (E.20)

Ou {a(t),b(t),o(t)} sont les coefficients calculés statistiquement et partagés pour tous les
clients dans le méme groupe. Les paramétres { Fy, s, E,, } sont spécifiques & chaque client et
correspondent respectivement & I’énergie journaliére consommée hors chauffage, le gradient,
I’énergie annuelle ajustée a la condition climatique normale. T} est la température moyenne
journaliére. Equation E.19 assume que au-deld de la température de non chauffage Ty,
qui est différente d’une région a ’autre, la puissance consommeée (a(t)Ep) est indépendante
de la température et au-dessous de cette température de non chauffage, la relation entre
la puissance consommeée et la variation de température est linéaire. Cette relation linéaire
est indiquée par le gradient s (s< 0).

La puissance moyenne représente ’espérance de la puissance de chaque heure sous la
température Ty, et la marge représente l'incertitude de I'estimation. Le risque fixé pour la
planification des réseaux de distribution est de 10%, ce qui signifie que la borne supérieure
a 10% de chance d’étre dépassée. La borne « 10% supérieure » est donc définie comme :

PlO%(taTd) = P(t’Td) + ClO%V(t) (E21)

!Température Minimum de Base : en pratique, EDF définie le TMB & partir de 30 ans de données
historiques. La probabilité d'un jour par an est une valeur moyenne : en réalité, pendant une année
chaude, nous pouvons probablement trouver aucun jour dont la température journaliére est inférieure a
cette TMB valeur, alors que pendant une année froide, plusieurs jours peuvent étre inférieurs a cette TMB
valeur.
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Ot ¢qgy est le coefficient du risque & 10%. En théorie, la borne supérieure de la température
TMB est dépassée pendant 8760h/an * (10% * 0.3%) ~ 2.5 heures par an.

Les détails du calcul des coefficients {a(t),b(t),o(t)} sont présentés dans sous-section
5.3.b-ii et celui des coefficients {s, Fy, E,,} sont développés dans sous-section 5.3.b-iii.

EOHC = 9; S —2; EHC: 10

0
-10 0 10 T,20 30
Température (°C)

Figure E.10: Client no.5 option heure creuse/pleine: ajustement de courbe sur l'énergie
journaliére pendant les heures pleines. L’indice « HP » signifie Heure Pleine et I’indice «
HC » signifie Heure Creuse.

EO = 10.05; s = -0.02; E= 10.75

0
-10 0] 10 20 30
Température (°C)

Figure E.11: Client no.18 option de base: ajustement de courbe sur I’énergie journaliére.

L’intervalle d’échantillon des clients sondés est de 10 minutes. Les données de la tem-
pérature sont échantillonnées par heure. Ces deux données sont moyennées sur une base
journaliére afin d’estimer les parameétres {s, Ey, F, } par 'ajustement de courbe. Les don-
nées au-dessus de la température Ty sont ajustées avec une constante Fy et les données
au-dessous de la température Ty, sont ajustées avec une fonction linéaire (s(Ty—Tnp)+E)
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Figure E.12: Client no.5 option heure creuse/pleine: TMB estimations de la charge pen-
dant les jours ouvrables

qui minimise les moindres carrés.

Les clients heure creuse/pleine ont deux compteurs électriques, qui enregistrent séparé-
ment les énergies consommeées pendant les heures pleines et les heures creuses. La figure
E.10 illustre I'ajustement de courbe pendant les heures pleines. Une figure similaire peut
étre tracée pour les heures creuses. L’énergie journaliére varie avec la température. De
cette fagon, les clients heure creuse/pleine ont souvent un grand gradient. En fait, Ty, est
une grandeur qui indique la température moyenne de non chauffage pour une région. Ce
facteur peut varier d’un client & 'autre de la région. Dans la figure E.10, nous voyons que
I’énergie moyenne pendant les périodes de non chauffage (E0g¢) est différente de 1'énergie
journaliére hors chauffage déduite par la régression (Efc). Les clients d’option de base
utilisent d’autre moyens de chauffage, notamment des moyens non électriques. Leur con-
sommation électrique reste stable par rapport a la variation de température (figure E.11).
Ils ont donc un petit s. Pour la méme raison, I’énergie journaliére hors chauffage FEO est
différente de celle de la régression F.

