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Abstract
A typical water round-nozzle jet for agricultural applications is presented in this study. The

dispersion of a liquid for irrigation or pesticides spraying is a key subject to both reduce

water consumption and air pollution. A simplified study case is constructed to tackle both

scenarios, where a round dn = 1.2mm nozzle of a length Ln = 50dn is considered. The

injection velocity is chosen to be ū J = 35m/s, aligned with gravity, placing the liquid jet in a

turbulent atomization regime. The flow is considered statistically axisymmetric. Experimental

and numerical approaches are considered.

An Eulerian mixture multiphase model describes the original two-phase flow. Several U-

RANS turbulence models are used: k − ϵ and RSM; where special attention is taken to the

modelling of variable density effects from the mixture formulation. A custom numerical solver

is implemented using the OpenFOAM CFD code. A series of study cases are constructed to

test the influence of the turbulence modeling and first/second-order closures of the turbulent

mass fluxes.

LDV and DTV optical techniques are used to gather statistical information from both the liquid

and the gas phases of the spray. The experimental campaign is carried out from x/dn = 0 to

800. Concerning the LDV, small (∼ 1µm) olive-oil tracers are used to capture the gas phase,

where a distinction between the liquid droplets and tracers is achieved by a specific set-up of

the laser power source and the burst Doppler setting (BP-Filter and SNR). On the dispersed

zone, DTV measurements are carried out to measure velocities and sizes of droplets. Special

attention to the depth-of-field (DOF) estimation is taken in order to obtain a less biased

droplet’s size-velocity correlation.

Numerical and experimental results show good agreement on the mean velocity field. A

strong dependence on the turbulence model is found. However, the RSM does not capture

the same behaviour on the calculated Reynolds stresses. Indeed, neither the experimental

anisotropy (u
′2
y /u

′2
x ≈ 0.05), nor the liquid-gas slip-velocity can be reproduced, even with

a second-order closure for the turbulent mass fluxes. The strong density ratio (water/air),

flow’s directionality and production of turbulent kinetic energy may be the cause of a weak

dispersion and mixing between the two fluids. This mechanism is not yet clarified from a RSM

modeling point-of-view.

Key words: Liquid Jet, Atomization, Mixture, RANS, Turbulence, LDV/DTV
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Résumé
L’atomisation d’un jet circulaire d’eau typique des applications agricoles est présentée dans

cette étude. Maîtriser la dispersion de l’eau à des fins d’irrigation ou de traitements phytosani-

taires implique de réduire la consommation d’eau et la pollution de l’environnement. Un cas

d’étude simplifié est construit : une buse ronde dn = 1.2mm et d’une longueur Ln = 50dn y

est considérée. La vitesse d’injection est fixée à ū J = 35m/s et alignée avec la gravité, plaçant

le jet liquide dans un régime d’atomisation turbulent. L’écoulement est statistiquement

axisymétrique. L’approche est à la fois expérimentale et numérique.

Un modèle multiphasique Eulérien de mélange décrit l’écoulement constitué de deux phases.

Plusieurs modèles de turbulence U-RANS sont utilisés : k − ϵ et RSM. Une attention parti-

culière est alors portée à la modélisation des effets de masse volumique variable issus de la

formulation du fluide de mélange. Un solveur numérique spécifique est développé à l’aide du

code CFD OpenFOAM. Une série de cas d’étude est construite pour tester l’influence de la

modélisation de la turbulence et des fermetures de premier/second-ordre des flux massiques

turbulents.

Les techniques optiques (LDV et DTV) sont déployées pour recueillir des informations sta-

tistiques des phases liquide et gazeuse du spray. La campagne expérimentale est réalisée de

x/dn = 0 jusqu’à 800. En ce qui concerne la LDV, des gouttelettes d’huile d’olive (∼ 1µm)

permettent d’analyser la phase gazeuse. Une distinction entre les gouttes de liquide et ces

traceurs est obtenue par une configuration spécifique de la source laser et le paramétrage de

la détection des bouffées Doppler (Filtre-BP et le SNR). Dans la zone dispersée, les mesures

par DTV permettent d’estimer les vitesses et les tailles des gouttes. Une attention particulière

est portée à l’estimation de la profondeur de champ (DOF) afin d’obtenir une corrélation

taille-vitesse des gouttes moins biaisée.

Les résultats numériques et expérimentaux concordent pour le champ de vitesse moyenne.

Une forte dépendance au modèle de turbulence est trouvée. Cependant, le modèle RSM

ne simule pas le comportement du tenseur de Reynolds. En effet, ni l’anisotropie trouvée

expérimentalement (u
′2
y /u

′2
x ≈ 0.05), ni la vitesse de glissement liquide-gaz ne peuvent être

reproduites ; même avec une fermeture au 2nd -ordre des flux massiques turbulents. Le fort

rapport de masse volumique (eau/air), la directionnalité de l’écoulement et la production

d’énergie cinétique turbulente peuvent être à l’origine d’une faible dispersion et d’un faible

mélange entre les deux fluides. Ce mécanisme n’est pas encore clarifié du point de vue de la

modélisation RSM.

Mots clefs : Jet Liquide, Atomisation, Mélange, RANS, Turbulence, LDV/DTV
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Résumé de la thèse
Introduction
Une étude sur l’atomisation des jets liquides, pour des applications agricoles, est abordée

dans cette thèse. L’étude de ce type d’écoulements est importante non seulement pour réduire

la consommation d’eau dans le cas de l’irrigation, mais aussi pour limiter la pollution de

l’environnement liée à la pulvérisation de produits phytosanitaires.

Dernièrement, de nombreux travaux ont été réalisés dans ce champ d’application. Ils s’ap-

puient sur des modélisations numériques et/ou des mesures expérimentales. L’objectif est

toujours de mieux connaître l’écoulement pour prédire son comportement dans des situations

particulières (Al Heidary et al. [1], Salcedo et al. [52], De Luca [11], Belhadef et al. [5], Stevenin

et al. [59, 58]).

L’approche numérique permet d’examiner de nombreux cas d’étude plus rapidement que les

expériences. Par contre, la validité de cette approche est souvent bornée par des simplifications

ou sous-modèles, et principalement par l’incapacité de décrire un cas d’étude avec toutes les

complexités d’une application réelle.

L’objectif de cette thèse est donc de concevoir un cas d’étude particulier, où une approche

numérique et expérimentale puisse permettre d’analyser l’atomisation d’un jet liquide, simi-

laire à celui d’une buse agricole. L’accent est mis sur l’écoulement moyenné et la turbulence,

décrite par le tenseur de Reynolds, où une forte anisotropie est mise en évidence par Stevenin

[57].

Méthodologie
Cas d’étude
Un cas d’étude simplifié est construit pour générer un écoulement dans le régime d’atomi-

sation, ce qui correspond aux cas d’irrigation ou de pulvérisation. Le même cas d’étude est

utilisé aussi bien pour les simulations numériques que pour la campagne expérimentale. Des

simplifications sont faites pour rendre plus compatibles les conditions aux limites entre les

expériences et les cas simulés .

Une buse ronde de diamètre dn = 1.2mm est alors construite avec une longueur Ln = 50dn

pour assurer un écoulement développé à l’intérieur. La buse est alignée avec la gravité (vers le

bas) ; l’écoulement est alors statistiquement axisymétrique. Le fluide de travail est de l’eau

déminéralisée, injectée dans l’air au repos, où toutes les propriétés physiques sont considérées

sous conditions normales (20°C, 1 atm). L’injecteur est construit en verre borosilicate, ce qui
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Résumé de la thèse

donne un accès optique à l’écoulement interne et impose une rugosité de paroi négligeable.

La vitesse débitante d’injection est fixée à ū J = 35m/s. Avec les propriétés physiques et la

géométrie de la buse, le nombre de Reynolds au point d’injection est ReL = ū J dn

νL
= 41833, et le

nombre de Weber W eG = ρG ū2
J dn

σL−G
= 24.3. Cette condition génère un écoulement turbulent à

l’intérieur de la buse et un régime d’atomisation turbulent en sortie. La rupture/fragmentation

du liquide est alors pilotée par la turbulence de l’écoulement, devant les effets aérodynamiques

(Dumouchel [16]).

L’écoulement à deux phases est étudié par modélisation numérique et par des techniques

expérimentales. Une approche U-RANS (Unsteady Reynolds Averaged Navier-Stokes Equations)

est choisie pour décrire l’écoulement de mélange, en moyenne de Favre. L’aire interfaciale

du liquide-gaz est décrite par un modèle Eulérien . Pour comparer avec le modèle, des

mesures par les méthodes optiques de LDV (Vélocimétrie Laser Doppler - Laser Doppler

Velocimetry) et DTV (Vélocimétrie par Suivi des Gouttes - Droplet Tracking Velocimetry)

par images d’ombroscopie sont effectuées. Une comparaison entre les deux approches est

construite en regard des champs de vitesse moyens et turbulents.

Modélisation
Pour décrire le fluide à deux phases, une formulation Eulérienne mono-fluide de mélange

est utilisée (Vallet et al. [60], Demoulin et al. [14], Beau [4], Lebas et al. [40], Duret et al. [17]).

Cette approche est valide sous deux conditions : le nombre de Reynolds de l’écoulement doit

être suffisamment grand, donc la turbulence est prédominante ; et le nombre de Weber est

grand aussi, ce qui permet de négliger les forces interfaciales devant le mélange turbulent

du liquide-gaz. Ces hypothèses permettent d’avoir recours à une seule équation pour la

conservation de la quantité de mouvement et la conservation de la masse. Cependant, une

équation supplémentaire est nécessaire pour décrire le mélange turbulent des deux phases,

considéré ici en moyennes de Favre :

∂ρ̄

∂t
+ ∂ρ̄ũi

∂xi
= 0; (1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũi ũ j

∂x j
=− ∂p̄

∂xi
+ ρ̄gi +

∂τ̃i j

∂x j
−
∂ρ̄�u ′′

i u
′′
j

∂x j
; (2)

∂ρ̄Ỹ

∂t
+ ∂ρ̄ũi Ỹ

∂xi
=−∂ρ̄

�u ′′
i Y ′′

∂xi
. (3)

Le système d’équations est décrit en coordonnées cartésiennes (i = 1,2,3) où les variables

sont en unités-SI. Dans les équations, ũi est la vitesse de mélange, p̄ la pression moyenne,

Ỹ la fraction massique du liquide et gi la force de gravité. La masse volumique de mélange

s’exprime à partir de celles du liquide et du gaz ρ̄ = Y ρL + (1−Y )ρG , où la fraction volumique

de liquide est Y = ρ̄Ỹ
ρL

. Le tenseur des contraintes visqueuses moyennes est considéré très

petit devant la turbulence, mais il est retenu et pris en compte à partir de la formulation de

Stokes τ̃i j = µ̄
(
∂ũi
∂x j

+ ∂ũ j

∂xi
− 2

3
∂ũk
∂xk

δi j

)
, où la viscosité dynamique de mélange est simplement

µ̄= Y µL + (1−Y )µG (et ν̄= µ̄
ρ̄ ). La modélisation de la turbulence intervient dans la description
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Résumé de la thèse

du tenseur de Reynolds �u ′′
i u

′′
j et du flux turbulent de masse �u ′′

i Y ′′ . Ce sont les seules quantités

qui ont besoin de modèles de fermeture. Dans cette formulation Eulérienne de l’atomisation

de jets liquides, une équation supplémentaire est nécessaire pour décrire le transport de l’aire

interfaciale liquide-gaz par unité de volume ρ̄Ω̃. Cette quantité permet d’avoir une estimation

de la taille moyenne des gouttes en fonction du diamètre moyen de Sauter d̄[32].

Turbulence

Deux formulations RANS sont considérées : k −ϵ et Ri j −ϵ. La première, k-Epsilon (k −ϵ), est

une transposition directe du modèle original de Jones and Launder [34] sous une formulation

à masse volumique variable (voir Chassaing et al. [8]). Le tenseur de Reynolds s’exprime alors

suivant :

−ρ̄�u ′′
i u

′′
j +

2

3
ρ̄k̃δi j =µt

(
∂ũi

∂x j
+ ∂ũ j

∂xi
− 2

3

∂ũk

∂xk
δi j

)
; (4)

où µt =Cµρ̄
k̃2

ϵ̄ est la viscosité turbulente de mélange, décrite avec un modèle à deux équations

où Cµ = 0.09 est une constante de proportionnalité. Les deux équations sont : une pour

l’énergie cinétique turbulente (k̃) ; et l’autre pour le taux de dissipation de k̃ (ϵ̄).

∂ρ̄k̃

∂t
+ ∂ρ̄ũi k̃

∂xi
= ∂

∂x j

[(
µ̄+ µt

σk

)
∂k̃

∂x j

]
− ρ̄�u ′′

i u
′′
j

∂ũi

∂x j
− ρ̄ϵ̄+ ρ̄

(
1

ρg
− 1

ρl

) �u ′′
i Y ′′ ∂p̄

∂xi
; (5)

∂ρ̄ϵ̄

∂t
+ ∂ρ̄ϵ̄ũi

∂xi
= ∂

∂xi

[(
µ̄+ µt

σϵ

)
∂ϵ̄

∂xi

]
−Cϵ1

ϵ̄

k̃
ρ̄�u ′′

i u
′′
j

∂ũi

∂x j
−Cϵ2ρ̄

ϵ̄2

k̃

+Cϵ3
ϵ̄

k̃
p ′ ∂u

′′
k

∂xk
−Cϵ4

ϵ̄

k̃
ρ̄

(
1

ρg
− 1

ρl

) �u ′′
i Y ′′ ∂p̄

∂xi
−Cϵ5ρ̄ϵ̄

∂ũk

∂xk
;

(6)

où Cϵ1 = 1.60 (voir Dally et al. [9]), Cϵ2 = 1.92, Cϵ3 = 0.0 (n’est pas modélisé), Cϵ4 = 1.0 et

Cϵ5 = 1.0 (voir Chassaing et al. [8]). Les nombres de Schmidt turbulents sont σk = 1.0 et

σϵ = 1.3.

De la même façon, le deuxième modèle avec une fermeture au second ordre correspond à une

version à masse volumique variable du RSM (Reynolds Stress Model, Ri j −ϵ), originalement

proposée par Launder et al. [39] :

∂ρ̄�u ′′
i u

′′
j

∂t
+
∂ρ̄ũl

�u ′′
i u

′′
j

∂xl
− ∂

∂xl

⎡⎣CS ρ̄
k̃

ϵ̄
�u ′′

l u
′′
k

∂�u ′′
i u

′′
j

∂xk

⎤⎦= ρ̄Pi j + ρ̄Φi j +Σi j − ε̄i j . (7)

Pour le terme diffusif, on impose CS = 0.22. Le terme de production est séparé en deux parties.

Le premier reste celui d’origine :

Pi j =−
( �u ′′

i u
′′
k

∂ũ j

∂xk
+ �u ′′

j u
′′
k

∂ũi

∂xk

)
; (8)
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Résumé de la thèse

et le deuxième ne tient compte que des variations de masse volumique couplant le flux

turbulent de masse avec le gradient pression :

Σi j = ρ̄
(

1

ρg
− 1

ρl

)[ �u ′′
i Y ′′ ∂p̄

∂x j
+�u ′′

j Y ′′ ∂p̄

∂xi

]
. (9)

Un modèle linéaire pour la corrélation des fluctuations pression-déformationΦi j est utilisé

selon la formulation suivante (Rotta [50], Launder et al. [39], Vallet et al. [60]) :

Φi j =φ(sl ow)
i j +φ(r api d ,P )

i j +φ(r api d ,Σ)
i j

=−C1
ϵ̄

k̃

(�u ′′
i u

′′
j −

2

3
k̃δi j

)
−C2

(
Pi j − 1

3
Pl lδi j

)
−C3

1

ρ̄

(
Σi j − 1

3
Σl lδi j

)
;

(10)

où φ(sl ow)
i j est le terme de retour à l’isotropie, avec C1 = 1.8 ; et φ(r api d)

i j est l’isotropisation des

termes de production, avec C2 = 0.6 et C3 = 0.75.

Finalement, le taux de dissipation (ϵ) est modélisé par l’équation 6, mais deux variations sont

étudiées pour modéliser le tenseur du taux de dissipation (ε̄i j ). La première option est de

prendre les termes diagonaux, ce qui fait une équivalence parfaite avec le taux de dissipation

de k̃. La deuxième option est de faire apparaître un facteur d’anisotropie dans la dissipation,

comme dans la formulation proposée par Rotta [50]. Ces deux variations s’expriment suivant :

ε̄i j = 2

3
ρ̄ϵ̄δi j ; ou (11)

ε̄i j = ρ̄
�u ′′

i u
′′
j

k̃
ϵ̄. (12)

Avec cette dernière considération, la modélisation RSM est alors appelée Ri j − ϵ quand la

première formulation de base est utilisée, et Ri j −ϵi j quand l’anisotropie est prise en compte

dans ε̄i j .

Flux turbulent de masse

Trois types de modélisation sont considérés pour décrire �u ′′
i Y ′′ : deux variations d’une ferme-

ture au premier ordre ; et une fermeture au second ordre où une équation de transport est à

résoudre pour les flux.

Pour la fermeture au premier-ordre, les deux formulations suivantes sont retenues, appelées

Ymod0 et Ymod1 respectivement (Belhadef et al. [5]) :

−ρ̄ �u ′′
i Y ′′ = µt

σY

∂Ỹ

∂xi
; (13)

−ρ̄ �u ′′
i Y ′′ =CY ρ̄

k̃

ϵ̄
�u ′′

i u
′′
j

∂Ỹ

∂x j
. (14)

Au lieu de la valeur standard pour le nombre de Schmidt turbulent σY ≈ 0.9, une valeur modi-

fiée est proposée par Stevenin et al. [59], en fonction d’un facteur d’anisotropie important dans
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le tenseur de Reynolds, trouvé expérimentalement. En effet, si ∂Ỹ
∂x2

≫ ∂Ỹ
∂x1

, et la composante

principale dans la direction radiale est ũ
′′
2

2 ≈ 0.082k̃, Ymod1 devient Ymod0 avec σY ≈ 5.5.

Le modèle de fermeture au second ordre, appelé Ymod2, est basé sur la formulation proposée

par Beau [4]. Une équation de transport est résolue pour �u ′′
i Y ′′ . Le modèle inclut une descrip-

tion des forces de traînée en fonction de la taille des particules (gouttes) dans l’écoulement :

∂ρ̄ �u ′′
i Y ′′

∂t
+ ∂ρ̄ũ j

�u ′′
i Y ′′

∂x j
= ∂

∂x j

⎛⎝ µt

σF

∂�u ′′
i Y ′′

∂x j

⎞⎠
−CF 1ρ̄

�u ′′
j Y ′′ ∂ũi

∂x j
−CF 2ρ̄

�u ′′
i u

′′
j

∂Ỹ

∂x j
−CF 3Y ′′ ∂p̄

∂xi
+CF 4F Dr ag ,i ;

(15)

où CF 1 = 4.0, CF 2 = 0.1, CF 3 = 0.0, CF 4 = 4.0 et σF = 0.9.

La traînée est calculée à partir de la formulation de Schiller-Naumann. Le coefficient de traînée

est fonction du nombre de Reynolds basé sur la vitesse de glissement vue par le gouttes :

F Dr ag ,i =− ρ̄Ỹ

τR

(
ūi ,L − ūi ,G − ūi ,D

)
; (16)

τR = ρLd 2
L

18µG

(
1+0.15Re0.687

d

)−1
; (17)

Red = ∥ūi ,L − ūi ,G − ūi ,D∥dL

νG
; (18)

ūi ,D = 1

Ỹ (1− Ỹ )

νt

σY

∂Ỹ

∂xi
; (19)

où dl est une longueur caractéristique représentant le diamètre de la population de gouttes,

prise comme le diamètre équivalent d[32] du modèle ρ̄Ω̃. La vitesse de dérive ūi ,D est calculée

en utilisant le modèle au premier ordre Ymod0.

Transport de l’aire interfaciale

Pour le transport de l’aire interfaciale moyenne par unité de volume ρ̄Ω̃, la version décrite par

Lebas et al. [40] est retenue. Des simplifications sont faites en négligeant les termes liés à la

collision/coalescence et au changement de phase :

∂ρ̄Ω̃

∂t
+ ∂ρ̄Ω̃ũi

∂xi
= ∂

∂xi

(
µt

σΩ

∂Ω̃

∂xi

)
+αρ̄Ω̃ϵ̄

k̃

(
1− Ω̃

Ω̃∗

)
; (20)

où Ω̃∗ est la valeur d’équilibre quand W e∗ = 1.0 (Duret et al. [17]) :

Ω̃∗ = 4
0.5(ρL +ρG )Y (1−Y )k̃

σρ̄W e∗
. (21)

Les paramètres du modèle sont ceux par défaut, donc α= 1.0 et σΩ = 1.0. De la même façon

que dans le modèle original proposé par Vallet et al. [60], Ω̃ est lié au diamètre moyen de

xi
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Sauter d[32] par la relation suivante :

d[32] = ρLY

ρ̄Ω̃
. (22)

Solveur numérique

Le système d’équations est codé dans un solveur qui utilise la bibliothèque des outils Open-

FOAM. Une modification dans la boucle PISO (solveur de la pression) est ajoutée pour prendre

en compte la divergence non nulle de la vitesse en moyenne de Favre. Cet ajout induit un

couplage direct entre le modèle de flux turbulent de masse et la QDM.

Comme le cas est résolu de façon non-stationnaire (Modèle U-RANS), un temps de simulation

de t = 0.3 s est choisi pour l’ensemble des calculs. Ce temps est suffisant pour avoir une

solution établie dans tout le domaine considéré : de x/dn =−50 dans la buse (injection en

amont), en passant par x/dn = 0 (sortie de la buse), jusqu’au x/dn = 1500 dans le domaine

d’atomisation.

Un test de maillage est effectué pour s’assurer que les résultats, pour l’ensemble des modèles

considérés, sont indépendants de la taille des mailles. Un maillage hexaédrique est alors

construit dont le nombre de mailles est de l’ordre de 6×106. Les conditions aux limites et

initiales sont dérivées du cas d’étude expérimentale (vitesse débitante ū J = 35m/s d’eau i.e.

Y J = 1) et sont imposées à x/dn =−50, avec une intensité turbulente de It = 4%.

Les cas de simulation sont calculés sur un cluster HPC au CINES sous l’allocation c20152b7363

et c20162b7363 du GENCI (Grand Équipement National de Calcul Intensif) en France.

Campagne expérimentale
Les techniques de mesure optiques LDV et DTV par ombroscopie sont utilisées pour caractéri-

ser l’atomisation du jet décrit précédemment (Figure 1b et 1c).

Le système LDV est fourni par Dantec Dynamics (LDV-2C). Une source laser ion-argon de

488nm@1.8W et 514.5nm@2.8W Coherent 306S permet de mesurer les deux composantes

de vitesse. Une optique de 310mm de distance au plan focal est utilisée comme émetteur,

et de 400mm pour le récepteur. Les deux sont écartées d’un angle de 55°, ce qui permet de

maximiser le taux d’acquisition. L’analyseur de spectre des bouffés Doppler (BSA) est un

modèle P60, également fourni par Dantec-Dynamics.

Les mesures par LDV sont effectuées en deux campagnes différentes : une pour mesurer dans

la phase liquide ; et l’autre pour mesurer dans la phase gazeuse, en utilisant des gouttelettes

d’huile d’olive (d ∼ 1−2µm) comme traceurs (Figure 1b). Dans ce dernier cas, une configura-

tion particulière du BSA permet de différencier la vitesse purement du gaz de celle des gouttes

d’eau qui se trouvent dans le mélange (Mychkovsky et al. [43] [42]).

Les mesures par DTV sont effectuées par une technique d’ombroscopie. Un système Shadow-

Strobe de Dantec-Dynamics est utilisé pour acquérir les images. Le système est composé d’une

caméra CCD PIV/DTV HiSense 4M-C, avec une optique Canon MP-E 65 mm f/2.8, où une

source laser Litron Nd-YAG de 135m J (532nm) est couplée avec un diffuseur/collimateur

qui génère un fond d’image d’intensité lumineuse uniforme et non-cohérente. Des paires
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d’images (frames) sont acquises à une fréquence de fa = 5 H z, où le temps entre chaque frame

est défini entre tbp = 5−20µs , en fonction de la vitesse moyenne des objets dans l’image qui

varie suivant la distance au centre (y/dn = 0−32). La résolution est de 139 pi x/mm, ce qui

correspond à une taille d’image de 14.73×14.73mm2 (2048×2048 pix).

Cette méthode est basée sur les travaux de Yon [65], Fdida et Blaisot [20] et Stevenin et al. [58]

pour l’estimation de tailles de gouttes dans un spray poli-disperse. Les vitesses sont calculées

à partir de l’algorithme SoftAssign proposé par Gold et al. [24]. Cet algorithme a été adapté et

implémenté lors de ces travaux en utilisant le Image Processing Toolbox de MATLAB, à l’aide

d’une carte graphique nVidia CUDA. La Figure 1c montre une photo d’ombroscopie du spray,

où l’algorithme par DTV est appliqué aux gouttes détectées dans l’image. L’estimation des

tailles (contours) et vitesses (vecteurs) y est reportée.

Entrée

Liquide

Sortie

Buse

PMMA

Corps

Verre borosilicate

Capillaire 1.2 mm int.

Acier Inox 8 mm

connecteur rapide

Prise

Capteur de pression

(a) Dessin CAD de l’injecteur. (b) Mesures par LDV. (c) Post-process DTV.

FIGURE 1 – Campagne expérimentale en utilisant une buse de dn = 1.2mm.

Résultats et analyse
Les premiers résultats expérimentaux sont analysés pour définir les paramètres de base

caractérisant le comportement des jets. Le premier est l’estimation de la longueur de rupture

du coeur liquide L̄c . À partir d’une analyse similaire à celle de Wu et Faeth [63] et Hoyt et Taylor

[29], la Figure 2 met en évidence le régime turbulent de rupture. La valeur expérimentale

calculée à partir de la moyenne des images L̄c
dn

= 219 est proche de celle estimée à partir de la

relation L̄c
dn

= 8.51W e0.31
L = 203 (Sallam et al. [53]).

FIGURE 2 – Ombroscopie au niveau de l’axe du jet : de x/dn = 0 jusqu’à x/dn = 800.

Dans la zone dispersée du jet (de x/dn = 400 jusqu’à x/dn = 800), des profils radiaux sont
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acquis par LDV et DTV. L’analyse conjointe des vitesses et tailles de gouttes issue de la

campagne expérimentale est montrée à la Figure 3, où des histogrammes (normalisés en

pdf ) sur un profil radial à x/dn = 800 sont construits. Ces résultats mettent en évidence

l’existence d’une forte vitesse moyenne de glissement entre les deux phases. En plus, en

fonction de leur taille, les gouttes réagissent de façon très différente à la turbulence. À partir

de ces informations, les quantités moyennes décrites dans la Table 1 sont construites pour

comparer aux résultats numériques. Pour la DTV, deux types de moyennes sont calculées :

pondérées ou non par le diamètre des gouttes.

TABLE 1 – Quantités moyennées à partir des données expérimentales.

