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Présentation générale

La modélisation statistique tend a un équilibre entre une paramétrisation parcimonieuse
et suffisamment riche afin de décrire et prédire des processus stochastiques. Ce compro-
mis entre complexité statistique et parcimonie doit répondre au besoin d’obtenir a la
fois une bonne représentation statistique et des interprétations intuitives. Cet équilibre
est souvent précaire dans une modélisation (semi-)paramétrique multivariée, comme
I'illustre les modeles en temps discret pour les dynamiques matricielles, généralement

gourmands en termes de parametres.

Ce projet de these fut tout au long miri par cette problématique d’équilibre. Il a pour
but de proposer des dynamiques répondant a celle-ci, notamment via des méthodes de
réduction de complexité. Etre capable de proposer de nouveaux processus suffisamment
riches et facilement estimables apporterait un gain important a la fois théorique et aussi
pratique, avec la volonté de modéliser la dynamique de processus aléatoires multivariés.
Le développement d’outils dits de "sparsité” ou de "régularisation”, idest encourageant
la réduction de dimension avec l'idée qu'un sous ensemble inconnu de variables est
pertinent pour décrire un phénomene, est au coeur de ce présent travail et fait 'objet
d’une analyse théorique approfondie. Des applications de ces outils sont proposées

pour décrire la dépendance entre composantes de vecteurs de grande taille.

En temps discret, deux grandes familles de modeles de variance-covariance ont fait
I'objet de développements conséquents dans la littérature: la famille des modeles a
volatilité stochastique et la famille des modeles GARCH multivariés. Ces approches
permettent de modéliser la dépendance temporelle du vecteur aléatoire d’intérét par
son moment conditionnel d’ordre deux de fagon dynamique. Elles offrent des appli-
cations en gestion de portefeuille par exemple, en prenant en compte les risques de
volatilité et de corrélation. Ce travail se place dans la seconde classe de modeles.
La principale difficulté liée a cette approche est diie au caractere non-linéaire des dy-

namiques générées, ce qui rend complexe toute étude probabilisite (difficulté d’extraire

1



Présentation générale 2

des conditions de stationnarité, absence de formules de prédiction exactes pour les dy-
namiques de corrélations). De plus, la complexité statistique est inhérente notamment
a cause du nombre de parametres a estimer. En notant N la dimension du vecteur
correspondant au nombre de composantes, la complexité est de lordre de O(N?). Ceci
implique le plus souvent une incertitude sur la significativité statistique des parametres
estimés, pouvant impacter le pouvoir prédictif du modele considéré. De cette remar-
que découle l'idée du fléau de la dimension ce qui contraint les études empiriques
a considérer des tailles de vecteur relativement faibles, avec au plus une dizaine de
variables. Or la grande dimension ne peut étre occultée tant elle occupe une place
prépondérante: par exemple en gestion d’actifs, les portefeuilles contiennent souvent
plusieurs centaines de variables. En sus d’élaborer des modeles de prédiction fiables,
la contrainte de temps nécessite le développement d’approches parcimonieuses en vue

de résolutions rapides.

Le premier chapitre de ce document propose une nouvelle méthode pour générer des
processus conditionnels de matrices de corrélation. Celles-ci vont étre spécifiées a par-
tir d’un sous-ensemble de corrélations partielles dont la structure est décrite par un
graphe non dirigé appelé "vine” réguliere défini dans la section 1.2. Cette approche
fournit des processus multivariés tres flexibles et potentiellement parcimonieux dans la
mesure ou les processus de corrélations partielles peuvent étre spécifiés séparemment,
le probleme multivarié pouvant étre considéré comme un systeme de dynamiques uni-
variées liées par le graphe. Lewandowski, Kurowicka et Joe (2009) développent une
approche dans laquelle toute matrice de corrélation peut étre obtenue a partir d’une
matrice de corrélation partielle, et vice versa, grace a un algorithme itératif. Une fois
le choix des indices entrant dans les corrélations partielles fixé, une ”vraie” matrice de
corrélation est générée pour des valeurs arbitraires de corrélations partielles. Contraire-
ment aux dynamiques fort usitées issues du Dynamic Conditional Correlation (DCC) de
Engle (2002), des séquences de matrices de corrélation sont obtenues sans étapes de nor-
malisation en générant des processus univariés de maniere indépendante. Ce chapitre
introduit une nouvelle classe de processus dits vine-GARCH. Cette approche novatrice
spécifie une dynamique de corrélations partielles données par la ”vine” réguliere ou ses
N(N —1)/2 branches sont associées & des nombres compris dans | —1, 1] et représentant
les corrélations partielles correspondantes. En utilisant la propriété d’injection entre
ces N(N — 1)/2 corrélations partielles et les N(N — 1)/2 corrélations ”"usuelles”, une
vraie matrice de corrélation est ainsi générée. Ces corrélations partielles sont empilées

dans un vecteur noté Pc; et ordonnées de maniere lexicographique, du plus petit au
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plus grand ensemble d’indices, tandis que les corrélations usuelles correspondent aux
composantes de la matrice de corrélation conditionnelle notée R;. Ainsi, la dynamique

vine-GARCH proposée est

Hy = DR/Dy,
p q
U(Pey) = Q+ ) E0 (Pog) + > MG,
k=1 =1

R, = vechof (Fyie (Pct)), ol

e H; est la matrice de variance-covariance obtenue par le produit de la matrice
diagonale D;, dont les composantes correspondent aux variances conditionnelles

univariées, et de la matrice de corrélation R;.

e Pc; est le vecteur des corrélations partielles définies par la structure de ”vine”

réguliere.

e vechof(+) est 'opérateur de ”devectorisation”, transformant un vecteur en matrice

symmétrique. Il s’agit de la transformation inverse de 'opérateur vech(-).

e Les quantités =, and A; correspondent aux matrices N(N —1)/2x N(N —1)/2,
de coefficients inconnus, et © un vecteur N(N — 1)/2 de composantes incon-
nues. Ainsi est défini le vecteur des parametres inconnus de corrélation 0, =
(Q,Z1,...,5,,A1,...,A,). Ces matrices sont choisies de maniere arbitraire, ol

en particulier la propriété de définie-positivité n’est pas imposée.

e Le vecteur (;_; est F;_i;-mesurable et correspond a l'innovation dans la dy-
namique des corrélations partielles. Il est défini de telle sorte que E[¢;_1] =~
E[Pc;—41], procédure qui est conforme avec les équations de mise a jour dans les
modeles de type GARCH. La construction du vecteur (;_; est décrite dans la

sous-section 1.3.2.

e U(.) est une transformation déterministe de Pc; afin de conserver des dynamiques
de corrélations partielles dans | — 1,1[. Par soucis de simplification, ¥(.) est

connue et définie de | — 1, 1[NV=1/2 dans RNWV=1/2 telle que
\I](Pct) = (¢(p172,t>7 s 7¢(pN,N—1\LN_1,N,t))/7 770 ({L‘) = tan (7?17/2) .

e La fonction Fyi,(.) correspond & l'injection du vecteur des corrélations partielles

Pc; vers les corrélations (dans R;) en utilisant 1'algorithme de Lewandowski,
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Kurowicka et Joe (2009). Elle est définie de | —1, 1[NV=1/2 dans | — 1, 1[V(NV-1/2

par Fvine(p1,2,ta . 7pN71,N|L,t) = (01,271:, cen apN—l,N,t)/-

L’approche vine-GARCH encourage la parcimonie et donc la réduction du nombre de
parametres car des contraintes sur les corrélations partielles peuvent étre imposées a
tout niveau du graphe ”vine” sans modifier les autres corrélations partielles. En effet,
il est pertinent d’annuler (ou de laisser au moins constante) toutes les corrélations
partielles associées a la ”vine” a partir d’un niveau r donné. Lorsque les corrélations
partielles sont supposées nulles a partir de ce niveau, il est nécessaire de savoir si les
corrélations usuelles correspondantes dépendent de la structure de la vine a partir de
celui-ci. Pour ce faire, le concept de ”r vine-Free” est introduit. Une ”vine” est "r
vine-free” si, lorsque toutes les corrélations partielles sont nulles a partir du niveau r,
les corrélations usuelles ne dépendent pas de la maniere dont la ”vine” est construite
a partir de ce niveau. Cette propriété est vérifée par toute ”vine” réguliere. Ainsi la
dimension du probleme statistique peut potentiellement étre réduite en utilisant cette
propriété, seuls les r premiers niveaux des dynamiques de corrélations partielles devant
étre estimés. En outre, ce chapitre introduit une procédure d’estimation du modele
vine-GARCH par quasi-maximum de vraisemblance en plusieurs étapes. Celle-ci peut
étre menée équation par équation, passant en revue les noeuds successifs du graphe.

Ceci fournit une solution au fléau de la dimension.

Une étude théorique approfondie est menée pour obtenir les conditions d’existence
et d’unicitié de solutions stationnaires strictes de la dynamique proposée. En effet,
prouver ces propriétés probabilistes est un préliminaire nécessaire avant de développer
une théorie asymptotique (typiquement les propriétés de consistance et de normalité
asymptotique de l'estimateur du quasi-maximum de vraisemblance) dans la mesure ou
les lois fortes des grands nombres ou les théoremes centraux limites sont facilement
obtenus dans ce cas. Par exemple, Boussama, Fuchs et Stelzer (2011) établissent ces
résultats de stationnarité pour la famille des modeles BEKK. Dans le cas du proces-
sus vine-GARCH, le passage des corrélations partielles aux corrélations usuelles est
non-linéaire par U'injection Fyie(.). Cette transformation rend complexe toute étude
visant & établir les conditions de stationnarité, a 'instar du modele DCC. Pour établir
les conditions d’existence et d’unicité de solutions stationnaires strictes du proces-
sus vine-GARCH, celui-ci est écrit comme une chaine de Markov non linéaire. La
difficulté majeure est I'impossibilité d’extraire une fonction déterministe explicite re-

liant la chaine de Markov au processus d’innovation supposé stationnaire et ergodique.



Présentation générale 5

Ainsi est utilisé le critere de Tweedie (1988) fournissant l'existence d’une mesure de
probabilité invariante pour la dynamique vine-GARCH écrite comme une chaine de
Markov. Une fois établies les conditions de stationnarité, les propriétés asymptotiques
de I'estimateur du quasi-maximum de vraisemblance en deux étapes sont étudiées et les
conditions de consistance faible et de normalité asymptotique sont fournies. Enfin les
performances empiriques du modele vine-GARCH sont analysées au travers d’études

simulées et sur données réelles.

Cette nouvelle approche pour générer des dynamiques de matrices de corrélation sup-
pose d’imposer des contraintes a priori dans le graphe ”vine” afin d’étre parcimonieuse.
Il s’agit de contraindre le nombre de parametres en excluant certaines variables et
groupes de variables - les corrélations partielles passées ou les corrélations partielles
traitées selon le niveau dans le graphe ”vine”- traitées comme non pertinentes pour
décrire la corrélation conditionnelle instantannée. Cette réduction correspond a une
approche en forme réduite a priori, la condition étant que le modele conserve une flexi-
bilité suffisante afin de capturer des dynamiques hétérogenes et de proposer de bonnes

performances prédictives.

Le traitement de la parcimonie dans les modeles vine-GARCH est basé sur des choix a
priori de niveaux ”limites” au dela-desquels les corrélations partielles sont négligeables.
De maniere plus générale, développer des approches dites de pénalisation ou de régularisation,
plus rigoureuses et moins artisanales, est souhaitable. C’est ce qui a motivé 1'étude
relative a la pénalisation ”Sparse Group Lasso” ainsi que ses applications aux modeles
dynamiques multivariés. En ajoutant a une fonction objectif une fonction de pénalité
singuliere en zéro, une procédure statistique réalise a la fois de la sélection de vari-
able et de l'estimation. Le concept clé de régularisation intervient dans le cadre de
statistiques en grande dimension, I'idée étant de contraindre les parametres et donc les
variables correspondantes, pour éviter les problemes de surapprentissage. Le besoin de
régularisation peut facilement étre percu en considérant le cas dans lequel il y a ex-
actement le méme nombre de variables que d’observations. La méthode des moindres
carrés linéaires expliquera parfaitement les données, la statistique R? étant égale a un.
En revanche, il est fort probable que I'utilisation du modele estimé produise de faibles
performances prédictives hors-échantillon dans la mesure ou le modele estimé est car-
actérisé par le surapprentissage. D’une part, les moindres carrés capturent le signal
quant a la maniere selon laquelle les variables prédictives doivent étre utilisées pour
prédire la variable de sortie; mais d’autre part les moindres carrés capturent le bruit

inhérent a I’échantillon, ce qui implique que le modele ne peut étre utilisé pour produire
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des prédictions hors-échantillon utiles. Ainsi dans ce cadre, un modele de prédiction
gagne en pertinence en recourant a de la régularisation ou réduction de dimension. Cela
signifie que les estimateurs doivent étre contraints de telle sorte que le surapprentissage
soit évité. Pour ce faire, de nombreuses fonctions de régularisation ont été proposées
dans la littérature, selon le probleme que 'on cherche a décrire. L’intuition principale
de la pénalisation est d’identifier le vrai support sous-jacent sparse inconnu, c¢’est-a-dire
I’ensemble des indices pour lesquels les variables correspondantes sont conservées pour
décrire une dynamique, la taille de cet ensemble étant plus petit que I'ensemble de
toutes les variables potentielles (il est formé par les multiples manieres de transformer

et de faire interagir les variables).

Des procédures de régularisation sont détaillées par exemple par Hastie, Tibshirani
et Wainwright (2015). Quant aux propriétés théoriques des estimateurs pénalisés,
deux types d’analyse sont possibles. D’une part, les approches en échantillons finis
traitent de la grande dimension en considérant la taille du vecteur des parametres a es-
timer potentiellement plus grand que le nombre d’observations, supposé fixe. L’analyse
théorique vise a établir des bornes en probabilité ou en espérance, pour une métrique
donnée, telles ’erreur de prédiction ou l'erreur d’estimation du parametre. Ces bornes
seront valables avec une probabilité grande et sont fonctions du vrai support sparse.
Ces types de résultats sont résumés par exemple par Biihlmann et van de Geer (2011).
L’autre point de vue est asymptotique, cas dans lequel la taille de I’échantillon tend
vers l'infini. Les premiers résultats asymptotiques pour l'estimateur Lasso ont été
établis par Knight et Fu (2000). Fan et Li (2001) ont développé un cadre général de
vraisemblance pénalisée et ont analysé les propriétés de consistance et de normalité
asymptotique de I'estimateur SCAD. Le cas de la grande dimension est traité lorsque
la taille de ’échantillon ainsi que la taille du vecteur des parametres tendent simul-
tanément vers l'infini. Par exemple, Fan et Peng (2004) traitent de cet asymptotique

double pour des fonctions de vraisemblances pénalisées.

Le second chapitre contribue a cette littérature dite de "régularisation” ou ”pénalisation
statistique”. J’y propose une étude théorique approfondie d’une généralisation de
I'estimateur Sparse Group Lasso (SGL), initialement proposé par Simon, Friedman,
Hastie et Tibshirani (2013). Dans le contexte de données dépendantes, un cadre de
M-estimateur est développé dans lequel la fonction objectif - non pénalisée - est con-
vexe et la pénalisation étudiée est du type "adaptive Sparse Group Lasso”. Celle-ci
fait intervenir deux pénalités, la composante ['-Lasso et la composante ['/I* pour

le Group Lasso, pondérées par des coefficients stochastiques de premiere étape. De
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plus, deux parametres de régularisation sont introduits pour chaque composante de
I””adaptive Sparse Group Lasso”, le Lasso et le Group Lasso. Le principal avantage de
cette pénalisation est de favoriser la sparsité au niveau d’un groupe de parametres, ce
qui écartera le groupe de covariables concerné, ainsi que la sparsité a 'intérieur d’un
groupe de parametres lorsque celui-ci est considéré comme statistiquement significatif

pour décrire la variable de sortie.

Dans ce cadre, le vecteur des parametres 6 de taille d est décomposé en m groupes
Gk, k=1,--- ,m avec card(Gy) = ¢y, et f:ck =d. Ainsi 6 = (ng),k e{l,--- ,m},i=
1,--+,¢c). L’objet d’intérét est l’ense?n:blle A= {j : 0; # 0} qui correspond au
support sous-jacent sparse, 6 étant le vrai parametre inconnu. Cet ensemble inconnu
est par hypothese plus petit que I’ensemble de toutes les variables potentielles. L’objet
principal de ce chapitre est de prouver d'un point de vue asymptotique la capacité
de la pénalisation "adaptive SGL” a identifier le support A et d’établir les vitesses
de convergence des parametres de régularisation pour obtenir cette propriété. Plus
précisément, le probleme statistique consiste a minimiser dans ’espace convexe des

parametres © un critere pénalisé de la forme

0 = arg min {Grp(6)},

0€o
ou
GTSO(Q) = GTZ(H) + R()\T, Y, éa 6)7
1T
avec (e) le vecteur des observations; Grl(6) = TZZ(Q;Q) est la fonction objectif
=1

non pénalisée, supposée convexe par rapport aux parametres pour toute réalisation
de €; le modele d’intérét entre dans le critere (e 0); R(Ar,yr,0) est la fonction de

régularisation (ou pénalité) "adaptive Sparse Group Lasso”, définie par

R<)\T7 YT, é? 9) = pl(AT7 é? 9) + p2(’7T7 é? 9)7

avec

m Cr k
P (A, 0,0) = MT 13> a(@)0")],
k=1:=1

Py(17.0,0) = AT~ 6(6D) 00,
=1

La quantité 6 est un estimateur de premiére étape supposé v/T-consistant. Les parameétres

de régularisation Ay et yp varient avec T. Enfin, a(§®)) € RS, £(() € R, sont définis
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par
o) = a@®) = (18P i=1,-- e), &y = €01 = (|60,

pour des constantes 7 > 0 et u > 0. Ces derniers jouent un role clé pour satisfaire la
propriété oracle dans la mesure ol ces poids impactent les convergences des parametres

de régularisation.

Dans un premier cadre asymptotique, pouvant étre qualifié d’asymptotique simple,
ou seule la taille de I’échantillon diverge, sont établies en particulier la consistance
et la distribution asymptotique de 'estimateur SGL dans sa version non ”adaptive”,
cas dans lequel n’intervient pas d’estimateur de premiere étape et donc les poids «
et & sont non stochastiques. Il est également prouvé dans le Théoreme 2.4.16 que la
version "adaptive” du SGL satisfait la propriété oracle au sens de Fan et Li (2001):
I'estimateur sparse identifie le vrai support sparse sous-jacent et sa loi est asympto-
tiquement normale. Sur la base des travaux de Fan et Peng (2004) et de Zou et Zhang
(2009), la grande dimension est également traitée avec un asymptotique double ou la
dimension du vecteur a estimer diverge avec la taille de ’échantillon. Ainsi la taille
du vecteur des parametres dépend de T avec d := dp = O(T°) avec 0 < ¢ < 1. Le
principal résultat de la section 2.5 est la propriété oracle en asymptotique double. Les
vitesses de convergence des parametres de régularisation sont explicitement établies
dans le théoreme 2.5.24, notamment via un compromis entre les pénalisations de la
composante Lasso et de la composante Group Lasso. Cette analyse met en évidence
le fait que ce cadre général de M-estimateur ne favorise pas la flexibilité dans le com-
portement de dr, autrement dit ¢ ne peut étre compris dans tout I’ensemble ]0, 1[. Ce
probleme a été rencontré par Fan et Peng (2004) dans un cadre ii.d. et sans esti-
mateur "adaptive”. Ce manque de flexibilité provient de la nécessité de controler le
terme d’ordre trois dans les développements de Taylor. Ce probleme n’apparait pas
si la fonction objectif correspond aux moindres carrés, dans la mesure ou ce terme
d’ordre trois disparait. Par exemple, Zou et Zhang (2009) ont prouvé la propriété
oracle pour l'estimateur ”elastic-net” d’un point de vue asymptotique double pour des
modeles linéaires avec 0 < ¢ < 1. Enfin, les propriétés asymptotiques de 1" adaptive
Sparse Group Lasso” sont illustrées par des expériences simulées et soulignent que cet
estimateur offre de meilleures performances que d’autres méthodes oracles - adaptive
Lasso, adaptive Group Lasso - tant en termes de précision statistique que de sélection

de variables.

Le cadre général développé dans le second chapitre englobe d’importantes familles
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de modeles paramétriques et semi-paramétriques: par exemple les modeles linéaires
généralisés; les modeles de type Cox; le probleme d’estimation des matrices de précision
dans un cadre gaussien; etc. Le modele linéaire pénalisé est le plus fréquemment
usité dans cette littérature dans la mesure ou la fonction de perte convexe qui lui
est rattachée, les moindres carrés ordinaires, est directement manipulable pour des
études théoriques du type échantillon fini avec les bornes oracles - bornes d’erreur
de l'estimateur pénalisé valables avec une forte probabilité pour un certain choix de
parametre de régularisation et exprimées en fonction du support sparse sous-jacent
inconnu - ou de type asymptotique. En effet, le développement d’ordre trois étant nul,
I’analyse en est grandement facilitée. En outre, d'un point de vue empirique, beaucoup
d’algorithmes de résolution ont été proposés dans ce cadre des moindres carrés pénalisés

(algorithme du gradient typiquement).

L’idée du troisieme chapitre est de développer des dynamiques linéaires pour les proces-
sus multivariés de variance-covariance afin d’utiliser la méthode des moindres carrés et
d’illustrer 'utilité de la méthodologie ”adaptive Sparse Group Lasso” développée dans
le chapitre 2. Dans le cas univarié, le modele GARCH ne peut-étre estimé par moin-
dres carrés ordinaires, contrairement au modele ARCH. Cette caractéristique peut-
étre étendue a un systeme multivarié sous la contrainte de définir une paramétrisation
générant des matrices définies-positives. En notant le vecteur des observations (e;),
avec H; = Eles€e;|Fi_1] et Fi := o(es, s < t) la filtration naturelle, la dynamique ARCH

multivariée est donnée par

q
ee, = A+ Z(IN ® €,_1)Be(In @ €—i) + &, E[G|Fioi] =0,
k=1
avec Aet By, k =1,...,q, symmétriques et définies-positives. La contrainte majeure a
intégrer est la convexité du probleme statistique par rapport aux parametres. D’abord
d’un point de vue empirique, la convexité assure de bonnes propriétés de convergence
des algorithmes de résolution. En outre, d’'un point de vue théorique, la propriété
oracle de l'estimateur ”adaptive SGL” repose sur la convexité du probleme. C’est
la raison pour laquelle les processus ARCH multivariés et Cholesky-GARCH exposés
respectivement dans les sections 3.3 et 3.4 satisfont la propriété de linéarité par rapport
aux parametres. En outre, en vue de la définie positivité des processus matriciels, les

contraintes imposées sur ceux-ci sont au plus linéaires.

Ainsi ce chapitre propose d’utiliser le cadre M-estimateur pénalisé développé dans

le chapitre 2 pour les moindres carrés pénalisés. En utilisant les paramétrisations
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exposées dans les sections 3.3 et 3.4, les processus peuvent étre estimés par la méthode
des moindres carrés ordinaires. Ceci est un avantage crucial par rapport aux fonctions
objectifs non-linéaires car les méthodes de résolution sont rapides et les procédures
de régularisation peuvent étre aisément mises en oeuvre dans ce cadre. Le probleme

statistique s’exprime ainsi

0 = arg min {Grp(6)},
6co

ol
GTSO(H) = GTZ(Q) + R()\T7 T, éa 6)7
avec R(Ar, vr, 0, 0) la pénalité ”adaptive Sparse Group Lasso” étudiée dans le chapitre

2; la partie non pénalisée est

1T
Grl(0) = ?Zl(et;e),
=1
I(e;0) = |[Vech(ee;) — W(e—1)03,

ot W(e;—1) est une matrice dont les composantes, correspondant a une transformation
des éléments des vecteurs Vech(e_re; ), k > 1, sont F;_j-mesurables et dont la struc-
ture dépend des spécifications ARCH multivariées données dans les sections 3.3 et 3.4.
Certaines spécifications de W(e_;) introduiront des matrices de variance-covariance
définies-positives. Dans ce cadre d’estimation linéaire, 0 est un estimateur de premiére

étape des moindres carrés ordinaires.

Cette approche ne peut pas étre développée pour les dynamiques MGARCH en présence
de termes autorégressifs. Néanmoins, ces processus peuvent étre approchées avec ¢
élevé. Pour les MGARCH, la méthode d’estimation par quasi-maximum de vraisem-
blance gaussien est la plus fréquemment usitée. Cette méthode peut difficilement étre
utilisée pour des vecteurs stochastiques de grande taille N dans la mesure ou la com-
plexité est de Pordre O(N?). C’est la raison pour laquelle la majorité des applications
se limitent & des vecteurs de taille faible (typiquement N < 10) ou se placent dans
des processus scalaires, tels que les DCC ou BEKK scalaires, non adaptés pour des

problemes de grande dimension en présence de composantes hétérogenes.

Dans ce cadre pénalisé, la régularisation Sparse Group Lasso est particulierement
adaptée dans la mesure ou les groupes peuvent étre définis par le vecteur des variables
correspondant aux retards. En effet, pour un nombre ¢ élevé de retards initialement
spécifiés, auquel correspond 1’ensemble des variables retardées, la régularisation vise

a identifier un sous-ensemble des variables retardées d’ordre § < ¢. L’idée est que
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les coefficients tendent vers zéro a partir d'un certain retard, les variables observées
récemment ayant un effet plus significatif sur la covariance instantanée que des obser-
vations plus lointaines. De plus, pour éviter les problemes de surapprentissage, il est
nécessaire de contraindre les parametres par une telle procédure de pénalisation. Les
performances de cette procédure de régularisation lors de ’estimation des dynamiques
ARCH multivariées proposées sont étudiées a travers des simulations. Il s’agit de
mesurer I’écart entre la vraie matrice de variance-covariance connue et simulée et les
matrices de variance-covariance estimées selon plusieurs spécifications. Parmi celles-
ci se trouvent les modeles ARCH et Cholesky-GARCH pénalisés ainsi que le DCC
scalaire. Ces simulations mettent en évidence le gain en termes de précision obtenue
sur la mesure de la matrice de variance-covariance lorsque la procédure ”adaptive

Sparse Group Lasso” est utilisée.



Chapter 1

Dynamic Correlation Model based

on Vines

1.1 Introduction

A multivariate setting is necessary for modeling the cross-sectional and temporal de-
pendencies between N financial asset returns. It allows for developing relevant man-
agement tools, especially when the interactions between financial markets become
stronger. This concerns areas such as asset pricing, portfolio allocation, risk man-

agement, and the like.

The usual modeling approach relies on the specification of the first two moments of
vectors of returns conditional on their past (and current market information possibly).
Once this is done, some assumed vectors of innovations close the model specifica-
tion. The multivariate GARCH (MGARCH) and the multivariate stochastic volatility
(MSV) models are the two main frameworks: see the surveys of Bauwens, Laurent
and Rombouts (2006) and Asai, McAleer and Yu (2006) respectively. Such approaches
allow for generating sequences of asset return covariance matrices (H;), and then pro-
vide their correlations as a by-product. In financial econometrics, MGARCH models
are most commonly used. Indeed, they induce some typical patterns as volatility clus-
tering and complex dependencies (through copula-GARCH models, e.g.), without the

necessity of complex inference procedures, contrary to most MSV models.

Nonetheless, the number of MGARCH parameters often increases dramatically with

the number of underlying assets. Therefore, some simplified MGARCH specifications
12
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have searched for parsimony fostering simple estimation and interpretation, but some-
times at the price of an over-simplification. Besides, MGARCH models have to guar-
antee the positive definiteness of the generated covariance matrices. This induces
complexities, and more or less arbitrary model constraints. Our goal will be to stay
inside the MGARCH family, without suffering from these drawbacks and with a focus

on correlation dynamics.

But how are correlation managed in such MGARCH models ? The BEKK model
(Engle and Kroner, 1995) specifies the dynamics of the underlying covariance matrices
H,; directly as a deterministic quadratic function of past returns, but the number of
parameters has a O(N?) complexity. Hence Engle, Ng and Rotschild (1990) proposed
the Factor-GARCH model, following the intuition that comovements of asset returns
are driven by a small number of common underlying variables. As a by-product and
in both cases, conditional correlations may be obtained, but their expressions are not

intuitive or easily explicable.

Other specifications focus on conditional correlations more directly. Intuitively, uni-
variate GARCH dynamics (or others) may be chosen to get conditional variance pro-
cesses. Then, based on these dynamics, a correlation process (R;) could be built. This
was the way proposed by Engle (2002) with the Dynamic Conditional Correlation
(DCC) approach. But to cope with the positive definiteness of R;, DCC-type models
have to rely on a not intuitive normalization stage. This has been a source of difficulties
and criticism (see Caporin and McAleer, 2013), in particular to obtain a sound the-
ory for inference. Fermanian and Malongo (2016) pointed out these drawbacks when
exhibiting some conditions for the stationarity of DCC model trajectories. Moreover,
although these families may allow for generating high-dimensional correlation matrices,
their estimation and forecasting are clearly challenging without additional restrictions.
Several attempts tried to reduce significantly the number of parameters, such as the
scalar DCC processes of Engle and Sheppard (2001), the Flexible DCC model of Billio
and Caporin (2006), among others. But the ability of the latter models to capture

complex and rich dynamics of heterogeneous series is limited.

Therefore, the discussions around correlations often remain fragile and partly “black-
box”, since neither standard MGARCH or DCC-type models work directly on explicit
correlation dynamics. Indeed, the former ones set covariances when the latter ones
depend on a normalization stage. In this paper, we propose to circumvent the prob-

lem with another method using partial correlations. This approach tends to be both
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parsimonious and flexible, and will specify some correlation and partial correlation
dynamics directly. Any N x N correlation matrix may be described by N(N — 1)/2
partial correlations. Lewandowski, Kurowicka and Joe (2009) explained how to deduce
a correlation matrix from partial correlations (or the opposite), through an iterative
algorithm. With such techniques, once the indices of a family of partial correlations is
chosen conveniently, a “true” correlation matrix is generated, whatever the values of
these partial correlations are. This property will be crucial here: by producing univari-
ate dynamics of partial correlations independently, we obtain sequences of correlation

matrices without any normalization stage, contrary to DCC-type models.

An important practical question will be to choose the indices of the relevant partial
correlations. Kurowicka and Cooke (2006) showed that the partial correlations of
a random vector can be mapped to a so-called vine tree. Such objects are sets of
connected undirected trees. They have been discovered recently due to their ability
to built high-dimensional distributions through a set of bivariate copulas (one copula
per node of the vine) and marginal cdfs’. See Aas, Czado, Frigessi and Bakken (2006)
for an introduction. Here, we develop a class of MGARCH models based on regular
vines, the so-called “vine-GARCH” models. The latter models are flexible enough
by allowing independent specifications/estimations of partial correlation processes. It
is also parsimonious as one can set constraints at any level of the vine tree without

altering other correlations.

The rest of this paper is organized as follows: Section 1.2 develops some basic defini-
tions/properties of trees, vines, partial correlations and the way they will be relevant
for constructing nonnegative definite matrices. After having set the definitions and
notations of usual MGARCH and DCC models, the new vine-GARCH framework is
detailed in Section 1.3. In Section 1.4, we define the statistical inference of our new
models by a quasi-maximum likelihood (QML) procedure. The conditions of exis-
tence and uniqueness of strictly stationary solutions and the asymptotic properties
of the vine-GARCH model are provided respectively in Section 1.5 and Section 1.6.
Section 1.7 contains an empirical study with simulated data and a database of stock

returns, and then we conclude the study.
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1.2 Vines and partial correlations

This section emphasizes how to specify a relevant set of partial correlations by consid-

ering a graphical approach based on vines.

1.2.1 Vines

Let NV Dbe a set of n elements. By definition, T' = (N, ) is a tree with nodes A/ and
edges £ if £ is a subset of unordered pairs of AV with no cycle and if there is a path
between each pair of nodes. Moreover, vines on n elements are undirected graphs that
nest sets of some connected trees 77, ..., 7T,_1, where the edges of tree T; are the nodes
of tree Tj41, j = 1,...,n — 2. A regular vine (R-vine) on n elements is a vine in
which two edges in tree T} are joined by an edge in tree 7}y, only if these edges share
a common node, for any 7 = 1,...,n — 2. A formal definition is given below. See

Kurowicka and Joe (2010) for a survey and additional results.

Definition 1.2.1. V (n) is a labeled regular vine on n elements if:

1. V(TL) = (T17T27. .. ;Tn—l)-

2. Ty is a connected tree with nodes A7 = 1,2,...,nand edges ;. Fori =2,...,n—

1, T; is a connected tree with nodes N; = &;_;, and the cardinality of A is n—i+1.

3. If a and b are nodes of T; connected by an edge in T;, where a = {a,as} and
b = {b1, by}, then exactly one of the a; equals one of the b;. This is the prozimity

condition.

We consider only regular vines in this paper, and the properties we state hereafter
are true for such vines implicitly. There are n(n — 1)/2 edges in a regular vine on n
variables. An edge in tree 7} is an unordered pair of nodes of T}, or equivalently, an
unordered pair of edges of T;_;. The degree of a node is the number of edges incident
with it.

Two particular cases of R-vines are important, traditionally. A regular vine is called
a canonical vine (C-vine) if each tree 7; has a unique node of degree n — i, i.e. a node
with maximum degree. A regular vine is called a D-vine if all nodes in T} have degree
not higher than 2.
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The variables reachable from a given edge via the membership relation are called the
constraint set of that edge. When two edges are joined by an edge of the next tree,
the intersection of the respective constraint sets are the conditioning variables, and
the symmetric differences of the constraint sets are the conditioned variables. With
the notations of point 3 of the previous definition, at tree T}, say a; = by, and a; is a
common element of @ and b. This means that, at tree T}, 1, a; enters the conditioning

set of (ag, by). Thus, we define the conditioning and conditioned sets formally as follows.

