L. Membranes-perfluorées-sulfoniques and P. , 16 1.3.1 Conductivité et Performances en pile 17 1.3.2 Propriétés macroscopiques : sorption et diffusion de l, eau, vol.21

.. Dynamique-locale-du-proton-et-de-l-'eau, La technique de diffusion quasi-´ elastique des neutrons, p.36

.. Dynamique-de-l-'eau-et-du-proton, 136 3.4.2.1 Echantillons et données brutes, p.138

S. View, SAXS Utilities : http ://www.sztucki.de/SAXSutilities/ Instruments et techniques expérimentales employées A.2 La diffusion quasi-´ elastique des neutrons ? Mibémol LLB -ToF, est plus en fonctionnement. Fadì ese son remplaçant est en cours de réalisation

A. Lexique, . Kreuer, J. Stephen, E. Paddison, M. Spohr et al., Transport in proton conductors for fuel-cell applications : simulations, elementary reactions, and phenomenology, Chemical Reviews, vol.1, issue.10410, pp.4637-4678, 2004.

H. Michael, K. Eikerling, and . Malek, Physical modeling of materials for PEFCs : A balancing act of water and complex morphologies, Proton Excgange Membranes Fuel Cells, 2009.

J. Perrin, Etude expérimentale multi-´ echelles de la dynamique de l'eau dans les membranes ionomères utilisées en pilesàpilesà combustible, Thèse de Doctorat, 2006.

S. Lyonnard, HabilitationàHabilitationà Diriger les Recherches, Dynamique multi-´ echelle de l'eau et du proton confinés dans des matrices chargées, 2011.

R. William and . Grove, Xxiv. on voltaic series and the combination of gases by platinum . The London and Edinburgh Philosophical Magazine and, Journal of Science, vol.14, issue.86, pp.127-130, 1839.

C. Brian, A. Steele, and . Heinzel, Materials for fuel-cell technologies, Nature, vol.414, issue.6861, pp.345-352, 2001.

. Td-gierke, F. Munn, and . Wilson, The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies, Journal of Polymer Science: Polymer Physics Edition, vol.19, issue.11, pp.1687-1704, 1981.
DOI : 10.1002/pol.1981.180191103

G. Gebel and J. Lambard, Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes, Macromolecules, vol.30, issue.25, pp.7914-7920, 1997.
DOI : 10.1021/ma970801v

G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution, Polymer, vol.41, issue.15, pp.415829-5838, 2000.
DOI : 10.1016/S0032-3861(99)00770-3

E. Thomas, T. Springer, S. Zawodzinski, and . Gottesfeld, Polymer electrolyte fuel cell model, Journal of the Electrochemical Society, vol.138, issue.8, pp.2334-2342, 1991.

C. Mary, . Wintersgill, J. John, and . Fontanella, Complex impedance measurements on nafion, Electrochimica Acta, vol.43, issue.1011, pp.1533-1538, 1998.

A. Jochen and . Kerres, Development of ionomer membranes for fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.3-27, 2001.

B. Smitha, A. Sridhar, and . Khan, Solid polymer electrolyte membranes for fuel cell applications???a review, Journal of Membrane Science, vol.259, issue.1-2, pp.10-26, 2005.
DOI : 10.1016/j.memsci.2005.01.035

A. Michael, H. Hickner, Y. S. Ghassemi, . Kim, R. Brian et al., Alternative polymer systems for proton exchange membranes (pems), Chemical Reviews, vol.104, issue.10, pp.4587-4612, 2004.

G. Maier and J. Meier-haack, Sulfonated Aromatic Polymers for Fuel Cell Membranes, In Fuel Cells II, pp.1-62, 2008.
DOI : 10.1007/12_2008_135

G. Alberti, . Casciola, B. Massinelli, and . Bauer, Polymeric proton conducting membranes for medium temperature fuel cells (110???160??C), Journal of Membrane Science, vol.185, issue.1, pp.73-81, 2001.
DOI : 10.1016/S0376-7388(00)00635-9

C. Genies, R. Mercier, B. Sillion, . Cornet, M. Gebel et al., Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer, vol.42, issue.2, pp.359-373, 2001.
DOI : 10.1016/S0032-3861(00)00384-0

URL : https://hal.archives-ouvertes.fr/hal-00560044

P. Zschocke and D. Quellmalz, Novel ion exchange membranes based on an aromatic polyethersulfone, Journal of Membrane Science, vol.22, issue.2-3, pp.325-332, 1985.
DOI : 10.1016/S0376-7388(00)81290-9

H. Byun, A. Burford, and . Fane, Sulfonation of cross-linked asymmetric membranes based on polystyrene and divinylbenzene, Journal of Applied Polymer Science, vol.52, issue.6, pp.825-835, 1994.
DOI : 10.1002/app.1994.070520612

. Cc-de-araujo, . Kreuer, . Schuster, H. Portale, G. Mendil-jakani et al., Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features, Physical Chemistry Chemical Physics, vol.43, issue.137, pp.113305-3312, 2009.
DOI : 10.1557/PROC-293-273

M. Schuster, C. C. De-araujo, V. Atanasov, T. Henrik, K. Andersen et al., Highly Sulfonated Poly(phenylene sulfone): Preparation and Stability Issues, Macromolecules, vol.42, issue.8, pp.423129-3137, 2009.
DOI : 10.1021/ma900333n

K. Dieter-kreuer, M. Schuster, O. Obliers, . Diat, . Traub et al., Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells, Journal of Power Sources, vol.178, issue.2, pp.499-509, 2008.
DOI : 10.1016/j.jpowsour.2007.11.011

G. Gebel, B. Robert, and . Moore, Small-Angle Scattering Study of Short Pendant Chain Perfuorosulfonated Ionomer Membranes, Macromolecules, vol.33, issue.13, pp.4850-4855, 2000.
DOI : 10.1021/ma9912709

M. Ferrari, J. Catalano, M. G. Baschetti, M. G. De-angelis, and G. Sarti, FTIR-ATR Study of Water Distribution in a Short-Side-Chain PFSI Membrane, Macromolecules, vol.45, issue.4, pp.1901-1912, 2012.
DOI : 10.1021/ma202099p

D. Wu, J. Stephen, . Paddison, A. James, and . Elliott, A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations, Energy & Environmental Science, vol.53, issue.2, pp.284-293, 2008.
DOI : 10.1515/REVCE.2006.22.3.125

H. Iordan, . Hristov, J. Stephen, R. Paddison, and . Paul, Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer, The Journal of Physical Chemistry B, vol.112, issue.10, pp.2937-2949, 2008.