Les coefficients communs {a(t), b(t), o(t)} dépendent de la catégorie des clients. 48
estimations de la valeur moyenne ainsi que des bornes supérieures sont calculées avec les
équations E.19, E.20 et E.21. Notons que différents ensembles de valeurs {a(t), b(t),
o(t)} existent pour les jours ouvrables et les week-ends, ainsi que pour les périodes heures
creuses et heures pleines. S’il existe plus d’une période d’heures creuses pendant la journée,
la puissance estimée est considérée comme identique pour chaque début de période. Dans
la figure E.11, le client no.5 il y a deux périodes d’heures disjointes : 01 :00 & 07 :00 et
12 :00 & 14 :00. Nous constatons que deux pics pendant le début de chaque période ont la
méme valeur. Les valeurs des bornes supérieures sont écrétées par la puissance souscrite.
Dans la figure E.11, les estimations des bornes supérieures dépassant 9kW sont remplacées
par 9kW, la puissance souscrite du client no.5.

Le modéle BAGHEERA suppose que U'influence de la température sur la consommation
est linéaire. Néanmoins, cette hypothése n’est pas réaliste. Cela est di & la limite des
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puissances maximales des chauffages. De plus, le concept du réseau intelligent conduit
a une dynamique importante et des relations flexibles entre le producteur d’électricité,
le distributeur et les clients. Il n’est donc plus raisonnable d’attribuer un client & un
groupe fixe. Avec la climatisation, de plus en plus répandue en France, la consommation
va aussi augmenter pendant les périodes chaudes. L’hypothése du modéle BAGHEERA
selon laquelle la charge reste stable quand la température dépasse une température de non
chauffage n’est plus vraie. Notre idée est de construire un modéle individuel pour chaque
client sans faire la classification. Ce modéle doit étre complétement dirigé par les données
et indépendant par rapport aux informations qualitatives des clients dont la qualité se
dégrade. En tenant compte du développement des compteurs intelligents, qui fournissent
des consommations détaillées de chaque individu, nous proposons un modéle d’estimation
de charge non paramétrique individualisé pour chaque client.

E.3.b Modéle non paramétrique

Dans cette sous-section, nous abordons le modéle d’estimation de charge non paramétrique.
Les avantages du modéle peuvent étre résumés en trois points :

e La méthode est complétement dirigée par les données et peut étre adaptée & tous
les types de charge, pour les clients thermosensibles ainsi que pour les clients non
thermosensibles.

e Les méthodes non paramétriques sont appliquées de sorte que le modéle est indépen-
dant des informations qualitatives d’un client ainsi que de I’hypothése faite sur les
fonctions de charge.

e La sortie du modele inclus les estimations de charge maximales et minimales.

La figure E.13 présente la procédure du modéle non paramétrique. Dans un premier
temps, la courbe de charge d’un client est associée a la température de la région ou les
mesures sont prises. Ensuite, les tests statistiques sont effectués pour examiner si ce client
est thermosensible. Si ce client n’est pas sensible par rapport & la température, il n’y
aura pas de différence entre la courbe de la puissance maximale et celle de la température
TMB. L’estimation de la densité de la probabilité par noyau est utilisée pour déterminer
les valeurs médianes, ainsi que la borne supérieure a 10% et la borne inférieure a 10%.
Si ce client est thermosensible, 1’algorithme CUSUM (somme cumulée) est appliqué pour
séparer la période de chauffage de la période de non chauffage. Ensuite, les données de
la période de non chauffage sont utilisées pour calculer les puissances minimales et les
données de la période de chauffage sont utilisées pour estimer les puissances sous tem-
pérature TMB. Notons que la température TMB est une de plus basses températures de
I’année, qui a lieu en moyenne une fois par an. Les connaissances de la consommation
électrique sous cette température sont souvent insuffisantes. Ce manque de connaissances
peut engendrer des difficultés pour I'estimation des puissances & température TMB. Nous
proposons donc d’inclure les mesures de la charge des années précédentes si ces données
sont compatibles avec les données de 'année estimée. Cette compatibilité est vérifiée par
des tests statistiques. Donc, éprouvées par les tests, les données des années précédentes
compatibles avec les données de la période de chauffage de ’année estimée sont utilisées
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pour estimer la relation entre la température et la charge par une méthode de régression
par noyau. Le paramétre de lissage demandé par la méthode de régression par noyau est
calculé par la technique de validation croisée. Une fois la relation entre la température et
la charge établie, les données de la période de chauffage sont ramenées & la condition TMB
selon cette relation en maintenant leurs incertitudes d’observation. Finalement, les puis-
sances médianes et les bornes sont calculées & la température TMB. Les outils statistiques
montrés dans la figure E.13 ne sont pas présentés ici. Pour plus de détails, nous invitons
les lecteurs a se reporter a la section 6.1.

/;(ssocier la courbe de charge avec sa tempéraﬂy/
Thermosensible?