Definition 1.2.2. For e € &, 7 < n — 1, the constraint set associated with e is
the complete union of the elements in {1,...,n} that are reachable from e by the

membership relation. It is denoted by U

Definition 1.2.3. For i = 1,...,n — 1, if e € &;, it connects two elements j and
k in N; and it can be written e = {j,k}. The conditioning set associated with e is
L. := UrNUg, and the conditioned set associated with e is a pair {Ce;, Cer} =
{Us\ L. Ui \ Lo}

Obviously, since the edges of a given tree T; are the nodes of T}, the same concepts
of constraint/conditioning/conditioned sets apply to all the nodes in a vine.

Lemma 1.2.4. (Bedford, Cooke, 2002)

Let a reqular vine on n variables. Then,
1. the total number of edges is n(n —1)/2;

2. two different edges have different constraint sets;

3. each conditioned set is a doubleton and each pair of variables occurs exactly once

as a conditioned set;
4. ife€ &, then #Ur =i+ 1, #L. =1—1;

5. if two edges have the same conditioning set, then they are the same edge.

In a regular vine, the edges of T,,11 (equivalently the nodes of T,,,5) will be denoted
by e = (aj, ag|b1,...,by), where a;, a; and the by, [ = 1,...,m are different elements
in {1,...,n}. This notation means that the conditioning set of e is L. = {by,..., b},
and the conditioned set of e is {a;,a;}. Both C-, D- and R-vine and the concepts

above can be visualized on Figures 1.1, 1.2 and 1.3.
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To have the intuition, keep in mind that a node represents a random variable, and
an edge between two nodes means we will specify the dependence between these two
particular nodes, in general through a copula (that will be reduced to a partial cor-
relation hereafter). Such copulae have to be defined afterwards, but, for the moment,
assume this can be done easily. Typically, the goal is to describe the joint law of the n
asset returns. For instance, in Figure 1.1, the five nodes in T} may be the asset returns
r;, @ = 1,...,5, associated to stock indices. The first tree tells us we will specify the
dependencies between r; and the other returns r;, ¢ > 1. Here, we select 1 as the core
index (the “main factor”) in this portfolio. Once we have controlled the 7;—related
dependencies, the new nodes in 75 are conditional asset returns given r;. We select
asset 2 given 1 as the “most relevant” one. The new edges tell us we focus now on
conditional copulae between the latter node and the returns r; given r, j = 2,...,5.
And we go on with 75, dealing with the asset returns r; given ry and r9, 7 = 3,4, 5, etc.
With such a C-vine and a set of convenient bivariate copulae, we obtain the joint law
of (r1,...,r5) by gathering and multiplying conveniently all the (conditional) copulae
we haver considered above. This is the simplest way of building vines. Obviously, more
complex structures may be relevant too, as in the R-vine of Figure 1.3. With hetero-
geneous portfolios, for instance, it would be fruitful to particularize several nodes in
Ty. See Aas et al. (2006) for other insights. In terms of model specification, the first
chosen trees are crucial because they correspond to our intuitions (our “priors”) about
the most important linkages among the assets in the portfolio. Moreover, from some
level on and in practice, it is often possible and useful to assume no dependencies: see

the “r-vine free” property in Definition 1.2.10 below.

The next section focuses on how such vines can be related to some subsets of the partial

correlations that are associated to a random vector.

1.2.2 Partial correlations

Let X = (Xj,...,X,) be a n-dimensional random vector, n > 2, with zero mean.
For any indices 7,5 in {1,...,n}, i # j and any subset L C {1,...,n}, for which i
and j do not belong to L, p; ;. is called the partial correlation of X; and X;, given
Xk, k € L. It is the correlation between the orthogonal projections of X; and X; on
< X,k € L >1, the orthogonal of the subspace generated by {X, ¥ € L}. When
L is empty, then p; jjo = p(X;, X;) := p;; is the usual correlation. Note that, if the
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random vector X is normal, then its partial correlations correspond to some conditional

correlations.

Interestingly, partial correlations can be computed from usual correlations with a re-
cursive formula. Let (7, j, k) be any set of distinct indices, and L be another (possibly
empty) set of indices that is disjoint from (i, 7, k). Following Lewandowski et al. (2009),

we have
Pij|L — Pik|LPjk|L

Pijlk,L = :
\/(1 - p?,k\L) (1 - P?,m)

Assume we know the usual correlations p; ;, for any couple (i,j), ¢ # j. We check

(1.2.1)

easily that any partial correlation can be calculated by invoking (1.2.1) several times
with increasing subsets L. Actually, the opposite property is true if we start from
a convenient subset of partial correlations. Indeed, the edges of a regular vine on n
elements may be associated with the partial correlations of a n-dimensional random
vector in the following way: for ¢ = 1,...,n — 1, consider any e € &;, the set of edges
at tree T;. Let {j, k} be the two conditioned variables of e, and L, its conditioning set.
We associate the partial correlation pjkr, to this node. Kurowicka and Cooke (2006)
call this structure a partial correlation vine specification, that is simply a R-vine for
which any edge is associated to a number in |—1,1[. Actually, all positive correlation
matrices may be generated by setting a (fixed) R-vine on n variables, and by assigning
different partial correlations to all the nodes of this vine. This means setting p. to any
e c :Ell&, and these partial correlations may be chosen in |—1, 1[ arbitrarily. This is
the content of Corollary 7.5 in Bedford and Cooke (2002).

Theorem 1.2.5. (Bedford, Cooke, 2002)
For any reqular vine onn elements, there is a one-to-one mapping between the set of nx
n positive definite correlation matrices and the set of partial correlation specifications

for the vine.

In other words, any set of n(n — 1)/2 partial correlations that are deduced from a
regular vine induce a true correlation matrix. Actually, the formulas (1.2.1) above
enable to build such n x n correlation matrices based on n(n — 1)/2 arbitrarily chosen
partial correlations (see Kurowicka and Cooke, 2003, or Joe (2006)). For a given
partial correlation vine, some explicit algorithms can be written to map the (usual)
correlations and the underlying partial correlations: see Lewandowski et al. (2009).
Such algorithms are available in the R-package called “vine-copula” (see Brechmann

and Schepsmeier (2013), for instance).
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Definition 1.2.6. Let a vine V(n) = (11,75, ...,T,,—1). The set of partial correlations
associated to this vine is denoted by C’V(n) = (C(Th),C(T3),...,C(T,-1)). Denote by

R(C’V(n)) the set of usual correlations that are deduced from éV(n)-

Theorem 1.2.5 means that, whatever the values of the partial correlations C’V(n) asso-
ciated to a regular vine V(n), we get a true correlation matrix with the coefficients
R(C’V(n)). Since a standardized Gaussian random vector is fully specified by its cor-
relation matrix, we obtain its joint law once we have chosen a partial correlation vine
specification. At the opposite, for any Gaussian vector, there are many corresponding
partial correlation vine specifications. In a Gaussian world, we recover the interpreta-
tion of vines as descriptors of random vector distributions. But more generally, partial
correlation vine specifications can be associated to any random vector, just to describe

its correlation matrix (when it exists).

We now turn to the significant results that ensure the positive definiteness of the cor-
relation matrices when using vine representations. By recalling equation (1.2.1), the
following result ensures that any correlation computed from arbitrary partial correla-

tions (belonging to |—1, 1[, obviously) is still an element in |—1, 1].

Lemma 1.2.7. (Kurowicka, Cooke ,20006)
If z,x,y € |—1,1], then also w € |—1, 1] with

w=2v/(1—22) (1 —y2) + zy.

The next theorem enables the easy generation of sequences of correlation matrices.
It will constitute an attractive feature of the vine-GARCH models introduced in Sec-

tion 1.3.

Theorem 1.2.8. (Kurowicka, Cooke, 2006)
Let D,, > 0 be the determinant of the n-dimensional correlation matriz 3, = [p; jlij=1.. n-

For any set of partial correlations generated by a reqular vine,
n—1
Dn - HH (1 B p?vku/e) ’
i=leck;

where (j,k) and L. are respectively the conditioned set and the conditioning set of an

edge e.
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Corollary 1.2.9. Whatever the values of set of partial correlations generated by a

regular vine on {1,...,n}, the associated matriz [p; ;| is nonnegative definite.

Proof of Corollary 1.2.9. By Theorem 1.2.8, D,, is nonnegative whatever the values
of the partial correlations in P, := {Pj,kILe}) that induce the correlations p;;, 4,7 =
1,...,n. But the same result applies for every matrix X5, k = 1,...,n—1 too. Indeed,
given P,, we are able to calculate all the p;;, 7,7 = 1,...,n (that belong to [—1, 1]
by Lemma 1.2.7), and then any set of partial correlations associated to any new vine
on {1,...,k}, k < n by invoking (1.2.1). And Theorem 1.2.8 can be applied to 3.
But a symmetrical matrix for which all the main block diagonal submatrices have

nonnegative determinants is nonnegative. [

To illustrate these ideas, let us revisit Figure 1.1 under a partial correlation point of
view: an associated partial correlation vine will specify the set of partial correlations
{012>,013,014,/)15,,023\17024|1,/)25|1,P34|12>035|12,P45|123}, that is sufficient to recover the
correlation matrix between the five assets. To interpret such numbers, we can consider
linear regressions of some conditioned sets on their conditioning sets. For instance, the
node (1,2) and the node (1,3) are connected, and the model will specify the partial
correlation pygj3. This is the correlation between the residuals of the linear regressions of
ro and r3 on 1. Roughly, this measures to what extent ry an r3 are “dependent” given
r1. In practical terms, an econometrician could classify the portfolio components by
their (a priori) order of importance. This order may depend on the final phenomenon
that is modelled. For instance, if the portfolio payoff depends strongly on emerging
markets, it may be relevant to select “Russia” or “Brazil” first instead of “the USA”.
Intuitively, the latter strategy is intermediate between a factor model where we would
regress any asset return on a few pre-specified ones, and a PCA where the factors are

linear combinations of all returns.

This way of interpreting C-vines has to be revisited with D-vines or even general R-
vines. Roughly, D-vines are based on an ordered vision of dependencies across asset
returns: any asset is associated to one or two neighbors, with whom correlations are
relatively strong. Once they are controlled, the main remaining risk is measured by the
correlation with (one or) two other known assets, etc. Such a linear view of the strength
of dependencies is probably unrealistic in finance. At the opposite, R~vines allow very

general and flexible hierarchies and orders among the sequences of partial correlations
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of interest. Virtually, they allow to integrate any a priori “prior” information, as long

as it is consistent with the proximity condition.

For the sake of parsimony, it would be interesting to cancel (or to leave constant, at
least) all partial correlations associated to a vine, after some given level r. When zero
partial correlations are assumed after the latter level, we would like to know whether
the corresponding (usual) correlations depend on the trees T}, T;.41, . . ., T,,_1 that could

be built above.

Definition 1.2.10. We say that a vine is 7-VF (VF for vine-Free) if
R(C(TY),C(Ty),...,C(Th-1)) = R(C(T1),C(Ty),...,C(T,-1),C(T)),...,C(T,_})),

for any alternative vine V'(n) = (T1,Ts,...,T,-1,T),..., T} _,), where the partial

correlations associated to the edges of T}, k > r, are zero.

If a vine is 7-VF, once the partial correlations are zero above the level r, the correlations
are independent on the way this vine has been built from this level. This r-VF property
actually holds for any R-vine. This is a consequence of Theorem 2.3 in Brechmann
and Joe (2015). They observed that the density of an underlying Gaussian vector is
not altered when choosing arbitrary trees T,..4,...,7,,_1 with associated zero partial

correlations.

1.3 vine-GARCH correlation dynamics

1.3.1 The usual DCC-GARCH framework

When dealing with correlation dynamics, the Dynamic Conditional Correlation model
(DCC) of Engle (2002) is probably the most commonly used approach, inside the
MGARCH family. We denote by (€;)
stochastic process, whose dynamics is specified by 6, a finite-dimensional parameter.
Denote by (F;) the natural filtration, i.e. F; := o(es, s < t) and E;_1[X] := E[X|F;_4]

for any random quantity X. The key model assumption is

+1 1 a sequence of N-dimensional vectorial

e = H*0)n, (1.3.1)
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where the series (1), is supposed to be a strong white noise s.t. E[n;] = 0 and
Var (n;) = Iny. We suppose H,; (0) := H; := Var,_; (&) is a N x N positive definite
matrix. At this stage, the model is semi-parametric. Its specification is complete when
the law of 7, and the dynamics of (H;(#)) are specified. In this paper, we focus on the

latter point mainly.

The matrix H; represents the unobserved time-dependent conditional covariance ma-
trix of the process (). A brute-force inference of all model parameters seems unfeasible
even when the dimension NV is small. To avoid this problem, a common approach con-
sists of splitting the problem into two simpler ones: modelling conditional volatilities
on one side, the correlation dynamics on the other side. This is the key idea of DCC

models that we detail now.

Denote by h;,; the conditional variances of (¢;¢) and p;;+ the conditional correlations

between €;; and €;,, for ¢,7 = 1,..., N, ¢ < j. In matrix notation, H; = DR, D,
where D; = diag(h}{f, ce h]l\ﬁ) is the diagonal matrix of the conditional volatilities,
and R; = [pij4] is the matrix of the conditional correlations. By construction, R;

is the conditional covariance matrix of the vector of the standardized returns u, =
(Ui gy ..., uny) With u;y = €;4/+/hir. Both volatility and correlation dynamics depend
on a specific set of parameters given by 8 = (6,,6,) € ©, x O, where 0, (resp. 0,) is

the set of parameters determining the volatility processes (resp. correlation process).

Let us assume that, for every ¢ = 1,..., N and t, there exists a function h; s.t.

hi = h; (Qq(f); €it1s- e Eitmgis Mgty - Pit—p;) (1.3.2)

)

for some positive integers p; and ¢; and some parameter oY € RP+a+1, Once stacked,
the parameters oV provide 60,. Typically, we could assume GARCH(p;,q;) processes
in (1.3.2), or even other univariate GARCH-type models (EGARCH, GJR-GARCH,
T-GARCH, etc). Since our vine-GARCH framework only needs consistent estimates
of conditional volatilities, as deduced from this first stage, there is a large amount of

liberty to specify the individual volatility dynamics.

Note that we have supposed no spill-over effects between different asset volatilities
in Equation (1.3.2). This assumption simplifies the estimation of 6, by allowing an
equation-by-equation inference procedure, and it is almost unavoidable when N is

large. This absence of spill-over effects is commonly used in the DCC literature, even
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if it may be questionable. Indeed, some studies have exhibited significant spill-over
effects empirically: see Hamao, Masulis and Ng (1990), Koutmos and Booth (1995),
Liao and Williams (2004), among others. We stress that this point if not crucial for
our vine-GARCH model, and this assumption could be removed: see Remark 1.4.12

below.

Several (R;) dynamics have been proposed in the literature. All of them have to cope
with the positive definiteness of the correlation matrix and should not depend on too
many parameters. The time-varying correlation model of Tse and Tsui (2002) and the
DCC model (Engle and Sheppard, 2001) were the first attempts to model dynamic

correlations. In this study, we consider the latter as our benchmark.

The DCC model specifies dynamics of the covariance matrix of the de-garched returns
uy directly. In its full form, called “Full DCC”, the model belongs to the MARCH
family of Ding and Engle (2001) and is specified as

Q=wW-A-B)0S+A0w 1u_; +BOQi1, R = :_1/2 ¢ :_1/27

where Q; = [¢;;+] and QF = diag(qi1+, G224 - - -, qnnt)- Above, S, A and B denote N XN
symmetric matrices of unknown parameters and © is the usual Hadamard product of
two identically sized matrices. Following Ding and Engle (2001), if (¢’ — A — B) ® S,
A and B are positive semi-definite, then the matrix @), is positive semi-definite. The
significant downside of the full DCC model is its intractability as the (Q;) process
encompasses 3N (N + 1)/2 coefficients. In most empirical studies, the scalar DCC-
GARCH is considered instead, where A and B are replaced by non negative scalars «

and [ times the identity matrix.

Billio and Caporin (2006) devised the Quadratic Flexible DCC (QFDCC), which re-
duces the size of the problem while remaining flexible. In the general form of a QFDCC

model, the correlation driving process (@) is defined as
Q. = C"SC + Ay, A+ B'Q, 1B, R, =Q; *Q.Q; ",

where S, A, B and C' are unknown matrices, S being symmetric positive. This model
allows for interdependence across groups of assets. The correlation matrices are positive
definite if the eigenvalues of A + B are less than one in modulus. This model is
parsimonious when the matrices A, B and C are diagonal. This yields to a model with

3N unknown parameters, after correlation targeting.
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The set of correlation parameters of the DCC is 6, = (S, A, B), whereas for the QFDCC
it is 0. = (S,C, A, B). In the literature, DCC-GARCH models with correlation tar-
geting are implemented generally by considering the matrix S as the unconditional
covariance matrix of the standardized residuals. However, in the case of a scalar DCC,
Aielli (2013) has shown that this procedure produces biased estimates in general and
proposed a corrected version of the model called cDCC. Actually, the scalar DCC and
c¢DCC specifications provide empirically very close results. Therefore, in our empirical
study, we consider the scalar DCC and the diagonal QFDCC.

1.3.2 Owur model specification

In a DCC-type model, one has to rely on intricate normalizations to build sequences of
¢; correlation matrices. This makes the interpretation of the (R;) dynamics not intu-
itive, because it is deduced from another underlying process (Q);). Another drawback
of the DCC is the lack of parsimony because the number of parameters grows rapidly,
as in general BEKK models. Most of the time, DCC ones are used in a scalar form,
but this modeling often fails in capturing fine-tuned and heterogeneous correlation dy-
namics. In this paper, we develop a method that ensures both parsimony and positive

definiteness without relying on any normalization.

The idea is based on the modeling of a set of partial correlations, which parameterizes
any correlation matrix. We use a partial correlation vine specification, i.e. a given
regular vine and N(N — 1)/2 numbers in | — 1, 1] to specify the corresponding partial
correlations. And we invoke the one-to-one mapping between these N (NN —1)/2 partial
correlations and the N(N — 1)/2 “usual” correlations. The former are stacked in a
vector Pc; and the latter are the coefficients of R;. We order partial correlations
lexicographically, from the shortest to the longest sets of indices. Then we propose the

following “partial correlation” dynamics

Ht - Z)thl)t7 (133)
p q

U (Pe,) = Q+ ) E0 (Pogy) + > M, (1.3.4)
k=1 =1

R, = vechof (Fyine (Pct)), where (1.3.5)

e The vector Pc; is the “partial correlation vector” deduced from a given R-vine

structure.
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e vechof(+) denotes the operator “devectorization”, that transforms a vector into a

symmetric matrix. It is the opposite of the usual operator vech(-).

e The Z; and A; denote N(N —1)/2x N(N —1)/2 matrices of unknown parameters,
and € is a N(N — 1)/2 unknown vector. Set the vector of parameters 6. =
(Q,51,...,5,,A1,...,Ay). Note that these matrices are arbitrarily chosen, and

we do not impose non negativeness, in particular.

e The vector (;_; is JF;_i-measurable and updates the selected partial correlations
at time ¢. Such ;1 must be built so that E[¢;_1] ~ E[Pc¢;_1]. This procedure is
in line with usual updating equations in GARCH-type models.

e We apply a deterministic transformation V(.) to Pc¢,. It twists the univariate
dynamics to manage the constraint that partial correlations stay in (—1,1). For

the sake of simplicity, ¥(.) will be known *. To fix the ideas, ¥ is defined from
-1, 1[N(N_1)/2 to RVWV=1)/2 g4

U(Per) = (Y(pr2)s - - V(N N-1lLy 1)+ ¥ () = tan (72/2).

Alternatively, U(.) could be chosen among the sigmoid functions for instance, for
which ¥ (z) = (exp(azx) — 1)/(exp(ax) + 1) for some a € R.

e The function Fii,(.) corresponds to the one-to-one mapping from the vector
of partial correlations Pc; to correlations (in R;) by using the algorithm of
Lewandowski et al. (2009). It is defined from |—1, 1[Y® ™72 to itself by

Fiine (Pl,Q,t, e aprl,N\L,t) = (P1,2,t, e aPN—l,N,t)/ .

Partial correlations are expectations of products of the two different quantities vy,
for some L C {1,..., N} and k ¢ L, which are defined as

€kt — Ei 1 [Ek,t|€L,t]

Vk|Lt = \/— )
’ P

and E;_; [e|€r¢] corresponds to the orthogonal projection of the

where €7, = (Q,t)ieL’

variable €, on the space spanned by the vector € ;. The variance of the “residual”

€kt — Ei1 [erylen,] is denoted by hyjr,. The variables vy, are not observable, but

!There is no doubt the methodology could be extended to deal with a parametric function ¥, i.e.
that would depend on an unknown finite-dimensional additional parameter. Nonetheless, this would
complicate the proofs in Section 1.6, while it is not a key point here. Such an extension is left to the
reader.



Chapter 1. Dynamic Correlation Model based on Vines 26

we can evaluate E;_; [ex+|er ] and Py to get Oy r, an approximated value of vy r ;.
Then, by construction, the N(N —1)/2-sized vector ¢; will stack the variables 0;1, ,0j1 4,
when (7, j|L) is an edge of the underlying vine. The order of these edges in ¢; will be

the same as for Pc;.
By definition, Equations (1.3.1)-(1.3.5) define a so-called vine-GARCH(p,q) model.

In full generality, this simplified version of the vine-GARCH(p, ¢) model still encom-
passes (p+ g+ 1)N(N — 1)/2 parameters. However, this approach can become easily
more parsimonious and would provide a nice alternative to full DCC-GARCH models.
Indeed, since the »-VF property applies, one can set constraints to any level of the tree
(say r), and choose zero partial correlations at and after the r-th tree in the underlying
vine. We guess this should not modify significantly the (true) correlation dynamics, at
least when r is large enough. This is due to the fact that partial correlations with non-
empty conditioning subsets are correlations between residuals. In practice it is likely
that these residuals tend to behave more and more as white noise when the number
of conditioning variables increases and for a well-chosen R-vine. By canceling partial
correlations after the step r, we get a particular model with less parameters than in the
full vine-GARCH specification. And whatever the chosen structure of the vine is after
level r, the reconstruction formulas (1.2.1) provide the same correlation matrices. This
is a nice theoretical property. A slightly different simplification of our vine-GARCH
models would be to assume constant (non zero) partial correlations after some level

(say r) in the vine. But in this case, we cannot ensure a similar -VF property.

Remark 1.3.11. Obviously, alternative dynamics could extend our vine-GARCH(p,q)
specification (1.3.4). For instance, it could be possible to modify the model to include
nonlinear features as asymmetries, switching regimes, time-varying parameters, exoge-
nous variables, etc. A whole class of models is now open, based on partial correlations,
exactly as the original GARCH framework of Bollerslev (1986) has been modified and

revisited.

At time ¢, the vector (; is a key information as it drives the shocks on the partial

correlation processes. Here, we propose two ways of evaluating 0z ;, and then (.
The first method is based on the linear regression of €, on €y ;:

€t = iz + Byrers + &, Elrilerd = 0.
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Then, we approximate €; — Ele;|er ] by € — Qg — BA,’C‘ €1+ and an empirical “rolling-
window” estimator of hz; can be defined by lAzk|L7t = m_lii(em_i —dk|L—B,’§|L€L¢_i)2,
for some windows size m. Such size should increase with 7" in theory but trying to
exhibit some “optimal” m is beyond the scope of the present work. We get Oy p; =
(Gl +B;C|L€L’t)/ fzk‘u, and then ;. This approach may be termed “non parametric”
in the sense that it does not rely on any hypothesis about the conditional distribution

Of €t.

The second method is based on the theoretical distribution of the residuals ¢; given
Fi_1, that is unknown at this stage. In accordance with our Gaussian QMLE, assume
the latter distribution is elliptical. Then, its first two conditional moments can be
calculated easily. Indeed, if a vector (X,Y) is elliptical with X xx = Var (X), Syy =
Var (Y), Yxy = X,y = Cov(X,Y), then E[X|Y] = E[X] + Zxy Y3 (Y — E[Y]) and
Var(X|Y) = Sxx — ZxyXyyZyx: see Corollary 5 in Cambanis, Huang and Simons
(1981). Hence we can calculate easily Opjp¢ = Vpjne = (€ne — B4y [ek,t|6L,t])/\/m.

To be specific, under these assumptions, we write
-1
Ei 1 [Gk,t|€L,t] = Covy_y (Gk,t, EL,t) Var;_; (GL,t) €Lt

hk\L,t = Var,, (€k,t —E. [Ek,t|€L,t])
= Var;_y (€x+) — Covi_y (€xt, €0¢) Var,_q (EL,t)_l Covi_1 (€Lt €rt)
and the latter conditional covariances are JF;_; measurable, i.e. are known at ¢t. In
the theoretical part of the paper (Section 1.5, Section 1.6), this second method of
calculation of (; is used because the innovations 7, are assumed to be elliptical. In the
empirical part (Section 1.7), this is the case too but only for convenience (higher speed

of calculations).

1.3.3 Vine selection

The methodology above can be applied to any R-vine on N elements. Actually, the
structure of the underlying R-vine may be seen as an additional parameter, indepen-
dently of .. Selecting a convenient R-vine may be useful to describe the dependence
among the variables in a parsimonious and meaningful way. In particular, this would
allow for the truncation of a given R-vine, once some important factors have been

found in the first trees.
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To do so with a C-vine, we can follow the sequential method developed by Dissmann,
Brechmann, Czado and Kurowicka (2012). This method consists in starting by com-
puting the Kendall’s tau of all the couples of nodes, and selecting the variable, which
induces the highest degree of dependence with the other ones. In the second tree, we
compute a Kendall’s tau per edge, but conditional on the variable chosen on the first

tree. That is:

1. For tree T} and Ny = {1,--- , N}, maximize the dependence criteria:

i() < arg maXZ|fij|,
b
where 7;; is the empirical Kendall’s tau and 7, denotes the index of the variable,
which maximizes this criterion. This variable is the root to build the edges on

tree T, which are the nodes on tree T5.

2. For j=2,--- N — 2, Dy = p; = ip, maximize the dependence criteria:

pj < arg max E |7'jk|Dj,1|7
J#pj-1,J7#k

where D; = D;_; U p;.

This sequential approach provides step-by-step the variable which should enter the

conditioning set for the next tree.

We use nonparametric statistics proposed by Veraverbeke, Omelka and Gijbels (2011)
to compute these quantities. We apply the same selection criteria to choose the con-
venient variable and proceed with the next trees similarly, until the last tree. The
Kendall’s tau is used as a dependence measure because it can be easily estimated,
but other dependence measures are possible. This selection procedure is “bottom-up”.
Alternative methodologies exist, in particular the “top-down” procedure of Kurowicka
(2011).

1.4 Statistical inference by QML

We can estimate vine-GARCH(p,q) models by maximizing a likelihood function that

does not correspond to the true Data Generating Process necessarily, following the
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Quasi-Maximum Likelihood (QML) methodology, as explained in Gourieroux, Monfort
and Trognon (1984), Bollerslev and Wooldridge (1994) or White (1994), among others.

1.4.1 The QML estimator

We choose a standard Gaussian QML estimator: we do a MLE as if (1;) were a Gaussian
white noise, but for inference purpose only. Obviously, the “true” underlying distri-
butions of these innovations may be different. Note that the n,-law can be estimated

~1/2¢,. Using the assumed

empirically a posteriori from a sample of residuals Rt(é)
independence of the innovations 7, and developing H; as D, R;D,, the quasi-likelihood

function of a path (€;)i=1 7 is written as

.....

T
1
Ly (6;¢) = Hexp {—5 (N log (2m) 4 log (| DRy Dy|) + eth_lRt_lDt_let)}

T
Hex {—— Nlog (27) + log (|D2|)+€tDt er — upue + log (| Re]) + up Ry ut)}

t=1

where D, = diag(hy/,...,hy2), and uy = (e1 /by .. eni/hy3) = D' is the
vector of GARCH standardized residuals. Thus, the quasi-log-likelihood function is
the sum of two parts: the “variance part” of the likelihood, that depends on 6,, and

the “correlation part”, that depends on both 6, and 6.. Therefore, our estimate éT,U
of 8, is

N T 2
) » = argmin Grly(¢;0,) li4(0y; €)= log (h; = 1.4.1
T, g@ Tl Z lt t) Z_:z:: [ g (h t h'zt:| ( )

v =1 t=1

The Newton-Raphson method is applied to solve such system. Note that éTﬁv deter-
mines the (now estimated) variance processes (h;;) and then the (estimated) residuals

uy, denoted by 4;. Given éT,v, a QML estimator of 6, is obtained as

T T

. . 1 .

Or. = argemin Grla(et; 014, 0.) = T E loi(€t;074,0.) = E [log (|Ry]) + a;Rglat} )
t=1 t=1

c

(1.4.2)

Strictly speaking, all the likelihood equations above depend on the initial values €y, Dy

and Ry. To fix the ideas, we propose to initialize them by their sample counterparts:

- T -
forall i =1,--- N, set eg =0, hig = 75> €14, Do = diag(h}/g, o hl/z) and Ry is
i=1
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the empirical correlation matrix of the sample path (e, ..., er). To obtain convergence

of O, we will need the asymptotic irrelevance of these initial values (see Section 1.6).

Remark 1.4.12. The absence of volatility spill-over effects allows for the estimation
of 6, through N simple optimizations independently. Obviously, if we remove this
assumption, such an estimator can still be obtained by (1.4.1). But, in general, this
would require an optimization in a high-dimensional space, a task that becomes harder
and harder with N.

Remark 1.4.13. It is possible to choose another QML parametric family that would be
more adapted to fat tailed distributions typically (for instance the multivariate Student
law, or any elliptical distribution). But then, we would loose the nice property of a

two-stage estimation procedure, that is so important in practice.

1.4.2 Estimation strategy

Unfortunately, the underlying process (R;) induces tricky computations of scores and
Hessians for Grly. This is the case for both DCC and vine-Garch dynamics. Here, we

propose two strategies depending on the dimensionality of the problem.

In this study, our DCC specifications are not highly parameterized: the scalar DCC
(resp. diagonal QFDCC) requires the estimation of 3 (resp. 3N) parameters, after
correlation targeting. Consequently, the Sequential Quadratic Programming method
is implemented for these dynamics, since it is well-suited for constrained optimization

with a “reasonable” number of parameters.

As the general DCC model, the vine GARCH specification may suffer from the curse
of dimensionality. However, when the matrices of parameters =; and A are diagonal
(a usual situation), it is possible to weaken drastically this problem by proceeding
sequentially. Indeed, in partial correlation R-vines, any partial correlation on tree T}
can be updated (through the (; quantities) easily knowing the partial correlations on

the previous trees Ty, k' < k —1 2.

Let us detail the sequential procedure for a C-vine, w.l.o.g. Instead of relying on a

brute-force optimization in high dimension, a vine-GARCH model based on a C-vine

2To be specific, at a given node (ij|L) of a R-vine, we need to calculate the Cljlnyi—ts L=1,...,q.
As explained in 1.3.2, this necessitates the calculation of conditional covariances of the subvectors
associated to the indices (¢L) and (jL). Since L is the conditioning subset at this node, this is always
possible once we have evaluated all node dynamics associated to the previous trees.
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may be estimated by solving N x (N — 1)/2 simple optimization programs, related
to the bivariate dynamics that are associated to any node. This means we estimate
successively the dynamics of (e, €;;) where the N x (N —1)/2 couples (i, j) describe
the conditioned subsets of all the nodes in the underlying C-vine, starting from the

bottom tree.

To be even more explicit, denote the nodes of the vine by {(ij|L)}, and the un-
known matric parameters as = |[wup), Sk = diaguinw), ¥ = 1,...,p and
Ay = diag(Agjinyg), L = 1,...,¢. Assume the underlying C-vine is given in Figure 1.1.
In particular, 1 is the root in the first tree. The N —1 first partial correlation dynamics
are “usual” correlation processes and depend on the estimated volatility and the obser-
vations. The parameters of these N — 1 first processes can be minimized independently

based on the objective functions

o . 1. .
GTZ;] (6; QT,U; 90,1j) = Z [log |R(1j),t| + Ul(lj)i (R(lj)ﬂf) u(lj)i] ,J=2,...,N,
t=1
where Uy, = [ti1y, Uj4)" and Rpjy, is the 2 x 2 correlation matrix of (e14,€;,) given
Fi—1. With obvious notations, 0.1; = (wlj,ﬁlj, ’\lj) are the remaining unknown pa-

rameters that are associated to the bivariate process (e, €;.).

Now, after conditioning by 1, there are N — 2 dynamic partial correlations in T5. Due
to (1.7.2), they follow the ARMA-type dynamics

P q
(G (p2j|1,t) = W1 + Zfzju;kw (p2j|1,t7k) + Z )\2j|1;l@2\1,t4@j\1,t—17 J=3,...,N.
k=1 =1
For QML inference purpose, we assumed ¢;|F;_1 ~ N (0, H;). As explained in Subsec-
tion 1.3.2, Uy14—1 above depends on the volatility processes, the observations and the
correlations calculated from tree 77. Hence, we can estimate the partial correlations
dynamics on tree Ty by maximizing N — 2 objective functions independently over each
correlation parameter space of tree T5, given the estimated correlations on 7. The

objective functions are, for all j =3,..., N

T
i A N ~ ~ -1 .
Grly" (6,070, prz, prji Oc2jin) = Y [10% | Riajy | + oz (Re2jy ) “(Zj),t] :

t=1
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Here, Ry is the correlation matrix of (egy,€;¢) given Fy_i. Its coefficient pyj, is
computed from the estimated dynamic partial correlations pg;1,, and the (estimated)

) . B . . ey
correlations pu¢, [ =2,..., N. Obviously, G = [Uj, Uk -

We apply the same reasoning for the next trees in the C-vine. There are N —3 objective
functions to be maximized on tree T3, N —4 on tree Ty, etc, until tree Ty_; where only
one objective function needs to be maximized. The estimation of any partial correlation
process of a tree T}, depends only on a subset of partial correlations associated to the
nodes of T_; and before, invoking the recursive formula (1.2.1). Consider any node
(ij|L) in T} and denote by 8., = (wij‘L, &ijins )\ij|L) the associated subvector of ..
For instance, with our C-vine of Figure 1.1, L does not depend on the conditioned
subsets and is L :=L; = {1,...,i— 1}, k=2,..., N — 1. Our iterative algorithm can

be summarized as

A B . ij|Li /A A A .
0T,c,ij|Li = argmin GTlg Z(QT,’LM €7pi—1,z'\Li_17pi—l,j|Li_1a9c,z’j|Li)7
c,ij|L;

for every i and j in {1,..., N}, i < j.