J. Liu, N. Suraweera, J. David, S. Keffer, S. Cui et al., On the Relationship between Polymer Electrolyte Structure and Hydrated Morphology of Perfluorosulfonic Acid Membranes, The Journal of Physical Chemistry C, vol.114, issue.25, pp.11279-1129213273, 2008.
DOI : 10.1021/jp911972e

D. Wu, J. Stephen, . Paddison, A. James, and . Elliott, Effect of Molecular Weight on Hydrated Morphologies of the Short-Side-Chain Perfluorosulfonic Acid Membrane, Macromolecules, vol.42, issue.9, pp.3358-3367, 2009.
DOI : 10.1021/ma900016w

D. Brandell, J. Karo, A. Liivat, O. John, and . Thomas, Molecular dynamics studies of the Nafion??, Dow?? and Aciplex?? fuel-cell polymer membrane systems, Journal of Molecular Modeling, vol.41, issue.10
DOI : 10.1007/978-94-009-1461-2

J. Karo, A. Aabloo, O. John, D. Thomas, and . Brandell, Molecular Dynamics Modeling of Proton Transport in Nafion and Hyflon Nanostructures, The Journal of Physical Chemistry B, vol.114, issue.18, pp.6056-6064, 2010.
DOI : 10.1021/jp903288y

V. Arcella, A. Ghielmi, and G. Tommasi, High Performance Perfluoropolymer Films and Membranes, Annals of the New York Academy of Sciences, vol.95, issue.23, pp.226-244, 2003.
DOI : 10.1111/j.1749-6632.2003.tb06002.x

A. Ghielmi, C. Vaccarono, V. Troglia, and . Arcella, Proton exchange membranes based on the short-side-chain perfluorinated ionomer, Journal of Power Sources, vol.145, issue.2, pp.108-115, 2005.
DOI : 10.1016/j.jpowsour.2004.12.068

L. Merlo, . Ghielmi, . Cirillo, V. Gebert, and . Arcella, Ion for an Evolving Fuel Cell Technology, Separation Science and Technology, vol.50, issue.13, pp.422891-2908, 2007.
DOI : 10.1021/jp037519c

A. Arico, D. Baglio, . Blasi, . Antonucci, . Cirillo et al., Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells, Desalination, vol.199, issue.1-3, pp.271-273, 2006.
DOI : 10.1016/j.desal.2006.03.065

J. Peron, D. Edwards, M. Haldane, X. Luo, Y. Zhang et al., Fuel cell catalyst layers containing short-side-chain perfluorosulfonic acid ionomers, Journal of Power Sources, vol.196, issue.1, pp.179-181, 2011.
DOI : 10.1016/j.jpowsour.2010.06.050

A. Stassi, . Gatto, . Passalacqua, . Antonucci, . Arico et al., Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation, Journal of Power Sources, vol.196, issue.21, pp.1968925-8930, 2011.
DOI : 10.1016/j.jpowsour.2010.12.084

C. Lei, D. Bessarabov, S. Ye, Z. Xie, S. Holdcroft et al., Low equivalent weight short-side-chain perfluorosulfonic acid ionomers in fuel cell cathode catalyst layers, Journal of Power Sources, vol.196, issue.15, pp.6168-6176, 2011.
DOI : 10.1016/j.jpowsour.2011.03.024

W. Navarrini, B. Scrosati, S. Panero, A. Ghielmi, A. Sanguineti et al., Lithiated short side chain perfluorinated sulfonic ionomeric membranes: Water content and conductivity, Journal of Power Sources, vol.178, issue.2, pp.783-788, 2008.
DOI : 10.1016/j.jpowsour.2007.09.110

X. Luo, S. Holdcroft, A. Mani, Y. Zhang, and Z. Shi, Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network, Physical Chemistry Chemical Physics, vol.330, issue.40, pp.18055-18062, 2011.
DOI : 10.1016/j.memsci.2008.11.056

S. Paddison, The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes, Journal of New Materials for Electrochemical Systems, vol.4, issue.4, pp.197-208, 2001.

R. Iwamoto, K. Oguro, M. Sato, and Y. Iseki, Water in Perfluorinated Sulfonic Acid Nafion Membranes, The Journal of Physical Chemistry B, vol.106, issue.28, pp.6973-6979, 2002.
DOI : 10.1021/jp013709g

P. Choi, H. Nikhil, R. Jalani, and . Datta, Thermodynamics and Proton Transport in Nafion, Journal of The Electrochemical Society, vol.42, issue.3, pp.84-89, 2005.
DOI : 10.1149/1.1855872

M. Eikerling, U. Kornyshev, and . Stimming, Electrophysical Properties of Polymer Electrolyte Membranes:?? A Random Network Model, The Journal of Physical Chemistry B, vol.101, issue.50, pp.10807-10820, 1997.
DOI : 10.1021/jp972288t

M. Eikerling, A. A. Kornyshev, R. Anthony, and . Kucernak, Water in polymer electrolyte fuel cells: Friend or foe?, Physics Today, vol.148, issue.10, p.38, 2006.
DOI : 10.1149/1.1611489

M. Hickner and B. Pivovar, The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties, Fuel Cells, vol.123, issue.2, pp.213-229, 2005.
DOI : 10.1016/S0032-3861(02)00687-0

M. Eikerling, A. A. Kornyshev, and A. A. Kulikovsky, Physical modeling of fuel cells and their components. Encyclopedia of electrochemistry, 2007.
DOI : 10.1002/9783527610426.bard050802

M. Falk, An infrared study of water in perfluorosulfonate (Nafion) membranes, Canadian Journal of Chemistry, vol.58, issue.14, pp.1495-1501, 1980.
DOI : 10.1139/v80-237

M. Laporta, L. Pegoraro, and . Zanderighi, Perfluorosulfonated membrane (Nafion): FT-IR study of the state of water with increasing humidity, Physical Chemistry Chemical Physics, vol.1, issue.19, pp.4619-4628, 1999.
DOI : 10.1039/a904460d

A. Gruger, A. Régis, T. Schmatko, and P. Colomban, Nanostructure of Nafion?? membranes at different states of hydration, Vibrational Spectroscopy, vol.26, issue.2
DOI : 10.1016/S0924-2031(01)00116-3

Z. Liang, W. Chen, J. Liu, S. Wang, Z. Zhou et al., FT-IR study of the microstructure of Nafion?? membrane, Journal of Membrane Science, vol.233, issue.1-2, pp.39-44, 2004.
DOI : 10.1016/j.memsci.2003.12.008

E. David, . Moilanen, E. Nancy, . Levinger, M. Db-spry et al., Confinement or the nature of the interface ? dynamics of nanoscopic water, Journal of the American Chemical Society, vol.129, issue.46, pp.14311-14318, 2007.