Méthode Quantité moyennée Formule

LDV-Liq. Vitesse ūi ,L = 1
n

∑n
k=1 ui ,{k∈Li q}

T. de Reynolds R̄i j ,L = 1
n

∑n
k=1

(
ui ,{k∈l i q} − ūi ,L

)(
u j ,{k∈l i q} − ū j ,L

)
LDV-Gaz Vitesse ūi ,G = 1

n

∑n
k=1 ui ,{k∈Gas}

T. de Reynolds R̄i j ,G = 1
n

∑n
k=1

(
ui ,{k∈g as} − ūi ,G

)(
u j ,{k∈g as} − ū j ,G

)
DTV Vitesse ūi = 1

n

∑n
k=1 ui ,k

T. de Reynolds R̄i j = 1
n

∑n
l=1

(
ui ,l − ūi

)(
u j ,l − ū j

)
Vitesse pondérée ūi ,d =

∑n
k=1 d[30],k ui ,k∑n

k=1 d[30],k

T. de Reynolds pondé-

rée

R̄i j ,d =
∑n

l=1 d[30],l (ui ,l−ūi )(u j ,l−ū j )∑n
l=1 d[30],l

Vitesse par classe ūi ,(k) = 1
n

∑n
l=1 ui ,{l∈(k)}

T. de Reynolds par

classe

R̄i j ,(k) = 1
n

∑n
l=1

(
ui ,{l∈(k)} − ūi ,(k)

)(
u j ,{l∈(k)} − ū j ,(k)

)

TABLE 2 – Partition de la population de gouttes par classe de diamètre.

Classe 1 : d[30] ≤ 0.10mm

Classe 2 : 0.10mm < d[30] ≤ 0.25mm

Classe 3 : 0.25mm < d[30] ≤ 0.50mm

Classe 4 : 0.50mm < d[30] ≤ 0.75mm

Classe 5 : 0.75mm < d[30] ≤ 1.00mm

Classe 6 : 1.00mm < d[30]

Les campagnes de mesure par LDV du liquide-gaz sont comparées à celle de la DTV. La façon

de construire les quantités moyennes a une influence sur les résultats dans la représentation

de la phase liquide. Le volume de mesure de la LDV est petit par rapport à l’aire d’intégration

des données de DTV, ce qui la rend plus précise dans l’espace . Pour avoir une précision

supplémentaire dans la DTV, une décomposition en sous-images est effectuée, où les gouttes

détectées sont reparties dans 5 divisions horizontales dans l’image. En plus, pour caractériser

le comportement des gouttes en fonction de leur taille, le classement détaillé dans la Table 2

est utilisé.
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FIGURE 3 – Histogrammes de vitesses et tailles de gouttes (pdf ) à x/dn = 800. LDV-Gaz, LDV-Liq
et DTV.

Les résultats issus, des cas de simulation, des différentes façons de représenter les moyennes

de la DTV et de la LDV, sont présentés à la Figure 4. La portée du jet est caractérisée par

le taux de décroissance de la vitesse sur l’axe. Ruffin et al. [51] ont mis en évidence que
ũx,0

ũ j
= 1

A

(
dn

x−x0

)(
ρL

ρG

)b
, avec b = 0.5 pour un jet gaz-gaz à masse volumique variable, où A ≈ 0.2.
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Ici, on obtient A = 0.021 par LDV et A = 0.019 par DTV, calculés à partir de x/dn > 400.

L’étalement du jet est caractérisé par le paramètre S = ∂y0.5u

∂x , où la demi-largeur de la vitesse

est définie telle que ūx,L(x, y = y0.5u) = ūx,L,0/2. Ces valeurs (A et S) sont proches de celles

estimées par Stevenin et al. [58] : A = 0.027 et S = 0.024.
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(a) Vitesse axiale (SIM, LDV, DTV).

0 0.2 0.4 0.6 0.8 1

x (m)

0

10

20

30

40

y
0
.5
u
(m

m
)

S = 0.047

S = 0.030

S = 0.018

S = 0.020

S = 0.021

S = 0.026
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(c) Vitesse axiale par classe de goutte (DTV).

FIGURE 4 – Campagne expérimentale en utilisant une buse de dn = 1.2mm.

Si on considère que la vitesse moyenne calculée à partir de la LDV est la plus précise sur l’axe

du jet, l’écart par classe de goutte observée en DTV, met en évidence que, selon la taille, les

gouttes vont réagir de façon différente à la turbulence de l’écoulement. Le modèle Ri j −ϵi j

semble être le plus proche des résultats expérimentaux. Cette observation est confortée par la

figure 5, où les profils radiaux de vitesse axiale sont comparés. La vitesse axiale de mélange ũx

doit être une combinaison de la vitesse de la phase liquide ūx,L et du gaz ūx,G , en fonction de

la fraction massique Ỹ . Cette dernière quantité est également montrée à la figure 5, mais issue

de la modélisation, comme point référentiel.

xvi



Résumé de la thèse
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Rij − ǫij : ũx
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LDV : ūx,G
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FIGURE 5 – Composante axiale de la vitesse moyenne en fonction de la distance radiale.
Comparaison des modèles de turbulence vis à vis des résultats de LDV et DTV.

Autant la vitesse moyenne est très bien représentée par la modélisation U-RANS autant les

champs turbulents ne le sont pas. En effet, l’énergie cinétique turbulente est correctement

reproduite, mais sa distribution selon les composantes principales du tenseur de Reynolds

est plus anisotrope que prévue. La Figure 6 montre un comportement très similaire à celui

d’un jet gaz-gaz pour la composante 〈R〉11 (voir Hussein et al. [30]). Par contre, la composante

〈R〉22 est très faible, avec un facteur d’anisotropie 〈R〉22/〈R〉11 ≈ 0.05. Ce résultat est similaire à

celui trouvé par Stevenin et al. [58], mais très différent à celui de El-Asrag and Braun [18] dans

un jet d’acétone ou celui de Ferrand et al. [21] dans un jet de gaz avec des particules.
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FIGURE 6 – Tenseur de Reynolds en fonction de la distance radiale. Comparaison des modèles
de turbulence vis-à-vis des résultats de LDV et DTV.

En se focalisant sur l’analyse du modèle Ri j −ϵi j , avec une fermeture au second ordre pour
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�u ′′
i Y ′′ , une possible source de cette anisotropie peut être la représentation de Σi j (Éq. 9).

En effet, la vitesse de glissement moyenne est directement liée au flux turbulent de masse,

avec ūi ,L − ūi ,G =
�u′′

i Y ′′

Ỹ (1−Ỹ )
, et pourtant, lié au terme de production Σi j . Par contre, à cause

du gradient de pression, c’est seulement le glissement radial qui intervient de manière

prépondérante. Aussi, Σi j n’est pas en cause. Une possible explication pourrait provenir

du terme de production Pi j . Cependant, ce terme est correctement estimé en fonction de

la composante 〈R〉12 et du champ de vitesse 〈u〉1. C’est pour cela que nous remettons en

cause le rôle de la redistribution φ
(r api d ,Σ)
i j qui ne permet pas, dans sa formulation actuelle,

de diminuer la composante 〈R〉22 au profit de 〈R〉11. Cette dernière hypothèse n’a pas pu être

explorée dans le cadre de ces travaux.

Conclusions
Les points suivants résument les travaux réalisés au cours de cette thèse et ouvrent sur leurs

perspectives :

• Un cas d’étude à échelle réduite est correctement développé pour étudier l’atomisation

d’un jet liquide, dans un régime proche de ceux rencontrés en irrigation et pulvérisation

de pesticides. Les simplifications faites permettent d’assurer une compatibilité entre les

simulations numériques et les mesures expérimentales afin de caractériser finement ce

jet diphasique.

• Un modèle U-RANS de mélange eau/air est implémenté à l’aide des outils CFD Open-

FOAM pour étudier le cas évoqué. La flexibilité du code permet d’explorer correctement

les différents modèles de turbulence et flux turbulent de masse, avec une approche

Eulerienne pour la description de l’interface liquide-gaz. Une stratégie de solution est

proposée dans l’algorithme numérique, ce qui permet d’avoir une solution compatible

avec les équations à masse volumique variable, dans un cas de mélange diphasique

incompressible.

• Pour la campagne expérimentale, des mesures par LDV et DTV sont effectuées. La

mesure de la vitesse par LDV permet d’estimer les champs de vitesse moyenne et

fluctuante dans les deux phases du jet (liquide/gaz). Par ailleurs, la technique de

DTV permet de désagréger l’information du liquide (champs de vitesse moyenne et

fluctuante) par taille de gouttes. L’ensemble de ces données, obtenues par LDV et DTV,

permet de comparer le comportement de ce jet liquide avec les cas de simulation.

• Le comportement dynamique de ce type de jet, décrit par les champs moyens de

vitesse, est très différent des jets monophasiques gaz-gaz. La géométrie et le régime

d’atomisation produisent une faible décroissance de la vitesse sur l’axe et un faible

taux d’étalement du jet. Malgré cela, ces comportements sont bien capturés avec un

modèle de turbulence de type RSM. Sur les champs turbulents, un comportement très

diffèrent selon la taille de gouttes est trouvé pour la contrainte de Reynolds, où le facteur

d’anisotropie peut atteindre 〈R〉22/〈R〉11 ≈ 0.05. D’un point de vue numérique, cette

anisotropie ne peut pas être bien représentée, ce qui oblige à utiliser un nombre de
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Schmidt turbulent assez grand pour le flux turbulent de masse σY = 5.5.

• Les perspectives de ces travaux sont évoquées en fonction des améliorations sur la

précision des résultat expérimentaux et l’exploration de nouveaux cas d’étude numé-

riques. Du coté expérimental, des nouveaux systèmes LDV permettraient de faire une

distinction plus précise dans un écoulement diphasique gaz/liquide. L’usage de ce

nouveau système sur une configuration de jet similaire à celle-ci parait pertinente, à la

fois pour valider les résultats obtenus, mais aussi pour tester l’efficacité de cette nouvelle

technique. Les statistiques sur la population de gouttes obtenues par DTV nécessitent

une calibration par rapport à la profondeur de champ. Cette méthode a été mise en

oeuvre dans cette thèse mais les corrélations taille/profondeur de champ et corrections

des contours en fonction des gradients de niveaux de gris n’ont pas été appliquées aux

données DTV. En effet, si la distribution de la population de gouttes est modifiée par la

calibration, les champs de vitesse et de fluctuations doivent l’être également. Aussi, une

telle correction n’est pas triviale et nécessite de plus amples recherches. Finalement,

du coté numérique, une possible source pour augmenter l’anisotropie du tenseur de

Reynolds est proposée : modifier le terme de redistribution dans le modèle turbulence

RSM (φ(r api d ,Σ)
i j ) pourrait permettre d’approcher les résultats expérimentaux.
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4.19 Liquid mass fraction Ỹ field in a mid-plane (z = 0) cutout. Solution from t = 0.1 s

to t = 0.3 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.20 Comparison of the Reynolds stresses against radial distance as a function of the

turbulence model at x/dn = 800. Experimental LDV (liquid and gas) and DTV

radial profiles are shown as a benchmark. . . . . . . . . . . . . . . . . . . . . . . . 92

4.21 Epsilon equation budget against radial distance for two cases: (a) Ri j −ϵ with

Cϵ1 = 1.44 (Standard value); (b) Ri j − ϵ with Cϵ1 = 1.60 (round-jet correction).

Radial profiles at x/dn = 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.22 Mean axial velocity against radial distance as a function of Cϵ1 at x/dn = 400.

Experimental LDV (liquid and gas) and DTV radial profiles are shown as a

benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.23 Equivalent diameter of droplets population against radial distance. Radial

profiles from simulations and DTV at x/dn = 400. . . . . . . . . . . . . . . . . . . 96

xxv



List of Figures

4.24 Turbulent mass transport equation contributions budget against radial distance.

Axial and radial components at x/dn = 400. . . . . . . . . . . . . . . . . . . . . . . 96

4.25 Mean slip-velocity against radial distance as a function of Ymod at x/dn = 600.

Experimental LDV slip-velocity shown as a benchmark. . . . . . . . . . . . . . . 97

4.26 Reynolds stresses equations budget against radial distance at x/dn = 400 for the

Ri j −ϵi j Ymod0 case. Experimental LDV (liquid and gas) radial profiles are shown

as a benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.27 Comparison of the mean axial velocity against radial distance as a function of

Ymod at x/dn = 400. Experimental LDV (liquid and gas) and DTV radial profiles

are shown as a benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.28 Turbulence mass transport models’ benchmark. (a) Axial velocity along the

centerline; (b) Axial velocity half-width; (c) Liquid volume fraction along the

centerline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xxvi



List of Tables
1 Quantités moyennées à partir des données expérimentales. . . . . . . . . . . . . xiv

2 Partition de la population de gouttes par classe de diamètre. . . . . . . . . . . . xiv

1.1 Physical properties of a phase-incompressible two-phase flow in SI-Units. . . . 7

1.2 Operating conditions of a phase-incompressible two-phase flow. . . . . . . . . . 7

1.3 Summary of the criteria for the cylindrical liquid jet fragmentation regimes. . . 8

1.4 Experimental conditions used in the study performed by Stevenin [57]. . . . . . 9

1.5 Physical properties of the study-case in SI-units at normal conditions. . . . . . 10

1.6 Dimensionless numbers for the study-case conditions. . . . . . . . . . . . . . . . 10

2.1 Integration and interpolation methods used in the OpenFOAM solver. . . . . . 33

2.2 Spatial discretization methods used in the OpenFOAM solver. . . . . . . . . . . 34

2.3 Boundary conditions expressed in OpenFOAM solver. . . . . . . . . . . . . . . . 35

2.4 Number of decomposed regions in the scalability test. . . . . . . . . . . . . . . . 40

2.5 Mesh configurations for the mesh solution convergence test. . . . . . . . . . . . 41

3.1 LDV BSA set-up for liquid and gas phases analysis. . . . . . . . . . . . . . . . . . 51

3.2 Convergence criteria for the LDV liquid points. . . . . . . . . . . . . . . . . . . . 53

3.3 Convergence criteria for the LDV gas points. . . . . . . . . . . . . . . . . . . . . . 54

3.4 Partition of droplets population by class of diameter. . . . . . . . . . . . . . . . . 63

xxvii





Nomenclature
Greek alphabet

Σ Mean liquid/gas interface surface per unit volume
[
m2 ·m−3

]
Ω̃ Mean liquid/gas interface surface per unit mass

[
m2 ·kg

]
τi j Viscous constraint tensor

[
kg ·m−1 · s−2

]
ϵ Turbulent kinetic energy dissipation rate

[
m2 · s−3

]
ρ Density

[
kg ·m−3

]
ν Kinematic viscosity

[
m2 · s−1

]
µ Dynamic viscosity

[
kg ·m−1 · s−1

]
σL−G Liquid-gas surface tension

[
N ·m−1

]
δi j Kronecker tensor [−]

Latin alphabet

x, y, z Cartesian axial distance [m]

ui Velocity vector
[
m · s−1

]
Ri j Reynolds stresses tensor

[
m2 · s−2

]
Fi Turbulent mass flux vector

[
m · s−1

]
k Turbulent kinetic energy

[
m2 · s−2

]
g Gravity acceleration

[
m · s−2

]
p Pressure [Pa]
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Introduction

This doctoral thesis is a product of the joint collaboration between the Institut de Recherche

sur les Phénomènes Hors Equilibre (IRPHE) and the Institut National de Recherche en Sciences

et Technologies pour l’Environnement et l’Agriculture (IRSTEA). All activities are carried out at

IRSTEA Montpellier Centre, under the particular research topics at the UMR ITAP (Unité Mixte

de Recherche Information – Technologies – Analyse environnementale – Procédés agricoles)

and UMR G-Eau (Unité Mixte de Recherche Gestion de l’Eau, Acteurs, Usages). This doctoral

thesis is partially financed by a fellowship from the Chilean government CONICYT Becas Chile.

The study subject of this thesis is the atomization of liquids in agricultural applications. Al-

though this is not explicitly treated in this work, there are two main research topics accounted.

From one side, on the use of pesticides sprayers for crop protection: to minimise problems

due to the transport of polluting agents from the treated crops to air, water and ground. And

in another side, on the optimisation of water usage for irrigation: to improve the efficiency of

sprinklers that simulate the natural irrigation made by rain, limiting loses and heterogeneity.

Both study subjects are not treated from any specific application point-of-view. Instead, a

generic case is created to investigate the atomization and dispersion of a liquid jet, which

may share some elements with the original subjects, like the type of fluid and operating

regimes (geometry, flow-rate and pressure). These similarities and the justification for the

construction of this study case are presented in Chapter 1, where a simplified water round

nozzle is conceived. In particular, the importance of conducting experimental and numerical

approaches at the same time.

A choice is made on the type of flow modelling and numerical simulations. This is addressed

in Chapter 2, where the specific approach of a mixture RANS turbulence modelling is used.

The numerical method to solve the flow equations is also detailed, where a custom solver is

built using the OpenFOAM CFD code. Although the experimental observations are introduced

later, the construction of the numerical simulation cases is made in accordance with the

experimental results.

The experimental campaign is presented in Chapter 3. Two main optical non-intrusive

techniques are used to measure in both liquid and gas phases. The objective is to estimate

the velocity field and droplet’s sizes. LDV measurements are carried out first, where the main
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challenge is to capture separately the liquid from the gas acquisitions. To measure the droplet

sizes and velocities, a custom DTV algorithm is constructed and applied to shadow images

of droplets in the dispersed region of the jet. Using the data from the two experimental

measurement techniques, the mean and fluctuating velocity fields are estimated, along with

the droplet’s sizes distribution.

The comparison between the results from the experimental and numerical approaches is

presented in Chapter 4. Several parameters like the axial velocity decay-rate and the spreading

rate of the jet are compared with numerical model cases. A focus is made on the reconstruction

of the Reynolds stresses by class of droplet sizes and role of the mean liquid-gas slip-velocity

as a source of anisotropy seen by the particular turbulence modelling.

A final set of conclusions are given in Chapter 4.2.4, along with some perspectives on some

specific subjects that are not treated in this work, and that may be useful to improve the

analysis for such atomization study.
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1 General context

Introduction

The general framework on which this study is conducted is presented in this chapter. From

the general use of atomisers in agricultural application to the underlying physics within. Since

this doctoral thesis is focused on experimental and numerical techniques, applied to the

atomization of liquid jets, the focus is on the review of such applications.

The general context is placed on the importance of the understanding of the fine behaviour of

technological applications such as sprinklers for irrigation and pesticides sprayers for crop

protection. Upon this, it focuses on the great effort that current experimental and numerical

simulation techniques are being developed and used to better understand the atomization of

liquids in agricultural applications.

From the atomization point-of-view, a state of the art is presented from a larger application

spectrum. For example, because of the sensible and more precision needed in its applications,

the atomization of liquids is a large topic of research in combustion. The access to cutting-

edge experimental techniques and numerical simulations makes a literature review on such

research subjects an interesting starting point.

The scope of this chapter is then to investigate how these other applications are related to the

technological ones in agricultural sprayers and what type of applied research could be used.

3



Chapter 1. General context

1.1 State of the art

1.1.1 Atomization in agriculture

A typical system used in irrigation and/or pesticides aspersion consists in a liquid-jet flow

projected into the air. Upon this projection, the liquid flow splits into droplets which will

ultimately reach the target soil or leaves. The process by which this fragmentation occurs is

called atomization.

The behaviour of the flow depends on several operational and environmental conditions, such

as: geometry, flow rate, turbulence, liquid rheology and wind velocity, all of which have an

impact on the droplets’ sizes, distribution and velocity. It is important then to understand

the physical mechanisms by which the liquid atomization and droplets’ drift occur to better

conceive and/or improve the technological applications in agriculture.

Throughout many years, the research development in liquid atomization for sprayers in

agriculture has been conducted from a phenomenological approach, based on a large set of

experiments that lead to empirical relations for some specific application. For example, Al

Heidary et al. [1] review shows some of these experimental approaches and Salcedo et al. [52]

some numerical simulations in an attempt to give a description of the flow. From these types

of studies, it can be concluded that to perform this kind of research methodology in every

possible case can be very expensive, both in time and resources.

Compared to other domains, like fuel-injectors for combustion or bubbly-flow in boilers, the

atomization problem in agricultural sprayers is a rather large problem. It can go from the

smallest scales of turbulence (∼ 10−6 m), passing through injector nozzle sizes of ∼ 10−3 m,

then to several meters of average range ( ∼ 100 m) and up to even kilo-meters (∼ 103 m) in the

case of small droplets’ drift into the atmosphere. It is extremely difficult then to study the

whole problem; simplifications, sub-models, empirical relations, data integration, etc. have to

be made to tackle the final problem.

From the point of view of irrigation and pesticides application, several detailed studies have

been performed at IRSTEA (Institut National de Recherche en Sciences et Technologies pour

l’Environnement et l’Agriculture). Currently, the irrigation part is overseen at the UMR G-

Eau and the use of pesticides at the UMR ITAP, both at IRSTEA Montpellier Centre and in

collaboration with IRPHE (Institut de Recherche sur les Phénomènes Hors Equilibre).

In irrigation, Kadem et al. [36] studies a large water cannon using a commercial CFD software

(computational fluid dynamics), comparing the data with experiments using an optical probe

(OP). There, a simplified two-phase mixture model, based on the original RANS (Reynolds

Averaged Navier-Stokes) model proposed by Vallet et al. [60], is used to solve numerically the

turbulent flow. The OP is used to obtain the estimated droplet’s sizes and velocities, along

with the liquid volume fraction. Although many simplifications and assumptions are used, the

numerical results showed a relatively good agreement with the experimental data, but always
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1.1. State of the art

using a good set of model parameters.

In a following study, De Luca et al. [12] attempts to use the same numerical and experimental

techniques, but this time applied to a hollow-cone swirl-chamber injector nozzle for pesticides.

The complex flow generated by this type of injector produces another layer of complexity.

From a numerical simulation point-of-view, it generates a strongly three-dimensional (3D)

flow, making the numerical solver more time-consuming and boundary conditions difficult

to estimate. Experiments are also more challenging, since an increase of spatial resolution

and precision is needed to obtain accurate results. Nevertheless, again, using an appropriate

turbulence model and parameters, good agreement between numerical and experimental

results is found.

To tackle the questions issued from the later study, Belhadef et al. [5] attempts to perform a

more detailed set of experimental data, along with a similar numerical approach implemented

into a commercial CFD software (ANSYS Fluent). Digging deeper into the turbulence RANS

model, and having a set of PDA (Phase Doppler Anemometer) experimental data to compare,

it appears that a simple description of the turbulent mass transport can not always provide

good results. Indeed, once again the numerical results are considered in good agreement to

the experimental observations only when a specific set of model parameters are specified.

The latest study performed at IRSTEA on the same subject is carried out by Stevenin [57]. In a

similar way, the objective is to apply the same RANS turbulence model, back to an irrigation

sprinkler this time (Figure 1.1), along with experimental data using an OP and DTV (Droplet

Tracking Velocimetry) by shadow images.

dnozzle=4.37 mm

Inlet

Nozzle

output

(a) Commercial sprinkler Rain Bird RB46. (b) Field irrigation using a RB46 array.

Figure 1.1 – Sprinkler for irrigation purposes (Source: www.rainbird.fr).

The more detailed velocity field issued from the DTV data gives some insights on the turbulent

multiphase flow of the problem. It is now possible to compare the Reynolds stresses from the

DTV with the turbulent kinetic energy from the turbulent RANS model.

One interesting result is the anisotropy factor between the principal Reynolds stresses in

this case, shown in Figure 1.2. Compared to a turbulent mono-phase round-jet, where the

anisotropy factor takes a value close to R̄22/R̄11 ≈ 0.6, the case studied by Stevenin et al. [58]

shows a value of R̄22/R̄11 ≈ 0.05 in the liquid phase, in the dispersed zone of the jet (x/dn > 500);
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Chapter 1. General context

where R̄11 is the axial component of the Reynolds stresses and R̄22 the lateral (radial) one.
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Figure 1.2 – Reynolds stresses anisotropy factor R̄22/R̄11 (w ′w ′/u′u′) from the DTV measure-
ments performed by Stevenin [57].

This result raises questions about the k − ϵ RANS turbulent model used, and moreover, the

assumptions of a boundary-layer like flow might neglect some key aspects about the source of

this anisotropy.

Indeed, as pointed out in a more recent study by El-Asrag and Braun [18], the use of a RSM

(Reynolds Stress Model) over a k −ϵ model type could improve the prediction of the Reynolds

stresses in zones where the anisotropy is large.

It is then one of the main motivation of this study to find the source of this anisotropy by

investigating why and how it is generated in this type of flow. To achieve this goal, a similar

study case is considered in the present work, where numerical and experimental approaches

are used.

1.1.2 Liquid jet’s fragmentation

The atomization of a liquid jet occurs when a liquid-phase flow is injected into a gas-phase

medium. This two-phase flow is considered non-miscible, meaning that the two phases do

not form a mixture fluid and there are forces that keep a distinguishable interface between

them. By the action of external forces on this interface, the liquid-phase breaks into packets or

droplets, causing the actual atomization into the gas phase.

The forces present in this process of atomization vary depending on the fluid’s properties

and operating conditions. If there is only one liquid phase and one gas phase present, no

phase-change occurs and there are no compressibility effects, the relevant physical properties

are summarised in Table 1.1.
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1.1. State of the art

Table 1.1 – Physical properties of a phase-incompressible two-phase flow in SI-Units.

ρL Liquid density (kg /m3)

ρG Gas density (kg /m3)

νL Liquid kinematic viscosity (m2/s)

νG Gas kinematic viscosity (m2/s)

σL−G Liquid-Gas surface tension (N /m)

For the operating conditions, in the case of a liquid injected through a nozzle, only the average

bulk velocities of both phases are considered. These are detailed in Table 1.2.

Table 1.2 – Operating conditions of a phase-incompressible two-phase flow.

ūL,J Liquid phase average bulk velocity (m/s).

ūG ,J Gas phase average bulk velocity (m/s).

Where ūG ,J is the injection velocity of a coaxial gas flow. Having these basic physical properties

and operating conditions, three main dimensionless quantities can be constructed as a

function of the forces that intervene in the atomization process:

• Reynolds number: Ratio of inertial forces to viscous forces within a fluid subject move-

ment. Defined at the exit of a nozzle of diameter dn :

Re = (ūL − ūG )dn

νL
. (1.1)

• Weber number: Ratio of inertial forces to surface tension. Can be defined for the liquid:

W eL = ρL(ūL − ūG )2dn

σL−G
, (1.2)

and for the gas:

W eG = ρG (ūL − ūG )2dn

σL−G
. (1.3)

• Ohnesorge number: Relate the viscous forces to inertial and surface tension:

Oh = ρLνL√
ρLσL−G dn

. (1.4)

In an extensive review, Dumouchel [16] presents many experimental works on the primary

atomization of liquids. Based on these dimensionless numbers, several classifications can be

made as a function of: fluids properties, geometry, laminar or turbulent regimes, gas assisted

or injected into still gases. In the case of liquid jets for agricultural applications, there is a
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Chapter 1. General context

high probability to find turbulent liquid round jets. Therefore, the analysis of the atomization

regime is centred on this type of liquid fragmentation.

Having a fixed geometry and working fluid, the average bulk velocity ūL is the only parameter

that could set the working regime of a round jet. As detailed by Dumouchel [16], a first

classification can be made based on the observation of the liquid core breakup length Lc as a

function of ūL . This is shown in Figure 1.3.

A

B C D E

Figure 1.3 – Round jet behaviour, stability curve of the breakup length Lc as a function of
the average liquid velocity at the nozzle ū J . Region A: Dripping regime. Region B: Rayleigh
regime. Region C: First wind-induced regime. Region D: Second wind-induced regime. Region
E: Atomization regime. (from Dumouchel [16])

Then, as a function of the Weber and Ohnesorge numbers, several authors described a detailed

separation between the regions as detailed in the Table 1.3.

