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pour moi. Tes judicieux conseils et soutiens aux moments importants ainsi que ta
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et M.Paturel, qui ont passé du temps à me conseiller et m’orienter: je n’oublierai pas
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soeur, et Lionel, mon père. Ce sera écrit noir sur blanc: la question de rester avec

toi ne s’est même pas posée. Cette volonté s’est naturellement imposée du fait du
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Présentation générale

La modélisation statistique tend à un équilibre entre une paramétrisation parcimonieuse

et suffisamment riche afin de décrire et prédire des processus stochastiques. Ce compro-

mis entre complexité statistique et parcimonie doit répondre au besoin d’obtenir à la

fois une bonne représentation statistique et des interprétations intuitives. Cet équilibre

est souvent précaire dans une modélisation (semi-)paramétrique multivariée, comme

l’illustre les modèles en temps discret pour les dynamiques matricielles, généralement

gourmands en termes de paramètres.

Ce projet de thèse fut tout au long mûri par cette problématique d’équilibre. Il a pour

but de proposer des dynamiques répondant à celle-ci, notamment via des méthodes de

réduction de complexité. Être capable de proposer de nouveaux processus suffisamment

riches et facilement estimables apporterait un gain important à la fois théorique et aussi

pratique, avec la volonté de modéliser la dynamique de processus aléatoires multivariés.

Le développement d’outils dits de ”sparsité” ou de ”régularisation”, idest encourageant

la réduction de dimension avec l’idée qu’un sous ensemble inconnu de variables est

pertinent pour décrire un phénomène, est au coeur de ce présent travail et fait l’objet

d’une analyse théorique approfondie. Des applications de ces outils sont proposées

pour décrire la dépendance entre composantes de vecteurs de grande taille.

En temps discret, deux grandes familles de modèles de variance-covariance ont fait

l’objet de développements conséquents dans la littérature: la famille des modèles à

volatilité stochastique et la famille des modèles GARCH multivariés. Ces approches

permettent de modéliser la dépendance temporelle du vecteur aléatoire d’intérêt par

son moment conditionnel d’ordre deux de façon dynamique. Elles offrent des appli-

cations en gestion de portefeuille par exemple, en prenant en compte les risques de

volatilité et de corrélation. Ce travail se place dans la seconde classe de modèles.

La principale difficulté liée à cette approche est dûe au caractère non-linéaire des dy-

namiques générées, ce qui rend complexe toute étude probabilisite (difficulté d’extraire

1



Présentation générale 2

des conditions de stationnarité, absence de formules de prédiction exactes pour les dy-

namiques de corrélations). De plus, la complexité statistique est inhérente notamment

à cause du nombre de paramètres à estimer. En notant N la dimension du vecteur

correspondant au nombre de composantes, la complexité est de l’ordre de O(N2). Ceci

implique le plus souvent une incertitude sur la significativité statistique des paramètres

estimés, pouvant impacter le pouvoir prédictif du modèle considéré. De cette remar-

que découle l’idée du fléau de la dimension ce qui contraint les études empiriques

à considérer des tailles de vecteur relativement faibles, avec au plus une dizaine de

variables. Or la grande dimension ne peut être occultée tant elle occupe une place

prépondérante: par exemple en gestion d’actifs, les portefeuilles contiennent souvent

plusieurs centaines de variables. En sus d’élaborer des modèles de prédiction fiables,

la contrainte de temps nécessite le développement d’approches parcimonieuses en vue

de résolutions rapides.

Le premier chapitre de ce document propose une nouvelle méthode pour générer des

processus conditionnels de matrices de corrélation. Celles-ci vont être spécifiées à par-

tir d’un sous-ensemble de corrélations partielles dont la structure est décrite par un

graphe non dirigé appelé ”vine” régulière défini dans la section 1.2. Cette approche

fournit des processus multivariés très flexibles et potentiellement parcimonieux dans la

mesure où les processus de corrélations partielles peuvent être spécifiés séparemment,

le problème multivarié pouvant être considéré comme un système de dynamiques uni-

variées liées par le graphe. Lewandowski, Kurowicka et Joe (2009) développent une

approche dans laquelle toute matrice de corrélation peut être obtenue à partir d’une

matrice de corrélation partielle, et vice versa, grâce à un algorithme itératif. Une fois

le choix des indices entrant dans les corrélations partielles fixé, une ”vraie” matrice de

corrélation est générée pour des valeurs arbitraires de corrélations partielles. Contraire-

ment aux dynamiques fort usitées issues du Dynamic Conditional Correlation (DCC) de

Engle (2002), des séquences de matrices de corrélation sont obtenues sans étapes de nor-

malisation en générant des processus univariés de manière indépendante. Ce chapitre

introduit une nouvelle classe de processus dits vine-GARCH. Cette approche novatrice

spécifie une dynamique de corrélations partielles données par la ”vine” régulière où ses

N(N−1)/2 branches sont associées à des nombres compris dans ]−1, 1[ et représentant

les corrélations partielles correspondantes. En utilisant la propriété d’injection entre

ces N(N − 1)/2 corrélations partielles et les N(N − 1)/2 corrélations ”usuelles”, une

vraie matrice de corrélation est ainsi générée. Ces corrélations partielles sont empilées

dans un vecteur noté Pct et ordonnées de manière lexicographique, du plus petit au
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plus grand ensemble d’indices, tandis que les corrélations usuelles correspondent aux

composantes de la matrice de corrélation conditionnelle notée Rt. Ainsi, la dynamique

vine-GARCH proposée est

Ht = DtRtDt,

Ψ (Pct) = Ω +

p∑
k=1

ΞkΨ (Pct−k) +

q∑
l=1

Λlζt−l,

Rt = vechof (Fvine (Pct)) , où

• Ht est la matrice de variance-covariance obtenue par le produit de la matrice

diagonale Dt, dont les composantes correspondent aux variances conditionnelles

univariées, et de la matrice de corrélation Rt.

• Pct est le vecteur des corrélations partielles définies par la structure de ”vine”

régulière.

• vechof(·) est l’opérateur de ”devectorisation”, transformant un vecteur en matrice

symmétrique. Il s’agit de la transformation inverse de l’opérateur vech(·).

• Les quantités Ξk and Λl correspondent aux matrices N(N − 1)/2×N(N − 1)/2,

de coefficients inconnus, et Ω un vecteur N(N − 1)/2 de composantes incon-

nues. Ainsi est défini le vecteur des paramètres inconnus de corrélation θc =

(Ω,Ξ1, . . . ,Ξp,Λ1, . . . ,Λq). Ces matrices sont choisies de manière arbitraire, où

en particulier la propriété de définie-positivité n’est pas imposée.

• Le vecteur ζt−1 est Ft−1-mesurable et correspond à l’innovation dans la dy-

namique des corrélations partielles. Il est défini de telle sorte que E[ζt−1] '
E[Pct−1], procédure qui est conforme avec les équations de mise à jour dans les

modèles de type GARCH. La construction du vecteur ζt−1 est décrite dans la

sous-section 1.3.2.

• Ψ(.) est une transformation déterministe de Pct afin de conserver des dynamiques

de corrélations partielles dans ] − 1, 1[. Par soucis de simplification, Ψ(.) est

connue et définie de ]− 1, 1[N(N−1)/2 dans RN(N−1)/2 telle que

Ψ(Pct) =
(
ψ(ρ1,2,t), . . . , ψ(ρN,N−1|LN−1,N ,t)

)′
, ψ (x) = tan (πx/2) .

• La fonction Fvine(.) correspond à l’injection du vecteur des corrélations partielles

Pct vers les corrélations (dans Rt) en utilisant l’algorithme de Lewandowski,
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Kurowicka et Joe (2009). Elle est définie de ]−1, 1[N(N−1)/2 dans ]−1, 1[N(N−1)/2

par Fvine(ρ1,2,t, . . . , ρN−1,N |L,t) = (ρ1,2,t, . . . , ρN−1,N,t)
′.

L’approche vine-GARCH encourage la parcimonie et donc la réduction du nombre de

paramètres car des contraintes sur les corrélations partielles peuvent être imposées à

tout niveau du graphe ”vine” sans modifier les autres corrélations partielles. En effet,

il est pertinent d’annuler (ou de laisser au moins constante) toutes les corrélations

partielles associées à la ”vine” à partir d’un niveau r donné. Lorsque les corrélations

partielles sont supposées nulles à partir de ce niveau, il est nécessaire de savoir si les

corrélations usuelles correspondantes dépendent de la structure de la vine à partir de

celui-ci. Pour ce faire, le concept de ”r vine-Free” est introduit. Une ”vine” est ”r

vine-free” si, lorsque toutes les corrélations partielles sont nulles à partir du niveau r,

les corrélations usuelles ne dépendent pas de la manière dont la ”vine” est construite

à partir de ce niveau. Cette propriété est vérifée par toute ”vine” régulière. Ainsi la

dimension du problème statistique peut potentiellement être réduite en utilisant cette

propriété, seuls les r premiers niveaux des dynamiques de corrélations partielles devant

être estimés. En outre, ce chapitre introduit une procédure d’estimation du modèle

vine-GARCH par quasi-maximum de vraisemblance en plusieurs étapes. Celle-ci peut

être menée équation par équation, passant en revue les noeuds successifs du graphe.

Ceci fournit une solution au fléau de la dimension.

Une étude théorique approfondie est menée pour obtenir les conditions d’existence

et d’unicitié de solutions stationnaires strictes de la dynamique proposée. En effet,

prouver ces propriétés probabilistes est un préliminaire nécessaire avant de développer

une théorie asymptotique (typiquement les propriétés de consistance et de normalité

asymptotique de l’estimateur du quasi-maximum de vraisemblance) dans la mesure où

les lois fortes des grands nombres ou les théorèmes centraux limites sont facilement

obtenus dans ce cas. Par exemple, Boussama, Fuchs et Stelzer (2011) établissent ces

résultats de stationnarité pour la famille des modèles BEKK. Dans le cas du proces-

sus vine-GARCH, le passage des corrélations partielles aux corrélations usuelles est

non-linéaire par l’injection Fvine(.). Cette transformation rend complexe toute étude

visant à établir les conditions de stationnarité, à l’instar du modèle DCC. Pour établir

les conditions d’existence et d’unicité de solutions stationnaires strictes du proces-

sus vine-GARCH, celui-ci est écrit comme une châıne de Markov non linéaire. La

difficulté majeure est l’impossibilité d’extraire une fonction déterministe explicite re-

liant la châıne de Markov au processus d’innovation supposé stationnaire et ergodique.
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Ainsi est utilisé le critère de Tweedie (1988) fournissant l’existence d’une mesure de

probabilité invariante pour la dynamique vine-GARCH écrite comme une châıne de

Markov. Une fois établies les conditions de stationnarité, les propriétés asymptotiques

de l’estimateur du quasi-maximum de vraisemblance en deux étapes sont étudiées et les

conditions de consistance faible et de normalité asymptotique sont fournies. Enfin les

performances empiriques du modèle vine-GARCH sont analysées au travers d’études

simulées et sur données réelles.

Cette nouvelle approche pour générer des dynamiques de matrices de corrélation sup-

pose d’imposer des contraintes a priori dans le graphe ”vine” afin d’être parcimonieuse.

Il s’agit de contraindre le nombre de paramètres en excluant certaines variables et

groupes de variables - les corrélations partielles passées ou les corrélations partielles

traitées selon le niveau dans le graphe ”vine”- traitées comme non pertinentes pour

décrire la corrélation conditionnelle instantannée. Cette réduction correspond à une

approche en forme réduite a priori, la condition étant que le modèle conserve une flexi-

bilité suffisante afin de capturer des dynamiques hétérogènes et de proposer de bonnes

performances prédictives.

Le traitement de la parcimonie dans les modèles vine-GARCH est basé sur des choix a

priori de niveaux ”limites” au delà-desquels les corrélations partielles sont négligeables.

De manière plus générale, développer des approches dites de pénalisation ou de régularisation,

plus rigoureuses et moins artisanales, est souhaitable. C’est ce qui a motivé l’étude

relative à la pénalisation ”Sparse Group Lasso” ainsi que ses applications aux modèles

dynamiques multivariés. En ajoutant à une fonction objectif une fonction de pénalité

singulière en zéro, une procédure statistique réalise à la fois de la sélection de vari-

able et de l’estimation. Le concept clé de régularisation intervient dans le cadre de

statistiques en grande dimension, l’idée étant de contraindre les paramètres et donc les

variables correspondantes, pour éviter les problèmes de surapprentissage. Le besoin de

régularisation peut facilement être perçu en considérant le cas dans lequel il y a ex-

actement le même nombre de variables que d’observations. La méthode des moindres

carrés linéaires expliquera parfaitement les données, la statistique R2 étant égale à un.

En revanche, il est fort probable que l’utilisation du modèle estimé produise de faibles

performances prédictives hors-échantillon dans la mesure où le modèle estimé est car-

actérisé par le surapprentissage. D’une part, les moindres carrés capturent le signal

quant à la manière selon laquelle les variables prédictives doivent être utilisées pour

prédire la variable de sortie; mais d’autre part les moindres carrés capturent le bruit

inhérent à l’échantillon, ce qui implique que le modèle ne peut être utilisé pour produire
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des prédictions hors-échantillon utiles. Ainsi dans ce cadre, un modèle de prédiction

gagne en pertinence en recourant à de la régularisation ou réduction de dimension. Cela

signifie que les estimateurs doivent être contraints de telle sorte que le surapprentissage

soit évité. Pour ce faire, de nombreuses fonctions de régularisation ont été proposées

dans la littérature, selon le problème que l’on cherche à décrire. L’intuition principale

de la pénalisation est d’identifier le vrai support sous-jacent sparse inconnu, c’est-à-dire

l’ensemble des indices pour lesquels les variables correspondantes sont conservées pour

décrire une dynamique, la taille de cet ensemble étant plus petit que l’ensemble de

toutes les variables potentielles (il est formé par les multiples manières de transformer

et de faire interagir les variables).

Des procédures de régularisation sont détaillées par exemple par Hastie, Tibshirani

et Wainwright (2015). Quant aux propriétés théoriques des estimateurs pénalisés,

deux types d’analyse sont possibles. D’une part, les approches en échantillons finis

traitent de la grande dimension en considérant la taille du vecteur des paramètres à es-

timer potentiellement plus grand que le nombre d’observations, supposé fixe. L’analyse

théorique vise à établir des bornes en probabilité ou en espérance, pour une métrique

donnée, telles l’erreur de prédiction ou l’erreur d’estimation du paramètre. Ces bornes

seront valables avec une probabilité grande et sont fonctions du vrai support sparse.

Ces types de résultats sont résumés par exemple par Bühlmann et van de Geer (2011).

L’autre point de vue est asymptotique, cas dans lequel la taille de l’échantillon tend

vers l’infini. Les premiers résultats asymptotiques pour l’estimateur Lasso ont été

établis par Knight et Fu (2000). Fan et Li (2001) ont développé un cadre général de

vraisemblance pénalisée et ont analysé les propriétés de consistance et de normalité

asymptotique de l’estimateur SCAD. Le cas de la grande dimension est traité lorsque

la taille de l’échantillon ainsi que la taille du vecteur des paramètres tendent simul-

tanément vers l’infini. Par exemple, Fan et Peng (2004) traitent de cet asymptotique

double pour des fonctions de vraisemblances pénalisées.

Le second chapitre contribue à cette littérature dite de ”régularisation” ou ”pénalisation

statistique”. J’y propose une étude théorique approfondie d’une généralisation de

l’estimateur Sparse Group Lasso (SGL), initialement proposé par Simon, Friedman,

Hastie et Tibshirani (2013). Dans le contexte de données dépendantes, un cadre de

M-estimateur est développé dans lequel la fonction objectif - non pénalisée - est con-

vexe et la pénalisation étudiée est du type ”adaptive Sparse Group Lasso”. Celle-ci

fait intervenir deux pénalités, la composante l1-Lasso et la composante l1/l2 pour

le Group Lasso, pondérées par des coefficients stochastiques de première étape. De
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plus, deux paramètres de régularisation sont introduits pour chaque composante de

l’”adaptive Sparse Group Lasso”, le Lasso et le Group Lasso. Le principal avantage de

cette pénalisation est de favoriser la sparsité au niveau d’un groupe de paramètres, ce

qui écartera le groupe de covariables concerné, ainsi que la sparsité à l’intérieur d’un

groupe de paramètres lorsque celui-ci est considéré comme statistiquement significatif

pour décrire la variable de sortie.

Dans ce cadre, le vecteur des paramètres θ de taille d est décomposé en m groupes

Gk, k = 1, · · · ,m avec card(Gk) = ck et
m∑
k=1

ck = d. Ainsi θ = (θ
(k)
i , k ∈ {1, · · · ,m}, i =

1, · · · , ck). L’objet d’intérêt est l’ensemble A := {j : θ0,j 6= 0} qui correspond au

support sous-jacent sparse, θ0 étant le vrai paramètre inconnu. Cet ensemble inconnu

est par hypothèse plus petit que l’ensemble de toutes les variables potentielles. L’objet

principal de ce chapitre est de prouver d’un point de vue asymptotique la capacité

de la pénalisation ”adaptive SGL” à identifier le support A et d’établir les vitesses

de convergence des paramètres de régularisation pour obtenir cette propriété. Plus

précisément, le problème statistique consiste à minimiser dans l’espace convexe des

paramètres Θ un critère pénalisé de la forme

θ̂ = arg min
θ∈Θ

{GTϕ(θ)},

où

GTϕ(θ) = GT l(θ) +R(λT , γT , θ̃, θ),

avec (εt) le vecteur des observations; GT l(θ) =
1

T

T∑
t=1

l(εt; θ) est la fonction objectif

non pénalisée, supposée convexe par rapport aux paramètres pour toute réalisation

de εt; le modèle d’intérêt entre dans le critère l(εt; θ); R(λT , γT , θ) est la fonction de

régularisation (ou pénalité) ”adaptive Sparse Group Lasso”, définie par

R(λT , γT , θ̃, θ) = p1(λT , θ̃, θ) + p2(γT , θ̃, θ),

avec

p1(λT , θ̃, θ) = λTT
−1

m∑
k=1

ck∑
i=1

α(θ̃
(k)
i )|θ(k)

i |,

p2(γT , θ̃, θ) = γTT
−1

m∑
l=1

ξ(θ̃(l))‖θ(l)‖2.

La quantité θ̃ est un estimateur de première étape supposé
√
T -consistant. Les paramètres

de régularisation λT et γT varient avec T . Enfin, α(θ̃(k)) ∈ Rck+ , ξ(θ̃(l) ∈ R+ sont définis
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par

α
(k)
T := α(θ̃(k)) = (|θ̃(k)

i |−η, i = 1, · · · , ck), ξT,l := ξ(θ̃(l) = ‖θ̃(l)‖−µ2 ,

pour des constantes η > 0 et µ > 0. Ces derniers jouent un rôle clé pour satisfaire la

propriété oracle dans la mesure où ces poids impactent les convergences des paramètres

de régularisation.

Dans un premier cadre asymptotique, pouvant être qualifié d’asymptotique simple,

où seule la taille de l’échantillon diverge, sont établies en particulier la consistance

et la distribution asymptotique de l’estimateur SGL dans sa version non ”adaptive”,

cas dans lequel n’intervient pas d’estimateur de première étape et donc les poids α

et ξ sont non stochastiques. Il est également prouvé dans le Théorème 2.4.16 que la

version ”adaptive” du SGL satisfait la propriété oracle au sens de Fan et Li (2001):

l’estimateur sparse identifie le vrai support sparse sous-jacent et sa loi est asympto-

tiquement normale. Sur la base des travaux de Fan et Peng (2004) et de Zou et Zhang

(2009), la grande dimension est également traitée avec un asymptotique double où la

dimension du vecteur à estimer diverge avec la taille de l’échantillon. Ainsi la taille

du vecteur des paramètres dépend de T avec d := dT = O(T c) avec 0 < c < 1. Le

principal résultat de la section 2.5 est la propriété oracle en asymptotique double. Les

vitesses de convergence des paramètres de régularisation sont explicitement établies

dans le théorème 2.5.24, notamment via un compromis entre les pénalisations de la

composante Lasso et de la composante Group Lasso. Cette analyse met en évidence

le fait que ce cadre général de M-estimateur ne favorise pas la flexibilité dans le com-

portement de dT , autrement dit c ne peut être compris dans tout l’ensemble ]0, 1[. Ce

problème a été rencontré par Fan et Peng (2004) dans un cadre i.i.d. et sans esti-

mateur ”adaptive”. Ce manque de flexibilité provient de la nécessité de contrôler le

terme d’ordre trois dans les développements de Taylor. Ce problème n’apparâıt pas

si la fonction objectif correspond aux moindres carrés, dans la mesure où ce terme

d’ordre trois disparâıt. Par exemple, Zou et Zhang (2009) ont prouvé la propriété

oracle pour l’estimateur ”elastic-net” d’un point de vue asymptotique double pour des

modèles linéaires avec 0 < c < 1. Enfin, les propriétés asymptotiques de l’”adaptive

Sparse Group Lasso” sont illustrées par des expériences simulées et soulignent que cet

estimateur offre de meilleures performances que d’autres méthodes oracles - adaptive

Lasso, adaptive Group Lasso - tant en termes de précision statistique que de sélection

de variables.

Le cadre général développé dans le second chapitre englobe d’importantes familles
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de modèles paramétriques et semi-paramétriques: par exemple les modèles linéaires

généralisés; les modèles de type Cox; le problème d’estimation des matrices de précision

dans un cadre gaussien; etc. Le modèle linéaire pénalisé est le plus fréquemment

usité dans cette littérature dans la mesure où la fonction de perte convexe qui lui

est rattachée, les moindres carrés ordinaires, est directement manipulable pour des

études théoriques du type échantillon fini avec les bornes oracles - bornes d’erreur

de l’estimateur pénalisé valables avec une forte probabilité pour un certain choix de

paramètre de régularisation et exprimées en fonction du support sparse sous-jacent

inconnu - ou de type asymptotique. En effet, le développement d’ordre trois étant nul,

l’analyse en est grandement facilitée. En outre, d’un point de vue empirique, beaucoup

d’algorithmes de résolution ont été proposés dans ce cadre des moindres carrés pénalisés

(algorithme du gradient typiquement).

L’idée du troisième chapitre est de développer des dynamiques linéaires pour les proces-

sus multivariés de variance-covariance afin d’utiliser la méthode des moindres carrés et

d’illustrer l’utilité de la méthodologie ”adaptive Sparse Group Lasso” développée dans

le chapitre 2. Dans le cas univarié, le modèle GARCH ne peut-être estimé par moin-

dres carrés ordinaires, contrairement au modèle ARCH. Cette caractéristique peut-

être étendue à un système multivarié sous la contrainte de définir une paramétrisation

générant des matrices définies-positives. En notant le vecteur des observations (εt),

avec Ht = E[εtε
′
t|Ft−1] et Ft := σ(εs, s ≤ t) la filtration naturelle, la dynamique ARCH

multivariée est donnée par

εtε
′
t = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k) + ζt, E[ζt|Ft−1] = 0,

avec A et Bk, k = 1, . . . , q, symmétriques et définies-positives. La contrainte majeure à

intégrer est la convexité du problème statistique par rapport aux paramètres. D’abord

d’un point de vue empirique, la convexité assure de bonnes propriétés de convergence

des algorithmes de résolution. En outre, d’un point de vue théorique, la propriété

oracle de l’estimateur ”adaptive SGL” repose sur la convexité du problème. C’est

la raison pour laquelle les processus ARCH multivariés et Cholesky-GARCH exposés

respectivement dans les sections 3.3 et 3.4 satisfont la propriété de linéarité par rapport

aux paramètres. En outre, en vue de la définie positivité des processus matriciels, les

contraintes imposées sur ceux-ci sont au plus linéaires.

Ainsi ce chapitre propose d’utiliser le cadre M-estimateur pénalisé développé dans

le chapitre 2 pour les moindres carrés pénalisés. En utilisant les paramétrisations
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exposées dans les sections 3.3 et 3.4, les processus peuvent être estimés par la méthode

des moindres carrés ordinaires. Ceci est un avantage crucial par rapport aux fonctions

objectifs non-linéaires car les méthodes de résolution sont rapides et les procédures

de régularisation peuvent être aisément mises en oeuvre dans ce cadre. Le problème

statistique s’exprime ainsi

θ̂ = arg min
θ∈Θ

{GTϕ(θ)},

où

GTϕ(θ) = GT l(θ) +R(λT , γT , θ̃, θ),

avec R(λT , γT , θ̃, θ) la pénalité ”adaptive Sparse Group Lasso” étudiée dans le chapitre

2; la partie non pénalisée est GT l(θ) =
1

T

T∑
t=1

l(εt; θ),

l(εt; θ) = ‖Vech(εtε
′
t)−Ψ(εt−1)θ‖2

2,

où Ψ(εt−1) est une matrice dont les composantes, correspondant à une transformation

des éléments des vecteurs Vech(εt−kε
′
t−k), k ≥ 1, sont Ft−1-mesurables et dont la struc-

ture dépend des spécifications ARCH multivariées données dans les sections 3.3 et 3.4.

Certaines spécifications de Ψ(εt−1) introduiront des matrices de variance-covariance

définies-positives. Dans ce cadre d’estimation linéaire, θ̃ est un estimateur de première

étape des moindres carrés ordinaires.

Cette approche ne peut pas être développée pour les dynamiques MGARCH en présence

de termes autorégressifs. Néanmoins, ces processus peuvent être approchées avec q

élevé. Pour les MGARCH, la méthode d’estimation par quasi-maximum de vraisem-

blance gaussien est la plus fréquemment usitée. Cette méthode peut difficilement être

utilisée pour des vecteurs stochastiques de grande taille N dans la mesure où la com-

plexité est de l’ordre O(N2). C’est la raison pour laquelle la majorité des applications

se limitent à des vecteurs de taille faible (typiquement N ≤ 10) ou se placent dans

des processus scalaires, tels que les DCC ou BEKK scalaires, non adaptés pour des

problèmes de grande dimension en présence de composantes hétérogènes.

Dans ce cadre pénalisé, la régularisation Sparse Group Lasso est particulièrement

adaptée dans la mesure où les groupes peuvent être définis par le vecteur des variables

correspondant aux retards. En effet, pour un nombre q élevé de retards initialement

spécifiés, auquel correspond l’ensemble des variables retardées, la régularisation vise

à identifier un sous-ensemble des variables retardées d’ordre q̃ < q. L’idée est que
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les coefficients tendent vers zéro à partir d’un certain retard, les variables observées

récemment ayant un effet plus significatif sur la covariance instantanée que des obser-

vations plus lointaines. De plus, pour éviter les problèmes de surapprentissage, il est

nécessaire de contraindre les paramètres par une telle procédure de pénalisation. Les

performances de cette procédure de régularisation lors de l’estimation des dynamiques

ARCH multivariées proposées sont étudiées à travers des simulations. Il s’agit de

mesurer l’écart entre la vraie matrice de variance-covariance connue et simulée et les

matrices de variance-covariance estimées selon plusieurs spécifications. Parmi celles-

ci se trouvent les modèles ARCH et Cholesky-GARCH pénalisés ainsi que le DCC

scalaire. Ces simulations mettent en évidence le gain en termes de précision obtenue

sur la mesure de la matrice de variance-covariance lorsque la procédure ”adaptive

Sparse Group Lasso” est utilisée.



Chapter 1

Dynamic Correlation Model based

on Vines

1.1 Introduction

A multivariate setting is necessary for modeling the cross-sectional and temporal de-

pendencies between N financial asset returns. It allows for developing relevant man-

agement tools, especially when the interactions between financial markets become

stronger. This concerns areas such as asset pricing, portfolio allocation, risk man-

agement, and the like.

The usual modeling approach relies on the specification of the first two moments of

vectors of returns conditional on their past (and current market information possibly).

Once this is done, some assumed vectors of innovations close the model specifica-

tion. The multivariate GARCH (MGARCH) and the multivariate stochastic volatility

(MSV) models are the two main frameworks: see the surveys of Bauwens, Laurent

and Rombouts (2006) and Asai, McAleer and Yu (2006) respectively. Such approaches

allow for generating sequences of asset return covariance matrices (Ht), and then pro-

vide their correlations as a by-product. In financial econometrics, MGARCH models

are most commonly used. Indeed, they induce some typical patterns as volatility clus-

tering and complex dependencies (through copula-GARCH models, e.g.), without the

necessity of complex inference procedures, contrary to most MSV models.

Nonetheless, the number of MGARCH parameters often increases dramatically with

the number of underlying assets. Therefore, some simplified MGARCH specifications

12
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have searched for parsimony fostering simple estimation and interpretation, but some-

times at the price of an over-simplification. Besides, MGARCH models have to guar-

antee the positive definiteness of the generated covariance matrices. This induces

complexities, and more or less arbitrary model constraints. Our goal will be to stay

inside the MGARCH family, without suffering from these drawbacks and with a focus

on correlation dynamics.

But how are correlation managed in such MGARCH models ? The BEKK model

(Engle and Kroner, 1995) specifies the dynamics of the underlying covariance matrices

Ht directly as a deterministic quadratic function of past returns, but the number of

parameters has a O(N2) complexity. Hence Engle, Ng and Rotschild (1990) proposed

the Factor-GARCH model, following the intuition that comovements of asset returns

are driven by a small number of common underlying variables. As a by-product and

in both cases, conditional correlations may be obtained, but their expressions are not

intuitive or easily explicable.

Other specifications focus on conditional correlations more directly. Intuitively, uni-

variate GARCH dynamics (or others) may be chosen to get conditional variance pro-

cesses. Then, based on these dynamics, a correlation process (Rt) could be built. This

was the way proposed by Engle (2002) with the Dynamic Conditional Correlation

(DCC) approach. But to cope with the positive definiteness of Rt, DCC-type models

have to rely on a not intuitive normalization stage. This has been a source of difficulties

and criticism (see Caporin and McAleer, 2013), in particular to obtain a sound the-

ory for inference. Fermanian and Malongo (2016) pointed out these drawbacks when

exhibiting some conditions for the stationarity of DCC model trajectories. Moreover,

although these families may allow for generating high-dimensional correlation matrices,

their estimation and forecasting are clearly challenging without additional restrictions.

Several attempts tried to reduce significantly the number of parameters, such as the

scalar DCC processes of Engle and Sheppard (2001), the Flexible DCC model of Billio

and Caporin (2006), among others. But the ability of the latter models to capture

complex and rich dynamics of heterogeneous series is limited.

Therefore, the discussions around correlations often remain fragile and partly “black-

box”, since neither standard MGARCH or DCC-type models work directly on explicit

correlation dynamics. Indeed, the former ones set covariances when the latter ones

depend on a normalization stage. In this paper, we propose to circumvent the prob-

lem with another method using partial correlations. This approach tends to be both
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parsimonious and flexible, and will specify some correlation and partial correlation

dynamics directly. Any N × N correlation matrix may be described by N(N − 1)/2

partial correlations. Lewandowski, Kurowicka and Joe (2009) explained how to deduce

a correlation matrix from partial correlations (or the opposite), through an iterative

algorithm. With such techniques, once the indices of a family of partial correlations is

chosen conveniently, a “true” correlation matrix is generated, whatever the values of

these partial correlations are. This property will be crucial here: by producing univari-

ate dynamics of partial correlations independently, we obtain sequences of correlation

matrices without any normalization stage, contrary to DCC-type models.

An important practical question will be to choose the indices of the relevant partial

correlations. Kurowicka and Cooke (2006) showed that the partial correlations of

a random vector can be mapped to a so-called vine tree. Such objects are sets of

connected undirected trees. They have been discovered recently due to their ability

to built high-dimensional distributions through a set of bivariate copulas (one copula

per node of the vine) and marginal cdfs’. See Aas, Czado, Frigessi and Bakken (2006)

for an introduction. Here, we develop a class of MGARCH models based on regular

vines, the so-called “vine-GARCH” models. The latter models are flexible enough

by allowing independent specifications/estimations of partial correlation processes. It

is also parsimonious as one can set constraints at any level of the vine tree without

altering other correlations.

The rest of this paper is organized as follows: Section 1.2 develops some basic defini-

tions/properties of trees, vines, partial correlations and the way they will be relevant

for constructing nonnegative definite matrices. After having set the definitions and

notations of usual MGARCH and DCC models, the new vine-GARCH framework is

detailed in Section 1.3. In Section 1.4, we define the statistical inference of our new

models by a quasi-maximum likelihood (QML) procedure. The conditions of exis-

tence and uniqueness of strictly stationary solutions and the asymptotic properties

of the vine-GARCH model are provided respectively in Section 1.5 and Section 1.6.

Section 1.7 contains an empirical study with simulated data and a database of stock

returns, and then we conclude the study.
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1.2 Vines and partial correlations

This section emphasizes how to specify a relevant set of partial correlations by consid-

ering a graphical approach based on vines.

1.2.1 Vines

Let N be a set of n elements. By definition, T = (N , E) is a tree with nodes N and

edges E if E is a subset of unordered pairs of N with no cycle and if there is a path

between each pair of nodes. Moreover, vines on n elements are undirected graphs that

nest sets of some connected trees T1, . . . , Tn−1, where the edges of tree Tj are the nodes

of tree Tj+1, j = 1, . . . , n − 2. A regular vine (R-vine) on n elements is a vine in

which two edges in tree Tj are joined by an edge in tree Tj+1 only if these edges share

a common node, for any j = 1, . . . , n − 2. A formal definition is given below. See

Kurowicka and Joe (2010) for a survey and additional results.

Definition 1.2.1. V (n) is a labeled regular vine on n elements if:

1. V (n) = (T1, T2, . . . , Tn−1).

2. T1 is a connected tree with nodesN1 = 1, 2, . . . , n and edges E1. For i = 2, . . . , n−
1, Ti is a connected tree with nodesNi = Ei−1, and the cardinality ofNi is n−i+1.

3. If a and b are nodes of Ti connected by an edge in Ti, where a = {a1, a2} and

b = {b1, b2}, then exactly one of the ai equals one of the bi. This is the proximity

condition.

We consider only regular vines in this paper, and the properties we state hereafter

are true for such vines implicitly. There are n(n − 1)/2 edges in a regular vine on n

variables. An edge in tree Tj is an unordered pair of nodes of Tj, or equivalently, an

unordered pair of edges of Tj−1. The degree of a node is the number of edges incident

with it.

Two particular cases of R-vines are important, traditionally. A regular vine is called

a canonical vine (C-vine) if each tree Ti has a unique node of degree n− i, i.e. a node

with maximum degree. A regular vine is called a D-vine if all nodes in T1 have degree

not higher than 2.
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The variables reachable from a given edge via the membership relation are called the

constraint set of that edge. When two edges are joined by an edge of the next tree,

the intersection of the respective constraint sets are the conditioning variables, and

the symmetric differences of the constraint sets are the conditioned variables. With

the notations of point 3 of the previous definition, at tree Ti, say a1 = b1, and a1 is a

common element of a and b. This means that, at tree Ti+1, a1 enters the conditioning

set of (a2, b2). Thus, we define the conditioning and conditioned sets formally as follows.

Definition 1.2.2. For e ∈ Ei, i ≤ n − 1, the constraint set associated with e is

the complete union of the elements in {1, . . . , n} that are reachable from e by the

membership relation. It is denoted by U?
e .

Definition 1.2.3. For i = 1, . . . , n − 1, if e ∈ Ei, it connects two elements j and

k in Ni and it can be written e = {j, k}. The conditioning set associated with e is

Le := U?
j ∩ U?

k , and the conditioned set associated with e is a pair {Ce,j, Ce,k} :={
U?
j \ Le, U?

k \ Le
}

.

Obviously, since the edges of a given tree Ti are the nodes of Ti+1, the same concepts

of constraint/conditioning/conditioned sets apply to all the nodes in a vine.

Lemma 1.2.4. (Bedford, Cooke, 2002)

Let a regular vine on n variables. Then,

1. the total number of edges is n(n− 1)/2;

2. two different edges have different constraint sets;

3. each conditioned set is a doubleton and each pair of variables occurs exactly once

as a conditioned set;

4. if e ∈ Ei, then #U?
e = i+ 1, #Le = i− 1;

5. if two edges have the same conditioning set, then they are the same edge.

In a regular vine, the edges of Tm+1 (equivalently the nodes of Tm+2) will be denoted

by e = (aj, ak|b1, . . . , bm), where aj, ak and the bl, l = 1, . . . ,m are different elements

in {1, . . . , n}. This notation means that the conditioning set of e is Le = {b1, . . . , bm},
and the conditioned set of e is {aj, ak}. Both C-, D- and R-vine and the concepts

above can be visualized on Figures 1.1, 1.2 and 1.3.
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To have the intuition, keep in mind that a node represents a random variable, and

an edge between two nodes means we will specify the dependence between these two

particular nodes, in general through a copula (that will be reduced to a partial cor-

relation hereafter). Such copulae have to be defined afterwards, but, for the moment,

assume this can be done easily. Typically, the goal is to describe the joint law of the n

asset returns. For instance, in Figure 1.1, the five nodes in T1 may be the asset returns

ri, i = 1, . . . , 5, associated to stock indices. The first tree tells us we will specify the

dependencies between r1 and the other returns ri, i > 1. Here, we select 1 as the core

index (the “main factor”) in this portfolio. Once we have controlled the T1−related

dependencies, the new nodes in T2 are conditional asset returns given r1. We select

asset 2 given 1 as the “most relevant” one. The new edges tell us we focus now on

conditional copulae between the latter node and the returns rj given r1, j = 2, . . . , 5.

And we go on with T3, dealing with the asset returns rj given r1 and r2, j = 3, 4, 5, etc.

With such a C-vine and a set of convenient bivariate copulae, we obtain the joint law

of (r1, . . . , r5) by gathering and multiplying conveniently all the (conditional) copulae

we haver considered above. This is the simplest way of building vines. Obviously, more

complex structures may be relevant too, as in the R-vine of Figure 1.3. With hetero-

geneous portfolios, for instance, it would be fruitful to particularize several nodes in

T1. See Aas et al. (2006) for other insights. In terms of model specification, the first

chosen trees are crucial because they correspond to our intuitions (our “priors”) about

the most important linkages among the assets in the portfolio. Moreover, from some

level on and in practice, it is often possible and useful to assume no dependencies: see

the “r-vine free” property in Definition 1.2.10 below.

The next section focuses on how such vines can be related to some subsets of the partial

correlations that are associated to a random vector.

1.2.2 Partial correlations

Let X = (X1, . . . , Xn) be a n-dimensional random vector, n ≥ 2, with zero mean.

For any indices i, j in {1, . . . , n}, i 6= j and any subset L ⊂ {1, . . . , n}, for which i

and j do not belong to L, ρi,j|L is called the partial correlation of Xi and Xj, given

Xk, k ∈ L. It is the correlation between the orthogonal projections of Xi and Xj on

< Xk, k ∈ L >⊥, the orthogonal of the subspace generated by {Xk, k ∈ L}. When

L is empty, then ρi,j|∅ = ρ (Xi, Xj) := ρi,j is the usual correlation. Note that, if the
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random vector X is normal, then its partial correlations correspond to some conditional

correlations.

Interestingly, partial correlations can be computed from usual correlations with a re-

cursive formula. Let (i, j, k) be any set of distinct indices, and L be another (possibly

empty) set of indices that is disjoint from (i, j, k). Following Lewandowski et al. (2009),

we have

ρi,j|k,L =
ρi,j|L − ρi,k|Lρj,k|L√(

1− ρ2
i,k|L

)(
1− ρ2

j,k|L

) · (1.2.1)

Assume we know the usual correlations ρi,j, for any couple (i, j), i 6= j. We check

easily that any partial correlation can be calculated by invoking (1.2.1) several times

with increasing subsets L. Actually, the opposite property is true if we start from

a convenient subset of partial correlations. Indeed, the edges of a regular vine on n

elements may be associated with the partial correlations of a n-dimensional random

vector in the following way: for i = 1, . . . , n− 1, consider any e ∈ Ei, the set of edges

at tree Ti. Let {j, k} be the two conditioned variables of e, and Le its conditioning set.

We associate the partial correlation ρj,k|Le to this node. Kurowicka and Cooke (2006)

call this structure a partial correlation vine specification, that is simply a R-vine for

which any edge is associated to a number in ]−1, 1[. Actually, all positive correlation

matrices may be generated by setting a (fixed) R-vine on n variables, and by assigning

different partial correlations to all the nodes of this vine. This means setting ρe to any

e ∈
n−1
∪
i=1
Ei, and these partial correlations may be chosen in ]−1, 1[ arbitrarily. This is

the content of Corollary 7.5 in Bedford and Cooke (2002).

Theorem 1.2.5. (Bedford, Cooke, 2002)

For any regular vine on n elements, there is a one-to-one mapping between the set of n×
n positive definite correlation matrices and the set of partial correlation specifications

for the vine.

In other words, any set of n(n − 1)/2 partial correlations that are deduced from a

regular vine induce a true correlation matrix. Actually, the formulas (1.2.1) above

enable to build such n× n correlation matrices based on n(n− 1)/2 arbitrarily chosen

partial correlations (see Kurowicka and Cooke, 2003, or Joe (2006)). For a given

partial correlation vine, some explicit algorithms can be written to map the (usual)

correlations and the underlying partial correlations: see Lewandowski et al. (2009).

Such algorithms are available in the R-package called “vine-copula” (see Brechmann

and Schepsmeier (2013), for instance).
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Definition 1.2.6. Let a vine V (n) = (T1, T2, . . . , Tn−1). The set of partial correlations

associated to this vine is denoted by C̃V (n) := (C(T1), C(T2), . . . , C(Tn−1)). Denote by

R(C̃V (n)) the set of usual correlations that are deduced from C̃V (n).

Theorem 1.2.5 means that, whatever the values of the partial correlations C̃V (n) asso-

ciated to a regular vine V (n), we get a true correlation matrix with the coefficients

R(C̃V (n)). Since a standardized Gaussian random vector is fully specified by its cor-

relation matrix, we obtain its joint law once we have chosen a partial correlation vine

specification. At the opposite, for any Gaussian vector, there are many corresponding

partial correlation vine specifications. In a Gaussian world, we recover the interpreta-

tion of vines as descriptors of random vector distributions. But more generally, partial

correlation vine specifications can be associated to any random vector, just to describe

its correlation matrix (when it exists).

We now turn to the significant results that ensure the positive definiteness of the cor-

relation matrices when using vine representations. By recalling equation (1.2.1), the

following result ensures that any correlation computed from arbitrary partial correla-

tions (belonging to ]−1, 1[, obviously) is still an element in ]−1, 1[.

Lemma 1.2.7. (Kurowicka, Cooke ,2006)

If z, x, y ∈ ]−1, 1[, then also w ∈ ]−1, 1[ with

w = z
√

(1− x2) (1− y2) + xy.

The next theorem enables the easy generation of sequences of correlation matrices.

It will constitute an attractive feature of the vine-GARCH models introduced in Sec-

tion 1.3.

Theorem 1.2.8. (Kurowicka, Cooke, 2006)

Let Dn > 0 be the determinant of the n-dimensional correlation matrix Σn := [ρi,j]i,j=1,...,n.

For any set of partial correlations generated by a regular vine,

Dn =
n−1∏
i=1

∏
e∈Ei

(
1− ρ2

j,k|Le

)
,

where (j, k) and Le are respectively the conditioned set and the conditioning set of an

edge e.
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Corollary 1.2.9. Whatever the values of set of partial correlations generated by a

regular vine on {1, . . . , n}, the associated matrix [ρi,j] is nonnegative definite.

Proof of Corollary 1.2.9. By Theorem 1.2.8, Dn is nonnegative whatever the values

of the partial correlations in Pn := {ρj,k|Le}, that induce the correlations ρi,j, i, j =

1, . . . , n. But the same result applies for every matrix Σk, k = 1, . . . , n−1 too. Indeed,

given Pn, we are able to calculate all the ρi,j, i, j = 1, . . . , n (that belong to [−1, 1]

by Lemma 1.2.7), and then any set of partial correlations associated to any new vine

on {1, . . . , k}, k < n by invoking (1.2.1). And Theorem 1.2.8 can be applied to Σk.

But a symmetrical matrix for which all the main block diagonal submatrices have

nonnegative determinants is nonnegative.

To illustrate these ideas, let us revisit Figure 1.1 under a partial correlation point of

view: an associated partial correlation vine will specify the set of partial correlations{
ρ12, ρ13, ρ14, ρ15, ρ23|1, ρ24|1, ρ25|1, ρ34|12, ρ35|12, ρ45|123

}
, that is sufficient to recover the

correlation matrix between the five assets. To interpret such numbers, we can consider

linear regressions of some conditioned sets on their conditioning sets. For instance, the

node (1, 2) and the node (1, 3) are connected, and the model will specify the partial

correlation ρ12|3. This is the correlation between the residuals of the linear regressions of

r2 and r3 on r1. Roughly, this measures to what extent r2 an r3 are “dependent” given

r1. In practical terms, an econometrician could classify the portfolio components by

their (a priori) order of importance. This order may depend on the final phenomenon

that is modelled. For instance, if the portfolio payoff depends strongly on emerging

markets, it may be relevant to select “Russia” or “Brazil” first instead of “the USA”.

Intuitively, the latter strategy is intermediate between a factor model where we would

regress any asset return on a few pre-specified ones, and a PCA where the factors are

linear combinations of all returns.

This way of interpreting C-vines has to be revisited with D-vines or even general R-

vines. Roughly, D-vines are based on an ordered vision of dependencies across asset

returns: any asset is associated to one or two neighbors, with whom correlations are

relatively strong. Once they are controlled, the main remaining risk is measured by the

correlation with (one or) two other known assets, etc. Such a linear view of the strength

of dependencies is probably unrealistic in finance. At the opposite, R-vines allow very

general and flexible hierarchies and orders among the sequences of partial correlations
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of interest. Virtually, they allow to integrate any a priori “prior” information, as long

as it is consistent with the proximity condition.

For the sake of parsimony, it would be interesting to cancel (or to leave constant, at

least) all partial correlations associated to a vine, after some given level r. When zero

partial correlations are assumed after the latter level, we would like to know whether

the corresponding (usual) correlations depend on the trees Tr, Tr+1, . . . , Tn−1 that could

be built above.

Definition 1.2.10. We say that a vine is r-VF (VF for vine-Free) if

R(C(T1), C(T2), . . . , C(Tn−1)) = R(C(T1), C(T2), . . . , C(Tr−1), C(T ′r), . . . , C(T ′n−1)),

for any alternative vine V ′(n) := (T1, T2, . . . , Tr−1, T
′
r, . . . , T

′
n−1), where the partial

correlations associated to the edges of T ′k, k ≥ r, are zero.

If a vine is r-VF, once the partial correlations are zero above the level r, the correlations

are independent on the way this vine has been built from this level. This r-VF property

actually holds for any R-vine. This is a consequence of Theorem 2.3 in Brechmann

and Joe (2015). They observed that the density of an underlying Gaussian vector is

not altered when choosing arbitrary trees Tr+1, . . . , Tn−1 with associated zero partial

correlations.

1.3 vine-GARCH correlation dynamics

1.3.1 The usual DCC-GARCH framework

When dealing with correlation dynamics, the Dynamic Conditional Correlation model

(DCC) of Engle (2002) is probably the most commonly used approach, inside the

MGARCH family. We denote by (εt)t=1,...,T a sequence of N -dimensional vectorial

stochastic process, whose dynamics is specified by θ, a finite-dimensional parameter.

Denote by (Ft) the natural filtration, i.e. Ft := σ(εs, s ≤ t) and Et−1[X] := E[X|Ft−1]

for any random quantity X. The key model assumption is

εt = H
1/2
t (θ) ηt, (1.3.1)
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where the series (ηt)t≥1 is supposed to be a strong white noise s.t. E [ηt] = 0 and

Var (ηt) = IN . We suppose Ht (θ) := Ht := Vart−1 (εt) is a N × N positive definite

matrix. At this stage, the model is semi-parametric. Its specification is complete when

the law of ηt and the dynamics of (Ht(θ)) are specified. In this paper, we focus on the

latter point mainly.

