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Résumé

Introduction (English)

Carbon is one of the most important elements on Earth, even the very existence of life de-
pends on it. The importance of carbon stems from its ability to form uncountable number
of various chemical compounds and in its pure form, to exist in many different allotropic
forms. Amorphous carbon, graphite, diamond, carbon nanotubes and fullerenes exhibit
largely different mechanical, electrical and optical properties. They represent objects
that have three dimensional structure (graphite), quasi-one dimensional (nanotubes) and
quasi-zero dimensional (fullerens). The allotropes that have the same dimensionality, can
still differ due to different crystallographic arrangement of the atoms, like e.g. graphite,
diamond and amorphous carbon. This cornucopia of carbon allotropes was recently en-
riched by discovering yet another form of carbon, a free standing, single plane of atoms
arranged in a hexagonal lattice structure – the graphene.
Although graphene has been theoretically known for more than 60 years [1], and was
widely used for describing properties of various carbon-based materials [2, 3, 4], its first
isolation [5] came as a great surprise, since 2D crystals were considered to be thermo-
dynamically unstable. The theory developed by Landau [6] and Peierls [7] predicted a
divergent contribution of thermal fluctuations in low-dimensional crystal lattices, that
would cause displacements of atoms on the scale comparable to interatomic distances
at any finite temperature. These theoretical predictions were also supported by many
experimental observations, such as: folding of the thin films with decreasing thickness, or
segregation of atoms into islands at thicknesses of typically, dozens of atomic layers [8, 9].
However, a successful isolation of a single layer of graphene, but also MoS2, NiSe2 and
Bi2Sr2CaCu2O [5, 10], proved that a whole new class of 2D materials was just waiting to
be discovered.
Graphene is an outstanding material due to its unusual mixture of mechanical, electronic
and optical properties. It is very strong, covalent sp2 bonds are responsible for its excel-
lent mechanical properties: the record high breaking strength (42 Nm−1) and large Young
modulus (E = 1.0 TPa) [11]. Because of that, graphene can be stretched elastically even
up to 20%, this is more than any other crystal. In fact, the first commercially available
applications of graphene are most likely to rely on its mechanical properties.
Nevertheless, up to now, the most explored aspect of graphene physics remains a study of
its electronic properties. Graphene can be considered as a zero bandgap semiconductor

ix



x RÉSUMÉ

or a zero overlap semimetal, but many aspects of its electronic properties are unique and
different from that of the other known solid state systems. There are several reasons for
that. The first one, is the unusual linear electron dispersion close to the Fermi energy.
Carriers exhibiting such dispersion cannot be described by the ordinarily used effective
mass approximation and the standard Schrödinger equation. Instead they behave like
a massless Dirac particles and their motion is ruled by a relativistic Dirac-like equation
with an effective speed of light (called Fermi velocity) vF ≈ c/300.
The second reason for the graphene unusual electronic properties is that electrons in
graphene propagate within a layer that is only one atom thick. This makes them sus-
ceptible to the proximity of other materials such as high-k dielectrics, superconductors,
ferromagnetics, etc. This feature offers a possibility to tune the properties of graphene
by a careful engineering its environment.
Thirdly, electronic states in graphene exhibit an astonishing robustness and quality.
Its electrons can cover sub-micrometer distances without scattering, even in samples
placed on an atomically rough substrate. The electron mobility can be as high as
2.5× 105 cm2V−1s−1 at room temperature in exfoliated graphene encapsulated between
two layers of BN [12], and it can reach even 107 cm2V−1s−1 in graphene flakes on the
surface of graphite [13]. Thus, a ballistic transport, even at room temperatures, can be
realized in this material and this high mobility of carriers make graphene an interesting
candidate for replacing silicon in the high-performance integrated logic circuits.
Fourthly, as a result of the massless carriers and little scattering, the quantum effects in
graphene are robust and can survive even at room temperature. Finally, the formal re-
semblance of quantum states of the quasi-particles in graphene to the relativistic particles
described by a quantum electrodynamics (QED) offers a possibility to test some QED
predictions in a workbench experiments. In the same time, the ∼ 300 times lower value
of the Fermi velocity, than that of the speed of light, the relativistic effects are expected
to be ∼ 300 times enhanced.
The optical properties of graphene are equally interesting as the electronic ones. The most
distinctive feature is the universal optical absorption of light, which is frequency indepen-
dent, given by just the fine structure constant α and equal to πα ≈ 2.3%. Together with
the good electrical conductivity and mechanical flexibility, this may predestine graphene
to the use as a transparent, conductive electrode in the flexible light emitting devices.

Despite the massive attention that graphene has attracted in recent years, there are
still many unanswered questions about its fundamental properties. In this work we
present the results of a series of magneto-optical experiments performed on different
graphene systems. The micro-Raman scattering spectroscopy was used as our method of
choice, due to its non-invasive character, powerful characterization possibilities and high
spatial resolution. The high magnetic fields were used to continuously tune the energy of
inter-Landau level electronic excitations into a resonance with other excitations existing
in the system. The magnetic field evolution of Raman active inter-Landau level excita-
tions, and the details of the magneto-phonon resonance, gave us important information
about the details of the electron-phonon interaction in graphene.
Three different types of graphene are studied in this work. The first one consists of
graphene flakes that can be found on the surface of graphite. It is possibly the least



INTRODUCTION (ENGLISH) xi

investigated graphene system, yet the one that shows the highest electronic quality. It
offers a unique possibility to study the interband inter-Landau level electronic excita-
tions in graphene, and to observe the fine effects of the electron-phonon interaction. The
second studied system consists of a graphene flake encapsulated between two layers of
atomically flat hexagonal boron nitride (hBN). It is a representative of a novel class of
materials, where different 2D crystals, are stacked on top of each other in a predefined
order, to modify some properties of its constituents. Depositing graphene on a thin layer
of hBN is expected to largely improve its electronic properties, as compared to graphene
deposited on Si/SiO2. The last studied system is the CVD grown graphene flake with
electrical contacts, which allowed us to tune the Fermi energy across different Landau
levels, and to observe how switching off subsequent inter-LL electronic excitations influ-
ences the electron-phonon coupling.
This work is organized as follows:

• In Chapter 1 the fundamental properties of graphene based materials are intro-
duced. The electronic band structure of graphene is presented and the different
approximations used in its derivation are shortly discussed. The effect of electron
energy quantization due to external magnetic field is discussed in graphene, multi-
layer graphene and graphite.

• In Chapter 2 the principles of Raman scattering spectroscopy are introduced. The
main Raman scattering features in graphene are presented and the application of
this experimental method for the characterization of graphene structure, strain and
doping is shown.

• In Chapter 3 the phonon dispersion in graphene is discussed, especially in relation
to the Kohn anomalies and the effect of electron-phonon interaction on the Γ-
point and K-point phonons. An existing model of a magneto-phonon resonance in
graphene is briefly explained. The possibility to tune the effective strength of the
electron-phonon interaction with Γ-point phonons is presented.

• In Chapter 4 the theory of electronic excitations in graphene and bulk graphite
is discussed. The selection rules in Raman scattering experiment are presented, for
different interband inter-Landau level excitations.

• In Chapter 5 we briefly describe each of the three different graphene systems that
were studied in this work: graphene flakes on the surface of graphite, an exfoliated
graphene flake, encapsulated between two layers of hBN and a gated, CVD grown
graphene. Their main characteristics and production methods are discussed.

• In Chapter 6 the details of our micro-magneto-Raman setup are presented

• In Chapter 7 we present results of our magneto-Raman scattering experiments
on the graphene flakes that can be found on the surface of graphite. Our method
for locating these flakes with the use of magnetic field and without it is presented.
The evolution of electronic excitations in magnetic fields is discussed. The effects
of temperature, excitation wavelength and different coupling to the substrate are
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shown. We demonstrate that at high magnetic fields a fine-structure of the princi-
pal interband electronic excitation develops and discuss it in terms of doping and
electron-hole asymmetry. A new type of a resonant electron-phonon interaction
is observed, which involve an inter-valley carrier scattering and an emission of a
K-point phonon. An analogous process for the phonons from the vicinity of the Γ

point is observed.

• In Chapter 8 the exfoliated graphene sample encapsulated between two layers of
hBN is studied. We show how spatial mapping with Raman scattering technique
can be used for characterization and selective visualization of each constituent of
the complex, stacked structures. A first, clear observation of a magneto-phonon
resonance and L−1,1 electronic excitation in an intrinsic, exfoliated graphene is
shown. The Fermi velocity dependence on the magnetic field is demonstrated. Also,
the Fermi velocity and 2D band energy dependence on the substrate is observed
and discussed in terms of dielectric screening of the electron-electron interaction.

• In Chapter 9 we show the results of an experiment, where strength of the electron-
phonon interaction in a gated, CVD grown, graphene was successfully tuned by the
applied gate voltage. We compare these results with the theoretical calculations
and show that the intra-band electronic excitations play an important role in the
renormalization of the Γ phonon energy.
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Introduction (français)

Le carbone est l’un des éléments les plus importants de la planète, l’existence même
de la vie en dépend. L’importance du carbone provient de sa capacité à former un
nombre incalculable de composés chimiques différents et, dans sa forme pure, d’exister
sous plusieurs formes allotropiques différentes. Le carbone amorphe, le graphite, le dia-
mant, les nanotubes de carbone et les fullerènes présentent des propriétés mécaniques,
électriques et optiques extrêmement différentes. Ils représentent des objets qui ont une
structure 3D (graphite), quasi-1D (nanotubes) et quasi-0D (fullerènes). Les formes al-
lotropiques de même dimensionnalité, peuvent encore varier en raison de différents ar-
rangements cristallographique des atomes, comme par exemple le graphite, le diamant et
le carbone amorphe. Cette corne d’abondance de formes allotropiques du carbone a été
récemment enrichie par la découverte d’une nouvelle forme de carbone stable, un plan
unique d’atomes disposés en réseau hexagonal - le graphène.

Même si le graphène est connu théoriquement depuis plus de 60 ans [1], a été largement
utilisé pour décrire les propriétés de divers matériaux à base de carbone [2, 3, 4], sa premier
isolation [5] a été une grande surprise, car les cristaux 2D étaient considérés comme ther-
modynamiquement instables. La théorie développée par Landau [6] et Peierls [7] prédit
une contribution divergente des fluctuations thermiques dans les réseaux cristallins de
basse dimension. Cette divergence provoquerait des déplacements atomiques compara-
bles aux distances interatomiques elles-mêmes, et ce à n’importe quelle température finie.
Ces prédictions théoriques ont été également soutenus par de nombreuses observations
expérimentales, telles que le repliement de couches minces avec la diminution de leur
épaisseur, ou la ségrégation d’atomes dans des îlots d’épaisseurs des quelques dizaines de
couches atomiques [8, 9]. Cependant, l’isolation d’une monocouche de graphène, mais
aussi de MoS2, de NiSe2 et de Bi2Sr2CaCu2O [5, 10], ont prouvé que toute une nouvelle
classe de matériaux 2D attendait juste d’être découverte.

Le graphène est un matériau remarquable en raison de son mélange inhabituel de
propriétés mécaniques, électroniques et optiques. Il est très fort, les liaisons atomiques
covalentes sp2 sont responsables de ses excellentes propriétés mécaniques: résistance à
la rupture record (42 Nm−1) et un module d’Young très élevé (E = 1.0 TPa) [11]. A
cause de cela, le graphène peut être étiré élastiquement jusqu’à 20%, ce qui est plus que
tout autre cristal. De fait, les premières applications commerciales disponibles à base de
graphène sont les plus susceptibles d’utiliser ses propriétés mécaniques.

Néanmoins, jusqu’à présent, l’aspect le plus exploré de la physique de graphène reste
l’étude de ses propriétés électroniques. Le graphène peut être considéré comme un semi-
conducteur de bande interdite nulle ou un semi-métal avec un recouvrement nul, mais de
nombreux aspects de ses propriétés électroniques sont uniques et différentes de celles des
autres systèmes connus à l’état solide. Il y a plusieurs raisons à cela. La première, est
la dispersion inhabituelle, linéaire des bandes électroniques proche de l’énergie de Fermi.
Des porteurs de charge présentant une telle dispersion ne peuvent pas être décrits par
l’approximation de la masse effective habituellement utilisée et par l’équation standard de
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Schrödinger. Au contraire, ils se comportent comme des particules de Dirac sans masse
et leur mouvement est gouverné par une équation, qui ressemble l’équation relativiste de
Dirac, avec une vitesse effective de la lumière (appelée vitesse de Fermi) vF ∼ de c/300.
La deuxième raison pour les propriétés électroniques exceptionnelles du graphène est que
les électrons dans le graphène se propagent dans une couche qui a l’épaisseur d’un seul
atome. Cela les rend extrêmement sensibles à la proximité d’autres matériaux tels que
les diélectriques high-k, les supraconducteurs, ferromagnétiques, etc. Cette fonctionnalité
offre la possibilité d’ajuster les propriétés du graphène par une ingénierie attentive de son
environnement.
Troisièmement, les états électroniques dans le graphène sont très robustes et de qualité, en
terme de mobilité, étonnante. Ses électrons peuvent couvrir des distances micrométriques
sans diffusion, même dans des échantillons placés sur un substrat rugueux à l’échelle
atomique. La mobilité des électrons peut être aussi élevée que 2.5 × 105 cm2 V−1s−1 à
température ambiante dans le graphène exfolié puis encapsulé entre deux couches de BN
[12], et elle peut même atteindre les 107 cm2V−1s−1 dans des flocons de graphène à la
surface du graphite [13]. Ainsi, un transport balistique, même à température ambiante,
peut être réalisé dans ce matériau et cette grande mobilité des porteurs fait du graphène
un candidat intéressant pour remplacer le silicium dans les circuits logiques intégrés de
haute performance.
Quatrièmement, en raison de l’absence de masse des porteurs et de leur faible diffusion,
les effets quantiques dans le graphène sont robustes et peuvent survivre même à tempéra-
ture ambiante. Enfin, la ressemblance formelle des états quantiques des quasi-particules
dans le graphène aux particules relativistes décrites par l’électrodynamique quantique
(QED) offre la possibilité de tester certaines prédictions QED dans des expériences de
laboratoire. En même temps, à cause de la valeur ∼ 300 fois plus faible de la vitesse de
Fermi par rapport à celle de la vitesse de la lumière, les effets relativistes sont attendus
être ∼ 300 fois exaltés.

Les propriétés optiques du graphène sont tout aussi intéressantes que ses propriétés
électroniques. Sa caractéristique la plus distinctive est l’absorption optique universelle,
indépendante de la fréquence dans une large gamme d’énergie, et déterminée uniquement
par la constante de structure fine α, égale à πα ≈∼ 2.3%. Son excellente conductivité
électrique et sa souplesse mécanique prédestinent le graphène à une utilisation en tant
qu’électrode conductrice transparente dans les dispositifs flexibles pour l’émission ou la
détection de la lumière.

Malgré l’attention massive que le graphène a attiré ces dernières années, beaucoup de
questions concernant ses propriétés fondamentales restent sans réponse. Dans ce travail,
nous présentons les résultats d’une série d’expériences de magnéto-optique effectuées sur
des systèmes de type graphène différents. La spectroscopie de diffusion micro-Raman
a été utilisée comme une méthode de choix, en raison de son caractère non invasif, des
puissantes possibilités de caractérisation qu’elle offre, et de la haute résolution spatiale.
Les champs magnétiques élevés ont aussi été utilisés pour permettre d’ajuster de manière
continue l’énergie des excitations électroniques inter-niveau de Landau et de les amener
en résonance avec d’autres excitations existant dans le système. L’étude de l’évolution
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des excitations inter-niveau de Landau sous champs magnétique et les détails de la réso-
nance magnéto-phonon, nous ont fourni des informations importantes sur les détails de
l’interaction électron-phonon dans le graphène.
Trois types de graphène différents sont étudiés dans ce manuscrit. Le premier se compose
de flocons de graphène qui peuvent être trouvés sur la surface de graphite. Il est peut-être
le système de graphène le moins étudié, mais est celui qui présente la qualité électron-
ique la plus élevé. Il offre une possibilité unique d’étudier les excitations inter-bande
inter-niveau de Landau dans le graphène, et d’observer les effets fins de l’interaction
électron-phonon. Le deuxième système étudié est constitué d’un flocon de graphène en-
capsulé entre deux couches de nitrure de bore hexagonal (hBN) plat à l’échelle atomique.
Il est le représentant d’une nouvelle classe de matériaux, où les différents cristaux 2D, sont
empilés les uns sur les autres dans un ordre prédéfini, pour modifier certaines propriétés
de ses constituants. Déposer le graphène sur une mince couche de hBN améliore large-
ment ses propriétés électroniques, en comparaison à du graphène déposée sur Si/SiO2.
Le dernier système étudié sont des flocons de graphène produit par croissance CVD,
avec des contacts électriques, ce qui nous a permis d’ajuster l’énergie de Fermi parmi
les différents niveaux de Landau, et d’observer comment l’extinction des excitations élec-
troniques inter-LL affecte le couplage électron-phonon.

Ce travail est organisé de la manière suivante:

• Dans le chapitre 1, les propriétés fondamentales des matériaux à base de graphène
sont introduites. La structure de bande électronique du graphène est présentée et
les différentes approximations utilisées pour sa dérivation sont brièvement discutée.
L’effet de la quantification de l’énergie des électrons sous champ magnétique externe
est discuté pour le graphène, pour les multicouches de graphène et pour le graphite.

• Dans le chapitre 2, les principes de la spectroscopie de diffusion Raman sont intro-
duits. Les principales caractéristiques de la diffusion Raman dans le graphène sont
présentées et l’application de cette méthode expérimentale pour la caractérisation
de la structure en fonction de la tension de grille et du dopage est présentée.

• Dans le chapitre 3, la dispersion des phonons dans le graphène est discutée, en
particulier les anomalies Kohn et l’effet de l’interaction électron-phonon sur les
phonons aux points Γ et K. Un modèle existant de la résonance magnéto-phonon
dans le graphène est brièvement expliqué. La possibilité de régler la force effective
de l’interaction électron-phonon impliquant les phonons au point Γ est présentée.

• Dans le chapitre 4 la théorie des excitations électroniques dans le graphène et dans
le graphite est discutée. Les règles de sélection dans une expérience de diffusion
Raman sont présentés, pour différents excitations inter-bandes inter- niveau de Lan-
dau.

• Dans le chapitre 5, nous décrivons brièvement chacun des trois systèmes de graphène
qui ont été étudiés dans cet ouvrage: flocons de graphène sur la surface de graphite,
un flocon de graphène exfolié, encapsulée entre deux couches de hBN et un flacon
de graphène produit par croissance CVD. Leurs principales caractéristiques et les
méthodes de production sont discutées.
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• Dans le chapitre 6, les détails de notre dispositif expérimental micro-magnéto-
Raman sont présentés.

• Dans le chapitre 7, nous présentons les résultats de nos expériences de diffusion
magnéto-Raman sur les flocons de graphène qui peuvent être trouvés sur la surface
de graphite. Notre méthode de localisation de ces flocons à l’aide ou non d’un
champ magnétique est présenté. L’évolution des excitations électroniques dans des
champs magnétiques est discutée. Les effets de la température, la longueur d’onde
d’excitation et de couplage différent sur le substrat sont présentés. Nous démontrons
que, pour des champs magnétiques élevés une structure fine des principales excita-
tions électroniques inter-bande se développe, et est discutée en termes de dopage et
d’asymétrie électron-trou. Un nouveau type de résonance électron-phonon est ob-
servée, qui implique une diffusion inter-vallée des porteurs et l’émission d’un phonon
au point K. Un procédé analogue pour les phonons du voisinage du point Γ est
observé.

• Dans le chapitre 8 l’échantillon de graphène exfolié puis encapsulée entre deux
couches de hBN, est étudié. Nous montrons comment la cartographie spatiale asso-
ciée à la technique de spectroscopie Raman peut être utilisé pour la caractérisation
et la visualisation sélective des composants individuels et des structures complexes
empilés. La première observation non ambiguë de la résonance magnéto-phonon et
d’une excitation électronique (L−1,1) dans du graphene exfolié neutre est présen-
tée. Une dépendance de la vitesse de Fermi par rapport au champ magnétique est
démontrée. En outre, la dépendance de la vitesse de Fermi et d’énergie de bande
2D sur le substrat est observée et discutée en termes de d’écrantage diélectrique de
l’interaction électron-électron.

• Dans le chapitre 9, nous détaillons les résultats d’une expérience, où la force de
l’interaction électron-phonon dans un échantillon de graphène avec une grille élec-
trostatique, peut être ajustée, avec succès, par la tension de grille appliquée. Nous
comparons ces résultats avec les calculs théoriques et nous montrons que les exci-
tations électroniques intra-bande jouent un rôle important dans la renormalisation
de l’énergie des phonons Γ.



Chapter 1

Fundamental properties of
graphene

1.1 Graphene crystal lattice

Graphene, multilayer graphene and graphite are the different crystallographic forms
formed by the carbon atoms. Carbon is a light element from the periodic table, that
have atomic number Z = 6. Therefore it has 6 protons, 6 electrons and a various number
of neutrons. However, the only naturally occurring isotopes on Earth are those with total
number of nucleons A =12, 13 or 14. From those three, only A =12 and 13 are stable,
while A = 14 isotope, also known as carbon-14 (C14) is radioactive and due to its rather
short half-time (5700 years) [14] occurs only in trace amounts (on average one C14 atom
per 1012 other carbon isotopes). From the two stable isotopes C12 is by far the dominant
one (98.9% of all isotopes) [14].

Figure 1.1: Electronic configurations for car-
bon in the ground state (left panel) and in
the excited state (right panel). From ref. [15]

In the atomic ground state, the 6 electrons
are found in the configuration 1s2 2s2 2p2,
which means that the 2 electrons fill the in-
ner shell 1s, which is closely bound to the
nucleus and does not participate in form-
ing of the chemical bonds, while 4 elec-
trons occupy the outer shells of 2s and 2p

orbitals. The ground state of an isolated,
single carbon atom consists of 2 electrons
in the 2s orbital and only 2 of them in the
2p orbitals (see Fig. 1.1), because the 2s

orbital has about 4eV lower energy than
the 2p orbitals (2px, 2py, and 2pz). How-
ever, when a carbon atom forms covalent
bonds with other atoms around (like H, O, or other C atoms) it becomes energetically
favourable to excite one electron from the 2s to the third 2p orbital (see Fig. 1.1). There-

1
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Figure 1.2: a) Arrangement of atoms in a graphene sheet. Open and filled circles denote
atoms belonging to the two inequivalent sublattices A and B. The vectors a1 and a2

are basis vectors of the triangular Bravais lattice. b) Reciprocal lattice of the triangular
lattice, with its primitive lattice vectors a∗1 and a∗2. The shaded region shows the first
Brillouin zone (BZ), with its high symmetry points: the center at Γ, the two inequivalent
corners at K and K ′, and three inequivalent points at M , M ′ and M ′′ points. From ref.
[15]

fore, in the excited state there are four equivalent quantum-mechanical states, |2s〉, |2px〉,
|2py〉, and |2pz〉. A superposition of the state |2s〉 with n |2pi〉 states is called spn hy-
bridization, which play a main role in forming covalent bonds in carbon based materials.
For instance, the sp1 hybridization, plays an important role in forming triple bonds in
some chains of hydrocarbons, such as alkynes. The sp3 hybridization leads to the for-
mation of diamond, a particular 3D allotrope of carbon. However in case of graphene,
multilayer graphene and graphite it is the sp2 hybridization that is responsible for forma-
tion of covalent bonds in those materials. The three sp2-hybridized orbitals are oriented
in the x-y plane and form an angle of 120◦ between each other. They form the strong σ
bonds between atoms in the plane, and are responsible for the outstanding mechanical
properties of graphene. On the other hand, the remaining unhybridized 2pz orbital is
perpendicular to the plane and forms the weak π bonds, that are responsible for the
electronic properties at low energies (< ±1 eV from the charge neutrality point).
The rotational 2π

3 symmetry of the sp2 bonds results in carbon atoms arrangement in
a honeycomb pattern in a graphene sheet. The hexagonal lattice, however, is not the
Bravais lattice of graphene because two neighboring sites are inequivalent from a crystal-
lographic point of view [1]. The actual Bravais lattice is triangular and has two atoms
basis (see Fig. 1.2). Each of the two inequivalent atoms A and B belongs to its own
triangular sublattice. This arrangement of atoms means that for each one belonging to
the A sublattice its three nearest-neighbours belong to the B sublattice and are displaced
from it by one of the vectors:
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δ1 =
a0

2

(√
3ex + ey

)
δ2 =

a0

2

(
−
√

3ex + ey

)
(1.1)

δ3 = −a0ey

Where a0 = 0.142 nm is the nearest neighbour distance, sometimes also referred to as a
lattice parameter. It has the same value as a bond length in a benzene ring which is in
between the values of single (0.147 nm) and double (0.135 nm) σ bonds in carbon, which
comes from its partially delocalized nature [16]. The Bravais lattice is spanned by the
primitive vectors:

a1 =
√

3a0ex

a2 =

√
3a0

2

(
ex +

√
3ey

)
(1.2)

The length of the basis vectors gives: the lattice spacing ã =
√

3a0 = 0.24 nm, and the
area of the unit cell Au.c. =

√
3ã0
2 = 0.051 nm2. The reciprocal lattice, which is defined

with respect to the triangular Bravais lattice, is also a triangular lattice and is spanned
by the vectors:

a∗1 =
2π√
3a0

(
ex −

1√
3
ey

)
a∗2 =

4π

3a0
ey (1.3)

The first Brillouin zone (BZ, shaded region and border marked with thick lines of the
hexagon in Fig. 1.2) represents all inequivalent points in the reciprocal space, i.e. all points
that cannot be connected by any combination of reciprocal lattice vectors na∗1 + ma∗2,
where n,m are integer numbers. The high symmetry points in BZ include the center of
the zone – Γ point, two inequivalent points in the corners of the hexagon – K and K ′,
and also points located in the middle of the K–K ′ line – M , M ′, and M ′′. Among them
the K and K ′ points are of special interest to us since it is there where the valence and
conduction bands touch each other in graphene. Those points are represented by vectors:

±K = ± 4π

3
√

3a
ex (1.4)

The inequivalence of those two points is a direct property of the triangular Bravais lattice,
and is therefore independent from the number of atoms in the base of the Bravais lattice.
Instead, the presence of two sublattices A and B has an effect on the form of the electron
wavefunction, which turns out to be described by a spinor.

1.2 Graphene band structure

There are several ways to calculate the band structure of graphene. The ab initio, k · p
and tight binding approximation are the most frequently used ones. The last one is
especially often used, due to its simplicity, analytic solutions and long track of successful
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predictions in the group of graphene based materials. It was originally used by Wallace
to describe the band structure of graphite. The first step in his work was to calculate the
band structure of graphene in the nearest-neighbour approximation [1]. Later on, this
model was extended by including interactions with atoms lying further away and today
is known as a Slonczewski-Weiss-McClure model of graphite [3, 2]. Then tight binding-
approximation proved useful again to predict the band structure of carbon nanotubes
[17, 18, 4, 19, 20]. Since exact derivation of tight binding model for graphene can be
found in many review articles [15, 21, 22, 23] here we are going to show just the main
idea behind this approach and the obtained results.
In a tight binding approximation the electron wavefunction Ψ(k) can be written as a
linear combination of two Bloch functions ψA(k) and ψB(k), which describe electrons on
a sublattice A and B, respectively:

Ψ(k) = cAψA(k) + cBψB(k) (1.5)

Those Bloch functions ψA(B)(k) are constructed from the 2pz atomic orbital of the isolated
carbon atom φ(r) and plane waves:

ψA(B)(k) =
1√
N

∑
RA(B)

eik·RA(B)φ
(
r−RA(B)

)
(1.6)

where RA(B) is a vector pointing to a site on the sublattice A(B). Then this trial wave-
function is inserted into the stationary Schrödinger equation:

ĤΨ(k) = E(k)Ψ(k) (1.7)

where Ĥ is the Hamiltonian of the system. Solving that equation gives a formal solution
for the eigenenergies of the electron:

E(k)± =
−(−2E0 + E1)∓

√
(−2E0 + E1)2 − 4E2E3

2E3
(1.8)

where +(–) sign denotes the energy of the conduction (valence) band. The parameters
E0, E1, E2, E3 are given by a combination of the matrix elements of the Hamiltonian
HIJ = 〈ψI |Ĥ|ψJ〉 and the overlaps between Bloch functions SIJ = 〈ψI |ψJ〉:

E0 = HAA(k)SAA(k)

E1 = SAB(k)H∗AB(k) +HAB(k)S∗AB(k)

E2 = H2
AA(k)−HAB(k)H∗AB(k) (1.9)

E3 = S2
AA(k)− SAB(k)S∗AB(k)

nearest neighbour approximation

The main approximation in the tight binding method lies in substituting the infinite sum-
mation over RA(B) vectors pointing to all the other atoms in the crystal, with just the few
ones which give the major contribution to the matrix elements HIJ and overlap integrals
SIJ . In case of graphene usually limiting oneself to counting only vectors pointing to
the three nearest neighbouring atoms is enough to accurately capture the main features
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Figure 1.3: Energy dispersion in graphene as a function of the wavevector components kx
and ky, obtained within the tight-binding approximation. Conduction and valence band
meet at K and K ′ points. In the vicinity of those points their dispersion is linear. From
ref. [15]

of the band dispersion. This approach to the tight binding method, which is also called
nearest neighbours (nn) approximation, gives energy bands that are described by just
one parameter γ0 ≈ 2.8 eV which is usually referred to as a carbon-carbon interaction
energy, hopping parameter or tight binding integral. The electronic bands in the nn
approximation have the following energy dispersion [21]:

E(k)± = ±γ0

√
3 + f(k) (1.10)

with function f(k) defined as:

f(k) = 2cos(
√

3a0ky) + 4cos(
3a0

2
kx)cos(

√
3a0

2
ky) (1.11)

The above energy dispersion is plotted over the whole first Brillouin zone in Fig. 1.3. In
the nn approximation the conduction and valence bands are symmetric with respect to
reflection by the Γ−K −K ′ plane, which is called electron-hole symmetry. The peculiar
feature of this dispersion is the fact that it displays characteristic valleys at the corners
of the Brillouin zone, where the conduction and valence bands touch each other. The
points where they meet are called Dirac points. In samples that are not strained, the
Dirac points coincide with the K and K ′ points in the Brillouin zone. In a charge neutral
sample the Fermi level lies exactly at the Dirac points, which gives graphene the semi-
metallic properties. Moreover, in most of the optical and transport experiments, only
states from the vicinity of the Fermi surface E < EF ± 2 eV are probed, which means
that for all practical purposes the full band dispersion can be very well approximated by
only two Dirac cones situated at the K and K ′ points. The energy dispersion around
those points can be expanded for k � K in the Taylor series, which gives a very simple
and characteristic for graphene linear dispersion:

E(k)± = ±vF~|k| (1.12)
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where wavevector k is measured with respect to the K(K ′) point, parameter vF ≈ 106

m/s describes the slope of the band dispersion, has a dimension of a velocity and is called
Fermi velocity. It is also proportional to the nn hopping integral γ0[24, 25]:

vF =
3

2~
a0γ0 (1.13)

The linear energy dispersion in graphene implies that charge carriers in this material
behave like relativistic particles with zero rest mass and constant velocity vF ∼ 106 m/s.
They are often referred to as massless Dirac fermions, and with a good accuracy, their
behaviour is described by the effective Hamiltonian [21, 24]:

Ĥ = vF

(
0 px − ipy

px + ipy 0

)
= vF

(
0 π†

π 0

)
= vFσ · p (1.14)

where σ is the Pauli matrix. This Hamiltonian is equivalent to the Hamiltonian in the
Weyl equation for real relativistic particles with zero rest mass derived from the Dirac
equation. Because of this formal similarity experiments in graphene can be used to answer
some questions raised by quantum electrodynamics.
The density of states in such system with linear dispersion depends very differently on
energy, as compared with the usual 2D system with massive particles. Instead of being
constant, it rises linearly with energy like:

DOS(E) =
gsgv|E|
2πv2

F~
(1.15)

where gs = gv = 2 stands for the spin and valley degeneracies, respectively.

next nearest neighbour approximation

Despite its simplicity, graphene band structure obtained in a nearest neighbours approx-
imation gives a very good description of quantum states in that system [26, 27, 28].
However, there are also instances when small deviations from the linear band dispersion
are detected in the experiments [29] which invoke the need to describe the band structure
with a greater accuracy. In the first step it can be achieved by including interaction with
more than the closest neighbouring atoms, in the second step – by accounting for the
electron-electron interaction. Here we limit ourself to demonstrate the result of includ-
ing the interaction with the next nearest neighbours (nnn) when calculating the matrix
elements and overlap integrals in Eq. 1.9. The resulting energy band dispersion is given
by:

E(k)± = ±γ0

√
3 + f(k)− γ′f(k) (1.16)

Where the γ′ parameter describes the next nearest neighbours hopping energy. The
ab initio calculations usually give γ′ value in the range 0.02γ0 < γ′ < 0.2γ0 [21, 30],
however its exact value is still debated. Here again we are mostly interested in the energy
dispersion around Dirac cones, which is obtained from Taylor expansion of the above
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Figure 1.4: Constant energy cross-sections of the graphene band structure around K(K ′)
for chosen values of energy. The thin lines show the circular Fermi surface at energies
ε = ~vFk0. The thick lines shows the corresponding Fermi surface in the presence of
trigonal warping. From ref. [20]

expression around K point:

E(k)± = 3γ′ ± ~vF |k| −
(

9γ′a2
0

4
± 3γ0a

2

8
sin(3θk)

)
|k|2 (1.17)

where (1.18)

θk = arctan

(
kx
ky

)
Above expression reveals two main effects of including the nnn in the tight binding
calculations on the energy band structure. Namely, the electron-hole symmetry is broken
by adding a positive, constant term 3γ′ to the energy of carriers in both valence and
conduction bands.
The other pronounced change is the breaking of the full rotational symmetry of Dirac
cones, by introducing a term which depends on the direction in the reciprocal space and
has a 2π/3 rotational symmetry. This term causes warping of the Dirac cones, which is
shown in Fig. 1.4 and makes the carrier angular momentum being defined up to a multiple
of ±3~. This effect is seen for instance in partial breaking of optical selection rules, which
enables certain electronic excitations to be seen in polarization resolved Raman scattering
experiments due to absorption of ±3~ angular momentum by the crystal [31, 32] (see
Chapter 4).

1.3 Energy dispersion of graphene multilayers and graphite

Graphene bilayer

Stacking graphene layers on top of each other changes the electron energy dispersion
considerably. The graphene bilayer is the simplest example of a general class of graphene
multi-layers and a building block of graphite.



8 CHAPTER 1. FUNDAMENTAL PROPERTIES OF GRAPHENE

Figure 1.5: Crystal structure of the Bernal-
stacked graphene bilayer with the corre-
sponding SWM hopping parameters. From
ref. [25]

Interest in the graphene bilayer started
when Novoselov et al. demonstrated a
characteristic quantum Hall effect and a
Berry’s phase of 2π seen in magneto-
transport experiments in this system [33].
It turned out, that despite parabolic en-
ergy dispersion in bilayer graphene, charge
carriers in this material do not behave ex-
actly like a typical massive particles. This
anomalous behavior, as evidenced by the
quantum Hall effect, lead to naming those
quasi-particles as massive Dirac fermions.
Bilayer graphene band structure can be
calculated analogously to the case of a
monolayer, using for instance tight bind-
ing method. This approach was used as

early as in the works of Wallace [1] and Slonczewski, Weiss and McClure (SWM) [2] who
used the bilayer graphene to model the bandstructure of graphite. In this method sev-
eral hopping integrals are introduced to describe interaction with different neighbouring
atoms, both in the same and adjacent atomic plane. Those hopping integrals are shown
in Fig. 1.5, and named following the standard SWM model designations. For the vast
number of cases, it is enough to limit the number of parameters to just two hopping inte-
gral describing interactions with the nearest neighbouring atoms in plane γ0 and across
adjacent planes γ1. The result of those calculations gives four parabolic energy bands
at K and K ′ points, two of them (E1 and E2) in the valence and two (E3 and E4) in
the conduction band. The highest one from the valence band and the lowest form the
conduction band touch each other at K and K ′ points, and this is also the energy of
the Fermi level in charge neutral samples. Their energy as a function of wavevector k,
obtained in this approximation is given by [25, 34]:

E1 = −

(
γ2

1

2
+ v2

F~2|k|2 +

√
γ4

1

4
+ v2

F~2γ2
1 |k|2

)1/2

E2 = −~

(
γ2

1

2
+ v2

F~2|k|2 −
√
γ4

1

4
+ v2

F~2γ2
1 |k|2

)1/2

E3 = −E2 (1.19)

E4 = −E1

Where vF is related to γ0 in the same way as in Eq. 1.13.

Multilayer graphene

When more and more graphene sheets are stacked on top of each other their energy band
structure becomes increasingly complex, with each addtional graphene plane adding one
more pair of conduction and valence bands. However, Koshino and Ando have shown that
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Figure 1.6: Band structures of multilayer graphenes (N = 2, 3, 4, 5) around the K point
(taken as origin) along the kx axis. Notice that subbands with linear dispersion appear
for odd N . Right panel shows a zoom out of the left. From ref. [35]

a Hamiltonian of a multilayer graphene system with an arbitrary number of layers can be
decomposed into those equivalent to the monolayer or bilayer graphene [35]. Using the
k · p method to construct the Hamiltonian of a multilayer graphene for carriers around
K(K’) points, a Hamiltonian with a block matrix form has been obtained. Each of those
blocks corresponds to the bilayer graphene Hamiltonian for a system that consist of an
even number of layers. In systems that have an odd number of layers, an additional
submatrix appears that has the form of a monolayer graphene Hamiltonian.
The resulting energy bands dispersions can be well described by the Eq. 1.19, but instead
of using true γ1 value, an effective εm parameter has to be used for each pair of bands.
For a system with N layers, each of the N bands in the valence and each of the N bands
in the conduction band is characterized by a quantum numberm that change in the range
m = −(N − 1),−(N − 3), ..., N − 3, N − 1. This number may be understood as a label
of a momentum in the kz direction, that is attributed to that graphene plane and equals

κm =
π

2
− mπ

2(N + 1)
(1.20)
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Figure 1.7: a) First Brillouin zone in graphite, with indicated high symmetry points. b)
Energy band dispersion along the H-K-H line. c) magnification of the band dispersion
around the Fermi energy. From ref. [23]

The value of the momentum in the kz direction determines then the effective εm coupling
constant:

εm = λN,mγ1

λN,m = 2cos(κm) (1.21)

For odd numbers of N , the m = 0 appears among the other possibilities. Since ε0 = 0,
the equation describing carriers dispersion in bilayer graphene (Eq. 1.19) simplifies to the
form of corresponding equation for a monolayer sample (Eq. 1.12), and therefore a pair
of bands with linear dispersion relation appears in samples with odd number of layers.
The energy bands calculated using this effective bilayer method, for multilayer graphene
stacks for N ≤ 5 are shown in Fig. 1.6.

Graphite

The graphene band structure was already an object of active research as early as 1940s.
As it was mentioned before, the works of Wallace [1] and Slonczewski, Weiss and McClure
[2, 3], set the foundations for the tight binding model describing the band dispersion in
this material. This model describes the band structure along the H-K-H line of the 3D
Brillouin zone, which is responsible for most of the electrical and optical properties of
bulk graphite. The SWM model is parametrized by six hopping integrals γ0,...,γ5, and
an additional parameter ∆, usually called a pseudogap, which is related to the difference
of the crystal field on atom-sites A and B. Graphite is a 3D material as contrasted
with the 2D graphene, therefore in addition to the in-plane energy dispersion there is
also a dispersion along the kz direction – perpendicular to the atomic planes. This
dispersion, shown in Fig. 1.7 reveals that there exist simultaneously two types of carriers
in graphite – the massive carriers around K point and massless Dirac particles at H
point. As one moves along the H − K − H line, the nature of carriers changes slowly
from massless to massive [23]. In fact, instead of using full complexity of the SWM
model to describe the band structure of graphite, the effective bilayer model, which was
introduced before, can be used to model the electronic bands around Fermi energy with
satisfactory result. In this model, only the two most relevant hopping integrals γ0 and γ1

are taken into account. They describe the intra- and interlayer coupling to the nearest
neighbours, respectively [36, 37]. It turns out that graphite Hamiltonian in this model is
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analogous to the Hamiltonian of a bi-layer graphene, and the carriers in-plane dispersion
can be calculated using Eq. 1.19, where γ1 hopping integral is substituted by the effective
coupling constant λγ1. The λ parameter describes how the strength of the inter-layer
coupling changes along the kz direction:

λ = 2cos(πkz) (1.22)

The vanishing value of effective inter-layer coupling atH point (kz=0.5) leads to linear in-
plane energy dispersion that is characteristic for decoupled graphene flakes. As one moves
along the kz toward K point (kz = 0), the effective interlayer coupling constant becomes
larger, which induces the effective mass (curvature of the bands) of charge carriers.
There are nevertheless some differences between the massless carriers in graphite and
graphene monolayer. Notably the twofold degeneracy of the valence and conduction
band and the presence of a small gap determined by the parameter ∆.

1.4 Electronic states in magnetic field

Applying a magnetic field to a sample changes qualitatively the energy spectrum of its
charge carriers. In case of an ordinary, massive, charged particles like a 2D electron-hole
gas in semiconductor heterostructures applying a magnetic field B in the direction per-
pendicular to the 2D system exerts a Lorentz force F = ev × B on the charge carriers
moving in the plane. In classical physics this leads to changing the carriers motion into
circular orbits. The massive carriers precess with a characteristic frequency ωC = eB/m,
which is given only by magnetic field strength B and particle effective mass m. The
quantum mechanical treatment of the same problem, results in a quantization of the
charged particle energy into a set of highly degenerated discrete levels. These energy
levels, also called Landau levels (LLs), are equidistant in energy an rise linearly with the
field E = ~eB

m (n+ 1/2).