E. David, . Moilanen, R. Ivan, M. Piletic, and . Fayer, Tracking water's response to structural changes in nafion membranes, The Journal of Physical Chemistry A, vol.110, issue.29, pp.9084-9088, 2006.

E. David, . Moilanen, R. Ivan, . Piletic, D. Michael et al., Water dynamics in nafion fuel cell membranes : The effects of confinement and structural changes on the hydrogen bond network, The Journal of Physical Chemistry C, vol.111, issue.25, pp.8884-8891, 2007.

D. Spry, . Goun, . Glusac, E. David, M. Moilanen et al., Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles, Journal of the American Chemical Society, vol.129, issue.26, pp.8122-8130, 2007.
DOI : 10.1021/ja071939o

Z. Lu, G. Polizos, D. Digby, E. Macdonald, and . Manias, State of Water in Perfluorosulfonic Ionomer (Nafion 117) Proton Exchange Membranes, Journal of The Electrochemical Society, vol.131, issue.132, pp.163-171, 2008.
DOI : 10.1016/0167-2738(93)90020-4

T. Kalapos, H. Decker, . Every, T. Ghassemi, and . Zawodzinski, Thermal studies of the state of water in proton conducting fuel cell membranes, Journal of Power Sources, vol.172, issue.1, pp.14-19, 2007.
DOI : 10.1016/j.jpowsour.2007.04.082

E. David, . Moilanen, M. Db-spry, and . Fayer, Water dynamics and proton transfer in nafion fuel cell membranes, Langmuir, vol.24, issue.8, pp.3690-3698, 2008.

R. Duplessix, . Escoubes, . Rodmacq, . Volino, . Roche et al., Water Absorption in Acid Nafion Membranes, ACS Symposium Series, pp.469-486, 1980.
DOI : 10.1021/bk-1980-0127.ch028

J. Fimrite, N. Struchtrup, and . Djilali, Transport Phenomena in Polymer Electrolyte Membranes, Journal of The Electrochemical Society, vol.64, issue.9, pp.1804-1814, 2005.
DOI : 10.1016/S0009-2509(96)00458-7

J. Fimrite, H. Carnes, N. Struchtrup, and . Djilali, Transport Phenomena in Polymer Electrolyte Membranes, Journal of The Electrochemical Society, vol.137, issue.9, pp.1815-1823, 2005.
DOI : 10.1021/cm950192a

M. Eikerling and A. Kornyshev, Proton transfer in a single pore of a polymer electrolyte membrane, Journal of Electroanalytical Chemistry, vol.502, issue.1-2, pp.1-14, 2001.
DOI : 10.1016/S0022-0728(00)00368-5

R. Devanathan, A. Venkatnathan, and M. Dupuis, Atomistic Simulation of Nafion Membrane:?? I. Effect of Hydration on Membrane Nanostructure, The Journal of Physical Chemistry B, vol.111, issue.28, pp.8069-8079, 2007.
DOI : 10.1021/jp0726992

A. Venkatnathan, R. Devanathan, and M. Dupuis, Atomistic Simulations of Hydrated Nafion and Temperature Effects on Hydronium Ion Mobility, The Journal of Physical Chemistry B, vol.111, issue.25, pp.7234-7244, 2007.
DOI : 10.1021/jp0700276

R. Devanathan, A. Venkatnathan, and M. Dupuis, Atomistic Simulation of Nafion Membrane. 2. Dynamics of Water Molecules and Hydronium Ions, The Journal of Physical Chemistry B, vol.111, issue.45, pp.13006-13013, 2007.
DOI : 10.1021/jp0761057

J. Elliott, S. Aliceám, G. Elliott, and . Cooley, Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes, Physical Chemistry Chemical Physics, vol.1, issue.20, pp.4855-4863, 1999.
DOI : 10.1039/a905267d

G. Ye, G. Janzen, and . Goward, Solid-State NMR Study of Two Classic Proton Conducting Polymers:?? Nafion and Sulfonated Poly(ether ether ketone)s, Macromolecules, vol.39, issue.9, pp.3283-3290, 2006.
DOI : 10.1021/ma0523825

S. Paddison, Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid???Based Polymer Electrolyte Membranes, Annual Review of Materials Research, vol.33, issue.1, pp.289-319, 2003.
DOI : 10.1146/annurev.matsci.33.022702.155102

J. Stephen, . Paddison, A. James, and . Elliott, Molecular modeling of the short-sidechain perfluorosulfonic acid membrane, The Journal of Physical Chemistry A, vol.109, issue.33, pp.7583-7593, 2005.

J. Stephen, . Paddison, A. James, and . Elliott, On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes, Physical Chemistry Chemical Physics, vol.8, issue.18, pp.2193-2203, 2006.

J. Stephen, . Paddison, A. James, and . Elliott, The effects of backbone conformation on hydration and proton transfer in the 'short-side-chain'perfluorosulfonic acid membrane, Solid State Ionics, vol.177, issue.26, pp.2385-2390, 2006.

J. Stephen, . Paddison, A. James, and . Elliott, Selective hydration of the 'shortside-chain'perfluorosulfonic acid membrane. an oniom study, Solid State Ionics, vol.178, issue.7, pp.561-567, 2007.

A. James, . Elliott, J. Stephen, and . Paddison, Modelling of morphology and proton transport in pfsa membranes, Physical chemistry chemical physics, vol.9, issue.21, pp.2602-2618, 2007.

