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Titre : Mise en forme singulière de faisceaux lumineux à l'aide de composants optiques spin-orbite 
plans 
Résumé : Dans ce travail nous avons résolu deux problèmes principaux de la mise en forme 
topologique de faisceau paraxial pour les composants plans : la modalité et le polychromatisme. 
Nous les résolvons en introduisant de nouveaux concepts d’éléments optiques à interaction spin-
orbite, à savoir la “q-plate modale” et la “q-plate Bragg-Berry”. D’un côté, la q-plate modale 
convertit un faisceau gaussien incident en un faisceau de Laguerre-Gauss pour un indice radial et un 
indice d’azimut donnés, ce qui par conséquent dépasse les capacités des q-plates conventionnelles 
qui ne modifient que le degré de liberté azimutal, c.à.d. le moment orbital angulaire de la lumière. À 
des fins expérimentales, deux approches ont été développées : une basée sur des lames de verre 
nanostructurées artificiellement, l’autre sur des défauts topologiques de cristaux liquides auto-
organisés naturellement. D’un autre côté, la q-plate Bragg-Berry consiste en une fine couche 
inhomogène de cristaux liquides chiraux (cholestériques) devant un miroir, ce qui fournit une mise 
en forme de faisceau spin-orbite pleinement efficace sur une large bande spectrale du faisceau 
incident, contrairement au q-plates conventionnelles qui ne sont fabriqués que pour une longueur 
d’onde donnée. Par ailleurs, nous obtenons une mise en forme de faisceau spin-orbite ultra-large 
bande en induisant une modulation de la structure supramoléculaire torsadée des cristaux liquides 
cholestériques selon la direction de propagation de la lumière. Nous montrons également que la 
présence du miroir derrière permet un puissant contrôle spatio-temporel des propriétés vectorielles de 
la polarisation du champ lumineux générées par la q-plate Bragg-Berry. 
 
Mots clés : Mise en forme de faisceau singulier, vortex optique, mode de Laguerre-Gauss, q-plate, 
défauts de cristaux liquides, cristaux liquides chiraux, chiralité à rampe de pas, modulation spatio-
temporelle, faisceau vectoriel 
 
 
 
 
 
Title: Singular beam shaping from spin-orbit flat optics 
Abstract: It is well-known that paraxial coherent electromagnetic fields can be completely 
characterized in terms of their radial and azimuthal spatial degrees of freedom in the transverse plane 
that add to the polarization degree of freedom and wavelength. In this work we address two main 
issues of paraxial beam shaping that are the modality and the polychromaticity in the context of flat-
optics that we address by introducing novel concepts of spin-orbit optical elements. Namely, the 
‘modal q-plate’ and the ‘Bragg-Berry q-plate’. On the one hand, modal q-plate converts an incident 
fundamental Gaussian beam into a Laguerre-Gaussian beam of given radial and azimuthal indices, 
hence going beyond the capabilities of conventional q-plates that only control the azimuthal degree 
of freedom, i.e. the orbital angular momentum content of light. Towards experimental realization of 
modal q-plates, two approaches are developed: one based on artificially nanostructured glasses and 
another based on naturally self-organized liquid crystal topological defects. On the other hand, 
Bragg-Berry q-plate consist of mirror-backed inhomogeneous thin film of chiral liquid crystal 
(cholesteric) that provides fully efficient spin-orbit beam shaping over broad spectral range of the 
incident beam, in contrast to the conventional q-plates that are designed for single wavelength. 
Furthermore, ultra-broadband spin-orbit beam shaping is achieved by inducing an extra modulation 
of the supramolecular twisted structure of the cholesteric liquid crystal along the propagation 
direction. We also show that the presence of a back-mirror allows a powerful spatio-temporal control 
of the polarization vectorial properties of the light fields generated by Bragg-Berry q-plate.    
 
Keywords: Singular beam shaping, optical vortex, Laguerre Gaussian mode, q-plate, liquid crystal 
defect, chiral liquid crystal, gradient-pitch chirality,  spatio-temporal modulation, vector beam 





Résumé en français

Dans ce travail nous avons résolu deux problèmes principaux de la mise en forme
topologique de faisceaux : la modalité et le polychromatisme, traités respective-
ment dans le chapitre 1 et le chapitre 2.

Chapitre 1 – Mise en forme modale de faisceau, à partir d’éléments
optiques biréfringents non-homogènes
Ce chapitre introduit le concept de mise en forme « modale » de faisceaux lu-
mineux, c’est-à-dire la conversion d’un mode de propagation gaussien en des
modes de Laguerre–gauss ou de Hermite-gauss. Notre étude théorique, dan la
Sec. 1.1, propose les combinaisons de phases dynamiques et géométriques à appli-
quer au mode gaussien incident afin d’aboutir, directement en sortie de dispositif,
au mode arbitraire choisi. Cette technique surpasse les techniques actuelles de
mise en forme de faisceaux dans la mesure où le mode parfait recherché peut être
généré directement à la sortie du masque de phase et ne nécessite pas la propa-
gation du champ lumineux ou de systèmes de filtrage spatiaux pour « nettoyer
» le faisceau du bruit optique induit par la conversion de phase.

Face au niveau de complexité des distributions de retard de phase requis
pour l’ingénierie des q-plates modales, deux approches ont été explorées pour la
réalisation des structures. La première approche, développée dans la Sec. 1.2,
consiste à simplifier la structuration de phase de la q-plate en se plaçant dans
l’approximation des petits déphasages. Il s’agit du concept de « q-plate quasi-
modale », présentant un rendement de conversion réduit mais devenant accessible
technologiquement : elles ont été réalisées avec succès par le biais de techniques
de nanostructuration par faisceau laser femto-seconde. Les faisceaux devraient
présenter un profil quasi-Laguerre-gaussien. La comparaison avec les q-plate
classiques (non modales) réalisées par la même technologie laisse entrevoir des
faisceaux plus proches des modes souhaités. La deuxième approche, développée
dans la Sec. 1.3, consiste à créer les structurations complexes de biréfringence req-
uises en tirant parti de l’auto-organisation naturelle des cristaux liquides. L’idée
est ici de créer des singularités isolées auto-organisées dans le matériau ayant la
capacité de moduler la biréfringence selon des fonctions décrivant la structuration
des q-plates. Ce concept est étudié sur la base du modèle analytique de Rapini
prédisant clairement une conversion modale avec une limite maximale d’efficacité
de conversion. Enfin, nous présentons les premières démonstrations expérimen-
tales qualitatives des q-plates modales à cristaux liquides auto-organisées prédites



dans le modèle théorique.

Chapitre 2 - Couplage spin-orbite de faisceau large-bande en réflexion
sur un milieu anisotropique chiral

Le deuxième chapitre démontre que l’introduction du coulage spin-orbite dans le
processus de réflexion lumineuse permet de modeler à la carte la phase de l’onde
réfléchie tout en relâchant les contraintes de structuration de la matière propres
aux dispositifs transmissifs (q-plates). Une telle mise en forme électromagnétique
est démontrée sur la base de réflecteurs de Bragg à cristaux liquides présentant
une structuration nanométrique chirale sous la forme d’hélices. En jouant sur
l’orientation de ces hélices nanoscopiques dans le temps ou dans l’espace, nous
faisons nâıtre une phase géométrique (dite de Pancharatnam Berry) structurant
le champ réfléchi et faisant apparâıtre de nouvelles fonctionnalités optiques.

Tout d’abord, dans Sec. 2.2, il est montré qu’un réflecteur de Bragg, créé à
partir d’une distribution homogène de nano-hélices, mis en rotation développe
une phase géométrique induisant un effet Doppler sur l’onde réfléchie (léger dé-
calage en fréquence de l’onde). Ce phénomène est expliqué selon 3 approches
théoriques différentes et complémentaires : le calcul direct de la phase à la
réflexion, le transfert de moment angulaire de la lumière à la matière et ses con-
séquences sur le champ réfléchi et l’effet Coriolis liée au spin du champ incident
dans un référentiel tournant lié au miroir de Bragg en rotation.

Ensuite, dans Sec. 2.3, nous introduisons le concept de miroir de Bragg-Berry
sur la base d’une modulation spatiale azimutale de l’orientation des nano-hélices,
permettant la création de gradients de phase géométriques azimutaux et une mise
en forme topologique du champ réfléchi. Ce concept est démontré expérimentale-
ment avec la génération de vortex à partir de faisceaux gaussiens (diffractant) et
de faisceaux de Bessel (dits non-diffractant). Le concept de miroir de Bragg-Berry
à ultra-large bande spectrale est ensuite présenté et démontré expérimentalement.
Un tel dispositif est rendu possible par l’achromaticité de la phase géométrique
et du processus de réflexion. Dans Sec. 2.4 par un procédé de diffusion entre 3
couches de cristaux liquides, la génération d’un miroir de Bragg-Berry à nano-
hélices « graduelles » a permis la mise en forme topologique de faisceaux sur une
gamme spectrale couvrant les longueurs d’ondes optiques visibles, et donc de
générer des vortex de lumière blanche présentant une faible sensibilité à l’angle
d’incidence. Grâce à cette réalisation technique, dans Sec. 2.5 nous introduisons
et démontrons le concept de « Bragg-Berry q-plate » permettant de lever le ver-
rou de la sélectivité des miroirs de Bragg-Berry vis-à-vis de l’hélicité du champ
incident. Il s’agit ici de placer un miroir de Bragg conventionnel après le miroir
de Bragg-Berry dans le processus de réflexion optique. Ce nouveau système
combine les avantages des deux familles de dispositifs présentés dans les deux
chapitres et ouvre la voie vers des faisceaux vortex fortement polychromatiques
dont la charge topologique est contrôlée par le moment de spin de la lumière.



Enfin, dans Sec. 2.6, la modulation spatio-temporelle de faisceaux vectoriels est
présentée et démontrée sur la base d’une légère translation du miroir de Bragg
conventionnel par rapport au miroir de Bragg-Berry. Cette étude apporte la di-
mension de l’accordabilité dynamique des faisceaux vectoriels, qui connaissent
actuellement un intérêt très fort. Par exemple, la possibilité offerte par cette
technique depasser continûment d’un faisceau polarisé radialement à un fais-
ceau polarisé azimutalement représente de fortes perspectives dans l’ingénierie
de faisceaux focalisés et en optique sub-longueur d’onde. La présentation de tous
ces concepts et de leurs bases théoriques respectives est limpide et les résultats
expérimentaux sont sans équivoques. Ils sont le fruit de la mise en œuvre de
techniques d’imagerie et de caractérisation optiques non triviales permettant de
révéler les caractéristiques intrinsèques clés des faisceaux vortex générés.

Les résultats présentés dans cette thèse apportent un nouveau concept de
mise en forme de faisceau modal et fournit un nouvel élément spin-orbite réflectif
large bande, ce qui, d’un autre côté, peu ouvrir de nouveaux champs de recherche
vers des éléments spin-orbite avancés.
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General Introduction

Overview

The interest in beam shaping increased dramatically in the last years due to the
development of various applications that can benefit from it. That led to the
increase in research in beam shaping techniques and the corresponding advances
in optical component fabrication technology.

A fundamental and attractive kind of beam that is a subject of beam shaping
studies since many years is the optical vortex beam, namely light beam carry-
ing optical phase singularity. The first modern day identification of an optical
vortex was seemingly reported by Vaughan and Willetts in 1979 [1], who stud-
ied the helical wavefront of light beams and their interference along the beam
propagation axis. Since then, many studies have been carried out towards helical
shaping of optical wavefronts. One can mention spiral phase plates [2–4], which
are changing the helical wavefront of the incident beam by their helical structure;
computer generated holograms [5, 6], which are digitally generating holographic
interference patterns with phase singularities; diffractive optical elements [7];
or geometric Pancharatnam-Berry phase optical elements [8] based on artificial
subwavelength dielectric gratings. Liquid crystal fork gratings [9–11], liquid crys-
tal natural topological defects [12, 13] or liquid crystal spatial light modulators
(SLMs) [14,15] are also well-known strategies exhibiting good tunability as well.

It has been shown that the optical vortex beams endowed with on-axis phase
singularity, carry well-defined orbital angular momentum per photon [16]. In
general, photons possess both spin and orbital angular momenta that are sepa-
rately measurable [17]. The orbital angular momentum is related to the spatial
degrees of freedom of light, while the spin angular momentum is related to the
polarization of light. The sum of the spin and orbital angular momenta, the total
angular momentum, is an invariant of free-space propagation. The interaction
between light and matter may cause interdependent change of the spin and or-
bital angular momentum contributions of a light field, to which one refers as a
spin-orbit interaction. As recently reviewed in [18], a general framework based on
optical angular momenta and geometric phases allows one to unravel the various
manifestations of the spin-orbit interaction of light. Since geometric phases are
associated with rotations of coordinate system and lead to helicity-dependent
phases for circularly polarized light [19,20], they offer a robust roadmap towards
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the elaboration of spin-controlled optical elements. In particular, space-variant
optically anisotropic planar structures have attracted a lot of interest since more
than one decade. In transmission mode, such structures give maximal spin-orbit
effect when the half-wave retardation condition is fulfilled [21,22]. More recently,
nanofabrication technologies led to the realization of metasurfaces—planar op-
tical elements with subwavelength thickness—that allow efficient shaping of the
amplitude, phase and polarization state of light in an arbitrary manner, as re-
viewed in [23–31].

Spin and orbital angular momentum of light are the quantum characteristics
of photons [32]. Quite naturally, in parallel to the investigations of spin-orbital
shaping of light, many investigations have been performed towards the generation
and detection of single photons carrying information of both spin and orbital
degrees of freedom [33–40], which has been identified as a new resource towards
a high-dimensional quantum space encoded in a single photon.

Of course, the interest in beam shaping is not restricted to the quantum ma-
nipulations of spin-orbital angular momentum state of single photon. Indeed,
there were a lot of beam shaping investigations towards the realization of var-
ious families of fundamental beams, such as Laguerre Gaussian (LG), Hermite
Gaussian (HG), Ince Gaussian (IG), Bessel, Bessel Gaussian (BG) families etc.,
that are all solutions of the paraxial wave equation. In particular, they form
orthogonal basis on which any paraxial beam can be decomposed. In general,
a beam is said to be paraxial if its wavefront normals make small angles with
respect to the propagation direction. Hereafter we mainly focus our attention on
the LG and HG beams. Taking the z axis as the propagation direction, LG and
HG beams with angular frequency ω and wavevector k can be represented in the
following forms

uLG
p,` (r, φ, z) =

=
CLG
p,`

w(z)
(
√

2r

w(z)
)
∣`∣

e
− r2

w(z)2 eilφe−i(ωt−kz)+ik
r2

2R(z) e−i(2p+∣`∣+1)ζ(z)L
∣`∣
p ( 2r2

w(z)2
) , (1)

uHG
n,m(x, y, z) =

=
CHG
n,m

w(z)
e
−
x2
+y2

w(z)2 e−i(ωt−kz)+ik
(x2
+y2

)

2R(z) e−i(m+n+1)ζ(z)Hn (
√

2x

w(z)
)Hm (

√
2y

w(z)
) , (2)

where (`, p) and (n,m) are integer numbers that define the mode of LG and HG
beams in the cylindrical, (r, φ, z), and cartesian, (x, y, z), coordinate systems,

respectively. L
∣`∣
p and Hn (or Hm) are the generalized Laguerre and Hermite

polynomials [41], w(z) = w
√

1 + z2/z2
R is the beam radius at z, R(z) = (z2+z2

R)/z
is the radius of curvature, ζ(z) = arctan(z/zR) is the Gouy phase, zR = πw2/λ is
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Figure 1: (a,b,c,d) Typical examples of Laguerre Gaussian beams with az-
imuthal, `, and radial, p, modes. (e,f,g,h) Typical examples of Hermite Gaussian
beams with modes n and m. Beams are at their waist plane (z = 0 plane). White
line refers to w waist radius of beams. The intensities of beams are normalized
to their maximums.

the Rayleigh length, w is the beam waist radius at z = 0, and finally, CLG
p,` and

CHG
n,m are constants whose expressions can be derived from the total power of the

beam.

Typical modes of LG and HG beams are illustrated in Fig. 1. The profiles of
LG modes show axisymmetric rings, whose number are determined by the radial
index p, while the azimuthal index ` determines the number of intertwined helical
wavefronts. The indices n and m of HG beams determine the number of zeros of
amplitude along the x and y directions, respectively. The intensity distribution
of such a mode has n nodes in the horizontal direction and m nodes in the
vertical direction. For both LG and HG beams, a Gaussian beam is obtained
when n =m = 0 or ` = p = 0.

Hereinafter we refer to a beam as being “modal” if it is a basis element of any
family of solutions of the paraxial wave equation. Obviously, LG and HG beams
are such examples. One of the basic property of these beams is that they are self-
similar. Namely, their transverse intensity profile is preserved under propagation
up to a rigid rescaling. Noting that they also form orthogonal basis enabling the
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description of an arbitrary paraxial field, the generation and conversion of pure
LG or HG beams is of a paramount practical importance.

One of the principal proposal of our work is associated with the modal beam
shaping. So far Laguerre Gaussian and Hermite Gaussian modes have been
mainly produced inside optical cavity [42–48]. The most common resonator for
LG and HG modes is contracted from convex or concave spherical-mirrors sepa-
rated by some distance where the mode is generated due to multiple reflections
inside the cavity [49]. Intracavity LG or HG beams are supposed to be purely
modal. To our knowledge, there are very few extracavity demonstrations of Her-
mite Gaussian modes generations. Namely, by spatial light modulator or by
digital micromirror device (DMD) [50]. Meanwhile, for LG beams, several meth-
ods have been developed, such as high-order diffractive optical elements [51],
computer generated high-order phase holograms [14], high-order spiral phase
plates [4], high-order geometric phase optical elements [52], or amplitude-only
spatial light modulators [53, 54]. Remarkably, complex-amplitude modulation
can be mimicked by phase-only optical elements with the possibility to gener-
ate high-purity LG beams in free space [55, 56]. Noteworthy, strategies based
on phase-only or amplitude-only modulation cannot provide a pure LG beam
from a typical bell-shaped incident Gaussian beam. In phase-only beam shaping
strategies, light acquires its LG-like form after substantial diffraction has taken
place [57–59]. In amplitude-only shaping strategies, light acquires its LG form
just after the mask but the latter changes upon propagation. In contrast, in an
ideal situation, light should form its shape immediately after exiting the system
and should propagate in free space self-similarly. In this context, the advent of
powerful coherent integrated optical sources with controlled azimuthal and ra-
dial indices should emerge in a near future, with a huge range of practical uses
such as optical communications, optical imaging, optical trapping, or optical
manipulation.

The second main issue addressed in our work is the broadband shaping of
optical vortex. Nowadays, broadband transmissive liquid crystal so-called q-
plates of arbitrary order can be realized using chiral multilayered structures [60].
Solid-state strategies realizing effective q-plate endowed with broadband capa-
bilities have also been reported [61, 62]. However, the latter approaches are
limited to charge q = 1 and the poor spatial resolution of the effective optical
axis patterning (several millimeters) limits their application potential. Another
approach of broadband vortex generation based on Gaussian beam propagation
along optical axis of uniaxial crystal is reported in [63]. Noteworthy, due to ho-
mogeneity of uniaxial crystal, such optical beam shaping is endowed with perfect
resolution. Other kinds of approaches of polychromatic optical vortex genera-
tion is based on spatial light modulators [64, 65], Pancharatnam–Berry phase
optical elements formed by a space-variant subwavelength grating [66], axially
symmetric polarizer [67], ultrathin metasurfaces ocomposed of a dipole antenna
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array [68]. In general, rapidly growing supercontinuum laser sources [69–71] en-
courage the investigations towards achromatic optical elements, such as broad-
band retarders [72, 73], beam splitters [74], quarter wave-plates retarders [75] or
wave-plate lenses [76].

Outlook of the thesis

In this work we have addressed two main issues introduced above in the context of
topological beam shaping: the modality and the polychromaticity, respectively,
in chapter 1 and chapter 2.

