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Résumé

L'atomisation d'un jet circulaire d'eau typique des applications agricoles est présentée dans cette étude. Maîtriser la dispersion de l'eau à des fins d'irrigation ou de traitements phytosanitaires implique de réduire la consommation d'eau et la pollution de l'environnement. Un cas d'étude simplifié est construit : une buse ronde d n = 1.2 mm et d'une longueur L n = 50d n y est considérée. La vitesse d'injection est fixée à ūJ = 35 m/s et alignée avec la gravité, plaçant le jet liquide dans un régime d'atomisation turbulent. L'écoulement est statistiquement axisymétrique. L'approche est à la fois expérimentale et numérique. Un modèle multiphasique Eulérien de mélange décrit l'écoulement constitué de deux phases. Plusieurs modèles de turbulence U-RANS sont utilisés : k -ϵ et RSM. Une attention particulière est alors portée à la modélisation des effets de masse volumique variable issus de la formulation du fluide de mélange. Un solveur numérique spécifique est développé à l'aide du code CFD OpenFOAM. Une série de cas d'étude est construite pour tester l'influence de la modélisation de la turbulence et des fermetures de premier/second-ordre des flux massiques turbulents. Les techniques optiques (LDV et DTV) sont déployées pour recueillir des informations statistiques des phases liquide et gazeuse du spray. La campagne expérimentale est réalisée de x/d n = 0 jusqu'à 800. En ce qui concerne la LDV, des gouttelettes d'huile d'olive (∼ 1 µm) permettent d'analyser la phase gazeuse. Une distinction entre les gouttes de liquide et ces traceurs est obtenue par une configuration spécifique de la source laser et le paramétrage de la détection des bouffées Doppler (Filtre-BP et le SNR). Dans la zone dispersée, les mesures par DTV permettent d'estimer les vitesses et les tailles des gouttes. Une attention particulière est portée à l'estimation de la profondeur de champ (DOF) afin d'obtenir une corrélation taille-vitesse des gouttes moins biaisée. Les résultats numériques et expérimentaux concordent pour le champ de vitesse moyenne. Une forte dépendance au modèle de turbulence est trouvée. Cependant, le modèle RSM ne simule pas le comportement du tenseur de Reynolds. En effet, ni l'anisotropie trouvée expérimentalement (u

Introduction

Une étude sur l'atomisation des jets liquides, pour des applications agricoles, est abordée dans cette thèse. L'étude de ce type d'écoulements est importante non seulement pour réduire la consommation d'eau dans le cas de l'irrigation, mais aussi pour limiter la pollution de l'environnement liée à la pulvérisation de produits phytosanitaires. Dernièrement, de nombreux travaux ont été réalisés dans ce champ d'application. Ils s'appuient sur des modélisations numériques et/ou des mesures expérimentales. L'objectif est toujours de mieux connaître l'écoulement pour prédire son comportement dans des situations particulières (Al Heidary et al. [START_REF] Heidary | Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review[END_REF], Salcedo et al. [START_REF] Salcedo | Eulerian-Lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard[END_REF], De Luca [START_REF] Luca | Contribution à la modélisation de la pulvérisation d'un liquide phytosanitaire en vue de réduire les pollutions[END_REF], Belhadef et al. [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF], Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF][START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF]). L'approche numérique permet d'examiner de nombreux cas d'étude plus rapidement que les expériences. Par contre, la validité de cette approche est souvent bornée par des simplifications ou sous-modèles, et principalement par l'incapacité de décrire un cas d'étude avec toutes les complexités d'une application réelle. L'objectif de cette thèse est donc de concevoir un cas d'étude particulier, où une approche numérique et expérimentale puisse permettre d'analyser l'atomisation d'un jet liquide, similaire à celui d'une buse agricole. L'accent est mis sur l'écoulement moyenné et la turbulence, décrite par le tenseur de Reynolds, où une forte anisotropie est mise en évidence par Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF].

Méthodologie Cas d'étude

Un cas d'étude simplifié est construit pour générer un écoulement dans le régime d'atomisation, ce qui correspond aux cas d'irrigation ou de pulvérisation. Le même cas d'étude est utilisé aussi bien pour les simulations numériques que pour la campagne expérimentale. Des simplifications sont faites pour rendre plus compatibles les conditions aux limites entre les expériences et les cas simulés . Une buse ronde de diamètre d n = 1.2 mm est alors construite avec une longueur L n = 50d n pour assurer un écoulement développé à l'intérieur. La buse est alignée avec la gravité (vers le bas) ; l'écoulement est alors statistiquement axisymétrique. Le fluide de travail est de l'eau déminéralisée, injectée dans l'air au repos, où toutes les propriétés physiques sont considérées sous conditions normales (20°C, 1 atm). L'injecteur est construit en verre borosilicate, ce qui vii donne un accès optique à l'écoulement interne et impose une rugosité de paroi négligeable. La vitesse débitante d'injection est fixée à ūJ = 35 m/s. Avec les propriétés physiques et la géométrie de la buse, le nombre de Reynolds au point d'injection est Re L = ūJ d n ν L = 41 833, et le nombre de Weber W e G = ρ G ū2 J d n σ L-G = 24.3. Cette condition génère un écoulement turbulent à l'intérieur de la buse et un régime d'atomisation turbulent en sortie. La rupture/fragmentation du liquide est alors pilotée par la turbulence de l'écoulement, devant les effets aérodynamiques (Dumouchel [16]). L'écoulement à deux phases est étudié par modélisation numérique et par des techniques expérimentales. Une approche U-RANS (Unsteady Reynolds Averaged Navier-Stokes Equations) est choisie pour décrire l'écoulement de mélange, en moyenne de Favre. L'aire interfaciale du liquide-gaz est décrite par un modèle Eulérien . Pour comparer avec le modèle, des mesures par les méthodes optiques de LDV (Vélocimétrie Laser Doppler -Laser Doppler Velocimetry) et DTV (Vélocimétrie par Suivi des Gouttes -Droplet Tracking Velocimetry) par images d'ombroscopie sont effectuées. Une comparaison entre les deux approches est construite en regard des champs de vitesse moyens et turbulents.

Modélisation

Pour décrire le fluide à deux phases, une formulation Eulérienne mono-fluide de mélange est utilisée (Vallet et al. [60], Demoulin et al. [START_REF] Demoulin | A new model for turbulent flows with large density fluctuations: Application to liquid atomization[END_REF], Beau [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF], Lebas et al. [START_REF] Lebas | Numerical simulation of primary break-up and atomization: DNS and modelling study[END_REF], Duret et al. [START_REF] Duret | Improving primary atomization modeling through DNS of two-phase flows[END_REF]). Cette approche est valide sous deux conditions : le nombre de Reynolds de l'écoulement doit être suffisamment grand, donc la turbulence est prédominante ; et le nombre de Weber est grand aussi, ce qui permet de négliger les forces interfaciales devant le mélange turbulent du liquide-gaz. Ces hypothèses permettent d'avoir recours à une seule équation pour la conservation de la quantité de mouvement et la conservation de la masse. Cependant, une équation supplémentaire est nécessaire pour décrire le mélange turbulent des deux phases, considéré ici en moyennes de Favre :

∂ ρ ∂t + ∂ ρ ũi ∂x i = 0; (1) 
∂ ρ ũi ∂t + ∂ ρ ũi ũ j ∂x j = - ∂ p ∂x i + ρg i + ∂τ i j ∂x j - ∂ ρ u ′′ i u ′′ j ∂x j ; (2) 
∂ ρ Ỹ ∂t + ∂ ρ ũi Ỹ ∂x i = - ∂ ρ u ′′ i Y ′′ ∂x i . ( 3 
)
Le système d'équations est décrit en coordonnées cartésiennes (i = 1, 2, 3) où les variables sont en unités-SI. Dans les équations, ũi est la vitesse de mélange, p la pression moyenne, Ỹ la fraction massique du liquide et g i la force de gravité. La masse volumique de mélange s'exprime à partir de celles du liquide et du gaz ρ = Y ρ L + (1 -Y )ρ G , où la fraction volumique de liquide est Y = ρ Ỹ ρ L . Le tenseur des contraintes visqueuses moyennes est considéré très petit devant la turbulence, mais il est retenu et pris en compte à partir de la formulation de Stokes τi j = μ ( ∂ ũi qui ont besoin de modèles de fermeture. Dans cette formulation Eulérienne de l'atomisation de jets liquides, une équation supplémentaire est nécessaire pour décrire le transport de l'aire interfaciale liquide-gaz par unité de volume ρ Ω. Cette quantité permet d'avoir une estimation de la taille moyenne des gouttes en fonction du diamètre moyen de Sauter d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] .

∂x j + ∂ ũ j ∂x i -2 3 ∂ ũk ∂x k δ i j

Turbulence

Deux formulations RANS sont considérées : k -ϵ et R i j -ϵ. La première, k-Epsilon (k -ϵ), est une transposition directe du modèle original de Jones and Launder [START_REF] Jones | The prediction of laminarization with a two-equation model of turbulence[END_REF] sous une formulation à masse volumique variable (voir Chassaing et al. [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF]). Le tenseur de Reynolds s'exprime alors suivant :

-ρ u ′′ i u ′′ j + 2 3 ρ kδ i j = µ t ( ∂ ũi ∂x j + ∂ ũ j ∂x i - 2 3 
∂ ũk ∂x k δ i j ) ; (4) 
où µ t = C µ ρ k2 ε est la viscosité turbulente de mélange, décrite avec un modèle à deux équations où C µ = 0.09 est une constante de proportionnalité. Les deux équations sont : une pour l'énergie cinétique turbulente ( k) ; et l'autre pour le taux de dissipation de k (ε).

∂ ρ k ∂t + ∂ ρ ũi k ∂x i = ∂ ∂x j [ ( μ + µ t σ k ) ∂ k ∂x j ] -ρ u ′′ i u ′′ j ∂ ũi ∂x j -ρ ε + ρ ( 1 ρ g - 1 ρ l ) u ′′ i Y ′′ ∂ p ∂x i ; (5) 
∂ ρ ε ∂t + ∂ ρ ε ũi ∂x i = ∂ ∂x i [( μ + µ t σ ϵ ) ∂ε ∂x i ] -C ϵ1 ε k ρ u ′′ i u ′′ j ∂ ũi ∂x j -C ϵ2 ρ ε2 k +C ϵ3 ε k p ′ ∂u ′′ k ∂x k -C ϵ4 ε k ρ ( 1 ρ g - 1 ρ l ) u ′′ i Y ′′ ∂ p ∂x i -C ϵ5 ρ ε ∂ ũk ∂x k ; (6) 
où C ϵ1 = 1.60 (voir Dally et al. [START_REF] Dally | Flow and mixing fields of turbulent bluff-body jets and flames[END_REF]), C ϵ2 = 1.92, C ϵ3 = 0.0 (n'est pas modélisé), C ϵ4 = 1.0 et C ϵ5 = 1.0 (voir Chassaing et al. [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF]). Les nombres de Schmidt turbulents sont σ k = 1.0 et σ ϵ = 1.3.

De la même façon, le deuxième modèle avec une fermeture au second ordre correspond à une version à masse volumique variable du RSM (Reynolds Stress Model, R i j -ϵ), originalement proposée par Launder et al. [START_REF] Launder | Progress in the development of a Reynolds-stress turbulence closure[END_REF] :

∂ ρ u ′′ i u ′′ j ∂t + ∂ ρ ũl u ′′ i u ′′ j ∂x l - ∂ ∂x l ⎡ ⎣ C S ρ k ε u ′′ l u ′′ k ∂ u ′′ i u ′′ j ∂x k ⎤ ⎦ = ρP i j + ρΦ i j + Σ i j -εi j . ( 7 
)
Pour le terme diffusif, on impose C S = 0.22. Le terme de production est séparé en deux parties. Le premier reste celui d'origine :

P i j = - ( u ′′ i u ′′ k ∂ ũ j ∂x k + u ′′ j u ′′ k ∂ ũi ∂x k ) ; (8) 
ix Résumé de la thèse et le deuxième ne tient compte que des variations de masse volumique couplant le flux turbulent de masse avec le gradient pression :

Σ i j = ρ ( 1 ρ g - 1 ρ l ) [ u ′′ i Y ′′ ∂ p ∂x j + u ′′ j Y ′′ ∂ p ∂x i ] . (9) 
Un modèle linéaire pour la corrélation des fluctuations pression-déformation Φ i j est utilisé selon la formulation suivante (Rotta [50], Launder et al. [START_REF] Launder | Progress in the development of a Reynolds-stress turbulence closure[END_REF], Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF]) :

Φ i j = φ (sl ow) i j + φ (r api d ,P ) i j + φ (r api d ,Σ) i j = -C 1 ε k ( u ′′ i u ′′ j - 2 3 kδ i j ) -C 2 ( P i j - 1 3 P l l δ i j ) -C 3 1 ρ ( Σ i j - 1 3 Σ l l δ i j
) ; [START_REF] Daves | Morphology Descriptors of Irregularly Shaped Particles from Two-Dimensional Images[END_REF] où φ (sl ow) i j est le terme de retour à l'isotropie, avec C 1 = 1.8 ; et φ (r api d ) i j est l'isotropisation des termes de production, avec C 2 = 0.6 et C 3 = 0.75. Finalement, le taux de dissipation (ϵ) est modélisé par l'équation 6, mais deux variations sont étudiées pour modéliser le tenseur du taux de dissipation (ε i j ). La première option est de prendre les termes diagonaux, ce qui fait une équivalence parfaite avec le taux de dissipation de k. La deuxième option est de faire apparaître un facteur d'anisotropie dans la dissipation, comme dans la formulation proposée par Rotta [START_REF] Rotta | Statistische Theorie nichthomogener Turbulenz[END_REF]. Ces deux variations s'expriment suivant : εi j = 2 3 ρ εδ i j ; ou [START_REF] Luca | Contribution à la modélisation de la pulvérisation d'un liquide phytosanitaire en vue de réduire les pollutions[END_REF] εi j = ρ

u ′′ i u ′′ j k ε. ( 12 
)
Avec cette dernière considération, la modélisation RSM est alors appelée R i j -ϵ quand la première formulation de base est utilisée, et R i j -ϵ i j quand l'anisotropie est prise en compte dans εi j .

Flux turbulent de masse

Trois types de modélisation sont considérés pour décrire u ′′ i Y ′′ : deux variations d'une fermeture au premier ordre ; et une fermeture au second ordre où une équation de transport est à résoudre pour les flux.

Pour la fermeture au premier-ordre, les deux formulations suivantes sont retenues, appelées Y mod 0 et Y mod 1 respectivement (Belhadef et al. [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF]) :

-ρ u ′′ i Y ′′ = µ t σ Y ∂ Ỹ ∂x i ; ( 13 
) -ρ u ′′ i Y ′′ = C Y ρ k ε u ′′ i u ′′ j ∂ Ỹ ∂x j . ( 14 
)
Au lieu de la valeur standard pour le nombre de Schmidt turbulent σ Y ≈ 0.9, une valeur modifiée est proposée par Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF], en fonction d'un facteur d'anisotropie important dans x le tenseur de Reynolds, trouvé expérimentalement. En effet, si ∂ Ỹ ∂x 2 ≫ ∂ Ỹ ∂x 1 , et la composante principale dans la direction radiale est ũ′′ 2 2 ≈ 0.082 k, Y mod 1 devient Y mod 0 avec σ Y ≈ 5.5.

Le modèle de fermeture au second ordre, appelé Y mod 2 , est basé sur la formulation proposée par Beau [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF]. Une équation de transport est résolue pour u ′′ i Y ′′ . Le modèle inclut une description des forces de traînée en fonction de la taille des particules (gouttes) dans l'écoulement :

∂ ρ u ′′ i Y ′′ ∂t + ∂ ρ ũ j u ′′ i Y ′′ ∂x j = ∂ ∂x j ⎛ ⎝ µ t σ F ∂ u ′′ i Y ′′ ∂x j ⎞ ⎠ -C F 1 ρ u ′′ j Y ′′ ∂ ũi ∂x j -C F 2 ρ u ′′ i u ′′ j ∂ Ỹ ∂x j -C F 3 Y ′′ ∂ p ∂x i +C F 4 F Dr ag ,i ; (15) 
où C F 1 = 4.0, C F 2 = 0.1, C F 3 = 0.0, C F 4 = 4.0 et σ F = 0.9. La traînée est calculée à partir de la formulation de Schiller-Naumann. Le coefficient de traînée est fonction du nombre de Reynolds basé sur la vitesse de glissement vue par le gouttes :

F Dr ag ,i = - ρ Ỹ τ R ( ūi,L -ūi,G -ūi,D ) ; ( 16 
) τ R = ρ L d 2 L 18µ G ( 1 + 0.15Re 0.687 d ) -1 ; (17) 
Re d = ∥ ūi,L -ūi,G -ūi,D ∥d L ν G ; (18) 
ūi,D = 1

Ỹ (1 -Ỹ ) ν t σ Y ∂ Ỹ ∂x i ; ( 19 
)
où d l est une longueur caractéristique représentant le diamètre de la population de gouttes, prise comme le diamètre équivalent d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] du modèle ρ Ω. La vitesse de dérive ūi,D est calculée en utilisant le modèle au premier ordre Y mod 0 .

Transport de l'aire interfaciale

Pour le transport de l'aire interfaciale moyenne par unité de volume ρ Ω, la version décrite par Lebas et al. [START_REF] Lebas | Numerical simulation of primary break-up and atomization: DNS and modelling study[END_REF] est retenue. Des simplifications sont faites en négligeant les termes liés à la collision/coalescence et au changement de phase :

∂ ρ Ω ∂t + ∂ ρ Ω ũi ∂x i = ∂ ∂x i ( µ t σ Ω ∂ Ω ∂x i ) + α ρ Ωε k ( 1 - Ω Ω * ) ; (20) 
où Ω * est la valeur d'équilibre quand W e * = 1.0 (Duret et al. [START_REF] Duret | Improving primary atomization modeling through DNS of two-phase flows[END_REF]) :

Ω * = 4 0.5(ρ L + ρ G )Y (1 -Y ) k σ ρW e * . ( 21 
)
Les paramètres du modèle sont ceux par défaut, donc α = 1.0 et σ Ω = 1.0. De la même façon que dans le modèle original proposé par Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], Ω est lié au diamètre moyen de xi

Résumé de la thèse

Sauter d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] par la relation suivante :

d [32] = ρ L Y ρ Ω . ( 22 
)

Solveur numérique

Le système d'équations est codé dans un solveur qui utilise la bibliothèque des outils Open-FOAM. Une modification dans la boucle PISO (solveur de la pression) est ajoutée pour prendre en compte la divergence non nulle de la vitesse en moyenne de Favre. Cet ajout induit un couplage direct entre le modèle de flux turbulent de masse et la QDM.

Comme le cas est résolu de façon non-stationnaire (Modèle U-RANS), un temps de simulation de t = 0.3 s est choisi pour l'ensemble des calculs. Ce temps est suffisant pour avoir une solution établie dans tout le domaine considéré : de x/d n = -50 dans la buse (injection en amont), en passant par x/d n = 0 (sortie de la buse), jusqu'au x/d n = 1500 dans le domaine d'atomisation. Un test de maillage est effectué pour s'assurer que les résultats, pour l'ensemble des modèles considérés, sont indépendants de la taille des mailles. Un maillage hexaédrique est alors construit dont le nombre de mailles est de l'ordre de 6 × 10 6 . Les conditions aux limites et initiales sont dérivées du cas d'étude expérimentale (vitesse débitante ūJ = 35 m/s d'eau i.e.

Y J = 1) et sont imposées à x/d n = -50, avec une intensité turbulente de I t = 4%. Les cas de simulation sont calculés sur un cluster HPC au CINES sous l'allocation c20152b7363 et c20162b7363 du GENCI (Grand Équipement National de Calcul Intensif) en France.

Campagne expérimentale

Les techniques de mesure optiques LDV et DTV par ombroscopie sont utilisées pour caractériser l'atomisation du jet décrit précédemment (Figure 1b et 1c).

Le système LDV est fourni par Dantec Dynamics (LDV-2C). Une source laser ion-argon de 488 nm@1.8W et 514.5 nm@2.8W Coherent 306S permet de mesurer les deux composantes de vitesse. Une optique de 310 mm de distance au plan focal est utilisée comme émetteur, et de 400 mm pour le récepteur. Les deux sont écartées d'un angle de 55°, ce qui permet de maximiser le taux d'acquisition. L'analyseur de spectre des bouffés Doppler (BSA) est un modèle P60, également fourni par Dantec-Dynamics. Les mesures par LDV sont effectuées en deux campagnes différentes : une pour mesurer dans la phase liquide ; et l'autre pour mesurer dans la phase gazeuse, en utilisant des gouttelettes d'huile d'olive (d ∼ 1 -2 µm) comme traceurs (Figure 1b). Dans ce dernier cas, une configuration particulière du BSA permet de différencier la vitesse purement du gaz de celle des gouttes d'eau qui se trouvent dans le mélange (Mychkovsky et al. [43] [42]). Cette méthode est basée sur les travaux de Yon [START_REF] Yon | Jet Diesel Haute Pression en Champ Proche et Lointain : Etude par Imagerie[END_REF], Fdida et Blaisot [START_REF] Fdida | Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function[END_REF] et Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] pour l'estimation de tailles de gouttes dans un spray poli-disperse. Les vitesses sont calculées à partir de l'algorithme SoftAssign proposé par Gold et al. [START_REF] Gold | New algorithms for 2D and 3D point matching: pose estimation and correspondence[END_REF]. Cet algorithme a été adapté et implémenté lors de ces travaux en utilisant le Image Processing Toolbox de MATLAB, à l'aide d'une carte graphique nVidia CUDA. La Figure 1c 

Résultats et analyse

Les premiers résultats expérimentaux sont analysés pour définir les paramètres de base caractérisant le comportement des jets. Le premier est l'estimation de la longueur de rupture du coeur liquide Lc . À partir d'une analyse similaire à celle de Wu et Faeth [START_REF] Wu | Onset and end of drop formation along the surface of turbulent liquid jets in still gases[END_REF] et Hoyt et Taylor [START_REF] Hoyt | Waves on water jets[END_REF], la Figure 2 

∑ n k=1 u i ,{k∈Li q} T. de Reynolds Ri j ,L = 1 n ∑ n k=1 ( u i ,{k∈l i q} -ūi,L ) ( u j ,{k∈l i q} -ū j ,L ) LDV-Gaz Vitesse ūi,G = 1 n ∑ n k=1 u i ,{k∈G as} T. de Reynolds Ri j ,G = 1 n ∑ n k=1 ( u i ,{k∈g as} -ūi,G ) ( u j ,{k∈g as} -ū j ,G ) DTV Vitesse ūi = 1 n ∑ n k=1 u i ,k T. de Reynolds Ri j = 1 n ∑ n l =1 ( u i ,l -ūi ) ( u j ,l -ū j ) Vitesse pondérée ūi,d = ∑ n k=1 d [30],k u i ,k ∑ n k=1 d [30],k T. de Reynolds pondé- rée Ri j ,d = ∑ n l =1 d [30],l (ui,l -ūi )(uj,l -ū j ) ∑ n l =1 d [30],l Vitesse par classe ūi,(k) = 1 n ∑ n l =1 u i ,{l ∈(k)} T. de Reynolds par classe Ri j ,(k) = 1 n ∑ n l =1 ( u i ,{l ∈(k)} -ūi,(k) ) ( u j ,{l ∈(k)} -ū j ,(k) )
TABLE 2 -Partition de la population de gouttes par classe de diamètre.

Classe 1 : d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.10 mm Classe 2 : 0.10 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.25 mm Classe 3 : 0.25 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.50 mm Classe 4 : 0.50 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.75 mm Classe 5 : 0.75 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 1.00 mm Classe 6 :

1.00 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] Les campagnes de mesure par LDV du liquide-gaz sont comparées à celle de la DTV. La façon de construire les quantités moyennes a une influence sur les résultats dans la représentation de la phase liquide. Le volume de mesure de la LDV est petit par rapport à l'aire d'intégration des données de DTV, ce qui la rend plus précise dans l'espace . Pour avoir une précision supplémentaire dans la DTV, une décomposition en sous-images est effectuée, où les gouttes détectées sont reparties dans 5 divisions horizontales dans l'image. En plus, pour caractériser le comportement des gouttes en fonction de leur taille, le classement détaillé dans la Les résultats issus, des cas de simulation, des différentes façons de représenter les moyennes de la DTV et de la LDV, sont présentés à la Figure 4. La portée du jet est caractérisée par le taux de décroissance de la vitesse sur l'axe. Ruffin et al. [START_REF] Ruffin | Investigation of characteristic scales in variable density turbulent jets using a second-order model[END_REF] ont mis en évidence que ũx,0 ∂x , où la demi-largeur de la vitesse est définie telle que ūx,L (x, y = y 0.5u ) = ūx,L,0 /2. Ces valeurs (A et S) sont proches de celles estimées par Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] : A = 0.027 et S = 0.024. Si on considère que la vitesse moyenne calculée à partir de la LDV est la plus précise sur l'axe du jet, l'écart par classe de goutte observée en DTV, met en évidence que, selon la taille, les gouttes vont réagir de façon différente à la turbulence de l'écoulement. Le modèle R i j -ϵ i j semble être le plus proche des résultats expérimentaux. Cette observation est confortée par la figure 5, où les profils radiaux de vitesse axiale sont comparés. La vitesse axiale de mélange ũx doit être une combinaison de la vitesse de la phase liquide ūx,L et du gaz ūx,G , en fonction de la fraction massique Ỹ . Cette dernière quantité est également montrée à la figure 5, mais issue de la modélisation, comme point référentiel. ′′ , une possible source de cette anisotropie peut être la représentation de Σ i j (Éq. 9).