The matrix Ht represents the unobserved time-dependent conditional covariance ma-

trix of the process (εt). A brute-force inference of all model parameters seems unfeasible

even when the dimension N is small. To avoid this problem, a common approach con-

sists of splitting the problem into two simpler ones: modelling conditional volatilities

on one side, the correlation dynamics on the other side. This is the key idea of DCC

models that we detail now.

Denote by hi,t the conditional variances of (εi,t) and ρij,t the conditional correlations

between εi,t and εj,t, for i, j = 1, . . . , N , i < j. In matrix notation, Ht = DtRtDt

where Dt = diag(h
1/2
1,t , . . . , h

1/2
N,t) is the diagonal matrix of the conditional volatilities,

and Rt = [ρij,t] is the matrix of the conditional correlations. By construction, Rt

is the conditional covariance matrix of the vector of the standardized returns ut =

(u1,t, . . . , uN,t) with ui,t = εi,t/
√
hi,t. Both volatility and correlation dynamics depend

on a specific set of parameters given by θ = (θv, θc)
′ ∈ Θv ×Θc, where θv (resp. θc) is

the set of parameters determining the volatility processes (resp. correlation process).

Let us assume that, for every i = 1, . . . , N and t, there exists a function hi s.t.

hi,t = hi
(
θ(i)
v ; εi,t−1, . . . , εi,t−qi ;hi,t−1, . . . , hi,t−pi

)
(1.3.2)

for some positive integers pi and qi and some parameter θ
(i)
v ∈ Rpi+qi+1. Once stacked,

the parameters θ
(i)
v provide θv. Typically, we could assume GARCH(pi,qi) processes

in (1.3.2), or even other univariate GARCH-type models (EGARCH, GJR-GARCH,

T-GARCH, etc). Since our vine-GARCH framework only needs consistent estimates

of conditional volatilities, as deduced from this first stage, there is a large amount of

liberty to specify the individual volatility dynamics.

Note that we have supposed no spill-over effects between different asset volatilities

in Equation (1.3.2). This assumption simplifies the estimation of θv by allowing an

equation-by-equation inference procedure, and it is almost unavoidable when N is

large. This absence of spill-over effects is commonly used in the DCC literature, even
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if it may be questionable. Indeed, some studies have exhibited significant spill-over

effects empirically: see Hamao, Masulis and Ng (1990), Koutmos and Booth (1995),

Liao and Williams (2004), among others. We stress that this point if not crucial for

our vine-GARCH model, and this assumption could be removed: see Remark 1.4.12

below.

Several (Rt) dynamics have been proposed in the literature. All of them have to cope

with the positive definiteness of the correlation matrix and should not depend on too

many parameters. The time-varying correlation model of Tse and Tsui (2002) and the

DCC model (Engle and Sheppard, 2001) were the first attempts to model dynamic

correlations. In this study, we consider the latter as our benchmark.

The DCC model specifies dynamics of the covariance matrix of the de-garched returns

ut directly. In its full form, called “Full DCC”, the model belongs to the MARCH

family of Ding and Engle (2001) and is specified as

Qt = (ιι′ − A−B)� S + A� ut−1u
′
t−1 +B �Qt−1, Rt = Q

?−1/2
t QtQ

?−1/2
t ,

whereQt = [qij,t] andQ?
t = diag(q11,t, q22,t, . . . , qNN,t). Above, S, A andB denoteN×N

symmetric matrices of unknown parameters and � is the usual Hadamard product of

two identically sized matrices. Following Ding and Engle (2001), if (ιι′ − A−B)� S,

A and B are positive semi-definite, then the matrix Qt is positive semi-definite. The

significant downside of the full DCC model is its intractability as the (Qt) process

encompasses 3N(N + 1)/2 coefficients. In most empirical studies, the scalar DCC-

GARCH is considered instead, where A and B are replaced by non negative scalars α

and β times the identity matrix.

Billio and Caporin (2006) devised the Quadratic Flexible DCC (QFDCC), which re-

duces the size of the problem while remaining flexible. In the general form of a QFDCC

model, the correlation driving process (Qt) is defined as

Qt = C ′SC + A′ut−1u
′
t−1A+B′Qt−1B, Rt = Q

?−1/2
t QtQ

?−1/2
t ,

where S, A, B and C are unknown matrices, S being symmetric positive. This model

allows for interdependence across groups of assets. The correlation matrices are positive

definite if the eigenvalues of A + B are less than one in modulus. This model is

parsimonious when the matrices A, B and C are diagonal. This yields to a model with

3N unknown parameters, after correlation targeting.
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The set of correlation parameters of the DCC is θc = (S,A,B), whereas for the QFDCC

it is θc = (S,C,A,B). In the literature, DCC-GARCH models with correlation tar-

geting are implemented generally by considering the matrix S as the unconditional

covariance matrix of the standardized residuals. However, in the case of a scalar DCC,

Aielli (2013) has shown that this procedure produces biased estimates in general and

proposed a corrected version of the model called cDCC. Actually, the scalar DCC and

cDCC specifications provide empirically very close results. Therefore, in our empirical

study, we consider the scalar DCC and the diagonal QFDCC.

1.3.2 Our model specification

In a DCC-type model, one has to rely on intricate normalizations to build sequences of

εt correlation matrices. This makes the interpretation of the (Rt) dynamics not intu-

itive, because it is deduced from another underlying process (Qt). Another drawback

of the DCC is the lack of parsimony because the number of parameters grows rapidly,

as in general BEKK models. Most of the time, DCC ones are used in a scalar form,

but this modeling often fails in capturing fine-tuned and heterogeneous correlation dy-

namics. In this paper, we develop a method that ensures both parsimony and positive

definiteness without relying on any normalization.

The idea is based on the modeling of a set of partial correlations, which parameterizes

any correlation matrix. We use a partial correlation vine specification, i.e. a given

regular vine and N(N − 1)/2 numbers in ]− 1, 1[ to specify the corresponding partial

correlations. And we invoke the one-to-one mapping between these N(N−1)/2 partial

correlations and the N(N − 1)/2 “usual” correlations. The former are stacked in a

vector Pct and the latter are the coefficients of Rt. We order partial correlations

lexicographically, from the shortest to the longest sets of indices. Then we propose the

following “partial correlation” dynamics

Ht = DtRtDt, (1.3.3)

Ψ (Pct) = Ω +

p∑
k=1

ΞkΨ (Pct−k) +

q∑
l=1

Λlζt−l, (1.3.4)

Rt = vechof (Fvine (Pct)) , where (1.3.5)

• The vector Pct is the “partial correlation vector” deduced from a given R-vine

structure.
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• vechof(·) denotes the operator “devectorization”, that transforms a vector into a

symmetric matrix. It is the opposite of the usual operator vech(·).

• The Ξk and Λl denote N(N−1)/2×N(N−1)/2 matrices of unknown parameters,

and Ω is a N(N − 1)/2 unknown vector. Set the vector of parameters θc =

(Ω,Ξ1, . . . ,Ξp,Λ1, . . . ,Λq). Note that these matrices are arbitrarily chosen, and

we do not impose non negativeness, in particular.

• The vector ζt−1 is Ft−1-measurable and updates the selected partial correlations

at time t. Such ζt−1 must be built so that E[ζt−1] ' E[Pct−1]. This procedure is

in line with usual updating equations in GARCH-type models.

• We apply a deterministic transformation Ψ(.) to Pct. It twists the univariate

dynamics to manage the constraint that partial correlations stay in (−1, 1). For

the sake of simplicity, Ψ(.) will be known 1. To fix the ideas, Ψ is defined from

]−1, 1[N(N−1)/2 to RN(N−1)/2 as

Ψ(Pct) =
(
ψ(ρ1,2,t), . . . , ψ(ρN,N−1|LN−1,N ,t)

)′
, ψ (x) = tan (πx/2) .

Alternatively, Ψ(.) could be chosen among the sigmöıd functions for instance, for

which ψ(x) = (exp(αx)− 1)/(exp(αx) + 1) for some α ∈ R.

• The function Fvine(.) corresponds to the one-to-one mapping from the vector

of partial correlations Pct to correlations (in Rt) by using the algorithm of

Lewandowski et al. (2009). It is defined from ]−1, 1[N(N−1)/2 to itself by

Fvine

(
ρ1,2,t, . . . , ρN−1,N |L,t

)
= (ρ1,2,t, . . . , ρN−1,N,t)

′ .

Partial correlations are expectations of products of the two different quantities υk|L,t,

for some L ⊂ {1, . . . , N} and k /∈ L, which are defined as

υk|L,t =
εk,t − Et−1 [εk,t|εL,t]√

hk|L,t
,

where εL,t = (εi,t)i∈L, and Et−1 [εk,t|εL,t] corresponds to the orthogonal projection of the

variable εk,t on the space spanned by the vector εL,t. The variance of the “residual”

εk,t − Et−1 [εk,t|εL,t] is denoted by hk|L,t. The variables υk|L,t are not observable, but

1There is no doubt the methodology could be extended to deal with a parametric function Ψ, i.e.
that would depend on an unknown finite-dimensional additional parameter. Nonetheless, this would
complicate the proofs in Section 1.6, while it is not a key point here. Such an extension is left to the
reader.
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we can evaluate Et−1 [εk,t|εL,t] and hk|L,t to get υ̂k|L,t, an approximated value of υk|L,t.

Then, by construction, the N(N−1)/2-sized vector ζt will stack the variables υ̂i|L,tυ̂j|L,t,

when (i, j|L) is an edge of the underlying vine. The order of these edges in ζt will be

the same as for Pct.

By definition, Equations (1.3.1)-(1.3.5) define a so-called vine-GARCH(p,q) model.

In full generality, this simplified version of the vine-GARCH(p, q) model still encom-

passes (p+ q + 1)N(N − 1)/2 parameters. However, this approach can become easily

more parsimonious and would provide a nice alternative to full DCC-GARCH models.

Indeed, since the r-VF property applies, one can set constraints to any level of the tree

(say r), and choose zero partial correlations at and after the r-th tree in the underlying

vine. We guess this should not modify significantly the (true) correlation dynamics, at

least when r is large enough. This is due to the fact that partial correlations with non-

empty conditioning subsets are correlations between residuals. In practice it is likely

that these residuals tend to behave more and more as white noise when the number

of conditioning variables increases and for a well-chosen R-vine. By canceling partial

correlations after the step r, we get a particular model with less parameters than in the

full vine-GARCH specification. And whatever the chosen structure of the vine is after

level r, the reconstruction formulas (1.2.1) provide the same correlation matrices. This

is a nice theoretical property. A slightly different simplification of our vine-GARCH

models would be to assume constant (non zero) partial correlations after some level

(say r) in the vine. But in this case, we cannot ensure a similar r-VF property.

Remark 1.3.11. Obviously, alternative dynamics could extend our vine-GARCH(p,q)

specification (1.3.4). For instance, it could be possible to modify the model to include

nonlinear features as asymmetries, switching regimes, time-varying parameters, exoge-

nous variables, etc. A whole class of models is now open, based on partial correlations,

exactly as the original GARCH framework of Bollerslev (1986) has been modified and

revisited.

At time t, the vector ζt is a key information as it drives the shocks on the partial

correlation processes. Here, we propose two ways of evaluating υ̂k|L,t, and then ζt.

The first method is based on the linear regression of εt on εL,t:

εk,t = αk|L + β′k|LεL,t + ξL,t, E[ξL,t|εL,t] = 0.
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Then, we approximate εt − E[εt|εL,t] by εt − α̂k|L − β̂′k|LεL,t and an empirical “rolling-

window” estimator of hk|L,t can be defined by ĥk|L,t := m−1
m∑
i=1

(εk,t−i−α̂k|L−β̂′k|LεL,t−i)2,

for some windows size m. Such size should increase with T in theory but trying to

exhibit some “optimal” m is beyond the scope of the present work. We get υ̂k|L,t =

(α̂k|L+ β̂′k|LεL,t)/
√
ĥk|L,t, and then ζt. This approach may be termed “non parametric”

in the sense that it does not rely on any hypothesis about the conditional distribution

of εt.

The second method is based on the theoretical distribution of the residuals εt given

Ft−1, that is unknown at this stage. In accordance with our Gaussian QMLE, assume

the latter distribution is elliptical. Then, its first two conditional moments can be

calculated easily. Indeed, if a vector (X, Y )′ is elliptical with ΣXX = Var (X), ΣY Y =

Var (Y ), ΣXY = Σ′Y X = Cov (X, Y ), then E[X|Y ] = E[X] + ΣXY Σ−1
Y Y (Y − E[Y ]) and

V ar(X|Y ) = ΣXX − ΣXY Σ−1
Y Y ΣY X : see Corollary 5 in Cambanis, Huang and Simons

(1981). Hence we can calculate easily υ̂k|L,t = υk|L,t = (εk,t − Et−1 [εk,t|εL,t])/
√
hk|L,t.

To be specific, under these assumptions, we write

Et−1 [εk,t|εL,t] = Covt−1 (εk,t, εL,t) Vart−1 (εL,t)
−1 εL,t,

hk|L,t = Vart−1 (εk,t − Et−1 [εk,t|εL,t])
= Vart−1 (εk,t)− Covt−1 (εk,t, εL,t) Vart−1 (εL,t)

−1 Covt−1 (εL,t, εk,t) ,

and the latter conditional covariances are Ft−1 measurable, i.e. are known at t. In

the theoretical part of the paper (Section 1.5, Section 1.6), this second method of

calculation of ζt is used because the innovations ηt are assumed to be elliptical. In the

empirical part (Section 1.7), this is the case too but only for convenience (higher speed

of calculations).

1.3.3 Vine selection

The methodology above can be applied to any R-vine on N elements. Actually, the

structure of the underlying R-vine may be seen as an additional parameter, indepen-

dently of θc. Selecting a convenient R-vine may be useful to describe the dependence

among the variables in a parsimonious and meaningful way. In particular, this would

allow for the truncation of a given R-vine, once some important factors have been

found in the first trees.
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To do so with a C-vine, we can follow the sequential method developed by Dissmann,

Brechmann, Czado and Kurowicka (2012). This method consists in starting by com-

puting the Kendall’s tau of all the couples of nodes, and selecting the variable, which

induces the highest degree of dependence with the other ones. In the second tree, we

compute a Kendall’s tau per edge, but conditional on the variable chosen on the first

tree. That is:

1. For tree T1 and N1 = {1, · · · , N}, maximize the dependence criteria:

i0 ← arg max
i

∑
j 6=i

|τ̂ij|,

where τ̂ij is the empirical Kendall’s tau and i0 denotes the index of the variable,

which maximizes this criterion. This variable is the root to build the edges on

tree T1, which are the nodes on tree T2.

2. For j = 2, · · · , N − 2, D1 = p1 = i0, maximize the dependence criteria:

pj ← arg max
k

∑
j 6=pj−1,j 6=k

|τ̂jk|Dj−1
|,

where Dj = Dj−1 ∪ pj.

This sequential approach provides step-by-step the variable which should enter the

conditioning set for the next tree.

We use nonparametric statistics proposed by Veraverbeke, Omelka and Gijbels (2011)

to compute these quantities. We apply the same selection criteria to choose the con-

venient variable and proceed with the next trees similarly, until the last tree. The

Kendall’s tau is used as a dependence measure because it can be easily estimated,

but other dependence measures are possible. This selection procedure is “bottom-up”.

Alternative methodologies exist, in particular the “top-down” procedure of Kurowicka

(2011).

1.4 Statistical inference by QML

We can estimate vine-GARCH(p,q) models by maximizing a likelihood function that

does not correspond to the true Data Generating Process necessarily, following the
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Quasi-Maximum Likelihood (QML) methodology, as explained in Gourieroux, Monfort

and Trognon (1984), Bollerslev and Wooldridge (1994) or White (1994), among others.

1.4.1 The QML estimator

We choose a standard Gaussian QML estimator: we do a MLE as if (ηt) were a Gaussian

white noise, but for inference purpose only. Obviously, the “true” underlying distri-

butions of these innovations may be different. Note that the ηt-law can be estimated

empirically a posteriori from a sample of residuals Rt(θ̂)
−1/2εt. Using the assumed

independence of the innovations ηt and developing Ht as DtRtDt, the quasi-likelihood

function of a path (εt)t=1,...,T is written as

LT (θ; ε) =
T∏
t=1

exp

{
−1

2

(
N log (2π) + log (|DtRtDt|) + ε′tD

−1
t R−1

t D−1
t εt

)}

=
T∏
t=1

exp

{
−1

2

(
N log (2π) + log

(
|D2

t |
)

+ ε′tD
−2
t εt − u′tut + log (|Rt|) + u′tR

−1
t ut

)}
,

where Dt = diag(h
1/2
1,t , . . . , h

1/2
N,t), and ut = (ε1,t/h

1/2
1,t , . . . , εN,t/h

1/2
N,t)

′ = D−1
t εt is the

vector of GARCH standardized residuals. Thus, the quasi-log-likelihood function is

the sum of two parts: the “variance part” of the likelihood, that depends on θv, and

the “correlation part”, that depends on both θv and θc. Therefore, our estimate θ̂T,v

of θv is

θ̂T,v = arg min
θv

GT l1(ε; θv) :=
1

T

T∑
t=1

l1,t(θv; εt) :=
N∑
i=1

T∑
t=1

[
log (hi,t) +

ε2i,t
hi,t

]
. (1.4.1)

The Newton-Raphson method is applied to solve such system. Note that θ̂T,v deter-

mines the (now estimated) variance processes (hi,t) and then the (estimated) residuals

ut, denoted by ût. Given θ̂T,v, a QML estimator of θc is obtained as

θ̂T,c = arg min
θc

GT l2(εt; θ̂T,v, θc) :=
1

T

T∑
t=1

l2,t(εt; θ̂T,v, θc) :=
T∑
t=1

[
log (|Rt|) + û′tR

−1
t ût

]
.

(1.4.2)

Strictly speaking, all the likelihood equations above depend on the initial values ε0, D0

and R0. To fix the ideas, we propose to initialize them by their sample counterparts:

for all i = 1, · · · , N , set ε0 = 0, h̃i,0 = 1
T−1

T∑
t=1

ε2i,t, D̃0 = diag(h̃
1/2
1,0 , . . . , h̃

1/2
N,0), and R̃0 is
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the empirical correlation matrix of the sample path (ε1, . . . , εT ). To obtain convergence

of θ̂T , we will need the asymptotic irrelevance of these initial values (see Section 1.6).

Remark 1.4.12. The absence of volatility spill-over effects allows for the estimation

of θv through N simple optimizations independently. Obviously, if we remove this

assumption, such an estimator can still be obtained by (1.4.1). But, in general, this

would require an optimization in a high-dimensional space, a task that becomes harder

and harder with N .

Remark 1.4.13. It is possible to choose another QML parametric family that would be

more adapted to fat tailed distributions typically (for instance the multivariate Student

law, or any elliptical distribution). But then, we would loose the nice property of a

two-stage estimation procedure, that is so important in practice.

1.4.2 Estimation strategy

Unfortunately, the underlying process (Rt) induces tricky computations of scores and

Hessians for GT l2. This is the case for both DCC and vine-Garch dynamics. Here, we

propose two strategies depending on the dimensionality of the problem.

In this study, our DCC specifications are not highly parameterized: the scalar DCC

(resp. diagonal QFDCC) requires the estimation of 3 (resp. 3N) parameters, after

correlation targeting. Consequently, the Sequential Quadratic Programming method

is implemented for these dynamics, since it is well-suited for constrained optimization

with a “reasonable” number of parameters.

As the general DCC model, the vine GARCH specification may suffer from the curse

of dimensionality. However, when the matrices of parameters Ξj and Λk are diagonal

(a usual situation), it is possible to weaken drastically this problem by proceeding

sequentially. Indeed, in partial correlation R-vines, any partial correlation on tree Tk

can be updated (through the ζt quantities) easily knowing the partial correlations on

the previous trees Tk′ , k
′ ≤ k − 1 2.

Let us detail the sequential procedure for a C-vine, w.l.o.g. Instead of relying on a

brute-force optimization in high dimension, a vine-GARCH model based on a C-vine

2To be specific, at a given node (ij|L) of a R-vine, we need to calculate the ζ(ij|L),t−l, l = 1, . . . , q.
As explained in 1.3.2, this necessitates the calculation of conditional covariances of the subvectors
associated to the indices (iL) and (jL). Since L is the conditioning subset at this node, this is always
possible once we have evaluated all node dynamics associated to the previous trees.
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may be estimated by solving N × (N − 1)/2 simple optimization programs, related

to the bivariate dynamics that are associated to any node. This means we estimate

successively the dynamics of (εi,t, εj,t) where the N × (N − 1)/2 couples (i, j) describe

the conditioned subsets of all the nodes in the underlying C-vine, starting from the

bottom tree.

To be even more explicit, denote the nodes of the vine by {(ij|L)}, and the un-

known matric parameters as Ω := [ω(ij|L)], Ξk := diag(ξ(ij|L);k), k = 1, . . . , p and

Λl := diag(λ(ij|L);l), l = 1, . . . , q. Assume the underlying C-vine is given in Figure 1.1.

In particular, 1 is the root in the first tree. The N−1 first partial correlation dynamics

are “usual” correlation processes and depend on the estimated volatility and the obser-

vations. The parameters of these N −1 first processes can be minimized independently

based on the objective functions

GT l
1j
2 (ε, θ̂T,v; θc,1j) =

T∑
t=1

[
log |R(1j),t|+ û′(1j),t

(
R(1j),t

)−1
û(1j),t

]
, j = 2, . . . , N,

where û(1j),t = [û1,t, ûj,t]
′ and R(1j),t is the 2 × 2 correlation matrix of (ε1,t, εj,t) given

Ft−1. With obvious notations, θc,1j =
(
ω1j, ξ1j,λ1j

)
are the remaining unknown pa-

rameters that are associated to the bivariate process (ε1,t, εj,t).

Now, after conditioning by 1, there are N − 2 dynamic partial correlations in T2. Due

to (1.7.2), they follow the ARMA-type dynamics

ψ
(
ρ2j|1,t

)
= ω2j|1 +

p∑
k=1

ξ2j|1;kψ
(
ρ2j|1,t−k

)
+

q∑
l=1

λ2j|1;lυ̂2|1,t−lυ̂j|1,t−l, j = 3, . . . , N.

For QML inference purpose, we assumed εt|Ft−1 ∼ N (0, Ht). As explained in Subsec-

tion 1.3.2, υ̂k|1,t−1 above depends on the volatility processes, the observations and the

correlations calculated from tree T1. Hence, we can estimate the partial correlations

dynamics on tree T2 by maximizing N − 2 objective functions independently over each

correlation parameter space of tree T2, given the estimated correlations on T1. The

objective functions are, for all j = 3, . . . , N

GT l
2j|1
2 (ε, θ̂T,v, ρ̂12, ρ̂1j; θc,2j|1) =

T∑
t=1

[
log |R(2j),t|+ û′(2j),t

(
R(2j),t

)−1
û(2j),t

]
.
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Here, R(2j),t is the correlation matrix of (ε2,t, εj,t) given Ft−1. Its coefficient ρ2j,t is

computed from the estimated dynamic partial correlations ρ̂2j|1,t and the (estimated)

correlations ρ̂1l,t, l = 2, . . . , N . Obviously, û(j,k),t = [ûj,t, ûk,t]
′.

We apply the same reasoning for the next trees in the C-vine. There are N−3 objective

functions to be maximized on tree T3, N−4 on tree T4, etc, until tree TN−1 where only

one objective function needs to be maximized. The estimation of any partial correlation

process of a tree Tk depends only on a subset of partial correlations associated to the

nodes of Tk−1 and before, invoking the recursive formula (1.2.1). Consider any node

(ij|L) in Tk and denote by θc,ij|L =
(
ωij|L, ξij|L,λij|L

)
the associated subvector of θc.

For instance, with our C-vine of Figure 1.1, L does not depend on the conditioned

subsets and is L := Li = {1, . . . , i− 1}, k = 2, . . . , N − 1. Our iterative algorithm can

be summarized as

θ̂T,c,ij|Li = arg min
θc,ij|Li

GT l
ij|Li
2 (θ̂T,v, ε, ρ̂i−1,i|Li−1

, ρ̂i−1,j|Li−1
; θc,ij|Li),

for every i and j in {1, . . . , N}, i < j.

We denote this strategy C-vine (D-vine, or even R-vine) iterative process, which is

particularly effective when N becomes “large” (say larger than 5 assets). At each node

on a specific level, only (p+ q+ 1) parameters need to be estimated. Consequently, we

also use the Sequential Quadratic Programming method when estimating the C-vine

iterative process.

A drawback of the latter iterative process may be the propagation of estimation errors

from one partial correlation level to the next one. It is still possible to estimate the

vine-GARCH at once for reasonable portfolio sizes (N ≤ 5) to avoid this iterative

method. But the nonlinearity and the instability of the likelihood function in the

vine-GARCH case require another approach to maximize GT l2(ε; .). In such a case,

we propose to use a stochastic algorithm, the simulated annealing, that prevents from

falling in local maxima. Note that the simulated annealing algorithm can also be used

when estimating model through the previous iterative methodology. However in this

case, the Sequential Quadratic Programming is a lot quicker, which is the reason we

used this method in the simulation study.
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1.5 On the stationarity of the vine-GARCH pro-

cess

We prove the existence of stationary solutions, which is the first step towards providing

asymptotic results (consistency/asymptotic normality of QML estimates), because law

of large numbers (potentially uniform) and some Central Limit Theorems are obtained

easily in this case. In the GARCH literature, proving stationarity properties has been

fulfilled notably by Bougerol and Picard (1992) for univariate GARCH models, by

Ling and McAleer (2003) for multivariate ARMA-GARCH models, by Boussama et al.

(2011) for BEKK models, notably.

After introducing some notations, we specify the vine-GARCH model. It is rewritten

as an ”almost linear” Markov chains in Subsection 1.5.2. The existence of strong

and weak stationary solutions is stated in Subsection 1.5.3. Subsection 1.5.4 exhibits

sufficient conditions to get their uniqueness. These probabilistic results are established

for the p = q = 1 case.

1.5.1 Notations

Let A ∈Mn×m(R).

• If n = m, then diag(A) = (aij1i=j)1≤i≤m,1≤j≤m and Vecd(A) = (aii)1≤i≤m ∈ Rm.

• If n = m and A symmetric, Vech(A) ∈ Rq with q = m(m + 1)/2 such that the

components are those of A column-wise without redundancy.

• If n = m, then ρ(A) is the spectral radius of A, that is the largest of the modulus

of the eigenvalues of A. We denote λ1(A) the smallest eigenvalue of A positive

definite.

• The Kronecker product is denoted ⊗ and A⊗k = A⊗A⊗ · · · ⊗A (k times). The

Hadamard product is denoted �.

• In the following, we consider the submultiplicative norm

‖A‖ := sup{
‖Ax‖
‖x‖

, x 6= 0},
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where x ∈ Rm and ‖x‖ is the Euclidean norm of vector x. For B ∈ Mm×n(R),

this norm satisfies

‖AB‖ ≤ ‖A‖‖B‖, Trace (AB) ≤ (nm)1/2‖A‖‖B‖.

We define the spectral radius norm for squared non-negative matrices, which is

submultiplicative, as

‖A‖s := sup{
√
λ : λ ∈ Spect (A′A)}.

We also define the maximum absolute column sum of a matrix A ∈Mm×n(R) as

‖A‖∞ = max
i

∑
j

|Aij|.

• For a N dimensional vectorial process (εt)t, we denote εt = (ε1,t, · · · , εN,t)′ and

~εt := (ε21,t, · · · , ε2N,t)′.

• We denote by C0
b (E) the space of all continuous and bounded functions f : E→

R.

The quantity of interest is Ht, which is split between volatility terms contained in Dt

and correlation terms in Rt as

Ht = DtRtDt, (1.5.1)

where Dt = diag(
√
h11,t, · · · ,

√
hNN,t) is the diagonal matrix of the conditional vari-

ances, which is Ft−1 measurable. The Ft−1 measurable (Dt) process contains compo-

nents supposed to be univariate GARCH dynamics without cross-effects, such that

Vecd(D2
t ) = V + A.Vecd(D2

t−1) +B.~εt−1, (1.5.2)

where the matrices A and B are diagonal and V is a positive vector of RN .

The vine-GARCH specification parametrizes the correlation dynamics as

Rt = vechof (Fvine (Pct)) ,

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζt−1,
(1.5.3)
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In this section, we specify the Data Generating Process (DGP) differently from the

specification given in (1.3.1). A significant quantity is the vector of standardized resid-

uals, defined as ut = D−1
t εt. We straightforwardly have Et−1 [ut] = 0 and Et−1 [utu

′
t] =

Rt. This implies that ut can be specified as ut = R
1/2
t η∗t , such that η∗t is a centered

random vector with Et−1 [η∗t η
∗′
t ] = IN . Therefore, the “true” DGP will be the station-

ary process (η∗t ). The two ”innovations” (ηt) and (η∗t ) are related to each other by the

relation

H
1/2
t ηt = DtR

1/2
t η∗t .

Note that, if Et−1[η∗t ] = 0 and Et−1[η∗t η
∗′
t ] = IN , then Et−1[ηt] = 0 and Et−1[ηtη

′
t] = IN ,

and the opposite.

1.5.2 vine-GARCH as Markov Chains

The vine-GARCH specification can be written as a Markov chain, a representation

that is relevant for studying stationary solutions. To do so, we define

Xt :=
(
~εt,Vecd(D2

t ),Ψ (Pct)
)′
, (1.5.4)

such that, for all t > 0, (Xt)t satisfies

Xt = TtXt−1 + νt. (1.5.5)

This means (Xt)t follows an autoregressive form of order 1 with stochastic Tt. Let us

focus on the first component of Xt. Setting ~ut := (u2
1,t, . . . , u

2
N,t), we have

D2
t ~ut = ~ut � Vecd(D2

t ) = ~εt = ~ut � V + ~ut � A.Vecd(D2
t−1) + ~ut �B.~εt−1. (1.5.6)

Using the dynamics of Vecd(D2
t ) and Ψ (Pct), the matrix Tt satisfies

Tt =


~ut �B ~ut � A 0

B A 0

0 0 Ξ

 , (1.5.7)
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and the vector of innovation νt is defined as

νt =


~ut � V
V

Ω + Λζt−1

 . (1.5.8)

Note that ζt = ζ (χt, ηt) where χt = (Pct, Dt).

Assumption 1. The vectorial process (η∗t )t∈Z satisfies the Markov property with respect

to F , i.e

∀t ∈ Z, E[η∗t |Ft−1] = E[η∗t |Xt−1].

Besides, Et−1 [η∗t ] = 0 and Et−1 [η∗t η
∗′
t ] = IN .

As a consequence (and equivalently, in fact), the same property is fulfilled with the

other ”innovations” (ηt)t∈Z: the process (ηt)t∈Z satisfies the Markov property with

respect to F , i.e

∀t ∈ Z, E[ηt|Ft−1] = E[ηt|Xt−1].

Moreover, Et−1 [ηt] = 0 and Et−1 [ηtη
′
t] = IN .

Proposition 1.5.14. Under assumption 1, (Xt)t is a Markov Chain of order one.

Proof of Proposition 1.5.14. Note that ut = D−1
t H

1/2
t ηt, where Ht is a deterministic

function of Xt−1. Since ηt satisfies the Markov property with respect to F , then

ut|Ft−1
d
= ut|Xt−1. Furthermore, Xt can be rewritten as follows: there exists constant

matrices Γ1 and Γ2 such that

Xt = (Γ1.ξt)� T0Xt−1 + (Γ2.~χt)� ν0,

where T0 (resp. ν0) is the Tt (resp. νt) matrix when ut = 1, ξt := (~ut, 1)′ and

~χt := (~ut, 1, ζ (χt−1, ηt−1))′. Then Xt is a measurable function of (ηt, Xt−1, ηt−1), where

ηt satisfies the Markov property by assumption 1. Consequently, (Xt)t is Markovian.

1.5.3 Existence of stationary vine-GARCH solutions

The recurrence equation (1.5.5) is stochastic through Tt and νt, i.e. through the

innovations ηt (or η∗t ) and the Ft−1-measurable matrix Rt. A consequence of this
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parametrization is that Tt depends on subcomponents of Xt. Hence, we can not ex-

tract an expression such as Xt = f (ηt, ηt−1, · · · ) nor Xt = f
(
η∗t , η

∗
t−1, · · ·

)
, for some

explicit function f(.). This comes from the nonlinear relationship between Tt and

the past innovations (before and including t). Classical techniques such as Lyapunov

exponent are not adapted in our framework.

The existence of stationary solutions -but not a unique solution- for the vine-GARCH

model can be proved using the criterion of Tweedie (1988). Tweedie provides the

existence of an invariant probability measure for the Markov chain defined in (1.5.5).

Ling and McAleer (2003) used this criterion to establish the stationarity of vector

ARMA-GARCH models.

The stationarity of the (~εt)t process requires the control of Tt, which should avoid non-

explosive patterns. The matrix Tt is a function of (~ut)t, which are dependent variables.

Furthermore, the conditional law of ~ut is a function of Ht and Dt, which in turn is a

function of Xt−1. This is the reason we need the next hypothesis.

Assumption 2. For some p ≥ 1, ‖T ?‖s <∞, where

T ? := sup
x∈Rd

E
[
|T⊗pt ||Xt−1 = x

]
.

Assumption 3. Denoting by λ the Lebesgue measure, the conditional kernel of η∗t given

Xt−1 = x is defined as

dPXt−1=x
η∗t

(u) = fη∗t (u|x)dλ(u).

Furthermore, for all u ∈ Rm, the mapping x→ fη∗t (u|x) is continuous and there exists

an integrable function g such that, for all u ∈ Rm,

sup
t

sup
x∈Rd

fη∗t (u|x) ≤ g(u).

Moreover, ∀t, E [‖η∗t ‖2p|Xt−1 = x] ≤ ψ(‖x‖) satisfying ∀α > 0, lim
v→∞

ψ(v)

vα
= 0.

Assumption 4. There exists a positive real number a such that, for almost every trajec-

tory and every θ ∈ Θ, the partial correlations of our chosen vine (i.e. the components

of the vectors Pct(θ)) belong to the fixed interval [−1 + a, 1− a].

In particular, the latter assumption implies that, for every θ ∈ Θ, the determinant

of almost every correlation matrices Rt(θ) are strictly larger than aN(N−1) > 0 (apply
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Kurowicka and Cooke, 2006, Theorem 3.2), and that the norm of R−1
t (θ) is bounded

from above a.e. 3. Moreover, the function Fvine(.) that maps partial correlations to

usual correlations has a bounded derivative, when applied to the trajectories (Pct(θ))

generated by the model.

Theorem 1.5.15. Under assumptions 1-4 the process (εt, Dt, Rt) as defined in equa-

tions (1.5.1), (1.5.2), and (1.5.3) possesses a strictly stationary solution such that

(εt, Dt, Rt) ∈ Ft, the sigma field induced by the observations. Furthermore, the solu-

tion (εt) is second-order stationary and, when the innovations η∗t are Gaussian given

Ft−1, then E [‖εt‖2p] <∞.

The key result for the existence of an invariant probability measure for Markov chains

is the criterion of Tweedie (1988). When using this approach, the irreducibility of (Xt)

is not required to obtain stationarity.

Let (Xt)t∈Z be a homogeneous Markov chain with a measurable state space (E, E),

such that its transition probability is P (x,B) = P(Xt ∈ B|Xt−1 = x), where x ∈ E

and B ∈ E . Theorem 2 of Tweedie (1988) states the following:

Lemma 1.5.16. Suppose (E, E) is a locally compact separable state space and (Xt)t∈Z

is a Feller chain, that is for h ∈ C0
b (E), then E [h(Xt)|Xt−1 = x] is also C0

b (E).

1. If for some compact set B ∈ E, there exists a non negative mapping g(.) and

ε > 0 such that ∫
Bc
P (x,y)g(y)dλ(y) ≤ g(x)− ε, x ∈ Bc, (1.5.9)

then there exists a σ-finite invariant measure µ for P such that 0 < µ(B) <∞.

2. Furthermore, if ∫
B

(∫
Bc
P (x,y)g(y)dλ(y)

)
dµ(x) <∞, (1.5.10)

then µ is finite and hence π = µ/µ(E) is an invariant probability measure.

3. Furthermore, if ∫
Bc
P (x,y)g(y)dλ(y) ≤ g(x)− f(x), x ∈ Bc, (1.5.11)

3Indeed, ‖R−1t ‖s ≤ λmin(Rt)
−N ≤ aN2(N−1).
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then µ admits a finite f -moment, i.e. Eµ [f(Xt)] <∞.

The next Lemma is a specific version of Lemma A.2 in Ling and McAleer (2003). Its

proof is omitted.

Lemma 1.5.17. For a given squared matrix T , if ρ(|T |) < 1, then there exists a

positive vector M such that (Id− |T |)′M > 0.

Proof of Theorem 1.5.15. We first show that (Xt)t∈Z is a Feller process. Let h ∈
C0
b (Rd). We have

E [h(Xt)|Xt−1 = x] = E [h(Ttx + νt)|Xt−1 = x]

= E
[
h(φ1(ut)x + φ2(ut, η

∗
t−1))|Xt−1 = x

]
,

for continuous transforms φ1 and φ2. By construction, ut = D−1
t H

1/2
t ηt = R

1/2
t η∗t ,

where R
1/2
t is a continuous mapping of Xt−1. Consequently, we obtain

E [h(Xt)|Xt−1 = x] = E
[
h ◦ φ̃(x, η∗t)|Xt−1 = x

]
=

∫
h ◦ φ̃(x,u)dPXt−1=x

η∗t
(u)

=
∫
h ◦ φ̃(x,u)fη∗t (u|x)dλ(u),

for some continuous transform φ̃. Now, let (xn)n be a sequence such that xn −→
n→∞

x. As

h(.) is bounded and ∀u, (h ◦ φ̃(xn,u))n is convergent, then limn E [h(Xt)|Xt−1 = xn] =

E [h(Xt)|Xt−1 = x] by the Lebesgue dominated convergence theorem under assumption

3. In other words, x→ E [h(Xt)|Xt−1 = x] is continuous.

Second, we exhibit an explicit functional g(.) to apply the Tweedie’s criteria. To do

so, take g(x) = 1 + |x⊗p|′M, for any vector M , which will be explicit later. We have,

for p ≥ 1,

E [g(Xt)|Xt−1 = x] = 1 + E
[
|(Ttx + νt)

⊗p|′|Xt−1 = x
]
M.

By some property of the Kronecker product and algebraic manipulations, let us rewrite

(Ttx + νt)
⊗p = (Ttx)⊗p + B(x) = T⊗pt x⊗p + B(x). We deduce that

E [g(Xt)|Xt−1 = x] ≤ 1 +
(
E
[
|T⊗pt x⊗p|′|Xt−1 = x

]
+ E [‖B(x)‖|Xt−1 = x]

)
M.

(1.5.12)



Chapter 1. Dynamic Correlation Model based on Vines 40

We focus on the first expectation in (1.5.12). As Tt is a function of ut, its conditional

distribution depends on Rt. Hence Tt is a function of Xt−1. Then, we obtain

E [|(Ttx)⊗p|′|Xt−1 = x]M ≤ |x⊗p|′E
[
|T⊗pt |′|Xt−1 = x

]
M

≤ |x⊗p|′
(

sup
x∈Rd

E
[
|T⊗pt |′|Xt−1 = x

])
M

≤ |x⊗p|′(T?)′M.

As for the second expectation in (1.5.12), by taking any multiplicative norm ‖.‖, we

have

E [‖B(x)‖|Xt−1 = x] ≤ KE
[
‖νt‖‖(Ttx)⊗(p−1)‖+ ‖νt‖2‖(Ttx)⊗(p−2)‖+ · · ·+ ‖νt‖p|Xt−1 = x

]
,

(1.5.13)

where K is a non-negative constant. In (1.5.13), we need to upper bound quantities

of the type E [‖νt‖m‖Tt‖n|Xt−1 = x], i.e. terms as E [(‖ζt−1‖+ ‖~ut‖)m‖~ut‖n|Xt−1 = x]

when m + n ≤ p. First, we consider E [‖~ut‖m+n|Xt−1 = x]. Recall that ut = R
1/2
t η∗t .

Taking the spectral norm of R
1/2
t , we obtain a.s.

‖R1/2
t ‖ = ρ

(
R

1/2
t R

1/2 ′
t

)1/2

=
√

Trace
(
D−1
t HtD

−1
t

)
≤
√
N.

Using the previous inequality and assumption 3, we have

E
[
‖~ut‖m+n|Xt−1 = x

]
≤ E

[
‖R1/2

t ‖2(m+n)‖~η ∗t ‖m+n|Xt−1 = x
]
≤ Nn+mE

[
‖~η ∗t ‖m+n|Xt−1 = x

]
.

(1.5.14)

By assumption, E [‖η∗t ‖2p|Xt−1 = x] ≤ ψ(‖x‖). Then, we obtain

E
[
‖~ut‖m+n|Xt−1 = x

]
≤ αm,nψ (‖x‖)(m+n)/p ,

for some constant αm,n.

Another product element we shall bound is E [‖ζ (χt−1, ηt−1) ‖m‖~ut‖n|Xt−1 = x]. To

do so, we take n+m = p, where m ≥ 1. Using the conditional Hölder’s inequality, we

obtain

E [‖ζ (χt−1, ηt−1) ‖m‖~ut‖n|Xt−1 = x] ≤ E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x]m/p E [‖~ut‖p|Xt−1 = x]n/p .

(1.5.15)

In (1.5.15), E [‖~ut‖p|Xt−1 = x]n/p can be straightforwardly upper bounded using (1.5.14).

We now focus on the conditional expectation of ‖ζ (χt−1, ηt−1) ‖p. Denoting υ̃k|L,t =
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εk,t − Et−1 [εk,t|εL,t], we have

E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x] ≤ sup
(i,j|L)∈E

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 .
(1.5.16)

For p = 1, we apply the Cauchy-Schwartz inequality to (1.5.16) as

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

||Xt−1 = x

 ≤ E

 υ̃2
i|L,t−1

hi|L,t−1

|Xt−1 = x

1/2

E

 υ̃2
j|L,t−1

hj|L,t−1

|Xt−1 = x

1/2

= 1.

In this case, we obtain

E [‖B(x)‖|Xt−1 = x] = α1E [‖ζt−1‖+ ‖ut‖|Xt−1 = x] ≤ α2ψ (‖x‖) + α3,

for some constants αk, k = 1, 2, 3. Consequently for p = 1, we deduce that (1.5.12)

can be upper bounded as

E [g(Xt)|Xt−1 = x] ≤ 1 + (E [|Ttx|′|Xt−1 = x] + E [‖B(x)‖|Xt−1 = x])M

≤ 1 + |x|′(T?)′M + O (‖x‖a) ,

for any a > 0. Let us now try to extend this result for p > 1. The quantity given in

(1.5.16) is a product of υ̃k|L,t−1 components, which can be decomposed as

υ̃i|L,t−1 = e′iH
1/2
t−1(θ){ηt−1 − Et−2 [ηt−1|εL,t−1, Xt−1 = x]}

= e′iDt−1R
1/2
t−1{η∗t−1 − Et−2

[
η∗t−1|εL,t−1, Xt−1 = x

]
}

Assuming all denominators are bounded from below a.s., this implies that (1.5.16) can

be upper bounded as

sup
(i,j|L)∈E

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 ≤ Cst.E
[
‖Dt−1‖2p‖Rt−1‖p‖η∗t−1‖2p|Xt−1 = x

]
≤ Cst.E

[
‖x‖p‖η∗t−1‖2p|Xt−1 = x

]
≤ Cst.‖x‖pψ(‖x‖).

This upper bound is not of order O(‖x‖k), for k ≤ p − 1. We rely on the Gaussian

distribution hypothesis to circumvent this obstacle.
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Now, the vectors η∗t (or ηt, equivalently) is supposed to be Gaussian, conditional to

the past. By the Cauchy-Schwartz inequality, we have

E

| υ̃i|L,t−1υ̃j|L,t−1√
hi|L,t−1

√
hj|L,t−1

|p|Xt−1 = x

 ≤ E

 υ̃2p
i|L,t−1

hpi|L,t−1

|Xt−1 = x

1/2

E

 υ̃2p
j|L,t−1

hpj|L,t−1

|Xt−1 = x

1/2

.

Since any υ̃i|L,t−1/
√
hi|L,t−1 is a Gaussian random variable N (0, 1), given Xt−1, the

r.h.s. of the latter inequality is uniformly bounded wrt i, j, L and x. We deduce that

(1.5.16) can be upper bounded as

E [‖ζ (χt−1, ηt−1) ‖p|Xt−1 = x] = O(1),

for all x.

This result is proved using ∀t ≥ 1, σ2
k|L,t(x) > 0 a.s.. We need to prove that this holds

almost surely for any x ∈ Bc. That means we need to control for the variance and

correlation dynamics when x can take very large values. By contradiction, suppose

∀k /∈ L

σ2
k|L,t(x) = E

[
(εk,t − E [εk,t|εL,t])2 |Xt−1 = x

]
= 0⇒ εk,t = E [εk,t|εL,t,Xt−1 = x] a.s.

(1.5.17)

Using the decomposition εt = H
1/2
t ηt, relationship (1.5.17) becomes

εk,t = Q′(x)εL,t a.s., (1.5.18)

whereQ′(x) corresponds to a vector containing the coefficients ofHt used for computing

the conditional expectation under the Gaussian distribution. As Ht is Ft−1 measurable,

then Q is a function of x. (1.5.18) means that εk,t can be written as a linear combination

of εn,t, for n ∈ L, given x. If there exists a linear relationship between the components

of εt given x, then the matrix Ht(x) is not a full rank matrix. As Dt(x) is a diagonal

matrix, it is always nonsingular, Ht(x) singular implies that Rt(x) is not positive

definite. This contradicts λ1(Rt(x)) > 0 a.s.. We deduce that

∃µ > 0, such that ∀k,∀L, k /∈ L, σ2
k|L,t(x) ≥ µ for almost all x.
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Consequently, using assumption 3, we have obtained

E [g(Xt)|Xt−1 = x] ≤ 1 + |x⊗p|′(T?)′M + O (‖x‖a)

≤ g(x)− |x⊗p|′ (IN − (T?)′) M + O (‖x‖a) ,

for all a > 0. We denote N(x) :=
s∑

i=1

|xi|p. Since (Id− (T ?)′)M > 0 by Lemma

(1.5.17), then there exists m0 > 0 such that

(Is − (T ?)′)M ≥ m0N(x), ∀x ∈ Rs.

Similarly, ∃m1 > 0 such that ∀x ∈ Rs,g(x) ≥m1N(x). Using the Hölder’s inequality,

we have ∀k ≤ p

s∑
j1,j2,··· ,jk

|xj1xj2 · · · xjk | =

(
s∑
j=1

|xj|

)k

≤

(
s∑
j=1

|xj|p
)k/p

sk. (1.5.19)

Hence using inequality (1.5.19), ∀k ≤ p, ∃m2 > 0 such that

g(x) ≤ 1 + ‖M‖
s∑

j1,j2,··· ,jk

|xj1xj2 · · ·xjp| ≤ 1 + c2N(x),

We deduce that

E [g(Xt)|Xt−1 = x] ≤ g(x)

1−m0

N(x)

g(x)
+ O

N(x)a/p

g(x)


≤ g(x)

1−m0

N(x)

1 + m2N(x)
+ O

N(x)a/p

m1N(x)


We denote B := {x ∈ Rs|N(x) ≤ Γ}, with Γ > 1. For Γ large enough, ∀x /∈ B, and

0 < a < 1, we have

E [g(Xt)|Xt−1 = x] ≤ g(x)

1−
m0

2m2

+ O (1)

 < g(x)

1−
m0

3m2

 . (1.5.20)

As 1 ≤ g(x), then E [g(Xt)|Xt−1 = x] ≤ g(x)− ε, for ε > 0. This proves (1.5.9), idest

∃µ a σ-finite invariant measure for (Xt)t such that 0 < µ(A) <∞.
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Now for any x ∈ B, (1.5.20) provides

E [g(Xt)|Xt−1 = x] ≤ g(x) + O (‖x‖a) ≤ K, (1.5.21)

for some constant K > 0. This implies∫
B

(∫
Bc
P (x,y)g(y)dλ(y)

)
dµ(x) ≤

∫
B

E [g(Xt)|Xt−1 = x] dµ(x) ≤ Kµ(B) ≤ ∞.