Chapter 1 - Modal beam shaping from space-variant anisotropic flat
optics

This chapter introduces the concept of modal beam shaping from a flat space-
variant anisotropic optical material. Namely, we show that the combined use of
the dynamic and the geometric phases allows to shape arbitrary paraxial field
depending on the spatial distribution of both birefringent phase retardation and
optical axis orientation of the optical element. To support that idea, in Sec. 1.1
we design “modal q-plates” and “modal HG-plates” that are able to convert an
incident Gaussian beam into arbitrary Laguerre Gaussian and Hermite Gaussian
beams, respectively. Due to the advantage of pure modality, the modal q-plates
and modal HG-plates exhibit perfect LG and HG modes just after the mask, in
contrast to the other methods that we have briefly introduced previously. This is
an important practical asset from the application point of view. Indeed, current
technologies of q-plates allow to reduce their thickness down to a few wavelengths,
which gives the possibility to operate mode conversion over a distance of the order
of a wavelength.

Afterwards, we move towards the experimental realization of modal q-plates.
Two kinds of approaches are discussed in Sec. 1.2 and Sec. 1.3. The first approach
is the quasi-modal approach, that implies a deliberate simplification of the perfect
modal q-plate proposed approach allowing less challenging fabrication require-
ments. This approach is demonstrated by realizing glassy quasi-modal q-plates
of charges q = (1/2,1,3/2) fabricated by femtosecond direct laser writing of self-
assembled nanostructures in the bulk of silica glass. Accordingly, quasi-modal
q-plates demonstrate better quality of vortex generation compared with conven-
tional q-plates made by the same technology and company. The second approach
consists in using naturally self-organized defects in liquid crystals. In contrast to
artificial devices, this combines the self-engineered merit with enhanced spatial
resolution. More precisely, we propose use of spontaneously formed topologi-
cal defects appearing in nematic liquid crystals under external electric field. The
chosen kind of defects, called umbilics, possess rich optical and structural proper-
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ties that can be tuned electrically. Based on the reliable theoretical background
of umbilics, we derived the optimal conditions towards modal beam shaping.
Finally, we report on the first experimental qualitative demonstration of the pre-
dicted self-engineered modal liquid crystal q-plates.

Chapter 2 - Reflective broadband spin-orbit beam shaping from chiral
anisotropic optical media

In this chapter we propose and demonstrate a novel kind of spin-orbit optical
element with spectrally broadband properties based on the circular Bragg re-
flection phenomenon [77], specifically using chiral liquid crystals. We claim that
such Bragg reflectors, if appropriately structured, can shape the phase of the re-
flected light in an arbitrary manner. To support this idea, in Sec. 2.2 we present
a dynamic geometric phase experiment using a planar homogeneous cholesteric
liquid crystal (CLC) film. By mechanically rotating the sample, we show that
the reflected beam undergoes an angular Doppler frequency shift, which unveils
the geometric phase (in other words Pancharatnam–Berry phase) associated with
the spatial orientation of its molecular chiral helices. We note that, the existence
of a geometric phase at reflection from homogeneous CLC planar slabs has been
also reported in another recent independent report [78]. Consequently, a pla-
nar CLC allowing initially patterned inhomogeneous spatial orientations of its
helicis, is expected to shape the wavefront of Bragg reflected light in arbitrary
manner. The experimental demonstration is reported in Sec. 2.3 using a planar
inhomogeneous CLC film, where the inhomogeneity is achieved by using inho-
mogeneous alignment layers at the boundaries of the sample. Accordingly, the
incident Gaussian beam on such inhomogeneous Bragg mirror reflects as a vortex
beam. The polychromatic properties of such spin-orbit element (later we call it
Bragg-Berry mirror or, in short, BB mirror) are analyzed by studying the reflec-
tion of an incident supercontinuum laser beam. Importantly, the reflected vortex
beam exhibits broadband properties directly associated with the broadband na-
ture of Bragg reflection from such chiral media. Here again similar investigations
on vortex generation, lens effect and deflection based on such inhomogeneous
planar CLC slabs have been independently reported in [79–81].

In the Sec. 2.4, we archive ultra-broadband reflective shaping of optical vor-
tices using planar inhomogeneous “gradient-pitch” CLC, where the chiral prop-
erties are modulated along the beam propagation direction. Gradient-pitch BB
mirrors have been fabricated using thermal diffusion between three distinct CLC
layers with initially different uniform helix pitches. Remarkably, we experimen-
tally demonstrate that ultra-broadband vortex generation from such BB mirrors
are endowed with extreme robustness against large oblique incidences, whose
exploration remains an open issue.

Noteworthy, due to the polarization sensitivity of Bragg reflection from CLC,
the vortex generation of BB mirrors takes place only for one circular polarization
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of incident beam, while the other circular polarization is almost totally transmit-
ted from BB mirror. To solve this practical limitation and get rid of polarization
selectivity of BB mirrors, in Sec. 2.5 we suggest to combine a BB mirror with a
standard mirror and report experimentally on polarization independent optical
vortex generation. In particular, using an incident linearly polarized Gaussian
beam we obtain a vector vortex beam in reflection. Based on above mentioned
statements, we have concluded that the mirror-backed BB mirror can be consid-
ered as a reflective q-plate, in short, a “Bragg-Berry q-plate”.

Finally, in the last section, Sec. 2.6, we discuss the possibility of spatio-
temporal modulation of vector fields tailored by the mere control of optical path
between the standard and the Bragg-Berry mirrors. The experimental demon-
stration is carried out by placing the back-mirror on a piezoelectric translation
stage and displacing it in a periodic manner.





C H A P T E R 1

Modal beam shaping from
space-variant anisotropic flat
optics

1.1 Laguerre Gaussian beam shaping: modal q-

plate

1.1.1 Position of the concept

In this section we propose space-variant uniaxial flat optical elements, designed
to generate pure Laguerre Gaussian modes with arbitrary azimuthal and radial
indices, ` and p, by considering the fundamental case of incident Gaussian beam
(see Eq. 1). The key idea is to manipulate an incident light field with the com-
bined use of the dynamic and geometric phases. Without lack of generality,
this is made by considering a slab of anisotropic optical medium associated with
both space-variant birefringent phase retardation, ∆, and space-variant optical
axis orientation in the plane of the slab, ψ. The optical axis orientation along
the longitudinal direction of slab is constant. Birefringent phase retardation is
a characteristic of an optical anisotropic medium which indicates the difference
between optical paths of propagating light polarized along the extraordinary and
ordinary axes. Accordingly, this controls the polarization and dynamic phase
experienced by the transmitted light. On the other hand, the optical axis ori-
entation angle (i.e. the azimuth) defines the local eigen-frame of the material,
and thus controls the geometric phase of the transmitted light. Consequently,
an uniaxial planar layer with inhomogeneous retardation and azimuth profiles
can shape the dynamic and geometric phases of transmitted light with inhomo-
geneous polarization in an arbitrary manner.

This kind of elements generalize the well known q-plates, that are associated
with ∆ = constant, which is usually tuned to have a ∆ = π for the used wavelength
(we further refer to this as the half-wave plate condition).
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1.1.2 Conventional q-plate

Conventional q-plates are anisotropic transparent uniaxial flat layers with space-
variant orientation of optical axis in transverse plane defined by ψ(φ) = qφ with
q half-integer and with ∆ = constant birefringent phase retardation, where φ is
the azimuthal angle in transverse plane of q-plate. In general, the birefringent
phase retardation is defined by following ∆ = (ne − no)kL, where ne and no are
the extraordinary and ordinary components of the local refractive indices, which
are parallel and perpendicular to the optical axis, respectively.

First, let us consider the case of circularly polarized normal incident monochro-
matic plane wave propagating along the z axis with angular frequency ω and
wavevector k. The complex representation of plane wave is

Ein = E0e
−i(ωt−kz)eσ , (1.1)

where eσ is the Jones vector and describes the polarization state of the field.
Jones vector has the following form for the circular polarizations

eσ =
1√
2
( 1
iσ

) , (1.2)

where σ = −1 is for right-handed and σ = 1 is for left-handed polarizations.
Assuming that the light is incident on the spatial point of q-plate located

at z = 0 plane with φ azimuth angle and neglecting its diffraction effects inside
the medium, the output light field just after can be expressed in the laboratory
frame by using Jones calculus

Eout = E0e
−iωtR̂z(−ψ(φ))(

eikLne 0

0 eikLno
) R̂z(ψ(φ))eσ , (1.3)

where L is the thickness of the mask, R̂z(ψ) is the rotation matrix around z axis
by an angle ψ = ψ(φ) with respect to the x axis (see Fig. 1.1).

R̂z(ψ) = (
cosψ sinψ

− sinψ cosψ
) . (1.4)

After some simplification the output field gets the following form on the basis of
the lef/right circular polarizations

Eout = E0e
−iωteikLnoei

∆
2 (cos

∆

2
eσ + i sin

∆

2
e2iσψ(φ)e−σ) , (1.5)

where e2iσψ(φ) is the geometric phase factor generated in the cross-circular part
of the beam due to the ψ(φ) geometric transformation of the optical axis. Note
that the sign of geometric phase is dependent on the handedness of circular
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polarization. Accounting that ψ = qφ and that for the given wavelength the
retardation is tuned to ∆ = π, the output field gets the following simple form

Eout = −E0e
−iωteikLnoei2σqφe−σ , (1.6)

Consequently an incident circularly polarized light field will be totally converted
into a field with orthogonal circular polarization state in transmission, while
acquiring an helical wavefront associated with an optical phase singularity with
topological charge l = 2σq. This technology is ideal in terms of efficiency in order
to impart any quantity of orbital angular momentum (OAM) to the light. Since
the OAM after a q-plate is characterized only by the azimuthal index `, q-plates
can perfectly shape the azimuthal mode of incident Gaussian beam. However, in
order to obtain a LG output, one should also pay attention to the radial degree
of freedom. For that reason we propose q-plates with spatially-varying properties
towards the full control of both the azimuthal and radial features, at the expense
of efficiency as we will discuss.

1.1.3 Identification of modal q-plates

Let us consider anisotropic transparent uniaxial flat layer with space-variant
orientation of optical axis in transverse plane defined by ψ(r, φ) and with the
space-variant birefringent phase retardation defined by ∆(r, φ), where r and φ
are the polar coordinates in transverse plane of modal q-plate (see Fig. 1.1).
In general, the birefringent phase retardation is defined by following ∆(r, φ) =
(ne(r, φ) − no(r, φ))kL, where ne(r, φ) and no(r, φ) are the extraordinary and
ordinary components of refractive indices at that spatial point, which are parallel
and perpendicular to optical axis, respectively. For simplicity, hereafter we take
constant the ordinary component of refractive index, namely no(r, φ) = no =
constant.

First, let us again consider the case of circularly polarized normal incident
monochromatic plane wave of Eq. 1.1. Assuming that the light is incident on
(r, φ) spatial location of the medium which is located at z = 0 plane and neglecting
its diffraction effects inside the medium, the output light field just after can be
expressed in laboratory frame by using Jones calculus

Eout = E0e
−iωtR̂z(−ψ(r, φ))(

eikLne(r,φ) 0

0 eikLno
) R̂z(ψ(r, φ))eσ , (1.7)

where L is the thickness of the mask, R̂z(ψ(r, φ)) is the rotation matrix around
the z axis by an angle ψ(r, φ) with respect to the x axis (see Eq. 1.4). After
simplification the output field gets the following form on the basis of lef/right
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Figure 1.1: The sketch of Laguerre Gaussian mode (LGp,`) conversion from
incident Gaussian beam (LG0,0) on the modal q-plate (green ellipse) with the
∆p,`(r) and ψp,`(r, φ) birefringent phase retardation and azimuth profiles. The
LGp,` beam has −σ circular polarization and helical wavefront while the second
part of the beam preserves the σ polarization and not helical structure of incident
Gaussian beam.

circular polarizations

Ein = E0e
−i(ωt−kz)eσ ,

Eout = (1.8)

= E0e
−iωteikLnoei

∆(r,φ)
2 (cos

∆(r, φ)
2

eσ + i sin
∆(r, φ)

2
e2iσψ(r,φ)e−σ) .

In general, if the incident field is no longer a plane wave but it varies slowly
along propagation direction (paraxial transverse fields), the general output field
can be expressed by the output field of Eq. 1.8 multiplied by the spatially varying
incident field. Namely, in the case of incident circularly polarized Gaussian beam
with its waist plane located at z = 0, the input and output fields are expressed
as

Ein = E0e
− r

2

w2
0 e−i(ωt−kz)eσ ,

Eout = (1.9)

= E0e
−iωteikLnoe

− r
2

w2
0 ei

∆(r,φ)
2 (cos

∆(r, φ)
2

eσ + i sin
∆(r, φ)

2
e2iσψ(r,φ)e−σ) .

In the case of a uniform birefringent phase retardation ∆(r, φ) = π and az-
imuthally varying optical axis orientation ψ = qφ with q half-integer, Eq. 1.9
simplifies to the known case of a q-plate (see Eq. 1.6). However, accounting for
the structuring upgrade π → ∆p,`(r) and qφ → ψp,`(r, φ), hereafter we demon-
strate that pure LG modes of any radial and azimuthal indices can be generated.

The modal q-plate which converts the impinging Gaussian beam into the
Laguerre Gaussian beam in opposite polarization must satisfy to the following
condition

Eout ⋅ e∗−σ ∝ uLG
p,` (r, φ, z = 0) , (1.10)
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where the left side of the condition is

Eout ⋅ e∗−σ = E0ie
−iωteikLnoe

− r
2

w2
0 sin

∆(r)
2

ei(2σψ(r,φ)+
∆(r)

2
) , (1.11)

while the Laguerre Gaussian field at z = 0 plane and at t = 0 moment of time is
obtained from the general representation of Laguerre Gaussian beams (see 1)

uLG
p,` (r, φ, z = 0)∝ (

√
2r

w
)
∣`∣

e−
r2

w2 ei`φL
∣`∣
p (2r2

w2
) . (1.12)

Inserting Eqs.. 1.9 and 1.12 into Eq. 1.10, one gets the conditions of retardation
and azimuth profiles for the modal q-plate

∆p,`(r) = 2 arcsin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣uLG
p,` (r,w)∣ e

r2

w2
0

maxr [∣uLG
p,` (r,w)∣ e

r2

w2
0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.13)

ψp,`(r, φ) =
`φ

2
σ −

∆p,`(r)
4

σ − (1 − S [L∣`∣p (2r2

w2
)]) π

2
, (1.14)

where the waist radiuses of the incident Gaussian, w0, and the converted Laguerre
Gaussian, w, beams can be different. In general, the birefringent retardation
can take both positive and negative values depending on the sign of ne(r, φ) −
no(r, φ) difference. However, to our knowledge, such materials exhibiting both
positive and negative values of birefringent phase retardation are relatively more
challenging to realize technologically. Consequently, in order to have positive
birefringent phase retardation, the sign change of LG field, which is coming
in higher radial modes of LG beams, is accounted inside the azimuthal profile
of modal q-plate by the factor S(.) step function. Step function returns 0 for
negative argument and 1 for positive argument.

Finally, we can confirm that the Gaussian beam of w0 waist radius passing
through the anisotropic layer with the retardation and azimuth profiles of Eq. 1.13
and Eq. 1.14 equations, in opposite circular polarization will get the Laguerre
Gaussian form of w waist radius and p, ` modes. This means that the modal q-
plate has to be placed in the crossed-circular polarizers in general. First circular
polarizer provides the circular incidence of Gaussian beam and the second circular
polarizer filters the cross-circular part of the beam, which supposed to be the
converted Laguerre Gaussian beam.

Importantly, only the circular polarization flipped part of the beam (from eσ
to e−σ) inherits the Laguerre Gaussian form from the mask, which affects the
efficiency of the Laguerre Gaussian mode shaper. In order to quantify it, we
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Figure 1.2: Modal q-plate efficiency dependencies on w/w0 relation, where w0 is
the waist radius of incident Gaussian beam and w is the waist radius of converted
∣`∣ = (1,2,3) and p = (0,1,2) Laguerre Gaussian beams.

define the conversion efficiency as the ratio between the power of the generated
LG mode and the total output power. Namely,

ηp,` = ∫
∞

0 ∣Eout ⋅ e−σ ∣2 rdr

∫
∞

0 ∣Eout∣2 rdr
= 4

w2
0
∫

∞

0
e
− 2r2

w2
0 sin2 (∆p,`(r)/2)rdr , (1.15)

where it is accounted that ∫
∞

0 ∣Eout∣2 rdr = ∫
∞

0 exp (−2r2

w2
0
)rdr = w2

0/4. Note that

the efficiencies of modal q-plates with ±` azimuthal indices are the same, because
∆p,` = ∆p,−`

As a matter of fact, the efficiency of modal q-plate depends on the ratio
0 < w/w0 < 1. First let’s discuss the particular case of p = 0, which is the
most common situation encountered in LG beam generation. In that case,
Eqs. 1.13, 1.14 and 1.15 can be simplified into the following explicit analytical
expressions:

∆0,`(r) = 2 arcsin
⎛
⎜
⎝

e−
r2

W2 +
∣`∣
2 ( r

W
)∣`∣

(∣`∣ /2)∣`∣/2
⎞
⎟
⎠
, (1.16)

ψ0,`(r, φ) =
σ

2
(`φ −

∆0,`(r)
2

) , (1.17)

η0,` = ( w
w0

)
2

(1 − ( w
w0

)
2

)
∣`∣

( e
∣`∣

)
∣`∣

∣`∣! , (1.18)

where W = w0w/
√
w2

0 −w2 is the characteristic waist radius of modal q-plate
defined by the waist radiuses of incident and converted beams. Having the ana-
lytical expression of efficiency one can obtain the w/w0 optimum relation which
corresponds to the maximum efficiency, namely when

w

w0

=
√

1/(1 + ∣`∣), ηmax
0,` = ∣`∣!e∣`∣

(1 + ∣`∣)1+∣`∣
. (1.19)
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ℓ = 	ퟏ ℓ = ퟐ ℓ = ퟑ ℓ = ퟒ ℓ = ퟓ ℓ =	6
p = 0 0.68 0.55 0.47 0.42 0.38 0.35
p = 1 0.48 0.44 0.40 0.38 0.35 0.34
p = 2 0.39 0.38 0.36 0.34 0.33 0.31
p = 3 0.33 0.34 0.34 0.31 0.30 0.29
p = 4 0.29 0.30 0.30 0.29 0.29 0.28
p = 5 0.25 0.27 0.28 0.27 0.27 0.27

Efficiency

Table 1.1: The maximum ηmax
p,` efficiency values of different modal q-plates.

ℓ = 	1 ℓ = ퟐ ℓ = ퟑ ℓ = ퟒ ℓ = ퟓ ℓ =	6
p = 0 0.71 0.58 0.50 0.45 0.41 0.38
p = 1 0.44 0.39 0.35 0.33 0.31 0.29
p = 2 0.38 0.32 0.29 0.27 0.26 0.25
p = 3 0.34 0.29 0.26 0.24 0.23 0.22
p = 4 0.32 0.27 0.25 0.23 0.21 0.20
p = 5 0.30 0.26 0.24 0.22 0.20 0.19

Waist relation

Table 1.2: The optimum w/w0 relation values of different modal q-plates.

When p ≠ 0, the retardation and azimuth profiles of modal q-plate as well as
the conversion efficiency are evaluated numerically. The dependence of ηp,` on
w/w0 for the LGp,` mode with ∣`∣ = (1,2,3) and p = (0,1,2) indices is shown in
Fig 1.2. The tables of maximum efficiencies, ηmax

p,` , and corresponding optimum
values of w/w0 relations for different azimuthal and radial indices of modal q-
plates are presented in tables. 1.1 and 1.2, respectively. Then we illustrate in
Figs. 1.3 and 1.4 the corresponding retardation and azimuth profiles for such
optimal modal q-plates for p = (0,1,2) and ∣`∣ = (1,2,3).