Table 1.3 – Summary of the criteria for the cylindrical liquid jet fragmentation regimes.

Region A: Dripping regime W eL < 8

Region B: Rayleigh regime W eL > 8

W eG < 0.4 or

W eG < 1.2+3.41Oh0.9

Region C: First wind-induced regime 1.2+3.41Oh0.9 <W eG < 13

Region D: Second wind-induced regime 13 <W eG < 40.3

Region E: Atomization regime 40.3 <W eG

As described by Dumouchel [16], the characteristics of large jets (dn > 1mm) is the presence

of peeling droplets from the nozzle exit, this is called the primary breakup.

Primary breakup is important because it determines the initial properties of the dispersed

8



1.1. State of the art

liquid phase and has an effect on the behaviour of the later secondary breakup mechanism. Wu

et al. [64] showed that spray properties are strongly determined by the turbulence conditions

at the nozzle exit and differ from the results with laminar nozzle conditions. Moreover, the

length of the liquid jet core is also affected by the turbulence inside the injector.

As an example, the main case studied by Stevenin et al. [59] [58] corresponds to a turbulent

high-Weber liquid round jet, whose conditions are summarised on Table 1.4.

Table 1.4 – Experimental conditions used in the study performed by Stevenin [57].

Nozzle diameter dn 4.37 mm

Injection bulk velocity ūL 22 m/s

Density ratio ρL/ρG 840

Reynolds number Re 97000

Weber number W eL 29000

Ohnesorge number Oh 0.0018

This would place the case in the Region D of the diagram. Moreover, based on the review by

Sallam et al. [53], the liquid breakup length Lc should follow the following empirical relation:

L̄c

dn
= 8.51W e0.32

L , (1.5)

corresponding to a turbulent breakup regime, yielding an estimated average breakup length

of L̄c /dn = 228. In this regime, breakup is due to the turbulent fluctuations, already present in

the liquid core, leaving the aerodynamic effects to a secondary role.

To study a similar case, whatever the type of round nozzle used, it should operate under the

following considerations:

1. It should be a large circular jet, where dn > 1mm. In a turbulent regime, there should be

a distinguishable boundary layer inside the nozzle, this generates the peeling droplets

at the surface right after the injection.

2. The combination of physical properties of the fluids, along with the geometrical and

operating conditions, should place the atomization regime into the second wind-induced

regime.

This motivates the construction of a specific study case that is carried out throughout this

whole study. Both numerical simulations and experimental techniques are applied to this

study subject, these are detailed later in Chapter 2 and Chapter 3 respectively.
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1.2 Study case

As reported by Stevenin [57], the main difficulty for obtaining accurate experimental results

using a DTV and LDV set-up is the spatial precision of the measurement points. When working

with a large liquid jet, the resulting liquid range could be up to several meters, making an

experimental campaign difficult to accomplish.

In an effort to try to reproduce a similar case under a more controlled experimental envi-

ronment, a downsized case is considered. In particular, to investigate the Reynolds stresses

anisotropy as shown before, the downsized study case should be placed in the same atomiza-

tion regime. Considering this, the following parameters for this study case are selected:

1. Injector: A circular nozzle of dn = 1.2mm is used. To avoid any extra difficulty on the

estimation of the boundary layer inside the nozzle, the roughness of the interior walls is

considered negligible. With this, a borosilicate glass is chosen for the material. In the

same way as Wu et al. [64], Sallam et al. [53] and others mentioned in Dumouchel [16]

review on round jets, the nozzle length is chosen in order to obtain a fully developed

turbulent pipe flow, in this case Ln/dn = 50.

2. Fluids properties: A liquid water jet is injected into still air. From this, Table 1.5 shows

the physical properties taken at normal conditions (297 K, 1 atm).

Table 1.5 – Physical properties of the study-case in SI-units at normal conditions.

ρL Water density 998.3 kg /m3

ρG Air density 1.205 kg /m3

νL Water kinematic viscosity 1.004x10−6 m2/s

νG Air kinematic viscosity 15.11x10−6 m2/s

σL−G Water-Air surface tension 0.073 N /m

3. Injection velocity: An injection average bulk velocity of ū J = 35m/s is selected. Along

with the physical properties mentioned before, it yields the dimensionless numbers

detailed in Table 1.6.

Table 1.6 – Dimensionless numbers for the study-case conditions.

Reynolds number Re 41833

Weber number W eL 20158

W eG 24.3

Ohnesorge number Oh 0.0034

4. Gravity effects: To avoid any asymmetry, the injection velocity is aligned with gravity,

pointing downwards.
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All these fluids properties and operating conditions ensure that the turbulence inside the

nozzle should be fully developed upon any upstream boundary conditions. Then, the nozzle

diameter is sufficiently large to have a direct influence on the boundary layer thickness inside

the nozzle on the primary atomization. And finally, the experiment should operate inside the

second wind-induced atomization regime.

With the intent to emulate a real case, and although this type of nozzle doest not exist in

any agricultural application, a simplified case like this should provide a more controlled

environment for any experimental and/or numerical simulation.
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Summary

The general framework of this study is presented in this chapter. More specifically, the use of

sprinklers in agriculture, like water jets for irrigation or some specific nozzles for pesticides

spraying. From this point-of-view, the following points could summarise this chapter:

• The study of sprinklers in agriculture leads to the study of the atomization process of

liquids. Like in other applications, the flow is almost always turbulent, meaning that the

analysis is centred on the fragmentation of the liquid under turbulent conditions.

• The understanding of this multiphase flow is tackled by experiments and numerical

simulations. The turbulent nature of the flow induces a large spectrum of scales of

motion, making both experimental and numerical studies hard to accomplish.

• A short literature review reveals the advantage of the use of a simplified study case. This

case is finally a water round jet injected into still air. The cylindrical nozzle diameter

is dn = 1.2mm, with a length of Ln/dn = 50. The injection average bulk velocity is

ū J = 35m/s, placing the atomization process in a turbulent second-wind induced

regime.

• Similar to previous experimental and numerical studies conducted at IRSTEA Mont-

pellier Centre, LDV and DTV experimental techniques are used to capture the velocity

fields of both liquid and gas phases in the flow. Whereas from the numerical simulation

part, due to the large spatial dimension size of the problem, an Eulerian mixture RANS

turbulence approach is used to simulate the flow.
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Introduction

This chapter is dedicated to the numerical modelling of a generic multiphase flow encountered

in a typical liquid jet atomization problem. An Eulerian approach is considered along with a

mixture-fluid variable-density formulation for the liquid/gas mixture. The chapter is divided

in four main sections: Multiphase flow modelling, Turbulence modelling, Numerical solver

and study cases definition.

In Section 2.1 a detailed description of the mixture multiphase formulation is presented. The

transformation from the instantaneous field equations, and their corresponding variables,

to the average mixture problem is achieved using the Favre-average operator. This operator

transforms the set of equations into a variable-density U-RANS (Unsteady Reynolds-averaged

Navier-Stokes) problem.

Based on this formulation, the description of the two main RANS turbulence models used

in this study are presented in Section 2.2: k̃ − ϵ̃ and R̃i j − ϵ̃. Then, several variations for

the turbulent mass flux modelling are presented, along with an Eulerian description of the

interface between the two phases.

The numerical method to solve the U-RANS system of equations is then presented in Section

2.3. Details of the implementation of a custom solver using the OpenFOAM C++ library

are provided. The main focus is on the strong coupling between the turbulent mass flux

and the pressure-based solver in the momentum equation, which differs from a solver for

incompressible constant density fluids.

Finally, several study cases are developed using a combination of the presented models in

this chapter. Starting from the geometric 3D construction of the cases, mesh generation,

convergence analysis and specific definition of every case analysed later in Chapter 4 are

detailed. These cases are constructed based on an incremental analysis on the complexity of

the turbulence and other transport models.
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2.1 Multiphase flow modelling

2.1.1 Eulerian formulation

For the Eulerian formulation, it is assumed that the fluid is a continuum and the forces applied

to an infinitesimal volume of fluid can be described by field equations. From the starting point

of this case, one main assumption is taken into account: the liquid atomization problem occurs

at high Reynolds and Weber numbers. This means that the forces at the interface between

phases are small compared to inertial forces. This approach yields five main equations for the

instantaneous problem in 3D-Cartesian coordinates (xi with i = 1,2,3):

1. Mass conservation (1 equation):

∂ρ

∂t
+ ∂ρui

∂xi
= 0; (2.1)

2. Momentum conservation (3 equations, 1 for each component):

∂ρui

∂t
+ ∂ρui u j

∂x j
=− ∂p

∂xi
+ρgi +

∂τi j

∂x j
; (2.2)

3. Phase transport (1 equation):

∂ρY

∂t
+ ∂ρui Y

∂xi
= 0; (2.3)

where every variable is an instantaneous field depending on the absolute position and time

(xi , t ), which in SI units are:

• ui : Velocity field, (m/s).

• p: Pressure field, (Pa).

• gi : Gravity field, (m/s2).

• τi j : Viscous constraint, (kg /m · s).

• Y : Liquid phase indicator, takes the value of 1 when in the liquid and 0 otherwise, (−).

• ρ: Fluid density, takes the value of ρL (liquid density) when in the liquid and ρG (gas

density) otherwise, (kg /m3).

The fluid velocity ui is then composed of discontinuous liquid ui ,L and gas ui ,G velocity fields

at a given position and time. Therefore it is the liquid phase indicator Y which sets the current

state:

ui = Y ui ,L + (1−Y )ui ,G . (2.4)
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2.1. Multiphase flow modelling

The laminar viscous constraint τi j is modelled using a simple Stokes hypothesis for Newtonian

fluids:

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (2.5)

where the dynamic viscosity µ is defined as a discontinuous quantity too, so it takes the value

of µl in the liquid and otherwise µg for the gas as a function of Y :

µ= Y µL + (1−Y )µG . (2.6)

It is important to notice that in this mixture Eulerian formulation for the mixture-fluid there is

no special treatment at the liquid/gas interface, as there are no separate momentum equations

for each phase and the fluid is considered as a miscible binary-mixture. This approach is also

called Quasi-Multiphase Eulerian (QME) in more recent developments [40] [3].

2.1.2 Multiphase average model

Because of the size and the different scales of motion in this liquid atomization problem, a step

further in the modelling involves the averaging of equations (2.1), (2.2) and (2.3); following the

same procedure as in a single-phase variable density fluid [8].

Under this approach a mass-weighted average is used: the Favre Average. It is understood

that the averaging process is an ensemble average over n-identical repetitions, where for any

instantaneous variable h the operator and the subsequent mean h̃ and fluctuating h
′′

parts

are:

h̃ = ρh

ρ̄
; h = h̃ +h

′′
; (2.7)

where ρ̄ is the mixture density. For a relatively low injection velocity and constant temperature,

ρ̄ is only a function of the mixture of ρL and ρG :

ρ̄ = Y ρL + (1−Y )ρG . (2.8)

The mean volume fraction Y can be expressed also as a function of the mean mass fraction Ỹ ,

making the formulation closer to a variable density scalar mass concentration equivalence:

Ỹ = ρLY

ρ̄
. (2.9)

A graphical representation of this process is shown in Figure 2.1, where the Favre-average

is applied to the liquid phase indicator Y and density ρ, transforming them into Ỹ and ρ̄

respectively.
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Figure 2.1 – Favre average operation over the liquid phase indicator Y and the fluid density ρ.

The same procedure can be made to the other variables and the equations (2.1), (2.2) and (2.3),

yielding the desired mixture RANS formulation, which is presented next.

2.1.3 Mixture RANS equations

The mixture RANS model equations are obtained by applying the Favre-average operator to

the previous set of equations and by expressing the variables as a fluctuation centred on the

ensemble average. Using this procedure, the set of equations to solve are very similar to the

previous ones:

1. Mass conservation (1 equation):

∂ρ̄

∂t
+ ∂ρ̄ũi

∂xi
= 0; (2.10)

2. Momentum conservation (3 equations, 1 for each component):

∂ρ̄ũi

∂t
+ ∂ρ̄ũi ũ j

∂x j
=− ∂p̄

∂xi
+ ρ̄gi +

∂τ̃i j

∂x j
−
∂ρ̄�u ′′

i u
′′
j

∂x j
; (2.11)

3. Turbulent mass transport (1 equation):

∂ρ̄Ỹ

∂t
+ ∂ρ̄ũi Ỹ

∂xi
=−∂ρ̄

�u ′′
i Y ′′

∂xi
; (2.12)

where �u ′′
i u

′′
j is the Favre-averaged Reynolds stress tensor and �u ′′

i Y ′′ the turbulent mass flux.

Both are new unknowns in the equation and closure models are needed to solve them. The

Favre-averaged laminar viscous constraint τ̃i j is deduced from Eq. (2.5):

τ̃i j = µ̄
(
∂ũi

∂x j
+ ∂ũ j

∂xi
− 2

3

∂ũk

∂xk
δi j

)
. (2.13)
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However, the mixture dynamic viscosity represented by µ̄ is defined using a linear contribution

between the liquid dynamic viscosity µl and gas dynamic viscosity µg :

µ̄= Y µL + (1−Y )µG . (2.14)

Many forms of this contribution can be found in the literature. For example, Sanjose [54]

used Wilke [62] formulation to describe the mixture viscosity of evaporating fuels, this applies

however only to a mixture of gas species. Despite the inaccuracy of Eq. 2.14, given the

high Reynolds number as a starting hypothesis for this atomization problem, this term is

expected to be orders of magnitude smaller than the Reynolds stresses contribution, making

this possible error negligible.

Two extra expressions arise from this type of averaging. The first one is that the turbulent mass

flux can be expressed from the liquid-gas slip-velocity ui ,S , starting from Eq. (2.4):

ui ,S = ui ,L −ui ,G =
�u ′′

i Y ′′

Ỹ (1− Ỹ )
; (2.15)

where ui ,L and ui ,G are the Reynolds-averaged liquid and gas velocities. The second one is

that the fluctuating part of the Favre-averaged velocity is not centred when a Reynolds average

is applied; u
′′
i ̸= 0. Indeed, developing this from Eq. (2.7), it can also be expressed in terms of�u ′′

i Y ′′ :

u
′′
i =−

(
1

ρG
− 1

ρL

)
ρ̄ �u ′′

i Y ′′ . (2.16)

Along with momentum and mass conservation equations, and using the same hypothesis for

high Reynolds and Weber numbers flows as Vallet et al. [60], the interface of the liquid/gas

mixture is modelled using a transport equation for the quantity Σ, the mean surface area of

the liquid/gas interface per unit volume.

All variables to solve and quantities to model can be summarised in the following list:

• ρ̄: Mixture average density (as a function of Y or Ỹ ), to solve.

• ũi : Mixture average velocity field, to solve.

• p̄: Average pressure field, to solve.

• τ̃i j : Mixture average viscous constraint, to be modelled.

• �u ′′
i u

′′
j : Mixture Reynolds stress tensor, to be modelled.

• �u ′′
i Y ′′ : Turbulent mass flux, to be modelled.

• Σ: Mean surface area of the liquid/gas interface per unit volume, to be modelled. Also

expressed as Σ= ρ̄Ω̃.
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The purpose of the next sections of this chapter is to address the solving of this system of

equations.

2.2 Turbulence modelling

The focus of this section is to present all the models implemented and tested into the custom

numerical solver, for both the Reynolds stresses �u ′′
i u

′′
j and turbulent mass fluxes �u ′′

i Y ′′ .

2.2.1 Reynolds stresses

Many options exist for the closure of this quantity. However, only two main options are

considered for this study:

1. First order closure: Two-equation variable density k̃ − ϵ̃ model (K-Epsilon).

2. Second order closure: Seven-equation variable density R̃i j − ϵ̃ model (RSM, Reynolds

Stress Model).

In the first choice, the Reynolds stresses are coupled with the mean flow using an eddy-viscosity

concept. The form of this eddy-viscosity is then constructed using two transport equations,

both dependent on flow characteristics. The other option is to prescribe transport equations

for each component of the Reynolds stresses and other quantities, also dependent of the flow

characteristics.

First order closure: K-Epsilon

Using an eddy-viscosity model under variable density formulation, a direct transposition from

the Reynolds-averaged Boussinesq hypothesis case is used. Although many variations and

non-linear versions exist for this closure (some can be found fully detailed in Chassaing et al.

[8]), only the simplest linear version is kept.

−ρ̄�u ′′
i u

′′
j +

2

3
ρ̄k̃δi j =µt

(
∂ũi

∂x j
+ ∂ũ j

∂xi
− 2

3

∂ũk

∂xk
δi j

)
. (2.17)

Compared to the expression for constant-density incompressible flows, this variable density

version reads that the deviatoric part of �u ′′
i u

′′
j is proportional to the deviatoric part of the

rate-of-strain tensor S̃i j = 1
2

(
∂ũi
∂x j

+ ∂ũ j

∂xi

)
, via the eddy-viscosity µt , which takes the following

form using a k̃ − ϵ̃ formulation:

µt =Cµρ̄
k̃2

ϵ̃
; (2.18)
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where k̃ is the turbulent kinetic energy, ϵ̃ the turbulent kinetic energy dissipation rate and Cµ

a proportional constant. Henceforth, this first order closure centres its efforts into finding

proper transport equations for those quantities.

The exact transport equation for the Favre-averaged turbulent kinetic energy is derived

from the momentum equation Eq. (2.7). The instantaneous values are expressed from the

average and fluctuating parts, then the equation is multiplied by u
′′
i and averaged, finally the

corresponding summation is applied making k̃ = 1
2

�u ′′
i u

′′
i . Different versions arises for this

procedure depending on the regrouped parts and their physical explanation [8]. The version

kept is the closest to the later modelled version:

∂ρ̄k̃

∂t
+ ∂ρ̄k̃ũi

∂xi  
(a)

=− ∂

∂x j

[
1

2
ρ̄ãu ′′

i u
′′
i u

′′
j +p ′u

′′
j −τi j u

′′
i

]
  

(b)

− ρ̄�u ′′
i u

′′
j

∂ũi

∂x j  
(c)

−τi j
∂u

′′
i

∂x j  
(d)

−u
′′
i

∂p̄

∂xi  
(e)

+p ′ ∂u
′′
i

∂xi  
( f )

;

(2.19)

where all the terms in the first row are ones commonly found in constant-density incompress-

ible flows, leaving the second row exclusively to Favre-averaged variable-density flows:

• (a) Material transport in conservative form.

• (b) Diffusion, split in three parts. The first two are the turbulent diffusion, including

pressure effects. The last one correspond to the molecular diffusion. In jet flows, these

two contributions are modelled together using a single gradient diffusion hypothesis:

∂

∂x j

(
1

2
ρ̄ãu ′′

i u
′′
i u

′′
j +p ′u

′′
j +τi j u

′′
i

)
=− ∂

∂x j

[(
µ̄+ µt

σk

)
∂k̃

∂x j

]
; with σk = 1.0. (2.20)

• (c) Turbulent kinetic energy production (Pk ) by mean shear, with �u ′′
i u

′′
j from Eq. (2.17).

• (d) Turbulent kinetic energy dissipation rate (Ek ), modelled as ρ̄ϵ̃.

• (e) Energy transfer by coupling the turbulent mass flux with the mean pressure gradient,

also known as the mean pressure work (Σk ).

•
(

f
)

Pressure-dilatation correlation. It appears when the velocity fluctuation is non-

solenoidal. However, it is not included in the modelled equation.

Consequently, the modelled Favre-averaged variable density k̃-equation, based on the original

formulation proposed by Jones and Launder [34], is:

∂ρ̄k̃

∂t
+ ∂ρ̄ũi k̃

∂xi
= ∂

∂x j

[(
µ̄+ µt

σk

)
∂k̃

∂x j

]
− ρ̄�u ′′

i u
′′
j

∂ũi

∂x j
− ρ̄ϵ̃−u

′′
i

∂p̄

∂xi
. (2.21)
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For the turbulent kinetic energy dissipation rate ϵ̃, a different approach is taken. First, only

the solenoidal part is taken into account, so ϵ̃∼ ϵ̄. And second, the modelled equation is not

derived from the exact transport equation for τi j
∂u

′′
i

∂x j
. Instead, an approach is taken in the

same way as Jones and Launder [34] by making the modelled equation homogeneous to the

k-equation counterpart.

Although many options for this modelled equation exist in the literature (an extensive review

can be found in Chassaing et al. [8] and Schiestel [56] for variable density flows), the version

kept is the simplest one and analog to Eq. (2.21):

∂ρ̄ϵ̄

∂t
+ ∂ρ̄ϵ̄ũi

∂xi
= ∂

∂xi

[(
µ̄+ µt

σϵ

)
∂ϵ̄

∂xi

]
−Cϵ1

ϵ̄

k̃
ρ̄�u ′′

i u
′′
j

∂ũi

∂x j
−Cϵ2ρ̄

ϵ̄2

k̃

+Cϵ3
ϵ̄

k̃
p ′ ∂u

′′
k

∂xk
−Cϵ4

ϵ̄

k̃
u

′′
i

∂p̄

∂xi
−Cϵ5ρ̄ϵ̄

∂ũk

∂xk
;

(2.22)

where in the RHS there are in the first row: Diffusion, production, destruction; and in the

second row: the counterparts from Eq. (2.21) of pressure-dilatation and mean pressure work;

being the last one exclusive to compressible flow, related to the turbulence length scale when

passing through a shock-wave.

The standard values for the model constants are Cϵ1 = 1.44 and Cϵ2 = 1.92. The pressure-

dilatation correlation is not modelled, so Cϵ3 = 0. The mean pressure work contribution

counterpart uses Cϵ4 = 1.0. And for the last term, Cϵ5 = 1/3 in isotropic turbulence and

Cϵ5 = 1.0 otherwise (see Chassaing et al. [8, pp. 301-302]). All these parameters are set in

specific study-cases.

Second order closure: RSM

The same strategy as in the previous k̃ − ϵ̃ model is used to define the equations modelled for

the Reynolds stresses. The six equations of the symmetric tensor are extracted from the exact

transport equation for �u ′′
i u

′′
j , whereas the dissipation counterpart is purely modelled.

The base formulation from Launder, Reece, and Rodi [39] is used. As our model aims to

simulate also the flow inside the nozzle, wall-reflexion terms were also included (see Gibson

and Launder [23]). In a similar way to Eq. (2.21), variable density effects were added to the

modelled equation (see Chassaing et al. [8, pp. 312-324]).

The exact transport equation for �u ′′
i u

′′
j , using a specific rearrangement of terms is the following:

∂ρ̄�u ′′
i u

′′
j

∂t
+
∂ρ̄ũl

�u ′′
i u

′′
j

∂xl
= ρ̄Pi j −

∂Tl i j

∂xl
+ ρ̄Φi j +Σi j − ε̄i j . (2.23)

In the same way as in the k-equation, some terms need modelled relations to get a complete

20



2.2. Turbulence modelling

closed form equation. A basic linear approach is taken for the construction of these terms,

following the original RSM model from Launder, Reece, and Rodi [39]:

• Pi j , turbulent production. Already in its final form:

Pi j =−
( �u ′′

i u
′′
k

∂ũ j

∂xk
+ �u ′′

j u
′′
k

∂ũi

∂xk

)
; (2.24)

• Σi j , Mass flux coupling:

Σi j = u
′′
i

(
∂τ̄ j l

∂xl
− ∂p̄

∂x j

)
+u

′′
j

(
∂τ̄i l

∂xl
− ∂p̄

∂xi

)
; (2.25)

where only viscous effects are neglected for the modelled part:

Σi j =−u
′′
i

∂p̄

∂x j
−u

′′
j

∂p̄

∂xi
; (2.26)

• Φi j , deviatoric pressure-strain correlation:

Φi j = 1

ρ̄

⎡⎣p ′
(
∂u

′′
i

∂x j
+
∂u

′′
j

∂xi

)⎤⎦ ; (2.27)

modelled as two contributions, the slow return-to-isotropy Rotta model and the rapid

isotropization of production [47]:

Φi j =φ(sl ow)
i j +φ(r api d)

i j ; (2.28)

where:

φ(sl ow)
i j =−C1

ϵ̄

k̃

(�u ′′
i u

′′
j −

2

3
k̃δi j

)
; (2.29)

and:

φ
(r api d)
i j =−C2

(
Pi j − 1

3
Pl lδi j

)
−C3

1

ρ̄

(
Σi j − 1

3
Σl lδi j

)
; (2.30)

where for φ(sl ow)
i j , C1 = 1.8, for φ(r api d)

i j , C2 = 0.6 and C3 = 0.75, from Vallet et al. [60].

• Tl i j , transport:

Tl i j = ρ̄ãu ′′
i u

′′
j u

′′
l +p ′u

′
iδ j l +p ′u

′
jδi l −

(
τ

′
j l u

′′
i +τ

′
i l u

′′
j

)
; (2.31)

modelled as a whole turbulent diffusion term using the same Reynolds-stress tensor to
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define an anisotropic diffusion coefficient [47] and the viscous part is neglected:

Tl i j =−Cs ρ̄
k̃

ϵ̄
�u ′′

l u
′′
k

∂�u ′′
i u

′′
j

∂xk
; (2.32)

where Cs = 0.22.

• ε̄i j , turbulent dissipation rate tensor:

ε̄i j =
⎛⎝τ′

j l

∂u
′′
i

∂xl
+τ′

i l

∂u
′′
j

∂xl

⎞⎠ . (2.33)

The modelled version reads:

ε̄i j = ρ̄ϵ̄i j ≡ ρ̄
(

ēi j + 2

3
ϵ̄δi j

)
; (2.34)

where ϵ̄= ϵ̄i i /2 is the turbulent kinetic energy dissipation rate and ēi j is the deviatoric

part of ϵ̄i j . Two option are considered. The first one is to neglect the deviatoric part

making ϵ̄i j to act only in the principal components of �u ′′
i u

′′
j :

ε̄i j = 2

3
ρ̄ϵ̄δi j . (2.35)

The second option is to include some anisotropy as proposed by Rotta [50], but making

the dissipation tensor active in all the components:

ε̄i j = ρ̄
�u ′′

i u
′′
j

k̃
ϵ̄ (2.36)

This basic model is closer to DNS data in a near-wall boundary layer, but still considered

inaccurate [32]. However, this version is kept and no further analysis is made related to

this type of modelling.

For the kinetic energy dissipation rate ϵ̃, the same transport equation from the k̃ − ϵ̃ model is

taken. The only main difference is that instead of evaluating the production term using the

Boussinesq relation Eq. (2.17), the explicit Reynolds stresses from Eq. (2.23) are used.

2.2.2 Turbulent mass-flux

Along with the Reynolds stresses, the other main quantity to model is the turbulent mass flux�u ′′
i Y ′′ from Eq. (2.12). Given the strong density difference between the liquid/gas, any effect

on the mixture density ρ̄ variation makes the turbulent mass flux strongly coupled with the

whole system of equations in the RANS formulation, and its effect is further transferred into

higher moments via u
′′
i =−

(
1
ρG

− 1
ρL

)
ρ̄ �u ′′

i Y ′′ , which is an important source term in the �u ′′
i u

′′
j
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transport Eq. (2.23).

To analyse the effect on the behaviour of several case scenarios, three �u ′′
i Y ′′ closure models are

considered:

• First order model (Mod-0): Basic expression following the gradient of Ỹ and coupled

with turbulence via νt , based on Fick’s law.