We denote this strategy C-vine (D-vine, or even R-vine) iterative process, which is
particularly effective when N becomes “large” (say larger than 5 assets). At each node
on a specific level, only (p+ g+ 1) parameters need to be estimated. Consequently, we
also use the Sequential Quadratic Programming method when estimating the C-vine

iterative process.

A drawback of the latter iterative process may be the propagation of estimation errors
from one partial correlation level to the next one. It is still possible to estimate the
vine-GARCH at once for reasonable portfolio sizes (N < 5) to avoid this iterative
method. But the nonlinearity and the instability of the likelihood function in the
vine-GARCH case require another approach to maximize Grly(e;.). In such a case,
we propose to use a stochastic algorithm, the simulated annealing, that prevents from
falling in local maxima. Note that the simulated annealing algorithm can also be used
when estimating model through the previous iterative methodology. However in this
case, the Sequential Quadratic Programming is a lot quicker, which is the reason we

used this method in the simulation study.
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1.5 On the stationarity of the vine-GARCH pro-

cess

We prove the existence of stationary solutions, which is the first step towards providing
asymptotic results (consistency/asymptotic normality of QML estimates), because law
of large numbers (potentially uniform) and some Central Limit Theorems are obtained
easily in this case. In the GARCH literature, proving stationarity properties has been
fulfilled notably by Bougerol and Picard (1992) for univariate GARCH models, by
Ling and McAleer (2003) for multivariate ARMA-GARCH models, by Boussama et al.
(2011) for BEKK models, notably.

After introducing some notations, we specify the vine-GARCH model. It is rewritten
as an “almost linear” Markov chains in Subsection 1.5.2. The existence of strong
and weak stationary solutions is stated in Subsection 1.5.3. Subsection 1.5.4 exhibits
sufficient conditions to get their uniqueness. These probabilistic results are established

for the p = ¢ = 1 case.

1.5.1 Notations

Let A € Mxm(R).

o If n=m, then dlag(A) = (aij]_i:j)lgigm,lgjgm and VGCd<A) = (aii>1§i§m c R™,

e If n = m and A symmetric, Vech(A) € R? with ¢ = m(m + 1)/2 such that the

components are those of A column-wise without redundancy.

e If n = m, then p(A) is the spectral radius of A, that is the largest of the modulus
of the eigenvalues of A. We denote A;(A) the smallest eigenvalue of A positive
definite.

e The Kronecker product is denoted @ and A®* = A A®---® A (k times). The
Hadamard product is denoted ©.

e In the following, we consider the submultiplicative norm

| Az]|
[A[] := sup{ ——=, @ # 0},

]
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where z € R™ and ||z|| is the Euclidean norm of vector x. For B € M, (R),

this norm satisfies
IAB| < |AlIB]l, Trace (AB) < (nm)"*||A|l||B]|.

We define the spectral radius norm for squared non-negative matrices, which is

submultiplicative, as
| A5 := sup{V/A: X € Spect (A’A)}.
We also define the maximum absolute column sum of a matrix A € M,,,«,(R) as

[A]loe = max > 141
j

e For a N dimensional vectorial process (¢;):, we denote ¢ = (€14, -+ ,€en,) and

€ = (6%,157 R 6?V,t),‘

e We denote by CP(E) the space of all continuous and bounded functions f : E —
R.

The quantity of interest is H;, which is split between volatility terms contained in D,
and correlation terms in R, as

Ht — DthDt, (151)

where D; = diag(y/hi1, -+, v/hnwne) is the diagonal matrix of the conditional vari-
ances, which is F;_; measurable. The F;_; measurable (D;) process contains compo-

nents supposed to be univariate GARCH dynamics without cross-effects, such that
Vecd(D?) =V + A.Vecd(D} ) + B.€_1, (1.5.2)
where the matrices A and B are diagonal and V is a positive vector of RY.

The vine-GARCH specification parametrizes the correlation dynamics as

Rt = vechof (Fvine (Pct)) )

- (1.5.3)
\\J (PCt) = + =0 (Pthl) + Athla
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In this section, we specify the Data Generating Process (DGP) differently from the
specification given in (1.3.1). A significant quantity is the vector of standardized resid-
uals, defined as u, = D; '¢,. We straightforwardly have E,_; [u;] = 0 and E,_; [u,u}] =
R;. This implies that u; can be specified as u; = Ri / 277;" , such that n/ is a centered
random vector with E,_; [9in’] = In. Therefore, the “true” DGP will be the station-
ary process (n;). The two "innovations” (1;) and (n;) are related to each other by the

relation
Hn = DR *n;.

Note that, if E;_1[n;] = 0 and E,_1[n/n;’] = In, then E;_1[n;] = 0 and E;_ ;] = I,
and the opposite.

1.5.2 vine-GARCH as Markov Chains

The vine-GARCH specification can be written as a Markov chain, a representation

that is relevant for studying stationary solutions. To do so, we define
X, == (&, Vecd(D7), ¥ (Pct)),, (1.5.4)
such that, for all ¢ > 0, (X;), satisfies
Xy =T X1 + vt (1.5.5)

This means (X;); follows an autoregressive form of order 1 with stochastic 7;. Let us

focus on the first component of X;. Setting @y := (uf,, ..., u%,), we have

D?ily = iy ® Veed(D?) = & = i, © V + iy © AVecd(D? ) + iy © B.&_,.  (1.5.6)
Using the dynamics of Vecd(D?) and W (Pc;), the matrix T} satisfies

U OB U 0A
T, = B A
0 0

o O

: (1.5.7)

[1]



Chapter 1. Dynamic Correlation Model based on Vines 36

and the vector of innovation v; is defined as

Uy OV
vy = v . (1.5.8)
O+ AG

Note that ¢; = ¢ (x¢,m:) where x; = (Pc;, Dy).

Assumption 1. The vectorial process (1} )iz satisfies the Markov property with respect
to F, i.e
Vt € Z, E[n;|Fia] = Elny [ Xo].

Besides, E;_1 [7f] = 0 and E;_; [n/n;] = In.
As a consequence (and equivalently, in fact), the same property is fulfilled with the
other "innovations” (n;)icz: the process (1;)icz satisfies the Markov property with

respect to F, i.e
Vt € Z, Eln|Fi-1] = E[ne| Xi].

Moreover, E, ;1 [;] = 0 and E;, 4 [mgym;] = In.

Proposition 1.5.14. Under assumption 1, (X;); is a Markov Chain of order one.
Proof of Proposition 1.5.14. Note that u; = D[lHtl/Qm, where H; is a deterministic
function of X; ;. Since n; satisfies the Markov property with respect to F, then

g Fr—1 2 u| X¢—1. Furthermore, X; can be rewritten as follows: there exists constant

matrices I'y and I'y such that
X = (Plft) OTo X1 + (Fz-ft) © 1y,

where Ty (resp. 1p) is the T, (resp. v;) matrix when u, = 1, & = (4, 1)’ and
Xe = (i, 1, ¢ (Xe—1,m—1)). Then X, is a measurable function of (1, X,_1,7,_1), where
n; satisfies the Markov property by assumption 1. Consequently, (X;); is Markovian.

O

1.5.3 Existence of stationary vine-GARCH solutions

The recurrence equation (1.5.5) is stochastic through 7; and 14, i.e. through the

innovations 7, (or nf) and the F;_j-measurable matrix R;. A consequence of this
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parametrization is that 7; depends on subcomponents of X;. Hence, we can not ex-
tract an expression such as X; = f (n;, -1, ) nor X; = f (nj,n;“_l, e ), for some
explicit function f(.). This comes from the nonlinear relationship between 7; and
the past innovations (before and including t). Classical techniques such as Lyapunov

exponent are not adapted in our framework.

The existence of stationary solutions -but not a unique solution- for the vine-GARCH
model can be proved using the criterion of Tweedie (1988). Tweedie provides the
existence of an invariant probability measure for the Markov chain defined in (1.5.5).
Ling and McAleer (2003) used this criterion to establish the stationarity of vector
ARMA-GARCH models.

The stationarity of the (€); process requires the control of T;, which should avoid non-
explosive patterns. The matrix 7} is a function of (4;);, which are dependent variables.
Furthermore, the conditional law of ; is a function of H; and D;, which in turn is a

function of X;_;. This is the reason we need the next hypothesis.

Assumption 2. For some p > 1, ||T*||s < oo, where

T* := supE [|T;”"|| X;—1 = x] .
xeRd
Assumption 3. Denoting by A the Lebesgue measure, the conditional kernel of n; given

X;_1 = x is defined as
P!~ 7 (u) = for (ulx)dA ().

Furthermore, for all u € R™, the mapping x — f,-(u|x) is continuous and there exists

an integrable function ¢ such that, for all u € R™,

sup sup fy: (ulx) < g(u).

t xeRd

P(v
Moreover, Vt, E [||n}|?"|X:—1 = x| < ¥(||x||) satisfying Va > 0, lim )

v—=o00 VY

=0.

Assumption 4. There exists a positive real number a such that, for almost every trajec-
tory and every 6 € O, the partial correlations of our chosen vine (i.e. the components
of the vectors Pc;(#)) belong to the fixed interval [-1 4+ a,1 — a].

In particular, the latter assumption implies that, for every 6 € O, the determinant

of almost every correlation matrices R,(6) are strictly larger than a¥=1 > 0 (apply
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Kurowicka and Cooke, 2006, Theorem 3.2), and that the norm of R, (6) is bounded

3

from above a.e. >. Moreover, the function Fyi,e(.) that maps partial correlations to

usual correlations has a bounded derivative, when applied to the trajectories (Pc;(0))

generated by the model.

Theorem 1.5.15. Under assumptions 1-4 the process (e, Dy, Ry) as defined in equa-
tions (1.5.1), (1.5.2), and (1.5.3) possesses a strictly stationary solution such that
(€1, Dy, Ry) € Fy, the sigma field induced by the observations. Furthermore, the solu-
tion (€;) is second-order stationary and, when the innovations n; are Gaussian given
Fi_1, then E||e]|*] < oo.

The key result for the existence of an invariant probability measure for Markov chains
is the criterion of Tweedie (1988). When using this approach, the irreducibility of (X})

is not required to obtain stationarity.

Let (Xi)iez be a homogeneous Markov chain with a measurable state space (E,E),
such that its transition probability is P(x,B) = P(X; € B|X;_1 = x), where x € E
and B € £. Theorem 2 of Tweedie (1988) states the following:

Lemma 1.5.16. Suppose (E,E) is a locally compact separable state space and (X;)iez
is a Feller chain, that is for h € C)(E), then E [h(X;)|X;_1 = x] is also CP(E).

1. If for some compact set B € &, there erists a non negative mapping g(.) and

e > 0 such that
| Pey)sydny) gt - x e B (159

then there ezists a o-finite invariant measure p for P such that 0 < u(B) < occ.

2. Furthermore, if

/B (/ P, Y)g(Y)dA(Y)> dp(x) < 00, (1.5.10)

then p is finite and hence m = p/p(E) is an invariant probability measure.

3. Furthermore, if

/¥nym@MMWSg@%4@%X€B2 (15.11)

SIndeed, [|R; |5 < Amin(Ry) ™ < aV"N-D,
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then p admits a finite f-moment, i.e. E, [f(X;)] < 0.

The next Lemma is a specific version of Lemma A.2 in Ling and McAleer (2003). Its

proof is omitted.

Lemma 1.5.17. For a given squared matriz T, if p(|T|) < 1, then there exists a
positive vector M such that (Id — |T'|)’M > 0.

Proof of Theorem 1.5.15. We first show that (X;),cz is a Feller process. Let h €
CY(R?). We have

E[h(Xy)| X1 =x] = Eh(Tix+ )| X1 = X]
= E [h(¢1(u)x + ¢2(ue, mi_1)) [ X1 =],

for continuous transforms ¢; and ¢,. By construction, u; = D, 1Ht1 / 277t = Ri/ 277;",

where Rtl /? is a continuous mapping of X;_;. Consequently, we obtain

E[h(X)|X,1=x] = E [h o ¢(x, )| X1 = x]
= o dlx wdBE )
= [hoo(x,u)f, (ux)dA(u),

for some continuous transform ¢. Now, let (xn)n be a sequence such that x, — x. As
n—oo

h(.) is bounded and Vu, (h o ¢(xpn, 1)), is convergent, then lim, E [h(X,)| X, 1 = Xa] =
E [A(X}:)| X:—1 = x] by the Lebesgue dominated convergence theorem under assumption

3. In other words, x — E [h(X)|X¢_1 = x] is continuous.

Second, we exhibit an explicit functional g(.) to apply the Tweedie’s criteria. To do
so, take g(x) = 1 + |x®P|'M, for any vector M, which will be explicit later. We have,
for p > 1,

E[g(X)|Xem1 = x] = 1+ E [|(Tix + 14)®P|'|X¢1 = x] M.

By some property of the Kronecker product and algebraic manipulations, let us rewrite
(Tyx + v4)®P = (Tyx)®P + B(x) = T{Px®P + B(x). We deduce that

E [g(X)1Xim1 = x] < 1+ (E [T [Xe oy = x] +E[|Bx)]|[Xeer = x]) M.
(1.5.12)
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We focus on the first expectation in (1.5.12). As T} is a function of w;, its conditional

distribution depends on R;. Hence T; is a function of X; ;. Then, we obtain

BT Xe 1 = x] M < [x*PJE [[TEPX, 1 = x] M
|x®P|/ (sup]E [|T?P|/|Xt71 = X]) M

xcRd

< [xEP/(TYM.

IA

As for the second expectation in (1.5.12), by taking any multiplicative norm ||.||, we

have

EIBGOIIXe-1 = x] < KE [l Il(Tx) 2@ + 2 (L)@ 2 4+ -+ [l|P|Xe o =]
(1.5.13)

where K is a non-negative constant. In (1.5.13), we need to upper bound quantities

of the type E [||lv||™[|T¢]|"| Xe—1 = x|, i.e. terms as B [([|C—1 | + [|2])™ [|2]"| Xi—1 = X]

when m + n < p. First, we consider E [||u;||""|X;—1 = x]. Recall that u; = Rtl/zn;".

Taking the spectral norm of Ri / 2, we obtain a.s.

1/2
IR =p <R2/2R;/2 /> = \/Trace (D;'H,D; ') < V/N.
Using the previous inequality and assumption 3, we have

= |Im+n 1/212(m+n) || 7% ||m+n n+m Sk ||mAn
E (7l Xoo = x] < E [ RV 747X, = x| < N [ X = x]
(1.5.14)
By assumption, E [||n/]|??|X;—1 = x| < ¥(]|x||). Then, we obtain

E [||@]|™ " Xe—1 = %] < amnts ([x[)) ™77,
for some constant a;, ,,.

Another product element we shall bound is E [||¢ (xt—1, me—1) || ||| | Xi—1 = x]. To
do so, we take n +m = p, where m > 1. Using the conditional Holder’s inequality, we

obtain

B¢ Ot ) ™[] Xems = X < B (I (e o) 11X = X P B 7] X = 577
(1.5.15)
In (1.5.15), E [||@||P| X,—1 = x]"’" can be straightforwardly upper bounded using (1.5.14).

We now focus on the conditional expectation of || (x¢—1,7-1) |[P. Denoting Oz =
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€t — By [Ek,t|€L,tL we have

z|Lt 105 |L,t—1
E{IC (-1, m-1) [[P|Xe-1 =x] < sup E : P X1 =x
(G.JIL)EE \/hz|Lt 1\/h]|Lt 1

(1.5.16)
For p = 1, we apply the Cauchy-Schwartz inequality to (1.5.16) as
N 1/2 ~ 1/2
Ui|L,t—105|L,t—1 1'2|L t—1 j2|Lt 1
||Xt—1 =X S E : |Xt—1 =X E |Xt—1 =X
\/hz|Lt 1\/h]\Lt 1 hi\L,tfl h’j|L,t71

In this case, we obtain
El[BE)NXe-1 = x| = onE [[|Ga || + [Jue]|[Xi-1 = x] < ot ([Ix]]) + s,

for some constants ay, k = 1,2,3. Consequently for p = 1, we deduce that (1.5.12)

can be upper bounded as

Eg(Xy)[ X1 = x] + (B[ Tx]"[ X1 = x] + E[[|Bx) ||| X1 = x]) M

<
< 14 [x[(T)M + O ([Ix[]*)

for any a > 0. Let us now try to extend this result for p > 1. The quantity given in

(1.5.16) is a product of ¥z —1 components, which can be decomposed as

Dipi1 = H3(0 ){m =B [morlere1, Xo—q = x|}
= D Ry — B [ leri—1, Xoor = X}

Assuming all denominators are bounded from below a.s., this implies that (1.5.16) can

be upper bounded as

z|Lt 1U]|Lt 1
sup

(irj|L) eE \/hz|Lt 1L

C'st.E [[|x[[P[l_ 2P| Xe-1 = x]

<
< Cst.x|[Py(]x])).

This upper bound is not of order O(||x||*), for k¥ < p — 1. We rely on the Gaussian

distribution hypothesis to circumvent this obstacle.

PIXer =x| < CstE [[[Deal PP Reoal Pllmp o [ Xy =

x|
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Now, the vectors n; (or 7, equivalently) is supposed to be Gaussian, conditional to

the past. By the Cauchy-Schwartz inequality, we have

~ B o 1/2 o 1/2
Ui|L,t—1Vj|Lt—1 YilL,t—1 J|Lt—1
E | h h |p|Xt_1 =X S ]E hp : |Xt—1 =X E hp : ‘Xt—l =X
V9ilzi—17/in e i\Li—1 GILt—1

Since any Ujjr—1/+/hiri—1 is a Gaussian random variable A(0,1), given X,_;, the
r.h.s. of the latter inequality is uniformly bounded wrt ¢, j, L and x. We deduce that
(1.5.16) can be upper bounded as

EI¢ (-1, me—1) [IP] X1 = x] = O(1),

for all x.

This result is proved using V¢ > 1, a,fl £.+(X) > 0 as.. We need to prove that this holds
almost surely for any x € B®. That means we need to control for the variance and

correlation dynamics when x can take very large values. By contradiction, suppose

Vk ¢ L

O-lz\L,t(X) =K [(Ek,t —E [Ek,t|€L,t])2 |Xt_1 = X] =0= €k7t =K [Ek,t|€L,ta Xt—l = X] a.s.
(1.5.17)

Using the decomposition ¢; = Htl/ *n., relationship (1.5.17) becomes

ey = Q' (X)erLyt a.s., (1.5.18)

where @)'(x) corresponds to a vector containing the coefficients of H; used for computing
the conditional expectation under the Gaussian distribution. As H; is F;_; measurable,
then () is a function of x. (1.5.18) means that €, can be written as a linear combination
of €,4, for n € L, given x. If there exists a linear relationship between the components
of € given x, then the matrix H;(x) is not a full rank matrix. As D,(x) is a diagonal
matrix, it is always nonsingular, H;(x) singular implies that R;(x) is not positive
definite. This contradicts A;(R;(x)) > 0 a.s.. We deduce that

dp > 0, such that Vk,VL, k ¢ L, O‘;%‘LJ(X) > p for almost all x.
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Consequently, using assumption 3, we have obtained

E [g(X)| Xt = x] L+ [x=PI(T*)'M + O ([[x]|*)

<
< g(x) = [X#P[ (In = (T%)") M+ O ([|x]|*)

S

for all @ > 0. We denote N(x) := > |x;|P. Since (Id— (T*))M > 0 by Lemma
i=1
(1.5.17), then there exists mgy > 0 such that

(I, — (T*Y) M > moN(x), ¥x € R®.

Similarly, 3m; > 0 such that Vx € R® g(x) > m;N(x). Using the Holder’s inequality,
we have Vk < p

S

s k s k/p
D gl = (Z|$j|) < (me) s* (1.5.19)
=1 j=1

J1,J2y 5 Jk
Hence using inequality (1.5.19), Yk < p,3Ims > 0 such that

S
g(0) ST+ M| Y0 X Xl < 14 e2N(x),

Jidzs ik

We deduce that

_ N(x) N(x)*/»
Efg(X)lXi1 =% < 900 | 1-mo—rs+0 | —o
N(x N(x)2/P
< g(x) [ 1—mg - =

M0 NG T | myN(x)

We denote B := {x € R%|N(x) < T}, with ' > 1. For I' large enough, ¥x ¢ B, and
0 <a <1, we have

mg mg

o TO ()| <800 [1- 5"

Eg(Xy)|Xim1 =x] <g(x) |1 - (1.5.20)

As 1 < g(x), then E [g(X;)|X:—1 = x] < g(x) — ¢, for € > 0. This proves (1.5.9), idest
Jp a o-finite invariant measure for (X;); such that 0 < u(A) < oc.



Chapter 1. Dynamic Correlation Model based on Vines 44

Now for any x € B, (1.5.20) provides
E[g(X)|Xe1 = x] < g(x) + O (Ix[*) < K, (1.5.21)

for some constant K > 0. This implies

([ Poyie)ans) ) dutx) < [ BlsXoXis = x]dutx) < Ku(B) < o

v ° (1.5.22)
Consequently, (1.5.10) is proved and p is finite and 7 = p/p(F) is an invariant probabil-
ity measure. Then there exists a strictly stationary solution of the stochastic recurrence

equation (1.5.5).

Finally, using inequality (1.5.20), we obtain (1.5.11) for f(x) = fg(x), where 5 € (0, 1).
As miN(x) < g(x), then
E, [N(X,)] < cc.

1.5.4 Uniqueness of stationary vine-GARCH Solutions

Tweedie’s criterion provides the existence of an invariant probability measure for
Markov chains. However, the uniqueness of such a measure is not ensured. Uniqueness
is a significant result as it provides the ergodicity of the stationary solution. This is a
significant feature for inference purpose since asymptotic properties for M-estimators

are based on Uniform Law of Large Numbers, or the ergodic theorem (see Billingsley,
1995).

Assumption 5. The sequence of innovations (n;) is strongly stationary.

Assumption 6. There exist some strictly positive constant C}, s.t., for any stationary
solution, for all £,

hil

e < C, P—as.,

where (i|L) is associated to an arbitrary node (i,j|L), L # 0 of the underlying vine
V(n).

Note that, when L is empty, the model provides a lower bound for all conditional
variances: for every ¢ and ¢, h; tl < C,. Let us introduce some intermediate quantities.

We denote Cr > 0 (resp. Cy-1 > 0) the Lipschitz constant of Fyine(.) (resp. ¥71(.)).
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Let us consider two (arbitrarily chosen) stationary solutions (D, Ry, ¢;) and (Dy, Ry, &).
They share the innovations (n;) and the model parameters. The proof of uniqueness

relies on some top Lyapunov exponent of a stochastic matrix process denoted by

=l oo Al Al
M, — [Zlloo + [[Alloo Yo [1A]Joc T |
Loy I

Yo = CuV/N ([IDells + 1 Dills ) {o+ VN Dyl|2]lm 136773,
Yoo = CuVN (|Dls + | Dills ) {8 + VN D, In; |3C36},
NG| D> NC|Dil|?  N2C2|| Dy 2| Dy 2
ME) M) BN (R
NC,|Di|?  NC,|Dif|?  N*C2|| Dy 2| D2

v = CN{IDls + 11D} |1+

0 = VNCrCyt||Dils]|De]ls + =——+ =
v M(Ry) M (R) MR (R,)
NI Dy||sCh . N||Dy|[2Cy,
a = VNCYHnr s 41+ ————1Dills + IIDs]ls — |5,
I i U2l + 1D} {1 =28
- VN||D||2C), N||Dy|[2Cy, 1
B = VNCrCorr|[Dillslnflls § —55— |1+ = + -
T A MB) ] N R+ N (1)
and
Tie = Al + N|Blloollmis I3,
- 2[ln¢ 113
Doy = [|Blloo|| D12 L NCpCy-1.

N (R + AV (R)

Assumption 7. (M,) is a stationary stochastic process and E [log (M;)] < oo such that

its top Lyapunov exponent defined as
1
Yo = lim — log (M M,;_, - - - M)
t—oot

is strictly negative.

Theorem 1.5.18. Under assumptions 1 and 5-7, a strictly stationary solution of the

vine-GARCH model is unique and ergodic, given a sequence (n))icz-

Proof of Theorem 1.5.18. We remind that ¢, = Dyu; = Htl/znt and u; = Riﬂnf The
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model equations define a solution (e, Dy, R;) given (n;). The dynamic system is spec-

ified as
Veed (D}) = V + AVecd (D7) + Bé_1,

R, = vechof (Fyine (Pcy)),
U (PCt> = 0 + =\ (PCt_l) + Act—l'

A key quantity is the vector of innovations ((;) defined as

Ct = [Ui|L,tUj\L,t:| (i,5|L)EV(N)

€it — Ei( [Ei,tleL,t}

Ui\Lt = )
’ Vi

such that

hiry = Var._q(€) — Covi_y (€4, €r,) Var,_4 (EL,t>_1 Covi_1 (€nts €it) s
= e.Hie; — (elHpep) . (e'LHteL)_l (e Hyey) .

Above, we have introduced some deterministic matrices (of zeros and ones) ey s.t.
€t = €€ The dimension of ey, is N x |L|. More generally, for any m x N-matrix A,
Ae, concatenates the A-columns whose index belongs to L. Using the fact that B is

a diagonal matrix and €;; = y/h; u;, we obtain €, = h“u?’t and
Vecd (D) =V + AVecd (D},) + B.D} ;.
where D?.e = Vecd (D?).

We first focus on the uniqueness of the conditional variance process. To do so, we

consider the difference

Veed (D?) — Vecd (Df) — A |[Veed (D2 ,) — Veed (D2 )| + B. | D2,y — D2 iy
= A |Veed (D2 ,) — Veed (D2 )| + B. Dg,l—[)t{l} Tt

+ B.EtQ_l. |:/lzt_]_ — ﬁt—l] .
Using D}t = u; ® Veed (D7), we obtain

Vecd (D?) — Vecd (Df) = A. [Vecd (Df_l) — Vecd (Df_1>}

+ B, o [Vecd (DZ,) = Vecd (D,?_l)] +B [ﬁt_l - ﬁt_l] © Veed (Df_l) .

I
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Furthermore
U —u = (up— ) © (ug + )

= (g + i) @ (Rtl/2 _ R}”) .

Using the spectral norm, the previous quantity can be upper bounded as
I =l < s + @l | (B2 = B272) ]
Since ||n97]ls = ||n/]|2 (as for any vector), note that
lwelloo = 1B 7 lloo < 1R *n; 15 < 1RV 12 < VN7

Using theorem 6.2 of Higham (2008), for any unitarily invariant norm || - ||, we have

IRy — R?|| < IR — RyJl.

A/ (R + A (Re)

Recall that the norm ||.|| is unitarily invariant if ||[UAV|| = ||A]| for all matrix A and
all unitary matrices U and V, ie UU’ = Id and V'V’ = Id. For instance, the spectral
norm || Al = p (A’A)"? = Apaw (A) satisfies

|UAV|, = p (UAVY UAV)"? = p (V' A AV)'? = p (4 4)° = || 4],

and is then unitarily invariant. Hence

I (B = &) mille < IR = R

—|| Ry — Ryl ]|} I|2-
A2 (R,) + A2 (Rt)

Besides,
IR — Rells < VN|R — Ri|l
< \/NCFHPCt - pct“oo
< VNCpCyr |V (Pey) — T (ﬁct> oo
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As B and A are diagonal matrices, their spectral norms are equal to their infinite norm.

We obtain the upper bound

[ Vecd (D?) — Veed (D7) ||, < || All, [ Veed (DE.,) — Veed (DE, ) |
1Bl [[Veed (DE,) = Veed (D2, |l

”Rt - RtHs

R+ ()

< Tygl|Veed (D) = Veed (DZ, ) [ls + Tagl| @ (Per) = W (P ) [lcs(1.5.28)

+ (1Bl Veed (DE, ) llollue + allo i1
A

where
Ui = Al + Nl Blloolniy 3,

) 2(n; 113

Tor = |Bllool Di-ll? -
N (R) + N (Re)

NCpCy-1.

We now focus on the uniqueness of the partial correlation process. We consider the

difference
U (Pe,) — (ﬁct) == (xp (Pery) — 0 (ﬁct_l)) +A (Q_l - @_1) .
In this framework, = and A are parameterized as diagonal matrices. We have

19 (Pet) = 9 (Pr) llo < IElucll® (Per1) = @ (Pt ) oo + Al liGe1 = Goalloc

(1.5.24)

The quantity of interest is the vector of innovations, that is

. Ti|LATS|L TilL AT (L.t
vij|L7t — Uij|L7t = — = = s (1525)
VLl \/hiIL,t \/h’j|L,t
where, using the Gaussian assumption, we have
gLt = €t — Ei 1 [Ei,t|€L,t]

= €t — (egHt€L> . (e/LHteL)fl €Lt (1 5 26)

= [e} — (e;Hser). (¢, Hyep) ™" e ] e

= &PL(€) -
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Here, py, (+) is the projector on the orthogonal of the subspace < Hyer, > in RV,
relatively to the H, '-euclidian norm, defined by ||z = ’H; 'z *. By decomposing

the projector py, in its canonical space, we see that ||pr|ls = 1 obviously. Similarly,

[Bells = 1.

Recall that ¢; = Dthl/2n;‘. Using the same steps as in (1.5.26), we obtain

TijLe = e;pr (&), & = thitwn?-

Now we have

1G-1 = Ciotlloo = sup [VijiLt — VijiLt]s
(4,31L)

which implies we need to control |1z — 7ir¢| and [hyns — Rl

Step 1. We have

TiLt — 7:z‘|L,t = e;pL <€t) - eif)L (gt)

= e;[pL — Pl (&) +epr (e — &)

We obtain

7ie = Tijne < [[(PL — Pr) (€)oo + IPL (€6 — &) [0

< [l(pL = Pr)(ee)ll2 + IPr (6c — &) 2.

Note that, for any vector x, ||z||3, = £H, 'x > «'x/p(H,). Since p(H,) < Tr(H,) <
Z;V:l hj. < N||D,||2. Therefore, we get

lzll2 < VNIID:slle]|

Moreover, for every vector z, ||||% = «'H, 'z < ||z||3||H; '||; (diagonalize H; in an

orthonormal basis). This means

|zl < CY2A(R) ™2 |2

*Indeed, if ®; = Hiepg; for any |L| x l-vector g; = [8;;]j=1,...,|0|, We check that pr(z;) = 0.

.....

Moreover, when a vector v belongs to < Hyey, >, then 'U’Ht_lHteng =v'erg; = 0 for every j, ie.
v’er, = 0. This implies pr,(v) = v.
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Since the spectral norm is the matrix norm that is associated to the usual euclidian

norm || - ||2, we have
[Tiie — Tirel < |l(Pr — Pr)(ee)ll2 + |IPL (66 — &) [|2
< [[(pr — Pr)llslleclls + [IPLlls[lee — €ll2
< [l(pr — Pr)llslletll2 + llee — €ll2-
Furthermore,

- - -1

pr —prL = — (In — Heer, (e Heer) ") + (IN — Hyer, (e'LHteL) ei)

N N N -1
- (Ht — Ht> er (e) Her) ™' €, + Hyep, [(e'LHteL)l - (e’LHteL> ] e
= |:<Dt — Dt> R.D, + Dt (Rt — Rt) D, + Dtét (Dt — Dt)] €L (e/L[’It@L)_1 er,
- s N -1
+H,er, (e’LHteL)_l [(e’LHteL) — (e’LHteL)] (e’LHteL> el .
Note that ||(e} Hier) |5 is the inverse of the smallest eigenvalue of ¢; Hyer. By the

Courant-Raleigh theorem, \; (€} Hier) is larger than A\ (H;). Then, ||(e} Hier) s <
M (H) ™ = ||H; s Since H; ' = D;'R;'D; !, we obtain

I(er Heer) s < [1H s < 1D IR s < Coda(Re) ™
Moreover, it is easy to check that |leL||s = ||e/|ls = 1. Since
1D2 = Dills < max i = hial /(b1 + Bif?) < CY*[Veed (D7) = Veed (DF) |,

we have

s~ Bulls < {100 = Dl IR Duls + 1Dl R = Ball I Dlls + 1Dl Rellll D2 = D}
e Hier) e (11 + NI (e, Huer) )
[CY?|[Veed (D) — Veed (D2) N (1Dl + 1Dl
+ VNCrCyi| ¥ (Pe)) = ¥ (Per) el Dl Dl }
Cohi(R) ™ (1+ NIDECM(R) )

IN

We also have

1/2 *
ledlls < 1Dl R sl N2
< I DillsAvta (Bo) gl < 1 DellsV N g |

max
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Moreover,
leo—lls < | (DR = D)t
~ 1/2 % ~ 1/2 ~1/2 %
< 1Dy = Dol IR Ms e lls + 1Dells | R — Rl |l
< |G IVeed (DF) = Veed (D2) [|,V/N + 1Dl KW (Per) = @ (Per) o] I
1
where K = \/NCFC\I;fl.