M. Eikerling, A. A. Kornyshev, and E. Spohr, Proton-Conducting Polymer Electrolyte Membranes: Water and Structure in Charge, In Fuel Cells I, pp.15-54, 2008.
DOI : 10.1007/12_2008_132

D. Marx, E. Mark, J. Tuckerman, M. Hutter, and . Parrinello, The nature of the hydrated excess proton in water, Nature, vol.397, issue.6720, pp.601-604, 1999.
DOI : 10.1038/17579

M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, Ab Initio Molecular Dynamics Simulation of the Solvation and Transport of H3O+ and OH- Ions in Water, The Journal of Physical Chemistry, vol.99, issue.16, pp.995749-5752, 1995.
DOI : 10.1021/j100016a003

M. Tuckerman, . Laasonen, M. Sprik, and . Parrinello, molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water, The Journal of Chemical Physics, vol.61, issue.1, p.150, 1995.
DOI : 10.1063/1.462066

J. Stephen, R. Paddison, and . Paul, The nature of proton transport in fully hydrated nafion R, Physical Chemistry Chemical Physics, vol.4, issue.7, pp.1158-1163, 2002.

M. Eikerling, . Kornyshev, J. Kuznetsov, S. Ulstrup, and . Walbran, Mechanisms of Proton Conductance in Polymer Electrolyte Membranes, The Journal of Physical Chemistry B, vol.105, issue.17, pp.3646-3662, 2001.
DOI : 10.1021/jp003182s

E. Spohr, Molecular Dynamics Simulations of Proton Transfer in a Model Nafion Pore, Molecular Simulation, vol.106, issue.2-3, pp.107-115, 2004.
DOI : 10.1021/jp020245t

K. Matt, . Petersen, A. Gregory, and . Voth, Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane nafion, The Journal of Physical Chemistry B, vol.110, issue.37, pp.18594-18600, 2006.

K. Matt, F. Petersen, . Wang, P. Nick, H. Blake et al., Excess proton solvation and delocalization in a hydrophilic pocket of the proton conducting polymer membrane nafion, The Journal of Physical Chemistry B, vol.109, issue.9, pp.3727-3730, 2005.

E. Spohr, A. Commer, and . Kornyshev, Enhancing Proton Mobility in Polymer Electrolyte Membranes:?? Lessons from Molecular Dynamics Simulations, The Journal of Physical Chemistry B, vol.106, issue.41, pp.10560-10569, 2002.
DOI : 10.1021/jp020209u

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.544.9723

A. Kornyshev, . Kuznetsov, J. Spohr, and . Ulstrup, Kinetics of Proton Transport in Water, The Journal of Physical Chemistry B, vol.107, issue.15, pp.3351-3366, 2003.
DOI : 10.1021/jp020857d

S. Dokmaisrijan and E. Spohr, MD simulations of proton transport along a model Nafion surface decorated with sulfonate groups, Journal of Molecular Liquids, vol.129, issue.1-2, pp.92-100, 2006.
DOI : 10.1016/j.molliq.2006.08.015

Y. William, . Hsu, D. Timothy, and . Gierke, Elastic theory for ionic clustering in perfluorinated ionomers, Macromolecules, vol.15, issue.1, pp.101-105, 1982.

Y. William, . Hsu, D. Timothy, and . Gierke, Ion transport and clustering in nafion perfluorinated membranes, Journal of Membrane Science, vol.13, issue.3, pp.307-326, 1983.

K. Yu, . Tovbin, A. Yu, N. Dyakov, and . Vasyutkin, Study of water molecule diffusion in naphione membranes by the molecular-dynamics technique. ZHURNAL FIZI- CHESKOI KHIMII, pp.2122-2125, 1993.

M. Litt, O. Pa-pers, . Of, . American, and . Society, A reevaluation of nafion (r) morphology, ABSTRACTS, p.33

H. Haubold, T. Vad, P. Jungbluth, and . Hiller, Nano structure of NAFION: a SAXS study, Electrochimica Acta, vol.46, issue.10-11, pp.1559-1563, 2001.
DOI : 10.1016/S0013-4686(00)00753-2

K. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, vol.185, issue.1, pp.29-39, 2001.
DOI : 10.1016/S0376-7388(00)00632-3

L. Rubatat, A. L. Rollet, G. Gebel, and O. Diat, Evidence of Elongated Polymeric Aggregates in Nafion, Macromolecules, vol.35, issue.10, pp.4050-4055, 2002.
DOI : 10.1021/ma011578b

L. Rubatat, O. Gebel, and . Diat, Fibrillar Structure of Nafion:?? Matching Fourier and Real Space Studies of Corresponding Films and Solutions, Macromolecules, vol.37, issue.20, pp.7772-7783, 2004.
DOI : 10.1021/ma049683j

G. Gebel and O. Diat, Neutron and X-ray Scattering: Suitable Tools for Studying Ionomer Membranes, Fuel Cells, vol.46, issue.324, pp.261-276, 2005.
DOI : 10.1021/jp9623047

K. Schmidt-rohr and Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature Materials, vol.20, issue.1, pp.75-83, 2007.
DOI : 10.1021/jp066388n

K. Kreuer and G. Portale, A critical revision of the nanomorphology of proton conducting ionomers and polyelectrolytes for fuel cell applications, Advanced Functional Materials, 2013.

S. Rieberer, H. Karl, and . Norian, Analytical electron microscopy of Nafion ion exchange membranes, Ultramicroscopy, vol.41, issue.1-3, pp.225-233, 1992.
DOI : 10.1016/0304-3991(92)90111-V

G. Dlubek, C. Buchhold, and . Hübner, Water in Local Free Volumes of Polyimides:?? A Positron Lifetime Study, Macromolecules, vol.32, issue.7, pp.2348-2355, 1999.
DOI : 10.1021/ma981381s

V. Michael and . Mirkin, Peer reviewed : Recent advances in scanning electrochemical microscopy, Analytical Chemistry, vol.68, issue.5, pp.177-182, 1996.