• First order model (Mod-1): Basic expression following the gradient of Ỹ but coupled

with the actual Reynolds stresses to include some anisotropy in the behaviour of the

gradient.

• Second order model (Mod-2): A specific transport equation is solved for every compo-

nent of the vector �u ′′
i Y ′′ , where source terms are coupled with the main flow, turbulence

and an explicit relation to drag forces induced by droplets.

First order model

This approach is similar to a passive scalar transport problem, where if there are no strong

main flow gradients, the concentration of a certain quantity is diffused following a gradient

Fick’s law on itself. As the flow becomes turbulent, the diffusivity coefficient varies, following

the scales of motion in the fluid, but the model is nearly the same.

Based on the original work proposed by Vallet et al. [60], a simplified expression for the

turbulent mass flux was derived by Stevenin et al. [59] by neglecting the pressure gradient

effects and by using a boundary layer approximation on the averaged flow. This approach

ensures that the fluxes are deduced by applying several simplifications on a second-order

model and are not issued as a departure guess:

−ρ̄ �u ′′
i Y ′′ = µt

σY

∂Ỹ

∂xi
; (2.37)

where σY is the turbulent Schmidt number for the diffusivity that takes a value close to 1.0.

However, as experimentally found [58] and assuming a strong anisotropy in a liquid round

jet so that ũ
′′
2

2 ≈ 0.082k̃ under the same boundary layer approximation, it yields a value of

σY = 5.5 for the lateral diffusion.

To account dynamically for the possible strong anisotropy in the Reynolds stresses, the

complete approximation of the later expression is the following:

−ρ̄ �u ′′
i Y ′′ =CY ρ̄

k̃

ϵ̃
�u ′′

i u
′′
j

∂Ỹ

∂x j
. (2.38)

Here, instead of the turbulent viscosity µt , a decomposition using the Reynolds stresses is

used. In the case analysed by Belhadef et al. [5], CY ≈ 0.9, but if the modelled anisotropy is

weak and closer to a mono-phase round-jet, the desired reduction in the lateral diffusivity
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component (i=2) might not be achieved simply by this type of modelling. Stevenin et al. [59]

proposes a forced way to set this constant in the same way as in Eq. (2.37) model forσY , where

assuming an anisotropy factor ũ
′′
2

2
/ũ

′′
1

2 = aR such as CY ≈ aRCµ/σY .

Other approaches have been used by other authors to account for this diffusivity variation.

Demoulin et al. [14] tried to makeσY a function of ρ̄, to account for the large density variations.

Going even further, Desantes et al. [15] proposed a Realizable version of the variable Schmidt

number, by bounding the fluxes with the turbulence fluctuations scales

√
ũ

′′
i

2
. Nevertheless,

these approaches only change the diffusivity and do not include other effects from the main

flow, which is the purpose of the second order modelling presented next.

Second order model

Although Vallet et al. [60] proposed a second order closure for the turbulent mass flux, this

approach does not provide a direct coupling with the liquid/gas interface surface per unit

volume ρ̄Ω̃, where the destruction term is only proportional to the turbulence decay rate

τ−1
t = ϵ̃/k̃.

To tackle this deficiency, a slightly different approach is developed by Beau [4] and later

another similar approach by Andreini et al. [3], who constructed a general framework for the

coupling of ρ̄Ω̃ and Ỹ equations using RANS turbulence models.

The transport equation chosen is the version proposed by Beau [4]. The sink term in this case

is a destruction term by drag forces, induced by the slip velocity between the gas phase and

the droplets:

∂ρ̄ �u ′′
i Y ′′

∂t
+ ∂ρ̄ũ j

�u ′′
i Y ′′

∂x j
= ∂

∂x j

⎛⎝ µt

σF

∂�u ′′
i Y ′′

∂x j

⎞⎠
−CF 1ρ̄

�u ′′
j Y ′′ ∂ũi

∂x j
−CF 2ρ̄

�u ′′
i u

′′
j

∂Ỹ

∂x j
−CF 3Y ′′ ∂p̄

∂xi
+CF 4F Dr ag ,i ;

(2.39)

where CF 1, CF 2, CF 3 and CF 4 are constants, specified as 1.0, 1.0, 0.0 and 4.0 respectively by

Beau [4], with σF = 0.9 as the turbulent Schmidt number in the diffusion term. The drag force

is calculated using a Schiller-Naumann relation, as a function of the drag coefficient with the

Reynolds number, and the velocity seen by the droplets:

F Dr ag ,i =−18ρGνG
Y

d 2
l

(
ūi ,L − ūi ,G − ūi ,D

)(
1+0.15Re0.687

d

)
; (2.40)

where dl is a characteristic length of a droplet population, where for this case the Sauter mean

diameter d32, calculated from the ρ̄Ω̃ solution, is used. The Reynolds number associated with
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this diameter is:

Red = ∥ūi ,L − ūi ,G − ūi ,D∥dl

νG
; (2.41)

where ūi ,D stands for the drift velocity. It is assumed to be the limit at which the velocity

follows a first order model, so using Eq. (2.37) it becomes:

ūi ,D = 1

Ỹ (1− Ỹ )

νt

σY

∂Ỹ

∂xi
; (2.42)

where σY is specified the same as in the first order model.

With these elements, the droplets relaxation time is defined as:

τR = ρLd 2
l

18µG

(
1+0.15Re0.687

d

)−1
. (2.43)

Since the main objective is to construct a modelled case capable to adapt to a large spectrum

of flow characteristics and geometries, it is expected that this formulation for the turbulent

mass flux �u ′′
i Y ′′ , coupled with a RSM turbulence model, would give better results than a k̃ − ϵ̃

using a simple gradient law for the mass fluxes. However, as better discussed in the next

section, the strong coupling of the whole system of equations is particularly challenging to the

numerical solver and not all of the models described here could be used in a straightforward

solution.

2.2.3 Eulerian interface

The last quantity to include in the model is the liquid/gas interface surface per unit volume,

ρ̄Ω̃ or Σ (m2/m3). Ω̃ is constructed so that Ω̃ = Σ/ρ̄, this is done simply to ensure that the

transport equation can be written in a conservative form.

The model was first proposed by Vallet et al. [60] and it has been subjected to several modifica-

tions in the later years (Beau [4]; Lebas et al. [40]; Duret et al. [17]). It is important to notice that

this type of formulation requires two main assumptions: a high Reynolds number, providing a

strong enough turbulent mixture; and a high Weber number, so the surface tension between

the liquid/gas does not play a significant role at the equilibrium to the described atomization

problem.

Based on the latest advances in this formulation, the latest version proposed by Lebas et al.

[40] is kept, with some considerations taken by Duret et al. [17] based on DNS calculations

used to describe the behaviour of some parameters in the average model. The equation for Ω̃
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can be constructed in a conservative form, neglecting the evaporation part:

∂ρ̄Ω̃

∂t
+ ∂ρ̄Ω̃ũi

∂xi
= ∂

∂xi

(
µt

σΩ

∂Ω̃

∂xi

)
+Φ (Si ni t +Stur b)+ (1−Φ) (Scol l +S2ndBU ) ; (2.44)

where:

• Φ is a logistic function ([0 1]) that changes the importance of the source terms from the

dense part (Y > 0.5) to the diluted part (Y < 0.1).

• Si ni t is an initialisation term important only in the dense part close to the nozzle.

• Stur b is the production/destruction due to turbulence in the dense part of the spray.

• Scol l is the collision/coalescence source term for the dilute part of the spray.

• S2ndBU is the secondary break-up source term (exclusively) for the dilute part of the

spray.

Because of the lack of information on the construction of such parameters applied to this

study case, only the Stur b term is included inside the model. Then a simplified version of the

equation reads:

∂ρ̄Ω̃

∂t
+ ∂ρ̄Ω̃ũi

∂xi
= ∂

∂xi

(
µt

σΩ

∂Ω̃

∂xi

)
+αρ̄Ω̃

τt

(
1− Ω̃

Ω̃∗

)
; (2.45)

where τt = k̃/ϵ̃ and Ω̃∗ is the equilibrium value at the smallest scales using an equilibrium

Weber number W e∗ = 1.0:

Ω̃∗ = 4
0.5(ρL +ρG )Y (1−Y )k̃

σL−G ρ̄W e∗
. (2.46)

The parameters of the model are set by default, meaning α= 1.0 and σΩ = 1.0.

In the same way that in the original work made by Vallet et al. [60], Ω̃ is linked to the Sauter-

Mean-Diameter d[32] by the following relation:

d[32] = ρLY

ρ̄Ω̃
. (2.47)

2.3 Numerical model

The problem described in the previous section forms a non-linear system of differential

equations. One method to solve them is to cut each equation into small pieces and find

a numerical solution that approaches the real one under some assumptions. Providing a

compatible set of initial and boundary conditions, a finite volume method (FVM) is used to

solve the system obtaining an approximated solution for every variable.
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Many available CFD tools offer the capability to find a numerical solution to this type of

problem, ranging from laminar flows to different turbulent and multiphase-turbulent models.

Commonly used commercial solutions offer the possibility to include custom expression to

modelled equations, using user-defined-functions (UDF). However, this approach is always

limited because modifications to the solver core are usually not allowed, making difficult to

solve the actual system of equations and simplifications have to be made to overcome this

situation [5] [38] [37].

In this problem, the system of equations to solve is formed mainly by Eq. (2.10), Eq. (2.11)

and Eq. (2.12). Given the heavy coupling between all the variables, and the intention to solve

it as-is, a custom solver is required to properly model each interaction under a known and

controlled numerical environment.

All the efforts are then redirected to create a custom solver using an open source CFD tool.

For this task, the OpenFOAM® code is chosen. It can handle 3D arbitrary meshes for FVM,

common solvers for the momentum equation are already coded, it includes many dicretization

schemes and mainly because it is supported by a large community working in the same field.

The description of this custom solver is the main subject of this section.

2.3.1 OpenFOAM solver

The OpenFOAM® C++ code was developed by Weller et al. [61] as a free, open-source software

for CFD calculations. Currently it is owned and maintained by the OpenFOAM Foundation1

and distributed exclusively under the General Public Licence (GPL).

Using the equivalent of a module from a commercial CFD software, OpenFOAM® is separated

into specific solvers, each one focused on different physical problems but always sharing a

common library of tools, all following an object-oriented programming in C ++.

Instead of building a study-case using a specific module, the approach here is a little different.

Using a solver from a near-like physics as a baseline, modifications are introduced to it to

meet the specific requirements for the desired physical problem, creating a compiled custom

solver. Applied to this particular problem, one of the main goals of this custom solver is to

find a solution for the coupled system of Eq. (2.10) and Eq. (2.11). To see how this is done in

OpenFOAM, an example on how equations are written and treated in the C ++ code stream is

shown using a laminar case for a single-phase fluid:

∂ρU

∂t
+∇·φU −∇·µ∇U =−∇p . (2.48)

This is the momentum conservation equation, where U is the velocity field, φ the mass flux

(simply ρU ), µ the dynamic viscosity and p the pressure field. If this pressure field is known

and some initial and boundary conditions are provided, this differential equation can easily

1The OpenFOAM Foundation: www.openfoam.org
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be solved using a raw piece of code represented in Figure 2.2:

1 solve(

2 fvm::ddt(rho, U)

3 + fvm::div(phi, U)

4 - fvm::laplacian(mu, U)

5 ==

6 - fvc::grad(p)

7 );

Figure 2.2 – OpenFOAM C++ code to solve the momentum conservation equation.

Related to Eq. (2.48), highlighted in blue are the differential operators, in grey there are two

options, depending if one would like to solve for a variable inside the operator (fvm) or simply

to express the result explicitly (fvc). In this case, the variable to solve is the velocity field U , so

ddt, div and laplacian require implicit discretization schemes for U .

Custom solver strategy

More specific to the multiphase problem treated here, a general strategy to solve the system of

equations could be the following:

1. Solve turbulence mass flux �u ′′
i Y ′′ and Ỹ .

2. Solve ũi and p̄.

3. Solve turbulence model �u ′′
i u

′′
j .

4. Solve other variables (Σ).

Contrary to the previous single-phase example, the pressure field is generally an unknown,

making the item (2) of the list hard to solve.

Many specific methods exist to solve this system of equations, one of them is the PISO

algorithm (Pressure Implicit with Splitting of Operator) developed by Issa [31], which is

generally well suited for unsteady problems using the smallest amount of computational

resources. However, the convergence of this method under heavy compressible or variable

density flows may not be always assured, for those cases, the SIMPLE (Semi-Implicit Method

for Pressure-Linked Equations) algorithm (Patankar and Spalding [44]) can be used, which

uses under-relaxation factors for both pressure and velocity to stabilise the solution. To

account for this, an hybrid mixing of both algorithms is implemented into OpenFOAM and is

detailed next.

The PIMPLE algorithm implemented in OpenFOAM has been developed by Jasak [33] to solve

the transient momentum equation in conservative form. A brief description on how the
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algorithm works is presented here only to describe one of the main modifications to account

for the variable-density mixture multiphase formulation of this problem.

This study-case is considered to be an incompressible problem. A relatively low injection

velocity and pressure-drop inside the injector do not produce compressibility effects, nor

cavitation or phase changes. If both phases stay the same, it is considered to be a phase-

incompressible flow.

A classic PISO solver for solving the transient Navier-Stokes equations for incompressible flows

uses a velocity divergence-free condition to impose mass conservation on each time-step.

However, as the velocity field is actually a mixture velocity ũ, in variable density this condition

does not meet and ∇· ũ ̸= 0. Actually, developing Eq. (2.10) gives:

∇· ũ =− 1

ρ̄

Dρ̄

Dt
. (2.49)

The PISO algorithm is modified to take into account this effect, where the construction of the

Poisson equation for the pressure solver (detailed next) is derived from the mass conservation

in its complete form, yielding an additional explicit source term in the RHS.

The final correction steps on this modified PISO algorithm work the same as in the original

form, where convergence is checked by mass conservation and pressure solution residuals.

Custom PISO loop

A fully discretized version of momentum equation Eq. (2.11), after all numerical schemes have

been chosen, can be expressed in the following form:

aPU (n+1)
P = H

(
U (n))−∇p(n+1) (2.50)

where U (n+1)
P and p(n+1) are the velocity and pressure fields to solve for, advancing from the

solution in t = t(n) to t = t(n) +∆t = t(n+1). The discretization method yields a matrix-arranged

variables in every cell centre P . The method separates every part of the equation that multiplies

the diagonal elements of the matrix as aP and everything else but the pressure in H
(
U (n)

)
.

These operators are both function of the velocity field too, but in the linearization process they

are left behind using the last know solution at t = t(n). For example, if the Reynolds stresses�u ′′
i u

′′
j are included explicitly into the momentum equation, then they are inside the H

(
U (n)

)
operator, as a function of the previous U (n)

P solution.

Using this decomposition, it is easy to find the solution for the next time-step t = tn+1, simply

dividing by aP :

U (n+1)
P = H

(
U (n)

)
aP

− ∇p(n+1)

aP
. (2.51)
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If the pressure p(n) is used, then the solution is an approximation that would require a

correction, called the momentum predictor. However, an implicit solution for t = t(n+1)

is still preferred, making the pressure p(n+1) still an unknown.

To get both at the same time, the velocity solution U (n+1)
P is then injected into the mass

conservation equation to isolate the pressure. To do so, first the cell centred values are

interpolated to cell faces f , creating a flux:

(
U (n+1)

P

)
f
=

(
H

(
U (n)

)
aP

)
f

−
(∇p(n+1)

aP

)
f

. (2.52)

Then, the divergence operator (∇·) is applied to Eq. (2.52), forming the mass conservation Eq.

(2.10). A typical incompressible solver would use ∇·U (n+1)
f = 0 as a short form, which is shown

to be not true in variable density flows. Indeed, expanding Eq. (2.10):

∂ũi

∂xi
=− 1

ρ̄

Dρ̄

Dt
≈− 1

ρ̄

∂ρ̄

∂Ỹ

DỸ

Dt
≡

(
1

ρG
− 1

ρL

)
∂

∂xi

(
ρ̄ �u ′′

i Y ′′
)
=−∂u

′′
i

∂xi
. (2.53)

This imposes the extra constraint to solve the equation, as the divergence of the velocity field

must match the RHS of this expression:

∇·
(
U (n+1)

P

)
f
=− 1

ρ̄

Dρ̄

Dt
; (2.54)

which yields a Poisson equation for the pressure p(n+1):

∇·
(

H (U )

aP

)
f
=∇·

(∇p

ap

)
f

+ 1

ρ

Dρ

Dt
. (2.55)

The solution of this equation is very time-consuming, taking nearly 80% of the computational

time. Moreover, when using an arbitrary non-orthogonal mesh, several correction steps must

be applied because the pressure gradient is expressed normal to cell faces. This procedure is

done by solving Eq. (2.55) and then re-calculating the corrected gradient each time.

Then, the solution for U (n+1), with p(n+1) known this time, is updated by going back to Eq.

(2.51):

U (n+1)
P =U∗

P − ∇p(n+1)

aP
; (2.56)

where U∗
P is simply

H(U (n))
aP

, updated using the last known solution for U (n). Finally, if the

residual of p(n+1) is small enough not to produce further changes to the calculated U (n+1), the

solution has converged.

This original approach should be considered as a simplification of a real compressible solver.

For instance, in the compressible case studied by Payri et al. [45], the pressure equation is
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parabolic and the simplification made in Eq. (2.53) does not apply.

Solver global loop

The PISO loop explained before can be repeated several times to achieve convergence inside

the same time-step. However, this provides only a converged solution for ũi and p̄ fields,

leaving all other variables behind. To tackle this, the PISO loop is placed inside a global

SIMPLE loop as shown in Figure 2.3, where everything is solved for each time-step ∆t .

Figure 2.3 – Solution control for the customised solver implemented in OpenFOAM for each
time-step ∆t .

The global loop is solved in the following order for each ∆t :

1. SIMPLE Loop in, solve turbulence mass flux �u ′′
i Y ′′ and Ỹ : (1). If an extra variable is

needed, the last known converged solution is used (usually from the previous time-step)

as an initial guess.

2. PISO Loop, solve ũi and p̄: (2), (3) and (4). Where ϵoc is the pressure residual for the

orthogonal correction and ϵP for the whole PISO loop. This is important because H and

aP are updated using the new velocity field each time.

3. Solve turbulence model �u ′′
i u

′′
j : (5). The turbulence model is solved using converged

velocity and pressure fields. Turbulence equations include non-negligible explicit source

terms in the RHS, to preserve diagonal-dominance in the iterative solver, turbulence

equations are under-relaxed by a factor of α= 0.5.

4. SIMPLE Loop: Go back to (1) using the calculated solution until the residual ϵS for the

pressure field is small enough. No under-relaxation for the pressure or velocity fields is

needed this time.

5. Solve other variables (Σ): (6). Then go to the next time-step.

As detailed in the analysis on Chapter 4, for a typical study case using 10−8 as a converged

residual, the SIMPLE loop takes 2-3 steps for each time-step, then the PISO loop takes 2 steps
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for each SIMPLE loop and the OC (Orthogonal Correction) takes 2 for each PISO step. It is

then easy to see why the pressure equation takes most of the time inside the global solver. It is

also this part of the solver which reaches convergence last.

2.3.2 Numerical schemes

Numerical schemes are used to have a linearised and discretized version of every equation

in the system. Momentum conservation Eq. (2.11) is shown to take the form of Eq. (2.50)

assuming that a numerical scheme is used. Then, using simple algebraic matrix operations, a

solution can be found. It is then important to describe how this process is done and why some

selected schemes are chosen to run the case analysis.

The Partial Differential Equation (PDE) system is expressed as derivative operators over

variables both in space and time. In OpenFOAM, every transport equation for a scalar φ

can be expressed as follows:

∂ρφ

∂t  
(a)

+∇· (ρUφ
)  

(b)

−∇· (ρΓφ∇φ)  
(c)

= Sφ
(
φ

)  
(d)

; (2.57)

where the terms under brackets are:

• (a): Time derivative.

• (b): Convection.

• (c): Laplacian/Diffusion.

• (d): Linearised source.

The Finite Volume Method (FVM) is based on the integral form of this expression, where Eq.

(2.57) is also satisfied:∫ t+∆t

t

[
∂

∂t

∫
VP

ρφdV +
∫

VP

∇· (ρUφ
)

dV −
∫

VP

∇· (ρΓφ∇φ)
dV

]
d t

=
∫ t+∆t

t

[∫
VP

Sφ
(
φ

)
dV

]
d t .

(2.58)

Every term needs a discretization form, first in space and then in time. For this, Figure 2.4

shows the geometric parameters assuming an arbitrary mesh decomposition of a domain

in small volumes, where the interaction of two adjacent volumes of centroids P and N is

represented. VP and VN are the volumes of two adjacent elements, d is the distance between

the centroids, f is the name designation of the face separating the volumes and S f the surface

area vector normal to this face, pointing outwards if the face is considered to be owned by P

as in this case.
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Figure 2.4 – Parameters in finite volume discretization (from the OpenFOAM®Programmer’s
Guide 2.4.0).

Each term in Eq. (2.58) is then transformed using the interactions from the geometry presented

in Figure 2.4. The details on how this is achieved can be found in any book of numerical

methods for fluid dynamics (eg. [22]) or in the OpenFOAM documentation [26] [25].

As an example, the Laplacian/Diffusion term in Eq. (2.57) is expressed as follows:∫
V
∇· (Γφ∇φ)

dV =
∫

S
dS · (Γφ∇φ)=∑

f
Γφ f S f ·

(∇φ)
f . (2.59)

Then, if the mesh is orthogonal and using the parameters defined in Figure 2.4, an implicit

scheme would read:

S f ·
(∇φ)

f = ∥S f ∥
φN −φP

∥d∥ , (2.60)

where an algebraic solution for the value of φN can be obtained.

It is important to notice that in this case the diffusivity parameter is linearised (it can also

be a function of φ) and interpolated to cell faces. Then, to have an accurate and robust

discretization scheme, an adequate interpolation method must be used and several passages

to solve the equation might be needed to re-calculate these linearised terms.

First, to get all the expressions in an integral form, in volume and in time, the methods detailed

in Table 2.1 are used.

Table 2.1 – Integration and interpolation methods used in the OpenFOAM solver.

Type Method

Temporal In-

tegration

Euler Implicit/Explicit depending on the discretization

scheme.

Volume Inte-

gration

Gauss Gauss’s theorem of the volume integral for gradi-

ents.

Interpolation Linear Used to pass from cell centres to cell faces.
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Then, for each type of element in this case study the corresponding spatial discretization

scheme is detailed in Table 2.2.

Table 2.2 – Spatial discretization methods used in the OpenFOAM solver.

Type Method

Temporal

Derivative

Euler Implicit for all temporal derivatives. 1st order

accurate in time.

Convection Upwind Used in every model as a first approximation.

Bounded, 1st order accurate in space.

Limited vanLeer Used in the mass fraction transport. Bounded, 2nd

order accurate in space.

Limited Linear Used for the rest. Bounded/unbounded, 1st/2nd

order accurate in space.

Laplacian Linear Limited Corrected part not greater than 0.5 of the orthogo-

nal part.

Source Linear Implicit When the variable is involved.

Linear Explicit When it is a pure source term.

2.3.3 Mesh and convergence

Mesh construction

The mesh is constructed using the blockMesh utility bundled with OpenFOAM. It creates an

unstructured mesh of hexahedral-type elements transformed from rectangular volumes. A

schematic view of the principal geometric parameters for the mesh construction along with

the boundary conditions is shown in Figure 2.5.

Nozzle wall

Atmospheric Pressure

Inlet:

x

y

z
(Wall Thickness)

Figure 2.5 – Schematic representation of the mesh, including boundary conditions.

The Dirichlet-Neumann boundary conditions are specified in the three types of boundary:
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Inlet (blue), Nozzle wall (red) and Atmospheric (green). These are detailed for all the variables

using the OpenFOAM representation in Table 2.3.

Table 2.3 – Boundary conditions expressed in OpenFOAM solver.

Boundary Variable OpenFOAM Type

Inlet ũ0: Velocity fixedValue

k̃0: Turbulent kinetic energy fixedValue

ϵ̃0: Turbulent dissipation rate fixedValue

Y 0: Liquid volume fraction fixedValue

R̃i j ,0: Reynolds stresses fixedValue

p0: Pressure zeroGradient

Wall ũw : Velocity fixedValue

k̃w : Turbulent kinetic energy kqRWallFunction

ϵ̃w : Turbulent dissipation rate epsilonWallFunction

Y w : Liquid volume fraction zeroGradient

R̃i j ,w : Reynolds stresses kqRWallFunction

pw : Pressure zeroGradient

Atmospheric ũa : Velocity pressureInletOutletVelocity

k̃a : Turbulent kinetic energy inletOutlet

ϵ̃a : Turbulent dissipation rate inletOutlet

Y a : Liquid volume fraction inletOutlet

R̃i j ,a : Reynolds stresses inletOutlet

pa : Pressure totalPressure

The velocity and the pressure work together to switch the boundary condition at the at-

mosphere limit depending on the flow’s direction. As a function of this effect, in case of

entrainment, all other boundary conditions also change from zeroGradient to an Inlet value

that must be specified. For example, when the flow is entering at the atmospheric condition,

the velocity is calculated using the total pressure and as the surrounding air does not have

water in it, the inflow boundary condition for the liquid volume fraction should be Y a = 0.

If these boundary conditions are not well specified, following the behaviour of the near cells

inside the main volume, an undesired solution might be found. As the Poisson equation for

the pressure is elliptic, the pressure solution will strongly depend on these Dirichlet-Neumann

boundary conditions. As a general rule for this case, the atmosphere boundary condition is

placed far from the solution, so that no large gradients of any quantity are significant and the

entrainment produced by the pressure drop happens at a very low velocity.

The volume size for the mesh might vary however depending on the study case. For instance,

if a low diffusion case is tested, a narrow domain is constructed. The resulting mesh is then

refined using a first approximated solution, where ∥∇Y ∥ (volume fraction gradient magnitude)

and
p

S2 (strain tensor magnitude) are calculated to locate the zone which requires refinement.
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The resulting 3D mesh for a real case can have up to 6000000 elements, a view of this is shown

in Figure 2.6.

Wall limit

Outer core

Atmosphere limit

Main volume

Inner core

Wall limit projection

x

y

z Inner core
Wall limit

Outer core

Atmosphere limit

Main volume

Figure 2.6 – Meshing strategy for a 3D case: Longitudinal slice (left) and transverse slice(right)
near the injector nozzle.

A closer view of the Figure 2.5 (left) shows the detailed mesh construction geometry, where

the nozzle wall is represented in red and the atmospheric boundary in green, matching those

in the previous schematic view in Figure 2.5.

The nozzle itself is constructed by 5 square-prismatic blocks: an inner core, surrounded by

4 outer-core extensions to form a perfect circle inside the nozzle. These two volumes are

then projected into the main mesh volume outside the nozzle, adding an extra layer of 1.0dn .

The whole mesh is then translated using an expansion ratio of 0.15m/m, so that the same

proportions shown in Figure 2.5 (right) are respected up to 1500dn . These final volume makes

an atmospheric boundary far enough from the solution, keeping the mesh refinement close to

the zone with the strongest gradients.

Despite that the geometry is consistent and that it can be translated into perfect prismatic

rectangles, the mesh is considered to be always arbitrary because of the later local and wall

refinements. This is needed to better represent the wall-functions inside the nozzle and the

strong liquid mass fraction gradients.