N (R) + A ()
Consequently, for every (7, L) deduced from the vine structure, we obtain

7302 — Taje| < | Veed (Df) — Vecd (th) |s + BV (Pey) — W <I50t) Il oo

where
( N|D||sC _ N Dy|[2Cn
a = VNC|nille § 1+ ——mAIDells + |1 Dells} |1+ ——=—] ¢,
|77 NI I Dells + [[Del s} ()
< ~
N VN||Dy|2C,, N||Dy|[2C 1
B = VNCpCoyr|Dillsllnflls § ——5+— |1+ - T ;
¢ M (Ry) M (Ry) )\}/2 (Ry) + )\}/2 (Rt>

Step 2. We now focus on the discrepancy |k — ﬁi‘L7t|. We have

hi|L,t — iLi‘L,t = 62 <Ht — I:It> €; — 6; <Ht — ﬁt) ey, (GILHtGL)il (GILHtGZ')
. . . —1
+ e Hep (e’LHteL)fl [e'LHteL — e’LHteL] (e’LHteL> (e, Hye;)
~ ~ -1 ~
+ e Heyp <6’LHteL> e (Ht — Ht> €,

which implies

\hijre — haypd) < || He — Hylls [1 + CoM(Re) M Hells + Coda (Be) ™| He s
+ CIN(R) ™ M () Ll
< (C12IVeed (D) = Veed (D7) [ N{IDil + |1 Di].}
+ VNCrCys | DDA (Per) = ¥ (P ) 1)

NC,||Dy||? . NG, || D2 . N2C2||Dy|1?|| Dy |12
A (Ry) M (Ry) M (RO (R))

< 9||Veed (D7) — Veed (Df) s + ||V (Pc;) — W <ﬁ0t> oo,  (1.5.27)
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where

;

NG, ||ID:|>  NGC,|Di|?  N2C?||Dy||?|| Dy||?
ME) ) m(ROM(R)
NC||Dy||?2  NC,| D> N2C2||Dy||?|| D12
A (Ry) - A (Ry) * M(R)M(Ry)

vo= Cg/QN{||Dt||S+||f)t||S} L+

§ = VNCrCoar|Di|ls|Dills |1+

\

Consequently, we obtain the following relationship for (1.5.25)

(Fijpe = Fapng) o Tane (Pine — L)

iglLt — Uij - \/ * \/ vV
Vi j|Lt — Vij|Lt \/m hj\L,t hi\L,t thLvt
1 1

+ 7:1'|L,tf'|L,t{ N 7 7 }
T i/ T \/hz’\L,t \/hlevt

For any (i, L) we consider, h;1; < || D;|? everywhere, because the variance of a residual

is smaller than the variance of any random variable. Therefore, we get

1 1 C?

| - —= —| < —= = = =
Vhize/hjiee \/hz’\L,t\/hle,t \/hi|L,t\/hj\L,t + \/hz‘|L,t\/hj\L,t
Cy |:(hz'|L,t — Bz‘\L,t) hjin: + ;Li|L,t (hj\L,t - iLj|L,t>]
< CHIDP hiize = hirpal + 1D e — hyjeal s
(1.5.28)

{hipthjipe — hijpihyie}

IN

and

rinel < P (e) oo < IPr (€0) ll2 < PLls-llecllz < lleella < VNIDylsls/75 ]12-
(1.5.29)

Consequently, using (1.5.27), (1.5.28) and (1.5.29), (1.5.25) can be upper bounded as

[vsgine = Biginel < CoV/N (ID4)s +11Di],)
{ (allVeed (D?) = Veed (D7) Il, + B[ (Pe) = W (Per) |l )
+ VNI IECE (7] Veed (D) — Veed (D7) [, + 819 (Pey) = ¥ (Per) 1) } -

Hence using the previous inequality, we obtain

G = Glloe < 14l Veed (DF) = Veed (DF) [l + Tagl|W (Per) = @ (Pey) 1o, (1.5.30)
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with
Tie = CuV'N (| Dells + IDells) {0+ VN Dl 2Im; [13C3A

Toi = CuV'N (IDells + IDills ) {8 + VNIIDe I 157}
Using (1.5.30) and (1.5.24), we have

|W (Pe) =@ (Pe) oo < {IE e + IAla T2 W (Per) = @ (Pert) 1
4 AT Veed (D2) — Veed (Dg) .
(1.5.31)
We denote

|9 (Pev) =@ (Pe) 1Z0s0 + 1A oo Yor (Al Y1
laell = M, - |

[Veed (D?) — Vecd (Dg) I, oy iy
Using (1.5.23) and (1.5.31), we deduce that

el < Miflpp|

l—p
< {kl:IOMt—k}HMt—p—ﬂL

for any p € N. Under assumption 7, h_)m | MMy ---My_,|| = 0P — as., for a fixed
t using Lemma 2.1 of Francq and Zall)ioiozjn (2010). We deduce that gy = 0. This
implies that U(Pc¢;) = VU(P¢;) a.s. and Dy = D, a.s., which then implies R; = R; a.s.
and ¢; = € a.s.. This concludes the proof of uniqueness. Furthermore, ergodicity is

obtained as a consequence of corollary 7.17 in Douc, Moulines and Stoffer (2014).

A sufficient condition for uniqueness is that the top Lyapunov exponent v,; is strictly
negative. This condition holds if E [log (|| M:||)] < 0.

1.6 Asymptotic theory

The conditions for the existence and uniqueness of a strictly stationary solution of the
vine-GARCH process have been established. We thus can provide a sound asymptotic
theory. In this section, we state the asymptotic properties of the two-step quasi-

maximum likelihood estimator, but not the estimator obtained by the iterative process,
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for which the limiting behavior would be more complex. Our vine-GARCH model is

specified by choosing a R-vine, and by Equations (1.3.1)-(1.3.5).

The proofs of consistency and asymptotic normality require some matrix computations,
in particular the differentiation of some quantities involving matrices. Recalling some
results recorded in Liitkepohl (1996), we have

ox'Xx X e M R o
OxX = IT, S mxm( )71’ € )
JTrace (AX'B)
aX = BA, X 6 Mm)(n(]R)7 A e MpXTL(R)7 B E MmXP(R)
OTrace (AX'B) )
0X - _(X_IBAX_l) ) X e mem(R)7 nonsingular,A,B = mem(R)’
0log (det(X))
I = (X)7Y X € M,m(R), nonsingular,
0X
0X—1
5 = —(X) Y0, X)X !, X € M,,xm(R), nonsingular.
x

For convenience and to get explicit assumptions, assume hereafter that any conditional

variance series follows a univariate GARCH process defined as

a pi
hig = i+ Z Rih€ g + Z Tighii—1, (1.6.1)

k=1 =1
such that 6\ = (i, ki, Ti) € ]RTJ”“+1 for all # = 1,...,N. It would be more or less

straightforward to obtain similar theoretical results with different volatility dynamics,
such as spill-over effects. Nonetheless, this would induce additional technicalities that

would digress us from the core of the vine-GARCH models.

Assume we observe a T-path (€;)—1,..r that corresponds to a realization drawn follow-

ing a unique, strictly stationary and non-anticipative solution ()7 of this model. We
will denote by Dy(0), Ri(0) and Hy(#) the t-matrices of conditional volatilities, condi-
tional correlations and conditional covariances respectively, as generated by our model
and assuming 6 is the underlying parameter. We estimate this model by a Gaussian

QMLE and by applying the two-step estimation method of Section 1.4.

To calculate log-likelihoods, a practical issue is the choice of some initial values to
generate the sequences (D), (R;) and then (Hy), t = 1,...,T. Given some fixed

values for ¢y, Dy and Ry, we obtain log-likelihoods. In this Section only, the latter
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log-likelihoods will be denoted by Grly(e;6,) and Grly(e; 6,,6,). More generally, all
quantities with a “~” are deduced from the process with fixed arbitrary starting values
at t = 0. Therefore, they are distinct from the “theoretical” log-likelihoods Grly(€; 6,)
and Grly(e;60,,0.), for which the initial values are coming from the stationary laws.
Equivalently, they can be seen as coming from a stationary solution (& );cz. Actually,
this subtlety has no consequence because we will assume irrelevance of initial values:

see assumption 13 and 15.

In the following, we use the sub-multiplicative matrix norm ||A|| := sup{12zl, z £ 0},

llzll 2

for any A € M, xm(R), z € R™ and ||z|| denotes the Euclidean norm of x. We also need

the spectral radius norm of squared non-negative matrices, which is submultiplicative:

[A]]s := max{|A;] : Spec(A) = (A1, -+, Am)}.

1.6.1 Consistency

Assumption 8. The variance parameters 6, (resp. correlation parameters 6,.) belong to
a compact set O, in R%, s := SN (p4¢;+1) (resp. O, in in RETON*(N-1)?/4+N(N=1)/2)
The true parameter 6y = (6, 0..) belongs to the interior of the compact set © :=
0, x 6..

Denoting by pz the spectral radius of the companion block-matrix associated to (Zy,...,Z5,
a necessary condition is pz < 1 in particular. When p = 1, this means simply that all

eigenvalues of =Z; := = are smaller than one in absolute value.

Assumption 9. The sequence of innovations (7;) is strongly stationary. The law of 7,

given F;_; is elliptical s.t. E;—1[m] = 0 and E;_1[n;¢|n;:] = 0 when i # j.

In particular, every n,%vt, k =1,...,N, has a nondegenerate conditional distribution.
With an underlying elliptical distribution, the conditional expectation of any 7;; given
M, is a linear transform of 7, for an arbitrary m x N matrix M, m < N. This prop-
erty is necessary to ensure the identifiability of vine-GARCH processes. Considering
elliptical random vectors (including Gaussian ones) can be seen as restrictive, but it is
convenient and realistic here. This implies that the true DGP can induce fatter tails
than conditionally Gaussian processes, for instance by choosing student-distributed

noises 7.

Set the polynomials A; g(z) = > 1| kixz® and Big(z) =1 - >0 7425
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Assumption 10. For every i = 1,..., N, when p; > 0, the polynomials A, ¢,(2) and

Bi g, (2) have no common roots, A; g, (1) # 0 and &; 4, + 7, # 0.

For any ¢ = 1,..., N, let the random matrix

/i@ﬂ?it Hi’qiﬁit Ti,177i2,t Ti,pinzt

1 0o ... ... 0 0 0

0 1 0 ... 0 0 0

0 0 1 0 0 0
Ai,O,t - )

Ki,1 Kig; Ti,1 Ti,p;

0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

that depends on the true parameter values.

Assumption 11. For any ¢ = 1,..., N, the top Lyapunov exponent v(A;o) := 7,
defined as

.1 o1
Vi = tlerll\lf*EE log (|| As o Aioi—1---Aionl)] = tligloz log (|| Ao, Aioi—1- Aipall) as.
is strictly negative. Moreover, for all 6, ,, > 7° 7, < 1.

Such assumptions on Lyapunov exponents are standard in the GARCH literature.
When p = ¢ = 1, this is equivalent to E[In (/@i,lngt + Tm)] < 0. More generally, it is
sufficient to check that E [In ||A;0:A4i0¢-1 - Aioa]]] <O.

Define Dy(z) = Y1, Azt and Qp(z) = Iy — Y.7_, ExzF. The following technical
assumptions is required to get the identifiability of . (see Section 11.4.1. in Francq

and ZakoTan, 2010, for formal definitions of “left coprime” and of the matrix M(-,-)).

Assumption 12. For any 6 € ©, Qy(z) is nonsingular, i.e. the roots of det(Qp(z)) = 0
are outside the unit disk. If p > 0, Dy, (z) and Qy,(2) are left coprime and M (Dy,, Qp,(2))
has full rank N(N —1)/2.

Assumption 13. The initial values are asymptotically irrelevant, which means

sup|Grla(e; 0) — Grla(e; 0)] = 0,(1).

0c®
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This assumption is proved as a technical result in Appendix A, due to its technicality.

Assumption 14. There exists a number a € (0, 1) such that, for almost every trajectory
and every 6 € ©, the partial correlations associated to our R-vine (i.e. the components
of the vectors Pci(0)) belong to the fixed interval [-1 4 a,1 — a].

The latter assumption implies that, for every 6 € O, the determinant of almost every
correlation matrices R,(f) is strictly larger than a¥ ™= > 0 (apply Kurowicka and
Cooke, 2006, Theorem 3.2), and that the norm of R;'(6) is bounded from above a.e.
Indeed, |R; s < Amin(Re)™N < a™*@=1_ Moreover, the function Fye(.) that maps
partial correlations to usual correlations has a bounded derivative, when applied to the

trajectories (Pc;(6)) generated by the model.

The next assumption allows to control the influence of the first step estimator éT,v on

the second step estimator.
Assumption 15. If (éT,U) is a sequence in ©, that tends to 6, in probability, then

3118 |Grly(e, éT,v; 0.) — Grla(e, 0. 0.)| = op(1).
S

This assumption is proved as a technical result in Appendix B. There, the influence of

the correlation-related parameters €2, = and A appears explicitly.

Theorem 1.6.19. Let Op = (éTm,éT’c)’ be a sequence of QML estimators defined
by (1.4.1) and (1.4.2). Then, under assumptions 8-15, O =5 6o when T — co.

Set Op\c = (0o,0,0:). The consistency proof requires some preliminary lemmas. The

next three steps will be demonstrated successively.

1. Identifiability of the parameters, which can be expressed in our framework as:
{Vt € Z, Di(0,) = D:(00,,) and R(0) = R:(0y) Py, as} = 0 = 0.

2. The optimum 6, is well-separated: if ||§. — Oy .|| > v for some v > 0, then
l2,t(€t; 90,1;, 90,c) € LI(R) and Eeo [l2,t(€t; 90,1;, 96)] > Eeo [l2,t(€t; 90)]-

3. Let ©g\« = {0 = (bo0,0:) € ©} = {0y} x O.. For every 0* € Og, with
|0% — 0o.c|| > 0 and every m > 0, there exists an open ball V(6*,7) around 6* in
the space g\ s.t.

]Ego |:9€‘}'I(10f;7ﬂ—)l27t(6t; 9):| Z ]Ego [lg,t(ﬁt; 9*)] — .
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Proof of Step 1. Our assumptions 9-11 insure the identifiability of the GARCH(p;,q;)
models: when D;(6,) = D:(6y,) for every t and almost everywhere, this means that
6, = 6o, (see Francq and Zakotan (2010), Theorem 7.1).

Now, let us state the identifiability of the correlation-related parameters. There is
a one-to-one relationship between the components of the lower (or upper) triangular
part of R;(6), and Pc,(0), the vector of partial correlations, through Fyie(.). Then
Ri(0) = Ry(0y) Py, a.s. implies Pc(0) = Pcy(0y) Py, a.s. For a given sequence of

innovations (7;), we write the partial correlation dynamics as
Qu(B)¥ (Pcy(0)) = Q + Dp(B)((0), or ¥ (Pey(0)) = Q, ' (B)Do(B):(0) + Q, ' (1)1,

because Qy is invertible (assumption 12). Set Py(z) := Q,'(2)Dy(2). Since we assume
R:(0) = Ri(6y), Di(6) = Dy(6y) for all ¢ and some 0 and 6y in ©, then Hy(0) = H:(6y)
and the observations ¢ are the same under Py and Py,. This implies that (;(0) =

G(0p) == ¢; and
(Po(B) — Pa,(B)) ¢u(0) = Qg.' (1) — Q5 ' (1) (1.6.2)

There exists a sequence of matrices (Py) s.t. Py(B)—Pg,(B) =: 3, PrB*. Note that
Po = 0. Isolating the terms that are functions of (;_;, we see there exists a random
variable V,_s that is F;_s—mesurable s.t. P1(;_1 = V;_5 a.s. If Py is not zero, its kernel
is included in an hyperplan in RN®W=1/2 Therefore, there exists a constant non-zero

vector w and an JF;_s;—measurable variable sz;_5 s.t.
w'Ct,l = X492 a.S. (163)

Recall that the N(N — 1)/2 components of the vector (;_; are based on cross-products

of the returns ¢;;_;. To be specific,

th1 = (Q’,tfl - Et72[€i,t71|€L,t71])-(€j,t71 - Et72[€j,t71|€L,t71])/\/ hi,tth,t—l] )

denoting by (ij|L) the nodes of the vine. Note that the volatilities h; ;_; are F;_o—measurable,
1 =1,..., N. Moreover, since 7 is conditionally elliptical by assumption 9, there exists
Fi_p—measurable vectors m; ;o s.t. By ol€ir 1€ 1] =mj, o€p 1. Since €1 is a

Fi_o—measurable linear transform of 7,1, Equation (1.6.3) becomes

N1 Loame—1 = 5 5 a.s. (1.6.4)
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for some F;_s—measurable random matrix (resp. variable) Y; o (resp. s _,). Obvi-

ously, T; o = 0 implies w = 0, contradicting rg(P;) > 0.

Now, let us prove that T, 5 = 0. It is well-known that any standardized elliptical
vector, say 7,1, can be decomposed as 1,1 = S;_1.Z;—1, where S;_; is a positive
random variable, Z; 1 ~ N(Oy,Iy) and S;_; and Z; ; are independent. By con-
struction, S;_; and Z;_; are functions of 7,_; and are then F;_;—measurable, but not

Fi_o—measurable (if non-degenerate). Then, Equation (1.6.4) may be rewritten
StZ_l. (Zé_thf2thl) = %:_2 a.s.

Given an (arbitrary) realization of (n_2,7;—3,...) and invoking the independence be-
tween S;_; and Z;_1, we deduce that S;_; and Z; Y, 2Z; 1 are a.e. F;_s—measurable

variables. This is possible only if T;_5 is zero. Therefore, this proves that P; = 0.

By a similar reasoning, we prove successively that P, = 0, for any k£ > 0, and then
Pyo(B) = Py,(B). By assumption 12, this is sufficient to insure that Dy = Dy, and
Qp = Qp, (see the arguments in Francq and Zakoian, 2010, Section 11.4.1). As a
consequence, = and A; are uniquely identified from the sequence (7;) on. And, through
Equation (1.6.2), we check easily that 2 = Q, i.e. that (2 is identified too. H

Proof of Step 2. We now show that the limit criterion is minimized at the true value.
It is important to note that the second step is conditional on the first step estimator,
i.e. we deal with Iy, (€ éTﬂ,, 0.). For all 0§ € O,

g, [15.4(€1;0)] < Eo, [log™ (|Re])] < E [max (0, —log(|R¢))] < o0,

by assumption 14. Consequently, Eq, [l2(e;;0)] belongs to R U {+o0}. Actually,
Eg, [|l2,6(e¢; 60)]] < oc.

Indeed, the determinant of R;(fy) is bounded from above by Tr(R;)Y = N¥. Thus,

due to the properties of the trace operator, we have
Eg, [l2,4(€r; 00)] = Eg, [log |Re(60)]] + Tr (R; 'Eg, [ueuy]) < Nlog N + N.

Therefore, we obtain that lo4(e;; 09) belongs to L.
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Denote by «;; the eigenvalues of Rt(HO)Rt_l(HO\C), Oove = (0o, 0c), i =1,...,N. They

are positive. Setting u; = Dy(6y,) €;, we have

Eo, [lo,t (€5 00\c) — Lo (er; 90)}

= B, [log(| Re(Oore)| |2, (60)])] + Eop [uf (R (ore) — R_l(go)) ug)

= Ey, [log(|R:(60\o)|| R (60)])] + Eg, [Tr ((R; ' (6o\e) — Ry ' (60)) weut})]

= Eg, [log(|Re(Bo\e)| R (60)])] + Eo, [TY (R ' (Bove) — Ry (00)) Een [upuy]) ]
= Ey, ;l (e — 1 —log(ayy))| >

The inequality log(z) < = — 1 holds if and only if z = 1. In our case, that means
aip = 1, for all 4, i.e. Ri(6p\.) = Ri(6p) a.s. By stationarity, this reasoning can be
made at time ¢t — 1, which would give R;_1(6o\.) = Ri-1(6p) a.s. Hence for any ¢, the
relationship R;(0p\.) = R¢(0) Pg,, a.s. holds by stationarity. By step 1, this means
o = Op\c- O

Proof of Step 5. For a given 0 € O\, 0; # 0., consider a sequence of open balls of
radius 1/k, k € N defined by V. (6*) := {6 € O\, | ||0—6*|| < 1/k}. Since the sequence of

random variable (infgev, (g+) l2+(€:;0))1 is increasing, the Beppo-Levi Theorem applies:

k—o0 QEVk(e*)

lim E,, [ inf lg,t(et;e)} =Ey, [lo:(e;67)],

providing the result. O

Proof of Theorem 1.6.19. Under our assumptions, éT,U converges weakly to 6, (see
Theorem 7.1 in Francq and Zakoian, 2010, e.g.). Now, let us prove the weak conver-
gence of éT7C to Oy, that is, for all o > 0, limp_,o, IP(HQAT,C —b6pc|]| > @) = 0. Invoking
Step 3, for any given 7 > 0 and for every " € Og\., 0* # 0y with ||0% — O] > /2,
we can find an open ball U(0*) C Og\. s.t.

Eg, [96151(%*) lo ¢ (€t 8)} > Eg, [las(€;07)] — .
Since the function 0 — Egq [l :(€; 00,0, 0c)] — Eog, [l2,¢(€1;60)], defined on O, is strictly
positive (c.f. Step 2) and continuous on the compact subset Co(ar) := {6 € O\ | ||0. —
6ol > «/2}, it reaches its minimum 2u > 0. Therefore, for any given 6* € Cy(«), set
7= m(0") = Eqg, [l2.(€:;0%)] — Egy [l2.4(€1;60)] — p > 0.
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Moreover, set U(6y) := {0 € Og\. : ||0 — bo|| < a}. Then

O CUB)U | U
066’0(01)

Since O\, can be covered by a finite set of open balls, there is a finite set of points
01,...,0, in Co(ar) s.t. Oge CU(B)U |J U(6;). We deduce

i=1,..,n

P (107 = o.ll > @) <P ({800, 0r.) € UL, U(E)) < ZIP’( 0.0, 07.0) € U(0)))

=1

By definition of 67 and for all i = 1,--- ,n, we obtain

P ((eo,v,éT,C) € U(Qi)> < ]P>< inf  Grla(e;0) < Grla(e; 90v,9T6)>

U (0;)

< IP’( inf  Grly(e;0) < Grly(e; HT) + 2sup |Grly(e; 0) — @Tlg(e; 0)|
0eU(0;) 0co

+ |Grla(€; 6y, éT,c) — Grlay(e; éT)|>

IN

P( ll’lf GTZQ(C 9) < GTl2(€ QTU,QO c)| + 2SHP|GTZQ(€ 6) @TZQ(G,G)‘

0eU(0;)

+ |Grla(e; 6y, ‘9T,c> — Grlay(e; 9T)|>

< P(Eg | inf loy(e;0)| < Egy[los(er; 00)] + 25up|Gria(e; 0) — Grly(e; 0)]
0cU(6;) 0co

7

+ |Grla(e; 6p) — Eg, [ZQ,t(Gt; )|+ |Grlae 00,0, éT,c) — Grly(€ éT)| + |R9i|> )

T
where Ry, = %;eé&l&)l“@“ 0) — Eq, Leil?(fe,-)lu(et; 9)} Invoking step 3 and the way
the neighborhoods have been built, for any i = 1,...,n,

EBO |:9€1[I]1(f9 )l27t(€t7 0):| > EHO [lQ,t(et; 00)] + L.
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Using the property {X +Y <a+b} C {X <a}U{Y <b}, a,b >0 and X,Y any

random variables, we obtain

P ((eo,v, Oor) € U(@i)> <P (M < 25up|Gria(c;6) ~ Grla(e:0)| + |Ry,|
S
+ [Grla(€;00) — Egy llnalers 00)] | + [Gria(e; o0, br,c) — Grla(e: 7))
< P (ﬂ < 25up|Grls(e; 8) — Grla(e; 9)1) 4P (ﬁ < |Grla(e; 0y) — Eg, [las(er: 60)] |)
4 9o 4

+ ]P’(% < |Rq,

) +P (4 < Grta(e b0, 0r.) - Grisfe; b)) (16.5)

Under assumption 13, the initial values generating the process are asymptotically ir-

relevant. For some § > 0 and T" > T7, this implies

P (H < 2sup|Grls(e; 0) — Grla(e; 9)|) < /4. (1.6.6)
4 6co

As for the second probability of the r.h.s. in (1.6.5), we use the ergodic theorem (see

Billingsley 1995), and for 7" > T5,, we obtain

P (% < |Grla(e: ) — Eg, [laeer; 00)] |) <3/4. (1.6.7)

Let us focus on the the third term in the r.h.s. Although the quantity ly;(e:;0) is
not necessarily integrable, the Ergodic Theorem can still be used as Eqg, [l2+(e;0)] €
RU{oo}. Furthermore, lo(e:; 6) is a measurable function of an ergodic process, hence,

as in Exercise 7.4 in Francq and Zakoian (2010), the Ergodic Theorem can be applied
t inf [ 10)):
0, nt balect)

i

T

1
lim inf — inf lo,(e;0) = Eg, | inf
T—00 thleeU(Gi) ' 9cU (6

i

l2,t(€t; (9):| .
Plugging this convergence result into (1.6.5), for 6 > 0, T' > T3, we obtain
P(u/4 <|Ry,|) < d/4. (1.6.8)

Note that the derivative of 6, — Grla(€;0,, 6y ) is uniformly bounded under assump-
tion 14 (recall the arguments in the proof of Step 2). Invoking assumption 15, we can
tackle the fourth term of (1.6.5): if ¢ > T}, we have

P (u/4 < |Grla(e; 00) — Grlo(e; bz, eo,c)y) < 6/4. (1.6.9)
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Consequently, with (1.6.6), (1.6.7), (1.6.8) and (1.6.9), for " > T1 V15, VT3V Ty, (1.6.5)
becomes P (éT elU (91)> < 4. Since 9 can be chosen arbitrarily small, this proves the

convergence in probability of (éTm, HAT,C)’ to the true parameter vector 6. O

1.6.2 Asymptotic Normality

To define éT, the first order conditions are

A T R
AT(GT,U) = %26t<9T,v) = 0, Wlth 5,5(9’1"71)) = nglLt(Et; 01)),
t=1
N R T R A
‘I’T(QT,w QT,C) = %Z¢t(6T,va ‘9T,c) =0, with ¢t(9) = VGCZQ,t(Et; Q)-
t=1

We stress that Iy, and its derivatives w.r.t. § cannot be written explicitly in practice,
because the functional relationship between a Gaussian likelihood and the underlying
partial correlations (through our previous function Fy;,.) is too complex in analytical
terms. Therefore, we have to rely on some numerical routines to evaluate numerically
such functions: see Brechmann and Schepsmeier (2013). In particular, this is necessary
to calculate QAT’C and to approximate the asymptotic variance-covariance matrix in
Theorem 1.6.20 below.

Assumption 16. The innovations 7, have finite fourth order moments.

The next regularity conditions are classic and necessary to justify the existence of the

asymptotic covariance in the next Theorem.

Assumption 17. The first order moments of ||1:(6)1:(6p)'|| and ||0:(0o.n)1:(6o)'|| are
finite.

Under the price of additional technicalities, it is possible to establish some suffi-
cient and more explicit conditions on the model parameters to satisfy assumption 17:
see assumption 15 in Poignard and Fermanian (2016). Note that the existence of
E [1|6:(60.4)0:(00.)'||] and E [||Ve,0:(00.»)]|] has been established by Francq and Zakoian
(2004), as they are related to usual GARCH processes and Gaussian QMLE. Here,
we require additional conditions of regularity to manage the correlation part of the
likelihood.

Assumption 18. The variables Vg, g/lo4(er;00), Vo.grlai(€r;00),  sup  [[Vgab(0o)||
0:]|0—0o || <

and  sup ||Vg.09(60)| are integrable, for some a > 0.
0:(10—6o || <
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Assumption 19. E [Vgcgélgﬂg(q;6’077]70070)} is nonsingular.

As expected, we need to assume that the initial values of the process are asymptotically
irrelevant to evaluate score functions. The multiplication by /T renders this task more
difficult than in the proof of consistency.

Assumption 20. VT ||Ap(6o.)—Az(00.)]| = 0,(1) and VT W1 (0., Op.c) =T (Fo.0, o) || =

0p(1). For some ae > 0,

sup Vo, Ar(0,) — Vo, Ar(0,)[| +  sup  [[VeTr(6) — Volir(0)]| = 0,(1).

0v:[|0u =00, || < 6:]|6—6|| <

Theorem 1.6.20. Assume (8)-(20), then 1, and 07, are asymptotically normal, and
VT (éT - 90) Ly N0, J7HJY), where

[ Vo,o.l1(€;00.0) 0
J = Ey, ’
| \Vao,0:l26(€t; 000, 00.c) Vo.orlai(er; o)
I =V (51?_(00,11)7 ¢t(60,v7 00,0))/
(Vevll,t(ﬁt; eo,v)v%ll,t(et; 90,1;) Vevlu(ft; 90,v)vegl2,t(€t; 90711, 90,c)> ]

Vo loi(€500)Varlii(e; 000)  Voloi(er; 00w, 00.)Vorla(er; 0o)

0

This usual “sandwich” asymptotic covariance illustrates the two-stage estimation pro-
cedure. As we mentioned above, the matrices I and J can be estimated empirically,

evaluating the second-order derivatives of the likelihood numerically.

Lemma 1.6.21. Suppose the assumptions of Theorem 1.6.20 hold. If 61 — 0y in
probability, then

(i) Vo, Ar(07.) —— Ji1, Vo, Ur(f7) — Jog, and Vo, Up(fr) —— Joy.
T—o0 T—o0 T—o0

.. AT(eo,v) d
(ii) VT <‘I’T(90,v,90,c)> — N(0,1).

Proof of Lemma 1.6.21. (i) The first convergence corresponds to scores of usual GARCH
log-likelihoods. This result can be found in Francq and Zakoian (2004), for instance.

Moreover, applying a Taylor expansion of Vg, W(f7) around 6, we get

Vo Vr(0r) = Vo Ur(by) + V.o, ‘I’T(éT)- (éT,v — ‘90,1;)

)+ Ve (1.6.10)
+ Voo, Ur(0r). (610 — bo)
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for some 07, |6 — 6o < |07 — 6o||. Furthermore, we can apply an Ergodic Theorem

(Billingsley, 1995) to the two sequences ~ sup  ||Vg,g,9:(0)|| and sup |V (e 0)]].
0:]10—06p || < 0:1|0—0o || <
Those results imply

T
lim sup Voo, ¥r(0) < limsup 77130 sup  [[Vo.ae(0)]]

T—o0 T—o0 t=1 6:|0—6p||<c

(1.6.11)
= E| sup ||V969;¢t(9)||] , and
0:/|0—60|| <
. . T
lim sup [|Vo,o. U7 ()] < lmsup Tty  sup ||[Vo.otu(0)|
T—o00 T—o0 t=1 6:]|0—6p||<c
(1.6.12)
= E| sup Hvﬁawd@q
0:]|0—00 || <cx

By assumption 18, both expectations of (1.6.11) and (1.6.12) are finite. Since o
0o in probability, the two last terms of the r.h.s. of (1.6.10) converge to 0. Flnally, the
Ergodic Theorem applied to (Vo Ur(6y.,,60.)) proves the second assertion of (i). The

third assertion of (i) can be proved similarly.

(ii) To apply a CLT, we prove that (0;(6g.), ¥:(6p))" is a square integrable martingale
difference. Denote by 5§i)(6v) (resp. e (6y,0.)) the i-th component of Vg, [ ;(6,) (resp.
Vol24(0y,6.)). Through usual matrix derivatives (see Liitkepohl, 1996), we get

02(8,) = Tr (In — D; e, D;Y).(D; (99 D) + (303 D) DY) -
Using the F;_; measurability of D,, we obtain

E [515“(9,,)\;5_1} = 2Tv (9 D) D; 1)) — Tr (E[ugtty| Fo—1)(9gs D) Dyt + Dy (9 D))
= 2Tr ((9ps Dy)D; 1)) — 2Tx ((99: D) D; ) = 0.

Concerning the correlation components, for i = 1,--- ;3N (N — 1)/2, the score is
(B0, 00,) = Tr (In — Ry widl) Ry (i Ry)) -
Using the F;_; measurability of R;, we obtain

E [0 O 000)|Fics] = Tr (v = BB lue| Fia]) Ry (99 )
= Tr((Iy — R7'R) R (0 Ry)) = 0.
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Consequently, (6:(6o.), ¥+(6o.0, 0070))/ is a square integrable martingale difference, invok-
ing assumption 17. The process (0:(6ow), (6o, Bo,c)) is stationary, as a measurable
function of the stationary process (¢;). Consequently, by a central limit theorem for
stationary square integrable martingale differences (see Billinsgley 1995), we obtain
the asymptotic normality of v/T'(Az (0o, Ur(6p)). O

Proof of Theorem 1.6.20. Through a Taylor expansion around 6, we obtain 0 = AT(éTyv) =
Ar(6o,) + v&,AT(‘gT,v)'(éT,v — 0o,v), and

0= ‘I’T(éT,v, éT,c) = Up(by) + v&,\I/T(éT)(éT,v — o) + VGC\PT<9_T)(éT,c — o),

where |07 — 0| < ||6r — 6o|. Inverting these relationships and multiplying by v/T', we
have \/T (éTﬂ, — 00711) = (—VQUAT(Q_T’U))il \/T AT(GO,U); and

VI(Ore—00e) = (=Vo.Vr(0r)) " Vo, U7 (0r) (~Vo,Ar(0r,)) " VT Ar(bo.)
+ (=Vo,Ur(7)) " VT U (by).