R. Hiesgen, I. Wehl, E. Aleksandrova, E. Roduner, A. Bauder et al., Nanoscale properties of polymer fuel cell materials-A selected review, International Journal of Energy Research, vol.33, issue.3, pp.1223-1238, 2010.
DOI : 10.1107/S0108767301008881

A. Lehmani, P. Durand-vidal, and . Turq, Surface morphology of Nafion 117 membrane by tapping mode atomic force microscope, Journal of Applied Polymer Science, vol.68, issue.3, pp.503-508, 1998.
DOI : 10.1002/(SICI)1097-4628(19980418)68:3<503::AID-APP16>3.0.CO;2-V

E. Aleksandrova, R. Hiesgen, A. Friedrich, and E. Roduner, Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane, Physical Chemistry Chemical Physics, vol.502, issue.3, pp.2735-2743, 2007.
DOI : 10.1039/B209438J

T. Awatani, H. Midorikawa, N. Kojima, J. Ye, and C. Marcott, Morphology of water transport channels and hydrophobic clusters in Nafion from high spatial resolution AFM-IR spectroscopy and imaging, Electrochemistry Communications, vol.30, 2013.
DOI : 10.1016/j.elecom.2013.01.021

M. Eikerling, T. Sj-paddison, and . Zawodzinski, Molecular orbital calculations of proton dissociation and hydration of various acidic moieties for fuel cell polymers, Journal of New Materials for Electrochemical Systems, vol.5, issue.1, pp.15-24, 2002.

A. Roudgar, M. Narasimachary, and . Eikerling, Hydrated Arrays of Acidic Surface Groups as Model Systems for Interfacial Structure and Mechanisms in PEMs, The Journal of Physical Chemistry B, vol.110, issue.41, pp.20469-20477, 2006.
DOI : 10.1021/jp063189v

X. Zhou, Z. Chen, F. Delgado, D. Brenner, and R. Srivastava, Atomistic Simulation of Conduction and Diffusion Processes in Nafion Polymer Electrolyte and Experimental Validation, Journal of The Electrochemical Society, vol.250, issue.1, pp.82-87, 2007.
DOI : 10.1016/S0167-577X(01)00391-3

N. Idupulapati, R. Devanathan, and M. Dupuis, Ab Initio Study of Hydration and Proton Dissociation in Ionomer Membranes, The Journal of Physical Chemistry A, vol.114, issue.25, pp.6904-6912, 2010.
DOI : 10.1021/jp1027178

A. Vishnyakov, V. Alexander, and . Neimark, Molecular Dynamics Simulation of Microstructure and Molecular Mobilities in Swollen Nafion Membranes, The Journal of Physical Chemistry B, vol.105, issue.39, pp.9586-9594, 2001.
DOI : 10.1021/jp0102567

V. Seung-soon-jang, T. Molinero, . Cagin, A. William, and . Goddard, Nanophase-Segregation and Transport in Nafion 117 from Molecular Dynamics Simulations:?? Effect of Monomeric Sequence, The Journal of Physical Chemistry B, vol.108, issue.10, pp.3149-3157, 2004.
DOI : 10.1021/jp036842c

S. Urata, J. Irisawa, A. Takada, W. Shinoda, S. Tsuzuki et al., Molecular Dynamics Simulation of Swollen Membrane of Perfluorinated Ionomer, The Journal of Physical Chemistry B, vol.109, issue.9, pp.4269-4278, 2005.
DOI : 10.1021/jp046434o

W. Goddard, I. , B. Merinov, . Van-duin, . Jacob et al., Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes, Molecular Simulation, vol.357, issue.3-4, pp.3-4251, 2006.
DOI : 10.1016/0022-0728(93)80380-Z

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.69.6550

S. Cui, J. Liu, M. Esai-selvan, J. David, . Keffer et al., A Molecular Dynamics Study of a Nafion Polyelectrolyte Membrane and the Aqueous Phase Structure for Proton Transport, The Journal of Physical Chemistry B, vol.111, issue.9, pp.2208-2218, 2007.
DOI : 10.1021/jp066388n

P. Nick, . Blake, K. Matt, . Petersen, A. Gregory et al., Structure of hydrated na-nafion polymer membranes Atomistic simulation of water percolation and proton hopping in nafion fuel cell membrane, The Journal of Physical Chemistry B The Journal of Physical Chemistry B, vol.109117, issue.11443, pp.24244-2425313681, 2005.

G. Pavel, . Khalatur, K. Sergei, A. R. Talitskikh, and . Khokhlov, Structural organization of water-containing nafion : The integral equation theory, Macromolecular theory and simulations, vol.11, issue.5, pp.566-586, 2002.

S. Yamamoto and S. Hyodo, A Computer Simulation Study of the Mesoscopic Structure of the Polyelectrolyte Membrane Nafion, Polymer Journal, vol.2, issue.6, pp.519-527, 2003.
DOI : 10.1016/S0032-3861(99)00770-3

T. James, Y. Wescott, L. Qi, W. Subramanian, and . Capehart, Mesoscale simulation of morphology in hydrated perfluorosulfonic acid membranes, MRS Proceedings, 2005.

Y. Dmitry, A. R. Galperin, and . Khokhlov, Mesoscopic morphology of protonconducting polyelectrolyte membranes of nafion R type : A self-consistent mean field simulation, Macromolecular theory and simulations, vol.15, issue.2, pp.137-146, 2006.

A. Vishnyakov and A. Neimark, Final report for us army research office, 2005.

D. Wu, J. Stephen, . Paddison, A. James, . Elliott et al., Mesoscale Modeling of Hydrated Morphologies of 3M Perfluorosulfonic Acid-Based Fuel Cell Electrolytes, Langmuir, vol.26, issue.17, pp.2614308-14315, 2010.
DOI : 10.1021/la102358y

K. Malek, M. Eikerling, Q. Wang, Z. Liu, S. Otsuka et al., Nanophase segregation and water dynamics in hydrated Nafion: Molecular modeling and experimental validation, The Journal of Chemical Physics, vol.5, issue.20, p.204702, 2008.
DOI : 10.1021/ma051353r

K. Craig, . Knox, A. Gregory, and . Voth, Probing selected morphological models of hydrated nafion using large-scale molecular dynamics simulations, The Journal of Physical Chemistry B, vol.114, issue.9, pp.3205-3218, 2010.

D. Brandell, J. Karo, O. John, and . Thomas, Modelling the Nafion?? diffraction profile by molecular dynamics simulation, Journal of Power Sources, vol.195, issue.18, pp.5962-5965, 2010.
DOI : 10.1016/j.jpowsour.2009.12.057

K. Mayur, N. R. Mistry, . Choudhury, K. Naba, R. Dutta et al., Nanostructure evolution in high-temperature perfluorosulfonic acid ionomer membrane by small-angle x-ray scattering, Langmuir, issue.24, pp.2619073-19083, 2010.