Summarising, we have presented in this section a new kind of optical element,
enabling the transformation of an incident Gaussian beam into Laguerre Gaussian
beam with arbitrary radial and azimuthal indices.
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Figure 1.3: Retardation profiles of modal q-plates for maximum conversion
efficiency for p = (0,1,2) and ∣`∣ = (1,2,3). The white and black lines refer to the
waist radiuses of converted Laguerre Gaussian, w, and incident Gaussian, w0,
beams.
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Figure 1.4: Azimuth profiles of modal q-plates for maximum conversion efficiency
for p = (0,1,2) and ∣`∣ = (1,2,3). The white and black lines refer to the waist
radiuses of converted Laguerre Gaussian, w, and incident Gaussian, w0, beams.
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1.1.4 From modal q-plates to modal HG-plates

In this section we propose to generalize the concept of modal q-plate reported
in Sec. 1.1.1 and Sec. 1.1.3, saying that the combined use of dynamic and geo-
metric phases of light acquired from space-variant birefringent phase retardation
and azimuth profiles of matter can transform an incident Gaussian beam into
arbitrary paraxial field. To support that idea, we introduce modal HG-plates
enabling the transformation of an incident Gaussian beam into a Hermite Gaus-
sian beam with arbitrary indices, see Eq. 2. In contrast to Laguerre Gaussian
beam, Hermite Gaussian beams are radially not symmetric. Consequently, here
we need to use the birefringent phase retardation profiles that depend both on
the radial and azimuthal coordinates, r and φ. On the other hand, although Her-
mite Gaussian beams do not possess helical wavefronts, the azimuth profile must
also depend on r and φ in order to compensate the phase term exp [i∆(r, φ)/2]
in Eq. 1.9.

The modal HG-plate which converts the impinging Gaussian beam into the
Hermite Gaussian beam in opposite polarization must satisfy to the following
condition

Eout ⋅ e∗−σ ∝ uHG
n,m(x, y, z = 0) , (1.20)

where the left part of the equation can be obtained from Eq. 1.9 and the Hermite
Gaussian beam at z = 0 plane and at t = 0 moment of time is obtained from the
general representation of Hermite Gaussian beams (see Eq. 2)

uHG
n,m(x, y, z = 0) =

Cn,m
w

e−
x2
+y2

w2 Hn (
√

2x

w
)Hm (

√
2y

w
) , (1.21)

Inserting Eq. 1.21 into Eq. 1.20 one obtains the conditions of retardation and
azimuth profiles for the modal HG-plate

∆n,m(x, y) = 2 arcsin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣uHG
n,m∣ e

x2
+y2

w2
0

maxr [∣uHG
n,m∣ e

x2+y2

w2
0 ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.22)

ψn,m(x, y) = −
∆n,m(x, y)

4
σ − (1 − S [Hn (

√
2x

w
)Hm (

√
2y

w
)]) π

2
. (1.23)

As in the case of modal q-plate, here also the argument of arcsin(.) is taken
to be always positive in order to have positive birefringent phase retardation,
meanwhile the sign is accounted in the azimuth profile by the step function S(.).
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Figure 1.5: Modal HG-plate efficiency dependencies on w/w0 relation value,
where w0 is the waist radius of incident Gaussian beam and w is the waist radius
of converted Hermite Gaussian beams.

 = 0  = 1  = 2  = 3  = 4  = 5
m = 0 0.34 0.19 0.13 0.1 0.1
m = 1 0.34 0.27 0.19 0.15 0.12 0.1
m = 2 0.19 0.19 0.16 0.13 0.11 0.1
m = 3 0.13 0.15 0.13 0.11 0.1 0.09
m = 4 0.1 0.12 0.11 0.1 0.09 0.08
m = 5 0.08 0.01 0.01 0.09 0.08 0.08

Efficiency

Table 1.3: The maximum ηmax
n,m efficiency of different modal HG-plates

 = 0  = 1  = 2  = 3  = 4  = 5
m = 0 0.71 0.55 0.45 0.39 0.35
m = 1 0.71 0.58 0.48 0.41 0.36 0.33
m = 2 0.55 0.48 0.42 0.37 0.33 0.31
m = 3 0.45 0.41 0.37 0.33 0.31 0.29
m = 4 0.39 0.36 0.33 0.31 0.29 0.27
m = 5 0.35 0.33 0.31 0.29 0.27 0.25

Waist relation

Table 1.4: The optimum w/w0 relation values of different modal HG-plates
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Figure 1.6: Retardation profiles of modal HG-plates for maximum conversion
efficiency for n = (0,1,2) and m = (0,1,2). The white and black lines refer to
the waist radiuses of converted Hermite Gaussian, w, and incident Gaussian, w0,
beams.

The Gaussian beam is radially symmetric and most of the power is concen-
trated in central part. Meanwhile, the Hermite Gaussian beams are not radially
symmetric and their power is concentrated out of central region. Consequently
we expect that the modal HG-plates are less efficient than the modal q-plates,
while the dependencies on w/w0 remains. This is illustrated in Fig. 1.5, where the
conversion efficiency, ηn,m, is plotted as a function of w/w0 for n = (0,1,2,3) and
m = (0,1,2,3). The Hermite Gaussian beams with (n,m) and (m,n) modes are
the same beams just rotated by π/2 in the (x, y) transverse plane, that is why the
efficiency curves of modes (n,m) or (m,n) will have the same form. For that rea-
son, we present in Fig. 1.5 only one of them. The tables of maximum efficiencies,
ηmax
n,m , and corresponding optimum values of w/w0 relations for n = (0,1,2,3,4,5)

and m = (0,1,2,3,4,5) modes are presented in tables 1.4 and 1.3, respectively.
Then we illustrate in Fig. 1.6 and 1.7 the corresponding retardation and azimuth
profiles for such optimal modal HG-plates for n = (0,1,2) and m = (0,1,2)

Summarising, we have presented in this section another modal beam shaper,
which can shape the incident Gaussian beam into Hermite Gaussian beam of ar-
bitrary modes. Consequently, we claim that such concept of combining geometric
and dynamic phases from single optical element, can provide a beam shaper of
any other paraxial beam as well.
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Figure 1.7: Azimuth profiles of modal HG-plates for maximum conversion ef-
ficiency for n = (0,1,2) and m = (0,1,2). The white and black lines refer to
the waist radiuses of converted Hermite Gaussian, w, and incident Gaussian, w0,
beams.

1.2 Towards experimental realization: quasi-modal

q-plates

1.2.1 The limit of small retardance: quasi-modality

In the previous section we have introduced theoretically the modal q-plates from
inhomogeneous anisotropic media. The optical characteristics, such as birefrin-
gent phase retardation and azimuth profiles of modal q-plates, exhibit spatially
varying, not smooth and technologically challenging structuring of matter (see
Fig. 1.3 and Fig. 1.4). Therefore, towards an experimental realization we would
like to address the following question: could an approximate modal q-plate
be conceived with smooth birefringent phase retardation and azimuth profiles?
Namely, ∆ = ∆(r) and ψ = ψ(r). To answer this question, we propose to consider
the limit of small birefringent phase retardation, that refers to the condition

∆(r) ≪ π . (1.24)
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Indeed this allows us to consider series expansion of Eq. 1.9, namely

Eout =
E0

2
e−iωteikLnoe

− r
2

w2
0 [(1 +

∞

∑
j=0

(i∆(r))j
j!

)eσ+ (1.25)

+ (−1 +
∞

∑
j=0

(i∆(r))j
j!

) e2iσψ(r,φ)e−σ] ,

where the following two identities have been used

ei∆(r)/2 cos (∆(r)/2) = 1

2
(1 + ei∆(r)) = 1

2
(1 +

∞

∑
j=0

(i∆(r))j
j!

) (1.26)

ei∆(r)/2 sin (∆(r)/2) = 1

2i
(−1 + ei∆(r)) = 1

2i
(−1 +

∞

∑
j=0

(i∆(r))j
j!

) .

Of course, the larger number of terms kept in Eq. 1.26, the more precise it
describes the output field. In this section we keep only the first two terms of
series, namely

Eout = E0e
−iωteikLnoe

− r
2

w2
0 [(1 + i∆(r)

2
)eσ + i

∆(r)
2

e2iσψ(r,φ)e−σ] . (1.27)

Then, considering the modality condition given by Eq. 1.10 for the output field
given by Eq. 1.27 and requiring that the incident and converted beams have the
same waist radiuses (w = w0), the retardation and azimuth profiles of quasi-modal
q-plate will get the following simple forms

∆p,`(r) = ∆0 (
r

w0

)
∣`∣

L
∣`∣
p ( 2r2

w0
2
) , (1.28)

ψp,`(φ) =
`φ

2
σ , (1.29)

where ∆0 is a constant given by Eq. 1.24.
A quasi-modal q-plate is associated with a smooth birefringent phase retar-

dation and azimuth profiles, i.e. ∆(r) is a polynomial function of radial distance
and ψ(φ) is a linear function of azimuth angle. The practical consequence is that
the realization of quasi modal q-plates is much less demanding from fabrication
point of view. Still, such good points in favor of quasi-modal q-plate should be
consolidated by the analysis of converted beam modality and conversion efficiency
which we address in what follows.

1.2.2 Quantitative modal analysis

According to the definition of Eq. 1.15 for given p and ` modes the conversion
efficiency is proportional to ηp,` ∝ ∆2

0. Consequently, the larger value of ∆0, the
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Figure 1.8: Comparative study of the diffraction of an incident Gaussian beam
on different quasi modal q-plates (second, third, and fourth columns) and on the
conventional q-plate (fifth column) with a diffraction of perfect LG beam (first
column), for p = 0 and ` = (1,2,3). See the text for details.

higher the efficiency. However, large values of ∆0 bring more imperfections in
converted mode, since the condition Eq. 1.24 is less satisfied. A trade off thus
naturally emerges: indeed, the value of ∆0 should be small enough to satisfy the
Eq. 1.24 and large enough to have a decant conversion efficiency, especially in
view of the experimental demonstration.

To see the influence of ∆0 on the quality of the modal conversion, we per-
form a numerical study of the diffraction of an incident Gaussian beam passing
through the quasi modal q-plates with ` = (1,2,3) and p = 0 indices. There
are various options to evaluate the diffracted field. One of them is the Kirchhoff-
Fresnel diffraction equation, that is directly derived from the wave equation, from
which we can derive approximated versions depending on the observation plane.
For instance, the Fraunhofer diffraction approximation of the Kirchhoff equation
applies to the far field, while the Fresnel diffraction approximation applies to the
Rayleigh range field (for more information see the book [82]). Here we use an-
other approach of beam propagation based on fast Fourier transforms. It consists
of successive two-dimensional fast Fourier and inverse fast Fourier transforms (F
and F−1) in order to mimic incremental propagation step along the propagation
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direction (here given by the z axis). According to that method, the original field
u0(x, y) = u(x, y, z = 0) propagating over a distance z, uz = u(x, y, z) is expressed
as

uz = F−1 (F(u0) ⋅ eikzz) , (1.30)

which is valid as long as the z-component of the wave vector, kz, is not changed
during propagation, for instance in homogeneous linear isotropic media, which
applies to our case since we are considering a free space propagation.

The results of simulations are summarised in Fig. 1.8, where we compose
different cases for p = 0: pure LG beam (first column), quasi-modal q-plates
between crossed-circular polarizers for ∆0 = π/50 (second column), ∆0 = π/5
(third column), ∆0 = π (fourth column) and conventional q-plate satisfying the
half-wave plate condition (fifth column). First, second and third rows correspond
to azimuthal indices ` = (1,2,3). The propagation axis, z, is normalized according
to the Rayleigh length defined by zR = πw2

0/λ. Finally, the radial profiles of the
intensity distribution at each propagation distance, z, is normalized according
to its maximum value, which ease the comparison between the different cases by
mere visual inspection.

1.2.3 Fabrication and optical characterization of quasi-
modal q-plates

Three glassy quasi modal q-plates with ` = (1,2,3) and p = 0 have been fabricated
based on the retardation and azimuth profiles given by Eq. 1.28 and 1.29, see
Fig. 1.9(a). In practice, we chose ∆0 = π/5 (Fig. 1.8 (c, h, m)) as a trade off
between the validity of small retardation limit and conversion efficiency, which
evaluated from Eq. 1.15 is approximately η ≃ 0.05 for each plate.

The plates have been fabricated by Altechna R & D company using fem-
tosecond direct laser writing of self-assembled nanostructures in the bulk of silica
glass [83]. In fact, depending on the parameters of focused writing laser, self-
organized stripe-like structures appear with width of ∼20 nm forming a grating
with periods of 140–130 nm. Such subwavelength structuring induces birefrin-
gent phase retardation. Interestingly, depending of the power and irradiation
rate of writing laser one can control the period and depth of the grating. That
lead to the possibility of fabrication of space-variant birefringent plates, whose
retardance and optical axis azimuth can a priori be controled at will. However,
we stress that the realization of quasi-modal q-plates was already a technological
challenge.

The images of fabricated quasi-modal q-plates observed between crossed-
linear polarizers are shown in Figs. 1.9(b,c,d), that allow easy identification of the
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Figure 1.9: (a) Fabricated quasi-modal q-plates with ` = (1,2,3) azimuthal
indices by Altechna R & D company. (b,c,d) Their images observed between
crossed-linear polarizers. (e,f,g) Enlargement of central parts of panels (b,c,d).

charge q, since the number of dark brushes equal to 2q. Indeed one can show by
simple Jones calculation that such intensity pattern is proportional to sin2 (2ψ)

Further optical characterization is made using Abrio imaging system, which
is able to measure the birefringent phase retardation and optical axis azimuth
maps of the sample (the maximum measurable retardation value is π and the
minimum is a few tens of picometers at 546 nm wavelength). Fig. 1.10 shows the
birefringent phase retardation and optical axis azimuth profiles of the fabricated
quasi-modal q-plates. Indeed the retardation profiles are normalized according
to 633 nm wavelength, since in our further experimental studies we use a laser of
633 nm wavelength. Retardation profiles confirm a good level of axisymmetry,
as expected from our design, while the azimuth profiles reveal the topological
material structuring with charge q.

A quantitative analysis then can be done for the retardation profile analysis
via azimuth averaging, namely ∆av

exp(r) = (1/2π) ∫
2π

0 ∆exp(r, φ)dφ, see blue curves
in Fig. 1.11. Measurements are compared with the theoretical expressions given
by Eq. 1.28 for ∆0,`(r) for ` = (1,2,3). The fabricated quasi-modal q-plates do
not have zero central retardation due to the technological limitations to induce
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length of fabricated quasi-modal q-plates measured by Abrio imaging system.
(d,e,f) The optical axis azimuth profiles of fabricated quasi-modal q-plates mea-
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tardation profiles of ` = (1,2,3) quasi-modal q-plates (originals are presented in
Figs. 1.10(a,b,c))) measured by Abrio imaging system. The black solid curves
correspond to the theoretical profiles from Eq. 1.28 for ` = (1,2,3). The black
dashed lines correspond to ∆fit

0,`(r) best polynomial fits to experimental data.
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Figure 1.12: The diffraction of an incident Gaussian beam on quasi modal q-
plates with ∆fit

0,`(r) profiles for ` = (1,2,3).

zero retardation in general, as well as due to their large central defect sizes.
Indeed, Figs. 1.9(e,f,g) are the enlarged central regions of fabricated quasi-modal
q-plates for ` = (1,2,3) and show that their central defects have approximately
0.1 mm, 0.17 mm and 0.24 mm sizes, respectively. However, we see that ∆av

exp(r)
retardation curves are shifted up keeping their qualitative polynomial behaviour.
To support our statement, we have showed also the fitting curves ∆fit(r) = ∆offset+
∆0,`(r) (black dashed lines) corresponding to the same polynomial functions of
∆0,`(r), but shifted up by constant offset ∆offset.

Of course the deviation of retardation profiles will influence on the expected
quality of converted beams. To estimate that we present in Fig. 1.12 the diffrac-
tion plots of incident Gaussian beams on the quasi-modal q-plates placed between
crossed-circular polarizers and having ∆fit(r) retardation profiles of Fig. 1.11 (see
black dashed curves). It is seen that the new diffraction plots exhibit less sim-
ilarity to the diffraction of LG beams than the ones based on initially planned
retardation profiles (see Fig. 1.8(c,h,m)). However, they are still better than the
Gaussian beam diffraction after ideal q-plates (see Fig. 1.8(e,j,o)). The main
reason of better quality is that, thought the retardation profiles of fabricated
quasi-modal q-plates are deviated from ∆av

exp(r), they still have the same power
low.

1.2.4 Experimental demonstration of quasi-modality

Once the structures of fabricated quasi-modal q-plates have been characterized,
the next experimental step consists in studying the Gaussian beam propagation
through the mentioned quasi-modal q-plates. The quasi-modal q-plate is placed
between crossed circular polarizers in order to select only the converted quasi-
modal vortex beam. The experimental setup is presented in Fig. 1.13(a). The
wavelength, waist radius and Rayleigh length of the incident Gaussian beam are
λ = 633 nm, w0 = 1 mm and zR = 4 m, respectively. Consequently we can easily
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Figure 1.13: (a) Experimental setup to study the transmitted beam in the
Rayleigh range from quasi-modal q-plates and conventional q-plates with az-
imuthal ` = (1,2,3) indices placed between crossed-circular polarizers. (b) Exper-
imental setup to study the transmitted far fields from quasi-modal q-plates and
conventional q-plates of ` = (1,2,3) azimuthal indices placed between crossed-
circular polarizers. RH: right-handed circular polarizer, LH: left-handed circular
polarizer, L: spherical lens with focal length f = 300 mm, CCD: imaging camera.

study the transmitted field at distance of the order of the Rayleigh range by
placing a camera in the course of the output beam, see Fig. 1.13(a). Finally,
for the sake of comparison, we repeat all the measurements for the conventional
q-plates of same charges made by the same femtosecond direct laser writing
technology and also from Altechna R & D.

Fig. 1.14 shows the converted beams intensity profiles on logarithmic scale
after quasi-modal q-plates or conventional q-plates at different propagation dis-
tances, namely, z = zR/2, zR,2zR. One can see that the detected doughnuts of
quasi modal q-plates are less distorted in comparison with the detected dough-
nuts of conventional q-plates with the same azimuthal indices. We note, that
the theoretical diffraction plots of Fig. 1.12 of fabricated quasi-modal q-plates
compared with the expected diffraction plots of Fig. 1.8(c,h,m) of original design
suggest that there is room for improvement regarding the uncontrolled central
area and technological limitation towards the zero retardation inducement.

The second experimental setup shown in Fig. 1.13(b) is then used in order
to compare the far fields of incident Gaussian beams passing through the quasi-
modal q-plates (see Figs. 1.15 (d,e,f)) and just after the conventional q-plates of
the same charges (see Figs. 1.15(j,k,l)). We have used a lens of f = 300 mm focal
length in f −f optical configuration with respect to the q-plate and CCD camera
in order to conjugate the far field of output light at imaging plane of camera, see
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Figure 1.14: The converted beams intensity profiles on logarithmic scale after
quasi-modal q-plates (a, c, e) or ideal q-plates (b, d, f) at different propagation
distances.

Fig. 1.13(b). The theoretical calculations corresponding to the observed far field
images of quasi-modal q-plates are done performing two-dimensional fast Fourier
transform of output field component of crossed circular polarization of Eq. 1.27
with respect to the incident beam polarization, namely Efarfield = F(Eoute∗−σ),
where the retardation profiles are taken as the best polynomial fits for quasi-
modal q-plate ∆fit

0,`(r) (see Fig. 1.11). Finally, the normalized intensities of cal-

culated fields, namely I/Imax, where I = ∣Efarfield∣2, for the cases of ` = (1,2,3) are
presented in Figs. 1.15(a,b,c), respectively. Similarly, the case of a conventional
q-plate is shown in Figs. 1.15(g,h,i).

The differences between the far fields of quasi-modal q-plates and conventional
q-plates in both experimental and theoretical cases are less obvious than for finite
distance observations (see Fig. 1.14). Indeed, the imperfections of doughnuts,
which were well visible at Rayleigh range, having a higher spatial frequencies are
scattered and distributed far from main doughnuts in the far field.

In conclusion, the realization of glassy quasi-modal q-plates are a first promis-
ing step towards the realization of perfect modal q-plates. They exhibit better
modality of converted beams in comparison of conventional q-plates currently
used in the market. Nevertheless, the technological difficulties associated with
the material structuring and its fabrication of modal q-plates led us to consider
another route towards modality, by exploiting a self-engineered strategy based
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Figure 1.15: (a,b,c) The intensity profiles of output fields fast Fourier transforms
of quasi-modal q-plates with ` = (1,2,3) placed between crossed circular polariz-
ers. (d,e,f) Far fields of incident Gaussian beams on the fabricated quasi modal
q-plates detected in the setup of Fig. 1.13(b). (g,h,i) Same as panels (a,b,c)
but for the conventional q-plates with ` = (1,2,3). (j,k,l) Far fields of incident
Gaussian beams on the conventional q-plates detected using the setup shown in
Fig. 1.13(b).

on the use of liquid crystal topological defects, which is the purpose of the next
section.