2.4 Numerical study cases

The numerical study cases are constructed from combinations of the RANS turbulence models

presented before, turbulent mass transport models and Eulerian interface. The order on which

they are presented follow an increase of complexity logic, in an attempt to capture effects that

otherwise could not be reproduced using basic representations.
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As the complexity of the models increases so do the mesh details. It is necessary to perform a

mesh test on every complexity level to ensure mesh-independent results. This is a delicate

subject, because of the unsteadiness of the solver, averaged quantities may not always respond

to a finer mesh in the same way.

2.4.1 Cases definitions

The numerical cases definitions are all based on the same study case defined in Section 1.2.

Following Figure 2.5 definitions:

• The nozzle diameter is dn = 1.2mm, of length Ln = 50dn and pointing downwards,

aligned with gravity.

• Only water is injected through the nozzle, meaning that ũ0 = ūL,J = 35m/s and Ỹ0 =
Y 0 = 1. The air is considered still.

• Turbulence boundary conditions are specified as if there is an infinite similar pipe flow

upstream, with a turbulence intensity It = 4%. This yields a k̃0 = 3.3m2/s2 and an

ϵ̃0 =Cµk̃3/2
0 /lt = 11700m2/s3, with lt = 0.038dn . The Reynolds stresses are considered

isotropic, so R̃i j ,0 = 2/3k̃0δi j m2/s2.

• The simulation time is from t0 = 0 s to t f = 0.3 s. This ensures a full coverage of the

domain, even in the external regions of the jet. The time-step of the simulation is

variable, calculated from the worst case as a function of the local Courant number Co.

To avoid any divergence of the simulation, Co = 0.8 as a maximum value is always used.

With this in consideration, all study cases are detailed next. While the title gives a short

description, all the detailed information is given within.

Case 111: k-Epsilon, Y-Mod0

• Turbulence model: k −ϵ, Eq. 2.17, 2.18, 2.21 and 2.22. The parameters are: Cµ = 0.09,

σk = 1.0, σϵ = 1.3, Cϵ1 = 1.44, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 = 1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.

Case 112: k-Epsilon, Y-Mod0

• Turbulence model: k −ϵ, Eq. 2.17, 2.18, 2.21 and 2.22. The parameters are: Cµ = 0.09,

σk = 1.0, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 = 1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.
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Case 211: RSM, Y-Mod0

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.44, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.

Case 212: RSM, Y-Mod0

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.

Case 222: RSM, Y-Mod1

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod1, Eq. 2.38. The only parameter is CY = 0.016.

Case 232: RSM, Y-Mod2

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.35 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod2, Eq. 2.39. The parameters are: σY = 5.5, σF = 1.0,

CF b = 0.1, CF 1 = 4.0, CF 2 = 0.1, CF 3 = 0.0, CF 4 = 4.0.

Case 311: RSM, Y-Mod0

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.44, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.

Case 312: RSM, Y-Mod0

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
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1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod0, Eq. 2.37. The only parameter is σY = 5.5.

Case 322: RSM, Y-Mod1

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod1, Eq. 2.37. The only parameter is CY = 0.016.

Case 332: RSM, Y-Mod2

• Turbulence model: Ri j −ϵ, Eq. 2.18, 2.23, 2.36 and 2.22. The parameters are: Cµ = 0.09,

CS = 0.22, C1 = 1.8, C2 = 0.6, C3 = 0.75, σϵ = 1.3, Cϵ1 = 1.60, Cϵ2 = 1.92, Cϵ3 = 0.0, Cϵ4 =
1.0, Cϵ5 = 1.0.

• Turbulent mass-flux model: Ymod2, Eq. 2.39. The parameters are: σY = 5.5, σF = 1.0,

CF b = 0.1, CF 1 = 4.0, CF 2 = 0.1, CF 3 = 0.0, CF 4 = 4.0.

2.4.2 HPC Cluster

The mesh size, and the subsequent maximum time-step allowed for the simulations, create

a heavy time consuming study case. Using a normal workstation computer, it would take

months or even years to complete a whole simulation case if a fine grid is used.

For this reason, a parallel calculation is needed to increase the overall speed. It works by cutting

the mesh into smaller pieces, solving each one of them in a cluster array of computers. This is

a common practice in every CFD software and some key considerations on the resources used

by this process are detailed here.

All cases run in a High Performance Computer (HPC) cluster at CINES (Centre Informatique

National de l’Enseignement Supérieur), under the allocation c20152b7363 and c20162b7363

made by GENCI (Grand Équipement National de Calcul Intensif) in France.

The HPC is a Bull machine called OCCIGEN (2015 model). It has a total of 50544 cores

distributed in 2106 nodes, each one with 2 Intel 12-Cores processors (E5-2690 at 2.6 GHz) with

64 or 128 GB of RAM. The operating system is a Linux based system, the BullX AE4 based on

Redhat 6.4.

The OpenFOAM version is v2.4.0 and is compiled in the OCCIGEN machine, along with the

customised modules with every extra model implemented. The parallel jobs in OpenFOAM

communicate with each other via MPI (Message Passing Interface), where a custom BullxMPI

version, already made available by CINES, is used.
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To test the performance of the parallel simulation, one of the simulation cases is used as a

test platform for scalability, where the speed-up of a parallel simulation cases is studied as a

function of the parallel workers used. A series of sub-cases are created from it, by decomposing

the simulation in a scaling number of nodes and giving them the same task. Case 112 is

selected, and the task is to advance from the solution at ti = 0.1 s to ti = 0.11 s in a mesh size of

6068720 elements. The decomposition is detailed in Table 2.4.

Table 2.4 – Number of decomposed regions in the scalability test.

Scaling case Number of nodes Decomposed regions

0 1 24

1 2 48

2 4 96

3 8 192

4 16 384

5 32 768

6 64 1536

If the scaling is perfect, every time that the number of nodes is doubled, the time to accomplish

the given task should be divided by 2 (theoretical speed-up). This is true up to a limit, where

the quantity of information shared under the MPI forms a bottleneck, relative to the velocity

of the process itself inside the processor. This effect is shown in Figure 2.7, where the real

speed-up is compared to the theoretical as a function of the number of parallel nodes.
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Figure 2.7 – Scalability test for the parallel decomposition of a simulation case.

It is clear that for this case the optimum speed-up is reached at 192 processors. Beyond

this point, the parallel calculation is not optimal, although 384 could be used to gain time

in sacrifice of performance. The maximal optimum tested point (192 cores) corresponds to

∼ 30000 elements per processor.
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2.4.3 Mesh convergence test

The final test is performed in the study cases themselves, where every family of cases is tested

under a mesh sensitivity analysis. This is done in a wide variety of cases because it is difficult

to predict how the solution behaves when the model becomes more complex. The models

selected cases are: Case 112, Case 212 and Case 312.

From the numerical discretization schemes described before, an upwind (first order) scheme

is chosen to start every simulation case. With the solution at t = 0.01 s, a change to a second

order scheme is made and the simulation continues to the end. The mesh test consists in

testing the solution at t f = 0.3 s with several meshes, hoping that further refinements do not

change the overall solution. The mesh sizes are detailed in Table 2.5.

Table 2.5 – Mesh configurations for the mesh solution convergence test.

Designation Number of elements

Mesh 00 97770

Mesh 01 766440

Mesh 02 6068720

The non-convergence of a solution comes from two main sources: numerical diffusion from

convective schemes and poor representation of gradients due to interpolation. These effects

are easily seen when radial profiles are presented in zones with strong velocity gradients and,

because of the strong density ratio between ρL and ρG , in zones with strong mixture density

gradients.

To visualise this effect, a comparison of the axial velocity against radial distance for the three

meshes and the three cases is presented in Figure 2.8.
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Figure 2.8 – Mesh convergence analysis on the mean axial velocity using three different
turbulence models. Radial profile at x/dn = 200.

The profiles at x/dn = 200 are chosen because they still present strong gradients in all

quantities, before going into a more dispersed part of the jet. The solution is shown along with

the very cell centre values, allowing to see the quality and uniformity of the mesh along the
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solution profile.

This result shows clearly that the possible numerical diffusion does not comes from the

convective scheme in the momentum equation, making the second order scheme adopted

both enough accurate and stable.

Nevertheless, there are several other quantities affected by numerical diffusion. The shear

component of the Reynolds stresses is one of them (R̄12), because it involves the calculation

of gradients in multiple directions and from other quantities as well. The results at the same

distance from the nozzle are shown in Figure 2.9.
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Figure 2.9 – Mesh convergence analysis on the Reynolds stresses using three different
turbulence models. Radial profile at x/dn = 200.

Here, a more significant result on the mesh convergence can be seen. For the coarser mesh,

the quantity is not well represented, whereas little difference can be found for the later two

cases. This result might give a possible candidate for running all the numerical simulations.

But, the most problematic equation that drives the numerical diffusion in this model is the

solution to Eq. (2.12). The density ratio between ρL and ρG imposes strong gradients to

represent both the convection and the interpolation schemes in this equation. These effects

appear clearly in Figure 2.10, where the solution of the volume fraction Y is shown.
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Figure 2.10 – Mesh convergence analysis on the liquid volume fraction using three different
turbulence models. Radial profile at x/dn = 200.
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2.4. Numerical study cases

The candidate from before is discarded then. As shown in all the family of cases, this quantity

only begins to converge with the finest mesh resolution of 6068720 elements. An even more

refined case solution could be attempted, but given the marginal improvements in all the

other quantities, and the huge computation resources that this attempt may require, this is

discarded.
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Chapter 2. Numerical modelling

Summary

From the subjects developed thorough this chapter, the following points could summarise the

work:

• An Eulerian mixture multiphase model is used to describe the original two-phase flow

in a liquid atomization problem. The model is an extension from the original work

proposed by Vallet et al. [60], which has been tested in several atomization cases by

other authors.

• The focus is centred on the turbulence modelling of the flow. Several U-RANS turbulence

models are used, like k −ϵ and some variations of RSM. The influence on the modelling

of some expressions, within those turbulence models, is the main study subject, most

noticeably those related to the variable density description of the mixture flow.

• A custom numerical solver is implemented using the OpenFOAM CFD code. This

approach allows to build a coupling between the whole system of equations that describe

the flow. The main feature is the modified PISO loop, inside the momentum equation

solver, allowing it to be compatible with the turbulent mass flux while keeping the

phase-incompressible nature of the solver.

• A set of study cases is created to test the behaviour of this possible set of equations.

The cases describe an unsteady solution (U-RANS approach), so they consume a lot

of computational resources. For this, a HPC cluster solution is used to run the cases.

A good mesh convergence is found, along with an optimisation in the use of parallel

computing resources.

Part of the results are presented within this chapter, the first part of them can be seen on the

mesh test analysis. However, the logical choice for the study cases follows the experimental

observations presented next, in Chapter 3.

The behaviour of the average velocity and turbulent fields drives the cases configuration. For

this reason, the overall results are shown in a combined numerical-experimental analysis in

Chapter 4.
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3 Experimental campaign

Introduction

An experimental campaign is carried out on the defined study case, this provides a baseline

to which the numerical model can compare. Although many experimental techniques with

application in fluid dynamics exist, not all of them are suited for obtaining reliable results on

multiphase flows. Therefore, before setting up the choice for this work, a brief review on the

applicable techniques to liquid jets/sprays is presented.

From the definition of the study case, a simplified test scenario is constructed. The geometry

and operating conditions are chosen to remove some constraints and to provide a well

controlled environment for optical measurement techniques. The test subject is a round

dn = 1.2mm nozzle, constructed in PMMA/Glass to provide visual access to the internal

flow, where the actual injector is a circular glass tube of length Ln = 50dn , so the flow

turbulence at the exit of the nozzle is completely developed. Gravity effects on the liquid

dispersion are attenuated by placing the injector in an up-down direction, making the flow

statistically axisymmetric. Operating conditions are chosen to place the liquid jet in a turbulent

atomization regime.

The objective is then to obtain the velocity field in this two-phase flow. LDV (Laser Doppler

Velocimetry) and DTV (Droplet Tracking Velocimetry) optical techniques are finally chosen,

they are used to gather statistical information from both the liquid and the gas phases. The use

of these optical techniques require some specific set-ups on both systems, which are carefully

detailed and discussed in this chapter. The output of these measurements are the velocity

field, the Reynolds stresses field and the droplets size distributions, everything on a carefully

selected measurement spacial grid, well suited for the later comparison with the numerical

results.

LDV measurements are carried out first along the liquid core vertical axis, the results give a

rough estimation of the liquid axial-velocity component, from x/dn = 0 to x/dn = 800. On the

vicinity, radial gas profiles are obtained using small (∼ 1−2µm) olive-oil tracers to capture the

45



Chapter 3. Experimental campaign

gas phase. From the Doppler-burst threshold between the liquid and oil particles, a distinction

between both phases is achieved. In the dispersed zone, DTV measurements are carried out

to determine several radial profiles between x/dn = 400 to x/dn = 800, special attention to the

depth-of-field (DOF) estimation is taken in order to obtain a less biased droplet’s size-velocity

correlation.
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3.1. Measurement techniques

3.1 Measurement techniques

In multiphase flows, the characterisation reduces to find the velocity field, along with some

identification for each phase present. This technique is called velocimetry, where some general

aspects are discussed here to justify its use in this study case. An extensive review of every

technique can be found in Boutier [6], principally on the advantages and disadvantages as a

function of the application, and the related biases and how to treat them.

To capture the velocities, laser velocimetry is often used as a non-intrusive method, meaning

that the local fluid is not modified at the scales of measurement. It is based on light diffusion

over tracer particles in the fluid, the challenge in multiphase flow is to properly identify

and discriminate the tracers from the dispersed phases inside the mixture, adding an extra

difficulty in comparison with single-phase applications (See Modarres et al. [41] work on the

application of LDV in two-phase flows).

Although LDV can provide accurately enough velocity measurements, these are time-series

fixed in one position where all spacial structure information is lost. To complement, PIV

(Particle Image Velocimetry), LIF (Laser Induced Fluorescence) and DTV (Droplet Tracking

Velocimetry) techniques allow to reconstruct instantaneous spacial fields, adding additional

information on the flow structure.

In two-phase flows these techniques are often used combined. Sathe et al. [55] uses an array of

high-speed cameras to separate and capture the velocity fields of both phases in a bubbly flow,

at the same time, where image filtering and post-treatment algorithms are used to separate

the information of each phase. However, the precision of such results is compromised when a

heavily dispersed flow is present, like in poly-dispersed multiphase jet flows (Grosshans et al.

[27]).

If no images from the flow are available, some intrusive methods can be use to estimate

the void fraction (or presence) of a particular phase. Hong et al. [28] discuses the use of OP

(Optical Probes) to estimate the sizes and velocities of droplets in a poly-dispersed spray. The

technique requires some assumptions to estimate the velocities and a specific signal treatment

to obtain the correct liquid volume fraction. Despite that it is indeed an intrusive method,

and therefore, the flow might be modified, OPs are very precise in space, where the probe tip

makes 130µm (Cartellier [7]). This characteristic makes it a good technique to complement

shadow images, where the droplets are distributed on a 3D space depth-of-field (DOF), and

the uncertainty of this quantity makes the estimation of the volume fraction difficult.

To have an instantaneous space information of the volume fraction, Prasser et al. [48] studies

the use of a capacitive wire mesh sensor in bubbly flow. However, their current development

does not allow to have a quick response time like the OP, leaving their use to less diluted

applications.

Finally, the experimental techniques used in this work are LDV and DTV by shadow images.
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Chapter 3. Experimental campaign

The LDV is used in different configurations, on separate measurement campaigns, to capture

both liquid and gas phase velocity fields. Shadow images are used to run a DTV algorithm on

the dispersed phase of the flow, this captures at the same time droplets sizes and velocities,

providing a benchmark along the LDV. Shadow images also allow used to visualise the primary

breakup mechanisms of the liquid jet. These techniques are applied to this specific study case

and are detailed next.

3.2 Experimental set-up

As detailed in Section 1.2, a simplified test scenario is constructed to remove some constraints

and to provide a more controlled environment for the optical measurement techniques.

Instead of the original nozzle from Stevenin et al. [58] (dn = 4.37mm), a smaller round dn =
1.2mm nozzle is constructed.

The injector is a circular borosilicate glass tube of length Ln = 50dn inserted in a PMMA (Poly

methyl methacrylate) body. While providing a visual access to the internal flow, the glass

surface is considered smooth, so no roughness will intervene in the boundary layer which is

considered to be completely developed at 50dn . Gravity effects on the liquid dispersion are

attenuated by placing the injector aligned with gravity in an up-down direction, making the

flow statistically axisymmetric.

The injection velocity is ūL = 35m/s, placing the atomization process in a turbulent atomiza-

tion regime [53], according to Figure 1.3. The clean optical access also allows to verify that no

cavitation is produced inside the glass tube. As an example, a shadow image next to the CAD

(Computer Assisted Drawing) model of the nozzle is shown in Figure 3.1.

Liquid

inlet

Nozzle

outlet

PMMA

Machined Core

Boro-silicate glass

1.2 mm int. capillary tube

Stainless steel 8 mm

quick connector

Pressure sensor

outlet

(a) Injector CAD design. (b) Shadow image at x/dn = 0, y/dn = 0.

Figure 3.1 – Custom transparent dn = 1.2mm nozzle components and real operating
conditions.

A reservoir-pump-collector hydraulic system is used to feed water to the nozzle. The system is

mounted in compatibility to the visual and spatial clearance needed to perform both the LDV
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and DTV measurements.

To achieve an average injection bulk velocity of ūL = 35m/s, a relatively high pressure flow

must be injected. The narrow nozzle diameter generates a pressure drop of nearly∆P = 17bar ,

so a centrifugal pump from a domiciliary water grid is not enough to achieve this (∼ 6bar ).

A triple-head diaphragm pump is used instead, along with a compressed air damper and a

needle valve to regulate the flow rate as shown in Figure 3.2.

Water @ 40±0.1 bar

3D Traverse

U0=0 - 40 m/s

Needle ValveTriple-piston

Water pump

Damper

Measurement

system

Figure 3.2 – Schematic representation of the hydraulic system connected to the injector.

To avoid clogging, purified water is used as a working fluid in a closed circuit. After the

injector, the droplets are recovered and the water goes back to the reservoir. This closed circuit

increases the water temperature, so an evaporating cooling system is implemented in the

pump’s rejection circuit. With the room temperature set at 20°C at 50% HR, the working fluid

reaches a stable temperature of 24°C after 1 h.

3.3 Measurement set-up

3.3.1 LDV set-up

A two component LDV system is used to measure the liquid phase (water) and gas phase (air)

velocity fields. As the liquid disperses, it is hard to make a distinction between both phases, so

a specific set-up is considered for each type of measurement.

The LDV system consisted in a two component (LDV-2C) from Dantec Dynamics with an Argon-

ion of 488nm@1.8W and 514.5nm@2.8W Coherent 306S laser source. A Dantec-Dynamics

60X11 transducer separates and conduct the 2C beams. A 310mm focus-length optics is

used for the emitter and 400mm for the receiver, forming a LDV measurement volume of

2.9x0.146x0.146mm3 along the principal directions. A Burst Spectrum Analyser (BSA) P60,

also from Dantec Dynamics, is used to analyse the raw LDV data.

Although the system provided the option for PDA (Phase Doppler Anemometry) measure-

ments, the nature of this liquid round-jet breakup produces highly non-spherical droplets
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making the PDA data extremely biased. The optical arrangement is configured then to

maximise the LDV data-rate in scattering mode, with a 55° detector angle and no mask in the

receiver optics as shown in Figure 3.3.

LDV-2C

Jet Flow

Detector

y

z

Figure 3.3 – Schematic of the 2-Component LDV set-up for measuring both the liquid and gas
phases. The measurement volume size is shown next to the liquid round-jet dimensions for
scale.

An extra reduction of the LDV measurement volume is achieved by the 55° detector angle,

where the focusing point cuts the larger dimension as Figure 3.3 shows. This is an important

feature of the set-up, because if the measurement volume is considerably larger than the liquid

jet itself, a lack of detail of the resulting velocity field measurement will be found closer to the

axis. Without this, spatial correlations between two distant internal points, inside the volume,

could be mistaken for timed correlations in the acquired time-series.

Acquisition parameters

The details on the specific configuration for measuring the liquid and gas phases is presented

here. As mentioned before, the goal is to capture the liquid phase velocity field ui ,L and the

gas phase velocity field ui ,G . When measuring only in the liquid phase, the LDV captures the

velocity of the liquid/gas interface of large liquid packets or small droplets. To capture the gas

phase, a second configuration uses olive-oil mist as tracers for the gas around the liquid, where

the processing unit captures the velocity of small droplets of ∼ 1−2µm and liquid droplets.

As described by Mychkovsky et al. [43] [42] in a fluidised bed study, a distinction between the

tracers and the real particles can be made by looking at the Doppler burst signal pedestal. If

one type of particle is considerable bigger than the other, the burst should have a bigger carrier

pedestal too. In a transposition from their case, here the background gas phase is seeded with

very small tracers compared to the poly-dispersed liquid droplets, so the same distinction

should exist.

Other authors have also worked with this technique on bubbly flow, like the ones mentioned

in the review made by Joshi et al. [35], where the main difficulty on this kind of LDV set-up is to

capture a proper Doppler signal from the tracers in the carrier phase, when a heavy dispersed

second phase is present.
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However, the BSA-P60 from Dantec Dynamics available at IRSTEA Montpellier does not

allow to record the Doppler bust pedestal, as this signal is eliminated from the processor at

the beginning of the burst analysis inside the BSA. With this in mind, a second strategy is

developed by doing two sets of measurements: a first without seeded particles in the gas phase,

and a second with the seeded particles but not in the zones where a large concentration of

water droplets is present.

The two different configurations for the Laser source power (LP), photomultiplier gain (PM),

accepted signal-to-noise ratio (SNR) and band-pass filter (BP) are selected and shown in Table

3.1.

Table 3.1 – LDV BSA set-up for liquid and gas phases analysis.

Configuration Laser Power PM Gain SNR BP-Filter

Water 0.6 W 600 V 4 dB Velocity-span based

Oil 1.1 W 1200 V 8 dB Velocity-span based

Given that the LDV processing module does not allow an actual separation of the signal

acquired in the gas phase configuration (olive-oil particles), some assumptions should be

considered when looking at the gas-phase velocity field.

First, it is noticed that a much greater PM gain is needed to be able to see the olive-oil particles

in the raw Burst-Doppler signal. By increasing this value, along with the desired signal to

noise ratio limit (SNR), yields a big data-rate only for oil droplets, where although large non-

spherical objects have a higher intensity, they are seen much noisier and therefore almost

always rejected by SNR criterion. However, there will always be some droplets that are counted

as part of the gas signal.

Second, because the signal intensity from the water droplets/sacs is higher, the gain in the PM

sensitivity sets a threshold on the positioning of the measurement volume, so no overlapping

between gas and liquid profiles is achieved where a large concentration of water droplets

is present, to avoid damage to the PMs. To better illustrate this, a shadowgraph image is

presented along with the drop-sizer algorithm and DTV post-treatment at x/dn = 400, y/dn = 0

in Figure 3.4. While the Liquid LDV measurements can be made regardless the y axis position,

the LDV on the olive-oil tracers, for the gas phase, can only be made at the left of the orange

line in Figure 3.4.
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Chapter 3. Experimental campaign

Figure 3.4 – Drop-sizing and DTV post-processing on shadowgraph images at x/dn = 400,
y/dn = 0: jet centerline (red), y/dn = 4 mark (orange line), droplets detected (coloured
contours), velocity-vector (blue arrow) and equivalent diameter (d[30] in µm) written next to
each contour detected.

An example of the difference between these two types of measurements is shown in Figure

3.5. Where the bi-variate velocity histograms are shown in a coincident point between the two

profiles, precisely at x/dn = 400, y/dn = 4 (at the orange line in Figure 3.4).
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Figure 3.5 – Bi-variate histograms of both velocity components for the liquid phase (blue, left)
and the gas phase (green, right). Mean values on red line levels.
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The left histogram shows the data from the liquid campaign (without tracers). As expected, the

velocity events are concentrated near the jet’s average bulk velocity (ūL = 35m/s), pointing

slightly outwards, following the jet’s lateral dispersion.

On the contrary, the right histogram shows the data from the gas campaign. This time, the

velocity distribution has a wider velocity span in both components. The average gas phase

entrainment is seen in the upper part, with a low ūx,G , and ūy,G < 0, pointing towards the

centre. However, close to the centre line, the added-effect of the large water droplets that

slip into the gas phase analysis can still be seen. By looking at the same region as in the left

histogram, their presence is visible in gas phase measurements.

Nevertheless, given the much larger data-rate of oil droplets, seen by the amount of data

concentrated out of the liquid region in the right histogram, it can be considered that the

whole signal is closer to the gas-phase velocity, and not from a liquid-gas mixture. One aspect

that is not investigated, however, is the correction by resident time of the particles inside the

measurement volume.

As this result shows, a clear distinction between both phases can be constructed in a radial

profile using this LDV method, despite the uncertainty closer to the jet’s axis. It is expected

that the separation between the liquid/gas velocity fields will provide a better insight on the

turbulent quantities, needed for the RANS model described in Chapter 2.

Convergence analysis

Before constructing the profiles, a convergence analysis is made on every averaged quantity,

calculated from the velocity time series on both liquid and gas phases.

The convergence criteria for both cases are set on the calculated Reynolds stresses. Although

the worst case scenario varies from point to point (closer or far from the jet centerline), in

general, the R̄12 component drives the convergence of every other quantity. Higher order

moments, like Skewness and Flatness could only find a convergence in a reasonable time

closer to the jet’s centre line, where the LDV data rate is high, so they are left out of the global

convergence criteria.

The conditions detailed in Table 3.2 show the minimum requirements to consider a point

converged in the liquid measurements campaign. They are evaluated dynamically at every

acquisition point.

Table 3.2 – Convergence criteria for the LDV liquid points.

Condition Value

Maximum Time 10 min

Maximum number of points 106

Residual on R̄12 10−4
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Following these criteria, the convergence on the Reynolds stresses is presented in Figure 3.6

at x/dn = 400, y/dn = 4. It shows the calculated components as a function of the time up

to which the average is calculated. The figure shows that the acquisition stopped at 10 min,

meaning that the residual does not reach 10−4. Despite the lack of convergence, the relative

value is considered enough to represent a point in this case. This becomes more evident when

looking at the real constructed profiles.
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Figure 3.6 – Convergence analysis of the Reynolds stresses on the liquid phase at [x/dn = 400,
y/dn = 4].

In the same way as the liquid measurement campaign, the gas convergence criteria is sum-

marised in Table 3.3.

Table 3.3 – Convergence criteria for the LDV gas points.

Condition Value

Maximum Time 10 min

Maximum number of points 106

Residual on R̄12 10−4

As the gas tracer particles give a higher data-rate than liquid droplets alone, the convergence

this time reaches the residual threshold for R̄12, stopping the acquisition at ∼ 6mi n, as Figure

3.7 shows.
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Figure 3.7 – Convergence analysis of the Reynolds stresses on the gas phase at [x/dn = 400,
y/dn = 4].

Measurement points

The spatial location of the measured points for the two LDV campaigns is shown in Figure 3.8.
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Spr ading-r te

Re r sent t o

LDV Gas radial pro les

LDV Liquid radial pro les

LDV Liquid axial pro le

Figure 3.8 – Schematic view of the measurement points for the LDV campaign in the study
case.