Monolayer graphene

The fact that band dispersion in graphene cannot be approximated by the parabolic
wavevector k dependence implies significant changes from a conventional LLs structure.
For the energy bands described by the two Dirac cones (Eq. 1.12), the resulting LLs have
a characteristic

√
B dependence on magnetic fields and

√
n dependence on the LL index

n [38]:
En = sgn(n)vF

√
2e~B|n| (1.23)

where levels with n > 0 are from the conduction band, those with n < 0 are from
the valence band and the n = 0LL, is a special level that is shared by both types of
carriers. In fact the existence of n = 0 is a purely quantum-mechanical effect that cannot
be reproduced from any semi-classical quantization schemes [38], and it is responsible
for the unusual sequence of the quantum Hall effect in graphene [39, 26]. In a neutral
graphene n = 0 LL is half filled.
Each of those energy levels is highly degenerated, with the degeneracy given by:

ξ(B) = gvgs
|eB|
h

(1.24)
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On top of the usual degeneracy due to magnetic flux quantization, there is also the four-
fold degeneracy of each level due to valley gv = 2 and spin gs = 2 degeneracy.
These quantized LLs can be probed experimentally, by investigating the inter-LLs ex-
citations that can be produced when light couples to the charge carriers. This cou-
pling can produce a series of dipole-allowed inter-LL transitions that have been observed
in magneto-transmission experiments [40, 29, 41, 13, 42, 28, 43], while excitations fol-
lowing other selection rules were observed in magneto-Raman scattering experiments
[44, 32, 45, 46].
The above simple formula describing LLs evolution in magnetic fields (Eq. 1.23) works
surprisingly well in most of the cases. However, small deviations from the

√
B dependence

have been observed in a multilayer epitaxial graphene samples [29]. In order to explain
them, LLs derived from a more precise band dispersion (Eq. 1.17) had to be used. The
resulting LLs energy evolve in magnetic field, like [29, 15]:

E±n = ±vF
√

2~eB
√
n+ 3

γ′

γ0
a0vF eBn∓

3

8
w2a2

0vF

√
2e3B3

~
√
n3 (1.25)

where w is a phenomenological parameter that takes into account corrections beyond the
simplest tight-binding model [29, 20]. The overall result of those small corrections is to
push slightly higher the LLs energies as compared with Eq. 1.23. The magnitude of this
effect increases with LL index n.

Bilayer graphene

The parabolic electronic dispersion around K point in bilayer graphene leads to LLs
structure qualitatively different from the one observed in the monolayer graphene. Since
in bilayer graphene close to the Fermi energy, there are two parabolic branches in the
conduction and two branches in the valence bands, when magnetic field is applied each of
them gives rise to a set of LLs. Therefore each eigenstate of bilayer graphene Hamiltonian
is uniquely described by a set of quantum numbers n, µ, s. Where n is the LL index, s = +

(s = −) represents the electron (hole) bands, while µ = ± correspond to the higher and
lower subbands in the limit of zero magnetic field. Often, in order to avoid confusion
between s and µ, another notation is used where µ = H,L. The LL structure in bilayer
graphene for n ≥ 1 is the given by [36]:

εn,µ,s =
s√
2

[
γ2

1 + (2n+ 1)E2
1 + µ

√
γ4

1 + 2(2n+ 1)γ2
1E

2
1 + E4

1

]1/2

(1.26)

where E1 is defined as E1 = vF
√

2~eB. For n = 0 there are two LLs in the higher
subbands:

ε0,H,s = s
√
γ2

1 + E2
1 (1.27)

and one LL in the lower subbands ε0,L = 0. Contrary to monolayer graphene n = −1

is also allowed in bilayer, which gives additional zero energy LL ε−1,L = 0 (level ε−1,H

doeasn’t exist).
Altogether the eightfold (8eB/h) degeneracy of the LL with n = 0 is twice higher than
the degeneracy of all other levels and this produces a characteristic quantum Hall effect
with the Berry phase of 2π [33, 47]. At energies around the neutrality point, the relevant
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LLs are those from the lower subbands (µ = L) in conduction and valence bands. At the
low magnetic fields, their energies evolve practically linearly with B [36]:

εn,µ,s = s
~eB
m∗

√
n(n+ 1) (1.28)

with effective mass defined as m∗ = γ1/(2v
2
F ) [47]. Nevertheless, departure from this

linearity is seen at higher magnetic fields or at LLs with higher index n.

multilayer graphene

Figure 1.8: Top: Landau levels of the
bilayer-type subbands as a function of κ.
The magnetic field strength is taken as E1 =

0.5γ1 (B∼ 170 T) to show on the same scale
all four subbands split due to Landau levels
formation. Bottom: list of allowed κ values
for each N-layer graphene. Empty and filled
circles represent even and odd N’s, respec-
tively. From ref. [36]

The effective bilayer model used to calcu-
late the energy band structure in multi-
layer graphenes [23] can be also extended
to calculate the Landau level structure in
those materials [35, 36]. Representing the
Hamiltonian matrix of such system in the
form of block matrices, allows us to treat
the multilayer graphene sample as an as-
sembly of bi-layer type subsystems, each
characterized by a quantum number m

and effective inter-layer coupling constant
λmγ1. Therefore the resulting LLs struc-
ture is a sum of LLs from bilayer graphenes
with different effective coupling constants.
Eq. 1.26 can then be used for calculation of
LLs in multilayer graphene, provided that
γ1 is substituted by an effective coupling
constant λmγ1. Fig. 1.8(Top) shows the
LL structure of one bilayer-like subsystem
as a function of the chosen κ momentum in
the kz direction(κ is related to the effective
coupling constant through Eq. 1.21). LLs
structure at κ = π/3 corresponds to a true
bilayer case. Interestingly, at κ = π/2 LLs
with the same index n, coming from the
two subbands µ = H and µ = L have the
same energy, which allows to reproduce the
LL structure of a true monolayer graphene.
The bottom panel in Fig. 1.8 shows which
momenta κ and therefore effective cou-
pling constants λmγ1 are chosen in a mul-
tilayer graphene consisting of N layers.
Characteristically, κ = π/2 corresponding
to a monolayer-like energy bands appears
in every multilayer with odd number of
layers N .
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Graphite

The structure of LLs in graphite may be calculated directly from the SWM model. How-
ever, introducing the magnetic fields expands the system Hamiltonian matrix to the infi-
nite order [48], so its diagonalization becomes impractical. Therefore the calculations are
done either by neglecting some of the hopping integrals [49, 50] which makes the Hamil-
tonian matrix of finite order, or by truncating the infinite matrix at some point and
performing numerical calculations [51]. However, in magneto-optical experiments rarely
a complete LLs dispersion along kz direction is ever needed, since the main contribution
to the optical response is provided just by the K and H points. At those specific points
Landau bands become flat, which leads to singularities in the joint density of states and
domination of carriers from that points in the optical response [36, 52]. Therefore a basic
understanding of the complex magneto-optical response of bulk graphite [53], is possible
just by taking into account massive carriers from the K point and massless carriers from
H point. Thus, graphite can be modeled just by an effective graphene monolayer and an
effective bilayer with a coupling strength enhanced twice in comparison to a true graphene
bilayer. For calculations of LLs at the K point Eq. 1.26 is used after substituting γ1 with
2γ1.
Surprisingly, this effective bilayer model that includes only two material parameters, γ0

and γ1, is able to catch the basic magneto-optical properties of bulk graphite, a complex
3D material.



Chapter 2

Raman scattering of graphene
and its multilayers

2.1 Principles of Raman scattering

Interaction between light and matter is commonly used in solid state physics to probe
properties of various materials in an non-invasive way. There exist a number of optical
processes that can be used for that purpose. Among them absorption, reflection and, in
some materials, luminescence are the most intense ones. Light scattering is the next one
however, since it is second-order process, it is usually a weaker effect. Scattering can be
generally divided into two groups. Firstly, the elastic processes during which energy of
scattered light stays the same as the energy of incoming light, those are called Rayleigh
scattering. The other group encompasses inelastic processes during which energy of the
scattered light is lower (Stokes processes) or higher (anti-Stokes processes) than the initial
one. This kind of light scattering is called either Brillouin or Raman processes, depend-
ing on the scale of the change in the photon energy. Historically for scattering with low
energy acoustical phonons – term Brillouin scattering was used, while for optical phonons
– Raman scattering. Since then however, scattering with many other elementary excita-
tions has been observed, which energies could vary continuously in a large energy range
[44]. Therefore Raman scattering term is nowadays in broader sense – regardless of the
magnitude of change in the energy of scattered light.
This inelastic light scattering effect was originally discovered in 1928 independently by
two groups of scientists: a pair of soviet physicists – G. Landsberg and L. Mandelstam
and by a pair of Indian physicists – Ch. Raman and K. Krishnan [54]. However the
effect is widely known by the name of just one of them, as a Raman effect. The signif-
icance of that discovery was quickly recognized by awarding Ch. Raman a Nobel Prize
in 1930. However since intensity of the inelastically scattered light is about six orders
of magnitude lower than intensity of the elastically scattered one, very strong sources of
monochromatic light are needed to observe this effect. For this reason it wasn’t until the
development of lasers in 60’ that Raman spectroscopy could reveal its full potential for
both fundamental and applied research.

15
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Figure 2.1: Sample of the Raman scattering spectrum. Insets show: a) Stokes process, b)
Anti-Stokes process. εL-energy of the incident laser light, εS-energy of the scattered laser
light in Stokes process, εA−S-energy of the scattered laser light in Anti-Stokes process,
∆ε-energy of the created/annihilated excitation. Intensities of Stokes and Anti-Stokes
peaks are largely exaggerated to present them on the same scale as elastically scattered
laser peak.

The Raman effect is based on an observation that when a monochromatic light is scat-
tered from the investigated medium the additional frequency components are observed in
the scattered light spectrum. This is illustrated in Fig. 2.1 where a theoretical scattered
light spectrum is shown. In addition to the most intense central peak at the energy of
incoming laser radiation (εL) two additional peaks occur, one at higher εA−S = εL + ∆ε

and one at lower εS = εL − ∆ε energy. The energy difference between laser peak and
one of those smaller peaks ∆ε is called Raman shift and is characteristic for investigated
material. This energy difference corresponds to the energy of an elementary excitation
that was created or annihilated in the sample. In the former case it is called a Stokes
process and it is illustrated in panel a) in Fig. 2.1. In such case the incoming photon
looses part of its energy to create a new excitation (like e.g. phonon) in the system with
energy ∆ε. Thus the scattered light has lower energy εS = εL −∆ε. The opposite effect
is also possible, assuming that some elementary excitation already exist in the system.
Then interaction with incoming light leads to annihilation of that excitation (panel b)
in Fig. 2.1) and the released energy is transfered to the scattered photon εS = εL + ∆ε.
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Such processes are called – anti-Stokes. However their probabilities are proportional to
the number of elementary excitations which already exist in the system. Since excitations
number is governed by a distribution function, anti-Stokes processes are more probable
at higher temperatures. On the other hand, the probability to create a new excitation
doesn’t depend on the number of already existing ones. So when working at low tem-
peratures it is easier to observe Stokes peak than anti-Stokes. For this reason all results
presented in this thesis focus on the Stokes processes.
The fact that Raman shift of scattered light corresponds exactly to the energy of cre-
ated/annihilated excitation is simply a consequence of the energy conservation law. How-
ever there is also another quantity that needs to be conserved, as long as the crystal
translational symmetry is not broken, namely the momentum or wavevector k. In such
case:

ki = ks + q (2.1)

where ki(ks) indicate wavevector of the initial (scattered) light, while q wavevector of
the created/annihilated excitation. It follows from Eq. 2.1, that the highest magnitude of
created excitation wavevector q = |ks−ki| can be obtained in a backscattering geometry.
However for the light in the visible range its wavevector k = 2π

λ is very small k < 106 cm−1,
as compared to the size of the first Brillouin zone. For instance, excitations from the
zone edge would have a wavevector qmax ≈ π/a ≈ 2 · 108 cm−1 (where a = 0.142 nm is
the nearest neighbours inter-atomic distance in graphene). This is about two orders of
magnitude larger than that of the incoming/scattered light. This, in turn, implies that the
only excitations which can be created in the material due to first-order Raman scattering
are those from the closest vicinity of zone center – Γ point. In graphene example of such
process include a phonon from the highest optical branch at – Γ point. However this rule
is strictly applicable only to the first order Raman processes. In case when more than one
quasi-particle are created/annihilated during scattering, the process is called higher order
Raman scattering, and the quasi-particle number determines the order of this process. In
that case many excitations with even large wavevectors qn may be created/annihilated in
the scattering. Then the only condition is that their sum must add up to zero

∑
n

qn = 0.

Depending on the investigated system, different kinds of excitations can be probed us-
ing Raman scattering technique. Historically, it was first used to study excited electronic
and vibrational levels in molecules. Later it was also successfully applied to the solid
state systems, where it is now used to probe vibrational (phonons), electronic (excitons,
plasmons) or spin (magnons) excitations. In this work we will discuss only the first two
of them since they can be readily observed in graphene.
It is important to note that not all of the excitations that can exist in a given material
can be detected using the Raman spectroscopy. In order to see them, an effective cou-
pling between light and given excitation must exist. In case of phonons which are by
large the most intensively studied excitations in solid state systems by the Raman spec-
troscopy, such coupling can be described in a semi-classical picture by changes in the sys-
tem polarization. In that framework the incident monochromatic electro-magnetic wave
F(r, t) = F(k, ω)cos(k ·r−ωt) induces charge polarization P(r, t) = P(k, ω)cos(k ·r−ωt)
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in the material. A relation between those two quantities

P(r, t) = χ(k, ω,Q)F(r, t) (2.2)

is described by a second rank tensor known as electric susceptibility χ(k, ω,Q). This
tensor depends on the instantaneous lattice displacement Q which is described by a
lattice vibration normal mode, i.e. a phonon:

Q(r, t) = Q(q, ω0)cos(q · r− ω0t)

To separate the static polarization effects which emerge from the χ described by atoms
resting in equilibrium position χ0 from those resulting from lattice vibrations, a Taylor
expansion of electric susceptibility can be used:

χ(k, ω,Q) = χ0(k, ω) + (∂χ/∂Q)0Q(r, t) +
1

2
(∂2χ/∂Q2)0Q

2(r, t) + ...

So the resulting polarization P (r, t,Q) yields terms proportional to the powers of lattice
vibration Q(r, t). The zeroth order term describes the polarization that vibrates with the
same frequency ω as the incoming electro-magnetic wave. The vibrating charge polariza-
tion becomes itself a source of radiation of the same frequency. Thus it is responsible for
the Rayleigh scattering. The first order term however, proportional to ∂χ/∂Q|0Q(r, t)

oscillates with frequency ω − ω0 and ω + ω0. Thus it becomes a source of Stokes and
anti-Stokes Raman peaks in the scattered spectrum. When light scattering analysis is
limited only to this first order term, which is linear in lattice displacement, it is known
as a dipole approximation. In that approximation all physics of interaction between light
and crystal lattice is included in a quantity called a Raman tensor:

R =
∂χ

∂Q

∣∣∣∣
Q=0

Q

|Q|
(2.3)

That second order tensor is completely determined by the crystal lattice point group
symmetry. Loudon tabulated those tensors for all 32 point groups [55]. Then it is possible
to predict which phonons can participate in Raman scattering, since their symmetry
must belong to the factor group of Raman tensor. If that is the case, the phonon is
said to be Raman active, since it can be detected by Raman scattering. Moreover the
intensity of a Raman peak corresponding to that phonon can be estimated for various
experimental configurations of incident/scattered light direction and polarization. In that
case one need only to contract Raman tensor R with unit vectors lying in the direction
of incoming/scattered light polarization êi/ês :

I ∼ |êiRês|2

This leads to formulation of selection rules which describe which phonons are Raman
active and in which experimental configuration they can be detected [56, 57].

The Raman tensor introduced above in a phenomenological way in a classical theory,
appears also when a fully quantum mechanical treatment of Raman scattering problem is
done [55, 58]. This approach highlights also one very important aspect of Raman scatter-
ing. Since direct coupling between light and atomic motion (phonons) is rather weak, the
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majority of Raman scattering intensity comes from a higher order term in the interaction
described by the Hamiltonian Ĥ. In the first step it involves interaction (Ĥem−el) of
electro-magnetic wave with the electronic subsystem of the crystal and creation of (vir-
tual or real) electron-hole pair. In the next one the electron-hole pair interacts with the
lattice through the electron-phonon interaction (Ĥel−ph), which leads to the emission of
phonon. Then the probability of such processes is calculated using the time-dependent
perturbation theory, which gives the process matrix element:

M∼
∑

s0,...,sn

〈i|Ĥem−el|s0〉〈s0|Ĥel−ph|s1〉 . . . 〈sn−1|Ĥel−ph|sn〉〈sn|Ĥel−ph|f〉
(Ei − E0 + 2iγ)(Ei − E1 + 2iγ) . . . (Ei − En + 2iγ)

(2.4)

Here |i〉 denotes the initial state of the process i.e. one incident photon having energy
Ei and no excitations in the crystal, |f〉 is the final state with one scattered photon and
n phonons in the crystal. While sk for k = 0, ..., n stands for intermediate states with
no photon present, but instead the electron-hole pair and k phonons that were created
in the system. Ek are the energies of that intermediate states, while 2γ is the inverse
carrier lifetime. Denominator of that matrix reveals that when the incident photon energy
matches the energy of one of the intermediate states a resonance will be observed. This
effect is indeed seen when the incident photon energy is tuned in resonance with the
electronic bands of the system. In that case the virtual electron-hole intermediate state,
becomes a real one and the divergence in denominator in Eq. 2.4 leads to the large
increase in the observed Raman peaks. The resonant Raman scattering technique is
based on this effect. Interestingly for graphene, due to its zero bandgap, for every energy
of the incoming photon one can find a pair of states in the conduction and valence band
that are separated by exactly this energy. Therefore independently on the used excitation
wavelength, the two most intense phonon peaks in graphene originate always from the
resonant Raman scattering processes (see Fig. 2.3a,e).
Finally we would like to stress that scattering from other elementary excitations than
phonons is also possible, as long as the corresponding Raman scattering cross-section is
non-zero. In Chapter 4 we introduce concept of Raman scattering on inter-Landau level
excitons, while in Chapters 7 and 8 we present results of our magneto-Raman scattering
experiments where such excitations were observed.

2.2 Main phonon peaks in graphene’s Raman spectra

The Raman spectrum of graphene is very similar to that of bulk graphite, the major
difference being the relative intensity of the two main peaks. So-called G-band appearing
at ∼ 1580 cm−1 and the 2D band at ∼ 2700cm−1, the latter one being also sometimes
called a G′ band in the literature. From those two only the G-band results from a first
order Raman scattering process, while 2D band together with other much less intense
peaks appear as a result of higher order scattering processes. G-band is associated with
the phonon from the highest optical phonon branch in the Γ point in the Brillouin zone.
It is characterized by an E2g symmetry and is doubly degenerate due to meeting of the
in-plane longitudinal optical (iLO) and the in-plane transverse optical (iTO) branches at
the Γ point. The energy dispersion of these branches around Γ point is determined by the
electron-phonon interaction, resulting in the Kohn anomaly. This makes G-band energy
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sensitive to the Fermi energy, which is described in more details in Chapter 3.

Figure 2.2: Raman spectra of pris-
tine (top) and defected (bottom)
graphene. From ref. [59]

The most intense Raman peak in graphene is
the 2D band, which is seen around ∼ 2700 cm−1,
but its exact energy depends on the used excitation
laser energy. It originates from inter-valley scat-
tering of carriers with phonons from iTO branch
[60, 61] near the K point in Brillouin zone. In order
to conserve momentum it requires scattering with
two phonons having opposite momenta. However
another process involving just one such phonon is
also allowed, but then scattering with a defect, im-
purity or sample edge is needed to compensate the
large momentum of theK point phonon [60, 61, 62].
Such scattering event leads to formation of a D-
band at about half the energy of 2D band, which is
seen only in defected samples or close to the sample
edges (Fig. 2.2bottom). Both D-band and 2D band
energy show dispersive behaviour, upshifting linearly with increasing excitation energy
Eexc.. The former one at the slope of ∂ED/∂Eexc. = 50 cm−1, while the latter one at
about twice the speed of the D band i.e. ∂E2D/∂Eexc. = 100 cm−1. This dispersive
behavior is a hallmark of a double resonance process. In such case the energy of the
photo-excited electron-hole pair determines the phonon wavevector q that participates
in the scattering process, and since iTO phonon branch is strongly dispersive, it selects
phonons with different energies. Another peculiar feature of D and 2D bands is that their
energy slightly differ when observed in the Stokes and Anti-Stokes spectra. This in turn
comes from the fact that phonon absorption and emission processes again select phonons
with slightly different k-vectors, thus with slightly different energies.
Those effects were already observed in bulk graphite and in the past several models of

the microscopic origin of D and 2D bands were proposed to explain them [65, 66, 67].
Finally the double resonance (DR) activation mechanism was proposed by Thomsen and
Reich [62, 68] which proved to be most accurate and commonly accepted model. Raman
scattering for Stokes process is shown schematically in Fig. 2.3d for the D band and in
panel e) for 2D band. It consist of four steps among which at least two must be tran-
sitions between real electronic states. In the first one, an electron-hole creation occurs.
While energy and wavevector of each quasi-particle Ee/h are determined by the energy
of the incoming laser radiation Elaser:

Ee/h =
Elaser

2

|ke/h| =
Elaser
2~vF

The next step involves inter-valley scattering of one of the created quasi-particles with
emission of phonon with wavevector ~q = ~K + ~k′ (~k′ being small). The last two steps
phonon is scattered back and recombines, exchanging in the process momentum −~q with
the environment. This process is realized differently for the D and 2D bands. In the
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Figure 2.3: Role of the electron dispersion
(Dirac cones, ε = ±vF |p|, shown by solid
black lines) in Raman scattering: (a) in-
travalley one-phonon G peak, (b) defect-
assisted intravalley one-phonon D’ peak,
(c) intravalley two-phonon 2D’ peak, (d)
defect-assisted intervalley one-phonon D
peak, and (e) intervalley two-phonon 2D
peak. Vertical solid arrows represent in-
terband transitions accompanied by pho-
ton absorption (upward arrows) or emis-
sion (downward arrows). The photon wave
vector is neglected. Dashed arrows repre-
sent phonon emission. Horizontal dotted
arrows represent defect scattering. From
ref. [63]

Figure 2.4: Double resonant scatter-
ing processes leading to D band in
graphene/graphite. The electronic bands
are assumed to be linear at K point with
Fermi velocities v1 and v2. a) allowed pro-
cesses, where scattering takes place across
the Γ point within the same electronic
band(opposite sign of the slopes), b) for-
bidden processes due to negative interfer-
ences between different bands (almost the
same slopes). From ref. [64]

former case the carrier is first inelastically scattered by a defect which absorbs the addi-
tional momentum of scattered carrier, then electron and hole recombine. It means that
existence of a defect, impurity or a sample edge close to the measured spot is a necessary
condition to observe D band.
For the case of 2D band, another DR scattering process occurs with emission of phonon
having wavevector −~q, followed by a recombination. So globally, momentum is conserved
due to emission of two phonons with opposing momenta during the whole scattering pro-
cess. This means that 2D band can be always observed in graphene, independently of its
structure, existence of defects or sample edges.
It naturally follows from this model that, changing the excitations wavelength will select
phonons with different wavevectors to meet the DR condition. Since iTO phonon branch
is strongly dispersive in the Γ−K direction, this leads to selection of phonons with dif-
ferent energies, and thus to the dispersive behaviour of 2D peak.
In principle in the DR process many different initial electronic states and phonons possess-
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ing different symmetries and wavevectors from the vicinity of the K point can satisfy the
DR condition. However, due to: a) the existence of singularities in the density of phonon
states which satisfy the DR condition, b) the angular dependence of the electron-phonon
scattering matrix elements, and c) the destructive interference effects when the Raman
transition probability is calculated, only a few specific DR processes contribute strongly
to the Raman D and 2D bands [64]. So in order to calculate the correct Raman spectrum
a full integration of the Raman cross-section has to be performed. However those calcu-
lations give a simple rule of a thumb for qualitative analysis of effects emerging from the
DR conditions. They showed that destructive interference leads to cancellation of terms
which involve scattering between bands having the same slope (Fig. 2.4b). So when one
uses DR model in a simplified one-dimensional picture, to explain effects of D and 2D
bands only transitions between bands of opposite slopes should be considered Fig. 2.4a)
[64].

Inter-valley scattering processes described above can also occur between electronic
states belonging to the same Dirac cone around K or K ′ point. In such case iTO phonons
with small q wavevectors, coming from the vicinity of Γ point are involved in the scattering
process. Those intra-valley modes are called D’ and 2D’ in analogy of the D and 2D inter-
valley scattering processes (see Fig. 2.3b,c). However due to the higher energy of iTO
phonon branch at Γ than in K point energies of D’ and 2D’ bands are higher than those
of D and 2D bands. For instance, when using the 514 nm excitation D’ mode and is
observed at about 1620 cm−1, while D band at 1360 cm−1. Those intra-valley scattering
processes share many similarities with previously discussed inter-valley scattering modes.
One of them being the dispersive behavior with excitation wavelength. The other that
D’ mode is seen only in defected samples, while 2D’ can be observed even in high quality
samples due to emission of two phonons with opposite momenta. Those similarities come
from the fact that the activation mechanism for those phonons is the same as for D
and 2D bands, namely the DR condition. The differences come from the fact that now
phonons selected in DR process must have rather small wavevector to allow scattering
inside a single Dirac cone. Thus they come from the vicinity of Γ point. However since
electron-phonon coupling is not the same for phonons from the vicinity of Γ and K point,
the relative intensities of 2D and 2D’ peaks is not the same. In fact experimentally
determined ratio of the areas below those peaks A(2D)/A(2D′), which is proportional
to the scattering probability ratio is about 25-30. Those probabilities can be calculated
theoretically [63], which yields:

A(2D)

A(2D′)
= 2

(
λK
λΓ

)2

where λΓ and λK are the dimensionless electron-phonon coupling constants, as defined
in Chapter 3, for phonons from the Γ and K points respectively. This expression shows
that, apart from the factor of two, the main cause of the observed difference in the inter-
and intra-valley scattering process lies in the largely higher value of el.-phon. coupling
constant at K point.
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2.3 Number of layers

One of the biggest advantages of using Raman spectroscopy in the studies of graphene
based materials is that it allows a quick determination of the number of graphene layers.
Ferrari et al. [69] have shown that there is a huge change in the shape of 2D band when
going from bulk graphite to monolayer graphene. In Bernal stacked bulk graphite it is
G peak at ∼1580 cm−1 that is the most intense Raman feature, followed by 2D band,
composed of two components: 2D1 and 2D2. Their height being approximately 1/4 and
1/2 of the G peak intensity, respectively. For monolayer graphene however the situation
is different, 2D band is single peaked and few times higher than G peak (Fig. 2.5left).
This difference in shape and relative intensity of the 2D band is so pronounced that it
serves now as a quick tool for distinguishing monolayer graphene from Bernal stacked bulk
graphite. In fact for each few-layer Bernal stacked graphene 2D band has a characteristic
well defined shape. Fig. 2.5 right) shows how it changes from single component peak
for a monolayer, through four component peak for bi-layer, and evolving toward two
component peak for bulk graphite. In practice the shape of 2D band can be used for a
determination of the number of layers for multi-layer graphene systems up to the thickness
of 3-4 monolayers.
For thicker samples it is difficult to distinguish their response from that of a bulk graphite.
This strong dependence of 2D band shape on the number of atomic layers is closely related
to the origin of 2D band as doubly resonant scattering process, which links the phonon
dispersion with the electronic bandstructure. The latter one changing significantly when
the number of layers increases in multi-layer graphene.
As we recall adding one more layer to the multi-layer graphene structure results in

adding one more conduction and one more valence band to the already existing one [37].

Figure 2.5: Left: Raman spectra of graphite and graphene deposited on Si/SiO2. They
are rescaled to have similar intensities of 2D peaks at ∼2700cm−1. From ref. [69]. Right:
Raman spectra of HOPG graphite and a set of few-layer graphenes varying in thickness,
deposited on Si/SiO2. Black solid lines show Lorentzian fits to the measured data. From
ref. [70].
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This increases the number of possible scattering events. It is illustrated in Fig. 2.6b),
where scattering between two different initial and two final states can occur in a bi-layer
graphene. In contrast with the case of mono-layer graphene where only one initial and
final state is allowed by a DR condition. Or to be more precise just one set of scattering
processes in full two-dimensional picture, as opposed to four different sets of allowed
scattering processes in bi-layer. Of course not all of those scattering events have the
same probability which is reflected in different areas of those peaks. For instance in bi-
layer graphene two components of the 2D band Raman peak are much more intense than
the other two [69]. However all of them occurs in an energy range which is comparable
with twice the linewidth of a single component. Which results in merging of those peaks
as their number increases with the growing thickness of the sample. Already for multi-
layer graphene samples composed of 10 atomic layers, the Raman signature of 2D band
is closely resembles that of a bulk graphite [23].

2.4 Stacking order and twisted multi-layers

Figure 2.6: Double resonance scat-
tering process with phonons having
momentum q close to K. a) for
a monolayer graphene, b) for a bi-
layer graphene. From ref. [69]

The DR nature of the 2D band makes it a sen-
sitive tool for studying changes in the electronic
bandstructure. This is because even small changes
in the carrier dispersion alter the resonance con-
dition and thus select phonons with a slightly dif-
ferent energy, what is reflected in the shape and
position of the 2D Raman peak. There is a class
of multilayer graphene systems, often referred to as
turbostratic graphene, where the consecutive lay-
ers orientation differ from the Bernal (AB) or rom-
bohedral (ABC) stacking, in fact the direction of
their in-plane lattice vectors can be misaligned by
an arbitrary twist angle. Theoretical calculations
of electronic bandstructure of such non-ideal mul-
tilayer graphene have shown that even small twist
angle between adjacent layers significantly reduce
the interlayer coupling [71, 72].
This has a paramount effect on the electronic dis-
persion, and for instance twisted graphene bilayer
shows two Dirac cones instead of two parabolic
conduction bands for the Bernal stacked bilayer
(Fig. 2.7). This change is seen both in electrical
[73, 74] and optical [75] experiments. This neces-
sarily affects the DR conditions and as a result 2D
band in turbostratic bilayer graphene shows a sin-
gle component Lorentzian shape [76, 77]. Its peak is
broader, having FWHM=45-60 cm−1 as compared
to FWHM≈15 cm−1 of monolayer graphene. Also
the relative intensity of the 2D peak to that of the G-band I2D/IG is much smaller for
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turbostratic graphene and its position is shifted toward higher energy from that of mono-
layer graphene.
In fact even graphite or multi-layer graphene with a regular stacking order which differs

Figure 2.7: Electronic bandstructure of a) Bernal (AB) and b) turbostratic AA’ stacked
bilayer graphene. From ref. [71]

from the most common (AB...) Bernal stacking shows much different electronic dispersion
spectrum [78, 79]. Examples of such ordering include simple hexagonal (AAA...), rom-
bohedral (ABC...) and (ABA...) stacked graphene multi-layers. This obviously affects
Raman spectra, making it more difficult to establish unambiguously number of atomic
layers in the sample by looking on the shape and position of 2D band alone.

2.5 Strain

One of the intense research topic in the field of graphene is related to understanding how
does the strain affect its properties. This aspect is particularly important for the optical
properties of graphene, because it is expected that applying external stress may open an
electronic gap in monolayer samples. Since for many applications in semiconductor indus-
try existence of energy gap is essential, the gap-less bandstructure of graphene is a serious
factor limiting its possible applications. Calculations show that monolayer graphene is
quite robust against applying an uniaxial strain. It would require a deformation exceeding
20% to open energy gap [80], which is close to the limit of elastic deformation [81] that it
can still sustain without breaking. However it was calculated [82] that for a specifically
designed type of stress with a triangular symmetry it is possible to open a gap as large
as 0.1 eV for stress less than 10%. Another interesting result of applying strain is that it
shifts Dirac cones at K and K’ points into opposite direction. This is analogous to the
effect induced on charge carriers by external magnetic field B applied perpendicular to
the graphene plane. Therefore applying a strain to graphene has he same effect as if there
would be a built-in pseudo-magnetic field BS . This pseudo-magnetic field however, has
a highly anisotropic distribution over the hexagonal lattice of graphene. So the resulting
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field averages over macroscopic distances, but gives non-zero contribution on sub-micron
scale. Guinea et al. [83] have calculated that strain caused by height fluctuations (rip-
ples) of graphene is large enough to induce such pseudo-magnetic field. This tends for
instance to broaden the observed Landau levels in the real magnetic field B.

Figure 2.8: Raman features: a) G band
and b) 2D band of monolayer graphene
as a function of applied uniaxial strain.
Laser excitation wavelength λ =514 nm.
Incident light is polarized along the
strain direction, scattered light collected
with no analyzer. Applied strain is indi-
cated on the right hand side of the spec-
tra. From ref. [84]

Figure 2.9: Polarization resolved 2D
band Raman spectra of monolayer
graphene as a function of applied uniax-
ial strain. Laser excitation wavelength
λ =785 nm. The spectra in the left and
right panels were acquired with laser po-
larization parallel (θin = 0◦) and per-
pendicular (θin = 90◦), respectively,
with respect to the strain axis. From
ref. [85]

Another consequence of applying strain to the graphene sheet is shifting and splitting
of the G and 2D bands. Fig. 2.8a shows how a doubly degenerated phonon with E2g

symmetry shifts towards lower energies and splits into two components G− and G+. This
splitting being a reminiscent of what is observed in carbon nanotubes, where curvature
induced strain also lifts the double degeneracy of E2g phonon. Mohiuddin et al. have
performed Raman scattering experiment on uniaxially strained graphene sample, using
λ=514 nm laser source. They reported shifts of G−, G+ and 2D peaks being ∂ωG+

∂ε ≈
−10.8 cm−1, ∂ωG−

∂ε ≈ −31.7 cm−1 and ∂ω2D
∂ε ≈ −64 cm−1 respectively. In their experiment

there is no evident signature of 2D band splitting, except for small asymmetry in the
shape of 2D band, which seems to grow with applied stress (Fig. 2.8b). Contrary to
that Frank et al. [85] have reported a significant splitting of the 2D band (Fig. 2.9)
when using red illumination λ=785 nm. Both components having nearly linear strain
dependence, with slope of −46.8 cm−1 and −23.6 cm−1 for the low and high energy peak,
respectively. Interestingly, they also showed that 2D band subpeaks intensities exhibit a
strong dependence on the incident and scattered light polarization. The different behavior
of 2D band under red and green light illumination is explained in terms of contribution of
two groups of phonons to the 2D peak. Both of them being from the vicinity of K point,
but one laying on the Γ−K line, and the other along theK−M direction. Because effects
of trigonal warping of Dirac cones increase with increasing energy, when high energy laser
source is used, like for instance λ=514 nm, those effects effectively select one of those
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phonons over the other, leading to a single component 2D peak formation.
Those results show clearly that strain in graphene can significantly change shape and
position of the 2D band, thus again obscuring the simple picture where it could be used
to unambiguously determine number of atomic layers in multilayer graphene.

2.6 Doping

One of the problems which is haunting research of exfoliated graphene is the uninten-
tional doping. The most commonly used substrate for graphene is monocrystalline silicon
covered with a thin (90-300nm) layer of silicon dioxide. Its surface however is neither
atomically flat nor electrically neutral. The main sources of charges are impurity atoms
adsorbed on the rough silicon surface, as well as dangling bonds at silicon surface. When
exfoliated graphene is being deposited on top of them, they become a source of doping.
Therefore, it is prudent to briefly comment how doping can affect Raman spectra of
graphene.
An experiment performed by Das et al., in which the Fermi level in a monolayer graphene
was controlled by application of bias voltage, allowed to monitor how charge doping af-
fects the Raman spectra [86]. Their work showed that both G-band and 2D band shapes
and positions depends on the doping level, however changes were much more pronounced
for G-band (Fig. 2.10). It was found that doping can shift G-band towards higher energy
even by 20 cm−1, independently on the sign of charge carriers. This high sensitivity of Γ

point phonon to the Fermi level position is a direct effect of non-adiabatic lifting of the
Kohn anomaly at the Γ point. This is discussed in Chapter 3, devoted to electron-phonon

Figure 2.10: Raman spectra of graphite and graphene as a function of gate voltage. Dots
are the experimental points, solid lines are the Lorentzian fits. Red curve corresponds
to Dirac point. Positive (negative) gate voltage corresponds to electron (hole) doping.
From ref. [86]
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interaction in graphene.
On the other hand the evolution of the 2D band is less pronounced. For hole doping it
slightly shifts toward higher energy, but for electron doping it stays constant up to the
doping level of about ∼ 3 × 1013 cm−1 and then rapidly shifts toward lower energy. In
both cases loosing much of its intensity. Thus for large doping levels it shape and position
can be used to deduce the sign of charge dopants.
In principle, the doping dependence of phonon frequencies in graphene is a result of two
effects: (i) a change of the equilibrium lattice parameter, which stiffens/softens phonon
frequency (ii) effects beyond the adiabatic Born-Oppenheimer approximation which af-
fects phonon dispersion close to the Kohn anomalies. Although for G band the latter is a
dominant factor influencing its doping dependence, for 2D band it is the opposite. When
Raman scattering experiments are performed with a laser wavelength λ = 514 nm, which
corresponds to photon energy of ~ωl = 2.5 eV, then DR condition of 2D band scattering
selects phonons laying along Γ−K direction with wavevector |~q| = 0.844 in 2π/a0 units.
This means that involved phonons are too far away from the K point to be influenced by
the Kohn anomaly. In this case the lattice expansion/contraction effects prevails.

In summary we would like to note that the position and the shape of G and 2D peaks
observed in graphite, graphene and multilayer graphene carry plenty of information about
the number of atomic layers, structural ordering, strain and doping present in the system.
Although a single Lorentzian shape of 2D peak is nowadays commonly accepted as a sig-
nature of monolayer graphene, its worth to remember that it is in fact a signature of very
weak interlayer coupling or even absence of that coupling. So under specific conditions
some multi-layer graphene systems may give a Raman response very similar to that of a
true monolayer graphene. Therefore identification of graphene monolayers based on their
Raman spectrum can be applied only to the systems which we know that are Bernal
stacked, without significant strain or doping.



Chapter 3

Electron-phonon interaction

Studies of effects related to electron-phonon interaction form a very important branch of
research on graphene properties. Plenty of physical phenomena observed in graphene and
closely-related carbon nanotubes depend on the electron-phonon coupling (EPC), some
of them include: ballistic transport, superconductivity, excited state dynamics, Raman
spectra and phonon dispersions. In nanotubes, the optical phonons EPC are very im-
portant since electron scattering by optical phonons sets the ultimate limit to the charge
mobility [87, 88, 89, 90, 91], which determines whether ballistic transport regime can be
obtained or not. Up to now the key factors limiting the carriers mobility is scattering
of charge carriers due to the presence of impurities atoms and structural defects in the
sample, as well as nanometer-scale roughness of the sample substrate and the electric
field potential of unsaturated dangling bonds from the substrate – usually crystalline Si
covered with few hundreds nm thick SiO2 layer. As the quality of graphene samples
improves with the progress in manufacturing techniques, and new types of substrates are
investigated (suspended samples [92], hBN [93, 94, 95], bulk graphite [96, 13, 44]), the
role of the before-mentioned factors will slowly diminish. On the other hand, scattering
of carriers due to electron-phonon interactions is an intrinsic property, that will remain to
limit the maximum possible charge mobility even in the case of a perfect crystal. There-
fore, the proper understanding of the existing coupling mechanism between electronic and
vibrational subsystems is of paramount importance if some predictions about the limits
of the future applications of graphene are to be made.

3.1 Phonon dispersion in graphene

At every finite temperature, the position of the atoms in the crystal is not fixed but
instead they oscillate slightly around their equilibrium positions. This quite complex
collective vibrations of the atoms can be easily described by decomposing it into few
elementary vibrations propagating through the crystal. Each of those vibrational modes
is characterized by a particular relative movement of the atoms in the crystal unit cell
and by a wave-vector describing its direction of propagation. In the quantum mechanical

29
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formalism, the energy of these vibrational normal modes becomes a quantized, and the
single quantum of such vibration is known as a phonon. Each one is described by its
wavevector k (which is proportional to its pseudo momentum ~k) and also by its trans-
formations symmetries (which determines to which phonon branch it belongs). In every
crystal with N atoms in the unit cell there is a maximum of 3N different phonon modes,
three of them are acoustic (A) modes and 3(N−1) are optical (O) modes. Those phonons
can be further divided into longitudinal (L) and transverse (T) modes depending whether
atoms displacement is in the same or in a perpendicular direction with respect to the di-
rection of propagation, respectively. One can also distinguish between transverse modes
which oscillate in the graphene plane(i-) or in the direction pointing out-of plane(o-).

Figure 3.1: Phonon dispersion in graphene. From
ref. [70] after [97]

The two atoms in the graphene
unit cell give rise to the three acous-
tic and three optical branches in
phonon dispersion relations. Lazzeri
et al. have calculated the dispersion
of these modes [97] using DFT tech-
nique, which is shown in Fig. 3.1. At
high symmetry points phonons can be
classified according to their transfor-
mation symmetries. From the view-
point of Raman spectroscopy the most
important points in the Brillouin zone
are Γ and K points, because phonons
from the vicinity of those points form
the most prominent Raman peaks
both in graphene and graphite. At
the Γ point phonons transform ac-
cordingly to the representations of the D6h point group. Since two phonon modes are
there doubly degenerated it leaves just four distinct phonon modes with the symmetries
A2u +B2g +E1u +E2g [68]. There is one doubly degenerate in-plane optical mode – E2g

at ∼ 1580 cm−1, and one out-of-plane optical mode B2g at ∼ 850 cm−1. Only the E2g

phonons are Raman active, while the B2g optical phonon is neither Raman nor infrared
active [98].
The phonon modes around the K point are also very important, since the D band and
2D band are related to phonon modes in the vicinity of the K point. At the K point
phonon modes belong to one of the irreducible representations of the D3h point group.
The phonon which comes from the iTO branch is non-degenerate, belongs to the A′1 irre-
ducible representation and has an energy of about ∼ 1350cm−1. The LO and LA phonon
branches meet each other at the K point, which gives rise to a doubly degenerate phonon,
with E′ symmetry [99].
Phonon dispersions in bi-layer graphene and graphite are qualitatively similar to that

of monolayer graphene. The main difference stems from the fact that, in the former case,
there are four atoms in the unit cell. This doubles the number of optical modes, and is
responsible for the infrared activity of graphite [98]. In graphite all the optical modes
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Figure 3.2: Displacement of atoms in graphene and graphite for the phonons from the Γ
point. Every phonon eigenvector of graphene gives transforms into two distinct vibrations
in graphite. Next to the graphite modes is indicated whether they are Raman (R) or
infrared (IR) active and the experimentally observed phonon frequencies. From ref. [68].

become Davydov-doublets, which is shown in Fig. 3.2. For instance, the E2g phonon in
graphene splits into an infrared-active E1u phonon and a Raman-active E2g phonons in
graphite, the B2g optical phonon goes into an infrared-active A2u phonon and an inactive
B2g phonon. Additionally, antisymmetric combinations of the acoustic modes becomes
the optically inactive B2g phonons and the low-frequency Raman active E2g modes. The
symmetric combinations of the acoustic modes remain A2u and E1u [98]. Therefore in
graphite at the Γ point phonons belong to one of the following irreducible representations:
Γ = 2(A2u +B2g + E1u + E2g) [59, 70].