1.3 Liquid crystal umbilical defects and their

modality

Over the past two decades, liquid crystals (LCs) have established their place in
singular optics as an anisotropic and inhomogeneous optical materials [84, 85].
The long-range optical orientational order of the local averaged molecular axis
(called director n, a unit vector satisfying n = −n) and possible high birefrin-
gence allow the design of optical elements enabling on-demand shaping of the
phase, amplitude or polarization of an incident light field. One of the most in-
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teresting feature arises from the “soft” properties of liquid crystals is their ability
to self-organize into topological defects with or without the presence of external
fields (thermal, electrical, magnetic, electromagnetic, etc) [86]. Liquid crystal
topological defects possess inherent structuring of their optical axis allowing to
shape the incident Gaussian beam into vortex beam via spin-orbit interaction
of light, indeed they have been unveiled to behave as artificially structured LC
q-plates [12, 13, 87, 88]. Substantial research efforts were devoted to the devel-
opment of methods to control the generation, evolution, topology, and optical
properties of LC topological defects towards an agile control of structured light
fields.

In practice, quasi-static electric fields are the most common external fields
used so far to realize or tune self-organized LC defects, which is achieved by using
LC layer sandwiched between two glass substrates provided with transparent
electrodes [12, 89]. An alternative option consists to use LC light valves driven
by either AC or DC electric fields. In that case, the applied electric field is
spatially shaped according to the intensity spatial distribution of illuminating
light [90, 91]. Under specific conditions, the light itself can also do the job and
induce topological defects due to the nonlinear orientation of LC director. In that
case, the light creates its own q-plate that eventually lead to self-induced optical
vortex generation [92–94]. Recently, topological defects induced by magnetic
fields (created by small NdFeB magnets) or light-driven heating effects have
been investigated too [95,96].

In this section we will discuss a three-dimensional director field called um-
bilical topological defect [97] that appears in nematic films with perpendicular
alignment boundary conditions and negative dielectric anisotropy [98, 99]. Um-
bilics are nonsingular topological defects enabling the generation of singular light
fields (such as vortex beams, Bessel-Gauss beams, LG beams etc.) from nonsin-
gular incident beams. The electric field is generated by applying low-frequency
voltage to the glass substrates provided with transparent electrodes. In that case,
it is known that the operating wavelength and the operation mode of the vortex
generator can be tuned in real time by mere control of the applied voltage [89].
Furthermore, it has been also shown that a single umbilical defect is able to
modulate the spatial characteristics and the number of concentric rings of the
generated singular vortex beam [12]. Such rich electrically tunable properties of
umbilical defects in nematic LCs encourage us to investigate their modality, and
hopefully identify the conditions leading to pure modal beam shaping capabili-
ties.

To date, singular optics studies on umbilical defects were mainly restricted to
the modification of the azimuthal index ` of a light beam by an amount of ±2, due
to the strength values that are restricted to s = ±1. However, the formation of
other anisotropic structures with higher charges in LCs are also possible [13,100],
which could trigger further studies on the modality of vortex beams shaped by
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Figure 1.16: (a) Sketch of the liquid crystal film sandwiched by two glass sub-
strates ensuring a perpendicular alignment of LC molecules at boundaries, under
the voltage below Fréedericksz transition threshold value, U < UF . (b) Sketch
of same liquid crystal sample under the voltage above Fréedericksz transition
threshold value, U > UF . The laboratory Cartesian coordinate frame (x, y, z) is
chosen in order to have LC director oriented along the z axis at rest, and LC film
boundaries parallel to the (x, y) plane. The umbilic director orientation accord-
ing Rapini method is described in spherical coordinate system (ne, ϑ,ψ), where
ϑ is the director tilt angle along z and ψ is the umbilic director azimuth.

LC defects. Therefore, exploring the modal features of umbilics can be seen as a
first step towards the elaboration of advanced self-engineered topological shaping
strategies.

1.3.1 Description of umbilical defects

First, let us introduce the theoretical model of umbilic 3D director structure
according to the early work by A. Rapini [97]. The sketch of liquid crystal
sample when applied electric field is below the Fréedericksz transition threshold
value, U < UF , is depicted in Fig. 1.16(a). Cartesian coordinate system (x, y, z)
is selected with z axis along the unit vector of director orientation, n = (0,0,1).
When the electric field is above the Fréedericksz transition threshold value, U >
UF , and it is applied along the z axis direction, umbilics are generated and their
director orientation can be represented in (x, y, z) laboratory frame by

n = (sinϑ cosψ, sinϑ sinψ, cosϑ) , (1.31)

where ψ is the director azimuthal angle in the (x, y) transverse plane and ϑ is
the director tilt with respect to the z axis, see Fig. 1.16(b). Following [97], if the
ϑ tilt angle is small, the umbilic can be described by

ψ = sφ + φ0 , (1.32)

ϑ(r, z) = ϑmaxa(r) sin(πz/L) , (1.33)

where (r, φ) is the polar coordinate system in (x, y) plane, φ0 is a constant,
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Figure 1.17: (a) The dependence of reduced core radius, rc/L, of Rapini um-
bilic on applied reduced voltage U/UF . (b) The numerical solution of reduced
amplitude of Rapini umbilic. (c) The radial profile of Rapini umbilic retardation
(∆(r), blue line) combined with the radial profile of charge two modal q-plate
(∆0,2(r), green dashed line), which gives best best fit with umbilic retardation
curve after flipping around the axis ∆0,2(r) = π.

s = ±1 is the defect strength (hereafter we will restrict the study to the case of
s = 1), L is the film thickness, 0 ≤ a ≤ 1 is the reduced tilt amplitude and

ϑmax = lim
r→∞

(maxz [ϑ(r, z)]) , (1.34)

is the asymptotic value of ϑ along z direction at large r. In general, it is a
function of dielectric anisotropy, splay and bend Frank elastic constants and
applied electric field. Finally, the profile of reduced tilt amplitude can be obtained
from the following differential equation

d2a

dρ2
+ 1

ρ

da

dρ
+ (1 − 1

ρ2
)a − a3 = 0 , (1.35)

where a(0) = 0 and a(∞) = 1 are the boundary conditions, ρ = r/rc is the
reduced radial coordinate where rc = (L/π)(Keff/K3)1/2((U/UF )1/2 − 1)−1/2 is the
core radius that depends on the cell thickness, applied electric field, splay elastic
constant K3 and effective elastic constant Keff associated to a given umbilic (see
Fig. 1.17(a), where Keff = K2 = 9.52 pN and K3 = 18.3 pN correspond to the
s = 1 umbilic induced in MLC2079 nematic LC mixture from Licristal used in
our experiments). The numerical solution of Eq. 1.35 is depicted in Fig. 1.17(b).

Having the set of equations from Eq. 1.31 to Eq. 1.35 describing the 3D
structure of an electrically induced umbilic, one can calculate the corresponding
profile of the birefringent phase retardation ∆(r). In contrast to the previous
sections, the umbilic structure corresponds to an optical axis with z-varying tilt
angle with respect to the light propagation direction. Therefore, the evaluation
of ∆(r) implies an integral evaluation of the form

∆(r) = 2π

λ ∫
L

0
(neff(r, z) − no) dz , (1.36)
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Figure 1.18: (a,b) 2D director azimuth, ψ(x, y), and birefringent phase retarda-
tion, ∆(x, y), profiles of Rapini umbilic for s = 1 and φ0 = 0. (c,d) 2D director
azimuth, ψnew

0,2 (x, y), and birefringent phase retardation, ∆new
0,2 (x, y), profiles of

new charge two modal q-plate.

where neff is the effective local extraordinary component of refractive index

neff(r, z) =
neno

(n2
e cos2 ϑ(r, z) + n2

o sin2 ϑ(r, z))1/2
, (1.37)

which equals the extraordinary refractive index, ne, when the tilt angle is π/2
and the ordinary refractive index, no, when the tilt angle is zero. The former case
corresponds to the maximum retardation, while in the latter case medium along
the z direction behaves as an isotropic material associated with zero birefringent
phase retardation.

Since the Rapini model implies modest director reorientation amplitude, ϑ2
max ≪

1, any quantity evaluated from the director field should consistently account for
this assumption. In particular, Eq. 1.37 thus expands as

neff(r, z) = no +
(n2

e − n2
o)no

2n2
e

ϑ2 +O [ϑ]4
, (1.38)

Consequently, inserting Eq. 1.38 into Eq. 1.36, one gets

∆(r) = ∆∞a(r)2, where ∆∞ = πLϑ
2
maxno (n2

e − n2
o)

2λn2
e

, (1.39)
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determines the amplitude of retardation at large distance from the defect (r ≫
rc). The radial dependence of the retardation function is thus described by the
square of universal function a(r).

Expressions Eq. 1.32 and Eq. 1.39 are explicit profiles of azimuth and retar-
dation of umbilic defect according to the Rapini model whose spatial distribution
profiles in the transverse plane (x, y) are shown in Fig. 1.18(a) and Fig. 1.18(b)
for φ0 = 0 and ∆∞ = 2π (such a choice being clarified later). The latter brings
an additional condition on the applied voltage, cell thickness and LC anisotropy
characteristics, namely

Lϑ2
maxno (n2

e − n2
o)

4λn2
e

= 1 . (1.40)

1.3.2 Umbilic as a natural modal q-plate candidate

Before to move to the quantitative analysis of umbilic modality, let us qualita-
tively compare it with the modal q-plate of the same charge and with p = 0, when
∆∞ = 2π. The retardation profile of Eq. 1.39 near to the umbilic core vanishes
parabolically, indeed a(r) ∝ r for r < rc and ∆(r) ∝ a(r)2, which is the case for
the modal q-plate, as one can check by passing to the limit r → 0 in Eq.1.16. On
the other hand, far from the umbilic core, the retardation of umbilic converges
rapidly to its maximal value of 2π, which is not a case for modal q-plate. This
can be assessed in Fig. 1.17(d) comparing the green dashed curve with the blue
curve, which refers to the modal q-plate profile ∆0,2(r) given by Eq. 1.16 and the
umbilic profile ∆(r) given by Eq. 1.39, respectively. However, such a difference
can be almost removed if the decreasing part of modal q-plate retardation curve
is mirror imaged with respect to the horizontal line defined by ∆0,2(r) = π, see
Fig. 1.17(d) green solid line, which is expressed as

∆new
0,2 (r) =

⎧⎪⎪⎨⎪⎪⎩

∆0,2(r) , if r < rpeak ,

2π −∆0,2(r) , if r ≥ rpeak ,
(1.41)

where rpeak satisfies to the following condition ∆0,2(rpeak) = maxr [∆0,2(r)] = π.
Let us note that in general the retardation curve of modal q-plate can have differ-
ent forms depending on its characteristic waist radius W , but here we have chosen
the one which gives largest correlation with umbilic retardation curve. The new
retardation profile, compared with original one, will not change the complex am-
plitude shaping of transmitted light with opposite circular polarization than the
incident one and similarly can be considered as a retardation profile of a modal
q-plate. Indeed, ∆0,2(r) in Eq. 1.11 is used inside the functions sin(.) and exp(.):
the first one does not change the value after new reformulation, while the second
one is canceled, if the azimuth profile of Eq. 1.17 be updated according to the
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new retardation

ψnew
0,2 (r, φ) = σ

2
(`φ −

∆new
0,2 (r)

2
) , (1.42)

The new director azimuth profile of modal q-plate is depicted in Fig. 1.18(c),
which is different than the original one of Fig. 1.4 (` =2, p = 0). The director
azimuth profile of charge one umbilic corresponding to the Eq. 1.32 does not have
the swirling behaviour of modal q-plate, see Fig. 1.18(a).

1.3.3 Quantitative modal analysis

For the quantitative analysis of umbilic modality we calculate the transmitted
light field, E−σ

out(r, φ) = Eout(r, φ) ⋅ e−σ, just after the defect having an crossed-
circular polarization state with incidence circular polarization state. Then we
decompose it according to the Laguerre Gaussian modes, namely

E−σ
out(r, φ) =∑

p,`

cp,`u
LG
p,` (r, φ) , (1.43)

where

cp,` =
∫ E−σ

out(r, φ) (uLG
p,` (r, φ))

⋆
r dφdr

√
∫ ∣E−σ

out(r, φ)∣2r dφdr
√
∫ ∣uLG

p,` (r, φ)∣2r dφdr
(1.44)

is the complex projection coefficient of the output field on the LG field with (p, `)
modes. Accordingly, ∣c0,2∣2 is the power fraction of the output field corresponding
to the LG mode with p = 0 and ` = 2. In general, the ∣c0,2∣2 can get any values
from 0 to 1. Larger it is, stronger is the modality of umbilic. Hereinafter we call
it modality coefficient. Neglecting the light diffraction inside the umbilic defect,
we apply the Eq. 1.11 for finding the output field just after the umbilic.

The analysis is summarized in Fig. 1.19. Fig. 1.19(a) shows the modality co-
efficient as a function of the incident Gaussian beam reduced waist radius, w0/rc.
Fig. 1.19(b) corresponds to the dependence of the reduced waist of the best LG
fit of the converted beam, wLG/rc, on the reduced waist of the incident Gaussian
beam, w0/rc. Finally, Fig. 1.19(c) shows the efficiency of conversion. When the
waist radius of incident beam vanishes, the conversion efficiency vanishes too,
while the modality coefficient approaches to 1. In contrast, when the incident
beam waist radius is much larger than the size of umbilic core, the modality
coefficient approaches to some constant value smaller than 1. Hence, the umbilic
defect can work as a modal beam shaper if the incident beam has much smaller
waist radius than the size of umbilic core

w0 ≪ rc. (1.45)
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Figure 1.19: (a) Modality coefficient of output field for different waist radiuses of
incident Gaussian beam. In general, modality coefficient shows the power fraction
of output field corresponding to the LG beam of ` = 2 and p = 0 modes and varies
between 0 and 1. (b) Dependence of reduced waist radius of converted beam best
LG fit, wLG/rc, on the reduced waist radius of incident Gaussian beam, w0/rc.
When the waist radius of incident beam vanishes, the waist radius of best LG
fit approaches to the incident west radius, wLG ≃ w0 and the modality coefficient
approaches to 1. (c) Conversion efficiency dependence on incident reduced waist
radius. When the waist radius of incident beam vanishes, the conversion efficiency
vanishes too, while the modality coefficient approaches to 1.
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Figure 1.20: (a,b,c) Output beam diffractions from Rapini umbilic in free space
for three typical cases of incident beam waist radiuses: w0 = 0.5rc (a), w0 = 5rc (b)
and w0 = 10rc (c), respectively. The radial axes of diffraction plots are normalized
by their corresponding wLG waist radiuses of best LG fits, taken from Fig. 1.19(b),
wLG = 0.47rc,wLG = 1.54rc and wLG = 1.64rc. The propagation z axes of plots
are normalized by Rayleigh lengths of best fitted LG beam.
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This makes sense with the Sec. 1.2 dealing with quasi-modal q-plate, since the
incident Gaussian beam with small waist radius propagates through internal part
of umbilic core, that has a small retardation (satisfies to the condition Eq. 1.24)
with parabolic dependence on radius (satisfies to the condition Eq. 1.28 for ` = 2
and p = 0). Interestingly, incident beam with small waist radius brings a modal
conversion for any ∆∞ value of umbilic, since the birefringent phase retardation
near to the core satisfies to the Eqs. 1.24 and. 1.28 regardless of the value ∆∞.
Let us also note, that far from the core of ∆∞ = 2π umbilic, the retardation
rapidly converges to 2π, so the transmitted light in opposite circular polarization
than that for incident beam vanishes rapidly. Consequently, Gaussian incident
beam of large waist radius, w0 ≫ rc, changes only the conversion efficiency but
not the beam shaping and its modality.

Summarizing, as the incident waist increases, the Rapini umbilic smoothly
changes from a modal to a not modal. Such a transition is illustrated calculating
the output beam diffraction in free space for three typical cases of incident beam
waist radiuses and normalize them according to the wLG waist radiuses of best LG
fit, see Fig. 1.19. Figs. 1.20(a, b, c) correspond to the cases of w0 = 0.5rc,w0 = 5rc
and w0 = 10rc normalized according to the wLG = 0.47rc,wLG = 1.54rc and wLG =
1.64rc, respectively. In addition, the propagation are normalized by Rayleigh
lengths of best fitted LG beam, zR = πw2

LG/λ. One can see that, Fig. 1.20(a)
resembles to the diffraction of a LG beam (see Fig.1.8(f)), while a non modal
behaviour can be grasped from Figs. 1.20(a,b) by mere comprehensive visual
inspection.

1.3.4 Swirling route to modality

One more step towards the modality of umbilical defects can be done accounting
for the imperfect realization of ideal umbilic as described by the Rapini model.
Indeed, in practice, umbilics are neither ideally isolated nor evolving within ide-
ally translation invariant cell. The result is that the relationship ψ = ±φ + φ0

is an idealization. In other words, real umbilics are swirled, though pursuing
their topological charge ±1. For the sake of illustration, Fig. 1.21 shows a typical
image of umbilic cell observed between crossed-linear polarizers and under the
voltage U = 2 Vrms modulated sinusoidally with 1kHz frequency. The sample is
observed by microscope using incoherent white light source spectrally filtered at
633 nm wavelength.

Remarkably, the swirling properties of real umbilics remind us the swirling
optical axis azimuth profiles of modal q-plates (see Fig. 1.4). From Sec. 1.1 we
learnt that a retardation profile of the form, ∆(r), transfers to the incident field a
space-variant anisotropic dynamic phase term exp(i∆p,`(r)/2) in addition to the
space-variant geometric phase term exp(2iσψ(r, φ)) arising from the azimuthal
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Figure 1.21: Typical image of umbilical sample between crossed linear polariz-
ers illuminated by red incoherent light. Arrows correspond to the incident and
output linear polarization states of light, Pin and Pout.

profile ψ(r, φ) of optical axis. An appropriately chosen radial dependence of the
azimuth profile can thus lead to an overall space variant phase profile matching
with the phase profile of given LG field with p and ` indices. Consequently,
following the results of Sec. 1.1, the sought azimuth profile of a modal umbilic is

ψswirl(r, φ) = σ
2
(2φ − ∆(r)

2
) . (1.46)

To our knowledge the Rapini approximation of umbilic retardation profile
works good and it is experimentally reproducible [12, 101]. Hence, we keep the
retardation profile of umbilic suggested from Rapini model, while its azimuth
profile according to the Eq. 1.46 will get the new look depicted in Fig. 1.22(a).
To find the desired umbilic experimentally, it is more convenient to know how it
looks like in crossed circular and crossed linear polarizers. We choose the incident
field a plane wave in order to have a similar case to the microscope observation,
which uses generally a incoherent white light source. The calculation of the out-
put field corresponding to the umbilic placed between crossed-circular polarizers
is straightforward using Eq. 1.8, while the calculation of the output field cor-
responding to the umbilic placed between crossed-linear polarizers requires the
initial representation of incident plane wave linear polarization on the basis of
left/right circular polarizations, for example ex = (eσ + e−σ)/

√
2, where the ex

corresponds to the linear polarization of electromagnetic field along x direction.
Afterwards, one can calculate the output field processing independently left and
right circular polarization parts by Eq. 1.8 and combining them after. Finally,
the crossed linear polarized part of output beam can be calculated by multiplying
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Figure 1.22: (a) Azimuth profile of a swirled umbilic, ψswirl(r, φ), obtained from
Eq. 1.46 using Rapini retardation profile shown in Fig. 1.18(b) that provide with
a modal q-plate with p = 0 and ` = 2. (b,c) Simulated intensity pattern of a modal
umbilic observed between crossed circular and crossed linear polarizers. White
and red arrows indicate the incident and output selected polarization states,
respectively.
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Figure 1.23: (a,b,c) The analogical dependencies of Figs. 1.19(a,b,c) correspond-
ing to the new swirled umbilic.

it with the Jones matrix of crossed linear polarizer (see Eq. 1.47 and Eq. 1.48)

Ein = E0e
−i(ωt−kz)ex , (1.47)

Eout = −
√

2E0e
−iωteikLnoei

∆(r)
2 sin

∆(r)
2

sin (2ψswirl(r, φ))ey . (1.48)

Figs. 1.22(b) and (c) correspond to the normalized intensity distributions of men-
tioned cases.