(1.5.22)

Consequently, (1.5.10) is proved and µ is finite and π = µ/µ(E) is an invariant probabil-

ity measure. Then there exists a strictly stationary solution of the stochastic recurrence

equation (1.5.5).

Finally, using inequality (1.5.20), we obtain (1.5.11) for f(x) = βg(x), where β ∈ (0, 1).

As m1N(x) ≤ g(x), then

Eπ [N(Xt)] <∞.

1.5.4 Uniqueness of stationary vine-GARCH Solutions

Tweedie’s criterion provides the existence of an invariant probability measure for

Markov chains. However, the uniqueness of such a measure is not ensured. Uniqueness

is a significant result as it provides the ergodicity of the stationary solution. This is a

significant feature for inference purpose since asymptotic properties for M-estimators

are based on Uniform Law of Large Numbers, or the ergodic theorem (see Billingsley,

1995).

Assumption 5. The sequence of innovations (η∗t ) is strongly stationary.

Assumption 6. There exist some strictly positive constant Ch s.t., for any stationary

solution, for all t,

h−1
i|L,t ≤ Ch P− a.s.,

where (i|L) is associated to an arbitrary node (i, j|L), L 6= ∅ of the underlying vine

V (n).

Note that, when L is empty, the model provides a lower bound for all conditional

variances: for every i and t, h−1
i,t ≤ Cv. Let us introduce some intermediate quantities.

We denote CF > 0 (resp. CΨ−1 > 0) the Lipschitz constant of Fvine(.) (resp. Ψ−1(.)).
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Let us consider two (arbitrarily chosen) stationary solutions (Dt, Rt, εt) and (D̃t, R̃t, ε̃t).

They share the innovations (η∗t ) and the model parameters. The proof of uniqueness

relies on some top Lyapunov exponent of a stochastic matrix process denoted by

Mt =

(
‖Ξ‖∞ + ‖Λ‖∞Υ2,t ‖Λ‖∞Υ1,t

Γ2,t Γ1,t

)
,

where

Υ1,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{α +

√
N‖D̃t‖2

s‖η∗t ‖2
2C

2
hγ},

Υ2,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{β +

√
N‖D̃t‖2

s‖η∗t ‖2
2C

2
hδ},

γ = C
1/2
v N{‖Dt‖s + ‖D̃t‖s}

1 +
NCv‖Dt‖2

s

λ1(Rt)
+
NCv‖D̃t‖2

s

λ1(R̃t)
+
N2C2

v‖Dt‖2
s‖D̃t‖2

s

λ1(Rt)λ1(R̃t)


δ =

√
NCFCΨ−1‖Dt‖s‖D̃t‖s

1 +
NCv‖Dt‖2

s

λ1(Rt)
+
NCv‖D̃t‖2

s

λ1(R̃t)
+
N2C2

v‖Dt‖2
s‖D̃t‖2

s

λ1(Rt)λ1(R̃t)


α =

√
NC

1/2
v ‖η∗t ‖s

1 +
N‖Dt‖sCh
λ1(Rt)

{‖Dt‖s + ‖D̃t‖s}

1 +
N‖D̃t‖2

sCh

λ1(R̃t)

 ,

β =
√
NCFCΨ−1‖D̃t‖s‖η∗t ‖s


√
N‖Dt‖2

sCh

λ1(Rt)

1 +
N‖D̃t‖2

sCh

λ1(R̃t)

+
1

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)
 .

and 
Γ1,t = ‖A‖∞ +N‖B‖∞‖η∗t−1‖2

2,

Γ2,t = ‖B‖∞‖D̃t−1‖2
s

2‖η∗t ‖2
2

λ
1/2
1 (Rt) + λ

1/2
1

(
R̃t

)NCFCΨ−1 .

Assumption 7. (Mt) is a stationary stochastic process and E [log (Mt)] <∞ such that

its top Lyapunov exponent defined as

γM := lim
t→∞

1

t
log (MtMt−1 · · ·M1)

is strictly negative.

Theorem 1.5.18. Under assumptions 1 and 5-7, a strictly stationary solution of the

vine-GARCH model is unique and ergodic, given a sequence (η∗t )t∈Z.

Proof of Theorem 1.5.18. We remind that εt = Dtut = H
1/2
t ηt and ut = R

1/2
t η∗t . The
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model equations define a solution (εt, Dt, Rt) given (η∗t ). The dynamic system is spec-

ified as 
Vecd (D2

t ) = V + AVecd
(
D2
t−1

)
+B~εt−1,

Rt = vechof (Fvine (Pct)) ,

Ψ (Pct) = Ω + ΞΨ (Pct−1) + Λζt−1.

A key quantity is the vector of innovations (ζt) defined as
ζt =

[
vi|L,tvj|L,t

]
(i,j|L)∈V (N)

,

vi|L,t =
εi,t − Et−1 [εi,t|εL,t]√

hi|L,t
,

such that

hi|L,t = Vart−1 (εi,t)− Covt−1 (εi,t, εL,t) Vart−1 (εL,t)
−1 Covt−1 (εL,t, εi,t) ,

= e′iHtei − (e′iHteL) . (e′LHteL)−1 . (e′LHtei) .

Above, we have introduced some deterministic matrices (of zeros and ones) eL s.t.

εL,t = e′Lεt. The dimension of eL is N × |L|. More generally, for any m×N -matrix A,

AeL concatenates the A-columns whose index belongs to L. Using the fact that B is

a diagonal matrix and εi,t =
√
hi,tui,t, we obtain ~εi,t = hi,tu

2
i,t and

Vecd
(
D2
t

)
= V + A.Vecd

(
D2
t−1

)
+B.D2

t−1~ut−1.

where D2
t .e = Vecd (D2

t ).

We first focus on the uniqueness of the conditional variance process. To do so, we

consider the difference

Vecd (D2
t )− Vecd

(
D̃2
t

)
= A.

[
Vecd

(
D2
t−1

)
− Vecd

(
D̃2
t−1

)]
+B.

[
D2
t ~ut−1 − D̃2

t−1
~̃ut−1

]
,

= A.
[
Vecd

(
D2
t−1

)
− Vecd

(
D̃2
t−1

)]
+B.

[
D2
t−1 − D̃2

t−1

]
~ut−1

+ B.D̃2
t−1.

[
~ut−1 − ~̃ut−1

]
.

Using D2
t ~ut = ~ut � Vecd

(
D2
t−1

)
, we obtain

Vecd
(
D2
t

)
− Vecd

(
D̃2
t

)
= A.

[
Vecd

(
D2
t−1

)
− Vecd

(
D̃2
t−1

)]
+ B~ut−1 �

[
Vecd

(
D2
t−1

)
− Vecd

(
D̃2
t−1

)]
+B

[
~ut−1 − ~̃ut−1

]
� Vecd

(
D̃2
t−1

)
.
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Furthermore
~ut − ~̃ut = (ut − ũt)� (ut + ũt)

= (ut + ũt)�
(
R

1/2
t − R̃

1/2
t

)
η∗t .

Using the spectral norm, the previous quantity can be upper bounded as
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Since ‖η∗t ‖s = ‖η∗t ‖2 (as for any vector), note that
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Using theorem 6.2 of Higham (2008), for any unitarily invariant norm ‖ · ‖, we have
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Recall that the norm ‖.‖ is unitarily invariant if ‖UAV ‖ = ‖A‖ for all matrix A and

all unitary matrices U and V , ie UU ′ = Id and V V ′ = Id. For instance, the spectral

norm ‖A‖s = ρ (A′A)1/2 = λmax (A) satisfies
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(
(UAV )′ .UAV

)1/2
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and is then unitarily invariant. Hence
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Besides,
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As B and A are diagonal matrices, their spectral norms are equal to their infinite norm.

We obtain the upper bound
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where 
Γ1,t = ‖A‖∞ +N‖B‖∞‖η∗t−1‖2

2,
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s
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We now focus on the uniqueness of the partial correlation process. We consider the

difference

Ψ (Pct)−Ψ
(
P̃ ct

)
= Ξ

(
Ψ (Pct−1)−Ψ

(
P̃ ct−1

))
+ Λ

(
ζt−1 − ζ̃t−1

)
.

In this framework, Ξ and Λ are parameterized as diagonal matrices. We have

‖Ψ (Pct)−Ψ
(
P̃ ct

)
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)
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(1.5.24)

The quantity of interest is the vector of innovations, that is

vij|L,t − ṽij|L,t =
ri|L,trj|L,t√
hi|L,t

√
hj|L,t

−
r̃i|L,tr̃j|L,t√
h̃i|L,t

√
h̃j|L,t

, (1.5.25)

where, using the Gaussian assumption, we have

ri|L,t = εi,t − Et−1 [εi,t|εL,t]
= εi,t − (e′iHteL) . (e′LHteL)−1 εL,t

=
[
e′i − (e′iHteL) . (e′LHteL)−1 e′L

]
εt

:= e′ipL (εt) .

(1.5.26)
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Here, pL (·) is the projector on the orthogonal of the subspace < HteL > in RN ,

relatively to the H−1
t -euclidian norm, defined by ‖x‖H = x′H−1

t x
4. By decomposing

the projector pL in its canonical space, we see that ‖pL‖s = 1 obviously. Similarly,

‖p̃L‖s = 1.

Recall that εt = DtR
1/2
t η∗t . Using the same steps as in (1.5.26), we obtain

r̃i|L,t = e′ip̃L (ε̃t) , ε̃t = D̃tR̃
1/2
t η∗t .

Now we have

‖ζt−1 − ζ̃t−1‖∞ = sup
(i,j|L)

|vij|L,t − ṽij|L,t|,

which implies we need to control |ri|L,t − r̃i|L,t| and |hi|L,t − h̃i|L,t|.

Step 1. We have

ri|L,t − r̃i|L,t = e′ipL (εt)− e′ip̃L (ε̃t)

= e′i [pL − p̃L] (εt) + e′ip̃L (εt − ε̃t)

We obtain
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j=1 hj,t ≤ N‖Dt‖2

s. Therefore, we get
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Moreover, for every vector x, ‖x‖2
H = x′H−1

t x ≤ ‖x‖2
2‖H−1

t ‖s (diagonalize Ht in an

orthonormal basis). This means

‖x‖H ≤ C1/2
v λ1(Rt)

−1/2‖x‖2.

4Indeed, if xj = HteLgj for any |L| × 1-vector gj = [δi,j ]j=1,...,|L|, we check that pL(xj) = 0.

Moreover, when a vector v belongs to < HteL >
⊥, then v′H−1t HteLgj = v′eLgj = 0 for every j, i.e.

v′eL = 0. This implies pL(v) = v.
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Since the spectral norm is the matrix norm that is associated to the usual euclidian

norm ‖ · ‖2, we have
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Note that ‖(e′LHteL)−1‖s is the inverse of the smallest eigenvalue of e′LHteL. By the
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Moreover,
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Consequently, for every (i, L) deduced from the vine structure, we obtain
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Step 2. We now focus on the discrepancy |hi|L,t − h̃i|L,t|. We have
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Consequently, we obtain the following relationship for (1.5.25)

vi,j|L,t − ṽi,j|L,t =

(
ri|L,t − r̃i|L,t

)
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√
hj|L,t

−
1√

h̃i|L,t

√
h̃j|L,t

}.

For any (i, L) we consider, hi|L,t ≤ ‖Dt‖2
s everywhere, because the variance of a residual

is smaller than the variance of any random variable. Therefore, we get

|
1√
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√
hj|L,t

−
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h
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)
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(
hj|L,t − h̃j|L,t
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(1.5.28)

and

|ri|L,t| ≤ ‖pL (εt) ‖∞ ≤ ‖pL (εt) ‖2 ≤ ‖pL‖s.‖εt‖2 ≤ ‖εt‖2 ≤
√

N‖Dt‖s‖s‖η∗t‖2.
(1.5.29)

Consequently, using (1.5.27), (1.5.28) and (1.5.29), (1.5.25) can be upper bounded as

|vi,j|L,t − ṽi,j|L,t| ≤ Ch
√
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)
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)
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(
P̃ ct

)
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.

Hence using the previous inequality, we obtain

‖ζt − ζ̃t‖∞ ≤ Υ1,t‖Vecd
(
D2
t

)
− Vecd

(
D̃2
t

)
‖s + Υ2,t‖Ψ (Pct)−Ψ

(
P̃ ct

)
‖∞, (1.5.30)
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with  Υ1,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{α +

√
N‖D̃t‖2

s‖η∗t ‖2
2C

2
hγ},

Υ2,t = Ch
√
N
(
‖Dt‖s + ‖D̃t‖s

)
{β +

√
N‖D̃t‖2

s‖η∗t ‖2
2C

2
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Using (1.5.30) and (1.5.24), we have

‖Ψ (Pct)−Ψ
(
P̃ ct

)
‖∞ ≤ {‖Ξ‖∞ + ‖Λ‖∞Υ2,t}‖Ψ (Pct−1)−Ψ

(
P̃ ct−1

)
‖∞

+ ‖Λ‖∞Υ1,t‖Vecd (D2
t )− Vecd

(
D̃2
t

)
‖s.

(1.5.31)

We denote

‖µt‖ =

‖Ψ (Pct−1)−Ψ
(
P̃ ct−1

)
‖∞

‖Vecd (D2
t )− Vecd

(
D̃2
t

)
‖s

 , Mt =

(
‖Ξ‖∞ + ‖Λ‖∞Υ2,t ‖Λ‖∞Υ1,t

Γ2,t Γ1,t

)
.

Using (1.5.23) and (1.5.31), we deduce that

‖µt‖ ≤ Mt‖µt−1‖

≤ {
t−p∏
k=0

Mt−k}‖µt−p−1‖,

for any p ∈ N. Under assumption 7, lim
p→∞
‖MtMt−1 · · ·Mt−p‖ = 0 P − a.s., for a fixed

t using Lemma 2.1 of Francq and Zakoian (2010). We deduce that µt −→
t→∞

0. This

implies that Ψ(Pct) = Ψ(P̃ ct) a.s. and Dt = D̃t a.s., which then implies Rt = R̃t a.s.

and εt = ε̃t a.s.. This concludes the proof of uniqueness. Furthermore, ergodicity is

obtained as a consequence of corollary 7.17 in Douc, Moulines and Stoffer (2014).

A sufficient condition for uniqueness is that the top Lyapunov exponent γM is strictly

negative. This condition holds if E [log (‖Mt‖)] < 0.

1.6 Asymptotic theory

The conditions for the existence and uniqueness of a strictly stationary solution of the

vine-GARCH process have been established. We thus can provide a sound asymptotic

theory. In this section, we state the asymptotic properties of the two-step quasi-

maximum likelihood estimator, but not the estimator obtained by the iterative process,
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for which the limiting behavior would be more complex. Our vine-GARCH model is

specified by choosing a R-vine, and by Equations (1.3.1)-(1.3.5).

The proofs of consistency and asymptotic normality require some matrix computations,

in particular the differentiation of some quantities involving matrices. Recalling some

results recorded in Lütkepohl (1996), we have

∂x′Xx

∂X
= xx′, X ∈Mm×m(R), x ∈ Rm,

∂Trace (AX ′B)

∂X
= BA, X ∈Mm×n(R), A ∈Mp×n(R), B ∈Mm×p(R)

∂Trace (AX−1B)

∂X
= − (X−1BAX−1)

′
, X ∈Mm×m(R), nonsingular, A,B ∈Mm×m(R),

∂ log (det(X))

∂X
= (X ′)−1, X ∈Mm×m(R), nonsingular,

∂X−1

∂x
= −(X ′)−1(∂xX)X−1, X ∈Mm×m(R), nonsingular.

For convenience and to get explicit assumptions, assume hereafter that any conditional

variance series follows a univariate GARCH process defined as

hi,t = ςi +

qi∑
k=1

κi,kε
2
i,t−k +

pi∑
l=1

τi,lhi,t−l, (1.6.1)

such that θ
(i)
v = (ςi,κi, τ i)

′ ∈ Rpi+qi+1
+ for all i = 1, . . . , N . It would be more or less

straightforward to obtain similar theoretical results with different volatility dynamics,

such as spill-over effects. Nonetheless, this would induce additional technicalities that

would digress us from the core of the vine-GARCH models.

Assume we observe a T -path (εt)t=1,...,T that corresponds to a realization drawn follow-

ing a unique, strictly stationary and non-anticipative solution (εt)t∈Z of this model. We

will denote by Dt(θ), Rt(θ) and Ht(θ) the t-matrices of conditional volatilities, condi-

tional correlations and conditional covariances respectively, as generated by our model

and assuming θ is the underlying parameter. We estimate this model by a Gaussian

QMLE and by applying the two-step estimation method of Section 1.4.

To calculate log-likelihoods, a practical issue is the choice of some initial values to

generate the sequences (Dt), (Rt) and then (Ht), t = 1, . . . , T . Given some fixed

values for ε0, D0 and R0, we obtain log-likelihoods. In this Section only, the latter
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log-likelihoods will be denoted by G̃T l1(ε; θv) and G̃T l2(ε; θv, θc). More generally, all

quantities with a “ ˜ ” are deduced from the process with fixed arbitrary starting values

at t = 0. Therefore, they are distinct from the “theoretical” log-likelihoods GT l1(ε; θv)

and GT l2(ε; θv, θc), for which the initial values are coming from the stationary laws.

Equivalently, they can be seen as coming from a stationary solution (εt)t∈Z. Actually,

this subtlety has no consequence because we will assume irrelevance of initial values:

see assumption 13 and 15.

In the following, we use the sub-multiplicative matrix norm ‖A‖ := sup{‖Ax‖‖x‖ , x 6= 0},
for any A ∈Mn×m(R), x ∈ Rm and ‖x‖ denotes the Euclidean norm of x. We also need

the spectral radius norm of squared non-negative matrices, which is submultiplicative:

‖A‖s := max{|λi| : Spec(A) = (λ1, · · · , λm)}.

1.6.1 Consistency

Assumption 8. The variance parameters θv (resp. correlation parameters θc) belong to

a compact set Θv in Rs
+, s :=

∑N
i=1(pi+qi+1) (resp. Θc in in R(p+q)N2(N−1)2/4+N(N−1)/2).

The true parameter θ0 = (θ0,v, θ0,c)
′ belongs to the interior of the compact set Θ :=

Θv ×Θc.

Denoting by ρΞ the spectral radius of the companion block-matrix associated to (Ξ1, . . . ,Ξp),

a necessary condition is ρΞ < 1 in particular. When p = 1, this means simply that all

eigenvalues of Ξ1 := Ξ are smaller than one in absolute value.

Assumption 9. The sequence of innovations (ηt) is strongly stationary. The law of ηt

given Ft−1 is elliptical s.t. Et−1[ηt] = 0 and Et−1[ηi,t|ηj,t] = 0 when i 6= j.

In particular, every η2
k,t, k = 1, . . . , N , has a nondegenerate conditional distribution.

With an underlying elliptical distribution, the conditional expectation of any ηit given

Mηt is a linear transform of ηt, for an arbitrary m×N matrix M , m < N . This prop-

erty is necessary to ensure the identifiability of vine-GARCH processes. Considering

elliptical random vectors (including Gaussian ones) can be seen as restrictive, but it is

convenient and realistic here. This implies that the true DGP can induce fatter tails

than conditionally Gaussian processes, for instance by choosing student-distributed

noises ηt.

Set the polynomials Ai,θ(z) =
∑qi

k=1 κi,kz
k and Bi,θ(z) = 1−

∑pi
l=1 τi,lz

l.
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Assumption 10. For every i = 1, . . . , N , when pi > 0, the polynomials Ai,θ0(z) and

Bi,θ0(z) have no common roots, Ai,θ0(1) 6= 0 and κi,qi + τi,pi 6= 0.

For any i = 1, . . . , N , let the random matrix

Ai,0,t :=



κi,1η
2
i,t . . . . . . . . . κi,qiη

2
i,t τi,1η

2
i,t . . . . . . . . . τi,piη

2
i,t

1 0 . . . . . . 0 0 . . . . . . . . . 0

0 1 0 . . . 0 0 . . . . . . . . . 0
...

. . . . . . . . .
...

...
...

...
...

...

0 . . . 0 1 0 0 . . . . . . . . . 0

κi,1 . . . . . . . . . κi,qi τi,1 . . . . . . . . . τi,pi

0 . . . . . . . . . 0 1 0 . . . . . . 0

0 . . . . . . . . . 0 0 1 0 . . . 0
...

...
...

...
...

...
. . . . . . . . .

...

0 . . . . . . . . . 0 0 . . . 0 1 0

,


that depends on the true parameter values.

Assumption 11. For any i = 1, . . . , N , the top Lyapunov exponent γ(Ai,0) := γi,

defined as

γi := inf
t∈N?

1

t
E [log (‖Ai,0,tAi,0,t−1 · · ·Ai,0,1‖)] = lim

t→∞

1

t
log (‖Ai,0,tAi,0,t−1 · · ·Ai,0,1‖) a.s.

is strictly negative. Moreover, for all θi,v,
∑pi

l=1 τi,l < 1.

Such assumptions on Lyapunov exponents are standard in the GARCH literature.

When p = q = 1, this is equivalent to E[ln
(
κi,1η

2
i,t + τi,1

)
] < 0. More generally, it is

sufficient to check that E [ln ‖Ai,0,tAi,0,t−1 . . . Ai,0,1‖] < 0.

Define Dθ(z) =
∑q

l=1 Λlz
l and Qθ(z) = IN −

∑p
k=1 Ξkz

k. The following technical

assumptions is required to get the identifiability of θc (see Section 11.4.1. in Francq

and Zaköıan, 2010, for formal definitions of “left coprime” and of the matrix M(·, ·)).

Assumption 12. For any θ ∈ Θ, Qθ(z) is nonsingular, i.e. the roots of det(Qθ(z)) = 0

are outside the unit disk. If p > 0, Dθ0(z) andQθ0(z) are left coprime andM(Dθ0 ,Qθ0(z))

has full rank N(N − 1)/2.

Assumption 13. The initial values are asymptotically irrelevant, which means

sup
θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)| = op(1).
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This assumption is proved as a technical result in Appendix A, due to its technicality.

Assumption 14. There exists a number a ∈ (0, 1) such that, for almost every trajectory

and every θ ∈ Θ, the partial correlations associated to our R-vine (i.e. the components

of the vectors Pct(θ)) belong to the fixed interval [−1 + a, 1− a].

The latter assumption implies that, for every θ ∈ Θ, the determinant of almost every

correlation matrices Rt(θ) is strictly larger than aN(N−1) > 0 (apply Kurowicka and

Cooke, 2006, Theorem 3.2), and that the norm of R−1
t (θ) is bounded from above a.e.

Indeed, ‖R−1
t ‖s ≤ λmin(Rt)

−N ≤ aN
2(N−1). Moreover, the function Fvine(.) that maps

partial correlations to usual correlations has a bounded derivative, when applied to the

trajectories (Pct(θ)) generated by the model.

The next assumption allows to control the influence of the first step estimator θ̂T,v on

the second step estimator.

Assumption 15. If (θ̃T,v) is a sequence in Θv that tends to θ0,v in probability, then

sup
θ∈Θ
|GT l2(ε, θ̃T,v; θc)−GT l2(ε, θ0,v; θc)| = oP (1).

This assumption is proved as a technical result in Appendix B. There, the influence of

the correlation-related parameters Ω, Ξ and Λ appears explicitly.

Theorem 1.6.19. Let θ̂T = (θ̂T,v, θ̂T,c)
′ be a sequence of QML estimators defined

by (1.4.1) and (1.4.2). Then, under assumptions 8-15, θ̂T
P−→ θ0 when T →∞.

Set θ0\c = (θ0,v, θc). The consistency proof requires some preliminary lemmas. The

next three steps will be demonstrated successively.

1. Identifiability of the parameters, which can be expressed in our framework as:

{∀t ∈ Z, Dt(θv) = Dt(θ0,v) andRt(θ) = Rt(θ0) Pθ0 as} ⇒ θ = θ0.

2. The optimum θ0 is well-separated: if ‖θc − θ0,c‖ > γ for some γ > 0, then

l2,t(εt; θ0,v, θ0,c) ∈ L1(R) and Eθ0 [l2,t(εt; θ0,v, θc)] > Eθ0 [l2,t(εt; θ0)].

3. Let Θ0\c = {θ = (θ0,v, θc) ∈ Θ} = {θ0,v} × Θc. For every θ∗ ∈ Θ0\c with

‖θ∗c − θ0,c‖ > 0 and every π > 0, there exists an open ball V (θ∗, π) around θ∗ in

the space Θ0\c s.t.

Eθ0
[

inf
θ∈V (θ∗,π)

l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ

∗)]− π.
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Proof of Step 1. Our assumptions 9-11 insure the identifiability of the GARCH(pi,qi)

models: when Dt(θv) = Dt(θ0,v) for every t and almost everywhere, this means that

θv = θ0,v (see Francq and Zaköıan (2010), Theorem 7.1).

Now, let us state the identifiability of the correlation-related parameters. There is

a one-to-one relationship between the components of the lower (or upper) triangular

part of Rt(θ), and Pct(θ), the vector of partial correlations, through Fvine(.). Then

Rt(θ) = Rt(θ0) Pθ0 a.s. implies Pct(θ) = Pct(θ0) Pθ0 a.s. For a given sequence of

innovations (ηt), we write the partial correlation dynamics as

Qθ(B)Ψ (Pct(θ)) = Ω +Dθ(B)ζt(θ), or Ψ (Pct(θ)) = Q−1
θ (B)Dθ(B)ζt(θ) +Q−1

θ (1)Ω,

because Qθ is invertible (assumption 12). Set Pθ(z) := Q−1
θ (z)Dθ(z). Since we assume

Rt(θ) = Rt(θ0), Dt(θ) = Dt(θ0) for all t and some θ and θ0 in Θ, then Ht(θ) = Ht(θ0)

and the observations εt are the same under Pθ and Pθ0 . This implies that ζt(θ) =

ζt(θ0) := ζt and

(Pθ(B)− Pθ0(B)) ζt(θ) = Q−1
θ0

(1)Ω0 −Q−1
θ (1)Ω. (1.6.2)

There exists a sequence of matrices (Pk) s.t. Pθ(B)−Pθ0(B) =:
∑

k≥0PkBk. Note that

P0 = 0. Isolating the terms that are functions of ζt−1, we see there exists a random

variable Vt−2 that is Ft−2−mesurable s.t. P1ζt−1 = Vt−2 a.s. If P1 is not zero, its kernel

is included in an hyperplan in RN(N−1)/2. Therefore, there exists a constant non-zero

vector $ and an Ft−2−measurable variable κt−2 s.t.

$′ζt−1 = κt−2 a.s. (1.6.3)

Recall that the N(N − 1)/2 components of the vector ζt−1 are based on cross-products

of the returns εi,t−1. To be specific,

ζt−1 =
[
(εi,t−1 − Et−2[εi,t−1|εL,t−1]).(εj,t−1 − Et−2[εj,t−1|εL,t−1])/

√
hi,t−1hj,t−1

]
,

denoting by (ij|L) the nodes of the vine. Note that the volatilities hi,t−1 are Ft−2−measurable,

i = 1, . . . , N . Moreover, since ηt is conditionally elliptical by assumption 9, there exists

Ft−2−measurable vectors mi,L,t−2 s.t. Et−2[εi,t−1|εL,t−1] = m′i,L,t−2εL,t−1. Since εt−1 is a

Ft−2−measurable linear transform of ηt−1, Equation (1.6.3) becomes

η′t−1Υt−2ηt−1 = κ∗t−2 a.s. (1.6.4)
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for some Ft−2−measurable random matrix (resp. variable) Υt−2 (resp. κ∗t−2). Obvi-

ously, Υt−2 = 0 implies $ = 0, contradicting rg(P1) > 0.

Now, let us prove that Υt−2 = 0. It is well-known that any standardized elliptical

vector, say ηt−1, can be decomposed as ηt−1 = St−1.Zt−1, where St−1 is a positive

random variable, Zt−1 ∼ N (0N , IN) and St−1 and Zt−1 are independent. By con-

struction, St−1 and Zt−1 are functions of ηt−1 and are then Ft−1−measurable, but not

Ft−2−measurable (if non-degenerate). Then, Equation (1.6.4) may be rewritten

S2
t−1.

(
Z ′t−1Υt−2Zt−1

)
= κ∗t−2 a.s.

Given an (arbitrary) realization of (ηt−2, ηt−3, . . .) and invoking the independence be-

tween St−1 and Zt−1, we deduce that St−1 and Z ′t−1Υt−2Zt−1 are a.e. Ft−2−measurable

variables. This is possible only if Υt−2 is zero. Therefore, this proves that P1 = 0.

By a similar reasoning, we prove successively that Pk = 0, for any k > 0, and then

Pθ(B) = Pθ0(B). By assumption 12, this is sufficient to insure that Dθ = Dθ0 and

Qθ = Qθ0 (see the arguments in Francq and Zaköıan, 2010, Section 11.4.1). As a

consequence, Ξk and Λl are uniquely identified from the sequence (ηt) on. And, through

Equation (1.6.2), we check easily that Ω = Ω0, i.e. that Ω is identified too.

Proof of Step 2. We now show that the limit criterion is minimized at the true value.

It is important to note that the second step is conditional on the first step estimator,

i.e. we deal with l2,t(εt; θ̂T,v, θc). For all θ ∈ Θ,

Eθ0
[
l−2,t(εt; θ)

]
≤ Eθ0

[
log−(|Rt|)

]
≤ E [max (0,− log(|Rt|))] <∞,

by assumption 14. Consequently, Eθ0 [l2,t(εt; θ)] belongs to R ∪ {+∞}. Actually,

Eθ0 [|l2,t(εt; θ0)|] <∞.

Indeed, the determinant of Rt(θ0) is bounded from above by Tr(Rt)
N = NN . Thus,

due to the properties of the trace operator, we have

Eθ0 [l2,t(εt; θ0)] = Eθ0 [log |Rt(θ0)|] + Tr
(
R−1
t Eθ0 [utu

′
t]
)
≤ N logN +N.

Therefore, we obtain that l2,t(εt; θ0) belongs to L1.
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Denote by αi,t the eigenvalues of Rt(θ0)R−1
t (θ0\c), θ0\c = (θ0,v, θc), i = 1, . . . , N . They

are positive. Setting ut = Dt(θ0,v)
−1εt, we have

Eθ0
[
l2,t(εt; θ0\c)− l2,t(εt; θ0)

]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
u′t
(
R−1
t (θ0\c)−R−1

t (θ0)
)
ut
]

= Eθ0
[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Tr
((
R−1
t (θ0\c)−R−1

t (θ0)
)
utu
′
t

)]
= Eθ0

[
log(|Rt(θ0\c)||R−1

t (θ0)|)
]

+ Eθ0
[
Tr
((
R−1
t (θ0\c)−R−1

t (θ0)
)
Et−1[utu

′
t]
)]

= Eθ0
[
N∑
i=1

(αi,t − 1− log(αi,t))

]
≥ 0.

The inequality log(x) ≤ x − 1 holds if and only if x = 1. In our case, that means

αi,t = 1, for all i, i.e. Rt(θ0\c) = Rt(θ0) a.s. By stationarity, this reasoning can be

made at time t − 1, which would give Rt−1(θ0\c) = Rt−1(θ0) a.s. Hence for any t, the

relationship Rt(θ0\c) = Rt(θ0) Pθ0 , a.s. holds by stationarity. By step 1, this means

θ0 = θ0\c.

Proof of Step 3. For a given θ∗ ∈ Θ0\v, θ
∗
c 6= θ0,c, consider a sequence of open balls of

radius 1/k, k ∈ N defined by Vk(θ
∗) := {θ ∈ Θ0\v| ‖θ−θ∗‖ ≤ 1/k}. Since the sequence of

random variable (infθ∈Vk(θ∗) l2,t(εt; θ))k is increasing, the Beppo-Levi Theorem applies:

lim
k→∞

Eθ0
[

inf
θ∈Vk(θ∗)

l2,t(εt; θ)

]
= Eθ0 [l2,t(εt; θ

∗)] ,

providing the result.

Proof of Theorem 1.6.19. Under our assumptions, θ̂T,v converges weakly to θ0,v (see

Theorem 7.1 in Francq and Zaköıan, 2010, e.g.). Now, let us prove the weak conver-

gence of θ̂T,c to θ0,c, that is, for all α > 0, limT→∞ P(‖θ̂T,c − θ0,c‖ > α) = 0. Invoking

Step 3, for any given π > 0 and for every θ∗ ∈ Θ0\c, θ
∗ 6= θ0 with ‖θ∗c − θ0,c‖ ≥ α/2,

we can find an open ball U(θ∗) ⊂ Θ0\c s.t.

Eθ0
[

inf
θ∈U(θ∗)

l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ

∗)]− π.

Since the function θ 7→ Eθ0 [l2,t(εt; θ0,v, θc)]−Eθ0 [l2,t(εt; θ0)], defined on Θ0\c, is strictly

positive (c.f. Step 2) and continuous on the compact subset C0(α) := {θ ∈ Θ0\c | ‖θc −
θ0,c‖ ≥ α/2}, it reaches its minimum 2µ > 0. Therefore, for any given θ∗ ∈ C0(α), set

π := π(θ∗) = Eθ0 [l2,t(εt; θ
∗)]− Eθ0 [l2,t(εt; θ0)]− µ > 0.



Chapter 1. Dynamic Correlation Model based on Vines 61

Moreover, set U(θ0) := {θ ∈ Θ0\c : ‖θ − θ0‖ < α}. Then

Θ0\c ⊂ U(θ0) ∪
⋃

θ∈C0(α)

U(θ).

Since Θ0\c can be covered by a finite set of open balls, there is a finite set of points

θ1, . . . , θn in C0(α) s.t. Θ0\c ⊂ U(θ0) ∪
⋃

i=1,...,n

U(θi). We deduce

P
(
‖θ̂T,c − θ0,c‖ > α

)
≤ P

(
(θ0,v, θ̂T,c) ∈ ∪ni=1U(θi)

)
≤

n∑
i=1

P
(

(θ0,v, θ̂T,c) ∈ U(θi)
)
.

By definition of θ̂T and for all i = 1, · · · , n, we obtain

P
(

(θ0,v, θ̂T,c) ∈ U(θi)
)
≤ P

(
inf

θ∈U(θi)
G̃T l2(ε; θ) ≤ G̃T l2(ε; θ0,v, θ̂T,c)

)
≤ P

(
inf

θ∈U(θi)
GT l2(ε; θ) ≤ GT l2(ε; θ̂T ) + 2 sup

θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|

+ |GT l2(ε; θ0,v, θ̂T,c)−GT l2(ε; θ̂T )|
)

≤ P
(

inf
θ∈U(θi)

GT l2(ε; θ) ≤ GT l2(ε; θ̂T,v, θ0,c)|+ 2 sup
θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|

+ |GT l2(ε; θ0,v, θ̂T,c)−GT l2(ε; θ̂T )|
)

≤ P
(
Eθ0
[

inf
θ∈U(θi)

l2,t(εt; θ)

]
≤ Eθ0 [l2,t(εt; θ0)] + 2 sup

θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|

+ |GT l2(ε; θ0)− Eθ0 [l2,t(εt; θ0)] | + |GT l2(ε; θ0,v, θ̂T,c)−GT l2(ε; θ̂T )|+ |Rθi|
)
,

where Rθi = 1
T

T∑
t=1

inf
θ∈U(θi)

l2,t(εt; θ) − Eθ0
[

inf
θ∈U(θi)

l2,t(εt; θ)

]
. Invoking step 3 and the way

the neighborhoods have been built, for any i = 1, . . . , n,

Eθ0
[

inf
θ∈U(θi)

l2,t(εt; θ)

]
≥ Eθ0 [l2,t(εt; θ0)] + µ.
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Using the property {X + Y ≤ a + b} ⊂ {X ≤ a} ∪ {Y ≤ b}, a, b ≥ 0 and X, Y any

random variables, we obtain

P
(

(θ0,v, θ̂c,T ) ∈ U(θi)
)
≤ P

(
µ ≤ 2 sup

θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|+ |Rθi|

+ |GT l2(ε; θ0)− Eθ0 [l2,t(εt; θ0)] |+ |GT l2(ε; θ0,v, θ̂T,c)−GT l2(ε; θ̂T )|
)

≤ P
(
µ

4
< 2 sup

θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|

)
+ P

(µ
4
< |GT l2(ε; θ0)− Eθ0 [l2,t(εt; θ0)] |

)
+ P

(µ
4
< |Rθi|

)
+ P

(µ
4
< |GT l2(ε; θ0,v, θ̂T,c)−GT l2(ε; θ̂T )|

)
. (1.6.5)

Under assumption 13, the initial values generating the process are asymptotically ir-

relevant. For some δ > 0 and T > T1, this implies

P
(
µ

4
< 2 sup

θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)|

)
< δ/4. (1.6.6)

As for the second probability of the r.h.s. in (1.6.5), we use the ergodic theorem (see

Billingsley 1995), and for T > T2, we obtain

P
(µ

4
< |GT l2(ε; θ0)− Eθ0 [l2,t(εt; θ0)] |

)
< δ/4. (1.6.7)

Let us focus on the the third term in the r.h.s. Although the quantity l2,t(εt; θ) is

not necessarily integrable, the Ergodic Theorem can still be used as Eθ0 [l2,t(εt; θ)] ∈
R∪{∞}. Furthermore, l2,t(εt; θ) is a measurable function of an ergodic process, hence,

as in Exercise 7.4 in Francq and Zaköıan (2010), the Ergodic Theorem can be applied

to ( inf
θ∈U(θi)

l2,t(εt; θ)):

lim inf
T→∞

1

T

T∑
t=1

inf
θ∈U(θi)

l2,t(εt; θ) = Eθ0
[

inf
θ∈U(θi)

l2,t(εt; θ)

]
.

Plugging this convergence result into (1.6.5), for δ > 0, T > T3, we obtain

P (µ/4 < |Rθi|) < δ/4. (1.6.8)

Note that the derivative of θv 7→ GT l2(ε; θv, θ0,c) is uniformly bounded under assump-

tion 14 (recall the arguments in the proof of Step 2). Invoking assumption 15, we can

tackle the fourth term of (1.6.5): if t > T4, we have

P
(
µ/4 < |GT l2(ε; θ0)−GT l2(ε; θ̂T,v, θ0,c)|

)
< δ/4. (1.6.9)
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Consequently, with (1.6.6), (1.6.7), (1.6.8) and (1.6.9), for T > T1∨T2∨T3∨T4, (1.6.5)

becomes P
(
θ̂T ∈ U(θi)

)
≤ δ. Since δ can be chosen arbitrarily small, this proves the

convergence in probability of (θ̂T,v, θ̂T,c)
′ to the true parameter vector θ0.

1.6.2 Asymptotic Normality

To define θ̂T , the first order conditions are
∆T (θ̂T,v) = 1

T

T∑
t=1

δt(θ̂T,v) = 0, with δt(θT,v) := ∇θv l1,t(εt; θv),

ΨT (θ̂T,v, θ̂T,c) = 1
T

T∑
t=1

ψt(θ̂T,v, θ̂T,c) = 0, with ψt(θ) := ∇θcl2,t(εt; θ).

We stress that l2,t and its derivatives w.r.t. θ cannot be written explicitly in practice,

because the functional relationship between a Gaussian likelihood and the underlying

partial correlations (through our previous function Fvine) is too complex in analytical

terms. Therefore, we have to rely on some numerical routines to evaluate numerically

such functions: see Brechmann and Schepsmeier (2013). In particular, this is necessary

to calculate θ̂T,c and to approximate the asymptotic variance-covariance matrix in

Theorem 1.6.20 below.

Assumption 16. The innovations ηt have finite fourth order moments.

The next regularity conditions are classic and necessary to justify the existence of the

asymptotic covariance in the next Theorem.

Assumption 17. The first order moments of ‖ψt(θ0)ψt(θ0)′‖ and ‖δt(θ0,v)ψt(θ0)′‖ are

finite.

Under the price of additional technicalities, it is possible to establish some suffi-

cient and more explicit conditions on the model parameters to satisfy assumption 17:

see assumption 15 in Poignard and Fermanian (2016). Note that the existence of

E [‖δt(θ0,v)δt(θ0,v)
′‖] and E [‖∇θvδt(θ0,v)‖] has been established by Francq and Zaköıan

(2004), as they are related to usual GARCH processes and Gaussian QMLE. Here,

we require additional conditions of regularity to manage the correlation part of the

likelihood.

Assumption 18. The variables ∇θvθ′cl2,t(εt; θ0), ∇θcθ′cl2,t(εt; θ0), sup
θ:‖θ−θ0‖<α

‖∇θcθ′cψ(θ0)‖

and sup
θ:‖θ−θ0‖<α

‖∇θcθ′vψ(θ0)‖ are integrable, for some α > 0.
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Assumption 19. E
[
∇θcθ′cl2,t(εt; θ0,v, θ0,c)

]
is nonsingular.

As expected, we need to assume that the initial values of the process are asymptotically

irrelevant to evaluate score functions. The multiplication by
√
T renders this task more

difficult than in the proof of consistency.

Assumption 20.
√
T‖∆T (θ0,v)−∆̃T (θ0,v)‖ = op(1) and

√
T‖ΨT (θ0,v, θ0,c)−Ψ̃T (θ0,v, θ0,c)‖ =

op(1). For some α > 0,

sup
θv :‖θv−θ0,v‖<α

‖∇θv∆T (θv)−∇θv∆̃T (θv)‖+ sup
θ:‖θ−θ0‖<α

‖∇θΨT (θ)−∇θΨ̃T (θ)‖ = op(1).

Theorem 1.6.20. Assume (8)-(20), then θ̂T,v and θ̂T,c are asymptotically normal, and
√
T
(
θ̂T − θ0

)
d−→ N (0, J−1IJ−1), where

J = Eθ0

[(
∇θvθ′v l1,t(εt; θ0,v) 0

∇θvθ′cl2,t(εt; θ0,v, θ0,c) ∇θcθ′cl2,t(εt; θ0)

)]
,

I = V (δt(θ0,v), ψt(θ0,v, θ0,c))
′

= Eθ0

[(
∇θv l1,t(εt; θ0,v)∇θ′v l1,t(εt; θ0,v) ∇θv l1,t(εt; θ0,v)∇θ′cl2,t(εt; θ0,v, θ0,c)

∇θcl2,t(εt; θ0)∇θ′v l1,t(εt; θ0,v) ∇θcl2,t(εt; θ0,v, θ0,c)∇θ′cl2,t(εt; θ0)

)]
.

This usual “sandwich” asymptotic covariance illustrates the two-stage estimation pro-

cedure. As we mentioned above, the matrices I and J can be estimated empirically,

evaluating the second-order derivatives of the likelihood numerically.

Lemma 1.6.21. Suppose the assumptions of Theorem 1.6.20 hold. If θ̄T → θ0 in

probability, then

(i) ∇θv∆T (θ̄T,v)
P−→

T→∞
J1,1, ∇θcΨT (θ̄T )

P−→
T→∞

J2,2, and ∇θvΨT (θ̄T )
P−→

T→∞
J2,1.

(ii)
√
T

(
∆T (θ0,v)

ΨT (θ0,v, θ0,c)

)
d−→ N (0, I) .

Proof of Lemma 1.6.21. (i) The first convergence corresponds to scores of usual GARCH

log-likelihoods. This result can be found in Francq and Zaköıan (2004), for instance.

Moreover, applying a Taylor expansion of ∇θcΨ(θ̄T ) around θ0, we get

∇θcΨT (θ̄T ) = ∇θcΨT (θ0) +∇θcθ′vΨT (θ̃T ).
(
θ̄T,v − θ0,v

)
+ ∇θcθ′cΨT (θ̃T ).

(
θ̄T,c − θ0,c

)
,

(1.6.10)
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for some θ̃T , ‖θ̃T − θ0‖ ≤ ‖θ̄T − θ0‖. Furthermore, we can apply an Ergodic Theorem

(Billingsley, 1995) to the two sequences sup
θ:‖θ−θ0‖<α

‖∇θcθ′vψt(θ)‖ and sup
θ:‖θ−θ0‖<α

‖∇θcθ′cψt(εt; θ)‖.

Those results imply

lim sup
T→∞

‖∇θcθ′vΨT (θ)‖ ≤ lim sup
T→∞

T−1
T∑
t=1

sup
θ:‖θ−θ0‖<α

‖∇θcθ′vψt(θ)‖

= E

[
sup

θ:‖θ−θ0‖<α
‖∇θcθ′vψt(θ)‖

]
, and

(1.6.11)

lim sup
T→∞

‖∇θcθ′cΨT (θ)‖ ≤ lim sup
T→∞

T−1
T∑
t=1

sup
θ:‖θ−θ0‖<α

‖∇θcθ′cψt(θ)‖

= E

[
sup

θ:‖θ−θ0‖<α
‖∇θcθ′cψt(θ)‖

]
.

(1.6.12)

By assumption 18, both expectations of (1.6.11) and (1.6.12) are finite. Since θ̄T −→
T→∞

θ0 in probability, the two last terms of the r.h.s. of (1.6.10) converge to 0. Finally, the

Ergodic Theorem applied to (∇θcΨT (θ0,v, θ0,c)) proves the second assertion of (i). The

third assertion of (i) can be proved similarly.

(ii) To apply a CLT, we prove that (δt(θ0,v), ψt(θ0))′ is a square integrable martingale

difference. Denote by δ
(i)
t (θv) (resp. ψ

(i)
t (θv, θc)) the i-th component of∇θv l1,t(θv) (resp.

∇θcl2,t(θv, θc)). Through usual matrix derivatives (see Lütkepohl, 1996), we get

δ
(i)
t (θv) = Tr

(
(IN −D−1

t εtε
′
tD
−1
t ).(D−1

t (∂θivDt) + (∂θivDt)D
−1
t )
)
.

Using the Ft−1 measurability of Dt, we obtain

E
[
δ

(i)
t (θv)|Ft−1

]
= 2Tr

(
(∂θivDt)D

−1
t )
)
− Tr

(
E[utu

′
t|Ft−1](∂θivDt)D

−1
t +D−1

t (∂θivDt))
)

= 2Tr
(
(∂θivDt)D

−1
t )
)
− 2Tr

(
(∂θivDt)D

−1
t )
)

= 0.

Concerning the correlation components, for i = 1, · · · , 3N(N − 1)/2, the score is

ψ
(i)
t (θ0,v, θ0,c) = Tr

(
(IN −R−1

t utu
′
t)R

−1
t (∂θicRt)

)
.

Using the Ft−1 measurability of Rt, we obtain

E
[
ψ

(i)
t (θ0,v, θ0,c)|Ft−1

]
= Tr

((
IN −R−1

t E [utu
′
t|Ft−1]

)
R−1
t (∂θicRt)

)
= Tr

((
IN −R−1

t Rt

)
R−1
t (∂θicRt)

)
= 0.
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Consequently, (δt(θ0,v), ψt(θ0,v, θ0,c))
′ is a square integrable martingale difference, invok-

ing assumption 17. The process (δt(θ0,v), ψt(θ0,v, θ0,c)) is stationary, as a measurable

function of the stationary process (εt). Consequently, by a central limit theorem for

stationary square integrable martingale differences (see Billinsgley 1995), we obtain

the asymptotic normality of
√
T (∆T (θ0,v,ΨT (θ0)).