The main difficulty in the calculations of the phonon dispersion in graphene and
graphite lies in the correct treatment of the Kohn anomalies that occur at Γ and K

points. For a long time the various proposed models [67, 100, 101, 99, 102] were not able
to correctly describe the linear phonon dispersion around Γ and K points until Piscanec
et al. included the Kohn anomaly in their DFT calculations [103]. This anomaly leads
to a renormalization of phonon energies due to processes when phonon excites virtual
electron-hole pairs. To correctly understand the origin of these processes one has to go
beyond the framework of the usually employed Born-Oppenheimer approximation and
include the electron-phonon coupling mechanisms.

3.2 Electron-phonon coupling constant

Generally, one can distinguish two main mechanisms responsible for the electron-phonon
interaction in a crystal: the Frölich interaction and the deformation potential interaction.
The former one is only present in polar crystals, which can exhibit a macroscopic electric
field generated by long-wavelength optical phonons. Graphene however, as well as other
materials derived from graphite, is a non-polar material, so it is the deformation potential
that is responsible for the electron-phonon coupling. In this mechanism the coupling
between electronic subsystem and lattice vibrations occurs due to small changes in the
potential energy ∆V felt by electrons due to distortion of atoms from their equilibrium
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positions [104]. The electron-phonon coupling matrix element describes the scattering
probability of an electron in band i and with momentum k to the empty state in band j
with momentum k + q due to interaction with a phonon with wavevector q [105, 103]:

D(k+q)j,ki = 〈k + q, j|∆Vq|k, i〉 (3.1)

Where the ∆Vq is the change in the periodic potential induced by a phonon with wavevec-
tor q. Although EPC matrix elements are defined for each electron and phonon separately
like above, the only quantities which are observable experimentally are the averages over
the Fermi surfaces (denoted as 〈...〉F ) of the squares of matrix elements. Due to symmetry
reasons, most of the scattering events occur with phonons from the high symmetry lines
in Brillouin zone. It turns out that the only non-zero EPC constants are those which
describe scattering by phonons from the doubly degenerated highest optical mode at the
Γ point, and by phonons from transverse optical (TO) branch at K point [105, 103]:

〈D2
Γ〉F =

∑
i,j

1

4
|DKj,Ki|2 and 〈D2

K〉F =
∑
i,j

1

4
|DK′j,Ki|2 (3.2)

EPC can be also defined in other ways the one most commonly used is the dimen-
sionless EPC constant λ, which is defined for phonons from the Γ and K points as:

λΓ,K =
F 2

Γ,KAu.c

2MωΓ,KvF
(3.3)

Where ωΓ(ωK) is the energy of phonons from the Γ(K) point respectively, M is the
mass of the carbon atom, Au.c. the unit cell area, while FΓ(FK) is the proportionality
coefficient between the change in the effective Hamiltonian and the lattice displacement
along the corresponding phonon mode. There is a close correspondence between those
two definitions, which comes from the following relations [63]:

F 2
Γ = 4〈D2

Γ〉F = 8MωΓ〈g2
Γ〉F (3.4)

F 2
K = 2〈D2

K〉F = 4MωK〈g2
K〉F (3.5)

There are also other definitions of the EPC constant in use and the choice is usually
determined by the method used to extract this parameter. When calculations are made
using the density functional theory (DFT), EPC is usually defined as the matrix element
of the Kohn-Sham potential, differentiated with respect to phonon displacement, like in
Eq. 3.2 [107, 103, 97, 115]. In ARPES experiments EPC is extracted from the differences
in the slope of the electron dispersion around energies corresponding to the two phonons
[114]. In the Raman scattering experiments, where the Fermi energy εF is tuned by
the gate voltage, the EPC leads to a dependence of the G-band energy on the εF . The
corresponding shifts in the G-band energy can also be used to extract information about
EPC constant [107, 106, 116, 117]. One of the simplest ways to estimate the EPC value is
to measure the linewidth of the Raman scattering features associated with a given phonon.
In graphene there is only one peak in the Raman scattering spectrum originating from a
first order scattering process with a phonon – the G-band. Therefore EPC coupling can
be estimated for the E2g phonon branch at Γ point. In a crystal without any defects, the
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λ[×10−2] System Method Source

Γ point phonon
2.8 monolayer graphene DFT calculations [103]
3.4 exfoliated graphene on SiO2 G-band linewidth [106]
2.6 exfoliated graphene on SiO2 G-band energy shift [106]
2.7 exfoliated graphene on SiO2 G-band linewidth [107]
4.5 multilayer epitaxial graphene Fit to MPR [108]
2.6 graphite X-ray diffraction [105] based

on [99]
3.1 graphite G-band linewidth [105]
6.4 graphene flakes on graphite Fit to MPR [109]
3.2 graphite Fit to MPR [45]
4.4 graphene flakes on graphite Fit to MPR [32]

K point phonon
3.4 monolayer graphene DFT calculations [103]

6.0-12.0 mono- and bilayer exfoliated
graphene

Fits done by Basko et al. to
the experimental G and 2D
peaks area ratio

[63] based
on [86, 110,
69, 92, 111]

5.4 monolayer graphene GW calculations [63] based
on [97, 112]

4.4 graphite phonon dispersion slope at K
point measured in inelastic x-
ray scattering

[63]
based on
[113, 114]

Table 3.1: Values of EPC constants in graphene based materials as obtained by different
groups.

linewidth γ of a phonon is determined by its interaction with other elementary excitations.
Usually γ = γe−h + γan, where γan is a broadening due to the interaction with other
phonons and γe−h with electron-hole pairs. γan is determined by anharmonic terms in
the interatomic potential and is always there. γe−h is determined by the EPC and is
present only if the electronic gap is zero. If the anharmonic contribution γan is negligible
or otherwise known, measuring the linewidth is a simple way to determine the EPC. A
broadening due to phonon from branch η and with wavevector q interacting with an
electron-hole pairs is given by the Fermi golden rule [105]:

γe−hqη =
4π

Nk

∑
k,i,j

|g(k+q)j,ki|2
[
fki − f(k+q)j

]
δ
[
εki − ε(k+q)j + ~ωqη

]
(3.6)

where the sum is over the electrons with wavevectors k and bands i and j, Nk is the
number of k vectors, fki is the occupation of the electron state |k, i〉, with energy εki, δ
is the Dirac distribution and g(k+q)j,ki is the EPC constant as defined in Eq. 3.5. For
phonons from the Γ point which give rise to the G band, calculating the above sum yields:

γe−hΓ =

√
3a2

0~2

4M(vF~)2
〈D2

Γ〉F (3.7)
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By measuring the G band linewidth and treating the anharmonic term γan as small
campared with broadening induced by EPC the above expression allows to estimate the
EPC constant.
The diverse definitions of EPC constant brought the need to relate them to each other
in order to be able to compare results obtained using different methods. This was done
by Basko et al. [63] and allowed to get an overall estimation of the EPC constants for
phonons from the Γ andK points and the accuracy up to which they are currently known,
which is summarized in Table 3.1.
As it is seen from the table, there is still some uncertainty about the exact values of
the EPC constants, however for the Γ point phonon it can be quite reliably assumed
to fall into the range 3 × 10−2 < λ < 4.5 × 10−2. On the other hand there are fewer
measurements of the EPC for the K point phonons, but both theoretical calculations and
experimental results shows that its value is higher than for Γ point phonons.

3.3 Kohn anomalies

The characteristic feature of graphene is its zero gap band structure, which causes
graphene to behave like a semimetal. In general, the atomic vibrations are partially
screened by electrons. In metals and semimetals this screening can change rapidly for
vibrations associated with certain wavevectors q in the Brillouin zone, which are deter-
mined by the shape of the Fermi surface. This leads to the renormalization of phonon
energies at these particular points in the Brillouin zone. The resulting anomalous be-
havior of the phonon dispersion is called Kohn anomaly [118]. The Kohn anomalies may
occur only for phonons with such a wavevector q and energy ~ω(q) that there are two
electronic states k1 and k2 on the Fermi surface εF that can be connected by a scattering
with this phonon:

k2 = k1 ± q (3.8)

Figure 3.3: Feynman diagram for the second-
order scattering process that renormalizes
the phonon energy. The first node shows the
decay of a phonon into an electron-hole pair,
and the second node shows the recombina-
tion of the electron and hole resulting in the
emission of a phonon. From ref. [70]

In graphene, the electronic gap is zero
only at the two inequivalent points in Bril-
louin zone: K and K ′. Therefore, scatter-
ing of carriers from the Fermi surface can
only occur either in an intra-valley scat-
tering process, i.e. when both initial and
final electronic state lies in the vicinity of
the same valley (at K or K ′ point) or it
can also occur in the inter-valley scatter-
ing process, i.e. when carrier is scattered
from the vicinity of the K(K ′) point to the
proximity of the K ′(K) point. In the in-
travalley scattering process, only phonons
with a very small wavevector q can par-
ticipate, i.e. those from the vicinity of Γ

point. On the other hand for an intervalley scattering phonons with a large wavevector
are needed: K′ ±K = K. Thus, Kohn anomalies can be found in the phonon dispersion
relations only at the Γ and K points in the Brillouin zone.
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Figure 3.4: Phonon dispersion in graphene. Energies of the highest optical branches at
Γ and K points are renormalized due to Kohn anomalies. From ref. [103]

This scattering of carriers from the Fermi surface by phonons, can also be seen as a
process in which an electron in the valence band is first excited to the conduction band
by absorbing a phonon, thus creating an electron-hole pair. The electron and hole then
recombine and emit a phonon. Both the frequency and lifetime of the phonon are sig-
nificantly affected by this second-order process [105, 117]. The renormalization of the
phonon energy can be described by time dependent second-order perturbation theory. In
this formalism the contribution to the energy of the electron-hole bubble process shown
in Fig. 3.3 is negative, which causes the lowering of the phonon energy by about 5% with
respect to the unperturbed phonon energy.
The effect of this link between phonons and electron-hole excitations, not only lowers
the phonon energy at Γ and K points, but also makes the phonon dispersion around
those points linear (see red tangent lines in Fig. 3.4). In graphene, this coupling is seen
only for phonons from the highest optical branches at those two points, i.e. for the LO
phonon(E2g mode)at Γ point and for the TO phonon(A′1 mode) at K point. The non-zero
EPC matrix elements for phonons at those points lead to discontinuity in the derivative
of the phonon energy dispersion relation. The linear slope αE2g(A′1)

Γ(K) of a phonon energy
dispersion

EphΓ(K)(q) = ~ωΓ(K) + α
E2g(A′1)

Γ(K) |q| (3.9)

in the vicinity of Γ(K) points is entirely determined by the EPC between phonon and
electron-hole excitations, which tends to lower the phonon energy ~ωΓ(K) at those points.
The slope of phonon dispersion close to Γ or K point is given by:

α
E2g(A′1)

Γ(K) =

√
3~a0〈D2

Γ(K)〉F

8M~ωΓ(K)
E2g(A′1)

vF
(3.10)

where a0 is the graphene lattice constant, M carbon mass, ~ωΓ(K)
E2g(A′1)

energy of the E2g

or A′1 phonon and 〈D2
Γ(K)〉F is the averaged over the Fermi surface square of the EPC
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Figure 3.5: a) Linewidth and d) energy of the G band in monolayer graphene as a function
of Fermi energy position (charge doping). Black dots – experimental points, blue lines
– theoretical fits for the ideal graphene, red lines – theoretical fits for the nonuniform
graphene. b) G band broadening of the due to decay into electron-hole pair. c) Decay
into electron-hole particles is forbidden due to Pauli blocking when 2|εF | > ~ωG e) Γ
point phonon energy renormalized through interaction with virtual electron-hole pairs.
f) electron-hole pairs creation is suppressed for energies smaller than 2εF From ref. [106]

constant as defined in Eq. 3.1 and 3.2. This relation gives a possibility to experimen-
tally measure the EPC constants by measuring the phonon dispersion around the Γ and
K points. It was done by a variety of experimental methods such as: neutron scatter-
ing [119], electron energy-loss spectroscopy [120, 121, 122], angle-resolved photoemission
spectroscopy (ARPES) [114], inelastic x-ray scattering [113, 99, 123], and double res-
onance Raman scattering [64, 101]. The EPC constants extracted from some of those
measurements were presented in Table 3.1.

3.4 Γ phonon energy tuning with εF

Energy tuning The EPC in graphene makes it possible to tune the energy of the Γ point
phonon by changing the level of the Fermi energy. Yan et al. have shown that both the
energy and the linewidth of the G band peak in Raman scattering experiment strongly
depend on the position of the Fermi energy εF (Fig. 3.5). First it was demonstrated in a
single layer graphene where the Fermi energy was varied either by chemical doping [124]
or by electric field gate effect [107, 106, 86] and then it was also observed in bi-layer
graphene [110]. These works have shown that Γ phonon frequency has the lowest value
when εF is at the charge neutrality point and it increases with both electron or hole
doping. The linewidth on the other hand has the largest value (∼ 15 cm−1) at the charge
neutrality point and decreases to the lowest value of about ∼ 7 cm−1 at high electron or
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hole doping level. The onset of this decrease is close to Fermi energy being equal to half
the energy of Γ point phonon εF = ±~ωΓ

2 . In fact, for clean enough systems, a logarithmic
divergence in the energy of the Γ phonon, and a steep change between broadened and
narrow FWHM of this phonon, are expected to occur at EF = ±~ωΓ

2 . However, those
subtle details were always smeared out by a disorder in all the systems that were studied
up to now.
The Kohn anomaly at Γ point is at the very center of this effect. As the εF moves away
from the charge neutrality point more and more virtual electron-hole pairs that previously
participated in the renormalization of the phonon energy (Fig. 3.5e) are now blocked due
to Pauli exclusion principle (Fig. 3.5f). The renormalization of phonon energy leads to
lowering its value in graphene, now in a doped graphene the renormalization effect is
weaker, which pushes the phonon energy up, towards its non-renormalized value.

The described above G band energy dependence on the εF is an interesting example
of a phenomena in graphene that cannot be theoretically described without abandoning
the usually employed adiabatic Born-Oppenheimer approximation (ABO) [107]. The
ABO approximation is a textbook solution frequently used to describe many solid state
systems. It assumes that because of the big difference between electron and nuclei masses
(1:2000), their motion can be treated separately. It means that when calculating the
energy dispersion of vibrational modes of the lattice (phonons) an assumption is made
that lighter electrons adjust adiabatically to the motion of heavier nuclei, remaining at
all times in their ground state. Thus giving no contribution to the energy of phonons.
This approach gives good results in the case of insulating and semiconducting materials
where electronic energy gap is much larger than the energy of the vibrational excitations.
In metallic systems however where the electronic energy gap is zero this approximation
is questionable. In spite of that, for some metallic systems, the ABO proved to be still
effective and helped to accurately determine chemical reactions [125], molecular dynamics
[126, 127] and phonon energies [128, 129, 130]. However, in other metallic systems, like
e.g. osmium, it fails [131, 132].
Works of Lazzeri and Mauri [116], Pisana et al. [107] and Yan et al. [106] have shown that
graphene is one of the systems where the adiabatic Born-Oppenheimer approximation fails
and the time-dependent perturbation theory must be used to correctly describe behavior
of the Γ point phonon.

Linewidth tuning A similar dependence on the εF position is seen in the Γ phonon
linewidth (Fig. 3.5a). Here, the G peak linewidth decreases almost by half, when the
Fermi energy εF is higher (lower) than half of the Γ phonon energy. This change of
linewidth can be understood in the following way. First, we have to recall that the
linewidth of a phonon is inversely proportional to its lifetime τ . The lifetime is deter-
mined by the rate of intrinsic phonon decay processes 1

τan
due to anharmonic terms in

the phonon Hamiltonian and due to phonon interaction with other excitations in the sys-
tems. In case of graphene it is the phonon decay into electron-hole pair (Fig. 3.5b) which
play the major role as extrinsic source of phonon decay processes, adding additional rate

1
τe−h

. So we can write the phonon lifetime as a sum: 1
τ = 1

τan
+ 1

τe−h
. It follows straight-

forwardly from this expression, that phonon lifetime should increase if the additional
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channel of phonon decay into electron-hole pairs could be somehow blocked. In fact this
blocking occurs in graphene due to the Pauli exclusion principle when εF > ~ωΓ

2 i.e. when
all potential final states in the conduction band are already occupied (Fig. 3.5c). For the
hole doping, the situation is analogous and the blocking occurs when εF < −~ωΓ

2 i.e.
when all potential initial states are empty. This effect creates an opportunity to inves-
tigate the role of electron-phonon interaction on the properties of phonon by switching
on and off the electron-phonon interaction just by controlling the gate voltage applied to
the graphene sample. Results of such experiment performed in a high magnetic field on
a monolayer graphene, grown by a chemical vapour deposition (CVD) technique, will be
presented in Chapter 9.

3.5 K point phonons coupling effects

Up to now the EPC effects related to K point phonons were observed mainly in the
renormalization of the electron bands dispersion as it is evidenced by the angle resolved
photoemission spectroscopy (ARPES) experiment in epitaxial graphene [114] and in in-
tercalated graphite compounds [133]. Moreover phonon dispersions in the vicinity of the
K point was also probed through the double resonance Raman processes in graphitic
materials [100].

Figure 3.6: a) ARPES data taken along KM
direction. b) Dispersion (black curve) ex-
tracted by fitting the raw data. The dashed
line is the fit using two straight lines with
different slopes. Kink in the phonon disper-
sion marks the energy of a K point phonon.
From ref. [114]

ARPES measurements allows to measure
electronic dispersions, renormalized by in-
teractions in given material. Zhou et al.
have performed such experiment on a sam-
ple of epitaxial graphene [114]. A charac-
teristic for graphene linear band dispersion
was observed, with a few distinct devia-
tions from the linearity. Usually when a
sudden kink in the electron band disper-
sion is observed it can be related to in-
teraction with phonons having the same
energy. In their experiment three kinks
were observed: two very weak ones around
60 ± 15 meV and 200 ± 15 meV, and a
pronounced one at 150 ± 15 meV. Those
peaks can be easily identified as corre-
sponding to: (i) low energy out-of-plane
phonon from the K point, (ii) E2g phonon
from Γ point and (iii) A′1 phonon from the

highest optical branch at K point. It is possible to obtain a value of the EPC constant
by comparing the slopes of the measured electron dispersion in energy-momentum space.
In this case the dimensionless EPC constant λ is defined as: λ = vb/vF − 1. Where vb
is the bare band velocity (above the kink), and vF is the renormalized Fermi velocity
(below the kink). Values of EPC obtained in this way confirmed previous theoretical
calculations [103, 115] predicting that A′1 phonon has the largest value of EPC constant
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among all phonons in graphene. However, both the ratio of λK/λΓ and magnitude of λK
were surprisingly high. Previously calculated ratio was expected to be λK/λΓ = 2 [103],
while this experiment shows that the difference is by at least an order of magnitude big-
ger. In addition to that, the measured λK = 0.14 has a much higher value than expected
λK−theory = 0.02 [115]. To explain these discrepancies, an interplay between electron-
phonon and electron-electron interactions was proposed, which would enhance the EPC
[115, 134]. ARPES measurements on doped graphene done by Siegel et al showed that
the observed kink, in the range of energies 150− 200 meV, is more pronounced for doped
graphene as compared to neutral graphene [135]. Another experiment performed by Bost-
wick et al. [136] have revealed yet another small kink, very close to the Dirac energy ED
(crossing of conduction and valence band), which causes that extrapolation of valence
band does not pass through conduction band. Its origin is explained again in terms of
many-body electron-electron interactions which modify electronic band dispersion. It was
proposed that, since K point phonons are already affected by charge carriers in graphene
(Kohn anomaly), it is possible that electron-electron interactions are responsible for the
unexpectedly high electron-phonon coupling value for this phonon [136].

3.6 Magneto-phonon resonance

Applying a magnetic field to graphene, offers a unique possibility to study the EPC ef-
fects via oscillations in the Γ point phonon energy [117, 137, 138]. This effect, usually
referred to as magneto-phonon resonance (MPR) or magneto-phonon effect, is a direct
consequence of a coupling between Γ phonon with some of the inter-band inter-Landau
level electron-hole excitations. This coupling leads to the formation of hybridized phonon-
magneto-exciton modes which show a distinct avoided crossings in clean enough samples
[108, 109, 44, 32] (graphene inclusions on the surface of graphite) or merely small os-
cillations in samples of lower quality or doped [139] (exfoliated graphene deposited on
SiO2). So far magneto-phonon resonance has been also observed in multilayer graphene
specimens [140] and in bulk graphite for both H and K point carriers [45, 46] and is now
used as a tool to study the electron-phonon interaction and also to perform the Landau
level spectroscopy of unknown systems.
Magnetic field applied in the direction perpendicular to the graphene surface induces

Landau quantization for clean enough electronic systems and changes the continuous in-
terband electronic excitation spectrum at B = 0T into a discrete excitation spectrum
among Landau levels of index n with an energy that increases with magnetic field as:

En = sign(n)vF
√

2e~B
√
|n| (3.11)

The relevant electronic excitations Ln,m between Landau levels of index n and m, for the
electron-phonon interaction are those fulfilling the optical selection rule ∆|n| = |n|−|m| =
±1. When these specific excitations are tuned to the phonon energy by increasing the
strength of the magnetic field, the electron-phonon interaction induces a coherent mixing
of these modes. It manifests itself through the magneto-phonon resonance – a series
of avoided crossings between the phonon mode and the electronic excitation spectrum
each time one ∆|n| = ±1 inter-Landau level excitation is tuned to the phonon energy
[108, 109, 44, 32, 139, 141].
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Figure 3.7: Magneto-phonon resonance in graphene inclusion on the surface of graphite, as
seen through magneto-Raman scattering. Intensity of the G band at 1580 cm−1 is shown
in the false color scale. Dashed red lines show the energies of first few electronic excitations
which are expected to hybridize with Γ phonon. The phonon energy oscillations at
B = 4.7T, 2.7T, 1.9T, 1.6T,... are the hallmark of the magneto-phonon resonance.
λexc. = 720 nm, cross-circular polarization.

Theory describing MPR developped by Ando [117, 137, 142] and Goerbig [138] allows
to reproduce energy and linewidth of the interacting Γ point phonon. In this approach,
the energy of non-interacting relativistic Dirac electrons is described by a Hamiltonian:

H0 = γ

(
0 k̂x − ik̂y

k̂x + ik̂y 0

)
= γ(σ · k) (3.12)

where γ is the band parameter proportional to the nearest neighbour hopping integral
γ0:

γ =

√
3a

2
γ0 (3.13)

a = 0.142nm is the nearest neighbour inter-atomic distance, σ = (σx, σy) stands for the
Pauli spin matrix, while k̂ = (k̂x, k̂y) = −i∇ + eA/(~c) is a wave-vector operator with
the vector potential A = (Bx, 0) in magnetic field B perpendicular to the system. Then,
optical phonons are described by a vector u(r) representing the relative displacement of
the two sub-lattice atoms A and B:

u(r) =
∑
q

√
~

2NMω0
(bq + b†−q)ê(q)eiq·r (3.14)

where N is the number of unit cells, M is the mass of a carbon atom, ω0 is the optical
phonon frequency at Γ point, ê is the direction of the atom displacement, q = (qx, qy)

is the phonon wavevector, while b†q and bq are the creation and annihilation operators,
respectively. The optical phonon temporarily distorts the distance between neighbouring
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carbon atoms, which modifies the band structure through the change in the overlap
integral γ between carbon atoms. The resulting change in the electron Hamiltonian
describes the electron-phonon interaction which, in the case of graphene, is given by:

HKint = −
√

2
βγ

b2
σ × u(r) (3.15)

where the vector product for vectors a = (ax, ay) and b = (bx, by) in two dimension is
defined by a× b = axbx − aybx, and b = a/

√
3 is the equilibrium bond length. The

dimensionless parameter β describes the change in the wavefunction overlap integral
between electrons localized on the two nearest neighbour atoms, with respect to the
change in inter-atomic distance:

β = −dlnγ0

dlnb
(3.16)

Figure 3.8: Left: Tuning LLs energy by applying a magnetic field. Right: electronic
excitations that participate to the renormalization of the Γ phonon energy through a
magneto-phonon resonance. If small electron-hole asymmetry is neglected, the L−n,n+1

and L−n−1,n excitations are degenerated, but are active in two different light polarizations
σ− and σ+ respectively.

The energy and linewidth of the phonon, can be calculated from the poles of the
phonon Green’s function, which describes the phonon dressed by interactions with electron-
hole pairs:

D(q, ω) =
2~ω0

(~ω)2 − (~ω0)2 − 2~ω0Π(q, ω)
(3.17)

Where ω0 is the unperturbed frequency of the Γ phonon, while ω is the energy of a hy-
bridized phonon-magneto-exciton due to interactions with interband inter-LL excitations
with ∆|n| = ±1 and with intra-band inter-LL excitations with ∆|n| = ±1(cyclotron
resonance). This interaction is described by the phonon self-energy Π(q, ω):

Π(q, ω) = −1

4
λ(vF

√
2~eB)2

∑
s,s′=±1

∞∑
n=0

(
[f(sεn)− f(s′εn+1)]

× 2(sεn − s′εn+1)

(~ω + iδ)2 − (sεn − s′εn+1)2
− 1− ss′

εn+1 + εn

)
(3.18)
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In these expressions f(sεn) is an occupation factor of nth Landau level with energy εn in a
conduction (s = +1) or valence (s = −1) band. It is given by a Fermi-Dirac distribution
function:

f(ε) =
1

e(ε−ξ)/(kBT ) + 1
(3.19)

The energy of the Fermi level decides which excitations have non-zero oscillator strength
and participates in the phonon’s energy renormalization. Whenever some initial electron
state is completely empty, or when the final state is fully occupied, such excitations can-
not take place, which is usually referred to as Pauli blocking. λ in the expression 3.18 is
the dimensionless EPC constant, that was defined in Eq. 3.3, and δ is a phenomenological
broadening parameter due to scattering of an electrons by disorder or acoustic phonons.

Equations 3.17 and 3.18 are then used to solve in a self-consistent manner for the
renormalized phonon energy:

(~ω)2 = (~ω0)2 + 2(~ω0)2 Re Π(q, ω) (3.20)

and its linewidth:
Γ = −2

~
Im Π(q, ω) (3.21)

Alternatively one can also calculate the phonon spectral function:

ρ(k, ω) = − 1

π
Im D(q, ω) (3.22)

which, at a given magnetic field B gives the phonon spectral density at each value of
energy ~ω. This quantity can be then directly compared with the intensity of the Raman
scattering at the same energy ~ω.

3.7 K point phonons in magneto-absorption

The ARPES measurements have shown that the coupling between electron-hole pairs and
phonons in graphene is not restricted to phonons from the Γ point only [114, 133]. By
using magnetic field this interaction can be also conveniently studied in the magneto-
absorption experiment, as was done by Orlita et al. [143]. When the multilayer epitaxial
graphene grown on the surface of SiC is placed in the magnetic field, a series of absorp-
tion dips emerge that evolve in magnetic like ∼

√
B [40]. They correspond to inter-LL

transitions Ln,m, which obey the ∆|n| = ±1 selection rule for the infrared active excita-
tions. Orlita et al. have observed that in addition to the well known dips from inter-LLs
excitations, and additional feature can be also observed. In a range of magnetic field from
17 to 20T the lowest absorption dip L0,1 develops a shoulder at the energy of 150 meV
(Fig. 3.9a). It is even better visible when results are plotted as a false color map showing
the energy evolution of L0,1 absorption peak against applied magnetic field (Fig. 3.9b).
Again, around 150 meV, a significant deviation from the simple

√
B evolution is ob-

served. This energy corresponds to the highest optical branch of K point phonon in
graphene [103].
To explain this splitting, a coupling between two types of excitations was proposed. These
two excitations are: a doubly degenerate optical excitation L0,1 or L−1,0, and a combined
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Figure 3.9: a) Relative transmission spectra (T(B)/T(0)) of multilayer epitaxial graphene.
b) The same data presented in a form of false color map, red dotted line marks the energy
of K point phonon. From ref. [143]

excitation composed of a K-point phonon and a zero-energy inter-valley electron-hole
pair. This second one can be created in a process where first a usual optical excitation
L0,1 is created and then, the electron from the n = 1 LL in K valley is scattered to the
n = 0 LL in K’ valley, gaining quasi-momentum k = ~K, and the simultaneous emission
of K point phonon having momentum q = − ~K. Process for the L−1,0 excitation is anal-
ogous, but then it is a hole from the n = −1 LL which is scattered to n = 0 LL in the
K’ valley. In both cases, the final state consists of a phonon with momentum |q| = K

and of an electron and a hole at n = 0 LL, but one is located at K point while the other
at K’ point. Importantly the quasi-momentum is conserved in the whole process. This
process is resonant in magnetic field in the sense that by tuning the energy separation
between the n = 0 LL and the n = +1 (n = −1) LL by increasing the magnetic field, a
resonance with the energy of the K point phonon can be achieved. Under such conditions
the scattering event with emission of K point phonon can satisfy both the energy and the
momentum conservation laws. This additional relaxation channel for the L0,1 or L−1,0

excitation leads to the observed splitting.





Chapter 4

Raman scattering due to
electronic excitations

The gapless graphene bandstructure makes it easy to excite low energy inter-band electron-
hole pairs, often referred to as electronic excitations. They have been observed through
various experimental methods, either though indirect effects in angle-resolved photoe-
mission spectroscopy [144] or magneto-absorption in monolayers [40, 28] and bilayers
[145, 146, 147, 148], and finally by a direct observation in magnetic field through Raman
scattering in monolayer graphene [44, 32] as well as in bulk graphite [45, 46]. The the-
oretical calculations of their corresponding Raman features intensity has been done for
monolayer [31] and bilayer [149] graphene and then was summarized in an broad review
article [150].
These electronic excitations can be created in the system regardless of the presence of an
external magnetic field. However in the absence of magnetic field, their excitation spec-
trum is a continuous band at energies higher than twice the Fermi energy EF , which form
a linearly increasing background in Raman scattering spectra (see dotted line in Fig. 4.1)
and makes it difficult to selectively address and study excitations of different symmetry
properties. On the other hand, when a magnetic field is applied in the direction perpen-
dicular to the surface of graphene, the continuous linear dispersion of electronic bands
is quantized into a set of discrete Landau levels (LLs) and the continuum of electronic
excitations energy is transformed into a discrete set of excitations. Some of them can
be seen in the magneto-absorption process and some in magneto-Raman scattering. A
set of selection rules derived from the symmetry properties of the lattice predicts which
types of excitations can be seen in which experiment, while detailed calculation of the
scattered intensity based on the electrons Green function gives more insight into the rel-
ative scattering amplitudes of different types of electron-hole excitations. Since Raman
scattering under Landau quantization is a well established measurement technique that
has been used intensively in the past for studies of bulk materials [151, 152, 153] and
semiconductor heterostructures [154, 155, 156, 157], it is now successfully employed to
unravel a rich physics in atomically-thin graphene [44, 32].

45
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Figure 4.1: Spectral density g(ω) of light inelastically scatterred from electronic excita-
tions in graphene at quantizing magnetic fields (solid line) and at B=0 (dashed line).
Here ω � Ω is the Raman shift. Sketch illustrates intermediate and final states of the
dominant Raman process. From ref. [31]

4.1 Electronic excitations in the absence of magnetic field

Figure 4.2: Electron-hole exci-
tations in graphene in the ab-
sence of magnetic field. Exci-
tations with energy lower than
2EF are not allowed due to
Pauli blocking.

When photons with energy Ω smaller than the graphene
bandwidth are scattered from graphene they can create
inter-band electron-hole pairs (electronic excitations).
Because incident photons have very small momentum
as compared with the size of the Brillouin zone all
these excitations have virtually zero total momentum
(ke+kh = 0). Their energy is determined by the momen-
tum of one of the excited quasi-particle E = 2~|ke(h)|.
Its upper bounds are limited only by the graphene band-
width (Emax ≈ 3 eV ), while the lower by the posi-
tion of the Fermi energy (Emin = 2~|kF |). A thorough
description of such excitations has been published by
Kashuba&Fal’ko [31, 150] who divided the possible ex-
citations according to their transformation symmetries
and polarization configurations in which they are visible.
The Raman scattering intensity can be derived from the
electron Green function, which in turn requires knowl-
edge of the Hamiltonian describing graphene interacting
with electro-magnetic radiation. It turns out that in-
clusion of trigonal warping term in the non-interacting
Hamiltonian is necessary if all experimentally observed excitations are to be reproduced
by this model. Thus, the Hamiltonian of non-interacting monolayer graphene can be
written as:

Ĥ = ξvσ · pσ · pσ · p− v2

6γ0
(σx(p2

x − p2
y)− 2σypxpy) (4.1)
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Where σσσ = (σx, σy) are the Pauli matrices acting on the two components of the electronic
wavefunction, corresponding to states localized in one of the two sublattices of graphene
hexagonal lattice. The in-plane momentum is denoted by p and counted from the corner
of the Brillouin zone (K orK ′ point), γ0 ≈ 3 eV is the nearest-neighbour hopping integral,
which also determines the value of the Fermi velocity vF ≈ 106 m/s. Then to include the
interaction of electrons in graphene with photons, the Peierls substitution is employed,
which substitute electron momentum p with canonical momentum p − e

cA. Where the
vector potential:

A =
∑
l,q,qz

~c√
2Ω

(
lei(q·r−Ωt)/~bl,q,qz + h.c.

)
(4.2)

describes an incoming a photon with polarization l, in-plane momentum q, energy Ω

and out-of plane momentum qz =
√

Ω2/c2 − q2. Expanding the Hamiltonian up to the
second order in the vector potential A yields the interaction Hamiltonian:

Hint = −evF
c

J ·A +
e2

2c2

∑
i,j

AiAj (4.3)

where (evF /c)Ji = (e/c)∂piĤ is the current vertex and e2/(2c2)∂2
pi,pjH is the two-photon

contact interaction tensor. These two terms lead to two terms in the Raman scattering
amplitude R = RD +Rw, which describes the scattering of incident photon, with energy
Ω, momentum q and polarization l, on electrons. The scattered photon has changed en-
ergy Ω̃ = Ω−ω (ω = εf−εi is the energy of created excitation – Raman shift), momentum
q̃ and polarization l̃. The two leading terms of the scattering amplitude are shown in

Figure 4.3: Feynman diagrams for the Raman scattering amplitude R from the ground
state to the final state with electron-hole excitation. From ref. [150]

Fig. 4.3 using Feynman diagrams. The Rw term describes a one-step scattering process
which is mediated by a contact interaction between electron and two photons. Although
for non-relativistic particles contact interaction is important, it is absent in the case of
Dirac fermions. Here it reappears, only after breaking the rotational symmetry of the
system through trigonal warping term in Hamiltonian (Eq. 4.1). Then it leads to the
creation of electronic excitations which have the symmetry of E2 representation of the
C6v point group.
On the other hand the RD term in the Raman scattering amplitude is responsible for a
two-step scattering process, which involves an intermediate virtual state. The excitation
process may proceed in two ways both of which consist of the same steps, but in a reversed
time order. In the first process, the absorption of a photon with energy Ω transfers an
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electron from an occupied state in the valence band and energy εi into a virtual state in
the conduction band, which is followed by the emission of the second photon with energy
Ω̃ = Ω− ω, and leaves an electron in a real state with energy εf = εi + ω. In the second
process, a photon with energy Ω̃ = Ω− ω is first emitted, leading to the virtual electron
state with a large deficit of energy. Then, a photon with energy Ω is absorbed, which
brings the electron to the same excited state εf as discussed above. The net amplitude
of the whole scattering process is determined by the sum of the partial amplitudes of the
two opposite processes.
In monolayer graphene, the two-step scattering process via the virtual state and the con-
tact interaction process have different properties and polarization selection rules. This
reflects their relation to the different irreducible representations of the symmetry group
of the crystal. Generally, the components of the scattering amplitude R realize a rep-
resentation of the lattice symmetry group C6v. Since the polarization vectors of the
incoming and scattered photons, l and l̃ respectively, belong to the E1 representation,
the R representation can be expanded into irreducible ones:

E1 ⊗ E1 = A1 ⊕A2 ⊕ E2 (4.4)

Therefore the scattering probability w can be written in a general form:

w = wA1ΞA1 + wA2ΞA2 + wE2ΞE2 (4.5)

As a sum of the partial scattering probabilities wi in a process where polarization vec-
tors transform accordingly to a given representation. The weights Ξi are given by the
polarizations of the incoming and scattered photons [150]:

ΞA1 = |l · l̃∗|2

ΞA2 = |l × l̃∗|2 (4.6)

ΞE2 = |d|2 = 1 + (l × l∗)(l̃ × l̃∗)

where d = (lx l̃y
∗

+ ly l̃x
∗
, lx l̃x

∗
+ ly l̃y

∗
)

Which means that excitations with A1 and A2 symmetries can be created and detected
in a co-circular configuration, while excitations with E2 symmetry should be visible in
cross-circular configuration.

4.2 Electronic excitations in magnetic fields

4.2.1 Monolayer graphene

Applying a magnetic field in the direction perpendicular to the graphene plane causes the
quantization of energy states into highly degenerate LLs described by a quantum number
n. The incoming electro-magnetic wave can perturb electrons in those states, which
results in the formation of inter-LLs electron-hole pairs. Such electronic excitations are
usually denoted by symbol L−n,m, where n stands for the initial electron state and m

for the final electron state after excitation. The energy of these excitations is equal to
L−n,m = εm − εn. Neglecting the very small asymmetry between conduction and valence
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C6v rep. ∆|n| Transition Intensity Observable in

A2 0 −n→ n Dominant in Raman Raman σ± → σ±
E2 ±1 −n→ n+ 1 Weak in Raman, strong in

magneto-phonon resonance,
Raman σ± → σ∓

−(n+ 1)→ n active through trigonal warp-
ing

A1 ± 2 −(n− 1)→ n+ 1 Weak in Raman Raman σ± → σ∓
−(n+ 1)→ n− 1

E1 ±1 −n→ n+ 1 Not seen in Raman Infrared active
−(n+ 1)→ n

Table 4.1: Selection rules of inter-LLs excitations in graphene

bands, this expression can be written as:

L−n,m = vF
√

2e~Bm+ vF
√

2e~Bn =

= vF
√

2e~B(
√
n+
√
m) (4.7)

Electronic excitations can be classified accordingly to their symmetry properties and
to the change in the LL index n which is proportional to the change of angular momentum
of the carriers ∆m = ~∆|n|. Each class of transitions have symmetry properties that
make it either active in Raman scattering or in far infrared absorption or not active at
all. Additionally, Raman active excitations can be further divided into two groups: these
that can be observed in the co-circular configuration (circular polarization of scattered
photons is the same as polarization of incoming ones), and those that can be seen in
cross-circular configuration (circular polarization of scattered photons is opposite to the
polarization of incoming ones). All excitations active in either Raman scattering or far-
infrared absorption, together with selection rules are presented in Table 4.1.

The selection rules can be derived directly from the electron Green function, which
yields the expressions for the intensities of Raman scattering for each class of excitations.
It turns out that the dominant Raman active excitations are the ∆|n| = 0 which are
visible in co-circular configuration. The amplitude of the Raman scattering process from
those excitations is given by [31, 150]:

R−n→n =
1

4

(ev~)2

c2Ω

∑
α=±

[
(le+)(̃l∗e−)

Ω− εn − αεn+1
− (le+)(̃l∗e−)

εn − Ω− αεn−1
− (le−)(̃l∗e+)

Ω− εn − αεn+1
+

+
(le−)(̃l∗e+)

εn − Ω− αεn−1

]
(4.8)

Where the le± vector describes the circular polarization of the incoming photon,
while the l̃∗e± describes polarization of the scattered one, εn stands for energy of the
intermediate LLs involved in the scattering process, while Ω stands for the energy of the
incoming photon. L−n,n excitations have the symmetry of A2 representation of the C6v

point group and incoming and scattered photons have the same circular polarization.
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Therefore, there is no net transfer of angular momentum to/from the lattice. Since
L−n,n excitations give the major contribution to the total Raman signal from electronic
excitations, the spectral density of the angle-integrated Raman signal can be obtained
from Eq. 4.8 by integrating over all directions of propagation of the scattered photons
[31, 150]:

gn−→n+ ≈ Ξs

(
v2

c2

e2/λB
πΩ

)2∑
n≥1

γn(ω − ωn) (4.9)

Where γn(x) = π−1Γn/
[
x2 + Γ2

n

]
is a normalized Lorentzian function, and Γn stands

for inelastic LL broadening that increases with the LL number. According to this model
Raman signal should decrease like 1/Ω2 with the frequency Ω of incoming photon. There-
fore, in order to maximize Raman signal from electronic excitations, laser sources with
longer wavelengths should be used. Another result of this model is the notion that the
scattering cross-section for each inter-LL excitation is the same regardless of the LL index
– n. However, experimentally measured intensity of excitation lines decreases with n due
to two reasons. Firstly, because linewidth of L−n,n excitations increases with n, which
for the same area of peaks results in their lower heights. Secondly, at a given magnetic
field B, the peak separation decreases as

√
n+ 1−

√
n. At some point tails of two neigh-

bouring peaks start to overlap which is seen as an increase in the background level, while
peaks apparent height decreases.