Similarly to the Fig. 1.19, the modality coefficient ∣c0,2∣2, the corresponding
waist radius of best LG fit wLG, and efficiency coefficient η have been calculated
as a function of the incident Gaussian beam reduced waist radius w0/rc, see
three curves of Fig. 1.23. The converted beam diffraction for three typical cases
of incident Gaussian beam waist radiuses have also been calculated, see Fig. 1.24.
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Figure 1.24: (a,b,c) The analogical diffraction plots of Figs. 1.20(a,b,c) corre-
sponding to the new swirled umbilic.

Comparing the modality curves of Fig. 1.23(a) and Fig. 1.19(a) we conclude that
a swirled umbilic can exhibit a very good modality, namely ∣c0,2∣2 > 0.99 for
w0/rc < 5, that is supported by the diffraction plots of Figs. 1.24(a, b).

1.3.5 Qualitative demonstration

A final step of our contribution is to carry out qualitative experimental observa-
tions of electrically induced modal umbilics in order to provide a first compar-
ison with the theoretical results presented in previous sections. We use the ne-
matic liquid crystal MLC-2079 with negative dielectric anisotropy, εΩ

a = εΩ
e − εΩ

o =
−6.1, εΩ

e = 4.1, εΩ
o = 10.2 at Ω = 1 kHz, K1 = 15.9 pN,K2 = 9.52 pN,K3 = 18.9 pN,

and extraordinary and ordinary refractive indices are ne = 1.64 and no = 1.49 at
589 nm wavelength. The 10 µm thick LC film is sandwiched between two glass
substrates provided with transparent electrodes in the visible region and coated
by homeotropic alignment layers to ensure the perpendicular orientations of LC
molecules at boundaries (as sketched in Fig. 1.16). The Fréedericksz transition
threshold value of applied voltage is UF = 1.83 Vrms.

Two typical cases are analyzed. In the first case the, sample is under low
electric field with U1 = 2 Vrms (1kHz sinusoidal modulation), in second case it
is under relatively higher electric field with U2 = 2.76 Vrms (1kHz sinusoidal
modulation). Accordingly, in the first case, ∆∞ = π/2 at 546 nm wavelength,
while in the second case ∆∞ = 2π at 633 nm wavelength.

The choice of ∆∞ = π/2 is done in order to use the Abrio imaging system,
which can measure below π birefringent phase retardation at 546 nm operating
wavelength. The idea is to find a umbilic that near to the core visually satisfies
the requirement of quasi-modality, namely has a radially vanishing birefringent
phase retardation with parabolic dependence on radius. Figs. 1.25(a) and (c)
present the selected umbilic director azimuth and birefringent phase retardation
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Figure 1.25: (a) The azimuth profile of umbilic induced in MLC2079 nematic
homeotropic film under the voltage U1 = 2 Vrms. (c) Birefringent phase retarda-
tion profile of same umbilic of panel (a) at 546 nm wavelength. (b,d) enlargement
of panels (a) and (c), respectively.

profiles over large area, whose local central regions enlarged in Figs. 1.25(b)
and (d) exhibit qualitative similarities with Fig. 1.22(a) and Fig. 1.18(b). We
stress that the umbilic compared with the fabricated quasi-modal q-plate with
the same charge (see Fig. 1.10(b)) qualitatively exhibits much better retardation
profile near to the core. Consequently, we expect that such umbilic will exhibit
quasi-modal features if the incident Gaussian beam has relatively smaller waist
radius than the core radius of umbilic (see Fig. 1.19(a)).

In second case, the choice of ∆∞ = 2π at 633 nm wavelength is done in order to
have the same asymptotic retardation value of theoretically predicted modal um-
bilic and observe the liquid crystal sample by microscope between crossed-circular
and crossed-linear polarizers using incoherent white light source spectrally filtered
at 633 nm wavelength. The idea is to select one that visually matches with the
theoretical simulations of modal umbilic between crossed-circular and crossed-
linear polarizers, see Fig. 1.22. Figs. 1.26(a,b) show the selected umbilic between
crossed circular and crossed linear polarizers, respectively. Note, that follow-
ing the theoretical discussion of Sec. 1.3.4, the umbilic placed between crossed-
circular polarizers gives the information about its retardation profile, while the
umbilic placed between crossed-linear polarizers gives information about both its
retardation and azimuth profiles (see Fig. 1.48). Indeed, the first image presents
an isolated vortex as in theoretical simulation of Fig. 1.22(b), which is a indi-
cation of umbilic ∆∞ = 2π asymptotic retardation. However, the second image
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Figure 1.26: (a,b) Images of umbilical defect between crossed circular (a) and
crossed linear (b) polarizers, respectively. The umbilic is induced in MLC2079
nematic homeotropic film under the voltage U2 = 2.76 Vrms. White and red
arrows indicate the incident and output light polarization states, respectively.

clearly shows that the umbilic –being under higher voltage than that in the first
case– does not possess the needed swirling properties of azimuth, that would lead
to more swirled image as in Fig. 1.22(c). Nevertheless, the important conclusion
of this section is that we performed the first experimental qualitative exploration
and we believe that our preliminarily results will soon be completed with the
clean demonstration of the predicted modal umbilic. Importantly, many kinds
of methods discussed in Sec. 1.3.1 give rise to very different umbilical defects,
which offers a large set of options for optimization.

In addition, other self-engineered strategies that do not rely on machining
techniques can also be considered. Various kinds of spontaneously formed liq-
uid crystal defect structures with spatially varying birefringent phase retarda-
tion and azimuth profiles are enabling the generation of optical vortex beams
with satisfying first-order key requirement feature of modality, namely, at the
center they possess zero birefringent phase retardation. One can mention hedge-
hog defects [88], focal conic domains in smectics [102], localize solitonic defect
structures in cholesterics [103], stress-induced birefringent defects in solid wave
plates [104] and thermal-induced birefringent defects in terbium-gallium-garnet
crystal [105,106].



C H A P T E R 2

Reflective broadband spin-orbit
beam shaping from chiral
anisotropic optical media

2.1 Cholesteric liquid crystals: optical charac-

terization

In this chapter we propose original highly reflective optical elements enabling
the topological shaping of an incident light beam via geometric phase. Our idea
relies on the use of cholesteric (or chiral nematic) liquid crystals (CLCs) [107].
In practice, it is well known that CLCs are prime choice materials to realize so
called chiral Bragg mirrors. CLCs combine intrinsic periodic modulated orienta-
tion of molecules characterized by the local nematic extraordinary and ordinary
refractive indices ne and no, with chiral supramolecular ordering characterized
by the pitch p over which the director, n, rotates by 2π. The helicoidal director
ordering of a CLC layer laying between planes (x, y, z = 0) and (x, y, z = L) is

n = (cos(2πχ

p
z + φ0), sin(2πχ

p
z + φ0),0) , (2.1)

where φ0 is a constant depending on boundary conditions and χ = ±1 refers to the
right/left handedness of the supramolecular chirality. Hereafter, we will call such
CLCs with helix axes perpendicular to their boundaries as planar homogeneous
CLCs.

The diffraction of normal incident electromagnetic field on the periodic chiral
and anisotropic structure of planar homogeneous CLCs leads to circular Bragg
reflection phenomenon in the range of wavelengths called photonic bandgap,
nop < λ < nep [77, 108]. Bragg reflected field can carry almost 100% of inci-
dent light power if the electric and magnetic vectors of incident circularly po-
larized light in free space at a particular time describe a helix along propaga-
tion direction, whose handedness is identical to the handedness of the chiral
medium, see Fig. 2.1. Hence, hereafter we call such circular polarization as a
co-handed circular polarization while the orthogonal one as a cross-handed cir-
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Figure 2.1: (a,c) Right and left handed circularly polarized plane waves electric
(magnetic) vectors in free space at a particular time. (b,d) Planar homogeneous
CLCs with right and left handed supramolecular chiralities. Λ = ±1 is the pro-
jection of spin angular momentum of the photon on propagation direction z in
units h̵. χ = ±1 refers to the right/left handedness of CLCs helix.

cular polarization [109]. Let us emphasize that the electric (or magnetic) vector
described by left/right handed helix, circulates at given position counterclock-
wise/clockwise for the observer looking toward an oncoming electromagnetic field
as time increases. Therefore, electric (or magnetic) vector described by left/right
handed helix equivalently corresponds to the left/right handed circular polar-
ization (LHCP/RHCP) as it is presented in Fig. 2.1(a,b). Correspondingly, the
CLC with right (or left) handedness of supramolecular chirality Bragg-reflects
RHCP (LHCP) polarized state of incident light. On the other hand co-handed
circularly polarized wave satisfies to the condition Λχ = −1, where Λ = ±1 is the
helicity of photon.

The important feature of circular Bragg reflection illustrated in Fig. 2.2(a)
is that co-handed circularly polarized light Bragg-reflecting from the CLC mir-
ror preserves its polarization handedness and helicity. This implies that Bragg-
reflected photons preserve their helicity, while their spin angular momentum
projection on the axis z reverses its sign. Indeed, the reflecting photon changes
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Figure 2.2: (a) Circular Bragg reflection phenomenon from supramolecular he-
lical ordering of the planar homogeneous CLC mirror. (b) Reflection magnitude
and phase spectral dependencies on incidence wavelength calculated by Berre-
man 4×4 matrix formalism. Medium parameters are: χ = +1, ne = 1.7, no = 1.5,
p = 0.347 µm, d = 20p, h = p/100

its propagation from positive to negative direction of z axis.

Although the planar homogeneous CLC supramolecular ordering presented
in Fig. 2.1(b,d) describes the simplest director distribution for a CLC slab (see
Eq. 2.1), only normal incident plane wave finds an analytical solution of its reflec-
tion and transmission fields according to the Berreman method [108]. In order
to deal with the case of oblique incidence, an approximate analytical approach
called coupled-mode theory has been developed, which has the merit to have
a not too heavy mathematical formulation [110, 111]. When exact solution is
sought, one has to consider a numerical approach, such as the Berreman 4×4
matrix formalism [112], Ambartsumian’s layer addition modified method [113]
or finite-difference time-domain method (FDTD) [114].

In our further theoretical calculations without loss of generality we will con-
sider the Berreman 4×4 matrix formalism in the framework of the optimized
approach development by I. Abdulhalim [115]. Accordingly, CLC is considered
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as a multilayered system, where each layer is perpendicular to the helix axis
and its local director orientation can be assumed to be constant. It is also as-
sumed that the medium is lossless. Each elementary layer of thickness δL being
constituted of an homogeneous uniaxial anisotropic dielectric medium, can be
associated with an analytical propagation matrix Pi according to the Maxwell’s
equations, where i is the number of the layer varying from 1 to N = L/δL. By
multiplying the elementary transfer matrices one finds the total transfer ma-
trix of the multilayered CLC: P = PNPN−1...Pi+1PiPi−1...P1. Eventually, having
the propagation matrix of total CLC medium, one can easily deduce the corre-
sponding reflection, refraction and transmission fields. For instance, the spectral
dependencies on the incidence wavelength of reflection magnitude, normalized
in (0,1), and the reflection phase, normalized in (0,2π), can be calculated, as
illustrated in Fig. 2.2(b). The medium parameters are taken as χ = +1, ne = 1.7,
no = 1.5, p = 0.347 µm, d = 20p, δL = p/100.

In this chapter we report on highly reflective spin-orbit optical elements based
on helicity-preserving circular Bragg reflection phenomenon. Sec. 2.2 unveils the
existence of geometric phase in reflected light field by dynamic geometric phase
experiment using a flat planar homogeneous CLC. Such geometric phase allows
efficient spin-orbit tailoring of light fields without need to fulfill any condition
for the birefringent phase retardation, in contrast to the case of transmissive
spin-orbit optical elements (see Seq. 1.1.2 for conventional q-plates). Sec. 2.3
reports on the experimental realization of flat Bragg-Berry mirrors enabling the
broadband generation of optical vortices upon reflection. It demonstrates the re-
flective optical vortex generation from both diffractive and nondiffractive parax-
ial light beams using spatially inhomogeneous planar CLC films endowed with
topological structure with charge 1. Sec. 2.4 reports on polychromatic dynamic
geometric phase experiment using a flat chiral Bragg mirror having spatially vary-
ing pitch (so-called gradient-pitch CLCs). Ensuing experimental realization of
ultra-broadband reflective optical vortex generation from gradient-pitch inhomo-
geneous planar CLC is presented. Sec. 2.5 reports on the experimental realization
of reflective broadband Bragg-Berry q-plates based on mirror-backed charge one
inhomogeneous planar CLC film. The vortex generation from left/right circu-
larly polarized incident beams as well as the vector field generation from linearly
polarized incident beam are presented. Finally, Sec. 2.6 investigates both ex-
perimentally and theoretically the spatio-temporarily modulated vector fields
induced from the periodical mechanical oscillation of usual back-mirror along
positive and negative directions of BB mirror.
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2.2 Dynamic geometric phase experiment

In this section we report on the demonstration of a dynamic geometric phase
experiment proving the existence of a geometric phase for the reflected light from
flat chiral Bragg mirror. The idea is to set a planar homogeneous CLC film into
rotation around its normal at the angular frequency Ω = Ωz (with z unit vector
along the z axis) and illuminate it by a laser beam at wavelength λ0 = 532 nm
that falls into the Bragg-reflection spectral range under the condition Λχ = −1,
see Fig. 2.3(a).

2.2.1 General consideration

In practice, the mirror is made of a right-handed (χ = +1) CLC film of thickness
L = 5 µm and pitch p = 347 nm (MDA-02-3211 mixture from Merck: refractive
indices are ne = 1.7013 and no = 1.5064 at 589.3 nm wavelength and temperature
20○C). The planar and homogeneous director distribution along the cell is pre-
sented in Fig. 2.3(b). As a result of the sample rotation, the CLC helices rotate
around the z axis at angular frequency Ω, as sketched in Fig. 2.3(c). Below,
the experiment is described from three different points of view: (i) reflected field
phase calculation by Berreman 4×4 matrix formalism for azimuthal varying CLC
helices from 0 to 2π, (ii) exerted total optical torque and its consequence on the
phase of reflected light (iii) the Coriolis effect on reflected light regarding to its
intrinsic spin angular momentum and its interaction with rotating CLC.

(i) The rotation of planar homogenous CLC around its helix axis implies
that at given time the CLC can be described in the (x,y,z) laboratory frame
by Eq. 2.1, where the angle φ0 periodically varies from 0 to 2π, while other
parameters such as the chirality χ and the pitch p are fixed. By doing so and
considering an incident plane wave at 0.532 µm wavelength on CLC with χ = +1
chirality, the phase of reflected field calculated by Berreman 4×4 matrix formalism
exhibits varying linear behaviour with negative gradient, see Fig. 2.4, while the
magnitude of reflected field stays equal to one. Note, that the same calculation
for χ = −1 results to the same magnitude of reflected field, while the phase
exhibits linear behaviour with positive gradient. Consequently, the rotation of
planar homogenous CLC results to the periodical increase or decrease of phase
(so-called geometric phase) of reflected field depending on the chirality of CLC.

(ii) When light interacts with birefringent matter, it may change its angular
momentum content, hence exerting an optical radiation torque on it (for exam-
ple, see [116]). In our case, light changes the sign of its spin angular momentum

projection along the z axis, s
(r)
z = −s(i)z (see Fig. 2.2). Consequently, angular mo-

mentum conservation of the light-matter system implies that an optical radiation
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Figure 2.3: (a) Dynamic geometric phase experiment setup. QWP: quarter-wave
plate, P: polarizer, PD: photodetector. Thin ‘Fresnel’ arrow refers to incident
light reflected at air/glass interfaces and thick arrow labeled ‘Bragg’ refers to
circular Bragg reflection. Sample is rotated at angular frequency Ω = 20○/s.
(b) Illustration of the planar reorientation of homogeneous CLC helices. (c)
Illustration of the rotation of the supramolecular helix at angular frequency Ω.
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Figure 2.4: Reflection magnitude and phase dependencies on azimuthal angle of
CLC helices, φ0, calculated by Berreman 4×4 matrix formalism at Bragg wave-
length for the following parameters of CLC: no = 1.5, ne = 1.7, p = 347 nm,
L = 5 µm, χ = 1.
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torque is exerted by light on the CLC. Namely, the exerted torque per photon in
unit time is Γz = s(i)z − s(r)z = −2χh̵. When the CLC rotates around the axes z at
frequency Ω, a work is made by light on matter, and reciprocally. Consequently,
energy is either gained or dissipated, which is associated with a frequency shift
δω. The latter shift, which is a rotational Doppler frequency shift, can be derived
following energy conservation principle for the “light+matter” system considered
as isolated, namely h̵δω − 2χh̵Ω = 0

δω = 2χΩ . (2.2)

Accordingly, the following transformation takes place for time-dependent phase
factor of the field: exp (−iωt) → exp (−i(ω + δω)t) = exp (−iωt) exp (iΦ), where
Φ = −δωt = −2χΩt is the geometric phase acquired in reflection field. The Ωt
production is equivalent to the φ0 = Ωt rotation of CLC helix (see Fig. 2.3(c)),
consequently the geometric phase can be represented in the following form

Φ = −2χφ0 . (2.3)

One can see that Eq. 2.3 agrees with the numerical calculations of Fig. 2.4.
(iii) Another explanation of mentioned frequency shift can be achieved within

the framework of the Coriolis effect on the reflected light regarding to its interac-
tion with the rotating CLC, following the work by K.Y. Bliokh [117]. Accordingly,
in the rotating coordinate system “attached” to the director field, the reflected
light undergoes frequency shift according to ∫ δωdt = − ∫ s ⋅Ωdt, where s is the
spin angular momentum (per photon, in h̵ units) aligned along the beam propa-
gation direction axis, and t is the time. Since the Bragg field satisfies s(i)⋅Ω = −χΩ
and s(r) ⋅Ω = χΩ the Bragg reflected wave experiences an angular frequency shift
δω = 2χΩ and, consequently, acquires a geometric phase Φ = −2χφ0.

2.2.2 Experiment

Experimentally, the above prediction of a dynamic geometric phase shift and
associated frequency shift is verified by recording the net optical power of the
Bragg-reflected wave combined with the unavoidable contribution of Fresnel re-
flection at air/glass interfaces of the cell. Indeed, the Bragg part of the reflected
light is expected to acquire a frequency shift 2χΩ, while the Fresnel one is not
frequency shifted since reflection off a glass surface do not flip the photon spin
angular momentum, as is the case for a standard mirror. In turn, temporal in-
tensity beatings arising from the superposition of these two contributions to the
reflected light are expected.

Importantly, Bragg and Fresnel contributions have orthogonal polarization
states and different powers. The glass substrates are not anti-reflection coated,
hence the intensity of the Fresnel contribution is a few percent of that of the
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Bragg contribution. Therefore, we use a quarter-wave plate (QWP) and a linear
polarizer (P), which gives us full freedom to extract from the total field either
only Bragg contribution, only Fresnel contribution or any superposition for the
Bragg and Fresnel contributions. In our experiment we are interested in three
basic cases:

� case 1: only the Bragg contribution is extracted from the total reflected
field,

� case 2: only the Fresnel contribution is extracted from the total reflected
field,

� case 3: equivalent Bragg and Fresnel contributions are extracted from the
total reflected field.

The relative orientations of QWP and P corresponding to mentioned cases 1,
2 and 3 are found experimentally. Our protocol consists to install a standard
mirror at the place of CLC in order to find the relative orientation of QWP and
P which blocks the total reflected field, let us call a state 1 the mentioned relative
orientation of QWP and P. Placing back the CLC, in state 1 the QWP and P
select only the Bragg contribution from total reflected field. Indeed, blocking
the Fresnel-reflected field from mirror it blocks the Fresnel-reflected field from
the CLC/glass interference. Changing by the relative orientation between QWP
and P from state 1 by 90 degrees we access to the state 2, which blocks the
Bragg contribution while transmitting totally the Fresnel contribution. Finally,
the state 3 of QWP and P, that ensures equal powers for the Bragg and Fres-
nel contributions is defined by the optimum contrast of the interference pattern
impinging on the photodetector, see Fig. 2.3(a).