Proof of Theorem 1.6.20. Through a Taylor expansion around θ0, we obtain 0 = ∆T (θ̂T,v) =

∆T (θ0,v) +∇θv∆T (θ̄T,v).(θ̂T,v − θ0,v), and

0 = ΨT (θ̂T,v, θ̂T,c) = ΨT (θ0) +∇θvΨT (θ̄T )(θ̂T,v − θ0,v) +∇θcΨT (θ̄T )(θ̂T,c − θ0,c),

where ‖θ̄T − θ0‖ < ‖θ̂T − θ0‖. Inverting these relationships and multiplying by
√
T , we

have
√
T
(
θ̂T,v − θ0,v

)
=
(
−∇θv∆T (θ̄T,v)

)−1√
T ∆T (θ0,v), and

√
T (θ̂T,c − θ0,c) =

(
−∇θcΨT (θ̄T )

)−1∇θvΨT (θ̄T )
(
−∇θv∆T (θ̄T,v)

)−1√
T ∆T (θ0,v)

+
(
−∇θcΨT (θ̄T )

)−1√
T ΨT (θ0).

Therefore,
√
T (θ̂T − θ0) is a linear transform of

√
T [∆T (θ0,v),ΨT (θ0]′:

√
T (θ̂T − θ0) = MT ·

√
T [∆T (θ0,v),ΨT (θ0)]′,

for some sequence of random matrices (MT ) that tends to J−1 in probability. By

Lemma 1.6.21 and Slutsky’s theorem, we obtain the asymptotic normality of
√
T (θ̂T −

θ0).

As a by-product, simple calculations provide the asymptotic variances of θ̂T,v and θ̂T,c:

with obvious notations, Vas(θ̂T,v) = J−1
11 I11J

−1
11 , and

Vas(θ̂T,c) = J−1
22 I22J

−1
22 − ΓI12J

−1
22 − J−1

22 I21Γ′ + ΓI11Γ′, Γ := J−1
22 J21J

−1
11 .

1.7 Empirical applications

To simplify and to lighten notations, we restrict ourselves to one-order models in

this section. Moreover, we consider no cross-effects between all the individual partial

correlation processes, i.e. the matrices Ξk and Λl are assumed to be diagonal. Then,
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when p = q = 1, the N − 1 first elements of Pct correspond to usual correlations, i.e.

ρij|∅,t = ρij,t, and they follow the processes

ψ (ρij,t) = ωij + ξijψ (ρij,t−1) + λij υ̂i,t−1υ̂j,t−1, (1.7.1)

with υ̂k,t = εk,t/
√
ĥk,t. From the N -th component on, the elements of Pct are “true”

partial correlations for which L 6= ∅. Their dynamics are given by

ψ(ρij|L,t) = ωij|L + ξij|Lψ(ρij|L,t−1) + λij|Lυ̂i|L,t−1υ̂j|L,t−1. (1.7.2)

Strictly speaking, the partial correlation dynamics we invoke for inference or simulation

purpose is given by (1.7.1) and (1.7.2).

1.7.1 A simulation study

We consider as a data generating process (DGP) multivariate series (εt) of size N =

6, 10, 20, 30, 50. Their innovations ηt are standardized normal white noises. The

conditional covariance matrices of these processes are deduced from a MGARCH

form Ht = DtRtDt. To generate N univariate variance processes along (1.6.1), we

choose randomly the corresponding 3N parameters such that ς ∼ U (10−5, 9.10−5),

κ ∼ U (0.01, 0.15) and τ ∼ U (0.95, 0.85), under the stationarity constraint κ+ τ < 1.

As for the correlation dynamics, we first choose randomly N(N − 1)/2 deterministic

processes among the cosinus, sinus, modulo and constant functions, and then generate

some series

a1 + a2 cos(2πt/α), b1 + b2 sin(2πt/β), c1 + c2 mod(t/µ), d1 + d2const,

for every t = 1, . . . , T . Our parameters a1, a2, b1, b2, c1, c2, d1, d2 are chosen randomly

and independently following a U (−0.4, 0.4) and α, β, µ are randomly (equally) se-

lected among the fixed subset {100, 200, 500, 1000, 1500, 2000}. All these series con-

stitute the components of a lower triangular matrix Kt with ones on the main diag-

onal. Then, we generate symmetric and positive definite matrices Ct = KtK
′
t and

Rt = C
?−1/2
t CtC

?−1/2
t . Those processes allow for rapid, gradual changes or constant

correlation patterns, and they do not depend on a specific statistical model. Initializing

each of the GARCH processes randomly and given ε1, we simulate the successive values

of a MGARCH process with conditional covariance matrices (Ht). We do this iterative

procedure for T = 10000 and we consider 300 different correlation matrix patterns.
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Once a series is simulated, we estimate the model under different model assumptions:

a C-vine-GARCH, a diagonal QFDCC and a scalar DCC. As a benchmark, we also

compute the empirical correlation matrices of our returns through a rolling-window of

size 200 observations. The estimated parameters allow the calculation of successive

correlation matrices, which are here R̂vine
t (C-vine-GARCH), R̂qfdcc

t (QFDCC model),

R̂dcc
t (DCC model), and R̂rw

t (rolling-window) correlations. Moreover, we consider a

constrained version of the vine-GARCH. For N = 6, 10, the partial correlations of

the last two trees are constrained to their unconditional partial correlation values, as

estimated over the whole sample. For N = 20, the partial correlations from the 11th

level are set to their unconditional partial correlation values. The same applies for

N = 30, 50, where we only consider the constrained vine-GARCH case. Alternatively,

we could set zero partial correlations for these two last trees of the C-vine and the

results would be comparable. We denote by R̂vine?
t the correlation matrices obtained

with the constrained version of the C-vine. Both vine specifications are estimated by

the C-vine iterative process. The first level of the C-vine has been chosen following

the procedure of Subsection 1.3.3.

We compare the true correlation process and the estimated correlation processes through

the aforementioned models. To do so, we specify a matrix distance, namely the Frobe-

nius norm, defined as ||A − B||F :=
√

Trace((A−B)′(A−B)). We compute the

previous norm for each t and for

A = Rt, and B ∈ {R̂dcc
t , R̂qfdcc

t , R̂rw
t , R̂vine

t , R̂vine?
t }.

We take the average of those quantities over T = 10000 periods of time. Since we

repeat this experiment 300 times, this provides an average gap for all those simulations.

Table 1.1 reports the results.

The C-vine model clearly outperforms the other specifications. The DCC displays a

significant gap, which highlights that it is too restrictive to capture complex dynamics

with only two parameters. As for the rolling-window correlation, the result empha-

sizes this empirical measure should be taken with great care. The rolling nature of the

samples makes the rolling-window correlation very low to react to a rapid correlation

fluctuations. Interestingly, for every N level, both C-vine specifications clearly out-

perform other usual DCC-type dynamics. The QFDCC specification performs poorly

compared to other models. Therefore, this justifies the use of constrained C-vine dy-

namics, allowing for parsimony.
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1.7.2 Application to real portfolios

In this subsection, we estimate by Quasi-Maximum Likelihood the DCC-GARCH and

vine-GARCH models for two financial portfolios. They are composed of daily series of

stock log-returns related to the Morgan Stanley Capital International (MSCI) Devel-

oped Markets indices. In the so-called Portfolio I, we consider Germany, Italy, France,

the Netherlands and the United Kingdom. Portfolio II is more diversified geographi-

cally because it is composed of Germany, the United-States, Greece, Italy, Japan and

Australia. For both portfolios, the samples start in January 1999 and end in August

2013, which amounts to 3669 observations.

First, we have centered the time series by assuming that Et−1 [rt] = µt (θ) follows a one-

order autoregressive process (estimated by OLS). Second, we estimate the conditional

variance processes of the components of εt = rt − µt. The GARCH(1,1) specification

was chosen a priori for modeling these marginal dynamics. Indeed, this is by far the

reference model used in the literature. The estimation results are reported in Table 1.2.

We now turn to the second QML step, i.e. the estimation of the conditional correlation

dynamics, knowing the GARCH(1,1) estimates. For portfolios I and II, we select a rel-

evant C-vine, according to the Kendall’s tau selection procedure (see Subsection 1.3.3).

We associate an index to each country. This number corresponds to the index of the

tree for which this country is the “center” (the node with maximal degree). Since Port-

folio I is composed of European stocks, it can be considered as relatively homogenous,

including the main countries of the Eurozone. The selecting procedure induces the

following order: Germany (1), United-Kingdom (2), Italy (3), France (4) and Nether-

lands (5). In this case, Germany (1) is the root of the first C-vine tree. That means

we consider the partial correlations of two countries given Germany on Tree 2. Then,

on Tree 3, the conditioning subset is Germany (1) and United-Kingdom (2), etc. The

composition of the “heterogenous” portfolio II is given as follows: Germany (1), Greece

(2), United-States (3), Italy (4), Japan (5) and Australia (6).

Actually, we consider two cases of C-vine-GARCH models. The first one is the usual

unconstrained C-vine tree. The second one is a constrained version of the previous one,

where the partial correlations of the last two trees are fixed. Therefore, in portfolio I,

ρ45|123, ρ35|12 and ρ34|12 are set to their unconditional values that have been estimated

over the whole sample. Thus the size of the parameter space is reduced by 9 param-

eters for both portfolios. In every case, the parameters are estimated by simulated
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annealing. Table 1.3 reports the estimation results of the vine-GARCH model for the

unconstrained case. For the sake of comparison, Table 1.4 (resp. Table 1.5) provides

the estimation results of the scalar DCC (resp. diagonal QFDCC). The results for

the constrained case are very close to those of the unconstrained case: see Tables 1.11

and 1.12.

The same model is implemented for portfolio II, which is heterogenous in terms of

geographical areas. Table 1.6 (resp. Table 1.7, Table 1.8) reports the estimation

results of the C-vine-GARCH (resp. diagonal QFDCC, scalar DCC).

Concerning Portfolio I, the higher the level of the tree is, the smaller are the partial

correlation coefficients ω and λ. We may infer that once we control for the information

given by Germany (1) (the core of the Eurozone) and United-Kingdom (2), the dy-

namics of partial correlations on trees T3 and T4 are not very informative. This looks

like evaluating a white noise. This is confirmed by the modeling of constrained vines,

where the estimation results are close to the unconstrained case. On the contrary, this

effect does not appear with the heterogenous portfolio II. Controlling for Germany,

Greece and the US in portfolio II is not enough to deduce the whole information about

the correlation dynamics between Japan and Australia, due to significant remaining

idiosyncratic risks.

1.7.3 Specification testing

Once the model is estimated, we are able to forecast the covariance matrices Ht, at

least one-period ahead. There exist several methods to evaluate the absolute and/or

relative efficiency of these predictions. See Patton and Sheppard (2009) for a survey.

In this study, we focus on direct out-of-sample evaluation methods, which allow for

pairwise comparisons. They test whether some of the previous models provide bet-

ter forecasts in terms of portfolio volatility behavior. Following the methodology of

Engle and Colacito (2006), we develop a mean-variance portfolio approach to test the

Ht forecasts. Intuitively, if a conditional covariance process is misspecified, then the

minimum variance portfolio should emphasize such a shortcoming, compared to other

models. Then, consider an investor who allocates a fixed amount between N stocks,

according to a minimum-variance strategy and independently at each time t. At each

date t, he/she solves

min
wt

w′tHtwt, s.t. ι′wt = 1, (1.7.3)
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where wt is the N × 1 vector of portfolio weights chosen at (the end of) time t − 1,

ι is a N × 1 vector of 1 and Ht is the estimated conditional covariance matrix of

the asset returns at time t. They are deduced from some dynamics that have been

estimated on the sub-sample January 1999 - October 2011. Once the latter process

is estimated in-sample, out-of-sample predictions are plugged into the program (1.7.3)

between November 2011 and August 2013. The solution of (1.7.3) is given by the global

minimum variance portfolio wt = H−1
t ι/ι′H−1

t ι.

Engle and Colacito (2006) show that the realized portfolio volatility is the smallest one

when the model covariance matrices are correctly specified. As a consequence, if wealth

is allocated using two different dynamic models i and j, whose predicted covariance

matrices are (H i
t) and (Hj

t ), the strategy providing the smallest portfolio variance will

be considered as the best one. To do so, we consider a sequence of minimum variance

portfolio weights (wi,t) and (wj,t), depending on the model. Then, we consider a

distance based on the difference of the squared returns of the two portfolios, defined

as uij,t =
{
w′i,tεt

}2 −
{
w′j,tεt

}2
. The portfolio variances are the same if the predicted

covariance matrices are the same. Thus we test the null hypothesis H0 : E[uij,t] = 0

by the Diebold and Mariano (1995) test. It consists of a least square regression using

HAC standard errors, given by uij,t = α + εu,t, E[εu,t] = 0, and we test H0 : α = 0. If

the mean of uij,t is significantly positive (resp. negative), then the forecasts given by

the covariance matrices of model j (resp. i) are preferred.

We run the latter test for portfolios I and II and to compare the scalar DCC, QFDCC,

constrained C-vine-GARCH (C-vine-c) and unconstrained C-vine-GARCH (C-vine)

models. We also compare these parameterizations to a factor model, the O-GARCH(1,1)
5. The results are reported in Tables 1.9 and 1.10. Those tables provide the out-of-

sample Dielbold-Mariano test statistics that check the equality of a pair of series of

covariance matrices using the loss function uij,t over the period November 2011 - Au-

gust 2013.

We first note that in the homogenous case, the DCC specifications do not provide better

covariance forecasts. Interestingly, the constrained case of the C-vine provides better

prediction accuracy than the unconstrained case. For the heterogenous portfolio, we

5The O-GARCH assumes the decomposition Ht = PΛtP
′, where Λt = diag(λ1,t, · · · , λK,t), with K

the number of factors. Here, we choose K = N factors and each λt is supposed to follow a univariate
GARCH(1,1) process that is estimated by maximum likelihood. The matrix P is nonsingular and it
is estimated by applying a PCA on the empirical variance covariance matrix of εt. See Alexander
(2001), e.g.
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obtain the reverse. The C-vine specification outperforms the constrained case in terms

of prediction accuracy: the two last levels of the tree should be estimated as, once the

dynamics are controlled by Germany, Greece and the US, there remains a significant

amount of idiosyncratic risk. Both versions of the C-vine are not outperformed by the

scalar DCC, and the C-vine provides better covariance forecasts than the QFDCC.

The QFDCC is also slightly outperformed by the scalar DCC specification for the

heterogenous portfolio, what is rather surprising. Finally, the O-GARCH model is

beaten by all the others distinctly. But all these results are not sufficiently clear-cut to

draw any strong conclusion concerning a potential hierarchy between all these models,

at least in terms of a “naive” investment strategy.

1.8 Conclusion

We have proposed to rely on vines to define a new family of multivariate GARCH-type

models. The main feature of our methodology is the specification/estimation of partial

correlation processes “independently” and largely arbitrarily, and their use to gener-

ate sequences of correlation matrices. The canonical vine is particularly intuitive to

model a hierarchy between asset returns, as reasonings are close to factor models. Our

approach does not rely on any normalization stage and we model directly correlation

processes. Besides, the vine-GARCH approach allows for building parsimonious mod-

els. Indeed, we can assume (theoretically and often empirically) no partial correlation

dynamics (or at least, constant, simpler, homogenous, etc., dynamics) at all nodes in

the vine from some level on. All these elements foster flexibility and enable to generate

high-dimensional matrices.

Therefore, a new framework has been opened in the field of MGARCH models. We

have provided sufficient conditions for the consistency and the asymptotic normality

of a two-step quasi-maximum estimator. The performances of the vine-GARCH and

DCC estimators have been compared by means of applications to simulated and real

data. The simulation study confirmed that a more flexible specification (the C-vine-

GARCH) provides a better accuracy. The constrained case is particularly adapted

to homogenous portfolios and challenges the unconstrained case. The performances

calculated from real data support the use of vine dynamics but more empirical work

is probably necessary to evaluate all the advantages of such approaches w.r.t. more

classic ones, as the standard DCC family.



Chapter 1. Dynamic Correlation Model based on Vines 73

1.9 Tables and figures

Table 1.1: Simulation study: Average distance between true and estimated cor-
relation matrices.

||Rt −B||F B = R̂dcc
t B = R̂qfdcc

t B = R̂rw
t B = R̂vine

t B = R̂vine?
t

N = 6 0.4995 0.4791 0.5275 0.3906 0.4137
N = 10 0.8270 0.9237 0.8784 0.6413 0.6825
N = 20 1.6931 2.0106 1.7372 1.3250 1.3766
N = 30 2.4876 2.6681 2.5151 - 2.0583
N = 50 3.2839 3.8662 3.7691 - 2.6800

Table 1.2: GARCH(1,1) Models estimated by QML for 9 stock indices. The
Bollerslev-Wooldridge standard deviations are in parentheses.

Asset ς κ τ
Australia 0.657e-5 (0.114e-5) 0.124 (0.014) 0.846 (0.011)
France 0.388e-5 (0.076e-5) 0.111 (0.009) 0.876 (0.008)
Germany 0.368e-5 (0.080e-5) 0.100 (0.011) 0.889 (0.010)
Greece 0.191e-5 (0.147e-5) 0.090 (0.010) 0.917 (0.015)
Italy 0.235e-5 (0.052e-5) 0.113 (0.010) 0.883 (0.008)
Japan 0.997e-5 (0.157e-5) 0.103 (0.012) 0.849 (0.013)
Netherlands 0.363e-5 (0.069e-5) 0.110 (0.010) 0.876 (0.009)
United-Kingdom 0.338e-5 (0.067e-5) 0.115 (0.011) 0.868 (0.009)
United-States 0.223e-5 (0.056e-5) 0.102 (0.010) 0.884 (0.008)

Table 1.3: C-vine-GARCH estimated by QML for Portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)
ω12 -0.0629 (0.0288) ξ12 0.9749 (0.0064) λ12 0.1977 (0.0515)
ω13 -0.0772 (0.0355) ξ13 0.9748 (0.0053) λ13 0.2230 (0.0472)
ω14 -0.1388 (0.1928) ξ14 0.9878 (0.0109) λ14 0.2594 (0.2994)
ω15 -0.0893 (0.0672) ξ15 0.9850 (0.0031) λ15 0.1976 (0.0973)
ω23|1 0.0191 (0.0071) ξ23|1 0.9521 (0.0145) λ23|1 0.0097 (0.0100)
ω24|1 0.0733 (0.0369) ξ24|1 0.8839 (0.0540) λ24|1 0.0311 (0.0161)
ω25|1 0.0332 (0.0117) ξ25|1 0.9375 (0.0162) λ25|1 0.0216 (0.0116)
ω34|12 0.0181 (0.0068) ξ34|12 0.9894 (0.0048) λ34|12 -0.0117 (0.0034)
ω35|12 0.0289 (0.0064) ξ35|12 0.9619 (0.0090) λ35|12 -0.0136 (0.0077)
ω45|123 0.0618 (0.0246) ξ45|123 0.9174 (0.0370) λ45|123 -0.0056 (0.0128)
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Table 1.4: scalar DCC-GARCH estimated by QML for portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Model α β
DCC 0.0284 (0.0032) 0.9674 (0.0041)

Table 1.5: Diagonal QFDCC estimated by QML for Portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

C2 Estimate (Std Err) A2 Estimate (Std Err) B2 Estimate (Std Err)
c2

11 0.0068 (0.0255) a2
11 0.0174 (0.0645) b2

11 0.9786 (0.0130)
c2

22 0.0111 (0.0584) a2
22 0.0217 (0.1080) b2

22 0.9773 (0.0273)
c2

33 0.0087 (0.0380) a2
33 0.0195 (0.2307) b2

33 0.9795 (0.0285)
c2

44 0.0082 (0.0147) a2
44 0.0202 (0.0356) b2

44 0.9788 (0.0084)
c2

55 0.0025 (0.0021) a2
55 0.0063 (0.0525) b2

55 0.9797 (0.0136)

Table 1.6: vine-GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)
ω12 0.0009 (0.0363) ξ12 0.9764 (0.0980) λ12 0.0473 (0.1015)
ω13 0.0034 (0.0044) ξ13 0.9787 (0.0044) λ13 0.0421 (0.0080)
ω14 -0.0637 (0.0258) ξ14 0.9795 (0.0043) λ14 0.1884 (0.0414)
ω15 0.0059 (0.0041) ξ15 0.9714 (0.0127) λ15 0.0175 (0.0066)
ω16 0.0045 (0.0036) ξ16 0.9772 (0.0047) λ16 0.0360 (0.0059)
ω23|1 -0.0064 (0.0225) ξ23|1 0.9388 (0.2172) λ23|1 0.0016 (0.0271)
ω24|1 0.0304 (0.1100) ξ24|1 0.8828 (0.4267) λ24|1 0.0092 (0.0350)
ω25|1 0.0080 (0.0074) ξ25|1 0.9601 (0.0211) λ25|1 0.0034 (0.0191)
ω26|1 0.0265 (0.0924) ξ26|1 0.9101 (0.2596) λ26|1 0.0121 (0.0497)
ω34|12 0.0015 (0.0035) ξ34|12 0.9551 (0.1663) λ34|12 0.0115 (0.0110)
ω35|12 -0.0001 (0.0003) ξ35|12 0.9942 (0.0055) λ35|12 0.0051 (0.0031)
ω36|12 -0.0008 (0.0016) ξ36|12 0.9805 (0.0356) λ36|12 0.0094 (0.0101)
ω45|123 0.0033 (0.0096) ξ45|123 0.7327 (0.2485) λ45|123 0.0128 (0.0217)
ω46|123 0.0035 (0.0031) ξ46|123 0.9512 (0.0191) λ46|123 0.0130 (0.0117)
ω56|1234 0.0134 (0.0067) ξ56|1234 0.9660 (0.0062) λ56|1234 0.0334 (0.0124)

Table 1.7: Diagonal QFDCC estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

C2 Estimate (Std Err) A2 Estimate (Std Err) B2 Estimate (Std Err)
c2

11 0.0065 (0.0029) a2
11 0.0139 (0.0061) b2

11 0.9851 (0.0025)
c2

22 0.0012 (0.0016) a2
22 0.0021 (0.0026) b2

22 0.9931 (0.0026)
c2

33 0.0020 (0.0036) a2
33 0.0029 (0.0054) b2

33 0.9876 (0.0029)
c2

44 0.0064 (0.0050) a2
44 0.0134 (0.0103) b2

44 0.9856 (0.0028)
c2

55 0.0021 (0.0091) a2
55 0.0021 (0.0097) b2

55 0.9925 (0.0041)
c2

66 0.0067 (0.0172) a2
66 0.0086 (0.0231) b2

66 0.9904 (0.0030)
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Table 1.8: scalar DCC GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Model α β
DCC 0.0097 (0.0018) 0.9879 (0.0025)

Table 1.9: Diebold Mariano Test of Multivariate GARCH models for Portfolio I.

DCC QFDCC GO-GARCH C-vine C-vine-c
DCC 0.6509 -5.9350*** 0.7784 0.3551

QFDCC -0.6509 -6.1426*** 0.4237 0.0475
GO-GARCH 5.9350*** 6.1426*** 5.9438*** 5.6779***

C-vine -0.7784 -0.4237 -5.9498*** -2.1206**
C-vine-c -0.3551 -0.0475 -5.6779*** 2.1206**

Rejection of the nul hypothesis at: 10% for *, 5% for **, 1% for ***. When the null
hypothesis of equal predictive accuracy is rejected, a positive number is evidence in

favor of the model in the column.

Table 1.10: Diebold Mariano Test of Multivariate GARCH models for Portfolio II.

DCC QFDCC GO-GARCH C-vine C-vine-c
DCC -0.6220 -4.9369*** 0.0908 -0.7952

QFDCC 0.6220 -4.9783*** 0.2650 -0.5991
GO-GARCH 4.9369*** 4.9783*** 4.6416*** 4.1741***

C-vine -0.0908 -0.2650 -4.6416*** -3.0709***
C-vine-c 0.7952 0.5991 -4.1741*** 3.0709***

Rejection of the null hypothesis at: 10% for *, 5% for **, 1% for ***. When the null
hypothesis of equal predictive accuracy is rejected, a positive number is evidence in

favor of the model in the column.

Table 1.11: C-vine-GARCH Model estimated by QML for Portfolio I. The
Bollerslev-Wooldridge standard deviations are in parentheses.

Ω Estimate (Std Err) Ξ Estimate (Std Err) Λ Estimate (Std Err)
ω12 -0.0661 (0.0174) ξ12 0.9769 (0.0433) λ12 0.1932 (0.0193)
ω13 -0.0771 (0.0441) ξ13 0.9804 (0.0659) λ13 0.1986 (0.0182)
ω14 -0.1665 (0.6173) ξ14 0.9923 (0.1121) λ14 0.2590 (0.0638)
ω15 -0.0858 (0.0709) ξ15 0.9915 (0.0613) λ15 0.1554 (0.0431)
ω23|1 0.0081 (0.0047) ξ23|1 0.9799 (0.1265) λ23|1 0.0013 (0.0165)
ω24|1 0.0248 (0.0666) ξ24|1 0.9577 (0.0934) λ24|1 0.0112 (0.0113)
ω25|1 0.0172 (0.0081) ξ25|1 0.9641 (0.0329) λ25|1 0.0135 (0.0221)
ω34|12 1.0821 ξ34|12 - λ34|12 -
ω35|12 0.6300 ξ35|12 - λ35|12 -
ω45|123 0.7957 ξ45|123 - λ45|123 -
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Table 1.12: C-vine-GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Ω Estimate (StdE) Ξ Estimate (StdE) Λ Estimate (StdE)
ω12 -0.0008 (0.0359) ξ12 0.9823 (0.1935) λ12 0.0387 (0.0227)
ω13 0.0016 (0.0036) ξ13 0.9821 (0.0530) λ13 0.0382 (0.0052)
ω14 -0.0694 (0.0259) ξ14 0.9801 (0.0180) λ14 0.1915 (0.0092)
ω15 0.0046 (0.0081) ξ15 0.9777 (0.0265) λ15 0.0146 (0.0043)
ω16 0.0017 (0.0058) ξ16 0.9835 (0.0142) λ16 0.0288 (0.0012)
ω23|1 -0.0072 (0.0399) ξ23|1 0.9334 (0.4570) λ23|1 -0.0007 (0.0037)
ω24|1 0.0043 (0.0156) ξ24|1 0.9837 (0.2434) λ24|1 0.0001 (0.0100)
ω25|1 0.0129 (0.0272) ξ25|1 0.9384 (0.0790) λ25|1 0.0028 (0.0061)
ω26|1 0.0022 (0.0076) ξ26|1 0.9906 (0.0238) λ26|1 0.0049 (0.0175)
ω34|12 0.0009 (0.0013) ξ34|12 0.9729 (0.0187) λ34|12 0.0107 (0.0082)
ω35|12 -0.0001 (0.0002) ξ35|12 0.9953 (0.0045) λ35|12 0.0047 (0.0035)
ω36|12 -0.0004 (0019) ξ36|12 0.9888 (0.0393) λ36|12 0.0053 (0.0118)
ω45|123 0.0311 ξ45|123 - λ45|123 -
ω46|123 0.2472 ξ46|123 - λ46|123 -
ω56|1234 0.8669 ξ56|1234 - λ56|1234 -

                             

Figure 1.1: Example of a C-vine on five variables. Lecture: the two nodes (1, 2)
and (1, 3) in T2 are connected by the edge (2, 3|1), whose constraint set is {1, 2, 3},

conditioned set is {2, 3} and conditioning set is {1}.
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Figure 1.2: Example of a D-vine on five variables. Lecture: the two nodes (1, 3|2)
and (2, 4|3) in T3 are connected by the edge (1, 4|2, 3), whose constraint set is

{1, 2, 3, 4}, conditioned set is {1, 4} and conditioning set is {2, 3}.
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Figure 1.3: Example of a R-vine on five variables. The solid, dotted, dashed-dotted
and black solid lines correspond to the edges of T1, T2, T3 and T4 respectively.



Appendix A

Technical result: Proof of

assumption 13, Theorem 1.6.19

In this appendix, both technical results are established for the p = q = 1 case.

Assumption 13 is proved in this section. It is probably the most difficult part as the

nonlinear dynamic of Rt should be controlled. To prove assumption 13, we need a

technical assumption.

Assumption 21. Ξ and Λ are diagonal matrices such that ‖Ξ‖s < 1, and E [log (‖Bt,m(χ, ε)‖)] <
0, where

Bt−1,m(χ̄, ε) =



2
π
‖∇1ζt−1‖‖Λ‖ 2

π
‖∇1ζt−2‖‖Λ‖‖Ξ‖ · · · · · · 2

π
‖∇1ζt−m‖‖Λ‖‖Ξ‖m−1

1 0 · · · · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0


,

Above, ζt = ζ (χt, ηt) is the t-innovation of our partial correlation process, where

χt =
(
P̄ ct, D̄t

)
is a Ft−1 measurable random vector, denoting by P̄ ct a random set of

partial correlations that satisfies 4, and D̄t is bounded a.e. Moreover, for i = 1, 2, ∇iζt

is the derivative of ζt with respect to its i-th component. Finally, E[‖εt‖4] <∞.

79
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Now assumption 13 becomes

sup
θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)| ≤

1

T

T∑
t=1

sup
θ∈Θ
| log(|Rt|)− log(|R̃t|)|+

1

T

T∑
t=1

sup
θ∈Θ
|u′tR−1

t ut − ũ′tR̃−1
t ũt|.

(A.0.1)

We focus on the second sum, which can be written as

1

T

T∑
t=1

sup
θ∈Θ
|u′tR−1

t ut − ũ′tR̃−1
t ũt| =

1

T

T∑
t=1

sup
θ∈Θ
|u′t(R−1

t − R̃−1
t )ũt + u′tR

−1
t (ut − ũt) + (ut − ũt)′R̃−1

t ũt|

=
1

T

T∑
t=1

sup
θ∈Θ
|Trace

(
u′t(R

−1
t − R̃−1

t )ũt + u′tR
−1
t (ut − ũt) + (ut − ũt)′R̃−1

t ũt

)
|.

By definition, ut = D−1
t εt and ũt = D̃−1

t εt. Thus, the previous quantity can be written

as

1

T

T∑
t=1

sup
θ∈Θ
|Tr
(
ε′t

[
D−1
t (R−1

t − R̃−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃−1

t ) + (D−1
t − D̃−1

t )R̃−1
t D̃−1

t

]
εt

)
|

=
1

T

T∑
t=1

sup
θ∈Θ
|Tr
([
D−1
t (R−1

t − R̃−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃−1

t ) + (D−1
t − D̃−1

t )R̃−1
t D̃−1

t

]
εtε
′
t

)
|

We shall consider a multiplicative norm for matrices. To fix the ideas, this will be the

spectral norm. Hence, we can bound the Trace operator as

1

T

T∑
t=1

sup
θ∈Θ
|Tr
([
D−1
t (R−1

t − R̃
−1
t )D̃−1

t +D−1
t R−1

t (D−1
t − D̃

−1
t ) + (D−1

t − D̃
−1
t )R̃−1

t D̃−1
t

]
εtε
′
t

)
|

≤
N

T

T∑
t=1

sup
θ∈Θ

(‖D−1
t ‖‖R̃

−1
t ‖‖Rt − R̃t‖‖R

−1
t ‖‖D̃

−1
t ‖+ ‖D−1

t ‖‖D̃
−1
t ‖‖Dt − D̃t‖‖D−1

t ‖(‖R
−1
t ‖+ ‖R̃−1

t ‖))‖εtε′t‖.

We denote

Tt = ‖D−1
t ‖‖R̃−1

t ‖‖Rt − R̃t‖‖R−1
t ‖‖D̃−1

t ‖

Mt = ‖D−1
t ‖‖D̃−1

t ‖‖Dt − D̃t‖‖D−1
t ‖

(
‖R−1

t ‖+ ‖R̃−1
t ‖
)

The main issue consists of controlling for (Rt− R̃t). We focus now on the quantity Tt,
and firstly on ‖Rt − R̃t‖.

Rt − R̃t = vechof(Fvine(Pct))− vechof(Fvine(P̃ ct)),

=
[
Fvine(Pct(i, j|L(i, j)))− Fvine(P̃ ct(i, j|L(i, j)))

]
1≤i,j≤N

.

Let ε > 0, and define the compact set Aε = [−1 + ε, 1− ε]N(N−1)/2. The one-to-one
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mapping Fvine(.) maps Aε to [−1 + ε̃, 1− ε̃]N(N−1)/2, for some ε̃ > 0. On Aε, Fvine(.) is

C1, hence ∇Fvine(.) is bounded. Consequently, Fvine(.) satisfies the Lipschitz condition:

there exists C > 0 s.t., for all x and x̃ ∈ A2
ε , we have

‖Fvine(x)− Fvine(x̃)‖∞ ≤ C‖x− x̃‖∞. (A.0.2)

If we control the dynamics of these partial correlations, then we can ensure to generate

trajectories within [−1 + ε̃, 1 − ε̃]. The stationary partial correlation processes are

defined as

Ψ(Pct) = Ω + ΞΨ(Pct−1) + Λζt−1. (A.0.3)

When generating the partial correlation dynamics from arbitrarily fixed initial values,

they are defined as

Ψ(P̃ ct) = Ω + ΞΨ(P̃ ct−1) + Λζt−1.

In this process, the matrices are diagonal. Iterating (A.0.3), we get

Ψ(Pct) =
t∑

k=1

Ξk−1Ω + ΞtΨ(Pc0) +
t∑

k=1

Ξk−1Λζt−k,

where Ψ(.) is applied to each component of the vector Pct and ζt−k is a function

of Pct−k. The r.h.s. is an element of RN(N−1)/2. We recover Pct by inverting Ψ(.)

componentwise. (A.0.3) becomes

Pct = Ψ−1(
t∑

k=1

Ξk−1Ω + ΞtΨ(Pc0) +
t∑

k=1

Ξk−1Λζt−k).

The trickiest part of this proof consists of controlling for the difference Pct− P̃ ct. The

difficulty comes from the necessary transformation of εt, Dt and Rt to recover ζt. Now

we have

Pct − P̃ ct = Ψ−1(
t∑

k=1

Ξk−1Ω + ΞtΨ(Pc0) +
t∑

k=1

Ξk−1Λζt−k)−Ψ−1(
t∑

k=1

Ξk−1Ω + ΞtΨ(P̃ c0)

+
t∑

k=1

Ξk−1Λζ̃t−k)

= ∇Ψ−1(X)

[
Ξt(Ψ(Pc0)−Ψ(P̃ c0)) +

t∑
k=1

Ξk−1Λ(ζt−k − ζ̃t−k)
]
,
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for some matrix random X. The componentwise derivatives of Ψ−1 are the bounded

functions x 7→
2

π(1 + x2)
. Hence ‖∇Ψ−1‖∞ ≤ 2/π and we obtain

‖Pct − P̃ ct‖ ≤
2

π
‖Ξ‖t‖Ψ(Pc0)−Ψ(P̃ c0)‖+

2

π
‖Λ‖

t∑
k=1

‖Ξ‖k−1‖ζt−k − ζ̃t−k‖,

where ζt−k = ζ(χt−k, εt−k), with χt−k = (Pct−k, Dt−k). This gives the expansion

ζ(χt−k, εt−k)−ζ(χ̃t−k, εt−k) = ∇1ζ(χ̄t−k, εt−k)(Pct−k−P̃ ct−k)+∇2ζ(χ̄t−k, εt−k)(Dt−k−D̃t−k),

where χ̄t is located between χt and χ̃t. Consequently, we deduce

π
2
‖Pct − P̃ ct‖ ≤ At + 2

π
‖Λ‖

t∑
k=1

‖Ξ‖k−1
(
‖∇1ζ(χ̄t−k, εt−k)‖‖Pct−k − P̃ ct−k‖

+ ‖∇2ζ(χ̄t−k, εt−k)‖‖Dt−k − D̃t−k‖
)
,

with At = 2‖Ξ‖t‖Ψ(Pc0)−Ψ(P̃ c0)‖/π. Denote rt = ‖Pct− P̃ ct‖ and dt = ‖Dt− D̃t‖.
Note that rt is uniformly bounded, by a constant that depends on the considered norm.

To simplify and wlog, this constant will be one here. We obtain

rt ≤ At +
2

π
‖Λ‖

t−1∑
k=1

‖Ξ‖k−1 (‖∇1ζ(χ̄t−k, εt−k)‖rt−k + ‖∇2ζ(χ̄t−k, εt−k)‖dt−k) . (A.0.4)

Now we rewrite (A.0.4), for all t ≥ T and for some m ≤ t large enough that will be

stated after, as

~rt,m ≤ Ct,m + Bt−1,m(χ̄, ε)~rt−1,m, (A.0.5)

where Ct,m = ~At + ~Kt,m + ~Dt, and the vectors

~rt,m = (rt, rt−1, · · · , rt−m+1)′, ~At = (At, 0, · · · , 0)′, ~dt,m = (dt, dt−1, · · · , dt−m+1)′,

~Kt,m = ( 2
π
‖Λ‖

t∑
k=m+1

‖∇1ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1rt−k, 0, · · · , 0)′,

~Dt = ( 2
π
‖Λ‖

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1dt−k, 0, · · · , 0)′.

These quantities are such that ~rt,m ∈ Rm, ~At ∈ Rm, ~Kt−1,m ∈ Rm, ~Dt ∈ Rm.

We first focus on Ct,m. For our matrix norm, we have

‖Ct,m‖ ≤ ‖ ~At‖+ ‖~Kt,m‖+ ‖ ~Dt‖.
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Now iterating t in (A.0.5), let 0 < q < t fixed, we obtain

~rt,m ≤ Ct,m+

q∑
k=1

Bt−1,m(χ̄, ε)Bt−2,m(χ̄, ε) . . .Bt−k,m(χ̄, ε)Ct−k,m+Bt−1,m(χ̄, ε) · · ·Bt−q−1,m(χ̄, ε)~rt−q−1,m.

The sequence of matrices Bt−k,m(χ̄, ε) is stochastic and each of them has a size depend-

ing on m. Under our assumptions, the series Bt,m :=
+∞∑
k=1

∏k
j=1 Bt−j,m(χ̄, ε) is converging

a.s. In particular, its main term tends to zero.

P (|~rt,m| > ε) ≤ P(‖Ct,m‖ > ε/3) + P(

q+1∏
j=1

‖Bt−j,m(χ̄, ε)‖ > ε/3)

+ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖Ct−k,m‖ > ε/3) := T1 + T2 + T3.

First, let us manage T1, i.e. the Ct,m term. Since ‖Ψ(Pc0)− Ψ(P̃ c0)‖ is a fixed finite

random variable and since ‖Ξ‖ < 1,

P(‖At‖ > ε/9) < ε,

for t sufficiently large (and independently of m and q). Moreover,

P
(
~Kt,m > ε/9

)
≤ P

(
2

π
‖Λ‖

t∑
k=m+1

‖∇1ζ(χ̄t−k, εt−k)‖.‖Ξ‖k−1−m.‖Ξ‖m > ε/9

)
≤ ε,

for m sufficiently large and because the latter series converges a.s.

Denote by ρ the largest parameter among τ1, . . . , τn. By assumption, ρ ∈ [0, 1). Equa-

tion (4.6) in Francq and Zakoian (2004) provides supθ ‖Dt−D̃t‖ ≤ Kρt a.s. Therefore,

P
(
‖ ~Dt‖ > ε/9

)
≤ P

(
2K

π
‖Λ‖

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖‖Ξ‖k−1ρt−k > ε/9

)

≤ P

(
2K‖Λ‖
πt

t∑
k=1

‖∇2ζ(χ̄t−k, εt−k)‖.tmax(‖Ξ‖, ρ)t−1 > ε/9

)
≤ ε

for t sufficiently large, under our assumptions and the LLN. We deduce T1 ≤ 3ε, for a

well-chosen (and now fixed) m and for t sufficiently large.
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Second, note that the main term of the series Bt,m tends to zero a.s. Therefore, T2 < ε

for the previous fixed m and q sufficiently large.

Third, it remains to deal with T3. Actually, it is sufficient to use the same arguments

as for T1. Indeed,

P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖Ct−k,m‖ > ε/3) ≤ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖ ~At−k,m‖ > ε/9)

+ P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖~Kt−k,m‖ > ε/9) + P(

q∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖.‖ ~Dt−k,m‖ > ε/9)

:= T31 + T32 + T33.

To be specific, due to the finiteness of Bt,m,

T31 ≤
2

π
P(‖Ψ(Pc0)−Ψ(P̃ c0)‖.‖Ξ‖t−1.

+∞∑
k=1

k∏
j=1

‖Bt−j,m(χ̄, ε)‖ > ε/9),

that is less than ε for t sufficiently large (and a fixed m). The terms T32 and T33 are

managed as above, because the multiplication by the (a.e. finite) random variable Bt,m
does not change the reasoning.

By grouping the all inequalities above and since the reasonings were uniform wrt θ, we

get

P
(

sup
θ∈Θ
|~rt,m| > ε

)
≤ 7ε,

proving that supθ∈Θ rt = oP (1). Since it is bounded by one and due to the dominated

convergence theorem, this convergence to zero is true in L1 or L2. This is true for ‖Rt−
R̃t‖ too, because of (A.0.2): supθ∈Θ ‖Rt− R̃t‖ = oP (1) and T−1

∑T
t=1 supθ∈Θ ‖Rt− R̃t‖

tends to zero when t→∞.

We now focus on the precision matrix R−1
t := [ρijt ]. Obviously,

ρijt = (−1)i+j
det(R

−(i,j)
t )

det(Rt)
,

where R
−(i,j)
t is the covmatrix of Rt (the matrix deduced from Rt after having removed

line i and column j). But note that Theorem 3.2 in Kurowicka and Cooke (2006) and
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assumption 4 implies that there exists a constant a s.t. det(Rt) > a > 0 a.s. Since

det(R
−(i,j)
t ) is a finite sum of elements in [−1, 1], this term is bounded from above.

Therefore, there exists a constant M1 s.t.

sup
θ∈Θ
‖R−1

t ‖ ≤M1, a.s.

The same argument holds for R̃t: sup
θ∈Θ
‖R̃−1

t ‖ ≤M2.

Since ‖D−1
t ‖, ‖D̃−1

t ‖ and ‖R−1
t ‖ are uniformly bounded from above, we deduce

P

(
1

T

T∑
t=1

sup
θ∈Θ

Tt.‖εtε′t‖ > ε

)
≤ P

(
Cte

T

T∑
t=1

sup
θ∈Θ
‖Pct − P̃ ct‖.‖εtε′t‖ > ε

)

≤ Cte

ε
E

[
sup
θ∈Θ

rt.‖εtε′t‖
]
≤ Cte

ε
E

[(
sup
θ∈Θ

rt

)2
]1/2

.E
[
‖εtε′t‖2

]1/2
,

that is less than ε for t sufficiently large.

The second term Mt can be bounded more straightforwardly. Using the stationarity

assumption of the GARCH process, there exists U > 0, and ρ ∈]0, 1[ such that, a.s.,

sup
θ∈Θ

sup
i

∣∣∣hi,t − h̃i,t∣∣∣ ≤ Uρt.

Consequently, Mt can be bounded as

sup
θ∈Θ

Mt = sup
θ∈Θ
‖D−1

t ‖‖D̃−1
t ‖‖Dt − D̃t‖‖D−1

t ‖
(
‖R−1

t ‖+ ‖R̃−1
t ‖
)
≤ Cρt, a.s,

for some constant C. Then

P

(
1

T

T∑
t=1

sup
θ∈Θ

Mt‖εtε′t‖ > ε

)
≤ P

(
C

T

T∑
t=1

ρt‖εtε′t‖ > ε

)
≤ C

Tε(1− ρ)
E [‖εtε′t‖] < ε,

for t sufficiently large.

In other words, we have proved that

1

T

T∑
t=1

sup
θ∈Θ

(Tt + Mt).‖εtε′t‖ = oP (1).
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For the first sum of (A.0.1) and considering the spectral norm, we have:

log(|Rt|)− log(|R̃t|) = log(|IN + (Rt − R̃t)R̃
−1
t |)

≤ N log(‖IN + (Rt − R̃t)R̃
−1
t ‖)

≤ N log(‖IN‖+ ‖(Rt − R̃t)R̃
−1
t ‖)

≤ N log(1 + ‖(Rt − R̃t)R̃
−1
t ‖)

≤ N‖Rt − R̃t‖‖R̃−1
t ‖.

By symmetry log(|R̃t|)− log(|Rt|) ≤ N‖R̃t−Rt‖‖R−1
t ‖. Using the previous arguments,

the first sum of (A.0.1) converges to 0 when T −→∞. We proved that

sup
θ∈Θ
|GT l2(ε; θ)− G̃T l2(ε; θ)| = op(1).



Appendix B

Technical result: Proof of

assumption 15, Theorem 1.6.19

In this appendix, both technical results are established for the p = q = 1 case.

To prove this statement, we need the following assumption.

Assumption 22. Let (At, Bt) defined as

At := sup
θ:‖θv−θ0,v‖<α

‖ (∇Ψ(Pct))
−1 Λ∇Dtζ(Pct, Dt, εt)∇θvDt‖,

Bt := sup
θ:‖θv−θ0,v‖<α

‖ (∇Ψ(Pct))
−1 [Ξ∇Ψ(Pct) + Λ∇Pctζ(Pct, Dt, εt)] ‖.

For some α > 0, the stochastic matrix process (At, Bt) is stationary, E[At] < +∞ and

∑
k≥1

E [Bt−1Bt−2 · · ·Bt−kAt−k−1] <∞.

Proof of Lemma 15. Applying a Taylor expansion to QL2,T (θ̂T,v, θc; ε) around θ0,v, we

obtain

1

T

T∑
t=1

l2,t(εt; θ̂T,v, θc) =
1

T

T∑
t=1

l2,t(εt; θ0,v, θc) + (θ̂T,v − θ0,v)
1

T

T∑
t=1

∇θv l2,t(εt; θ̄v, θc),

for some θ̄v, ‖θ̄v − θ0,v‖ < ‖θ0,v − θ̂T,v‖. Using the consistency of θ̂T,v, it is sufficient to

prove that

1

T

T∑
t=1

sup
{θ∈Θ | ‖θv−θ0,v‖<α}

‖∇θv l2,t(εt; θv, θc)‖ = OP (1), (B.0.1)

87
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for some (small) α > 0. Applying some matrix derivation rules (see Lütkepohl, 1996),

the analytical score of the second step likelihood with respect to the i-th element of θv

is given by

∂θiv l2,t(εt; θ) = ∂θiv
[
log (|Rt|) + ε′tD

−1
t R−1

t D−1
t εt

]
= Trace

(
R−1
t (∂θivRt)

)
+ Trace

(
εtε
′
t∂θiv

[
D−1
t R−1

t D−1
t

])
= Trace

(
R−1
t (∂θivRt)

)
− Trace

(
εtε
′
t

[
D−1
t (∂θivDt)D

−1
t R−1

t D−1
t

])
− Trace

(
εtε
′
t

[
D−1
t R−1

t (∂θivRt)R
−1
t D−1

t

])
− Trace

(
εtε
′
t

[
D−1
t R−1

t D−1
t (∂θivDt)D

−1
t

])
.

Obviously, the matrices D−1
t are bounded from above by positive constants due to the

definition of our univariate GARCH dynamics. Concerning correlations, we know that

R−1
t is bounded from above, due to assumption 4. As for the derivatives of Rt, note

that ‖∇θvRt‖ ≤ ‖∇Fvine(Pct).∇θvPct‖ and that the derivative of Fvine(·) is bounded

a.e. under the latter assumption.

Consequently, there exists some positive constant C such that, for any α > 0,

sup
θ:‖θv−θ0,v‖<α

|∇θv l2,t(εt; θc, θv)| ≤ C. sup
θ:‖θv−θ0,v‖<α

{(‖∇θvDt‖+‖∇θvPct‖)‖εt‖2+‖∇θvPct‖}.