Oui

Séparer période chauffage/ période non chauffage

Non l

Pmin= Prms

Période non chauffage | | Période chauffage |

Pmin

ompatible avec les données de 'année dernié

Oui

|Inc|ure les données de I'année derniére quand T(°C)<0°C|

Y
‘{ Déduire la relation entre T(°C) et P \

Extrapoler tous les données pendant la période chauffage
a condition TMB

v

I:)TMB

Figure E.13: La procédure du modéle non paramétrique

Les modeéles non paramétriques sont comparés avec le modéle industriel BAGHEERA
avec des données réelles (sous-section 6.2.a). Nous soulignons que les estimateurs proposés
sont plus adaptés et donnent des résultats plus fiables (sous-section 6.2.b).

E.4 Conclusions et perspectives générales

Dans ce mémoire, nous traitons deux problémes distincts sur la charge électrique dans les
réseaux de distribution, respectivement pour la conduite et la planification. L’apparition
des compteurs électriques intelligents dans un contexte de réseaux intelligents donne la
possibilité de construire les modeéles prédictifs de charge plus précis sur la basse tension,
ainsi que des modéles d’estimation de charge individualisés.
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Trois modéles ont été traités, les deux premiers pour I'estimation de charge en J+1 et
J+2, le troisiéme pour l'estimation de charge & ’échelle de la planification :

e Le modeéle de série chronologique découpe la courbe de charge en trois parties :
la tendance, la cyclicité et les erreurs aléatoires. Les deux premiéres parties sont
déterministes et sont présentées séparément par deux modéles paramétriques. Le
modéle de tendance prend en compte la température, le temps et les journées types.
Le modéle cyclique est composé des composantes de Fourrier, dont les fréquences
principales sont identifiées par le périodogramme lissé. L’analyse du résidu montre
qu’il n’y a plus de possibilité d’améliorer les résultats de la prévision avec les autres
approches classiques.

Nous avons aussi étudié l'influence de l'incertitude dans la prévision de la tempéra-
ture vis-a-vis de la précision pour la prévision de charge. Nous avons montré que
méme avec l'incertitude dans la prévision de la température, notre modéle de série
chronologique est beaucoup plus précis par rapport au modéle de référence : le modeéle

naif.

e Le réseau de neurones a une capacité d’approximation universelle et une bonne capac-
ité a traiter les relations non linéaires et complexes. Le réseau de neurone est souvent
considéré comme ayant une prévision plus précise que les méthodes classiques [99].
Dans la plupart des travaux qui traitent de la problématique de la prévision de charge
a court terme, le choix des variables ainsi que celui de la structure pour le réseau de
neurones n’étaient pas systématiquement justifiés. Les résultats finaux n’étaient pas

bien commentés ou présentés clairement [39, 28].

Nous focalisons sur la méthodologie de la conception du modele, i.e., les sélections des
variables et du modeéle. La sélection des variables est basée sur la régression orthog-
onale, qui range les variables candidates dans un ordre de pertinence décroissante.
La sélection du modéle est basée sur le processus VLOO, qui estime la capacité de la
généralisation pour le modéle. La courbe de charge est décomposée en la puissance
moyenne journaliére et les variations de la puissance intra journaliére. Cette décom-
position réduit la complexité du modéle. L’efficacité de la stratégie de sélection est
prouvée en utilisant de vraies mesures de postes HTA /BT.

e Pour I'objectif du modéle d’estimation de charge, nous introduisons le concept consis-
tant & construire le modeéle individualisé pour chaque client sans faire de classification.
Ce modeéle non paramétrique est complétement dirigé par les données. Il ne possede
pas d’hypothéses a priori sur la relation entre la charge et la variation de la tem-
pérature. Dans ce rapport, nous avons proposé trois estimateurs pour différents cas
de disponibilités des données. Les études de validation comparent la précision des
estimations du modéle BAGHEERA et les modeéles non paramétriques sur la base
des mémes données. Ces études montrent que les estimateurs non paramétriques ont
une meilleure précision que celui du modéle BAGHEERA. Une discussion pour la
définition du seuil de 'incertitude pour le calcul de la chute de tension est dévelop-
pée.

Les objectifs de la these sont atteints.



E.4. Conclusions et perspectives générales 201

Les modéles prédictifs de charge ont une précision meilleure que le modéle naif. Néan-
moins, en termes d’efficacité ainsi que de bénéfice économique sur les fonctions avancées
du réseau, le rapport n’a pas pu étre quantifié. Les prochains travaux devraient se focaliser
sur l'intégration de ces modéles dans les fonctions avancées du réseau.