R. Devanathan and M. Dupuis, Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes?, Physical Chemistry Chemical Physics, vol.134, issue.32, pp.11281-11295, 2012.
DOI : 10.1063/1.3548663

Y. Tse, M. Andrew, K. Herring, . Kim, A. Gregory et al., Molecular Dynamics Simulations of Proton Transport in 3M and Nafion Perfluorosulfonic Acid Membranes, The Journal of Physical Chemistry C, vol.117, issue.16, pp.8079-8091, 2013.
DOI : 10.1021/jp400693g

V. Di-noto, M. Piga, A. Guinevere, K. Giffin, . Vezzu et al., Interplay between mechanical, electrical, and thermal relaxations in nanocomposite proton conducting membranes based on nafion and a 202 BIBLIOGRAPHIE [(zro2)·(ta2o5) 0.119] core?shell nanofiller, Journal of the American Chemical Society, issue.46, pp.13419099-19107, 2012.

S. Feng, J. Savage, A. Gregory, and . Voth, Effects of Polymer Morphology on Proton Solvation and Transport in Proton-Exchange Membranes, The Journal of Physical Chemistry C, vol.116, issue.36, pp.19104-19116, 2012.
DOI : 10.1021/jp304783z

M. Bée and M. Bee, Quasielastic neutron scattering : principles and applications in solid state chemistry, biology and materials science, 1988.

F. Volino, J. Perrin, and S. Lyonnard, Gaussian Model for Localized Translational Motion:?? Application to Incoherent Neutron Scattering, The Journal of Physical Chemistry B, vol.110, issue.23, pp.11217-11223, 2006.
DOI : 10.1021/jp061103s

J. Perrin, S. Lyonnard, and F. Volino, Quasielastic Neutron Scattering Study of Water Dynamics in Hydrated Nafion Membranes, The Journal of Physical Chemistry C, vol.111, issue.8, pp.3393-3404, 2007.
DOI : 10.1021/jp065039q

D. Kraemer, . Cowan, . Paarmann, . Huse, . Nibbering et al., Temperature dependence of the two-dimensional infrared spectrum of liquid H2O, Proceedings of the National Academy of Sciences, pp.437-442, 2008.
DOI : 10.1021/jp046685x

T. Sean, K. Roberts, A. Ramasesha, and . Tokmakoff, Structural rearrangements in water viewed through two-dimensional infrared spectroscopy, Accounts of chemical research, vol.42, issue.9, pp.1239-1249, 2009.

T. Yagasaki and S. Saito, Molecular Dynamics Simulation of Nonlinear Spectroscopies of Intermolecular Motions in Liquid Water, Accounts of Chemical Research, vol.42, issue.9, pp.1250-1258, 2009.
DOI : 10.1021/ar900007s

H. Bakker and J. Skinner, Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water, Chemical Reviews, vol.110, issue.3, pp.1498-1517, 2009.
DOI : 10.1021/cr9001879

A. Luzar and D. Chandler, Hydrogen-bond kinetics in liquid water, Nature, vol.379, issue.6560, pp.55-57, 1996.
DOI : 10.1038/379055a0

D. Laage, T. James, and . Hynes, A Molecular Jump Mechanism of Water Reorientation, Science, vol.311, issue.5762, pp.311832-835, 2006.
DOI : 10.1126/science.1122154

URL : https://hal.archives-ouvertes.fr/hal-00143095

G. Stirnemann and D. Laage, Direct Evidence of Angular Jumps During Water Reorientation Through Two-Dimensional Infrared Anisotropy, The Journal of Physical Chemistry Letters, vol.1, issue.10, pp.1511-1516, 2010.
DOI : 10.1021/jz100385r

J. Teixeira, M. Bellissent-funel, A. Sow-hsin-chen, and . Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperatures, Physical Review A, vol.46, issue.3, p.311913, 1985.
DOI : 10.1063/1.437945

L. Peter, D. Hall, and . Ross, Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media, Molecular Physics, vol.42, issue.3, pp.673-682, 1981.

V. Sears, J. Teixeira, M. Bellissent-funel, and S. Chen, Theory of cold neutron scattering by homonuclear diatomic liquids : I. free rotation Molecular dynamics of liquid water probed by neutron scattering, Canadian Journal of Physics Journal of Molecular Liquids, vol.44146, issue.482, pp.1279-1297111, 1966.

D. Laage, G. Stirnemann, T. James, and . Hynes, Why Water Reorientation Slows without Iceberg Formation around Hydrophobic Solutes, The Journal of Physical Chemistry B, vol.113, issue.8, pp.2428-2435, 2009.
DOI : 10.1021/jp809521t

URL : https://hal.archives-ouvertes.fr/hal-00363158

J. John and . Ullo, Molecular-dynamics study of translational motions in water as probed through quasielastic neutron scattering, Physical Review A, vol.36, issue.2, p.816, 1987.

S. Chen, . Gallo, P. Sciortino, and . Tartaglia, Molecular-dynamics study of incoherent quasielastic neutron-scattering spectra of supercooled water, Physical Review E, vol.96, issue.4, p.4231, 1997.
DOI : 10.1063/1.461890

S. Chen, C. Liao, . Sciortino, P. Gallo, and . Tartaglia, Model for single-particle dynamics in supercooled water, Physical Review E, vol.59, issue.6, p.6708, 1999.
DOI : 10.1103/PhysRevE.59.3084

L. Liu, A. Faraone, and S. Chen, Model for the rotational contribution to quasielastic neutron scattering spectra from supercooled water, Physical Review E, vol.81, issue.4, p.41506, 2002.
DOI : 10.1063/1.448118

J. Qvist, H. Schober, and B. Halle, Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations, The Journal of Chemical Physics, vol.76, issue.2, p.144508, 2011.
DOI : 10.1103/PhysRevA.25.978

J. Qvist, H. Schober, and B. Halle, Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations, The Journal of Chemical Physics, vol.76, issue.2, p.144508, 2011.
DOI : 10.1103/PhysRevA.25.978

J. Laurent, A. Michot, B. Delville, M. Humbert, P. Plazanet et al., Diffusion of water in a synthetic clay with tetrahedral charges by combined neutron time-of-flight measurements and molecular dynamics simulations, The Journal of Physical Chemistry C, vol.111, issue.27, pp.9818-9831, 2007.