ũ j = 1 A ( d n x-x 0 ) ( ρ L ρ G ) b , avec b = 0.
u i : k -ǫ u i : R ij -ǫ u i : R ij -ǫ ij ūi,L : LDV ūi : DTV dū i : DTV ( 
u x (m/s), Y (-) k -ǫ : u x R ij -ǫ : u x R ij -ǫ ij : u x R ij -ǫ ij : Y (×30
R 12 / u 2 x,0 R ij : k -ǫ R ij : R ij -ǫ R ij : R ij -ǫ ij Rij,L : LDV Rij,G : LDV Rij : DTV Rij,d : DTV x/d n = 800
En effet, la vitesse de glissement moyenne est directement liée au flux turbulent de masse,

avec ūi,L -ūi,G = u ′′ i Y ′′ Ỹ (1-Ỹ )
, et pourtant, lié au terme de production Σ i j . Par contre, à cause du gradient de pression, c'est seulement le glissement radial qui intervient de manière prépondérante. Aussi, Σ i j n'est pas en cause. Une possible explication pourrait provenir du terme de production P i j . Cependant, ce terme est correctement estimé en fonction de la composante 〈R〉 12 et du champ de vitesse 〈u〉 1 . C'est pour cela que nous remettons en cause le rôle de la redistribution φ (r api d ,Σ) i j qui ne permet pas, dans sa formulation actuelle, de diminuer la composante 〈R〉 22 au profit de 〈R〉 11 . Cette dernière hypothèse n'a pas pu être explorée dans le cadre de ces travaux.

Conclusions

Les points suivants résument les travaux réalisés au cours de cette thèse et ouvrent sur leurs perspectives : 

τ i j Viscous constraint tensor [ kg • m -1 • s -2 ] ϵ Turbulent kinetic energy dissipation rate [ m 2 • s -3 ] ρ Density [ kg • m -3 ] ν Kinematic viscosity [ m 2 • s -1 ] µ Dynamic viscosity [ kg • m -1 • s -1 ] σ L-G Liquid-gas surface tension [ N • m -1 ] δ i j Kronecker tensor [-]
Latin alphabet

x, y, z Cartesian axial distance [m] The study subject of this thesis is the atomization of liquids in agricultural applications. Although this is not explicitly treated in this work, there are two main research topics accounted.

u i Velocity vector [ m • s -1 ] R i j Reynolds stresses tensor [ m 2 • s -2 ] F i Turbulent mass flux vector [ m • s -1 ] k Turbulent kinetic energy [ m 2 • s -2 ] g Gravity acceleration [ m • s -2 ] p
From one side, on the use of pesticides sprayers for crop protection: to minimise problems due to the transport of polluting agents from the treated crops to air, water and ground. And in another side, on the optimisation of water usage for irrigation: to improve the efficiency of sprinklers that simulate the natural irrigation made by rain, limiting loses and heterogeneity.

Both study subjects are not treated from any specific application point-of-view. Instead, a generic case is created to investigate the atomization and dispersion of a liquid jet, which may share some elements with the original subjects, like the type of fluid and operating regimes (geometry, flow-rate and pressure). These similarities and the justification for the construction of this study case are presented in Chapter 1, where a simplified water round nozzle is conceived. In particular, the importance of conducting experimental and numerical approaches at the same time.

A choice is made on the type of flow modelling and numerical simulations. This is addressed in Chapter 2, where the specific approach of a mixture RANS turbulence modelling is used.

The numerical method to solve the flow equations is also detailed, where a custom solver is built using the OpenFOAM CFD code. Although the experimental observations are introduced later, the construction of the numerical simulation cases is made in accordance with the experimental results.

The experimental campaign is presented in Chapter 3. Two main optical non-intrusive techniques are used to measure in both liquid and gas phases. The objective is to estimate the velocity field and droplet's sizes. LDV measurements are carried out first, where the main challenge is to capture separately the liquid from the gas acquisitions. To measure the droplet sizes and velocities, a custom DTV algorithm is constructed and applied to shadow images of droplets in the dispersed region of the jet. Using the data from the two experimental measurement techniques, the mean and fluctuating velocity fields are estimated, along with the droplet's sizes distribution.

The comparison between the results from the experimental and numerical approaches is presented in Chapter 4. Several parameters like the axial velocity decay-rate and the spreading rate of the jet are compared with numerical model cases. A focus is made on the reconstruction of the Reynolds stresses by class of droplet sizes and role of the mean liquid-gas slip-velocity as a source of anisotropy seen by the particular turbulence modelling.

A final set of conclusions are given in Chapter 4.2.4, along with some perspectives on some specific subjects that are not treated in this work, and that may be useful to improve the analysis for such atomization study.

General context Introduction

The general framework on which this study is conducted is presented in this chapter. From the general use of atomisers in agricultural application to the underlying physics within. Since this doctoral thesis is focused on experimental and numerical techniques, applied to the atomization of liquid jets, the focus is on the review of such applications.

The general context is placed on the importance of the understanding of the fine behaviour of technological applications such as sprinklers for irrigation and pesticides sprayers for crop protection. Upon this, it focuses on the great effort that current experimental and numerical simulation techniques are being developed and used to better understand the atomization of liquids in agricultural applications.

From the atomization point-of-view, a state of the art is presented from a larger application spectrum. For example, because of the sensible and more precision needed in its applications, the atomization of liquids is a large topic of research in combustion. The access to cuttingedge experimental techniques and numerical simulations makes a literature review on such research subjects an interesting starting point.

The scope of this chapter is then to investigate how these other applications are related to the technological ones in agricultural sprayers and what type of applied research could be used.

State of the art 1.Atomization in agriculture

A typical system used in irrigation and/or pesticides aspersion consists in a liquid-jet flow projected into the air. Upon this projection, the liquid flow splits into droplets which will ultimately reach the target soil or leaves. The process by which this fragmentation occurs is called atomization.

The behaviour of the flow depends on several operational and environmental conditions, such as: geometry, flow rate, turbulence, liquid rheology and wind velocity, all of which have an impact on the droplets' sizes, distribution and velocity. It is important then to understand the physical mechanisms by which the liquid atomization and droplets' drift occur to better conceive and/or improve the technological applications in agriculture.

Throughout many years, the research development in liquid atomization for sprayers in agriculture has been conducted from a phenomenological approach, based on a large set of experiments that lead to empirical relations for some specific application. For example, Al Heidary et al. [START_REF] Heidary | Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review[END_REF] review shows some of these experimental approaches and Salcedo et al. [START_REF] Salcedo | Eulerian-Lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard[END_REF] some numerical simulations in an attempt to give a description of the flow. From these types of studies, it can be concluded that to perform this kind of research methodology in every possible case can be very expensive, both in time and resources.

Compared to other domains, like fuel-injectors for combustion or bubbly-flow in boilers, the atomization problem in agricultural sprayers is a rather large problem. It can go from the smallest scales of turbulence (∼ 10 -6 m), passing through injector nozzle sizes of ∼ 10 -3 m, then to several meters of average range ( ∼ 10 0 m) and up to even kilo-meters (∼ 10 3 m) in the case of small droplets' drift into the atmosphere. It is extremely difficult then to study the whole problem; simplifications, sub-models, empirical relations, data integration, etc. have to be made to tackle the final problem.

From the point of view of irrigation and pesticides application, several detailed studies have been performed at IRSTEA (Institut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture). Currently, the irrigation part is overseen at the UMR G-Eau and the use of pesticides at the UMR ITAP, both at IRSTEA Montpellier Centre and in collaboration with IRPHE (Institut de Recherche sur les Phénomènes Hors Equilibre).

In irrigation, Kadem et al. [START_REF] Kadem | Experimental and numerical modeling study for irrigation gun water jet[END_REF] studies a large water cannon using a commercial CFD software (computational fluid dynamics), comparing the data with experiments using an optical probe (OP). There, a simplified two-phase mixture model, based on the original RANS (Reynolds Averaged Navier-Stokes) model proposed by Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], is used to solve numerically the turbulent flow. The OP is used to obtain the estimated droplet's sizes and velocities, along with the liquid volume fraction. Although many simplifications and assumptions are used, the numerical results showed a relatively good agreement with the experimental data, but always using a good set of model parameters.

In a following study, De Luca et al. [START_REF] De Luca | Pesticide atomization modeling for hollow-cone nozzle[END_REF] attempts to use the same numerical and experimental techniques, but this time applied to a hollow-cone swirl-chamber injector nozzle for pesticides. The complex flow generated by this type of injector produces another layer of complexity.

From a numerical simulation point-of-view, it generates a strongly three-dimensional (3D) flow, making the numerical solver more time-consuming and boundary conditions difficult to estimate. Experiments are also more challenging, since an increase of spatial resolution and precision is needed to obtain accurate results. Nevertheless, again, using an appropriate turbulence model and parameters, good agreement between numerical and experimental results is found.

To tackle the questions issued from the later study, Belhadef et al. [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF] attempts to perform a more detailed set of experimental data, along with a similar numerical approach implemented into a commercial CFD software (ANSYS Fluent). Digging deeper into the turbulence RANS model, and having a set of PDA (Phase Doppler Anemometer) experimental data to compare, it appears that a simple description of the turbulent mass transport can not always provide good results. Indeed, once again the numerical results are considered in good agreement to the experimental observations only when a specific set of model parameters are specified.

The latest study performed at IRSTEA on the same subject is carried out by Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF]. In a similar way, the objective is to apply the same RANS turbulence model, back to an irrigation sprinkler this time (Figure 1.1), along with experimental data using an OP and DTV (Droplet Tracking Velocimetry) by shadow images. The more detailed velocity field issued from the DTV data gives some insights on the turbulent multiphase flow of the problem. It is now possible to compare the Reynolds stresses from the DTV with the turbulent kinetic energy from the turbulent RANS model.

One interesting result is the anisotropy factor between the principal Reynolds stresses in this case, shown in Figure 1.2. Compared to a turbulent mono-phase round-jet, where the anisotropy factor takes a value close to R22 / R11 ≈ 0.6, the case studied by Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] shows a value of R22 / R11 ≈ 0.05 in the liquid phase, in the dispersed zone of the jet (x/d n > 500);

where R11 is the axial component of the Reynolds stresses and R22 the lateral (radial) one.

- This result raises questions about the k -ϵ RANS turbulent model used, and moreover, the assumptions of a boundary-layer like flow might neglect some key aspects about the source of this anisotropy. Indeed, as pointed out in a more recent study by El-Asrag and Braun [START_REF] El-Asrag | Effect of turbulence non-isotropy modeling on spray dynamics for an evaporating Acetone spray jet[END_REF], the use of a RSM (Reynolds Stress Model) over a k -ϵ model type could improve the prediction of the Reynolds stresses in zones where the anisotropy is large.

It is then one of the main motivation of this study to find the source of this anisotropy by investigating why and how it is generated in this type of flow. To achieve this goal, a similar study case is considered in the present work, where numerical and experimental approaches are used.

Liquid jet's fragmentation

The atomization of a liquid jet occurs when a liquid-phase flow is injected into a gas-phase medium. This two-phase flow is considered non-miscible, meaning that the two phases do not form a mixture fluid and there are forces that keep a distinguishable interface between them. By the action of external forces on this interface, the liquid-phase breaks into packets or droplets, causing the actual atomization into the gas phase.

The forces present in this process of atomization vary depending on the fluid's properties and operating conditions. If there is only one liquid phase and one gas phase present, no phase-change occurs and there are no compressibility effects, the relevant physical properties are summarised in Table 1.1. Table 1.1 -Physical properties of a phase-incompressible two-phase flow in SI-Units.

ρ L Liquid density (kg /m 3 ) ρ G Gas density (kg /m 3 ) ν L Liquid kinematic viscosity (m 2 /s) ν G Gas kinematic viscosity (m 2 /s) σ L-G Liquid-Gas surface tension (N /m)
For the operating conditions, in the case of a liquid injected through a nozzle, only the average bulk velocities of both phases are considered. These are detailed in Table 1.2. Table 1.2 -Operating conditions of a phase-incompressible two-phase flow. ūL,J Liquid phase average bulk velocity (m/s). ūG,J Gas phase average bulk velocity (m/s).

Where ūG,J is the injection velocity of a coaxial gas flow. Having these basic physical properties and operating conditions, three main dimensionless quantities can be constructed as a function of the forces that intervene in the atomization process:

• Reynolds number: Ratio of inertial forces to viscous forces within a fluid subject movement. Defined at the exit of a nozzle of diameter d n :

Re = ( ūL -ūG )d n ν L . ( 1.1) 
• Weber number: Ratio of inertial forces to surface tension. Can be defined for the liquid:

W e L = ρ L ( ūL -ūG ) 2 d n σ L-G , (1.2) 
and for the gas:

W e G = ρ G ( ūL -ūG ) 2 d n σ L-G . ( 1.3) 
• Ohnesorge number: Relate the viscous forces to inertial and surface tension:

Oh = ρ L ν L √ ρ L σ L-G d n . (1.4)
In an extensive review, Dumouchel [START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF] presents many experimental works on the primary atomization of liquids. Based on these dimensionless numbers, several classifications can be made as a function of: fluids properties, geometry, laminar or turbulent regimes, gas assisted or injected into still gases. In the case of liquid jets for agricultural applications, there is a high probability to find turbulent liquid round jets. Therefore, the analysis of the atomization regime is centred on this type of liquid fragmentation.

Having a fixed geometry and working fluid, the average bulk velocity ūL is the only parameter that could set the working regime of a round jet. As detailed by Dumouchel [START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF], a first classification can be made based on the observation of the liquid core breakup length L c as a function of ūL . This is shown in Then, as a function of the Weber and Ohnesorge numbers, several authors described a detailed separation between the regions as detailed in the Table 1.3. As described by Dumouchel [START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF], the characteristics of large jets (d n > 1 mm) is the presence of peeling droplets from the nozzle exit, this is called the primary breakup.

Primary breakup is important because it determines the initial properties of the dispersed
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liquid phase and has an effect on the behaviour of the later secondary breakup mechanism. Wu et al. [START_REF] Wu | Primary breakup in gas/liquid mixing layers for turbulent liquids[END_REF] showed that spray properties are strongly determined by the turbulence conditions at the nozzle exit and differ from the results with laminar nozzle conditions. Moreover, the length of the liquid jet core is also affected by the turbulence inside the injector.

As an example, the main case studied by Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF] [58] corresponds to a turbulent high-Weber liquid round jet, whose conditions are summarised on Table 1.4. Lc

d n = 8.51W e 0.32 L , (1.5) 
corresponding to a turbulent breakup regime, yielding an estimated average breakup length of Lc /d n = 228. In this regime, breakup is due to the turbulent fluctuations, already present in the liquid core, leaving the aerodynamic effects to a secondary role.

To study a similar case, whatever the type of round nozzle used, it should operate under the following considerations:

1. It should be a large circular jet, where d n > 1 mm. In a turbulent regime, there should be a distinguishable boundary layer inside the nozzle, this generates the peeling droplets at the surface right after the injection.

2. The combination of physical properties of the fluids, along with the geometrical and operating conditions, should place the atomization regime into the second wind-induced regime.

This motivates the construction of a specific study case that is carried out throughout this whole study. Both numerical simulations and experimental techniques are applied to this study subject, these are detailed later in Chapter 2 and Chapter 3 respectively.

As reported by Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF], the main difficulty for obtaining accurate experimental results using a DTV and LDV set-up is the spatial precision of the measurement points. When working with a large liquid jet, the resulting liquid range could be up to several meters, making an experimental campaign difficult to accomplish.

In an effort to try to reproduce a similar case under a more controlled experimental environment, a downsized case is considered. In particular, to investigate the Reynolds stresses anisotropy as shown before, the downsized study case should be placed in the same atomization regime. Considering this, the following parameters for this study case are selected:

1. Injector: A circular nozzle of d n = 1.2 mm is used.
To avoid any extra difficulty on the estimation of the boundary layer inside the nozzle, the roughness of the interior walls is considered negligible. With this, a borosilicate glass is chosen for the material. In the same way as Wu et al. [START_REF] Wu | Primary breakup in gas/liquid mixing layers for turbulent liquids[END_REF], Sallam et al. [START_REF] Sallam | Liquid breakup at the surface of turbulent round liquid jets in still gases[END_REF] and others mentioned in Dumouchel [START_REF] Dumouchel | On the experimental investigation on primary atomization of liquid streams[END_REF] review on round jets, the nozzle length is chosen in order to obtain a fully developed turbulent pipe flow, in this case L n /d n = 50.

Fluids properties:

A liquid water jet is injected into still air. From this, Table 1.5 shows the physical properties taken at normal conditions (297 K, 1 atm). 

Gravity effects:

To avoid any asymmetry, the injection velocity is aligned with gravity, pointing downwards.

Study case

All these fluids properties and operating conditions ensure that the turbulence inside the nozzle should be fully developed upon any upstream boundary conditions. Then, the nozzle diameter is sufficiently large to have a direct influence on the boundary layer thickness inside the nozzle on the primary atomization. And finally, the experiment should operate inside the second wind-induced atomization regime.

With the intent to emulate a real case, and although this type of nozzle doest not exist in any agricultural application, a simplified case like this should provide a more controlled environment for any experimental and/or numerical simulation.

Numerical modelling Introduction

This chapter is dedicated to the numerical modelling of a generic multiphase flow encountered in a typical liquid jet atomization problem. An Eulerian approach is considered along with a mixture-fluid variable-density formulation for the liquid/gas mixture. The chapter is divided in four main sections: Multiphase flow modelling, Turbulence modelling, Numerical solver and study cases definition.

In Section 2.1 a detailed description of the mixture multiphase formulation is presented. The transformation from the instantaneous field equations, and their corresponding variables, to the average mixture problem is achieved using the Favre-average operator. This operator transforms the set of equations into a variable-density U-RANS (Unsteady Reynolds-averaged Navier-Stokes) problem.

Based on this formulation, the description of the two main RANS turbulence models used in this study are presented in Section 2.2: kε and Ri jε. Then, several variations for the turbulent mass flux modelling are presented, along with an Eulerian description of the interface between the two phases.

The numerical method to solve the U-RANS system of equations is then presented in Section 2.3. Details of the implementation of a custom solver using the OpenFOAM C++ library are provided. The main focus is on the strong coupling between the turbulent mass flux and the pressure-based solver in the momentum equation, which differs from a solver for incompressible constant density fluids.

Finally, several study cases are developed using a combination of the presented models in this chapter. Starting from the geometric 3D construction of the cases, mesh generation, convergence analysis and specific definition of every case analysed later in Chapter 4 are detailed. These cases are constructed based on an incremental analysis on the complexity of the turbulence and other transport models.

Chapter 2. Numerical modelling

Multiphase flow modelling 2.1.1 Eulerian formulation

For the Eulerian formulation, it is assumed that the fluid is a continuum and the forces applied to an infinitesimal volume of fluid can be described by field equations. From the starting point of this case, one main assumption is taken into account: the liquid atomization problem occurs at high Reynolds and Weber numbers. This means that the forces at the interface between phases are small compared to inertial forces. This approach yields five main equations for the instantaneous problem in 3D-Cartesian coordinates (x i with i = 1, 2, 3):

1. Mass conservation (1 equation):

∂ρ ∂t + ∂ρu i ∂x i = 0; (2.1)
2. Momentum conservation (3 equations, 1 for each component):

∂ρu i ∂t + ∂ρu i u j ∂x j = - ∂p ∂x i + ρg i + ∂τ i j ∂x j ; (2.2) 
3. Phase transport (1 equation):

∂ρY ∂t + ∂ρu i Y ∂x i = 0; (2.3)
where every variable is an instantaneous field depending on the absolute position and time (x i , t ), which in SI units are:

• u i : Velocity field, (m/s).

• p: Pressure field, (P a).

• g i : Gravity field, (m/s 2 ).

• τ i j : Viscous constraint, (kg /m • s).

• Y : Liquid phase indicator, takes the value of 1 when in the liquid and 0 otherwise, (-).

• ρ: Fluid density, takes the value of ρ L (liquid density) when in the liquid and ρ G (gas density) otherwise, (kg /m 3 ).

The fluid velocity u i is then composed of discontinuous liquid u i ,L and gas u i ,G velocity fields at a given position and time. Therefore it is the liquid phase indicator Y which sets the current state:

u i = Y u i ,L + (1 -Y )u i ,G . (2.4) 
The laminar viscous constraint τ i j is modelled using a simple Stokes hypothesis for Newtonian fluids:

τ i j = µ ( ∂u i ∂x j + ∂u j ∂x i - 2 3 ∂u k ∂x k δ i j ) , (2.5) 
where the dynamic viscosity µ is defined as a discontinuous quantity too, so it takes the value of µ l in the liquid and otherwise µ g for the gas as a function of Y :

µ = Y µ L + (1 -Y )µ G . (2.6)
It is important to notice that in this mixture Eulerian formulation for the mixture-fluid there is no special treatment at the liquid/gas interface, as there are no separate momentum equations for each phase and the fluid is considered as a miscible binary-mixture. This approach is also called Quasi-Multiphase Eulerian (QME) in more recent developments [START_REF] Lebas | Numerical simulation of primary break-up and atomization: DNS and modelling study[END_REF] [3].

Multiphase average model

Because of the size and the different scales of motion in this liquid atomization problem, a step further in the modelling involves the averaging of equations (2.1), (2.2) and (2.3); following the same procedure as in a single-phase variable density fluid [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF].

Under this approach a mass-weighted average is used: the Favre Average. It is understood that the averaging process is an ensemble average over n-identical repetitions, where for any instantaneous variable h the operator and the subsequent mean h and fluctuating h ′′ parts are:

h = ρh ρ ; h = h + h ′′ ; (2.7)
where ρ is the mixture density. For a relatively low injection velocity and constant temperature, ρ is only a function of the mixture of ρ L and ρ G :

ρ = Y ρ L + (1 -Y )ρ G . (2.8)
The mean volume fraction Y can be expressed also as a function of the mean mass fraction Ỹ , making the formulation closer to a variable density scalar mass concentration equivalence:

Ỹ = ρ L Y ρ .
(2.9)

A graphical representation of this process is shown in Figure 2.1, where the Favre-average is applied to the liquid phase indicator Y and density ρ, transforming them into Ỹ and ρ respectively. The same procedure can be made to the other variables and the equations (2.1), (2.2) and (2.3), yielding the desired mixture RANS formulation, which is presented next.

Mixture RANS equations

The mixture RANS model equations are obtained by applying the Favre-average operator to the previous set of equations and by expressing the variables as a fluctuation centred on the ensemble average. Using this procedure, the set of equations to solve are very similar to the previous ones:

1. Mass conservation (1 equation):

∂ ρ ∂t + ∂ ρ ũi ∂x i = 0; (2.10)
2. Momentum conservation (3 equations, 1 for each component):

∂ ρ ũi ∂t + ∂ ρ ũi ũ j ∂x j = - ∂ p ∂x i + ρg i + ∂τ i j ∂x j - ∂ ρ u ′′ i u ′′ j ∂x j ; (2.11)
3. Turbulent mass transport (1 equation):

∂ ρ Ỹ ∂t + ∂ ρ ũi Ỹ ∂x i = - ∂ ρ u ′′ i Y ′′ ∂x i ; (2.12)
where u Both are new unknowns in the equation and closure models are needed to solve them. The Favre-averaged laminar viscous constraint τi j is deduced from Eq. (2.5):

τi j = μ ( ∂ ũi ∂x j + ∂ ũ j ∂x i - 2 3 ∂ ũk ∂x k δ i j ) . (2.13)
However, the mixture dynamic viscosity represented by μ is defined using a linear contribution between the liquid dynamic viscosity µ l and gas dynamic viscosity µ g :

μ = Y µ L + (1 -Y )µ G . (2.14)
Many forms of this contribution can be found in the literature. For example, Sanjose [START_REF] Sanjose | Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide[END_REF] used Wilke [START_REF] Wilke | A Viscosity Equation for Gas Mixtures[END_REF] formulation to describe the mixture viscosity of evaporating fuels, this applies however only to a mixture of gas species. Despite the inaccuracy of Eq. 2.14, given the high Reynolds number as a starting hypothesis for this atomization problem, this term is expected to be orders of magnitude smaller than the Reynolds stresses contribution, making this possible error negligible.

Two extra expressions arise from this type of averaging. The first one is that the turbulent mass flux can be expressed from the liquid-gas slip-velocity u i ,S , starting from Eq. (2.4):

u i ,S = u i ,L -u i ,G = u ′′ i Y ′′ Ỹ (1 -Ỹ ) ; (2.15)
where u i ,L and u i ,G are the Reynolds-averaged liquid and gas velocities. The second one is that the fluctuating part of the Favre-averaged velocity is not centred when a Reynolds average is applied; u ′′ i ̸ = 0. Indeed, developing this from Eq. (2.7), it can also be expressed in terms of

u ′′ i Y ′′ : u ′′ i = - ( 1 ρ G - 1 ρ L ) ρ u ′′ i Y ′′ . (2.16)
Along with momentum and mass conservation equations, and using the same hypothesis for high Reynolds and Weber numbers flows as Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], the interface of the liquid/gas mixture is modelled using a transport equation for the quantity Σ, the mean surface area of the liquid/gas interface per unit volume.

All variables to solve and quantities to model can be summarised in the following list:

• ρ: Mixture average density (as a function of Y or Ỹ ), to solve.

• ũi : Mixture average velocity field, to solve.

• p: Average pressure field, to solve.