Let us focus on ∇θvPct. By the chain rule, we have

∇θvPct = (∇Ψ(Pct−1))−1 [Ξ∇Ψ(Pct−1) + Λ∇Pcζ(Pct−1, Dt−1, εt−1)]∇θvPct−1

+ (∇Ψ(Pct−1))−1 Λ∇Dζ(Pct−1, Dt−1, εt−1)∇θvDt−1,

and then

sup
θ:‖θv−θ0,v‖<α

‖∇θvPct‖ ≤ At−1 +Bt−1 sup
θ:‖θv−θ0,v‖<α

‖∇θvPct−1‖

≤ At−1 +
∞∑
k=1

Bt−1Bt−2 · · ·Bt−kAt−k−1. (B.0.2)

Assumption 22 provides sufficient conditions so that the latter series belongs to L1.

As a consequence, the existence of the series (B.0.2) is ensured a.s. But we need a

stronger assumption than in Theorem 1.1. of Bougerol and Picard (1992) typically,

because of the integrability requirement. This implies

1

T

T∑
t=1

sup
θ:‖θv−θ0,v‖<α

‖∇θvPct‖.(‖εt‖2 + 1) = OP (1).



Chapter 1. Dynamic Correlation Model based on Vines 89

We now focus on ‖∇θvDt‖, which is determined as ‖∂θivDt‖ = ‖D−1
t diag

(
∂θivhj,t

)
‖/2,

i = 1, · · · , 3N . The partial derivative of the j-th component above is zero when i 6= j.

Otherwise, note that, by iterating the volatility process equation, we have

hj,t =
ςj

1− τj
+ κj

(∑
k≥1

τ k−1
j ε2j,t−k

)
,

∂ςjhj,t =
ςj

1− τj
, ∂κjhj,t =

∑
k≥1

τ k−1
j ε2j,t−k, and ∂τjhj,t =

ςj
(1− τj)2

+
∑
k≥1

(k− 1)τ k−2
j ε2j,t−k.

We deduce there exists some constant C s.t.

sup
θ:‖θv−θ0,v<α

‖∇θvDt‖.‖εt‖2 ≤ C

(
1 +

∑
k≥1

(k − 1)τ k−1
j ε2j,t−k

)
‖εt‖2 a.s.

The latter r.h.s. belongs to L1 because Et−1[ε2j,t] = 1 for every j and t. Therefore,

1

T

T∑
t=1

sup
θ:‖θv−θ0,v<α

‖∇θvDt‖.‖εt‖2 = OP (1),

proving (B.0.1) and then our lemma.



Chapter 2

Asymptotic Theory of the Sparse

Group Lasso

2.1 Introduction

Model complexity is an obstacle when one models richly parameterized dynamics such

as multivariate nonlinear dynamic systems. For instance, dynamic variance correlation

processes of size N have an O(N2) complexity as in the dynamic conditional correlation

parametrization (DCC, Ding and Engle, 2001). Another issue arises when the sample

size, say T , is comparable to N , which may reduce the estimation performances. This

is typically a high-dimensional statistical framework.

A significant literature developed on model penalization, which consists of reducing the

number of parameters and performing variable selection. For instance, the Akaike’s

or Bayesian information criteria aim at selecting the size of a model. However, these

methods are unstable, computationally complex and their sampling properties are

difficult to study as Fan and Li (2001) pointed out mainly because they are stepwise

and subset selection procedures.

The penalization or regularization procedures aim at overcoming these drawbacks.

They specify a penalty function (also called regularizer) to the statistical problem,

which is singular at zero to foster sparsity and thus performs variable selection and

estimation. The choice of the norm depends on the problem at hand and the key

quantity is the tuning parameter, also called the regularization parameter, which de-

pends on the sample size and controls for the bias. The Lasso procedure of Tibshirani

90
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(1996) specifies a l1 norm over the parameters, which fosters sparsity and allows for

continuity of the selected models. Other penalties were proposed such as the smoothly

clipped absolute deviation (SCAD) of Fan (1997), which modifies the Lasso to shrink

large coefficients less severely. The elastic net regularization procedure of Zou and

Hastie (2005) was developed to overcome the collinearity between the variables, which

hampers the Lasso to perform well. Their idea consists of mixing a l1 penalty, which

performs variable selection, with a l2 penalty, which stabilizes the solution paths. The

Group Lasso of Yuan and Lin (2006) fosters sparsity and variable selection in a group of

variables. Simon, Friedman, Hastie and Tibshirani (2013) designed the Sparse Group

Lasso (SGL) to foster sparsity both at a a group level and within a group. Their penal-

ization involves a l1 Lasso type penalty and a mixed l1/l2 penalty for group selection.

All these procedures, together with the algorithms designed for performing selection

and estimation, were developed within a linear framework. The penalized Ordinary

Least Squares (OLS) loss function is typically used for linear models as it is convex,

which makes the computation easier, and allows for closed form solutions, such as the

soft-thresholding operator for the Lasso penalty. Furthermore, linear modeling allows

for deriving non asymptotic oracle inequalities straightforwardly: see Bühlmann and

van de Geer (2011) on this non-asymptotic framework.

Knight and Fu (2000) explored the asymptotic properties of the Lasso penalty for

OLS loss functions. Fan and Li (2001) proposed a penalization framework for general

likelihood functions and studied the asymptotic properties of the SCAD penalty. They

proved that the SCAD estimator satisfies the oracle property, that is the sparsity based

estimator recovers the true underlying sparse model and is asymptotically normally

distributed. The Lasso as proposed by Tibshirani cannot satisfy the oracle property. To

fix this drawback, Zou (2006) proposed the adaptive Lasso within an OLS framework,

where adaptive weights are used to penalize different coefficients in the penalty. Nardi

and Rinaldo (2008) applied the same methodology for the Group Lasso estimator

within an OLS framework and studied its oracle property.

These theoretical studies were developed for fixed dimensional models with i.i.d. data,

a case where N does not depend on the sample size, and for least squares type loss

functions, except Fan and Li (2001). Fan and Peng (2004) considered the general

penalized likelihood framework when the number of parameters grows with the sample

size and focused on the oracle property for general penalties. Zou and Zhang (2009) also

focused on the oracle property of the adaptive elastic-net within the double-asymptotic
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framework. Their work highlights that adaptive weights penalizing different coefficients

are key quantities to satisfy the oracle property as one can modify the convergence

rate of the penalty terms. Nardi and Rinaldo (2008) also proposed within the double-

asymptotic setting selection consistency results, which states that asymptotically the

right set of relevant variables is selected.

In this paper, we develop the asymptotic theory of penalized M-estimators for con-

vex criteria and dependent variables. Within a time series framework, we specify a

generalization of the Sparse Group Lasso estimator of Simon and al. (2013). More

precisely, what is new is that we specify two regularization parameters: one for the

l1 Lasso norm and one for the l1/l2 Group Lasso norm. This penalty is relevant for

problems where one would like to foster sparsity for selecting active groups, that is a

group for which some of the corresponding coefficients are non zero, and active coef-

ficients within an active group, a situation where a coefficient is non zero within an

active group. Hence this is somehow a two step approach as first the active groups

are selected, and then the active variables within an active group are selected. We

prove that the SGL as proposed by Simon and al. (2013) does not satisfy the oracle

property. Then we propose a new version of the SGL, the adaptive SGL using the

same methodology of Zou (2006), which consists of penalizing different coefficients and

groups of coefficients using random weights that are positive functions of a first step

estimator. This enables to alter the rate of convergence of the penalties such that the

adaptive SGL satisfies the oracle property. We provide explicit convergence rate of the

regularization parameters and the asymptotic trade-off between the l1 Lasso and l1/l2

Group Lasso regularizations. We also prove that the adaptive SGL satisfies the oracle

property in a double-asymptotic framework, a situation where the model complexity

grows with the sample size.

The rest of the paper is organized as follows. In Section 2.2, we describe our general

framework for penalized convex empirical criteria and the SGL penalty. In Section

2.3, we derive the optimality conditions of the statistical criterion. In Section 2.4, we

derive the asymptotic properties of both the SGL and adaptive SGL when the number

of parameters is fixed. In Section 2.5, we prove the oracle property of the adaptive

SGL in a double-asymptotic setting. In Section 2.6, we use simulations to compare the

finite sample performance of the adaptive Sparse Group Lasso with other competitors.
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2.2 Framework and notations

We consider a dynamic system in which the criterion is written as an empirical criterion,

that is

θ 7→ GT l(θ) =
1

T

T∑
t=1

l(εt; θ), (2.2.1)

such that l(.) is ”a general” known loss function on the sample space such that for any

process (εt), θ 7→ l(εt; θ) is convex. This framework encompasses for instance the maxi-

mum likelihood method, where the l(.) function corresponds to l(εt; θ) = − log f(εt; θ),

where f(εt; θ) is the density of the observation (εt) under Pθ. Alternatively, a linear

model would imply l(εt; θ) = ‖ε(1)
t − θ′ε

(2)
t ‖p, where (ε

(1)
t , ε

(2)
t ) = εt. We denote the

empirical score and Hessian of the empirical criterion respectively as

ĠT l(θ) =
1

T

T∑
t=1

∇θl(εt; θ), G̈T l(θ) =
1

T

T∑
t=1

∇2
θθ′l(εt; θ).

The dependent nature of our framework requires the use of particular probabilistic tools

to study the asymptotic properties of M-estimators. We extensively use the ergodic

theorem and central limit theorem (Billingsley, 1961, 1995) to obtain convergence in

probability of empirical quantities to their theoretical counterparts and central limit

theorems. To do so, we assume the stationarity and the ergodicity of the underlying

process (εt): see assumption 23 in Section 2.4.

In this setting, εt ∈ RN and θ ∈ Rd, a vector that can be split into m groups Gk, k =

1, · · · ,m, such that card(Gk) = ck and
m∑
k=1

ck = d. We suppose no overlap between

these groups. We use the notation θ(l) as the subvector of θ, that is the set {θk :

k ∈ Gl}. Hence the vector θ = (θj, j = 1, · · · , d) can be written as θ = (θ
(k)
i , k ∈

{1, · · · ,m}, i = 1, · · · , ck) 1. We denote by θ0 the true parameter vector of interest.

Moreover, θ → E[l(εt; θ)] is supposed to be a one-to-one mapping and is minimized

uniquely at θ = θ0.

1Formally, there is a one-to-one mapping between two ways for writing θ:

ψ : {1, · · · , d} → {(k, i), k = 1, . . . ,m; i = 1, · · · , ck},
j 7→ ψ(j) = (kj , ij).

In the rest of this paper, this mapping is implicit such that we allow such writings as j = (k, i) or
j = ik where k is clear.
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We denote by S := {k : θ(k) 6= 0} the set of indices for which the groups are active.

Let A := {j : θ0,j 6= 0} be the true subset model, which can be decomposed into

sub-groups of active sets as l ∈ S, Al = {(l, i) : θ
(l)
0,i 6= 0}. Besides, there are inactive

indices Gl \ Al = Acl = {(l, i) : θ
(l)
0,i = 0}. We have {l /∈ S} ⇔ {∀i = 1, · · · , cl, θ(l)

0,i = 0}.
In this setting, A = ∪

l∈S
Al such that for k 6= l, Ak ∩ Al = ∅. Furthermore, Ac =

m
∪
l=1
Acl

such that for k 6= l, Ack ∩ Acl = ∅.

Finally, we need the following notations: ĠT l(θ)(k) ∈ Rck is the ”score” vector of the

empirical criterion taken over group k of size ck, ĠT l(θ)(k),i ∈ R is the i-th compo-

nent of this score, and ĠT l(θ)A ∈ Rcard(A) is the score over the set of active indices.

G̈T l(θ)(k)(k) ∈ Mck×ck(R) (resp. H(k)(k)) is the empirical (resp. theoretical) Hessian

taken over the block representing group k, and G̈T l(θ)AA ∈ Mcard(A)×card(A)(R) is the

Hessian over the set of active indices.

The statistical problem consists of minimizing over the parameter space Θ a penalized

criterion of the form

θ̂ = arg min
θ∈Θ

{GTϕ(θ)}, (2.2.2)

where

θ 7→ GTϕ(θ) =
1

T

T∑
t=1

{l(εt; θ) + p1(λT , θ) + p2(γT , θ)}

= GT l(θ) + p1(λT , θ) + p2(γT , θ).

and both penalties are specified as p1 : R+ × Rm
+ ×Θ→ R+, p2 : R+ × Rm

+ ×Θ→ R+,

(λT , α, θ) 7→ p1(λT , θ) = λTT
−1

m∑
k=1

αk‖θ(k)‖1, (γT , ξ, θ) 7→ p2(γT , θ) = γTT
−1

m∑
l=1

ξl‖θ(l)‖2.

Both αk and ξl are non negative scalar quantities for each group and the regularization

parameters (tuning parameters) λT and γT vary with T .

The estimator θ̂ obtained in (2.2.2) is not the minimum of the empirical unpenalized

criterion GT l(.). Our main interest is to analyze the bias generated by the penalties

and how the oracle property can be satisfied in the sense of Fan and Li (2001). More

precisely, the sparsity based estimator must satisfy

(i)Â = {i : θ̂i 6= 0} = A asymptotically, that is ”model selection consistency”.

(ii)
√
T (θ̂A − θ0,A)

d→ N (0,V0) withV0 a covariance matrix related to the criterion of interest.
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We highlight in Proposition 2.4.13, Section 2.4 that actually the SGL as proposed

by Simon and al. (2013) cannot perform the oracle property. Hence in Section 2.4,

we propose a new estimator based on the same idea as Zou (2006), the adaptive

Sparse Group Lasso, for which the oracle property is obtained when the weights are

randomized, as proved in Theorem 2.4.16.

This framework can be adapted to a broad range of problem. For instance, one can

penalize a subset of groups with a l1 penalty only, and the other groups with a l1/l2

penalty only. This framework encompasses the SGL, the Lasso and the group Lasso

for proper choices of α’s and ξ’s.

Let us motivate the interets of the SGL approach and illustrate our notations through

a simple linear example. In finance, finding the right set of explanatory variables to

predict future asset returns is a significant issue. For instance, one may use Japanese

companies indices, the Japanese GDP or the Japanese aggregated dividend-price ratio

to explain the Nikkei index return through a linear projection. But one should also

consider some foreign variables, such as the S&P 500 index or the US yield curve.

Consequently, some groups of variables naturally arise: group of financial companies,

tech companies, and the like; group of foreign components such as American financial

companies, and the like. Hence the set Gk may represent the k-th (k ≤ m) group of

Japanese financial companies, composed (as a shortcoming) with Nomura (index 1),

MUFG-Bank of Tokyo (index 2) and Sumitomo (index 3) represented by the parameter

vector θ(k) = (θ
(k)
1 , θ

(k)
2 , θ

(k)
3 ); then k ∈ S if the whole group has a statistically significant

effect on the Nikkei index. Suppose the l1/l2 penalty selects this group as active.

Then Ak represents the set of active components in Gk such that cAk = card(Ak) ≤
card(Gk) = ck. The l1 penalty fosters sparsity within this selected group. If Nomura

is the only variable that is expelled, then 1 ∈ Ack = Gk \ Ak, whereas {2, 3} ∈ Ak and

cAk = 2.

2.3 Optimality conditions

The statistical problem consists of solving (2.2.2). Both GT l(.), p1(λT , α, .) and p2(γT , ξ, .)

are convex functions and there are no inequality constraints. Consequently, by the

Karush-Kuhn-Tucker optimality conditions, which are necessary and sufficient, the
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estimator θ̂ satisfies for a group k

ĠT l(θ̂)(k) + λTT
−1αkŵ

(k) + γTT
−1ξkẑ

(k) = 0, (2.3.1)

for some vectors w(k) and z(k) satisfying

ŵ(k) =

sgn(θ̂
(k)
i ) if θ̂

(k)
i 6= 0, i = 1, · · · , ck,

∈ {ŵ(k)
i : |ŵ(k)

i | ≤ 1} if θ̂
(k)
i = 0, i = 1, · · · , ck.

ẑ(k) =

θ̂(k)/‖θ̂(k)‖2 if θ̂(k) 6= 0,

∈ {ẑ(k) : ‖ẑ(k)‖2 ≤ 1} if θ̂(k) = 0.

If θ̂(k) = 0, we have ‖ẑ(k)‖2 ≤ 1. Then, from (2.3.1), we obtain for such a k /∈ S

ck∑
i=1

(ĠT l(θ̂)(k),i + λTT
−1αkŵ

(k)
i )2 =

ck∑
i=1

(γTT
−1ξkẑ

(k)
i )2 ≤ γ2

TT
−2ξ2

k‖z(k)‖2
2.

Consequently, if the subgradient equations are satisfied for θ̂(k), then θ̂(k) = 0 if

‖ĠT l(θ̂)(k) + λTT
−1αkŵ

(k)‖2 ≤ γTT
−1ξk.

On the contrary, if this condition is not satisfied, then θ̂(k) 6= 0. In this case, sparsity

is fostered by the l1 penalty as follows: using the optimality condition of (2.3.1), we

have for θ̂(k) 6= 0

∀i = 1, · · · , ck,−ĠT l(θ̂)(k),i = λTT
−1αkŵ

(k)
i + γTT

−1ξk
θ̂

(k)
i

‖θ̂(k)‖2

.

If θ̂
(k)
i = 0, then |ŵ(k)

i | ≤ 1 and we obtain straightforwardly

|ĠT l(θ̂)(k),i| ≤ λTT
−1αk.

Bertsekas (1995) proposed the use of subdifferential calculus to characterize necessary

and sufficient solutions for problems such as (2.2.2). The conditions we derived are

close to those of Simon and al. (2013) (obtained for a least square loss function). They

will be extensively used in the rest of the paper.

2.4 Asymptotic properties

To prove the asymptotic results, we make the following assumptions.
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Assumption 23. (εt) is a strictly stationary and ergodic process.

Assumption 24. The parameter set Θ ⊂ Rd is convex and not necessarily compact.

Assumption 25. For any (εt), the function θ 7→ l(εt; θ) is convex and C3(R,Θ).

Assumption 26. (∇l(εt; θ0)) is a square integrable martingale difference.

Assumption 27. H := E[∇2
θθ′l(εt; θ0)] and M := E[∇θl(εt; θ0)∇θ′l(εt; θ0)] exist and are

positive definite.

Assumption 28. Let υt(C) = sup
k,l,m=1,··· ,d

{ sup
θ:‖θ−θ0‖2≤νTC

|∂3
θkθlθm

l(εt; θ0)|}, where C > 0 is a

fixed constant and νT −→
T→∞

0, a quantity that will be made explicit. Then

η(C) :=
1

T 2

T∑
t,t′=1

E[υt(C)υt′(C)] <∞.

Remark 2.4.1. Assumptions 23 and 26 allow for using the central limit theorem of

Billingsley (1961). We remind this result stated as a corollary in Billingsley (1961).

Corollary 2.4.2. (Billingsley, 1961)

If (xt,Ft) is a stationary and ergodic sequence of square integrable martingal increments

such that σ2
x = Var(xt) 6= 0, then

1
√
T

T∑
t=1

xt
d→ N (0, σ2

x).

Note that the square martingale difference condition can be relaxed by α-mixing and

moment conditions. For instance, Rio (2013) provides a central limit theorem for

strongly mixing and stationary sequences.

Theorem 2.4.3. Under assumptions 23-25, if λT/T → λ0 ≥ 0 and γT/T → γ0 ≥ 0,

then for any compact set B ⊂ Θ such that θ0 ∈ B,

θ̂
P−→ arg min

x∈B
{G∞ϕ(x)},

with

G∞ϕ(x) = G∞l(x) + λ0

m∑
k=1

αk‖x(k)‖1 + γ0

m∑
l=1

ξl‖x(l)‖2,

where θ∗0 = arg min
x∈B

{G∞ϕ(x)} is supposed to be a unique minimum, and G∞l(.) is the

limit in probability of GT l(.).
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To prove this theorem, we remind of Theorem II.1 of Andersen and Gill (1982) which

proves that pointwise convergence in probability of random concave functions implies

uniform convergence on compact subspaces.

Lemma 2.4.4. (Andersen and Gill, 1982)

Let E be an open convex subset of Rp, and let F1, F2, . . . , be a sequence of random

concave functions on E such that Fn(x)
P−→

n→∞
f(x) for every x ∈ E where f is some

real function on E. Then f is also concave, and for all compact A ⊂ E,

sup
x∈A
|Fn(x)− f(x)| P−→

n→∞
0.

The proof of this theorem is based on a diagonal argument and Theorem 10.8 of

Rockafeller (1970), that is the pointwise convergence of concave random functions on a

dense and countable subset of an open set implies uniform convergence on any compact

subset of the open set. Then the following corollary is stated.

Corollary 2.4.5. (Andersen and Gill, 1982)

Assume Fn(x)
P−→

n→∞
f(x), for every x ∈ E, an open convex subset of Rp. Suppose f

has a unique maximum at x0 ∈ E. Let X̂n maximize Fn. Then X̂n
P−→

n→∞
x0.

Newey and Powell (1987) use a similar theorem to prove the consistency of asymmetric

least squares estimators without any compacity assumption on Θ. We apply these

results in our framework, where the parameter set Θ is supposed to be convex.

Proof of Theorem 2.4.3. By definition, θ̂ = arg min
θ∈Θ

{GTϕ(θ)}. In a first step, we prove

the uniform convergence of GTϕ(.) to the limit quantity G∞ϕ(.) on any compact set

B ⊂ Θ, idest

sup
x∈B

|GTϕ(x)−G∞ϕ(x)| P−→
T→∞

0. (2.4.1)

We define C ⊂ Θ an open convex set and pick x ∈ C. Then by assumption 23, the law

of large number implies

GT l(x)
P−→

T→∞
G∞l(x).

Consequently, if λT/T → λ0 ≥ 0 and γT/T → γ0 ≥ 0, we obtain the pointwise

convergence

|GTϕ(x)−G∞ϕ(x)| P−→
T→∞

0.

By Lemma 2.4.4 of Andersen and Gill, G∞ϕ(.) is a convex function and we deduce the

desired uniform convergence over any compact subset of Θ, that is (2.4.1).
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Now we would like that arg min {GTϕ(.)} P−→
T→∞

arg min {G∞ϕ(.)}. By assumption 25,

ϕ(.) is convex, which implies

|GTϕ(θ)| P−→
‖θ‖→∞

∞.

Consequently, arg min{GTϕ(x)} = O(1), such that θ̂ ∈ Bo(θ0, C) with probability

approaching one for C large enough, with Bo(θ0, C) an open ball centered at θ0 and

of radius C. Furthermore, as G∞ϕ(.) is convex, continuous, then arg min
x∈B

{G∞ϕ(x)}

exists and is unique. Then by Corollary 2.4.5 of Andersen and Gill, we obtain

arg min
x∈B

{GTϕ(x)} P−→
T→∞

arg min
x∈B

{G∞ϕ(x)},

that is θ̂
P−→

T→∞
θ∗0.

Theorem 2.4.6. Under assumptions 23-25 and 28, the sequence of penalized estima-

tors θ̂ satisfies

‖θ̂ − θ0‖ = Op(T
−1/2 + λTT

−1a+ γTT
−1b),

when λT = o(T ) and γT = o(T ), and a := card(A).{max
k

αk}, b := card(A).{max
l

ξl}
satisfy λTT

−1aT → 0 and γTT
−1bT → 0.

Remark 2.4.7. This probability bound shows an explicit convergence rate for the SGL

estimator. If λTT
−1 = O(T−1/2) and γTT

−1 = O(T−1/2), then we would obtain a
√
T -consistent θ̂.

Proof of Theorem 2.4.6. We denote νT = T−1/2+λTT
−1a+γTT

−1b, with a = card(A).{max
k

αk}
and b = card(A).{max

l
ξl}. We would like to prove that for any ε > 0, there exists

Cε > 0 such that

P(
1

νT
‖θ̂ − θ0‖ > Cε) < ε.

We have

P(
1

νT
‖θ̂ − θ0‖ > Cε) ≤ P(∃u ∈ Rd, ‖u‖2 ≥ Cε : GTϕ(θ0 + νTu) ≤ GTϕ(θ0)).

Furthermore, ‖u‖2 can potentially be large as it represents the discrepancy θ̂ − θ0

normalized by νT . Now based on the convexity of the objective function, we have

{∃u∗, ‖u∗‖2 ≥ Cε,GTϕ(θ0+νTu
∗) ≤ GTϕ(θ0)} ⊂ {∃ū, ‖ū‖2 = Cε,GTϕ(θ0+νT ū) ≤ GTϕ(θ0)},

(2.4.2)
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a relationship that allows us to work with a fixed ‖u‖2. Let us define θ1 = θ0 + νTu
∗

such that GTϕ(θ1) ≤ GTϕ(θ0). Let α ∈ (0, 1) and θ = αθ1 + (1 − α)θ0. Then by

convexity of GTϕ(.), we obtain

GTϕ(θ) ≤ αGTϕ(θ1) + (1− α)GTϕ(θ0)

≤ GTϕ(θ0).

We pick α such that ‖ū‖ = Cε with ū := αθ1 + (1− α)θ0. Hence (2.4.2) holds, which

implies

P(‖θ̂ − θ0‖ > CενT ) ≤ P(∃u ∈ Rd, ‖u‖2 ≥ Cε : GTϕ(θ0 + νTu) ≤ GTϕ(θ0))

≤ P(∃u, ‖u‖2 = Cε : GTϕ(θ0 + νT ū) ≤ GTϕ(θ0)).

Hence, we pick a u such that ‖u‖2 = Cε. Using p1(λT , α, 0) = 0 and p2(γT , ξ, 0) = 0,

by a Taylor expansion to GT l(θ0 + νTu), we obtain

GTϕ(θ0 + νTu)−GTϕ(θ0) = νT ĠT l(θ0)u+
ν2
T

2
u′G̈T l(θ̄)u+

ν3
T

6
∇′{u′G̈T l(θ̄)u}u

+ p1(λT , α, θT )− p1(λT , α, θ0) + p2(γT , ξ, θT )− p2(γT , ξ, θ0),

where θ̄ is defined as ‖θ̄ − θ0‖ ≤ ‖θT − θ0‖. We want to prove

P(∃u, ‖u‖2 = Cε : ĠT l(θ0)u+
νT

2
E[u′G̈T l(θ0)u] +

νT

2
RT (θ0) +

ν2
T

6
∇′{u′G̈T l(θ̄)u}u

+ν−1
T {p1(λT , α, θT )− p1(λT , α, θ0) + p2(γT , ξ, θT )− p2(γT , ξ, θ0)} ≤ 0) < ε,

(2.4.3)

where RT (θ0) =
d∑

k,l=1

ukul{∂2
θkθl

GT l(θ0)−E[∂2
θkθl

GT l(θ0)]}. By assumption 23, (εt) is a

non anticipative stationary solution and is ergodic. As a square integrable martingale

difference by assumption 26,

√
T ĠT l(θ0)u

d−→ N (0,u′Mu),

by the central limit theorem of Billingsley (1961), which implies ĠT l(θ0)u = Op(T
−1/2u′Mu).

By the ergodic theorem of Billingsley (1995), we have

G̈T l(θ0)
P−→

T→∞
H.

This implies RT (θ0) = op(1).
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Furthermore, we have by the Markov inequality and for b > 0 that

P(∃u, ‖u‖2 = Cε : sup
θ̄:‖θ−θ0‖2≤νTCε

|
ν2
T

6
∇′{u′G̈T l(θ̄)u}u| > b) ≤

ν4
TC

6
ε

36b2
η(Cε),

where η(Cε) is defined in assumption 28. We now focus on the penalty terms. As

p1(λT , α, 0) = 0, for the l1 norm penalty, we have

p1(λT , α, θT )− p1(λT , α, θ0) = λTT
−1
∑
k∈S

αk{‖θ(k)
0 + νTu

(k)‖1 − ‖θ(k)
0 ‖1},

and |p1(λT , α, θT )− p1(λT , α, θ0)| ≤ card(S){max
k∈S

αk}λTT−1νT‖u‖1.

As for the l1/l2 norm, we obtain

p2(γT , ξ, θT )− p2(γT , ξ, θ0) = γTT
−1
∑
l∈S

ξl{‖θ(l)
T ‖2 − ‖θ(l)

0 ‖2},

and |p2(γT , ξ, θT )− p2(γT , ξ, θ0)| ≤ γTT
−1
∑
l∈S

ξlνT‖u(l)‖2

≤ card(S){max
l∈S

ξl}γTT−1νT‖u‖2.

Then denoting by δT = λmin(H)C2
ε νT , and using

νT

2
E[u′G̈T l(θ0)u] ≥ δT , we deduce

that (2.4.3) can be bounded as

P(∃u, ‖u‖2 = Cε : ĠT l(θ0)u+
νT

2
u′G̈T l(θ0)u+

ν2
T

6
∇′{u′G̈T l(θ̄)u}u

+ν−1
T {p1(λT , α, θT )− p1(λT , α, θ0) + p2(γT , ξ, θT )− p2(γT , ξ, θ0)} ≤ 0)

≤ P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT/8) + P(∃u, ‖u‖2 = Cε :
νT

2
|RT (θ0)| > δT/8)

+P(∃u, ‖u‖2 = Cε : |
ν2
T

6
∇′{u′G̈T l(θ̄)u}u| > δT/8)

+P(∃u, ‖u‖2 = Cε : |p1(λT , α, θT )− p1(λT , α, θ0)| > νT δT/8)

+P(∃u, ‖u‖2 = Cε : |p2(γT , ξ, θT )− p2(γT , ξ, θ0)| > νT δT/8).

We also have for Cε and T large enough, and using norm equivalences that

P(∃u, ‖u‖2 = Cε : |p1(λT , α, θT )− p1(λT , α, θ0)| > νT δT/8)

≤ P(∃u, ‖u‖2 = Cε : card(S){max
k∈S

αk}λTT−1νT‖u‖1 > νT δT/8) < ε/5,

P(∃u, ‖u‖2 = Cε : |p2(γT , ξ, θT )− p2(γT , ξ, θ0)| > νT δT/8)

≤ P(∃u, ‖u‖2 = Cε : card(S){max
l∈S

ξl}γTT−1νT‖u‖2 > νT δT/8) < ε/5.
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Moreover, if νT = T−1/2 + λTT
−1a+ γTT

−1b, then for Cε large enough

P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT/8) ≤
C2
εCst

Tδ2
T

≤
Cst

C4
ε

< ε/5.

Moreover

P(∃u, ‖u‖2 = Cε : sup
θ̄:‖θ̄−θ0‖2<νTCε

|
ν2
T

6
∇′{u′G̈T l(θ̄)u}u| > δT/8) ≤

Cstν
4
Tη(Cε)

δ2
T

≤ Cstν
2
TC

2
ε η(Cε)

where Cst > 0 is a generic constant. Consequently, we obtain, for T and Cε large

enough, we obtain

P(∃u, ‖u‖2 = Cε : |ĠT l(θ0)u| > δT/8) + P(∃u, ‖u‖2 = Cε :
νT

2
|RT (θ0)| > δT/8)

+P(∃u, ‖u‖2 = Cε : |
ν2
T

6
∇′{u′G̈T l(θ̄)u}u| > δT/8)

+P(∃u, ‖u‖2 = Cε : |p1(λT , α, θ0)− p1(λT , α, θT )| > νT δT/8)

+P(∃u, ‖u‖2 = Cε : |p2(γT , ξ, θ0)− p2(γT , ξ, θT )| > νT δT/8) + 0

≤
Cst

C4
ε

+ ν2
TC

2
ε η(Cε)Cst + 3ε/5

≤ ε,

for Cε sufficiently large, and T large enough. We then deduce

‖θ̂ − θ0‖ = Op(νT ) = Op(λTT
−1a+ γTT

−1b+ T−1/2).

Remark 2.4.8. We would like to highlight the use of the convexity property of GTϕ(.).

It allowed us to obtain the upper bound (2.4.3). Otherwise, the inequality would have

been uniform over ‖u‖2 ≥ Cε. A consequence is that ‖u‖2 can take significantly large

values, which would have made the control of the random part in the Taylor expansion

hard. This issue is overcome thanks to the convexity that allows for working with fixed

‖u‖2, as Fan and Li (2001), Fan and Peng (2004) or Nardi and Rinaldo (2008) do.

We now focus on the distribution of the SGL estimator. Deriving the asymptotic distri-

bution for M-estimators is standard in the case the objective function is differentiable.
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It consists of characterizing the estimator by the orthogonality conditions and derive a

linear representation by Taylor expansions of the estimator. But these techniques do

not apply when the objective function is not differentiable. In our case, ϕ(.) is not dif-

ferentiable at 0 due to the penalty terms. In some specific context, it may be possible

to treat the non-differentiability of GTϕ(.) by applying the expectation operator E[.]

to ϕ(.), which then becomes differentiable in θ0. Then Taylor expansions are feasible

and one obtains the distribution, provided some regularity conditions of the empirical

criterion, such as stochastic equi-continuity: see Andrews (1994, a,b). This approach

works for specific loss functions, such as the LAD. But in our setting, the expectation

operator fails at regularizing ϕ(.) due to the penalty functionals.

Another approach to obtain the asymptotic distribution relies on the convexity prop-

erty of ϕ(.), and hence of GTϕ(.), without assuming strong regularity conditions on

ϕ(.). The intuition behind this rather strong statement is as follows. Let FT (u) and

F∞(u), u ∈ Rd, be random convex functions such that their minimum are respectively

uT and u∞. Then if FT (.) converges in finite distribution to F∞(.), and u∞ is the

unique minimum of F∞ with probability one, then uT converges weakly to u∞. This

method to prove the convergence of arg min processes is called the convexity argument.

It was developed by Davis, Knight and Liu (1992), Hjort, Pollard (1993), Geyer (1996a,

1996b) or Kato (2009). Chernozhukov and Huong (2004), Chernozhukhov (2005) use

this convexity argument to obtain the asymptotic distribution of quantile regression

type estimators. The convexity argument only requires the lower-semicontinuity and

convexity of the empirical criterion. The convexity Lemma, as in Chernozhukov (2005),

can be stated as follows.

Lemma 2.4.9. ( Chernozhukov, 2005)

Suppose

(i) a sequence of convex lower-semicontinuous FT : Rd → R̄ marginally converges to

F∞ : Rd → R̄ over a dense subset of Rd;

(ii) F∞ is finite over a nonempty open set E ⊂ Rd;

(iii) F∞ is uniquely minimized at a random vector u∞.

Then

arg min
z∈Rd

FT (z)
d−→ arg min

z∈Rd
F∞(z), that is uT

d−→ u∞.

Theorem 2.4.10. Under assumptions 23-28, if λTT
−1/2 → λ0 and γTT

−1/2 → γ0,

then √
T (θ̂ − θ0)

d−→ arg min
u∈Rd

{F∞(u)},
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provided F∞ is the random function in Rd, where

F∞(u) =
1

2
u′Hu+ u′Z + λ0

m∑
k=1

αk
ck∑
i=1

{|u(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
}

+ γ0

m∑
l=1

ξl{‖u(l)‖21θ(l)0 =0
+
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
},

with H = H(θ0) := E[∇2
θθ′l(εt; θ0)] and some random vector Z ∼ N (0,M), M =

M(θ0) := E[∇θl(εt; θ0)∇θ′l(εt; θ0)].

Proof of Theorem 2.4.10. Let u ∈ Rd such that θ = θ0 + u/T 1/2 and we define the

empirical criterion FT (u) = TGT (ϕ(θ0 + u/T 1/2) − ϕ(θ0)). First, we are going to

prove the finite distributional convergence of FT to F∞. Then we use the convexity of

FT (.) to obtain the convergence in distribution of the arg min empirical criterion to

the arg min process limit. To do so, let u =
√
T (θ − θ0). We have

FT (u) = T{GT (l(θ)− l(θ0)) + p1(λT , α, θ)− p1(λT , α, θ0) + p2(γT , ξ, θ)− p2(γT , ξ, θ0)}

= TGT (l(θ0 + u/T 1/2)− l(θ0)) + λT
m∑
k=1

αk[‖θ(k)
0 + u(k)/

√
T‖1 − ‖θ(k)

0 ‖1]

+ γT
m∑
l=1

ξl[‖θ(l)
0 + u(l)/

√
T‖2 − ‖θ(l)

0 ‖2],

where FT (.) is convex and C0(Rd). We now prove the finite dimensional distribution

of FT to F∞ to apply Lemma 2.4.9. For the l1 penalty, for any group k, we have for T

sufficiently large

‖θ(k)
0 + u(k)/

√
T‖1 − ‖θ(k)

0 ‖1 = T−1/2

ck∑
i=1

{|u(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
},

which implies that

λT

m∑
k=1

αk[‖θ(k)
0 +u(k)/

√
T‖1−‖θ(k)

0 ‖1] −→
T→∞

λ0

m∑
k=1

αk

ck∑
i=1

{|u(k)
i |1θ(k)0,i =0

+u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
},

under the condition that λT/
√
T → λ0.

As for the l1/l2 quantity, for any group l, we have

‖θ(l)
0 + u(l)/

√
T‖2 − ‖θ(l)

0 ‖2 = T−1/2{‖u(l)‖21θ(l)0 =0
+

u(l)′θ
(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}+ o(T−1).
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Consequently, if γTT
−1/2 → γ0 ≥ 0, we obtain

γT

m∑
l=1

ξl[‖θ(l)
0 +u(l)/

√
T‖2−‖θ(l)

0 ‖2] = γ0

m∑
l=1

ξl{‖u(l)‖21θ(l)0,k=0
+

u(l)′θ
(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}+o(T−1)γT.

Now for the unpenalized criterion GT l(.), by a Taylor expansion, we have

TGT (l(θ0 +u/T 1/2)− l(θ0)) = u′T 1/2ĠT l(θ0) +
1

2
u′G̈T l(θ0)u+

1

6T 1/3
∇′{u′G̈T l(θ̄)u}u,

where θ̄ is defined as ‖θ̄−θ0‖ ≤ ‖u‖/
√
T . Then by assumption 26, we have the central

limit theorem of Billingsley (1961)

√
T ĠT l(θ0)

d−→ N (0,M),

and by the ergodic theorem

G̈T l(θ0)
P−→

T→∞
H.

Furthermore, we have by assumption 28

|∇′{u′G̈T l(θ̄)u}u|2 ≤
1

T 2

T∑
t,t′=1

d∑
k1,l1,m1

d∑
k2,l2,m2

uk1ul1um1uk2ul2um2|∂3
θk1θl1θm1

l(εt; θ̄).∂
3
θk2θl2θm2

l(εt′ ; θ̄)|

≤
1

T 2

T∑
t,t′=1

d∑
k1,l1,m1

d∑
k2,l2,m2

uk1ul1um1uk2ul2um2υt(C)υt′(C),

for C large enough, such that υt(C) = sup
k,l,m=1,··· ,d

{ sup
θ:‖θ−θ0‖2≤νTC

|∂3
θkθlθm

l(εt; θ)|} with

νT = T−1/2 + λTT
−1aT + γTT

−1bT . We deduce

∇′{u′G̈T l(θ̄)u}u = Op(‖u‖3
2η(C)).

Consequently, we obtain

1

6T 1/3
∇′{u′G̈T l(θ̄)u}u

P−→
T→∞

0.

Then we proved that FT (u)
d−→ F∞(u), for a fixed u. Let us observe that

u∗T = arg min
u

{FT (u)},
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and FT (.) admits as a minimizer u∗T =
√
T (θ̂ − θ0). As FT is convex and F∞ is

continuous, convex and has a unique minimum, then by the convexity Lemma 2.4.9,

we obtain √
T (θ̂ − θ0) = arg min

u
{FT}

d−→ arg min
u

{F∞}.

Theorem 2.4.11. Under assumptions 23-28, if γTT
−1 → 0 and γTT

−1/2 → ∞ such

that λTγ
−1
T → µ0, with µ0 ≥ 0, then

T

γT
(θ̂ − θ0)

d−→ arg min
u

{K∞(u)},

provided K∞ is a uniquely defined deterministic function in Rd, where

K∞(u) =
1

2
u′Hu+ µ0

m∑
k=1

αk{‖u(k)‖11θ(k)0 =0
+ u(k)′sgn(θ

(k)
0 )1

θ
(k)
0 6=0
}

+
m∑
l=1

ξl{‖u(l)‖21θ(l)0 =0
+
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}.

The limit quantity K∞(.) is non-random, which implies that the convergence in dis-

tribution implies the convergence in probability
T

γT
(θ̂ − θ0)

P−→ arg min
u

{K∞(u)} by

Shiryaev (ex 7, p 259, 1995).

Remark 2.4.12. The convergence rate of θ̂ is slower than
√
T and the limit distribution

is not random. To obtain an optimal convergence rate, we should take λT = O(T 1/2),

γT = O(T 1/2).

Proof of Theorem 2.4.11. To prove this convergence result, we proceed as in Theorem

2.4.10. To do so, we define θ = θ0 + uγT/T and we prove that F̃T (u) = GT (ϕ(θ0 +

uγT/T )− ϕ(θ0)) converges in finite distribution to K∞(.). We have

F̃T (u) = T{GT (l(θ)− l(θ0)) + p1(λT , α, θ)− p1(λT , α, θ0) + p2(γT , ξ, θ)− p2(γT , ξ, θ0)}

= TGT (l(θ0 + uγT/T )− l(θ0)) + λT
m∑
k=1

αk[‖θ(k)
0 + u(k)γT/T‖1 − ‖θ(k)

0 ‖1]

+ γT
m∑
l=1

ξl[‖θ(l)
0 + u(l)γT/T‖2 − ‖θ(l)

0 ‖2].
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For the unpenalized empirical criterion, we have the expansion

TGT (l(θ0 + uγT/T )− l(θ0)) = γT ĠT l(θ0)u+
γ2
T

2T
u′G̈T l(θ0)u+

γ3
T

6T 2
∇{u′G̈T l(θ̄)u}u,

where θ̄ lies between θ0 and θ0 + uγT/T . This implies F̃T (u) =
γ2T
T
KT (u), where

KT (u) =
√
T

γT
(
√
T ĠT l(θ0)u) + 1

2
u′G̈T l(θ̄)u+ γT

6T
∇′{u′G̈T l(θ̄)u}u

+ T
γ2T
λT

m∑
k=1

αk[‖θ(k)
0 + u(k)γT/T‖1 − ‖θ(k)

0 ‖1] + T
γT

m∑
l=1

ξl[‖θ(l)
0 + u(l)γT/T‖2 − ‖θ(l)

0 ‖2].

We first focus on the penalty terms. For the l1 part, for any group k, we have

‖θ(k)
0 + u(k)γT/T‖1 − ‖θ(k)

0 ‖1 = γTT
−1

ck∑
i=1

{|u(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
}.

We deduce that

T

γ2
T

λTαk[‖θ(k)
0 + u(k)γT/T‖1 − ‖θ(k)

0 ‖1]→ µ0

ck∑
i=1

αk{|u(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
},

under the condition λTγ
−1
T → µ0.

As for the l1/l2 quantity, for any group l, we have

‖θ(l)
0 + u(l)γT/T‖2 − ‖θ(l)

0 ‖2 = γTT
−1{‖u(l)‖21θ(l)0 =0

+
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}+ o(T−1).

Consequently, we obtain

T

γT
ξl[‖θ(l)

0 + u(l)γT/T‖2 − ‖θ(l)
0 ‖2]→ ξl{‖u(l)‖21θ(l)0 =0

+
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}.

Now for the unpenalized part, by the central limit theorem of Billingsley (1961),
√
T ĠT l(θ0) is asymptotically normal, then γTT

−1/2 → ∞ implies by the Slutsky the-

orem √
T

γT
(
√
T ĠT l(θ0)u)

P−→
T→∞

0.

Furthermore, by the ergodic theorem of Billingsley (1961), we have

G̈T l(θ0)
P−→

T→∞
H.



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 108

As for the third order term, by assumption 28 and using the same reasoning as the

proof of Theorem 2.4.10, we have

γT
6T
∇′{u′G̈T l(θ̄)u}u

P−→
T→∞

0,

using γT = o(T ). Then we proved that KT (u)
d−→ K∞(u), for a fixed u ∈ Rd. We

have

u∗T = arg min
u

{KT (u)},

and KT (.) admits as a minimizer u∗T = T
γT

(θ̂ − θ0). KT (.) is convex and K∞(.) is

continuous, then by the convexity Lemma, we deduce

T

γT
(θ̂ − θ0) = arg min {KT}

d−→ arg min {K∞}.

We now turn to the oracle property of the SGL. Model selection consistency consists

of evaluating the probability that {Â = A}, for T large enough. That means we check

that the regularization asymptotically allows for identifying the right model.

Proposition 2.4.13. Under assumption 23-28, if λTT
−1/2 → λ0 and γTT

−1/2 → γ0,

then

lim sup
T→∞

P(Â = A) ≤ c < 1,

where c is a constant depending on the true model.

Proof of Proposition 2.4.13. In Theorem 2.4.10, we proved

√
T (θ̂ − θ0) := arg min

u∈Rd
{FT}

d−→ arg min
u∈Rd

{F∞},

under the assumption λT/
√
T → λ0 and γT/

√
T → γ0. The limit random function is

F∞(u) =
1

2
u′Hu+ u′Z + λ0

m∑
k=1

αk
ck∑
i=1

{|u(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
}

+ γ0

m∑
l=1

ξl{‖u(l)‖21θ(l)0 =0
+
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

1
θ
(l)
0 6=0
}.
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First, let us observe that

{Â = A} = {∀k = 1, · · · ,m, i ∈ Ack, θ̂
(k)
i = 0} ∩ {∀k = 1, · · · ,m, i ∈ Âck, θ

(k)
0,i = 0}.

Both sets describing {Â = A} are symmetric, and thus we can focus on

{Â = A} ⇒ {∀k = 1, · · · ,m, i ∈ Ack, T 1/2θ̂
(k)
i = 0}.

Hence

P(Â = A) ≤ P(∀k = 1, · · · ,m,∀i ∈ Ack, T 1/2θ̂
(k)
i = 0).

Denoting by u∗ := arg min
u∈Rd

{F∞(u)}, Theorem 2.4.10 corresponds to
√
T (θ̂A−θ0,A)

d−→

u∗A. By the Portmanteau Theorem (see Wellner and van der Vaart, 1996), we have

lim sup
T→∞

P(∀k = 1, · · · ,m,∀i ∈ Ack, T 1/2θ̂
(k)
i = 0) ≤ P(∀k = 1, · · · ,m,∀i ∈ Ack,u

(k)∗
i = 0),

as θ0,Ac = 0. Consequently, we need to prove that the probability of the right hand

side is strictly inferior to 1, which is upper-bounded by

P(∀k = 1, · · · ,m,∀i ∈ Ack,u
(k)∗
i = 0) ≤

min(P(k /∈ S,u(k)∗ = 0),P(k ∈ S, ∀i ∈ Ack,u
(k)∗
i = 0)).

(2.4.4)

If λ0 = γ0 = 0, then u∗ = −H−1Z, such that Pu∗ = N (0,H−1MH−1). Hence , c = 0.

If λ0 6= 0 or γ0 6= 0, the necessary and sufficient optimality conditions for a group k

tell us that u∗ satisfies
(Hu∗ +Z)(k) + λ0αkp

(k) + γ0ξk
θ

(k)
0

‖θ(k)
0 ‖2

= 0, k ∈ S,

(Hu∗ +Z)(k) + λ0αkw
(k) + γ0ξkz

(k) = 0, otherwise,

(2.4.5)

where w(k) and z(k) are the subgradients of ‖u(k)‖1 and ‖u(k)‖2 given by

w
(k)
i =

sgn(u
(k)
i ) ifu

(k)
i 6= 0,

∈ {w(k)
i : |w(k)

i | ≤ 1} ifu
(k)
i = 0,

z(k) =


u(k)

‖u(k)‖2

ifu(k) 6= 0,

∈ {z(k) : ‖z(k)‖2 ≤ 1} ifu(k) = 0,

and p
(k)
i = ∂ui{|u

(k)
i |1θ(k)0,i =0

+ u
(k)
i sgn(θ

(k)
0,i )1

θ
(k)
0,i 6=0
}.
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If u(m)∗ = 0,∀m /∈ S, then the optimality conditions (2.4.5) become{
HSSu∗S +ZS + λ0τS + γ0ζS = 0,

‖ −H(l)Su
∗
S −Z(l) − λ0αlw

(l)‖2 ≤ γ0ξl, as ‖z(l)‖2 ≤ 1, l ∈ Sc,
(2.4.6)

with τS = vec(k ∈ S, αkp(k)) and ζS = vec(k ∈ S, ξk
θ

(k)
0

‖θ(k)
0 ‖2

), which are vectors of

Rcard(S).