There are two types of ∆|n| = ±1 excitations which belong to two different represen-
tations of the C6v point group. The one with E1 symmetry are infrared active and are
responsible for the ’optical-like’ series of L−n,n+1 and L−(n+1),n excitations. The wave-
function describing such excitations is composed of a symmetric combination of electron
wave functions at K and K ′ points, thus it is also said to be ’valley-symmetric’. There
is also another set of excitations following the same selection rules ∆|n| = ±1, but these
excitations have the symmetry of the E2 representation. They are formed by the anti-
symmetric combination of electron wavefunctions at the two inequivalent valleys. Since
these excitations have the same symmetry as the Γ point optical phonon, these two can
couple and give rise to the magneto-phonon resonance, which is seen as a series of oscilla-
tions of G-band energy in magnetic fields. These excitations can be created in graphene
due to the Rw term in the electron Green function, which gives much smaller amplitude
than the dominant term R−n→n. Therefore, the intensity of the Raman scattering peaks
corresponding to L−n,n+1(L−(n+1),n) excitations are weaker than the dominant L−n,n.
Even though cross-circular configuration in Raman scattering implies a net change in the
photon angular momentum ∆m = ±2, it is still possible to observe ∆|n| = ±1 excitations
in this configuration. This is made possible by the fact that Rw term in Green function
originates from the trigonal warping term in the graphene Hamiltonian. This breaking
of the full rotational symmetry makes it possible to transfer m = ±3 angular momentum
from electrons to the lattice, which makes it feasible to create/annihilate ∆|n| = ±1

excitations.

The last set of Raman active electronic excitations is formed by ∆|n| = ±2 transitions.
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Figure 4.4: Magneto-Raman-scattering response of graphene on natural graphite mea-
sured in (a) co-circular configuration and (b) crossed-circular configuration. Raman scat-
tering intensities are plotted in the form of color plots. Black (white) corresponds to high
(low) intensity. From ref. [32]

The amplitude of the Raman scattering from those excitations is given by [31, 150]:

R−(n∓1)→(n±1) = ∓1

4

(ev~)2

c2Ω
(le±)(̃l∗e±)

∑
α=±

[
α

Ω− εn+1 − αεn
+

α

εn−1 − Ω− αεn

]
(4.10)

It turns out that the scattering amplitudes of L−(n∓1),n±1 excitations are much lower
than those of the dominant L−n,n. Even though these excitations are supposed to be
active in the cross-circular configuration, so far they have not yet been observed ex-
perimentally. Signatures, of the L0,2(L−2,0) excitation, which may be responsible for the
small kink in the G-band evolution in magnetic field, at B ∼ 14T have been observed [32].

The selection rules obtained above have been experimentally verified by measuring
the Raman scattering signal in magnetic fields in two different polarization configurations
by Kühne et al. [32]. These results are shown in Fig. 4.4. In co-circular polarization,
strong lines evolving like

√
B were observed, and they correspond to L−n,n excitations.

Surprisingly, also weaker L−n,n+1(L−(n+1),n) excitations were present in this polariza-
tion configuration, which is at odds with their selection rules. However since they do
not interact with the Γ point phonon it was suggested that they may originate from
the infrared active modes which have the E1 symmetry and, through some unidentified
selection rule breaking process, become Raman active. The same measurement, per-
formed in a cross-circular configuration, gave a completely different result, showing only
L−n,n+1(L−(n+1),n) excitations that have the same symmetry E2 as the optical phonon
and resulting in a pronounced magneto-phonon resonance Fig. 4.4b).

From the experimental point of view, the biggest challenge to observe electronic ex-
citations in monolayer graphene lies in providing a clean enough system, with a Fermi
energy close to the charge neutrality point, and with Landau levels sharp enough to do
not overlap each other. Depositing graphene on a substrate has usually a deteriorating
effect on its properties. In the case of commonly used Si/SiO2 substrates, the trapped
charges, unsaturated dangling bonds of Si and surface corrugations, cause global and
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local charge doping and a general deterioration of its electronic properties, which man-
ifest through relatively low charge mobilities µ < 104 cm2/(V·s). Therefore up to now
electronic excitations has been only observed in graphene inclusions that can be found
on the surface of bulk graphite [44, 32] which are characterized by an exceptional elec-
tronic quality (see Chapters 5.1 and 7 for more details about this system) that can yield
charge mobilities µ > 107 cm2/(V·s) [13]. However other systems where the interaction
of graphene with the substrate has been either completely removed (suspended graphene
flakes) or its negative effects largely reduced (graphene on hexagonal BN) gives hope to
be able to observe electronic excitations also in those systems. In fact in Chapter 8 we
report an observation of the most intense L−n,n excitation in graphene sample deposited
on thin layer of atomically flat h-BN.

4.2.2 Graphite

Figure 4.5: False-color map of the Raman
scattering intensity at T =4.2 K from bulk
graphite, as a function of the magnetic field
in the two co-circular configurations. Elec-
tronic excitations energies evolve like ∼ B.
From ref. [69]

Similarly to graphene, electronic excita-
tions have been also observed in bulk
graphite [158, 45, 46]. When graphite
is placed in an external magnetic field,
charge motion in the plane perpendicular
to the applied field is quantized. How-
ever, in the direction parallel to the field,
carriers can still move freely. For that
reason quantized energy states of quasi-
particles form Landau bands with a kz dis-
persion, instead of discrete levels like in
monolayer graphene [51]. The other dif-
ference between these two systems stems
from the fact that character of the carri-
ers dispersion change qualitatively along
kz as is decribed by the Slonczewski-Weiss-
McClure bandstructure model [3, 2]. At
the K point, bands have a usual parabolic
in-plane dispersion, which leads to equally
spaced and linear in magnetic field B Lan-
dau levels. On the other hand as one
moves towards H point, carriers in-plane
dispersion becomes linear, characteristic for massless Dirac particles, which leads to the
formation of non-equally spaced, evolving like

√
B Landau levels. In magnetic field

electron-hole excitations between those Landau bands can occur, which are subject to
the same selection rules as in the case of graphene.
In the magneto-Raman scattering experiments, the created electronic excitations have
many different momenta in the kz direction. However, due to the singularities in the
joint density of states, mainly massive carriers from the vicinity of K points are probed
in the experiment. This is seen in the Raman scattering spectra (Fig. 4.5) since only exci-
tations which energies evolve linearly in magnetic field are observed, which is a hallmark
of usual massive quasi-particles. Instead of using the full Slonczewski-Weiss-McClure
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model to derive expressions for LL evolution in magnetic field, the in plane dispersion
of these electronic states can be well approximated by the one of the effective bilayer
graphene. The only difference is that the interlayer coupling must be enhanced by a fac-
tor of 2 with respect to a true bilayer graphene [36, 159, 53]. This model gives a relatively
simple expression for the energies of Landau levels in graphite:

EGrn = sgn(n)
1√
2

[
(2γ1)2 + (2n+ 1)E2

1 −
√

(2γ1)4 + 2(2n+ 1)(2γ1)2E2
1 + E4

1

]1/2

(4.11)

Where E1 = vF
√

2e~B, vF is the Fermi velocity and γ1 ≈ 400 meV is the nearest
neighbour inter-layer hopping integral in graphite. So energies of the Raman active
electronic excitations in bulk graphite LGr−n,n are equal to 2EGrn .





Chapter 5

Graphene systems studied

5.1 Graphene flakes on the surface of graphite

Physical properties of solids have been investigated since centuries. However for most
part of the history those studies were focusing on the bulk properties. It was not until
the beginning of 20th century when importance of the surface effects was realized [160].
But a really rapid progress was made possible thanks to the development, in the second
half of the 20th century, the surface selective experimental techniques like: X-ray photoe-
mission spectroscopy(XPS), Auger electron spectroscopy, low energy electron diffraction
(LEED), ion scattering spectroscopy, atomic force microscopy (AFM), scanning tuneling
microscopy (STM), Dual polarization interferometry (DPI) or surface-enhanced Raman
scattering (SERS). Years of experiments showed us that properties of surface can be dras-
tically different than those of the bulk [161]. Adsorption of chemical molecules, surface
lattice relaxation [162], surface phonons [163, 164] and plasmons [165, 166] are just a few
phenomena that are specific to the surface. Not to mention the recent active research in
the field of topological insulators [167].
Graphite is not exempt from that rule. Quite recently if was found that physical proper-
ties of its surface are not uniform. Both Raman scattering [168] and scanning tunneling
microscopy [96] have shown that some regions on the surface of graphite give a response
characteristic of rather a monolayer graphene than of a bulk graphite. Those regions are
usually described as either graphene-like inclusions or graphene flakes on the surface of
graphite. It seems that they originate from the structural defects (e.g. ridge-like defect
[96]) in one of the atomic layers closest to the graphite surface. Those defects may lead
to increased inter-plane atomic distance, which decouples the electronic states in the top-
most layer from those of the graphite substrate below. Such decoupled flake can then
behave like usual mono-layer exfoliated graphene, but showing much higher charge mo-
bility [13] and low concentration of charge doping. This is mainly caused by the fact that
graphite constitutes an ideal substrate for graphene due to the same crystal symmetry
on the surface and the same lattice constant. Moreover, since those graphene inclusions
are not being transfered from one substrate to another, the graphene-graphite interface
is never exposed to the environment which could pollute the system.

55
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Below we would like to present the major points about the current state of knowledge
about this system, as evidenced by different groups and by various experimental tech-
niques.

5.1.1 STM

Graphene flakes on the surface of graphite were studied in a STM measurement by Li et
al. [96]. Their work showed that a ridge like defect can electronically decouple graphene
layer from the underlying graphite (Fig. 5.1). To prove that properties of decoupled layer
are indeed different from the surrounding bulk graphite several independent measure-
ments were performed. In first of them a detailed topography of the graphite surface
near the ridge-like defect was done using STM technique. It showed that there are two
distinct regions separated by the ridge. One (region B) showed a triangular surface struc-
ture as expected from Bernal-stacked graphite. The other (region A) showed a hexagonal
structure, as expected from decoupled graphene flake. Then a step height between those
regions and an atomic layer below was measured. It showed an increased interlayer sepa-
ration distance - 0.44 nm for the decoupled flake as compared with the 0.34 nm distance
for the coupled region(Fig. 5.1c) and d)).
In the third experiment a tunneling conductance was measured as a function of bias

Figure 5.1: a) Topography of graphene layer in the vicinity of two ridge-like defects
on the surface of graphite. More pronounced ridge-like defect is the diagonal dark line
separating region (A) with a honeycomb structure (panel e)) and region (B) with a
triangular structure (panel f)). The fainter one intersecting line αα is shown in b). Panel
c) shows a height cross-section along line αα. Separation between atomic planes is larger
(0.44 nm) near the fainter ridge than the equilibrium value of 0.34 nm measured far away
from any ridges- along lineββ in panel d). From ref. [96]

voltage. Obtained quantity is proportional to the local density of states DOS, and it
shows a clear change from the linear dependence, which goes to zero at the Dirac point
in the decoupled region to the more complex behavior which always shows a finite DOS
in the other.
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In the fourth experiment a magnetic field up to 10 T was used to induce Landau quantiza-
tion of the electronic levels which is seen as an appearance of sharp peaks in the measured
tunneling conductance. The energy evolution of those peaks followed a characteristic for
massless Fermions En = sgn(n)vF

√
2e~|n|B dependence.

Those measurements show that structural defects, can lead to increased interlayer dis-
tance, and electronically decouple the topmost atomic layer on the surface of bulk graphite.

5.1.2 EPR-like technique

Figure 5.2: a) Magneto-absorption spec-
trum measured at 25 T and microwave
energy ~ω = 1.171 meV. b) Landau lev-
els fan chart. Dashed lines mark the
magnetic fields where energy levels sep-
aration is equal to the energy of mi-
crowave radiation (red arrows) c) Fermi-
Dirac distribution of carriers for sam-
ple with doping level equal to EF =

6.5meV . From ref. [13]

Electron paramagnetic resonance (EPR) known
also as an electron spin resonance(ESR) is an
experimental technique which is used to study
materials which exhibit Zeeman effect. Usu-
ally sample is exposed to fixed frequency of
microwave radiation in varying magnetic field.
When magnetic field dependent energy of Zee-
man splitting comes into resonance with ap-
plied microwave radiation, electron can be ex-
cited between those split energy levels. This
is seen as an increase in microwave absorption.
The same principle can be applied to low di-
mensional systems which energy bands become
quantized into discrete Landau levels, and ex-
citations between them can be detected. It was
used by Neugebauer et al. to study graphene
inclusions on the surface of bulk graphite [13].
In Fig. 5.2a) result of their magneto-absorption
experiment is shown. A set of absorption reso-
nances was observed. Each of them occurring
at a magnetic field value corresponding to op-
tically active Ln,n+1 transitions, for LLs which
evolve according to En = sign(n)vF

√
2e~B|n|

rule, which revealed a presence of the relativis-
tic Dirac carriers in the system. This exper-
iment was also performed at higher tempera-
tures which demonstrated that those absorp-
tion resonances proved to be persistent up to
50K and showed no sign of broadening. This behaviour is exactly what could be ex-
pected from the two-dimensional graphene but not from the three dimensional graphite.
Since the energy of used microwave radiation is on the order of ∼ 1meV, very low mag-
netic fields are needed to observe those transitions. Moreover, the lowest magnetic field
at which L0,1 transition is observed is at B = 1 mT, which allows to estimate carrier
mobility µ > 107 cm2/(V·s). This value is almost two orders of magnitude lager than
in suspended [169, 170] or epitaxial graphene [171]. The high electronic quality of that
system is further confirmed by evaluating peak’s broadening parameter γ. It’s very small
value γ = 35µeV sets limits on both: carrier scattering time τ = 20ps and mobility
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µ = 3× 107 cm2/(V·s).
Fitting those measurements to a model allowed to estimate Fermi energy to be EF =

6− 7 meV, which means that charge doping is lower than n0 = 3× 109 cm−2.
In summary, EPR-like experiment of Neugebauer et al. showed that the electronic quality
of graphene inclusions on the surface of bulk graphite surpasses by orders of magnitude
other graphene-based systems. In addition to that, very low charge doping make those
samples quasi-neutral which is important for instance for the observation of inter-Landau
levels, interband excitations in magneto-Raman scattering experiment. Finally the same
lattice constant of graphene allows to work with a strain-free system.

5.1.3 Raman spectroscopy

In the same time as the STM measurements gave an evidence of possible existence of
graphene like domains on the surface of graphite, a supporting result was obtained using
the Raman spectroscopy. Luk’yanchuk et al. were measuring the Raman spectra from the
different locations on the surface of highly oriented pyrolitic graphite (HOPG) [168]. They
observed that the shape of the 2D band is not uniform across the sample but sometimes
its lower energy component significantly increases with respect to the high energy side of
2D band. This low energy component is seen at the same energy as single component 2D
Raman peak observed in monolayer-graphene (see Fig. 5.3). They have concluded that
those changes result from the superposition of Raman signals from graphite substrate
mixed with monolayer graphene-like domains. The subsequent magneto-micro-Raman
measurements showed that charge carriers in that domains exhibit Landau levels (LL)
spectrum that increases with a square-root of magnetic field ∼

√
B and a square-root of

LL index ∼ n, which is a fingerprint of the Dirac fermions. In that experiments firstly
a magneto-phonon resonance (MPR) was observed [109], and then first direct observa-
tion of purely electronic, symmetric L−n,n inter-LL excitations in graphene followed [44].
Those excitations proved to be very efficient way to identify those domains since it was
shown that they can be observed even at the room temperature [32]. In parallel studies
of the magneto-Raman scattering response from bulk graphite were progressing [158, 45].
Raman spectra of graphite also showed peaks corresponding to inter-band LL excitations,
but their energy increased linearly with magnetic field which is characteristic for mas-
sive fermions. Although linear band dispersion also exist in graphite at the H point of
the Brillouin zone, the observed Dirac-like behaviour of carriers is unlikely to come from
those carriers, mainly because that particular graphene-like response is not observed on
the whole graphite surface. Instead it was always registered on a continuous, well defined
and finite region of the graphite surface. The characteristic length of those locations can
be as large as ∼ 100µm, but usually smaller flakes are found. They are rather scarce on
the surface and not easily observed since they do not give any optical contrast under the
microscope. Thus methods based on the analysis of the 2D band lineshape must be used,
or if magnetic field is available on observation of inter-LL excitations. Those methods are
described in more details in Chapter 7.2.1. Unfortunately, even knowing the method to
identify those flakes doesn’t guarantee the success, since there may not exist even single
one on a surface as large as 3x3 mm. In that case peeling the upper layers with a sticky
tape may either expose those graphene domains which lay lower in the bulk, or create
them on the surface.
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Figure 5.3: The double resonance, 2D micro-
Raman band of HOPG graphite (two blue
plots in the middle) demonstrates the super-
position of the features typical for bulk nat-
ural graphite (upper plot with left-shoulder
profile) and for the monolayer graphene
(lower single-peak plot). The relative weight
of these features depends on the position of
the laser spot on the surface of HOPG. The
typical Raman spectrum of graphite is shown
in the upper-left corner. From ref. [168]

The major difficulty in working with
graphene flakes found on graphite surface
is that they form a system, that is not
very well defined. Most notably the de-
gree of coupling graphene flake to the sub-
strate below is not a simply binary state:
coupled/decoupled but rather a plethora
of intermediate states which depend on
the orientation of graphene lattice with re-
spect to graphite below. Various twist an-
gles as well as various lattice defects may
lead to many different levels of coupling.
This is evidenced by the Raman scattering
spectra measured in magnetic field, which
sometimes show features corresponding to
just a monolayer graphene, other times it
also shows weaker features characteristic
for graphite. So far it is also not clear if
bi-, tri- and multi layers of graphene can
be also decoupled in this way. Because the
most often used method of analyzing the
2D band shape can hardly be relied on in
this particular situation, due to recording
a superposition of Raman signals coming
from the flake and a bulk below.
In this work we do not aim to answer all
these questions. We rather focus on meth-
ods how to search and identify these locations using Raman spectroscopy, both with and
without magnetic field. In addition to that we report on the observed interaction be-
tween inter-LL excitations and phonons present in graphene. Which so far could be only
observed in only this type of graphene system, due to its excellent electronic quality.

5.2 Graphene on BN

Extraordinary properties of graphene stem from its peculiar, linear dispersion of elec-
tronic bands and its two dimensional nature. The fact that a stable 2D crystal can exist
in nature [5] was a great discovery which renewed interest in the research in the area of
layered materials. This group includes materials which properties range from metallic
(NbSe2), through semimetallic (graphite), semiconducting (MoS2) and topological insu-
lator (Bi2Se3) to insulating (BN). All of them however, share a similar crystal structure,
where atoms are tightly bound in-plane by strong covalent bonds while being only weakly
coupled to other layers by van der Waals forces. Due to a large anisotropy of physical
properties of those materials they were intensively studied in the past in the form of
bulk [172, 173, 174, 175], thin crystals (few dozens atomic layers) [176, 177, 178] and
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intercalated compounds [179]. Up to now, a great progress has been made in the fabrica-
tion methods of single atomic layers of those materials. They can be obtained by either
micro-mechanical cleaving [5], chemical exfoliation with the help of solvents [180], selec-
tive thinning of few-layer sheets by high-energy electron beam [181], graphene growth
on the surface of SiC [182, 183] or CVD growth [184, 185] to just name the few most
popular methods. This progress in 2D crystals fabrication techniques allowed envisaging
production of completely new complex materials. They can be created on demand by
intentionally stacking a sequence of layered materials which results in a new structure
possessing the desired optical, mechanical and electronic properties [186]. The resulting
heterostructures (Fig. 5.4) would exhibit properties of all its constituents which could be
employed to create:

• ultra-strong nano-composite materials

• electro-mechanical devices for ultra-fast electronics

• materials with predetermined band-gap and work functions for next generation
photovoltaic (solar-cells) applications

• very efficient tunneling field-effect transistors [95, 187, 188]

Figure 5.4: Hypothetical
example of a 2D-crystals
based heterostructure.
From ref. [186]

However, although this kind of nano-engineering can be
used to create structures with predefined properties, new ef-
fects can also emerge due to a weak inter-layer interaction
[95, 93]. Currently the widest research in this domain is done
on structures made of graphene layers separated by layers of
hexagonal boron nitride (hBN). The hBN is especially useful
in all applications where an insulating layer is needed due to
its wide bandgap 5.97 eV [189]. In addition to that, hBN is
structurally isomorphic to graphite, where boron and nitro-
gen atoms occupy two inequivalent A and B sub-lattice sites
in the Bernal stacked structure. The same crystal lattice
and similar size of boron and nitrogen atoms to that of car-
bon leads to a very small (1.7%) lattice mismatch between
graphite and hBN [93]. Due to strong, in-plane, ionic bond-
ing of the hexagonal lattice structure, hBN is relatively inert
and has much less dangling bonds or surface charge traps as
compared with other materials commonly used as a dielec-
tric substrate for graphene. Moreover, the atomically flat

surface form an excellent substrate for graphene, which on more uneven surface tends to
exhibit ripples. Also dielectric properties of hBN (ε = 3−4 and Vbreakdown=0.7 V nm−1)
are better than those of SiO2. In addition to that surface optical phonon modes of hBN
have energies two times larger than corresponding modes in SiO2 which is promising for
the performances of hBN/graphene based devices operating at high-temperatures. All
those factors speak in favor of replacing the commonly used insulating layer of SiO2 on
top of Si wafer with an atomically flat layer of hBN. Already the first attempts of de-
positing graphene on ∼ 14 nm thick BN flake showed that graphene surface corrugation
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is reduced three-fold as compared to graphene resting directly on Si/SiO2 [190]. The
extreme flatness of the surface and reduced number of dangling bonds results in much
smaller disorder-induced carrier density fluctuation. Obtained values δn ∼ 109cm−2 [95]
are about two orders of magnitude lower than in graphene samples on SiO2, while being
only one order of magnitude higher than values measured for a suspended graphene sam-
ples [169]. In the same time density-independent mobility µC was observed to be more
than three times higher (µC = 60000 cm2 V−1s−1) than typical values obtained at SiO2

substrate [191].
All those results show that depositing graphene on an atomically flat hBN surface of-
fers many advantages as compared to other types of graphene-based systems. The most
straightforward one is the possibility to study properties of graphene in a quasi-neutral
doping regime and low defect density environment. Although the achieved electron mo-
bilities in hBN-graphene structures are not yet as high as the record values observed in
graphene flakes floating on the surface of bulk graphite [13], they can be matched only by
the values seen in suspended graphene samples. Yet BN-graphene system has a significant
advantage over the other two mentioned graphene-based systems [169]. The former one
is not a well defined system. It is difficult to exclude a priori layers stacking effects and
interaction of detached flake with bulk graphite below. The latter one suffers from the
need of complicated substrate etching process in order to be able to suspend a graphene
flake over a small trench or hole in the substrate. Even after a successful deposition of
exfoliated flake over such hole, those samples are known for its fragility due to lack of me-
chanical support below. Also a small bending of such flake due to the gravitational force
adds effects of strain. Graphene deposited on hBN is free of such problems. Contrary
to the case of graphene on graphite (Sec. 5.1) exfoliated graphene is a very well defined
system. The exact number of layers in the flake can be cross-checked using a number
of techniques (e.g. Raman, AFM) before transferring it to the hBN substrate, and in
case of few-layer graphene samples, also their stacking order can be determined. On the
other hand, since graphene on hBN is laying on a solid substrate it is mechanically stable,
and strain-free. Additional caping layer of hBN can provide an extra protection against
environmental contamination, thus reducing the effect of aging.
Unfortunately, production of such stacked structures is extremely difficult and at the
moment only few groups in the world are able to make them. The production process
involves several exfoliation steps, followed by transferring flakes one on top of the other.
This transfer process is done nowadays manually, and therefore requires much skill and
experience to produce good quality samples. This technique naturally limits the size and
scalability of the obtained structures. So there is a great need to research new techniques,
based probably on variations of CVD or MBE processes, that would allow to implement
those structures, in the future, on the industrial scale.

The extraordinary properties of graphene flakes deposited on hBN surface has incited
quickly growing interest in studying properties of that system. It has already resulted in
first reports about its transport properties [190, 95, 192, 193, 94], however there are still
just few about its optical properties [193, 194, 195], and basically none about magneto-
optical. We hope to contribute to the great effort of scientific community aiming into
unraveling those properties by presenting our results of a magneto-Raman scattering
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experiments performed on graphene-BN composite system in Chapter 8.

5.3 CVD grown graphene

The outstanding mechanical, electronic and optical properties of graphene make it a
promising material for many future applications. It has been demonstrated that the per-
formance of field-effect transistors, where silicon is replaced by a monolayer graphene,
greatly benefits from the exceptionally high mobility of carriers in graphene [196, 197].
Using graphene as a transparent conductive electrodes is yet another example of its possi-
ble application. The currently used materials like e.g. indium tin oxide (ITO) or fluorine
tin oxide (FTO) suffer from: i) the scarcity of some of the elements (like indium) in the
Earth crust, ii) their instability in the presence of acid or alkali ii) their susceptibility to
ion diffusion into polymer layers and iv) their limited transparency in the near-infrared
region [198]. These problems can be overcome by substituting the currently used ma-
terials with a monolayer graphene [199, 198]. This is possible due to the abundance of
carbon in the nature, the high chemical stability of graphene, its impregnability to the
gases, and a flat absorption in the very wide spectral range [200].
However for all these applications the large area graphene sheets are required, often much
lager than 1 cm2 in area. The historically first method of graphene production – the me-
chanical exfoliation doesn’t yield flakes larger than about tens of micrometers across.
Therefore, it cannot be used for the industrial scale processes. Nevertheless, there are
other methods of producing monolayer graphene that can be easily scaled up. Among
them the chemical vapor deposition (CVD) is probably the most promising one. In this
method a gaseous precursor, like e.g. methane, is supplied over a flat metallic surface.
The high temperature, on the order of 1000 ◦C, causes decomposition of the precursor,
and the metallic surface acts like a catalyst on which a thin layer of carbon atoms de-
posits. Mostly, polycrystalline nickel (Ni) [201, 184, 202] or copper (Cu) [203, 188, 204]
foils are used as a substrate. In the last step, the graphene sheet is transfered to the
desired substrate, usually insulating, after etching away the metallic foil.
This relatively simple and low-cost method has been successfully applied to produce

graphene that can reach impressive sizes. Rectangular, graphene sheets as large as 30

Figure 5.5: Photographs of the graphene sheets produced in a CVD process. a) a trans-
parent, large-area graphene film transferred on a 35-inch polymer (PET) sheet. b) an
assembled graphene/PET touch panel showing outstanding flexibility. From ref. [205]
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Figure 5.6: a)-d) Scanning electron microscope picture of the CVD grown graphene
partially covering the copper substrate. The leaf-like shaped graphene grains have sizes
that changes with the growth parameters: temperature (T), methane flow rate (JMe) and
methane pressure (PMe). From ref. [206]. e) Transmission electron microscope picture
of the CVD grown graphene with a hexagonal grain shape. From ref. [210].

inches across have been obtained and transferred to another substrates (see Fig. 5.5a).
Electronic quality of such CVD grown graphene is high enough to make a working, flex-
ible transparent electrode (Fig. 5.5b). However, the large-scale synthetic graphene films,
produced so far, are typically polycrystalline [203, 206]. They consist of many single-
crystalline grains separated by grain boundaries [207, 208]. The location of those grains
is largely random and uncontrolled during the growth. As the growth of these grains
proceeds, they coalesce and eventually form an interconnected polycrystalline film. The
grain boundaries largely degrade the electrical [206, 209, 210] and mechanical [211] prop-
erties of the resulting films. The carrier scattering on the graphene boundaries leads,
for example, to lower carrier mobilities than those found in the monocystaline exfoliated
graphene. This problem may be partially overcome by stopping the growth process at
a stage when graphene grains are still smaller than the average distance between these
grains. This results in substrate surface being only partially covered with graphene. Each
graphene grain is monocrystaline, but their sizes usually do not exceed ∼ 10µm [206] in
diameter. By controlling the growth parameters, such as the temperature, the precursor
gas pressure and the flow rate, it is possible to change the size distribution and even
the shape of the monocrystalline graphene grains. The shape of these grains reflects the
sixfold rotational symmetry of the graphene lattice, and the grains usually take form of
either hexagons or more irregular, leaf-like shape (see Fig. 5.6).
The monoclystalline graphene grains have higher carrier mobility than the larger poly-
crystalline graphene sheets. However their mobility µ usually strongly varies from one
grain to another and does not exceed few thousands cm2V−1s−1. With the exception
of one report about CVD graphene flake with µ = 16000 cm2V−1s−1 [206], most of the
groups are able to obtain now CVD grown samples which mobilities vary in the range
µ = 800 − 6000 cm2V−1s−1 [210, 203, 184, 212]. The main sources of the carrier scat-
tering, which limits the mobility, are the grain boundaries and defects that are created
during the fast cooling [203] and transferring the sample from one substrate to another.
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The other factor that deteriorates the properties of CVD grown graphene is the occur-
rence of bilayer inclusions around the nucleation centers. Carbon atoms have a tendency
to accumulate faster around those nucleation centers than at the edges of the graphene
grain. This frequently results in forming an additional layer of graphene, somewhere in
the center of the grain, that can typically cover up to ∼ 10% of the underlying graphene
layer. However, by using the alternating pulses of hydrogen gas and precursor/hydrogen
gas mixture it is possible to obtain monolayer graphene grains without this second layer
[212].



Chapter 6

Experimental setup

6.1 General description

All experiments which are presented in this work are based on an inelastic light scattering
technique (the Raman scattering), mostly in the presence of an intense external magnetic
field. Optical experiments which are performed at high magnetic fields require a specially
designed optical setup due to very limited space inside magnet coils. Fig. 6.1 shows the

Figure 6.1: Experimental setup used in micro-magneto-Raman scattering experiments in
non-polarization resolved configuration.
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experimental setup used in our experiments. It consists of four major parts: the excitation
light source, the micro-Raman probe which contain the investigated sample, the detection
part and the magnet coil with cryostat.

Excitation

Since, the intensity of the Raman scattering signal is proportional to the excitation power
and is generally six orders of magnitude lower than that of the elastically scattered light,
a strong source of monochromatic radiation is needed in the experiment. For that reason
we used a laser radiation as the excitation source. Two types of lasers were used in our
experiments: an argon-ion laser which have a very intense laser line at λ = 514.5nm
and that was used for most experiments. In few experiments a tunable Ti:sapphire laser
was used instead. It was working in the continuous wave(CW) mode of operation and
was pumped by a semiconductor diode laser (Millenia) using a second harmonic line
at λ = 532nm. In principle Ti:sapphire laser could be used at any chosen wavelength
in its operating range (λ = 650 − 1100nm) but the need to use dichroic mirror and a
set of low-pass and high-pass filters inside the micro-Raman probe limited our choice to
wavelengths for which we possessed a full set of optical filters, namely λ = 720 nm and
λ = 785 nm. In order to obtain spectrally clean laser beam, either a laser-line dielectric
filter or a small prism based on a monochromator was used. For controlling the laser
power a Laser Power Controller (Brockton Electro-Optics Corp.) was used. It uses the
fact that laser beam is linearly polarized to dynamically attenuate the laser beam due
to Pockels effect in liquid crystals. This not only allows us to vary the excitation power,
but also stabilizes it against time variations. Next optical element that is used in our
setup is the photo-elastic modulator PEM-90 (Eqipments scientifique). It is operating on
a principle of photo-elastic effect, in which a mechanically stressed sample (transducer)
exhibits a birefringence proportional to the resulting strain, which oscillates with the
frequency of 50kHz. When the crystal axis is set at the angle of 45◦ to the linearly
polarized laser beam one component of the propagating light is retarded with respect
to the other. The retardation amplitude is time-dependent and follows the sinusoidal
modulating signal of the strain applied to the transducer. When the maximum amplitude
is chosen appropriately to the wavelength of the incoming light, photo-elastic modulator
acts as a quarter-waveplate when the retardation amplitude is at its maximum. It results
in modulating the laser beam polarization in time. It oscillates between linear, through
elliptical to right- and left-circular polarization at high frequency of the modulating signal.
Those temporal variations in the beam polarization can be viewed as using a non-polarized
light, since the shortest acquisition times in our experiments are on the timescale of
seconds, which effectively averages over many different light polarizations. This laser
beam depolarization was needed due to large Faraday effect exhibited by optical fibers in
the micro-Raman probe for a linearly polarized light. This resulted in a large modulation
of excitation power, in magnetic fields, and in consequence in the modulation of the
intensity of scattered light.
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Micro-Raman probe

The micro-Raman probe or insert is the central part of our experimental setup. It is essen-
tially a frame on which a miniaturized optical table has been build, that can be easily ma-
nipulated and inserted into a cryostat inside the magnet coil. The whole probe is protected
by an additional vacuum-tight tube and filled with He gas at pressure p = 150−250 mbar
which acts as an exchange gas to provide a thermal conductivity between the sample and
the environment (in most cases the cryostat at temperature T = 4.2 K). Due to the
large magnetic fields used in our experiments and the need for high rigidity and low
thermal conductivity of the probe, a titanium was chosen as the main material used in
its construction. Partially, because it is paramagnetic, have low thermal conductivity
and very high tensile strength, and partially because the piezo-electric stages, that are
used for positioning the sample in the probe, are made of titanium. Since the probe has
been always aligned at the room temperature and then, during the experiments, cooled
down to 4.2 K, it was important to use the same materials for the whole probe to avoid
misalignment due different thermal expansion of each part.
The light is injected and collected from the bottom part of the probe by two optical fibers
which provide a convenient way to couple the optical elements of the probe with excita-
tion and detection part of experimental setup. Inset on the right hand side in Fig. 6.1
shows the scheme of the bottom part of the probe. The light is injected by a mono-mode
optical fiber with 5 µm core. Then is collimated by a lens and passes through low-pass
filter which is chosen appropriately to the used laser wavelength. The high intensity of
the laser light induces a luminescence in the optical fiber which overlaps later with the
Raman signal if the low-pass filter is not used. Then the laser beam is reflected from one
silver and one dichroic mirror. The dichroic mirror allows us to reflect the full intensity
of the laser beam, while it transmits all scattered light at the higher wavelengths. Then
the laser beam is focused on the ∼ 1µm spot on a sample by a high numerical aperture
(N.A.) lens. The backscattered light is then collected by the same lens.
Using a high N.A. lens improves the intensity of the collected signal due to large collection
angle, but it also leads to working effectively in a quasi-backscattering geometry where
not only strictly back-scattered light is collected but also light scattered at slightly higher
angles. This may lead to the observation of Raman features that would be normally inac-
tive due to selection rules which are mostly derived for a strictly back-scattering geometry.
The collected light passes then through a dichroic mirror and sharp edge high-pass fil-
ter which reduces intensity of the elastically backscattered laser light. But in the same
time also blocks the scattered light at energies close to the laser, which set a limit on
the possibility to observe low energy excitations. In our case the cut-off energy was at
∼ 100 cm−1. Finally, the light is collected by a multi-mode fiber with 50 µm core. The
small diameter of the collection fiber acts as a pinhole in a confocal microscope setup,
which improves our axial resolution.
The sample is mounted on a set of the piezo-electric stages (Attocube), which can move
it in three different directions with a ∼ 0.5 µm step accuracy. Two of them allow moving
in a plane perpendicular to the laser beam and are equipped with encoders that enable
to record the position where the measurement was performed. It was essential for doing
the spatial maps of the Raman scattering from the sample. The third stage moving in
the direction parallel to the light propagation (and the magnetic field) was used for fine-
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Figure 6.2: Micro-probe configurations for polarization resolved experiments. Left: for
cross-circular configuration, Right: for co-circular configuration.

focusing the laser light on the sample surface.

Detection

In the detecting part of our setup, the light from the fiber is first collected by a lens, then
goes through another sharp edge high-pass filter to further reduce the scattered laser
light intensity. It is then focused on the spectrometer entrance slit. For light dispersion
we used one of the two the same Acton SP2500 spectrometers (Princeton Instruments)
with 0.5 m long optical path and four different gratings with either 300, 600, 1800 or
2400 groves per mm. A back-illuminated, cooled with liquid nitrogen CCD camera was
used. Detector based on Si provided a good quantum efficiency in all the visible and near
infrared range of energy, up to ∼ 950− 1000nm.

Polarization configurations

When information about the circular polarization of scattered light is needed, micro-
Raman probe can be modified to excite the sample with circularly polarized light and to
collect only this light that have the same or opposite circular polarization. In magnetic
field instead of speaking about left- and right-circular polarization which is defined with
respect to the direction of propagation of light, the σ + (σ−) notation is used, which de-
fines the circular polarization of light with respect to the direction of external magnetic
field. Fig. 6.2: Left shows a setup configuration that is used in cross-circular polarization,
i.e. when the scattered light has the opposite circular polarization than the incoming laser
light. Or in other words when scattering process involves transfer of ±2~ quantum of
angular momentum to/from the sample. For that purpose a single set of linear polarizer
and a quarter-waveplate set at 45◦ angle to each other, are used to circularly polarize the
incoming laser beam and to analyze the scattered light. This configuration is later on
often referred to as σ+/σ− configuration, where the first term describes the polarization
of the incoming beam while the second of the scattered beam. Since σ+/σ− polarization
are defined with respect to the external magnetic field direction, it is enough to simply
reverse the magnetic field direction to switch to the σ − /σ+ polarization configuration.
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It is particularly useful since it does not require removing the probe from the cryostat
and can be achieved by changing the direction of the current flow in the magnet coil.
When the scattered light is expected to have the same circular polarization as the in-
coming beam, the co-circular configuration is used, often denoted as σ + /σ+. In this
configuration there is no net angular momentum transfer. Fig. 6.2: Right shows the
configuration of a micro-Raman probe for doing this type of experiment. Two linear
polarizers twisted at 90◦ angle to each other, are used in this configuration, both of
them set at 45◦ to the axis of the quarter-waveplate. Here again changing the direction
of the magnetic field allows to switch between working in the σ + /σ+ and σ − /σ−
configurations.

Magnets

High magnetic field used in our experiment was provided by two types of magnets: su-
perconducting and resistive ones.
The superconductive magnet was based on a Nb3Sn superconducting solenoid that can
achieve fields up to 14T. Due to its critical temperature Tc = 18.3 K it has to be kept
at low temperature by liquid He bath(T = 4.2 K), which is further isolated from the
environment by an additional outer jacket containing liquid nitrogen (T = 77 K). The
biggest advantage of superconducting magnets is no need for expensive cooling during
the operation, due to the fact that high current flowing through the superconducting
wires does not dissipates in the form of Joule heating. It can be used in two operating
modes. In first of them the magnetic field is slowly swept between two chosen values
(in the range 0-14 T) by changing the current flowing through the magnet coil. In this
process the energy is consumed for energizing/de-energizing the solenoid. On the other
hand, a constant value of the magnetic field can be maintained for a long time when the
superconducting coil is short circuited. In this persistent mode of operation no energy
is needed to sustain the high current flowing through superconducting coil, which per-
mits to perform long measurements at high and very stable magnetic fields. The main
advantages of the superconducting magnets over the resistive ones are:

• smaller amount of electrical power needed to deliver high magnetic fields

• possibility to work in persistent mode, when no power is consumed to sustain a
high magnetic field

• magnet cooling is needed just to keep the wires in a superconducting state (new
types of magnets can achieve it even without the need of cryogenic liquids)

The main limitation for this type of magnets is the maximum magnetic field (Hc) they
can sustain. At a critical value of magnetic field the coil goes out of the superconducting
state into a normal resistive faze, which limits the highest magnetic fields that can be
achieved by those magnets. Up to now fields as high as 22T can be achieved by this
method, and the further progress depends very much on the progress in the research of
new superconducting materials with higher critical field Hc.

The highest magnetic field (B=30 T) we were able to obtain by using a resistive
magnet. In this type of magnet, the solenoid is made out of normal resistive metal
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(copper), that can sustain a very high current and which generates large amount of heat.
The main limitations for this kind of magnet are set only by the amount of heat that
can be evacuated by the use of high-debit water cooling system and by its mechanical
resistance to the large stresses due to Lorentz forces. The resistive coil used mainly in
this work consists of two outer Bitter coils (inner diameter 400 mm) with a polyhelix
insert. The Bitter coils are made of thin circular metallic sheets separated by insulating
layers and stacked in a helical pattern. The resistive polyhelix insert consists of a set of
concentric coils, each constructed by cutting a helicoidal line into a copper tube. The
geometry of this insert is then optimized in such a way that it allows producing very high
continuous magnetic fields.



Chapter 7

Results: graphene on graphite

7.1 Introduction

Motivation and content

Graphene flakes that can be found on the surface of graphite exhibit unprecedented
electronic quality and low charge doping [13]. This enables a direct observation of inter-
Landau levels (LL) electronic excitations [44, 32], which is so far not possible in the most
commonly studied exfoliated mono-layer graphene flakes deposited on Si/SiO2 substrate.
In the latter case the high doping due to charges trapped in between graphene flake and
substrate, as well as due to dangling bonds of Si atoms severely obscures the magneto-
phonon resonance and makes direct observation of inter-LL excitations in Raman spectra
unfeasible.
In this chapter we present results of a series of magneto-Raman scattering experiments
performed on graphene flakes found on the surface of natural graphite. We start by pre-
senting the representative spectra of graphene inclusions and of the majority of graphite
surface at a chosen value of the magnetic field. Based on them a set of criteria is pro-
posed, which can be employed when searching for those flakes in two situations: when a
source of strong, constant, magnetic field is available or not (Sec. 7.2.1). Then we present
magnetic field evolution of inter-Landau levels(LL) excitations that can be usually ob-
served in that system (Sec. 7.2.2), and which confirm the linear dispersion relation of
carriers in studied flakes. Afterward we discuss the characteristic features of those inter-
LL magneto-excitons. First, Raman spectra measured at room temperature (RT) are
compared with those measured at liquid helium temperature (4.2 K) (Sec. 7.3.1). Then
we explore how their intensity depends on laser excitation energy and compare it with
existing theoretical predictions (Sec. 7.3.2). Then their lineshape variation (Sec. 7.3.3)
and coupling of L−1,1 mode to Γ phonon (Sec. 7.3.4) are discussed. In the next section
(Sec. 7.4.2) we report a clear observation of L0,1/L−1,0 finestructure at high magnetic
fields and discuss its possible origin. Finally, the most significant result of this chapter is
presented in section 7.5, where we report a first observation of resonant effects between
inter-LL electronic excitations and other excitations, which we identify as K point and
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near Γ point phonons. The specific values of magnetic field strength and inter-LL excita-
tion energies at which the resonances are observed can be understood in the framework
of two models: general one based on opening a new relaxation channel (Sec. 7.5.2) and
more detailed one based on resonant coupling of two or three different excitation modes
(Sec. 7.5.3).