• τi j : Mixture average viscous constraint, to be modelled.

• u ′′ i u ′′ j : Mixture Reynolds stress tensor, to be modelled.

• u ′′ i Y ′′ : Turbulent mass flux, to be modelled.

• Σ: Mean surface area of the liquid/gas interface per unit volume, to be modelled. Also expressed as Σ = ρ Ω.

The purpose of the next sections of this chapter is to address the solving of this system of equations.

Turbulence modelling

The focus of this section is to present all the models implemented and tested into the custom numerical solver, for both the Reynolds stresses u 

Reynolds stresses

Many options exist for the closure of this quantity. However, only two main options are considered for this study:

1. First order closure: Two-equation variable density kε model (K-Epsilon).

2. Second order closure: Seven-equation variable density Ri jε model (RSM, Reynolds Stress Model).

In the first choice, the Reynolds stresses are coupled with the mean flow using an eddy-viscosity concept. The form of this eddy-viscosity is then constructed using two transport equations, both dependent on flow characteristics. The other option is to prescribe transport equations for each component of the Reynolds stresses and other quantities, also dependent of the flow characteristics.

First order closure: K-Epsilon

Using an eddy-viscosity model under variable density formulation, a direct transposition from the Reynolds-averaged Boussinesq hypothesis case is used. Although many variations and non-linear versions exist for this closure (some can be found fully detailed in Chassaing et al. [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF]), only the simplest linear version is kept.

-ρ u ′′ i u ′′ j + 2 3 ρ kδ i j = µ t ( ∂ ũi ∂x j + ∂ ũ j ∂x i - 2 3 
∂ ũk ∂x k δ i j ) .
(2.17)

Compared to the expression for constant-density incompressible flows, this variable density version reads that the deviatoric part of

u ′′ i u ′′ j is proportional to the deviatoric part of the rate-of-strain tensor Si j = 1 2 ( ∂ ũi ∂x j + ∂ ũ j ∂x i )
, via the eddy-viscosity µ t , which takes the following form using a kε formulation:

µ t = C µ ρ k2 ε ; (2.18)
where k is the turbulent kinetic energy, ε the turbulent kinetic energy dissipation rate and C µ a proportional constant. Henceforth, this first order closure centres its efforts into finding proper transport equations for those quantities.

The exact transport equation for the Favre-averaged turbulent kinetic energy is derived from the momentum equation Eq. (2.7). The instantaneous values are expressed from the average and fluctuating parts, then the equation is multiplied by u ′′ i and averaged, finally the corresponding summation is applied making k = 1 2 u ′′ i u ′′ i . Different versions arises for this procedure depending on the regrouped parts and their physical explanation [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF]. The version kept is the closest to the later modelled version:

∂ ρ k ∂t + ∂ ρ k ũi ∂x i    (a) = - ∂ ∂x j [ 1 2 ρ u ′′ i u ′′ i u ′′ j + p ′ u ′′ j -τ i j u ′′ i ]    (b) -ρ u ′′ i u ′′ j ∂ ũi ∂x j    (c) -τ i j ∂u ′′ i ∂x j    (d ) -u ′′ i ∂ p ∂x i    (e) + p ′ ∂u ′′ i ∂x i    (f ) ; (2.19)
where all the terms in the first row are ones commonly found in constant-density incompressible flows, leaving the second row exclusively to Favre-averaged variable-density flows:

• (a) Material transport in conservative form.

• (b) Diffusion, split in three parts. The first two are the turbulent diffusion, including pressure effects. The last one correspond to the molecular diffusion. In jet flows, these two contributions are modelled together using a single gradient diffusion hypothesis:

∂ ∂x j ( 1 2 ρ u ′′ i u ′′ i u ′′ j + p ′ u ′′ j + τ i j u ′′ i ) = - ∂ ∂x j [ ( μ + µ t σ k ) ∂ k ∂x j ] ; with σ k = 1.0. (2.20)
• (c) Turbulent kinetic energy production (P k ) by mean shear, with u ′′ i u ′′ j from Eq. (2.17). • (d ) Turbulent kinetic energy dissipation rate (E k ), modelled as ρε.

• (e) Energy transfer by coupling the turbulent mass flux with the mean pressure gradient, also known as the mean pressure work (Σ k ).

• ( f )
Pressure-dilatation correlation. It appears when the velocity fluctuation is nonsolenoidal. However, it is not included in the modelled equation.

Consequently, the modelled Favre-averaged variable density k-equation, based on the original formulation proposed by Jones and Launder [START_REF] Jones | The prediction of laminarization with a two-equation model of turbulence[END_REF], is:

∂ ρ k ∂t + ∂ ρ ũi k ∂x i = ∂ ∂x j [ ( μ + µ t σ k ) ∂ k ∂x j ] -ρ u ′′ i u ′′ j ∂ ũi ∂x j -ρε -u ′′ i ∂ p ∂x i . (2.21)
For the turbulent kinetic energy dissipation rate ε, a different approach is taken. First, only the solenoidal part is taken into account, so ε ∼ ε. And second, the modelled equation is not derived from the exact transport equation for τ i j ∂u ′′ i ∂x j . Instead, an approach is taken in the same way as Jones and Launder [START_REF] Jones | The prediction of laminarization with a two-equation model of turbulence[END_REF] by making the modelled equation homogeneous to the k-equation counterpart.

Although many options for this modelled equation exist in the literature (an extensive review can be found in Chassaing et al. [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF] and Schiestel [START_REF] Schiestel | Méthodes de modélisation et de simulation des écoulements turbulents[END_REF] for variable density flows), the version kept is the simplest one and analog to Eq. (2.21):

∂ ρ ε ∂t + ∂ ρ ε ũi ∂x i = ∂ ∂x i [( μ + µ t σ ϵ ) ∂ε ∂x i ] -C ϵ1 ε k ρ u ′′ i u ′′ j ∂ ũi ∂x j -C ϵ2 ρ ε2 k +C ϵ3 ε k p ′ ∂u ′′ k ∂x k -C ϵ4 ε k u ′′ i ∂ p ∂x i -C ϵ5 ρ ε ∂ ũk ∂x k ; (2.22)
where in the RHS there are in the first row: Diffusion, production, destruction; and in the second row: the counterparts from Eq. ( 2 

Second order closure: RSM

The same strategy as in the previous kε model is used to define the equations modelled for the Reynolds stresses. The six equations of the symmetric tensor are extracted from the exact transport equation for u ′′ i u ′′ j , whereas the dissipation counterpart is purely modelled.

The base formulation from Launder, Reece, and Rodi [START_REF] Launder | Progress in the development of a Reynolds-stress turbulence closure[END_REF] is used. As our model aims to simulate also the flow inside the nozzle, wall-reflexion terms were also included (see Gibson and Launder [START_REF] Gibson | Ground effects on pressure fluctuations in the atmospheric boundary layer[END_REF]). In a similar way to Eq. (2.21), variable density effects were added to the modelled equation (see Chassaing et al. [8,).

The exact transport equation for u ′′ i u ′′ j , using a specific rearrangement of terms is the following:

∂ ρ u ′′ i u ′′ j ∂t + ∂ ρ ũl u ′′ i u ′′ j ∂x l = ρP i j - ∂T l i j ∂x l + ρΦ i j + Σ i j -εi j . (2.23)
In the same way as in the k-equation, some terms need modelled relations to get a complete closed form equation. A basic linear approach is taken for the construction of these terms, following the original RSM model from Launder, Reece, and Rodi [START_REF] Launder | Progress in the development of a Reynolds-stress turbulence closure[END_REF]:

• P i j , turbulent production. Already in its final form:

P i j = - ( u ′′ i u ′′ k ∂ ũ j ∂x k + u ′′ j u ′′ k ∂ ũi ∂x k ) ; (2.24) 
• Σ i j , Mass flux coupling:

Σ i j = u ′′ i ( ∂ τjl ∂x l - ∂ p ∂x j ) + u ′′ j ( ∂ τil ∂x l - ∂ p ∂x i ) ; (2.25)
where only viscous effects are neglected for the modelled part:

Σ i j = -u ′′ i ∂ p ∂x j -u ′′ j ∂ p ∂x i ; (2.26)
• Φ i j , deviatoric pressure-strain correlation:

Φ i j = 1 ρ ⎡ ⎣ p ′ ( ∂u ′′ i ∂x j + ∂u ′′ j ∂x i ) ⎤ ⎦ ; (2.27)
modelled as two contributions, the slow return-to-isotropy Rotta model and the rapid isotropization of production [START_REF] Pope | Turbulent Flows[END_REF]:

Φ i j = φ (sl ow) i j + φ (r api d ) i j ; (2.28)
where:

φ (sl ow) i j = -C 1 ε k ( u ′′ i u ′′ j - 2 3 kδ i j ) ; (2.29) 
and:

φ (r api d ) i j = -C 2 ( P i j - 1 3 P l l δ i j ) -C 3 1 ρ ( Σ i j - 1 3 Σ l l δ i j ) ; (2.30)
where for φ (sl ow) i j

, C 1 = 1.8, for φ (r api d ) i j
, C 2 = 0.6 and C 3 = 0.75, from Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF].

• T l i j , transport:

T l i j = ρ u ′′ i u ′′ j u ′′ l + p ′ u ′ i δ j l + p ′ u ′ j δ i l - ( τ ′ j l u ′′ i + τ ′ i l u ′′ j ) ; (2.31)
modelled as a whole turbulent diffusion term using the same Reynolds-stress tensor to Chapter 2. Numerical modelling define an anisotropic diffusion coefficient [START_REF] Pope | Turbulent Flows[END_REF] and the viscous part is neglected:

T l i j = -C s ρ k ε u ′′ l u ′′ k ∂ u ′′ i u ′′ j ∂x k ; (2.32)
where C s = 0.22.

• εi j , turbulent dissipation rate tensor:

εi j = ⎛ ⎝ τ ′ j l ∂u ′′ i ∂x l + τ ′ i l ∂u ′′ j ∂x l ⎞ ⎠ . (2.33)
The modelled version reads:

εi j = ρ εi j ≡ ρ ( ēi j + 2 3 εδ i j ) ; (2.34)
where ε = εii /2 is the turbulent kinetic energy dissipation rate and ēi j is the deviatoric part of εi j . Two option are considered. The first one is to neglect the deviatoric part making εi j to act only in the principal components of u

′′ i u ′′ j : εi j = 2 3 ρ εδ i j . (2.35)
The second option is to include some anisotropy as proposed by Rotta [START_REF] Rotta | Statistische Theorie nichthomogener Turbulenz[END_REF], but making the dissipation tensor active in all the components:

εi j = ρ u ′′ i u ′′ j k ε (2.36)
This basic model is closer to DNS data in a near-wall boundary layer, but still considered inaccurate [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF]. However, this version is kept and no further analysis is made related to this type of modelling.

For the kinetic energy dissipation rate ε, the same transport equation from the kε model is taken. The only main difference is that instead of evaluating the production term using the Boussinesq relation Eq. (2.17), the explicit Reynolds stresses from Eq. (2.23) are used.

Turbulent mass-flux

Along with the Reynolds stresses, the other main quantity to model is the turbulent mass flux u ′′ i Y ′′ from Eq. (2.12). Given the strong density difference between the liquid/gas, any effect on the mixture density ρ variation makes the turbulent mass flux strongly coupled with the whole system of equations in the RANS formulation, and its effect is further transferred into higher moments via u To analyse the effect on the behaviour of several case scenarios, three u ′′ i Y ′′ closure models are considered:

′′ i = - ( 1 ρ G -1 ρ L ) ρ u ′′ i Y ′′ ,
• First order model (Mod-0): Basic expression following the gradient of Ỹ and coupled with turbulence via ν t , based on Fick's law.

• First order model (Mod-1): Basic expression following the gradient of Ỹ but coupled with the actual Reynolds stresses to include some anisotropy in the behaviour of the gradient.

• Second order model (Mod-2): A specific transport equation is solved for every component of the vector u ′′ i Y ′′ , where source terms are coupled with the main flow, turbulence and an explicit relation to drag forces induced by droplets.

First order model

This approach is similar to a passive scalar transport problem, where if there are no strong main flow gradients, the concentration of a certain quantity is diffused following a gradient Fick's law on itself. As the flow becomes turbulent, the diffusivity coefficient varies, following the scales of motion in the fluid, but the model is nearly the same.

Based on the original work proposed by Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], a simplified expression for the turbulent mass flux was derived by Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF] by neglecting the pressure gradient effects and by using a boundary layer approximation on the averaged flow. This approach ensures that the fluxes are deduced by applying several simplifications on a second-order model and are not issued as a departure guess:

-ρ u ′′ i Y ′′ = µ t σ Y ∂ Ỹ ∂x i ; (2.37)
where σ Y is the turbulent Schmidt number for the diffusivity that takes a value close to 1.0. However, as experimentally found [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] and assuming a strong anisotropy in a liquid round jet so that ũ′′ To account dynamically for the possible strong anisotropy in the Reynolds stresses, the complete approximation of the later expression is the following:

-ρ u ′′ i Y ′′ = C Y ρ k ε u ′′ i u ′′ j ∂ Ỹ ∂x j . (2.38)
Here, instead of the turbulent viscosity µ t , a decomposition using the Reynolds stresses is used. In the case analysed by Belhadef et al. [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF], C Y ≈ 0.9, but if the modelled anisotropy is weak and closer to a mono-phase round-jet, the desired reduction in the lateral diffusivity component (i=2) might not be achieved simply by this type of modelling. Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF] proposes a forced way to set this constant in the same way as in Eq. (2.37) model for σ Y , where assuming an anisotropy factor ũ′′

2 2 / ũ′′ 1 2 = a R such as C Y ≈ a R C µ /σ Y .
Other approaches have been used by other authors to account for this diffusivity variation. Demoulin et al. [START_REF] Demoulin | A new model for turbulent flows with large density fluctuations: Application to liquid atomization[END_REF] tried to make σ Y a function of ρ, to account for the large density variations. Going even further, Desantes et al. [START_REF] Desantes | Coupled/decoupled spray simulation comparison of the ECN spray a condition with the Σ-Y Eulerian atomization model[END_REF] proposed a Realizable version of the variable Schmidt number, by bounding the fluxes with the turbulence fluctuations scales

√ ũ′′ i 2 .
Nevertheless, these approaches only change the diffusivity and do not include other effects from the main flow, which is the purpose of the second order modelling presented next.

Second order model

Although Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF] proposed a second order closure for the turbulent mass flux, this approach does not provide a direct coupling with the liquid/gas interface surface per unit volume ρ Ω, where the destruction term is only proportional to the turbulence decay rate

τ -1 t = ε/ k.
To tackle this deficiency, a slightly different approach is developed by Beau [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF] and later another similar approach by Andreini et al. [START_REF] Andreini | Development of a turbulent liquid flux model for Eulerian-Eulerian multiphase flow simulations[END_REF], who constructed a general framework for the coupling of ρ Ω and Ỹ equations using RANS turbulence models.

The transport equation chosen is the version proposed by Beau [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF]. The sink term in this case is a destruction term by drag forces, induced by the slip velocity between the gas phase and the droplets:

∂ ρ u ′′ i Y ′′ ∂t + ∂ ρ ũ j u ′′ i Y ′′ ∂x j = ∂ ∂x j ⎛ ⎝ µ t σ F ∂ u ′′ i Y ′′ ∂x j ⎞ ⎠ -C F 1 ρ u ′′ j Y ′′ ∂ ũi ∂x j -C F 2 ρ u ′′ i u ′′ j ∂ Ỹ ∂x j -C F 3 Y ′′ ∂ p ∂x i +C F 4 F Dr ag ,i ; (2.39) 
where C F 1 , C F 2 , C F 3 and C F 4 are constants, specified as 1.0, 1.0, 0.0 and 4.0 respectively by Beau [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF], with σ F = 0.9 as the turbulent Schmidt number in the diffusion term. The drag force is calculated using a Schiller-Naumann relation, as a function of the drag coefficient with the Reynolds number, and the velocity seen by the droplets:

F Dr ag ,i = -18ρ G ν G Y d 2 l ( ūi,L -ūi,G -ūi,D ) ( 1 + 0.15Re 0.687 d ) ; (2.40)
where d l is a characteristic length of a droplet population, where for this case the Sauter mean diameter d 32 , calculated from the ρ Ω solution, is used. The Reynolds number associated with this diameter is:

Re d = ∥ ūi,L -ūi,G -ūi,D ∥d l ν G ; (2.41)
where ūi,D stands for the drift velocity. It is assumed to be the limit at which the velocity follows a first order model, so using Eq. (2.37) it becomes:

ūi,D = 1 Ỹ (1 -Ỹ ) ν t σ Y ∂ Ỹ ∂x i ; (2.42)
where σ Y is specified the same as in the first order model.

With these elements, the droplets relaxation time is defined as:

τ R = ρ L d 2 l 18µ G ( 1 + 0.15Re 0.687 d ) -1 . (2.43)
Since the main objective is to construct a modelled case capable to adapt to a large spectrum of flow characteristics and geometries, it is expected that this formulation for the turbulent mass flux u ′′ i Y ′′ , coupled with a RSM turbulence model, would give better results than a kε using a simple gradient law for the mass fluxes. However, as better discussed in the next section, the strong coupling of the whole system of equations is particularly challenging to the numerical solver and not all of the models described here could be used in a straightforward solution.

Eulerian interface

The last quantity to include in the model is the liquid/gas interface surface per unit volume, ρ Ω or Σ (m 2 /m 3 ). Ω is constructed so that Ω = Σ/ ρ, this is done simply to ensure that the transport equation can be written in a conservative form.

The model was first proposed by Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF] and it has been subjected to several modifications in the later years (Beau [4]; Lebas et al. [START_REF] Lebas | Numerical simulation of primary break-up and atomization: DNS and modelling study[END_REF]; Duret et al. [START_REF] Duret | Improving primary atomization modeling through DNS of two-phase flows[END_REF]). It is important to notice that this type of formulation requires two main assumptions: a high Reynolds number, providing a strong enough turbulent mixture; and a high Weber number, so the surface tension between the liquid/gas does not play a significant role at the equilibrium to the described atomization problem.

Based on the latest advances in this formulation, the latest version proposed by Lebas et al. [START_REF] Lebas | Numerical simulation of primary break-up and atomization: DNS and modelling study[END_REF] is kept, with some considerations taken by Duret et al. [START_REF] Duret | Improving primary atomization modeling through DNS of two-phase flows[END_REF] based on DNS calculations used to describe the behaviour of some parameters in the average model. The equation for Ω can be constructed in a conservative form, neglecting the evaporation part:

∂ ρ Ω ∂t + ∂ ρ Ω ũi ∂x i = ∂ ∂x i ( µ t σ Ω ∂ Ω ∂x i ) + Φ (S i ni t + S t ur b ) + (1 -Φ) (S col l + S 2nd BU ) ; (2.44)
where:

• Φ is a logistic function ([0 1]) that changes the importance of the source terms from the dense part (Y > 0.5) to the diluted part (Y < 0.1).

• S i ni t is an initialisation term important only in the dense part close to the nozzle.

• S t ur b is the production/destruction due to turbulence in the dense part of the spray.

• S col l is the collision/coalescence source term for the dilute part of the spray.

• S 2nd BU is the secondary break-up source term (exclusively) for the dilute part of the spray.

Because of the lack of information on the construction of such parameters applied to this study case, only the S t ur b term is included inside the model. Then a simplified version of the equation reads:

∂ ρ Ω ∂t + ∂ ρ Ω ũi ∂x i = ∂ ∂x i ( µ t σ Ω ∂ Ω ∂x i ) + α ρ Ω τ t ( 1 - Ω Ω * ) ; (2.45) 
where τ t = k/ε and Ω * is the equilibrium value at the smallest scales using an equilibrium Weber number W e * = 1.0:

Ω * = 4 0.5(ρ L + ρ G )Y (1 -Y ) k σ L-G ρW e * . ( 2 

.46)

The parameters of the model are set by default, meaning α = 1.0 and σ Ω = 1.0.

In the same way that in the original work made by Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], Ω is linked to the Sauter-Mean-Diameter d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] by the following relation:

d [32] = ρ L Y ρ Ω . (2.47)

Numerical model

The problem described in the previous section forms a non-linear system of differential equations. One method to solve them is to cut each equation into small pieces and find a numerical solution that approaches the real one under some assumptions. Providing a compatible set of initial and boundary conditions, a finite volume method (FVM) is used to solve the system obtaining an approximated solution for every variable.

Many available CFD tools offer the capability to find a numerical solution to this type of problem, ranging from laminar flows to different turbulent and multiphase-turbulent models.

Commonly used commercial solutions offer the possibility to include custom expression to modelled equations, using user-defined-functions (UDF). However, this approach is always limited because modifications to the solver core are usually not allowed, making difficult to solve the actual system of equations and simplifications have to be made to overcome this situation [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF] [38] [START_REF] Kumar | Numerical simulation of evaporating diesel sprays using Ω -Y model[END_REF].

In this problem, the system of equations to solve is formed mainly by Eq. (2.10), Eq. (2.11) and Eq. (2.12). Given the heavy coupling between all the variables, and the intention to solve it as-is, a custom solver is required to properly model each interaction under a known and controlled numerical environment.

All the efforts are then redirected to create a custom solver using an open source CFD tool. For this task, the OpenFOAM® code is chosen. It can handle 3D arbitrary meshes for FVM, common solvers for the momentum equation are already coded, it includes many dicretization schemes and mainly because it is supported by a large community working in the same field. The description of this custom solver is the main subject of this section.

OpenFOAM solver

The OpenFOAM® C ++ code was developed by Weller et al. [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF] as a free, open-source software for CFD calculations. Currently it is owned and maintained by the OpenFOAM Foundation1 and distributed exclusively under the General Public Licence (GPL).

Using the equivalent of a module from a commercial CFD software, OpenFOAM® is separated into specific solvers, each one focused on different physical problems but always sharing a common library of tools, all following an object-oriented programming in C + +.

Instead of building a study-case using a specific module, the approach here is a little different. Using a solver from a near-like physics as a baseline, modifications are introduced to it to meet the specific requirements for the desired physical problem, creating a compiled custom solver. Applied to this particular problem, one of the main goals of this custom solver is to find a solution for the coupled system of Eq. (2.10) and Eq. (2.11). To see how this is done in OpenFOAM, an example on how equations are written and treated in the C + + code stream is shown using a laminar case for a single-phase fluid: Related to Eq. (2.48), highlighted in blue are the differential operators, in grey there are two options, depending if one would like to solve for a variable inside the operator (fvm) or simply to express the result explicitly (fvc). In this case, the variable to solve is the velocity field U , so ddt, div and laplacian require implicit discretization schemes for U .

∂ρU ∂t + ∇ • φU -∇ • µ∇U = -∇p . ( 2 

Custom solver strategy

More specific to the multiphase problem treated here, a general strategy to solve the system of equations could be the following: Contrary to the previous single-phase example, the pressure field is generally an unknown, making the item (2) of the list hard to solve.

Many specific methods exist to solve this system of equations, one of them is the PISO algorithm (Pressure Implicit with Splitting of Operator) developed by Issa [START_REF] Issa | Solution of the implicitly discretised fluid flow equations by operator-splitting[END_REF], which is generally well suited for unsteady problems using the smallest amount of computational resources. However, the convergence of this method under heavy compressible or variable density flows may not be always assured, for those cases, the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm (Patankar and Spalding [START_REF] Patankar | A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[END_REF]) can be used, which uses under-relaxation factors for both pressure and velocity to stabilise the solution. To account for this, an hybrid mixing of both algorithms is implemented into OpenFOAM and is detailed next.

The PIMPLE algorithm implemented in OpenFOAM has been developed by Jasak [START_REF] Jasak | Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[END_REF] to solve the transient momentum equation in conservative form. A brief description on how the algorithm works is presented here only to describe one of the main modifications to account for the variable-density mixture multiphase formulation of this problem.

This study-case is considered to be an incompressible problem. A relatively low injection velocity and pressure-drop inside the injector do not produce compressibility effects, nor cavitation or phase changes. If both phases stay the same, it is considered to be a phaseincompressible flow.

A classic PISO solver for solving the transient Navier-Stokes equations for incompressible flows uses a velocity divergence-free condition to impose mass conservation on each time-step. However, as the velocity field is actually a mixture velocity ũ, in variable density this condition does not meet and ∇ • ũ ̸ = 0. Actually, developing Eq. (2.10) gives:

∇ • ũ = - 1 ρ D ρ D t . (2.49)
The PISO algorithm is modified to take into account this effect, where the construction of the Poisson equation for the pressure solver (detailed next) is derived from the mass conservation in its complete form, yielding an additional explicit source term in the RHS.

The final correction steps on this modified PISO algorithm work the same as in the original form, where convergence is checked by mass conservation and pressure solution residuals.

Custom PISO loop

A fully discretized version of momentum equation Eq. (2.11), after all numerical schemes have been chosen, can be expressed in the following form:

a P U (n+1) P = H ( U (n) ) -∇p (n+1) (2.50)
where U (n+1) P and p (n+1) are the velocity and pressure fields to solve for, advancing from the solution in t = t (n) to t = t (n) + ∆t = t (n+1) . The discretization method yields a matrix-arranged variables in every cell centre P . The method separates every part of the equation that multiplies the diagonal elements of the matrix as a P and everything else but the pressure in H ( U (n) ) . These operators are both function of the velocity field too, but in the linearization process they are left behind using the last know solution at t = t (n) . For example, if the Reynolds stresses u ′′ i u ′′ j are included explicitly into the momentum equation, then they are inside the H

( U (n) )
operator, as a function of the previous U (n) P solution.