P. Will, . Gates, N. Heloisa, . Bordallo, P. Laurence et al., Neutron time-of-flight quantification of water desorption isotherms of montmorillonite, The Journal of Physical Chemistry C, vol.116, issue.9, pp.5558-5570, 2012.

M. Jiménez-ruiz, E. Ferrage, L. Delville, and . Michot, Anisotropy on the Collective Dynamics of Water Confined in Swelling Clay Minerals, The Journal of Physical Chemistry A, vol.116, issue.10, pp.2379-2387, 2012.
DOI : 10.1021/jp201543t

A. Desmedt, J. Soetens, . Prager, J. Russina, and . Ollivier, Dynamics of Methyl Iodide Clathrate Hydrate, Investigated by MD Simulations and QENS Experiments, The Journal of Physical Chemistry C, vol.115, issue.26, pp.12689-12701, 2011.
DOI : 10.1021/jp110971h

A. Desmedt, E. Ruep, J. Lechner, F. Lassegues, D. Guillaume et al., Hydronium dynamics in the perchloric acid clathrate hydrate, Solid State Ionics, vol.252, 2013.
DOI : 10.1016/j.ssi.2013.06.004

I. Matar-briman, D. Rebiscoul, O. Diat, J. Zanotti, P. Jollivet et al., Impact of Pore Size and Pore Surface Composition on the Dynamics of Confined Water in Highly Ordered Porous Silica, The Journal of Physical Chemistry C, vol.116, issue.12, pp.7021-7028, 2012.
DOI : 10.1021/jp3001898

N. Heloisa, . Bordallo, P. Laurence, and . Aldridge, Concrete and cement paste studied by quasi-elastic neutron scattering, Zeitschrift für Physikalische Chemie, pp.183-200, 2010.

C. Alba-simionesco, B. Coasne, . Dosseh, . Dudziak, . Gubbins et al., Effects of confinement on freezing and melting, Journal of Physics: Condensed Matter, vol.18, issue.6, p.15, 2006.
DOI : 10.1088/0953-8984/18/6/R01

URL : https://hal.archives-ouvertes.fr/hal-00102544

A. Dianoux and F. Volino, -fold cosine potential: Correlation functions and neutron incoherent scattering law, Molecular Physics, vol.38, issue.5, pp.1263-1277, 1977.
DOI : 10.1080/00268977500102721

URL : https://hal.archives-ouvertes.fr/hal-00901543

A. Dianoux, F. Pineri, and . Volino, Neutron incoherent scattering law for restricted diffusion inside a volume with an anisotropic shape, Molecular Physics, vol.42, issue.1, pp.129-137, 1982.
DOI : 10.1080/00268978100100521

F. Volino and A. Dianoux, Neutron incoherent scattering law for diffusion in a potential of spherical symmetry: general formalism and application to diffusion inside a sphere, Molecular Physics, vol.2, issue.2, pp.271-279, 1980.
DOI : 10.1139/p67-025

M. Bée, A physical insight into the elastic incoherent structure factor, Physica B: Condensed Matter, vol.182, issue.4, pp.323-336, 1992.
DOI : 10.1016/0921-4526(92)90034-P

F. Volino, . Pineri, A. Dianoux, and . Geyer, Water mobility in a water-soaked nafion?? membrane: A high-resolution neutron quasielastic study, Journal of Polymer Science: Polymer Physics Edition, vol.20, issue.3, pp.481-496, 1982.
DOI : 10.1002/pol.1982.180200310

D. Spry, . Goun, . Glusac, E. David, M. Moilanen et al., Proton Transport and the Water Environment in Nafion Fuel Cell Membranes and AOT Reverse Micelles, Journal of the American Chemical Society, vol.129, issue.26, pp.8122-8130, 2007.
DOI : 10.1021/ja071939o

A. Prakash, S. , and A. Venkatnathan, Molecular dynamics simulations of side chain pendants of perfluorosulfonic acid polymer electrolyte membranes, Journal of Materials Chemistry A, vol.1, issue.3, pp.557-569, 2013.

G. Gebel, S. Lyonnard, H. Mendil-jakani, and A. Morin, The kinetics of water sorption in Nafion membranes: a small-angle neutron scattering study, Journal of Physics: Condensed Matter, vol.23, issue.23, p.234107, 2011.
DOI : 10.1088/0953-8984/23/23/234107

S. Lyonnard and G. Gebel, Neutrons for fuel cell membranes: Structure, sorption and transport properties, The European Physical Journal Special Topics, vol.12, issue.23, pp.195-211, 2012.
DOI : 10.1016/S1383-5866(00)00184-2

J. Liu, N. Suraweera, J. David, S. Keffer, . Cui et al., On the Relationship between Polymer Electrolyte Structure and Hydrated Morphology of Perfluorosulfonic Acid Membranes, The Journal of Physical Chemistry C, vol.114, issue.25, pp.11279-11292, 2010.
DOI : 10.1021/jp911972e

S. Longeville, R. Lechner-aoun, A. Miguel, J. González, M. Ollivier et al., Light and heavy water dynamics Translational and reorientational dynamics of an imidazolium-based ionic liquid, Physica B : Condensed Matter The Journal of Physical Chemistry Letters, vol.276175, issue.117, pp.534-5352503, 2000.

L. Megan, M. Hoarfrost, R. A. Tyagi, . Segalman, A. Jeffrey et al., Proton hopping and long-range transport in the protic ionic liquid [im][tfsi], probed by pulsed-field gradient nmr and quasi-elastic neutron scattering, The Journal of Physical Chemistry B, vol.116, issue.28, pp.8201-8209, 2012.

L. Megan, . Hoarfrost, S. Madhu, R. A. Tyagi, . Segalman et al., Effect of confinement on proton transport mechanisms in block copolymer/ionic liquid membranes, Macromolecules, issue.7, pp.453112-3120, 2012.

S. Kuldeep, P. Panesar, J. Judeinstein, and . Zanotti, Selective deuteration reveals interference caused by side-chain dynamics on measurements of self-diffusion in ionic liquid cations, Journal of the Physical Society of Japan Supplement, vol.82, p.13, 2013.