La méthodologie de la conception du modele réseau de neurones est trés prometteuse
pour la prévision de charge. Elle fournit une prévision plus précise que la méthode série
chronologique. Cette solution peut étre étendue a tous les types de la prévision de charge,
y compris la puissance réactive. Les résultats de ces premiéres études sont encourageants.
Néanmoins, des études plus poussées devraient étre effectuées pour les raisons suivantes :

e Dans notre méthodologie, les variables candidates secondaires sont congues pour
prendre en compte la non linéarité du modéle. Cependant, une variable candidate
secondaire représente seulement le produit de deux variables primaires. Il y a peut-
étre d’autres formes de combinaison & explorer.

e Le risque de sélectionner une variable non pertinente est estimé par les variables
sondes. A cause d’'un effet de mélange aléatoire, le nombre de variables retenues
malgré le méme risque peut étre différent. D’autres méthodologies de sélection de
variables peuvent étre envisagées, tels que l’analyse d’entropie [115], 'espace des
phases associées [106].

e La performance se dégrade quand le temps de prévision augmente. Voir Annexe 4.3.a.
Puisque les modéles de charge suivent un processus non linéaire, dii & 'augmentation
progressive, ils doivent donc étre mis & jours réguliérement. En conséquence, la
fréquence de mise & jour du modeéle doit étre déduite pour atteindre une performance
optimale.

Nous avons montré que le modéle non paramétrique a une meilleure précision que le
modéle BAGHEERA sur l'estimation des valeurs moyennes. Une discussion est consacrée
pour clarifier la définition de la borne supérieure, dont les valeurs participent directement
dans le calcul de chute de tension. Cette discussion doit étre prolongée avec les distribu-
teurs. La validation de la méthodologie pour cette estimation est aussi une tache difficile.
Puisque peu d’échantillons sont pris a température TMB pendant une période de deux ans
[3], la probabilité d’étre dépassée pendant 10% de temps est donc difficile & vérifier. Nous
proposons de tester cette méthodologie dans 'implémentation industrielle.

Aujourd’hui, un grand nombre des énergies renouvelables sont intégrés dans les sys-
témes électriques. Leurs occurrences changent les transits dans les lignes électriques. Elles
peuvent étre considérées comme des consommations électriques négatives.

Différentes des moyens de productions classiques (nucléaire, fioul, et hydraulique, etc.),
ces générations d’énergies distribuées renouvelables (éolien, photovoltaique, et biomasse)
connectées aux réseaux de distributions sont intermittentes, et trés dépendantes des con-
ditions météo. La qualité de la prévision de ces productions dépend plus de la qualité des
prévisions des facteurs d’influence que de D'efficacité de ’algorithme de la prévision.

Par exemple, pour le photovoltaique, les facteurs d’influence directs sont la nébulosité,
la radiation solaire, et la température [156]. Les autres paramétres comme le vent, la
pluie et la neige sont des facteurs indirects [155]. La difficulté est d’obtenir une prévision
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précise sur la nébulosité, puisque cela est basé sur un phénomeéne physique trés complexe
et cela représente plus de difficulté que la prévision de la température moyenne journaliére.
L’éolien, d’un autre coté, dépend de la force et de la direction du vent, de la géographie de
la ferme, et du type de générateur. La prédiction des facteurs d’influence ne fait pas partie
du périmétre de cette thése.

Afin de calculer correctement la chute de tension pour la conduite et la planification
du réseau de distribution, nous devons tenir compte de ces productions. Deux fagons sont
envisageables :

e un modeéle prédictif pour la production
e un modéle qui prévoit la valeur agrégée de la génération et la consommation

La plupart des travaux de recherche se concentrent sur la premiére voie. Il y a trois
catégories de modéles pour prévoir ces productions : basé sur un modéle physique, sur un
modéle statistique ou sur un modéle hybride qui combine les avantages des deux premiers
[155]. Les meéthodes sont similaires a celles de la prévision de charge [155, 157, 158].

Nous proposons de déployer les deux modéles présentés dans ce rapport, le modéle
du réseau de neurones et le modéle non paramétrique pour résoudre le probléme dans la
seconde voie. Grace a la bonne capacité d’apprentissage du réseau de neurones, si les
prévisions des facteurs d’influence sont assez précises, le modéle est capable de déduire la
relation non linéaire complexe entre entrées et sorties. Dans ce cas, la sortie du modéle
est la prévision de l'écart entre la production et la consommation. Les stratégies pour
les sélections des variables et du modeéle (parties Sélection des variables et Sélection du
modéle) peuvent étre aisément appliquées. En ce qui concerne le modéle non paramétrique,
sans hypotheése & priori, et complétement dirigé par les données, il peut étre facilement mis
en ceuvre pour la situation ol ces énergies renouvelables sont présents.

Pour les futurs travaux, il faudrait tester ces deux modéles avec les vraies données des

consommations électriques et des productions des énergies renouvelables.