Using this decomposition, it is easy to find the solution for the next time-step t = t n+1 , simply dividing by a P :

U (n+1) P = H ( U (n) ) a P - ∇p (n+1) a P . ( 2 

.51)

If the pressure p (n) is used, then the solution is an approximation that would require a correction, called the momentum predictor. However, an implicit solution for t = t (n+1) is still preferred, making the pressure p (n+1) still an unknown.

To get both at the same time, the velocity solution U (n+1) P is then injected into the mass conservation equation to isolate the pressure. To do so, first the cell centred values are interpolated to cell faces f , creating a flux:

( U (n+1) P ) f = ( H ( U (n) ) a P ) f - ( ∇p (n+1) a P ) f . (2.52)
Then, the divergence operator (∇•) is applied to Eq. (2.52), forming the mass conservation Eq.

(2.10). A typical incompressible solver would use ∇ •U (n+1) f = 0 as a short form, which is shown to be not true in variable density flows. Indeed, expanding Eq. (2.10):

∂ ũi ∂x i = - 1 ρ D ρ D t ≈ - 1 ρ ∂ ρ ∂ Ỹ D Ỹ D t ≡ ( 1 ρ G - 1 ρ L ) ∂ ∂x i ( ρ u ′′ i Y ′′ ) = - ∂u ′′ i ∂x i . (2.53)
This imposes the extra constraint to solve the equation, as the divergence of the velocity field must match the RHS of this expression:

∇ • ( U (n+1) P ) f = - 1 ρ D ρ D t ; (2.54) 
which yields a Poisson equation for the pressure p (n+1) :

∇ • ( H (U ) a P ) f = ∇ • ( ∇p a p ) f + 1 ρ Dρ D t . ( 2 

.55)

The solution of this equation is very time-consuming, taking nearly 80% of the computational time. Moreover, when using an arbitrary non-orthogonal mesh, several correction steps must be applied because the pressure gradient is expressed normal to cell faces. This procedure is done by solving Eq. (2.55) and then re-calculating the corrected gradient each time.

Then, the solution for U (n+1) , with p (n+1) known this time, is updated by going back to Eq. (2.51):

U (n+1) P = U * P - ∇p (n+1) a P ; (2.56)
where U * P is simply

H (U (n) ) a P
, updated using the last known solution for U (n) . Finally, if the residual of p (n+1) is small enough not to produce further changes to the calculated U (n+1) , the solution has converged. This original approach should be considered as a simplification of a real compressible solver. For instance, in the compressible case studied by Payri et al. [START_REF] Payri | Verification of a new CFD compressible segregated and multi-phase solver with different flux updates-equations sequences[END_REF], the pressure equation is 

Solver global loop

The PISO loop explained before can be repeated several times to achieve convergence inside the same time-step. However, this provides only a converged solution for ũi and p fields, leaving all other variables behind. To tackle this, the PISO loop is placed inside a global SIMPLE loop as shown in Figure 2.3, where everything is solved for each time-step ∆t . ′′ and Ỹ : [START_REF] Heidary | Influence of spray characteristics on potential spray drift of field crop sprayers: A literature review[END_REF]. If an extra variable is needed, the last known converged solution is used (usually from the previous time-step) as an initial guess.

2. PISO Loop, solve ũi and p: (2), ( 3) and (4). Where ϵ oc is the pressure residual for the orthogonal correction and ϵ P for the whole PISO loop. This is important because H and a P are updated using the new velocity field each time.

3. Solve turbulence model u ′′ i u ′′ j : [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF]. The turbulence model is solved using converged velocity and pressure fields. Turbulence equations include non-negligible explicit source terms in the RHS, to preserve diagonal-dominance in the iterative solver, turbulence equations are under-relaxed by a factor of α = 0.5.

4. SIMPLE Loop: Go back to (1) using the calculated solution until the residual ϵ S for the pressure field is small enough. No under-relaxation for the pressure or velocity fields is needed this time.

5. Solve other variables (Σ): [START_REF] Boutier | Vélocimétrie laser pour la mécanique des fluides[END_REF]. Then go to the next time-step.

As detailed in the analysis on Chapter 4, for a typical study case using 10 -8 as a converged residual, the SIMPLE loop takes 2-3 steps for each time-step, then the PISO loop takes 2 steps for each SIMPLE loop and the OC (Orthogonal Correction) takes 2 for each PISO step. It is then easy to see why the pressure equation takes most of the time inside the global solver. It is also this part of the solver which reaches convergence last.

Numerical schemes

Numerical schemes are used to have a linearised and discretized version of every equation in the system. Momentum conservation Eq. (2.11) is shown to take the form of Eq. (2.50) assuming that a numerical scheme is used. Then, using simple algebraic matrix operations, a solution can be found. It is then important to describe how this process is done and why some selected schemes are chosen to run the case analysis.

The Partial Differential Equation (PDE) system is expressed as derivative operators over variables both in space and time. In OpenFOAM, every transport equation for a scalar φ can be expressed as follows:

∂ρφ ∂t    (a) + ∇ • ( ρU φ )    (b) -∇ • ( ρΓ φ ∇φ )    (c) = S φ ( φ )    (d ) 
;

(2.57)

where the terms under brackets are:

• (a): Time derivative.

• (b): Convection.

• (c): Laplacian/Diffusion.

• (d): Linearised source.

The Finite Volume Method (FVM) is based on the integral form of this expression, where Eq. (2.57) is also satisfied:

∫ t +∆t t [ ∂ ∂t ∫ V P ρφdV + ∫ V P ∇ • ( ρU φ ) dV - ∫ V P ∇ • ( ρΓ φ ∇φ ) dV ] d t = ∫ t +∆t t [∫ V P S φ ( φ ) dV ] d t .
(2.58)

Every term needs a discretization form, first in space and then in time. For this, Figure 2.4 shows the geometric parameters assuming an arbitrary mesh decomposition of a domain in small volumes, where the interaction of two adjacent volumes of centroids P and N is represented. V P and V N are the volumes of two adjacent elements, d is the distance between the centroids, f is the name designation of the face separating the volumes and S f the surface area vector normal to this face, pointing outwards if the face is considered to be owned by P as in this case. Each term in Eq. (2.58) is then transformed using the interactions from the geometry presented in Figure 2.4. The details on how this is achieved can be found in any book of numerical methods for fluid dynamics (eg. [START_REF] Ferziger | Computational Methods for Fluid Dynamics[END_REF]) or in the OpenFOAM documentation [26] [25].

As an example, the Laplacian/Diffusion term in Eq. (2.57) is expressed as follows:

∫ V ∇ • ( Γ φ ∇φ ) dV = ∫ S d S • ( Γ φ ∇φ ) = ∑ f Γ φ f S f • ( ∇φ ) f . (2.59) 
Then, if the mesh is orthogonal and using the parameters defined in Figure 2.4, an implicit scheme would read:

S f • ( ∇φ ) f = ∥S f ∥ φ N -φ P ∥d ∥ , ( 2.60) 
where an algebraic solution for the value of φ N can be obtained.

It is important to notice that in this case the diffusivity parameter is linearised (it can also be a function of φ) and interpolated to cell faces. Then, to have an accurate and robust discretization scheme, an adequate interpolation method must be used and several passages to solve the equation might be needed to re-calculate these linearised terms.

First, to get all the expressions in an integral form, in volume and in time, the methods detailed in Table 2.1 are used.

Table 2.1 -Integration and interpolation methods used in the OpenFOAM solver.

Type Method Temporal Integration

Euler

Implicit/Explicit depending on the discretization scheme.

Volume Integration

Gauss

Gauss's theorem of the volume integral for gradients.

Interpolation Linear Used to pass from cell centres to cell faces.

Then, for each type of element in this case study the corresponding spatial discretization scheme is detailed in When it is a pure source term.

Mesh and convergence

Mesh construction

The mesh is constructed using the blockMesh utility bundled with OpenFOAM. It creates an unstructured mesh of hexahedral-type elements transformed from rectangular volumes. A schematic view of the principal geometric parameters for the mesh construction along with the boundary conditions is shown in Figure 2.5. The velocity and the pressure work together to switch the boundary condition at the atmosphere limit depending on the flow's direction. As a function of this effect, in case of entrainment, all other boundary conditions also change from zeroGradient to an Inlet value that must be specified. For example, when the flow is entering at the atmospheric condition, the velocity is calculated using the total pressure and as the surrounding air does not have water in it, the inflow boundary condition for the liquid volume fraction should be Y a = 0.

If these boundary conditions are not well specified, following the behaviour of the near cells inside the main volume, an undesired solution might be found. As the Poisson equation for the pressure is elliptic, the pressure solution will strongly depend on these Dirichlet-Neumann boundary conditions. As a general rule for this case, the atmosphere boundary condition is placed far from the solution, so that no large gradients of any quantity are significant and the entrainment produced by the pressure drop happens at a very low velocity.

The volume size for the mesh might vary however depending on the study case. For instance, if a low diffusion case is tested, a narrow domain is constructed. The resulting mesh is then refined using a first approximated solution, where ∥∇Y ∥ (volume fraction gradient magnitude) and S 2 (strain tensor magnitude) are calculated to locate the zone which requires refinement.
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The resulting 3D mesh for a real case can have up to 6 000 000 elements, a view of this is shown in Figure 2.6.

Wall limit

Outer core The nozzle itself is constructed by 5 square-prismatic blocks: an inner core, surrounded by 4 outer-core extensions to form a perfect circle inside the nozzle. These two volumes are then projected into the main mesh volume outside the nozzle, adding an extra layer of 1.0d n . The whole mesh is then translated using an expansion ratio of 0.15 m/m, so that the same proportions shown in Figure 2.5 (right) are respected up to 1500d n . These final volume makes an atmospheric boundary far enough from the solution, keeping the mesh refinement close to the zone with the strongest gradients.

Despite that the geometry is consistent and that it can be translated into perfect prismatic rectangles, the mesh is considered to be always arbitrary because of the later local and wall refinements. This is needed to better represent the wall-functions inside the nozzle and the strong liquid mass fraction gradients.

Numerical study cases

The numerical study cases are constructed from combinations of the RANS turbulence models presented before, turbulent mass transport models and Eulerian interface. The order on which they are presented follow an increase of complexity logic, in an attempt to capture effects that otherwise could not be reproduced using basic representations.

As the complexity of the models increases so do the mesh details. It is necessary to perform a mesh test on every complexity level to ensure mesh-independent results. This is a delicate subject, because of the unsteadiness of the solver, averaged quantities may not always respond to a finer mesh in the same way.

Cases definitions

The numerical cases definitions are all based on the same study case defined in Section 1.2. Following Figure 2.5 definitions:

• The nozzle diameter is d n = 1.2 mm, of length L n = 50d n and pointing downwards, aligned with gravity.

• Only water is injected through the nozzle, meaning that ũ0 = ūL,J = 35 m/s and Ỹ0 = Y 0 = 1. The air is considered still.

• Turbulence boundary conditions are specified as if there is an infinite similar pipe flow upstream, with a turbulence intensity I t = 4%. This yields a k0 = 3.3 m 2 /s 2 and an ε0 = C µ k3/2 0 /l t = 11700 m 2 /s 3 , with l t = 0.038d n . The Reynolds stresses are considered isotropic, so Ri j ,0 = 2/3 k0 δ i j m 2 /s 2 .

• The simulation time is from t 0 = 0 s to t f = 0.3 s. This ensures a full coverage of the domain, even in the external regions of the jet. The time-step of the simulation is variable, calculated from the worst case as a function of the local Courant number C o.

To avoid any divergence of the simulation, C o = 0.8 as a maximum value is always used.

With this in consideration, all study cases are detailed next. While the title gives a short description, all the detailed information is given within.

Case 111: k-Epsilon, Y-Mod0

• Turbulence model: k -ϵ, Eq. 2.17, 2.18, 2.21 and 2.22. The parameters are:

C µ = 0.09, σ k = 1.0, σ ϵ = 1.3, C ϵ1 = 1.44, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.

Case 112: k-Epsilon, Y-Mod0

• Turbulence model: k -ϵ, Eq. 2.17, 2.18, 2.21 and 2.22. The parameters are:

C µ = 0.09, σ k = 1.0, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.
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• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: C µ = 0.09,

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.44, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.

Case 212: RSM, Y-Mod0

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: C µ = 0.09,

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.

Case 222: RSM, Y-Mod1

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: C µ = 0.09,

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 1 , Eq. 

C F b = 0.1, C F 1 = 4.0, C F 2 = 0.1, C F 3 = 0.0, C F 4 = 4.0.

Case 311: RSM, Y-Mod0

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: C µ = 0.09,

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.44, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.

Case 312: RSM, Y-Mod0

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: C µ = 0.09,

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 0 , Eq. 2.37. The only parameter is σ Y = 5.5.

Case 322: RSM, Y-Mod1

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: C µ = 0.09, 

C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0.
• Turbulent mass-flux model: Y mod 2 , Eq. 2.39. The parameters are: σ Y = 5.5, σ F = 1.0,

C F b = 0.1, C F 1 = 4.0, C F 2 = 0.1, C F 3 = 0.0, C F 4 = 4.0.

HPC Cluster

The mesh size, and the subsequent maximum time-step allowed for the simulations, create a heavy time consuming study case. Using a normal workstation computer, it would take months or even years to complete a whole simulation case if a fine grid is used.

For this reason, a parallel calculation is needed to increase the overall speed. It works by cutting the mesh into smaller pieces, solving each one of them in a cluster array of computers. This is a common practice in every CFD software and some key considerations on the resources used by this process are detailed here.

All cases run in a High Performance Computer (HPC) cluster at CINES (Centre Informatique National de l'Enseignement Supérieur), under the allocation c20152b7363 and c20162b7363 made by GENCI (Grand Équipement National de Calcul Intensif) in France.

The If the scaling is perfect, every time that the number of nodes is doubled, the time to accomplish the given task should be divided by 2 (theoretical speed-up). This is true up to a limit, where the quantity of information shared under the MPI forms a bottleneck, relative to the velocity of the process itself inside the processor. This effect is shown in Figure 2.7, where the real speed-up is compared to the theoretical as a function of the number of parallel nodes. It is clear that for this case the optimum speed-up is reached at 192 processors. Beyond this point, the parallel calculation is not optimal, although 384 could be used to gain time in sacrifice of performance. The maximal optimum tested point (192 cores) corresponds to ∼ 30000 elements per processor.

Speed-up

Mesh convergence test

The final test is performed in the study cases themselves, where every family of cases is tested under a mesh sensitivity analysis. This is done in a wide variety of cases because it is difficult to predict how the solution behaves when the model becomes more complex. The models selected cases are: Case 112, Case 212 and Case 312.

From the numerical discretization schemes described before, an upwind (first order) scheme is chosen to start every simulation case. With the solution at t = 0.01 s, a change to a second order scheme is made and the simulation continues to the end. The mesh test consists in testing the solution at t f = 0.3 s with several meshes, hoping that further refinements do not change the overall solution. The mesh sizes are detailed in Table 2.5.

Table 2.5 -Mesh configurations for the mesh solution convergence test.

Designation Number of elements

Mesh 00 97770 Mesh 01 766440 Mesh 02 6068720

The non-convergence of a solution comes from two main sources: numerical diffusion from convective schemes and poor representation of gradients due to interpolation. These effects are easily seen when radial profiles are presented in zones with strong velocity gradients and, because of the strong density ratio between ρ L and ρ G , in zones with strong mixture density gradients.

To visualise this effect, a comparison of the axial velocity against radial distance for the three meshes and the three cases is presented in Figure 2.8. This result shows clearly that the possible numerical diffusion does not comes from the convective scheme in the momentum equation, making the second order scheme adopted both enough accurate and stable.

Nevertheless, there are several other quantities affected by numerical diffusion. The shear component of the Reynolds stresses is one of them ( R12 ), because it involves the calculation of gradients in multiple directions and from other quantities as well. The results at the same distance from the nozzle are shown in Figure 2.9. Here, a more significant result on the mesh convergence can be seen. For the coarser mesh, the quantity is not well represented, whereas little difference can be found for the later two cases. This result might give a possible candidate for running all the numerical simulations.

But, the most problematic equation that drives the numerical diffusion in this model is the solution to Eq. (2.12). The density ratio between ρ L and ρ G imposes strong gradients to represent both the convection and the interpolation schemes in this equation. These effects appear clearly in Figure 2.10, where the solution of the volume fraction Y is shown. The candidate from before is discarded then. As shown in all the family of cases, this quantity only begins to converge with the finest mesh resolution of 6 068 720 elements. An even more refined case solution could be attempted, but given the marginal improvements in all the other quantities, and the huge computation resources that this attempt may require, this is discarded.

Experimental campaign Introduction

An experimental campaign is carried out on the defined study case, this provides a baseline to which the numerical model can compare. Although many experimental techniques with application in fluid dynamics exist, not all of them are suited for obtaining reliable results on multiphase flows. Therefore, before setting up the choice for this work, a brief review on the applicable techniques to liquid jets/sprays is presented.

From the definition of the study case, a simplified test scenario is constructed. The geometry and operating conditions are chosen to remove some constraints and to provide a well controlled environment for optical measurement techniques. The test subject is a round d n = 1.2 mm nozzle, constructed in PMMA/Glass to provide visual access to the internal flow, where the actual injector is a circular glass tube of length L n = 50d n , so the flow turbulence at the exit of the nozzle is completely developed. Gravity effects on the liquid dispersion are attenuated by placing the injector in an up-down direction, making the flow statistically axisymmetric. Operating conditions are chosen to place the liquid jet in a turbulent atomization regime.

The objective is then to obtain the velocity field in this two-phase flow. LDV (Laser Doppler Velocimetry) and DTV (Droplet Tracking Velocimetry) optical techniques are finally chosen, they are used to gather statistical information from both the liquid and the gas phases. The use of these optical techniques require some specific set-ups on both systems, which are carefully detailed and discussed in this chapter. The output of these measurements are the velocity field, the Reynolds stresses field and the droplets size distributions, everything on a carefully selected measurement spacial grid, well suited for the later comparison with the numerical results.

LDV measurements are carried out first along the liquid core vertical axis, the results give a rough estimation of the liquid axial-velocity component, from x/d n = 0 to x/d n = 800. On the vicinity, radial gas profiles are obtained using small (∼ 1 -2 µm) olive-oil tracers to capture the gas phase. From the Doppler-burst threshold between the liquid and oil particles, a distinction between both phases is achieved. In the dispersed zone, DTV measurements are carried out to determine several radial profiles between x/d n = 400 to x/d n = 800, special attention to the depth-of-field (DOF) estimation is taken in order to obtain a less biased droplet's size-velocity correlation.

Measurement techniques

In multiphase flows, the characterisation reduces to find the velocity field, along with some identification for each phase present. This technique is called velocimetry, where some general aspects are discussed here to justify its use in this study case. An extensive review of every technique can be found in Boutier [START_REF] Boutier | Vélocimétrie laser pour la mécanique des fluides[END_REF], principally on the advantages and disadvantages as a function of the application, and the related biases and how to treat them.

To capture the velocities, laser velocimetry is often used as a non-intrusive method, meaning that the local fluid is not modified at the scales of measurement. It is based on light diffusion over tracer particles in the fluid, the challenge in multiphase flow is to properly identify and discriminate the tracers from the dispersed phases inside the mixture, adding an extra difficulty in comparison with single-phase applications (See Modarres et al. [START_REF] Modarres | Two-component LDA measurement in a twophase turbulent jet[END_REF] work on the application of LDV in two-phase flows).

Although LDV can provide accurately enough velocity measurements, these are time-series fixed in one position where all spacial structure information is lost. To complement, PIV (Particle Image Velocimetry), LIF (Laser Induced Fluorescence) and DTV (Droplet Tracking Velocimetry) techniques allow to reconstruct instantaneous spacial fields, adding additional information on the flow structure.

In two-phase flows these techniques are often used combined. Sathe et al. [START_REF] Sathe | Advanced PIV/LIF and shadowgraphy system to visualize flow structure in two-phase bubbly flows[END_REF] uses an array of high-speed cameras to separate and capture the velocity fields of both phases in a bubbly flow, at the same time, where image filtering and post-treatment algorithms are used to separate the information of each phase. However, the precision of such results is compromised when a heavily dispersed flow is present, like in poly-dispersed multiphase jet flows (Grosshans et al. [START_REF] Grosshans | Prediction and Measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison[END_REF]).

If no images from the flow are available, some intrusive methods can be use to estimate the void fraction (or presence) of a particular phase. Hong et al. [START_REF] Hong | Characterization of phase detection optical probes for the measurement of the dispersed phase parameters in sprays[END_REF] discuses the use of OP (Optical Probes) to estimate the sizes and velocities of droplets in a poly-dispersed spray. The technique requires some assumptions to estimate the velocities and a specific signal treatment to obtain the correct liquid volume fraction. Despite that it is indeed an intrusive method, and therefore, the flow might be modified, OPs are very precise in space, where the probe tip makes 130µm (Cartellier [START_REF] Cartellier | Optical probes for local void fraction measurements: Characterization of performance[END_REF]). This characteristic makes it a good technique to complement shadow images, where the droplets are distributed on a 3D space depth-of-field (DOF), and the uncertainty of this quantity makes the estimation of the volume fraction difficult.

To have an instantaneous space information of the volume fraction, Prasser et al. [START_REF] Prasser | Comparison between wire-mesh sensor and ultra-fast X-ray tomograph for an air-water flow in a vertical pipe[END_REF] studies the use of a capacitive wire mesh sensor in bubbly flow. However, their current development does not allow to have a quick response time like the OP, leaving their use to less diluted applications.

Finally, the experimental techniques used in this work are LDV and DTV by shadow images.

The LDV is used in different configurations, on separate measurement campaigns, to capture both liquid and gas phase velocity fields. Shadow images are used to run a DTV algorithm on the dispersed phase of the flow, this captures at the same time droplets sizes and velocities, providing a benchmark along the LDV. Shadow images also allow used to visualise the primary breakup mechanisms of the liquid jet. These techniques are applied to this specific study case and are detailed next.

Experimental set-up

As detailed in Section 1.2, a simplified test scenario is constructed to remove some constraints and to provide a more controlled environment for the optical measurement techniques. Instead of the original nozzle from Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] (d n = 4.37 mm), a smaller round d n = 1.2 mm nozzle is constructed.

The injector is a circular borosilicate glass tube of length L n = 50d n inserted in a PMMA (Poly methyl methacrylate) body. While providing a visual access to the internal flow, the glass surface is considered smooth, so no roughness will intervene in the boundary layer which is considered to be completely developed at 50d n . Gravity effects on the liquid dispersion are attenuated by placing the injector aligned with gravity in an up-down direction, making the flow statistically axisymmetric.

The injection velocity is ūL = 35 m/s, placing the atomization process in a turbulent atomization regime [START_REF] Sallam | Liquid breakup at the surface of turbulent round liquid jets in still gases[END_REF], according to A reservoir-pump-collector hydraulic system is used to feed water to the nozzle. The system is mounted in compatibility to the visual and spatial clearance needed to perform both the LDV and DTV measurements.

To achieve an average injection bulk velocity of ūL = 35 m/s, a relatively high pressure flow must be injected. The narrow nozzle diameter generates a pressure drop of nearly ∆P = 17 bar , so a centrifugal pump from a domiciliary water grid is not enough to achieve this (∼ 6 bar ).

A triple-head diaphragm pump is used instead, along with a compressed air damper and a needle valve to regulate the flow rate as shown in Figure 3.2.

Water @ 40±0. To avoid clogging, purified water is used as a working fluid in a closed circuit. After the injector, the droplets are recovered and the water goes back to the reservoir. This closed circuit increases the water temperature, so an evaporating cooling system is implemented in the pump's rejection circuit. With the room temperature set at 20°C at 50% HR, the working fluid reaches a stable temperature of 24°C after 1 h.

Measurement set-up

LDV set-up

A two component LDV system is used to measure the liquid phase (water) and gas phase (air) velocity fields. As the liquid disperses, it is hard to make a distinction between both phases, so a specific set-up is considered for each type of measurement.

The LDV system consisted in a two component (LDV-2C) from Dantec Dynamics with an Argonion of 488 nm@1.8W and 514.5 nm@2.8W Coherent 306S laser source. A Dantec-Dynamics 60X11 transducer separates and conduct the 2C beams. A 310 mm focus-length optics is used for the emitter and 400 mm for the receiver, forming a LDV measurement volume of 2.9x0.146x0.146 mm 3 along the principal directions. A Burst Spectrum Analyser (BSA) P60, also from Dantec Dynamics, is used to analyse the raw LDV data.

Although the system provided the option for PDA (Phase Doppler Anemometry) measurements, the nature of this liquid round-jet breakup produces highly non-spherical droplets making the PDA data extremely biased. The optical arrangement is configured then to maximise the LDV data-rate in scattering mode, with a 55°detector angle and no mask in the receiver optics as shown in Figure 3.3. An extra reduction of the LDV measurement volume is achieved by the 55°detector angle, where the focusing point cuts the larger dimension as Figure 3.3 shows. This is an important feature of the set-up, because if the measurement volume is considerably larger than the liquid jet itself, a lack of detail of the resulting velocity field measurement will be found closer to the axis. Without this, spatial correlations between two distant internal points, inside the volume, could be mistaken for timed correlations in the acquired time-series.

LDV-2C

Acquisition parameters

The details on the specific configuration for measuring the liquid and gas phases is presented here. As mentioned before, the goal is to capture the liquid phase velocity field u i ,L and the gas phase velocity field u i ,G . When measuring only in the liquid phase, the LDV captures the velocity of the liquid/gas interface of large liquid packets or small droplets. To capture the gas phase, a second configuration uses olive-oil mist as tracers for the gas around the liquid, where the processing unit captures the velocity of small droplets of ∼ 1 -2 µm and liquid droplets.