Experimental details

Magneto-Raman experiments presented in this chapter, were performed on few different
graphene flakes which we found on the surface of natural graphite crystal. Before each
experiment, the topmost graphite layers were peeled off using a weakly adhesive tape,
in order to remove those layers which were exposed for a long time to the atmosphere
and possible contaminants. This allowed us to study the clean, freshly made graphite
surface. From the experimental point of view we used the custom made micro-Raman
insert, that can be used for studies in magnetic field, as described in Chapter 6. All ex-
periments were performed at a liquid helium temperature (4.2 K), except those discussed
in section 7.3.1 which compares results measured at ambient temperature (∼ 290K) with
low temperatures (4.2 K). Similarly, for excitation a 514.53 nm line of the argon ion laser
was generally used, except for the section 7.3.2 which compares Raman spectra measured
using 720 nm line from a tunable Ti:Sapphire laser with those obtained under 514.53 nm
excitation. In every experiment similar laser power was used – 5±1 mW, as measured on
the sample. It was high enough to provide a reasonable number of scattered phonons, and
thus high quality spectrum could be obtained on a timescale of ∼ 2 min., yet at the same
time it was low enough to do not induce any thermal effects. Unless stated otherwise
for a given experiment, usually a non-polarised detection configuration was used. In the
same time much care was taken to depolarize the exciting laser beam before light entered
the optical fibers, by the use of photoelastic modulator (see Chapter 6). Nevertheless,
the remaining small variation in the excitation power in changing magnetic field due to
Fraday effect in optical fibers had to be compensated in recorded Raman spectra. It
was done by normalizing the intensity of the whole spectrum with respect to intensity of
spectral features that were supposed to be constant in magnetic field. Although those
intensity variations can reach even up to 30% of the background level, they occurred at
much larger magnetic field scale than the reported resonant inter-LL broadening and af-
fected intensity of the whole spectrum, instead of just the inter-LL Raman peaks for the
discussed effects. Therefore those two effects – Faraday effect in optical fibers and actual
variation in intensity and linewidth of inter-LL excitations could be easily distinguished
and separated. As a result, the obtained Raman spectra were not sensitive to any given
light polarization, enabling us to observe at the same time ∆|n| = 1 and ∆|n| = 0 exci-
tations, at the expense of loosing information whether they were ∆n = +1 or ∆n = −1

transitions.
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7.2 Identification of the graphene inclusions on the surface
of graphite

The exfoliated monolayer graphene flakes can be observed under an optical microscope
due to light interferences in graphene and thin layer of SiO2 below. Optical contrast
can be maximized by the appropriate choice of SiO2 layer thickness and illumination
wavelength [213]. Thus providing a fast and easy method for finding small graphene
flakes. Unfortunately, this approach is difficult to use to find graphene flakes on the
surface of graphite, since the refractive index of graphene and graphite substrate are
essentially the same. Therefore other methods have to be employed to localize those
flakes. In the following part of this section we describe a method based on differences in
spectroscopic features of Raman scattering signal obtained on graphite and on graphene.
Thus by scanning the graphite surface and recording the Raman scattering response
it is possible to identify regions where monolayer graphene inclusions exist. We start
by presenting results of such scanning or mapping procedure at constant magnetic field
B = 10 T. At this value of magnetic field a strong Raman peak corresponding to L−1,1

magneto-exciton is expected to be seen in the spectral range between G-band and 2D
band. Therefore it can be used for identification of graphene flakes when magnetic field
is available. Once a flake has been found we turn to analysis of 2D band lineshape, which
is very weakly dependent on the magnetic field B. The found differences in its lineshape
measured on graphene flake and on pure graphite substrate can be later used as a criterion
for finding graphene flakes on the surface of graphite when no source of strong magnetic
field is available for the experimentalist.

7.2.1 Spatial mapping at constant magnetic field

In order to find graphene-like inclusions a spatial mapping of Raman scattering response
form graphite surface was performed. This is a relatively slow but reliable method to
find graphene flakes. It is based on acquisition of Raman scattering spectra from each
point of a regular array of them. Naturally sample area that can be scanned using
this method depends on the acquisition time at each point, total number of points where
measurement is performed and a distance between them. In practice a 10 hour experiment
allows to scan a a region of 1.5 mm × 1.5mm with a distance between points ∼ 30µm
and acquisition time ∼ 20 s. Such spacing of measurement points allows us to detect
the largest flakes, which characteristic length often exceed 50µm. This procedure can
be also sped up by scanning and recording Raman spectra in a real time with 1 − 2 s
refresh rate which is enough to see a weak trace of L−1,1 excitation at magnetic field
B = 10 T. Here we used a combination of those two methods to find a 70 × 70µm area
which have shown an additional Raman peak in the spectral range between G-band and
2D band at B = 10 T. To illustrate the differences in Raman spectra characteristic for
the overwhelming majority of the graphite surface with those measured on a very specific
small area, their representative spectra are compared in Fig. 7.1. The black curve is
a Raman spectrum of a graphite surface, while the red one is a spectrum of graphene
flake of a regular shape, being roughly 70µm long in diameter. In order to facilitate
comparison of relative magnitudes of Raman features, red curve has been rescaled to
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Figure 7.1: a) Spectra of two locations on the surface of bulk graphite. Upper charac-
teristic for most of the surface area, the lower one from a graphene-like inclusion having
an irregular shape with dimensions of roughly 70x70µm. Lower spectrum was rescaled
to have the same 2D band height as the upper one. b) G band and c) 2D band for not
rescaled spectra. Measurement done in non-polarized configuration, using λexc = 514 nm
and at magnetic field B=10T. Should be compared with Fig. 2.5left).

have the same intensity of 2D band as in case of graphite. Although they share many
similarities like two most pronounced Raman peaks- G-band at ∼ 1580 cm−1 and 2D band
at ∼ 2700 cm−1, there are also some differences. The most striking one is an appearance
of two additional Raman peaks in graphene as compared with graphite. First pronounced
one is seen at 1904 cm−1 while the other, much smaller, at 2300 cm−1. Which is where
we would expect to see L−1,1 and doubly degenerate L−1,2/L−2,1 electronic excitations
in monolayer graphene. Since the energy of those interband excitations:

En,m = vF
√

2e~B(
√
n+
√
m) , for n ·m < 0

depend only on one parameter vF , we can extract it from position of the observed peaks.
It turned out to be vF = 1.029× 106 m/s which agrees up to few percent with previously
reported vF values on such graphene inclusions [96, 13].
There are however also other important differences between those two Raman scattering
spectra. It was early reported by Ferrari et al. [69] that contrary to graphite where the G
band is the most pronounced Raman feature – dominating over the 2D band, in graphene
it is much less intense. Thus G and 2D bands intensity ratio I(G)/I(2D) change from
∼ 2 in graphite to ∼ 1/4 in graphene.
In our case G band is not only all the time the most intense Raman feature, but it becomes
even more intense at graphene-like inclusion, with the ratio reaching I(G)/I(2D) ≈ 6.
Insets in Fig. 7.1 present the same spectra but before any rescaling. It shows that G
band is not only relatively more intense for graphene inclusion but it is also more intense
in absolute values. However, we have performed the sample mapping at magnetic field
B = 10 T, so the I(G)/I(2D) ratio had been seriously distorted by the magneto-phonon
resonance, therefore its absolute values shouldn’t be compared directly with the ones
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Figure 7.2: Raman spectra of chosen points on the surface of graphite obtained at mag-
netic field B=10T, λexc.=514.53nm and T=4.2K. Inset shows spatial distribution of L−1,1

excitation intensity, where black(white) colour indicates high(low) intensity. Three dis-
tinct regions can be seen: light gray-graphite substrate, black-graphene-like inclusion,
dark gray-intermediate layer. Each point in the inset corresponds to a curve with the
same colour, indicating position where measurement was performed. Acquisition time
15s.

given by Ferrari et al.. The ∼ 3 cm−1 up-shift of the G band in graphene, as com-
pared with graphite, is yet another sign of the magneto-phonon resonance in monolayer
graphene. It is caused by the interaction between E2g phonon and L0,1 excitation leads
to an anti-crossing at B ∼ 25 T. The effect of this interaction can already be seen at
B = 10 T as a few cm−1 up-shift of phonon frequency. Those changes in the G band
position and intensity confirm that the investigated flake behaves like a graphene mono-
layer and not like graphite.
Finally, the third striking difference between a graphene inclusion and an exfoliated
graphene flake is the shape of the 2D band. The latter one has a characteristic sin-
gle component Lorentzian shape which distinguishes it from bulk graphite [69]. The
former one has a three components shape, with two major components at positions close
to that of graphite 2D band, plus an additional small shoulder on the low energy side.
This is most probably a result of superposition of Raman spectra from the graphene flake
on the surface and Raman spectra from the bulk graphite below.
In order to verify spatial homogeneity of the flake we have made a detailed mapping of
that area at magnetic field B = 10 T, with a spatial resolution of 3µm, and compared
spectra from the map. Then it turned out that not two but three distinct classes of spec-
tra can be found in these area. They are presented in Fig. 7.2, where the topmost curve
corresponds of graphene monolayer, the lowest lying one to graphite substrate, while the
three middle ones to three points on an area around the main flake, which we believe
correspond to another layer of partially decoupled graphene flake.
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The most pronounced difference between those curves is the intensity of scattered light
at the energy of L−1,1 excitation peak in graphene (1870-1930 cm−1 at B=10 T). It can
be used to visualize those different regions by plotting in the form of gray scale intensity
map the spatial distribution L−1,1 excitation intensity, which is shown in the inset of
Fig. 7.2. There, black(white) colour denotes a high(low) L−1,1 intensity. The graphite
substrate is seen as a light gray area around the flake, where no sign of L−1,1 excitation is
present (black curve in the graph). The flake itself is seen as a black region in the center
of the map, which exhibits strong Raman peak at ∼ 1900 cm−1 and a small shoulder at
∼ 1960 cm−1 (red curve in the graph). Finally there is also another L-shaped region,
seen as dark gray area where L−1,1 Raman peak is also seen, but it is much less intense,
broader and up-shifted to ∼ 1960 cm−1. Locations in this region show some variation
in the intensity and energy of the L−1,1 peak, as well as in the shape of 2D band which
is illustrated by the three middle curves in Fig. 7.2. Since all those measurements were
performed in the same conditions, we propose to use the intensity of the L−1,1 peak as an
indirect measure of the amount of monolayer graphene response in the scattered Raman
signal. For each spectrum, an amplitude of the L−1,1 peak was measured and normalized
with respect to its maximum value, found in the black region. Now we focus on the

Figure 7.3: a) Energy, b) FWHM and c) area of the two component Lorentzian fit to the
2D band as a function of ’graphene-likeness’ measured by L−1,1 peak intensity. Black
lines indicate energetically lower component while red the upper.

lineshape analysis of 2D band. In the first approximation it consist of two peaks: smaller
one, at lower energy value (∼ 2680 cm−1) and larger at higher energy (∼ 2730 cm−1). We
noticed that the energy position, the full width at half maximum (FWHM) and the area
of the two of them are strongly correlated with the L−1,1 peak intensity (Fig. 7.3). As the
L−1,1 intensity increases, the 2D band higher wavelength component up-shifts by about
5 cm−1 with an almost constant linewidth of 34±3 cm−1 and a small decrease of its area.
Changes for the lower energy component of the 2D band are much more pronounced: it
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Figure 7.4: Low to high energy com-
ponent of 2D band intensity ratio as a
function of normalized L−1,1 peak in-
tensity for different locations on the
sample. Colour of each point corre-
sponds to the point and a curve of the
same colour in Fig. 7.2. Dashed line is
a guide for the eye only.

Figure 7.5: Relation between electronic excita-
tion L−1,1 intensity and 2D band components
intensity ratio extracted for every point every
3 µm in a 150µm ×150µm area. Left panel
shows 2D band component ratio as a func-
tion of low energy side of L−1,1 peak, while
right panel as a function of higher energy side
of L−1,1 peak. Upper panel shows spectrum
ranges used for both plots. Red and black cir-
cles show three ranges of I(2D-low)/I(2D-high)
with much higher than average points density.

up-shifts by 16 cm−1, doubles its linewidth to FWHM=70 cm−1 and doubles the area.
The overall result of those changes is a significant increase of the intensity ratio Ilow/Ihigh
of 2D band components. Fig. 7.4 shows that it changes value from about 1/3 for bulk
graphite, through 1/2 for intermediate layer to 2/3 for graphene-like inclusion.
To check if the chosen Raman scattering spectra and the associated Ilow/Ihigh ratios,

are representative for those three regions (graphite, graphene and intermediate graphene
layer) in our sample, we extracted Ilow/Ihigh values for every point in the mapped area.
That gave us a statistic which is shown in Fig. 7.5. We see a continuous distribution of
L−1,1 peak intensity I(L−1,1). However, most of the points fall into three regions marked
in this graph by black circles. They show once again that one can distinguish three dis-
tinct regions (labeled A, B and C) in the scanned area characterized by well defined and
rather uniform properties. In region C, the L−1,1 feature is absent – its intensity is not
exactly but close to zero. The small offset on the order of 5 counts is caused by the visible
background, and may be considered as a measure of the error when measuring the height
of L−1,1 Raman peak. Region C corresponds to the bulk graphite substrate, where we
do not expect to see any sign of monolayer graphene response. In this region the ratio of
the 2D band components intensities is in the range of Ilow/Ihigh = 0.39± 0.03.
In region A, a small L−1,1 peak intensity, on the order of 10-20 counts is observed. Al-
though it has a mall intensity, it is large enough to be able to distinguish it from the
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Figure 7.6: False colour intensity maps of: a) L−1,1 peak measured in a broad range
from 1875 to 2010 cm−1, b) ratio od 2D band components Ilow/Ihigh, c) low energy, high
intensity L−1,1 peak component - from 1875 to 1920 cm−1, d) high energy, low intensity
L−1,1 peak component - from 1875 to 2010 cm−1. In the center a spectrum measured on
the decoupled layer region (central, black area in a)) with marked spectral ranges used
to construct maps a)-d). λexc=514.35 nm, T=4.2K

background signal. It shows a response characteristic for monolayer graphene though
quite weak. So we will call this area flake A. Meanwhile the characteristic 2D band shape
changes in this region and is characterized by the ratio Ilow/Ihigh = 0.45 ± 0.02. Then
we observe some points scattered between the second and the third area which could
correspond to the points on the map localized along the edges of decoupled flakes. Since
the size of our laser spot is on the order of 1µm, spectra measured on the edge of the
graphene flake are a convolution of both the response from the graphene flake and that
from bulk graphite. In fact because those points form broad, but well defined bands
between previously mentioned three circled areas, it supports our conclusion that they
come from spectra being merely a superposition of graphite and graphene optical response
along the decoupled flake edge.
Finally region B marks points measured on top of graphene flake which gives a strong
Raman scattered L−1,1 peak. Here the peak intensity is on the order of 9.3 counts/s. It
also shows a significantly different 2D band components ratio Ilow/Ihigh = 0.57 ± 0.02

which clearly distinguishes it from flake A, and for that reason we are going to call that
area flake B.
By counting the number of points inside each circle and between them one can estimate
portion of the scanned area corresponding to bulk graphite, the first decoupled layer
(flake A), the second decoupled layer (flake B) and the edges of flakes. It turned out
that about 44% of the mapped sample area displays the graphite-like behaviour. Flake
A occupies about 21% of the mapped surface, while flake B about 11%. Points which do
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not belong to any of the black circles in Fig. 7.5 constitute about 24% of the surface.
Regions A and B not only differ in the intensity of the observed L−1,1 feature, but also
in the energy at which this peak is observed (see in Fig. 7.2). This could be used to visu-
alize their spatial positions. A gray scale map showing the intensity distribution of L−1,1

measured in a broad energy range from 1875 to 2010 cm−1 is presented in Fig. 7.6a).
Three different regions can be distinguish on the sample. However we can also plot the
intensity of the smaller subrange: from 1875 to 1920 cm−1 to visualize only the flake B
(Fig. 7.6c). Similarly if we focus on the high energy side of this range we can see the
flake A (Fig. 7.6d). As is seen from those maps flake A is much larger than flake B and
it is seen not only around but also below the second one.
Finally, since it was shown before that the shape of 2D band is basically magnetic field
independent in the range from 0 to 10 T [214], those results can be extrapolated to mea-
surements in the absence of external magnetic field. This offers a new criterion, based on
the intensity ratio of low to high energy components of 2D band Ilow/Ihigh, that can be
used to locate decoupled graphene flakes. Its major advantage being that, contrary to of-
ten used AFM and STM techniques, this one is based on Raman scattering spectroscopy
that offers a higher throughput of the scanned area.

7.2.2 Evolution of electronic excitations in magnetic field

In order to check if a smaller L−1,1 peak seen on flake A is not some spurious back-
ground feature which almost coincide with true L−1,1 excitation peak at B=10 T, we
have measured Raman scattering response while slowly sweeping magnetic field from
B=0 to B=14 T on the two distinct locations on this sample. The first sweep in field was
done over the flake B location while the other over flake A. In Fig. 7.7 we present results
of the first measurement where the intensity of the Raman signal at a given energy, at
given magnetic field is colour coded into the shades of gray scale. The darker the colour
the more intense the Raman signal is. The features which are of our interest are those
which show a strong evolution in magnetic field. We observe basically two types of mag-
netic field dependence: excitations with an energy evolving like ∼

√
B and much weaker

ones which follow a quasi-linear magnetic field dependence ∼ B. The former ones are
characteristic for monolayer graphene and their magnetic field evolution is described by
Eq. 1.23, with only one free parameter – Fermi velocity vF . The latter ones are observed
in bulk graphite, and to describe their evolution properly, in the simplest model (Eq. 1.26)
one needs one more adjustable parameter – γ1. In Fig. 7.7 we compared the magnetic
field evolution of electronic excitation energies measured experimentally with theoretical
curves based on those expressions. We have found a general agreement between them,
which allowed us to identify the origin of each of the lines. The few energetically lowest
are labeled on the right side of the figure. For the monolayer graphene-like excitations we
were able to observe both allowed ∆|n| = 0 and weakly allowed due to trigonal warping
effects ∆|n| = ±1 transitions [45, 58]. Those with no net angular momentum transfer
∆|n| = 0 are the most pronounced ones, similarly to what was theoretically predicted
[31] and experimentally reported [32].
As we see those models are able to reproduce the general evolution of electronic excita-
tions in magnetic field, allowing us to extract the values of vF = 1.04 ± 0.02 × 106 m/s
and γ = 415± 1 meV. However there are also some important differences. Most notably
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Figure 7.7: False intensity map of Raman spectra measured on the decoupled flake of
graphene on the surface of bulk graphite plotted as a function of magnetic field. Black
colour indicates high signal. Red (blue) solid lines are the theoretical curves for interband
LL electronic excitations in graphene (graphite). Landau levels involved in first few of
those excitations are noted on the right, with gr-denoting bulk graphite and m - monolayer
graphene. Magnetic field resolution ∆B=35 mT, spectral resolution ∆λ ≈ 2 cm−1.
λexc=514.35 nm, T=4.2 K

graphene-like energy levels clearly deviate from the theoretical ∼
√
nB behavior. Fermi

velocity in Fig. 7.7 was chosen to provide a good match between measured and calcu-
lated L1,1 excitation peak energy at magnetic field B=10 T. As we change magnetic field
and go along excitations with given LL index-n, an increasing discrepancy between the
model and experiment is seen, clearly violating the ∼

√
B dependence. Similar deviation

is observed for excitations with higher n at constant magnetic field, which violates the√
n evolution. The origin of this deviation is still uncertain, but non-zero interaction

between decoupled flake and the underlaying graphite substrate remains a likely cause
of this anomaly. Finally we would like to comment about the intensity of weakly seen
electronic excitations of graphite. First of all, their intensity is much weaker than that
of graphene monolayer. This is partially caused by the fact that at this range of mag-
netic field we were able to observe excitations involving LLs with relatively high index
(n ≥ 3). Since the quantum efficiency of scattering process decrease with increasing n
observed lines are rather weak. Secondly the intensity of Raman scattered signal from
those excitations varies significantly among each decoupled flake. There also exist flakes
which do not show any sign of electronic LLs excitation originating from graphite sub-
strate below. This points to the conclusion that electronic decoupling of a graphene flake
from the graphitic substrate is not a discrete function – coupled/decoupled, but rather a
continuous process, with many intermediate states.
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7.3 Characterization of inter-LL electronic excitations

In this section we would like to give a short overview of properties of L−n,m electronic
excitations in graphene from the experimental point of view. For that reason we com-
pare the Raman scattering response of such flakes measured at different temperatures
(Sec. 7.3.1) or using different excitation wavelengths(Sec. 7.3.2). Then we also present
variations in the L−n,m lineshape that can be found among an assemble of graphene-like
inclusions (Sec. 7.3.3) and the unexpected weak coupling of L( − n, n) symmetric modes
to Γ phonon (Sec. 7.3.4). Finally, we introduce resonant effects that affect L−n,m excita-
tions lines which is seen in the first approximation as broadening of those lines at chosen
values of magnetic field (Sec. 7.3.5).

7.3.1 Low (4.2K) and high (RT) temperature measurements

In order to check how temperature affects intensity and energy position of L−n,m excita-
tions we repeated magneto-Raman measurements at room temperature (RT) ∼ 290 K on
the same graphene flake that was described in the previous section (Sec.7.2). Firstly, a
probe with the sample inside was slowly warmed up from 4.2 K to RT on a timescale of one
day. Then a repeated mapping procedure revealed that we were still focused on the same
graphene flake. Afterward a Raman scattering spectrum was measured using the same ex-
citation wavelength λexc = 514.53 nm and power∼ 5 mW as in previous experiment at low
temperatures.

Figure 7.8: Raman spectra of a decoupled
graphene flake on the surface of graphite
measured at T=4 K and at room temper-
ature (RT). They are rescaled to have the
same intensities of G peaks at ∼1580cm−1.
Inset shows a magnification of L−1,1 excita-
tion peak.

A Raman scattering spectrum was cho-
sen that is representative for the whole
mapped graphene flake. It is com-
pared in Fig. 7.8 with previously mea-
sured spectrum at liquid helium tempera-
ture T=4.2 K. For better clarity from spec-
trum measured at low temperature a back-
ground had to be removed. It originates
from the spurious luminescence of opti-
cal fibers used in our experimental setup,
which is always more pronounced at low
temperature. Although attention was paid
to use the same excitation power as before,
variation on the order of several percent
are unavoidable in the setup with optical
fibers which randomly bend axis of polar-
ization of incoming linearly polarized light.
To get rid of this effect both spectra have
been normalized to have the same intensity
of the G band. The first observed differ-
ence is a small shift of G band frequency toward lower energy at RT. Observed shift is
on order of 2 cm−1, which is clearly seen in the spectra but it is too close to the spectral
resolution of our setup to measure it more precisely. This is in line with the previous
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Raman scattering observations, that demonstrated a shift in the G band energy with
temperature at the rate of -0.016 cm−1/K [215].
The electronic transition L−1,1, however, shows much more pronounced changes. This
peak shifts by 25 cm−1 toward lower energy, loses about 1/3 of its intensity and broadens
by 1/4 from 40 to 51 cm−1 at RT. This shift expressed in terms of Fermi velocity means
its decrease by 1.5%, from vF = 1.042×106 m/s at 4.2 K to vF = 1.027×106 m/s at RT.
This effect cannot be explained by a thermal expansion of the crystal lattice. Graphene
has a negative thermal expansion coefficient α, which in the temperature range 0-300 K
is on the order of α = 1× 10−6 K−1. The relation between Fermi velocity and the lattice
coefficient a0 is given by [24, 25]:

vF =
3

2~
a0γ0

So, as γ0 decreases with temperature, vF should decrease as well, but the amplitude of
that decrease is about two orders of magnitude smaller from the experimentally observed
one. The exact mechanism responsible for the decrease of Fermi velocity with temperature
is still unclear for us.
Despite these effects interband LLs excitations give rise to pronounced Raman features
which persist up to RT and may be used to detect decoupled graphene flakes also at the
ambient conditions, provided that a source of strong magnetic field is available.

7.3.2 Excitation wavelength dependence

Figure 7.9: Raman spectra of a decoupled
graphene flake on the surface of graphite
measured at T=4 K using two different ex-
citation laser wavelengths λ1 = 514.5 nm
and λ2 = 720 nm. They are rescaled to
have the same intensities of G peaks at
∼1580 cm−1. Inset shows the same spec-
tra but not rescaled with intensities as mea-
sured.

In order to check how our results de-
pend on the laser wavelength used to
probe graphene properties, another set
of magneto-Raman scattering experiments
was performed on the same piece of nat-
ural graphite using 720 nm (1.72 eV) line
from a tunable Ti:Sapphire laser. By re-
peating the mapping procedure we were
able to locate and recognize exactly the
same flake which was studied before with
λexc = 514.53 nm (2.41 eV).
Raman spectrum measured at B=10 T
with λexc = 720nm and laser power P =

3 mW on the sample is compared in
Fig. 7.9 with previously obtained spectrum
measured with argon laser λ = 514.53 nm
line and the same power. In order to bet-
ter visualize the differences both spectra
have been normalized to have the same in-
tensity of G band. Inset of this figure show
the same spectra before normalization pro-
cedure with intensity scale expressed in
counts per second. The first observation

is that Raman scattered signal obtained using red laser light (λexc = 720 nm) was about
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5 times less intense, for the same power applied, than the one obtained using green
light excitation (λexc = 514.53 nm). Some part of this difference can be attributed to
worse quantum efficiency of CCD camera in the near-infrared spectral region. The other
significant difference is the observed 2D band shift with laser wavelength, which is a
characteristic feature of 2D band in graphite and graphene [65, 66, 67]. The observed
68±5 cm−1 upshift of 2D band for the 514 nm excitation with respect to its energy mea-
sured at 720 nm excitation gives us a dispersion rate of 98 cm−1/eV, which is in a very
good agreement with previously reported values.
Finally, using the red light illumination, the intensity of L−1,1 excitation is much stronger
as compared with the intensities of the two phonon features. While in the case of green
light illumination, intensity of the electronic Raman signal was only 5% of the G peak
intensity, for the red light illumination it raised up to 35%. In the same time FWHM of
L−1,1 peak didn’t change preserving its value of 40 cm−1. The difference is even more
pronounced when we compare areas under Raman peaks which are proportional to the
quantum efficiencies (QE) of the scattering processes. Though, there are too many factors
involved during the experiment (like CCD wavelength dependent sensitivity) to be able
to directly compare absolute areas of L−1,1 peak as it is seen when using λ = 514 nm or
λ = 720 nm laser lines. So instead, we are going to compare the ratio of L−1,1 peak area
A(L) to the G-band peak area A(G). Raman peaks of G-band and L−1,1 excitation seen
in Fig. 7.9 were fitted with a single Lorentzian function and the obtained area under the
curve gave us the relative QE of L−1,1 transition scattering process with respect to the
QE of scattering by a G-band:

Iλ=514 =
A(L)514

A(G)514
= 0.234

Iλ=720 =
A(L)720

A(G)720
= 1.309

As we see when the λ = 720 nm laser line is used the relative QE of scattering process
by a L−1,1 excitation is I720/I514 = 5.6 times larger than for λ = 514.53 nm. This value
can be compared with theoretical predictions for both the G-band [216] and inter-LLs
excitations [31] in graphene. For the L−1,1 excitation the QE dependence on Ω is:

QEL(Ω) =

(
v2
F e

2

c2πλBΩ

)2

∼ 1

Ω2
(7.1)

Where the magnetic length λB is defined as λB =
√
~c/eB. For the G-band it is:

QEG(Ω) =
2πλΓ
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(
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)2(
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)2
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Ω

t0

)
∼ (Ω)2f

(
Ω

t0

)
(7.2)

Where a = 1.42 Å is the inter-atomic distance in graphene, t0 ≈ 3 eV a nearest-neighbour
hopping integral, λΓ a dimensionless electron-phonon coupling constant and f

(
Ω
t0

)
a

function which is described in more detail in ref. [216]. Although above expressions
could be evaluated directly, it is much simpler when only a ratio of those quantities
evaluated at Ω514 = 2.41 eV (λ = 514.53 nm) and at Ω720 = 1.72 eV (λ = 720 nm) is
taken:
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QEL(720 nm)

QEG(720 nm)
/
QEL(514 nm)

QEG(514 nm)
=

=

{(
1

Ω720

)2 1

(Ω720)2f(Ω720/t0)

}
/

{(
1

Ω514

)2 1

(Ω514)2f(Ω514/t0)

}
=

=
(Ω514)4f(Ω514/t0)

(Ω720)4f(Ω720/t0)
= 4.6

So according to existing theoretical models L−1,1 excitation should be approximately
4.6 times more intense when using λ = 720 nm illumination source as compared to its
intensity measured with λ = 514.53 nm laser. Although this is just a rough estimation it
is in a good agreement with experimentally obtained enhancement factor I720/I514 = 5.6

.

7.3.3 L−n,m excitations lineshape variation

Lineshape analysis of the most pronounced electronic excitation L−1,1 peak given above is
representative for many of the flakes which can be found on the surface of bulk graphite.
However there are also flakes which Raman scattering response reveal some internal struc-
ture of the L−n,n and L−n,n+1 excitations. Fig. 7.10 present L−1,1 peaks measured in

Figure 7.10: Raman spectra of four dif-
ferent graphene flakes found on the sur-
face of graphite measured in either co-
circular polarization or non-polarization re-
solved experiments, using different excita-
tion wavelengths. Spectra have been ver-
tically shifted for better clarity. Magnetic
field B=10T.

Figure 7.11: False intensity plot of dif-
ferentiated Raman spectra measured on
graphene flake exhibiting significant split-
ting of electronic excitations peaks and
magneto-phonon resonance. Spectra were
differentiated to obtain better contrast. In-
set shows datails of L−1,1 excitation pass-
ing through Γ point phonon energy. λexc =
720 nm, co-circular polarization.

magneto-Raman scattering experiments each performed on a different specimen of decou-
pled graphene flake, using different experimental conditions which are indicated in the
figure for each spectrum but at the same value of magnetic field B=10 T. First of all we see
a variation of the position of L−1,1 peak. The most pronounced difference in energy of the
peak is seen again between spectra measured using green illumination (λ = 514.53 nm)
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or one of the Ti:sapphire laser lines in the red part of the spectrum (λ = 720 nm and
λ = 784 nm). Those four distinct flakes exhibit yet another variation-in the lineshape
of the electronic excitation peaks. Some of them are clearly split into two components,
some are only asymmetric while other have a symmetric single Lorentzian shape. The
flake measured using λexc = 720nm laser line shows a large L−1,1 mode splitting which at
B=10 T reach 29 cm−1. In Fig. 7.11 we present results of Raman scattering measurement
performed in co-circular polarization on this flake in the range of magnetic field from 0 to
14 T. In order to enhance contrast spectra were differentiated along magnetic field axis.

Figure 7.12: Ln(∆x) of L−1,1 peak as a func-
tion of ln(B).

It is clearly seen that mentioned splitting is
a common property of both doubly degen-
erated, non-symmetric L−n,n+1/L−n−1,n

excitations and non-degenerated, symmet-
ric modes L−n,n. One could suspect that
breaking electron-hole symmetry would re-
sult in slightly different energies of L−n,n+1

and L−n−1,n. Which would be seen as
a splitting of L−n,n+1/L−n−1,n in non-
polarization resolved experiment. How-
ever since L−n,n are not degenerated, even
presence of electron-hole asymmetry would
not lead to double-splitting of that line.
Nevertheless, this splitting is experimen-
tally observed. Therefore another mecha-
nism had to be invoked for explanation of
this effect, one that is not based on the electron-hole degeneracy.
In addition to that it is also observed that for each electronic excitation line, splitting –
∆x increases with magnetic field. To check if value of splitting follows some simple power
law for each electronic excitation peak we have extracted positions of each component of
a two component Lorentzian fit to the data. Then we plotted ln(∆x) as a function of
ln(B). Since, if ∆x follows some simple relation:

∆x = a ·Bα,

where a is some proportionality constant and B-magnetic field, then by taking logarithm

ln(∆x) = αln(B) + ln(a)

we would obtain a linear relation between ln(∆x) and ln(B), with α being the slope.
Fig. 7.12 presents such plot done for the splitting of L−1,1 peak. It clearly follows a linear
dependence, except for a small divergence at a value of magnetic field when it crosses the
G peak energy, and exhibit very weak anti-crossing. Red line is a linear regression line of
the measured data. It gives a slope α = 0.35. This procedure was repeated for next few
excitation lines involving higher LLs indices. It turned out that the splitting for all the
symmetric excitations L−n,n follows similar dependence with α = 0.35± 0.02, while the
splitting of the non-symmetric excitations increases generally faster. Intensity of those
lines is weaker in co-circular polarization which was used in experiment. It leads to more
scattered results of fitting procedure, but clearly centered around α = 0.5± 0.1.
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The origin of the splitting is still unclear for us. One of the likely explanations may be that
degree of coupling between topmost graphene layer and graphite below may be different
for each flake. When it is very weak a single Lorentzian shape of electronic excitations
is observed. When it is stronger, it may lead to formation of a bilayer with a random
twist angle. As mentioned in Chapter 2.4, bandstructure in the vicinity of Fermi energy
of such bilayer consist of two Dirac cones with slightly different Fermi velocities [75].
This would result in the observation of two sets of Raman peaks each of them originating
from different Dirac cone. However in that case value of the splitting would increase as
∼
√
B, so α = 0.5. This would explain only half of the observed cases–for non-symmetric

L−n,n+1 transitions. Further theoretical works about bandstructure and Landau levels in
twisted graphene multi-layers and non-Bernal stacked graphene can bring more insight
into this debate.

7.3.4 Coupling with Γ point phonon

Co-circular polarization is expected to be selective to electronic transitions with no net
angular momentum transfer ∆|n| = 0. Nevertheless in Fig. 7.11 two types of electronic
excitations are visible: symmetric across the Dirac point ∆|n| = 0 and optical-like with
∆|n| = ±1. In addition to that, optical-like excitations show a complex structure of
the MPR. Traces of them show one component which interacts with Γ point phonon
at ∼ 1580 cm−1 and results in a pronounced anti-crossing of those two lines. However
the second component of optical-like excitation passes through the phonon peak almost
unaffected. This is an experimental illustration of what was predicted by Goerbig et
al. [138]. Since optical excitations in graphene can be expressed using wavefunctions
Ψ	(n,K±) which describes an electron promoted to the nth LL in conduction band and
a hole left at n+ 1 LL in a valence band, both of them in the same one of the two valleys
K±. Similarly Ψ�(n,K±) stands for an electron at n + 1 LL in a conduction band and
a hole left at nth LL in the valence band. In ideal graphene the real excitations induced
by laser light must not distinguish between carriers located at K+ or K− point, so they
always form a coherent superposition of wavefunctions. They can form a valley-symmetric
mode:

Ψ	,s = [Ψ	(n,K+) + Ψ	(n,K−)]/
√

2

which couples to photons through a dipolar interaction and is seen in the infrared ab-
sorption experiments. Alternatively they form a valley-antisymmetric mode:

Ψ	,s = [Ψ	(n,K+)−Ψ	(n,K−)]/
√

2

which through electron-phonon interaction couples to phonons. The valley-antisymmetric
mode is responsible for characteristic anti-crossings of the MPR [44, 32, 137], while the
valley-symmetric mode is seen as a non-interacting line, passing straight through Γ point
phonon energy. Although the valley-symmetric mode is not supposed to be Raman active,
selection rules breaking may be responsible for observation of these modes.
On the other hand at least one symmetric across Dirac point excitations ∆|n| = 0 which
is not supposed to exhibit any sign of a MPR, show a weak signature of interaction with
Γ point phonon. Inset in Fig. 7.11 shows how L−1,1 excitation passes through the Γ

point phonon energy and anti-crosses with that line. This effect is much weaker than
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for excitations with ∆|n| = ±1, however still clearly observable. A mechanism similar
to that described above may lead to the observation of normally Raman inactive mode,
that weakly interacts with the Γ phonon.

7.3.5 Resonant broadening of inter-LL excitation lines

Extending our measurements of electronic excitations lines to energies above 2000 cm−1

reveals additional effects. Fig. 7.13 presents a false intensity map obtained by measuring
the Raman scattering signal from exactly the same flake as discussed above(Sec. 7.2).
But now, measured range of energies extends up to ∼ 3500 cm−1 and magnetic field up
to B = 10 T. In order to enhance the signal to noise ratio, a measurement was done
in a co-circular polarisation configuration. It allowed us to observe a new process which
leads to broadening of some magneto-excitonic lines at selected values of magnetic field.
The effect is most strongly seen for the L−2,2 transition line. The well defined magneto-

Figure 7.13: False intensity map of differentiated Raman spectra measured on graphene
flake on the surface of graphite. Markers indicate locations where excitonic lines undergo
broadening process. Above each triplet of affected lines their common index is shown.
λexc = 720 nm, co-circular polarization, magnetic field resolution ∆B = 28 mT.

excitonic line suddenly broadens and looses intensity around B = 9 T. At the same value
of magnetic field two other lines are also affected : L−1,2/L−2,1 and L−2,3/L−3,2. The
only common factor for those excitation lines is that at least one of the initial or final
states is the n = 2 LL. A similar effect is observed at B ≈ 6.1 T, and again three lines
are affected. This time however those are: L−2,3/L−3,2, L−3,3 and L−3,4/L−4,3, in other
words excitations which involve transition from/to LL with index n = 3. The same effect
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is seen for three excitation lines which involve LL with index n = 4 at magnetic field
B ≈ 4.8 T.
Since a broadening of magneto-exciton line implies a shortening of their lifetime, it is
usually interpreted as a sign of interaction with another system. It is important to note
that this effect is different from the well known MPR, where the hybridization of vibra-
tional and electronic excitation modes occurs when the energy of magneto-exciton comes
into resonance with the energy of Γ point phonons. It is seen as an anti-crossing of their
corresponding Raman peaks, and occurs for all ∆|n| = ±1 electronic excitations at the
same energy – the one of the Γ point phonon. Here however the observed broadening
doesn’t occur at the same energy for all lines. Instead, the broadening is observed simul-
taneously for few excitations, that have different energies, at a given value of magnetic
field.
Since the magnitude of the observed broadening decreases with increasing LL index n, it
can be expected to be even more pronounced for magneto-excitons which involve transi-
tion from/to LL with n = 1. However high magnetic fields are needed in order to tune
L−1,1 excitation in the ∼ 2600 cm−1 energy range. The section 7.5 is devoted to mea-
surements performed in high magnetic field and with a broad spectral window in order to
observe all possible instances where magneto-exciton lines show signatures of interaction
with another system.

7.4 L0,1/L−1,0 excitation fine-structure

In this section we would like to present results of magneto-Raman measurements per-
formed over a graphene-like inclusion found on the surface of graphite in high magnetic
fields. In the center of our interest was the evolution of inter-LL excitations in the low en-
ergy (< 2000 cm−1) regime, and particularly the details of a magneto-phonon resonance
(MPR) at B ∼ 27 T. The magneto-phonon resonance effect involving Γ point phonon in
graphene has been already intensively studied both theoretically [117, 137, 21, 15] and
experimentally [109, 108, 44]. However, a clear observation of this effect requires working
with a high quality and low doping level system. Since most of exfoliated graphene flakes
suffer from the extrinsic charge doping, some of the details of MPR has eluded experi-
mentalist for a long time. Only recently traces of a theoretically predicted fine-structure
of MPR [138] has been observed in a CVD grown graphene [141]. Here we present spec-
troscopic data which clearly demonstrate this effect for the L−1,0(L0,1) magneto-exciton.
Since graphene flakes on graphite exhibit much higher electronic quality and charge neu-
trality than other graphene systems [13] we were able to observe this fine-structure with
much more details. This in turn allowed us to draw some conclusions on the possible
origin of this splitting.

7.4.1 Flake identification

We have started our measurements by finding a graphene flake on the surface of graphite.
For that purpose spatial mapping of the Raman scattering response from thee graphite
surface was performed and then methods described earlier in section 7.2 were employed
to find such flake. Fig. 7.14(left panel) shows the obtained map using the false colour
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Figure 7.14: Left: A map of the Ilow/Ihigh ratio of 2D band components of the surface of
graphite. Number ’1’ shows a location of a monolayer graphene. Right: Raman spectra
of 2D band taken at two locations on the map: ’1’-graphene flake, red curve and ’2’- bulk
graphite substrate, black curve. B=0T

scale where the green/yellow colour of the background corresponds to the ratio of 2D
band components Ilow/Ihigh = 0.35 − 0.40. Close to the right edge of the map a well
defined region is seen, marked with number ’1’, which has dimensions of 70× 150 µm. It
exhibits a much higher low to high energy 2D band components ratio of Ilow/Ihigh = 0.5.
According to our previous studies (see Sec. 7.2.1) this should correspond to a monolayer
graphene inclusion. In the right panel of the same figure, two Raman spectra of 2D
band are compared together with a two components Lorentzian fits. One spectrum was
measured at the flake location (red curve) and the other was measured on the graphite
substrate (black curve). First of all, the intensity of the 2D band of the graphene flake
is no more than 20% of the intensity of signal from graphite. Then, a huge difference in
the shape of the 2D band is seen. In addition to the already mentioned higher Ilow/Ihigh
ratio, also linewidths of both components change for those two locations. The FWHM of
lower energy component increases significantly from 42 cm−1 for bulk graphite to 65 cm−1

for graphene inclusion. At the same time the FWHM of the higher energy component
changes only weakly - 28 cm−1 for graphite and 31 cm−1 for graphene. Those values agree
very well with our previous measurements done on another graphene flake in magnetic
field (see Fig. 7.3) and allowed us to identify this region as a monolayer-like graphene
inclusion.

7.4.2 High magnetic field L0,1/L−1,0 excitation evolution

Fig. 7.15 shows the result of a Raman scattering experiment in magnetic field up to 30 T
performed with a 600 grooves/mm grating, which gives a spectral resolution of about ∼
2 cm−1. Since this measurement was performed in non-polarisation resolved configuration
two main classes of features dominate the spectrum: inter-LL electronic excitations and
the E2g phonon mode showing very clear magneto-phonon resonance down to magnetic
field as small as B = 1.3 T. This is a sign of a very low doping level in this sample
and of a high quality. In addition to that, electronic excitations are characterized by a



90 CHAPTER 7. RESULTS: GRAPHENE ON GRAPHITE

Figure 7.15: Gray scale false intensity map of
a Raman scattering signal from a graphene
domain in magnetic field. Orange circles
shows where each branch of the hybridized
phonon-magneto-exciton mode is split into
two components.