As shown by the red curve of Fig. 2.5(a), the detected signal is periodic and
its power Fourier spectrum reveals a peak at frequency 2Ω, see Fig. 2.5(b). Prac-
tically, we used slightly oblique incidence (α ≃ 3○) that allows direct comparison
with above general consideration of the dynamic geometric phase effect since this
allows to select the total reflected field. Importantly, Bragg and Fresnel contri-
bution – extracted separately by state 1 and state 2 relative orientations of QWP
and P – give a much weaker periodic signal (see green and blue dotted curves of
Fig. 2.5(a)). Corresponding Fourier spectra at 2Ω frequency are in the level of
noise compared with the amplitude of main peak, see enlarged region at the foot
of main peak in Fig. 2.5(b). However, residual dynamics probably appear due
to the experimental imperfections of the CLC ordering, non ideal assembling of
substrates and optical adjustments.

Importantly, Bragg-Berry chiral optical elements represent a novel class of
spin-orbit components that do not require to fulfill the half-wave retardation
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Figure 2.5: (a) Periodic signals acquired by the photodetector PD shown in
Fig 2.3(a) over ≃ 40 periods for three configurations of the analysis of the re-
flected light (see state 1, state 2 and state 3 in the text), which is generated by
the relative angle between QWP and P: only Bragg signal (green dotted line),
only Fresnel signal (blue dotted line), equivalent Bragg-Fresnel signals for strong
interference (red line) (b) Power Fourier spectrum of the three periodic signals of
(a). Power Fourier spectra of Bragg and Fresnel signals are in the level of noise
at the foot of main peak.

condition for optimal vortex generation, in contrast to transmissive spin-orbit
couplers based on space-variant anisotropic slabs [8, 118].

2.2.3 Towards chiral Bragg metasurfaces

Although the Secs. 2.2.1 and 2.2.2 are restricted to supra-wavelength-thick chiral
samples (which ensures almost 100% reflectivity), we stress that the proposed
phase shaping approach is valid for smaller thickness-to-wavelength ratio too,
however at the expense of reflectivity or strong material anisotropy.

To illustrate these points, let us first consider a single-pitch-thick slab (L =
p) of the used material with p ∼ 347 nm. The reflected phase and magnitude
spectra as well as the geometric phase dependence on the azimuthal angle φ0 of
CLC helices are calculated by Berreman 4×4 matrix formalism and presented in
Figs. 2.6(a,b). Fig. 2.6(a) shows that the single-pitch-thick slab provides higher
than 10% reflectivity in a wide spectral range and can be qualified as a (non-
negligibly) reflective dielectric metasurface, since L < λ. On the other hand,
Fig. 2.6(b) confirms the preserved existence of geometric phase even if the CLC
has a subwavelength thickness.

Importantly, we note that the reflectivity limitations can be waived with ap-
propriate choice of material parameters recalling that the circular Bragg photonic
bandgap is basically defined as nop < λ < nep. Namely, one can thus envision chi-
ral metasurfaces fabricated from high refractive index metamaterials and small
enough pitch with respect to wavelength. As a example, let us consider a chiral
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Figure 2.6: Reflection magnitude and phase dependencies on the incident wave-
length and azimuthal angle of CLC helix, φ0, calculated by Berreman 4×4 matrix
formalism for the following parameters: (a) and (b) no = 1.5, ne = 1.7, p = 347 nm,
L = p = 347 nm, χ = 1. (c) and (d) no = 6 ⋅ 1.5, ne = 6 ⋅ 1.7, p = 347/6 nm,
L = 8p = 463 nm, χ = 1.

metamaterial of six times larger refractive indices, no = 6 ⋅ 1.5 and ne = 6 ⋅ 1.7,
while the pitch of chiral metamaterial we choose six times smaller, p = 347/6 nm,
in order to keep the photonic bandgap in the same spectral region. The thick-
ness of metamaterial we take for simulation as a L = 8p ≃ 463 nm, which re-
mains subwavelength for the photonic bandgap of that material. The results are
shown in Figs. 2.6(c,d) that present the reflectivity and the phase similarly to
the Figs. 2.6(a,b). It is found that the reflectance inside the photonic bandgap
reaches almost 100%, while the geometric phase is unchanged. This illustrates
that the realization of subwavelength highly reflective geometric phase device
is possible. However, such chiral metamaterials bring challenging technological
requirements, especially when considering operating wavelengths in the visible
domain [119–121].
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2.3 Bragg-Berry mirrors

2.3.1 Position of the concept

The geometric Berry phase associated with the circular Bragg reflection phe-
nomenon in chiral anisotropic optical media brings a novel paradigm to achieve
wavelength-independent pure spin-orbit topological shaping of light from“Bragg-
Berry” mirrors, whose unique specificities are the ability to work (i) in the reflec-
tion mode, (ii) without need of any birefringent retardation requirement.

Here we propose, realize and experimentally demonstrate the broadband re-
flective optical vortex generation from flat Bragg-Berry mirrors for both diffrac-
tive and nondiffractive paraxial light beams. This is done by using either Gaus-
sian or Bessel incident beams whose reflection off a chiral Bragg mirror endowed
with suitable surface orientational boundary conditions lead to the production
of Laguerre-Gauss and higher-order Bessel like beams, respectively. From the
spectral point of view, we report on optical vortex generation over the full visible
range, at least from 450 nm to 650 nm wavelengths. By doing so, our results set
the basis for the development of a novel generation of spin-orbit optical elements
whose demonstrated robustness against polychromaticity and fabrication con-
straints offer a valuable alternative to existing q-plates limitations, as presented
in Sec. 1.1.2.

As shown in the previous section, it is the preservation of the photon helicity
at circular Bragg reflection, associated with the azimuthal orientation of chiral
helix, that leads to the production of a geometric Berry phase for the reflected
light. More precisely, we have established that a CLC Bragg mirror characterized
by director orientation angle ψ at its input facet generates a phase factor −2χψ
for the Bragg-reflected field. Thus, we expect that a Bragg-Berry mirror having
a surface director orientation of the form ψ = qφ, q being a half-integer, leads
to a change of the incident orbital state ` by an amount ∆` = −2χq. Hereafter
we will call such inhomogeneous planar Bragg-Berry mirror as a “charge q BB
mirror”.

2.3.2 Experimental approach

Flat Bragg-Berry mirrors are prepared from a 10 µm-thick right-handed CLC
film, similar to that used in Sec. 2.2. The CLC slab is sandwiched between
two glass substrates coated by an azobenzene-based surface-alignment layer with
submicron thickness fabricated by Beam Co., as depicted in Fig. 2.7(a). The two
alignment layers are optically treated to ensure azimuthally varying orientation
of the liquid crystal helices at both ends of the liquid crystal layer of the form
ψ = qφ with q half-integer (homogeneous planar alignment layers used in previous
section thus refer to q = 0). What follows, without loss of generality, we restrict
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Figure 2.7: (a) Experimental setup for optical vortex generation from a normal
incident beam on Bragg-Berry mirror. M, mirror; BS1,2,3, beam splitters; L, lens;
P, polarizer; CCD1,2, imaging devices. (b) Experimental map of the space-variant
orientation ψ of the photoalignment layers in the (x, y) plane. (c) Illustration of
the charge one inhomogeneous planar CLC helices and their azimuthal reorien-
tation around the hypothetical line defect (illustrations of helices are restricted
to the one pitch, p).

our demonstration of principle to the case q = 1. This is illustrated in Fig. 2.7(b)
that shows the spatial distribution of the orientational boundary conditions of
a coated glass substrate alone obtained by Abrio imaging system. The residual
birefringent phase retardation of the the alignment layer is measured to be of the
order of 0.01π. Its contribution to the reflected field is therefore weak enough
to be safely discarded. We assume that the director profile in each transverse
plane of the charge one BB mirror corresponds to the profile of the charge one
photoalignment layer but rotated by azimuthal angle 2πχz/p. Consequently, the
cholesteric helicis of BB mirror oriented according to the photoalignment layers
make an hypothetical line defect, as sketched in Fig. 2.7(c).
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2.3.3 Demonstration

Experimental demonstration of optical vortex generation is done at 532 nm wave-
length (that falls in photonic bandgap of our material) by using a continuous
laser beam, following the setup shown in Fig. 2.7(a). At first, the charge one
BB mirror is illuminated at normal incidence by a co-handed circularly polarized
Gaussian beam with beam waist radius in the plane of the mirror w ∼ 0.25 mm,
see Fig. 2.8(a). The far-field reflected light is then collected by the camera CCD2

by placing the lens L in f -f configuration with respect the charge one BB mirror
and the camera, see Fig. 2.8(b). Indeed, this ensures optical Fourier transform
of the field on the plane of the sample. A doughnut intensity profile, which
is characteristic of the expected on-axis optical phase singularity of topological
charge −2χ is observed. Theoretically, this is described by Fourier transform,
which expresses in the polar coordinate (k, θ) in the reciprocal space as

E(k, θ)∝ ∫
2π

0
∫

∞

0
Φ(φ)G(r) exp[−ikr cos(θ − φ)]rdrdφ , (2.4)

whereG(r) = exp(−r2/w2) is the Gaussian beam incident amplitude on the mirror
and Φ(φ) = exp(−2iχφ) is the reflective phase mask of the Bragg-Berry mirror.
Integration over the azimuthal coordinate gives

E(k, θ)∝ exp(−2iχθ)∫
∞

0
G(r)J−2χ(kr)rdr , (2.5)

where Jn is the nth-order Bessel function of the first kind, which unveils the
optical phase singularity with topological charge 2χ. The corresponding intensity
profile is axisymmetric and is given by

I(k)∝ [1 − exp(−k2w2/4)(1 + k2w2/4)]/k2 . (2.6)

The result of simulation is shown in Fig. 2.8(c) that displays both the intensity
(luminance) and phase (colormap) profiles. The phase profile is defined for χ =
−1.

Further demonstration of singular beam shaping dictated by ∆` = 2χq change
of the incident orbital state is made by analyzing the phase profile of the field
just after its reflection from the sample. This is shown in Fig. 2.9(a) that dis-
plays the intensity pattern collected by CCD2 camera using a lens L in 2f -2f
configuration with respect to the sample and the camera. Obviously, the ob-
served intensity pattern corresponds to a Gaussian envelope since diffraction has
not yet taken place. However, the optical phase singularity is already imprinted
into the field, which is revealed by interfering the reflected field with a reference
Gaussian beam. The resulting interference pattern is shown in Fig. 2.9(b) that
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Figure 2.8: (a) Incident Gaussian intensity profile on the sample collected by
camera CCD1 (see Fig. 2.7(a)). (b) Far field intensity profile collected by camera
CCD2 owing to the lens L placed in f -f configuration. (c) Calculated intensity
and phase that correspond to panel (b). The luminance refers to the intensity
and the colormap refers to the phase from 0 to 2π.

Figure 2.9: (a) Intensity profile of the field just after the reflection of a normally
incident Gaussian beam off the Bragg-Berry mirror, which is collected by camera
CCD2 by placing the lens L in 2f -2f configuration (see Fig. 2.7(a)). The speckle-
like pattern is reminiscence of residual imperfections of the CLC structuring.
(b) Interference pattern between the field that corresponds to panel (a) and a
tilted reference Gaussian beam. A fork-like interference pattern of order two is
observed. (c) Simulation of the observed singular interference pattern shown in
panel (b).
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(d)

Figure 2.10: (a) Incident fundamental Bessel intensity profile on the sample
collected by camera CCD1 (see Fig. 2.7(a)). (b) Reflected field intensity profile
collected by camera CCD2 (see Fig. 2.7(a)). (c) Interference pattern between the
field that corresponds to panel (b) and a reference Gaussian beam. A fork-like
interference pattern of order two is observed. The Dashed segments and fringes
numbering are given as a guide for the ease. (d) The enlargement of red framed
region of panel (c) showing the shifted dark and light patterns of two successive
rings indicates that the amplitude of Bessel field between the rings crosses the
zero plan, which leads to π phase shift as the amplitude changes its sign.

exhibits a fork-like intensity pattern with two teeth, whose intensity modulation
contrast is optimized by placing a polarizer before CCD2 (see Fig. 2.7(a)). This
confirms experimentally that the mirror behaves as an effective reflective singu-
lar phase mask with topological charge 2. The latter “near field” observations
are confronted with simulations in Fig. 2.9(c) that displays the intensity pattern
∣ΦG+Gref ∣2 where Gref refers to the reference Gaussian beam whose propagation
direction is slightly tilted with respect to that of the probed field.

Then, we formally extend above topological shaping of light to diffraction-
free optical fields. This is done by preparing the incident field as a co-handed
circularly polarized fundamental Bessel beam, by placing a glass axicon in the
course of above incident Gaussian beam [122], between the beam splitters BS1

and BS2 (see Fig. 2.7(a)). The incident intensity pattern collected by the camera
CCD1 is shown in Fig. 2.10(a), which corresponds to an axicon with full-apex
cone angle of 178○. The reflected field after a few centimeters of propagation is
imaged on CCD2 and shown in Fig. 2.10(b). The corresponding intensity pattern
is representative of the expected higher-order Bessel beam as expected from the
reflective phase mask ψ(φ), whose order two is unveiled by interferometry as
shown in Fig. 2.10(c) where a tilted Gaussian reference arm is used. Indeed,
by counting the fringes around the central part of the pattern, one can retrieve
the characteristic 4π exploration of the phase along a closed path surrounding
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the center of the probed beam. Interestingly, the shift between dark and light
patterns of successive (see Fig. 2.10(d)) rings indicates the well known feature
of Bessel beams, namely that the amplitude of Bessel field quasi-periodically
crosses the zero plane (changes its sign) along the radial direction, which leads
to π phase shift as the amplitude changes its sign.

2.3.4 Polychromatic features

Finally, we explore the polychromatic behavior of the Bragg-Berry mirror in the
visible domain by replacing the monochromatic laser source with a supercontin-
uum laser source. The corresponding setup is depicted in Fig. 2.11(a), where the
reflected light from BB mirror is spectrally dispersed by using a dispersion prism.
The resulting spectrum is observed on a black screen placed in the imaging plane
of CCD–long-range-objective system. The incident light is prepared to have co-
handed circularly polarization state by tuning the relative orientation between
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Figure 2.11: (a) Experimental setup for the extraction of reflected broadband
optical vortex spectrum from an co-handed circularly polarized (Λ = −χ) normal
incident beam of supercontinuum laser source on the charge one Bragg-Berry
mirror. (b) Same setup of panel (a) but instead of dispersion prism the set of
spectral filters are used to extract the far-field patterns of reflected broadband
optical vortex, which are detected by CCD camera. BS: beam splitter, L: lens,
P: polarizer, PQWP: polychromatic quarter wave plate.
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Figure 2.12: (a) Supercontinuum laser source spectrum corresponding to the
Fig. 2.11(a) setup having a standard mirror installed instead of BB mirror. (b)
The reflected broadband vortex spectrum from charge one Bragg-Berry mirror
corresponding to the setup of Fig. 2.11(a). (c–g) Selection of far field vortex
beam intensity profiles for a set of spectral filters (see the corresponding setup
in Fig. 2.11(b)).

the linear polarizer (P) and the polychromatic quarter wave plate (PQWP) until
the incident beam is totally reflected. The spectrum of incident supercontin-
uum Gaussian beam is extracted by replacing the BB mirror with a standard
mirror Fig. 2.12(a). The Bragg reflection spectrum corresponding to BB mirror
exhibits its characteristic high reflectance photonic bandgap ∆λ Fig. 2.12(b).
However, we observe that the singular nature of Bragg-reflected field goes be-
yond the spectral region of photonic bandgap. This is illustrated in the bottom
part of Fig. 2.12 that shows the far-field intensity patterns of the Bragg-reflected
polychromatic vortex beams with topological charge 2 for a set of spectral filters
chosen to filter the reflected wavelength from 450 to 650 nm by step of 50 nm
(see Fig. 2.11(b)). Nevertheless, from Fig. 2.12(c) to Fig. 2.12(g), the quality of
the generated optical vortex beam is decreased outside the photonic bandgap,
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Figure 2.13: (a,b) Reflectance and phase spectra of the helicity-preserved light
field component of the reflected field for Bragg-polarized incident field at normal
incidence as a function of φ0. (c,d) Same as in (a) and (b) for 30○ incident
angle in the glass substrate. Calculations are made using the refractive indices
parallel and perpendicular to the director of our liquid crystal mixture, namely
ne = 1.7013 and no = 1.5064, and glass substrate refractive index nglass = 1.52.

where the reflected signal is low. To our understanding, this is due to the larger
acquisition time used for CCD camera, hence lower signal-to-noise ratio, as one
can see in Figs. 2.12(c, g). Several factors can alter topological shaping purity
as well, such as the imperfect refractive index matching conditions between glass
substrate and the average refractive index of the anisotropic medium [77] and
the presence of photoalignment layers. In practice, this can be easily achieved
by using either external fields (thermal, electrical, magnetic) effects or oblique
incidence that are well-known to drastically shift the bandgap [107]. However,
both methods shift the photonic bandgap keeping its width relatively unchanged,
while in the next section we will demonstrate another solution towards the ultra-
broadening the photonic bandgap of BB mirror.

We stress that although the reflected intensity is obviously wavelength depen-
dent outside the circular photonic bandgap, the purity of the generated vortex
is wavelength independent. This is illustrated in Figs. 2.13(a,b) where the re-
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flectance and phase spectra of the helicity-preserved reflected field for incident
Bragg-polarized light is calculated by Berreman 4×4 matrix formalism as a func-
tion of the helices orientation φ0 of the CLC, see Figs. 2.7(b,c). Therefore, our
approach does not require the use of post polarization filtering as is the case of
usual transmissive q-plate. Moreover, the robustness of the pure broadband op-
tical vortex generation versus the angle of incidence is illustrated in Fig. 2.13(c)
and Fig. 2.13(d) for 30○ external incidence angle in glass substrate. Note that
the two main effects of oblique incidence are (i) to shift photonic bandgap to
the blue spectral region and (ii) to break axisymmetry, both effects being more
pronounced as the incidence angle increases, as one can see from the modulated
reflectance versus φ0 in Fig. 2.13(c). This emphasizes the large acceptance angle
of Bragg-Berry mirrors.

Summarizing, we have demonstrated that flat spin-orbit reflective optical ele-
ments enable complex phase engineering of light fields, whatever their diffractive
or non-diffractive nature. In general, the use of anisotropic chiral metamaterials
may offer exotic photonic bandgaps that are valid for both incident circular polar-
izations and extended till ultrashort or extremely high wavelength regions [123].
Moreover, the sensitivity of liquid crystals to external fields should bring tun-
able or self-induced operating conditions. On the other hand, state-of-the-art
point-by-point photoalignment techniques allow considering arbitrary singular
or non-singular patterns [124, 125], that could immediately be exploited for the
development of BB optical elements. Finally, recalling that Bragg-Berry mirrors
have no restrictions in terms of cell thickness (see Sec. 2.2.3) and that their cur-
vature may lead to additional topological shaping features [126, 127], this work
should foster the development of spin-orbit photonic technologies.

2.4 Ultra-broadband Bragg-Berry mirrors

2.4.1 Position of the problem

In general, CLC with uniform pitch has only first-order photonic bandgap, which
is defined in nop < λ < nep spectral region, which is very often less than 100 nm.
However, it is known that the chiral materials possessing non-uniform chiral-
ity can provide with higher-order photonic bandgaps [128] or can broaden their
photonic bandgap proportional to the pitch gradient of chirality (see [129,130]).
Gradient-pitch CLCs have been created mainly by the following ways: diffu-
sion of two CLC films with long and short pitches that are in tight contact,
UV-illumination gradient in polymeric materials, temperature gradient or elec-
tric/magnetic fields applied to the CLCs of uniform pitches [131]. Accordingly,
we propose to combine the topological beam shaping capabilities of Bragg-Berry
mirrors with the ultra-broadband capabilities of CLCs. Experimental demon-
stration of ultra-broadband vortex generation endowed with extreme robustness
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against large oblique incidences will be carried out by using gradient-pitch Bragg-
Berry mirrors.