As described by Mychkovsky et al. [43] [42] in a fluidised bed study, a distinction between the tracers and the real particles can be made by looking at the Doppler burst signal pedestal. If one type of particle is considerable bigger than the other, the burst should have a bigger carrier pedestal too. In a transposition from their case, here the background gas phase is seeded with very small tracers compared to the poly-dispersed liquid droplets, so the same distinction should exist.

Other authors have also worked with this technique on bubbly flow, like the ones mentioned in the review made by Joshi et al. [START_REF] Joshi | Bubble generated turbulence and direct numerical simulations[END_REF], where the main difficulty on this kind of LDV set-up is to capture a proper Doppler signal from the tracers in the carrier phase, when a heavy dispersed second phase is present.

However, the BSA-P60 from Dantec Dynamics available at IRSTEA Montpellier does not allow to record the Doppler bust pedestal, as this signal is eliminated from the processor at the beginning of the burst analysis inside the BSA. With this in mind, a second strategy is developed by doing two sets of measurements: a first without seeded particles in the gas phase, and a second with the seeded particles but not in the zones where a large concentration of water droplets is present.

The two different configurations for the Laser source power (LP), photomultiplier gain (PM), accepted signal-to-noise ratio (SNR) and band-pass filter (BP) are selected and shown in Table 3.1. Given that the LDV processing module does not allow an actual separation of the signal acquired in the gas phase configuration (olive-oil particles), some assumptions should be considered when looking at the gas-phase velocity field.

First, it is noticed that a much greater PM gain is needed to be able to see the olive-oil particles in the raw Burst-Doppler signal. By increasing this value, along with the desired signal to noise ratio limit (SNR), yields a big data-rate only for oil droplets, where although large nonspherical objects have a higher intensity, they are seen much noisier and therefore almost always rejected by SNR criterion. However, there will always be some droplets that are counted as part of the gas signal.

Second, because the signal intensity from the water droplets/sacs is higher, the gain in the PM sensitivity sets a threshold on the positioning of the measurement volume, so no overlapping between gas and liquid profiles is achieved where a large concentration of water droplets is present, to avoid damage to the PMs. To better illustrate this, a shadowgraph image is presented along with the drop-sizer algorithm and DTV post-treatment at x/d n = 400, y/d n = 0 in Figure 3.4. While the Liquid LDV measurements can be made regardless the y axis position, the LDV on the olive-oil tracers, for the gas phase, can only be made at the left of the orange line in Figure 3.4. The left histogram shows the data from the liquid campaign (without tracers). As expected, the velocity events are concentrated near the jet's average bulk velocity ( ūL = 35 m/s), pointing slightly outwards, following the jet's lateral dispersion.

On the contrary, the right histogram shows the data from the gas campaign. This time, the velocity distribution has a wider velocity span in both components. The average gas phase entrainment is seen in the upper part, with a low ūx,G , and ūy,G < 0, pointing towards the centre. However, close to the centre line, the added-effect of the large water droplets that slip into the gas phase analysis can still be seen. By looking at the same region as in the left histogram, their presence is visible in gas phase measurements.

Nevertheless, given the much larger data-rate of oil droplets, seen by the amount of data concentrated out of the liquid region in the right histogram, it can be considered that the whole signal is closer to the gas-phase velocity, and not from a liquid-gas mixture. One aspect that is not investigated, however, is the correction by resident time of the particles inside the measurement volume.

As this result shows, a clear distinction between both phases can be constructed in a radial profile using this LDV method, despite the uncertainty closer to the jet's axis. It is expected that the separation between the liquid/gas velocity fields will provide a better insight on the turbulent quantities, needed for the RANS model described in Chapter 2.

Convergence analysis

Before constructing the profiles, a convergence analysis is made on every averaged quantity, calculated from the velocity time series on both liquid and gas phases.

The convergence criteria for both cases are set on the calculated Reynolds stresses. Although the worst case scenario varies from point to point (closer or far from the jet centerline), in general, the R12 component drives the convergence of every other quantity. Higher order moments, like Skewness and Flatness could only find a convergence in a reasonable time closer to the jet's centre line, where the LDV data rate is high, so they are left out of the global convergence criteria.

The conditions detailed in Table 3.2 show the minimum requirements to consider a point converged in the liquid measurements campaign. They are evaluated dynamically at every acquisition point. Following these criteria, the convergence on the Reynolds stresses is presented in Figure 3.6 at x/d n = 400, y/d n = 4. It shows the calculated components as a function of the time up to which the average is calculated. The figure shows that the acquisition stopped at 10 min, meaning that the residual does not reach 10 -4 . Despite the lack of convergence, the relative value is considered enough to represent a point in this case. This becomes more evident when looking at the real constructed profiles. In the same way as the liquid measurement campaign, the gas convergence criteria is summarised in Table 3.3. As the gas tracer particles give a higher data-rate than liquid droplets alone, the convergence this time reaches the residual threshold for R12 , stopping the acquisition at ∼ 6 mi n, as Figure 3.7 shows. 

Measurement points

The spatial location of the measured points for the two LDV campaigns is shown in Figure 3.8. For the liquid campaign, a first axial profile is acquired continuously from x/d n = 0 to x/d n = 800. Then, radial profiles from x/d n = 100 to y/d n = 800 are acquired at a step of ∆x/d n = 100, following the jet spreading-rate. Because of the strong shading of the liquid jet, only radial profiles are acquired, from the centerline towards the detector. For a complete lateral profile, a second detector on the other side would be necessary.

The same procedure for the gas phase campaign is conducted, where radial profiles are acquired at the same positions. As explained before, the radial gas profiles do no touch the dense zone of the spray, and therefore they do not touch the centerline. However, they can go further out into the external zones of the boundary layer around the jet.

DTV set-up

Shadow images are used to run a custom DTV algorithm on the dispersed regions of the spray and to visualise the liquid column primary breakup. These images are generated by the shadow of the liquid, projected into a high-speed camera, in the presence of a perpendicular background light. The system is a ShadowStrobe from Dantec Dynamics, mounted as shown in Figure 3.9.
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Figure 3.9 -Experimental set-up of the DTV system using shadow images.

The system captures two consecutive image frames at high speed, from which the detection and matching of particles/features can be made. The background lighting is generated by a double-pulsed laser source, consisting on a Litron Nd-YAG of 135 m J (532 nm). The light is then conducted via fibre-optics to a diffuser/collimator, generating a non-coherent uniform background.

A PIV/DTV HiSense 4M-C CCD camera mounted with a Canon MP-E 65 mm f/2.8 lens is used. It captures 12-bit depth grey-scale images at 2048x2048 pixels in a double-layer CCD sensor. With this optical arrangement, the scale resolution is 139 pi x/mm, which transforms in an image size of 14.73x14.73 mm 2 .

The camera is exposed during the whole duration of a pair of captured frames, leaving to the laser firing timings control over the exposure times. In between the frames, the first image is transferred to the sensor's second layer, leaving the first one ready for the second exposure. For this reason, images must be taken in a dark room, where the actual exposition time is ∼ 4 ns.

The acquisition frequency for a pair of images is set to f a = 5 H z. The time between pulses (tbp) vary, depending on the average velocity of the objects inside the image. This is an important parameter to set, because it should be large enough to let the droplets move in-between frames, but not much so no significant changes to the overall form and/or location pattern of the objects inside the frame is produced.

As an example, a set of raw shadow images are shown in Figure 3.10, taken at the jet's centerline, where t bp = 5 µs. Ranging from x/d n = 0 to x/d n = 350, a complete visualisation of the destabilisation and primary breakup can be seen. Small ligaments can be seen at x/d n = 0 close to the nozzle, as Wu and Faeth [START_REF] Wu | Onset and end of drop formation along the surface of turbulent liquid jets in still gases[END_REF] explains, they are related to the boundary layer inside the nozzle, where their sizes are found to be proportional to the turbulent eddies inside the injector. More downstream, at x/d n = 150 some helical structures can be seen, Hoyt and Taylor [START_REF] Hoyt | Waves on water jets[END_REF] explain these structures by the amplification of an helical modal instability, where aerodynamic effects start to play a more significant role in the turbulent breakup regime. 

Liquid column breakup length

Following the original work by Wu et al. [START_REF] Wu | Primary breakup in gas/liquid mixing layers for turbulent liquids[END_REF] and Sallam et al. [START_REF] Sallam | Liquid breakup at the surface of turbulent round liquid jets in still gases[END_REF], a characterisation of the breakup mechanism can be made, as a function of the breakup length L c and droplets sizes d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] . Moreover, provided that the atomization regime of this study case should be the same as Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] case, the behaviour of such quantities must follow the same relations.

To tackle the first part, and to provide an immediate analysis of the atomization regime, the mean breakup length Lc is estimated by looking at the breakup events from Figure 3.10. Each one of these images is taken from a series of 1000 at each point, from where the number of breakup events are counted at each position.

The reasoning is the following: if at a given point, at a given time, the liquid column presents a discontinuity, then, there is a probability that the first instantaneous breakup happened at that point or before, closer to the nozzle. Taking this reasoning to the limit, then the ratio of the number of events N b to the total number of images N T , at a given position, should follow the probability that the average breakup length Lc to be less than or equal to the given position from the nozzle. The results of this calculation on every set of images from x/d n = 100 to x/d n = 300 is shown in Figure 3.11. 

Shadow image segmentation

Having determined the breakup length, and the distance from the nozzle at which liquid column does not exist anymore, the secondary breakup of liquid packets/droplets begins. From x/d n = 400 to x/d n = 800, a DTV (Droplet Tracking Velocimetry) algorithm is used to characterise the dispersed part of the flow.

The main objective is to accurately detect the droplets in a shadow image and calculate their velocity using the double-frame acquisition. To do so, several image treatment techniques are used to filter and segment the shadow images. To achieve this, a custom shadow-sizer algorithm is developed and implemented using the Image Processing Toolbox in MATLAB®. This shadow-sizer software is an extension to the one developed by Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF].

To take advantage of the parallel computation capabilities, the new version of the code runs in parallel, on every computational core available on a x86-64 PC. In addition to that, an nVidia CUDA enabled graphics-card (Maxwell architecture) is used to perform heavy matrixoperations, like filtering, bi-linear interpolations and binary operations.

A step-by-step procedure on the general aspects of the code is detailed next:

• Wavelet transform: Based on the procedure presented by Yon [START_REF] Yon | Jet Diesel Haute Pression en Champ Proche et Lointain : Etude par Imagerie[END_REF], a Mexican-hat kernel function is used and applied as a filter to the original image (I m or g ), the goal is to detect changes of the image gradient, therefore, amplifying the boundaries of the droplets no-matter the defocusing (I m w t ). Then, a dynamic threshold generates a binary image (I m BW ). Every object detected is then a candidate to be a droplet, as Figure 3.12 shows, where the coloured BW objects are shown to clearly identify the segmentation result. • Local analysis: Following the local analysis detailed by Fdida and Blaisot [START_REF] Fdida | Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function[END_REF], every object is isolated and analysed locally. A local image is created for every object, by applying the binary mask of Figure 3.12-(c) to I m or g , resulting in a subset of smaller images I m l oc (local image).

The grey-level intensity of the local images are defined as i , where i mi n and i max are the minimum (dark) and maximum (bright) values. Then, the contrast ratio defined as

C = (i max -i mi n )/(i max + i mi n
) is calculated and the object is rejected from the analysis if C < 0.1.

• Contours extraction: The objects that pass the contrast filter are finally analysed. The I m l oc is normalised, meaning that the global grey levels from before now are 0 < i < 1.

From these normalised local images, the contours (w) at the following grey-levels (l ) are extracted: w l =0.25 , w l =0.50 , w l =0.61 and w l =0.77 . Using a bi-linear interpolation, those contours are represented in a sub-pixel domain at 10x the original size. Finally, using the 3D representation described by Daves et al. [START_REF] Daves | Morphology Descriptors of Irregularly Shaped Particles from Two-Dimensional Images[END_REF], the equivalent diameter d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] is calculated. Other quantities are also kept for further analysis, like the principal axis, orientation and eccentricity. These are shown in Figure 3.13.

Figure 3.13 -Sub-image analysis on a detected droplet. Local contours and principal axis.

• Velocity estimation: Using the centroids from every droplet detected, on (x, y) coordinates in the pair of images, the SoftAsign matching algorithm form Gold et al. [START_REF] Gold | New algorithms for 2D and 3D point matching: pose estimation and correspondence[END_REF] is used. This creates an output matrix with the matched objects from both consecutive frames. Finally, knowing the scale resolution (139 pi x/mm) and the time between images (t bp), the velocity vector of every droplet can be estimated.

The final result of the image segmentation procedure (wavelet transform and filtering, local analysis, contours extraction and velocity estimation) is shown in Figure 3.14. The information for every frame is kept for further granulometry and velocimetry of the jet. 

Depth-of-field calibration

Although the Shadow-sizer algorithm can well detect out-of-focus droplets, as a function of their characteristic sizes (d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ), these are not always in the same plane of measurement. In a jet with cylindrical geometry, aggregating information that does not exist within the same physical space could lead to several biases in the granulometry and velocimetry.

A calibration procedure on the size of the detected objects is then conducted, following the original work by Fdida and Blaisot [START_REF] Fdida | Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function[END_REF]. The response of this optical system is studied by looking at the in-focus and out-of-focus images on calibrated opaque disks of known size. Despite that droplets are transparent, the refractive index change at the surface does not influence the grey-level gradient detected at the edges of an opaque object (Fdida [19]), making this type of calibration on completely opaque objects well suited for droplets. As also shown by Fdida and Blaisot [START_REF] Fdida | Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function[END_REF], Figure 3.16b shows the ratio of the actual size of the objects d 0 to the measured d m at l = 61% ((d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF],l =61% ) against the normalised contrast ratio C 0 .

From this, it can be seen that the overestimation of the real size follows the same relation no matter the original size nor the out-of-focus distance and it is only a function of the contrast ratio.

Following this analysis, every equivalent diameter d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] , extracted from the contours at l = 61%, for every droplet detected in this study case, can be corrected only by looking at the calculated contrast ratio C .

This calibration methodology has been developed and tested on cases with nearly round objects. Here, however, its use is questionable, where heavy deformed large packets of liquid can be found and the definition of an equivalent diameter is only referential. These corrections are finally not applied to the results presented in Chapter 4, but they are kept as a reference about the response of the optical system. This notion of DOF is useful to give a proper interpretation for the velocity and fluctuations fields presented in Chapter 4.

Convergence analysis

With the analysis on the images in mind, where the droplets sizes and velocities are extracted, the resulting long series of data are used to construct averaged quantities. In a similar way as in the LDV case, the average velocity field of these droplets are represented in a spatial grid. An analysis on how this average representation behaves is presented next.

To construct the average fields, a convergence analysis is first performed as a function of the number of images (N ) needed to have representative average fields. A previous work performed Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF] shows that the joint distribution of droplets sizes and velocities is very sparse for a similar liquid jet, meaning that the average velocity field has a strong dependence on the droplets distribution. It is therefore important to study how many objects are detected and validated in each pair of frames, for when the averaged velocity and droplet's size fields are constructed, those quantities seem converged on a N number of total images.

Subsequently, an analysis based on a specific distribution of droplets by class of diameter is proposed. The aim is to specify a decomposition by sizes where the average fields are calculated. To do so, the following parameters are set:

1. The partition should be the same for the whole analysis. It is known that large droplets will exist only close to the centerline and will tend to disappear in the outside regions. The partition proposed must not change according to this, and if large droplets do not exist at one point, the class is considered non-existent.

2. The distribution should be minimal. Meaning that a partition of many classes that has the same behaviour of a smaller one is discarded.

3. The average quantity must be independent if weighted by the diameter inside the class (i ). Meaning that, if h is the quantity to average, then:

h = d h d . (3.2)
4. The number of elements should allow a convergence of the average inside the class.

5. To avoid loners, a minimum of 100 elements is allowed inside a class. If not, the class is considered non existent on that point. This is imposed principally because the average on large droplets will never converge outside the jet centre line, despite that some rare events occur.

Following these directives, the following partition by droplet equivalent diameter class is proposed in Table 3.4.

Table 3.4 -Partition of droplets population by class of diameter.

Class 1: d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.10 mm Class 2: 0.10 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.25 mm Class 3: 0.25 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.50 mm Class 4: 0.50 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 0.75 mm Class 5: 0.75 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 1.00 mm Class 6:

1.00 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] To justify the use of this partition, the analysis is presented at x/d n = 600, y/d n = 0 (see Figure 3.14), on a set of 1000 images. The data collected corresponds to a 1/5t h of the image in the central point, using the sub-image partition.

The averaging procedure is the following. Average is the mean velocity component ūi , calculated from the arithmetic average, over n objects (droplets) identified as j inside the class (k), ūi,(k) = 1

n n ∑ j =1 u i ,{ j ∈(k)} ; (3.3) 
and d-Average is the same mean velocity component ūi , but calculated from the weighted average, over the same objects, by the droplet d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] diameter, meaning:

ūi,(k) = ∑ n j =1 d [30],{ j ∈(k)} u i ,{ j ∈(k)} ∑ n j =1 d [30],{ j ∈(k)} . ( 3.4) 
Using this, the influence of the droplet sizes, inside a class, is weighted in the mean velocity estimation. The convergence is shown in Figure 3.17 for the velocity field. Class: 1.000 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] x/dn = 600 -y = 0.0 mm To summarise, this analysis shows that 1000 images are enough to represent the average velocity field, under this partition by class of droplet diameter, on a sub-image of a 1/5t h of the original lateral size.

However, this is not always true for the calculated Reynolds stresses. These are calculated relative to the average by class shown before. Figure 3.18 shows the same analysis on the principal Reynolds stresses by class, R(i) [START_REF] Luca | Contribution à la modélisation de la pulvérisation d'un liquide phytosanitaire en vue de réduire les pollutions[END_REF] and R(i) [START_REF] Ferziger | Computational Methods for Fluid Dynamics[END_REF] .

The same principle apply for the Reynolds stresses calculation. Average uses the arithmetic average:

Ri j ,(k) = 1 n n ∑ l =1 ( u i ,{l ∈(k)} -ūi,(k) ) ( u j ,{l ∈(k)} -ū j , (k) ) ; (3.5) 
and d-Average is calculated as a weighted average by the droplet d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] diameter, meaning:

Ri j ,(k) = ∑ n l =1 d [30],{ j ∈(k)} ( u i ,{l ∈(k)} -ūi,(k) ) ( u j ,{l ∈(k)} -ū j ,(k) ) ∑ n l =1 d [30],{l ∈(k)} . ( 3.6) 
Since the population of large droplets is considerably lower in the bigger class, the convergence on the number of droplets needed does not always meet. Moreover, there is a difference this time as a function of the weighted average inside the class, as shown by the doted lines against the continuous one.

Despite all these difficulties the partition by class is kept and the number of images is not modified either. As the later results show, the extra precision that can be gained by re-setting those parameters would not change the analysis. Class: 1.000 mm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] x/dn = 600 -y = 0.0 mm 

Measurement points

As detailed before, all statistics are in a spatial partition of the original image. Since the spatial resolution is rather big (139 pix/mm; 14.73 mm), there are strong gradients of any quantity if represented in a lateral profile inside a 2048x2048 pixels frame. To show this effect, the joint probability density pd f of all events u x -u y , u x -d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] and u y -d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] in a sub-image analysis is presented in Figure 3. [START_REF] Fdida | Développement d'un système de granulométrie par imagerie Application aux sprays larges et hétérogènes[END_REF].

This shows that the distributions of velocities and sizes vary a lot inside the image itself. These points are represented centred on the slices (see Figure 3.20). The probability density functions (pd f ) are constructed from the histograms. A partition of 50 bins is used to do the count on every axis, where the white bins are the zones with zero counts. The solid lines represent the average values and the dashed ones the standard deviation.

Then, the reconstruction of radial profiles is performed by considering only the information extracted at the central slices, like Figure 3.20 shows. This is called a super-resolution profile, giving an extra spatial precision on the averaged quantities.

The images are acquired laterally with a step of 4.8 mm, meaning that there is a large overlapping of information. This produces a good quality profile, with enough resolution to perform further operations, like spatial derivatives. uy (m/s)
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Figure 3.19 -Bi-variate histograms normalised as a pdf for: u x -u y , u x -d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] and u y -d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] . Sub-image count at [x/d n = 600, y = 0 mm]. 

Summary

A detailed description of the experimental techniques applied to a study case is given in this chapter. From this development, the following points could summarise the topics treated:

• LDV and DTV measurements systems are chosen to carry out the experimental campaign. Both systems have been tested before in similar cases by other authors. The objective is to capture the velocity fields of both gas and liquid phases, along with the distribution of droplets sizes in the dispersed region of the flow. Additionally, shadow images taken close to the nozzle allow a visualisation of the liquid column breakup behaviour.

• The study case consists in a circular glass tube nozzle of d n = 1.2 mm. This geometry allows a direct equivalence with the simulation cases in Chapter 2. Although this nozzle does not exist in any real application, this simplified case provides a better controlled environment to perform the experiments, with less incertitude on the operating conditions.

• The LDV technique is applied to measure both liquid and gas phases. These measurements are carried out in separate experimental campaigns. The liquid campaign is performed in the dense and dispersed part of the jet. For the gas campaign, olive-oil mist is used as passive tracers in the surrounding air. A special set-up in the acquisition parameters of the LDV (BP filter, SNR, PM gain) is used to discriminate the average signal from the tracers and the residual part from the liquid droplets. This configuration allows to capture the average and fluctuating components of the liquid/gas slip-velocity, an important quantity to compare with the U-RANS model.

Results

Introduction

On this chapter, the results from the simulation cases are presented along with the experimental observations all-together. The development of this work does not follow the same logic separation of the numerical and experimental chapters. Indeed, the results are presented in a way so that the mixture multiphase flow model used here could be compared and explained with and by the experimental observations.

The experimental results are presented first. Their analysis allows to characterise and to set some overall parameters on the dynamics of the studied liquid jet. The decay of the centerline velocity or the spreading-rate on a round-jet are some immediate useful parameters to look-up to, these set the first baseline to quickly compare against numerical simulations. Later, the mean and fluctuating velocity fields are obtained from both LDV and DTV measurement campaigns, these quantities are useful to analyse the behaviour of the turbulence RANS model used [START_REF] Pope | Turbulent Flows[END_REF][8] [START_REF] Schiestel | Méthodes de modélisation et de simulation des écoulements turbulents[END_REF].

Great effort also is put into the numerical simulations, where the custom solver is constructed and implemented using the OpenFOAM CFD code. Although the construction and test of this solver could be a subject on its own, based on the experimental observations, a series of study cases are created to test the behaviour of such formulations, which are only applied to this study case. Always centred on the same Favre-averaged mixture multiphase modelling, some variations of k -ϵ and RSM turbulence models are compared, along with first and second-order closures for the modelled turbulent mass transport fluxes [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF].

As previously mentioned, one of the main challenges of this work is to find an explanation to the strong anisotropy found on the Reynolds stresses principal components [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF]. A combined approach, from the experimental observations, seen by the RSM turbulence model, could provide some clues on this behaviour.

Experimental observations

The experimental observations are based on the data provided by the LDV and DTV campaigns. From these data, two main quantities are calculated: the average velocity field and the Reynolds stresses. Some special particularities are involved when performing these calculations, like the ones detailed in Chapter 3. The objective is to extract the averaged fields from the liquid and gas phases separately.

In this section, the detailed results on the averaged fields are presented. A comparison between the two measurement techniques in terms of the average velocity fields and the Reynolds stresses is attempted first. The details on how these quantities evolve in comparison with the RANS model are described later on a series of simulation cases.

Mean velocity field

Given the cylindrical symmetry of the flow, there are only two main components involved in the velocity field: u x and u y , this last one similar to the radial component in a symmetry plane.

No matter what type of average operator is used, the flow is always considered statistically axisymmetric.

As previously defined in Chapter 3, the averaging procedure differs slightly from the two analysis. The LDV data is always treated using a simple arithmetic average, over n events, separated by phase, meaning: For the DTV, the procedure is slightly different. The first approach is to calculate the mean velocities using a simple arithmetic average, like in the LDV case, meaning that the mean velocity flagged as Average is:

ūi = 1 n n ∑ k=1 u i ,k ; (4.3)
whereas d-Average is the same mean velocity component ūi , but calculated from the weighted average, over the same objects, by the droplet d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] diameter, meaning:

ūi = ∑ n k=1 d [30],k u i ,k ∑ n k=1 d [30],k . (4.4)
If the DTV data is separated by class, then a simple arithmetic average is kept, meaning that the average velocity for the class (k) is:

ūi,(k) = 1 n n ∑ l =1 u i ,{l ∈(k)} ; (4.5)
The centerline axial velocity is then defined as ūx,L,0 = ūx,L (x, y = 0), where the underscore indicates the axis component and phase, and in parenthesis the position. From this, the axial velocity half-width y 0.5u is the distance from the jet centerline at which ūx,L (x, y = y 0.5u ) = ūx,L,0 /2. Using this, the spreading rate S is defined as:

S = ∂y 0.5u ∂x ; (4.6)
Despite the formal definition of S, it is calculated and considered linear for x/d n > 400.