For k ∈ S, that is the vector θ
(k)
0 is at least non-zero, then

(Hu∗ +Z)i + λ0αksgn(θ
(k)
0,i ) + γ0ξk

θ
(k)
0,i

‖θ(k)
0 ‖2

= 0, if k ∈ S, i ∈ Ak,

(Hu∗ +Z)i + λ0αkw
(k)
i = 0, i ∈ Ack.

(2.4.7)

Consequently, if u
(k)∗
i = 0,∀i ∈ Ack, with k ∈ S, then the conditions (2.4.7) become HAkAku∗Ak +ZAk + λ0αksgn(θ0,Ak) + γ0ξk

θ0,Ak

‖θ0,Ak‖2

= 0,

| − (HAckAku
∗
Ak +ZAck)i| ≤ λ0αk.

Combining relationships in (2.4.6), we obtain

‖H(l)SH−1
SS(ZS + λ0τS + γ0ζS)−Z(l) − λ0αlw

(l)‖2 ≤ γ0ξl, l ∈ Sc.

The same reasoning applies for active groups with inactive components, such that

combining relationships in (2.4.7), we obtain

|(HAckAkH
−1
AkAk(ZAk + λ0αksgn(θ0,Ak) + γ0ξk

θ0,Ak

‖θ0,Ak‖2

)−ZAck)i| ≤ λ0αk.

Hence we deduce

P(∀k = 1, · · · ,m,∀ ∈ Ack,u
(k)∗
i = 0) ≤

min(P(k /∈ S,u(k)∗ = 0),P(k ∈ S,∀i ∈ Ack,u
(k)∗
i = 0)) := min(a1, a2).
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Under the assumption that λ0 <∞ and γ0 <∞, we obtain

a1 = P(l ∈ Sc, ‖H(l)SH−1
SS(ZS + λ0τS + γ0ζS)−Z(l) − λ0αlw

(l)‖2 ≤ γ0ξl) < 1,

a2 = P(k ∈ S, i ∈ Ack, |(HAckAkH
−1
AkAk(ZAk + λ0αksgn(θ0,Ak) + γ0ξk

θ0,Ak

‖θ0,Ak‖2

)−ZAck)i| ≤ λ0αk) < 1.

Thus c < 1, which proves (2.4.4), that is proposition 2.4.13.

Remark 2.4.14. The result in Proposition 2.4.13 highlights that the SGL as proposed

by Simon and al. (2013) cannot satisfy the oracle property since the penalties cannot

recover the unknown set of active indices A, which is called model selection consistency.

To fix this drawback in an ordinary least square framework, Zou (2006) proposed the

adaptive Lasso, where random weights are used to penalize different coefficients and

proves that the adaptive Lasso estimator satisfies the oracle property in the sense of

Fan and Li (2001), that is asymptotic normality and selection consistency for a proper

choice of λT and α
(k)
i . That is also the case for the adaptive Group Lasso model

proposed by Nardi and Rinaldo (2008), where adaptive weights are used to penalize

grouped coefficients differently. We propose the same approach than Zou (2006) and

use adaptive weights in the penalties such that the adaptive SGL satisfies the oracle

property in the sense of Fan and Li (2001) as proved in Theorem 2.4.16.

The adaptive specification of the proposed estimator now becomes

θ̂ = arg min
θ∈Θ

{GTψ(θ)}, (2.4.8)

where

θ 7→ GTψ(θ) =
1

T

T∑
t=1

l(εt; θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ)

= GT l(θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ),

such that both penalties are specified as

p1(λT , θ̃, θ) = λTT
−1

m∑
k=1

ck∑
i=1

α(θ̃
(k)
i )|θ(k)

i |,p2(γT , θ̃, θ) = γTT
−1

m∑
l=1

ξ(θ̃(l))‖θ(l)‖2.

These penalties are now randomized through the θ̃ argument in the weights α’s and

ξ’s. This first step estimator θ̃ is supposed to be a T 1/2-consistent estimator of θ0. For

instance, it can be defined as an M-estimator of the unpenalized empirical criterion

GT l(.), that is

θ̃ = arg min
θ∈Θ

GT l(θ).
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Adaptive weights are also used by Zou and Zhang (2009), who plug the elastic-net

estimator in the adaptive weight and then estimate a new elastic net model using

these weights, that is the adaptive elastic net.

The weights we use are now random and for any group k or l, α(θ̃(k)) ∈ Rck+ , ξ(θ̃(l) ∈ R+

are specified as

α
(k)
T := α(θ̃(k)) = (|θ̃(k)

i |−η, i = 1, · · · , ck), ξT,l := ξ(θ̃(l) = ‖θ̃(l)‖−µ2 ,

for some constants η > 0 and µ > 0 (to be specified).

Theorem 2.4.15. Under assumptions 23-25 and 28, the sequence of penalized esti-

mators θ̂ satisfies

‖θ̂ − θ0‖ = Op(T
−1/2 + λTT

−1aT + γTT
−1bT ),

with aT = card(A).{max
k∈S

(max
i∈Ak

α
(k)
T,i)}, bT = card(A).{max

l∈S
ξT,l} stochastic quantities,

such that λTT
−1aT

P−→ 0 and γTT
−1bT

P−→ 0.

Proof of Theorem 2.4.15. The proof follows exactly the same steps as for Theorem

(2.4.6), except aT and bT are random quantities.

Theorem 2.4.16. Under assumptions 23-28, if λTT
−1/2 → 0, γTT

−1/2 → 0, T (η−1)/2λT →
∞, T (µ−1)/2γT →∞ and T (µ−η)/2γTλ

−1
T →∞, then θ̂ obtained in (2.4.8) satisfies

lim
T→∞

P(Â = A) = 1, and
√
T (θ̂A − θ0,A)

d−→ N (0,H−1
AAMAAH

−1
AA).

Proof of Theorem 2.4.16. We start with the asymptotic distribution and proceed as in

the proof of Theorem 2.4.10, where we used Lemma 2.4.9. To do so, we prove the finite

dimensional convergence in distribution of the empirical criterion FT (u) to F∞(u) with

u ∈ Rd, where these quantities are respectively defined as

FT (u) = TGT (ψ(θ0 + u/
√
T )− ψ(θ0))

= TGT (l(θ0 + u/
√
T )− l(θ0)) + λT

m∑
k=1

ck∑
i=1

α
(k)
T,i[|θ

(k)
0,i + u

(k)
i /
√
T | − |θ(k)

0,i |]

+ γT
m∑
l=1

ξT,l[‖θ(l)
0 + u(l)/

√
T‖2 − ‖θ(l)

0 ‖2],
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and

F∞(u) =


1

2
u′AHAAuA + u′AZA if ui = 0, when i /∈ A, and

∞ otherwise,

(2.4.9)

with ZA ∼ N (0,MAA). By Lemma 2.4.9, the finite dimensional convergence in distri-

bution implies arg min
u∈Rd

{FT (u)} d−→ arg min
u∈Rd

{F∞(u)}. We first consider the unpenal-

ized empirical criterion of FT (.), which can be expanded as

TGT (ψ(θ0 + u/
√
T )− ψ(θ0)) = T 1/2ĠT l(θ0)u+

1

2
u′G̈T l(θ̄)u+

1

6T 1/3
∇′{u′G̈T l(θ̄)}u,

where θ̄ lies between θ0 and θ0 + u/
√
T . First, using the same reasoning on the third

order term, we obtain

1

6T 1/3
∇′{u′G̈T l(θ̄)}u

P−→
T→∞

0.

By the ergodic theorem, we deduce G̈T l(θ0)
P−→

T→∞
H and by assumption 26,

√
T ĠT l(θ0)

d−→
N (0,M).

We now focus on the penalty terms of (2.4.8), we remind that α
(k)
T,i = |θ̃(k)

i |−η, such that

for i ∈ Ak, k ∈ S, θ̃
(k)
i

P−→
T→∞

θ
(k)
0,i 6= 0. Note that

√
T (|θ(k)

0 + u(k)/
√
T | − |θ(k)

0 |]
P−→

T→∞
u

(k)
i sgn(θ

(k)
0,i )1θ(k)0,i 6=0

.

This implies that, for i ∈ Ak, k ∈ S, we have

λTT
−1/2

ck∑
i=1

α
(k)
T,i

√
T (|θ(k)

0,i + u
(k)
i /
√
T | − |θ(k)

0,i |)
P−→

T→∞
0,

under the condition λTT
−1/2 → 0. For i ∈ Ack, θ

(k)
0,i = 0, then T η/2(|θ̃(k)

i |)η = Op(1).

Hence under the assumption λTT
(η−1)/2 →∞, we obtain

λTT
−1/2α

(k)
T,i

√
T (|θ(k)

0,i + u
(k)
i /
√
T | − |θ(k)

0,i |) = λTT
−1/2|u(k)

i |
T η/2

(T 1/2|θ̃(k)
i |)η

P−→
T→∞

∞.

(2.4.10)
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As for the l1/l2 quantity, we remind that ξT,l = ‖θ̃(l)‖−µ2 , such that for l ∈ S, θ̃(l) P−→
T→∞

θ
(l)
0 , and in this case

√
T{‖θ(l)

0 + u(l)/
√
T‖2 − ‖θ(l)

0 ‖2} =
u(l)′θ

(l)
0

‖θ(l)
0 ‖2

+ o(T−1/2).

Consequently, using γTT
−1/2 → 0, and for l ∈ S, we obtain

γTT
−1/2
√
TξT,l(‖θ(l)

0 + u(l)/
√
T‖2 − ‖θ(l)

0 ‖2)
P−→

T→∞
0.

Combining the fact k ∈ S and θ
(k)
0 is partially zero, that is i ∈ Ack, we obtain the

divergence given in (2.4.10). Furthermore, if l /∈ S, that is θ
(l)
0 = 0, then

√
T{‖θ(l)

0 + u(l)/
√
T‖2 − ‖θ(l)

0 ‖2} = ‖u(l)‖2,

and T µ/2(‖θ̃(l)‖2)µ = Op(1), then under the assumption γTT
(µ−1)/2 →∞, we obtain

γTT
−1/2ξT,l

√
T [‖θ(l)

0 + u(l)/
√
T‖2 − ‖θ(l)

0 ‖2] = γTT
−1/2‖u(l)‖2

T µ/2

(T 1/2‖θ̃(l)‖2)µ
P−→

T→∞
∞.

We deduce the pointwise convergence FT (u)
d−→ F∞(u), where F∞(.) is given in (2.4.9).

As FT (.) is convex and F∞(.) is convex and has a unique minimum (H−1
AAZA,0Ac), by

Lemma 2.4.9, we obtain

√
T (θ̂ − θ0) = arg min

u∈Rd
{FT (u)} d−→ arg min

u∈Rd
{F∞(u)},

that is to say

√
T (θ̂A − θ0,A)

d−→ H−1
AAZA, and

√
T (θ̂Ac − θ0,Ac)

d−→ 0Ac .

We now prove the model selection consistency. Let i ∈ Ak, then by the asymptotic

normality result, θ̂
(k)
i

P−→
T→∞

θ
(k)
0 , which implies P(i ∈ Âk)→ 1. Thus the proof consists

of proving

∀k = 1, · · · ,m,∀i ∈ Ack,P(i ∈ Âk)→ 0.

This problem can be split into two parts as

∀k /∈ S,P(k ∈ Ŝ)→ 0, and ∀k ∈ S,∀i ∈ Ack,P(i ∈ Âk)→ 0. (2.4.11)
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Let us start with the case k /∈ S. If k ∈ Ŝ, by the optimality conditions given by the

Karush-Kuhn-Tucker theorem applied on GTψ(θ̂), we have

ĠT l(θ̂)(k) +
λT

T
α

(k)
T � ŵ

(k) +
γT

T
ξT,k

θ̂(k)

‖θ̂(k)‖2

= 0,

� is the Hadamard product and

ŵ
(k)
i =

sgn(θ̂
(k)
i ) if θ̂

(k)
i 6= 0,

∈ {ŵ(k)
i : |ŵ(k)

i | ≤ 1} if θ̂
(k)
i = 0.

Multiplying the unpenalized part by T 1/2, we have the expansion

T 1/2ĠT l(θ̂)(k) = T 1/2ĠT l(θ0)(k) + T 1/2G̈T l(θ0)(k)(k)(θ̂ − θ0)(k)

+ T 1/2∇′{(θ̂ − θ0)′(k)G̈T l(θ̄)(k)(k)(θ̂ − θ0)(k)},

which is asymptotically normal by consistency, assumption 28 regarding the bound on

the third order term, the Slutsky theorem and the central limit theorem of Billingsley

(1961). Furthermore, we have

γTT
−1/2ξT,k

θ̂(k)

‖θ̂(k)‖2

= γTT
(µ−1)/2(T 1/2‖θ̃(k)‖2)−µ

θ̂(k)

‖θ̂(k)‖2

P−→
T→∞

∞,

using T (µ−η)/2γTλ
−1
T →∞. Therefore, we have

∀k /∈ S,P(k ∈ Ŝ) ≤ P(−ĠT l(θ̂)(k) =
λT

T
α

(k)
T � ŵ

(k)
i +

γT

T
ξT,k

θ̂(k)

‖θ̂(k)‖2

)→ 0.

We now pick k ∈ S and consider the event {i ∈ Âk}. Then the Karush-Kuhn-Tucker

conditions for GTψ(θ̂) are given by

(ĠT l(θ̂))(k),i +
λT

T
α

(k)
T,isgn(θ̂

(k)
T,i) +

γT

T
ξT,k

θ̂
(k)
i

‖θ̂(k)‖2

= 0.
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Using the same reasoning as previously, T 1/2(ĠT l(θ̂))(k),i is also asymptotically normal,

and θ̃(k) P−→
T→∞

θ
(k)
0 for k ∈ S, and besides

λTT
−1/2α

(k)
T,isgn(θ̂

(k)
i ) = λT

T (η−1)/2

(T 1/2|θ̃(k)
i |)η

P−→
T→∞

∞,

such that we obtain the same when adding γTT
−1/2ξT,k

θ̂
(k)
i

‖θ̂(k)‖2

. Therefore, we have

∀k ∈ S,∀i /∈ Ak,P(i ∈ Âk) ≤ P(−(ĠT l(θ̂))(k),i =
λT

T
α

(k)
T,isgn(θ̂

(k)
i )+

γT

T
ξT,k

θ̂
(k)
i

‖θ̂(k)‖2

)→ 0.

We have proved (2.4.11).

2.5 Double-asymptotic

In the previous sections, we worked with a fixed dimension d, where d =
m∑
k=1

ck. From

now on, let us consider the case where d = dT , such that dT →∞ as T →∞. Note that

card(S) = O(card(A)) = O(dT ). The speed of growth of the dimension is supposed

to be dT = O(T c) for some q2 < c < q1. In this section, we prove that the adaptive

SGL satisfies the oracle property, that is model selection consistency and optimal rate

of convergence for proper choices of 0 ≤ q1 < q2 < 1. We highlight that our general

framework unfortunatly hampers a high degree of flexibility on the behavior of dT ,

that is c cannot be set in (0, 1). This issue was encountered by Fan and Peng (2004)

in an i.i.d. and non-adaptive framework. This lack of flexibility is a necessary cost to

cope with the random remainder of the Taylor expansions as we should take the third

order term into account. This problem is moved aside when considering the simple

linear model, where the third order derivative is zero. For instance, Zou and Zhang

(2009) proved the oracle property of the adaptive elastic-net in a double-asymptotic

framework for linear models where 0 ≤ c < 1.

For the asymptotic normality, we use the method of Fan and Peng (2004) and Zou

and Zhang (2009), where we derive the asymptotic distribution of the discrepancy
√
T (θ̂ − θ0)A times a matrix sequence (QT ) of size r × card(A), r being arbitrary

but finite. This allows for switching from infinite dimensional distribution to finite

dimensional distribution, where we can apply the usual tools of the asymptotic analysis.
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In this section, we provide the conditions to satisfy the oracle property as in Fan

and Peng (2004) or Zou and Zhang (2009). In this double-asymptotic framework, the

quantities depend on dT , hence on T . They should be indexed by T , which expresses

that the dimension depend on the sample size. In the rest of the paper, we denote

HT := E[∇2
θθl(εt; θ0)] and MT := E[∇θl(εt; θ0)∇θ′l(εt; θ0)]. To make the reading easier,

we do not index other quantities by T , which will be implicit. We remind that the

criterion is

θ̂ = arg min
θ∈Θ

{GT l(θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ)}

= arg min
θ∈Θ

{
1

T

T∑
t=1

l(εt; θ) +
λT

T

m∑
k=1

ck∑
i=1

α
(k)
T,i|θ

(k)
i |+

γT

T

m∑
l=1

ξT,l‖θ(l)‖2},
(2.5.1)

with α
(k)
T,i = |θ̃(k)

i |−η and ξT,l = ‖θ̃(l)‖−µ2 , where η > 0, µ > 0, and θ̃ is a first step

estimator satisfying

θ̃ = arg min
θ∈Θ

{GT l(θ)}.

The double-asymptotic framework implies that the empirical criterion can be viewed

as a sequence of dependent random variables for which we need refined asymptotic

theorems for dependent sequence of arrays. Shiryaev (1991) proposed a version of the

central limit theorem for dependent sequence of arrays, provided this sequence is a

square integrable martingale difference satisfying the so-called Lindeberg condition. A

similar theorem can be found in Billingsley (1995, theorem 35.12, p.476). We provide

here the theorem of Shiryaev (see Theorem 4, p.543 of Shiryaev, 1991) that we will

use to derive the asymptotic distribution of the adaptive SGL estimator.

Theorem 2.5.17. (Shiryaev, 1991)

Let a sequence of square-integrable martingale differences ξT = (ξT,t,FTt ), T ≥ 0, with

FTt = σ(ξT,s, s ≤ t), satisfy the Lindeberg condition, for ε > 0, given by

T∑
t=0

E[ξ2
T,t1|ξT,t|>ε|FT

t−1]
P−→

T→∞
0,

then if
T∑
t=0

E[ξ2
T,t|FTt−1]

P−→
T→∞

σ2
t , or

T∑
t=0

ξ2
T,t

P−→
T→∞

σ2
t , then

T∑
t=0

ξT,t
d−→ N (0, σ2

t ).

Remark 2.5.18. Note that central limit theorems relaxing the stationarity and martin-

gale difference assumptions for sequences of arrays exist. Neumann (2013) proposed

such a central limit theorem for weakly dependent sequences of arrays. Such sequences
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should also satisfy a Lindeberg condition and conditions on covariances. In the rest of

the paper, we use Shiryaev’s result.

We consider problem (2.5.1), which is the adaptive SGL estimator. In the first step,

we study the convergence rate of the first step unpenalized estimator, which is plugged

in the adaptive specification. The convergence rate of a classic M-estimator is T 1/2,

for d fixed. For d diverging, we need some additional assumptions.

The two next assumptions are similar to condition (F) of Fan and Peng (2004) and

allow for controlling the minimum and maximum eigenvalues of the limits of the em-

pirical Hessian and the score cross-product. We denote by λmin(M ) and λmax(M ) the

minimum and maximum eigenvalues of any positive definite square matrix M .

Assumption 29. HT and MT exist. HT is nonsingular, and there exist b1, b2 with

0 < b1 < b2 <∞ and c1, c2 with 0 < c1 < c2 <∞ such that, for all T ,

b1 < λmin(MT ) < λmax(MT ) < b2, c1 < λmin(HT ) < λmax(HT ) < c2.

Let VT = H−1
T MTH−1

T , we deduce there exist a1, a2 with 0 < a1 < a2 < ∞ such that,

for all T ,

a1 < λmin(VT ) < λmax(VT ) < a2.

Assumption 30. E[{∇θl(εt; θ0)∇θ′l(εt; θ0)}2] <∞, for every dT (and then of T ).

Assumption 31. There exist some functions Ψ(.) such that, for all T ,

sup
k=1,··· ,dT

E[∂θk l(εt; θ)∂θk l(εt′ ; θ)] ≤ Ψ(|t− t′|),

and

sup
T

1

T

T∑
t,t′=1

Ψ(|t− t′|) <∞.

Assumption 32. Let ζkl,t := ∂2
θkθl

l(εt; θ0)− E[∂2
θkθl

l(εt; θ0)]. There exist some functions

χ(.) such that

|E[ζkl,tζk′l′,t′ ]| ≤ χ(|t− t′|),

and

sup
T

1

T

T∑
t,t′=1

χ(|t− t′|) <∞.
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Assumption 33. Let υt(C) := sup
k,l,m=1,··· ,dT

{ sup
θ:‖θ−θ0‖2≤νTC

|∂3
θkθlθm

l(εt; θ)|}, where C > 0 is

a fixed constant and νT = (dT/T )1/2. Then

η(C) :=
1

T 2

T∑
t,t′=1

E[υt(C)υt′(C)] <∞.

Theorem 2.5.19. Under assumptions 23-25, 29-33 and if d4
T = o(T ), the sequence of

unpenalized M-estimators solving θ̃ = arg min
θ∈Θ

{GT l(θ)} satisfies

‖θ̃ − θ0‖2 = Op((
dT

T
)
1
2 ).

Both vectors θ̃ and θ0 depend on T such that θ̃ = θ̃T and θ0 = θ0,T := θ0,∞.eT .

Remark 2.5.20. Note that this consistency result requires at most d4
T = o(T ), as The-

orem 1 of Fan and Peng (2004).

Proof of Theorem 2.5.19. We proceed as in the proof of Theorem 2.4.6. We denote

νT = (dT/T )1/2 and we would like to prove that, for any ε > 0, there exists Cε > 0

such that

P(‖θ̃ − θ0‖2/ν̃T > Cε) < ε. (2.5.2)

To prove (2.5.2), it is sufficient to show that for any ε > 0, there exists Cε > 0 such

that

P(‖θ̃ − θ0‖2 > CενT ) ≤ P(∃u ∈ RdT , ‖u‖2 ≥ Cε : GT l(θ0 + νTu) ≤ GT l(θ0))

= P(∃u ∈ RdT , ‖u‖2 = Cε : GT l(θ0 + νTu) ≤ GT l(θ0)),

by convexity. By a Taylor expansion of GT l(θ0 + νTu), we obtain

GT l(θ0 + νTu) = GT l(θ0) + νT ĠT l(θ0)u+
ν2
T

2
u′G̈T l(θ0)u+

ν3
T

6
∇′{u′G̈T l(θ̄)u}u,

where θ̄ ∈ Θ such that ‖θ̄ − θ0‖2 ≤ CενT . We would like to prove

P(∃u ∈ RdT , ‖u‖2 = Cε : νT ĠT l(θ0)u+
ν2
T

2
u′G̈T l(θ0)u+

ν3
T

6
∇′{u′G̈T l(θ̄)u}u ≤ 0) < ε.

(2.5.3)
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To do so, we focus on each quantity of the Taylor expansion to extract the dominant

term. First, for a > 0 and the Markov inequality, we have for the score term

P( sup
u:‖u‖2=Cε

|ĠT l(θ0)u| > a) ≤ P( sup
u:‖u‖2=Cε

‖ĠT l(θ0)‖2‖u‖2 > a)

≤ P(‖ĠT l(θ0)‖2 >
a
Cε

)

≤ (Cε
a

)2E[‖ĠT l(θ0)‖2
2]

≤ (Cε
a

)2
dT∑
k=1

E[(∂θkGT l(θ0))2]

= (Cε
a

)2 1
T 2

T∑
t,t′=1

dT∑
k=1

E[∂θk l(εt; θ0)∂θk l(εt′ ; θ0)]

≤ (Cε
a

)2{ 1
T 2

T∑
t,t′=1

Ψ(|t− t′|)}.dT .

By assumption 31, sup
k=1,··· ,dT

E[∂θk l(εt; θ0)∂θk l(εt′ ; θ0)] ≤ Ψ(|t− t′|) and 1
T

T∑
t,t′=1

Ψ(|t− t′|) <

∞. This implies

P( sup
u:‖u‖2=Cε

|ĠT l(θ0)u| > a) ≤
C2
ε dT

Ta2
K1,

for some constant K1 > 0.

We now focus on the hessian quantity that can be rewritten as

u′G̈T l(θ0)u = u′E[G̈T l(θ0)]u+RT (θ0),

where RT (θ0) =
dT∑
k,l=1

ukul{∂2
θkθl

GT l(θ0)− E[∂2
θkθl

GT l(θ0)]}. We have

E[RT (θ0)] = 0, Var(RT (θ0)) =
1

T 2

T∑
t,t′=1

dT∑
k,k′,l,l′=1

ukuk′ulul′E[ζkl,t.ζk′l′,t′ ],

where ζkl,t = ∂2
θkθl

l(εt; θ0) − E[∂2
θkθl

l(εt; θ0)]. Let b > 0, we deduce by the Markov

inequality and assumption 32,

P(|RT (θ0)| > b) ≤
1

b2
E[R2

T (θ0)] ≤
K2

b2

‖u‖4
2d

2
T

T
≤
K2C

4
ε d

2
T

b2T
,

where K2 > 0. Furthermore, by assumption 29,

u′E[G̈T l(θ0)]u ≥ λmin(HT )u′u.
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As for the third order term, we have

|∇{u′G̈T l(θ̄)u}u|2 ≤
1

T 2

T∑
t,t′=1

∑
k1,k2,k3

∑
l1,l2,l3

|uk1uk2uk3ul1ul2ul3||∂3
θk1θk2θk3

l(εt; θ̄).∂
3
θl1θl2θl3

l(εt′ ; θ̄)|

≤ ‖u‖6
2d

3
T

1

T 2

T∑
t,t′=1

υt(Cε)υt′(Cε),

where

υt(C0) = sup
k1k2k3

{ sup
θ:‖θ−θ0‖2≤νTC0

|∂3
θk1θk2θk3

l(εt; θ)|}.

Note that υt(C0) depends on dT and C0. By assumption 33, we have

η(C0) :=
1

T 2

T∑
t,t′=1

E[υt(C0)υt′(C0)] <∞.

By the Markov inequality, for c > 0, we conclude that

P(∃u, ‖u‖2 = Cε :
ν2
T

6
sup

‖θ̄−θ0‖2≤νTCε
|∇{u′G̈T l(θ̄)u}u| > c) ≤

ν4
Td

3
TC

6
ε

36c2
η(Cε).

We can now bound (2.5.3) thanks to proper choices of a, b, c and Cε. We denote by

δT = λmin(HT )C2
ε νT , and using

νT

2
E[u′G̈T l(θ0)u] ≥ δT , we have

P(∃u ∈ RdT , ‖u‖2 = Cε : ĠT l(θ0)u+
νT

2
u′G̈T l(θ0)u+

ν2
T

6
∇{u′G̈T l(θ̄)u}u ≤ 0)

≤ P(∃u ∈ RdT , ‖u‖2 = Cε : |ĠT l(θ0)u| > δT/4) + P(∃u ∈ RdT , ‖u‖2 = Cε : νT
2
|RT (θ0)| > δT/4)

+P(∃u ∈ RdT , ‖u‖2 = Cε :
ν2T
6

sup
θ̄:‖θ̄−θ0‖2<νTCε

|∇{u′G̈T l(θ̄)u}u| > δT/4)

≤
16C2

ε dTK1

Tδ2
T

+
4ν2

Td
2
TC

4
ε

Tδ2
T

+
16ν4

Td
3
TC

6
ε

36δ2
T

η(Cε)

≤ C1

dT

TC2
ε ν

2
T

+ C2

d2
T

T
+ C3ν

2
Td

3
TC

2
ε η(Cε),
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where C1, C2, C3 are strictly positive constants. We chose νT = (
dT

T
)
1
2 , we then deduce

P(∃u ∈ RdT , ‖u‖2 = Cε : νT ĠT l(θ0)u+
ν2
T

2
u′G̈T l(θ0)u+

ν3
T

6
∇{u′G̈T l(θ̄)u}u ≤ 0)

≤
C1

C2
ε

+ C2

d2
T

T
+
d4
TC

2
ε

T
η(Cε).

Now we fix Cε sufficiently large enough, such that C1/C
2
ε < ε/3. Once this constant is

fixed, there exists a T0 such that for T > T0 we have C2
d2T
T
< ε/3 and C3

d4TC
2
ε

T
η(Cε) < ε/3

under the assumption that d4
T = o(T ). Consequently, we obtain

P(∃u ∈ RdT , ‖u‖2 = Cε : GT l(θ0)+νT ĠT l(θ0)u+
ν2
T

2
u′G̈T l(θ0)u+

ν3
T

6
∇{u′G̈T l(θ̄)u}u ≤ 0) < ε.

This proves (2.5.2), that is ‖θ̃ − θ0‖2 = Op((
dT

T
)
1
2 ).

The first step estimator used for the adaptive weights is (T/dT )1/2-consistent. How-

ever, the estimated quantities on Ac converge to zero by consistency. We then propose

a slight modification of the first step estimator, denoted ˜̃θ, which disappears asymp-

totically as follows
˜̃θ = θ̃ + eT ,

such that eT → 0 is a strictly positive quantity. We choose eT = T−κ with κ > 0. This

means we add in the adaptive weights a power of T to the first step estimator, that is

α
(k)
T,i = | ˜̃θ(k)

i |−η = |θ̃ + T−κ|−η, ξT,l = ‖ ˜̃θ(l)‖−µ2 = ‖θ̃(l) + T−κ‖−µ2 .

Theorem 2.5.21. Under assumptions 23-25, 29-33, if d4
T = o(T ), and if

γT√
T
T

c
2

+κµ −→
T→∞

0,
λT√
T
T κη −→

T→∞
0, then the sequence of penalized estimators θ̂ solving 2.5.1 satisfies

‖θ̂ − θ0‖2 = Op((
dT

T
)
1
2 ).

Remark 2.5.22. Note that d4
T = o(T ) is as in Fan and Peng (2004), Theorem 1. Thanks

to proper choices of the regularization terms, we obtain a (T/dT )1/2-consistent adaptive

SGL estimator.
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Proof of Theorem 2.5.21. We proceed as we did for proving Theorem 2.5.19. Let νT =

(dT/T )1/2. We would like to prove that for any ε > 0, there exists Cε > 0 such that

P(‖θ̂ − θ0‖2/νT > Cε) < ε. (2.5.4)

To prove (2.5.4), we show

P(∃u ∈ RdT , ‖u‖2 = Cε : ĠT l(θ0)u+
νT

2
u′G̈T l(θ0)u+

ν2
T

6
∇′{u′G̈T l(θ̄)u}u

+ν−1
T {p1(λT ,

˜̃θ, θ0 + νTu)− p1(λT ,
˜̃θ, θ0) + p2(γT ,

˜̃θ, θ0 + νTu)− p2(γT ,
˜̃θ, θ0}) ≤ 0) < ε.

(2.5.5)

a relationship obtained by convexity and a Taylor expansion.

The score quantity can be upper bounded as

|ĠT l(θ0)u| ≤ ‖ĠT l(θ0)‖2‖u‖2 = Op((
dT

T
)
1
2 )‖u‖2 = Op(νT )‖u‖2,

where we used assumption 31 to obtain the bound in probability of the score.

As for the third order term, we have by the Cauchy-Schwartz inequality

|∇′{u′G̈T l(θ̄)u}u|2 ≤ ‖u‖6
2d

3
T

1

T 2

T 2∑
t,t′=1

{
dT∑

k1,l1,m1=1

dT∑
k2,l2,m2=1

∂3
θk1θl1θm1

l(εt; θ̄)∂
3
θk2θl2θm2

l(εt′ ; θ̄)}

= ‖u‖6
2d

3
Tη(Cε).

This implies

∇′{u′G̈T l(θ̄)u}u = Op(d
3/2
T ‖u‖

3
2).

Hence by the Markov inequality

P(∃u ∈ RdT , ‖u‖2 = Cε : |ν2
T∇′{u′G̈T l(θ̄)u}u| > a) ≤

ν4
TC

6
ε d

3
T

a2
η(Cε).

where we used assumption 33.

Finally, the hessian quantity can be treated as in the proof of Theorem 2.5.19. We

denote by RT (θ0) =
dT∑
k,l=1

ukul{∂2
θkθl

GT l(θ0)− E[∂2
θkθl

GT l(θ0)]}. We have

u′G̈T l(θ0)u = u′E[G̈T l(θ0)]u+RT (θ0).
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By assumption 32 and the Markov inequality, for any κ > 0, we obtain

P(|RT (θ0)| > κ) ≤
1

κ2
E[R2

T (θ0)] ≤
K2

κ2

‖u‖4
2d

2
T

T
≤
K2C

4
ε d

2
T

κ2T
,

with K2 > 0. This relationship holds for any κ > 0. Then for T large enough, we

deduce that |RT (θ0)| = op(1). Consequently

ν2
T

2
u′G̈T l(θ0)u ≥

ν2
T

2
λmin(HT )‖u‖2

2 + op(1)ν2
T‖u‖2

2.

We focus on the penalty terms. We have

p1(λT ,
˜̃θ, θ0 + νTu)− p1(λT ,

˜̃θ, θ0) = λTT
−1
∑
k∈S

∑
i∈Ak

α
(k)
T,i{|θ

(k)
0,i + νTu

(k)
i | − |θ

(k)
0,i |},

and |p1(λT ,
˜̃θ, θ0 + νTu)− p1(λT ,

˜̃θ, θ0)| ≤ λTT
−1
∑
k∈S

∑
i∈Ak

α
(k)
T,iνT |u

(k)
i |.

As for the l1/l2 norm, we obtain

p2(γT ,
˜̃θ, θ0 + νTu)− p2(γT ,

˜̃θ, θ0) = γTT
−1
∑
l∈S1

ξT,l{‖θ(l)
0 + νTu‖2 − ‖θ(l)

0 ‖2}

and |p2(γT ,
˜̃θ, θ0 + νTu)− p2(γT ,

˜̃θ, θ0)| ≤ γTT
−1
∑
l∈S
ξT,lνT‖u(l)‖2.

For the l1 norm penalty, using { min
k∈S,i∈Ak

| ˜̃θ(k)
i |}−η ≤ T κη, then

λTT
−1
∑
k∈S

∑
i∈Ak

α
(k)
T,iνT |u

(k)
i | ≤ λTT

−1νT{
∑
k∈S

∑
i∈Ak
| ˜̃θ(k)
i |−2η}1/2‖u‖2

≤ λTT
−1νT

√
dT

{ min
k∈S,i∈Ak

| ˜̃θ(k)
i |}η

‖u‖2

≤ λTT
−1νT
√
dTT

κη‖u‖2,

by the Cauchy-Schwartz inequality. Then if λTT
c
2
−1+κη is bounded, we obtain

p1(λT ,
˜̃θ, θ0 + νTu)− p1(λT ,

˜̃θ, θ0) = O(ν2
T )‖u‖2.
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As for the l1/l2 term, using {min
l∈S
‖ ˜̃θ(l)‖2}−µ ≤ T κµ, we obtain

γTT
−1

m∑
l=1

ξT,lνT‖u(l)‖2 ≤ γTT
−1νT{

∑
l∈S
‖ ˜̃θ(l)‖−2µ

2 }1/2‖u‖2

≤ γTT
−1νT

√
dT

{min
l∈S
‖ ˜̃θ(l)‖2}µ

‖u‖2

≤ γTT
−1νT
√
dTT

κµ‖u‖2,

by the Cauchy-Schwartz inequality. Then if γTT
c
2
−1+κµ is bounded, we obtain

p2(γT ,
˜̃θ, θ0 + νTu)− p2(γT ,

˜̃θ, θ0) = O(ν2
T )‖u‖2.

We now can prove (2.5.5). Let δT = λmin(HT )C2
ε νT and using νT

2
E[u′G̈T l(θ0)u] ≥ δT ,

we have

P(∃u ∈ RdT , ‖u‖2 = Cε : ĠT l(θ0)u+ νTu
′G̈T l(θ0)u/2 + ν2

T∇{u′G̈T l(θ̄)u}u/6
+ν−1

T {p1(λT ,
˜̃θ, θ0 + νTu)− p1(λT ,

˜̃θ, θ0) + p2(γT ,
˜̃θ, θ0 + νTu)− p2(γT ,

˜̃θ, θ0)} ≤ 0)

≤ P(∃u ∈ RdT , ‖u‖2 = Cε : |νTu′G̈T l(θ0)u/2| ≤ |ĠT l(θ0)u|+ |ν2
T∇{u′G̈T l(θ̄)u}u/6|

+ν−1
T {|p1(λT ,

˜̃θ, θ0)− p1(λT ,
˜̃θ, θ0 + νTu)|+ |p2(γT ,

˜̃θ, θ0)− p2(γT ,
˜̃θ, θ0 + νTu)|})

≤ P(∃u ∈ RdT , ‖u‖2 = Cε : |ĠT l(θ0)u| > δT/8) + P(∃u ∈ RdT , ‖u‖2 = Cε : νT
2
|RT (θ0)| > δT/8)

+P(∃u ∈ RdT , ‖u‖2 = Cε : |ν
2
T

6
∇{u′G̈T l(θ̄)u}u| > δT/8)

+P(∃u ∈ RdT , ‖u‖2 = Cε : |p1(λT ,
˜̃θ, θ0)− p1(λT ,

˜̃θ, θ0 + νTu)| > νT δT/8)

+P((∃u ∈ RdT , ‖u‖2 = Cε : |p2(γT ,
˜̃θ, θ0)− p2(γT ,

˜̃θ, θ0 + νTu)| > νT δT/8)

≤
Cst

C2
ε

+ Cst{ν2
TC

6
ε d

3
Tη(Cε)}+

Cstν
2
Td

2
TC

4
ε

Tδ2
T

+ ε/5 + ε/5

< ε,

with Cst > 0 a generic constant. We used d4
T = o(T ) and for Cε large enough

P(∃u ∈ RdT , ‖u‖2 = Cε : |p1(λT ,
˜̃θ, θ0)− p1(λT ,

˜̃θ, θ0 + νTu)| > νT δT/8) ≤ ε/5,

P(∃u ∈ RdT , ‖u‖2 = Cε : |p2(γT ,
˜̃θ, θ0)− p2(γT ,

˜̃θ, θ0 + νTu)| > νT δT/8) ≤ ε/5.

Thus we obtain for Cε and T large enough, with the conditions γTT
c
2
−1+κµ → 0 and

λTT
c
2
−1+κη → 0 that

‖θ̂ − θ0‖2 = Op(νT ) = Op((
dT

T
)
1
2 ).
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To satisfy the oracle property, we need some additional assumptions regarding the

adaptive penalty components.

Assumption 34. For any T , there exists β such that 0 < β < min
i∈Ak

θ0,i,Ak , k ∈ S.

Moreover,

β−1T−1{λTd1/2
T E[ max

k∈S,i∈Ak
αT,Ak,i] + γTE[max

k∈S
ξT,k]} −→

T→∞
0.

Assumption 35. The model complexity is assumed to behave as d5
T = o(T ), which

implies that 0 < c < 1
5
. The regularization parameters are chosen such that they

satisfy

γT√
T
T

c
2

+κµ −→
T→∞

0,
γT√
T
T

1
2

[(1+µ)(1−c)−1] −→
T→∞

∞,

λT√
T
T κη −→

T→∞
0,

λT√
T
T

1
2

[(1+η)(1−c)−1] −→
T→∞

∞,

γT

λ1+µ
T

T (1+µ)(1− c
2
−κη)−1 −→

T→∞
∞.

Remark 2.5.23. The main condition is d5
T = o(T ), which is the same as Fan and Peng

(2004). This condition comes from the control for the third order derivative of the

empirical criterion. Note that simple cases allow for a framework where 0 ≤ c < 1.

Moreover, these asymptotic behaviors are closely related to condition (A5) of Zou and

Zhang (2009). In Section 2.6, we provide further details about the calibration of the

adaptive weights and κ.

Assumption 36. Let FTt = σ(XT,s, s ≤ t) with XT,t =
√
TQTV−1/2

T,AAH
−1
T,AAĠT lt(θ0)A,

(QT ) is a sequence of r × card(A) matrices such that QT × Q′T
P−→ C, for some

r × r nonnegative symmetric matrix C, VT,AA = (H−1
T MTH−1

T )AA and ĠT lt(θ0)A =
1
T
∇Al(εt; θ0). Then XT,t is a martingale difference and we have

E[ sup
i,j=1,··· ,dT

E[{∂θil(εt; θ0)∂θj l(εt; θ0)}2|FTt−1]λmax,t−1(HT
t−1)] ≤ B̄ <∞,

with

HT
t−1 := E[∇l(εt; θ0)∇′l(εt; θ0)|FTt−1] ≤ λmax(HT

t−1) <∞.

Theorem 2.5.24. Under assumptions 23-25, and assumptions 29-36, the sequence of

adaptive estimator θ̂ solving (2.5.1) satisfies

lim
T→∞

P(Â = A) = 1, and
√
TQTV−1/2

T,AA(θ̂A − θ0,A)
d→ N (0,C),
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where (QT ) is a sequence of r× card(A) matrices such that QT ×Q′T
P−→ C, for some

r × r nonnegative symmetric matrix C and VT,AA = (H−1
T MTH−1

T )AA.

Proof of Theorem 2.5.24. Model selection consistency consists of proving that the prob-

ability of the event {Â = A} tends to one asymptotically. This event is

{Â = A} = {∀k ∈ S,∀i ∈ Ak, |θ̂(k)
i | > 0} ∩ {∀k = 1, · · · ,m,∀i ∈ Ack, θ̂

(k)
i = 0}.

Hence we prove

P({∀k ∈ S,∀i ∈ Ak, |θ̂(k)
i | > 0} ∩ {∀k = 1, · · · ,m,∀i ∈ Ack, θ̂

(k)
i = 0}) −→

T→∞
1. (2.5.6)

Model selection consistency can be decomposed into two parts: recovering the active

indices by estimating nonzero coefficients; discarding the inactive indices by shrinking

to zero the related coefficients. Now (2.5.6) can be proved by first showing that for

any T , there exists β such that 0 < β < min
i∈Ak

θ0,i,Ak , with k ∈ S and

P(‖θ̂A − θ0,A‖2 < β) −→
T→∞

1. (2.5.7)

The second part regarding nonactive indices can be proved as P( ∩
k∈Sc
{‖ẑ(k)‖2 < 1}) −→

T→∞
1,

P( ∩
k∈S

∩
i∈Ack
{|ŵ(k)

i | < 1}) −→
T→∞

1,
(2.5.8)

where ẑ(k) (resp. ŵ(k)) is the subgradient of ‖θ̂(k)‖2 (resp. ‖θ̂(k)‖1) given in (2.3.1).

Hence (2.5.7) and (2.5.8) prove (2.5.6).

We first focus on (2.5.7), which is equivalent to

P(‖θ̂Ak − θ0,Ak‖2 > β) −→
T→∞

0.

By the Karush-Kuhn-Tucker optimality conditions, we have

ĠT l(θ̂)A + λTT
−1αT,A � sgn(θ̂A) + γTT

−1ςT = 0,
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where ςT = vec(ξT,k
θ̂Ak

‖θ̂Ak‖2

, k ∈ S). We denote by αT,Ak = (αT,i, i ∈ Ak), a vector of

size RcAk . By a Taylor expansion of the gradient component around θ0,A, we have

ĠT l(θ0)A + HT,AA(θ̂A − θ0,A) + PT (θ0)(θ̂A − θ0,A) +
1

2
∇′A{(θ̂A − θ0,A)′G̈T l(θ̄)(θ̂A − θ0,A)}

+λTT
−1αT,A � sgn(θ̂A) + γTT

−1ςT = 0

⇔ θ̂A = θ0,A −H−1
T,AA(ĠT l(θ0)A + λTT

−1αT,A � sgn(θ̂A) + γTT
−1ςT

−H−1
T,AA

1

2
∇′A{(θ̂A − θ0,A)′G̈T l(θ̄)AA(θ̂A − θ0,A)} −H−1

T,AAPT (θ0)(θ̂A − θ0,A),

where ‖θ̄−θ0‖2 ≤ ‖θ̂−θ0‖2, PT (θ0) = G̈T l(θ0)AA−HT,AA and HT,AA = E[∇2
θθ′l(εt; θ0)]AA.

Then using ‖θ̂A − θ0,A‖2 = Op((
dT

T
)
1
2 ), we obtain

P(‖θ̂A − θ0,A‖2 > β) ≤ P(‖H−1
T,AAĠT l(θ0)A‖2 + ‖H−1

T,AA‖2‖λTT−1αT,A � sgn(θ̂A)‖2

+ ‖H−1
T,AA‖2‖γTT−1ςT‖2 + ‖H−1

T,AA‖2‖∇′A{(θ̂A − θ0,A)′G̈T l(θ̄)AA(θ̂A − θ0,A)}/2‖2

+ ‖H−1
T,AA‖2‖PT (θ0)(θ̂A − θ0,A)‖2 > β)

≤ P(λ−1
min(HT )‖ĠT l(θ0)A‖2 + λ−1

min(HT )λTT
−1‖αT,A‖2

+ λ−1
min(HT )γTT

−1‖ςT‖2 + λ−1
min(HT )C2

0(dT/2T )‖∇′A{G̈T l(θ̄)AA}‖2

+ λ−1
min(HT )C0(dT/T )1/2‖PT (θ0)‖2 > β) + P(‖θ̂A − θ0,A‖2 > (dT/T )1/2C0),

for C0 > 0 large enough, and we used ‖H−1
T x‖2 ≤ λ−1

min(HT )‖x‖2 for any vector x ∈ RdT .

Let us proceed element-by-element. We have by the Markov inequality

P(λ−1
min(HT )C0

√
dT
T
‖PT (θ0)‖2 >

β

6
) ≤

36λ−2
min(HT )C2

0dT

Tβ2
E[‖PT (θ0)‖2

2].

We have

E[‖PT‖2
2] =

1

T 2

T∑
t,t′=1

∑
k,k′∈A

∑
l,l′∈A

E[ζkl,tζk′l′,t′ ],

where ζkl,t = ∂2
θkθl

l(εt; θ0)− E[∂2
θkθl

l(εt; θ0)]. By assumption 32, we obtain

P(λ−1
min(HT )C0

√
dT
T
‖PT (θ0)‖2 >

β

6
) ≤

36λ−2
min(HT )C2

0

β2

d3
T

T 2
.
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As for the third order term, by the Markov inequality

P(
1

2
λ−1

min(HT )C2
0

dT
T
‖∇′A{G̈T l(θ̄)AA}‖2 >

β

6
) ≤

9λ−2
min(HT )C4

0d
2
T

T 2
E[‖∇′A{G̈T l(θ̄)AA}‖2

2].

We obtain

E[‖∇′A{G̈T l(θ̄)AA}‖2
2] ≤

1

T 2

T∑
t,t′=1

∑
k1,k2,k3∈A

∑
l1,l2,l3∈A

E[|∂3
θk1θk2θk3

l(εt; θ0).∂3
θl1θl2θl3

l(εt; θ0)l(εt′ ; θ0)|]

≤
1

T 2
d3
T

T∑
t,t′=1

E[υt(C0)υt′(C0)] = η(C0)d3
T ,

by assumption 33, where υt(C0) = sup
k1k2k3

sup

θ:‖θ−θ0‖2≤
√
dT
T
C0

|∂3
θk1θk2θk3

l(εt; θ0)|. We deduce

that

P(
1

2
λ−1

min(HT )C2
0

dT
T
‖∇′A{G̈T l(θ̄)AA}‖2 >

β

6
) ≤

9λ−2
min(HT )C4

0

4

d5
T

T 2
η(C0).