Figure 7.16: Magnetic field evolution of the
hybridized phonon-magneto-exciton modes
energy splitting. The inset shows a Ra-
man spectrum at magnetic field B = 27.7 T
which consist of 5 modes: non-interacting
E2g phonon at 1588 cm−1, two split modes
below and two split modes above that energy.

single Lorentzian shape and there are no signs of electronic excitations evolving linearly
in B, which could come from the graphite substrate below. It makes this particular
flake exceptional as compared with other similar flakes studied and presented before.
Assuming that the two component electronic excitations observed on some graphene-
like flakes comes from two monolayer graphene flakes stacked on top of each other, the
single component shape is a signature of a true monolayer graphene. This validates our
description of this system as an isolated monolayer graphene in the following part of this
chapter.
Although MPR was already measured on a variety of graphene-based systems, usually at
B ∼ 27 T only a simple anti-crossing between E2g phonon and L0,1/L−1,0 excitations was
observed. Here however, at the resonance, five distinct components are observed. One has
the energy of non-interacting E2g phonon, while the other four form two sets of avoided
crossings with different coupling strength. At B ∼ 27 T each branch of the hybridized
phonon-magneto-exciton mode is split into two twin peaks. The splitting of these peaks
is as large as 25− 30 cm−1. It makes each component to be clearly distinguishable from
its twin counterpart (see inset of Fig. 7.16). As it is presented in Fig. 7.16, the energy
splitting changes with the magnetic field. It increases with field for the two modes which
have an energy above the energy of E2g phonon while it decreases with field for the
two modes with lower energy. In other words, the further away from the resonance at
B ∼ 27 T one is, the more pronounced splitting is observed.

7.4.3 Discussion

The origin of this splitting lies in the double degeneracy of L0,1/L−1,0 inter-LL excitation,
which hybridize with E2g phonon. Once this degeneracy is lifted we should expect to see
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two sets of avoided crossings at slightly different energies. Then, since in our experiment
we were not selective towards any given light polarization the resulting spectrum consist
of those two sets of avoided crossings superimposed on each other and seen as 4 distinct
peaks. There are two main causes that may lead to the lifting of this degeneracy:

• charge doping

• conduction and valence bands asymmetry - caused by trigonal warping

Doping

The fine-structure of the magneto-phonon resonance clearly depends on the charge doping
[138], since the magnitude of the splitting depends on the effective coupling strength
λeff of those modes. The lower the value of this parameter, the less pronounced is the
anti-crossing between phonon and electronic excitations. On the other hand when this
parameter increases, the mode splitting becomes larger. The effective coupling strength
λeff is in fact nothing else than the dimensionless electron-phonon coupling constant λ
multiplied by the number of filled/empty states in the initial/final LL:

λeff = λfi(1− ff )

Where fi(f) denotes the partial filling factor of the initial (final) LL of the excitation. In
the following we use a convention in which a neutral graphene system corresponds to half
filled (f0 = 0.5) n = 0 LL. Then completely filling (f0 = 1) or emptying (f0 = 0) this
LL means doping with ρ = 1.31 × 1012cm−2 electrons or holes respectively. Any value
of the filling factor between 0.5 < f0 < 1 increases the effective coupling strength for
the L0,1 excitation, while decreasing the effective coupling strength for L−1,0 transition,
eventually blocking L−1,0 excitation for f0 = 1, when all possible final states are fully
occupied. Similarly for hole doped system, when 0 < f0 < 0.5 it is the L−1,0 transition
which has larger effective coupling strength than L0,1. Finally, when n = 0 LL becomes
completely empty, the L0,1 transition is blocked. Extreme case of this effect, when the
n = 0 LL was completely empty was observed by Kossacki et al. in a polarization-
resolved magneto Raman experiment measured on the exfoliated graphene on Si/Si02. In
their experiment the E2g phonon showed a clear anti-crossing with the L−1,0 electronic
excitation in one polarization, while it didn’t interact at all with L0,1 excitation in the
other polarization. On the other hand, Neugebauer et al. have shown that Fermi energy
in graphene flakes on graphite is closer than 6 meV away from the charge neutrality point
[13]. Therefore, we expect that any doping of our sample would not be large enough to
shift the Fermi level away from the n = 0 LL.
In order to estimate how large a doping should be to explain an observable fine-structure
of MPR at B = 27T we used a simplified model based on the one proposed by Ando [137].
The energies of the hybridized electron-phonon excitations can be found by searching for
zeros of the phonon’s Green function. Lets consider one polarization of light in which
L−n,n+1 excitations are active and assign it with mark 	. Then in order to find the
energies of hybridized modes ε we need to solve this expression:

ε2	 − ε20 = 4ε0λE
2
1

∞∑
k=0

{
f−k(1− fk+1)

L−k,k+1

(ε	 + iδ)2 − L2
−k,k+1

+
1

L−k,k+1

}
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Where L−k,k+1 = Ek+1−E−k is the energy of the electronic transition from initial k LL to
the final k+ 1 LL. Since anti-crossing between E2g phonon peak and L0,1 or L−1,0 occurs
at much higher magnetic field than anti-crossings with all other electronic excitations, we
can very well describe MPR around B = 27 T in this polarization by considering only
the interaction with L0,1 excitation and neglecting all the others. Then above equation
simplifies considerably into:

ε2	 − ε20 = 4ε0λE
2
1f0(1− f1)

L0,1

ε2	 − L2
0,1

which gives:
(ε2	 − ε20)(ε2	 − L2

0,1) = 4ε0λE
2
1f0(1− f1)L0,1

Solving this doubly quadratic equation for ε	, gives us two solutions which give:

ε±	 =

√
ε20 + L2

0,1

2
± 1

2

√
(ε20 − L2

0,1)2 + 16f0(1− f1)ε0λE2
1L0,1 (7.3)

Following the similar procedure for the other polarization �, when only L−1,0 excitation
is considered, we obtain:

ε±� =

√
ε20 + L2

−1,0

2
± 1

2

√
(ε20 − L2

−1,0)2 + 16f−1(1− f0)ε0λE2
1L−1,0 (7.4)

These expressions allow us to plot the energies of the hybridized magneto-exciton-phonon

Figure 7.17: Identification of the fine-structure peaks of MPR in graphene at B = 27.7 T
caused by different strength of effective electron-phonon coupling between E2g phonon
and with either L−1,0 or L0,1 excitation, which originates from: a) electron doping (for
hole doping labeling of peaks is reversed) b) conduction-valence bands asymmetry.

modes and to visualize what is the effect of doping on those modes as seen in the two
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different polarizations. In Fig. 7.18(upper row) we present the extracted positions of the
experimentally measured Raman features (black dots) and the calculated energies of the
hybridized modes (solid lines) for different doping levels. Since our measurements were
done without resolving polarization, we observe the effect of E2g phonon coupling to L−1,0

mode (blue lines) and L1,0 mode (red lines) simultaneously. In charge neutral graphene,
the energies of the hybridized phonon-magneto-exciton modes at each magnetic field are
the same for L−1,0 and L0,1 magneto-excitons. However, a finite doping modifies size of
the anti-crossing gap and has an opposite effect for the effective strength of E2g phonon
interaction with two excitations: L−1,0 and L0,1. This is seen as two pairs of avoided
crossings formed by two external and two inner pairs of Raman peaks occurring at the
same value of magnetic field (see Fig. 7.17a) ). We simulated the effect of doping on the

Figure 7.18: Experimental results of magnetophonon effect in graphene (black dots) and
calculations (solid lines) which take into account only doping of the sample (upper row)
or only effect of conduction-valence bands asymmetry(lower row). Blue and red lines
correspond to coupling of E2g phonon with either L−1,0 or L0,1 excitations.

MPR in graphene for few values of doping level, while assuming a conduction-valence
bands symmetry and setting vF = 1.04×106 m/s. Results of such calculations are shown
in the upper row of Fig. 7.18. They show that for a doping level which sets the n = 0 LL
filing factor around f = 0.7 we can get a reasonably good match between experimental
data and our simulations. According to our estimations best fit to the data should fall
in the range of filling factor between f = 0.65 and f = 0.75 which corresponds to charge
density ρ = 5.2± 1.3× 1011 cm−2. Since we assumed a complete conduction and valence
bands symmetry, equations 7.3 and 7.4 are also symmetric with respect to exchanging
L−1,0 with L0,1 excitation and simultaneously changing the type of carriers.
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Electron-hole asymmetry

Another possible explanation for the observed MPR fine-structure is an asymmetry in
conduction and valence bands dispersion relations. Although close to a K point in the
first Brillouin zone, the dispersion is very well approximated by a relation E(~k) = ±~vF |~k|
it is still an approximation. This particular expression shows up naturally when a near-
est neighbour tight-binding method is used to calculate the dispersion relation. In this
approximation only interaction with the nearest neighbouring atom is included in the
Hamiltonian of the system. The strength of this interaction is described by the so called
nearest-neighbour hopping term t, which is proportional to the Fermi velocity vF = 3a

2~ t

(where a is the graphene lattice constant a = 0.14 nm) and is the only parameter needed
to describe the electronic dispersion around the K point. Then, when a magnetic field is
applied to the system described by such a dispersion relation, Landau quantization leads
to the formation of LLs with energies evolving like

√
B, and are symmetric with respect

to reflection across the Dirac point:

E±,n = ±vF
√

2~eBn

However, the model describing the electronic dispersion can be further refined by including
one more hopping term t′ in the tight binding Hamiltonian, which describes interaction
of a given carbon atom with its next-nearest neighbour in the same graphene sheet.
This leads to breaking of conduction and valence band symmetry but also reduces the
full rotational symmetry of those bands around K point to 3-fold rotational symmetry.
This is seen as a warping of the Dirac cones surfaces and is also known as the trigonal
warping. The detailed calculation of the LLs evolution in magnetic fields in graphene
which includes this term was presented by Plochocka et al. [29] and here, we will give
only the final result:

E±,n = ±vF
√

2~eBn+
9

2

a2e

~
t′Bn (7.5)

This expression shows that the L0,1 excitation always has an energy higher than that of
L−1,0, and this energy difference is increasing linearly with magnetic field like:

∆E = L0,1 − L−1,0 = 9
a2e

~
t′Bn (7.6)

The lower row of Fig. 7.18 presents results of calculations based on Eq. 7.3, 7.3 where
evolution of LLs is described by the above expression Eq. 7.5 which includes the next-
nearest neighbour term responsible for conduction-valence band asymmetry. The three
graphs show how the splitting of the hybridized modes increases with increasing the
value of the t′ hopping integral. The leftmost graph presents calculations based on the
assumption that t′ = 0.4 eV, which is the most commonly reported value of that constant
in the literature. However, in order to obtain a reasonably good match between the
calculated curves and the experimentally measured points a larger value of t′ has to
be used, namely t′ = 0.9 eV. There is an important difference between modes splitting
caused by a charge doping and by bands asymmetry. In the case of doping, one from
the two transitions L−1,0(blue lines) and L0,1(red lines) always form two external Raman
peaks, while the other transition form the two internal ones, as is seen in Fig. 7.17a.
In the case of electron-hole asymmetry, the Raman peaks corresponding to the L−1,0
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transitions always have lower energy than those stemming from L0,1 (Fig. 7.17b). So if
the observed MPR fine-structure originated from the combination of those two effects
if would lead to an inevitable crossing between two branches of the anti-crossing modes
(blue with red lines in Fig. 7.18). Our measurement however shows very clearly that
there is not any crossing of the split bands anywhere in between 15 and 30 T. Since bands
asymmetry is an inherent attribute of a graphene monolayer which we cannot neglect,
the conclusion is that bands asymmetry must be the factor responsible for observed MPR
fine-structure. This conclusion is in line with reported observation of circular dichroism
in MPR on the same kind of graphene system by Kühne et al. [32]. Their measurements
showed that two components of split phonon-excition mode at 27 T are shifted in energy
in the same direction for one polarization with respect to the same peaks seen in the
other polarization, which is exactly what we would expect to see when an asymmetry
is considered. Thus following the assumption presented above, we can determine the t′

nearest-neighbour hopping integral from an experiment. Then, by slightly varying the
doping level around the charge neutrality point we can find a maximum doping level that
still wouldn’t change too much the calculated curves. Using this approach we were able
to determine the next-nearest neighbour hopping integral t′ = 0.9±0.2 eV, which is about
two times larger than its usually reported value. Obtained filling factor falls in the range
0.48 < f < 0.52, which means that carrier (either electrons or holes) concentration due
to doping is lower than ρ = 5.2× 1010 cm−2. Since much of our conclusions depends on
the validity of an assumption that charge doping is the main factor responsible for the
observed mode-splitting, it would be reasonable to check it in the polarization-resolved
experiment. This would help to assign each branch of the observed magneto-phonon
resonance to one of the two possible excitations L−1,0 or to L0,1.

7.5 Resonant electron-phonon interaction effects

In this section we present a more detailed study of the resonant effects affecting inter-
LL excitations in graphene that were outlined in section 7.3.5. We found that those
resonances can be grouped into two series: a first one that encompasses resonances whose
energies converges to the energy of K-point phonons and a second one for resonances
which energies are centered around the energy of optical phonons from the vicinity of Γ

point. Then we present two phenomenological models that can qualitatively explain the
observed resonances.

7.5.1 Observed inter-LL excitations resonances

The measurements were performed on the same graphene flake on the surface of graphite
that we described in section 7.4. This time however a broader spectral window was used
in the range from 900 to 5400 cm−1. Experiments were done at liquid helium tempera-
ture, using 514.53nm line from argon-ion laser and a home-made custom micro-Raman
setup. Laser power was set to 5mW and no polarizers were used. Fig. 7.19 shows a
gray scale intensity map of Raman spectra obtained during a magnetic field sweep up
to B = 30 T. The most prominent features in the figure are the G-band at energy of
1580 cm−1 and the electronic excitations, with energies evolving as

√
B. In order to en-
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Figure 7.19: False intensity map of differentiated Raman spectra measured on graphene
flake on the surface of graphite. Rectangles indicate locations where excitonic lines un-
dergo broadening process. Above each triplet of affected lines their common index is
shown. Violet horizontal line marks the energy of 2D band, which was removed from the
spectra. Blue horizontal lines indicates the energies of K-point phonon and 2× K-point
phonon. While red line of 2D′ phonon mode. λexc = 514.53 nm, no polarization selected,
magnetic field resolution ∆B = 75 mT.

hance small changes in the evolution of electronic excitations, care was taken to remove
artificial background originating from the luminescence of optical fibers in the experimen-
tal setup. Since the 2D band changes very weakly in magnetic field it has vanished from
the spectra. To further improve the signal to noise ratio, spectra were differentiated in
magnetic field. Compared with previous measurements of electronic excitations [44, 32]
the most pronounced difference is seen in the appearance of significant deviations from
simple

√
B evolution at some specific values of magnetic fields. These deviations take the

form of either as a sudden broadening of the line, or for those which are the most intense,
of a clear splitting of the line into two or three anti-crossing modes. Such behaviour is
often a signature of two excitations which energies come into a resonance with each other.
Since we do not know a priori what is the origin of the second excitation nor the exact
resonance mechanisms it is useful to observe patterns of instances when those resonant
processes occur.
In order to better visualize electronic excitation evolution anomalies, each peak was fit-
ted with a single Lorentzian function. Their linewidth evolution against magnetic field
and against peak’s energy are shown in Fig. 7.20 and Fig. 7.21 respectively. Since a
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single Lorentzian function is used in the fitting procedure, the FWHM is strongly overes-
timated in the range of magnetic fields where a clear anti-crossing is observed e.g. L−1,1

at B = 19 T. The true linewidth of each single component is significantly smaller. How-
ever it is still a useful method to obtain information about the value of magnetic field
or about the energy at which the peak is influenced by interaction with some other ex-
citation. As it is seen from the general map (Fig. 7.19) where the rectangles mark the
areas where the lines broaden and from the plot of FWHM versus energy (Fig. 7.21),
broadening/anti-crossing does not always occur at the same energy. This means that the
energy of the whole excitation process En − Em is not the main factor responsible for
the resonance to occur. There are however some characteristic patterns: first of all, each
time an excitation with ∆|n| = 0 undergoes a broadening/anti-crossing two neighbouring
lines show the same effect at the same value of magnetic field (Fig. 7.20). It means that
only one of the initial or final states is involved in the resonance effect. So it is the en-
ergy separation between the 0 LL and n LL that matters. Assuming that each interband
electronic excitation may be divided into two steps, first from −m LL to the 0 LL, which
doesn’t have to be in resonance with any other excitation, and then in the next step, from
0 LL to n LL which is in resonance with some other excitation, we could understand this
simultaneous broadening of the three lines.
We see immediately that the ∆|n| = 0 excitations are somehow special, because energy
difference between −n LL and 0 LL is exactly the same as the energy difference between
0 LL and n LL. So, when the resonance which causes broadening/anti-crossing of L−n,n
electronic excitation occurs, it happens at an energy which is twice the energy of the
other so-far unknown excitation.
Fig. 7.21 reveals that, although excitations with ∆|n| = ±1 show a broadening at many
different energy values, the ∆|n| = 0 excitations broaden at only one of the two pos-
sible values, either Ea = 2560 ± 60 cm−1 or Eb = 3230 ± 50 cm−1. This allows us to
group the instances when line broadens/shows anti-crossing into two categories marked
in Fig. 7.19 with either blue or red rectangles. We conclude that there are two different
excitations which have to be identified, each of them responsible for one set of instances
when electronic excitations broaden/show anti-crossing.

The most likely candidates for those excitations in graphene are phonons and their
energy should be equal to half the energy of Ea and Eb. Thus Ea

2 ≈ 1280 cm−1 and
Ea
2 ≈ 1615 cm−1. The first value corresponds to the energy of K-point phonons (compare
with Fig. 3.1). The second one is close to the energy of Γ point phonons.

7.5.2 Discussion: new relaxation channel model

Phenomenologically, the observed broadening of the electronic excitation Raman peaks
can be understood in terms of shortening of the quasi-particle lifetime caused by the
opening of a new relaxation channel. Below, we present a model based on that principle,
which is a simple generalization of a model proposed by Orlita et al. [143], now extended
to the whole family of excitations observable in Raman scattering. Fig. 7.23 presents
a scheme illustrating two cases: when the energy difference between 0 LL and 1 LL
or between 0 LL and 2 LL comes into a resonance with K point phonon energy. At
B ≈ 18 T, L0,1 approaches the energy of K point phonons EK ≈ 1300 cm−1. Among
all electronic excitations which are visible in our experiment only three of them have
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Figure 7.20: FWHM of a single Lorentzian fit of the excitation peaks as a func-
tion of the magnetic field. Blue and red ellipses show ranges of magnetic field
for which ∆|n| = 0 electronic excitations are in resonance with 2× K-phonon
energy (at 2550 cm−1) or with 2× Γ point phonons (at 3250 cm−1).

Figure 7.21: FWHM of a single Lorentzian fit to excitation peaks as a function
of energy. Blue and red dashed rectangles shows the range of energies when
∆|n| = 0 transitions broaden simultaneously.

Figure 7.22: FWHM of a single Lorentzian fit to L−1,1 electronic transition as a
function of magnetic field.
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the 1 LL as a final state. Those are L0,1, L−1,1 and L−2,1 electronic transitions. Once a
magneto exciton is created it has finite intrinsic lifetime, which is determined by averaged
interactions with its environment which eventually leads to carrier relaxation into the
ground state. For undoped graphene in magnetic field it will be the 0 LL. This finite
lifetime is reflected by the finite linewidth of the corresponding Raman peak. However,
when the energy of the final state is in resonance with K point phonon a new relaxation
channel opens. It allows to scatter a carrier to the 0 LL with simultaneous emission of
phonon. Since in undoped graphene 0 LL is partially empty, there are always empty
states into which a carrier can relax. This new relaxation channel reduces the lifetime of
a carrier in the excited state which manifests itself as a broadening of the Raman peak.
One complication which arises from the fact that K-point phonons carry a considerable
momentum, is the need to propose an intervalley scattering. In that case, a carrier
excited to the n LL in the K(K’) valley can relax to the 0 LL in the K’(K) valley.

Figure 7.23: Illustration of a resonant scat-
tering of an electron by K-point phonon

As the magnetic field decreases, the energy
of LLs decreases as well, so LLs with higher
indices will come into resonance with the
energy of the phonon. This is illustrated
in the right panel of Fig. 7.23, where at
B ≈ 9 T the 2 LL is in resonance with EK
and the same broadening of the Raman
peaks is observed. However this time the
affected lines are those which have the 2 LL
as a final state, like L−1,2, L−2,2 and L−3,2.
Those diagrams shows processes where an
electron is scattered by the phonon, how-
ever the process is analogous when a hole
scatters. The only difference is that the ef-
fect is now observed for electronic excita-
tions which share the common initial state,
like L−1,0, L−1,1 and L−1,2 at B ≈ 18T or
L−2,1, L−2,2 and L−2,3 at B ≈ 9T .
In the case of resonance with the Γ point phonons, the effect is almost the same. Here
however phonons involved in the scattering process come from the vicinity of the Γ point
so their momentum is negligible. Consequently, all the scattering events occur in the
same valley.

7.5.3 Discussion: multiple excitations interaction model

Beyond simple broadening

When the lineshape of the electronic excitation is examined closely, it becomes apparent
that the observed anomalies are not simply broadened lines but that they have an internal
fine-structure. Fig. 7.24 presents a gray scale intensity map of the measured Raman
spectra together with the positions of Lorentzian fits to the first three excitations. In
order to obtain a good fit to the experimental data, multiple Lorenzian functions had to
be used. In Fig. 7.25, a spectrum of the L−1,1 excitation peak at B = 18.4 T is shown. It
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Figure 7.24: False colour intensity map of
Raman spectra of graphene together with
position of multiple component Lorentzian
fits to the electronic excitation peaks.
λexc=514.5 nm

Figure 7.25: L−1, 1 excitation peak at
B=18.4 T. Three component Lorentzian fit
to the curve is shown tohether with its
components.λexc=783 nm

Figure 7.26: Raman scattering spectra of electronic excitation peaks Ln,m in the anoma-
lies region shifted in energy according to their theoretical evolution ∼

√
B(
√
n +√

m). Left: for the L−1,1 excitation(λexc=783 nm) and right: for the L−1,2/L−2,1

excitation(λexc=720 nm). To obtain a higher signal to noise ratio spectra were aver-
aged across magnetic field range ∆B=0.2 T, which obscures the double component shape
of each Raman peak

clearly consists of three peaks with linewidths varying in the range 70− 110 cm−1. Since
the number of components into which a given line splits due to the interaction closely
matches the number of interacting modes, this means that at B ≈ 18 T in addition to
the purely electronic L−1,1 excitation, there also exist two other excitations which have
exactly the same energy and which couple to the L−1,1 mode. This coupling leads to
the formation of new hybridized modes which show an avoided crossing. A similar three
component splitting is seen for L−2,2 peak at B ≈ 9 T. However for ∆|n| = ±1 transitions
another behaviour is found. Those magneto-exciton lines split into two components only,
which is shown for L0,1 and L−1,2 peaks at B ≈ 18 T in Fig. 7.24. To clearly illustrate
this difference, Fig. 7.26 presents Raman scattering spectra obtained at selected values
of magnetic field, which were shifted in energy in order to compensate the expected
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evolution of electronic excitation energy in magnetic field. If the energy of that peak
evolved according to simple ∼

√
B model they would be seen all aligned at 0 on the

x-scale. However clear avoided crossings are observed. In the left panel for the L−1,1

excitation line three modes are seen, while in the right panel for L−1,2/L−2,1 only two
modes appear.
The difference in the number of interacting modes for the ∆|n| = 0 and ∆|n| = ±1

electronic excitations can be understood once we propose a model that can explain which
excitations take part in the different interactions.

Model

In the following discussion, for the sake of simplicity, we will focus on the case when the
energy of the first LL is in resonance with K-point phonons at B ≈ 18 T. The general-
ization for other cases is straightforward and done by substituting 1→ n and 2→ n+ 1.
Also the case of interaction with Γ point phonons is almost completely analogous, the
only difference being that the Γ point phonons carry a momentum that is close to 0, so
all electronic excitations and scattering events occur in the same valley.

In a solid state system many possible excitations have been observed and reported.
Some are observed in every crystal- like quanta of atomic vibrations - phonons. Others
require specific properties of a material to create excitations like e.g. a hole, exciton,
polariton, polaron, plasmon, magnon, etc... Yet others are formed only when an exter-
nal magnetic field is applied to the sample, like magneto-excitons. This classification
of excitations is based on an assumption that one could separate the whole crystal into
a set of independent subsystems: nuclei, core electrons, valence and conduction band
electrons, nuclear and electron spin etc. However at some point those subsystems are
not independent anymore. For instance, the motion of nuclei changes the instantaneous
electric field felt by the electrons and thus affects their behaviour. This is known as the
electron-phonon interaction, and may lead to formation of the hybridized modes that
involve both phonons and excitons. In graphene, the MPR is probably the best known
example of such hybridization. Here we employ the same concept of hybridization of al-
ready existing excitations in the system, to explain the observed anti-crossings at energies
above ∼ 2000cm−1.
When the magnetic field is set to B = 18 T, a resonance occurs between L0,1 electronic
excitation and the K-point phonons (EK ≈ 1300 cm−1 Fig. 3.1). This is seen directly
in the splitting of L0,1/L−1,0 excitations, as well as in L−1,2/L−2,1 mode, together with
the triple splitting of the L−1,1 for the same value of the magnetic field. However, no
signs of splitting is seen at the same energy (1300 cm−1) for excitations other than L0,1

at lower magnetic field (Fig. 7.19), which makes it qualitatively different from the MPR.
L0,1 appears as a special case that will be discussed at the end of this chapter. Now, we
will focus on L−1,1 excitation as representative for all L−n,n transitions.
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Figure 7.27: Three classes of excitations with degenerate energies in graphene at magnetic
field value B = 18 T. Left: purely electronic L−1,1 magneto-exciton. Middle: doubly
degenerated mixed mode consisting of a sum of K-point phonon and intervalley EK,K

′

−1,0 (or
EK,K

′

0,1 ) exciton. Right: purely vibrational, two K-point phonons with opposite K vectors.
Filled circles denote electrons, empty – holes. Solid lines represent scattering/excitation
of an electron, wavy lines – emission of a K point phonon. In each case the wavevector
k is conserved in the whole process (∆k = 0).

∆|n| = 0 excitations

Fig. 7.27 presents three kinds of excitations which are in resonance at B ≈ 18 T. In the
first case (Fig. 7.27: Left) it is a simple interband magneto-exciton L−1,1 with an energy
L−1,1 ≈ 2600 cm−1. In the second case (Fig. 7.27 right) it is a process which results in
the emission of two K-point phonons with opposite wavevectors k1 = + ~K and k2 = − ~K.
Therefore, the momentum is conserved in the whole process. In principle, those two
phonons could be created via direct interaction with light of the illuminating laser. How-
ever direct interaction of light with phonons is rather weak and the resulting scattering
cross-section is small. In theory of Raman scattering the much higher contribution to
the scattering cross-section is given by a higher order process [55] which involve first the
interaction of light with electrons which leads to the creation of a virtual electron-hole
pair, and then emission of phonons due to electron-hole pairs decay. Since at B = 18 T,
the energy of this virtual electron-hole pair would be in resonance with real electronic
states, the probability of such processes could be resonantly enhanced. In the middle
panel of Fig. 7.27 a third kind of excitation is shown, for which the final state consists
of a coherent superpositon of one K-point phonon and an intervalley LK,K

′

−1,0 (or LK,K
′

0,1 )
magneto-exciton. In order to conserve momentum in the excitation process, wavevec-
tors of the K-point phonon and the inter-valley scattered quasi-particle must cancel each
other. As long as we consider valence and conduction bands dispersion to be symmetric,
energies of mixed phonon-magneto-exciton modes are going to be doubly degenerated,
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Figure 7.28: L−1,1 excitation energy as
extracted from magneto-Raman scattering
experiment(dots). Lines-theoretical mag-
netic field evolution of three excitation
modes energies: E1-non-interacting L−1,1

magneto-exciton, E2-mixed mode consist-
ing of K-point phonon and inter-valley
LK,K

′

0,1 magneto-exciton, E3-two K-point
phonons.

Figure 7.29: L−1,1 excitation energy as ex-
tracted from magneto-Raman scattering ex-
periment(dots). Lines- fitted to experimen-
tal data magnetic field evolution of three
coupled excitation modes energies as in
Fig. 7.28.

because LK,K
′

−1,0 and LK,K
′

0,1 magneto-excitons have the same energy. A peculiar feature of
this mixed mode is the formation of an intervalley magneto-exciton.
Those three classes or modes of excitation can exist in graphene at all values of magnetic
field B. However their energy evolves differently in B what is shown in Fig. 7.28. The
energy of K-point phonons is independent of the magnetic field, and thus E3 = 2 × EK
is constant. For the latter calculations we used the value extracted from Fig. 7.28, at the
center of observed anti-crossing – 2EK = 2530± 20 cm−1, resulting in a K-point phonon
energy value EK = 1265 ± 10 cm−1. On the other hand the purely electronic mode E1

increases like L−1,1 ∼
√
B, while energy of mixed mode E2 evolves like L0,1 ∼

√
B shifted

by EK value. Thus it is not a coincidence that energies of all three of those modes cross
each other exactly at the same value of B. In fact for any L−n,n we have:

E1 = vF
√

2e~
√
B(
√
| − n|+

√
|n|) = 2vF

√
2e~
√
B
√
|n|

E2 = EK + vF
√

2e~
√
B(
√
|0|+

√
|n|) = EK + vF

√
2e~
√
B
√
|n|

E3 = 2EK
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So at the magnetic field B0 when E1 crosses E3, we calculate the energy of the E2 mode:

E1 = E3

2EK = 2vF
√

2e~
√
B0

√
|n|

vF
√

2e~
√
B0 =

EK√
|n|

E2 = EK + vF
√

2e~
√
B0

√
|n| = EK +

EK√
|n|

√
|n| = EK + EK = 2EK

Thus, at B0, these three excitations are degenerated in energy and, as is shown by our
Raman scattering experiments, are subject to hybridization.
In order to qualitatively reproduce the effect of modes hybridization on their respective
energies, we used a simple phenomenological approach in which modes are coupled using
a 3× 3 Hamiltonian:

Ĥint =


E1 V1 0

V1 E2 V2

0 V2 E3

 (7.7)

Diagonal elements are the magnetic field dependent energies of each non-hybridized mode,
defined as previously. The off-diagonal elements V1 and V2 are responsible for coupling the
0-phonon mode E1 with 1-phonon mode E2, and 1-phonon mode E2 with 2-phonon mode
E3 respectively. Those coupling constants are expressed in the same units as the diagonal
elements i.e. in units of energy, here cm−1. At each value of the magnetic field B, the
energies of the non-interacting modes E1, E2 and E3 can be explicitly calculated. Thus,
assuming some values for the coupling constants V1 and V2, the Hamiltonian (Eq. 7.7)
can be numerically diagonalized, to find its eigenvalues E∗1, E∗2, E∗3 and eigenvectors.
We have performed such diagonalization using the standard LAPACK procedures and
for each value of the magnetic field B ≤ 30T we have calculated the energies of the three
coupled modes. These energies were then compared with the experimentally determined
energies of split Raman active L−1,1 mode. By using least-square method the optimum
values of coupling constants V1 and V2 were found.
Solid lines in Fig. 7.29 present the results of such calculations, showing a very good
agreement with experimental points, denoted by green and red dots. This shows that
even a simple model like this is able to reproduce the most important effects of modes
hybridization. The obtained values of V1 = 38.6 cm−1 and V2 = 79.7 cm−1 reveal a
significant asymmetry in the strength of coupling between the mixed mode and purely
vibrational or purely electronic modes respectively.
Those off-diagonal terms in the Hamiltonian matrix can be related to the dimensionless
electron-phonon coupling constant λK which is defined as in ref. [63]:

λK =
F 2
KAu.c.

2MωKv2
F

(7.8)
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Where, ωK = 1210 cm−1 = 0.150eV, M = 2.88 × 103 (eV Å2)−1 is the mass of the
carbon atom and Au.c.=5.24 Å2 is the area of the graphene unit cell. While FK is
a proportionality coefficient, which has the dimension of a force. With such coupling
constant, the relation to the phenomenological V1 and V2 is the following:

V1 = vF

√
λKeB~

4π
(7.9)

V2 = V1

√
3

2
− 1

e
≈ 1.064V1 (7.10)

Using the above expressions one can estimate the dimensionless coupling constant be-
tween K-point phonons and electrons to be: λK = 0.023 which is about one third lower
from the value obtained in the DFT calculations λDFTK = 0.034 [103]. The above model
correctly predicts that the coupling between 2-phonon excitation and 1-phonon excitation
should be larger than the coupling between 1-phonon mode and 0-phonon mode. However
the expected asymmetry of the order of 6% largely underestimates the experimentally
found two-fold increase in the strength of the coupling for the latter pair of excitation
modes.

Figure 7.30: Amount of Raman active wave-
function component |α1|2 in each of the in-
teracting, coupled modes.

It is important to note, that out of 3 ex-
citation modes presented above only one
– the purely L−1,1 excitation is Raman
active. Therefore only this mode can be
observed in our Raman scattering exper-
iment in whole range of magnetic field.
The two other modes: two K-point phonon
emission 2 × EK and a mixed mode of
phonon plus inter-valley magneto-exciton
cannot be directly observed in whole range
of magnetic field in our experiment. How-
ever, when those modes hybridize their
wavefunctions Ψ∗n become a coherent su-
perposition of the non-interacting modes
wavefunctions Ψn:

Ψ∗n =
1√
3

(α1nΨ1 + α2nΨ2 + α3nΨ3)s (7.11)

Thus, some part of Raman active L−1,1 mode wavefunction is mixed with the two other
modes. This enables them to gain some oscillator strength which makes them visible
in the experiment. This process of transferring Raman active component α1n of the
wavefunction between those modes can be visualized by plotting the amount of modulus
square of it for each hybridized mode as a function of magnetic field (Fig. 7.30).
As is expected, at low values of magnetic field the vast majority of |α1|2 component
belongs to the mode originating from the purely electronic excitation. Then, between 14
and 18 T it looses most of it in favor of the mixed- phonon plus L0,1 excitation which
becomes Raman active in a narrow range of magnetic field between 16 and 20 T. This
is also the only range where all of the three modes have non-negligible amount of |α1|2

component and thus can be observed in the experiment simultaneously. And finally
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the whole Raman active |α1|2 component is transfered to the excitation mode which
originated from the two-phonon emission process.

∆|n| = ±1 excitations

After explaining the hybridization of different excitation modes for ∆|n| = 0 transitions,
we turn back to ∆|n| = ±1 transitions which split into two modes only. This different
behaviour can be analyzed by considering the doubly degenerated L−1,2/L−2,1 excitations.
As in the case discussed above L−1,2/L−2,1 shows anti-crossing at magnetic field B ≈

Figure 7.31: Two classes of excitations with degenerate energies in graphene at magnetic
field value B = 18T . Each class of transitions is doubly degenerated due to electron-
hole symmetry. Left: purely electronic L−2,1 (or L−1,2)magneto-exciton. Right: mixed
mode of a sum of K-point phonon and intervalley EK,K

′

−2,0 (or EK,K
′

0,2 ) exciton. Filled circles
denote electrons, empty – holes. Solid lines represent scattering/excitation of an electron,
wavy lines – emission of a K point phonon. In each case wavevector k is conserved in the
whole process – ∆k = 0.

18 T when L0,1 excitation is in resonance with K-point phonons. So in addition to
purely electronic excitations L−1,2/L−2,1 it is also possible to create in the system an
excitation which is a superposition of one K-point phonon and an intervalley-magneto-
exciton LK,K

′

0,2 . Again, to compensate momentum of the particle which is scattered into
another valley ~k = − ~K, the emitted phonon must have exactly opposite wavevector
~k = ~K. In this case however, the energy of the two phonon emission process is too small
to be in resonance with those excitations. So in the end there are only two modes of
excitation which can have the same energy and therefore hybridize with each other. This
should be reflected in the Raman spectra by a two component splitting of L−1,2/L−2,1 or
in general L−n,n+1/L−n−1,n magneto-excitons at selected magnetic field values. Which
is exactly what was found in the experiment.
From all ∆|n| = ±1 magneto-excitons there is one pair that is slightly different. These
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are the L−1,0 and L0,1 excitations. In all the so far discussed cases, the mixed mode
consisted of a K-point phonon plus an inter-valley, inter-band magneto-exciton. For the
L−1,0 and L0,1 excitations, however the mixed mode is composed of a K-point phonon
plus zero-energy, inter-valley exciton. Due to electron and hole being both at the 0 LL,
but one in the K valley while the other in the K ′. Excitation mixing for ∆|n| = ±1 can

Figure 7.32: L0,1 excitation energy as ex-
tracted from magneto-Raman scattering ex-
periment(dots). Lines-theoretical magnetic
field evolution of three excitation modes en-
ergies: E1 – non-interacting L0,1 magneto-
exciton, E2 – mixed mode consisting of
K-point phonon and zero energy inter-
valley LK,K

′

0,0 magneto-exciton, E3 – Γ point
phonons.

Figure 7.33: L−1,1 excitation energy as ex-
tracted from magneto-Raman scattering ex-
periment(dots). Lines – fitted to exper-
imental data magnetic field evolution of
three coupled excitation modes energies as
in Fig. 7.32.

be described analogously as for the ∆|n| = 0 magneto-excitons, the only difference being
the size of the interaction Hamiltonian matrix - 2 × 2. Fig. 7.32 shows the extracted
from experiment Raman peaks energies together with energy of L0,1 excitation (E1), of
K-point phonon (E2) and Γ point E2g phonon. Due to large MPR of L0,1 excitation it
was necessary to include Γ point phonon in the calculation in order to obtain good fit to
the experimental data. So we again used a 3× 3 matrix for the interaction Hamiltonian:

Ĥint =


EΓ VΓ 0

VΓ E0,1 VK

0 VK EK

 (7.12)

Where EΓ = 1580cm−1 is the energy of Γ point phonon, EK = 1310 cm−1 energy of
the K-point phonon [103] and E0,1 energy of non-interacting L0,1 excitation. While VΓ

and VK are off diagonal matrix elements that couple L0,1 excitation to Γ and K point
phonons, respectively. Following the same Hamiltonian diagonalisation procedure and
least-square fitting as before, a result shown in Fig. 7.33 was obtained. It shows a good
agreement with the data, however, a higher value for the K-point phonon energy had to
be used. One that matched the energy of anti-crossing of L0,1 excitation with K phonon
observed at ∼ 18 T. This value EK = 1310 ± 5 cm−1, is about 50 cm−1 larger than
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the one estimated from the anti-crossings involving L−n, n excitations. Reason of this
discrepancy is still unclear for us.

Γ point phonon

Finally we have repeated the same analysis for L−2,2 magneto-exciton when it couples
to a phonon at 3250cm−1. We identify it as an overtone of phonons from the vicinity
of the Γ point [63]. Anti-crossings produced by the interaction of Ln,m excitations with
this phonon form essentially the same set of resonances as in case of K point phonons,
but they are centered at higher energy (see Fig. 7.19). This process is very similar to
the one described previously with K point phonons, but in this case the emitted phonons
carry momentum close to zero. This implies that all the scattering events occur in
the same valley. Since Γ phonons have higher energy than those from K point, the
respective resonances are observed at higher magnetic fields. The most pronounced ones
involving the n = 1LL should occur in magnetic field just above B = 30T. Thus in our
experiment we were able to observe just a beginning of those processes. For that reason
in our analysis we used the second most pronounced anti-crossing involving the L−2,2

excitation. Following the same procedure as before of coupling two-phonon emission
process, with a mixed mode consisting of L0,2 excitation with emission of K phonon and
coupling this mode to the L−2,2 excitation we managed to extract the coupling constants.
It gave very similar results to those obtained for ∆|n| = 0 excitations interacting with
K-point phonons. It gave values of V1 = 31.0 cm−1 for coupling between L−2,2 excitation
and mixed mode, while V2 = 73.4 cm−1 being the coupling constant between two Γ point
phonon emission process and a mixed mode. This confirms the asymmetry of the coupling
constants V1 and V2, which are in this case lower by 8% and 20% than those found for
K-point phonon. This is in qualitative agreement with theory predicting that K-point
phonon should couple twice as strongly to electrons as Γ point phonon [103].

7.6 Conclusions

To conclude, we have presented in this chapter the current state of knowledge about
graphene-like domains that can be found on the surface of bulk graphite. We have pre-
sented results of a series of magneto-Raman scattering experiments which reveal existence
of the relativistic Dirac particles in those domains and confirms the unprecedented elec-
tronic quality and low doping level of this system. A method was presented, based on the
analysis of 2D band shape, which allows for identification of those flakes even in the ab-
sence of the external magnetic field. Most importantly, we reported a new manifestation
of the electron-phonon interaction in graphene flakes, which is entirely different from the
well known magneto-phonon resonance. Finally we have identified phonons responsible
for the observed electronic excitation peak splittings, as the K-point phonon and optical
phonons from the vicinity of Γ point. We have proposed a simple, phenomenological
model that allowed us to explain the difference in the number of interacting modes for
∆|n| = 0 and ∆|n| = ±1 excitations, reproduce energies of the hybridized modes and
evaluate value of the electron-K-point phonon coupling constant.



Chapter 8

Results: graphene on BN

In this chapter we are going to present and discuss the results of Raman scattering exper-
iments performed on the single-layer graphene flake encapsulated by two thin hexagonal
boron nitride (hBN) flakes. Those experiments were performed at liquid helium tem-
perature (4.2 K) and using the micro-Raman setup described in Chapter 6. For the
excitation, we used 514.53 nm line of the argon laser and about 4-5 mW power on the
sample. In order to maximize the scattered signal intensity we didn’t use any polarizes in
the presented experiments. So we were not sensitive to the polarization of the incoming
nor outgoing light.