Using these definitions, Figure 4.1 shows the decay of ūx,L,0 against the axial distance from the nozzle, along with the axial velocity half-width y 0.5u for the two measurements techniques. In the same way as in constant density round-jets (air-air of Hussein et al. [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF]), the jet looses velocity and spreads. Figure 4.1a shows the decay of ūL,x,0 and the spreading of the jet, characterised by the y 0.5u , using the LDV data on the positions defined in Figure 3.8. To compare, Figure 4.1b shows the same, but using the two averaging procedures proposed from the DTV profiles.

The difference between the two sets of measurements is explained by the integration volume on which the data is acquired. In one hand, the dimensions of the LDV measurement volume are 0.146x0.146x2.9 mm 3 (see Figure 3.3), making the spatial velocities integration to around the size of the jet original diameter. On the other hand, the DTV central slice (see Figure 3.20) is wide 2.9 mm too, making both comparable. However, the depth-of-field (DOF) of the DTV data has a much larger span, even for small droplets (see Figure 3.16a), meaning that the calculated DTV average of droplets velocities is integrated into a much larger volume than in the LDV case. Since the axial velocity decays against the radial distance, this larger integration volume makes the DTV centerline velocity lower than in the liquid LDV case.

Although the larger droplets are seen in a larger DOF, they only exist in the central portion of the jet, and as previously seen in Figure 3. From the difference on these results, it is not straightforward to assimilate the LDV or DTV data to the Liquid phase velocity field. Nevertheless, this is carried forward to complete the analysis.

Contrary to a constant density case, because of the extra inertial, viscous and gravity effects on the mixture, in variable density flows there is no straightforward similarity. However, similar relations can be found in the literature. Ruffin et al. [START_REF] Ruffin | Investigation of characteristic scales in variable density turbulent jets using a second-order model[END_REF] studied the decay rate of several variable density flows, where the following relation can be applied:

ũx,0 ũJ = 1 A ( d n x -x 0 ) ( ρ L ρ G ) b ; (4.7)
where A is the asymptotic decay rate, x 0 the abscissa at which the asymptotic behaviour begins (virtual origin) and b a power applied to the density ratio. To compare this relation with a constant density case, the nozzle effective diameter is defined as d n (ρ L /ρ G ) b , used as a normalisation parameter.

Before presenting the calculation, it should be noted that these relations are constructed for a gas mixture. Therefore, the mixture velocity ũ is involved. Here, only the liquid phase is measured at the centerline, obtained and assimilated from LDV and DTV. However, given the high density ratio (ρ L /ρ G = 828), when Ỹ → 1.0 at the centerline, ũx,0 → ūx,L,0 .

Another small difference is about the injection velocity ũJ in Eq. 4.7. ũJ is assumed to be a top-hat flat profile, which is not true in this case. Although this does not change significantly the results, Figure 4.3 shows the difference between the bulk velocity ūJ against the centerline injection velocity ūJ,0 at x/d n = 0 (injection point). These are different because there is a developed boundary layer inside the injector, and to clarify this point, the results from a k -ϵ simulation case inside the circular injector, along with a calculated power-law 1/7t h, are shown.

- With these considerations, using b = 0.5, the fitted value for A using Eq. 4.7 is shown in Figure 4.4. The two possible injection velocities are contrasted. Also, only the data in the dispersed region of the jet is considered, meaning that A is calculated using the data for x/d n > 400, in the same way as the spreading-rate S before. This yields an average decay rate A = 0.019, nearly 10 times smaller than in the cases reported by Ruffin et al. [START_REF] Ruffin | Investigation of characteristic scales in variable density turbulent jets using a second-order model[END_REF] and the LDV data from Hussein et al. [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] in an air-air round jet, where S = 0.094. However, using the same procedure, Stevenin et al. [START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF] found a similar decay rate of A = 0.0273, and a spreading rate of S = 0.024.

As no more information is available, the construction of a similarity pattern using the radial profiles is attempted next. ūx,L,0 and y 0.5u are used as normalising quantities. Figure 4.5 presents both the axial and lateral liquid velocities, using this procedure. A similarity is found on both components in the liquid part, but the shape differs from a single phase jet. While the axial component decays slower against the radial distance, the lateral component remains always positive. This is logic if the liquid velocity follows always the liquid spreading from the central part of the jet, pointing outwards. Therefore, the slipvelocity between the phases should always be positive. Indeed, as Figure 4.5 shows, both gas components fall below the liquid velocity. The entrainment part of the jet is carried out by the gas phase, but at a much slower intensity than in a single phase jet. And, as expected, there is no similarity this time on neither of the profiles.

The noise in the profiles, seen as steps far from the centerline, comes from the LDV BP-Filter setting. As the magnitude of the velocity decreases, the BP-Filter is set to a more narrow span, this corresponds to discrete cutout frequencies. This effect makes the jumps from one point to another in the profile, as the configuration is continuously changed to grab the wider possible band.

To highlight the importance of the average liquid/gas slip-velocity ūi,S , a relation extracted from Chapter 2 is repeated here (see Eq. 2.15 on Page 17). From the development of the Favre averaging process, the Reynolds-averaged phase-velocity fields are related to the turbulent mass flux in the following expression:

ūi,S = ūi,L -ūi,G = u ′′ i Y ′′ Ỹ (1 -Ỹ ) ; (4.8)
meaning that if a correct estimation of ūi,S is achieved, the form of the turbulent mass flux

u ′′ i Y
′′ could be deduced. From Eq. 4.8, ūi,L and ūi,G refer to the Reynolds averaged fields on the Liquid and Gas phases. However, as discussed before, it is not straightforward to define the average behaviour of the liquid phase as the average from the LDV or DTV data. Therefore, the analysis is presented step-by-step.

A better insight on the liquid velocity behaviour can be seen by looking at the DTV profiles. Despite the lose of spatial precision because of the DOF, as seen before in Chapter 3 (Figure 3.16a on Page 61), the distribution of droplets sizes plays a major role in the reconstruction of the velocity and the Reynolds stresses fields. The influence of the droplet sizes in the calculated averaged values is investigated first.

To mimic the previous Liquid-LDV results, the same profiles are constructed using the method described in Figure 3.20 (Page 67). A first analysis on the influence of the droplet sizes is done by reconstructing the velocity field using Eq. 4.3 (Average) and Eq. 4.4 (d-Average). To check the jet symmetry, the profiles are reconstructed from all the horizontal measurement points. As Figure 4.6 shows, the same similarity on the profiles is achieved, using the two types of averages. ūx,0 and y 0.5u are used as normalising parameters, calculated from the DTV profiles. Nevertheless, comparing with the Liquid-LDV, it can be noted that although the similar-profiles keep the same shape, the velocity field obtained by the DTV is not the same.

As mentioned before, there is a difference in the behaviour depending on the class of droplets by diameter. This is investigated by decomposing the averaged velocity field into the classes defined in Table 3.4 (Page 63). Then, the mean velocity is calculated using an arithmetic average of Eq. 4.5.

Using this procedure, Figures 4.7 While large droplets tend to maintain the jet average bulk velocity ( ū j = 35 m/s) in the axial direction, the small ones lag significantly behind. The lateral velocity shows a similar behaviour, where big droplets tend to escape the central part of the jet, twice as fast as for the smaller class. Despite using a different class partition, the same behaviour can be seen in Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF] case.

This effect is already observed by Prevost et al. [START_REF] Prevost | Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet[END_REF] in a particle laden tube jet. When particles come within the same gas jet, their response to the average motion is driven by their capacity to adapt to the gas flow velocity. So, if the longitudinal average gas velocity decreases, it would be harder for large particles to adapt, and their average velocity will be higher.

An analogy to this case can be made. Here, a heavy poly-dispersed flow comes from the nozzle, where droplets meet the gas phase. Dragged by the particles, the gas phase should accelerate until an equilibrium velocity is reached. Small droplets will adapt quicker to this, since they are subjected to bigger aerodynamic effects as a function of the local slip-velocity (velocity seen by the droplets) and their relaxation time τ R . This effect can be further investigated by examining the Reynolds stresses, which are shown next.

As previously mentioned, the gas phase velocity obtained by LDV is not accurate in zones where a large concentration of liquid droplets is present. Moreover, both LDV and DTV might have biases related to the measurement volume and DOF. Despite these limitations, the LDV data allows to estimate ūi,L , ūi,G and ūi,S , where the results show a clear mean slip velocity.

From the DTV side, the incertitude introduced by the DOF is tackled with the analysis by class of diameter. This allows to have a clear picture on the average behaviour at different scales, and although it is not explicitly shown here, the relaxation time τ R must play a significant role, as investigated by Ferrand et al. [START_REF] Ferrand | Gas-droplet turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets[END_REF].

Reynolds stresses

The same analysis is performed for the calculation of the Reynolds stresses. Since the main goal is to compare these experimental results with a mixture RANS model, some precisions must be set before.

The numerical mixture RANS model is Favre-averaged, meaning that if a representation from the Reynolds stresses by phase is constructed, the combination yields the following relation:

u ′′ i u ′′ j = Ỹ u ′ i ,L u ′ j ,L + (1 -Ỹ )u ′ i ,G u ′ j ,G + u ′′ i Y ′′ u ′′ j Y ′′ Ỹ (1 -Ỹ ) ; (4.9)
where the first two terms are the Reynolds-averaged contributions from the two phases, and the last part is a slip-related component. Actually, using the original relation for the slipvelocity, ūi,S (Eq. 4.8) into this Eq. 4.9, all contributions to the Favre-averaged Reynolds stresses can be expressed from known experimental quantities:

• u • ūi,S ū j ,S : Slip Reynolds stresses (or Ri j ,S ).

Rewriting Eq. 4.9 using these terms, gives:

Ri j = Ỹ Ri j ,L + (1 -Ỹ ) Ri j ,G + Ỹ (1 -Ỹ ) Ri j ,S . (4.10) 
The overall expression can not be reconstructed, because no experimental results are available to estimate Ỹ . Nevertheless, the partial contributions are available from the Liquid and Gas LDV measurements, and the subsequent slip-velocity.

The averaging procedure for the Reynolds stresses on each phase is detailed using the LDV data. Using the calculated ūi,L (Eq. 4.1) and ūi,G (Eq. 4.2) as center values, the following estimators are constructed for Ri j ,L and Ri j ,G :

Ri j ,L = 1 n n ∑ k=1 ( u i ,{k∈l i q} -ūi,L ) ( u j ,{k∈l i q} -ū j ,L ) ; (4.11) Ri j ,G = 1 n n ∑ k=1 ( u i ,{k∈g as} -ūi,G ) ( u j ,{k∈g as} -ū j ,G ) . (4.
12)

The slip component, Ri j ,S in Eq. 4.10, is reconstructed from the slip-velocity field defined in Eq. 4.8, which yields:

Ri j ,S = ( ūi,L -ūi,G ) ( ū j ,L -ū j ,G ) = ūi,S ū j ,S . (4.13) 
Using this procedure, Ri j ,L , Ri j ,G and Ri j ,S contributions are shown in Figure 4.9 for R11 , R22 and R12 components. The R11,L component shows a similar behaviour like in a single-phase round jets, reaching its maximum of 0.08 in the dispersed region [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF]. The main difference is in the radial component R22,L , where a huge anisotropy is found, being R11,L ∼ 15 R22,L . The shear component R12,L is also small, it reaches R12 / k ≈ 1/3 at the end of the liquid velocity profile, where no more droplets are present. This behaviour differs from the gas-gas variable-density case of Amielh et al. [START_REF] Amielh | Velocity near-field of variable density turbulent jets[END_REF] or the gas-gas constant-density of Hussein et al. [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF], where the comparison is shown in Figure 4.10. Here, kL and kG are calculated assuming a cylindrical axisymmetry, meaning:

kL = 1 2 ( R11,L + 2 R22,L ) ; (4.14) kG = 1 2 ( R11,G + 2 R22,G ) . ( 4.15) 
Since the shear (R 12 ) and lateral (R 22 ) components are the main dissipation terms in momentum equation, these low values could explain the low decay-rate in the centerline velocity and low spreading-rate. Moreover, it is important to notice that the calculated slip-component Ri j ,S has the same order of magnitude as the liquid and gas parts ( Ri j ,L and Ri j ,G ), meaning that the complete reconstruction based on these three contributions is important to perform a proper comparison with the mixture Ri j model.

To characterise the anisotropy of the Reynold stresses, the anisotropy factor is introduced. Since this liquid round jet presents an axisymmetric behaviour, where R11 ≫ R22 = R33 , the anisotropy factor 〈A〉 R is defined as: From the observations made by Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF], if the Stokes number (St ) calculated for the liquid droplets is small enough, a high anisotropy could be a consequence of the sharp gas boundary layer created around the poorly atomised liquid jet. However, by looking at the gas phase Reynolds stresses here, it seems to be the other way around. Indeed, the gas phase data large and small droplets are more isotropic. As enunciated before, very small droplets could be more prone to be affected by the gas phase turbulence, therefore they will tend to isotropy at the external zones. This is also implicitly shown in Figure 4.11, where the combined effect can be seen by reconstructing the pdf s at several distances from the centerline.

〈A〉 R = 〈R〉 22 〈R〉 11 . ( 4 
As mentioned before, an estimation of the Stokes Number (St ) could give a better insight on this behaviour. From the acquired data, the following formulation by class of diameter (k) could be used: 

St (k) = τ R τ t = ρ L d 2 [30],(k) 18µ G ( 1+0 
Re d ,(k) = ∥ ūi,(k) -ūi,G ∥ d[30],(k) ν G . ( 4.21) 
Here, to represent the velocity seen by the droplets, the mean gas velocity ūi,G is extracted from the LDV data, and ūi,(k) is the mean velocity of the class (k) from the DTV, with the corresponding mean diameter d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF],(k) . This formulation differs from the one in Eq. 2.41 (page 25) in the sense that it confronts directly the mean slip velocity by class of diameters against the gas velocity field, whereas the modelled quantity needs the drift part ūi,D (Eq. 2.42) to account for the slip velocity seen by the droplets.

Because the mean and fluctuating data is not available at the centerline of the jet, a special class of d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF],(k) ≤ 50µm is created to represent √ R11,G . This is, however, a very strong hypothesis, because as Figure 4.15 shows at x/d n = 800, despite the similitude far from the centerline of these two quantities, closer to the axis there is no evidence that small droplets ( d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF],(k) ≤ 50µm) follow the gas-phase fluctuations. Despite this strong hypothesis, a clear difference on the behaviour by class of diameter can be seen. Although the small droplets never reach St ≪ 1, and therefore, they should not be considered as gas tracers, they are order of magnitudes more responsive to the gas phase fluctuations than the bigger ones.

This effect could explain the strong anisotropy factor found in the medium sized droplets (see Figure 4.14). Large droplets are the least influenced by the gas phase fluctuations, they tend to keep a velocity close to the injection bulk velocity ūJ = 35 m/s, with a turbulent intensity inherited from the pure liquid-phase (see Figure 4.13). Small droplets follow the gas-phase fluctuations easily far from the centerline, but they are trapped by the large slip-velocity induced by large droplets close to the axis. However, medium sizes droplets (100 ≤ d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF],(k) ≤ 500µm), can have both a wide band of turbulent intensity and be less influenced by the gas phase fluctuations far from the centerline, boosting the anisotropy on the whole profile as seen in Figure 4.14.

Numerical model analysis

The numerical model analysis follows the previous cases definition in Chapter 2. The main objective at first is to test the behaviour of several variations of the RANS turbulence models. Later, based on the experimental observations, some specific cases are presented to account for these observations.

The detailed description of the modelled equations is given in Chapter 2.2. However, to better illustrate the analysis, some equations are rewritten here along with the study case definition.

A quick description of the simulation case is shown in Figure 4.17. This represents a schematic view of a longitudinal 2D slice (the real case is 3D). From this, the boundary conditions and case set-up are:

• The nozzle diameter is d n = 1.2 mm, of length L n = 50d n and pointing downwards, aligned with gravity.

• Only water is injected through the nozzle, meaning that ũ0 = ūL,J = 35 m/s and Ỹ0 = Y 0 = 1. The air is considered still.

• Turbulence boundary conditions are specified as if there is an infinite, similar, pipe flow upstream, with a turbulence intensity I t = 4%. This yields a k0 = 3.3 m 2 /s 2 and ε0 = 11700 m 2 /s 3 . The Reynolds stresses are considered isotropic, so Ri j ,0 = 2/3 k0 δ i j m 2 /s 2 .

• The simulation time is from t 0 = 0 s to t f = 0.3 s. This ensures a full coverage of the domain, even in the external regions of the jet. The time-step of the simulation is variable, calculated from the worst case as a function of the local Courant number C o.

To avoid any divergence of the simulation, C o = 0.8 is set as the maximum possible value.

RANS turbulence model

First, a variation of the RANS turbulence model is analysed. The three previously described turbulence models are used: k -ϵ (k-Epsilon), R i j -ϵ (RSM) and R i j -ϵ i j (RSM Variation). To isolate the behaviour only as a function of the turbulence modelling, the same basic turbulent mass flux model is used, Y mod 0 . All of this corresponds to the cases: Case 112, Case 212 and Case 312 (Page 37).

A first comparison with the experimental results is shown in Figure 4.18. The centerline evolution of the axial mixture velocity ( ũx,0 ) is presented along the centerline liquid velocity ( ūx,L,0 ) from the LDV (Figure 4.18-(a)). Evidently, despite that the comparison of mixture against liquid velocities might be inconsistent, at the centerline Ỹ ≈ 1.0, which makes ũx,0 ≈ ūx,L,0 . Based on the lateral profiles, the calculated half-width of the velocity profiles is 

u i : k -ǫ u i : R ij -ǫ u i : R ij -ǫ ij ūi,L : LDV 0 0.2 0.4 0.6 0.8 1 1.2
x (m) ). As discussed later, the half-width is defined for the mixture velocity, so a combination between ūx,L and ūx,G should be used instead. However, as Ỹ is not directly measured, ũx remains unknown.

The centerline liquid volume fraction is compared to the estimated average liquid column breakup length, where Y ≈ 0.5 (Figure 4.18-(c)). This is a rough estimation of the behaviour of the solution, because this hypothesis to separate the dense zone from the dispersed part of the spray is not always well defined.

Ỹ fluctuates as function of time (therefore, Y does too). This is not due to some lack of convergence, because the solver converges at every time-step by definition. In fact, these fluctuations may be a product of the actual jet flapping, like in the work made by Delon [START_REF] Delon | Instabilité de flapping: origine et effets sur la structure et le spray d'un jet atomisé[END_REF].

Nevertheless, these fluctuations are not considered to be high enough to affect the analysis made here, and the unsteadiness is not taken into account in this analysis. To illustrate this, a complete solution in a mid-plane cutout of the simulated domain is shown in Figure 4.19 for the R i j -ϵ i j case.

Before going into the comparative analysis, a precision on the use of the turbulent mass flux model needs to be made. This argument is carried out throughout the whole analysis. Indeed, Y mod 0 reads (from Eq. 2.37):

-ρ u ′′ i Y ′′ = µ t σ Y ∂ Ỹ ∂x i . ( 4 

.22)

From the model used by Belhadef et al. [START_REF] Belhadef | Pressure-swirl atomization: Modeling and experimental approaches[END_REF], and the later analysis made by Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF], the use of of a turbulent Schmidt number of σ Y = 5.5 is used and justified. Not only because it fits well the experimental results on a similar round jet, but because it emulates a strong anisotropy factor in the principal Reynolds stresses, starting from a more general formulation, meaning that if a boundary layer approximation is made, then:

-ρ u ′′ i Y ′′ ≈ ρ u ′′ y Y ′′ = C Y ρ k ε ũ′′ y 2 ∂ Ỹ ∂y ; (4.23) 
and assuming that ũ′′ If a RSM case would produce a strong anisotropy, like in the one observed in Figure 4.14, this artificial σ Y = 5.5 would not be necessary. However, this is not the case for the two RSM formulations used here. The anisotropy factor reaches nearly R22 / R11 = 0. Indeed, while both the simulation and the experimental case produce nearly the same turbulent kinetic energy, which for a cylindrical axisymmetry is: Despite all this, since 〈R〉 12 is indeed lower in the R i j -ϵ i j case, this results in a low momentum transfer from the axial to the radial direction, decreasing the decay rate of the axial centerline velocity. A good numerical result would be to reduce considerably 〈R〉 22 and 〈R〉 12 , while keeping a high enough 〈R〉 11 .

R 12 / u 2 x,0 k -ǫ R ij R ij -ǫ R ij R ij -ǫ ij R ij LDA Rij,L LDA Rij,G DTV Rij average DTV Rij d-average x/d n = 800
〈k〉 = 1 
Although these comparisons are made between the Liquid/Gas Reynolds-averaged values, against the Favre-averaged model, the orders of magnitude and the relation given by Eq. 4.10 point in a clear direction.

Epsilon equation behaviour

Before examining further the last point, a brief analysis on the use of the Epsilon equation is developed. The three RANS models used here rely on the same modelled Epsilon equation (Eq. 2.22) to obtain the turbulent kinetic energy dissipation rate ε.

Many versions of this modelled equation exist in different applications of RANS turbulence. A particular variation to the original version by Jones and Launder [START_REF] Jones | The prediction of laminarization with a two-equation model of turbulence[END_REF] is introduced by Pope [START_REF] Pope | An explanation of the turbulent round-jet/plane-jet anomaly[END_REF]. The original version gives good results in a planar-jet configuration, but if the same parameters are used in a round-jet, the spreading rate S is overestimated. This is called the round-jet/planar-jet anomaly, it is related to the vortex stretching in the angular direction of a round-jet. Pope [START_REF] Pope | An explanation of the turbulent round-jet/plane-jet anomaly[END_REF] proposes to add an extra source term to account for this, resulting in good agreement with experimental results.

Dally et al. [START_REF] Dally | Flow and mixing fields of turbulent bluff-body jets and flames[END_REF] proposes to use the original equation proposed by Jones and Launder [START_REF] Jones | The prediction of laminarization with a two-equation model of turbulence[END_REF], but with C ϵ1 = 1.60 instead of the original C ϵ1 = 1.44 value. The overall increase of the production term would produce a similar effect to correct the spreading rate in a round-jet. The analysis on the application of this modification to a circular multiphase jet is also studied by Stevenin et al. [START_REF] Stevenin | Eulerian atomization modeling of a pressure-atomized spray for sprinkler irrigation[END_REF], improving the numerical results on the spreading rate prediction.

To test this behaviour, the contributions at the RHS of the Epsilon equation are studied by modifying the value of C ϵ1 . The study cases are based on the R i j -ϵ model with Y mod 0 : Case 211 and Case 212 (see page 38). In Figure 4.21 the following budget is shown for the two cases at x/d n = 400 in a radial profile:

• Production-1: with C ϵ1 = 1.44 or C ϵ1 = 1.60;

-C ϵ1 ε k ρ u ′′ i u ′′ j ∂ ũi ∂x j . ( 4.25) 
• Production-2: with C ϵ4 = 1.0; The profiles are divided by ρε to account for the relative variation. Cell centre values are also shown to highlight the mesh quality. Indeed, the original production term (Production-1) is higher using C ϵ1 = 1.60, creating a higher ε, lowering the turbulent kinetic energy k in zones with high shear.

-C ϵ4 ε k u ′′ i ∂ p ∂x i . ( 4 
To check if this effect is also important using the R i j -ϵ i j model with Y mod 0 , cases Case 311 and Case 312 (see page 38) are also created. The overall influence is shown in Figure 4.22, where the axial velocity profiles for all four numerical models are compared against the experimental results. As previously shown before, the R i j -ϵ i j model with Y mod 0 predicts not only a better centerline velocity but at the same time a good spreading rate. From Figure 4.18 (page 89) it might seem that the spreading rate S is underestimated, but looking at the actual radial profiles, ũx should blend from ūx,L to ūx,G as a function of the radial distance, following the liquid mass fraction Ỹ radial profile. This last quantity is however not available from the experimental measurements,

R ij -ǫ C ǫ1 = 1.44 u x R ij -ǫ C ǫ1 = 1.60 u x R ij -ǫ ij C ǫ1 = 1.44 u x R ij -ǫ ij C ǫ1 = 1.60 u x R ij -ǫ ij C ǫ1 = 1.60 Y ( 

Numerical model analysis

but the numerical solution is shown to illustrate the effect.

Turbulent mass transport

The previous two analyses are centred on the use of an RSM case, coupled with a basic description for the turbulent mass fluxes (Y mod 0 ). Now, the focus is on this last quantity. Using several numerical study cases, a comparison between the experimental results against the numerical solution is made, as a function of several formulations for

u ′′ i Y ′′ .
Both Y mod 0 and Y mod 1 are based in the same gradient diffusion hypothesis (Eq. 2.37 and 2.38, on Page 23). However, as experimentally observed, the mean slip-velocity between the liquid and gas phases (Eq. 4.8) does not agree with this gradient hypothesis formulation. Indeed, if ūx,S ≫ ūy,S , and

∂ Ỹ ∂x ≪ ∂ Ỹ ∂y , then u ′′ i Y ′′ r r ∝ ∂ Ỹ ∂x i .
Throughout the whole set of simulation cases, the second order modelled equation for u ′′ i Y ′′ is solved, but not coupled (Eq. 2.39) with the actual mass transport Eq. 2.10. This is done to have an estimation on how a solution to this equation would behave, without the complications of a full coupling, which is analysed later.