For the liquid campaign, a first axial profile is acquired continuously from x/dn = 0 to x/dn =
800. Then, radial profiles from x/dn = 100 to y/dn = 800 are acquired at a step of ∆x/dn = 100,

following the jet spreading-rate. Because of the strong shading of the liquid jet, only radial

profiles are acquired, from the centerline towards the detector. For a complete lateral profile,

a second detector on the other side would be necessary.

The same procedure for the gas phase campaign is conducted, where radial profiles are

acquired at the same positions. As explained before, the radial gas profiles do no touch the

dense zone of the spray, and therefore they do not touch the centerline. However, they can go

further out into the external zones of the boundary layer around the jet.
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3.3.2 DTV set-up

Shadow images are used to run a custom DTV algorithm on the dispersed regions of the

spray and to visualise the liquid column primary breakup. These images are generated by the

shadow of the liquid, projected into a high-speed camera, in the presence of a perpendicular

background light. The system is a ShadowStrobe from Dantec Dynamics, mounted as shown

in Figure 3.9.

Laser

Di user

Collimator

Figure 3.9 – Experimental set-up of the DTV system using shadow images.

The system captures two consecutive image frames at high speed, from which the detection

and matching of particles/features can be made. The background lighting is generated by a

double-pulsed laser source, consisting on a Litron Nd-YAG of 135m J (532nm). The light is

then conducted via fibre-optics to a diffuser/collimator, generating a non-coherent uniform

background.

A PIV/DTV HiSense 4M-C CCD camera mounted with a Canon MP-E 65 mm f/2.8 lens is used.

It captures 12-bit depth grey-scale images at 2048x2048 pixels in a double-layer CCD sensor.

With this optical arrangement, the scale resolution is 139 pi x/mm, which transforms in an

image size of 14.73x14.73mm2.

The camera is exposed during the whole duration of a pair of captured frames, leaving to the

laser firing timings control over the exposure times. In between the frames, the first image is

transferred to the sensor’s second layer, leaving the first one ready for the second exposure.

For this reason, images must be taken in a dark room, where the actual exposition time is

∼ 4ns.

The acquisition frequency for a pair of images is set to fa = 5 H z. The time between pulses (tbp)

vary, depending on the average velocity of the objects inside the image. This is an important

parameter to set, because it should be large enough to let the droplets move in-between

frames, but not much so no significant changes to the overall form and/or location pattern of

the objects inside the frame is produced.

As an example, a set of raw shadow images are shown in Figure 3.10, taken at the jet’s centerline,

where tbp = 5µs. Ranging from x/dn = 0 to x/dn = 350, a complete visualisation of the

destabilisation and primary breakup can be seen. Small ligaments can be seen at x/dn = 0

close to the nozzle, as Wu and Faeth [63] explains, they are related to the boundary layer inside

the nozzle, where their sizes are found to be proportional to the turbulent eddies inside the

injector. More downstream, at x/dn = 150 some helical structures can be seen, Hoyt and
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Taylor [29] explain these structures by the amplification of an helical modal instability, where

aerodynamic effects start to play a more significant role in the turbulent breakup regime.

Figure 3.10 – Shadow images at the jet centerline from x/dn = 0 to x/dn = 800.

Liquid column breakup length

Following the original work by Wu et al. [64] and Sallam et al. [53], a characterisation of the

breakup mechanism can be made, as a function of the breakup length Lc and droplets sizes

d[32]. Moreover, provided that the atomization regime of this study case should be the same as

Stevenin et al. [58] case, the behaviour of such quantities must follow the same relations.

To tackle the first part, and to provide an immediate analysis of the atomization regime, the

mean breakup length L̄c is estimated by looking at the breakup events from Figure 3.10. Each

one of these images is taken from a series of 1000 at each point, from where the number of

breakup events are counted at each position.

The reasoning is the following: if at a given point, at a given time, the liquid column presents a

discontinuity, then, there is a probability that the first instantaneous breakup happened at

that point or before, closer to the nozzle. Taking this reasoning to the limit, then the ratio of

the number of events Nb to the total number of images NT , at a given position, should follow

the probability that the average breakup length L̄c to be less than or equal to the given position

from the nozzle. The results of this calculation on every set of images from x/dn = 100 to

x/dn = 300 is shown in Figure 3.11.

100 150 200 250 300

x/dn

0

0.2

0.4

0.6

0.8

1

P
(L̄

c
≤

x
)

Nb/NT

Normal-Distribution Fit

Figure 3.11 – Probability distribution of the liquid column average breakup length L̄c as a
function of the normalised distance from the nozzle.
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As Figure 3.11 shows, the probability that L̄c ≤ x fits well a Normal distribution, with a mean

value of L̄c /dn = 219. As a reference, the relation given by Sallam et al. [53], based on a best-fit

on several experiments on the same regime gives:

L̄c

dn
= 8.51W e0.31

L = 203. (3.1)

Shadow image segmentation

Having determined the breakup length, and the distance from the nozzle at which liquid

column does not exist anymore, the secondary breakup of liquid packets/droplets begins.

From x/dn = 400 to x/dn = 800, a DTV (Droplet Tracking Velocimetry) algorithm is used to

characterise the dispersed part of the flow.

The main objective is to accurately detect the droplets in a shadow image and calculate their

velocity using the double-frame acquisition. To do so, several image treatment techniques

are used to filter and segment the shadow images. To achieve this, a custom shadow-sizer

algorithm is developed and implemented using the Image Processing Toolbox in MATLAB®.

This shadow-sizer software is an extension to the one developed by Stevenin [57].

To take advantage of the parallel computation capabilities, the new version of the code runs

in parallel, on every computational core available on a x86-64 PC. In addition to that, an

nVidia CUDA enabled graphics-card (Maxwell architecture) is used to perform heavy matrix-

operations, like filtering, bi-linear interpolations and binary operations.

A step-by-step procedure on the general aspects of the code is detailed next:

• Wavelet transform: Based on the procedure presented by Yon [65], a Mexican-hat kernel

function is used and applied as a filter to the original image (Imor g ), the goal is to detect

changes of the image gradient, therefore, amplifying the boundaries of the droplets

no-matter the defocusing (Imw t ). Then, a dynamic threshold generates a binary image

(ImBW ). Every object detected is then a candidate to be a droplet, as Figure 3.12 shows,

where the coloured BW objects are shown to clearly identify the segmentation result.

(a) Original Image (b) Wavelet transform (c) Segmented binary

Figure 3.12 – Shadow image segmentation using MATLAB toolboxes. Image post-processing at
[x/dn = 800, y/dn = 12].
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• Local analysis: Following the local analysis detailed by Fdida and Blaisot [20], every

object is isolated and analysed locally. A local image is created for every object, by

applying the binary mask of Figure 3.12-(c) to Imor g , resulting in a subset of smaller

images Iml oc (local image).

The grey-level intensity of the local images are defined as i , where imi n and imax are

the minimum (dark) and maximum (bright) values. Then, the contrast ratio defined as

C = (imax − imi n)/(imax + imi n) is calculated and the object is rejected from the analysis

if C < 0.1.

• Contours extraction: The objects that pass the contrast filter are finally analysed. The

Iml oc is normalised, meaning that the global grey levels from before now are 0 < i < 1.

From these normalised local images, the contours (w) at the following grey-levels (l ) are

extracted: wl=0.25, wl=0.50, wl=0.61 and wl=0.77. Using a bi-linear interpolation, those

contours are represented in a sub-pixel domain at 10x the original size. Finally, using

the 3D representation described by Daves et al. [10], the equivalent diameter d[30] is

calculated. Other quantities are also kept for further analysis, like the principal axis,

orientation and eccentricity. These are shown in Figure 3.13.

Figure 3.13 – Sub-image analysis on a detected droplet. Local contours and principal axis.

• Velocity estimation: Using the centroids from every droplet detected, on (x, y) coordi-

nates in the pair of images, the SoftAsign matching algorithm form Gold et al. [24] is used.

This creates an output matrix with the matched objects from both consecutive frames.

Finally, knowing the scale resolution (139 pi x/mm) and the time between images (tbp),

the velocity vector of every droplet can be estimated.

The final result of the image segmentation procedure (wavelet transform and filtering, local

analysis, contours extraction and velocity estimation) is shown in Figure 3.14. The information

for every frame is kept for further granulometry and velocimetry of the jet.
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(a) Superposition of two consecutive shadow 12-
bit images using a tbp = 5µs.

0.88 1 mmU = 40 m/s

V = 40 m/s

(b) Shadow-sizer and DTV post-processing. Con-
tours at l = 61% and velocity vectors.

Figure 3.14 – Custom DTV post-processing algorithm. Image centre at x/dn = 600, y/dn = 0.

Depth-of-field calibration

Although the Shadow-sizer algorithm can well detect out-of-focus droplets, as a function of

their characteristic sizes (d[30]), these are not always in the same plane of measurement. In

a jet with cylindrical geometry, aggregating information that does not exist within the same

physical space could lead to several biases in the granulometry and velocimetry.

A calibration procedure on the size of the detected objects is then conducted, following

the original work by Fdida and Blaisot [20]. The response of this optical system is studied

by looking at the in-focus and out-of-focus images on calibrated opaque disks of known

size. Despite that droplets are transparent, the refractive index change at the surface does

not influence the grey-level gradient detected at the edges of an opaque object (Fdida [19]),

making this type of calibration on completely opaque objects well suited for droplets.
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3.3. Measurement set-up

Figure 3.15 – ThorLabs grid distortion target. 3in x 3in, 125 to 2000 µm grid spacings, soda
lime glass.

The procedure is then to use the same shadow-sizer algorithm to detect the objects contours,

as a function of a known distance from the focus plane z. The calibrated objects are from

a Thor-Labs grid distortion target (Figure 3.15), where 62.5, 125, 250, 500 and 1000 µm low-

reflexion discs are painted in a soda lime glass support. The results are shown in Figure 3.16,

as a function of the normalised contrast ratio C0.
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(b) Ratio of the measured diameter dm at l = 61%
to the actual diameter d0 as a function of the
normalized contrast ratio C0.

Figure 3.16 – Calibration using a commercial optical target.

Figure 3.16a shows the normalised contrast ratio C0 (C , where Cmax = 1), for every disc real

size, against the distance from the focal plane z. A difference on the response to the focal

plane distance can be seen for every type of object, this generates a Depth-of-Field (DOF) as a

function of the size of the object.

As also shown by Fdida and Blaisot [20], Figure 3.16b shows the ratio of the actual size of the

objects d0 to the measured dm at l = 61% ((d[30],l=61%) against the normalised contrast ratio C0.
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From this, it can be seen that the overestimation of the real size follows the same relation no

matter the original size nor the out-of-focus distance and it is only a function of the contrast

ratio.

Following this analysis, every equivalent diameter d[30], extracted from the contours at l = 61%,

for every droplet detected in this study case, can be corrected only by looking at the calculated

contrast ratio C .

This calibration methodology has been developed and tested on cases with nearly round

objects. Here, however, its use is questionable, where heavy deformed large packets of liquid

can be found and the definition of an equivalent diameter is only referential. These corrections

are finally not applied to the results presented in Chapter 4, but they are kept as a reference

about the response of the optical system. This notion of DOF is useful to give a proper

interpretation for the velocity and fluctuations fields presented in Chapter 4.

Convergence analysis

With the analysis on the images in mind, where the droplets sizes and velocities are extracted,

the resulting long series of data are used to construct averaged quantities. In a similar way as

in the LDV case, the average velocity field of these droplets are represented in a spatial grid.

An analysis on how this average representation behaves is presented next.

To construct the average fields, a convergence analysis is first performed as a function of

the number of images (N ) needed to have representative average fields. A previous work

performed Stevenin [57] shows that the joint distribution of droplets sizes and velocities

is very sparse for a similar liquid jet, meaning that the average velocity field has a strong

dependence on the droplets distribution. It is therefore important to study how many objects

are detected and validated in each pair of frames, for when the averaged velocity and droplet’s

size fields are constructed, those quantities seem converged on a N number of total images.

Subsequently, an analysis based on a specific distribution of droplets by class of diameter

is proposed. The aim is to specify a decomposition by sizes where the average fields are

calculated. To do so, the following parameters are set:

1. The partition should be the same for the whole analysis. It is known that large droplets

will exist only close to the centerline and will tend to disappear in the outside regions.

The partition proposed must not change according to this, and if large droplets do not

exist at one point, the class is considered non-existent.

2. The distribution should be minimal. Meaning that a partition of many classes that has

the same behaviour of a smaller one is discarded.

3. The average quantity must be independent if weighted by the diameter inside the class
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(i ). Meaning that, if h is the quantity to average, then:

h̄ = dh

d̄
. (3.2)

4. The number of elements should allow a convergence of the average inside the class.

5. To avoid loners, a minimum of 100 elements is allowed inside a class. If not, the class is

considered non existent on that point. This is imposed principally because the average

on large droplets will never converge outside the jet centre line, despite that some rare

events occur.

Following these directives, the following partition by droplet equivalent diameter class is

proposed in Table 3.4.

Table 3.4 – Partition of droplets population by class of diameter.

Class 1: d[30] ≤ 0.10mm

Class 2: 0.10mm < d[30] ≤ 0.25mm

Class 3: 0.25mm < d[30] ≤ 0.50mm

Class 4: 0.50mm < d[30] ≤ 0.75mm

Class 5: 0.75mm < d[30] ≤ 1.00mm

Class 6: 1.00mm < d[30]

To justify the use of this partition, the analysis is presented at x/dn = 600, y/dn = 0 (see Figure

3.14), on a set of 1000 images. The data collected corresponds to a 1/5th of the image in the

central point, using the sub-image partition.

The averaging procedure is the following. Average is the mean velocity component ūi , calcu-

lated from the arithmetic average, over n objects (droplets) identified as j inside the class (k),

ūi ,(k) =
1

n

n∑
j=1

ui ,{ j∈(k)}; (3.3)

and d-Average is the same mean velocity component ūi , but calculated from the weighted

average, over the same objects, by the droplet d[30] diameter, meaning:

ūi ,(k) =
∑n

j=1 d[30],{ j∈(k)}ui ,{ j∈(k)}∑n
j=1 d[30],{ j∈(k)}

. (3.4)

Using this, the influence of the droplet sizes, inside a class, is weighted in the mean velocity

estimation. The convergence is shown in Figure 3.17 for the velocity field.
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ū
x
m
/s

-1

-0.5

0

0.5

1

ū
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Figure 3.17 – Convergence analysis on the mean velocity by droplet’s class diameters. Sub-
image count at [x/dn = 600, y = 0mm].

To summarise, this analysis shows that 1000 images are enough to represent the average

velocity field, under this partition by class of droplet diameter, on a sub-image of a 1/5th of

the original lateral size.

However, this is not always true for the calculated Reynolds stresses. These are calculated

relative to the average by class shown before. Figure 3.18 shows the same analysis on the

principal Reynolds stresses by class, R̄(i )
11 and R̄(i )

22 .

The same principle apply for the Reynolds stresses calculation. Average uses the arithmetic

average:

R̄i j ,(k) =
1

n

n∑
l=1

(
ui ,{l∈(k)} − ūi ,(k)

)(
u j ,{l∈(k)} − ū j ,(k)

)
; (3.5)

and d-Average is calculated as a weighted average by the droplet d[30] diameter, meaning:

R̄i j ,(k) =
∑n

l=1 d[30],{ j∈(k)}
(
ui ,{l∈(k)} − ūi ,(k)

)(
u j ,{l∈(k)} − ū j ,(k)

)∑n
l=1 d[30],{l∈(k)}

. (3.6)

Since the population of large droplets is considerably lower in the bigger class, the convergence

on the number of droplets needed does not always meet. Moreover, there is a difference this

time as a function of the weighted average inside the class, as shown by the doted lines against

the continuous one.

Despite all these difficulties the partition by class is kept and the number of images is not
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modified either. As the later results show, the extra precision that can be gained by re-setting

those parameters would not change the analysis.
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Figure 3.18 – Convergence analysis on the Reynolds stresses by droplet’s class diameters.
Sub-image count at [x/dn = 600, y = 0mm].

Measurement points

As detailed before, all statistics are in a spatial partition of the original image. Since the spatial

resolution is rather big (139 pix/mm; 14.73 mm), there are strong gradients of any quantity if

represented in a lateral profile inside a 2048x2048 pixels frame. To show this effect, the joint

probability density pd f of all events ux -uy , ux -d[30] and uy -d[30] in a sub-image analysis is

presented in Figure 3.19.

This shows that the distributions of velocities and sizes vary a lot inside the image itself. These

points are represented centred on the slices (see Figure 3.20). The probability density functions

(pd f ) are constructed from the histograms. A partition of 50 bins is used to do the count on

every axis, where the white bins are the zones with zero counts. The solid lines represent the

average values and the dashed ones the standard deviation.

Then, the reconstruction of radial profiles is performed by considering only the information

extracted at the central slices, like Figure 3.20 shows. This is called a super-resolution profile,

giving an extra spatial precision on the averaged quantities.

The images are acquired laterally with a step of 4.8 mm, meaning that there is a large overlap-

ping of information. This produces a good quality profile, with enough resolution to perform

further operations, like spatial derivatives.
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Figure 3.19 – Bi-variate histograms normalised as a pdf for: ux -uy , ux -d[30] and uy -d[30].
Sub-image count at [x/dn = 600, y = 0mm].
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Figure 3.20 – Super-resolution profile reconstruction by overlapping of sub-image data. Blue
zones are kept, red are discarded. Example at x/dn = 600.

Finally, similar to the LDV case, this process is repeated on the locations detailed in Figure

3.21, completing the DTV measurement campaign.
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Figure 3.21 – Schematic view of the measurement points for the DTV campaign.
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Summary

A detailed description of the experimental techniques applied to a study case is given in this

chapter. From this development, the following points could summarise the topics treated:

• LDV and DTV measurements systems are chosen to carry out the experimental cam-

paign. Both systems have been tested before in similar cases by other authors. The

objective is to capture the velocity fields of both gas and liquid phases, along with the

distribution of droplets sizes in the dispersed region of the flow. Additionally, shadow

images taken close to the nozzle allow a visualisation of the liquid column breakup

behaviour.

• The study case consists in a circular glass tube nozzle of dn = 1.2mm. This geometry

allows a direct equivalence with the simulation cases in Chapter 2. Although this nozzle

does not exist in any real application, this simplified case provides a better controlled

environment to perform the experiments, with less incertitude on the operating condi-

tions.

• The LDV technique is applied to measure both liquid and gas phases. These measure-

ments are carried out in separate experimental campaigns. The liquid campaign is

performed in the dense and dispersed part of the jet. For the gas campaign, olive-oil

mist is used as passive tracers in the surrounding air. A special set-up in the acquisition

parameters of the LDV (BP filter, SNR, PM gain) is used to discriminate the average

signal from the tracers and the residual part from the liquid droplets. This configuration

allows to capture the average and fluctuating components of the liquid/gas slip-velocity,

an important quantity to compare with the U-RANS model.

• Shadow images are acquired to run a custom DTV algorithm. From this technique,

the droplets sizes and velocity distribution are obtained, a more detailed piece of

information than the one inferred from the average liquid LDV. A strong relation of

the droplets distribution with both average and turbulent velocity fields is found. This

means that a correct estimation of the DOF is crucial to get an accurate velocity field. To

tackle this incertitude, a calibration procedure is carried out using a calibrated target.

Some of the experimental results are shown in this chapter as an example. This is done to

show how the set-up is done and how the raw data from the LDV and DTV are integrated into

the construction of the averaged fields.
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4 Results

Introduction

On this chapter, the results from the simulation cases are presented along with the experimen-

tal observations all-together. The development of this work does not follow the same logic

separation of the numerical and experimental chapters. Indeed, the results are presented in a

way so that the mixture multiphase flow model used here could be compared and explained

with and by the experimental observations.

The experimental results are presented first. Their analysis allows to characterise and to set

some overall parameters on the dynamics of the studied liquid jet. The decay of the centerline

velocity or the spreading-rate on a round-jet are some immediate useful parameters to look-up

to, these set the first baseline to quickly compare against numerical simulations. Later, the

mean and fluctuating velocity fields are obtained from both LDV and DTV measurement

campaigns, these quantities are useful to analyse the behaviour of the turbulence RANS model

used [47][8][56].

Great effort also is put into the numerical simulations, where the custom solver is constructed

and implemented using the OpenFOAM CFD code. Although the construction and test of this

solver could be a subject on its own, based on the experimental observations, a series of study

cases are created to test the behaviour of such formulations, which are only applied to this

study case. Always centred on the same Favre-averaged mixture multiphase modelling, some

variations of k−ϵ and RSM turbulence models are compared, along with first and second-order

closures for the modelled turbulent mass transport fluxes [60].

As previously mentioned, one of the main challenges of this work is to find an explanation to

the strong anisotropy found on the Reynolds stresses principal components [58]. A combined

approach, from the experimental observations, seen by the RSM turbulence model, could

provide some clues on this behaviour.
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4.1 Experimental observations

The experimental observations are based on the data provided by the LDV and DTV cam-

paigns. From these data, two main quantities are calculated: the average velocity field and

the Reynolds stresses. Some special particularities are involved when performing these

calculations, like the ones detailed in Chapter 3. The objective is to extract the averaged

fields from the liquid and gas phases separately.

In this section, the detailed results on the averaged fields are presented. A comparison between

the two measurement techniques in terms of the average velocity fields and the Reynolds

stresses is attempted first. The details on how these quantities evolve in comparison with the

RANS model are described later on a series of simulation cases.

4.1.1 Mean velocity field

Given the cylindrical symmetry of the flow, there are only two main components involved in

the velocity field: ux and uy , this last one similar to the radial component in a symmetry plane.

No matter what type of average operator is used, the flow is always considered statistically

axisymmetric.

As previously defined in Chapter 3, the averaging procedure differs slightly from the two

analysis. The LDV data is always treated using a simple arithmetic average, over n events,

separated by phase, meaning:

ūi ,L = 1

n

n∑
k=1

ui ,{k∈Li q}; (4.1)

ūi ,G = 1

n

n∑
k=1

ui ,{k∈Gas}. (4.2)

For the DTV, the procedure is slightly different. The first approach is to calculate the mean

velocities using a simple arithmetic average, like in the LDV case, meaning that the mean

velocity flagged as Average is:

ūi = 1

n

n∑
k=1

ui ,k ; (4.3)

whereas d-Average is the same mean velocity component ūi , but calculated from the weighted

average, over the same objects, by the droplet d[30] diameter, meaning:

ūi =
∑n

k=1 d[30],k ui ,k∑n
k=1 d[30],k

. (4.4)

If the DTV data is separated by class, then a simple arithmetic average is kept, meaning that

70



4.1. Experimental observations

the average velocity for the class (k) is:

ūi ,(k) =
1

n

n∑
l=1

ui ,{l∈(k)}; (4.5)

The centerline axial velocity is then defined as ūx,L,0 = ūx,L(x, y = 0), where the underscore

indicates the axis component and phase, and in parenthesis the position. From this, the axial

velocity half-width y0.5u is the distance from the jet centerline at which ūx,L(x, y = y0.5u) =
ūx,L,0/2. Using this, the spreading rate S is defined as:

S = ∂y0.5u

∂x
; (4.6)

Despite the formal definition of S, it is calculated and considered linear for x/dn > 400.

Using these definitions, Figure 4.1 shows the decay of ūx,L,0 against the axial distance from the

nozzle, along with the axial velocity half-width y0.5u for the two measurements techniques.
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Figure 4.1 – Mean velocity axial profiles from experimental observations.

In the same way as in constant density round-jets (air-air of Hussein et al. [30]), the jet

looses velocity and spreads. Figure 4.1a shows the decay of ūL,x,0 and the spreading of the

jet, characterised by the y0.5u , using the LDV data on the positions defined in Figure 3.8. To

compare, Figure 4.1b shows the same, but using the two averaging procedures proposed from

the DTV profiles.

The difference between the two sets of measurements is explained by the integration volume

on which the data is acquired. In one hand, the dimensions of the LDV measurement volume

are 0.146x0.146x2.9mm3 (see Figure 3.3), making the spatial velocities integration to around

the size of the jet original diameter. On the other hand, the DTV central slice (see Figure 3.20)

is wide 2.9mm too, making both comparable. However, the depth-of-field (DOF) of the DTV

data has a much larger span, even for small droplets (see Figure 3.16a), meaning that the

calculated DTV average of droplets velocities is integrated into a much larger volume than in
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the LDV case. Since the axial velocity decays against the radial distance, this larger integration

volume makes the DTV centerline velocity lower than in the liquid LDV case.

Although the larger droplets are seen in a larger DOF, they only exist in the central portion of the

jet, and as previously seen in Figure 3.19, they tend to keep the jet bulk velocity (ū J = 35m/s).

This effect is shown by calculating the centerline velocity by class of droplet in Figure 4.2.
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Figure 4.2 – DTV. Mean liquid axial velocity along the centerline ūx,0 by droplets class
diameters.

From the difference on these results, it is not straightforward to assimilate the LDV or DTV

data to the Liquid phase velocity field. Nevertheless, this is carried forward to complete the

analysis.

Contrary to a constant density case, because of the extra inertial, viscous and gravity effects on

the mixture, in variable density flows there is no straightforward similarity. However, similar

relations can be found in the literature. Ruffin et al. [51] studied the decay rate of several

variable density flows, where the following relation can be applied:

ũx,0

ũ J
= 1

A

(
dn

x −x0

)(
ρL

ρG

)b

; (4.7)

where A is the asymptotic decay rate, x0 the abscissa at which the asymptotic behaviour

begins (virtual origin) and b a power applied to the density ratio. To compare this relation

with a constant density case, the nozzle effective diameter is defined as dn(ρL/ρG )b , used as a

normalisation parameter.

Before presenting the calculation, it should be noted that these relations are constructed for

a gas mixture. Therefore, the mixture velocity ũ is involved. Here, only the liquid phase is

measured at the centerline, obtained and assimilated from LDV and DTV. However, given the

high density ratio (ρL/ρG = 828), when Ỹ → 1.0 at the centerline, ũx,0 → ūx,L,0.

Another small difference is about the injection velocity ũ J in Eq. 4.7. ũ J is assumed to be a

top-hat flat profile, which is not true in this case. Although this does not change significantly
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the results, Figure 4.3 shows the difference between the bulk velocity ū J against the centerline

injection velocity ū J ,0 at x/dn = 0 (injection point). These are different because there is a

developed boundary layer inside the injector, and to clarify this point, the results from a k −ϵ
simulation case inside the circular injector, along with a calculated power-law 1/7th, are

shown.
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Figure 4.3 – Axial velocity profile against radial distance at x/dn = 0.

With these considerations, using b = 0.5, the fitted value for A using Eq. 4.7 is shown in Figure

4.4. The two possible injection velocities are contrasted. Also, only the data in the dispersed

region of the jet is considered, meaning that A is calculated using the data for x/dn > 400, in

the same way as the spreading-rate S before.
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Figure 4.4 – Liquid centerline axial velocity decay rate against axial distance.

This yields an average decay rate A = 0.019, nearly 10 times smaller than in the cases reported

by Ruffin et al. [51] and the LDV data from Hussein et al. [30] in an air-air round jet, where

S = 0.094. However, using the same procedure, Stevenin et al. [58] found a similar decay rate

of A = 0.0273, and a spreading rate of S = 0.024.