Therefore, T (A7 — ) is a linear transform of VT [Ar(6o,), Ur(6)':
VT (07 — 60) = My - VT[Ar(0.0), U (6)]',

for some sequence of random matrices (Mr) that tends to J~! in probability. By
Lemma 1.6.21 and Slutsky’s theorem, we obtain the asymptotic normality of v/T' (éT —
0o)- [

As a by-product, simple calculations provide the asymptotic variances of éT,U and éT,c:

with obvious notations, Vas(éTﬁv) = J' 11 Jy!, and

Vas(Or.e) = Jpg Ing Jpt — TligJigt — Jg Iy T + I, T = Jt Jor J5

1.7 Empirical applications

To simplify and to lighten notations, we restrict ourselves to one-order models in
this section. Moreover, we consider no cross-effects between all the individual partial

correlation processes, i.e. the matrices =, and A; are assumed to be diagonal. Then,
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when p = ¢ =1, the N — 1 first elements of Pc¢; correspond to usual correlations, i.e.

pijloe = Pije, and they follow the processes
Y (pije) = wij + &g (pije—1) + NijOi1054-1, (1.7.1)

with O = €4/ ﬁk,t. From the N-th component on, the elements of Pc¢; are “true”

partial correlations for which L # (). Their dynamics are given by

V(pijine) = Wil + S| (Pijize—1) + NijlL0i L1051 L1 (1.7.2)

Strictly speaking, the partial correlation dynamics we invoke for inference or simulation

purpose is given by (1.7.1) and (1.7.2).

1.7.1 A simulation study

We consider as a data generating process (DGP) multivariate series (¢;) of size N =
6,10,20,30,50. Their innovations 7, are standardized normal white noises. The
conditional covariance matrices of these processes are deduced from a MGARCH
form H;, = D;R;D;. To generate N univariate variance processes along (1.6.1), we
choose randomly the corresponding 3N parameters such that ¢ ~ U (1075,9.107°),
k ~ U (0.01,0.15) and 7 ~ U (0.95,0.85), under the stationarity constraint x4+ 7 < 1.
As for the correlation dynamics, we first choose randomly N(N — 1)/2 deterministic
processes among the cosinus, sinus, modulo and constant functions, and then generate

some series
aj + ag cos(2mt/ar), by + besin(27t /), ¢1 + comod(t/ ), dy + daconst,

for every t = 1,...,T. Our parameters a, as, by, by, c1, 2, dy, ds are chosen randomly
and independently following a U (—0.4,0.4) and «, 3,1 are randomly (equally) se-
lected among the fixed subset {100,200, 500,1000, 1500,2000}. All these series con-
stitute the components of a lower triangular matrix K; with ones on the main diag-
onal. Then, we generate symmetric and positive definite matrices C; = KK, and
R, = Cf - 2C'tC’t* 2 Those processes allow for rapid, gradual changes or constant
correlation patterns, and they do not depend on a specific statistical model. Initializing
each of the GARCH processes randomly and given €;, we simulate the successive values
of a MGARCH process with conditional covariance matrices (H;). We do this iterative

procedure for T" = 10000 and we consider 300 different correlation matrix patterns.
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Once a series is simulated, we estimate the model under different model assumptions:
a C-vine-GARCH, a diagonal QFDCC and a scalar DCC. As a benchmark, we also
compute the empirical correlation matrices of our returns through a rolling-window of
size 200 observations. The estimated parameters allow the calculation of successive
correlation matrices, which are here R¥¢ (C-vine-GARCH), RY** (QFDCC model),
R (DCC model), and R (rolling-window) correlations. Moreover, we consider a
constrained version of the vine-GARCH. For N = 6,10, the partial correlations of
the last two trees are constrained to their unconditional partial correlation values, as
estimated over the whole sample. For N = 20, the partial correlations from the 11th
level are set to their unconditional partial correlation values. The same applies for
N = 30,50, where we only consider the constrained vine-GARCH case. Alternatively,
we could set zero partial correlations for these two last trees of the C-vine and the
results would be comparable. We denote by }?fi"e* the correlation matrices obtained
with the constrained version of the C-vine. Both vine specifications are estimated by
the C-vine iterative process. The first level of the C-vine has been chosen following

the procedure of Subsection 1.3.3.

We compare the true correlation process and the estimated correlation processes through
the aforementioned models. To do so, we specify a matrix distance, namely the Frobe-
nius norm, defined as ||A — B||p := +/Trace((A — B)'(A — B)). We compute the

previous norm for each t and for

A= Rt, and B € {é?cc7 Rgfdcc7 é:w’ R:ini Rﬁ;}ine*}.

We take the average of those quantities over 7" = 10000 periods of time. Since we
repeat this experiment 300 times, this provides an average gap for all those simulations.

Table 1.1 reports the results.

The C-vine model clearly outperforms the other specifications. The DCC displays a
significant gap, which highlights that it is too restrictive to capture complex dynamics
with only two parameters. As for the rolling-window correlation, the result empha-
sizes this empirical measure should be taken with great care. The rolling nature of the
samples makes the rolling-window correlation very low to react to a rapid correlation
fluctuations. Interestingly, for every N level, both C-vine specifications clearly out-
perform other usual DCC-type dynamics. The QFDCC specification performs poorly
compared to other models. Therefore, this justifies the use of constrained C-vine dy-

namics, allowing for parsimony.
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1.7.2 Application to real portfolios

In this subsection, we estimate by Quasi-Maximum Likelihood the DCC-GARCH and
vine-GARCH models for two financial portfolios. They are composed of daily series of
stock log-returns related to the Morgan Stanley Capital International (MSCI) Devel-
oped Markets indices. In the so-called Portfolio I, we consider Germany, Italy, France,
the Netherlands and the United Kingdom. Portfolio II is more diversified geographi-
cally because it is composed of Germany, the United-States, Greece, Italy, Japan and
Australia. For both portfolios, the samples start in January 1999 and end in August

2013, which amounts to 3669 observations.

First, we have centered the time series by assuming that E, i [r;] = pu; (0) follows a one-
order autoregressive process (estimated by OLS). Second, we estimate the conditional
variance processes of the components of ¢, = r, — p;. The GARCH(1,1) specification
was chosen a priori for modeling these marginal dynamics. Indeed, this is by far the

reference model used in the literature. The estimation results are reported in Table 1.2.

We now turn to the second QML step, i.e. the estimation of the conditional correlation
dynamics, knowing the GARCH(1,1) estimates. For portfolios I and II, we select a rel-
evant C-vine, according to the Kendall’s tau selection procedure (see Subsection 1.3.3).
We associate an index to each country. This number corresponds to the index of the
tree for which this country is the “center” (the node with maximal degree). Since Port-
folio I is composed of European stocks, it can be considered as relatively homogenous,
including the main countries of the Eurozone. The selecting procedure induces the
following order: Germany (1), United-Kingdom (2), Italy (3), France (4) and Nether-
lands (5). In this case, Germany (1) is the root of the first C-vine tree. That means
we consider the partial correlations of two countries given Germany on Tree 2. Then,
on Tree 3, the conditioning subset is Germany (1) and United-Kingdom (2), etc. The
composition of the “heterogenous” portfolio II is given as follows: Germany (1), Greece
(2), United-States (3), Italy (4), Japan (5) and Australia (6).

Actually, we consider two cases of C-vine-GARCH models. The first one is the usual
unconstrained C-vine tree. The second one is a constrained version of the previous one,
where the partial correlations of the last two trees are fixed. Therefore, in portfolio I,
pPas|123, P3s12 and psy12 are set to their unconditional values that have been estimated
over the whole sample. Thus the size of the parameter space is reduced by 9 param-

eters for both portfolios. In every case, the parameters are estimated by simulated
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annealing. Table 1.3 reports the estimation results of the vine-GARCH model for the
unconstrained case. For the sake of comparison, Table 1.4 (resp. Table 1.5) provides
the estimation results of the scalar DCC (resp. diagonal QFDCC). The results for
the constrained case are very close to those of the unconstrained case: see Tables 1.11
and 1.12.

The same model is implemented for portfolio II, which is heterogenous in terms of
geographical areas. Table 1.6 (resp. Table 1.7, Table 1.8) reports the estimation
results of the C-vine-GARCH (resp. diagonal QFDCC, scalar DCC).

Concerning Portfolio I, the higher the level of the tree is, the smaller are the partial
correlation coefficients w and A\. We may infer that once we control for the information
given by Germany (1) (the core of the Eurozone) and United-Kingdom (2), the dy-
namics of partial correlations on trees T3 and T, are not very informative. This looks
like evaluating a white noise. This is confirmed by the modeling of constrained vines,
where the estimation results are close to the unconstrained case. On the contrary, this
effect does not appear with the heterogenous portfolio II. Controlling for Germany,
Greece and the US in portfolio II is not enough to deduce the whole information about
the correlation dynamics between Japan and Australia, due to significant remaining

idiosyncratic risks.

1.7.3 Specification testing

Once the model is estimated, we are able to forecast the covariance matrices H;, at
least one-period ahead. There exist several methods to evaluate the absolute and/or
relative efficiency of these predictions. See Patton and Sheppard (2009) for a survey.
In this study, we focus on direct out-of-sample evaluation methods, which allow for
pairwise comparisons. They test whether some of the previous models provide bet-
ter forecasts in terms of portfolio volatility behavior. Following the methodology of
Engle and Colacito (2006), we develop a mean-variance portfolio approach to test the
H, forecasts. Intuitively, if a conditional covariance process is misspecified, then the
minimum variance portfolio should emphasize such a shortcoming, compared to other
models. Then, consider an investor who allocates a fixed amount between N stocks,
according to a minimum-variance strategy and independently at each time t. At each
date t, he/she solves

min w;Hywy, s.t. Jw; =1, (1.7.3)
we
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where w; is the N x 1 vector of portfolio weights chosen at (the end of) time t — 1,
¢t is a N x 1 vector of 1 and H; is the estimated conditional covariance matrix of
the asset returns at time ¢. They are deduced from some dynamics that have been
estimated on the sub-sample January 1999 - October 2011. Once the latter process
is estimated in-sample, out-of-sample predictions are plugged into the program (1.7.3)
between November 2011 and August 2013. The solution of (1.7.3) is given by the global

minimum variance portfolio w, = H; *¢//' H; 't

Engle and Colacito (2006) show that the realized portfolio volatility is the smallest one
when the model covariance matrices are correctly specified. As a consequence, if wealth
is allocated using two different dynamic models ¢ and j, whose predicted covariance
matrices are (H?) and (H}), the strategy providing the smallest portfolio variance will
be considered as the best one. To do so, we consider a sequence of minimum variance
portfolio weights (w;;) and (w,.), depending on the model. Then, we consider a
distance based on the difference of the squared returns of the two portfolios, defined
as Ujj = {w£7tet}2 — {w;tet}Q. The portfolio variances are the same if the predicted
covariance matrices are the same. Thus we test the null hypothesis Ho : E[u;;,] =0
by the Diebold and Mariano (1995) test. It consists of a least square regression using
HAC standard errors, given by w;;+ = @ + €4+, Ele, ] = 0, and we test Ho : a = 0. If
the mean of u;;, is significantly positive (resp. negative), then the forecasts given by

the covariance matrices of model j (resp. i) are preferred.

We run the latter test for portfolios I and II and to compare the scalar DCC, QFDCC,
constrained C-vine-GARCH (C-vine-c) and unconstrained C-vine-GARCH (C-vine)
models. We also compare these parameterizations to a factor model, the O-GARCH(1,1)
°. The results are reported in Tables 1.9 and 1.10. Those tables provide the out-of-
sample Dielbold-Mariano test statistics that check the equality of a pair of series of
covariance matrices using the loss function u,;; over the period November 2011 - Au-

gust 2013.

We first note that in the homogenous case, the DCC specifications do not provide better
covariance forecasts. Interestingly, the constrained case of the C-vine provides better

prediction accuracy than the unconstrained case. For the heterogenous portfolio, we

®The O-GARCH assumes the decomposition Hy = PA¢P’, where A; = diag(A1 4, -+ , Ak t), with K
the number of factors. Here, we choose K = N factors and each )\; is supposed to follow a univariate
GARCH(1,1) process that is estimated by maximum likelihood. The matrix P is nonsingular and it
is estimated by applying a PCA on the empirical variance covariance matrix of ;. See Alexander
(2001), e.g.
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obtain the reverse. The C-vine specification outperforms the constrained case in terms
of prediction accuracy: the two last levels of the tree should be estimated as, once the
dynamics are controlled by Germany, Greece and the US, there remains a significant
amount of idiosyncratic risk. Both versions of the C-vine are not outperformed by the
scalar DCC, and the C-vine provides better covariance forecasts than the QFDCC.
The QFDCC is also slightly outperformed by the scalar DCC specification for the
heterogenous portfolio, what is rather surprising. Finally, the O-GARCH model is
beaten by all the others distinctly. But all these results are not sufficiently clear-cut to
draw any strong conclusion concerning a potential hierarchy between all these models,

at least in terms of a “naive” investment strategy.

1.8 Conclusion

We have proposed to rely on vines to define a new family of multivariate GARCH-type
models. The main feature of our methodology is the specification/estimation of partial
correlation processes “independently” and largely arbitrarily, and their use to gener-
ate sequences of correlation matrices. The canonical vine is particularly intuitive to
model a hierarchy between asset returns, as reasonings are close to factor models. Our
approach does not rely on any normalization stage and we model directly correlation
processes. Besides, the vine-GARCH approach allows for building parsimonious mod-
els. Indeed, we can assume (theoretically and often empirically) no partial correlation
dynamics (or at least, constant, simpler, homogenous, etc., dynamics) at all nodes in
the vine from some level on. All these elements foster flexibility and enable to generate

high-dimensional matrices.

Therefore, a new framework has been opened in the field of MGARCH models. We
have provided sufficient conditions for the consistency and the asymptotic normality
of a two-step quasi-maximum estimator. The performances of the vine-GARCH and
DCC estimators have been compared by means of applications to simulated and real
data. The simulation study confirmed that a more flexible specification (the C-vine-
GARCH) provides a better accuracy. The constrained case is particularly adapted
to homogenous portfolios and challenges the unconstrained case. The performances
calculated from real data support the use of vine dynamics but more empirical work
is probably necessary to evaluate all the advantages of such approaches w.r.t. more

classic ones, as the standard DCC family.
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1.9 Tables and figures

TABLE 1.1: Simulation study: Average distance between true and estimated cor-
relation matrices.
IR, — B||r | B=R¥ | B=R¥% | B= R | B= Rvi"e | B = Rvine*
N =6 0.4995 0.4791 0.5275 0.3906 0.4137
N =10 0.8270 0.9237 0.8784 0.6413 0.6825
N =20 1.6931 2.0106 1.7372 1.3250 1.3766
N =30 2.4876 2.6681 2.5151 - 2.0583
N =50 3.2839 3.8662 3.7691 - 2.6800

TABLE 1.2: GARCH(1,1) Models estimated by QML for 9 stock indices.

The

Bollerslev-Wooldridge standard deviations are in parentheses.

Asset S

Australia 0.657e-5 (0.114e-5) 0.124 (0 014) 0.846 (O 011)
France 0.388¢-5 (0.076¢-5) 0.111 (0.009) 0.876 (0.008)
Germany 0.368e-5 (0.080e-5) 0.100 (0.011) 0.889 (0.010)
Greece 0.191e-5 (0.147¢-5) 0.090 (0.010) 0.917 (0.015)
Italy 0.235e-5 (0.052e-5) 0.113 (0.010) 0.883 (0.008)
Japan 0.997e-5 (0.157¢-5) 0.103 (0.012) 0.849 (0.013)
Netherlands 0.363¢-5 (0.069¢-5) 0.110 (0.010) 0.876 (0.009)
United-Kingdom | 0.338¢-5 (0.067e-5) 0.115 (0.011)  0.868 (0.009)
United-States || 0.223e-5 (0.056e-5) 0.102 (0.010) 0.884 (0.008)

TABLE 1.3: C-vine-GARCH estimated by QML for Portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Q Estimate (Std Err) =  Estimate (Std Err) A Estimate (Std Err)
W12 -0.0629 (0.0288) §12 0.9749 (0.0064) A2 0.1977 (0.0515)
w13 -0.0772 (0.0355) €13 0.9748 (0.0053) A3 0.2230 (0.0472)
W14 -0.1388 (0.1928) 14 0.9878 (0.0109) A4 0.2594 (0.2994)
w15 -0.0893 (0.0672) 15 0.9850 (0.0031) A5 0.1976 (0.0973)
Wa3|1 0.0191 (0.0071) a3t 0.9521 (0.0145) A23|1 0.0097 (0.0100)
Way|1 0.0733 (0.0369) Soapt 0.8839 (0.0540) Aoal1 0.0311 (0.0161)
Was|1 0.0332 (0.0117) §os)1 0.9375 (0.0162) Aos1 0.0216 (0.0116)
W34)12 0.0181 (0.0068) §3412 0.9894 (0.0048) A34/12 -0.0117 (0.0034)
W3s5)12 0.0289 (0.0064) 35112 0.9619 (0.0090) A35(12 -0.0136 (0.0077)

W45)123 0.0618 (0.0246) 45(123 0.9174 (0.0370) Aasj123 -0.0056 (0.0128)
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TABLE 1.4: scalar DCC-GARCH estimated by QML for portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Model Q@ 16
DCC | 0.0284 (0.0032) 0.9674 (0.0041)

TABLE 1.5: Diagonal QFDCC estimated by QML for Portfolio I. The Bollerslev-
Wooldridge standard deviations are in parentheses.

C* Estimate (Std Err) || A° Estimate (Std Err) || B> Estimate (Std Err)
2 0.0068 (0.0255) |« 0.0174 (0.0645) | &% 0.9786 (0.0130)
2, 00111 (0.0584) | a2, 00217 (0.1080) | 62,  0.9773 (0.0273)
2, 0.0087 (0.0380) | a2,  0.0195 (0.2307) | b2,  0.9795 (0.0285)
2, 0.0082 (0.0147) | a2, 00202 (0.0356) | 62,  0.9788 (0.0084)
2 0.0025 (0.0021) | a2 00063 (0.0525) | b  0.9797 (0.0136)

TABLE 1.6: vine-GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Q Estimate (Std Err) = Estimate (Std Err) A Estimate (Std Err)
w12 0.0009 (0.0363) 12 0.9764 (0.0980) A12 0.0473 (0.1015)
w13 0.0034 (0.0044) &13 0.9787 (0.0044 A13 0.0421 (0.0080
W14 -0.0637 (0.0258) §14 0.9795 (0.0043 A4 0.1884 (0.0414
W15 0.0059 (0.0041) &15 0.9714 (0.0127 A5 0.0175 (0.0066
w16 0.0045 (0.0036) 16 0.9772 (0.0047 A6 0.0360 (0.0059

(
(
(
(
(
wagn  -0.0064 (0.0225) || &ap  0.9388 (0.2172
wagn  0.0304 (0.1100 Soap 0.8828 (0.4267
wasn 0.0080 (0.0074 s 0.9601 (0.0211
(
(
(
(
(
(
(

)
)
%
) Aoz 0.0016 (0.0271
) )
( ) )
woen  0.0265 (0.0924) || Egn  0.9101 (0.2596) Aot 0.0121
( ) )
)
)
)
)
)

(
( )
( )
( )
( )
( )
Aaap 0.0092 (0.0350)
Asp 0.0034 (0.0191)
(0.0497)
(0.0110)
(0.0031)
(0.0101)
(0.0217)
(0.0117)
(0.0124)

0.1663
0.0055
0.0356
0.2485
0.0191
0.0062

waapz  0.0015 (0.0035 aapz 0.9551 Aaguz  0.0115
wyspz  -0.0001 (0.0003) || &5z 0.9942 Assnz 0.0051
wseiz  -0.0008 (0.0016) || &en2  0.9805 Asgpz  0.0094
wispzs  0.0033 (0.0096) || &uspos 07327 Aisnzs 00128
wiglizs  0.0035 (0.0031) || &ugjizs  0.9512 Mignzs  0.0130
Ws6|1234 0.0134 (0.0067) &56(1234 0.9660 As56[1234 0.0334

TABLE 1.7: Diagonal QFDCC estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

C? Estimate (Std Err) || A> Estimate (Std Err) || B> Estimate (Std Err)
2 0.0065 (0.0029) | a2, 0.0139 (0.0061) | 5%,  0.9851 (0.0025)
2, 0.0012 (0.0016) | a2,  0.0021 (0.0026) | b2,  0.9931 (0.0026)
2, 0.0020 (0.0036) | a2,  0.0029 (0.0054) | b2,  0.9876 (0.0029)
2, 0.0064 (0.0050) | a2,  0.0134 (0.0103) | b2,  0.9856 (0.0028)
2 0.0021 (0.0091) | a2 00021 (0.0097) | 6% 0.9925 (0.0041)
2, 0.0067 (0.0172) | a2, 0.0086 (0.0231) | b2, 0.9904 (0.0030)
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TABLE 1.8: scalar DCC GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Model « 16
DCC | 0.0097 (0.0018) 0.9879 (0.0025)

TABLE 1.9: Diebold Mariano Test of Multivariate GARCH models for Portfolio I.

DCC QFDCC | GO-GARCH | C-vine C-vine-c
DCC 0.6509 -5.9350*** 0.7784 0.3551
QFDCC -0.6509 -6.1426%** 0.4237 0.0475
GO-GARCH | 5.9350%** | 6.1426%** 5.9438%** | 5.6779*H*
C-vine -0.7784 -0.4237 -5.9498%*** -2.1206**
C-vine-c -0.3551 -0.0475 -5.6779% k| 2.1206%*

Rejection of the nul hypothesis at: 10% for *, 5% for ** 1% for ***. When the null
hypothesis of equal predictive accuracy is rejected, a positive number is evidence in
favor of the model in the column.

TABLE 1.10: Diebold Mariano Test of Multivariate GARCH models for Portfolio II.

DCC QFDCC | GO-GARCH | C-vine C-vine-c
DCC -0.6220 -4.9369*** 0.0908 -0.7952
QFDCC 0.6220 -4.9783%4* 0.2650 -0.5991
GO-GARCH | 4.9369%** | 4.9783%** 4.6416%HFF | 4.1741%**
C-vine -0.0908 -0.2650 -4.6416%** -3.0709%**
C-vine-c 0.7952 0.5991 -4.1741FFF 1 3.0709%*

Rejection of the null hypothesis at: 10% for *, 5% for **, 1% for ***. When the null
hypothesis of equal predictive accuracy is rejected, a positive number is evidence in
favor of the model in the column.

TABLE 1.11:  C-vine-GARCH Model estimated by QML for Portfolio I. The
Bollerslev-Wooldridge standard deviations are in parentheses.

Q Estimate (Std Err) =  Estimate (Std Err) A Estimate (Std Err)
w2 -0.0661 (0.0174) | &,  0.9769 (0.0433) M2 0.1932 (0.0103)
wis  -0.0771 (0.0441) || &5 0.9804 (0.0659) M 0.1986 (0.0182)
way 01665 (0.6173) | &4 0.9923 (0.1121) A 0.2590 (0.0638)
w  -0.0858 (0.0709) || &5 0.9915 (0.0613) A5 0.1554 (0.0431)
W31 0.0081 (0.0047) 31 0.9799 (0.1265) )\23|1 0.0013 (0.0165)
Wo1 0.0248 (0.0666) Soapt 0.9577 (0.0934) Aoal1 0.0112 (0.0113)
Wos|1 0.0172 (0.0081) §os)1 0.9641 (0.0329) Aos1 0.0135 (0.0221)
w3412 1.0821 E34112 - A34/12 -

W3s|12 0.6300 35112 - A35(12 -
W45(123 0.7957 f45|123 - >\45|123 -
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TABLE 1.12: C-vine-GARCH estimated by QML for Portfolio II. The Bollerslev-
Wooldridge standard deviations are in parentheses.

Q Estimate (StdE) = Estimate (StdE) A Estimate (StdE)
W12 -0.0008 (0.0359) &1 0.9823 (0.1935) A2 0.0387 (0.0227)
W13 0.0016 (0.0036) 13 0.9821 (0.0530) A3 0.0382 (0.0052)
W14 -0.0694 (0.0259) &4 0.9801 (0.0180) A4 0.1915 (0.0092)
wis  0.0046 (0.0081) &5 0.9777 (0.0265) A5 0.0146 (0.0043)
wig  0.0017 (0.0058) &6 0.9835 (0.0142) Mg 0.0288 (0.0012)
Wasl1 -0.0072 (0.0399) 523“ 0.9334 (0.4570) /\23|1 -0.0007 (0.0037)
W41 0.0043 (0.0156) 524“ 0.9837 (0.2434) )\24|1 0.0001 (0.0100)
Was|1 0.0129 (0.0272) 525|1 0.9384 (0.0790) )\25|1 0.0028 (0.0061)
Wag|1 0.0022 (0.0076) 526|1 0.9906 (0.0238) )\26|1 0.0049 (0.0175)
wagiz  0.0009 (0.0013) || &upa  0.9729 (0.0187) || Asapz  0.0107 (0.0082)
wssj12 -0.0001 (0.0002) 535|12 0.9953 (0.0045) /\35‘12 0.0047 (0.0035)
W36|12 -0.0004 (0019) 536|12 0.9888 (0.0393) /\36‘12 0.0053 (0.0118)

W45(123 0.0311 f45|123 - )\45\123 -

W4e)123 0.2472 f46|123 - )\46\123 -

Ws6|1234 0.8669 556|1234 - )\56|1234 -
2 13

2311

@/@ 2511 @ T,

2311 2511 E

35112

34112
T4

451123

FIGURE 1.1: Example of a C-vine on five variables. Lecture: the two nodes (1,2)
and (1,3) in T are connected by the edge (2, 3|1), whose constraint set is {1, 2, 3},
conditioned set is {2,3} and conditioning set is {1}.
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FIGURE 1.2: Example of a D-vine on five variables. Lecture: the two nodes (1, 3|2)
and (2,4|3) in T3 are connected by the edge (1,4|2,3), whose constraint set is
{1,2,3,4}, conditioned set is {1,4} and conditioning set is {2, 3}.
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FiGURE 1.3: Example of a R-vine on five variables. The solid, dotted, dashed-dotted
and black solid lines correspond to the edges of 11, T, T3 and Ty respectively.



Appendix A

Technical result: Proof of

assumption 13, Theorem 1.6.19

In this appendix, both technical results are established for the p = ¢ =1 case.

Assumption 13 is proved in this section. It is probably the most difficult part as the
nonlinear dynamic of R; should be controlled. To prove assumption 13, we need a

technical assumption.

Assumption 21. = and A are diagonal matrices such that ||Z||s < 1, and E [log (|| B:m(x, €)])] <

0, where
Z1Vi1Gi—1 Z1IVi1Gi—2 E o 2 ViGem S|
VG lIAL 2V iGllIAIIZ] IV iCe—mlHAHIE ™
1 0 cee 0
Bi1m(X.€) = 0 1 0o .- 0 ,
0 0 1 0
Above, ¢; = ((x¢,m) is the t-innovation of our partial correlation process, where

Xt = (Pct, Dt) is a F,_; measurable random vector, denoting by Pc, a random set of
partial correlations that satisfies 4, and D; is bounded a.e. Moreover, for i = 1,2, V,(,

is the derivative of ¢; with respect to its i-th component. Finally, E[||e|*] < co.

79
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Now assumption 13 becomes

sup|Grla(€; 0) — Gria(e; 0)] < Zsupllog(mt!) log(|Re|)| + Zsup!utR up — Ry g
0cO =1 0€© =1 0€©
(A.0.1)

We focus on the second sum, which can be written as
1 d I p—1 ~ p—1~ 1 d / -1 D ~ \/ p—1
?Z glelgluth u — W Ry, | = ?; 328’“t<Rt — Ry Yy + w, By (uy — ) + (ug — ) Ry iy

= —Z sup|Trace <ut(R U Ry + Ry (uy — ) + (uy — ﬂt)’f%t_lut> |.
0cO
By definition, u; = D; ‘¢, and i, = [?t_ le,. Thus, the previous quantity can be written

as

thl supl T (f [ Dy (R = R+ DR (D = D7)+ (D = DR D) |

= izl 3ug|Tr ([D;%R;l — RYD; '+ D 'R7Y (D — DY + (D — [);1)1%;1[);1} ete;) |
=10¢c

We shall consider a multiplicative norm for matrices. To fix the ideas, this will be the

spectral norm. Hence, we can bound the Trace operator as

izl sup(Tx ([ Dy (Ry = Dy o+ Dy RN = DY)+ (D = Dy R Dy et |

<E DR UIR, — Re||||R7M||D7Y DYDY Dy — DD (| RY R /

< thlzug(ll IR TR — Rellll Ry Dy I + 1Dy Dy 11D — Del[[|1D (R + (1R [D) llecer -
=106¢

We denote

T = DR IR~ Rl IR D7
M, = DD D~ DD (IR )+ 1)

The main issue consists of controlling for (R; — Rt) We focus now on the quantity Ty,

and firstly on | R, — Ry||.

R, — R, = vechof(Fyine(Pcy)) — Vechof(Fvine(ﬁct)),
= [Fuanel(Peili, §1L(5,7))) = Fane(Perlis 1L, 5)))]

1<ij<N

[NNTD/2 The one-to-one

Let € > 0, and define the compact set A, = [—1+¢€,1—¢€
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mapping Fuine(.) maps A, to [—1 + &1 — dVO=D/2 for some € > 0. On A, Fyine(.) is
C', hence V Fyi,0(.) is bounded. Consequently, Fyi(.) satisfies the Lipschitz condition:

there exists C' > 0 s.t., for all x and Z € A%, we have
[ Fvine(2) = Frine(7)]|oo < Cllz — 7 0o (A.0.2)

If we control the dynamics of these partial correlations, then we can ensure to generate

trajectories within [—1 + €, 1 — €]. The stationary partial correlation processes are
defined as

\IJ(PCt) = Q + E\I’(Pct_l) + Agt—l' (A03)

When generating the partial correlation dynamics from arbitrarily fixed initial values,
they are defined as
U(Pe) = Q+ZU(Peyq) + Al

In this process, the matrices are diagonal. Iterating (A.0.3), we get

t
W(Pc;) = Z”k '+ ZW(Peg) + > EF A,

where W(.) is applied to each component of the vector P¢; and (;_j is a function
of Pc;_. The r.hs. is an element of RYW=1/2" We recover Pc, by inverting ¥(.)

componentwise. (A.0.3) becomes
¢ t
Pe, = U1 () EFQ+ EW(Peg) + > ZFIAG ).
— k=1

The trickiest part of this proof consists of controlling for the difference Pe, — Pe,. The
difficulty comes from the necessary transformation of ¢;, D; and R; to recover (;. Now

we have

5 t t t ~
Pcy — Pe; = WYY EF1Q 4 Z0W(Pcp) + Z EFIAG 1) — (Z EF10 4+ ZN0(Pey)
=1 k=1 k=1

= VU Y(X) [E(¥(Pcy) — ¥(Pey)) + ZijE TGk = Gn) |
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for some matrix random X. The componentwise derivatives of ¥~! are the bounded

functions x — ————. Hence ||[V¥ ||, < 2/ and we obtain
(1 + 22?)

. 2 _ < 2 S x
1P = Perl| < Z[IE]][%(Peo) = W(Peo)ll + ~ AN _IEN* Gk = sl
k=1

where (;_r = C(Xt—k, €—k), With x;_x = (Pey_g, Dy_x). This gives the expansion

CXt—ts €1—1)—C(Xt—k» €1—1) = V1C(Xt—k, Et—k)(PCt—k_pCt—k)+v2<()_Ct—k>6t—k>(Dt—k_Dt—k)a

where Y, is located between x; and y;. Consequently, we deduce

+ V26K ) 1D = Dii])

N t 5
2|[Pe,— Pe|l < A+ 2|AYIE]F <||V1C(5<t—k;, €o—)||[|Pci—x — Peoi]|
]

with 4; = 2||Z|"||¥(Pcy) — ¥(Pey)|| /7. Denote r, = ||Pe; — Pey|| and d, = | Dy — D).
Note that r; is uniformly bounded, by a constant that depends on the considered norm.

To simplify and wlog, this constant will be one here. We obtain

t—1

2 — _ _
re < Ap+ ;HAHZH:Hk PV € 7er + 1V2C (ks €-p)[[dir) - (A.0.4)
k=1

Now we rewrite (A.0.4), for all ¢ > T and for some m < ¢ large enough that will be
stated after, as
Ft,m S Ct,m + Btfl,m(j(, E)ﬁfl,ma (A05)

where C,,,, = fft + I@,m + ﬁt, and the vectors

f;,m == (Tt7 Tg—1,° ,Tt_m+1)/, Zt = (At7 07 e 70)/7 dt,m == (dt7 dt—la e 7dt—m+1),7
t

Kim = CIAL 3 IViCRir i) IEIF s, 0, ,0),

k=m-+1

B t
Dy = AN NV (Xets ) NIEN* " dir;, 0, - -+, 0)".
k=1
These quantities are such that 77, € R™, fft e R™, ﬁt_l,m e R™, 2375 e R™,
We first focus on C,,,. For our matrix norm, we have

[Comll < NTA + 1 Kemll + [[Dell
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Now iterating ¢ in (A.0.5), let 0 < g < t fixed, we obtain

q
Ft,m S Ct,m+ZBt—l,m(X7 G)Bt—Q,m(Xa 6) e Bt—k,m(X) E)Ct—k,m—i_Bt—l,m(ia 6) e Bt—q—l,m(j{v E)ﬁ—q—l,m-
k=1

The sequence of matrices B ., (X, €) is stochastic and each of them has a size depend-
o0
ing on m. Under our assumptions, the series By, := > H;?:l B,_;m(X, €) is converging

k=1
a.s. In particular, its main term tends to zero.

q+1

P (|7m| > €) < P(|Crmll > ¢/3) + B(] [ I1Be—ym (v, )l > €/3)

j=1

q k
+ BT IB g% Tkl > €/3) i= T+ T+ T3,

k=1 j=1

First, let us manage T, i.e. the C;,, term. Since ||¥(Pcy) — ¥(Pcy)|| is a fixed finite

random variable and since ||Z]| < 1,
P(||A¢]| > €/9) < e,

for t sufficiently large (and independently of m and ¢). Moreover,

> 2 - — —lk—1—-m || ||Im
P (Kym > ¢/9) <P (;IIAH > IV eI = > e/9) <e

k=m+1
for m sufficiently large and because the latter series converges a.s.