T. Yamada, T. Yamada, M. Tyagi, M. Nagao, H. Kitagawa et al., Phase Transition and Dynamics of Water Confined in Hydroxyethyl Copper Rubeanate Hydrate, Journal of the Physical Society of Japan, vol.82, issue.Suppl.A, p.10, 2013.
DOI : 10.7566/JPSJS.82SA.SA010

M. Adam, . Pivovar, S. Bryan, and . Pivovar, Dynamic behavior of water within a polymer electrolyte fuel cell membrane at low hydration levels, The Journal of Physical Chemistry B, vol.109, issue.2, pp.785-793, 2005.

W. Paulus, H. Schober, S. Eibl, M. Johnson, T. Berthier et al., Lattice Dynamics To Trigger Low Temperature Oxygen Mobility in Solid Oxide Ion Conductors, Journal of the American Chemical Society, vol.130, issue.47, pp.13016080-16085, 2008.
DOI : 10.1021/ja806144a

URL : https://hal.archives-ouvertes.fr/hal-00803752

R. Busselez, R. Lefort, A. Ghoufi, B. Beuneu, and B. Frick, The non-Gaussian dynamics of glycerol, Journal of Physics: Condensed Matter, vol.23, issue.50, p.505102, 2011.
DOI : 10.1088/0953-8984/23/50/505102

URL : https://hal.archives-ouvertes.fr/hal-00697059

F. Caboi and M. Monduzzi, On microstructural transitions of lamellar phase forming surfactants, The Colloid Science of Lipids, pp.153-160, 1998.
DOI : 10.1007/BFb0117972

M. Monduzzi, Self-assembly in fluorocarbon surfactant systems, Current Opinion in Colloid & Interface Science, vol.3, issue.5, pp.467-477, 1998.
DOI : 10.1016/S1359-0294(98)80020-4

H. Hoffmann, H. Kalus, and . Thurn, Small angle neutron scattering measurements on micellar solutions of perfluor detergents, Colloid & Polymer Science, vol.86, issue.12, pp.1043-1049, 1983.
DOI : 10.1007/BF01421713

E. Kissa, Fluorinated surfactants and repellents, 2001.

H. Hoffmann and J. Würtz, Unusual phenomena in perfluorosurfactants, Journal of Molecular Liquids, vol.72, issue.1-3, pp.191-230, 1997.
DOI : 10.1016/S0167-7322(97)00039-1

B. Ameduri and B. Boutevin, Well-Architectured Fluoropolymers : Synthesis , Properties and Applications : Synthesis, Properties and Applications. Access Online via, 2004.

F. Torres, V. Ochoa-herrera, P. Blowers, and R. Sierra-alvarez, Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers, Chemosphere, vol.76, issue.8, pp.761143-1149, 2009.
DOI : 10.1016/j.chemosphere.2009.04.009

M. Dubois and T. Zemb, Phase behavior and scattering of double-chain surfactants in diluted aqueous solutions, Langmuir, vol.7, issue.7, pp.1352-1360, 1991.
DOI : 10.1021/la00055a011

M. Dubois and T. Zemb, Swelling limits for bilayer microstructures : the implosion of lamellar structure versus disordered lamellae. Current opinion in colloid & interface science, pp.27-37, 2000.

P. Gennes, Liquid dynamics and inelastic scattering of neutrons, Physica, vol.25, issue.7-12, pp.825-839, 1959.
DOI : 10.1016/0031-8914(59)90006-0

B. Frick, . Combet, and . Van-eijck, New possibilities with inelastic fixed window scans and linear motor doppler drives on high resolution neutron backscattering spectrometers. Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, pp.7-13, 2012.
DOI : 10.1016/j.nima.2011.11.090

F. Nallet, D. Laversanne, and . Roux, Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases : interplay between form and structure factors, Journal de Physique II, vol.3, issue.4, pp.487-502, 1993.
DOI : 10.1051/jp2:1993146

URL : https://hal.archives-ouvertes.fr/jpa-00247849

L. Maldonado, J. Perrin, J. Dillet, and O. Lottin, Characterization of polymer electrolyte Nafion membranes: Influence of temperature, heat treatment and drying protocol on sorption and transport properties, Journal of Membrane Science, vol.389, pp.43-56, 2012.
DOI : 10.1016/j.memsci.2011.10.014

A. Kusoglu, S. Savagatrup, T. Kyle, . Clark, Z. Adam et al., Role of Mechanical Factors in Controlling the Structure???Function Relationship of PFSA Ionomers, Macromolecules, vol.45, issue.18, pp.457467-7476, 2012.
DOI : 10.1021/ma301419s

J. Jong-keun-park, . Li, M. Gilles, . Divoux, A. Louis et al., Oriented morphology and anisotropic transport in uniaxially stretched perfluorosulfonate ionomer membranes, Macromolecules, issue.14, pp.445701-5710, 2011.

A. Guillermo, G. Gebel, H. Mendil-jakani, and E. Pinton, NMR and Pulsed Field Gradient NMR Approach of Water Sorption Properties in Nafion at Low Temperature, The Journal of Physical Chemistry B, vol.113, issue.19, pp.6710-6717, 2009.
DOI : 10.1021/jp8110452

G. Ruocco and F. Sette, The history of the "fast sound" in liquid water, Condensed Matter Physics, vol.11, issue.1, pp.29-46, 2008.
DOI : 10.5488/CMP.11.1.29

F. Sacchetti, . Orecchini, . Cunsolo, C. Formisano, and . Petrillo, Coherent neutron scattering study of confined water in nafion, Physical Review B, vol.104, issue.2, p.24306, 2009.
DOI : 10.1103/PhysRevLett.71.2050

J. Brubach, . Mermet, . Filabozzi, P. Gerschel, and . Roy, Signatures of the hydrogen bonding in the infrared bands of water, The Journal of Chemical Physics, vol.7, issue.18, p.184509, 2005.
DOI : 10.1016/S0167-7322(02)00093-4

O. Glatter and O. Kratky, Small angle X-ray scattering, 1982.

J. Baruchel, Neutron and synchrotron radiation for condensed matter studies. springer-verlag [205] Peter Lindner. Neutron, x-ray and light scattering : introduction to an investigative tool for colloidal and polymeric systems : proceedings of the European Workshop on Neutron, X-Ray and Light Scattering as an Investigative Tool for Colloidal and Polymeric Systems, 1990.

W. Stephen, S. Lovesey, and . Lovesey, Theory of neutron scattering from condensed matter, 1984.