As no more information is available, the construction of a similarity pattern using the radial

profiles is attempted next. ūx,L,0 and y0.5u are used as normalising quantities. Figure 4.5
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presents both the axial and lateral liquid velocities, using this procedure.
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/ū

x
,L
,0

(a) Axial liquid velocity

0 2 4 6 8

y/y0.5u

-0.01

0

0.01

0.02

0.03

0.04

ū
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Figure 4.5 – Velocity field from the Liquid and Gas LDV campaign. Profiles against radial
distance from x/dn = 400 to x/dn = 800.

A similarity is found on both components in the liquid part, but the shape differs from a

single phase jet. While the axial component decays slower against the radial distance, the

lateral component remains always positive. This is logic if the liquid velocity follows always

the liquid spreading from the central part of the jet, pointing outwards. Therefore, the slip-

velocity between the phases should always be positive. Indeed, as Figure 4.5 shows, both gas

components fall below the liquid velocity. The entrainment part of the jet is carried out by the

gas phase, but at a much slower intensity than in a single phase jet. And, as expected, there is

no similarity this time on neither of the profiles.

The noise in the profiles, seen as steps far from the centerline, comes from the LDV BP-Filter

setting. As the magnitude of the velocity decreases, the BP-Filter is set to a more narrow span,

this corresponds to discrete cutout frequencies. This effect makes the jumps from one point to

another in the profile, as the configuration is continuously changed to grab the wider possible

band.

To highlight the importance of the average liquid/gas slip-velocity ūi ,S , a relation extracted
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from Chapter 2 is repeated here (see Eq. 2.15 on Page 17). From the development of the Favre

averaging process, the Reynolds-averaged phase-velocity fields are related to the turbulent

mass flux in the following expression:

ūi ,S = ūi ,L − ūi ,G =
�u ′′

i Y ′′

Ỹ (1− Ỹ )
; (4.8)

meaning that if a correct estimation of ūi ,S is achieved, the form of the turbulent mass flux�u ′′
i Y ′′ could be deduced. From Eq. 4.8, ūi ,L and ūi ,G refer to the Reynolds averaged fields on

the Liquid and Gas phases. However, as discussed before, it is not straightforward to define

the average behaviour of the liquid phase as the average from the LDV or DTV data. Therefore,

the analysis is presented step-by-step.

A better insight on the liquid velocity behaviour can be seen by looking at the DTV profiles.

Despite the lose of spatial precision because of the DOF, as seen before in Chapter 3 (Figure

3.16a on Page 61), the distribution of droplets sizes plays a major role in the reconstruction of

the velocity and the Reynolds stresses fields. The influence of the droplet sizes in the calculated

averaged values is investigated first.

To mimic the previous Liquid-LDV results, the same profiles are constructed using the method

described in Figure 3.20 (Page 67). A first analysis on the influence of the droplet sizes is done

by reconstructing the velocity field using Eq. 4.3 (Average) and Eq. 4.4 (d-Average).
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ū
y
/ū
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Figure 4.6 – Mean axial and lateral velocities against radial distance. DTV radial profiles from
x/dn = 400 to x/dn = 800.
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To check the jet symmetry, the profiles are reconstructed from all the horizontal measurement

points. As Figure 4.6 shows, the same similarity on the profiles is achieved, using the two

types of averages. ūx,0 and y0.5u are used as normalising parameters, calculated from the

DTV profiles. Nevertheless, comparing with the Liquid-LDV, it can be noted that although the

similar-profiles keep the same shape, the velocity field obtained by the DTV is not the same.

As mentioned before, there is a difference in the behaviour depending on the class of droplets

by diameter. This is investigated by decomposing the averaged velocity field into the classes

defined in Table 3.4 (Page 63). Then, the mean velocity is calculated using an arithmetic

average of Eq. 4.5.

Using this procedure, Figures 4.7 and 4.8 show the velocity against radial distance profiles, on

all the measurement points, in absolute coordinates. The sub-figure analysis on the shadow

images, along with a sufficient number of objects detected by class, allow the reconstruction

of these detailed profiles.

-40 -20 0 20 40

y (mm)

0

10

20

30

40

ū
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ū
x
(m

/s
)

x/dn = 700

-40 -20 0 20 40

y (mm)

0

10

20

30

40

ū
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Average radial profiles from x/dn = 400 to x/dn = 800.

While large droplets tend to maintain the jet average bulk velocity (ū j = 35m/s) in the

axial direction, the small ones lag significantly behind. The lateral velocity shows a similar

behaviour, where big droplets tend to escape the central part of the jet, twice as fast as for

the smaller class. Despite using a different class partition, the same behaviour can be seen in

Stevenin [57] case.

This effect is already observed by Prevost et al. [49] in a particle laden tube jet. When particles

come within the same gas jet, their response to the average motion is driven by their capacity

to adapt to the gas flow velocity. So, if the longitudinal average gas velocity decreases, it would

be harder for large particles to adapt, and their average velocity will be higher.

An analogy to this case can be made. Here, a heavy poly-dispersed flow comes from the nozzle,

where droplets meet the gas phase. Dragged by the particles, the gas phase should accelerate

until an equilibrium velocity is reached. Small droplets will adapt quicker to this, since they

are subjected to bigger aerodynamic effects as a function of the local slip-velocity (velocity

seen by the droplets) and their relaxation time τR . This effect can be further investigated by

examining the Reynolds stresses, which are shown next.

As previously mentioned, the gas phase velocity obtained by LDV is not accurate in zones

where a large concentration of liquid droplets is present. Moreover, both LDV and DTV might

have biases related to the measurement volume and DOF. Despite these limitations, the LDV

data allows to estimate ūi ,L , ūi ,G and ūi ,S , where the results show a clear mean slip velocity.
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From the DTV side, the incertitude introduced by the DOF is tackled with the analysis by class

of diameter. This allows to have a clear picture on the average behaviour at different scales,

and although it is not explicitly shown here, the relaxation time τR must play a significant role,

as investigated by Ferrand et al. [21].

4.1.2 Reynolds stresses

The same analysis is performed for the calculation of the Reynolds stresses. Since the main

goal is to compare these experimental results with a mixture RANS model, some precisions

must be set before.

The numerical mixture RANS model is Favre-averaged, meaning that if a representation from

the Reynolds stresses by phase is constructed, the combination yields the following relation:

�u ′′
i u

′′
j = Ỹ u

′
i ,Lu

′
j ,L + (1− Ỹ )u

′
i ,G u

′
j ,G +

�u ′′
i Y ′′�u ′′

j Y ′′

Ỹ (1− Ỹ )
; (4.9)

where the first two terms are the Reynolds-averaged contributions from the two phases, and

the last part is a slip-related component. Actually, using the original relation for the slip-

velocity, ūi ,S (Eq. 4.8) into this Eq. 4.9, all contributions to the Favre-averaged Reynolds

stresses can be expressed from known experimental quantities:

• �u ′′
i u

′′
j : Favre averaged Reynolds stresses (or R̃i j );

• u
′
i ,Lu

′
j ,L : Liquid Reynolds stresses (or R̄i j ,L);

• u
′
i ,G u

′
j ,G : Gas Reynolds stresses (or R̄i j ,G );

• ūi ,S ū j ,S : Slip Reynolds stresses (or R̄i j ,S).

Rewriting Eq. 4.9 using these terms, gives:

R̃i j = Ỹ R̄i j ,L + (1− Ỹ )R̄i j ,G + Ỹ (1− Ỹ )R̄i j ,S . (4.10)

The overall expression can not be reconstructed, because no experimental results are available

to estimate Ỹ . Nevertheless, the partial contributions are available from the Liquid and Gas

LDV measurements, and the subsequent slip-velocity.

The averaging procedure for the Reynolds stresses on each phase is detailed using the LDV

data. Using the calculated ūi ,L (Eq. 4.1) and ūi ,G (Eq. 4.2) as center values, the following

estimators are constructed for R̄i j ,L and R̄i j ,G :

R̄i j ,L = 1

n

n∑
k=1

(
ui ,{k∈l i q} − ūi ,L

)(
u j ,{k∈l i q} − ū j ,L

)
; (4.11)
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R̄i j ,G = 1

n

n∑
k=1

(
ui ,{k∈g as} − ūi ,G

)(
u j ,{k∈g as} − ū j ,G

)
. (4.12)

The slip component, R̄i j ,S in Eq. 4.10, is reconstructed from the slip-velocity field defined in

Eq. 4.8, which yields:

R̄i j ,S = (
ūi ,L − ūi ,G

)(
ū j ,L − ū j ,G

)= ūi ,S ū j ,S . (4.13)

Using this procedure, R̄i j ,L , R̄i j ,G and R̄i j ,S contributions are shown in Figure 4.9 for R̄11, R̄22

and R̄12 components.
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Figure 4.9 – Reynolds stresses against radial distance. LDV liquid, gas and slip components
radial profiles at x/dn = 400 and x/dn = 800.

ūx,L,0 and y0.5u are used as normalising parameters. The resulting stresses are presented at

x/dn = 400 and x/dn = 800, to see the evolution from the beginning of the dispersed zone up

to the last profile acquired.

The R̄11,L component shows a similar behaviour like in a single-phase round jets, reaching its

maximum of 0.08 in the dispersed region [30]. The main difference is in the radial component

R̄22,L , where a huge anisotropy is found, being R̄11,L ∼ 15 R̄22,L . The shear component R̄12,L

is also small, it reaches R̄12/k̄ ≈ 1/3 at the end of the liquid velocity profile, where no more

droplets are present. This behaviour differs from the gas-gas variable-density case of Amielh

et al. [2] or the gas-gas constant-density of Hussein et al. [30], where the comparison is shown
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in Figure 4.10.
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Figure 4.10 – Shear stress over turbulent kinetic energy. LDV liquid and gas components.
Radial profiles from x/dn = 400 to x/dn = 800.

Here, k̄L and k̄G are calculated assuming a cylindrical axisymmetry, meaning:

k̄L = 1

2

(
R̄11,L +2R̄22,L

)
; (4.14)

k̄G = 1

2

(
R̄11,G +2R̄22,G

)
. (4.15)

Since the shear (R12) and lateral (R22) components are the main dissipation terms in momen-

tum equation, these low values could explain the low decay-rate in the centerline velocity and

low spreading-rate. Moreover, it is important to notice that the calculated slip-component

R̄i j ,S has the same order of magnitude as the liquid and gas parts (R̄i j ,L and R̄i j ,G ), meaning

that the complete reconstruction based on these three contributions is important to perform

a proper comparison with the mixture R̃i j model.

To characterise the anisotropy of the Reynold stresses, the anisotropy factor is introduced.

Since this liquid round jet presents an axisymmetric behaviour, where R̃11 ≫ R̃22 = R̃33, the

anisotropy factor 〈A〉R is defined as:

〈A〉R = 〈R〉22

〈R〉11
. (4.16)

Therefore, a low anisotropy factor means a high anisotropy AR ≪ 1.0, and a value close to

AR = 1.0 means an isotropic behaviour.

From the observations made by Stevenin [57], if the Stokes number (St) calculated for the

liquid droplets is small enough, a high anisotropy could be a consequence of the sharp gas

boundary layer created around the poorly atomised liquid jet. However, by looking at the gas

phase Reynolds stresses here, it seems to be the other way around. Indeed, the gas phase data
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presents a lower anisotropy than the liquid phase, meaning that it is the liquid phase which

generates this behaviour.

To investigate further on the source, the DTV data is used. Since the strong anisotropy and

low shear components seem to be maintained throughout the whole dispersed domain, an

analysis at x/dn = 800 is presented. The joint pdf s between the velocity components and the

droplet’s diameters are shown in Figure 4.11 at several radial distances from the centerline,

where using the sub-image partition, the pdf s are constructed by picking the central slices on

each value.

To compare using the whole database, Liquid and Gas LDV are shown on nearly the same

measurement points. The first row corresponds to the LDV Gas (not available at the centerline);

the second row is the LDV Liquid; and the rest are from DTV, decomposed as the pdf s by

velocity component as a function of the droplet equivalent diameter (d[30]). It is clear that

the local dispersion by class of diameters behaves in a very different way on both axes, this is

confirmed by looking at the same pdf shape from the LDV campaign.

The change in the fluctuating behaviour for both velocity components can be seen at the same

time in the Liquid and Gas phases. As the distance from the centerline increases, a tendency

to a more isotropic behaviour can be seen in both the liquid and the gas. By looking at the

decomposition by droplet diameter, it seems that the presence of big droplets close to the

centerline generates a long spectrum of variation for the axial velocities, whereas a less intense

effect is seen in the lateral component.

From this, the Reynolds stresses are obtained using the same averaging procedure used for

the mean velocity estimation: thus, a simple average and a diameter-weighted average. R̄i j

flagged as Average, using ūi as a centre value from Eq. 4.3, is simply:

R̄i j = 1

n

n∑
l=1

(
ui ,l − ūi

)(
u j ,l − ū j

)
; (4.17)

and d-Average is calculated as a weighted average by the droplet d[30] diameter, using ūi from

Eq. 4.4, meaning:

R̄i j =
∑n

l=1 d[30],l
(
ui ,l − ūi

)(
u j ,l − ū j

)∑n
l=1 d[30],l

. (4.18)

The results are shown in Figure 4.12, where the same similitude representation appears

using the calculated ūx,0 and y0.5u as normalisation parameters, from the corresponding

velocity fields. Once more, no matter the type of average, the profiles fit well a similar relation.

Moreover, the profiles show the same behaviour as those previously obtained by LDV. However,

as expected, the diameter-weighted average produces an impact on the results. As the previous

pdf s show in Figure 4.11, large droplets present little agitation compared to the smaller

ones. This effect is studied by reconstructing the Reynolds stresses by class of diameter. The

averaging procedure is a simple arithmetic average inside the class (k), meaning that the
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Figure 4.11 – Bi-variate histograms normalised as a pdf from LDV and DTV, at x/dn = 800 for:
ux -uy , ux -d[30] and uy -d[30].
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/ū

2 x
,0

x/dn = 400

x/dn = 500

x/dn = 600

x/dn = 700

x/dn = 800

d-Average

Figure 4.12 – Reynolds stresses against radial distance. DTV Average and d-Average radial
profiles from x/dn = 400 to x/dn = 800.
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values are centred using ūi ,(k) (Eq. 4.5):

R̄i j ,(k) =
1

n

n∑
l=1

(
ui ,{l∈(k)} − ūi ,(k)

)(
u j ,{l∈(k)} − ū j ,(k)

)
; (4.19)

and shown in Figure 4.13. Since, ūx,0 and y0.5u are not defined by class of diameter, the

Reynolds stresses are presented in absolute values, at x/dn = 400 and x/dn = 800.

A clear different behaviour can be observed from the analysis by class of diameter. The shear

and transverse components seem to be more important for very small diameter droplets,

following the gas phase turbulence (see Figure 4.9). This is consistent with the observations

made by Ferrand et al. [21] in a particle-laden jet, who explains this behaviour using the

calculated Stokes number (St ) by class of diameter.

Finally, using these values for the reconstructed R̄i j , the anisotropy factor R̄22,(k)/R̄11,(k) by

class is constructed and presented in Figure 4.14.
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Figure 4.14 – Reynolds stresses anisotropy factor (R̄22/R̄11) against radial distance. DTV radial
profiles by droplets’ class diameters from x/dn = 400 to x/dn = 800.

These results clearly differs from the gas-gas jet of Hussein et al. [30] or the particle-laden jet

of Ferrand et al. [21], where a high anisotropy is found on the bigger class of particles (dp =
80−90µm). Here, the anisotropy seems to reach its maximum in the 100µm < d[30] ≤ 250µm

and 250µm < d[30] ≤ 500µm class, at the more fragmented part of the jet. In contrast, very
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Figure 4.13 – Reynolds stresses against radial distance. DTV radial profiles by droplets’ class
diameters for x/dn = 400 and x/dn = 800.
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large and small droplets are more isotropic. As enunciated before, very small droplets could

be more prone to be affected by the gas phase turbulence, therefore they will tend to isotropy

at the external zones. This is also implicitly shown in Figure 4.11, where the combined effect

can be seen by reconstructing the pdf s at several distances from the centerline.

As mentioned before, an estimation of the Stokes Number (St ) could give a better insight on

this behaviour. From the acquired data, the following formulation by class of diameter (k)

could be used:

St(k) =
τR

τt
=

ρL d̄ 2
[30],(k)

18µG

(
1+0.15Re0.687

d ,(k)

)
y0.5up
R̄11,G

; (4.20)

τt is estimated using the length scale y0.5u and axial standard deviation for the velocity

fluctuations in the gas phase
√

R̄11,G . Red ,(k) is the Reynolds number seen by the droplets of

the class (k):

Red ,(k) =
∥ūi ,(k) − ūi ,G∥d̄[30],(k)

νG
. (4.21)

Here, to represent the velocity seen by the droplets, the mean gas velocity ūi ,G is extracted

from the LDV data, and ūi ,(k) is the mean velocity of the class (k) from the DTV, with the

corresponding mean diameter d̄[30],(k). This formulation differs from the one in Eq. 2.41 (page

25) in the sense that it confronts directly the mean slip velocity by class of diameters against

the gas velocity field, whereas the modelled quantity needs the drift part ūi ,D (Eq. 2.42) to

account for the slip velocity seen by the droplets.

Because the mean and fluctuating data is not available at the centerline of the jet, a special class

of d̄[30],(k) ≤ 50µm is created to represent
√

R̄11,G . This is, however, a very strong hypothesis,

because as Figure 4.15 shows at x/dn = 800, despite the similitude far from the centerline of

these two quantities, closer to the axis there is no evidence that small droplets (d̄[30],(k) ≤ 50µm)

follow the gas-phase fluctuations.
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Figure 4.15 – Reynolds stresses against radial distance. DTV and LDV radial profiles at x/dn =
800.
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Using these results, the Stokes number St from Eq. 4.20 is calculated along the centerline of

the jet in Figure 4.16. It shows how the particles should react to this gas fluctuating field R̄11,G .

Here, if St ≫ 1, the droplets are unresponsive to the gas phase fluctuations, and if St ≪ 1, they

should follow the gas phase as tracers.
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10

0

10
1
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Figure 4.16 – Stokes number at the jet centerline by droplets’ class of diameters from x/dn = 400
to x/dn = 800.

Despite this strong hypothesis, a clear difference on the behaviour by class of diameter can

be seen. Although the small droplets never reach St ≪ 1, and therefore, they should not be

considered as gas tracers, they are order of magnitudes more responsive to the gas phase

fluctuations than the bigger ones.

This effect could explain the strong anisotropy factor found in the medium sized droplets (see

Figure 4.14). Large droplets are the least influenced by the gas phase fluctuations, they tend

to keep a velocity close to the injection bulk velocity ū J = 35m/s, with a turbulent intensity

inherited from the pure liquid-phase (see Figure 4.13). Small droplets follow the gas-phase

fluctuations easily far from the centerline, but they are trapped by the large slip-velocity

induced by large droplets close to the axis. However, medium sizes droplets (100 ≤ d̄[30],(k) ≤
500µm), can have both a wide band of turbulent intensity and be less influenced by the gas

phase fluctuations far from the centerline, boosting the anisotropy on the whole profile as

seen in Figure 4.14.
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4.2 Numerical model analysis

The numerical model analysis follows the previous cases definition in Chapter 2. The main

objective at first is to test the behaviour of several variations of the RANS turbulence models.

Later, based on the experimental observations, some specific cases are presented to account

for these observations.

The detailed description of the modelled equations is given in Chapter 2.2. However, to better

illustrate the analysis, some equations are rewritten here along with the study case definition.

A quick description of the simulation case is shown in Figure 4.17. This represents a schematic

view of a longitudinal 2D slice (the real case is 3D).

Nozzle wall

Atmospheric Pressure

Inlet:

x

y

z
(Wall Thickness)

Figure 4.17 – Schematic representation of the 3D mesh, including boundary conditions.

From this, the boundary conditions and case set-up are:

• The nozzle diameter is dn = 1.2mm, of length Ln = 50dn and pointing downwards,

aligned with gravity.

• Only water is injected through the nozzle, meaning that ũ0 = ūL,J = 35m/s and Ỹ0 =
Y 0 = 1. The air is considered still.

• Turbulence boundary conditions are specified as if there is an infinite, similar, pipe flow

upstream, with a turbulence intensity It = 4%. This yields a k̃0 = 3.3m2/s2 and ϵ̃0 =
11700m2/s3. The Reynolds stresses are considered isotropic, so R̃i j ,0 = 2/3k̃0δi j m2/s2.

• The simulation time is from t0 = 0 s to t f = 0.3 s. This ensures a full coverage of the

domain, even in the external regions of the jet. The time-step of the simulation is

variable, calculated from the worst case as a function of the local Courant number Co.

To avoid any divergence of the simulation, Co = 0.8 is set as the maximum possible

value.
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4.2. Numerical model analysis

4.2.1 RANS turbulence model

First, a variation of the RANS turbulence model is analysed. The three previously described

turbulence models are used: k −ϵ (k-Epsilon), Ri j −ϵ (RSM) and Ri j −ϵi j (RSM Variation). To

isolate the behaviour only as a function of the turbulence modelling, the same basic turbulent

mass flux model is used, Ymod0. All of this corresponds to the cases: Case 112, Case 212 and

Case 312 (Page 37).

A first comparison with the experimental results is shown in Figure 4.18. The centerline

evolution of the axial mixture velocity (ũx,0) is presented along the centerline liquid velocity

(ūx,L,0) from the LDV (Figure 4.18-(a)). Evidently, despite that the comparison of mixture

against liquid velocities might be inconsistent, at the centerline Ỹ ≈ 1.0, which makes ũx,0 ≈
ūx,L,0. Based on the lateral profiles, the calculated half-width of the velocity profiles is
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Figure 4.18 – Turbulence models’ benchmark compared to the Liquid LDV.

compared (y0.5u) with experimental reconstruction from the LDV ūx,L profiles (Figure 4.18-

(b)). As discussed later, the half-width is defined for the mixture velocity, so a combination

between ūx,L and ūx,G should be used instead. However, as Ỹ is not directly measured, ũx

remains unknown.

The centerline liquid volume fraction is compared to the estimated average liquid column

breakup length, where Y ≈ 0.5 (Figure 4.18-(c)). This is a rough estimation of the behaviour of

the solution, because this hypothesis to separate the dense zone from the dispersed part of

the spray is not always well defined.
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Finally, the comparison for the axial turbulent intensity
√〈R〉11,0/〈u〉x,0 is shown in Figure

4.18-(d). Contrary to the mean values, the choice of parameters on the LDV set-up seems to

have a big impact on the calculated fluctuating quantities. Indeed, at x/d = 400, a change

in the PM sensitivity is made, resulting in a jump of the calculated turbulent intensity. To

avoid damaging the PMs, from x/d = 0 to x/d = 400 the gain can not be set to a higher value,

resulting in a biased fluctuating field, as the system is unable to capture small droplets events.

The first observation that can be made is about the momentum diffusion comparison between

the three model approaches. As expected, the introduction of a RANS model that takes into

account some anisotropy on the Reynolds stresses plays a significant role in the overall results.

As Figure 4.18 shows, the Ri j − ϵi j simulation case presents a small decay-rate of the axial

centerline velocity ũx,0, bringing the results closer to the experimental points. The explanation

on the mechanism of these results is explained later using the Reynolds stresses fields.

0

0.1

-0.1

0 0.2 0.4 0.6 0.8 1.0 1.2

10.110-210-310-410-5

0

0.1

-0.1

0 0.2 0.4 0.6 0.8 1.0 1.2

10.110-210-310-410-5

0

0.1

-0.1

0 0.2 0.4 0.6 0.8 1.0 1.2

10.110-210-310-410-5

Figure 4.19 – Liquid mass fraction Ỹ field in a mid-plane (z = 0) cutout. Solution from t = 0.1 s
to t = 0.3 s.

Because of the U-RANS formulation, and since the solution is taken at a given time, t = 0.3 s,

it can be seen in Figure 4.18-(c) that there is a residual unsteadiness of the solution. Indeed,
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4.2. Numerical model analysis

Ỹ fluctuates as function of time (therefore, Y does too). This is not due to some lack of

convergence, because the solver converges at every time-step by definition. In fact, these

fluctuations may be a product of the actual jet flapping, like in the work made by Delon [13].

Nevertheless, these fluctuations are not considered to be high enough to affect the analysis

made here, and the unsteadiness is not taken into account in this analysis. To illustrate this, a

complete solution in a mid-plane cutout of the simulated domain is shown in Figure 4.19 for

the Ri j −ϵi j case.

Before going into the comparative analysis, a precision on the use of the turbulent mass flux

model needs to be made. This argument is carried out throughout the whole analysis. Indeed,

Ymod0 reads (from Eq. 2.37):

−ρ̄ �u ′′
i Y ′′ = µt

σY

∂Ỹ

∂xi
. (4.22)

From the model used by Belhadef et al. [5], and the later analysis made by Stevenin et al. [59],

the use of of a turbulent Schmidt number of σY = 5.5 is used and justified. Not only because

it fits well the experimental results on a similar round jet, but because it emulates a strong

anisotropy factor in the principal Reynolds stresses, starting from a more general formulation,

meaning that if a boundary layer approximation is made, then:

−ρ̄ �u ′′
i Y ′′ ≈ ρ̄�u ′′

y Y ′′ =CY ρ̄
k̃

ϵ̃
ũ

′′
y

2 ∂Ỹ

∂y
; (4.23)

and assuming that ũ
′′
y

2 = 0.082k̃, then using the standard value of CY = 0.1, Ymod1 becomes

Ymod0 with σY = 5.5.

If a RSM case would produce a strong anisotropy, like in the one observed in Figure 4.14,

this artificial σY = 5.5 would not be necessary. However, this is not the case for the two RSM

formulations used here. The anisotropy factor reaches nearly R̃22/R̃11 = 0.6 and together with

a high enough shear component R̃12 ∼ k̃/3, Ymod1 becomes Ymod0.

Good enough RSM and turbulent mass flux formulations would produce both a strong

anisotropy factor and a low shear component. This would produce at the same time a low

decay rate of the centerline axial velocity and a low spreading rate, as experimentally found

(see Figures 4.1, 4.9 and 4.14).

Having set the same turbulent mass flux model, as previously shown, how the Reynolds

stresses are calculated seems to have a huge effect on the velocity field. This is explicitly shown

in Figure 4.20, where the Reynolds stresses are compared in the dispersed zone of the jet.
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Figure 4.20 – Comparison of the Reynolds stresses against radial distance as a function of the
turbulence model at x/dn = 800. Experimental LDV (liquid and gas) and DTV radial profiles
are shown as a benchmark.

Indeed, while both the simulation and the experimental case produce nearly the same

turbulent kinetic energy, which for a cylindrical axisymmetry is:

〈k〉 = 1

2
(〈R〉11 +〈R〉22 +〈R〉33) ≈ 1

2
(〈R〉11 +2〈R〉22) ; (4.24)

the distribution between the principal components is completely different. Indeed, 〈R〉11

component has a similar value compared to Hussein et al. [30] or Amielh et al. [2] cases, while

〈R〉22 simulation results does not seem to approach the very low experimental values.

Despite all this, since 〈R〉12 is indeed lower in the Ri j −ϵi j case, this results in a low momentum

transfer from the axial to the radial direction, decreasing the decay rate of the axial centerline

velocity. A good numerical result would be to reduce considerably 〈R〉22 and 〈R〉12, while

keeping a high enough 〈R〉11.

Although these comparisons are made between the Liquid/Gas Reynolds-averaged values,

against the Favre-averaged model, the orders of magnitude and the relation given by Eq. 4.10

point in a clear direction.
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4.2.2 Epsilon equation behaviour

Before examining further the last point, a brief analysis on the use of the Epsilon equation is

developed. The three RANS models used here rely on the same modelled Epsilon equation

(Eq. 2.22) to obtain the turbulent kinetic energy dissipation rate ϵ̃.