From the experimental results, it can be seen that generally u ′′ Y ′′ ≫ v ′′ Y ′′ . Therefore, the solution for the second order modelling of u ′′ i Y ′′ should produce something like this. An analysis of the source terms at the RHS of Eq. 2.39 gives an insight on how the solution may react as a function of a subset of modelled parameters. Indeed, if the system is in equilibrium and the source and sink terms are dominant, then:

u ′′ i Y ′′ = Fi,D - C F 2 C F 4 (1-Ỹ )τ R u ′′ i u ′′ j ∂ Ỹ ∂x j - C F 1 C F 4 (1-Ỹ )τ R u ′′ j Y ′′ ∂ ũi ∂x j - C F 3 C F 4 (1-Ỹ )τ R Y ′′ ρ ∂ p ∂x i ; (4.29)
where Fi,D is the modelled drift velocity, simply expressed as Y mod 0 . From this, an approximation can be made, where ∂ ∂y ≫ ∂ ∂x and the pressure-gradient term is neglected, by simply making C F 3 = 0. Then, the axial and lateral components are:

u ′′ x Y ′′ = - C F 2 C F 4 (1 -Ỹ )τ R u ′′ x u ′′ y ∂ Ỹ ∂y - C F 1 C F 4 (1 -Ỹ )τ R u ′′ y Y ′′ ∂ ũx ∂y (4.30) u ′′ y Y ′′ = - ν t σ Y ∂ Ỹ ∂y - C F 2 C F 4 (1 -Ỹ )τ R ũ′′ y 2 ∂ Ỹ ∂y - C F 1 C F 4 (1 -Ỹ )τ R u ′′ y Y ′′ ∂ ũy ∂y (4.31)
From this approximation, it can be seen that there is a way to make u

′′ Y ′′ ≫ v ′′ Y ′′ .
But first, a good solution to for the equivalent mean diameter of droplets d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] is needed, by solving Eq. 2.45. This would create a big enough τ R close to the centerline, making the far most RHS terms important. And second, a subset of C F i parameters such as: C F 4 and C F 1 ≫ C F 2 are needed too.

To tackle the first point, the solution to the calculated d [START_REF] Jakirlic | A new approach to modelling near-wall turbulence energy and stress dissipation[END_REF] from the ρ Ω solution is shown in Figure 4.23, along with the d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] obtain from the DTV experimental measurements at

x/d n = 400. DTV: d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] x/d n = 400 From this alternative solution to u ′′ i Y ′′ , from now on called F i , the calculated mean-slip velocity can also be obtained. This is not a solution to the model however, it is the same Eq. 4.8, but using the F i solution. To explicitly show this effect, both formulations are contrasted using the same RSM case. The comparison between these two solutions is shown in Figure 4.25. Despite the good agreement on the mean velocity fields between the numerical and experimental results, the turbulent mass flux u ′′ i Y ′′ does not produce an adequate solution. However, the F i solution shows some improvement, where at least ūx,S > ūy,S . This is also true for the Reynolds stresses u ′′ i u ′′ j , where the strong anisotropy cannot be reproduced using this RANS formulation.

Using these results, a question arises. Could a good F i solution, coupled with the Reynolds stresses (via Σ i j , Eq. 2.26 on Page 21) generate a strong anisotropy. To investigate this, an analysis on the contributions to the Ri j equations is made. The objective is to identify how the anisotropy is generated and what would be the role of Σ i j in it.

To illustrate this effect, a first study case without any modification is detailed. It is based on the same R i j -ϵ i j model, with Y mod 0 : Case 312 (see page 38). From the Ri j equations, the contributions at the RHS of Eq. where, the first production is:

P i j = - ( u ′′ i u ′′ k ∂ ũ j ∂x k + u ′′ j u ′′ k ∂ ũi ∂x k ) ; (4.33)
and the second, variable density production:

1 ρ Σ i j = ( 1 ρ G - 1 ρ L ) [ u ′′ i Y ′′ ∂ p ∂x j + u ′′ j Y ′′ ∂ p ∂x i ] . (4.34) 
The modelled pressure-strain correlation is: All these contributions are shown in Figure 4.26, for the components R11 , R22 and R12 , along with the calculated P i j from the LDV Liquid and Gas campaigns. As the budget shows, the shear stress production does not seem to be a source of the anisotropy on its own. Moreover, the modelled Σ i j is a source term only in the R22 component, whatever the value in R11 . Even if a good solution for the turbulent mass flux u ′′ i Y ′′ were obtained, coupled with the main pressure gradient in the axial direction, Σ 11 would be negligible compared to the lateral part Σ 22 .

Φ i j = φ (sl ow)
This analysis shows that a correct Σ i j does not boost the anisotropy, it is the redistribution term that could play a significant role. Indeed, choosing a C 3 ≫ 0.75, all the contribution in the R22 component could be given to R11 . Despite that this variation might be a good start point to boost the anisotropy, this modification is not investigated in this work. 

Fully-coupled turbulent model

The full coupled turbulent model comes from the solution of Eq. 2.39 and the incorporation of this solution back to Eq. 2.12 and the momentum equation solver. All the system of equations is fully coupled. To do this, a detail on the solution of the second order modelled equation for

u ′′ i Y
′′ is given first. Later, some precisions are given about the numerical solver scheme, which are necessary to attain a stable and converged solution at each time-step.

As previously shown, the RHS of Eq. 4.40 is an important source term in the pressure Eq. 2.53 (see page [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF].

∂ ρ Ỹ ∂t + ∂ ρ ũi Ỹ ∂x i = - ∂ ρ u ′′ i Y ′′ ∂x i . ( 4 

.40)

In the second order model, u ′′ i Y ′′ are obtained by solving Eq. 2.39. Then, Eq. 4.40 could be solved by simply introducing this solution into the RHS. However, this situation is not numerically stable for an iterative solver, where the solution is calculated starting from the previous one. Without an implicit term in the diffusion part for Ỹ , it is only up to the numerical diffusion to maintain the equation in a parabolic form. To overcome this, a blended solution is proposed between Y mod 0 and Y mod 2 , where the fluxes are simply:

u ′′ i Y ′′ = F B u ′′ i Y ′′ Y mod 0 + (1 -F B ) u ′′ i Y ′′ Y mod 2 . ( 4.41) 
If this form is introduced into to Eq. 4.40, the final equation to solve is:

∂ ρ Ỹ ∂t + ∂ ρ ũi Ỹ ∂x i = F B ∂ ∂x i ( µ t σ Y ∂ Ỹ ∂x i ) -(1 -F B ) ∂ ρF i ∂x i ; (4.42)
where F i is the solution to Eq. 2.39 (Y mod 2 ) on Case 312, and F B = 0.1 is the blend parameter to set between the two modelled forms.

To compare with the previous model and experimental results, the axial velocity against radial distance at x/d n = 400 is presented in Figure 4.27. The results show no big improvement from the velocity field point-of-view. Indeed, the increase on the mean axial velocity is a direct consequence of the better representation of the axial slip-velocity ūx,S . However, as Figure 4.25 showed, the solution for the turbulent mass fluxes F i produces a negligible slip-velocity ūi,S , compared to the one obtained by LDV. The set of parameters used in the Y mod 2 solution is not carefully investigated. Despite that the choice made for Case 312 allows to generate a slip-velocity in the axial direction ( ūx,S ), contrary to Y mod 0 or Y mod 1 , a fine tuning of C F 1 , C F 2 , C F 3 and C F 4 may produce a better solution.

Finally, to see the overall behaviour of this modelling approach, the solution for centerline velocity ūx,0 , spreading (y 0.5u ) and centerline volume fraction Y 0 are shown in The effect produced on the mean spreading-rate and the centerline velocity decay-rate may not be significant. However, the increase of the slip-velocity is produced by the increase of the turbulent mass flux, modifying significantly the solution of the liquid volume fraction. This is not necessarily a bad solution, because the only experimental reference is the hypothesis that at the breakup point Y = 0.5, which may not be necessarily true in this liquid jet.

To combine and to solve this fully-coupled model approach requires a lot of considerations, from the modelling of the actual physics and from numerical stability. Originally, this approach is conducted to try to generate a more case-independent formulation, relying less on modelled quantities and the choice of parameters. However, these efforts seem not to pay off, as even a second-order closure model, fully coupled with the momentum solver also needs fine tuning.

on the budget inside the Ri j equations shows that the Σ i j production only works in the lateral R22 component. This result points out that maybe it is the redistribution part, modelled from the pressure-strain correlation, that might play a significant role in the source of the anisotropy. diameters.

• The numerical model seems to approach the experimental results when the mean velocity fields are contrasted. The calculated values for the centerline velocity decay rate and the spreading rate are in accordance with values found in the literature. However, no good agreement is found when comparing the fluctuating fields. Indeed, one of the main motivations of this work is the use of a RSM to take into account the anisotropy on the Reynolds stresses. However, several variations of this approach, even with a secondorder closure for the turbulent mass flux, do not seem to approach the experimentally found anisotropy, where R22 / R11 ∼ 0.05.

• A close analysis on the source mechanism that might produce the anisotropy of the Reynolds stresses in the RSM formulation is studied. If this effect is not present in constant density or slightly variable density flow, the mechanism of production must be a consequence of the large density ratio of this case (ρ L /ρ G = 828). By examining the source terms in the R i j equations from the RSM, the redistribution part of the variable density production term Σ i j , issued from the modelling of the pressure-strain correlation, seems to be a good candidate to investigate. The coupling of the mean pressure gradient and the turbulent mass fluxes, that generates Σ i j , seems to act only on the lateral R 22 component, no matter if a first-order or second-order formulation is used. This means that the redistribution part should be the only option to boost the anisotropy under this formulation.

Although the comparative analysis from the two approaches does not always give good results, it is considered that both add a good amount of information to the understanding of this study case. Nevertheless, there are several topics that could be treated to improve the analysis, such as:

• The calibration procedure on the shadow images is not applied to the measured droplet population. As the results show, the average and fluctuating quantities are strongly dependent on the granulometry. Therefore, a proper distribution of the droplet sizes must be obtained, by eliminating the biases related to the DOF and sizes estimation. However, if done so, more images would be needed to reconstruct a set of well converged average fields, since more droplets are likely to be rejected from the analysis.

• With a good estimation of the droplet population and distribution, a good estimation of the average liquid mass fraction Ỹ can be made from the shadow images. Stevenin [START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF] work shows a good agreement between the data acquired using an OP and the estimation made by the DTV system, where Y is estimated by placing the volume occupied by the droplets inside the calculated DOF.

• The data obtained by the LDV on the gas phase is considered to be only an estimation. Indeed, the contamination of liquid droplets inside the population of gas tracers events results induces an underestimation of the Liquid-Gas slip-velocity ūi,S . Newer LDV BSA systems allow to carefully discriminate events by the Doppler burst pedestal intensity.

The use of such a system could improve the accuracy and precision of the gas results, relying less on artificial filtering that might introduce several biases.

• Having a good droplet population and a solid estimation of ūi,S , the Stokes number St can be calculated by droplet class of diameter. This quantity would allow to have a better explanation on the droplet's response to turbulent fluctuations as a function of their sizes. This mechanism seems to be a good candidate to explain the strong anisotropy of the Reynolds stresses.

• From the analysis of the R i j equations budget, there is only one possible way to boost the anisotropy of the Reynolds stresses. The production term associated to the variable density formulation, Σ i j , is only significantly important in the lateral direction, despite that ūx,S ≫ ūy,S . Using only a linear pressure-strain correlation model, it is the redistribution part of Σ i j which could play a significant role in the anisotropy production.

Although there is no more information to support this, increasing C 3 ≫ 0.75 would kill the source term in the lateral direction, creating an artificial source in the axial one.

Based on these perspectives, to conduct a new study case would require a new measurement campaign, along with new simulation cases. To carry on these activities simultaneously is very time consuming, and would also require new experimental equipment and HPC availability.

Finally, as a general conclusion, a great amount of effort is put to carefully implement and to solve the numerical cases constructed, along with a detailed experimental campaign. These two activities, carried out simultaneously, allow to see the results from a perspective that gives a valuable feedback in both directions.

My My, Hey Hey -Neil Young (Out of the Blue)
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  , où la viscosité dynamique de mélange est simplement μ = Y µ L + (1 -Y )µ G (et ν = μ ρ ). La modélisation de la turbulence intervient dans la description viii Résumé de la thèse du tenseur de Reynolds u ′′ i u ′′ j et du flux turbulent de masse u ′′ i Y ′′ . Ce sont les seules quantités

  Les mesures par DTV sont effectuées par une technique d'ombroscopie. Un système Shadow-Strobe de Dantec-Dynamics est utilisé pour acquérir les images. Le système est composé d'une caméra CCD PIV/DTV HiSense 4M-C, avec une optique Canon MP-E 65 mm f/2.8, où une source laser Litron Nd-YAG de 135 m J (532 nm) est couplée avec un diffuseur/collimateur qui génère un fond d'image d'intensité lumineuse uniforme et non-cohérente. Des paires xii d'images (frames) sont acquises à une fréquence de f a = 5 H z, où le temps entre chaque frame est défini entre t bp = 5 -20 µs , en fonction de la vitesse moyenne des objets dans l'image qui varie suivant la distance au centre (y/d n = 0 -32). La résolution est de 139 pi x/mm, ce qui correspond à une taille d'image de 14.73 × 14.73 mm 2 (2048 × 2048 pix).

  montre une photo d'ombroscopie du spray, où l'algorithme par DTV est appliqué aux gouttes détectées dans l'image. L'estimation des tailles (contours) et vitesses (vecteurs) y est reportée. Dessin CAD de l'injecteur. (b) Mesures par LDV. (c) Post-process DTV.

FIGURE 1 -

 1 FIGURE 1 -Campagne expérimentale en utilisant une buse de d n = 1.2 mm.

  met en évidence le régime turbulent de rupture. La valeur expérimentale calculée à partir de la moyenne des images Lc d n = 219 est proche de celle estimée à partir de la relation Lc d n = 8.51W e 0.31 L = 203 (Sallam et al. [53]).

FIGURE 2 -

 2 FIGURE 2 -Ombroscopie au niveau de l'axe du jet : de x/d n = 0 jusqu'à x/d n = 800.

FIGURE 3 -

 3 FIGURE 3 -Histogrammes de vitesses et tailles de gouttes (pdf ) à x/d n = 800. LDV-Gaz, LDV-Liq et DTV.

  a) Vitesse axiale (SIM, LDV, DTV). Vitesse axiale par classe de goutte (DTV).

FIGURE 4 -

 4 FIGURE 4 -Campagne expérimentale en utilisant une buse de d n = 1.2 mm.

FIGURE 6 -

 6 FIGURE 6 -Tenseur de Reynolds en fonction de la distance radiale. Comparaison des modèles de turbulence vis-à-vis des résultats de LDV et DTV.

  Commercial sprinkler Rain Bird RB46. (b) Field irrigation using a RB46 array.

Figure 1 . 1 -

 11 Figure 1.1 -Sprinkler for irrigation purposes (Source: www.rainbird.fr).

Figure 1 . 2 -

 12 Figure 1.2 -Reynolds stresses anisotropy factor R22 / R11 (w ′ w ′ /u ′ u ′ ) from the DTV measurements performed by Stevenin [57].
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 113 Figure 1.3 -Round jet behaviour, stability curve of the breakup length L c as a function of the average liquid velocity at the nozzle ūJ . Region A: Dripping regime. Region B: Rayleigh regime. Region C: First wind-induced regime. Region D: Second wind-induced regime. Region E: Atomization regime. (from Dumouchel [16])
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 21 Figure 2.1 -Favre average operation over the liquid phase indicator Y and the fluid density ρ.

j

  is the Favre-averaged Reynolds stress tensor and u ′′ i Y ′′ the turbulent mass flux.

  .21) of pressure-dilatation and mean pressure work; being the last one exclusive to compressible flow, related to the turbulence length scale when passing through a shock-wave. The standard values for the model constants are C ϵ1 = 1.44 and C ϵ2 = 1.92. The pressuredilatation correlation is not modelled, so C ϵ3 = 0. The mean pressure work contribution counterpart uses C ϵ4 = 1.0. And for the last term, C ϵ5 = 1/3 in isotropic turbulence and C ϵ5 = 1.0 otherwise (see Chassaing et al. [8, pp. 301-302]). All these parameters are set in specific study-cases.

2 2 ≈

 2 0.082 k under the same boundary layer approximation, it yields a value of σ Y = 5.5 for the lateral diffusion.
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 48222 Figure 2.2 -OpenFOAM C++ code to solve the momentum conservation equation.

1 . 4 .

 14 Solve turbulence mass flux u Solve other variables (Σ).

2. 3 .

 3 Numerical modelparabolic and the simplification made in Eq. (2.53) does not apply.

Figure 2 . 3 -

 23 Figure 2.3 -Solution control for the customised solver implemented in OpenFOAM for each time-step ∆t .
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 24 Figure 2.4 -Parameters in finite volume discretization (from the OpenFOAM®Programmer's Guide 2.4.0).
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 25 Figure 2.5 -Schematic representation of the mesh, including boundary conditions.

Figure 2 . 6 -

 26 Figure 2.6 -Meshing strategy for a 3D case: Longitudinal slice (left) and transverse slice(right) near the injector nozzle.
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 238 The only parameter is C Y = 0.016. Case 232: RSM, Y-Mod2 • Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: C µ = 0.09, C S = 0.22, C 1 = 1.8, C 2 = 0.6, C 3 = 0.75, σ ϵ = 1.3, C ϵ1 = 1.60, C ϵ2 = 1.92, C ϵ3 = 0.0, C ϵ4 = 1.0, C ϵ5 = 1.0. • Turbulent mass-flux model: Y mod 2 , Eq. 2.39. The parameters are: σ Y = 5.5, σ F = 1.0,

Figure 2 . 7 -

 27 Figure 2.7 -Scalability test for the parallel decomposition of a simulation case.
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 28 Figure 2.8 -Mesh convergence analysis on the mean axial velocity using three different turbulence models. Radial profile at x/d n = 200.
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 152229 Figure 2.9 -Mesh convergence analysis on the Reynolds stresses using three different turbulence models. Radial profile at x/d n = 200.

6 YFigure 2 . 10 -

 6210 Figure 2.10 -Mesh convergence analysis on the liquid volume fraction using three different turbulence models. Radial profile at x/d n = 200.
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 13 The clean optical access also allows to verify that no cavitation is produced inside the glass tube. As an example, a shadow image next to the CAD (Computer Assisted Drawing) model of the nozzle is shown in Figure 3.1. Injector CAD design. (b) Shadow image at x/d n = 0, y/d n = 0.

Figure 3 . 1 -

 31 Figure 3.1 -Custom transparent d n = 1.2 mm nozzle components and real operating conditions.

Figure 3 . 2 -

 32 Figure 3.2 -Schematic representation of the hydraulic system connected to the injector.

Figure 3 . 3 -

 33 Figure 3.3 -Schematic of the 2-Component LDV set-up for measuring both the liquid and gas phases. The measurement volume size is shown next to the liquid round-jet dimensions for scale.

Figure 3 . 4 -Figure 3 . 5 -

 3435 Figure 3.4 -Drop-sizing and DTV post-processing on shadowgraph images at x/d n = 400, y/d n = 0: jet centerline (red), y/d n = 4 mark (orange line), droplets detected (coloured contours), velocity-vector (blue arrow) and equivalent diameter (d[START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] in µm) written next to each contour detected.
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 2236 Figure 3.6 -Convergence analysis of the Reynolds stresses on the liquid phase at [x/d n = 400, y/d n = 4].
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 2237 Figure 3.7 -Convergence analysis of the Reynolds stresses on the gas phase at [x/d n = 400, y/d n = 4].
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 38 Figure 3.8 -Schematic view of the measurement points for the LDV campaign in the study case.
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 310 Figure 3.10 -Shadow images at the jet centerline from x/d n = 0 to x/d n = 800.
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 311 Figure 3.11 -Probability distribution of the liquid column average breakup length Lc as a function of the normalised distance from the nozzle.
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 312 Figure 3.12 -Shadow image segmentation using MATLAB toolboxes. Image post-processing at [x/d n = 800, y/d n = 12].

  (a) Superposition of two consecutive shadow 12bit images using a t bp = 5 µs. m/s (b) Shadow-sizer and DTV post-processing. Contours at l = 61% and velocity vectors.

Figure 3 .

 3 Figure 3.14 -Custom DTV post-processing algorithm. Image centre at x/d n = 600, y/d n = 0.
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 315 Figure 3.15 -ThorLabs grid distortion target. 3in x 3in, 125 to 2000 µm grid spacings, soda lime glass.
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 316 Figure 3.16 -Calibration using a commercial optical target.

Figure 3 .

 3 Figure 3.16a shows the normalised contrast ratio C 0 (C , where C max = 1), for every disc real size, against the distance from the focal plane z. A difference on the response to the focal plane distance can be seen for every type of object, this generates a Depth-of-Field (DOF) as a function of the size of the object.
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 317 Figure 3.17 -Convergence analysis on the mean velocity by droplet's class diameters. Subimage count at [x/d n = 600, y = 0 mm].
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 318 Figure 3.18 -Convergence analysis on the Reynolds stresses by droplet's class diameters. Sub-image count at [x/d n = 600, y = 0 mm].
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 3321 Figure 3.20 -Super-resolution profile reconstruction by overlapping of sub-image data. Blue zones are kept, red are discarded. Example at x/d n = 600.

  LDV. Mean liquid axial velocity along the centerline ūL,x,0 and half-width y 0.5u from radial profiles. DTV. Mean liquid axial velocity along the centerline, ūx,0 and diameter-weighted d u x,0 / d0 ; and half-width y 0.5u from radial profiles.
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 41 Figure 4.1 -Mean velocity axial profiles from experimental observations.
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 42 Figure 4.2 -DTV. Mean liquid axial velocity along the centerline ūx,0 by droplets class diameters.
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 43 Figure 4.3 -Axial velocity profile against radial distance at x/d n = 0.

  Using centerline injection velocity ūJ,0 = 44 m/s.

Figure 4 . 4 -

 44 Figure 4.4 -Liquid centerline axial velocity decay rate against axial distance.

  Lateral gas velocity x/d n = 400 x/d n = 500 x/d n = 600 x/d n = 700 x/d n = 800

Figure 4 . 5 -

 45 Figure 4.5 -Velocity field from the Liquid and Gas LDV campaign. Profiles against radial distance from x/d n = 400 to x/d n = 800.

Figure 4 . 6 -

 46 Figure 4.6 -Mean axial and lateral velocities against radial distance. DTV radial profiles from x/d n = 400 to x/d n = 800.

  and 4.8 show the velocity against radial distance profiles, on all the measurement points, in absolute coordinates. The sub-figure analysis on the shadow images, along with a sufficient number of objects detected by class, allow the reconstruction of these detailed profiles.
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 47 Figure 4.7 -Mean axial velocity by droplet's class diameter against radial distance. DTV Average radial profiles from x/d n = 400 to x/d n = 800.

Figure 4 . 8 -

 48 Figure 4.8 -Mean lateral velocity by droplet's class diameter against radial distance. DTV Average radial profiles from x/d n = 400 to x/d n = 800.

  averaged Reynolds stresses (or Ri j ); • u ′ i ,L u ′ j ,L : Liquid Reynolds stresses (or Ri j ,L ); • u ′ i ,G u ′ j ,G : Gas Reynolds stresses (or Ri j ,G );
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 49 Figure 4.9 -Reynolds stresses against radial distance. LDV liquid, gas and slip components radial profiles at x/d n = 400 and x/d n = 800.

Figure 4 . 10 -

 410 Figure 4.10 -Shear stress over turbulent kinetic energy. LDV liquid and gas components. Radial profiles from x/d n = 400 to x/d n = 800.

. 16 )

 16 Therefore, a low anisotropy factor means a high anisotropy A R ≪ 1.0, and a value close to A R = 1.0 means an isotropic behaviour.
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 411 Figure 4.11 -Bi-variate histograms normalised as a pdf from LDV and DTV, at x/d n = 800 for: u x -u y , u x -d[START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] and u y -d[START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] .
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 412 Figure 4.12 -Reynolds stresses against radial distance. DTV Average and d-Average radial profiles from x/d n = 400 to x/d n = 800.
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 413 Figure 4.13 -Reynolds stresses against radial distance. DTV radial profiles by droplets' class diameters for x/d n = 400 and x/d n = 800.
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 415 Figure 4.15 -Reynolds stresses against radial distance. DTV and LDV radial profiles at x/d n = 800.
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 416 Figure 4.16 -Stokes number at the jet centerline by droplets' class of diameters from x/d n = 400 to x/d n = 800.
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 417 Figure 4.17 -Schematic representation of the 3D mesh, including boundary conditions.