2.4.2 Sample preparation

In this section we report on the preparation of ultra-broadband Bragg-Berry mir-
ror using thermal diffusion of two CLC films with long and short pitches [132] in
order to induce a pitch gradient in Bragg-Berry mirrors with the aim of widen-
ing their photonic bandgap. At first, a planar homogeneous gradient-pitch CLC
is prepared in order to observe the ultra-broadband light reflection and realize
the dynamic geometric phase experiment over a wide spectral range. Once this
has been validated, we moved to the preparation of ultra-broadband BB mirrors,
at second stage. Both, planar homogeneous and planar inhomogeneous samples
(differing only by their photoalignment layers of glass substrates) are prepared
by using the same materials and protocol within the framework of a collaboration
with G. Agez from Toulouse University (France).

The used materials are CLC oligomers from Wacker Chemie GmbH with
ne = 1.72 and no = 1.42 effective extraordinary and ordinary refractive indices.
The molecular structure of the material consists of a siloxane cyclic chain to which
is attached, via aliphatic spacers, two types of side chains: an achiral mesogen
and a chiral cholesterol-bearing mesogen. The pitch of the helical structure and
therefore the reflection wavelength depends on the molar percentage of the chiral
mesogene in the molecule. This percentage is 31% in the case of Silicon Red
(SR), 40% for Silicon Green (SG) and 50% for Silicon Blue (SB). The cholesteric
phase appears between 180–210°C (clearing temperature range) and 40–50°C
(glass-transition temperature range). By freezing the film in a glassy solid state
the cholesteric structure and its optical properties are kept at room temperature.

A tri-layer sample was elaborated by stacking three different 10µm thick CLC
oligomers layers: SR–SG–SB. The SR and SB film were confined between a
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Figure 2.14: Typical transmission spectrum of homogeneous gradient-pitch CLC
sample.



2.4 Ultra-broadband Bragg-Berry mirrors 65

Po
w

er

0

1

0

1

(b) (c) (d)

(e) (f) (g)

 = 4881.5 nm  = 5321.5 nm  = 6331.5 nm

3 421 3 421
Time, (푇 	units)

3 421

1 2
Angular Frequency ( units)

3 1 2 3 1 2 3Po
w

er
 sp

ec
tru

m

Figure 2.15: (a, b, c) Periodic signals acquired by the photodetector PD shown
in Fig 2.3(a) for Bragg (green line), Fresnel (blue line) and equivalent Bragg-
Fresnel (red line) reflected signals analyzed by λ = (488 nm, 532 nm, 633 nm)
filters of ±1.5 nm spectral width, respectively. (d, e, f) Power Fourier spectrum
of the three cases of (a, b, c). Power Fourier spectra of Bragg and Fresnel signals
are in the level of noise at the foot of the main peak.

specific radial anchoring glass and a lamella. The SG layer were confined between
two lamellae. The samples were kept at 80°C (cholesteric phase) for 10 minutes
to form a texture provided by photoalignment layer. Then we put the samples
in the freezer for 15 minutes at low temperature (-18°C) to obtain glassy solid
layers. At this temperature the lamellae can be easily taken off. The free-standing
SG layer was sandwiched between the SR and SB semi-free films. Finally the
RBG tri-layer sample several times was annealed at 80°C during 5 minutes to
initiate an inter-diffusion of the 3 species and obtain a continuous pitch gradient
structure with a ultra-broadband reflection. Fig. 2.14 corresponds to the typical
transmission spectrum of homogeneous gradient-pitch CLC sample prepared by
above mentioned procedure. It shows that the photonic bandgap of sample covers
almost all the visible region of light. The next step is therefore to explore to which
extent the geometric phase shaping also applies for such sample, as it has been
shown for uniform pitch CLCs in the Sec. 2.2.

2.4.3 Spectral exploration of dynamic geometric phase

The dynamic geometric phase experiment for the homogeneous gradient-pitch
CLC is performed by using a similar setup to that reported in Fig. 2.3(a) and a
supercontinuum source instead of the monochromatic one. Following the proto-
col described in Sec. 2.2, Figs. 2.15(b,c,d) show the Bragg, Fresnel and Bragg-
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Fresnel-reflected lights power dependencies on time using interference filters for
three typical wavelengths, λ = (488±1.5 nm,532±1.5 nm,633±1.5 nm). Similarly
to the case of uniform CLCs (see Fig. 2.5), here the Bragg-Fresnel reflected light
also undergoes much stronger oscillations at 2Ω frequency than Bragg or Fresnel
contributions taken individually (see Figs. 2.15(e,f,g)), where Ω is the frequency
of sample mechanical rotation. We note that the oscillations are noticeably dis-
torted compared to our previous experiment, which caused wider peaks in power
Fourier spectrum at 2Ω frequency. Several reasons, such as not perfectly planar
alignments of CLC helices, some inhomogeneity between them, possible small
differences between their pitch gradients or, in general, not perfect alignment of
experimental setup can cause observed distortions. However, observed imperfec-
tions can not question the existence of geometric phase for reflected light from
gradient-pitch cholesteric liquid crystals.

2.4.4 Gradient-pitch Bragg-Berry mirror demonstration

Once it has been clarified that gradient-pitch properties does not alter the geo-
metric phase existence, the remaining demonstration consists to implement op-
tical vortex generation using a gradient-pitch inhomogeneous CLC sandwiched
between two charge one photoalignment layers. The corresponding experiment is
performed using the setup shown in Fig 2.16(a), which corresponds to a Michel-
son interferometer scheme. Note that we used a polarizing beam splitter (PBS)
instead of a non-polarizing beam splitter, otherwise the Fresnel contribution of
the reflected beam and the reference beam reflected from the mirror would have
the same polarizations, which would prevent post-selection via polarization op-
tics. PBS initially splits the circularly polarized incidence in two orthogonal
linear polarization (LP) states and collects them when they are reflected from
CLC and from mirror in the same polarization states. Here the point is to benefit
from the natural imperfection of the PBS. Indeed, ideally, the reflected light from
the mirror having similar LP state than that of the incident beam would return
back to the laser source. However, in practice, the PBS redirects a small fraction
of that field, which thus interferes with the reflected light from the CLC sample.
The incident Gaussian field of supercontinuum laser source (see Fig 2.16(b)) re-
flects from charge one (q = 1) gradient-pitch BB mirror and captured by CCD
camera in the focal plane of L2 lens, see Fig 2.16(c) where the reference beam
coming from mirror is blocked. We used a second polarizer, P2, in orthogonal
orientation to the incidence polarization, in order to get rid of the Fresnel con-
tribution from the reflected beam, since this sample is similar to the previously
studied one regarding the absence of an antireflection coating on its glass sub-
strates. Fig 2.16(d) corresponds to the interference pattern between reflected
vortex and reference beams and discloses the charge 2 phase singularity of the
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Figure 2.16: (a) Experimental setup based on a Michelson interferometer in order
to observe the reflected charge two vortex generated by a charge one gradient-
pitch Bragg-Berry mirror and disclose its charge two singularity by interfering
with reference Gaussian beam. M: mirror, L1,2: lenses with f = 500mm and
f = 300mm focal lengths, respectively, PBS: polarizing beam splitter, P1,2: linear
polarizers, PQWP: polychromatic quarter-wave plate, CCD: imaging camera (b)
The intensity profile of incident supercontinuum Gaussian field. (c) The intensity
profile of reflected far field vortex detected by CCD camera. (d) The interfer-
ence pattern between the field corresponding panel (c) and a coaxial reference
Gaussian beam.

reflected vortex beam. In order to get a interference patterns like Fig 2.16(d)
one has to change the curvatures between reflected vortex and reference beams,
which is done by placing the lens L1 just before the mirror.

Then we used seven interference filters covering all the visible domain, that
are placed before CCD camera, in order to disclose the spectral content of poly-
chromatic vortex field shown in Fig 2.16(c), see Figs 2.17(a–g). Afterwards, a
reflective diffractive grating (blazed wavelength reflective diffraction grating pro-
vided from Thorlabs with model number GR13-0605) is used in the place of CCD
camera to disperse the reflected vortex (see Fig 2.17(a)) as in the Sec. 2.3 when
the dispersion prism was used. One can see that the dispersed spectrum of vortex
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Figure 2.17: (a–g) The spectral components of Fig 2.16(c) vortex intensity
distribution analyzed by set of interference filters from 400 nm to 700 nm. (h)
The corresponding spectrum of vortex beam using reflective diffraction grating.

fills all the region of visible light. The noticeable decrease of reflected vortices
waist radiuses towards blue wavelength region is observed in the case of uniform
BB mirrors too (see Figs. 2.12(c–g)) and is associated with the properties of
supercontinuum laser source (shorter wavelengths originally have smaller waist
radiuses).

As shown in the previous section, the topological shaping properties of Bragg-
Berry mirrors are expected to be robust to the angle of incidence, however, at
the expense of a blue-shift. Such a property is tested for the gradient-pitch BB
mirror using a linearly polarized supercontinuum Gaussian beam impinging on
the sample at various external incident angles αext, namely αext = (2○, 10○, 20○,
30○, 40○, 50○, 60○, 70○). The reflected vortex beam is then analyzed by using
the crossed-linear polarizer in order to clean the Fresnel contribution of the re-
flected field arising from air/substrate interface. Finally, a CCD camera with
lens in f − f configuration and a reflective diffraction grating are used in order
to detect reflected far field vortices (see Figs. 2.18(i–p)) and their spectral con-
tents (see Figs. 2.18(a–h)). The quality of reflected vortices are very robust and
almost does not change for all the incidence angles. However, in some extent
they lose the long-wavelength region of their spectra. In general it is expected
that whole spectrum entirely move to the short-wavelength region, as observed
in Fig. 2.13(c). However, we can’t detect such effect because of the spectral lim-
itations of our CCD camera (from 400 nm to 900 nm). Nevertheless, it remains
unclear that the latter spectral blue-shift straightforwardly apply to the case of
an inhomogeneous sample. First, the shorter wavelengths are very near to the
absorbtion boundary of used material. Then, if the incident incident wavelength
is smaller than the pitch value of chiral material, besides Bragg reflection, higher
orders of reflections should also be accounted. However, we want to emphasize
that according to the Berreman method the photonic bandgap should be shifted
much more towards short-wavelength region than in this experiment we have ob-
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Figure 2.18: (a–h) The spectra of reflected far field vortices corresponding to
the oblique incidences of supercontinuum Gaussian beam at αext = 2○, 10○, 20○,
30○, 40○, 50○, 60○, 70○ angles on charge one gradient-pitch Bragg-Berry mirror.
(i–p) The corresponding intensity profiles of reflected vortices.

served. The approximate estimation of blue-shifted spectral region depending on
the incident angle can be done by the following formula λ = λ0 cos (αint), where
λ is the center of blue-shifted photonic bandgap, λ0 is the center of photonic
bandgap at normal incidence and αint is the internal incidence angle that can
be calculated by applying the Snell’s law. Namely, αint = sin−1 (sin (αext)/nav),
where nav = ((n2

e + 2n2
o)/3)1/2 ≈ 1.53 is the average refractive index of used CLC.

Accordingly, assuming λ0 = 550 nm (see Fig. 2.17(h)), the blue-shifted pho-
tonic bandgap corresponding to the αext = 70○ is centered at λ ≈ 430 nm, while
experimentally we have detected relatively weaker blue shift. However, the pro-
vided estimation is working well in the case of small incidence angle of beam
on the homogeneous CLC with uniform pitch, while in the case of large inci-
dence angle of beam on the inhomogeneous CLC with gradient-pitch neither the
mentioned analytical method nor the Berreman numerical method are not tested
to our knowledge [133]. Experimentally, we conclude that the observed robust
behaviour indicates that Bragg reflection, especially for oblique incident light, is
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different for Bragg-Berry mirrors and it is subject of our further investigation.

2.5 Bragg-Berry q-plates

2.5.1 Position of the problem

In previous sections we have introduced that BB mirrors can shape the phase of
incident co-handed circularly polarized beam in reflection. Particularly, we have
demonstrated the reflective broadband vortex generation from charge one BB
mirror. However, this approach of vortex generation (beam shaping in general)
has a limitation that prevent from full spin-orbit functionality, i.e. spin-controlled
topological shaping. Indeed, BB mirror relies on the use of co-handed circularly
polarized incident beam and consequently the generated vortex (beam shaping)
in reflection has the circular polarization of incident beam, see 2.2(a). Here we
address the following question: could a BB mirror become a BB q-plate? Or,
in other words, could we benefit from the broadband topological shaping of BB
mirrors and spin controlled topological shaping of q-plates at the same time?

In this section, we extend the use of BB mirrors in beam shaping towards
arbitrary polarization state for the incident beam. In general, there are two basic
methods to achieve polarization independence from circular Bragg reflection. One
is based on the stacking of CLC layers of χ = ±1 chiralities [134] and the other is
based on the use of standard mirror placed behind a CLC layer, that can have
either positive or negative chirality [135]. Here, we use the latter method that
has the merit of simplicity, hence is better towards practical applications. In
particular, we show that an incident circularly polarized beams with Λ = ±χ give
almost total reflections of circularly polarized vortex beams from mirror-backed
BB mirror. Then, we demonstrate the reflective vector vortex beam generation
from incident linearly polarized beam on the same system. Consequently, above
mentioned demonstrations will allow us to consider the mirror-backed BB mirror
as a q-plate, hence a Bragg-Berry q-plate or a BB q-plate.

2.5.2 Mirror-backed uniform Bragg mirror

The case of circularly polarized incident light of Λ = ±χ helicities on the mirror-
backed homogeneous CLC layer is depicted in Fig. 2.19, where the case of a
conventional CLC is also provided for the sake of comparison. In the latter case,
an incident circularly polarized light with Λ = −χ state is almost totally reflected
while with a helicity Λ = +χ state is almost totally transmitted. Note that in both
cases the helicities are preserved upon reflection or transmission. On the other
hand, as reported in [135], a mirror-backed planar homogeneous CLC exhibits
a Bragg reflection for Λ = ±χ helicities of the incident circularly polarized field.
According to that article the following “ray-optics” explanation is provided: the
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Figure 2.19: (a) Sketch of the incident light reflection or transmission depending
on its polarization state on planar homogeneous CLC mirror of χ = 1 chirality.
The geometric phases ∆Φr and ∆Φt of reflected and transmitted lights are ac-
quired from the angular offset, ∆φ, of cholesteric mirror in (x, y) transverse plane
(see Sec. 2.3.2). (b) “ray-optics” description of light propagation impinging on
mirror-backed planar homogeneous CLC mirror. The geometric phases ∆Φr and
∆Φt of reflected and transmitted fields are acquired from the ∆φ angular offset
of cholesteric mirror in (x, y) transverse plane. Blue and red arrows correspond
to the RHCP and LHCP states of lights respectively.

incident circularly polarized light with Λ = +χ helicity is almost totally transmit-
ted from CLC by keeping its helicity, then it is reflected from mirror, which is
associated with the helicity-flipping. Afterwards, it is Bragg-reflected from the
opposite side of the CLC without helicity change. Then, helicity-flipping reflec-
tion again occurs on the mirror, and finally transmission trough the CLC without
helicity change takes place. This is illustrated in Fig. 2.19(b), where arrows with
red and blue colors refer to Λ = +χ and Λ = −χ, respectively.

That being said, let us consider that the CLC layer as presented in Fig. 2.19(b)
is rotated in the (x, y) plane by an angle ∆φ (similar to the dynamic geometric
phase experiment of Sec. 2.2). According to the dynamic geometric phase exper-
iment of Sec. 2.2, the incident light with Λ = −χ reflects from mirror-backed CLC
with ∆Φr = −2χ∆φ geometric phase, while the incident light with Λ = +χ, ac-
cording to the mentioned “ray-optics” interpretation, reflects from mirror-backed
CLC with ∆Φr = 2χ∆φ geometric phase, since it is Bragg-reflected from the
opposite side of the CLC layer. Generalizing, the geometric phase acquired at
reflection for χ = ±1 chirality and Λ = ±1 incident helicity is

∆Φr = 2Λχ∆φ . (2.7)

We stress that a similar phenomenon occurs in reflection in the case of conven-
tional q-plate, as discussed in the Sec. 1.1.2. Indeed, in that case an incident light
with helicity Λ = ±1 leads to a transmitted phase factor exp (i2Λqφ) (see 1.6).
This encourages us to use the charge one BB mirror of Sec. 2.3 placed in front
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Figure 2.20: Experimental setup for optical vortex generation from normal in-
cident beam of LHCP, RHCP or LP states on the BB q-plate of q = 1 charge.
Reference beam of LHCP or RHCP states is used to interfere with the reflected
vortex in order to disclose its optical singularity. M: mirror, BS1,2,3: beam split-
ters, L: lens, P: polarizer, HWP: half-wave plate, QWP: quarter-wave plate,
CCD: imaging device.

of a standard mirror towards the realization of a BB q-plate.

2.5.3 Mirror-backed Bragg-Berry mirror

From the “ray-optics” description depicted in Fig. 2.19(b) and the ensuing deter-
mination of Eq. 2.7, we expect that the circularly polarized reflected vortex from
an incident light beam with Λ = ±1 changes its orbital state by

∆` = 2Λχq . (2.8)

We stress that in compression with conventional q-plate, the Bragg-Berry q-plates
give another degree of freedom towards beam orbital angular shaping. That is
the chirality, χ, of the CLC.

The experimental demonstration is made by using the setup depicted in
Fig. 2.20. In contrast to the setup of the previous section, see Fig. 2.7(a), this
setup allows incident and reference beams to have LHCP, RHCP or LP states.
The CCD camera, in conjunction with lens, L, placed in f − f configuration,
is used to detect the far fields of reflected incident Gaussian beams of LHCP,
RHCP and LP states. In order to disclose the phase singularities of reflected
beams, RHCP and LHCP reference beams are also prepared. In practice, the
distance between the standard and Bragg-Berry mirrors is set to be much shorter
than the Rayleigh distance of the incident Gaussian beam. Otherwise, two in-
dependently processed LHCP and RHCP reflected beams propagated different
distances would have different w(z) radiuses in the same transverse plane (see
Eq. 1 and following text about w(z) dependence on z).
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Figure 2.21: The first row shows the reflected far field intensity profiles of inci-
dent LHCP, RHCP and LP Gaussian beams, respectively. The second and third
rows show their interference patterns with RHCP or LHCP reference Gaussian
beams, respectively.

The captured intensity profiles of reflected doughnuts of incident LHCP,
RHCP or LP Gaussian beams as well as their interference patterns with LHCP
and RHCP reference beams are presented in Fig. 2.21. Several conclusions can
be made from these experimental results:

� The charge one BB q-plate equally reflects the incident beam of any polar-
ization into a vortex beam. This can be qualitatively assessed by visual in-
spection of equivalent luminosities of Figs. 2.21(a,b,c) that are all recorded
with same incident beam power and camera acquisition time.

� The helicity of the reflected vortex field is that of the incident field, as
expected from the “ray-optics” description of Fig. 2.19. Indeed, their inter-
ferences with orthogonal polarization states of Figs. 2.21(d,h) does not show
an existence of singularity. The observed low-contrast interference rings in
the LHCP/RHCP (Figs. 2.21(d)) and RHCP/LHCP (Figs. 2.21(h)) situa-
tions are most probably the indication of low-weight Fresnel contribution
in the reflected field from CLC/glass interface. Indeed, since it has an
orthogonal polarization with respect to the Bragg reflected vortex, it can
interfere with the reference beam.
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� Right and left circularly polarized incident beams result phase singularities
with opposite topological charge ` = ±2 in reflection, see Figs. 2.21(e,j).

� Linearly polarized incident beam generates a vector vortex beam of charge
two in reflection, see Figs. 2.21(e,f,i).

All above mentioned statements allow us to conclude that the mirror-backed BB
mirror of order q can be considered as a reflective q-plate, which thus deserve to
be called Bragg-Berry q-plate.

Since the case of incident linearly polarized beam offers a platform for the
spatio-temporal control of vector beam, we dedicate the next section to that
particular situation.