Denote by p the largest parameter among 71, ..., 7,. By assumption, p € [0,1). Equa-
tion (4.6) in Francq and Zakoian (2004) provides sup, || D; — D;|| < Kp' a.s. Therefore,

. 2K _ ka1 tm
P (I >¢/9) <P <7|1A||Zuvzc<xt_k,et_kwuauk > e/9>

k=1

2K || A o
= P( 7l|t HZHV2C(>&4€,et,k)H.tmaX(H:H,p)t 1 >€/9>

k=1
< €

for t sufficiently large, under our assumptions and the LLN. We deduce T} < 3¢, for a

well-chosen (and now fixed) m and for ¢ sufficiently large.
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Second, note that the main term of the series B; ,, tends to zero a.s. Therefore, 75 < €

for the previous fixed m and ¢ sufficiently large.

Third, it remains to deal with T3. Actually, it is sufficient to use the same arguments
as for T7. Indeed,

||Bt —im (G O NCrbmll > €/3) <P ZHHBt 5 (0 | N Aemll > €/9)

k 1j5=1 k=1 j=1
ZHHBt 5 (% Nkl > €/9) + P ZHHBt —jm (6 O Pkl > €/9)
k=1 j=1 k=1 j=1

= T3y + T + 1.

To be specific, due to the finiteness of B, ,,

+oo Kk

Ty < %IF’(H\I/(PCo) = W(Peo)|l "D TTIBesm (X )l > €/9),

k=1 j=1

that is less than e for ¢ sufficiently large (and a fixed m). The terms T3, and T33 are
managed as above, because the multiplication by the (a.e. finite) random variable B,

does not change the reasoning.

By grouping the all inequalities above and since the reasonings were uniform wrt 6, we

get
P (sup |7 m| > e) < Te,

(22)

proving that supycg 7+ = op(1). Since it is bounded by one and due to the dominated
convergence theorem, this convergence to zero is true in L' or L?. This is true for | Ry —
_ N R N
Ry|| too, because of (A.0.2): supgeg ||R: — Ri|| = op(1) and T1 >, supgpee || Re — Re||

tends to zero when ¢t — oco.

We now focus on the precision matrix R; ' := [p]. Obviously,

. det(R, ")
= (- ),
det(Rt)
where R, @:9)
line 7 and column j). But note that Theorem 3.2 in Kurowicka and Cooke (2006) and

is the covmatrix of R; (the matrix deduced from R; after having removed
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assumption 4 implies that there exists a constant a s.t. det(R;) > a > 0 a.s. Since
det(R, (i’j)) is a finite sum of elements in [—1, 1], this term is bounded from above.

Therefore, there exists a constant M s.t.

supl| R 1| < M, as.
00
The same argument holds for R,: sup||R; || < Ms.
6o

Since ||D;Y|, ||D;7 Y| and ||R; Y| are uniformly bounded from above, we deduce
T T
1 Cte =
Pl=) supTy|eael] >e| <P| ——> sup|Pc — Pel.]|ee|| > €
(T;%g e-llee ) > ( T ;QGSH t ol -[lece )

57 1/2
1/2
(suprt) .FE [||eteg||2} / ,
0co

Ct Ct
< “p [suprt.||ete;||} < F
€ 6cO €

that is less than € for ¢ sufficiently large.

The second term M; can be bounded more straightforwardly. Using the stationarity

assumption of the GARCH process, there exists U > 0, and p €]0, 1] such that, a.s.,

supsup |hyy — hiy| < Upl.

0eO 1

Consequently, M; can be bounded as
sup M, = sup |17 1157 110: = Dl D7) (1771 + 1771 < €', s,
for some constant C'. Then
1 , C ;i C ,
P (f ;Zgg M[|ee]| > 6) <P (f ;P el > 6) < mE [lecer]]] < e,

for ¢ sufficiently large.

In other words, we have proved that

T

1

7 2 Sup(Ty + M) e = op(1).
t=1
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For the first sum of (A.0.1) and considering the spectral norm, we have:

log(|R:|) — log(|R|) = log(|Ix + (R — R)RY)
Nlog(|[Ix + (R — R)R))
Nlog([In]l + (R = R) R, )
Nlog(1 + [[(R, — R)R; )

N R — Rl B

INIA A

IN

By symmetry log(|R;|) —log(|R:|) < N||R,— R||||R; }||. Using the previous arguments,
the first sum of (A.0.1) converges to 0 when 7" — oco. We proved that

sup|Grls(€; 0) — Grla(e; 0)] = op(1).
90



Appendix B

Technical result: Proof of

assumption 15, Theorem 1.6.19

In this appendix, both technical results are established for the p = ¢ = 1 case.

To prove this statement, we need the following assumption.

Assumption 22. Let (As, By) defined as

A= s [(9U(PG) AVSC(Pe D) VoDl
0:]|160u—00,4 || <
B, = sup |[(VU(Pe,)) " [EVU(Pe,) + AV ((Per, Dyer)] |-

0:]|160u—00,4 || <c

For some a > 0, the stochastic matrix process (A, By) is stationary, E[A;] < 400 and

Z E[Bi1Bi—9- -+ By Ai—p—1] < 00.

k>1

Proof of Lemma 15. Applying a Taylor expansion to QLZT(@AT,U, 6.;€) around 6y, we

obtain

1L . 1 L . 1 L _
e lz,t(Gt; 9T,v; 9c) = = l2,t(6t; 90,'07 ec) + <9T,’U - 90,1})_ VGJQ,t(Gt; 9v7 90)7
Tt:l Tt:l T

t=1

for some 0, |0, — 6o, < |60, — éTﬂ,H. Using the consistency of éT,v, it is sufficient to
prove that

1 T

T sup V6, l2,1(€1; 0, 0c)|| = Op(1), (B.0.1)
i—1 10€0||0v—00,s||<c}
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for some (small) a > 0. Applying some matrix derivation rules (see Liitkepohl, 1996),
the analytical score of the second step likelihood with respect to the ¢-th element of 6,

is given by

g o1 (€13 0) = Oy [log (|Ri|) + ;D7 ' Ry Dy ey
= Trace (R, '(0p R:)) + Trace (e6,0p: [D;'R;'D;'])
= Trace (R, '(0p R:)) — Trace (€, [D; (05 Dy)D; ' Ry DY)
— Trace (ee; [Dy 'Ry (0 Re) Ry "Dy ']) — Trace (€, [D; 'Ry Dy (09 Dy) D] )

Obviously, the matrices D; ! are bounded from above by positive constants due to the
definition of our univariate GARCH dynamics. Concerning correlations, we know that
R; ' is bounded from above, due to assumption 4. As for the derivatives of R;, note
that |V, Ri|| < ||V Fyine(Pct). Vo, Pei|| and that the derivative of Fyine(+) is bounded

a.e. under the latter assumption.

Consequently, there exists some positive constant C' such that, for any a > 0,

sup [V, bl 0c,00)] < C. sup  {([[V, Dill+[ Vo, Pecl)llecl|* +[ Vo, Perl}-

0:110,—00, || <cx 0:110—00 | <ex

Let us focus on Vy, Pc;. By the chain rule, we have

VQUPCt = (V‘P(Pct,l))_l [EV‘IJ(Pthl) + AVPCC<PCt717 thl, Etfl)] V@vPCt,1
+ (V¥(Per1)) " AVDC(Perot, Doy, €-1) Vo, Dicr,

and then

sup  [|[Vy,Pey| < Aii+ By sup ||V, Pe |

0:]16,—00 || < 6:1160u—00,v | <cx

< A1+ BiaBio - BiogAipo (B.0.2)
k=1

Assumption 22 provides sufficient conditions so that the latter series belongs to L.
As a consequence, the existence of the series (B.0.2) is ensured a.s. But we need a
stronger assumption than in Theorem 1.1. of Bougerol and Picard (1992) typically,

because of the integrability requirement. This implies

T

1
= sup [ Vg, Pe|.(lec]]* +1) = Op(1).
T~ g)19,~60..l1<
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We now focus on ||V, Dy||, which is determined as [|9p; D;|| = || D; 'diag (9p: hjt) ||/2,
i=1,---,3N. The partial derivative of the j-th component above is zero when i # j.

Otherwise, note that, by iterating the volatility process equation, we have

k-1 2
hjw = 1_7_ +K“]<ZT jtk)?
J k>1
S _
O;hje = ihie =D 7 € g and O by = ﬁ“LZ(k_l)Tf "Gk
k>1 (1=7) k>1

We deduce there exists some constant C s.t.

sup  ||Vo, Dil.le|? < C (1 +) (k- 1)Tf—16§¢_k> llec])? a.s.

6: ||9 0v<Oé E>1

The latter r.h.s. belongs to L' because Et,l[eit] =1 for every j and t. Therefore,
1
sup ||V, Dy [lerl|* = Op(D),

T “— 0:110,60,<a

proving (B.0.1) and then our lemma. O



Chapter 2

Asymptotic Theory of the Sparse

Group Lasso

2.1 Introduction

Model complexity is an obstacle when one models richly parameterized dynamics such
as multivariate nonlinear dynamic systems. For instance, dynamic variance correlation
processes of size N have an O(N?) complexity as in the dynamic conditional correlation
parametrization (DCC, Ding and Engle, 2001). Another issue arises when the sample
size, say T', is comparable to N, which may reduce the estimation performances. This

is typically a high-dimensional statistical framework.

A significant literature developed on model penalization, which consists of reducing the
number of parameters and performing variable selection. For instance, the Akaike’s
or Bayesian information criteria aim at selecting the size of a model. However, these
methods are unstable, computationally complex and their sampling properties are
difficult to study as Fan and Li (2001) pointed out mainly because they are stepwise

and subset selection procedures.

The penalization or regularization procedures aim at overcoming these drawbacks.
They specify a penalty function (also called regularizer) to the statistical problem,
which is singular at zero to foster sparsity and thus performs variable selection and
estimation. The choice of the norm depends on the problem at hand and the key
quantity is the tuning parameter, also called the regularization parameter, which de-

pends on the sample size and controls for the bias. The Lasso procedure of Tibshirani

90
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(1996) specifies a I norm over the parameters, which fosters sparsity and allows for
continuity of the selected models. Other penalties were proposed such as the smoothly
clipped absolute deviation (SCAD) of Fan (1997), which modifies the Lasso to shrink
large coefficients less severely. The elastic net regularization procedure of Zou and
Hastie (2005) was developed to overcome the collinearity between the variables, which
hampers the Lasso to perform well. Their idea consists of mixing a I* penalty, which
performs variable selection, with a [? penalty, which stabilizes the solution paths. The
Group Lasso of Yuan and Lin (2006) fosters sparsity and variable selection in a group of
variables. Simon, Friedman, Hastie and Tibshirani (2013) designed the Sparse Group
Lasso (SGL) to foster sparsity both at a a group level and within a group. Their penal-

ization involves a ! Lasso type penalty and a mixed I!/I? penalty for group selection.

All these procedures, together with the algorithms designed for performing selection
and estimation, were developed within a linear framework. The penalized Ordinary
Least Squares (OLS) loss function is typically used for linear models as it is convex,
which makes the computation easier, and allows for closed form solutions, such as the
soft-thresholding operator for the Lasso penalty. Furthermore, linear modeling allows
for deriving non asymptotic oracle inequalities straightforwardly: see Biithlmann and

van de Geer (2011) on this non-asymptotic framework.

Knight and Fu (2000) explored the asymptotic properties of the Lasso penalty for
OLS loss functions. Fan and Li (2001) proposed a penalization framework for general
likelihood functions and studied the asymptotic properties of the SCAD penalty. They
proved that the SCAD estimator satisfies the oracle property, that is the sparsity based
estimator recovers the true underlying sparse model and is asymptotically normally
distributed. The Lasso as proposed by Tibshirani cannot satisfy the oracle property. To
fix this drawback, Zou (2006) proposed the adaptive Lasso within an OLS framework,
where adaptive weights are used to penalize different coefficients in the penalty. Nardi
and Rinaldo (2008) applied the same methodology for the Group Lasso estimator

within an OLS framework and studied its oracle property.

These theoretical studies were developed for fixed dimensional models with i.i.d. data,
a case where N does not depend on the sample size, and for least squares type loss
functions, except Fan and Li (2001). Fan and Peng (2004) considered the general
penalized likelihood framework when the number of parameters grows with the sample
size and focused on the oracle property for general penalties. Zou and Zhang (2009) also

focused on the oracle property of the adaptive elastic-net within the double-asymptotic
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framework. Their work highlights that adaptive weights penalizing different coefficients
are key quantities to satisfy the oracle property as one can modify the convergence
rate of the penalty terms. Nardi and Rinaldo (2008) also proposed within the double-
asymptotic setting selection consistency results, which states that asymptotically the

right set of relevant variables is selected.

In this paper, we develop the asymptotic theory of penalized M-estimators for con-
vex criteria and dependent variables. Within a time series framework, we specify a
generalization of the Sparse Group Lasso estimator of Simon and al. (2013). More
precisely, what is new is that we specify two regularization parameters: one for the
[' Lasso norm and one for the [*/I*> Group Lasso norm. This penalty is relevant for
problems where one would like to foster sparsity for selecting active groups, that is a
group for which some of the corresponding coefficients are non zero, and active coef-
ficients within an active group, a situation where a coefficient is non zero within an
active group. Hence this is somehow a two step approach as first the active groups
are selected, and then the active variables within an active group are selected. We
prove that the SGL as proposed by Simon and al. (2013) does not satisfy the oracle
property. Then we propose a new version of the SGL, the adaptive SGL using the
same methodology of Zou (2006), which consists of penalizing different coefficients and
groups of coefficients using random weights that are positive functions of a first step
estimator. This enables to alter the rate of convergence of the penalties such that the
adaptive SGL satisfies the oracle property. We provide explicit convergence rate of the
regularization parameters and the asymptotic trade-off between the ! Lasso and [!/[?
Group Lasso regularizations. We also prove that the adaptive SGL satisfies the oracle
property in a double-asymptotic framework, a situation where the model complexity

grows with the sample size.

The rest of the paper is organized as follows. In Section 2.2, we describe our general
framework for penalized convex empirical criteria and the SGL penalty. In Section
2.3, we derive the optimality conditions of the statistical criterion. In Section 2.4, we
derive the asymptotic properties of both the SGL and adaptive SGL when the number
of parameters is fixed. In Section 2.5, we prove the oracle property of the adaptive
SGL in a double-asymptotic setting. In Section 2.6, we use simulations to compare the

finite sample performance of the adaptive Sparse Group Lasso with other competitors.



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 93

2.2 Framework and notations

We consider a dynamic system in which the criterion is written as an empirical criterion,

that is

0 — Grl(0) = %ZT:Z(Q; 9), (2.2.1)

such that [(.) is "a general” known loss function on the sample space such that for any
process (&), 0 — [(€;0) is convex. This framework encompasses for instance the maxi-
mum likelihood method, where the [(.) function corresponds to I(e;;0) = —log f(€;;6),
where f(e;60) is the density of the observation (e;) under Py. Alternatively, a linear
model would imply l(e;6) = H6§1) — QIEEZ)HP, where (egl),e?)) = €. We denote the

empirical score and Hessian of the empirical criterion respectively as

: 1t . =
Grl() = Tngl(et; 0), Grl(9) = Tngg,Z(et; 0).
t=1 t=1

The dependent nature of our framework requires the use of particular probabilistic tools
to study the asymptotic properties of M-estimators. We extensively use the ergodic
theorem and central limit theorem (Billingsley, 1961, 1995) to obtain convergence in
probability of empirical quantities to their theoretical counterparts and central limit
theorems. To do so, we assume the stationarity and the ergodicity of the underlying

process (€;): see assumption 23 in Section 2.4.

In this setting, ¢, € R and 6 € R?, a vector that can be split into m groups G, k =

1,---,m, such that card(Gy) = ¢; and > ¢ = d. We suppose no overlap between
k=1
these groups. We use the notation ) as the subvector of 6, that is the set {6} :

k € Gi}. Hence the vector § = (6;,7 = 1,---,d) can be written as § = (Gz(k),k €
{1,--- ,m},i=1,---,¢c) !. We denote by 6y the true parameter vector of interest.
Moreover, 8 — Ell(¢;0)] is supposed to be a one-to-one mapping and is minimized

uniquely at 8 = 6.

!Formally, there is a one-to-one mapping between two ways for writing 6:

{1, d} = {(k,i),k=1,... m;i=1,--- ¢},
3 (g) = (kj, i)

In the rest of this paper, this mapping is implicit such that we allow such writings as j = (k,) or
Jj = i, where k is clear.
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We denote by S := {k : %) £ 0} the set of indices for which the groups are active.
Let A := {j : 6p; # 0} be the true subset model, which can be decomposed into
sub-groups of active sets as | € S, A, = {(l,1) : 9(()2 # 0}. Besides, there are inactive
indices G\ A; = A7 = {(,7) : 0, = 0}. We have {I ¢ S} & {¥i=1,---,¢,0{) = 0}.
In this setting, A = lgSAl such that for k # [, Ay N A; = (). Furthermore, A° = lgAf
such that for k # 1, AS N AS = 0.

Finally, we need the following notations: Gl (0)(x) € RE* is the "score” vector of the
empirical criterion taken over group k of size ¢, Grl (0)x); € R is the i-th compo-
nent of this score, and Grl(A)4 € R4 A is the score over the set of active indices.
GTZ(O)(k)(k) € Me,xe,(R) (resp. Hy) is the empirical (resp. theoretical) Hessian
taken over the block representing group k, and Gl (0) a4 € Meard(A)xcard(4)(R) is the

Hessian over the set of active indices.

The statistical problem consists of minimizing over the parameter space © a penalized
criterion of the form

0 = arg min {Grp(6)}, (2.2.2)
0cO

where
1T
0 Grolt) = £3-{lcid) + p,Or.6) + ps(r.0))
t=
= Grl(0) + pi(Ar,0) + Py, 0).

and both penalties are specified as

p1:R+XRTX@%R+, p2:R+XRTX@—>R+,
Ay, 0) = py(Ar,0) = AT 1o |0W1, (97, 0) = po(vr, 0) = T 156109
k=1 =1

Both ay and & are non negative scalar quantities for each group and the regularization

parameters (tuning parameters) Ay and vy vary with 7.

The estimator § obtained in (2.2.2) is not the minimum of the empirical unpenalized
criterion G7I(.). Our main interest is to analyze the bias generated by the penalties
and how the oracle property can be satisfied in the sense of Fan and Li (2001). More

precisely, the sparsity based estimator must satisfy

(Z)A ={i: 6, + 0} = A asymptotically, that is "model selection consistency”.
(ii)VT (0.4 — Op.4) LN (0,Vy) with Vg a covariance matrix related to the criterion of interest.



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 95

We highlight in Proposition 2.4.13, Section 2.4 that actually the SGL as proposed
by Simon and al. (2013) cannot perform the oracle property. Hence in Section 2.4,
we propose a new estimator based on the same idea as Zou (2006), the adaptive
Sparse Group Lasso, for which the oracle property is obtained when the weights are

randomized, as proved in Theorem 2.4.16.

This framework can be adapted to a broad range of problem. For instance, one can
penalize a subset of groups with a [! penalty only, and the other groups with a [!/I?
penalty only. This framework encompasses the SGL, the Lasso and the group Lasso

for proper choices of a’s and &£’s.

Let us motivate the interets of the SGL approach and illustrate our notations through
a simple linear example. In finance, finding the right set of explanatory variables to
predict future asset returns is a significant issue. For instance, one may use Japanese
companies indices, the Japanese GDP or the Japanese aggregated dividend-price ratio
to explain the Nikkei index return through a linear projection. But one should also
consider some foreign variables, such as the S&P 500 index or the US yield curve.
Consequently, some groups of variables naturally arise: group of financial companies,
tech companies, and the like; group of foreign components such as American financial
companies, and the like. Hence the set G, may represent the k-th (k < m) group of
Japanese financial companies, composed (as a shortcoming) with Nomura (index 1),
MUFG-Bank of Tokyo (index 2) and Sumitomo (index 3) represented by the parameter
vector ) = (05’“), Hék), Hék)); then k € § if the whole group has a statistically significant
effect on the Nikkei index. Suppose the ['/I? penalty selects this group as active.
Then Aj, represents the set of active components in Gy, such that ¢, = card(Ay) <
card(Gy,) = ¢;,. The I' penalty fosters sparsity within this selected group. If Nomura
is the only variable that is expelled, then 1 € A{ = Gj \ A, whereas {2,3} € A and

Cyp, = 2.

2.3 Optimality conditions

The statistical problem consists of solving (2.2.2). Both G7l(.), p,(Ar, «,.) and py(y7, &, .)
are convex functions and there are no inequality constraints. Consequently, by the

Karush-Kuhn-Tucker optimality conditions, which are necessary and sufficient, the
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estimator 6 satisfies for a group k
Grl(B) gy + AT g™ + ApT1,2® =0, (2.3.1)
for some vectors w® and z* satisfying

sgn(é-k)) if él(k) #0,i=1,---, ¢, S _

0® /116%®1, if 0 £ 0,

e{w": oM <1} id¥ =0,i=1,-- e e {0 z® |, <1} ifd® =o.

If 6% = 0, we have ||2¥)||, < 1. Then, from (2.3.1), we obtain for such a k ¢ S

Ck ck
Y (Grl@)w, + M T o) = (T4 < BTz 5.
i=1 =1

Consequently, if the subgradient equations are satisfied for 6™ then ) = 0 if
[Gri) g + e T gt o < 0T

On the contrary, if this condition is not satisfied, then ok # 0. In this case, sparsity
is fostered by the ! penalty as follows: using the optimality condition of (2.3.1), we
have for §*) #0

e

Vi=1,- e, =Grl(0)wy; = MT gl + 92T, Hé(lk)H |
2

If él(k) = 0, then |fv§k)\ < 1 and we obtain straightforwardly
IGrl(0) ] < AT ay,.

Bertsekas (1995) proposed the use of subdifferential calculus to characterize necessary
and sufficient solutions for problems such as (2.2.2). The conditions we derived are
close to those of Simon and al. (2013) (obtained for a least square loss function). They

will be extensively used in the rest of the paper.

2.4 Asymptotic properties

To prove the asymptotic results, we make the following assumptions.
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Assumption 23. (&) is a strictly stationary and ergodic process.

Assumption 24. The parameter set © C R? is convex and not necessarily compact.
Assumption 25. For any (¢;), the function 6 — [(e; 6) is convex and C3*(R, ©).
Assumption 26. (Vi(e;6p)) is a square integrable martingale difference.

Assumption 27. H = E[Vz,l(e;00)] and M := E[Vyl(er; 00)Varl(es;60)] exist and are
positive definite.

Assumption 28. Let v,(C) = sup {  sup |0} g, l(€r;00)]}, where C' > 0is a

kJlm=1,-.d 6:|0—6p|2<vrC
fixed constant and vy P 0, a quantity that will be made explicit. Then
—00

1 T
n(C) = ﬁZEM(C)W(O)] < 0.

tt'=1

Remark 2.4.1. Assumptions 23 and 26 allow for using the central limit theorem of

Billingsley (1961). We remind this result stated as a corollary in Billingsley (1961).

Corollary 2.4.2. (Billingsley, 1961)
If (x4, Ft) is a stationary and ergodic sequence of square integrable martingal increments
such that o* = Var(zy) # 0, then

1L J
—— It—>N<0,0'§).

Note that the square martingale difference condition can be relaxed by a-mixing and
moment conditions. For instance, Rio (2013) provides a central limit theorem for

strongly mixing and stationary sequences.

Theorem 2.4.3. Under assumptions 23-25, if Ap/T — Ao > 0 and vp/T — v > 0,
then for any compact set B C © such that 6y € B,

/N arg min{G..p(x)},
xcB

with . .
Goop(®) = Gool(@) + )‘OZakHw(k)Hl + ’VtolHIB(Z)Hm
k=1 =1
where 0 = arg min{G..p(x)} is supposed to be a unique minimum, and Gyl(.) is the

zecB
limit in probability of Grl(.).
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To prove this theorem, we remind of Theorem II.1 of Andersen and Gill (1982) which
proves that pointwise convergence in probability of random concave functions implies

uniform convergence on compact subspaces.

Lemma 2.4.4. (Andersen and Gill, 1982)

Let E be an open convex subset of RP, and let Fy, Fs, ..., be a sequence of random
concave functions on E such that F,(x) LN f(z) for every x € E where f is some
real function on E. Then f is also concaZ;Oan for all compact A C F,

sup|F(z) — f(z)] — 0.

z€A n—o0

The proof of this theorem is based on a diagonal argument and Theorem 10.8 of
Rockafeller (1970), that is the pointwise convergence of concave random functions on a
dense and countable subset of an open set implies uniform convergence on any compact

subset of the open set. Then the following corollary is stated.

Corollary 2.4.5. (Andersen and Gill, 1982)
Assume F,(x) N f(z), for every x € E, an open convex subset of RP. Suppose f
n—oo

, . B .y 5 P
has a unique maximum at xo € E. Let X,, mazrimize F,,. Then X,, — xg.
n—oo

Newey and Powell (1987) use a similar theorem to prove the consistency of asymmetric
least squares estimators without any compacity assumption on ©. We apply these

results in our framework, where the parameter set © is supposed to be convex.

Proof of Theorem 2.4.3. By definition, 6 = arg mm {Grp(0)}. In a first step, we prove
the uniform convergence of Grp(.) to the hmlt quantity G.¢(.) on any compact set
B C O, idest

sup |Gro(x) — Goop(x)| Ti> 0. (2.4.1)
xeB -

We define C C © an open convex set and pick @ € C. Then by assumption 23, the law

of large number implies

Grl(x) T%; Gool().

Consequently, if A\p/T — Ao > 0 and vr/T — 7, > 0, we obtain the pointwise
convergence
P
Gri(@) - Gupl@)] s 0.
—00

By Lemma 2.4.4 of Andersen and Gill, G, (.) is a convex function and we deduce the

desired uniform convergence over any compact subset of ©, that is (2.4.1).
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Now we would like that arg min {Grp(.)} Ti> arg min {G.¢(.)}. By assumption 25,
—00
©(.) is convex, which implies

Gre(@)] == oo

Consequently, arg min{Grp(z)} = O(1), such that § € B,(f,C) with probability
approaching one for C' large enough, with B,(6y, C') an open ball centered at 6, and

of radius C. Furthermore, as G,.p(.) is convex, continuous, then arg min {G,p(x)}
€B

exists and is unique. Then by Corollary 2.4.5 of Andersen and Gill, we obtain

arg min{Grp(x)} 2 arg min{Gp(x)},
xeB oo xe

that is § — 6. O
T—o00

Theorem 2.4.6. Under assumptions 23-25 and 28, the sequence of penalized estima-

tors 6 satisfies
10 — 65| = O (T2 + A\pT  a + 2T 'D),

when \p = o(T) and vr = o(T), and a = card(A).{ml?x agt, b= card(.A).{mlaX &}
satisfy \eTtar — 0 and v T~ tbp — 0.

Remark 2.4.7. This probability bound shows an explicit convergence rate for the SGL
estimator. If \pT~! = O(T~/2) and 47T~! = O(T~'/?), then we would obtain a
V/T-consistent 6.

Proof of Theorem 2.4.6. We denote vy = T2 4 A\ T a+~y7T b, with a = Card(A).{mkaX o}
and b = card(A).{mlax &}. We would like to prove that for any € > 0, there exists
C. > 0 such that

1 .
P(—|0 — 0ol| > Cc) < ¢
vr

We have
1. d
P(V—HQ — 80” > Ce) S ]PJ(E]’U, c R s ||’U,”2 Z OE . GTQO(QO + I/TU) S GTQO(Q()))
T

Furthermore, ||u||; can potentially be large as it represents the discrepancy 6 — 6,

normalized by vr. Now based on the convexity of the objective function, we have

B, Ju*ls = C, Gro(fo+rvru®) < Gro(f)} C {3u, ||ulz = C, Gro(fo+rvra) < Gro(th)},
(2.4.2)
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a relationship that allows us to work with a fixed ||ul||o. Let us define 6; = 6y + vru*
such that Grep(6y) < Gre(6y). Let a € (0,1) and 6 = ab; + (1 — «)fp. Then by

convexity of Gry(.), we obtain

Gre(9) aGre(01) + (1 — a)Gre(bo)

<
< Grp(by).

We pick a such that ||u| = C, with @ := af; + (1 — «)fy. Hence (2.4.2) holds, which

implies

P(Hé — 90” > C€VT) ]P)(H’LL & Rd, ”U||2 Z CE . GTQO(QO + I/TU) S GTQO(Q()))

<
S IP’(EI'u,, H’U,HQ = CG : GTQO(HO + VT’EL) S GT(,O(G()))

Hence, we pick a u such that ||u||; = C.. Using p;(Ar,«,0) = 0 and py(yr,&,0) = 0,

by a Taylor expansion to Grl(6y + vru), we obtain

2 3

. 1% .. _ 1% .. _
Gro(0y + vrw) — Gro(fs) = vrGrl(6o)u + gu'GTz(e)u + %V’{u’@ﬂ(@)u}u
+ pl()\T7 a, 9T> - pl()\Ta «, 60) + pZ(’yTa 57 GT) - p2(7T> 57 90)7

where 0 is defined as || — 0y < |07 — 6o]|. We want to prove

2

. vr . Ut vr . _
P(3u, |u||z = C. : Grl(6p)u + 7E[U/GTZ(90)U] + 7RT(90) + FV’{’U/GTZ(Q)’U,}’U,

+V’1_“1{p1()\T7 a, QT) - pl(/\T7 «, 00) + p2(/yT7 57 GT) - p2(7T7 57 00)} S 0) <€,
(2.4.3)

d
where Ry (60) = > wpwi{95 4,Grl(60) — E[0F 5, Grl(6o)]}. By assumption 23, (&) is a
k=1
non anticipative stationary solution and is ergodic. As a square integrable martingale

difference by assumption 26,
ﬁGTl(eo)u i) N(O, ’LLIM’U,),

by the central limit theorem of Billingsley (1961), which implies Gpl(6g)u = O, (T~ /?u'Mu).
By the ergodic theorem of Billingsley (1995), we have

Grl(6) T%Z H.

This implies R (6y) = 0,(1).
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Furthermore, we have by the Markov inequality and for b > 0 that

V2 VA6
T - —~ T e
P fuls = O sup | D9 {Crl(B)uful > b)

0:)|6—60 || 2<vCe

S 36b2 77(06)7

where n(C,) is defined in assumption 28. We now focus on the penalty terms. As

p; (A7, @,0) = 0, for the I! norm penalty, we have

Pz, ,0r) — Py (g a,60) = ATy {108 + vru® |y — (165711},
keS
and |p;(Ar, o, 07) — py(Ar, o, 00)| < card(S){rileag( ak})\TT_ll/THuﬂl.

As for the ['/I?> norm, we obtain

Po(v7.6,07) — y(y1,€.00) = AT _&{169 11 — 165123,
leS

and [pa(yr. &, 0r) = Po(yr &,00) < 31T wr|u];
les

< card(S){max &yr T vrful..

v )
Then denoting by 07 = A (H)C?v7, and using %E[U’GTZ(GO)U} > 7, we deduce
that (2.4.3) can be bounded as

2
. 1% . 1% . _
P(Ju, ||ulls = C. : Grl(fo)u + ;U/GTZ(QO)U, + = V{wGrlOutu
+v P (A, a, 0r) — py (A, @, 00) + Dy (7, €, 07) — Do (7, €,00)} < 0)

. vr
S IP’(EIu, ||’U,||2 = Ce : |GTZ(00)’U,| > (ST/S) -+ IP(EIu, ||’U,||2 = Ce . 7|RT<90)’ > 5T/8)

2
1% . _
+P(Ju, ||ul. = C. : ]%V/{U’GTZ(H)'U,}M > 67/8)
—HP)(E]’U/, H’LLHQ =C.: ’p1<)\T7 «, GT) — pl(/\T7 Q, 60)| > VT5T/8)
—HP)(H’U’? ||'U,||2 = OE : |p2(7T7§7 HT) - p2(/yT7€7 00)| > VT&T/8)'

We also have for C. and T large enough, and using norm equivalences that

P(Ju, lullz = Cc : [py(Ar, o, 07) — py(Ar, @, 0o)| > vrdr/8)

< P3u, ||ull = C. : card(S){r’IClea‘;c a AT or|lul|y > vror/8) < €/5,
P(Ju, [lullz = Cc : |py(y7, &, 07) — P2 (7, €, 00)| > vrdr/8)

< P(3u, ||u|l = C. : Cal"d(S){I{lEE‘LSX ST vrllu|e > vrdr/8) < €/5.
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Moreover, if vy = T2 + A\pT'a + vpT~'b, then for C, large enough

. C’fCSt
P(HU, HUHQ = CE : ’GTZ(GQ)U’ > 5T/8) < o
167
Cst
< ci < €/5.
Moreover
V2 . Cuvin(C.
P(Ju, [|ulls = Cc: sup |€TVI{UIGTZ(9)’U,}’U,’ > 07/8) %()
0:]|60—6o||2<vrCe T

S Cstl/%cgn(ce)

where C; > 0 is a generic constant. Consequently, we obtain, for 7" and C. large

enough, we obtain

. vt
]P)(H’U,, ||U||2 = Ce : |GTZ(00>’U,| > (5T/8) + P(Elu, ”’U,HQ = Ce : 7|RT(90)| > (5T/8)
2

1% . _
+P(Ju, ||u. = C. : %v{u'@ﬂ(e)u}m > 67/8)
+P(E|’U/7 ||’U,||2 =C.: |p1(>\T7 Q, 90) — p1(>\T7 Q, QT)| > VT5T/8)

+IP)(EI’U’7 ||'U,||2 - CE : |p2(7T7§7 00) - p2<’yT7£a 0T)| > VT(;T/S) +0
Cst

<t vyC2n(Ce)Cor + 3¢/5

<€,

for C sufficiently large, and T' large enough. We then deduce
10 — 8o]| = Op(vr) = Op(Ne T a + 7T~ 0+ T712).