  Velocity half-width x/d n > 400 : S = 0.047 x/d n > 400 : S = 0.030 x/d n > 400 : S = 0.018 x/d n > 400 : S = 0Liquid volume fraction centerline Y = 0.5 ⇒ L c /d n = 198 Y = 0.5 ⇒ L c /d n = 195 Y = 0.5 ⇒ L c /d n = 198 Shadow : L c /d n
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 418 Figure 4.18 -Turbulence models' benchmark compared to the Liquid LDV.

y 2 =

 2 0.082 k, then using the standard value of C Y = 0.1, Y mod 1 becomes Y mod 0 with σ Y = 5.5.
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 420 Figure 4.20 -Comparison of the Reynolds stresses against radial distance as a function of the turbulence model at x/d n = 800. Experimental LDV (liquid and gas) and DTV radial profiles are shown as a benchmark.
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 26421 Figure 4.21 -Epsilon equation budget against radial distance for two cases: (a) R i j -ϵ with C ϵ1 = 1.44 (Standard value); (b) R i j -ϵ with C ϵ1 = 1.60 (round-jet correction). Radial profiles at x/d n = 400.
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 422 Figure 4.22 -Mean axial velocity against radial distance as a function of C ϵ1 at x/d n = 400. Experimental LDV (liquid and gas) and DTV radial profiles are shown as a benchmark.
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 423 Figure 4.23 -Equivalent diameter of droplets population against radial distance. Radial profiles from simulations and DTV at x/d n = 400.
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 424 Figure 4.24 -Turbulent mass transport equation contributions budget against radial distance. Axial and radial components at x/d n = 400.
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 425 Figure 4.25 -Mean slip-velocity against radial distance as a function of Y mod at x/d n = 600. Experimental LDV slip-velocity shown as a benchmark.
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  2.23 are rewritten into the final modelled version and detailed next: = ρP i j + ρΦ i j + Σ i j -εi j .(4.32)

  rapid P i j -based redistribution (C 2 = 0.6): rapid Σ i j -based redistribution (C 3 = 0.75):

  ×10 -3 x/d n = 400 R 22 -Budget
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 426 Figure 4.26 -Reynolds stresses equations budget against radial distance at x/d n = 400 for the R i j -ϵ i j Y mod 0 case. Experimental LDV (liquid and gas) radial profiles are shown as a benchmark.
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 427 Figure 4.27 -Comparison of the mean axial velocity against radial distance as a function of Y mod at x/d n = 400. Experimental LDV (liquid and gas) and DTV radial profiles are shown as a benchmark.
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 428 Figure 4.28 -Turbulence mass transport models' benchmark. (a) Axial velocity along the centerline; (b) Axial velocity half-width; (c) Liquid volume fraction along the centerline.

  Table 1 sont construites pour comparer aux résultats numériques. Pour la DTV, deux types de moyennes sont calculées : pondérées ou non par le diamètre des gouttes.
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 1 Quantités moyennées à partir des données expérimentales.
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Autant la vitesse moyenne est très bien représentée par la modélisation U-RANS autant les champs turbulents ne le sont pas. En effet, l'énergie cinétique turbulente est correctement reproduite, mais sa distribution selon les composantes principales du tenseur de Reynolds est plus anisotrope que prévue. La Figure

6

montre un comportement très similaire à celui d'un jet gaz-gaz pour la composante 〈R〉 11 (voir Hussein et al.

[START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF]

). Par contre, la composante 〈R〉 22 est très faible, avec un facteur d'anisotropie 〈R〉 22 /〈R〉 11 ≈ 0.05. Ce résultat est similaire à celui trouvé par Stevenin et al.

[START_REF] Stevenin | Flow characteristics of a large-size pressure-atomized spray using DTV[END_REF]

, mais très différent à celui de El-Asrag and Braun

[START_REF] El-Asrag | Effect of turbulence non-isotropy modeling on spray dynamics for an evaporating Acetone spray jet[END_REF] 

dans un jet d'acétone ou celui de Ferrand et al.

[START_REF] Ferrand | Gas-droplet turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets[END_REF] 

dans un jet de gaz avec des particules.
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• Un cas d'étude à échelle réduite est correctement développé pour étudier l'atomisation d'un jet liquide, dans un régime proche de ceux rencontrés en irrigation et pulvérisation de pesticides. Les simplifications faites permettent d'assurer une compatibilité entre les simulations numériques et les mesures expérimentales afin de caractériser finement ce jet diphasique.
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Table 1 .

 1 

3 -Summary of the criteria for the cylindrical liquid jet fragmentation regimes. Region A: Dripping regime W e L < 8 Region B: Rayleigh regime W e L > 8 W e G < 0.4 or W e G < 1.2 + 3.41Oh 0.9 Region C: First wind-induced regime 1.2 + 3.41Oh 0.9 < W e G < 13 Region D: Second wind-induced regime 13 < W e G < 40.3 Region E: Atomization regime 40.3 < W e G

Table 1 .

 1 [START_REF] Beau | Modélisation de l'atomisation d'un jet liquide : application aux sprays Diesel[END_REF] -Experimental conditions used in the study performed by Stevenin[START_REF] Stevenin | Étude de l'atomisation d'un jet d'eau haute vitesse Application à l'irrigation par aspersion et à la pulvérisation[END_REF].

	Nozzle diameter	d n 4.37 mm
	Injection bulk velocity	ūL 22 m/s
	Density ratio	ρ L /ρ G 840
	Reynolds number	Re 97000
	Weber number	W e L 29000
	Ohnesorge number	Oh 0.0018

This would place the case in the Region D of the diagram. Moreover, based on the review by Sallam et al.

[START_REF] Sallam | Liquid breakup at the surface of turbulent round liquid jets in still gases[END_REF]

, the liquid breakup length L c should follow the following empirical relation:

Table 1 .

 1 

	ρ L	Water density	998.3	kg /m 3
	ρ G	Air density	1.205	kg /m 3
	ν			

5 -Physical properties of the study-case in SI-units at normal conditions. L Water kinematic viscosity 1.004x10 -6 m 2 /s ν G Air kinematic viscosity 15.11x10 -6 m 2 /s σ L-G Water-Air surface tension 0.073 N /m 3. Injection velocity: An injection average bulk velocity of ūJ = 35 m/s is selected. Along with the physical properties mentioned before, it yields the dimensionless numbers detailed in Table 1.6.

Table 1 .

 1 [START_REF] Boutier | Vélocimétrie laser pour la mécanique des fluides[END_REF] -Dimensionless numbers for the study-case conditions.

	Reynolds number	Re 41 833
	Weber number	W e L 20 158
		W e G 24.3
	Ohnesorge number	Oh 0.0034

Table 2

 2 .2.

Table 2 .

 2 2 -Spatial discretization methods used in the OpenFOAM solver.

	Type	Method	
	Temporal	Euler	Implicit for all temporal derivatives. 1st order
	Derivative		accurate in time.
	Convection	Upwind	Used in every model as a first approximation.
			Bounded, 1st order accurate in space.
		Limited vanLeer	Used in the mass fraction transport. Bounded, 2nd
			order accurate in space.
		Limited Linear	Used for the rest. Bounded/unbounded, 1st/2nd
			order accurate in space.
	Laplacian	Linear Limited	Corrected part not greater than 0.5 of the orthogo-
			nal part.
	Source	Linear Implicit	When the variable is involved.
		Linear Explicit	

Table 2 .
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Table 2 .

 2 3 -Boundary conditions expressed in OpenFOAM solver.

	Boundary	Variable	OpenFOAM Type
	Inlet	ũ0 : Velocity	fixedValue
		k0 : Turbulent kinetic energy	fixedValue
		ε0 : Turbulent dissipation rate	fixedValue
		Y 0 : Liquid volume fraction	fixedValue
		Ri j ,0 : Reynolds stresses	fixedValue
		p 0 : Pressure	zeroGradient
	Wall	ũw : Velocity	fixedValue
		kw : Turbulent kinetic energy	kqRWallFunction
		εw : Turbulent dissipation rate	epsilonWallFunction
		Y w : Liquid volume fraction	zeroGradient
		Ri j ,w : Reynolds stresses	kqRWallFunction
		p w : Pressure	zeroGradient
	Atmospheric ũa : Velocity	pressureInletOutletVelocity
		ka : Turbulent kinetic energy	inletOutlet
		εa : Turbulent dissipation rate	inletOutlet
		Y a : Liquid volume fraction	inletOutlet
		Ri j ,a : Reynolds stresses	inletOutlet
		p a : Pressure	totalPressure

  • Turbulent mass-flux model: Y mod 1 , Eq. 2.37. The only parameter is C Y = 0.016.

	Case 332: RSM, Y-Mod2

• Turbulence model: R i j -ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: C µ = 0.09,

Table 2 .

 2 To test the performance of the parallel simulation, one of the simulation cases is used as a test platform for scalability, where the speed-up of a parallel simulation cases is studied as a function of the parallel workers used. A series of sub-cases are created from it, by decomposing the simulation in a scaling number of nodes and giving them the same task. Case 112 is selected, and the task is to advance from the solution at t i = 0.1 s to t i = 0.11 s in a mesh size of 6 068 720 elements. The decomposition is detailed in Table2.4. 4 -Number of decomposed regions in the scalability test.

	HPC is a Bull machine called OCCIGEN (2015 model). It has a total of 50544 cores
	distributed in 2106 nodes, each one with 2 Intel 12-Cores processors (E5-2690 at 2.6 GHz) with
	64 or 128 GB of RAM. The operating system is a Linux based system, the BullX AE4 based on
	Redhat 6.4.
	The OpenFOAM version is v2.4.0 and is compiled in the OCCIGEN machine, along with the
	customised modules with every extra model implemented. The parallel jobs in OpenFOAM

communicate with each other via MPI (Message Passing Interface), where a custom BullxMPI version, already made available by CINES, is used.

Table 3 .

 3 1 -LDV BSA set-up for liquid and gas phases analysis.

	Configuration Laser Power PM Gain SNR	BP-Filter
	Water	0.6 W	600 V	4 dB Velocity-span based
	Oil	1.1 W	1200 V	8 dB Velocity-span based

Table 3 .

 3 2 -Convergence criteria for the LDV liquid points.

	Condition	Value
	Maximum Time	10 min
	Maximum number of points	10 6
	Residual on R12	10 -4

Table 3 .

 3 3 -Convergence criteria for the LDV gas points.

	Condition	Value
	Maximum Time	10 min
	Maximum number of points	10 6
	Residual on R12	10 -4

  [START_REF] Fdida | Développement d'un système de granulométrie par imagerie Application aux sprays larges et hétérogènes[END_REF], they tend to keep the jet bulk velocity ( ūJ = 35 m/s). This effect is shown by calculating the centerline velocity by class of droplet in Figure4.2.

		40					Class: d [30] < 0.100 mm Class: 0.100 mm < d [30] < 0.250 mm
							Class: 0.250 mm < d [30] < 0.500 mm
	ūx,0 (m/s)	20 30					Class: 0.500 mm < d [30] < 0.750 mm Class: 0.750 mm < d [30] < 1.000 mm Class: 1.000 mm < d [30]
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  [START_REF] Boutier | Vélocimétrie laser pour la mécanique des fluides[END_REF] and together with a high enough shear component R12 ∼ k/3, Y mod 1 becomes Y mod 0 .Good enough RSM and turbulent mass flux formulations would produce both a strong anisotropy factor and a low shear component. This would produce at the same time a low decay rate of the centerline axial velocity and a low spreading rate, as experimentally found (see Figures 4.1, 4.9 and 4.14).Having set the same turbulent mass flux model, as previously shown, how the Reynolds stresses are calculated seems to have a huge effect on the velocity field. This is explicitly shown in Figure4.20, where the Reynolds stresses are compared in the dispersed zone of the jet.
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  the principal components is completely different. Indeed, 〈R〉 11 component has a similar value compared to Hussein et al.[START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] or Amielh et al.[START_REF] Amielh | Velocity near-field of variable density turbulent jets[END_REF] cases, while 〈R〉 22 simulation results does not seem to approach the very low experimental values.

	2	(〈R〉 11 + 〈R〉 22 + 〈R〉 33 ) ≈	1 2	(〈R〉 11 + 2〈R〉 22 ) ;	(4.24)
	the distribution between			

The OpenFOAM Foundation: www.openfoam.org

• Shadow images are acquired to run a custom DTV algorithm. From this technique, the droplets sizes and velocity distribution are obtained, a more detailed piece of information than the one inferred from the average liquid LDV. A strong relation of the droplets distribution with both average and turbulent velocity fields is found. This means that a correct estimation of the DOF is crucial to get an accurate velocity field. To tackle this incertitude, a calibration procedure is carried out using a calibrated target. Some of the experimental results are shown in this chapter as an example. This is done to show how the set-up is done and how the raw data from the LDV and DTV are integrated into the construction of the averaged fields.
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Summary

The general framework of this study is presented in this chapter. More specifically, the use of sprinklers in agriculture, like water jets for irrigation or some specific nozzles for pesticides spraying. From this point-of-view, the following points could summarise this chapter:

• The study of sprinklers in agriculture leads to the study of the atomization process of liquids. Like in other applications, the flow is almost always turbulent, meaning that the analysis is centred on the fragmentation of the liquid under turbulent conditions.

• The understanding of this multiphase flow is tackled by experiments and numerical simulations. The turbulent nature of the flow induces a large spectrum of scales of motion, making both experimental and numerical studies hard to accomplish.

• A short literature review reveals the advantage of the use of a simplified study case. This case is finally a water round jet injected into still air. The cylindrical nozzle diameter is d n = 1.2 mm, with a length of L n /d n = 50. The injection average bulk velocity is ūJ = 35 m/s, placing the atomization process in a turbulent second-wind induced regime.

• Similar to previous experimental and numerical studies conducted at IRSTEA Montpellier Centre, LDV and DTV experimental techniques are used to capture the velocity fields of both liquid and gas phases in the flow. Whereas from the numerical simulation part, due to the large spatial dimension size of the problem, an Eulerian mixture RANS turbulence approach is used to simulate the flow.

Summary

From the subjects developed thorough this chapter, the following points could summarise the work:

• An Eulerian mixture multiphase model is used to describe the original two-phase flow in a liquid atomization problem. The model is an extension from the original work proposed by Vallet et al. [START_REF] Vallet | Development of a eulerian model for the "atomization" of a liquid jet[END_REF], which has been tested in several atomization cases by other authors.

• The focus is centred on the turbulence modelling of the flow. Several U-RANS turbulence models are used, like k -ϵ and some variations of RSM. The influence on the modelling of some expressions, within those turbulence models, is the main study subject, most noticeably those related to the variable density description of the mixture flow.

• A custom numerical solver is implemented using the OpenFOAM CFD code. This approach allows to build a coupling between the whole system of equations that describe the flow. The main feature is the modified PISO loop, inside the momentum equation solver, allowing it to be compatible with the turbulent mass flux while keeping the phase-incompressible nature of the solver.

• A set of study cases is created to test the behaviour of this possible set of equations.

The cases describe an unsteady solution (U-RANS approach), so they consume a lot of computational resources. For this, a HPC cluster solution is used to run the cases.

A good mesh convergence is found, along with an optimisation in the use of parallel computing resources.

Part of the results are presented within this chapter, the first part of them can be seen on the mesh test analysis. However, the logical choice for the study cases follows the experimental observations presented next, in Chapter 3.

The behaviour of the average velocity and turbulent fields drives the cases configuration. For this reason, the overall results are shown in a combined numerical-experimental analysis in Chapter 4.

presents a lower anisotropy than the liquid phase, meaning that it is the liquid phase which generates this behaviour.

To investigate further on the source, the DTV data is used. Since the strong anisotropy and low shear components seem to be maintained throughout the whole dispersed domain, an analysis at x/d n = 800 is presented. The joint pdf s between the velocity components and the droplet's diameters are shown in Figure 4.11 at several radial distances from the centerline, where using the sub-image partition, the pdf s are constructed by picking the central slices on each value.

To compare using the whole database, Liquid and Gas LDV are shown on nearly the same measurement points. The first row corresponds to the LDV Gas (not available at the centerline); the second row is the LDV Liquid; and the rest are from DTV, decomposed as the pdf s by velocity component as a function of the droplet equivalent diameter (d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ). It is clear that the local dispersion by class of diameters behaves in a very different way on both axes, this is confirmed by looking at the same pdf shape from the LDV campaign.

The change in the fluctuating behaviour for both velocity components can be seen at the same time in the Liquid and Gas phases. As the distance from the centerline increases, a tendency to a more isotropic behaviour can be seen in both the liquid and the gas. By looking at the decomposition by droplet diameter, it seems that the presence of big droplets close to the centerline generates a long spectrum of variation for the axial velocities, whereas a less intense effect is seen in the lateral component.

From this, the Reynolds stresses are obtained using the same averaging procedure used for the mean velocity estimation: thus, a simple average and a diameter-weighted average. Ri j flagged as Average, using ūi as a centre value from Eq. 4.3, is simply:

and d-Average is calculated as a weighted average by the droplet d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] diameter, using ūi from Eq. 4.4, meaning:

The results are shown in Figure 4.12, where the same similitude representation appears using the calculated ūx,0 and y 0.5u as normalisation parameters, from the corresponding velocity fields. Once more, no matter the type of average, the profiles fit well a similar relation. Moreover, the profiles show the same behaviour as those previously obtained by LDV. However, as expected, the diameter-weighted average produces an impact on the results. As the previous pdf s show in Figure 4.11, large droplets present little agitation compared to the smaller ones. This effect is studied by reconstructing the Reynolds stresses by class of diameter. The averaging procedure is a simple arithmetic average inside the class (k), meaning that the values are centred using ūi,(k) (Eq. 4.5):

and shown in Figure 4.13. Since, ūx,0 and y 0.5u are not defined by class of diameter, the Reynolds stresses are presented in absolute values, at x/d n = 400 and x/d n = 800.

A clear different behaviour can be observed from the analysis by class of diameter. The shear and transverse components seem to be more important for very small diameter droplets, following the gas phase turbulence (see Figure 4.9). This is consistent with the observations made by Ferrand et al. [START_REF] Ferrand | Gas-droplet turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets[END_REF] in a particle-laden jet, who explains this behaviour using the calculated Stokes number (St ) by class of diameter.

Finally, using these values for the reconstructed Ri j , the anisotropy factor R22,(k) / R11,(k) by class is constructed and presented in Figure 4.14. These results clearly differs from the gas-gas jet of Hussein et al. [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] or the particle-laden jet of Ferrand et al. [START_REF] Ferrand | Gas-droplet turbulent velocity correlations and two-phase interaction in an axisymmetric jet laden with partly responsive droplets[END_REF], where a high anisotropy is found on the bigger class of particles (d p = 80 -90 µm). Here, the anisotropy seems to reach its maximum in the 100 µm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 250 µm and 250 µm < d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] ≤ 500 µm class, at the more fragmented part of the jet. In contrast, very Finally, the comparison for the axial turbulent intensity √ 〈R〉 11,0 /〈u〉 x,0 is shown in Figure 4. 18-(d). Contrary to the mean values, the choice of parameters on the LDV set-up seems to have a big impact on the calculated fluctuating quantities. Indeed, at x/d = 400, a change in the PM sensitivity is made, resulting in a jump of the calculated turbulent intensity. To avoid damaging the PMs, from x/d = 0 to x/d = 400 the gain can not be set to a higher value, resulting in a biased fluctuating field, as the system is unable to capture small droplets events.

The first observation that can be made is about the momentum diffusion comparison between the three model approaches. As expected, the introduction of a RANS model that takes into account some anisotropy on the Reynolds stresses plays a significant role in the overall results. As Figure 4.18 shows, the R i j -ϵ i j simulation case presents a small decay-rate of the axial centerline velocity ũx,0 , bringing the results closer to the experimental points. The explanation on the mechanism of these results is explained later using the Reynolds stresses fields. Because of the U-RANS formulation, and since the solution is taken at a given time, t = 0.3 s, it can be seen in Figure 4.18-(c) that there is a residual unsteadiness of the solution. Indeed,

Summary

The combined results from the experimental campaigns and the numerical simulations are presented in this chapter. From this, the following points could summarise the analysis:

• The experimental results obtained from the LDV and DTV campaigns are presented first. From this analysis, some basic parameters like the axial velocity decay-rate and the spreading rate are calculated. These values are compared to the behaviour of other cases from the literature. Although the density ratio of this case study is high (ρ L /ρ G = 829), these results seem to be in accordance with other liquid round-jets cases, like in diesel injectors.

• The reconstruction of the velocity and fluctuation fields is based on the two separate LDV campaigns, the aim is to capture the liquid phase and gas phase around it. To complement, the DTV provides a fine decomposition of the liquid fields, by class of droplet sizes. The results show a non-negligible average slip-velocity ūi,S between the phases. This quantity plays a significant role in the reconstruction of the Favre-averaged Reynolds stresses.

• From the reconstruction of liquid and gas Reynolds stresses, a low anisotropy factor of the principal components is found on both phases, meaning a high anisotropy. In the liquid part, this value can be as small as R22,L / R11,L ∼ 0.05, whereas in the gas phase, it can reach R22,G / R11,G ∼ 0.1. These results differ significantly from the ones found in constant density round jets, where R22 / R11 ∼ 0.6. The decomposition of the fluctuating fields by class of droplets gives a clue on the mechanism that might produce this behaviour. Indeed, the results show a drastic change in the anisotropy factor: big droplets seem to keep the same fluctuating energy from the liquid core, but a high velocity as well; as the jet breaks into droplets of smaller sizes, they seem to be more and more affected by the slip-velocity between the big droplets and gas phase, creating a wider band for the fluctuations to operate in the axial direction; finally, the smallest droplet group (d [START_REF] Hussein | Velocity measurements in a high-Reynoldsnumber, momentum-conserving, axisymmetric, turbulent jet[END_REF] < 100µm) seems to follow purely the gas phase fluctuations, at the external zones of the gas entrainment. Some authors explain this behaviour by calculating the Stokes number St , however, this analysis is not presented here.

• The experimental results serve as a baseline to compare the constructed simulation cases. The analysis is centred on the behaviour of a RSM turbulence formulation, nevertheless, a basic k -ϵ model is also shown for comparison purposes. The velocity field obtained using the RSM turbulence is very close to the experimental observations, however, this result is obtained assuming a very low anisotropy factor, following the experimental observations. This transforms into a very high turbulent Schmidt number of σ Y = 5.5, which is far from the most common use of σ Y ≈ 0.9.

• Despite the inclusion of variable density effects into the RSM model, even with the use of a second-order solution for the turbulent mass fluxes u ′′ i Y ′′ , the high anisotropy experimentally observed can not be reproduced in the simulation cases. An analysis

Summary, conclusions and perspectives

This short chapter is purely dedicated to the general conclusions of this work. Although a series of partial conclusions are already presented on each chapter, the general view presented here is made to wrap-up the combined experimental and numerical approaches.

The study of the performance of sprinklers/sprayers in agricultural applications is a continuous development research. New regulations aim to both reduce water consumption on irrigation applications, and to minimise ambient pollution when crop protection products are applied to cultures. These research subjects are carried out at IRSTEA Montpellier centre, where technical, normative, experimental and theoretical approaches are developed in conjunction with public and private institutions.

The experimental and numerical approaches treated here are only one small part of the vast research applied to agricultural sprinklers/sprayers at IRSTEA in collaboration with IRPHE. From these particular activities, the following points are extracted to summarise and to conclude this work:

• Based on previous observations, and to simplify the experimental conditions, a particular case scenario is created to study the atomization and dispersion on an agriculturallike jet, where purified water is injected into stagnant air. From this, a circular nozzle of diameter d n = 1.2 mm and length L c /d n = 50 is created. The injection average bulk velocity is set to ūJ = 35 m/s. This geometry, fluid properties and operating conditions produce a turbulent atomization regime.

• The atomization and dispersion are first investigated using numerical CFD simulations.

Here, the liquid jet is represented as a variable-density single-fluid Favre-averaged mixture. Since the size of the problem is relatively big, compared to other applications like fuel injectors, the advantage of such modelling technique is that there is no need to represent every length scale present on the flow, therefore saving on computational resources, but at the expense of model completeness.

• The mixture model is successfully implemented using the OpenFOAM CFD code. It allows to represent the solution in an arbitrary 3D mesh, running under a custom U-RANS solver. The flexibility of the programming philosophy behind the code allows to easily implement several turbulence models: k -ϵ and RSM ; both including variable density effects from the mixture model. Also, first-order and second-order closures for the turbulent mass flux are implemented in a fully coupled solver. The quasi-multiphase approach is tackled by the use of a transport equation for the mean interface area per unit volume quantity.

• To have a benchmark baseline for the model, an experimental campaign is carried out. LDV and Shadowgraphy optical techniques are used to measure the mean velocity and fluctuating fields. LDV is used to capture the liquid field and the gas around it, by seeding small olive-oil particles as tracers. In a separate campaign, DTV from the shadow images is applied to the disperse part of the jet, x/d n > 400, adding more information to the liquid phase related to the distribution of droplet sizes.

• A very specific LDV configuration is used to perform the data acquisition on each phase. A first measurement campaign is performed only in the liquid, where the results are assimilated to the velocity and fluctuating fields of the jet's liquid phase. For the gas phase, since the liquid droplets might interfere with the olive-oil tracers, some considerations have to be taken. First, it is found that the Doppler signal detected from the relatively big water droplets (d > 30 µm) is considerably higher than the one produced by the small olive-oil tracers (d ∼ 1 µm), making the threshold of the LDV burst signal a good candidate to separate the gas from the liquid signal. Although the available LDV equipment does not allow to perform such separation, a combined narrow BP-Filter, higher acceptable SNR and higher sensitivity on the PM gain allow to eliminate most of the droplet events captured along with the tracers. The resulting signal is not completely depurated from the liquid droplets. However, having the LDV results only in the liquid phase as a comparison, these are considered to be closer to the expected behaviour of a gas velocity signal, and not from a mixture of liquid droplets and gas tracers. This combined technique allows to reconstruct the liquid and gas velocity fields along with the Reynolds stresses within an acceptable margin of error.

• Shadow images are used to run a custom DTV algorithm developed and implemented in MATLAB. A shadow strobe system from Dantec Dynamics is used to capture the projected shadow of the liquid jet/droplets into a high-speed CCD camera. The first part of the algorithm detects and extracts droplet's contours from the acquired 12-bit grey-scale shadow images, even if they are out-of-focus. The second part performs a matching between the centroids of these contours to estimate the velocity from two consecutive frames. To account for the out-of-focus droplets, a calibration procedure is performed on opaque discs of a known diameter. This procedure gives an equivalent diameter correction for the out-of-focus objects, along with their relative position as a function of the detected contrast ratio and edge gradient. The results of the DTV algorithm are the velocity and fluctuating fields, decomposed by the estimated droplets