We now turn to the score quantity. By the Markov inequality and assumption 31, we

have

P(λ−1
min(HT )‖ĠT l(θ0)A‖2 > β/6) ≤

λ−2
min(HT )36

β2
E[‖ĠT l(θ0)A‖2]

≤
λ−2

min(HT )36

β2

1

T 2

T∑
t,t′=1

∑
k∈A

E[∂θk l(εt; θ0)∂θk l(εt′ ; θ0)]

≤
λ−2

min(HT )36

β2

1

T
{

1

T

T∑
t,t′=1

Ψ(|t− t′|)}dT

≤
λ−2

min(HT )36KdT

Tβ2
,
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with K > 0. Hence we deduce

P(‖θ̂A − θ0,A‖2 > β) ≤ P(λ−1
min(HT )λTT

−1‖αT,A‖2 + λ−1
min(HT )γTT

−1‖ςT‖2 > β/2)

+ P(‖θ̂A − θ0,A‖2 > (dT/T )1/2C0) + P(λ−1
min(HT )C0(dT/T )1/2‖PT (θ0)‖2 > β/6)

+ P(λ−1
min(HT )C2

0(dT/2T )‖∇′A{G̈T l(θ̄)AA}‖2 > β/6)

+ P(λ−1
min(HT )‖ĠT l(θ0)A‖2 > β/6)

≤
2λ−1

min(HT )

β
{λTT−1d

1/2
T E[ max

k∈S,i∈Ak
αT,Ak,i] + γTT

−1E[max
k∈S

ξT,k]}

+
36λ−2

min(HT )KdT

Tβ2
+

9λ−2
min(HT )C4

0

4

d5
T

T 2
η(C0) +

36λ−2
min(HT )C2

0

β2

d3
T

T 2
+ ε.

For T and C0 large enough, if d5
T = o(T ), by assumption 34, that is if

β−1T−1{λTd1/2
T E[ max

k∈S,i∈Ak
αT,Ak,i] + γTE[max

k∈S
ξT,k]} −→

T→∞
0,

then

P(‖θ̂A − θ0,A‖2 > β) −→
T→∞

0.

We now turn to the second step of model selection consistency. First we prove

P( ∩
k∈Sc
{‖ẑ(k)‖2 < 1}) −→

T→∞
1⇔ P( ∪

k∈Sc
{‖ẑ(k)‖2 ≥ 1}) −→

T→∞
0. (2.5.9)

This is equivalent to proving

P( ∪
k∈Sc
{‖ĠT l(θ̂)(k) + λTT

−1α
(k)
T � ŵ

(k)‖2 ≥ γTT
−1ξT,k}) −→

T→∞
0.

We have for k ∈ Sc that ‖ŵ(k)‖∞ ≤ 1, which implies by the optimality conditions of

Karush-Kuhn-Tucker that

P( ∪
k∈Sc
{‖ĠT l(θ̂)(k) + λTT

−1α
(k)
T � ŵ

(k)‖2 ≥ γTT
−1ξT,k})

≤ P( ∪
k∈Sc
{‖ĠT l(θ̂)(k)‖2 ≥ γTT

−1ξT,k − λTT−1‖α(k)
T ‖2}).
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By a Taylor expansion around θ0, let θ̄ such that ‖θ̄ − θ0‖ ≤ ‖θ̂ − θ0‖, we have

P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1}) ≤ P( ∪

k∈Sc
{‖ĠT l(θ0)(k)‖2 ≥ γTT

−1ξT,k − λTT−1‖α(k)
T ‖2

− ‖G̈T l(θ0)(k)(k)‖2‖θ̂ − θ0‖2 − ‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2‖θ̂ − θ0‖2
2})

≤ P( ∪
k∈Sc
{‖ĠT l(θ0)(k)‖2 ≥ γTT

−1‖ ˜̃θ(k)‖−µ2 − λTT−1d
1/2
T max

k∈Sc,i∈Gk
(| ˜̃θ(k)

i |−η)

− ‖G̈T l(θ0)(k)(k)‖2‖θ̂ − θ0‖2 − ‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2‖θ̂ − θ0‖2
2}),

where we used ‖G̈T l(θ0)(k)(k)(θ̂−θ0)‖2 ≤ ‖G̈T l(θ̄)(k)(k)‖2‖θ̂−θ0‖2 and ‖G̈T l(θ0)(k)(k)‖2 =

‖G̈T l(θ0)(k)(k)‖s. Let ε > 0, and Kε strictly positive constants, we proved for T large

enough that

P(‖θ̂ − θ0‖2 > Kε(dT/T )1/2) < ε/6.

We deduce that

P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1}) ≤ P( ∪

k∈Sc
{‖ĠT l(θ0)(k)‖2 ≥ γTT

−1‖ ˜̃θ(k)‖−µ2 − λTT−1d
1/2
T max

k∈Sc,i∈Gk
(| ˜̃θ(k)

i |−η)

− ‖G̈T l(θ0)(k)(k)‖2(dT/T )1/2Kε − ‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2(
dT

T
)2K2

ε }) + ε/6.

Let M1,T = (
γT

T
)

1
1+µ , then we obtain

P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1}) ≤

∑
k∈Sc
{P(‖ĠT l(θ0)(k)‖2 ≥ γTT

−1‖ ˜̃θ(k)‖−µ2 − λTT−1d
1/2
T max

k∈Sc,i∈Gk
(| ˜̃θ(k)

i |−η)

− ‖G̈T l(θ0)(k)(k)‖2(dT/T )
1
2Kε − ‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2(

dT

T
)2K2

ε , ‖
˜̃θ(k)‖2 ≤M1,T )

+ P(‖ ˜̃θ(k)‖2 > M1,T )}+ ε/6.

Consequently, we have the relationship

P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1}) ≤

∑
k∈Sc
{P(‖ĠT l(θ0)(k)‖2 ≥ γTT

−1M−µ
1,T /4)

+ P(λTT
−1d

1/2
T max

k∈Sc,i∈Gk
(| ˜̃θ(k)

i |−η) > γTT
−1M−µ

1,T /4)

+ P(‖G̈T l(θ0)(k)(k)‖2(dT/T )1/2Kε > γTT
−1M−µ

1,T /4)

+ P(‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2(
dT

T
)2K2

ε > γTT
−1M−µ

1,T /4)

+ P(‖ ˜̃θ(k)‖2 > M1,T )}+ ε/6 :=
5∑
i=1

Ti + ε/6.



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 132

We then focus on each Ti. We have by the Markov inequality

T1 :=
∑
k∈Sc

P(‖ĠT l(θ0)(k)‖2 > γTT
−1M−µ

1,T /4) ≤
∑
k∈Sc

16E[‖ĠT l(θ0)(k)‖2
2]

{γTT−1M−µ
1,T }2

≤
16E[‖ĠT l(θ0)‖2

2]

{γTT−1M−µ
1,T }2

≤
16dT

T{γTT−1M−µ
1,T }2

= O((
γT√
T
T

1
2

[(1+µ)(1−c)−1])−
2

1+µ ).

Furthermore, using | ˜̃θ(k)
i |−η ≤ T κη, we have for T2 that

P(λTT
−1d

1/2
T max

k∈Sc,i∈Gk
(| ˜̃θ(k)

i |−η) > γTT
−1M−µ

1,T /4) ≤ P(λTT
−1d

1/2
T T κη > γTT

−1M−µ
1,T /4)

≤ P(γTT
−1M−µ

1,T /4{1− 4λTγ
−1
T d

1/2
T Mµ

1,TT
κη} < 0).(2.5.10)

The quantity of interest is γTλ
−1
T d

−1/2
T M−µ

1,TT
−κη that has to converge to ∞ such that

(2.5.10) converge to zero for T sufficiently large enough. We have

γTλ
−1
T d

−1/2
T M−µ

1,TT
−κη →∞⇔

γT

λ1+µ
T

d
− 1+µ

2
T T−κη(1+µ)+µ →∞.
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As for T3, we have by the Markov inequality

T3 :=
∑
k∈Sc

P((‖HT,(k)(k)‖2 + ‖RT,(k)(θ0)‖2)(dT/T )1/2Kε > γTT
−1M−µ

1,T /4)

≤
∑
k∈Sc

P((‖RT,(k)(θ0)‖2(dT/T )1/2Kε > γTT
−1M−µ

1,T /4− ‖HT,(k),(k)‖2(dT/T )1/2Kε)

≤
∑
k∈Sc
{P((‖RT,(k)(θ0)‖2(dT/T )1/2Kε > γTT

−1M−µ
1,T /8)

+P(‖HT,(k),(k)‖2(dT/T )1/2Kε > γTT
−1M−µ

1,T /8)}

≤
∑
k∈Sc
{

64K2
ε dTE[‖RT,(k)(θ0)‖2

2]

Tγ2
TT
−2M−2µ

1,T

+
64K2

ε dT‖HT,(k)(k)‖2
2

Tγ2
TT
−2M−2µ

1,T

}

≤
64K2

ε dT‖HT‖2
2

γ2
TT
−1M−2µ

1,T

+
64K2

εE[‖RT (θ0)‖2
2]

γ2
TM

−2µ
1,T

≤
64K2

ε dTλ
2
max(HT )

γ2
TT
−1M−2µ

1,T

+
64K2

ε d
3
T

γ2
TM

−2µ
1,T

≤
64K2

ε λ
2
max(HT )

{γTT−1/2d
−1/2
T M−µ

1,T }2
+

64K2
ε

{γTd−3/2
T M−µ

1,T }2

= O((
γT√
T
T

1
2

[(1+µ)(1−c)−1])−
2

1+µ ) +O((
γT√
T
T

1
2

[(1+µ)(2−3c)−1])−
2

1+µ ).

We obtain for T4 by the Markov inequality

T4 :=
∑
k∈Sc

P(‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2(
dT

T
)2K2

ε > γTT
−1M−µ

1,T /4)

≤
∑
k∈Sc

16K4
ε d

2
TE[‖∇′{G̈T l(θ̄)(k)(k)}(k)‖2

2]

T 2γTT−2M−2µ
1,T

≤
16K4

ε d
5
TE[‖∇′{G̈T l(θ̄)}‖2

2]

γ2
TM

−2µ
1,T

≤
16K4

ε d
5
Tη(Kε)

γ2
TM

−2µ
1,T

=
16K4

ε η(Kε)

{γTd−5/2
T M−µ

1,T }2
= O((

γT√
T
T

1
2

[(1+µ)(2−5c)−1])−
2

1+µ ).

Finally, we have for T5 that

T5 :=
∑
k∈Sc

P(‖ ˜̃θ(k)‖2 > M1,T ) ≤
∑
k∈Sc

E[‖ ˜̃θ(k)‖2
2]

M2
1,T

≤
E[‖ ˜̃θ − θ0‖2

2]

M2
1,T

= O((
γT√
T
T

1
2

[(1+µ)(1−c)−1])−
2

1+µ ).
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Hence we obtain from these relationships and using assumption 35

γT

λ1+µ
T

T µ−( c
2

+κη)(1+µ) −→
T→∞

∞,

γT√
T
T

1
2

[(1+µ)(1−c)−1] −→
T→∞

∞,

such that the latter implies

γT√
T
T

1
2

[(1+µ)(2−3c)−1] −→
T→∞

∞,

γT√
T
T

1
2

[(1+µ)(2−5c)−1] −→
T→∞

∞.

Consequently each Ti converges to zero for T large enough. Hence

P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1}) ≤

5∑
i=1

Ti + ε/6 −→
T→∞

ε.

For ε→ 0, we prove P( ∪
k∈Sc
{‖ẑ(k)‖2 ≥ 1})→ 0 for T large enough.

As for the second part of the model selection procedure, we prove that

P( ∩
k∈S

∩
i∈Ack
{|ŵ(k)

i | < 1}) −→
T→∞

1⇔ P( ∪
k∈S

∪
i∈Ack
{|ŵ(k)

i | ≥ 1}) −→
T→∞

0.

By the optimality conditions, we have

P( ∪
k∈S

∪
i∈Ack
{|ŵ(k)

i | ≥ 1}) = P( ∪
k∈S

∪
i∈Ack
{|ĠT l(θ̂)(k),i| ≥ λTT

−1α
(k)
T,i}).

Then by a Taylor expansion around θ0, with θ̄ between θ̂ and θ0, we have

P( ∪
k∈S

∪
i∈Ack
{|ŵ(k)

i | ≥ 1}) = P( ∪
k∈S

∪
i∈Ack
{|ĠT l(θ0)(k),i + [

∑
j

∂2
ijGT l(θ0)(θ̂j − θ0,j)]i

+ [
∑
j,k

T−1
T∑
t=1

∂3
ijkl(εt; θ̄)(θ̂j − θ0,j)

2/2]i| ≥ λTT
−1α

(k)
T,i})

≤ P( ∪
k∈S

∪
i∈Ack
{|ĠT l(θ0)(k),i| ≥ λTT

−1α
(k)
T,i − [

∑
j

∂2
ijGT l(θ0)(θ̂j − θ0,j)]i

− [
∑
j,k

T−1
T∑
t=1

∂3
ijkl(εt; θ̄)(θ̂j − θ0,j)

2/2]i|}).
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Let M2,T = (
λT

T
)

1
1+η . Then using ‖θ̂ − θ0‖2 = Op((

dT

T
)
1
2 ) and the Cauchy-Schwartz

inequality, we obtain

P( ∪
k∈S

∪
i∈Ack
{|ŵ(k)

i | ≥ 1}) ≤
∑
k∈S

∑
i∈Ack

{P(|ĠT l(θ0)(k),i| ≥ λTT
−1α

(k)
T,i − [

∑
j

∂2
ijGT l(θ0)(θ̂j − θ0,j)]i

− [
∑
j,k

T−1

T∑
t=1

∂3
ijkl(εt; θ̄)(θ̂j − θ0,j)

2/2]i|, | ˜̃θ(k)
i | ≤M2,T ) + P(| ˜̃θ(k)

i | > M2,T )}

≤
∑
k∈S

∑
i∈Ack

{P(|ĠT l(θ0)(k),i| ≥ λTT
−1M−η

2,T − {
∑
j

(∂2
ijGT l(θ0))2}1/2Kε(dT/T )1/2

− {
∑
j,k,l,m

T−2

T∑
t,t′=1

∂3
ijkl(εt; θ̄)∂

3
ilml(εt′ ; θ̄)}1/2K2

ε (dT/T ))

+ P(| ˜̃θ(k)
i | > M2,T )}+ ε/5

≤
∑
k∈S

∑
i∈Ack

{P(|ĠT l(θ0)(k),i| ≥ λTT
−1M−η

2,T/3)

+ P({
∑
j

(∂2
ijGT l(θ0))2}1/2Kε(dT/T )1/2 > λTT

−1M−η
2,T/3)

+ P({
∑
j,k,l,m

T−2

T∑
t,t′=1

∂3
ijkl(εt; θ̄)∂

3
ilml(εt′ ; θ̄)}1/2K2

ε (dT/T ) > λTT
−1M−η

2,T/3)

+ P(| ˜̃θ(k)
i | > M2,T )}+ ε/5 :=

4∑
i=1

Ti + ε/5.

We proceed as for inactive groups. For T1, we have by the Markov inequality

T1 :=
∑
k∈S

∑
i∈Ack

P(|ĠT l(θ0)(k),i| ≥ λTT
−1M−η

2,T/3) ≤
∑
k∈S

∑
i∈Ack

9E[|ĠT l(θ0)(k),i|2]

{λTT−1M−η
2,T}2

≤
9E[‖ĠT l(θ0)‖2

2]

{λTT−1M−η
2,T}2

= O((
λT√
T
T

1
2

[(1+η)(1−c)−1])−
2

1+η ).
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As for T2, we have

T2 :=
∑
k∈S

∑
i∈Ack

P({
∑
j

(∂2
ijGT l(θ0))2}1/2Kε(dT/T )1/2 > λTT

−1M−η
2,T/3)

=
∑
k∈S

∑
i∈Ack

P(({
∑
j

PT,(k),j(θ0)}1/2 + {
∑
j

H2
T,(k),j}1/2)Kε(dT/T )1/2 > λTT

−1M−η
2,T/3)

≤
∑
k∈S

∑
i∈Ack

∑
j

{
36dTE[P2

T,(k),j(θ0)]

T{λTT−1M−η
2,T}2

}+
36dT‖HT‖2

2

T{λTT−1M−η
2,T}2

≤
36dTλ

2
max(HT )

T{λTT−1M−η
2,T}2

+
36dTE[‖PT (θ0)‖2

2]

T{λTT−1M−η
2,T}2

= O((
λT√
T
T

1
2

[(1+η)(1−c)−1])−
2

1+η ) +O((
λT√
T
T

1
2

[(1+η)(2−3c)−1])−
2

1+η ).

Furthermore, for the third order term in T3, we have

T3 :=
∑
k∈S

∑
i∈Ack

P({
∑

j,k,l,m

T−2
T∑

t,t′=1

∂3
ijkl(εt; θ̄)∂

3
ilml(εt′ ; θ̄)}1/2K2

ε (dT/T ) > λTT
−1M−η

2,T/3)

≤
9d2

TE[‖∇′{G̈T l(θ̄}‖2
2]

T 2{λTT−1M−η
2,T}2

= O((
λT√
T
T

1
2

[(1+η)(2−5c)−1])−
2

1+η ).

Finally, we have for T4 that

T4 :=
∑
i∈Ack

P(| ˜̃θ(k)
i | > M2,T ) ≤

∑
k∈S

∑
i∈Ack

E[| ˜̃θ(k)
i |2]

M2
2,T

≤
E[‖ ˜̃θ − θ0‖2

2]

M2
2,T

= O((
λT√
T
T

1
2

[(1+η)(1−c)−1])−
2

1+η ).

We have from these relationships and by assumption 35,
λT√
T
T

1
2

[(1+η)(1−c)−1] −→
T→∞

∞

implies

λT√
T
T

1
2

[(1+η)(2−3c)−1] −→
T→∞

∞,

λT√
T
T

1
2

[(1+η)(2−5c)−1] −→
T→∞

∞.

We deduce

P( ∪
k∈S

∪
i∈Ack
{|ŵ(k)

i | ≥ 1}) −→
T→∞

ε,

for T sufficiently large enough. We have then concluded the model selection consis-

tency.
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We now focus on the asymptotic normality. Model selection implies that

P({k ∈ S, i ∈ Ak, : θ̂(k)
i 6= 0} = A) −→

T→∞
1.

As a consequence, the next relationship holds

P(∀k ∈ S, ĠT l(θ̂)Ak + λTT
−1αT,Ak � sgn(θ̂Ak) + γTT

−1ξT,k
θ̂Ak

‖θ̂Ak‖2

= 0) −→
T→∞

1.

By a Taylor expansion of the gradient term around θ0,A, we obtain

P(ĠT l(θ0)A + G̈T l(θ0)AA(θ̂A − θ0,A) +
1

2
∇′{(θ̂A − θ0,A)′G̈T l(θ̄)AA(θ̂A − θ0,A)}

+ λTT
−1αT,A � sgn(θ̂A) + γTT

−1ηT = 0) −→
T→∞

1,

where ηT = vec(ξT,k
θ̂Ak

‖θ̂Ak‖2

, k ∈ S) and ‖θ̄ − θ0‖2 ≤ ‖θ̂ − θ0‖2. As a consequence, we

have

P(θ0)(θ̂A − θ0,A) + HT,AA(θ̂A − θ0,A) = −ĠT l(θ0)A −
1

2
∇′{(θ̂A − θ0,A)G̈T l(θ̄)AA(θ̂A − θ0,A)}

− λTT
−1αT,A � sgn(θ̂A)− γTT−1ηT + op(1),

where P(θ0) = G̈T l(θ0)AA − HT,AA and HT,AA = E[∇2
θθ′l(εt; θ0)]AA. Then multiplying

by
√
TQTV−1/2

T,AA, we obtain

√
TQTV−1/2

T,AA(θ̂A − θ0,A) = −
√
TQTV−1/2

T,AAH
−1
T,AA(λTT

−1αT,A � sgn(θ̂A) + γTT
−1ηT )

−
√
TQTV−1/2

T,AAH
−1
T,AAĠT l(θ0)A

−
√
T/2QTV−1/2

T,AAH
−1
T,AA∇′{(θ̂A − θ0,A)′G̈T l(θ̄)AA(θ̂A − θ0,A)}

−
√
TQTV−1/2

T,AAH
−1
T,AAP(θ0)(θ̂A − θ0,A) + op(1).

We focus on the l1 penalty term, which can be upper bounded as

N1,T := |
√
TQTV−1/2

T,AAH
−1
T,AA(

λT

T
αT,A � sgn(θ̂A))| ≤ |QTV−1/2

T,AA||H
−1
T,AA|λTT

−1/2 max
k∈S,i∈Ak

αT,i,A

≤ |QTV−1/2
T,AA|λ

−1
min(HT,AA)λTT

−1/2{ min
k∈S,i∈Ak

| ˜̃θ(k)
i |}−η

≤ |QTV−1/2
T,AA|λ

−1
min(HT,AA)λTT

κη− 1
2 .

If λTT
κη → 0, then N1,T = op(1).



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 138

As for the l1/l2 penalty, it can be upper bounded as

N2,T := |
√
TQTV−1/2

T,AAH
−1
T,AA

γT

T
ηT | ≤ |QTV−1/2

T,AA||H
−1
T,AA|γTT−1/2‖ηT‖2

≤ |QTV−1/2
T,AA||H

−1
T,AA|γTT−1/2

√∑
k∈S
‖ ˜̃θ(k)‖−2µ

2

≤ |QTV−1/2
T,AA|λ

−1
min(HT,AA)γTT

−1/2d
1/2
T {min

k∈S
‖ ˜̃θ(k)‖2}−µ

≤ |QTV−1/2
T,AA|λ

−1
min(HT,AA)γTT

−1/2d
1/2
T T κµ.

Using dT = O(T c), if γTT
c−1
2

+κµ → 0, then N2,T = op(1). Consequently, we have

N1,T +N2,T = op(1).

We now turn to the hessian quantity of the Taylor expansion and prove the discrepancy

P(θ0) converges uniformly to zero in probability. For any ε > 0, by the Markov’s

inequality, we have

P(‖G̈T l(θ0)AA −HT,AA‖2
2 > (ε/dT )2) ≤

d2
T

ε2T 2
E[

∑
(k,l)∈A

{∂2
θkθl

l(εt; θ0)− E[∇2
θkθl

l(εt; θ0)]}2]

≤
d4
T

ε2T 2
λ2

max(HT,AA).

As for the third order term, by the Cauchy-Schwartz inequality

‖∇′{(θ̂A − θ0,A)′G̈T l(θ̄)AA(θ̂A − θ0,A)}‖2
2 ≤

1

T 2

T∑
t=1

{
∑

(k,l,m)∈A
∂3
θkθlθm

l2T (εt; θ̄)}‖θ̂A − θ0,A‖4
2

≤
1

T 2

T∑
t=1

{
∑

(k,l,m)∈A
ψ2
T (εt)}‖θ̂A − θ0,A‖4

2

= Op(
d5
T

T 2
) = op(

1

T
).

We now prove XT,t =
√
TQTV−1/2

T,AAH
−1
T,AAĠT lt(θ0)A, t = 1, · · · , T, is asymptotically

normal by checking the Lindeberg-Feller’s condition for applying Shiryaev’s Theorem

2.5.17. We remind that ĠT lT,t(θ0) is the t-th point of the score of the empirical criterion.

Let β > 0, and to use Shiryaev’s Theorem, we need to prove that for any ε > 0, we

have

P(
T∑
t=0

E[‖XT,t‖2
21‖XT,t‖2>β|FT

t−1] > ε) −→
T→∞

0.
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By the Markov inequality, we obtain

P(
T∑
t=0

E[‖XT,t‖2
21‖XT,t‖2>β|FT

t−1] > ε) ≤ 1
ε

T∑
t=0

E[‖XT,t‖2
21‖XT,t‖2>β|FT

t−1]

≤ 1
ε

T∑
t=0

E[E[‖XT,t‖4
2|FTt−1]1/2P(‖XT,t‖2 > β|FTt−1)1/2]

≤ 1
ε

T∑
t=0

E[{Cst
T 2 E[‖∇l(εt; θ0)∇′l(εt; θ0)‖2

2|FTt−1]}1/2

. 1
β
E[‖
√
TQTV−1/2

T,AAH
−1
T,AAĠT lt(θ0)A‖2

2|FTt−1]1/2],

with Cst > 0. First, let KT = QTV−1/2
T,AAH

−1
T,AA, we have

E[‖
√
TKT ĠT lt(θ0)A‖2

2|FTt−1] =
1

T
E[∇′l(εt; θ0)K′TKT∇l(εt; θ0)|FTt−1]

=
1

T
E[Trace(∇′l(εt; θ0)K′TKT∇l(εt; θ0))|FTt−1]

=
1

T
Trace(E[∇l(εt; θ0)∇′l(εt; θ0)|FTt−1]K′TKT ) ≤

1

T
λmax(HT

t−1)C̃st,

where C̃st > 0. Furthermore, we have

E[‖∇l(εt; θ0)∇′l(εt; θ0)‖2
2|FTt−1] = E[

dT∑
i,j=0

{∂θil(εt; θ0)∂θj l(εt; θ0)}2|FTt−1]

≤ d2
T sup
i,j=1,··· ,dT

E[{∂θil(εt; θ0)∂θj l(εt; θ0)}2|FTt−1].

By assumption 36, we have

P(
T∑
t=0

E[‖XT,t‖2
21‖XT,t‖2>β|FT

t−1] > ε)

≤
C

1
2
stC̃

1
2
stdT

T
3
2

T∑
t=0

E[ sup
i,j=1,··· ,dT

E[{∂θil(εt; θ0)∂θj l(εt; θ0)}2|FTt−1]λmax(HT
t−1)] ≤

C
1
2
stC̃

1
2
stB̄TdT

T
3
2

.

Consequently, we obtain

T∑
t=0

E[‖XT,t‖2
21‖XT,t‖2>β|FT

t−1] = op(1).

We deduce that XT,t satisfies the Lindeberg-Feller condition, and by Theorem 2.5.17,
√
TQTV−1/2

T,AAH
−1
T,AAĠT l(θ0)A is asymptotically normally distributed. The asymptotic

distribution of Theorem 2.5.24 follows.
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2.6 Simulation experiments

In this section, we carry out a simulation study to explore the finite sample performance

of the adaptive Sparse Group Lasso. We first focus on the calibration of the adaptive

weights entering the penalties. The regularization parameters must satisfy conditions

to satisfy the oracle property in the double-asymptotic case. To do so, we suppose

λT = T β and γT = Tα, where β and α are both strictly positive constant. Regarding

assumption 35, we obtain the conditions

α + c
2

+ κµ− 1
2
< 0,

α− 1
2

+ 1
2
[(1 + µ)(1− c)− 1] > 0,

β + κη − 1
2
< 0,

β − 1
2

+ 1
2
[(1 + η)(1− c)− 1] > 0,

(1 + µ)[1− c
2
− κη − β] + α− 1 > 0.

This system allows for flexibility when choosing µ and η once κ, c, α and β are fixed.

For instance, for c = 1/6, κ = 0.05, α = 1/10 and β = 1/10, then µ ∈ [0.4, 6.3] and

η ∈ [0.6, 7.9]. If α = β = 1/5 and for c = 1/6 and κ = 0.05, then µ ∈ [0.4, 4.3] and

η ∈ [0.3, 5.9].

We consider 6 methods in the experiment: the Lasso (L), the Adaptive Lasso (AL), the

Group Lasso (GL), the Adaptive Group Lasso (AGL), the Sparse Group Lasso (SGL)

and the Adaptive Sparse Group Lasso (ASGL).

There are several methods to numerically solve the non-differentiable statistical prob-

lem (2.5.1). Fan and Li (2001) proposed a local quadratic approximation (LQA) of the

first order derivative of the penalty function and a Newton-Raphson type algorithm.

To circumvent numerical instability, they suggest to shrunk to zero coefficients that are

close to zero, that is a coefficient |θj| < ε, with ε > 0 to be calibrated. The drawback

is that once it is set to zero, it will be excluded at any step of the LQA algorithm.

Hunter and Li (2005) proposed a more sophisticated version of the LQA algorithm

to avoid the drawback of the stepwise selection and numerical instability. They also

studied the convergence properties of the LQA method. Zou and Li (2008) proposed a

local linear approximation (LLA) of the penalty function such that the estimated co-

efficients have naturally a sparse representation, under the condition that the penalty

function satisfies the continuity condition. Zou (2006) or Zou and Zhang (2009) used
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the LQA algorithm for their empirical study. Other approaches are also possible such

as gradient descent methods.

When one consider the OLS loss function, closed form algorithms can be applied to our

problem. Bühlmann and van de Geer (2011) compiled these methodologies for solving

the Lasso and the Group Lasso using gradient descent methods for general penalized

convex empirical function. We used these algorithms in our study for solving the group

Lasso. As for the Lasso, we applied the shooting algorithm developed by Fu (1998),

which is a particular case of the gradient descent method. Simon and al. (2013)

proposed an algorithm for solving the SGL that can accommodate likelihood criteria.

This is a ”two-step” method, where we first check whether the group is active, and

then, if active, check if the coefficient within this group is active. In this simulation

study, we used the alternative direction method of multipliers provided by Li, Mo,

Yuan and Zhang (2014) since it provides better convergence performances.

We used a cross-validation procedure to select both parameters λT and γT such that

both terms are defined by λT = T β and γT = Tα, and β = α = 1/8. The adaptive

weights are computed as follows: we first compute an OLS estimator θ̃ such that the

adaptive weights entering the penalties correspond to ˜̃θ = θ̃ + T−κ, with κ = 0.2. As

for the adaptive weights, they are chosen such that the above system is satisfied: we

set η = 3.5 and µ = 2.5.

We report the variable selection performance through the number of zero coefficients

correctly estimated, denoted as C and, the number of nonzero coefficients incorrectly

estimated, denoted IC. Besides, the mean squared error is reported as an estimation

accuracy measure.

Simulated experiment 1. We consider a data generating process

y =
∑
l

β
(l)
0 X(l) + ση,

where η is a strong white noise, normally distributed, centered with unit variance and

σ = 0.3. The matrices X(l) follow cl- dimensional multivariate normal distributions,

centered and with variance covariance Σ(l) such that the entries are defined as Σ
(l)
ij =

ρ
|i−j|
(l) , 1 ≤ j, i ≤ cl with ρ(l) ∈ U([0.5, 0.9]) for each group. Moreover, the dimension

dT = [x× T 1/6] with T = 500, 2000, 4000 and x = 10, 30, 50 respectively for the values

of T . As dT = O(T c) with c = 1/6, we can multiply by x to consider more realistic
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settings. The number of groups is defined as Ng = 4 (resp. Ng = 8, resp. Ng = 18)

for T = 500 (resp. for T = 2000, resp. for T = 4000) and the size of each of them

is randomly chosen among {5, · · · , 30}. The number of active groups is defined as

|S| = 2aT with aT = [Ng/3]. Moreover, zero coefficients are randomly chosen among

the whole vector β for active groups, such that the total number of zeros -both the

zero subvectors for inactive groups and zero components for active groups - matches

the total number of inactive indices. The total number of active indices is defined as

|A| = 3bT with bT = [dT/9]. Finally, we generate the active indices among a uniform

law U([0.1, 0.99]). Zou and Zhang (2009) experiment influenced our framework.

Table 2.1: Simulated experiment 1: Model selection and precision accuracy based
on 100 replications.

T dT Ng |S| |A| Model MSE C IC
500 28 4 2 9 Truth 19 0

Lasso 0.0178 13.13 0
aLasso 0.0118 17.98 0
GLasso 0.0146 12.77 0

AGLasso 0.0129 13.57 0
SGL 0.0183 12.97 0

ASGL 0.0101 18.83 0

2000 106 8 4 33 Truth 73 0
Lasso 0.0118 49.65 0
aLasso 0.0103 70.95 0
GLasso 0.0150 57.48 0

AGLasso 0.0160 60.78 0
SGL 0.0125 58.88 0

ASGL 0.0095 72.70 0

4000 199 18 12 66 Truth 133 0
Lasso 0.0105 87.17 0
aLasso 0.0093 131.33 0
GLasso 0.0140 113.42 0

AGLasso 0.0150 113.17 0
SGL 0.0102 98.92 0

ASGL 0.0094 133 0

We can highlight some interesting remarks from this simulation study. First, the

adaptive versions of the Lasso, the Group Lasso or the SGL outperfom their non

adaptive versions. The difference is significant for the adaptive Lasso and the adaptive

SGL. This is in line with the asymptotic theory. The adaptive SGL performs well as it
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can discard inactive groups and inactive indices among active groups and outperform

other adaptive penalization methods.

Simulated experiment 2. We consider a data generating process

yt = Φ1yt−1 + Φ2yt−2 + ut,

with yt = (y1,t, · · · , yN,t)′, ut ∼ NRN (0,Σ) such that Σ = D
1
2RD

1
2 , with Rij =

ρ|i−j|, 1 ≤ j, i ≤ N , D = diag(σ2
1, · · · , σ2

N), ∀i, σi ∈ U([0.01; 0.03]) and ρ ∈ U([0.5, 0.9]).

We set N = 5 and T = 5000. It corresponds to a VAR(p) dynamic, with p = 2 such

that we generate Φ1 and Φ2 under the usual stationarity constraints together with an

ordering constraint, idest ∀i, j, Φ2,ij ≤ Φ1,ij. We also set zero coefficients among Φ1

and Φ2: the number of zeros is 30 such that the number of nonzero coefficients is 20.

Each of these active coefficients is simulated in U([0.05, 0.9]).

Then we estimate a VAR(p) model, with p = 4. The total number of estimated

parameters would be d = p×N2 = 100 and the total number of zero to recover is 80.

In this setting d is not indexed by T . We define the group as the lags for the Group

Lasso and the SGL procedures, which implies there are 4 groups in total, with 2 active

groups.

Table 2.2: Simulated experiment 2: Model selection and precision accuracy based
on 100 replications.

Model MSE C IC
Truth 80 0
Lasso 0.1130 60.10 1.01
aLasso 0.0917 75.00 1.42
GLasso 0.1512 67.07 3.38

AGLasso 0.1545 67.07 3.38
SGL 0.1062 67.73 1.54

ASGL 0.0709 78.27 0.95

These results illustrate the abbility of the adaptive SGL procedure to properly perform

for variable selection. The adaptive Lasso also provide proper performance results

regarding both estimation precision and variable selection.
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2.7 Conclusion

We explored the asymptotic properties of the Sparse Group Lasso estimator within

the M-estimator framework for dependent variables. We showed that the non-adaptive

estimator does not satisfy the oracle property in the sense of Fan and Li (2001). We

then proposed the adaptive Sparse Group Lasso estimator using the approach of Zou

(2006) and proved that this estimator satisfies the oracle property both in a fixed and

double-asymptotic framework. Our asymptotic oracle theorems provide the proper

choices of the regularization parameters.

Our simulation experiment illustrated the asymptotic results as the adaptive Sparse

Group Lasso estimator provides better performance results than other oracle-like meth-

ods for model selection and estimation precision.



Chapter 3

Sparse dynamic variance-covariance

matrix processes

3.1 Introduction

The multivariate modeling has gained a significant relevance for both practitioners

and academics. The main challenge consists in developing a framework that is flexible

enough, idest sufficiently parameterized to capture complex patterns, and parsimo-

nious, where the parameters are constrained to avoid overfitting. In a discrete time

framework, the usual key quantity in such multivariate processes is the variance co-

variance matrix of the joint distribution. The curse of dimensionality is an inherent

hurdle as general dynamics imply an explosive number of parameters, even when some

two-step optimization procedures would be feasible. Furthermore, the corresponding

(quasi-)likelihood functions are highly nonlinear - multivariate Gaussian or Student -

with a significant number of free parameters that necessitates fast solving optimization

procedures.

Scalar versions are often considered: see the scalar Dynamic Conditional Correlation

(DCC, Engle, 2002) when modeling correlation processes, the scalar BEKK (Engle and

Kroner, 1995), for instance. However, it would be unrealistic to capture heterogenous

patterns with scalar dynamic models. Indeed, in such models, the influence of past

returns is similar for all components of the variance covariance matrix. But hetero-

geneity typically occurs when considering high-dimensional vectors. Another approach

145
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is the factor modeling, which aims at reducing the model complexity. Fan, Fan and

Lv (2008) emphasized the relevance of factor models for high-dimensional precision

matrix estimation. They proved that there is a statistical gain in terms of precision.

However, this modeling requires the identification of the relevant factors. An ”expert”

approach is based on some priors regarding the leading underlying factors. Otherwise,

latent unobserved factors induce particular estimation issues and their number is ques-

tionable.

In this paper, we propose to tackle both the curse of dimensionality within the mul-

tivariate GARCH framework. The objective of this paper consists in modeling high-

dimensional variance covariance matrices in a flexible way and breaking the curse of

dimensionality. To do so, we propose extensions of the univariate ARCH model to

multivariate ones and estimate such models through a penalized ordinary least squares

(OLS) procedure. Indeed, multivariate ARCH models admit a linear representation

with respect to the parameters, which is a clear advantage wrt GARCH ones as the

related loss function can be easily handled. Besides, our multivariate ARCH specifica-

tion can approximately recover the autoregressive feature of a general GARCH process

by using a large number of lags. The idea is to set to zeros the model coefficients

from a particular lag on using a regularization procedure. The OLS objective function

is particularly adapted for regularization procedures and fast closed form algorithms

can be applied. The natural regularization procedure is the Sparse Group Lasso of

Simon, Friedman, Hastie and Tibshirani (2013), as it fosters sparsity at a group level

and within a group, where the groups would be the lagged variables. The penalized

loss function satisfies the convex property such that the adaptive SGL satisfies the or-

acle property (Fan and Li, 2001). We thus propose a general penalized OLS objective

function for a wide range of multivariate ARCH processes.

The main challenge is the positive-definiteness constraint for generating conditional

variance covariance matrices. Indeed, the model parameters must then satisfy eigenvalue-

type constraints such that the estimation problem is not convex. This prevents from

using fast solving algorithms. Besides, the oracle property of Fan and Li (2001), which

ensures the right identification of the underlying sparse set, can not be satisfied as it

heavily relies on the convex property of the criterion and parameter set. To fix this

issue, we propose new multivariate ARCH parameterizations that ensure linear dynam-

ics with linear constraints, if any, imposed over the parameters. Our main objective is
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to devise processes that can be estimated thanks to a penalized OLS criterion, where

the regularizer is meant to select the relevant lag.

The rest of the paper is organized as follows. In Section 3.2, we describe the mul-

tivariate ARCH framework and the penalized ordinary least squares criterion. In

Section 3.3, we propose several ARCH-type parameterizations. In Section 3.4, we

describe a Cholesky-GARCH model. In Section 3.5, we use simulations to compare

the performance of the penalized multivariate ARCH process with other competitors.

3.2 Framework

3.2.1 Dynamic processes of variance covariance

We consider a N -dimensional vectorial stochastic process (rt)t=1,··· ,T and denote by θ

the vector of the model parameters. Decompose the stochastic process (rt)t=1,··· ,T as

the sum of conditional expected returns and a residual

rt = µt(θ) + εt,

εt = H
1/2
t (θ)ηt.

The expected return given the past is µt(θ) = E[rt|Ft−1] := Et−1[rt], where Ft de-

notes the market information until (and including) time t. We suppose Ht(θ) =

Var(rt|Ft−1) := Vart−1(rt) = Vart−1(εt) is a N × N positive definite matrix. The

series (ηt) is supposed to be a strong white noise, i.e. a sequence of independent and

identically distributed random variables s.t. E[ηt] = 0 and Var(ηt) = IN .

The model will be semi-parametric. Its specification is complete when the law of ηt

is specified and when the functional form of both µt(θ) and Ht(θ) are given. In this

paper, we focus on the latter point. For convenience, we will denote µt(θ) = µt and

Ht(θ) = Ht = [hk,l,t]1≤k,l≤N .

Actually, we will focus on the centered dynamics (εt) after removing the first conditional

moment. Typically, most authors suppose that the conditional expected returns are

modeled as an ARMA(p, q). Since we are interested in εt only in this paper, we simply

assume that (µt) follows an AR(1) process. Then, we estimate µt by OLS and subtract
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it from rt. Now, these estimated residuals will be considered as our observations (still

denoted by εt). The information set is defined by Ft = σ(rs, s ≤ t) = σ(εs, s ≤ t).

The quantity of interest is Ht and we would like to specify directly its dynamics. A

significant stream of the literature has been developed in this direction. A general

formulation of Ht-dynamics has been proposed by Bollerslev et al. (1988). In the

general VEC model, each element of Ht is a linear function of the lagged squared

errors, cross-products of errors and the components of lagged Ht matrices. The most

general formulation of a VEC(p, q) model is

hi,j,t = ai,j +

q∑
k=1

ε′t−kBijkεt−k +

p∑
l=1

Cij,lvec(Ht−l), (3.2.1)

for every t and every indices i, j in {1, . . . , N}. The model parameters are the unknown

N×N matrices Bijk, i, j ∈ {1, . . . , N}, k = 1, . . . , q, Cij,l for l = 1, . . . , p and A := [aij]

are N(N + 1)/2 vectors. Some tedious constraints have to be fulfilled to ensure the

definite positiveness of Ht. In this paper 1, we will not consider the auto-regressive

part in (3.2.1). Then, the model can be rewritten

Ht = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k), (3.2.2)

where Bk is the N2 ×N2 block matrix given by Bk := [Bijk]1≤i,j≤N , IN is the identity

matrix in RN and ⊗ is the usual Kronecker product. In Gouriéroux (1997), it is noticed

that sufficient conditions for obtaining nonnegative covariance matrices Ht are

(i) A and Bk, k = 1, . . . , q, are symmetric, and

(ii) A and Bk, k = 1, . . . , q, are non-negative.

Clearly, (i) can be imposed easily, but (ii) is a lot more tricky. Indeed, in general,

the latter condition imposes complex non-linear constraints on the model parameters.

Moreover, it is not realistic to estimate general non-negative matrices B, due to their

sizes (qN2(N2 + 1)/2 unknown parameters!), under the tedious nonlinear constraints

imposed by non-negativeness (particularly at the optimization stage). Therefore, we

have to exhibit flexible (but realistic) sub-families of models as (3.2.2). This will be

done hereafter.

1And for some reasons that will appear hereafter.
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Note that (3.2.2) can be rewritten as a linear model

εtε
′
t = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k) + ζt, E[ζt|Ft−1] = 0. (3.2.3)

Introducing the usual operator Vech(.) that transforms any m×m symmetric matrix

M into the m(m+ 1)/2 vector of its component, this is equivalent to

Vech(εtε
′
t) = Vech(A) +

q∑
k=1

Vech
(
(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k)

)
+ Vech(ζt).

More explicitly, this can be rewritten: for every couple (i, j) ∈ {1, . . . , N}2 such that

i ≤ j,

εi,tεj,t = ai,j +

q∑
k=1

N∑
r,s=1

bijk,rsεr,t−kεs,t−k + ζi,j,t, E[ζi,j,t|Ft−1] = 0, (3.2.4)

where Bijk = [bijk,rs]1≤r,s≤N . Note that the elements of the N2-squared matrix Bk will

be indexed by quadruplets (i, j, r, s). The latter elements are related to the coefficients

of Bk that define the dynamics of εi,tεj,t. Moreover, note that Bijk = Bjik and ζi,j,t =

ζj,i,t for every couple (i, j) and every k. Hereafter, the couples of indices (i, j) and (r, s)

will be sorted in the lexicographical order

(1, 1), (1, 2), . . . , (1, N), (2, 1), (2, 2), . . . , (N,N − 1), (N,N),

even when we restrict ourselves to the couples (i, j) s.t. i ≤ j.

The previous linear model will be estimated by a penalized least squares procedure.

In terms of inference, this is a dramatic advantage wrt the usual QML estimation

procedure of GARCH models. Therefore, in practical terms, it is easier to estimate

ARCH-type models with a lot of assets and lags (N >> 1, q >> 1) than a GARCH

model with the same N and q = 1.

3.2.2 Statistical criterion

Contrary to GARCH-type dynamics that require the optimization of a nonlinear objec-

tive function - typically Gaussian or Student type likelihoods -, the multivariate ARCH

process has the advantage of a direct linear estimation by specifying an ordinary least
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squares objective function. Assuming that the true model is (3.2.4), a regularization

procedure with q sufficiently large would likely set to zero the parameters after the

true q0. Now if the true model is a GARCH process, then its autoregressive com-

ponent 2 can be written as in (3.2.4) with q = ∞. In such a case, a regularization

procedure performed over a large q would produce a relevant approximation of the

GARCH process. For the sake of parsimony, the parameters need to be constrained

to avoid overfitting. That is the key idea of this paper: specifying a regularization

procedure to perform variable selection and estimation. The OLS objective function is

particularly adapted to the penalization procedures and the asymptotic properties of

the oracle-like penalties can be used such as the oracle property of Fan and Li (2001).

The regularization procedure aims at identifying this relevant subset to described the

instantaneous covariance. It belongs to a bigger set formed by the specified lagged

variables (typically a large number a priori). This means that the regularizer performs

both estimation and variable selection.

To illustrate this idea, consider a univariate ARCH(1) process, which is defined as

ht = ω + αε2t−1, ω > 0, α ∈ [0, 1).

This dynamics can be rewritten as a linear model

ε2t = ω + αε2t−1 + ut, ut = ε2t − ht,

by noting that E[ut|Ft−1] = 0. Then, it is natural to consider the corresponding OLS

estimator of θ := (ω, α): θ̂ is defined by

θ̂ = arg min
θ

‖Y −Xθ‖2
2 = (X ′X)−1X ′Y,

where

X =


1 ε21

1 ε22
...

...

1 ε2T−1

 , Y =


ε22

ε23
...

ε2T

 .

The previous criterion can be extended to the multivariate case, provided that the

estimated dynamics generate positive definite covariance matrices. Then our least

2think of the invertibility of the autoregressive matrix component
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squares objective function can be specified as GT l(θ) =
1

T

T∑
t=1

l(εt; θ),

l(εt; θ) = ‖Vech(εtε
′
t)−Ψ(εt−1)θ‖2

2,

(3.2.5)

where Ψ(εt−1) is a Ft−1-measurable random matrix, whose particular analytic form

depends on the model specification. For instance, for the process (3.2.4) and without

any additional constraint on the parameters, the parameter vector can be decomposed

as

θ = (θ(ij), 1 ≤ i ≤ j ≤ N),

such that the ij-th sub-vector is

θ(ij) := (aij, θ
(ij1), . . . , θ(ijq)),

θ(ijk) := (bijk,11, 2bijk,12, · · · , 2bijk,1N , bijk,22, 2bijk,23, . . . , 2bijk,(N−1)N , bijk,NN)′.

This means that the number of unknown parameters is d(1+qd), with d = N(N+1)/2.

Then, in such a case, Ψ(εt) is the d× d(1 + qd) matrix

Ψ(εt) =


ψ(εt) 01+qd 01+qd 01+qd · · · 01+qd

01+qd ψ(εt) 01+qd 01+qd · · · 01+qd

...
...

...
...

...
...

01+qd 01+qd 01+qd · · · 01+qd ψ(εt)

 ,

where 01+qd is a 1 + qd-row vector of zeros and

ψ(εt) = (1,Vech(εt−1ε
′
t−1)′, . . . ,Vech(εt−qε

′
t−q)

′).

Note that the latter criterion has most often to be rewritten as long as some con-

straints on the model parameters are included. Indeed, in such a case, the number

of free parameters is typically reduced, and/or some parameters are shared by several

univariate linear equations of the type (3.2.4). See for instance the so-called ”homoge-

neous model” below.

The autoregressive feature of some MGARCH models should be reproduced by spec-

ifying a sufficiently large number of lags q in the model (3.2.4). Moreover, in a lot

of situations, it is likely that the most recent observations should have a higher level
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effect on the current covariance matrix than older observations. In this setting it is

natural to assume that the coefficients decay as we move farther away from the current

observation. We could consider a procedure that would impose inequality constraints

among the coefficients to recover such ordering effect. Tibshirani and Suo (2016) pro-

posed an order-constrained version of the Lasso. This framework is left for further

extensions. At least, it makes sense that the coefficients go to zero from a certain rank,

which is a minimal assumption we make.