]

Remark 2.4.8. We would like to highlight the use of the convexity property of Grp(.).
It allowed us to obtain the upper bound (2.4.3). Otherwise, the inequality would have
been uniform over ||ul|s > C.. A consequence is that ||u||2 can take significantly large
values, which would have made the control of the random part in the Taylor expansion
hard. This issue is overcome thanks to the convexity that allows for working with fixed
||u||2, as Fan and Li (2001), Fan and Peng (2004) or Nardi and Rinaldo (2008) do.

We now focus on the distribution of the SGL estimator. Deriving the asymptotic distri-

bution for M-estimators is standard in the case the objective function is differentiable.
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It consists of characterizing the estimator by the orthogonality conditions and derive a
linear representation by Taylor expansions of the estimator. But these techniques do
not apply when the objective function is not differentiable. In our case, ¢(.) is not dif-
ferentiable at 0 due to the penalty terms. In some specific context, it may be possible
to treat the non-differentiability of Gry(.) by applying the expectation operator E|.]
to ¢(.), which then becomes differentiable in §y. Then Taylor expansions are feasible
and one obtains the distribution, provided some regularity conditions of the empirical
criterion, such as stochastic equi-continuity: see Andrews (1994, a,b). This approach
works for specific loss functions, such as the LAD. But in our setting, the expectation

operator fails at regularizing ¢(.) due to the penalty functionals.

Another approach to obtain the asymptotic distribution relies on the convexity prop-
erty of ¢(.), and hence of Gry(.), without assuming strong regularity conditions on
©(.). The intuition behind this rather strong statement is as follows. Let Fr(u) and
Fo(u), u € R be random convex functions such that their minimum are respectively
ur and Uo. Then if Fp(.) converges in finite distribution to Fo.(.), and u is the
unique minimum of F, with probability one, then wr converges weakly to ... This
method to prove the convergence of arg min processes is called the convexity argument.
It was developed by Davis, Knight and Liu (1992), Hjort, Pollard (1993), Geyer (1996a,
1996b) or Kato (2009). Chernozhukov and Huong (2004), Chernozhukhov (2005) use
this convexity argument to obtain the asymptotic distribution of quantile regression
type estimators. The convexity argument only requires the lower-semicontinuity and
convexity of the empirical criterion. The convexity Lemma, as in Chernozhukov (2005),

can be stated as follows.

Lemma 2.4.9. ( Chernozhukov, 2005)

Suppose

(i) a sequence of convex lower-semicontinuous Fp : R? — R marginally converges to
Fo : R — R over a dense subset of R?;

(ii) Fo is finite over a nonempty open set E C RY;

(111) Foo is uniquely minimized at a random vector ty.

Then

: d : , d
arg minFr(z) — arg min F.(2), that is ur — Uee.
ZeRd ZeRd

Theorem 2.4.10. Under assumptions 23-28, if \pT~Y? = X\g and T2 = ~,
then
VT (6 — 65) -5 arg min {Foo(u)},

UcR4



Chapter 2. Asymptotic Theory of the Sparse Group Lasso 104

provided Fo, is the random function in R, where

_ 1, , L ) (X ()
Fo(u) = —wHu+w'Z+ N> ary {|u” 100 o+ sgn(by; )10}
9 e 63 =0 i) %600

m u(l)lg(l)
+ & uO a0y + —5Lm )
o _ ,
=1 0 =0 ”9(()1)”2 0y #0

with H = H(0y) := E[VZ,l(e;600)] and some random vector Z ~ N(0,M), M =
M(eo) = E[V@l(et, (90)V9/l(6t, ‘90)]

Proof of Theorem 2.4.10. Let w € R? such that § = 6y + u/T"/? and we define the
empirical criterion Fr(u) = TGr(p(0y + u/TY?) — p(6)). First, we are going to
prove the finite distributional convergence of F to F,. Then we use the convexity of
F7(.) to obtain the convergence in distribution of the arg min empirical criterion to

the arg min process limit. To do so, let w = v/T'(6 — ;). We have

FT(“’) = T{GT(1<0) - Z(GO)) + D1 ()\Tv a, 9) - pl()‘Ta a, 90) + pQ(VTa 57 9) - p2<7T7 67 (90)}
= TGr(l(f +w/TY?) = 1(60) + A X [l +u® /Ty — [1657[11]
k=1
+ oGl +uO VT 162
=1
where Fr(.) is convex and C°(R?). We now prove the finite dimensional distribution

of Fr to Fo to apply Lemma 2.4.9. For the I! penalty, for any group k, we have for T'
sufficiently large

Cy
1667 + w®™ VT = 116571 = T~ {11509 o + wi™sen(657)1 100 .o}

=1
which implies that
m m C:
k k k k k
Ay alllfy”+a® VT =166 1] — MoD e {luf L0 o +uisen(655) 10 0}
k=1 k=1 i=1 . A

under the condition that Ap/v/T — Ao.

As for the ['/I? quantity, for any group [, we have

O

_ 0 _
165" +u®/ VT2 = 165"l = T2 {|lu 121y _ + A o} 0T
0o 2
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Consequently, if ypT~%% — ~y > 0, we obtain

(l)’@(l)

S ! I S u Y -
7 &I+ VT ] = 0 Oty ot g o) +o(T
=1 =1 ’ 0 |2

Now for the unpenalized criterion Grl(.), by a Taylor expansion, we have

. 1 .
TGT(Z(QO + U/TI/Q) — 1(90)) = UlTl/zGTl(eo) + EUIGTZ(Q())’U, —V {UIGTZ( )u}u

6T1/3

where @ is defined as ||§ — || < ||u||/v/T. Then by assumption 26, we have the central
limit theorem of Billingsley (1961)

VTGrl(6p) L N(0,M),

and by the ergodic theorem
Grl(6,) — H.
T—o0

Furthermore, we have by assumption 28

|V {u/GTl( )u}u’2 < _Z Z Z uklullumluk2ul2um2‘89k 01, 0m, (etvé) agk29l20m2l(€t/;e_)|

t,t'=1k1,l1,m1k2,l2,m2

1 d
_Z Z Z Wy Uty Wiy Uy Wi U, U (C) 0y (C),

t,t'=1k1,l1,m1ka,lo,mo

for C large enough, such that v,(C) =  sup { sup |8§’k9l9ml(et;0)|} with
kilm=1,-.,d 6:|0—0|2<vrC

vp =T Y2 4 \peT ag + yp T~ 'bp. We deduce
V{u/Grl(f)utu = Oy(||ul3n(C)).
Consequently, we obtain

6T1/3v /' Grl(f)u}u —) 0.

Then we proved that Fr(u) 4 Fop (u), for a fixed w. Let us observe that

uy = arg min{Fr(u)},
u
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and Fr(.) admits as a minimizer u% = VT(0 — 6y). As Fp is convex and Fo is
continuous, convex and has a unique minimum, then by the convexity Lemma 2.4.9,

we obtain

VT (0 — 6y) = arg min{Fr} Ly arg min{F.}.
u u

]

Theorem 2.4.11. Under assumptions 23-28, if ypT~' — 0 and vpT~Y? = oo such
that Arys' — o, with e > 0, then

T .
—(0 — 6,) 4, arg min {K..(u)},
yr u

provided Ko is a uniquely defined deterministic function in RY, where

1 m ,
Keo(u) = juHu+ Mokz o {[lu® L y00_g + ul 59“(9(()1{))193“)7&0}
=1
e a0
+ el + ) .
RE 4 PR

The limit quantity K (.) is non-random, which implies that the convergence in dis-

T .
tribution implies the convergence in probability —(6 — o) 2 arg min {Ky(u)} by
u

T
Shiryaev (ex 7, p 259, 1995).

Remark 2.4.12. The convergence rate of 0 is slower than v/T and the limit distribution
is not random. To obtain an optimal convergence rate, we should take Ay = O(T"/?),
Yr = @) (Tl/ 2).

Proof of Theorem 2./.11. To prove this convergence result, we proceed as in Theorem
2.4.10. To do so, we define § = 6y + wyy/T and we prove that Fr(u) = Gr(p(6y +
uyr/T) — ¢(0y)) converges in finite distribution to Ko (.). We have

Fr(u) = T{Gr(l(0) —1(0)) + p1(Ar, ,0) — py(Ar, v, 0p) + Do (7, €, 6) — Po(vr, €, 60) }
= TGr(I(0 + urr/T) — 1(6)) + AT,;%HIHS'“) +u®yp /Ty — 16571]

+ r3ll6 +uOrm/Tla = 1o
=1
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For the unpenalized empirical criterion, we have the expansion

2

3
: % . g
TGr(1(00 + wyr/T) — 1(6y)) = v Grl(00)u + %u Gorl(00)u + ——

6T2V{u'@ﬂ(§)u}u,

where @ lies between 6 and 6y + wyr/T. This implies Fy(u) = ?KT(U), where

KT(’U,) = g(ﬁGTl(eo)U) + %’U/GTZ(G_)’UJ + g—;V’{u'GTl(é)u}u
+ Zar Y anlll6f” + u®az /Tl — 11667]] + LS a6 + u®yr /Tl — [165]]2).
R T3

We first focus on the penalty terms. For the [' part, for any group k, we have
Cy
k k - k Kk Kk
1067+ w /Tl = 10671 = 3T~ {100 + uisen(06) 1, ).
i=1
We deduce that

Cy
T
Arar 108 + /Tl = 167 11) = 10> _end 1,00, + ulsen(85)1

" 009 201
T i=1 ’

under the condition A\ry5' — fio.

As for the ['/I? quantity, for any group [, we have

0 pm

l ! _ u b _

105" + wOye/Tlls = 1165”12 = 2T {llu®l 1,0 _ + 1oy o (T,
o Il2

Consequently, we obtain

T, 0o 0 " u® gy
’V_T&[HQO +uyp /T2 — |0y ||2] — &{llw ||2193>:0 + HQTHZ%SQO}-

Now for the unpenalized part, by the central limit theorem of Billingsley (1961),
VTGrl(6,) is asymptotically normal, then 477~/? — oo implies by the Slutsky the-
T .
£(\/TGTZ(90)U) 0.
’VT T—o0
Furthermore, by the ergodic theorem of Billingsley (1961), we have

orem

Grl(6) T%Z H.
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As for the third order term, by assumption 28 and using the same reasoning as the

proof of Theorem 2.4.10, we have
VT iy, 14 ) P
6Tv {u'Gri()u}u = 0,

using yr = o(T"). Then we proved that Kz (u) N Koo (u), for a fixed u € R We
have

wy = arg min {Kr(u)},
u

and Kr(.) admits as a minimizer u} = %(é —6y). Kr(.) is convex and K (.) is

continuous, then by the convexity Lemma, we deduce

T .
—(0 — by) = arg min {Kr} SN arg min {K..}.
YT

]

We now turn to the oracle property of the SGL. Model selection consistency consists
of evaluating the probability that {4 = A}, for T large enough. That means we check
that the regularization asymptotically allows for identifying the right model.

Proposition 2.4.13. Under assumption 23-28, if \eT~1? — X\g and ypT~? = ~,
then
lim sup P(A = A) < ¢ < 1,

T—o0

where ¢ 1s a constant depending on the true model.

Proof of Proposition 2.4.13. In Theorem 2.4.10, we proved

VT (6 - 6y) := arg min{F} s arg min{F },

UERY UERY

under the assumption Ap/vT — A\ and y7/v/T — 7. The limit random function is

1, : S 1) () g (909
]Foo(u) — §,u Hu + 4w Z + /\Olglak;ﬂui |19(()ki):0 + uy Sgn(eo,i )19(()1(2#0}
u®pW

m 0
+ Y2 &{luV )1, 0_o + —+—1 .}
=1 09"=0 ||0(()1)||2 05’ #0
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First, let us observe that
(A=A ={Vk=1,-- m i€ A, 0" =0} n{Vk=1,--- ,m,ie A0 =0}
Both sets describing {./Zl = A} are symmetric, and thus we can focus on
(A=A} = {Vk=1,---,m,iec A5, TV =0},
Hence

PA=A) <P(Vk=1,---,m,Viec A, TV6" =0).

Denoting by u* := arg min{F.(u)}, Theorem 2.4.10 corresponds to v/T'(0 4—6y_4) N
UeR4
u’. By the Portmanteau Theorem (see Wellner and van der Vaart, 1996), we have

limsup P(VE =1,--- ,m,Vi € A, TV?0" = 0) <P(Vk =1,--- ,m, Vi € A, " =0),

T—o00
as 6y 4c = 0. Consequently, we need to prove that the probability of the right hand

side is strictly inferior to 1, which is upper-bounded by

P(Vk=1,---,m,Vie A u* =0) <

min(P(k ¢ S,u'™* =0),P(k € S§,Vi € A, u;”" =0)).

If \g =70 =0, then u* = —H'Z, such that Py~ = N(0, H-'MH™!). Hence , ¢ = 0.

If Ay # 0 or 7 # 0, the necessary and sufficient optimality conditions for a group &

tell us that u* satisfies

0y
Hu* + Z) ¢ + Moard® + 1é—=—=0, k€S,
( )k + Ao 0 1P, (2.4.5)
(Hu* + Z) ) + docsw™® + 4p&pz® =0, otherwise,

where w®) and z® are the subgradients of ||u®||; and ||[u® ||, given by

(k)
BN :e, (k) u e (k)
wz(k:) _ sgn(w, ) ifu,” # 0, L) _ —Hu(’“)Hglfu # 0,

(F) . gy (F) e (B)
€{w;" : Jw;| < 1}ifu; =0, c {2 ||zW], < 1}ifu® =0,

ugk)|19(<)k>:0 + ui(k)sgn(e(()lfi))lgéki)ﬂ}.

i

and pgk) = Ou,{
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If u™* =0,Vm ¢ S, then the optimality conditions (2.4.5) become

Hssus + Zs + Ao7s + 70¢s = 0, (2.4.6)
H - Ha)suf; - Z(l) - Aooélw(l)Hz < Y&, as Hz(l)Hz <1,les
6"
with 75 = vec(k € S,axp™) and (s = vec(k € S,ﬁkm), which are vectors of
0 2
Rcard(S)'
For k € S, that is the vector Hék) is at least non-zero, then
(k) Qék)
Hu* + Z); + Aoarsgn(05)) + vo&s——— =0, ifk € S,i € Ay,

(Hu* + Z); + )\Oakwgk) =0, 1€ Af.
Consequently, if ugk)* =0,Vi € Af, with k € S, then the conditions (2.4.7) become

60,4
Hg, 4,05, + Za, + Mocwsgn(fo,4,) + mm —
Wk

Y

| - (HAZAkuj‘\k + ZAZ)z’ < /\Oozk.

Combining relationships in (2.4.6), we obtain
|HysHgs(Zs + AoTs +70Cs) — Zay — Xooqw D]y < 708, 1 € S°.

The same reasoning applies for active groups with inactive components, such that

combining relationships in (2.4.7), we obtain

to,4
|(Hoaga,H, 4, (Z 4, + Aocsgn(o.a,) + %§k|—k

— Z 4 i S)\ Q.
|00,Ak||2) Ak>| 0k

Hence we deduce

P(Vk=1,--- ,mV e A, u" =0) <
min(P(k ¢ S, u®* = 0),P(k € S,Vi € A, uM* = 0)) := min(ay, as).
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Under the assumption that Ay < co and vy < 0o, we obtain

a; =P(l € 8 |HpsHgs(Zs + XoTs +70Cs) — Zay — oawV |, <1&) < 1,
GO,Ak

Ry Zae )il < Aoau) < 1.

as =Pk € S,i € A5, ](HAzAkH;iAk(ZAk + Noasgn (o4, ) + Yok TN
Wk

Thus ¢ < 1, which proves (2.4.4), that is proposition 2.4.13. ]

Remark 2.4.14. The result in Proposition 2.4.13 highlights that the SGL as proposed
by Simon and al. (2013) cannot satisfy the oracle property since the penalties cannot
recover the unknown set of active indices A, which is called model selection consistency.
To fix this drawback in an ordinary least square framework, Zou (2006) proposed the
adaptive Lasso, where random weights are used to penalize different coefficients and
proves that the adaptive Lasso estimator satisfies the oracle property in the sense of
Fan and Li (2001), that is asymptotic normality and selection consistency for a proper

choice of Ay and az(k).

That is also the case for the adaptive Group Lasso model
proposed by Nardi and Rinaldo (2008), where adaptive weights are used to penalize
grouped coefficients differently. We propose the same approach than Zou (2006) and
use adaptive weights in the penalties such that the adaptive SGL satisfies the oracle

property in the sense of Fan and Li (2001) as proved in Theorem 2.4.16.

The adaptive specification of the proposed estimator now becomes

0 = arg min {G7(0)}, (2.4.8)
0cO

where
1T - N
0— Grip(0) = Tzl(fﬁ 0) + py(\r,0,0) + py(y7,0,0)
i=1

= GTZ(9> +p1()\T,é, 9) —|—p2<’YT,§, 0),

such that both penalties are specified as

m Cg

Pi(Ar.0,0) = AT > " a(0)0], py(v7.0,0) = 7T €(0D) [0V
=1

k=11=1

These penalties are now randomized through the 0 argument in the weights a’s and
&’s. This first step estimator 0 is supposed to be a T"/2-consistent estimator of 6,. For
instance, it can be defined as an M-estimator of the unpenalized empirical criterion
Grl(.), that is

0 = arg min Gl(6).
90
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Adaptive weights are also used by Zou and Zhang (2009), who plug the elastic-net
estimator in the adaptive weight and then estimate a new elastic net model using

these weights, that is the adaptive elastic net.

The weights we use are now random and for any group k or [, a(A*)) e RS, (0% e Ry

are specified as
k 5 k)= - 5 S 11—
af) = a(0®) = (677, =1, i), &rai= €0 = 167",
for some constants 7 > 0 and > 0 (to be specified).

Theorem 2.4.15. Under assumptions 23-25 and 28, the sequence of penalized esti-

mators 6 satisfies
10 — 6o]| = Op(T 772 + Ar T ag + 2T 'br),

with ar = card(A).{max (maxagigg)}, br = card(A).{max&r;} stochastic quantities,
keS ‘ieA, leS

such that AT ‘ar 50 and yrT Yoy 0.

Proof of Theorem 2.4.15. The proof follows exactly the same steps as for Theorem

(2.4.6), except ar and by are random quantities. O

Theorem 2.4.16. Under assumptions 23-28, if \pT~Y/? = 0, ypT /2 = 0, TO-D/12\p —
00, TW=D2y, - 00 and TWD/2y \7' — oo, then 0 obtained in (2.4.8) satisfies

~

Tlim PA=A) = 1, and
— 00
\/T(QA — 00744) i) N(O, H;\i\MAAH;\}L\)
Proof of Theorem 2.4.16. We start with the asymptotic distribution and proceed as in
the proof of Theorem 2.4.10, where we used Lemma 2.4.9. To do so, we prove the finite

dimensional convergence in distribution of the empirical criterion Fr(u) to Fo,(uw) with

u € RY, where these quantities are respectively defined as
Fr(u) = TGr(¢ (0 +u/VT) - ¢(0o))
m Cg
= TGr(I(0o +u/VT) = U6)) + Ar Y Yoap 16, +ui”/VT| — 165
=1i=1

+ o enl68 + u® VT — 165 ],
=1
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and

Fo(u) = EU;\HAAUA +u/yZ, ifu; =0, wheni ¢ A, and

o0 otherwise,

(2.4.9)

with Z 4 ~ N(0,M44). By Lemma 2.4.9, the finite dimensional convergence in distri-

bution implies arg min{Fr(u)} Ly arg min{F.(u)}. We first consider the unpenal-
UER UER
ized empirical criterion of Fr(.), which can be expanded as

TGr(1h(0y + w/VT) — (b)) = TGl (6)u + %u’(GTl(H)u V{u'Grl(0)}u,

6T1/3

where 0 lies between 6y and 6 + u/ VT. First, using the same reasoning on the third

order term, we obtain

T1/3V {U,GTZ( )}’U,QO 0.

By the ergodic theorem, we deduce GI(6,) Ti> H and by assumption 26, vVTGl(6,) BN
— 00
N(0,M).

We now focus on the penalty terms of (2.4.8), we remind that a = |6} k)| . such that
fori € Ay, k € S, 6% Ti> 6" +£ 0. Note that
—oo

V(1657 + u® VT = 1657]] = uPsen(6())1

055 #0°
This implies that, for i € A, k € S, we have

Cy

ATy o VT (67 +w VT = 1671) = 0.

il ’ AV e
under the condition A\yT~2 — 0. For i € Af, OI? = 0, then T72(|6™ )7 = 0,(1).
Hence under the assumption AT Y/2 — oo, we obtain
Tn/2 P

(g
(2.4.10)

AT Y2a$IVT (105 + ul VT — 1057]) = AT 2|
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As for the I'/I? quantity, we remind that &7, = ||§®]|;#, such that for [ € S, §® N

T—o0
6’(()”, and in this case

u(l)'ﬁ(()l)

169112

VT{65 +u®/VT|s — (1652} =

+o(T~1/?).

Consequently, using yr7 Y% — 0, and for [ € S, we obtain
_ ! l P
T VT (105 +u® VT2 = [165]2) — 0.

Combining the fact k£ € S and Qék) is partially zero, that is ¢ € Af, we obtain the
divergence given in (2.4.10). Furthermore, if [ ¢ S, that is 9(()” =0, then

l l
VT{6 +u® VT ||y — 6812} = [|u®]),,

and T#/2([|§)]|2)* = O,(1), then under the assumption v, T# /2 — 0o, we obtain

TH/2

T-1/2 T 0(1) O /T — Q(Z) — N T 2O T
BT g VI + Tl = 1] = T O 2 o

We deduce the pointwise convergence Fr(u) SN Foo(u), where F(.) is given in (2.4.9).
As Fr(.) is convex and F.(.) is convex and has a unique minimum (H ' Z 4,04¢), by

Lemma 2.4.9, we obtain

VT(0 — 6y) = arg min{Fr(u)} % arg min{F.(u)},

UcR4 UcR4

that is to say

\/T(é_A - 007.4) i} H‘Z}L\ZA, and ﬁ(éAc —_— QO,AC) i> O.AC

We now prove the model selection consistency. Let i € Ay, then by the asymptotic

normality result, éfk) Tl> Qék), which implies P(i € ./Alk) — 1. Thus the proof consists
— 00
of proving

Vk=1,---,m,Vie A5, P(i € Ay) — 0.

This problem can be split into two parts as

Vk ¢ S,P(ke S) =0, and Vk € S,Vi € A5, P(i € 4;,) — 0. (2.4.11)
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Let us start with the case k ¢ S. If k € S, by the optimality conditions given by the
Karush-Kuhn-Tucker theorem applied on GTw(é), we have

L Ar . gl
Grl(0)w) + ?O&S{C) ©w® + TfT,k =0,

® is the Hadamard product and

(
™ ) <1} i 6% = o,
Multiplying the unpenalized part by 7"'/2, we have the expansion

TYV2Grl(0) gy = TY’Grl(00) +T1/2GTZ(90)(k 18— 60)
+ TV2V{(0 = 00) (1) Grl(0) sy (B — o)y}

which is asymptotically normal by consistency, assumption 28 regarding the bound on
the third order term, the Slutsky theorem and the central limit theorem of Billingsley
(1961). Furthermore, we have

~

H(k) g(k)
VTT(“ 1)/2(T1/2|| ||2)—u

~1/2
T Erk . — 0
16| [0 |y T—oe

using TH="/24, A1 — co. Therefore, we have

A~

) o Ar r Hk)
vk ¢ 8, P(k € §) < P(~Grl()w = oy 0w + b 16| e, "~ °
2

We now pick k € S and consider the event {i € A,}. Then the Karush-Kuhn-Tucker
conditions for Gy(6) are given by

. N Ar YT
(Gl(0)) s + ofilsgn(0F) + —Er—sm = 0
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Using the same reasoning as previously, 7'/ 2(GTZ(9))(k)7i is also asymptotically normal,
and (%) Ti> Q(gk) for k € &, and besides
—00

(n—=1)/2
)\TT_I/2oz(k).sgn(é(k)) = )\T—T ' — 00
Ty ‘ (T1/2’§§k)‘)n T—00

)(k)
such that we obtain the same when adding 77~ 2Erk Hé(lk) i . Therefore, we have
2
| g _— e gy gy om0
Vk € S,Vi ¢ A, P(i € A) < P(—=(Grl(0)) ) = ?amsgn(ei )+?€T7km) -0
2
We have proved (2.4.11). O

2.5 Double-asymptotic

In the previous sections, we worked with a fixed dimension d, where d = ick. From
now on, let us consider the case where d = dr, such that dr — ccoasT — oé.:1Note that
card(S) = O(card(A)) = O(dr). The speed of growth of the dimension is supposed
to be dpr = O(T°) for some g < ¢ < ¢;. In this section, we prove that the adaptive
SGL satisfies the oracle property, that is model selection consistency and optimal rate
of convergence for proper choices of 0 < ¢; < g2 < 1. We highlight that our general
framework unfortunatly hampers a high degree of flexibility on the behavior of dr,
that is ¢ cannot be set in (0,1). This issue was encountered by Fan and Peng (2004)
in an i.i.d. and non-adaptive framework. This lack of flexibility is a necessary cost to
cope with the random remainder of the Taylor expansions as we should take the third
order term into account. This problem is moved aside when considering the simple
linear model, where the third order derivative is zero. For instance, Zou and Zhang
(2009) proved the oracle property of the adaptive elastic-net in a double-asymptotic

framework for linear models where 0 < ¢ < 1.

For the asymptotic normality, we use the method of Fan and Peng (2004) and Zou
and Zhang (2009), where we derive the asymptotic distribution of the discrepancy
VT(0 — 6y).4 times a matrix sequence (Q7) of size r x card(A), r being arbitrary
but finite. This allows for switching from infinite dimensional distribution to finite

dimensional distribution, where we can apply the usual tools of the asymptotic analysis.
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In this section, we provide the conditions to satisfy the oracle property as in Fan
and Peng (2004) or Zou and Zhang (2009). In this double-asymptotic framework, the
quantities depend on dr, hence on 1. They should be indexed by 7', which expresses
that the dimension depend on the sample size. In the rest of the paper, we denote
Hy := E[V3,l(e:; 00)] and My := E[Vil(er; 00)Verl(er; 6p)]. To make the reading easier,
we do not index other quantities by T', which will be implicit. We remind that the

criterion is

~

0 = arg min{Grl(0) + p,(Ar,0,0) + py(77r,6,60)}

0o
2.5.1)
) 17 )\T m Cg YT m (
= arg min{z350(e; 0) + 30 a6 + > erll00 )
I I A= T'izima & Tim
with ag,{fz = |0~§k)|*’7 and &y, = [|09)5", where 7 > 0, > 0, and 6 is a first step

estimator satisfying

f = arg min{Gl(6)}.
0co

The double-asymptotic framework implies that the empirical criterion can be viewed
as a sequence of dependent random variables for which we need refined asymptotic
theorems for dependent sequence of arrays. Shiryaev (1991) proposed a version of the
central limit theorem for dependent sequence of arrays, provided this sequence is a
square integrable martingale difference satisfying the so-called Lindeberg condition. A
similar theorem can be found in Billingsley (1995, theorem 35.12, p.476). We provide
here the theorem of Shiryaev (see Theorem 4, p.543 of Shiryaev, 1991) that we will

use to derive the asymptotic distribution of the adaptive SGL estimator.

Theorem 2.5.17. (Shiryaev, 1991)
Let a sequence of square-integrable martingale differences £T = (Ery, FL), T > 0, with
Fl =0(érs, s <t), satisfy the Lindeberg condition, for € > 0, given by

T

P
ZE[g%,t]“fT,t‘>€|ft’;I;l] 1;)0 0,
t=0

T T T
then if Y E[E3,|FF )] — of, or Y263, — oF, then Y &r, — N(0,07).
t=0 ’ T—ro0 t=0 = T—oo t=0

Remark 2.5.18. Note that central limit theorems relaxing the stationarity and martin-
gale difference assumptions for sequences of arrays exist. Neumann (2013) proposed

such a central limit theorem for weakly dependent sequences of arrays. Such sequences
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should also satisfy a Lindeberg condition and conditions on covariances. In the rest of

the paper, we use Shiryaev’s result.

We consider problem (2.5.1), which is the adaptive SGL estimator. In the first step,
we study the convergence rate of the first step unpenalized estimator, which is plugged
in the adaptive specification. The convergence rate of a classic M-estimator is 7"/2,

for d fixed. For d diverging, we need some additional assumptions.

The two next assumptions are similar to condition (F) of Fan and Peng (2004) and
allow for controlling the minimum and maximum eigenvalues of the limits of the em-
pirical Hessian and the score cross-product. We denote by Apin (M) and Apax (M) the

minimum and maximum eigenvalues of any positive definite square matrix M.

Assumption 29. Hpy and My exist. Hy is nonsingular, and there exist by, by with

0 < by <by <ooand ¢y, ey with 0 < ¢; < ¢9 < oo such that, for all T,
by < /\min(MT) < Amax(MT> <bg, 1 < )\min(HT) < )\maX(HT) < Ca.

Let Vr = H;IMTH;I, we deduce there exist a1, as with 0 < a1 < as < 0o such that,
for all T,

a; < )\min(VT> < )\max(VT) < as.
Assumption 30. E[{Vel(e;00)Val(er;00)}%] < oo, for every dr (and then of T).
Assumption 31. There exist some functions ¥(.) such that, for all T

sup K[y, l(e;0)0p l(er;0)] < U(|t —1']),

k=1, dr

and
1 T
— Ut —1t]) < .
Sl%thtle (] ) <o

Assumption 32. Let Cuy := 05 4l(e;00) — E[0] 4,1(€1; 60)]. There exist some functions
x(.) such that
IE[Chr,eCrr ]| < x([t = 1)),

and

1 T
/
sg{prx(!t—tD < 0.

tt=1
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Assumption 33. Let v (C) ==  sup { sup  |9§ 44, 1(e;0)[}, where C > 0 is
klm=1,dr 0:]0—60|la<vrC "

a fixed constant and vy = (dr/T)Y2. Then

1 T
0(C) = > E[vi(C)on(C)] < oo.
tt'=1
Theorem 2.5.19. Under assumptions 23-25, 29-33 and if dy. = o(T), the sequence of

unpenalized M-estimators solving 6 = arg min {Grl(0)} satisfies
€O

=5

16 — 6oll2 = O,((+)32).

Both vectors 6 and 0, depend on T such that 0 = 01 and 0, = 0o 7 1= 0o ,00-€7.
Remark 2.5.20. Note that this consistency result requires at most d. = o(T'), as The-

orem 1 of Fan and Peng (2004).

Proof of Theorem 2.5.19. We proceed as in the proof of Theorem 2.4.6. We denote
vy = (dr/T)"? and we would like to prove that, for any € > 0, there exists C, > 0
such that

P(||6 — bol|2/ir > C.) < e. (2.5.2)

To prove (2.5.2), it is sufficient to show that for any € > 0, there exists C. > 0 such
that

P(|0 — 6]z > Covr) < P(Bu € R ||ully > C. : Grl(by 4+ vru) < Grl(6y))
]P)(El’u, € RdT, ||’U,||2 = Ce : GTZ(Q() + I/TU) < GTZ(Q())),

by convexity. By a Taylor expansion of Grl(6y + vru), we obtain

2 3

: - v .
Grl(0y + vru) = Grl(0o) + vrGrl(f)u + ?Tu’GTl(HO)u + %V’{u’@ﬂ(&)u}u,
where 6 € © such that ||§ — 0|z < Cvp. We would like to prove

2 v _

3
. 1% .. .
P(3u € R, |[ul, = C. : vrGrl(6o)u + gu’GTl(Qo)u + %V'{u’@ﬂ(@)u}u <0) <«
(2.5.3)
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To do so, we focus on each quantity of the Taylor expansion to extract the dominant

term. First, for a > 0 and the Markov inequality, we have for the score term

P(, o [Gri®yul >a) < B( swp [Grl@o)llellulz > o)
< P(\GTZ(QQ) 2> &)
< (S)2E[|Grl(60)]I3]
< (%)2§E[(angTl(90))2]
_(@pd, ttildeTlE[@gkl(et;90)89kl(6t’;90)]
< (G2 {tht,Z (|t = #])}-dr.

T
By assumption 31, sup K[y (e:;00)0,L(er;60)] < U([t—1t']) and = > ([t —1']) <
k=1, dp tt=1
oo. This implies
. Cdr
P( sup |Grl(6h)u| > a) <
W uf=C

Kla

for some constant K; > 0.