2.6 Spatio-temporally modulated vector beams

from Bragg-Berry q-plates

The standard mirror behind CLC layer of Bragg-Berry q-plate is responsible for
the Bragg reflection of incident beam having circular polarization with handed-
ness opposite to the sign of medium chirality (cross-handed circular polarization),
see Fig. 2.19(b). From the “ray-optics” representation it follows that the co- and
cross-handed circularly polarized beams experience different optical paths before
to be reflected. On the other hand, in Sec. 2.5, we did not mention a require-
ment of a special distance, d, between the standard and the Bragg-Berry mirrors
(except that d ≪ zR). Therefore, a reasonable question arises: what is the con-
sequence on the reflected field when d varies by ∆z? Without loss of generality,
hereafter we assume that the Bragg-Berry mirror is fixed, whereas the rear stan-
dard mirror is displaced along the z axis. Before to move the case of Bragg-Berry
q-plate, which requires a charge q inhomogeneous CLC in front of standard mir-
ror, let us first analyze the case of mirror-backed homogeneous CLC.

2.6.1 Tunable feature of mirror-backed CLCs

Let us discuss the consequence on the reflected field when the standard mirror
is displaced by ∆z along the z axis in the case of an homogeneous planar CLC.
Obviously, the incident beam of co-handed circular polarization state (Λ = −χ)
is not affected, while the incident beam of cross-handed circular polarization
state (Λ = χ) will change its phase by ∆Φ = 8π∆z/λ, namely, four times the
phase delay 2π∆z/λ due to the double reflection of (Λ = χ) beam between the
homogeneous CLC and the standard mirror. Next, we describe the reflection of
a linearly polarized incident plane wave (say along the z axis) by representing its
polarization state on the circular polarization basis, namely ex = (e+Λ+e−Λ)/

√
2,
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where eΛ = (x + iΛy)/
√

2

Ein =
E0√

2
e−i(ωt−kz) (e+Λ + e−Λ) , (2.9)

Eout =
E0√

2
e−i(ωt+kz) (e+χ + ei∆Φe−χ) . (2.10)

Accordingly the following transformations are taken account: e+χ → exp (i∆Φ)e−χ,
because the light with Λ = χ helicity transmits from CLC and reflects back from
standard mirror by acquiring the phase ∆Φ and by flipping the vector e+χ → e−χ,
while the light with Λ = −χ is Bragg reflected from CLC by only flipping the
vector e−χ → e+χ. Simplifying Eq. 2.10 one gets

Eout = E0e
−i(ωt+kz)ei∆Φ/2 (cos (∆Φ/2)x + χ sin (∆Φ/2)y) . (2.11)

Above expression allows to reveal that a LP incident beam is reflected in a LP
state but the polarization plane is rotated in (x, y) transverse plane by the angle
γ = ∆Φ/2, namely

γ = 4π∆z

λ
. (2.12)

When the homogeneous CLC is replaced by inhomogeneous CLC with charge
q, an incident plane wave with helicity Λ is reflected with a phase factor exp (i`φ)
with ` = 2Λχq (see Eq. 2.8). Therefore a similar analyses for an incident LP plane
wave along the z axis gives

Eout =
E0√

2
e−i(ωt+kz) (e−i2qφe+χ + ei∆Φei2qφe−χ) . (2.13)

Which can be rewritten as

Eout = E0e
−i(ωt+kz)ei∆Φ/2 (cos (∆Φ/2 + 2qφ)x + χ sin (∆Φ/2 + 2qφ)y) . (2.14)

The electric field given by Eq. 2.14 describes a charge ` = 2qχ vector field, where
each vector is additionally rotated in transverse plane by angle γ = ∆Φ/2. Let
us note that in the particular case when q = 0 Eq. 2.14 turns to the Eq. 2.11.

In general, the rotation of composite vectors of vector field (except charge
one (` = 1) vector field) by the same angle corresponds to the entire rotation of
vector field by that angle. This is illustrated in Fig. 2.22 where ` = (0,1,2,3)
vector fields are simulated for γ = (0, π/4, π/2,3π/4, π) angles. In the case of
` = 1, depending on the angle γ, the charge one vector field rotates from radial to
azimuthal vector fields. Namely, in the case of radial vector beam, each point of
beam has a linear polarization pointed towards the center of beam, in the case of
azimuthal vector beam, each point of beam has a linear polarization tangential
to the circle constructed by that point and the center of the beam.
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Figure 2.22: Vector fields of ` = (0,1,2,3) charges for γ = (0, π/4, π/2,3π/4, π)
angles, which refer to the in-plane rotations of each individual vector.

One can see from Eq. 2.11 and Eq. 2.14 that the total reflected field of both
cases change with the periods of ∆z0 = λ/2. Importantly, the linear polarization
state azimuth of their each point changes with the periods of ∆z0 = λ/4, since
γ → γ+π corresponds to the same linear polarization state. More precisely, in the
case of LP incident beam on the homogeneous CLC, the reflected field changes its
linear polarization direction in the transverse plane by the periods of ∆z0 = λ/4.
Similarly, in the case of LP incident beam on inhomogeneous CLC, the reflected
vector field changes its composite linear polarization directions in the transverse
plane with the periods of ∆z0 = λ/4 causing its entire rotation in the transverse
plane (except the case of ` = 1) with the same periods of ∆z0.

Importantly, in both cases of homogeneous and inhomogeneous CLCs, after
the projection of reflected field by linear polarizer, one detects the same ∆z0 = λ/4
periods of oscillating intensity patterns. Without loss of generality, the following
example will demonstrate that. Let us take the orientation of linear polarizer
along the x axis. In both cases, the intensities of projected output fields can
be calculated by I = ∣Eout ⋅ x∣2 using the Eqs. 2.11, 2.14 and 2.12. Namely, for
the case of homogeneous CLC one gets Ihomo ∝ cos (4π∆z/λ)2

, and for the case
of inhomogeneous CLC one gets Iinhomo ∝ cos (4π∆z/λ + 2qφ)2

. Consequently,
in both cases the detected intensity profiles exhibit oscillations with ∆z0 = λ/4
periods.

Since the subwavelength displacement of the standard mirror can change
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Figure 2.23: (a) Load-free piezo stage displacement under applied positive elec-
tric voltage provided by Thorlabs. The right axis corresponds to the mirror-
loaded piezo stage displacement calibrated by setup of Fig. 2.24(a). (b) The
periodically varying voltage applied on the piezo stage.

the vectorial characteristics of the reflected field significantly, an experimental
demonstration implies fine motion control of standard mirror. We thus choose
a piezoelectric translation stage. The voltage-controlled amplitude of the dis-
placement depends on the applied load, therefore we cannot rely on load-free
and lot-dependent calibration specifications provided by supplier and a special
calibration corresponding to our experiment is required.

2.6.2 Calibration of the piezoelectric translation stage

We used the piezoelectric translation stage (or in short piezo stage) TA0505D024
from Thorlabs, which provides a continuous displacement up to ∆zmax = 2.8 µm
when a positive electric voltage is applied, see the typical load-free calibration
data in Fig. 2.23(a) provided by Thorlabs. Red and blue curves are showing
the piezo stage displacement when the voltage is increased from Vmin = 0 V to
Vmax = 75 V and decreased from Vmax to Vmin, respectively.

In our case, we use a 1 inch dimensional, 5 mm thick standard mirror. To per-
form a calibration of mirror-loaded piezo displacement, an interference setup is
assembled, see Fig 2.24(a). Basically, our protocol consists to measure the inter-
ference between Fresnel-reflected beams from two microslides (thin transparent
layers of glasses), one being fixed while the other being attached to the piezo
stage. In addition, the mirror that will be used in the next experiments is fixed
on the piezo stage in order to have the piezo stage loaded as close as possible to
the planned measurements. In practice a diffusing paper is placed between the
mirror and microslide in order to diffuse the unwanted transmitted light from
the microslide and not reflect it back from the mirror, see the sketch shown in
Fig 2.24(a). Note that the weights of the diffusing paper and the microslide can
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Figure 2.24: (a) Piezo stage calibration by experimental setup based on the inter-
ference between LP incident beam reflections from fixed and moving microslides.
The transmitted part of beam from moving microslide undergoes diffusing re-
flection from the paper placed behind it. The mirror is mounted on piezo stage
deliberately in order to have the same amount of load applied to the piezo stage
as in the farther experiments (the weights of diffusing paper and microslide can
be neglected compared with the mirror). (b) Detected power oscillations of re-
flected lights in the setup of panel (a) under applied voltage of Fig. 2.23 (b) and
in the periods of 8 seconds corresponds to the λ displacement of piezo stage.

be neglected compared to that of the standard mirror.

The incident linearly polarized beam first Fresnel-reflects from the fixed mi-
croslide and then Fresnel-reflects from the second microslide attached to the
continuously moving piezo stage and the total reflected field is detected by pho-
todetector. The continuous displacement of the piezo stage should thus bring
an intensity oscillation due to the interference with a period of displacement
∆z0 = λ/2. In order to get a continuous displacement of piezo stage, we applied
a periodic voltage on it, which is periodically changing from V1 = 2 V up to
V2 = 74 V by T = 40 s period, as depicted in Fig. 2.23(b). We chose the applied
voltages V1 > Vmin and V2 < Vmax in order to work safely regarding the limits of
piezo stage. Obtained time-dependent intensity signal is shown in Fig. 2.24(b),
which gives a time period of ∆t = 4 s. This is associated with the voltage
change ∆V = (V2 − V1)∆t/(T /2) = 14.4 V, which corresponds to a displacement
∆zspec = ∆zmax ⋅∆V /Vmax = 0.53 µm. The estimated value from the generic speci-
fications is thus larger than the expected one ∆z0 = λ/2 = 0.266 µm by almost two
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times. Assuming that the red and blue displacement curves of Fig. 2.23(a) have
almost linear dependencies on voltage, we can calibrate them by the coefficient
∆zexp

0 /∆zspec
0 ≈ 0.5. The right side axis of Fig. 2.23(a) refers to the calibrated

axis. The displacement dependence on applied voltage of mirror-loaded piezo
stage being determined, we can move to the main experiments.

2.6.3 Tunable mirror-backed homogeneous CLC: experi-
ment

In sec. 2.6.1 we have showed theoretically that LP incident beam on the mirror-
backed homogeneous CLC changes its LP state azimuth in transverse plane by
angle γ = 4π∆z/λ when mirror moves along CLC by ∆z. Here we demonstrate
that experimentally. We use the piezo stage calibrated in Sec. 2.6.2.

The experimental setup is depicted in Fig 2.25(a). Accordingly, the incident
LP beam first reflects from the homogenous CLC then from the moving mirror-
loaded piezo stage and eventually passes through a linear polarizer before to be
collected by a CCD camera. Fig 2.25(b) shows the time dependent integrated
signal detected by the CCD camera. Obtained signal varies approximately twice
faster than in the calibration case (the small deviation most probably comes due
to the non perfect parallel alignment of the mirror and the CLC sample). This
experimentally proves that the continuous displacement of mirror by ∆z = λ re-
sults to 2 full rotation of the plane of the reflected field (see Sec. 2.6.1). At the
same time, this supports the “ray-optics” concept of double reflection between
cholesteric and mirror illustrated in Fig. 2.19. Let us note that the power oscil-
lations of both experiments are originally recorded for much longer period and
their behaviour is same as presented in Fig. 2.24(b) and Fig. 2.25(b). Still there
is an open question that we did not explain so far, namely the robust asym-
metric power oscillation in the case of the mirror-backed CLC, see Fig. 2.25(b).
The volumetric representation of recorder signal by CCD camera is presented
in Fig. 2.25(c), which emphasizes the spatio-temporal features of the obtained
modulation [116]. Three kinds of characteristics of the modulated signal are em-
phasized in Fig. 2.25(c): (i) The length of mirror displacement, ∆z, which led
to the rotation of reflected light LP state in transverse plane with period of λ/4;
(ii) the time period of mirror displacement, which is also the length of recorded
video; (iii) the length of the spatio-temporally modulated signal in space, which
is equal to c∆t.
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Figure 2.25: (a) Experimental setup for the detection of polarization plane
rotation of the reflected beam from a planar homogeneous CLC with moving
back-mirror. Piezo stage oscillates along the z axis with an amplitude ∆z. (b)
Integrated signal detected by the CCD camera that collects the total reflected
light analyzed by linear polarizer for λ displacement of piezo stage over a time
duration of 8 s. (c) Volumetric spatio-temporal presentation of the signal col-
lected by the CCD camera. It corresponds to the ∆z = 1.5 µm displacement of
piezo stage under applied voltage of Fig. 2.23 (b) over a time duration of ∆t = 20
s. The spatio-temporally modulated signal has a c∆t length in the space.

2.6.4 Tunable mirror backed inhomogeneous CLC: exper-
iment

Eventually, we address the case of the planar inhomogeneous cholesteric sample.
We use the same setup of Fig. 2.25(a), but with the charge one inhomogeneous
CLC instead of the homogeneous one. Volumetric spatio-temporal presentation
of projected vector field is shown in Fig. 2.26(a). It corresponds to the dis-
placement of back-mirror by ∆z = 1.5 µm over the time duration of ∆t = 20 s.
Figs. 2.26(b–f) correspond to one full period rotation of projected vector field
intensity pattern for ∆z = λ/4 displacement of piezo stage over a time duration
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Figure 2.26: (a) Volumetric presentation of spatio-temporally modulated vector
field analyzed by linear polarizer and detected in the same setup of Fig. 2.25(a),
but instead of planar homogeneous CLC, charge one planar inhomogeneous CLC
is used. It corresponds to the ∆z = 1.5 µm displacement of piezo stage under
applied voltage of Fig. 2.23 (b) over a time duration of ∆t = 20 s. The spatio-
temporally modulated signal has a c∆t length in the space. (b–f) One full period
rotation of transverse-plane intensity pattern of panel (a) modulated signal cor-
responding to ∆z = λ/4 displacement of piezo stage over a time duration of 2 s.
(g–k) The azimuthal maps of polarizations of same fields of (l–p) obtained by
Salsa camera, which is placed instead of linear polarizer and CCD camera. The
orientations of incident and analyzing polarizations are the same and presented
by two blue arrows (Pin and Pout).

of 2 s. The dark crosses mean that over that region field is polarized orthogo-
nal to the linear polarizer placed before CCD camera. As it was expected from
Sec. 2.6.1, the period of rotating intensity pattern is ∆z = λ/4.

In order to directly detect the polarization state of the reflected vector field
without projecting it, we remove the linear polarizer and install the SALSA
camera instead of CCD camera. SALSA is a full Stokes polarization camera,
which performs live measurement of fields Stokes parameters as well as many
other polarization-related parameters such as the “degree of polarization” (lin-
ear or circular), the “angle of polarization”, the “ellipticity angle” etc. In our
case, we measure the angular map of linear polarization of reflected vector
field, see Figs. 2.26(g–k). The experimental results of vector beam projections
(Figs. 2.26(b–f)) as well as their linear polarization angular maps (Figs.2.26(g–k))
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give a good agreement with our theoretical predictions depicted in Fig. 2.22.
Spatio-temporal signals modulated in time and in space can enhance sub-

stantially the capacity of optical communication [136–140]. On the other hand,
spatially modulated signals by phase and intensity are very actual in optome-
chanical manipulations [141–143]. Consequently, we think that the presented new
method of spatio-temporal modulated beam generation can be useful towards in-
vestigations of high speed optical communication or in complex optomechanical
manipulations.

One of the key element in our experimental setup, which induces the spatio-
temporal modulation of vector beam, is the piezoelectric crystal. Recent stud-
ies show that vibration frequency of piezoelectric crystals can go beyond 100
MHz [144, 145], consequently such piezoelectric stages in our setup allow to in-
duce very high frequency spatio-temporarily modulated vector beams without
use of expensive spatial light modulators or other complex interference technolo-
gies [146–149]. On the other hand, alternative method to that, can be elec-
trooptical phase modulators relying on Pockel effect of nonlinear crystals placed
between dielectric and Bragg-Berry mirrors, which can change the optical path
of cross-circular polarized part of incident beam in GHz frequencies [150–152].



Conclusion and perspectives

In this work we have addressed two main issues of topological beam shaping:
the modality and the polychromaticity. The first one enhances the degree of
freedom of converted information adding a radial degree of freedom to the spin-
orbit information of converted modal beam. The second one provides broadband
spin-orbit beam shaping.

In chapter 1 we have theoretically proposed single anisotropic inhomogeneous
dielectric flat medium, that we have called a modal q-plate, since it can convert
the incident Gaussian beam into the pure Laguerre Gaussian beam of arbitrary
radial and azimuthal indices depending on its optical properties. The idea of
modal beam shaping is generic and relies on the simultaneous contributions of
dynamic and geometric phases in the beam shaping. For that reason, the required
optical characteristics of modal HG-plates, that convert the incident Gaussian
beam into the pure Hermite Gaussian beams of arbitrary modes, are also in-
troduced. The technological realization of such flat modal shapers maiden by
anisotropic inhomogeneous dielectric medium is challenging to date. However,
two different approaches, namely glassy quasi-modal q-plates and liquid crys-
tal quasi-modal defects, are discussed experimentally and theoretically, that ease
the technological difficulties by sacrificing the modality of beam shaping, to some
extent. Fortunately, both methods principally can offer increase of modality vs
decrees of conversion efficiency. Sec. 1.1 and Sec. 1.2 have led to the publication
and submission of articles [153] and [154], respectively.

In chapter 2 we proposed a novel individual method of beam shaping based
on the revealed Pancharatnam-Berry geometric phase in Bragg reflection from
chiral optical media based on inhomogeneous azimuthal orientation of its chiral
helices. We called a Bragg-Berry mirror such inhomogeneous flat chiral mate-
rial. The experimental demonstration of novel kind of beam shaping is carried
out by showing the broadband optical vortex reflection from charge one Bragg-
Berry mirror using thin cholesteric liquid crystal (CLC) layer sandwiched by
glass substrates coated by charge one planar photoalignment layer. Afterwards,
ultra-broadband Bragg-Berry mirrors are realized based on the charge one inho-
mogeneous CLC sample having nonuniform chirality (pitch gradient) along the
cell induced by thermal diffusion of three cholesteric liquid crystal layers with
three different chiralities. We have showed that the optical vortex reflected from
that sample exhibits ultra-broadband characteristics covering almost all the visi-
ble light region. Then, we upgrade the Bragg-Berry mirror achieving polarization
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independent spin-orbital beam shaping, by using an standard mirror behind that
and calling such configuration a Bragg-Berry q-plate. The demonstration of
charge ±2 optical vortex generations from incident right/left circularly polarized
Gaussian beams on the charge one (q = 1) Bragg-Berry q-plate is carried out.
We have showed, that the incident linearly polarized Gaussian beam generates a
vector vortex beam in reflection. Finally, in the last section, we provoke the pos-
sibility of highly spatio-temporal modulation of vector fields from the periodical
modulation of optical path between the standard and the Bragg-Berry mirrors.
The experimental demonstration is carried out by placing the back-mirror on a
piezoelectric translation stage and displacing it in a periodic manner. Sec. 2.2
and Sec. 2.3 have led to the publication of two articles, namely [126] and [155].

The results presented in this thesis bring a novel concept of modal beam shap-
ing and provide a novel broadband reflective spin-orbit element, which in turn
may open path for number of new research perspectives towards advanced novel
spin-orbit elements. For example a new modal q-plate that overcomes previous
limitations regarding the robustness of modality against the handedness of the in-
cident circular polarization state or regarding the fully efficient modal conversion.
Another novel spin-orbit element can be a“modal Bragg-Berry q-plate”that com-
bining the concept of modality with the polychromaticity of Bragg-Berry mirror
can generate polychromatic Laguerre-Gaussian beams or a“reconfigurable Bragg-
Berry mirror” that benefiting from the tunability of cholesteric liquid crystals by
electric field can shape the geometric phase of reflected polychromatic light in
controlled manner. Finally, one can consider a“broadband complex beam shaper”
that stacking Bragg-Berry mirrors with opposite chiralities and different topolog-
ical charges can generate vector vortex beams with inhomogeneous polarization
states on higher-order or hybrid-order Poincaré spheres [156,157].
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