8.1 Sample description and characterization

The structures studied in these experiments has been kindly provided to us by the re-
search group from the University of Manchester. In order to obtain a graphene sample
encapsulated between two layers of hBN, an exfoliation technique was used, followed by a
precise positioning of flakes, one on top of the other. In the first place, flakes of hBN were
prepared on oxidized silicon surface by micro-mechanical exfoliation technique. Then, us-
ing an optical microscope, two flakes were selected, which exhibited an optical contrast
characteristic for flakes having thickness ∼ 30 nm. Since inter-plane lattice distance in
hBN is equal to 0.666 nm [217], these flakes were composed of ∼ 45 atomic layers, which
is a number large enough to separate the upper surface from the roughness of the Si/SiO2

substrate. In the next step, graphene flakes were prepared on another substrate and then
one was transferred on top of hBN flake, using dry transfer technique (Fig. 8.1a ). Then,
the sample was annealed at 300◦C in an Ar-H2 atmosphere. Finally, the second flake of
hBN was used to encapsulate the graphene-hBN structure (Fig. 8.1b ). The complete
structure has roughly triangular shape, being 150µm long and 100µm wide in the central
part. Fig. 8.1c) shows details of the shapes of particular flakes building the structure.
Since they do not overlap completely, one can find regions where graphene flake:

• is located directly on Si/SiO2 substrate,

• lies on one hBN flake, but is not covered by the other hBN layer,
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Figure 8.1: a) Optical microscope image of
a graphene flake deposited on hBN flake.
b) Image of a flakes shown in a) after cover-
ing the structure with a second hBN flake.
c) Schematic picture highlighting shapes of
each particular flake.

Figure 8.2: Reconstructed maps of Raman
scattering intensity of hBN-graphene-hBN
sample when plotting the intensity of Ra-
man signal at the energy of phonons in:
a) Si-peak at ∼ 520 cm−1, b) hBN-peak
at 1368 cm−1, c) graphene G-band at ∼
1590 cm−1. Magnetic field B=0T, acqui-
sition time for each point: 2s.

• is fully encapsulated in between two hBN flakes.

Since a color of the flake, as it is seen under the optical microscope, is determined by the
white light interference condition in the thin film, one can estimate the thickness of each
part of the flake by comparing their colors. The blue areas in Fig. 8.1b) show parts of
the hBN flake which are approximately 30 nm thick, while yellow ones correspond to the
places where the upper and lower flake overlap each other and the structure is ∼ 60 nm
thick.
Due to using optical fibers in our experimental setup (Chapter 6) for measurements in
magnetic fields, we couldn’t directly image the surface of the sample as it is done under
an optical microscope. Thus, in order to find and characterize the sample, a mapping of
the surface was performed by measuring the Raman scattering signal from a regular array
of points. Then, plotting the Raman signal intensity at a given energy (Raman shift)
allowed us to selectively image the different components of sample’s structure. Fig. 8.2
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Figure 8.3: Raman spectra measured at different locations of the exfoliated graphene sam-
ple: green curve-graphene deposited directly on Si/SiO2 substrate, blue curve- graphene
deposited on hBN flake, red curve- graphene deposited on and covered by hBN flakes,
black curve- Si/SiO2 substrate response.

shows such maps measured at 4K and without any external magnetic field (B = 0 T),
while more detailed maps showing only a part of the studied flake measured at magnetic
field B = 10 T are shown in Fig. 8.4. Maps reconstructed at the energy of Si peak
(520 cm−1), show how strongly the Raman signal from the substrate is attenuated by
different flakes lying on the surface. Since ∼ 30 nm – thick BN flakes are much thicker
than a single layer graphene, these are mainly BN flakes that are visualized with a Raman
response from the Si substrate (Fig. 8.2a). In the detailed map in Fig. 8.4a one can clearly
distinguish two regions of BN with either one hBN flake (dark blue) or two flakes stacked
on top of each other (black).
Similarly a map of Raman scattering intensity at the energy of one of the main hBN
phonons, at 1368 cm−1 reveals the locations of hBN flakes. However, this time not only
the thick flakes are visible, but also the thiner and smaller ones, as seen below the main
triangular flake in the Fig. 8.2b. The detailed map in Fig. 8.4b shows a clear difference
between two parts of BN flakes: the bottom one as well as the upper one, used to cover
the graphene flake.

G-band Repeating the procedure at the energy of G-band (∼ 1590 cm−1) one can also
visualize the position of the graphene flake even if it is additionally covered by hBN. It is
shown in Fig. 8.2c, where a lighter shade of blue marks the area on the hBN flake which
is covered with graphene, while the extremely intense G-band is seen close to boundaries
of hBN flake, where graphene lies directly on Si/SiO2 substrate. This strong dependence
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of G-band intensity of graphene on the substrate and/or it’s capping is even better seen
in the raw Raman scattering spectra as shown in Fig. 8.3a,b. For each region of graphene
sample, a single representative spectrum was selected and shown. Considering the G-
band, it clearly shows that it is the most intense on the parts of graphene lying directly
on Si/SiO2 substrate(Si-gr). However, on those locations the G-band also exhibits very
high variations in the intensity as compared to other Raman peaks like the 2D band or Si
peak. Nevertheless, taking the spectrum shown in Fig. 8.3 as the average one, we clearly
see the decrease in the G-band intensity on the areas resting on the hBN flake. In fact,
in the locations where graphene was deposited on top of hBN flake but not covered with
another flake (Si-hBN-gr) the G-band intensity decreased 10-fold. On the other hand,
in the areas where it was encapsulated from both sides by hBN (Si-hBN-gr-hBN) it was
15-times less intense.
The observed decrease in G-band intensity was a surprise, since depositing the exfoliated
graphene on hBN was expected to improve the system’s quality. However, an assumption
of improved cleanliness may not be fully valid in this case since at the same time we
observed an enormous increase in the amount of dispersed light leading to much higher
background. As seen in panel a) of Fig. 8.3, at the locations where graphene was lying on
top of hBN the background rose to about twice higher level as compared to the graphene
resting on Si/SiO2. This effect is even more pronounced on the places where graphene was
encapsulated by hBN, which show from two to five times higher background, depending
on the energy of scattered light. This higher background originates from the contam-
ination which remains after each step of flake transferring process, when the PMMA
compound is used. These contaminants tend to group together and form bubbles, most
of which have a sub-micron size. The largest of them are seen as the darker spots in the
central part of the flake (seen in Fig. 8.1b), but they also occur on parts of graphene on
hBN which are not covered by the second flake. They can be seen in dark field image
under the optical microscope and in transmission electron microscope (TEM). The first
measurements made on those bubble revealed the presence of hydrocarbons which is what
we would expect to see in the response of the PMMA residue. These contaminations con-
tribute to the higher dispersed light background. Yet, as we are going to present it in
the later part of this chapter, we were able to observe the effects on this sample which
are very sensitive to the electronic quality of graphene or to charge doping. Therefore
we were still able to observe them, the presence of those hydrocarbons bubbles couldn’t
have a major detrimental effect on the system’s quality.
Charge doping level can be estimated from the energy position of the G-band in the
absence of the external magnetic field. In the case of the parts of graphene flake lying
directly on the Si/SiO2 we found that G-band energy varied in the range from 1593 to
1595 cm−1. The fragments which were either lying on hBN or were completely encapsu-
lated showed a higher variation of the position of G-band, but generally at a lower energy
– from 1583 to 1591 cm−1. This seems to confirm the fact that depositing graphene on
hBN flake reduces unintentional doping of the sample. However due to the presence of
hydrocarbons bubbles the doping profile is rather non-uniform across the sample. Based
on the works of Yan et al. [106] we can make a rough estimation that in the least doped
areas charge density in our sample is close to 1× 1012 cm−2.
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Figure 8.4: a)-c)Reconstructed maps of Raman scattering intensity of a region of hBN-
graphene-hBN sample shown inside red rectangle in panel d). Intensity of Raman signal
was plotted at the energy of phonons in: a) Si-peak at ∼ 520 cm−1, b) hBN-peak at
1368 cm−1, c) graphene G-band at ∼ 1590 cm−1. e) Map of the energy position of 2D
band. Magnetic field B=10 T, acquisition time for each point 20s.

2D band Considering the 2D band, its intensity exhibits a similar behavior to that of
the G-band, being the most intense on graphene on Si/SiO2, decreasing 2.5 times for
graphene on hBN and being 6 times lower for graphene in between two hBN layers. The
overall tendency to lower the intensity of the 2D band peak is the same as for the G-band,
but the rates at which it occurs are slightly different. This leads to the change in the
relative intensity of the G-band to the 2D band. At the locations of graphene resting
directly on Si/SiO2 due to large variations of G-band intensity, it is either higher or
comparable in height with the 2D band. However, on graphene resting on or sandwiched
between hBN flakes the G-band is about 2-4 times smaller than the 2D band. This better
resembles a commonly reported Raman spectrum of exfoliated monolayer graphene [69].
Interestingly, the energy at which the 2D band is observed depends very clearly whether
graphene lies on the Si/SiO2 substrate, on an hBN or it is surrounded by hBN from
both sides. The map shown in Fig. 8.4 and spectra in Fig. 8.3 reveal that the 2D band
measured on graphene on Si/SiO2 is seen at the energy 2697 cm−1 while on hBN flake
it clearly downshifts by 6 cm−1 toward 2691 cm−1. The latter value is pretty much
uniform across the sample. However, at locations where graphene is encapsulated by
hBN from both sides, the 2D band energy rises again to ∼ 2696 cm−1. The same value
of 6 cm−1 downshift was observed when mapping the surface of the sample regardless
whether external magnetic field was applied or not. Since the origin of the 2D band
comes from a double resonant scattering process, the observation of the 2D band at
different energy means that phonons of different energies and k-vectors were selected in
the scattering process. As we will argue later on, this downshift of the 2D band on hBN
flake can be understood in terms of a double resonant scattering process and a Fermi
velocity which varies depending on the substrate.
Effects which were mentioned above showed that changing substrate from Si/SiO2 to hBN
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does indeed have an effect on the electronic properties of graphene. This is reflected in the
change in recorded Raman spectra. However, to better understand origin of this change,
we needed an insight into the changes of the electronic bandstructure of graphene once
that it is deposited on top of hBN. Fortunately, magneto-Raman spectroscopy provides
us with tools which can be used to deduce such changes. By analyzing the details of the
magneto-phonon resonance(MPR) and inter-Landau level electronic excitations, some
information about the electron bandstructure can be extracted. Results of experiments
focusing on those effects are presented below.

8.2 Magneto-phonon resonance

So far, the magneto-phonon resonance in graphene has been observed only on those
types of systems which are characterized by an exceptionally good electronic quality and
very low charge doping level. Those systems include: epitaxial graphene grown on SiC
surface [108], graphene inclusions on the surface on graphite [109, 44, 32], bulk graphite
[45, 46]. On the other hand, an exfoliated graphene deposited on the surface of Si/SiO2 is
usually too much doped to show any sign of MPR other than with the most pronounced
resonance with L−1,0/L0,1 excitation at high magnetic fields ∼ 24 T [139]. In order to
check if depositing exfoliated graphene on top of hBN flake can reduce charge doping to
such a low level that MPR can be observed we measured Raman spectra of graphene
while sweeping magnetic field up to B = 30 T.

8.2.1 hBN-graphene

First, we chose such a location where the graphene flake was lying on top of hBN flake
but not covered with another one. It is marked by a red dot on the optical microscope
picture of the sample in the inset of Fig. 8.5Right). Then, we measured Raman spectra,
focusing on the energy of the G-band (∼ 1590 cm−1) while sweeping the magnetic field
at rate of 87 mT per spectrum. Results of such experiments are shown in the form of
a false color intensity map in Fig. 8.5: Left. This figure clearly shows that the energy
at which Γ point phonon (G-band) is seen exhibits clear oscillations in magnetic field,
which is a hallmark of the magneto-phonon resonance. To better see those oscillations, we
have fitted the G-band peak at each single spectrum with a single component Lorentzian
curve. Then, the position of the center of each peak was plotted in Fig. 8.5: Right.
At least three resonances at which the G-band energy deviates strongly from its zero-
magnetic field value are clearly observed. Positions of those resonance are marked with
red, dashed lines and correspond to the values of magnetic field at which the optical-like
inter-Landau levels excitations are crossing the zero-magnetic field G-band energy. At
magnetic field B = 22±1 T a resonance with L0,1 and L−1,0 excitations is seen. Similarly,
we observe resonances at B = 3.31± 0.1 T for L−1,2 and L−2,1 excitations, as well as at
B = 1.74± 0.08 T for the L−2,3 and L−3,2.
Usually, the experimentally obtained MPR can be satisfactorily fit by calculating the

poles of the phonon Green function which take into account the renormalization of phonon
energy due to optical-like inter-LL excitations. This is equivalent to searching for zeros
of the function defined by Eq. 3.17, where only ∆|n| = ±1 transitions are taken into ac-
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Figure 8.5: MPR measured on a quasi-neutral exfoliated graphene sample, deposited on
a hBN flake. Left: a false color intensity map of Raman scattering intensity measured up
to 30 T. Right: the extracted energy position of the G-band exhibiting a MPR. Red dot
in the inset shows the position on the flake where the measurements were performed.

count. Since calculations are done in the complex plane, the real part of the root of that
equation corresponds to the renormalized energy of Γ point phonon, while the imaginary
part gives the contribution δe−ph of electron-phonon interaction to the phonon linewidth
δ. There are, however, also other factors responsible for a finite Γ phonon linewidth δ0,
which are always present, even in the absence of electron-phonon interaction. Since ana-
lytical model proposed by Ando [137] does not take δ0 into account, the phonon linewidth
obtained in the calculations has to be adjusted to the experimentally measured value by
adding that constant δ = δe−ph + δ0.
We used the same procedure to model MPR measured on graphene on hBN, assum-

ing the same value of electron-phonon coupling constant as reported before [108, 32]
λ = 4.5× 10−3, thus the only free fitting parameter being Fermi velocity vF . The calcu-
lated value of G-band linewidth had to be increased by a constant factor δ0 = 4 cm−1,
which describes a contribution to phonon linewidth from other factors than electron-
phonon interaction effects.
However, it turned out that it was not possible to fit all three observable resonances with
a single value of vF . To illustrate this we compared in Fig. 8.6 the experimental results
(black dots) with three sets of calculated (red lines) energies and linewidths of Γ phonon.
In each set a different value of vF was used to provide a good match between simulation
and experiment close to a given resonance. In addition, a

√
B scale on horizontal axis

was used since this is the scale of electronic excitations energy evolution and it helps
to observe all the resonances on the same graph. Panels a) and d) show that a good
fit to experimental data in the vicinity of a resonance at B = 22 ± 1.5 T is obtained
when Fermi velocity is set to vF = 1.15 × 106 m/s. However with this value of vF all
resonances visible at lower energy are not well described by the calculated curve. Simi-
larly, using a higher value of Fermi velocity vF = 1.24 × 106 m/s we can obtain a good
match between calculated and measured values for a resonance at B = 3.3± 0.1 T. And
again quality of the match diverges when going away from the resonance. For the next
resonance at lower magnetic field B = 1.74± 0.08 T even higher Fermi velocity is needed
vF = 1.28 × 106 m/s. Additionally, a weak sign of interaction between L−1,1 excitation
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Figure 8.6: Experimentally determined energy and linewidth of Γ point phonon (black
dots) and result of calculations which assumed different values of Fermi velocity.

with Γ-phonon is seen as a small broadening of phonon linewidth at B = 5.30± 0.15 T.
Theoretically, the L−1,1 excitation does not have the proper symmetry to couple to the
Γ phonon, but a weak sign of coupling of this excitation to the phonon has already been
observed in graphene flake on the surface of graphite. Altogether, the following relations
between Fermi velocity and LL index of participating excitations has been observed:

excitation resonance field (T) Fermi velocity(×106 m/s)

L0,1/L−1,0 22.0± 1.5 1.15

L−1,1 5.30± 0.15 1.18

L−1,2/L−2,1 3.3± 0.1 1.24

L−2,3/L−3,2 1.74± 0.08 1.28

The above results show that in graphene deposited on hBN, the Fermi velocity vF is
not a constant parameter, but it either decreases with magnetic field B or it increases
with LL index n. Moreover, the fact that the L−2,3/L−3,2 excitation is observed allows
us to set an upper limit for the charge doping ρmax < eB

h νmax. Considering the most
doped system for which at least one of those transition would be still possible, we ob-
tain a condition that filling factor ν must be lower than νmax corresponding to the fully
occupied n = 3 LL. Inserting the value of the magnetic field, at which the resonance
is observed B = 1.74 T and νmax = 14 we obtain the limiting value for charge doping
ρmax < 7.35× 1011 cm−2.
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8.2.2 hBN-graphene-hBN

In order to check if covering a graphene flake deposited on hBN surface with another hBN
flake does have any effect on it’s properties an analogous experiment was performed on
the location marked with a red dot in Fig. 8.7. In general due to about twice lower signal
to noise ratio on that location as compared to hBN-graphene spot the measured MPR
was not as well resolved as for the previous spot. Moreover, an additional component of
the G-band appeared that remained constant in magnetic field. This double structure
of the G-band is known to be seen in doped graphene samples. In the case of doped
graphene, the MPR would be seen just in one polarization of the light, depending on the
sign of doping, while it would be blocked in the other light polarization. Since we were
performing measurements without resolving the incoming nor outgoing light polarization,
we would have observed a spectrum which consists of a G-band that has two components:
one constant in B and one showing a MPR. This is exactly what was observed in the
experiment.
Fig. 8.7 shows the energy position (upper panel) and the linewidth (lower panel) of the

Figure 8.7: Energy position (upper) and linewidth (lower) of the one-component
Lorentzian fit to the Raman scattering spectra measured on the encapsulated graphene
sample (hBN-graphene-hBN).

G-band, as extracted from the Raman spectra using a one component Lorentzian fit to
the G-band peak. Red lines mark the magnetic field values, where MPR resonances oc-
cur. As compared to the measurements on the uncapped hBN-graphene region, now the
resonances are seen at slightly higher magnetic fields. Again, we can extract vF parame-
ter from the value of magnetic field at the resonance for different excitations, obtaining:
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excitation resonance field (T) Fermi velocity(×106 m/s)

L0,1/L−1,0 23.50± 1.50 1.12

L−1,2/L−2,1 3.80± 0.20 1.15

L−2,3/L−3,2 2.17± 0.13 1.17

Those results also allow us to fix a limit on the charge doping level. Repeating the same
procedure as in the section 8.2.1, we obtain an estimation for ρmax < 5.9 × 1011 cm−2,
which is about 20% lower than the value obtained on the part of graphene on hBN that was
not covered. Both of those values being approximately half of the charge density usually
reported for exfoliated graphene flakes deposited directly on Si/SiO2-ρ ∼ 2× 1012 cm−2

[139].
The presented above results of Raman scattering in graphene deposited on hBN and in
graphene encapsulated by hBN showed few main effects. First, they demonstrated that
it is possible to obtain an exfoliated graphene sample with a charge doping density below
7.35 × 1011 cm−2. This is sufficiently low to see at least three first resonances in MPR.
Thus, this proved a usefulness of employing high quality hBN flakes to reduce the effect of
substrate on charge doping in graphene. Second, the experiments showed that the value
of Fermi velocity in graphene deposited on hBN is higher than in other types of graphene-
based systems. For instance in graphene flakes on the surface of graphite [44] and in the
multilayer epitaxial graphene [108] it is usually reported to be vF = 1.02± 3× 106 m/s.
It also turned out that Fermi velocity is higher for a system where graphene flake is
deposited on top of hBN but not covered, as compared with the case where it is fully
encapsulated. Finally, we note that vF cannot be described with a single parameter, since
it changes either with LL index or with the strength of the magnetic field. Those two
cases can be distinguished if one could measure vF for a single L−n,n electronic excitation
at some range of magnetic fields and check if it is changing with the field or not. However,
so far the electronic excitations have been observed only in the highest quality graphene
system – graphene flakes on graphite [44, 32], as well as in bulk graphite [45]. But they
have not been seen in any kind of exfoliated graphene sample, yet.

8.3 L−1,1 electronic excitation in graphene on hBN

To detect the presence of electronic excitations in our system we have measured Raman
scattering spectra in a wide range of energy (1300 – 3500 cm−1) and in magnetic fields
up to 24 T. Usually, the intensity of Raman signal coming from electronic excitations in
graphene is lower than the intensity of phonon-related features. Thus, for those graphene
systems where it is difficult to clearly observe the G-band and the 2D band, it is very
unlikely that one could observe clear electronic excitations. For that reason when we
measured the Raman scattering signal on a hBN-graphene-hBN spot we couldn’t observe
any other feature than two main phonons. However the same experiment performed over
a spot, where graphene was just deposited on top of hBN but was not covered, revealed
an additional feature.
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Figure 8.8: The Raman spectra of
graphene deposited on hBN at chosen mag-
netic fields, normalized by a zero-field spec-
trum. Red arrows shows the position of a
L−1,1 Raman peak. Acquisition time for
each spectrum: t = 5 min. Laser wave-
length λ = 514.53 nm. Laser power on the
sample P = 4− 5 mW.

Figure 8.9: False color intensity map of Ra-
man scattering from graphene deposited on
hBN. The darker the color the more intense
the signal is. Red arrows point to the L−1,1

electronic excitation.

Raman spectra A few Raman spectra measured at chosen values of magnetic field are
shown in Fig. 8.8. To enhance those features which were changing with the field, the
zero-field spectrum was subtracted from each spectrum. Red arrows in the figure mark
the positions of a Raman peak which energy is clearly increasing with the field. Despite
low intensity of this feature, which is only about 4% of the intensity of the G-band, it
can be clearly observed in the spectra. The character of it’s evolution in the magnetic
field can be more easily observed when a series of Raman spectra measured every 0.33 T
from 0T to 24 T is gathered together and plotted in the form of a false color intensity
map (Fig. 8.9). Due to low intensity of the dispersive mode seen in the spectra, each
spectrum was acquired for 5 min to obtain sufficiently high intensity of the signal. The
map shows that there are three prominent features visible in the spectra. The first one
is the G-band at ∼ 1590 cm−1, which energy slightly oscillates in magnetic field due to
MPR. The second feature is the 2D band at ∼ 2680 cm−1, which does not vary with
magnetic field. Finally, the third line is observed which energy increases in magnetic field
as a

√
B. This latter feature, which is marked with red arrows in Fig. 8.9, we identified

with an L−1,1 electronic excitation in graphene.
Both theoretical [31] and experimental [32] works, showed that observed intensity of elec-
tronic excitations decreases with LL index n. Also our measurements on graphene flakes
on surface of graphite showed that L−1,1 electronic excitation is the most intense one.
Therefore it is not surprising that L−1,1 excitation is the only one which we were able
to observe on hBN-graphene, considering the large level of background seen in the spectra.

L−1,1 energy & linewidth From the spectra presented in Fig. 8.8 one can extract linewidths
(FWHM) of L−1,1 excitations. Those results are shown in Fig. 8.11. Apart from few
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Figure 8.10: Black dots – energy of L−1,1

excitation as seen in Fig. 8.9. Red line –
energy of L−1,1 excitation in graphene cal-
culated for vF = 1.15× 106 m/s.

Figure 8.11: L−1,1 electronic excitation
linewidth.

points, a majority of the results are grouped around FWHM = 50 ± 5 cm−1. This is
about 15 cm−1 higher than the linewidths of electronic excitations seen in graphene flakes
on the surface of graphite, measured in the similar magnetic field range – up to 18T. In
the latter case, however, the FWHM had a tendency to increase in fields higher than
∼ 18 T. We couldn’t check if the same trend is seen in our hBN-graphene structure since
the intensity of L−1,1 line decreased significantly in fields higher than ∼ 18 T. On the
other hand, if L−1,1 linewidth would have increased in higher fields proportionally to how
it increased in graphene on graphite samples, then the peak would be so broad and low
that we couldn’t observe it anymore on top of the high and changing background.
In the next step, by following the black trace visible in the map (Fig. 8.9), we extracted
the positions of the center of the L−1,1 Raman peak at each value of the magnetic field
in the range from 4 T to 18 T. We used this approximative method to find the energy of
the L−1,1 Raman peak due to low intensity of the signal, as compared to the background
level and noise. Generally, for the data with high noise to signal ratio, instead of trying
to fit the weak signal with some peak function, it is easier to follow evolution of the line
plotted on the map. The result of our procedure is shown in Fig. 8.10, which compares the
measured values (black dots) of L−1,1 excitation with a theoretical (red line) evolution:

L−1,1 = vF
√

2e~
√
B(
√

1 +
√

1) = 2vF
√

2e~
√
B (8.1)

The best match was obtained using the Fermi velocity value vF = 1.15× 106 m/s. This
is in good agreement with vF values estimated for L−1,0/L0,1 and L−1,1 excitations being
in resonance with Γ phonon, as seen before in MPR.
However, a closer examination of Fig. 8.10 reveals that the calculated energy of L−1,1

excitation is underestimated as compared with experimental points measured in the low
magnetic field limit (B < 10 T). To further check, if experimentally measured evolution
of L−1,1 energy can be described by Eq. 8.1, we transformed this equation to express vF
as a function of the magnetic field B, and L−1,1 energy:

vF =
L−1,1

2
√

2e~
√
B

(8.2)
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Then, we used the L−1,1 energy values extracted from Fig. 8.9 to plot vF as a function
of the magnetic field. The result is shown with blue dots in Fig. 8.12, together with vF
values extracted from MPR on hBN-graphene location (orange points) and encapsulated
hBN-graphene-hBN location (red points). Those results clearly show that Fermi velocity
decreases with magnetic field. Moreover, a scale of those changes agrees well with the
few vF extracted before from the MPR. Since now we could observe the continuous
change in the vF for a single excitation involving just one pair of LLs, we can exclude
the hypothesis that vF depends on the LL index. Those results show instead that it is
the value of magnetic field that leads to the observed decrease in vF . The range of that
change is large since for hBN-graphene location vF dropped down from 1.29 × 106 m/s
at B = 1.83 T to ∼ 1.14 × 106 m/s at B = 22 T which is a 12% decrease. Similarly for
hBN-graphene-hBN location the observed decline in the vF from ∼ 1.17 × 106 m/s at
B = 2.18 T to ∼ 1.12× 106 m/s at B = 23.5 T makes for over 4% downturn. By making
a very crude linear extrapolation of the measured vF values down to B = 0 T we would
obtain:
vF (B = 0)hBN−gr ≈ 1.34× 106 m/s at hBN-graphene and,
vF (B = 0)hBN−gr−hBN ≈ 1.20× 106 m/s at hBN-graphene-hBN.
This would yield 15% and 7% decrease at high field limit in the former and latter case,
respectively.
This decrease in the vF value with the magnetic field was already observed in the case
of graphene flakes on the surface of graphite(see Chapter 7). However, the degree of
this decline was observed on much smaller scale. The black points in Fig. 8.12 show vF
extracted from the energy of many different inter-LL excitations observed in graphene on
graphite using the same approach as described above. Since the electronic quality of this
system, evaluated for instance by carrier mobility, is orders of magnitude higher than for
our hBN-graphene sample, many more electronic excitations were seen there, exhibiting
much subtler effects, which adds to the spread of that points. Although the vF is lower
in the whole magnetic field range from the values observed in hBN-graphene, the main
tendency is the same – vF decreases with magnetic field.

8.4 Substrate dependent Fermi velocity

In addition to establishing a magnetic field dependence of Fermi velocity the above results
show that vF depends also on the substrate or more generally the closest environment of
the graphene flake. Recently Hwang et al. have shown in an ARPES experiment that,
depending on the substrate, Fermi velocity in graphene can change from 1.15× 106 m/s
for graphene on SiC, to 2.49 × 106 m/s for graphene on crystalline quartz [218]. They
proposed that the factor responsible for the changes in the vF is the screening of electron-
electron interaction due to the immediate environment of graphene. Our results are in
line with that theory, adding examples of few more systems where the same relation holds
between the Fermi velocity of graphene flake and the effective dielectric constant εeff.
of its environment. This relation can be understood in a following manner. In the tight
binding method of calculating the electronic bandstructure and the nearest-neighbour
approximation, the only free parameter is the hopping integral γ0, which is proportional
to vF . One can compute the value of this constant from the first principles using for
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Figure 8.12: Fermi velocity of graphene as extracted from: i) MPR on hbN-graphene sam-
ple (orange points), ii) L−1,1 electronic excitation on hbN-graphene sample (blue points),
iii) MPR on hbN-graphene-hBN sample (red points), iv) L−n,m electronic excitations on
graphene falke on the surface of graphite (black points).

instance Density Functional Theory (DFT) in the simplest Local Density Approxima-
tion (DFT-LDA) method. These calculations regularly yield Fermi velocity values on the
order of vF = 0.85 × 106 m/s [115, 219], which is about 10-20% lower than the lowest
experimentally reported values. This difference comes from the electron-electron inter-
action which renormalize the electronic bandstructure. Peculiarly for graphene, those
interactions tend to increase the vF . This is a direct consequence of the linear dispersion
of bands in graphene. Since close to the Fermi energy the low energy electronic exci-
tations are described by an effective field theory that is Lorentz invariant [220]. This
implies that graphene behaves differently than more traditional systems with parabolic
band dispersion that are described by theories which are invariant under Galilean trans-
formation – like Fermi liquid model. Unlike the systems with band dispersion described
by an effective mass, in graphene an increase of electron-electron interactions induces an
increase of the Fermi velocity.
If we could modify the strength of el.-el. interaction in graphene, we could also change
its vF . This can be achieved by few methods: by changing the curvature of the graphene
sheet, by applying external periodic potential [221, 222] or by modifying the dielectric
screening [135, 223]. The last one is probably the simplest method to realize experimen-
tally, since it requires only to deposit or cover graphene flake with different materials. The
dielectric constant ε of the medium below/above graphene sheet screens to some extent
the strength of the el.-el. interaction, and the higher the ε is the more el.-el. interaction
is screened, while the correction that it ads to the renormalized Fermi velocity becomes
smaller.
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Figure 8.13: Comparison of different graphene based systems, which differ in the dielectric
constant of the surrounding medium. For calculations of the effective dielectric constant
εeff. we used: εair = 1, εhBN = 3, εgraphite = 1, εideal−screening =∞.

Figure 8.14: Fermi velocity at B = 0 T on
graphene flakes deposited on different types
of substrate, as a function of the inverse of
effective dielectric constant of the medium.

This tendency is shown in Fig. 8.13 where
we summarized the values of vF that we
obtained on three different structures: on
graphene flakes on the surface of graphite,
on graphene deposited on atomically flat
surface of hBN and on graphene de-
posited and covered by hBN. In addition to
that we included information about free-
standing graphene and graphene in LDA
calculations, since they form two limit-
ing cases: without any screening (strong
el.-el interactions) and with completely
screened interactions, respectively. For
each structure we have made a rough esti-
mation of the effective dielectric constant
of the graphene’s environment by taking
the mean value of the dielectric constant of the medium above and below graphene
flake. We observe that the DFT calculations predict the lowest Fermi velocity value
vF = 0.85× 106 m/s for a system which is equivalent to graphene flake surrounded by a
perfect dielectric medium (ε = ∞). Then we see that the Fermi velocity monotonically
increases as the effective dielectric constant εeff decreases. Finally, vF reaches its highest
value for a freely suspended graphene, that is surrounded only by air/vacuum, when the
el-el. interactions are screened the least (εair = 1).

It turned out that the correlation between vF and εeff closely follows the vF ∼ 1/εeff ,
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which is predicted by the Random Phase Approximation (RPA) calculations [218, 170].
Fig. 8.14 presents vF values extrapolated to B = 0 T that we obtained in magneto-Raman
experiments on graphene flakes on graphite and two locations of graphene flake deposited
on top of hBN flake – one covered with another hBn flake the other not. In addition,
we used the literature data for vF values calculated using LDA method [115, 219] and
an experimental data for suspended graphene sample [170]. This plot confirms a good
agreement of experimental data with the theoretical prediction of vF being proportional
to 1/εeff . Those points were fitted using the vF = α1

ε + β function, and we obtained
fitting coefficients α = 1.652× 106 m/s and β = 0.837× 106 m/s. This power law can be
used for engineering vF value by an adequate choice of dielectric substrate.

Figure 8.15: Fully resonant scattering pro-
cess behind the 2D peak in graphene. 1→ 2

el.-h. pair creation. 2 → 3 electron scatter-
ing with emission of phonon with k ∼ +K.
3 → 4 el.-hole recombination. 4 → 1 elec-
tron scattering with emission of phonon with
k ∼ −K.

Dispersive 2D band Once we have estab-
lished how the Fermi velocity changes de-
pending on the substrate dielectric con-
stant, we can explain why the energy of the
2D band also depends on the graphene’s
substrate (see Sec. 8.1). The origin of
the 2D peak in graphene, similarly like in
graphite lies in the fully resonant scatter-
ing process [62, 68]. In this process, after
exciting electron-hole pair, all states into
which an electron or hole is being scat-
tered are the real electronic states. Since
scattering occurs between two valleys – K
and K ′, the change in the momentum of
the carrier is compensated by the emis-
sion of phonon. This phonon has a large
wavevector and comes from the highest op-
tical phonon branch in the Γ−K direction.
Fig. 8.15 shows one of the possible scat-
tering steps that leads to emission of two
phonons with |k| ∼ K. The other possi-
ble process include the same type of scattering events in which either electron or hole
are being scattered in all possible permutations of time order. Close to the Dirac point
electronic bands dispersion is described by:

E = ±vF~k

where plus sign is for conduction band and minus for valence band. For a given energy
of the incoming laser radiation Elaser we create an el.-h. pair with wavevector:

Elaser = 2vF~k (8.3)

k =
Elaser
2vF~

(8.4)

During the inter-valley scattering process, the carrier change its momentum by nearly:

∆k = K + 2k
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This change in the carrier’s momentum is compensated by emission of phonon with
opposite momentum:

qph = −K − 2k (8.5)

qph +K = −2
Elaser
2vF~

(8.6)

|qph +K| = Elaser
vF~

(8.7)

(8.8)

As we see from this expression, the wavevectors of phonons which are emitted during the
2D band scattering process is determined by the incoming laser radiation energy and the
value of Fermi velocity. More specifically, as Fermi velocity increases the emitted phonon
wavevector, as counted from the K point, decreases. Since the highest optical branch
has a positive dispersion close to K point, the emitted phonons from points closer and
closer to the K point, have higher and higher energies. Thus, from this model we would
expect to see the 2D band shifting towards lower energy as the graphene vF increases.
This agrees well with the observed 2D peak positions measured on three samples with
different vF as it is presented in Fig. 8.13.

8.5 Conclusions

To summarize, our magneto-Raman experiments showed how powerful technique it is for
quick characterization and also detailed analysis of complex layered structures. In our
case, this experimental technique was used to study a graphene flake deposited on top of
atomically flat surface of hBN, and partially covered with another hBN flake. Mapping
the surface of such structure enabled us to selectively image different layers of the struc-
ture and also observe how the properties of graphene changes depending on its immediate
environment. The analysis of the G-band energy showed a large distribution in the range
from 1583 to 1591 cm−1. Those values are however lower than the G-band energy ob-
served on the same graphene flake, but on a part which was deposited directly on Si/SiO2.
It means that, the use of hBN substrate does indeed help to reduce the effect of external
charge doping. However the broad distribution of the G-band energy position and the
high background observed on the hBN-graphene and hBN-graphene-hBN locations are
a direct result of the unwanted hydrocarbon residue which was deposited on the flakes
during the transferring procedure. This points to the need to improve sample fabrication
techniques to be able to obtain purer systems.
Considering experiments in magnetic fields, hBN-graphene and hBN-graphene-hBN loca-
tions on the sample turned out to be the first quasi-neutral exfoliated graphene samples,
which didn’t require application of any bias voltage to observe higher resonances of MPR.
In addition, the electronic quality of hBN-graphene sample was so high that we were able
to observe the L−1,1 excitation evolving continuously in the magnetic field from 4 T
to 18 T. These measurements revealed that vF is not constant but it decreases with
magnetic field. Moreover, together with our magneto-Raman measurements of graphene
flakes found on the surface of graphite we observed that vF is substrate dependent. In
fact, our results are in line with models predicting vF being inversely proportional to
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the average dielectric constant of the surrounding medium. Finally, we showed that the
changing value of the Fermi velocity can explain the difference in observed positions of
the 2D band in graphene deposited on different types of substrates.



Chapter 9

Results: gated CVD graphene

In this chapter we present results of tuning with electric field the coupling between optical
Γ point phonon and low energy electronic excitations in graphene. The most pronounced
effect of this coupling and the possibility to tune it is seen in the details of a magneto-
phonon resonance (MPR) at ∼ 27B. The observed strength of MPR is directly related
to the effective strength of electron-phonon coupling which can be switched on and off
by tuning the position of the Fermi level. In the first section (Sec. 9.1) we present the
idea of tuning the strength of electron-phonon interaction by changing the Fermi energy
by applying a gate voltage. Then details of sample production process and magneto-
Raman scattering experiment are presented (Sec. 9.2). Results showing how Γ phonon
energy changes depending on the applied gate voltage follows in section (Sec. 9.3) for
measurements without any external magnetic field applied and in section (Sec. 9.4) where
measurement were done at magnetic field values: below, above and at the fundamental
MPR resonance.

9.1 Tuning electron-phonon interaction

Because graphene is a gapless material, low energy interband electronic excitations with
zero momentum, often referred to as ’direct’ or ’optical-like’ excitations, exist and the elec-
tronic excitation spectrum can be easily modified by external means. It can be achieved
for instance by tuning the position of the Fermi level with an electrostatic gate [224] or
by applying an intense magnetic field perpendicular to the plane of the graphene crystal
[40, 28]. Effects related to electron-phonon interaction in graphene are very sensitive to
those ’direct’ electronic excitations. As a result, those effects can be tuned by modify-
ing the ’direct’ electronic excitations spectrum. Here we use one of such effects – the
magneto-phonon resonance (MPR) to monitor how switching on and off the electronic
excitations affects the renormalized Γ phonon energy.
The energy of optical phonons at the Γ and K points in graphene is determined up
to 5% of their energies, by the electron-phonon interaction. This is caused by the two
Kohn anomalies in the phonon energy dispersion at those points [103]. As a result, the
phonon energy as well as its linewidth, as seen through Raman scattering experiment,

127
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can be tuned externally by modifying the electronic excitation spectrum, for instance, by
changing the position of the Fermi level [107, 106], or by applying a strong magnetic field
[137, 138].
The magneto-phonon resonance, described in more details in Chapter 3, occurs when the
energy of one of the ’optical-like’ ∆|n| = ±1 electronic excitations matches the energy of
Γ point phonons. In such case the electron-phonon interaction leads to the hybridization
of vibrational and electronic excitations, which manifest itself by a clear anti-crossing of
those two modes. At the resonance, the splitting energy depends on the applied magnetic
field and on the strength of the electronic excitation. The latter one is determined by
the occupancy of the initial and final LLs implied in the excitation. Up to now, all ex-
periments were performed on graphene specimens with a fixed carrier density. Here, we
demonstrate experimentally that by changing the position of the Fermi level among the
LLs by electrostatic gating, it is possible in graphene in a magnetic field , to externally
switch on and off the resonant electron-phonon interaction.
Above B ∼ 5 T, all inter-LLs excitations have an energy higher than that of the op-
tical phonon, except for the L−1,0 and L0,1 excitations, whose energies increase like
T0 = vF

√
2e~B, where vF is the Fermi velocity, and which go into a resonance with

the phonon at much higher magnetic field at B ∼ 25 T. When such a high magnetic field
is applied, all ∆|n| = ±1 electronic excitations have an energy much higher than the
phonon energy except for the L−1,0/L0,1. These high energy electronic excitations con-
tribute to the phonon energy renormalization, by slightly lowering its value. This effect
is analogous to the lowering of the phonon energy, in the absence of a magnetic field, by
virtual creation and annihilation of electron-hole pairs due to the Kohn anomaly at the Γ

point. Without magnetic field, by changing the Fermi energy one can change the number
of possible electron-hole pairs contributing to the phonon energy renormalization. When
high magnetic field (B > 5 T) is applied to the sample, the inter-LL excitations Ln,m,
with n,m > 1, have much larger energy than the Γ phonon and are possibly overlapping
at high energy. In such case creation of the inter-LL excitations with n,m > 1 also leads
to lowering of the Γ phonon energy. The effect of L−1,0/L0,1 excitations on the phonon
energy at high magnetic fields is seen through a resonant coupling, which manifest itself
as a pronounced anti-crossing of those modes. Strength of that coupling can be tuned by
varying the filling factor. In fact, when the number of occupied Landau levels at a fixed
magnetic field changes in between ν = +6 and ν = −6 the resonant coupling between Γ

phonon and L−1,0/L0,1 excitations can be switched on and off. This effect can be traced
by performing a polarization resolved magneto-Raman scattering experiments and by
simultaneously tuning the Fermi energy, by applying a gate voltage to the sample.

9.2 Sample & experimental details

In the experiment the graphene grains obtained in a chemical vapor deposition(CVD)
process were studied. The graphene single grains were grown on the Cu substrate at
the temperature kept at 1000◦C, while partial pressures for hydrogen and methane were
25 mbar and 50 mbar, respectively. The growth was stopped at 5 min, before graphene
grains merge into a continuous layer. The graphene grains are then transferred onto
285 nm SiO/Si wafer with the PMMA-assisted method [203]. Those randomly scattered
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Figure 9.1: Left: Typical Raman scattering spectrum of the sample measured at T=4.2 K
using λ = 514.5 nm excitation. Right: Gray scale map of the G band feature intensity
(black and white stand for low and high intensity respectively). The metallic gate elec-
trode is visible in the middle of the flake, and the red dot is the location at which the
measurements have been performed.

graphene grains on SiO2 were finally contacted with arrays of long metallic leads (50nm
Au/ 5nm Ti), each serving as an individual ground when performing Raman scattering
measurements. When patterned into a hall bar geometry, such samples show an electronic
mobility of ∼ 4000cm2/(V·s). Polarization resolved Raman scattering measurements have
been performed with a home made miniaturized optical bench, which is described in more
details in Chapter 6. As an excitation source, we used the 514.5 nm line from argon-
ion laser, with the power set to 4 mW, focused on a 1µm diameter spot. By using
a set of polarizers and a quarter-waveplate, a cross-circular polarization configuration
σ ± /σ∓ (excitation polarization/collection polarization) was probed in the experiment.
This polarization configuration selects the ∆|n| = ±1 electronic excitations and optical
phonons at the Γ point (G band) [45, 31] in graphene. With the use of this setup,
experiments at liquid helium temperature and in magnetic fields up to 28 T were carried
out. They have been performed either at a fixed gate voltage while sweeping the magnetic
field, or at constant magnetic field while sweeping the gate voltage.
Fig. 9.1Left) shows a typical Raman scattering spectrum of the graphene flake which

has been further investigated in magnetic fields. The 2D band has a single Lorentzian
shape, characteristic of graphene monolayer [69, 59]. Fig. 9.1Right) shows a spatial map
of the G band intensity and helps to visualize the shape of the flake together with the
electrode. The bright spots appearing in this figure correspond to bilayer graphene with a
non-Bernal stacking, which are typical for CVD grown graphene. They are characterized
by an enhanced G band intensity, a single Lorentzian shaped 2D band feature slightly
shifted towards higher energies, and by a presence of an additional feature, the R band,
observed in the present case at 1490 cm−1 [225, 226]. Measurements were performed at
the location indicated by the red dot in Fig. 9.1Right), close to the electrode.
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Figure 9.2: Left: typical spectra at B=0 T for different values of the gate voltage. Right:
evolution of the phonon energy(black points) and FWHM(red points) as a function of
the Fermi level.