Many versions of this modelled equation exist in different applications of RANS turbulence. A

particular variation to the original version by Jones and Launder [34] is introduced by Pope

[46]. The original version gives good results in a planar-jet configuration, but if the same

parameters are used in a round-jet, the spreading rate S is overestimated. This is called the

round-jet/planar-jet anomaly, it is related to the vortex stretching in the angular direction of

a round-jet. Pope [46] proposes to add an extra source term to account for this, resulting in

good agreement with experimental results.

Dally et al. [9] proposes to use the original equation proposed by Jones and Launder [34], but

with Cϵ1 = 1.60 instead of the original Cϵ1 = 1.44 value. The overall increase of the production

term would produce a similar effect to correct the spreading rate in a round-jet. The analysis

on the application of this modification to a circular multiphase jet is also studied by Stevenin

et al. [59], improving the numerical results on the spreading rate prediction.

To test this behaviour, the contributions at the RHS of the Epsilon equation are studied by

modifying the value of Cϵ1. The study cases are based on the Ri j −ϵ model with Ymod0: Case

211 and Case 212 (see page 38). In Figure 4.21 the following budget is shown for the two cases

at x/dn = 400 in a radial profile:

• Production-1: with Cϵ1 = 1.44 or Cϵ1 = 1.60;

−Cϵ1
ϵ̄

k̃
ρ̄�u ′′

i u
′′
j

∂ũi

∂x j
. (4.25)

• Production-2: with Cϵ4 = 1.0;

−Cϵ4
ϵ̄

k̃
u

′′
i

∂p̄

∂xi
. (4.26)

• Destruction: with Cϵ2 = 1.92

−Cϵ2ρ̄
ϵ̄2

k̃
. (4.27)

• Dilatation: with Cϵ5 = 1.0

−Cϵ5ρ̄ϵ̄
∂ũk

∂xk
. (4.28)
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Figure 4.21 – Epsilon equation budget against radial distance for two cases: (a) Ri j −ϵ with
Cϵ1 = 1.44 (Standard value); (b) Ri j −ϵ with Cϵ1 = 1.60 (round-jet correction). Radial profiles at
x/dn = 400.

The profiles are divided by ρ̄ϵ̃ to account for the relative variation. Cell centre values are also

shown to highlight the mesh quality. Indeed, the original production term (Production-1) is

higher using Cϵ1 = 1.60, creating a higher ϵ̃, lowering the turbulent kinetic energy k̃ in zones

with high shear.

To check if this effect is also important using the Ri j −ϵi j model with Ymod0, cases Case 311 and

Case 312 (see page 38) are also created. The overall influence is shown in Figure 4.22, where

the axial velocity profiles for all four numerical models are compared against the experimental

results.
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LDV ūx,L
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Figure 4.22 – Mean axial velocity against radial distance as a function of Cϵ1 at x/dn = 400.
Experimental LDV (liquid and gas) and DTV radial profiles are shown as a benchmark.

As previously shown before, the Ri j −ϵi j model with Ymod0 predicts not only a better centerline

velocity but at the same time a good spreading rate. From Figure 4.18 (page 89) it might seem

that the spreading rate S is underestimated, but looking at the actual radial profiles, ũx should

blend from ūx,L to ūx,G as a function of the radial distance, following the liquid mass fraction Ỹ

radial profile. This last quantity is however not available from the experimental measurements,
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4.2. Numerical model analysis

but the numerical solution is shown to illustrate the effect.

4.2.3 Turbulent mass transport

The previous two analyses are centred on the use of an RSM case, coupled with a basic

description for the turbulent mass fluxes (Ymod0). Now, the focus is on this last quantity. Using

several numerical study cases, a comparison between the experimental results against the

numerical solution is made, as a function of several formulations for �u ′′
i Y ′′ .

Both Ymod0 and Ymod1 are based in the same gradient diffusion hypothesis (Eq. 2.37 and 2.38,

on Page 23). However, as experimentally observed, the mean slip-velocity between the liquid

and gas phases (Eq. 4.8) does not agree with this gradient hypothesis formulation. Indeed, if

ūx,S ≫ ūy,S , and ∂Ỹ
∂x ≪ ∂Ỹ

∂y , then �u ′′
i Y ′′

��HH∝ ∂Ỹ
∂xi

.

Throughout the whole set of simulation cases, the second order modelled equation for �u ′′
i Y ′′ is

solved, but not coupled (Eq. 2.39) with the actual mass transport Eq. 2.10. This is done to have

an estimation on how a solution to this equation would behave, without the complications of

a full coupling, which is analysed later.

From the experimental results, it can be seen that generally �u ′′Y ′′ ≫ �v ′′Y ′′ . Therefore, the

solution for the second order modelling of �u ′′
i Y ′′ should produce something like this. An

analysis of the source terms at the RHS of Eq. 2.39 gives an insight on how the solution may

react as a function of a subset of modelled parameters. Indeed, if the system is in equilibrium

and the source and sink terms are dominant, then:

�u ′′
i Y ′′ = F̃i ,D−CF 2

CF 4
(1−Ỹ )τR

�u ′′
i u

′′
j

∂Ỹ

∂x j
−CF 1

CF 4
(1−Ỹ )τR

�u ′′
j Y ′′ ∂ũi

∂x j
−CF 3

CF 4
(1−Ỹ )τR

Y ′′

ρ̄

∂p̄

∂xi
; (4.29)

where F̃i ,D is the modelled drift velocity, simply expressed as Ymod0. From this, an approxi-

mation can be made, where ∂
∂y ≫ ∂

∂x and the pressure-gradient term is neglected, by simply

making CF 3 = 0. Then, the axial and lateral components are:

�u ′′
x Y ′′ =−CF 2

CF 4
(1− Ỹ )τR

�u ′′
x u

′′
y
∂Ỹ

∂y
− CF 1

CF 4
(1− Ỹ )τR

�u ′′
y Y ′′ ∂ũx

∂y
(4.30)

�u ′′
y Y ′′ =− νt

σY

∂Ỹ

∂y
− CF 2

CF 4
(1− Ỹ )τR ũ

′′
y

2 ∂Ỹ

∂y
− CF 1

CF 4
(1− Ỹ )τR

�u ′′
y Y ′′ ∂ũy

∂y
(4.31)

From this approximation, it can be seen that there is a way to make �u ′′Y ′′ ≫ �v ′′Y ′′ .

But first, a good solution to for the equivalent mean diameter of droplets d[32] is needed, by

solving Eq. 2.45. This would create a big enough τR close to the centerline, making the far most

RHS terms important. And second, a subset of CF i parameters such as: CF 4 and CF 1 ≫CF 2
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are needed too.

To tackle the first point, the solution to the calculated d[32] from the ρ̄Ω̃ solution is shown

in Figure 4.23, along with the d[30] obtain from the DTV experimental measurements at

x/dn = 400.
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Figure 4.23 – Equivalent diameter of droplets population against radial distance. Radial profiles
from simulations and DTV at x/dn = 400.

Although the solution does not fit very well the experimental measurements, because not

much attention is taken to the parameters in this study case, the solution is not far off physical

values, therefore it can be used.

Next, choosing CF 1 = 4.0, CF 2 = 0.1, CF 3 = 0.0 and CF 4 = 4.0 (Case 312), the budget for the RHS

terms in Eq. 2.39 is shown in Figure 4.24.
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ũ′′

xY
′′

−Budget

-2 0 2

y/y0.5u

-2

-1

0

1

2

F̃
i/
(ũ
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Figure 4.24 – Turbulent mass transport equation contributions budget against radial distance.
Axial and radial components at x/dn = 400.

Where the contributions are:

• F̃1 Shear: CF 1
�u ′′

j Y ′′ ∂ũi
∂x j

;

96



4.2. Numerical model analysis

• F̃2 Mass: −CF 2
�u ′′

i u
′′
j
∂Ỹ
∂x j

;

• F̃3 Pressure: −CF 3
1
ρ̄Y ′′ ∂p̄

∂xi
;

• F̃4 Drag: CF 4
1
ρ̄F Dr ag ,i .

From this alternative solution to �u ′′
i Y ′′ , from now on called Fi , the calculated mean-slip velocity

can also be obtained. This is not a solution to the model however, it is the same Eq. 4.8, but

using the Fi solution. To explicitly show this effect, both formulations are contrasted using the

same RSM case. The comparison between these two solutions is shown in Figure 4.25.
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Figure 4.25 – Mean slip-velocity against radial distance as a function of Ymod at x/dn = 600.
Experimental LDV slip-velocity shown as a benchmark.

Despite the good agreement on the mean velocity fields between the numerical and experi-

mental results, the turbulent mass flux �u ′′
i Y ′′ does not produce an adequate solution. However,

the Fi solution shows some improvement, where at least ūx,S > ūy,S . This is also true for the

Reynolds stresses �u ′′
i u

′′
j , where the strong anisotropy cannot be reproduced using this RANS

formulation.

Using these results, a question arises. Could a good Fi solution, coupled with the Reynolds

stresses (via Σi j , Eq. 2.26 on Page 21) generate a strong anisotropy. To investigate this, an

analysis on the contributions to the R̃i j equations is made. The objective is to identify how

the anisotropy is generated and what would be the role of Σi j in it.

To illustrate this effect, a first study case without any modification is detailed. It is based on

the same Ri j − ϵi j model, with Ymod0: Case 312 (see page 38). From the R̃i j equations, the

contributions at the RHS of Eq. 2.23 are rewritten into the final modelled version and detailed

next:

∂ρ̄�u ′′
i u

′′
j

∂t
+
∂ρ̄ũl

�u ′′
i u

′′
j

∂xl
− ∂

∂xl

⎡⎣Cs ρ̄
k̃

ϵ̄
�u ′′

l u
′′
k

∂�u ′′
i u

′′
j

∂xk

⎤⎦= ρ̄Pi j + ρ̄Φi j +Σi j − ε̄i j . (4.32)
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where, the first production is:

Pi j =−
( �u ′′

i u
′′
k

∂ũ j

∂xk
+ �u ′′

j u
′′
k

∂ũi

∂xk

)
; (4.33)

and the second, variable density production:

1

ρ̄
Σi j =

(
1

ρG
− 1

ρL

)[ �u ′′
i Y ′′ ∂p̄

∂x j
+�u ′′

j Y ′′ ∂p̄

∂xi

]
. (4.34)

The modelled pressure-strain correlation is:

Φi j =φ(sl ow)
i j +φ(r api d ,P )

i j +φ(r api d ,Σ)
i j ; (4.35)

with, the slow return to isotropy (C1 = 1.8):

φ(sl ow)
i j =−C1

ϵ̄

k̃

(�u ′′
i u

′′
j −

2

3
k̃δi j

)
; (4.36)

the rapid Pi j -based redistribution (C2 = 0.6):

φ
(r api d ,P )
i j =−C2

(
Pi j − 1

3
Pl lδi j

)
(4.37)

and, the rapid Σi j -based redistribution (C3 = 0.75):

φ
(r api d ,Σ)
i j =−C3

1

ρ̄

(
Σi j − 1

3
Σl lδi j

)
. (4.38)

And finally, the modelled dissipation tensor:

1

ρ̄
ε̄i j =

�u ′′
i u

′′
j

k̃
ϵ̄. (4.39)

All these contributions are shown in Figure 4.26, for the components R̃11, R̃22 and R̃12, along

with the calculated P i j from the LDV Liquid and Gas campaigns. As the budget shows, the

shear stress production does not seem to be a source of the anisotropy on its own. Moreover,

the modelled Σi j is a source term only in the R̃22 component, whatever the value in R̃11. Even

if a good solution for the turbulent mass flux �u ′′
i Y ′′ were obtained, coupled with the main

pressure gradient in the axial direction, Σ11 would be negligible compared to the lateral part

Σ22.

This analysis shows that a correct Σi j does not boost the anisotropy, it is the redistribution

term that could play a significant role. Indeed, choosing a C3 ≫ 0.75, all the contribution in

the R̃22 component could be given to R̃11. Despite that this variation might be a good start

point to boost the anisotropy, this modification is not investigated in this work.
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ū
3 x
,0
/y

0
.5
u
)

×10
-3 x/dn = 400 R22−Budget

Pij

Σij

ǫij

φ
(slow)
ij

φ
(rapid,P )
ij

φ
(rapid,Σ)
ij

−2R22
∂v̄
∂y

Liq

−2R22
∂v̄
∂y

Gas

-2 0 2

y/y0.5u

-0.02

-0.01

0

0.01

0.02

−
/(
ū
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Figure 4.26 – Reynolds stresses equations budget against radial distance at x/dn = 400 for
the Ri j − ϵi j Ymod0 case. Experimental LDV (liquid and gas) radial profiles are shown as a
benchmark.
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4.2.4 Fully-coupled turbulent model

The full coupled turbulent model comes from the solution of Eq. 2.39 and the incorporation of

this solution back to Eq. 2.12 and the momentum equation solver. All the system of equations

is fully coupled. To do this, a detail on the solution of the second order modelled equation for�u ′′
i Y ′′ is given first. Later, some precisions are given about the numerical solver scheme, which

are necessary to attain a stable and converged solution at each time-step.

As previously shown, the RHS of Eq. 4.40 is an important source term in the pressure Eq. 2.53

(see page 30).

∂ρ̄Ỹ

∂t
+ ∂ρ̄ũi Ỹ

∂xi
=−∂ρ̄

�u ′′
i Y ′′

∂xi
. (4.40)

In the second order model, �u ′′
i Y ′′ are obtained by solving Eq. 2.39. Then, Eq. 4.40 could

be solved by simply introducing this solution into the RHS. However, this situation is not

numerically stable for an iterative solver, where the solution is calculated starting from the

previous one. Without an implicit term in the diffusion part for Ỹ , it is only up to the numerical

diffusion to maintain the equation in a parabolic form. To overcome this, a blended solution

is proposed between Ymod0 and Ymod2, where the fluxes are simply:

�u ′′
i Y ′′ = FB

�u ′′
i Y ′′

Ymod0
+ (1−FB ) �u ′′

i Y ′′
Ymod2

. (4.41)

If this form is introduced into to Eq. 4.40, the final equation to solve is:

∂ρ̄Ỹ

∂t
+ ∂ρ̄ũi Ỹ

∂xi
= FB

∂

∂xi

(
µt

σY

∂Ỹ

∂xi

)
− (1−FB )

∂ρ̄Fi

∂xi
; (4.42)

where Fi is the solution to Eq. 2.39 (Ymod2) on Case 312, and FB = 0.1 is the blend parameter

to set between the two modelled forms.

To compare with the previous model and experimental results, the axial velocity against radial

distance at x/dn = 400 is presented in Figure 4.27. The results show no big improvement from

the velocity field point-of-view. Indeed, the increase on the mean axial velocity is a direct

consequence of the better representation of the axial slip-velocity ūx,S . However, as Figure

4.25 showed, the solution for the turbulent mass fluxes Fi produces a negligible slip-velocity

ūi ,S , compared to the one obtained by LDV.
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Figure 4.27 – Comparison of the mean axial velocity against radial distance as a function of
Ymod at x/dn = 400. Experimental LDV (liquid and gas) and DTV radial profiles are shown as a
benchmark.

The set of parameters used in the Ymod2 solution is not carefully investigated. Despite that the

choice made for Case 312 allows to generate a slip-velocity in the axial direction (ūx,S), contrary

to Ymod0 or Ymod1, a fine tuning of CF 1, CF 2, CF 3 and CF 4 may produce a better solution.

Finally, to see the overall behaviour of this modelling approach, the solution for centerline

velocity ūx,0, spreading (y0.5u) and centerline volume fraction Y 0 are shown in Figure 4.28.
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Figure 4.28 – Turbulence mass transport models’ benchmark. (a) Axial velocity along the
centerline; (b) Axial velocity half-width; (c) Liquid volume fraction along the centerline.
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The effect produced on the mean spreading-rate and the centerline velocity decay-rate may

not be significant. However, the increase of the slip-velocity is produced by the increase of the

turbulent mass flux, modifying significantly the solution of the liquid volume fraction. This is

not necessarily a bad solution, because the only experimental reference is the hypothesis that

at the breakup point Y = 0.5, which may not be necessarily true in this liquid jet.

To combine and to solve this fully-coupled model approach requires a lot of considerations,

from the modelling of the actual physics and from numerical stability. Originally, this approach

is conducted to try to generate a more case-independent formulation, relying less on modelled

quantities and the choice of parameters. However, these efforts seem not to pay off, as even a

second-order closure model, fully coupled with the momentum solver also needs fine tuning.
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Summary

The combined results from the experimental campaigns and the numerical simulations are

presented in this chapter. From this, the following points could summarise the analysis:

• The experimental results obtained from the LDV and DTV campaigns are presented

first. From this analysis, some basic parameters like the axial velocity decay-rate and the

spreading rate are calculated. These values are compared to the behaviour of other cases

from the literature. Although the density ratio of this case study is high (ρL/ρG = 829),

these results seem to be in accordance with other liquid round-jets cases, like in diesel

injectors.

• The reconstruction of the velocity and fluctuation fields is based on the two separate

LDV campaigns, the aim is to capture the liquid phase and gas phase around it. To

complement, the DTV provides a fine decomposition of the liquid fields, by class of

droplet sizes. The results show a non-negligible average slip-velocity ūi ,S between the

phases. This quantity plays a significant role in the reconstruction of the Favre-averaged

Reynolds stresses.

• From the reconstruction of liquid and gas Reynolds stresses, a low anisotropy factor

of the principal components is found on both phases, meaning a high anisotropy. In

the liquid part, this value can be as small as R̄22,L/R̄11,L ∼ 0.05, whereas in the gas

phase, it can reach R̄22,G /R̄11,G ∼ 0.1. These results differ significantly from the ones

found in constant density round jets, where R̄22/R̄11 ∼ 0.6. The decomposition of the

fluctuating fields by class of droplets gives a clue on the mechanism that might produce

this behaviour. Indeed, the results show a drastic change in the anisotropy factor: big

droplets seem to keep the same fluctuating energy from the liquid core, but a high

velocity as well; as the jet breaks into droplets of smaller sizes, they seem to be more

and more affected by the slip-velocity between the big droplets and gas phase, creating

a wider band for the fluctuations to operate in the axial direction; finally, the smallest

droplet group (d[30] < 100µm) seems to follow purely the gas phase fluctuations, at

the external zones of the gas entrainment. Some authors explain this behaviour by

calculating the Stokes number St , however, this analysis is not presented here.

• The experimental results serve as a baseline to compare the constructed simulation

cases. The analysis is centred on the behaviour of a RSM turbulence formulation,

nevertheless, a basic k −ϵ model is also shown for comparison purposes. The velocity

field obtained using the RSM turbulence is very close to the experimental observations,

however, this result is obtained assuming a very low anisotropy factor, following the

experimental observations. This transforms into a very high turbulent Schmidt number

of σY = 5.5, which is far from the most common use of σY ≈ 0.9.

• Despite the inclusion of variable density effects into the RSM model, even with the

use of a second-order solution for the turbulent mass fluxes �u ′′
i Y ′′ , the high anisotropy

experimentally observed can not be reproduced in the simulation cases. An analysis
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on the budget inside the R̃i j equations shows that the Σi j production only works in the

lateral R̃22 component. This result points out that maybe it is the redistribution part,

modelled from the pressure-strain correlation, that might play a significant role in the

source of the anisotropy.
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Summary, conclusions and
perspectives

This short chapter is purely dedicated to the general conclusions of this work. Although a

series of partial conclusions are already presented on each chapter, the general view presented

here is made to wrap-up the combined experimental and numerical approaches.

The study of the performance of sprinklers/sprayers in agricultural applications is a contin-

uous development research. New regulations aim to both reduce water consumption on

irrigation applications, and to minimise ambient pollution when crop protection products

are applied to cultures. These research subjects are carried out at IRSTEA Montpellier cen-

tre, where technical, normative, experimental and theoretical approaches are developed in

conjunction with public and private institutions.

The experimental and numerical approaches treated here are only one small part of the

vast research applied to agricultural sprinklers/sprayers at IRSTEA in collaboration with

IRPHE. From these particular activities, the following points are extracted to summarise and

to conclude this work:

• Based on previous observations, and to simplify the experimental conditions, a particu-

lar case scenario is created to study the atomization and dispersion on an agricultural-

like jet, where purified water is injected into stagnant air. From this, a circular nozzle

of diameter dn = 1.2mm and length Lc /dn = 50 is created. The injection average bulk

velocity is set to ū J = 35m/s. This geometry, fluid properties and operating conditions

produce a turbulent atomization regime.

• The atomization and dispersion are first investigated using numerical CFD simulations.

Here, the liquid jet is represented as a variable-density single-fluid Favre-averaged

mixture. Since the size of the problem is relatively big, compared to other applications

like fuel injectors, the advantage of such modelling technique is that there is no need

to represent every length scale present on the flow, therefore saving on computational

resources, but at the expense of model completeness.
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• The mixture model is successfully implemented using the OpenFOAM CFD code. It

allows to represent the solution in an arbitrary 3D mesh, running under a custom U-

RANS solver. The flexibility of the programming philosophy behind the code allows to

easily implement several turbulence models: k −ϵ and RSM ; both including variable

density effects from the mixture model. Also, first-order and second-order closures for

the turbulent mass flux are implemented in a fully coupled solver. The quasi-multiphase

approach is tackled by the use of a transport equation for the mean interface area per

unit volume quantity.

• To have a benchmark baseline for the model, an experimental campaign is carried out.

LDV and Shadowgraphy optical techniques are used to measure the mean velocity and

fluctuating fields. LDV is used to capture the liquid field and the gas around it, by seeding

small olive-oil particles as tracers. In a separate campaign, DTV from the shadow images

is applied to the disperse part of the jet, x/dn > 400, adding more information to the

liquid phase related to the distribution of droplet sizes.

• A very specific LDV configuration is used to perform the data acquisition on each

phase. A first measurement campaign is performed only in the liquid, where the results

are assimilated to the velocity and fluctuating fields of the jet’s liquid phase. For the

gas phase, since the liquid droplets might interfere with the olive-oil tracers, some

considerations have to be taken. First, it is found that the Doppler signal detected

from the relatively big water droplets (d > 30µm) is considerably higher than the one

produced by the small olive-oil tracers (d ∼ 1µm), making the threshold of the LDV

burst signal a good candidate to separate the gas from the liquid signal. Although the

available LDV equipment does not allow to perform such separation, a combined narrow

BP-Filter, higher acceptable SNR and higher sensitivity on the PM gain allow to eliminate

most of the droplet events captured along with the tracers. The resulting signal is not

completely depurated from the liquid droplets. However, having the LDV results only

in the liquid phase as a comparison, these are considered to be closer to the expected

behaviour of a gas velocity signal, and not from a mixture of liquid droplets and gas

tracers. This combined technique allows to reconstruct the liquid and gas velocity fields

along with the Reynolds stresses within an acceptable margin of error.

• Shadow images are used to run a custom DTV algorithm developed and implemented

in MATLAB. A shadow strobe system from Dantec Dynamics is used to capture the

projected shadow of the liquid jet/droplets into a high-speed CCD camera. The first

part of the algorithm detects and extracts droplet’s contours from the acquired 12-bit

grey-scale shadow images, even if they are out-of-focus. The second part performs a

matching between the centroids of these contours to estimate the velocity from two

consecutive frames. To account for the out-of-focus droplets, a calibration procedure is

performed on opaque discs of a known diameter. This procedure gives an equivalent

diameter correction for the out-of-focus objects, along with their relative position as

a function of the detected contrast ratio and edge gradient. The results of the DTV

algorithm are the velocity and fluctuating fields, decomposed by the estimated droplets
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diameters.

• The numerical model seems to approach the experimental results when the mean

velocity fields are contrasted. The calculated values for the centerline velocity decay rate

and the spreading rate are in accordance with values found in the literature. However,

no good agreement is found when comparing the fluctuating fields. Indeed, one of the

main motivations of this work is the use of a RSM to take into account the anisotropy on

the Reynolds stresses. However, several variations of this approach, even with a second-

order closure for the turbulent mass flux, do not seem to approach the experimentally

found anisotropy, where R̄22/R̄11 ∼ 0.05.

• A close analysis on the source mechanism that might produce the anisotropy of the

Reynolds stresses in the RSM formulation is studied. If this effect is not present in

constant density or slightly variable density flow, the mechanism of production must

be a consequence of the large density ratio of this case (ρL/ρG = 828). By examining

the source terms in the Ri j equations from the RSM, the redistribution part of the

variable density production term Σi j , issued from the modelling of the pressure-strain

correlation, seems to be a good candidate to investigate. The coupling of the mean

pressure gradient and the turbulent mass fluxes, that generates Σi j , seems to act only

on the lateral R22 component, no matter if a first-order or second-order formulation is

used. This means that the redistribution part should be the only option to boost the

anisotropy under this formulation.

Although the comparative analysis from the two approaches does not always give good results,

it is considered that both add a good amount of information to the understanding of this study

case. Nevertheless, there are several topics that could be treated to improve the analysis, such

as:

• The calibration procedure on the shadow images is not applied to the measured droplet

population. As the results show, the average and fluctuating quantities are strongly

dependent on the granulometry. Therefore, a proper distribution of the droplet sizes

must be obtained, by eliminating the biases related to the DOF and sizes estimation.

However, if done so, more images would be needed to reconstruct a set of well converged

average fields, since more droplets are likely to be rejected from the analysis.

• With a good estimation of the droplet population and distribution, a good estimation of

the average liquid mass fraction Ỹ can be made from the shadow images. Stevenin [57]

work shows a good agreement between the data acquired using an OP and the estimation

made by the DTV system, where Y is estimated by placing the volume occupied by the

droplets inside the calculated DOF.

• The data obtained by the LDV on the gas phase is considered to be only an estimation.

Indeed, the contamination of liquid droplets inside the population of gas tracers events

results induces an underestimation of the Liquid-Gas slip-velocity ūi ,S . Newer LDV BSA

systems allow to carefully discriminate events by the Doppler burst pedestal intensity.
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The use of such a system could improve the accuracy and precision of the gas results,

relying less on artificial filtering that might introduce several biases.

• Having a good droplet population and a solid estimation of ūi ,S , the Stokes number St

can be calculated by droplet class of diameter. This quantity would allow to have a better

explanation on the droplet’s response to turbulent fluctuations as a function of their

sizes. This mechanism seems to be a good candidate to explain the strong anisotropy of

the Reynolds stresses.

• From the analysis of the Ri j equations budget, there is only one possible way to boost

the anisotropy of the Reynolds stresses. The production term associated to the variable

density formulation, Σi j , is only significantly important in the lateral direction, despite

that ūx,S ≫ ūy,S . Using only a linear pressure-strain correlation model, it is the redis-

tribution part of Σi j which could play a significant role in the anisotropy production.

Although there is no more information to support this, increasing C3 ≫ 0.75 would kill

the source term in the lateral direction, creating an artificial source in the axial one.

Based on these perspectives, to conduct a new study case would require a new measurement

campaign, along with new simulation cases. To carry on these activities simultaneously is very

time consuming, and would also require new experimental equipment and HPC availability.

Finally, as a general conclusion, a great amount of effort is put to carefully implement and to

solve the numerical cases constructed, along with a detailed experimental campaign. These

two activities, carried out simultaneously, allow to see the results from a perspective that gives

a valuable feedback in both directions.
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