We propose a penalization approach to constrain the parameters and foster parsimony.

The intuition is as follows: we specify a large number of lags a priori to approximate

an autoregressive pattern. We assume that only a subset of potential features (the

lagged variances and covariances) has a statistically significant effect on the output:

that is the sparsity assumption. As this subset is unknown, the penalization procedure

enables to recover it since it provides an estimation of the set of indices for which

the corresponding coefficients are non-zero. To achieve this subset identification, the

Sparse Group Lasso is the most relevant regularizer as it fosters sparsity both at a group

level and within a group. Intuitively, the natural groups should be all the parameters

that are associated to a given lagged observed vector εt−k (i.e. all quantities bijk,r,s for

every quadruplet (i, j, r, s)), but other choices are possible, obviously.

The statistical problem consists in minimizing over the parameter space Θ ⊂ Rm a

penalized criterion of the form

θ̂ = arg min
θ∈Θ

{GTϕ(θ)}, (3.2.6)

where

θ 7→ GTϕ(θ) =
1

T

T∑
t=1

{l(εt; θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ)}

= GT l(θ) + p1(λT , θ̃, θ) + p2(γT , θ̃, θ),

and both penalties are specified as
p1 : R+ ×Θ×Θ→ R+, p2 : R+ ×Θ×Θ→ R+,

(λT , θ̃, θ) 7→ p1(λT , θ̃, θ) =
λT

T

m∑
k=1

ck∑
i=1

α
(k)
T,i|θ

(k)
i |, (γT , θ̃, θ) 7→ p2(γT , θ̃, θ) =

γT

T

m∑
l=1

ξT,l‖θ(l)‖2,
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with α
(k)
T,i = |θ̃(k)

i |−η and ξT,l = ‖θ̃(l)‖−µ2 , where η > 0, µ > 0, and θ̃ is a first step

estimator, which is supposed to be a
√
T -consistent estimator 3.

This reduces to the classic OLS estimator when there is no penalization. The proposed

penalization framework includes the usual Lasso criterion when γT = 0, the Group

Lasso when λT = 0 and the Sparse Group Lasso when λT and γT are non zero.

Obtaining the positive definiteness of the conditional covariance matrices induced

by (3.2.4) is the main technical challenge in practice. To ensure this constraint, the

parameters in (3.2.4) must satisfy eigenvalue-type constraints such that Θ will not be

convex. This is a drawback from both an empirical and theoretical point of views: em-

pirically, it hampers fast solving algorithms; theoretically, the non-convexity prevents

the Sparse Group Lasso estimator from satisfying the oracle property of Fan and Li

(2001). Thus, in the next section we aim at devising parameterizations that allow for

generating positive definite matrices while remaining linear with respect to the param-

eters. This would discard processes that require a normalization step or non convex

constraint sets for the parameters.

3.3 ARCH Parameterizations

In this section, we propose parameterizations of (3.2.2) to ensure the positive definite-

ness of Ht. Our main objective is to obtain a linear process with linear constraints

that must be satisfied by the parameters. These are sufficient conditions to obtain a

convex objective function for a convex parameter set.

3.3.1 Evaluation of A

We first focus on a covariance targeting procedure for the estimation of A. Although

this parameter could be estimated with B simultaneously, the covariance targeting

step fosters dimension reduction as it splits the problem. This will allow to satisfy the

non-negativeness of the (estimated) A matrix more easily. To do so, note that taking

3For instance, θ̃ can be an unpenalized OLS estimator. The
√
T -consistency is a necessary condition

to satisfy the oracle property.
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the unconditional expectation of (3.2.4), we have

E[εi,tεj,t] = ai,j +

q∑
k=1

N∑
r,s=1

bijk,rsE[εr,t−kεs,t−k],

for every couple (i, j). If the coefficients bijk,rs were known, and assuming we have

estimated consistently E[εi,tεj,t] by ĉovi,j, then the coefficients ai,j could be estimated

as

âi,j = ĉovi,j −
q∑

k=1

N∑
r,s=1

bijk,rsĉovr,s.

When T is large and assuming the model is well specified, âi,j will converge towards ai,j

and we would observe that the estimated matrix Â := [âi,j] is definite positive if this is

the case for A. Nonetheless, at finite distance, it is likely the latter condition will not

be the satisfied. Fortunately, our OLS estimation procedure does not require per se

that we manipulate nonnegative matrices A and B. This is required only for prediction

and likelihood-based methods. Therefore, to estimate (3.2.2) (and then (3.2.4)), we

propose to replace ai,j by âi,j, and the model is then parameterized by B only. Once

B is estimated (see below) by B̂, the matrix A will be approximated by Ã whose

components are

ãi,j = ĉovi,j −
q∑

k=1

N∑
r,s=1

b̂ijk,rsĉovr,s.

Afterwards, a projection of Ã on the cone of nonnegative matrices would provide the

final estimate of A.

As an alternative strategy, we can invoke a parametrization of A in the cone of non-

negative matrices directly. The natural basis would be provided by the spectral de-

composition of E[εtε
′
t] (or its empirical approximation [ĉovi,j] instead). Indeed, there

exists an orthonormal basis (v1, . . . ,vN) in RN s.t.

E[εtε
′
t] ' [ĉovi,j]1≤i,j≤N =

N∑
l=1

λlvlv
′
l,

where (λ1, . . . , λN) is the associated spectrum, λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. Then, we

would assume that there exist nonnegative real numbers µl, l = 1, . . . , N s.t.

A =
N∑
l=1

µlvlv
′
l.
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We have replaced the N(N + 1)/2 unknown coefficients of A by only N parameters

(λ1, . . . , λN). And such a matrix A will be nonnegative by construction.

We now focus on the evaluation of B-type matrices in (3.2.4). To do so, we propose

three ARCH-type parameterizations that aim at reducing the dimensionality while

generating positive definite processes. These models share the fact that they are linear

with respect to the parameters and shall satisfy, if any, convex constraints. First, we

propose a constraint free multivariate ARCH dynamic, where the B-parameters are

unconstrained and the corresponding process is projected onto the space of positive

definite matrices to generate a variance covariance matrix sequence. The second case

is called ”homogeneous” and is relevant for random vectors with positively correlated

components. Finally we propose a ”heterogenous” parameterization that it is adapted

to random vectors with discordant patterns.

3.3.2 Constraint free and matrix projection

This approach consists in projecting a matrix process, which may not be necessarily

positive definite, onto the space of positive definite matrices. This method allows flexi-

bility because one can independently specify/estimate the processes that are associated

to each component of vec(εtε
′
t). We rewrite the general dynamics given by (3.2.4) for

each component of the εtε
′
t matrix as

εi,tεj,t = ai,j+

q∑
k=1

N∑
r=1

bijk,rrε
2
r,t−k+

q∑
k=1

N∑
r,s=1,r<s

2bijk,rsεr,t−kεs,t−k+ζi,j,t, E[ζi,j,t|Ft−1] = 0,

(3.3.1)

if i ≤ j. The OLS is a natural estimator but the symmetric matrix coefficients A and

B are not necessarily positive definite. Nonetheless, these matrix can be approximated

by positive definite ones. Here is a loss we need to accept as we eventually obtain

an approximation of (3.3.1) that would generate true conditional covariance matrices

(Ht).

To this goal, we propose two methods: consider the singular value decomposition

of a symmetric matrix M as M = P ′diag(λ1, · · · , λN)P , where P is an orthogonal

matrix composed with N eigenvectors. We define two projections fk : MN×N(R) →
M+

N×N(R) with k = 1, 2. A first projection would be

f1(M) = P ′diag(λ+
1 , · · · , λ+

N)P,
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with λ+
k the positive part of λk. A second projection would be

f2(M) = (M + λ−minId)/(1 + λ−min),

with λ−min the negative part of the minimum eigenvalue of M . The eigenvectors remain

the same as M .

The first stage estimated matrix is denoted by H̃t = [h̃ij,t], given by

hij,t = âi,j +

q∑
k=1

N∑
r=1

b̂ijk,rrε
2
r,t−k +

q∑
k=1

N∑
r,s=1,r<s

2b̂ijk,rsεr,t−kεs,t−k,

for any couple (i, j). For and projection method k = 1 ∈ {1, 2}, the final estimated

covariance matrix of εt given Ft−1 would be Ht = fk(H̃t).

This method allows for an equation-by-equation estimation procedure, where each

equation corresponds to a couple, which is particularly adapted for high-dimensional

regression settings. Such dynamics are linear with respect to the parameters so that

the estimation can be carried out by the ordinary least squares objective function or

by penalized OLS.

3.3.3 The homogeneous case

First, we need some matrix notations.

• For any subset J of indices in I := {1, . . . ,m}, the m-column vector em,J of zeros

and ones is defined by em,J := [1(i ∈ J)]1≤i≤m. When its size is obvious, it is

written eJ simply. Moreover, set em,I = em the m-vector of ones.

• For any vector x ∈ Rm, D(x) denotes the m × m diagonal matrix given by

D(x) = [1(i = j)xi]1≤i,j≤m.

Set J = {1, N+2, 2N+3, . . . , (N−2)N+N−1, (N−1)N+N}, a subset of {1, . . . , N2}.
Let us consider the parametric family B of matrices given by

B = {M ∈MN2×N2(R) |M = αeN2e′N2 + βeJ e
′
J + γD(eJ ), (α, β, γ) ∈ [0, 1]3}.



Chapter 3. Sparse dynamic variance-covariance matrix processes 157

Clearly, all matrices in B are non-negative. By assumption, we will choose our matrices

Bk, k = 1, . . . , q, inside B. More explicitly, the model becomes: for every indices i, j

and time t, then

εitεjt = aij +

q∑
k=1

(αk + βk + γk1(i = j))εi,t−kεj,t−k + αk
∑

(r,s)6=(i,j)

εr,t−kεs,t−k

+ ζij,t,

where ζij,t = εitεjt−hij,t = {ηitηjt−1}hij,t. Note that the matrix eJ e
′
J can be rewritten

as a block-matrix [Eij]1≤i,j≤N , where Eij = [1((i, j) = (r, s))]1≤r,s≤1. In other words,

this model tries to capture three effects on the dynamics of εi,tεj,t:

(i) a uniform effect of all past cross-product among the components of εtε
′
t through

the αk coefficients;

(ii) a more important bump caused by the past values of εi,tεj,t on itself through βk;

(iii) an additional bump when variances are managed (ie when i = j) through the

parameters γk.

As for the estimation step, the (non penalized) OLS objective function in (3.2.5) cor-

responds to

θ = (α1, . . . , αq, β1, . . . , βq, γ1, . . . , γq, ),

when the constant ai,j has been removed as explained in Subsection 3.3.1. In this case,

the matrix Ψ(εt−1) of regressors is

Ψ(εt−1) =


st−1 . . . st−q ~ε11,t,q ~ε11,t,q

st−1 . . . st−q ~ε12,t,q 0
...

...
...

...
...

st−1 . . . st−q ~εNN,t,q ~εNN,t,q


with st−k :=

∑N
r,s=1 εr,t−kεs,t−k, for k = 1, . . . , q and ~εij,t,q := (εi,tεj,t−1, · · · , εi,t−qεj,t−q).

Note that the size of Ψ(εt−1) is N(N + 1)/2× 3q. Moreover, the regressors in the last

column of are Ψ(εt−1) are zero, except when i = j (lexicographical order).
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3.3.4 The heterogenous case

In this case, we have identified two homogeneous sub-portfolios but whose dynamics

behave differently. The first (resp. second) portfolio corresponds to the assets that are

numbered {1, . . . , p} (resp. {p + 1, . . . , N}). This necessitates to extend the previous

model and to introduce more parameters. Let us introduce additional notations:

• For any real numbers α1, α2, α3, and two integers n and m, n < m. Set the m×m
matrix

M(α1, α2, α3,m, n) :=

[
α1ene

′
n α2ene

′
m−n

α2em−ne
′
n α3em−ne

′
m−n

·

]
By some standard algebraic calculations, we can prove that the characteristic

polynomial of the symmetrical matrix M(α1, α2, α3,m, n) is

x 7→ (−1)mxm−2
[
(x− nα1)(x− (m− n)α3)− n(m− n)α2

2

]
.

Therefore, the associated spectrum is {δ+, δ−, 0}, x± := (nα1 + (m − n)α3 ±√
∆)/2, where

∆ := (nα1 + (m− n)α3)2 − 4n(m− n)(α1α3 − α2
2).

If α1α3 ≥ α2
2, then x+ and x− are nonnegative and the matrix M(α1, α2, α3,m, n)

is nonnegative. Note that this can be achieved in an optimization program with

linear constraints by assuming that α2 ≤ min(α1, α3).

• Set the partitioned matrix M̃(β1, β2, β3, p) = [M̃i,j]1≤i,j≤N , where

M̃i,j = [1((r, s) = (i, j)).{β11(r ≤ p, s ≤ p) + β31(r > p, s > p)

+ β21(r ≤ p, s > p) + β21(r > p, s ≤ p)}]1≤r,s≤N .

By a similar reasoning as previously, it can be proved that the matrix M̃(β1, β2, β3, p)

is nonnegative if β1β3 ≥ β2
2 . Again, in the optimization stage, we will assume

that β2 ≤ min(β1, β3).

• Let γ1 and γ2 be two arbitrary nonnegative real numbers, and an integer p ≤ N .

Let J := {1, N + 2, 2N + 3, . . . , (p− 1)N + p} and J̃ := {pN + p+ 1, (p+ 1)N +
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p+ 2, . . . , (N − 1)N +N}. Set the diagonal matrix

N(γ1, γ2, p) := D
(
γ1eN2,J + γ2eN2,J̃

)
=

[
1((r, s) = (i, j)).

{
γ11(i = j ∈ J) + γ21(i = j ∈ J̃)

}]
.

Obviously, N(γ1, γ2, p) is nonnegative when γ1 and γ2 are nonnegative.

With the notations above, we will choose the matrices Bk of (3.2.2) in the following

parametric family:

B̃ = {B ∈MN2×N2(R) |B = M(α1, α2, α3, N
2, Np) + M̃(β1, β2, β3, p) +N(γ1, γ2, p),

α1 ≥ 0, α3 ≥ 0, α1α3 ≥ α2
2, β1 ≥ 0, β3 ≥ 0, β1β3 ≥ β2

2 , γ1 ≥ 0, γ2 ≥ 0}. (3.3.2)

To be more explicit, for any k = 1, . . . , q,

εitεjt = aij+

q∑
k=1

(α
(k)
ij + β

(k)
ij + γ

(k)
i 1(i = j))εi,t−kεj,t−k + α

(k)
ij

∑
(r,s)6=(i,j)

εr,t−kεs,t−k

+ζij,t,

α
(k)
i,j = α

(k)
1 1((i, j) ∈ J2) + α

(k)
3 1((i, j) ∈ J̃2) + α

(k)
2 1((i, j) ∈ J × J̃ or (i, j) ∈ J̃ × J),

β
(k)
i,j = β

(k)
1 1((i, j) ∈ J2) + β

(k)
3 1((i, j) ∈ J̃2) + β

(k)
2 1((i, j) ∈ J × J̃ or (i, j) ∈ J̃ × J),

γ
(k)
i = γ

(k)
1 1(i ∈ J) + γ

(k)
2 1(i ∈ J̃).

This parametric model tries to capture three effects on the dynamics of εi,tεj,t:

(i) a uniform effect of all past cross-products on the εi,tεj,t through the coefficients

α·; when i and j belong to the first (resp. second) group of assets, we use α1

(resp. α3). When i and j do not belong to the same group, we invoke α3.

(ii) a more important bump caused by the past values of εi,tεj,t on itself, through the

β·; as above, such effects depend on the group of i and j.

(iii) an additional bump when variances are managed (ie when i = j) through the

parameters γ·; if i belongs to the first or the second group of assets, we apply γ1

or γ2 respectively.

Actually, the latter model specification can be criticized because the effect of εr,t−kεs,t−k

on εi,t−kεj,t−k, (r, s) 6= (i, j), is transmitted through the same coefficient α
(k)
ij , indepen-

dently of the identify of the (r, s)-group. For instance, it is likely that this effect should
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be stronger when (r, s) and (i, j) belong to the same subset, typically. Therefore, a

more general parametric model could be considered, where there are different cross-

effects on the dynamics of εi,tεj,t, depending on the considered couples of indices (r, s),

with our previous notations.

It makes sense to introduce the family of block matrices M̄ := {M̄ = [M̄i,j]1≤i,j≤N},
where the N ×N matrices M̄i,j are defined as

M̄i,j = M(α
(1)
1 , α

(1)
2 , α

(1)
3 , N, p) if i and j belong to the first group,

M̄i,j = M(α
(2)
1 , α

(2)
2 , α

(2)
3 , N, p) if i and j belong to the second group, and

M̄i,j = M(δ1, δ2, δ3, N, p) if i and j do not belong to the same group.

This would enrich the flexibility and the realism of the model. But the calculation of

the spectrum of matrices M̄ ∈ M̄ is difficult. And only highly nonlinear conditions

will be able to guarantee that such matrices will be nonnegative.

Nonetheless, we are convinced that it is valuable to study the impact of cross-effects

on any product dynamics εi,tεj,t differently. To stay tractable and to keep the same

notations as above, we will simplify the framework by assuming that δ1 = δ2 = δ3 := δ.

This means that the effect of all cross products on the dynamics of εi,tεj,t is uniform

when i and j do not belong to the same portfolio 4 Therefore, under this simplifying

assumption, any matrix M̄ in M̄ is written

M̄ =



M(α(1)) · · · M(α(1)) M(δ) · · · M(δ)
... · · · ...

... · · · ...

M(α(1)) · · · M(α(1)) M(δ) · · · M(δ)

M(δ) · · · M(δ) M(α(2)) · · · M(α(2))
... · · · ...

... · · · ...

M(δ) · · · M(δ) M(α(2)) · · · M(α(2))

,


(3.3.3)

where

M(α(1)) := M(α
(1)
1 , α

(1)
2 , α

(1)
3 , N, p) appears p2 times,

M(α(2)) := M(α
(2)
1 , α

(2)
2 , α

(2)
3 , N, p) appears (N − p)2 times, and

M(δ) := δeNe
′
N , δ ∈ R+, appears 2p(N − p) times.

4This is reasonable, because the dynamics of εi,tεj,t, when i and j do not belong to the same group,
is “poorer” than when i and j belong to the same group.
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Proposition 3.3.1. A matrix M̄ defined as in (3.3.3) is definite positive iff

(α
(1)
1 , α

(1)
2 , α

(1)
3 , α

(2)
1 , α

(2)
2 , α

(2)
3 , δ) ∈ R7

+,

∆(1) := α
(1)
1 α

(1)
3 − (α

(1)
2 )2 > 0, α

(2)
1 α

(2)
3 > (α

(2)
2 )2, and(

α
(2)
1 −

δ2

α
(1)
1

− (α
(2)
2 )2δ2

α
(1)
1 ∆(1)

)
·

(
α

(2)
3 −

δ2

α
(1)
1

− (α
(2)
2 )2δ2

α
(1)
1 ∆(1)

)
>

(
α

(2)
2 −

δ2

α
(1)
1

− (α
(2)
2 )2δ2

α
(1)
1 ∆(1)

)2

.

(3.3.4)

As a consequence, the latter condition (3.3.4) is satisfied if α
(2)
2 < min(α

(2)
1 , α

(2)
3 ).

Proof of Proposition 3.3.1. First let us study the positiveness of the quadratic form q0

that is associated to the pN × pN symmetrical matrix

B0 =


M(α) · · · M(α)

... · · · ...

M(α) · · · M(α)

 , (3.3.5)

where α = (α1, α2, α3). Let the two sets of indices

I := {1, . . . , p, N+1, . . . , N+p, 2N+1, . . . , 2N+p, . . . , (p−1)N+1, . . . , (p−1)N+p},

J := {p+1, . . . , N,N+p+1, . . . , 2N, 2N+p+1, . . . , 3N, . . . , (p−1)N+p+1, . . . , pN}.

Obviously, {1, . . . , pN} = I ∪ J . Then, for any x ∈ RpN ,

q0(x) = α1

∑
(i,j)∈I2

xixj + α3

∑
(i,j)∈J 2

xixj + 2α2

(∑
i∈I

xi

)
.

(∑
j∈J

xj

)

= α1

(∑
i∈I

xi +
α2

α1

∑
j∈J

xj

)2

+
α1α3 − α2

2

α1

(∑
j∈J

xj

)2

.

Therefore, the positiveness of q0 (or B0) is equivalent to α > 0 and α1α3 > α2
2.

Now, we consider the quadratic form q that is associated to M̄ ∈ M̄. Introduce

Ĩ = I + Np and J̃ = J + Np. Set y1 :=
∑

i∈I xi, y2 =
∑

i∈J xi, y3 :=
∑

i∈Ĩ xi and



Chapter 3. Sparse dynamic variance-covariance matrix processes 162

y4 =
∑

i∈J̃ xi. By simple calculations, we get

q(x) = α
(1)
1 y2

1 + α
(1)
3 y2

2 + 2α
(1)
2 y1y2 + α

(2)
1 y2

3 + α
(2)
3 y2

4 + 2α
(2)
2 y3y4 + 2δ(y1 + y2)(y3 + y4)

= α
(1)
1

(
y1 +

α
(1)
2

α
(1)
1

y2 +
δ

α
(1)
1

(y3 + y4)

)2

+
∆(1)

α
(1)
1

(
y2 −

α
(1)
2 δ

∆(1)
(y3 + y4)

)2

+ y2
3

(
α

(2)
1 −

δ2

α
(1)
1

− (α
(1)
2 )2δ2

α
(1)
1 ∆(1)

)
+ y2

4

(
α

(2)
3 −

δ2

α
(1)
1

− (α
(1)
2 )2δ2

α
(1)
1 ∆(1)

)

+ 2y3y4

(
α

(2)
2 −

δ2

α
(1)
1

− (α
(1)
2 )2δ2

α
(1)
1 ∆(1)

)
,

providing the result.

Therefore, we propose a second family of parametric matrices Bk in the case of het-

erogenous portfolios (with two groups):

B̄ = {B ∈MN2×N2(R) |B = M̄(α(1), α(2), δ) + M̃(β1, β2, β3, p) +N(γ1, γ2, p),

α(j) ∈ R3
+, j = 1, 2, (α(1), α(2), δ) ∈ R7

+ satisfies the conditions of Proposition 3.3.1,

β1 ≥ 0, β3 ≥ 0, β1β3 ≥ β2
2 , γ1 ≥ 0, γ2 ≥ 0}.

3.3.5 Stationarity conditions

The model dynamics are specified by the N2 equations (3.2.4). Strictly speaking, they

define a Vectorial Autoregressive model of order p and dimension N2 (or N(N + 1)/2

to avoid redundant equations). The vector of noises (~ζt) is a difference martingale. In

other words, setting the N2 vector ~vt = [εitεjt](i,j)∈N2 , its dynamics is

~vt = A+

q∑
k=1

Ckvt−k + ~ζt, (3.3.6)

where Ck := [bijk,rs]{(i,j),(r,s)∈N2}, with the previous notations. Obviously, there is a

one-to-one mapping between C1, . . . , Cq and (B1, . . . , Bq). For instance, in the case of

an homogeneous portfolio, the parametrization that we proposed in Subsection (3.3.2)

induces the matrices Ck := [αk + βk1((i, j) = (r, s)) + γk1(i = j = r = s)](i,j),(,s),

k = 1, . . . , q.
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It is well-known that the system given by (3.3.6) has a unique strongly stationary

solution when all complex number λ s.t.

det(λqIN2 − λq−1C1 − . . .− λCq−1 − Cq) = 0

satisfies |λ| < 1. See Hamilton (1994), for instance. Those λ are the eigenvalues of the

qN2 × qN2 matrix

MC :=



0N2 IN2 0N2 . . . . . . 0N2

... 0N2 IN2
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . 0N2

... 0N2 IN2

Cq Cq−1 . . . . . . . . . C1


.

Unfortunately, calculations in some simple cases show that the stationarity conditions

are nonlinear functional of the model parameters. For instance, when q = 1 and in

the case of an homogeneous portfolio, the stationarity condition is equivalent to the

following: the modulus of the eigenvalues is C1 are strictly smaller than one. In this

case, simple algebraic calculations show that the characteristic polynomial of MC is

χ(x) = (β+γ−x)N−1(β−x)N
2−N−1

(
x2 − (N2α + 2β + γ)x+ (N2α + β + γ)β + αγ

)
.

Its roots are strictly smaller than one iff

β + γ < 1, and (N2α + β + γ)(1− β) < 1− β + αγ. (3.3.7)

The latter condition is nonlinear. Note that it is fulfilled if N2α + β + γ < 1. Note

that, when N →∞, (3.3.7) can be satisfied only if α(N) tends to zero as O(1/N2).

When p = 2, similar calculations allow the calculation of the characteristic polynomial

of MC , but its roots cannot be calculated analytically easily due to a four-order factor.

Remark 3.3.2. Despite that lack of explicitly written eigenvalues of MC , some (strong)

sufficient conditions for stationarity can be obtained. For instance, following Higham

and Tisseur (2003) (Equation (2.12)), any eigenvalue λ of MC satisfies

|λ| ≤ max

(
‖Cp‖1

‖Cp−1‖1

, 2
‖Ck+1‖1

‖Ck‖1

, k = 1, . . . , p− 2

)
.
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In the case of our “homogeneous portfolio” model, ‖Ck‖1 = N2αk + βk + γk, and the

latter sufficient condition means

N2αk+1 + βk+1 + γk+1 ≤
1

2
(N2αk + βk + γk),

for any k = 1, . . . , p − 1. In other words, we get stationarity when the autoregressive

coefficients of successive lags should decrease to zero exponentially fast (with the lag

index k).

The positive definite constraint is a key hurdle since it requires particular constraint

sets for the parameters. This constraint is nonlinear - space of positive definite ma-

trices -, which hampers any flexible parameterization. Although the constraint free

model is flexible, the variance covariance matrix is not directly evaluated. As for the

homogeneous and heterogenous evaluations, the parameters are still constrained to

obtain positive definite matrices. In the next section, we present an alternative dy-

namic, where the driving parameters are not constrained since the generated variance

covariance matrix is positive definite by construction.

3.4 Cholesky-GARCH

Let the N -dimensional random vector εt s.t. εt = H
1/2
t ηt where (ηt) is a white noise

and Ht is Ft-measurable. We observe the series (εt)t=1,...,T . As in Darolles et al. (2017),

we propose to use the Cholesky decomposition of Ht, i.e. Ht = LtGtL
′
t, where Lt is

lower triangular with ones on the diagonal, and Gt is diagonal. Set Gt = diag(gi,t) and

Lt = [`ij,t], where `ij,t = 0 when j > i.

We want to define a process for (Ht), by specifying the dynamics of (Gt) and (Lt). Set

the random vectors vt s.t. εt := Ltvt. Then, given Ft−1, the components of vt are

uncorrelated: Covt−1(vt) = Gt. Note that v1t = ε1t is observable.

First, we assume a dynamics for the conditional volatility of ε1t:

E[ε2
1t|Ft−1] = E[v2

1t|Ft−1] = g1t,
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and we assume an ARCH-type model

g1,t = a1,0 +
m∑
k=1

a11,kfk,t,

where every random factor fk,t is Ft−1-measurable and for some nonnegative constants

a1,0, a11,k, k = 1, . . . ,m. Typically, the factors fkt are functions of εt−1, εt−2, . . . and of

some of their relevant crossproducts. For instance,

g1,t = a1,0 +
m∑
k=1

N∑
j=1

a11,jkε
2
j,t−k, (3.4.1)

for some nonnegative constants a1,0, a11,jk. We can estimate the latter linear equation

by penalized OLS, as

ε2
1,t = a1,0 +

m∑
k=1

N∑
j=1

a11,jkε
2
j,t−k + ζ11,t,

with E[ζ11,t|Ft−1] = 0. This means we can consider we ”know” the process (g1t).

Moreover, for every i > 1, we have by definition

εit =
i−1∑
j=1

`ijtvjt + vit, or vit = −
i−1∑
j=1

βijtεjt + εit,

by introducing L−1
t := [−βij,t]. Then, if i > j, we will assume

βij,t = aij,0 +
m∑
k=1

aij,kfk,t, i > j.

We can estimate the latter coefficients thanks to the ordinary least squares objective

funtion. For instance, we would have

ε2t = β21tε1t + v2t = (a21,0 +
m∑
k=1

a21,kfk,t)ε1t + v2t,

with E[v2t|ε1t] = 0. This gives us the dynamics of (β12,t).
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This can be done for every couple (i, j), i > j, and provides the dynamics of the pro-

cesses (βij,t) and then (`ij,t), i > j, that are ”known”. Note that we can estimate any

vector vi,t because we ”know” Lt and we observe εt.

Now, we evaluate the process (g2t) by noting that v2t = ε2t − `12,tε1t is ”observed”.

Then, as above , we can assume a process as

g2,t = a2,0 +
m∑
k=1

a22,kfk,t.

The corresponding linear regression is here

v2
2t = a2,0 +

m∑
k=1

a22,kfk,t + ζ22,t, E[ζ22,t|Ft−1] = 0.

And so on. Iteratively, we estimate the processes (git).

This procedure automatically generates non negative covariance matrices by construc-

tion. Moreover, the necessary and sufficient conditions to get stationary solutions

of (3.4.1) are provided by Darolles, Francq and Laurent (2017). But it seems impossi-

ble to explicitly take such conditions into account during the estimation stage.

To be able to compare the size of all these coefficients, it may be useful to normalize

the vector of returns. For instance, by centering and normalizing any component of εt,

but by the unconditional volatility of every component and not by their conditional

volatilities. Indeed, otherwise, this would induce some annoying constraints as

i−1∑
j=1

`2
ij,tgj,t + gi,t = Et−1[ε2i,t] = 1,

for every i.

The Cholesky-GARCH process can be iteratively estimated over the index levels such

that we would consider ”local” OLS objective functions. Each components are observ-

able such that the ordinary least squares objective function can be used to derive the

OLS estimator.
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3.5 Simulation experiments

In this section, we carry out a simulation study to explore the accuracy performance

of the sparse ARCH. To do so, we consider three simulation settings, where we will

compare the estimated variance covariance process to the true variance covariance pro-

cess. Based on the DGP (3.2.4) and given initial values, we simulate the successive

values of a MGARCH process with conditional covariance matrices (Ht) of size N = 4.

We do this iterative procedure for T = 10000 and we consider 100 different variance

covariance matrix patterns. Once a series is simulated, we estimate the model under

different model assumptions: a scalar DCC, a homogeneous ARCH, a constraint free

ARCH, a Cholesky ARCH and their penalized versions. The estimated parameters

allow the calculation of successive variance covariance matrices, which are here Ĥdcc
t

for the DCC model, Ĥhom
t (resp. Ĥhom?

t ) for the homogeneous ARCH (resp. penalized

homogeneous ARCH), Ĥcf
t (resp. Ĥcf?

t ) for the constraint free ARCH (resp. penal-

ized constraint free ARCH), and Ĥcho
t (resp. Ĥcho?

t ) for the Cholesky ARCH (resp.

penalized Cholesky ARCH).

The adaptive version of the Sparse Group Lasso estimator is implemented, where the

first step estimator is the unpenalized OLS estimator. In Chapter 2, we described

the cross-validation procedure to select the regularization parameter together with the

system that determines the convergence rate of the regularization parameters to satisfy

the oracle property. The lags in the homogeneous, constraint free and Cholesky models

are defined a priori a follows: in the experiments 1 and 2, q = 10 (resp. q = 8) for

the homogeneous model (resp. for the constraint free and Cholesky models). As for

the experiment 3, q = 20 (resp. q = 10) for the homogeneous model (resp. for the

constraint free and Cholesky models).

We compare the true variance covariance process and the estimated correlation pro-

cesses through the aforementioned models. To do so, we specify a matrix distance,

namely the Frobenius norm, defined as ||A− B||F :=
√

Trace((A−B)′(A−B)). We

compute the previous norm for each t and for

A = Rt, and B ∈ {Ĥdcc
t , Ĥhom

t , Ĥhom?
t , Ĥcf

t , Ĥ
cf?
t , Ĥcho

t , Ĥcho?
t }.

We take the average of those quantities over T = 10000 periods of time. We obtain an

average gap for all those simulations as this procedure is repeated 100 times.
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Simulated experiment 1. As a particular case of (3.2.4), we consider a data generating

process

εitεjt = aij +

q∑
k=1

(αk + βk + γk1(i = j))εi,t−kεj,t−k + αk
∑

(r,s)6=(i,j)

εr,t−kεs,t−k

+ ζij,t,

for any couple (i, j). All coefficients (αk, βk, γk) are set to zero except (α4, β4, γ4), a

case for which we consider different grid values. The symmetric and positive definite

matrix A is simulated as Aij ∼ U([−0.02, 0.02]), i 6= j and Aii ∼ U([0.1, 0.2]). Denoting

ω = (α4, β4, γ4), we consider the grids

ω(1) = (0.001, 0.1, 0.2),

ω(2) = (0.005, 0.3, 0.1),

ω(3) = (0.01, 0.5, 0.1),

ω(4) = (0.01, 0.3, 0.2).

For each of these 100 patterns, ω(j) remains fixed for j = 1, 2, 3, 4 and A is simulated

as described above.

We remind that q = 10 for the homogeneous model and q = 8 for both the constraint

free and Cholesky processes.

Table 3.1: Simulated experiment 1: Average distance between true and estimated
variance covariance matrices

ω B = Ĥdcc
t B = Ĥhom

t B = Ĥhom?
t B = Ĥcf

t B = Ĥcf?
t B = Ĥcho

t B = Ĥcho?
t

ω(1) 0.2015 0.0776 0.1540 0.1042 0.0816 0.1516 0.1657

ω(2) 0.4647 0.1497 0.3117 0.1514 0.1401 0.3219 0.3346

ω(3) 1.2292 0.5341 0.7675 0.5063 0.3983 0.8386 0.8486

ω(4) 0.7353 0.2782 0.3545 0.2378 0.2047 0.4157 0.4350

We can highlight some interesting remarks from this simulation study. First, the DCC

specification is outperformed by the competing models, especially by the homogeneous

model, which is not surprising. Moreover, there is a gain in precision when applying

a regularization procedure: the penalized version of the constraint free model outper-

forms the unpenalized version. This support the need of constraining the parameters

when considering a large number of parameters, even when N = 4.
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Simulated experiment 2. We consider a data generating process

εitεjt = aij +

q∑
k=1

(αk + βk + γk1(i = j))εi,t−kεj,t−k + αk
∑

(r,s)6=(i,j)

εr,t−kεs,t−k

+ ζij,t,

for any couple (i, j). We set all coefficients (αk, βk, γk) to zero except for k = 4, 5, 6,

where we consider different grid values. A is parameterized as in simulated experiment

1. We denote ω = (α2, β2, γ2, α3, β3, γ3, α4, β4, γ4) and consider different grids, with

ω(1) = (0.02, 0.2, 0.02, 0.01, 0.1, 0.01, 0.001, 0.01, 0.01),

ω(2) = (0.001, 0.3, 0.05, 0.0005, 0.2, 0.02, 0.00001, 0.1, 0.01).

For each of these 100 patterns, ω(j) remains fixed for j = 1, 2 and A is simulated.

We remind that q = 10 for the homogeneous model and q = 8 for both the constraint

free and Cholesky processes.

Table 3.2: Simulated experiment 2: Average distance between true and estimated
variance covariance matrices

ω B = Ĥdcc
t B = Ĥhom

t B = Ĥhom?
t B = Ĥcf

t B = Ĥcf?
t B = Ĥcho

t B = Ĥcho?
t

ω(1) 0.4914 0.2512 0.4095 0.2079 0.1537 0.4488 0.4503

ω(2) 0.9787 0.5209 0.7895 0.3669 0.3364 0.7658 0.7812

The same remarks hold here as in simulated experiment 1.

Simulated experiment 3. In this experiment setting, we simulate (3.2.4) with

Ht = A+

q∑
k=1

(IN ⊗ ε′t−k)Bk(IN ⊗ εt−k),

where we select q = 5. The N2×N2 matrices Bk are selected as Bij,k ∼ U([−0.2, 0.2])

and Bii,k ∼ U([0.1, 0.15]) such that they satisfy the positive definite, stationarity

and ”ordering” constraints. This ordering constraint, idest ∀i, j, |Bij,k| ≤ |Bij,k−1|
for k = 2, · · · , 5. As for the symmetric and positive definite matrix A, we define

Aij ∼ U([−0.02, 0.02]), i 6= j and Aii ∼ U([0.1, 0.2]). We consider two settings: setting

1, where the Bk’s are not null matrices for each k; setting 2, where B1 and B2 are

null matrices and the Bk’s are not null matrices for k = 3, 4, 5. For each of these 100

patterns, the Bk and A matrices are simulated.
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We remind that q = 20 for the homogeneous model and q = 10 for both the constraint

free and Cholesky processes.

Table 3.3: Simulated experiment 3: Average distance between true and estimated
variance covariance matrices

B = Ĥdcc
t B = Ĥhom

t B = Ĥhom?
t B = Ĥcf

t B = Ĥcf?
t B = Ĥcho

t B = Ĥcho?
t

Setting 1 0.4044 0.4181 0.4457 0.3780 0.2024 0.2833 0.2251
Setting 2 0.2870 0.2875 0.2952 0.1979 0.1121 0.1688 0.1440

These results emphasize the good performances of the constraint free and the Cholesky

processes when the observed patterns are heterogeneous. The gain in precision is

significant once the adaptive SGL regularization is applied. Not surprisingly, the DCC

and the homogeneous are outperformed in this simulated framework.

3.6 Conclusion

We proposed several parameterizations for multivariate ARCH models that are linear

with respect to the parameters. These models can be estimated thanks to an Ordinary

Least Squares procedure. Then we considered a large number of lagged values to

approximate a multivariate GARCH pattern such that the optimal lag is selected

thanks to a regularization procedure. To do so, the Sparse Group Lasso penalty is

relevant as it fosters sparsity both at a group level and within a group. Besides, our

multivariate ARCH framework is devised such that the penalized objective function is

convex with convex constraints. The regularization procedure thus satisfies the oracle

property and identifies the right underlying sparse model.

Our simulated experiments emphasized the abbility of the ARCH-type dynamics to

outperform the scalar DCC process. More interestingly, there is a gain in regularizing

the estimates once the parameter vector size becomes significant, even for small vector

sizes.
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Le présent manuscrit a traité du problème de la grande dimension, en particulier dans

le cadre de la modélisation multivariée en temps discret. Son ambition était de pro-

poser un nouveau processus de matrices de corrélation flexible et parcimonieux au sein

des modèles MGARCH et d’en faire l’étude théorique et empirique. Il visait également

à apporter des éléments théoriques aux outils de réduction de dimension de type esti-

mateurs pénalisés.

Pour modéliser les dynamiques matricielles de corrélation, le choix a été porté sur

la famille des GARCH multivariés. Le processus généralement usité est le Dynamic

Conditional Correlation (DCC, Engle, 2002) en version scalaire, cas dans lequel la

dynamique de corrélation nécessite l’estimation de deux paramètres si la procédure

de ”correlation targeting” est appliquée. Le premier chapitre a proposé une nouvelle

dynamique dite vine-GARCH et dont la paramétrisation reposait sur un graphe non

dirigé appelé ”vine”. Celui-ci décrit la structure des corrélations partielles au travers

des niveaux du graphe contrôlant le degré d’information par la taille des ensembles con-

ditionnant. Cette approche présente les avantages de générer des dynamiques définies-

positives et de spécifier des processus de corrélations partielles univariés ouvrant la voie

à des approches parcimonieuses. En effet, une des propriétés théoriques de la ”vine”

mise en évidence est la possibilité de spécifier des corrélations partielles nulles à partir

d’un certain niveau du graphe et de telle sorte que la structure de celui-ci aux niveaux

suivants n’a aucune influence sur la matrice de corrélation ”usuelle”.

Ce chapitre a proposé une étude théorique approfondie du modèle vine-GARCH. Dans

un premier temps, les propriétés probabilistes d’existence et d’unicité de solutions sta-

tionnaires ont été mises en évidence. Puis les propriétés de consistance faible et nor-

malité asymptotique de l’estimateur en deux étapes ont été démontrées. Par ailleurs,

171
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les performances empiriques du vine-GARCH soulignent sa capacité à capturer des

dynamiques complexes, en particulier lorsque les tailles des vecteurs sont significatives.

La problématique de la modélisation en grande dimension est naturellement apparue

et la spécification à base de graphe peut potentiellement fournir des dynamiques parci-

monieuses. De façon plus générale, les approches à base d’estimateurs pénalisés sont

une approche au sein de laquelle le choix de conserver certaines variables pour prédire

la variable de sortie n’est pas réalisé a priori. Le second chapitre de ce présent docu-

ment propose ainsi un cadre général de M-estimateurs pénalisés dans lequel la fonction

de régularisation étudiée est le Sparse Group Lasso, proposé initialement par Simon

et al. (2013). Ce chapitre effectue une analyse asymptotique approfondie, non réalisée

jusqu’à présent pour le Sparse Group Lasso, et propose un nouvel estimateur sparse,

l’”adaptive Sparse Group Lasso” en utilisant l’idée de Zou et son adaptive Lasso (2006).

Le problème de la grande dimension est traité en considérant le cadre dans lequel la

taille du vecteur des paramètres diverge avec l’échantillon. Dans cet asymptotique

double, le principal résultat démontré est la propriété oracle, idest la capacité de

l’estimateur ”adaptive Sparse Group Lasso” à identifier le support sparse théorique

et sa propriété de normalité asymptotique. Pour ce faire, les vitesses de convergence

des paramètres de régularisation sont explicitement données, notamment le compro-

mis entre la pénalisation l1 Lasso et pénalisation l1/l2 Group Lasso. Les résultats de

simulations obtenus illustrent la capacité de l’adaptive Sparse Group Lasso à retrouver

le vrai support sparse.

Dans ce cadre général M-estimateurs pénalisés, le dernier chapitre a proposé une

application de ces procédures de pénalisations pour des dynamiques ARCH multi-

variées. Celles-ci peuvent être estimées grâce aux moindres carrés ordinaires à l’instar

de l’ARCH univarié. Cette représentation linéaire permet des estimations en forme

fermées et procure des gains de temps significatifs. En outre, les estimateurs pénalisés

par l’”adaptive Sparse Group Lasso” vérifient la propriété oracle du fait de la convexité

de la fonction objectif régularisée. Le caractère autoregressif du GARCH peut-être ap-

proximé en spécifiant un nombre significatif de retards de telle sorte que le retard

optimal soit selectionné par la procédure de régularisation. L’”adaptive Sparse Group

Lasso” est particulièrement adapté dans ce cas dans la mesure où les retards sont

traités comme des groupes dans la composante l1/l2 et la réduction de dimension est
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encouragée pour les groupes conservés par la composante l1.

Pour résumer, ce projet de thèse s’est situé à la charnière de la modélisation multi-

variée non linéaire et de la statistique en grande dimension. Les objectifs de ce projet

de thèse ont été de fournir une méthode innovante pour générer des processus de

corrélation de manière flexible et parcimonieuse ainsi qu’un travail théorique portant

sur des M-estimateurs pénalisés et d’en proposer des applications. L’idée directrice a

été de considérer des processus pouvant accueillir des dynamiques jointes potentielle-

ment grandes. Dans le cadre de la grande dimension, l’analyse théorique menée sur le

Sparse Group Lasso a souligné sa capacité à identifier le vrai support sparse, idest à

identifier les ”facteurs” pertinents pour décrire la dynamique observable.

Trois principaux axes de recherche pertinents ont été identifiés à l’issue de ces travaux.

D’une part, les propriétés asymptotiques d’estimateurs pénalisés seront étudiés dans le

cadre où les marges sont estimées non-paramétriquement. L’idée est de considérer des

combinaisons linéaires de densité de copule pour approximer la distribution jointe et

d’appliquer une procédure de régularisation qui doit sélectionner le bon sous-ensemble

de copules. Le second axe porterait sur les propriétés asymptotiques des M-estimateurs

pénalisés pour des fonctions objectives non convexes. Pour ce faire, cela nécessite

de faire appel à des résultats de consistence ne reposant pas sur des hypothèses de

régularité trop fortes, idest différentiabilité et convexité. En travaillant avec une fonc-

tion objectif explicite - mais non nécessairement convexe -, les inégalités de types oracles

en échantillon fini pourraient être obtenues en utilisant les inégalités de concentration

données dans Massart (2003). Par exemple Chesneau et Hebiri (2008) utilisent ces

outils afin d’obtenir des inégalités dites de sparsité pour des critères quadratiques. En-

fin, le troisième axe de recherche porte sur la modélisation dynamique de la sparsité

pour des modèles de réseaux stochastiques. Sur la base des travaux de Bühlmann

et Meinshausen (2006), dans le cadre gaussien, les branches d’un graphe représentant

des corrélations partielles pouvent être estimées par régressions linéaires. Dans le con-

texte de variables dépendantes, l’idée principale est que la sparsité peut connâıtre

des changements de telle sorte que le graphe sous-jacent serait pénalisé différemment.

Pour ce faire, l’introduction de variables latentes de type châınes de Markov serait une

approche naturelle, le paramètre de régularisation variant selon les régimes.
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Ce document traite du problème de la grande 
dimension dans des processus GARCH 
multivariés. L'auteur propose une nouvelle 
dynamique vine-GARCH pour des processus de 
corrélation paramétrisés par un graphe non 
dirigé appelé "vine". Cette approche génère 
directement des matrices définies-positives et 
encourage la parcimonie. Après avoir établi des 
résultats d'existence et d'unicité pour les 
solutions stationnaires du modèle vine-GARCH, 
l'auteur analyse les propriétés asymptotiques du 
modèle. Il propose ensuite un cadre général de 
M-estimateurs pénalisés pour des processus 
dépendants et se concentre sur les propriétés 
asymptotiques de l'estimateur "adaptive Sparse 
Group Lasso". La grande dimension est traitée 
en considérant le cas où le nombre de 
paramètres diverge avec la taille de l'échantillon. 
Les résultats asymptotiques sont illustrés par 
des expériences simulées. Enfin dans ce cadre 
l'auteur propose de générer la sparsité pour des 
dynamiques de matrices de variance covariance. 
Pour ce faire, la classe des modèles ARCH 
multivariés est utilisée et les processus 
correspondants à celle-ci sont estimés par 
moindres carrés ordinaires pénalisés.

This document contributes to high-dimensional 
statistics for multivariate GARCH processes. 
First, the author proposes a new dynamic called 
vine-GARCH for correlation processes 
parameterized by an undirected graph called 
vine. The proposed approach directly specifies 
positive definite matrices and fosters parsimony. 
The author provides results for the existence 
and uniqueness of stationary solution of the 
vine-GARCH model and studies its asymptotic 
properties. He then proposes a general 
framework for penalized M-estimators with 
dependent processes and focuses on the 
asymptotic properties of the adaptive Sparse 
Group Lasso regularizer. The 
high-dimensionality setting is studied when 
considering a diverging number of parameters 
with the sample size. The asymptotic properties 
are illustrated through simulation experiments. 
Finally, the author proposes to foster sparsity 
for multivariate variance covariance matrix 
processes within the latter framework. To do so, 
the multivariate ARCH family is considered and 
the corresponding parameterizations are 
estimated thanks to penalized ordinary least 
square procedures.

Corrélations partielles, Estimateur du 
quasi-maximum de vraisemblance, 
M-estimateurs pénalisés, Propriété oracle, 
Stationnarité, Vine régulière.

Oracle property, Partial correlations, Penalized 
M-estimators, Quasi-maximum likelihood 
estimator, Regular vine, Stationarity.
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