9.3 Electric field tuning of Γ phonon energy at B=0 T

Even in the absence of external magnetic field, tuning the position of the Fermi energy at
low temperature leads to a renormalization of the phonon energy and full width at half
maximum (FWHM) [107, 106] as a result of a gradual quenching of electronic excitations
due to Pauli blocking. Typical Raman scattering spectra for different values of the gate
voltage are presented in Fig. 9.2Left). The evolution of the phonon energy and FWHM
as a function of the Fermi energy, together with the calculations of this effect using a
phonon energy ε0 = 1588.7 cm−1, a dimensionless electron-phonon coupling constant
λ = 4.0 × 10−3, a Fermi velocity vF = 1.08 × 106 m/s and carrier density fluctuations
of ∼ 1.2 × 1011 cm−2 are shown in Fig. 9.2Right). This value for the Fermi velocity is
determined by the observation of the resonant coupling of the L0,1 inter-LL excitation
with the optical phonon at B ∼ 25 T. The Fermi energy was deduced from the applied
gate voltage using the relation ns = αVG, where ns is the electron sheet density, α =

7.56 × 1010 cm−2V−1 is the capacitance per unit area (expressed in elementary charge
units) of a 285nm thick SiO2 layer and EF = ~vF

√
πns.

9.4 Electric field tuning of Γ phonon energy at high magnetic
field

9.4.1 Tuning the Gamma phonon energy – model

The magneto-phonon resonance in graphene described in more details in Chapter 3, is
observed as oscillations in Γ point optical phonon energy, at magnetic fields when energies
of some of the inter-LL excitations come into a resonance with the zero-field phonon
energy. The relevant inter-LL excitations are those inter-band ones which change the LL
index by one (∆|n| = ±1), and one or two (depending on the exact value of the filling
factor) intra-band electronic excitations which also change the LL index by one (cyclotron



9.4. ELECTRIC FIELD TUNING OF GAMMA PHONON ENERGY AT HIGH MAGNETIC
FIELD 131

resonance).
In this chapter, to calculate the energies and spectral functions of the hybridized phonon-
magneto-exciton modes, we use a model that is based on the one proposed by Ando
[117, 137] and Goerbig [138] (see Sec. 3.6). However, the model used below allows to
properly calculate the phonon’s energies in a polarization resolved experiment.
The Raman spectrum is assumed to be proportional to the phonon spectral function

A = −(1/π)ImD±(ω) (9.1)

, which is determined by the retarded phonon propagator,

D±(ω) =
2ω0

ω2 − ω2
0 − 2λω0 Π±(ω)

. (9.2)

Here Π±(ω) is the retarded polarization operator which is diagonal in the circular ba-
sis, the two circular polarizations being denoted by ±. The polarization operator can
be straightforwardly evaluated, at an arbitrary filling factor ν, following the procedure
described in ref. [137, 138]. Keeping all the non-resonant terms (some of which were
omitted in refs. [137, 138], we obtain:

Π±(ω) =

∞∑
n=nF

ω(ω + iγ)T 2
0 /Tn
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+
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Here we denoted by nF ≥ 0 the (non-negative) index of the Landau level which is partially
filled (the integer part of |ν|/4 + 1/2), and by f the average electronic occupation of this
partially filled level (0 ≤ f < 1). We also introduced the interband transition frequency
Tn = (

√
n+
√
n+ 1)T0 and the two intraband frequencies corresponding to the cyclotron

resonance, ω+
c = (

√
nF + 1 − √nF )T0 and ω−c = (

√
nF −

√
nF − 1)T0. The electronic

damping γ is introduced phenomenologically, keeping in mind that Π±(ω) should satisfy
the general condition sign(ImΠ±(ω)) = −sign(ω) and be continuous upon the change
of the filling factor when nF → nF + 1.
Since effective oscillator strength, in above equations, for both inter- and intraband ex-
citations depends on the filling factor ν they can be switched off and on by varying
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Figure 9.3: Left: Schematic of the LL structure in grphene at finite magnetic field,
with relevant interband (solid arrows) and intraband (dotted arrows) excitations in both
polarization configuration. Right: Calculated evolution of the Γ point phonon energy as
a function of the magnetic field for neutral graphene. Blue arrows indicate the magnetic
fields at which the filling factor has been varied. The horizontal line indicates the phonon
energy in the absence of magnetic field.

the Fermi energy. This is illustrated in Fig. 9.3: Left which shows a schematic of the
4-fold degenerate LLs in graphene with an applied magnetic field together with the in-
terband (solid arrows) and intraband (dashed arrows) excitations which are active in
the two cross-circular configurations σ ± /σ∓ and that can be probed selectively with
polarization resolved Raman scattering techniques. Particular values of the filling factor
ν = (ns~)/(eB), where ns is the carrier sheet density, are indicated. The intraband
contribution is only active in the σ − /σ+ configuration for ν > +2 and in the σ + /σ−
configuration for ν < −2. Depending on the value of the filling factor, both intraband and
interband excitations can be allowed or quenched due to Pauli blocking. For instance,
the L0,1 excitation is allowed for −2 < ν < +6 and has maximal oscillator strength at
ν = +2, while the L−1,0 excitation is allowed for −6 < ν < +2 and its oscillator strength
reaches maximum value at ν = −2. Concerning the intraband excitations, similar condi-
tions on the filling factor can be derived and for instance, the L1,2 excitation is allowed
for +2 < ν < +10 and is the most intense at ν = +6, when the first LL is completely
occupied and the second LL is completely depleted.
Fig. 9.3Right) shows our calculation of Γ phonon energy as a function of magnetic field,
obtained by solving the Eq. 3.17. The phonon energy shows clear oscillations represen-
tative of the magneto-phonon resonance, when the interband excitations are tuned, one
after another, in resonance with the phonon energy. The magnitude of the change in the
phonon energy from the zero field value, depends on the magnetic field strength (compare
different arrows in Fig. 9.3) and on the Fermi energy position. The former dependence
simply states that the most pronounced differences in the G band energy from the zero
field value are observed at magnetic field when one of the L−n,n+1 or L−n−1,n excitations
energy comes into resonance with Γ point phonon energy. This is particularly well seen
for the resonance at B ∼ 25 T, when all excitations with n > 0 have much higher energy
than that of Γ phonons and the interacting phonon energy is mainly determined by only
L0,1 and L−1,0 excitations. These excitations tend to increase phonon energy at magnetic
field below the resonance at B = 25 T and decrease it at fields above the resonance. Un-
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derstandably, the closer to the resonant field, the larger is the observed phonon energy
shift.

Figure 9.4: G band energy as a function of fill-
ing factor at chosen values of magnetic field,
in σ + /σ− configuration, as calculated from
the model of Ando [137]. The blue shaded area
shows range of filling factor when L0,1 excita-
tion is active.

The phonon energy dependence on the
filling factor is shown in Fig. 9.4. It
presents energy of the G band phonon
mode at few chosen values of magnetic
field as the filling factor changes from
ν = −12 (EF at n=-3 LL, which is
halfway occupied) to ν = +12 (EF at
n=+3 LL, which is halfway occupied).
Calculations were done for the σ+ /σ−
configuration, or in other words when
only excitations with ∆|n| = +1 were
allowed. It shows that when the fill-
ing factor is outside the −2 < ν < +6

range (regions 1 and 3 in Fig. 9.4),
the G band energy steadily increases as
the Fermi energy moves away from the
charge neutrality point. The increase
in phonon energy is rather small, up
to 10-15 cm−1, and the rate of that in-
crease depends on the specific filling factor value. Characteristic sudden changes in the
first derivative of the G band energies is observed at ν = ...,−10,−6,−2, 2, 6, 10, ....
These filling factors correspond to the situation when the effective oscillator strength en-
ables/disables a given excitation due to Pauli blocking. That instantaneously changes the
number of electronic excitations that contribute to the phonon energy renormalization.
The changes in the G band energy in regions 1 and 3 are much smaller than the changes
observed for filling factor between −2 < ν < +6 (region 2). Curves in Fig. 9.4 were
calculated with an electronic broadening parameter δ = 300 cm−1. This value is about
three times larger than the realistic one, but was used to decrease the amplitude of the G
band shift in the resonant −2 < ν < +6 range, just to present the qualitative changes in
the G band energy on the same scale, in the whole −12 < ν < +12 range. Moreover, the
calculated curves in regions 1 and 3 show very similar behaviour for all magnetic fields in
the range from 22 T to 28 T. This is a manifestation of the fact, that close to the resonance
at B ∼ 25 T the Γ phonon energy is primarily determined by the interaction with L0,1

excitation. Once this interaction is quenched, which is the case when filling factor ν < −2

(all initial states are empty) or ν > +6 (all final states are occupied), the phonon energy
is determined by a total effect of interaction with all the others excitations, which at so
high fields is almost field independent. Evolution of phonon energy with the Fermi energy
position in this high doping regime is a close reminiscence of the same dependence in the
absence of the magnetic field. In the latter case the phonon energy is renormalized due to
interaction with a continuum of electron-hole excitations with energies larger than 2EF .
Increasing the EF continuously decreases the number of possible excitations, which tends
to increase the phonon energy. In the case of a highly doped system, the phonon energy
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is determined by the interaction with discrete inter-LLs excitations which also tends to
lower the phonon energy. As the EF increases, more and more of such excitations are
blocked, which increases the phonon energy. Since the energy of LLs is quantized, the
rate at which the phonon energy changes with filling factor shows a sudden change every
time some excitation is fully blocked (filling factor crosses ν = ±2 + 4n). This is seen in
Fig. 9.4 as a sudden change in the curves slope at ν = −10,−6,−2,+6,+10.
In the filling factor range −2 < ν < +6 the Γ phonon energy is entirely dominated by
the resonant interaction with L0,1 excitation, which largely overwhelms the effect of all
the other excitations. Depending on the value of magnetic field with respect to the res-
onance at ∼ 25 T, the phonon energy is either increased (for B < 25 T) or decreased
(for B > 25 T). This effect is illustrated in the blue-shaded part of Fig. 9.4. Since the Γ

phonon shift due to magneto-phonon resonance is usually order of magnitude larger than
a shift for filling factor in the range 1 and 3, a three times higher (δ = 300 cm−1) than
realistic value of electronic excitation broadening parameter δ was used in the calculation.
The magnitude of the shift continuously increases as the oscillator strength of L0,1 rises,
when the initial n = 0 LL begins to be populated at ν = −2. It reaches a maximum
when n = 0 LL is fully occupied at ν = +2, and starts to decrease as the number of
available empty states in the final n = +1 LL decreases at ν > +2. Then L0,1 excitation
is completely blocked as filling factor reaches ν = +6, when final state n = +1 LL is fully
occupied, and the oscillator strength of that transition goes down to zero.

9.4.2 Tuning the Gamma phonon energy – experiment

Figure 9.5: False colour map of the MPR
in gated CVD graphene. The red, dashed
line indicates the field ∼ 25T at which the
L0,1 excitation is in resonance with Γ point
phonon.

First, a gate voltage was applied to the
graphene sample to tune the carrier den-
sity to a level that enabled the L0,1 exci-
tation. Then in the σ + /σ− configura-
tion, a MPR was observed (see Fig. 9.5).
At B ≈ 25 T a clear anti-crossing ap-
pears, when the L0,1 excitation crosses the
phonon energy.
At selected values of the magnetic field
indicated by the blue arrows in Fig. 9.3:
Right we have tuned the Fermi energy –
from the valence to the conduction band
while measuring the Raman scattering re-
sponse. The selected values of magnetic
field correspond to the different regimes of
coupling the L−1,0 and L0,1 excitations to
the Γ phonon. At B = 14 T, the electron-
phonon interaction is not resonant, but
the observed phonon energy is sensitive
to the L−1,0/L0,1 excitations which, when-
ever they are active, tend to increase slightly the phonon energy with respect to its
B = 0 value. Those two particular electronic excitations are tuned to the phonon energy
at B ∼ 25 T. We have tuned the Fermi energy at B = 22, 26 and 28 T, which represents
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Figure 9.6: Upper row: false colour maps of the calculated phonon spectral function in
the σ + /σ− polarization configuration as a function of the filling factor for a) B=22 T,
b) B=26 T c) B=28 T. Spectra have been convoluted with a gaussian-type distribution
of carrier density with a standard deviation of 1.4× 1012. Lower row: false colour maps
of the Raman scattering intensity measured while changing the filling factor by applying
a gate voltage to graphene sample, performed at d) B=22 T, e) B=26 T f) B=28 T.

three different cases: just below, at the resonance, and slightly above the resonance, re-
spectively. The expected changes in the phonon energy when the L−1,0 or L0,1 is turned
on or off by tuning the Fermi energy are completely different in these three regimes. Be-
low the resonance, the phonon energy is expected to increase when L−1,0 or L0,1 is turned
on. Close to the resonance, the phonon should split into two components in clean enough
systems, one with an increased energy and the other with a reduced energy. Finally above
the resonance, the phonon energy is expected to decrease.
The measured Raman scattering spectra obtained while changing the gate voltage are in
very good agreement with those expectations. Fig. 9.6d), e) and f) shows in the form of a
false colour maps the intensity of the scattered light as a function of filling factor and an
energy of the scattered light. The measurements performed in the σ+ /σ− configuration
show a distinctively different behaviour at magnetic fields below, at and above the reso-
nance with L0,1 excitation. The fine structure developing on the side of phonon feature
in filling factor range −2 > ν > +6 is representative of the magneto-phonon resonance
with shifts of the phonon energy as large as 60 cm−1. Depending on the strength of the
magnetic field with respect to the resonant field for the L−1,0 excitation, the fine structure
appears either on lower energy side, or on higher or on both sides simultaneously as is
expected from the Γ phonon exhibiting a magneto-phonon resonance. This behavior can
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Figure 9.7: Raman scattering spectra of
G band in graphene measured at magnetic
field B=28 T, in σ+ /σ− configuration, at
two different filling factors: at ν = −4.6
when effective oscillator strength of L0,1

excitation is zero, and at ν = +2.1 when
its effective oscillator strength is close to
the maximum. Blue arrows indicates po-
sition of the center of two Lorentzian fits.
Curves were vertically shifted for a better
clarity.

Figure 9.8: Evolution of the phonon en-
ergy as a function of the filling factor in
the σ − /σ+(red dots) and σ + /σ−(blue
dots) configurations, together with the ex-
pected

√
ν̃n dependence (solid lines).

be very well reproduced by calculating the phonon spectral function, using Eq. 9.1 and
9.2. Fig. 9.6 a), b) and c) show results of such calculations made at the same values of
magnetic fields as those that were explored in the experiment. Both experimental results,
and calculations show that the largest shift of the phonon feature occurs at filling factor
ν = +2, when the oscillator strength of the L0,1 excitation reaches its maximum value.
In all three ranges of magnetic fields (below, at and above resonance), the Γ phonon

evolution with the applied gate voltage can be easily divided into two different regimes.
The first regime is, when the filling factor is lower than ν = −2 or when it is higher
than n = +6. In that regime, the effective oscillator strength of the L0,1 excitation is
quenched and the G band peak has an energy and shape characteristic for the non inter-
acting Γ phonon. The Raman scattering feature observed at ∼ 1590 cm−1 has an intense
and sharp (FWHM=7cm−1) Lorentzian shape. It also has a small asymmetry on the
low energy side which can be fitted with an additional Lorentzian peak (see uper curve
in Fig. 9.7). Position and shape of this low energy peak is almost independent on the
applied gate voltage and we are convinced that it originates from small puddles of elec-
tric charge that can be found in the whole illuminated area (∼ 1µm laser spot). Those
local puddles remained charged even after the Fermi energy, defined as an average value
across the sample, was swept from −250 meV to +250 meV. These highly doped regions
of graphene contribute to the Raman scattering spectrum by giving a peak at an energy
corresponding to a Γ phonon, with all electron-phonon interactions being suppressed.
The second filling factor range comprises −2 < ν < +6, when the L0,1 excitations has a
non-zero effective oscillator strength (lower curve in Fig. 9.7). The main G band peak, in
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Figure 9.9: False colour maps of the: a) measured scattered intensity and b) calculated
phonon spectral function at B=28T, in the σ − /σ+ polarization configuration as a
function of the filling factor. The calculated spectra have been convoluted with a gaussian-
type distribution of carrier density with a standard deviation of 1.4× 1012.

this range, broadens and shifts in energy in a direction which depends, whether the mag-
netic field value is below, at, or above the resonance field. At B=28 T this shift occurs
towards lower energy (up to 1526 cm−1) and the peak broadens up to FWHM≈ 60 cm−1

which is a clear hallmark of the magneto-phonon resonance. On the other hand the second
Raman peak corresponding to G band from graphene regions with a high charge density
fluctuations remains at almost constant size and energy around 1582 cm−1, which shows
that the applied gate voltage in the range from -80 V to +80 V was not high enough
to significantly change the carrier concentration in those highly doped domains. As can
be seen in Fig. 9.9 in the σ − /σ+ configuration, a similar behavior is observed but the
splitting has now a maximum value at filling factor ν = −2, when oscillator strength of
the L−1,0 electronic excitation, active in this configuration is at its maximum. Similar
results have also been obtained at B = 14, 22 and 26 T.
These experiments unambiguously demonstrate the coupling of electronic excitations and
optical phonons in graphene, both excitations having a similar angular momentum ±1.
At B = 28 T, we have determined the energy split of the phonon feature which is pre-
sented in Fig. 9.8 as a function of the filling factor, together with the expected

√
ν̃n

dependence(solid lines), where 0 ≤ ν̃n ≤ 1 is the partial filling factor of the nthLL, as de-
fined in ref. [138]. This energy difference represents half of the total energy split, because
at B = 28 T, only the low energy component of the coupled magneto-exciton-phonon
mode is observed. The overall agreement between these data and existing theories is very
good and such experiment offers the possibility to trigger the resonant electron-phonon
interaction by electrical means and to gradually reach a strongly interacting regime.

Gate dependence at high filling factors When filling factor is tuned to high values so
that the L−1,0 or L0,1 excitations are blocked due to Pauli principle, the contribution
of the electron-phonon interaction to the phonon energy is determined by two types of
electronic excitations. First are the interband electronic excitations, involving LLs with
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Figure 9.10: Evolution of phonon energy in the: a) σ−/σ+ and b) σ+/σ− configuration,
as a function of the filling factor for different values of the magnetic field(points) together
with theoretical expectations including intra-band excitations (solid lines).

high index n, and with energy much higher than the phonon energy, while the others are
the intraband excitations. Gradually quenching such interband excitations by increasing
the Fermi energy, leads to an increase in the phonon energy. In the range of magnetic
fields addressed in this study, the intraband excitations have an energy much lower than
the phonon energy (at B=26 T, L1,2/L−2,−1=670 cm−1 and L2,3/L−3,−2=510 cm−1) but
they participate to the phonon renormalization by increasing the phonon energy. This
effect is more pronounced as the magnetic field is increased and it can be seen in Fig. 9.10
in both polarization configurations. The solid lines in the figure represent the expected
phonon energy at different values of magnetic field, as a function of the filling factor.
They were calculated by solving for poles of denominator in Eq. 9.2 using the same
set of parameters, corresponding to experimental conditions, as used before. When the
intraband excitation is not active (for ν > +2 in σ−/σ+ configuration and for ν < −2 in
σ − /σ+ configuration) there is a good agreement between theoretical expectations and
the experimentally determined behaviour. The situation is rather different when going in
the opposite range of filling factor. The effect of intraband excitations is clearly visible
when comparing spectra obtained at ν = +2 and ν = −6 in the σ−/σ+ configuration and
spectra at ν = −2 and ν = +6 in the σ+/σ−. Without considering intraband excitations,
these spectra should be identical, because they correspond to situations when only the
fundamental interband excitation is quenched while higher energy excitations are allowed
in both polarization configuration and have the same energy (neglecting the electron-hole
asymmetry and the trigonal warping [29]). Fig. 9.11 clearly shows that the phonon energy
measured at these particular values of the filling factor is different and that there is a
correspondence between spectra measured in the σ−/σ+ at ν = −6 and those measured
in the σ+ /σ− configuration at ν = +6. In these two situations, the filling factor is such
that the intraband excitation (L−2,−1 and L1,2) has a maximized and identical oscillator
strength.
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Figure 9.11: Raman scattering spectra of a gated monolayer graphene measured in two
different polarization configurations at these filling factors in each polarization that only
the fundamental interband electronic excitatation is blocked, while all other are still ac-
tive. The black curves correspond to filling factors when the L−2,−1 (or L1, 2) interband
excitation is blocked, while red curved to filling factor when it is active.

9.5 Conclusion

We have shown that the resonant interaction between magneto-excitons and optical
phonons in graphene can be switched on and off by controlling the position of the Fermi
level, and hence, quenching or allowing specific electronic excitations through Pauli block-
ing. We have explored the three regimes for which the electronic excitation lies below, is
degenerated with or is above the optical phonon energy. These three regimes have dis-
tinct signatures when monitoring the position of the Fermi level. In the resonant regime,
satellite peaks appear when the L−1,0 or L0,1 excitation is active and energy shifts of the
phonon feature up to 60 cm−1 have been observed, together with the expected

√
ν̃n evolu-

tion of the splitting. Experimental results in the resonant regime are well reproduced by
existing theories. Our polarization resolved measurements have revealed the renormal-
ization of the phonon energy by either ∆|n| = +1 or ∆|n| = −1 electronic excitations.
Such experiments offer a new insight into the electron-phonon interaction in graphene
that could be used to continuously tune the electron-phonon system from a weakly to
strongly interacting regime and could be extended to multilayer graphene systems or to
hybrid graphene/2D materials heterostructures.





Chapter 10

Summary

10.1 Summary (English)

Despite a large scientific effort in the past few years and an enormous progress of our
knowledge about the properties of the first atomically-thin, two-dimensional system: the
monolayer graphene, this material does not cease to surprise us. In this work we have
studied the magneto-optical properties of three different, graphene based systems. Even
though all of them consist of the same 2D carbon crystal, the method of production and
the nearest environment largely affect the optical and electronic properties of graphene.
The original results obtained in the course of this work have been reported in Chap-
ters 7,8 and 9 and are summarized below.

In Chapter 7, we have presented the magneto-optical studies of the graphene
system, which, in our opinion, shows the highest electronic and structural quality among
all, ever investigated graphene structures. This unique but yet rather unexplored sys-
tem consist of graphene inclusions which can be found on freshly cleaved surfaces of
graphite. Graphite is a structurally perfect substrate for graphene but unfortunately it
makes graphene "invisible" for optical microscopy (weak interference contrast) and diffi-
cult to be selectively contacted (conducting substrate) for the sake of electric transport
measurements. On the other hand, graphene on graphite can be effectively studied
with spectroscopy methods and, in particular, with micro-magneto Raman scattering
techniques, as demonstrated in the present work.
The outstanding "electronic quality" of graphene on graphite allows us to observe its char-
acteristic electronic response (inter Landau level excitations) in magneto-Raman scatter-
ing experiments. Mapping this response, with micron scale resolution, is shown to be a
functional method to identify (imaging) the graphene flakes on graphite. In addition, we
have shown that the graphene locations on graphite are also characterized by a distorted
form of the phonon 2D band: the observation of the distorted form of the 2D band cor-
relates with the appearance of the characteristic electronic response. The identification
of graphene flakes on graphite is therefore possible even without applications of magnetic
fields.
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Next, the magneto-Raman scattering response of graphene on graphite has been analyzed
in more details, with the main focus on the effects which fall beyond the simplistic expec-
tations. The inter-Landau level (LL) excitations were observed on few different graphene
flakes, using different laser excitations and at different: room and liquid helium tem-
peratures. Characteristic features of electronic magneto-Raman scattering response are
briefly discussed. An unexpected splitting of the Raman peaks related to the electronic,
inter-LL excitations has been observed and interpreted in terms of a weak coupling of
graphene flakes to the graphite substrate. The observation of the fine structure of the
hybrid, LL excitation – E2g phonon, modes in the vicinity of the fundamental magneto-
phonon resonance (B ∼ 25T) has been attributed to the effects of charge doping and/or
electron-hole asymmetry of the electronic bands of graphene.
One of the main results of this work is presented in Section 7.5. There, we report
on the observation of a new class of magneto-phonon resonances. The conventional
magneto-phonon resonance in graphene is understood in terms of the hybridization be-
tween the E2g - phonon mode and the inter-LL excitation. These conventional resonances
are traced in an experiment when investigating the evolution of the E2g-phonon (Raman
G-band) as a function of the magnetic field. In contrast, our new magneto-phonon res-
onances manifest themselves as the magneto-resonant deformations (broadening and/or
splitting) of the electronic, inter-LL, Raman scattering peaks. Those new effects appear
when a given inter-LL excitation is in resonance with a double excitation mode, i.e., the
combined electron and phonon and/or two phonon excitation mode. This is in contrast
to a conventional magneto-phonon resonance which implies the hybridization of only two,
single particle excitation modes. Our new class of magneto-phonon resonances involves
phonons from the Gamma- as well as from the K-point of the Brillouin zone; the relevant
electronic excitations imply either inter- or intra-valley processes. The phenomenolog-
ical interpretation of this new class of magneto-phonon resonances is given in terms of
resonant shortening of the lifetime (spectral broadening) for the electrons and/or holes
excited in the electronic Raman scattering process. Furthermore, a more accurate model
which refers to the scheme of interactions, and which better accounts for the experimental
observations (peak splitting), is presented.

The most studied graphene structures are those exfoliated on Si/SiO2 substrates, al-
beit they suffer rather moderate electronic quality (mobility). Hexagonal boron nitride
(hBN), which is well lattice-matched to graphene, was expected to be a better choice for
the graphene substrate. This expectation has been indeed confirmed in a number of elec-
tric transport experiments. In this work (Chapter 8) we have examined the properties
of graphene on hBN with respect to its response in Raman scattering and magneto-
Raman scattering experimental probes. The intentionally fabricated structure was a
graphene sandwiched in between two hBN layers, altogether deposited on a Si/SiO2 sub-
strate. This was indeed the central part of the investigated structure, outside of which
we could, however, find other regions, such as, graphene on Si/SiO2 and graphene on
hBN (uncapped by the upper hBN layer). Those different regions were well identified
experimentally by comparing the optical microscope images of the investigated structure
with its mapping by Raman scattering signals. A spurious and often large background
signal in the Raman scattering response from regions which include the hBN layers is a
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clear disadvantage with respect to our optical experiments. The origin of this background
signal remains to be firmly explained; we speculate it might be associated to the specific
properties of the BN source material or it might arise from the contaminations brought
by chemical compounds which were used in the process of layer transfer.
Nevertheless, our Raman scattering experiments confirm that in contrast to the graphene
on a Si/SiO2 substrate, the graphene on hBN and/or graphene sandwiched in between
hBN layers show weaker charge doping and a superior electronic quality. This is proved
by the observation of conventional magneto-phonon resonances (hybridization of the E2g-
phonon with inter-LL excitations) which have been traced down to the relatively low
magnetic fields (B ∼ 1 T) both in case of graphene on hBN and graphene sandwiched in
between the hBN layers. Notably, the graphene on hBN, with smaller background signal,
shows also the electronic response (fundamental inter-LL transition) in our magneto-
Raman scattering experiments. Both observations, of rich in features magneto-phonon
effect and of electronic Raman scattering, have not been reported so far for any other
graphene system, except graphene on graphite.
An intriguing conclusion which follows our data modelling is that a single value for the
Fermi velocity, which is the main parameter defining the dispersion of electronic states
of graphene, cannot be used to explain an ensemble of our experimental results. To this
end, the Fermi velocity must be assumed as a parameter which depends on the type of
graphene’s substrate and which also weakly varies with the magnetic field. Those changes
in the Fermi velocity are attributed to the effects of electron-electron interactions, which
indeed largely contribute to the apparent values of the Fermi energy in graphene. The
dependence of the mean Fermi velocity on the substrate can be understood in terms of the
effect of different dielectric screening. The "proximity" screening in the substrate modi-
fies the strength of electron-electron interactions within the graphene sheet, and in turns
modifies the Fermi velocity. We confirm here the results of previous studies [218, 170] and
show that the apparent Fermi velocity correlates well with the inverse of the dielectric
constant of the substrate material. Subsequently, the substrate dependent Fermi velocity
can very well explain the observed shift in the 2D band position, in graphene deposited
on different substrates.
The changes of the Fermi velocity as a function of the magnetic field remain to be firmly
interpreted; we speculate that they may reflect the characteristic for graphene interplay
between the Coulomb attraction and the exchange repulsion for electron-hole pairs ex-
cited into discrete Landau levels (inter LL magneto-excitons).

Investigations of the conventional magneto-phonon resonance (hybridization of
optical E2g-phonon with inter-LL excitations) but on a gated graphene structure are
reported in Chapter 9. The graphene used in these studies has been initially grown
on copper using the method of chemical vapor deposition (CVD) and afterwards trans-
ferred and processed on a Si/SiO2 substrate. Notably, the properties of the CVD-grown
graphene are of particular interest since the CVD growth is among the most promising
technique for the industrial production of graphene.
The optical phonon of graphene couples to a continuum of electronic excitations in the
absence of the magnetic field, but it resonantly hybridizes with discrete inter-LL excita-
tions when the magnetic field is applied. In the absence of magnetic fields, tuning the gate
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voltage, and therefore the Fermi energy (and thus the available spectrum of excitations),
results in a rather smooth evolution of the phonon energy and its broadening. Our ex-
periment shows, that when tuning the Fermi energy in a magnetic field, and particularly
in the proximity of the fundamental magneto-phonon resonance, the phonon response
can be modified in a very spectacular way: the effect of resonant hybridization can be
switched to be apparent or completely absent. This "on" and "off" switching of the reso-
nant hybridization is the result of changing, with the gate voltage, the population of LLs
(filling factor). Depending on the LL filling factor, we activate or block a given inter-LL
transition which, potentially, couples to the optical phonon. The presented results of the
studies of the phonon response as a function of the gate voltage (filling factors) at differ-
ent magnetic fields (distinct conditions: below, at and above the fundamental, B ∼ 25 T
resonance) are well accounted by a theoretical modelling. The accurate description of
the experimental data required the improved version of the existing theoretical models
of the magneto-phonon resonance. Those latter models neglected some terms, related
to intraband inter-LL excitations (cyclotron resonance mode), which on the other hand
appeared to be essential for the interpretation of our experimental results.
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10.2 Conclusions (français)

Malgré les nombreux efforts scientifiques au cours des dernières années et l’énorme avancée
de nos connaissances sur les propriétés du premier système de l’épaisseur d’un atome,
donc purement bidimensionnels, le graphène monocouche, ce matériau ne cesse de nous
surprendre. Dans ce travail, nous avons étudié les propriétés magnéto-optiques de trois
différents systèmes de type graphène. Même si tous sont constitués du même cristal de
carbone 2D, la méthode de production ainsi que l’environnement le plus proche, affectent
grandement ses propriétés optiques et électroniques. Les résultats originaux obtenus dans
le cadre de ce travail sont décrits dans les chapitres 7, 8 et 9 et sont résumées ci-dessous.
Dans le Chapitre 7, nous présentons les résultats d’études magnéto-optiques d’un système
de type graphène, qui, à notre avis, présente des qualités électroniques et structurelles les
plus élevées parmi toutes les structures de graphène jamais étudiés. Ce système unique,
mais encore trop peu exploré, se présente sous forme d’inclusions de graphène qui peuvent
être trouvées sur des surfaces fraîchement clivées de graphite. Le graphite est un substrat
structurellement parfait pour le graphène, mais malheureusement, il rend le graphène
"invisible" pour la microscopie optique (à cause d’un trop faible contraste d’interférence)
et difficile à contacter de manière sélective (à cause du substrat conducteur) pour des
mesures de transport électrique. Par contre, le graphène sur graphite peut être étudié de
manière efficace par des méthodes de spectroscopie et, en particulier, avec des techniques
de diffusion micro-magnéto Raman, comme il est démontré dans ce travail.
La "qualité électronique" exceptionnelle du graphène sur graphite nous permet d’observer
sa réponse électronique caractéristique (excitations inter niveau Landau) par des expéri-
ences de diffusion Raman sous champ magnétique. Nous démontrons que la cartographie
de cette réponse, avec une résolution spatiale de l’ordre du micromètre, est une méthode
efficace pour identifier (imager) les flocons de graphène sur graphite. En outre, nous avons
montré que les emplacements de graphène sur graphite sont également caractérisés par
une forme anormale de la bande 2D du spectre de diffusion Raman: l’observation de cette
forme particulière de la bande 2D est corrélée avec l’observation de la réponse électron-
ique caractéristique du graphène. L’identification des flocons de graphène sur graphite
est donc possible, même sans application de champs magnétiques. Ensuite, la réponse
magnéto-Raman du graphène sur graphite est analysée plus en détail, avec un accent
porté sur les effets qui dépassent les attentes simplistes. Les excitations inter-niveaux de
Landau (LLs) ont été observé sur quelques flocons différents de graphène, en utilisant
différentes énergies d’excitations et différentes températures (température ambiante et
l’hélium liquide). Les caractéristiques principales de la réponse électronique de observée
par diffusion magnéto-Raman sont brièvement discutées. Une séparation inattendue des
pics Raman liés aux excitations, inter-LL électroniques a été observé et interprété en ter-
mes de faible couplage des flocons de graphène avec substrat de graphite. L’observation
d’une structure fine des modes hybride, excitation électronique- phonon E2g, proche de la
résonance magnéto-phonon fondamentale (B ∼ 25 T), est attribuée aux effets du dopage
de charge et / ou d’asymétrie électron-trou dans le graphène.
L’un des principaux résultats de ce travail est présenté à la Section 7.5. Là, nous rap-
portons l’observation d’une nouvelle classe de résonances magnéto-phonon. La résonance
magnéto-phonon classique dans le graphène est comprise en termes de l’hybridation entre
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le mode phonon E2g et les excitations inter-LL. Ces résonances classiques sont observées
dans une expérience où l’on étudie l’évolution du phonon E2g (bande G) en fonction du
champ magnétique. En revanche, nos nouvelles résonances magnéto-phonon se mani-
festent par des déformations magnéto-résonnantes (élargissement et / ou dédoublement)
des pics de diffusion magneto-Raman qui correspondent aux excitations électroniques
inter-LLs. Ces nouveaux effets apparaissent lorsque une des excitations inter-LLs est en
résonance avec un mode d’excitation double, c’est à dire, un mode combiné électron et
phonon et /ou un mode d’excitation à deux phonons. Ceci est en contraste avec une
résonance magnéto-phonon conventionnelle qui implique l’hybridation de deux modes
d’excitation à une particule uniquement. Cette nouvelle classe de résonances magnéto-
phonon implique des phonons au point Γ ainsi qu’au point K de la zone de Brillouin ; les
excitations électroniques pertinentes impliquent des processus inter- ainsi que intra-vallée.
L’interprétation phénoménologique de cette nouvelle classe de résonance magnéto-phonon
est donnée en termes de diminution résonante du temps de vie (de l’élargissement spectral)
pour les électrons et / ou trous excités dans le processus de diffusion Raman électron-
ique. De plus, un modèle plus précis qui se réfère aux processus d’interactions, et qui
rend mieux compte des observations expérimentales (séparation de pics), est présentée.

Les structures de graphène, le plus étudiés, sont ceux exfoliée sur des substrats
Si/SiO2, mais ils présentent une qualité électronique modérée (mobilité). Le nitrure de
bore hexagonal (hBN), qui a un réseau cristallin similaire à celui du graphène, apparait
comme étant un meilleur choix de substrat pour le graphène. Cette attente a été en effet
confirmée dans un certain nombre d’expériences de transport électriques. Dans ce travail
(Chapitre 8), nous avons examiné les propriétés du graphène sur hBN par rapport à sa
réponse en diffusion Raman et magnéto- Raman. La structure fabriquée est composée
d’une couche de graphène en sandwich entre deux couches de hBN, le tout étant déposé
sur un substrat de Si/SiO2. Ce fut, en effet, la partie centrale de la structure étudiée,
en dehors de laquelle nous avons pu, toutefois, trouver d’autres régions, telles que du
graphène sur Si/SiO2 et du graphène sur hBN (non encapsulé). Ces différentes régions
ont été identifiées expérimentalement en comparant les images de microscopie optique de
la structure étudiée avec sa cartographie par diffusion Raman. Un signal de fond parasite
et souvent très intense a été observé dans la réponse de diffusion Raman des régions qui
comprennent des couches de hBN. Ce signal nuit fortement à nos expériences d’optique.
L’origine de ce bruit de fond reste à être expliquée. Nous supposons qu’il pourrait être
associé à des propriétés spécifiques du matériau source de BN ou à des contaminations
apportées par les composés chimiques utilisés dans le processus de transfert.
Néanmoins, nos expériences de diffusion Raman confirment que, contrairement au graphène
sur substrat de Si/SiO2, le graphène sur hBN et/ou de graphène pris en sandwich entre
des couches de hBN montrent un dopage plus faible et une qualité électronique supérieure.
Ceci est prouvé par l’observation des résonances magnéto-phonon classiques (hybridation
des phonons E2g avec les excitations inter-LL) qui ont été observés jusqu’aux champs
magnétiques relativement faibles (∼ 1 T) à la fois dans le cas du graphène sur hBN et du
graphène encapsulé. Notamment, le graphène sur hBN, avec un plus petit signal de fond,
montre également dans nos expériences de diffusion magnéto-Raman, une réponse liée à
des excitations purement électroniques. Ces deux observations, de l’effet magnéto-phonon
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et de la diffusion Raman des excitations électroniques, n’avaient jusqu’à présent jamais
été rapporté pour d’autres systèmes de type graphène que le graphène sur graphite.
Une conclusion intéressante, qui fait suite à notre analyse des données, est qu’une valeur
unique pour la vitesse de Fermi, le paramètre principal qui définit la dispersion des états
électroniques du graphène, ne peut pas être utilisé pour expliquer l’ensemble de nos ré-
sultats expérimentaux. La vitesse de Fermi doit être considérée comme un paramètre qui
dépend du type de substrat, et qui varie avec le champ magnétique. Ces changements
dans la vitesse de Fermi sont attribués aux effets des interactions électron-électron. La
dépendance de la vitesse de Fermi moyenne en fonction du substrat peut être comprise
en termes d’effet d’écrantage diélectrique. L’écrantage par le substrat, modifie la force
des interactions électron-électron dans un feuillet de graphène, et à son tour modifie la
vitesse de Fermi. Nous confirmons ici les résultats d’études précédentes [218, 170] et nous
montrons que la vitesse de Fermi apparente varie bien comme l’inverse de la constante
diélectrique du matériau substrat. Par la suite, la dépendance de la vitesse Fermi par rap-
port au substrat peut très bien expliquer le décalage observé dans la position de la bande
2D, mesuré sur des graphènes déposés sur des substrats différents. Les changements de
la vitesse de Fermi en fonction du champ magnétique restent à être interprété; nous sup-
posons qu’ils peuvent refléter la différence entre l’interaction attractive de Coulomb et la
répulsion lié à l’interaction d’échange des paires électrons-trous excités dans les niveaux
de Landau discrets (inter-LL magnéto-excitons).

Les études de la résonance magnéto-phonon classique (hybridation des phonons op-
tique E2g avec les excitations inter-LL), mais sur une structure de graphène avec une
grille électrostatique, sont présentés dans le Chapitre 9. Le graphène utilisée dans ces
études a été initialement développée sur du cuivre en utilisant le procédé de dépôt chim-
ique en phase vapeur (CVD), et qui a ensuite été transféré sur un substrat de Si/SiO2.
Notamment, les propriétés du graphène CVD sont d’un intérêt particulier puisque la crois-
sance CVD est parmi les techniques les plus prometteuses pour la production industrielle
du graphène. Le phonon optique de graphène est couplé à un continuum d’excitations
électroniques en l’absence de champ magnétique, mais il s’hybride de manière résonante
avec des excitations discrètes inter- LL lorsqu’un champ magnétique est appliqué. En
l’absence de champ magnétique, le control de la tension de grille, et par conséquent de
l’énergie de Fermi (ainsi que du spectre d’excitations disponible), se traduit par une
évolution assez lisse de l’énergie des phonons et de leur élargissement spectrale. Notre
expérience montre que lorsque l’on ajuste l’énergie de Fermi dans un champ magnétique,
et en particulier au voisinage de la résonance magnéto-phonon fondamentale, la réponse
des phonons peut être modifiée de façon très spectaculaire: l’hybridation peut être ac-
tivée et désactivée. Cette commutation entre "marche" et "arrêt" de l’hybridation est le
résultat de l’évolution, avec la tension de grille, l’occupation des LLs (facteur de remplis-
sage). Selon le facteur de remplissage des LLs, nous activons ou bloquons une transition
inter-LL qui, potentiellement, se couple au phonon optique. Les résultats présentés de
l’étude de la réponse de phonons en fonction de la tension de grille (facteurs de rem-
plissage) à différentes valeurs du champ magnétique (conditions distinctes: au-dessous,
égale à et au-dessus de la résonance fondamentale à B ∼ 25 T) sont bien décris par
un modèle théorique. La description précise des données expérimentales nécessite une
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version améliorée des modèles théoriques existants de la résonance magnéto-phonon. Ces
modèles négligeaient certains termes, liés aux excitations intra-bande inter-LL (mode de
résonance cyclotron) qui sont en revanche essentielle pour l’interprétation de nos résultats
expérimentaux.
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