We now focus on the hessian quantity that can be rewritten as
W' Grl(fo)u = w'E[Grl(6p))u + Rr (),

dr
where Rr(0o) = 3 wrpwi{0; 4 Grl(6o) — E[0f 4, Grl(60)]}. We have
k=1

E[R1(6)] = 0, Var(Rr(6)) Z Z ukuk/uzul/E[Cklt e ]
tt=1k,k’ Ll/=

where (p¢ = agkell(et;eo) — E[@gkgll(et;ﬁo)]. Let b > 0, we deduce by the Markov

inequality and assumption 32,

Ko ullidy _ Kol
- T T T

1
P(|Rr(0) > b) < 72 SE[R7(60)] <
where K5 > 0. Furthermore, by assumption 29,

WE[Grl(0p)]u > Amin (Hy )
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As for the third order term, we have

1 T _ _
VG @ubul < > T g w105, g, e 0).38 40 e 0)]

2
T2 720k Ty ksl ol

1 T
< lullzdr g 3 v Con(Co),

tt'=1

where

Ut(CO) = sup { sup |a§’k19,€29k( l(€t§9)|}-
Eikoks 0:]0—00]|2<v7Co 3

Note that v;(Cy) depends on dr and Cy. By assumption 33, we have

1
n(Co) : Z E[vy(Co)vw (Co)] <

tt’ 1

By the Markov inequality, for ¢ > 0, we conclude that

Z vpd3C?Y
P(Ju, [[ull; = C. : sup | V{w'Grl(f)ulu| > c) < e
6 16— |2 <vrC. 36¢

We can now bound (2.5.3) thanks to proper choices of a,b,c and C.. We denote by

% .
61 = Amin(H7)C?vr, and using ;E[U/GTZ(QO)U] > Or, we have

2
]P(E]’U, S ]RdT ||’U,||2 = C GTZ(Qo)’U, + —’U,/GTZ(HO)’U, + —V{’U,/GTl( )'u,}u < O)
< IP’(EIu € RdT, ||'LLH2 = |GTZ(90>U| > 5T/4) + IP’(EIu S RdT ||’U,||2 = : VTlRff(Qo)‘ > 5T/4>
+P(3u € R, ||ul|, = C. : 62 sup  |V{wGrl(0)ulu| > 57/4)
é||9 90H2<VTC
16C2dr K, MARCY  160AdECO
T2 T3 3602

dr d%
TC?v 2 + 02 + CSV?FCF’ 02 n(Ce),

<Ciz=——5
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U

T

where C, Cy, C3 are strictly positive constants. We chose vy = (T)%, we then deduce

. V2o V3 .
P(Fu € R, Jull, = C  vrGrl(6o)u+ - wErl(0y)u + -V {wGrl(B)utu < 0)
Cy 2 diC?

< —+Cy—
_C€2+ 2T—|— T

77(06)-

Now we fix C, sufficiently large enough, such that C;/C? < ¢/3. Once this constant is

fixed, there exists a Ty such that for T > T}, we have C’Z% < €/3 and Cs d%TC?n(C’E) <€/3

under the assumption that d}. = o(T"). Consequently, we obtain

. Vi v .
P(Ju € R, ||luly = C. : GTZ(HO)+VTGTZ(80)u+7Tu’GTl(00)u+%V{u’@ﬂ(@)u}u <0)<e.

~| &

This proves (2.5.2), that is ||§ — |2 = O,((=)2). O
The first step estimator used for the adaptive weights is (7/dr)"/?-consistent. How-
ever, the estimated quantities on A¢ converge to zero by consistency. We then propose
a slight modification of the first step estimator, denoted 0, which disappears asymp-

totically as follows

D

=0+er,
such that ep — 0 is a strictly positive quantity. We choose er = T~ with x > 0. This
means we add in the adaptive weights a power of T" to the first step estimator, that is

k S(k) | — ~ rl— = — ~ rn—
o) = 19P[1 = 10+ T, &ry = (|0D]I5* = 109 + T"||5*.

e
T§+n,u
T—o0

Theorem 2.5.21. Under assumptions 23-25, 29-33, if d3. = o(T), and if

Ar

VT

0, e T—> 0, then the sequence of penalized estimators 0 solving 2.5.1 satisfies
—00

16 = 6olls = Op((57)7).

=[5

Remark 2.5.22. Note that d3. = o(T') is as in Fan and Peng (2004), Theorem 1. Thanks

1/2

to proper choices of the regularization terms, we obtain a (7'/dr)'/#-consistent adaptive

SGL estimator.
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Proof of Theorem 2.5.21. We proceed as we did for proving Theorem 2.5.19. Let vp =
(dr/T)"?. We would like to prove that for any e > 0, there exists C, > 0 such that

P(||0 — 6o||2/vr > C.) < e. (2.5.4)

To prove (2.5.4), we show

2

]P)(H’U, S RdT H’U;”g = C GTl(eo)’U, + —’U/GTZ(QO)U + —V {’U;/GTZ( )u}u

+vg {pl()\T,Q 0o + vru) — pl()\T,H 00) +p2(fyT,9 0o + vru) — p2('yT,9 6}) <0) <e.
(2.5.5)

a relationship obtained by convexity and a Taylor expansion.

The score quantity can be upper bounded as

dr

—) ) lulls = Op(vr)l|ullz,

(Gri(o)u] < ||Gri(6o)llallull: = Op((=

where we used assumption 31 to obtain the bound in probability of the score.

As for the third order term, we have by the Cauchy-Schwartz inequality

dr _ _
VSO < [l S S S 0 Hesh)Oh 0 U]

tt/=1 ki,l1,mi1=1ka,la,ma=1

= |lull5din(Co).

This implies
V' {u'Grl(@)ulu = O, (d3*||ul)3).

Hence by the Markov inequality

4 6 33
P(Ju € R% V' Gl < vrCedy C
(Fu € R, ||ulls = C. : [V {w'Grl(f)utu| > a) = n(Ce).

where we used assumption 33.

Finally, the hessian quantity can be treated as in the proof of Theorem 2.5.19. We

dr
denote by Ry (6o) = > wrwi{95 4, Grl(60) — E[0; 4,Grl(6)]}. We have
k=1

W Grl(0)u = wE[Grl(f)]u + Rr(6).
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By assumption 32 and the Markov inequality, for any « > 0, we obtain

1 Ky||ul3d%  K,Cid%
9 €
]P)(|‘?’T(90)| > KJ) < HQE[‘Z’T(QO)] < K2 T < k2T

with K5 > 0. This relationship holds for any £ > 0. Then for T large enough, we
deduce that R ()| = 0,(1). Consequently

2 2
VT ) VT
S WCTU(8o)w = - Aumin () [el3 + 0, (v

We focus on the penalty terms. We have

Py 0,00+ vrw) = pi (. 0.00) = M TS 3 a6y +vra®| - 10071},
~ ~ keSie Ay
and |p, (A, 0,00 + vru) — pi(Ar.0,600)] < AT Y oflurlu™)].
keSic Ay

As for the ['/I*> norm, we obtain

Do (v1, 0, 00 + vrw) — py(yr, 0, 6p) = T e {1165 + vl — 1652}
1eS1

and |p2(7T7 é) 0o + VTU) - P2(7T7 57 Q0)| < VTTAZST,ZVTHU(Z)Hz
lesS

For the {! Ity, usi in 0"} < T, th
or the ! norm penalty, using {kegggAk] ;3T < T then

MTY Y avrlu| < AT v 3 1002132 s
keSic Ay, keSic Ay
Vdr
< )\TTill/T :(k) ”’U,HQ
{ min [6;7]}"
keSic Ay

< AT Ywr/drT|ul|o,

by the Cauchy-Schwartz inequality. Then if ApT27'**7 is bounded, we obtain

p1(Ar, 0,00 + vru) — p (A1, 0,00) = O(v)||ul».
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As for the [*/I? term, using {rlmép 10D} ~# < T, we obtain
€

Ty rwrlw®lly < T wr{ 100732 |ul
=1 les
Vdr
i (|00 ||,
{min |60}

< T top/dr T || ul|o,

< T tup

[el]

by the Cauchy-Schwartz inequality. Then if 4721+ is bounded, we obtain

p2(7T> é? 90 + VTU’) - pQ(IYTv é) 90) = O(VYQ“) ||’U,||2

We now can prove (2.5.5). Let 7 = Ay (Hr)C?vr and using %E[U’GTZ(GO)U] > or,

we have

P(3u € R, ||lully = C. : Grl(p)u + vow/'Grl(6y)u/2 + v2V{uw'Grl(f)u}u/6

+vr' P (A1, 0, 00 + vru) — py (A, 0,00) + py(yr, 5» 0o + vru) — py(7r, 9:, 0o)} <0)

< P(Fu € R |jully = C. : [vrt/Grl(6o)u/2| < |Grl(6p)u| + |2V {w'Grl(0)u}u /6|

+v {|py (A1, 0,60) — Py (Ar, 0,00 + vrw)| + [pa (71, 0, 60) — Po(37, 0, 00 + vrw)[})

< P(Ju € R, [l = C. : |Gpl(Bo)u| > 6r/8) + P(Ju € RY ||ully = O : 2[Ry (fo)| > 0r/8)
+P(Eu € R ||ully = C. : [“EV{wCrl(B)ulu| > 57/8)

+P(Ju € R ully = C. : |py(Ar.0,00) — py(Ar. 0,00 + vruw)| > vrdr/8)

+P((3u € R, ||uly = C. : |py(vr,0,600) — Do(yr, 0,00 + vrw)| > vrdr/8)

Cst CStV%d%O?
< CAlBCEEN(C} + — I e[ + of5
o2 742

< €,

with Cy > 0 a generic constant. We used d+ = o(T) and for C. large enough
T

P(Fu € R, ||lully = C. : |p,(Ar,0,60) — py(Ar, 6,00 + vpuw)| > v /8)

P(H’u’ € RdTa ||u||2 = CG : |p2(7T70~7 00) _p2(7Ta0~a ‘90 + VTU)| > VT6T/8)

€/5,

<
< ¢€/5.

Thus we obtain for C, and T large enough, with the conditions 4,72 '+ — 0 and
ArT2= 1451 — () that

dr
)

N|=

16 = bollz = Op(vr) = Op((=)?).
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To satisfy the oracle property, we need some additional assumptions regarding the

adaptive penalty components.

Assumption 34. For any T, there exists § such that 0 < 8 < m%n 0oin.k € S.
1E€EAL

Moreover,
=1 1/2 .
BT Ardy "Bl mmax, ama i)+ rElmax &ral} — 0.

Assumption 35. The model complexity is assumed to behave as d3 = o(T'), which

implies that 0 < ¢ < % The regularization parameters are chosen such that they

satisfy

T psmn 0, DT pliasm-a-1 __, o
\/T T— o0 \/T T—o00

>\T )‘T 1

G o,/ BN — 3l (=o)-1] __
\/TT T—o0 0 \/TT2 T—oc0 0,
E POF-§—r)=1 __, o

)\T K T—o0

Remark 2.5.23. The main condition is d3. = o(T'), which is the same as Fan and Peng
(2004). This condition comes from the control for the third order derivative of the
empirical criterion. Note that simple cases allow for a framework where 0 < ¢ < 1.
Moreover, these asymptotic behaviors are closely related to condition (A5) of Zou and
Zhang (2009). In Section 2.6, we provide further details about the calibration of the

adaptive weights and k.

Assumption 36. Let F} = o(Xrs,s < t) with Xp; = \/TQTV;L{?AH;;‘AGTQ(@O)A,
(Qr) is a sequence of r x card(A) matrices such that Qr x Q. =5 ¢, for some
r X r nonnegative symmetric matrix C, Vp 44 = (H;"MpHL') 44 and GTlt(GO)A =

%V Al(€:;6p). Then X, is a martingale difference and we have

B[ sup EH{0p1(er 00)0n, (e 00) I A1 (B < B < o,
il d
with
H | = E[VI(e; 00)V'l(e; 00)| FL 1] < Amax(HL ) < 00.

Theorem 2.5.24. Under assumptions 23-25, and assumptions 29-36, the sequence of
adaptive estimator 0 solving (2.5.1) satisfies

lim P(A=A) =1, and

T—o0

\/TQTV;L(Z(@A —f.4) 5 N(0,C),
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where (Qr) is a sequence of r x card(A) matrices such that Qr X Q' N C, for some

r x r nonnegative symmetric matriz C and Vo g4 = (H7"MpHE) 44.

Proof of Theorem 2.5.24. Model selection consistency consists of proving that the prob-
ability of the event {A = A} tends to one asymptotically. This event is

(A=A} = {VkeSVie A, |0 > 0N {vk=1,--- ,m,Vi e A;, 6 = 0}.
Hence we prove
P({Vk € S,Vi € Ay, |0%| >0 N {vk=1,--- ,m,Vi € A5, 0% =0}) — 1 (256)

Model selection consistency can be decomposed into two parts: recovering the active
indices by estimating nonzero coefficients; discarding the inactive indices by shrinking
to zero the related coefficients. Now (2.5.6) can be proved by first showing that for
any T, there exists 8 such that 0 < § < {g}; 60, 4,, With k € § and

P([|04 = Op.all2 < B) — 1. (2.5.7)
T—o00
The second part regarding nonactive indices can be proved as

P( O (1P < 1) — 1,

P( N (k) <1 —> 1,
(kem#{lwl })

(2.5.8)

where 2% (resp. w®) is the subgradient of [|0®)], (resp. |[0®|) given in (2.3.1).
Hence (2.5.7) and (2.5.8) prove (2.5.6).

We first focus on (2.5.7), which is equivalent to

P(|0.4, — Oo.a,]l2 > B) — 0.
—00
By the Karush-Kuhn-Tucker optimality conditions, we have

GTl(é>A + /\TT_IOéT,A O] sgn(éA) + 37T op =0,
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~

where ¢r = vec(&r |A || ,k € 8). We denote by ar 4, = (ar;,i € Ayg), a vector of
Ak 2
size R®. By a Taylor expansion of the gradient component around 6 4, we have

) . . 1 . . .

Grl(00)a + Hraa(04 — 0o,4) + Pr(0)(0a — bo.4) + §V'A{(9A — 00,4)'G7l(0)(04 — O0.4) }
—|—)\TT_1OéT’A ® Sgn(éA) + ”}/TT_lgT =0

& 04 =004 — H' 4 4(Grl(00) 4+ AT ar 4 @ sgn(04) + v T 'or

1 . .. _ . R
_H;}AA§V£4{(9A — 00,4)'Grl(0) aa(0a — Oo.4)} — Hyy 4Pr(00)(64 — 0o.4),

where ||é—00||2 S ||é—00||2, PT(Q()) = GTZ(QO).AA_HT,A.A and HT,AA = E[Vggll(et; 00)]AA

=8

Then using ||§.4 — fo_4|> = op((%)é), we obtain

P(||04 = o.all> > B8) < P(|Hz 4 4Crl(00) allz + [HE yallolAr T ara © sgn(8a) |2
+ HE allo v T orlls + T all2 | V4 (04 = 00.4) Grl(8) aa(Ba — b0.4)} /22
7 all2lPr(B0) (.4 — b0 4) 2 > B)

P(A by (H2) |Gl (60) all2 + Aaba (Hr) A2 T ||z all

Atn(HD)37 T sz ll2 + Anaho (Hr) C3 (/2T |V { Gl (8) aa} |2
Amin(H7)Co(dz/T) /([ Pr(6o) |2 > B) + P(1|0.4 — 0p.all2 > (dr/T)"*Cy),

IN +

-+

for Cy > 0 large enough, and we used | H,'z|ls < AL (Hz)||z |, for any vector € R?7.

Let us proceed element-by-element. We have by the Markov inequality

ﬁ 36)\mm (HT)ngT

6 = E[[Pr(6o)]12]-

P(\ i

min (H7)Co HPT(Go)Hz >

We have

E[[|Pr|l2] Z >0 ElGuiur e,

t t'=1k,k'c All'e A

where i = 05 g,1(€r;60) — E[0f 4,1(er; 00)]. By assumption 32, we obtain

PO Er)Coy | FIPr )l > §) < =220

6
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As for the third order term, by the Markov inequality

1 ,d B 9 (Hp)Cid?
IP’(QAmm(IHIT)C — IV {Gr1(0) aulll2 > ¢ = e E[||V {Grl(0) aa}3]-
We obtain
T

E[||V4i{Grl(0) aa}||3]

IN

> > E[|o; Oy Oy O (€t§90)-33119129131(65eo)l(ﬁt';90)|]

2
T t,t'=1k1,ka,k3€Aly,l2,l3€A

1 T
< 4% 7 Elv(Co)ve(Co)] = n(Co)d,

T? tt'=1
by assumption 33, where v;(Cy) = sup sup |83k19k2 O, | (€+;6p)|. We deduce
klk2k39:”9-90”2§\/§0@
that
1 2 6 9)\m1n( )04 d5
P(5 A (Hr) G5 7 T IVIAGU8) 4 > §) < 1 TQW(Co)-

We now turn to the score quantity. By the Markov inequality and assumption 31, we

have
A2 (Hp)36
Pt (H) |Gl (00) allo > B/6) < TE[IIGTZ(%)AIIQ]
)\mln(HT)36 1 T
< 5 Z > E[0y, (€15 00)09, (e 00)]
B T2, 7 5en
< AL LS - ey
e t—t
= g2 T T g
- /\mm(HT)36KdT

T2 ’
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with K > 0. Hence we deduce

P(|0.4 — Oo.allz > B) < POk, (Hr)ATT oz, alla + Aphy (Hr)yr T ||z > 8/2)
+ P(|04 — Oo.all2 > (dr/T)*Co) + P\, (Hr)Co(dr/T) 2| Pr(6o) |2 > 5/6)
+ PO\l (Hr)C3 (dr/2T) |V {G11(0).aa}t ]2 > 8/6)

(

+ PO (H7)||Grl(6o).4ll2 > 8/6)
< QAm%“(HT){A T7'dY*E] m
< 3 T " ?GXAk ara,.i| +yrT™ E[max Ergl}
36 At (Hr) Kdp 92 (Hp)Cg diy 36 At (Hr)C5 5
+ T + T 7a1(Co) + et

For T and Cj large enough, if d5 = o(T), by assumption 34, that is if
B_IT_I{)\Td%F/Q [ max ar.a, il + 7TE[maX Erkl} e 0,

keS8 ic A

then
P([|0.4 — bo.4]l2 > 5) 20

We now turn to the second step of model selection consistency. First we prove

SO
POV < 1) — 1o B(Y {129 21}) — 0. (259)

This is equivalent to proving

P( U {

keSe

Gri(@) + ATy’ © @Vl > 40T er}) — 0

We have for k € S¢ that ||w™®||o < 1, which implies by the optimality conditions of
Karush-Kuhn-Tucker that

B( U {ICrl6)w + AT ol @ & = v T ér))

<P( U {lIGri(f wlle > ¥rT ™ erk = M~ |al|1o}).
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By a Taylor expansion around 6y, let 8 such that || — 6p|| < || — ]|, we have

P( U {129 > 13) < B(U {1GrlBo) ol > 1T s — AT 0],

— NGrl00) gy 12110 — o ll2 — IV AGHLO) iy L 21160 — Gol[3})

' —1130k) ||~ 1 .1/2 (k) —
< P( Y {IGrl0)all2 = 4T 10PN = AT il max (10,7]7")

— NGrl00) gy 12110 = Boll2 — IV {G2LO) iy} o 12116 — Bol13}),

where we used [|G1l(60) k) (0—60) |2 < |Grl(8) kw1216 —6oll2 and Gl (6) ey iy ll2 =
||GTZ(90)(k)(k)||s. Let € > 0, and K, strictly positive constants, we proved for T large

enough that
P(||0 — 6ol > K.(dr/T)"?) < €/6.

We deduce that

o (k : —1\15(k) - 1 41/2 (k) |—
P(éfgc{llz( N2> 1}) < P( U NGl 0) 2 = 7T oW = ArTdy e (10717)

. . _ dr
— NGl (6o) i ll2(dr/T) P K — ||V/{GTZ(9)<k)(k>}(k>||2(T)2K3}) + €/6.

T, 1 .
Let My = (?)H#, then we obtain

9y > 1) < Y A{PIGL(B0) |2 = 4T 0P — AT dy? max (|617]7)

P( U
( { hese keScieGy

kese

. 1 s _ dr x
= NGrl(00) ywyll2(dr/T)? Ke = VG @)y Yo 2 () KZ, 10012 < Mur)

+ P(|0® 2 > M)} + €/6.

Consequently, we have the relationship

P(kggc{l\i(k)llz >1}) < Y AP(IGrU(0o)wollz > 4T My 7/4)
keSe

14172 (k) |—n —1pr—k
+ PATdy keglci}égk(m |=") > T Ml,T/4)
+ P(|Grl(00) iy l2(dr/T) 2K > 4p T M, 1/4)

dr

P(IV{G (0 wyw Y 2 7V KE > T Mg /4)

x 5
P([0Wy > My1)} + €/6 := Y T + €/6.
i=1

+

+
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We then focus on each T;. We have by the Markov inequality

| 16E[||G1(60) 1 |I3]
T = S P(|Gr(0 >rT Mip/4) < -
V= S PG ) wlle > TG < 3~ e

16E[||Gl(60)][3]

<

— {T M1}
16dr

<

- T{VTT—lMl_ﬁ 2
YT

1 o)1\ — 2
= O((ﬁTQ[(Hu)(l -~ ).

Furthermore, using |9~Ek)|_’7 < T"" we have for Ty that

POCTdf? max (00177) > T M) < BOWT™ T > 3T 01 4/4)
52 k

< PlyrT M2 JA{1 — dhpyp &> MEL T 2.6)10)

The quantity of interest is fyT)\}ld;l/ sz, AT~" that has to converge to oo such that

(2.5.10) converge to zero for T sufficiently large enough. We have

_ _ Yr 4w
WT/\;ldTl/ngﬁT_“” — 00 & _)\1+udT 2t _y oo

T
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As for T3, we have by the Markov inequality

- kZ;S P((IELr k) ll2 + 1R, 1) (B0)|2) (/T2 K > 47T~ My 1/4)
€

< ZP((IIRT (0 (00)|2(dr/T)! 2 Ke > 47T~ My /4 = |[Hr, @) 00 l2(dz/T) 2 Ko

gC{P((IIRT(k ) (00)ll2(dr/T)' P Ke > 4T~ M, 7/8)

AP (| He, ki) 2 (dr /T) V2 Ke > 4r T~ M 1 /8)}
64K 2drE[| Ry, (60)13] 64K Zdp||Hr, iy I3

. kESe TA2T- ZM_Q“ Ty2T- 2M_2“
64K2dT||HT||2 64KZE[[Re (63
VT My, :%M VM, :%M
- 64K 2dp)2, (Hyp)  64K2d5

+ =
’Y%TﬁlMl :%M 'Y%ML%M
64K\ (Hr) 64 K>

€ " 'max

_{VTT_l/Qd;/Q 1_;}2 {VTd_3/2M1T

T%{<1+u><2—3c>—11)—ﬁ)_

= O(( 019y 5%5) 4 0((

We obtain for Ty by the Markov inequality

. dr
Tyi= 52 POVAGH @) g oo la(70 K2 > 10T M /4)

Kese
16 K23 B[V {Grl(0) kyx) oy 13]
" kese T2y T2 M,
16K 2 d5 B[V {Grl(6) ]3]
- M7
) 16 K*d3n(K.,) _ 16K n(K.) _ o T (@50 =),
MM {yrd MY VT

Finally, we have for T5 that

x [||9 3]
= S P(|0W)s > Mz) < > —5— e
kese rese My
E[[|6 — 6o]]3]
- M3

2

T 1 o)1)\ — 2
= O((ﬁTz[(”H)(l )~ T,
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Hence we obtain from these relationships and using assumption 35

o Tr=Gramtn) oo
)\;—HL T—o0

T pdasma-0-1 _, o
\/T T—o0

such that the latter implies
T pha+me-39-11 _, oo,
ﬁ T—o0

T (1) (250 1] s
ﬁ T—o0

Consequently each T; converges to zero for 7' large enough. Hence

5
5B > < .
P(U (159> 1) < YT+ e/6 — e

=1

For e — 0, we prove IP’(ka9 {112®]|, > 1}) = 0 for T large enough.
e C

As for the second part of the model selection procedure, we prove that

(k) w® >
P(stEAr{’w |<1})—>1<:>IF’(%SEAF{| | > 1}) = 0.

By the optimality conditions, we have

P(U, Y (19012 1) =P(U. U {1Gr10)w.] > T o)),

Then by a Taylor expansion around 6, with  between 0 and 0o, we have

P(Y, Y, (ol 1=1)) = P(kGSZeAcﬂGTl(@o) +[Z0Crl(60) (6, o)l
+ [ZT*lzagkuet, 0)(6; — 603)°/2i| = AT~ aip)})
< P<kes EAk{IGTl(Qo) il 2 AT o} = [S05Grl (60) (6; — bo)l

- [ZT lZaf’Jkl(et, 0)(6; — 00.5)*/20il})-
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U

)\T 1 . ~
Let Mor = (?) 7. Then using ||0 — 6|l = O,((

inequality, we obtain

T

?)%) and the Cauchy-Schwartz

P( U {[@] > 1}) < {P(IGrl(o) il > ArT ' alf) Z(’)QGTZ (00)(8; — 60,,)]:

keS zGAC
keSic Af

— ZT Zajkz (e1;0)(6; — 00,3)%/2)i], |0(k|<M2T)+IP’(|0k|>M2T)}

IN

ZZ{P Grl(00) )il = ArT ™M, — {Z (02Grl(60))*}/* K (dr/T)"/

keSic A,

- { Z r- Z@zgkl 6757 zlm (et/ )}1/2K2(d /T))

7.k, lm tt'=
+ P60 > M)} +¢/5
DY AP(Grl(00) ryil = AT M7 /3)

kESicA],

+ {Z (02Grl(00))*} /2K (dr /T)? > A\pT ™' M, 1/3)

IN

+ {ZT2Z 2 (e 0)03,, L (ews )} 2 K2 (dr /T) > AT~ M, 1/3)

3k, lm tt'=

+ PO > Mar)} +¢/5 = Zﬂ +e/5.

=1

We proceed as for inactive groups. For T3, we have by the Markov inequality

: IE[|Gr1(60) (k.|
= 3 S P(Grl(B0) il = AT 1M 2/3) < 5% [|Grl( O)Ek), |*]
hesied; 7 resicA; AT 1My q}?

IE[||G2l(6o)13]
- {ATT*1M£¥}2

A
_ O((J_;Té[(lﬂ)(l -1y,
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As for Ty, we have

Ty= 202 113)({2(<’J’Z-2]-GTZ(90))2}1/217(6(dT/T)1/2 > M T~ My 7/3)

kESIEAS,
= keZS ch(({ZPT (k)5 (00) Y17 + {ZH VYK (dr /T)Y? > AT~ My 1./3)
36drE[PZ, 1, ;(00)] 36 ||Hr |3

<> > 2>d

resicas 5 T{MT 1My )2 T{ AT M, }}*
_ 36dp A2, (Hr) +36dT]E[H7’T(90)H§]
S TOGT My 032 T{OT M, )

Ar
= O((

A
T --11) =15 ) 4 O((ar3lm@-30-1)) 1),

Furthermore, for the third order term in 73, we have

Tyim 5 SRS T2 5 Ohlles 00, l(eos0)) K2 dn/T) > AT M5 1)

keSicAs  jklm tt'=
IGE[|V{GUO}H3] ol Ar
TN\ T M, 232 VT

T3l04n =50 -1~ 155,

Finally, we have for T, that

(k) HG H
= 2 P(6;"| > Mar) > 2

a2
i€ Ag resicAs My p

HW—MM_OWE_
S M N

IN

2

T3l -0 -1y~

Ha+mO-o-1 _y o

T—o00

implies

L pslaame-so-1 o

T T—o0

T

sl e-50-1] oo

T T—o0

We deduce
R (k > 1
(keS AL {lw"[ =1} T;Z &

for T sufficiently large enough. We have then concluded the model selection consis-

tency.
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We now focus on the asymptotic normality. Model selection implies that
P({k € S,ic Ay, : 0" +£0} = A) — 1

As a consequence, the next relationship holds

0
A =0) — 1

P(Vk € S, GTl(é)Ak + AT ar g, © sgn(éAk) + T s,
164, 12 Tro0

By a Taylor expansion of the gradient term around 6y 4, we obtain

, . X I_ s o on
P(Grl(0o)a + Grl(60) 4a(0a — Oo.a) + §V/{(9A = 00,4)Grl(0) 4a(04 = Oo.0)}
+ )\TT_lozT,A ® sgn(éA) + ’YTT_lnT = 0) Tj> L

~

Ay,
where 1y = vec(épp——— k € S) and [|6 — 6| < [|6 — 6olo. As a consequence, we

104,112
have

) A _ 1 W
P(00)(0a —00.4) + Hraa(0s —0o4) = —Grl(6h)a — §V/{(9A = 00,4)Grl(0) 4404 — 0o.4)}
— MT lara® sgn(éA) — T 'nr + 0,(1),

where P(6y) = Gpl(60).an — Hyaa and Hy aq = E[V2,1(e;600)]aa. Then multiplying
by VTQrV;'4%, we obtain

\/_QTVTI/{Z( —boa) = —\/_QTVT%iHTlAA()\TT_IOéT,AQSgn(éA> + 7T 'nr)
— VTQrV 2 aHrkaGri(6o) 4
— VT/2QrV 2,V {(0a — 00.4) Crl(8) an(Ba — bo.4)}
— VTQrV A H L P (00)(Ba — 65.4) + 0,(1).

We focus on the I! penalty term, which can be upper bounded as

12 A1 1/2 -1 -
Nup = VTQrVy A H (= T4 O sg0(0.0))] < |QrVa 14 [Hy yu| AT kerg?eXAk A

< Qe Vel i (Hr a) A T2, min (6]}

S ‘QTVT{Z{i\‘)\mm (HT,A.A))\TTHn_§ .

If \pT"" — 0, then Ny 7 = 0,(1).
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As for the [*/I? penalty, it can be upper bounded as

Nor = WTQVE A umm| < 1QeVZ LML b T el
< 1@V Gl b T2 5 1615
< 1QrVrda A (Hraa)yr T~V Zle/Q{%E? 1612}
< |QTV;,1,4/\J24|)\mm (Hir,aa)yr T 2dy 2T,

Using dp = O(T*), if v7T 2+ — 0, then Ny = o0,(1). Consequently, we have
Nl,T + NQ,T = Op(l).

We now turn to the hessian quantity of the Taylor expansion and prove the discrepancy

P(y) converges uniformly to zero in probability. For any € > 0, by the Markov’s

inequality, we have

.. d>
PUIGr1(00) 4~ Hraall > (c/dr)") < Bl 3 {0 t0) = BV ple 60}
kl)EA
4

T
627—12)\12113»)( (HT,AA) :

IN

As for the third order term, by the Cauchy-Schwartz inequality

) L T .
V{04 = 00,4)Grl(0) an(0a — O a) 5 < Z{(k lZ Aaekele 17(e;0) 6.4 — bo.all3
t=1 m E

IN

Z{ > vi(e)}0a — bo.all3

1 (klm)eA

. 1
= Op(ﬁ) = Op(f)-

We now prove Xp; = \/_QTVT%%‘HT&AGTQ(@O)AJ = 1,---,T, is asymptotically
normal by checking the Lindeberg-Feller’s condition for applying Shiryaev’s Theorem
2.5.17. We remind that GTZTJ(QO) is the ¢-th point of the score of the empirical criterion.

Let 8 > 0, and to use Shiryaev’s Theorem, we need to prove that for any ¢ > 0, we

have

T—o0

T
P(Y Bl Xrall31jxr 2>l Fila] > €) — 0.
t=0
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By the Markov inequality, we obtain

T T
P(;)E[HXT,t\|§1||XT,t||2>B!f$1]>€) =< %t_ZOE[HXT,t||§1||XT,t\\2>ﬁ|f$1]

IN

T
%;)E[E[IIXT,t!|§‘|ftT_1]1/2P(||XT,tll2 > BIFE)Y?)

IN

T
LS R{ SRV (er; 00) V'L er; 00) |31 FE 32
t=0
LE(IVTQrVy \ Az 4Gl (80) al3I FE V2],

with Cy > 0. First, let Ky = QTV;}VﬁH;}A 1, we have

) 1
E(|VTKrGrly(60) 4l 317 1] = TE[V'Z(Q; 00) K K Vi(e; 00) | FLy]

1
= ?E[Trace(V'l(et; 00) Ky K Vi(er; 00)) | Fy)

1

1
= —Trace(E[Vi(e; 00)V'l(es; 00) | FL JK Ker) < 7

T )\max (Hzl 1 ) ést )

where Cy; > 0. Furthermore, we have

dr
E[[|Vi(ex; 00)V'Uers O0)31F1] = E[ 3 {06, 1(er: 00)0s,1(er; 00) }*| F ]

i,j=0
< d% supd E[{0s,1(e; 60)0a,1(er; 00) 2| Fi1]-
ij=1, dr
By assumption 36, we have
P(;()E[HXT,::||§1||XT,t||2>ﬁ|J'"tT_1] > ¢)

C2C2dyp T ) . C2C2BTdy
< ———>E[ sup  E[{0nl(er;00)05,1(er; 00) | F 1 [ Amax (H )] £ ————
T2 =0 4j=1,-,dr T2

Consequently, we obtain
T
Y ElIXral3Lxr 251 Fea] = 0p(1).
t=0

We deduce that Xp, satisfies the Lindeberg-Feller condition, and by Theorem 2.5.17,
ﬁQTVi{ﬁH;}A AGTZ (0p) 4 is asymptotically normally distributed. The asymptotic
distribution of Theorem 2.5.24 follows.
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2.6 Simulation experiments

In this section, we carry out a simulation study to explore the finite sample performance
of the adaptive Sparse Group Lasso. We first focus on the calibration of the adaptive
weights entering the penalties. The regularization parameters must satisfy conditions
to satisfy the oracle property in the double-asymptotic case. To do so, we suppose
Ar = T¥ and yp = T, where 8 and « are both strictly positive constant. Regarding

assumption 35, we obtain the conditions

( a+ S+ rp—13<0,

a—1 4+ +p)(1—c)—1] >0,
B+rn—3<0,

B=5 45+ - -1]>0,
I+p)l—§—rn—PF+a—-1>0.

\

This system allows for flexibility when choosing i and n once &, ¢, @ and [ are fixed.
For instance, for ¢ = 1/6, kK = 0.05, « = 1/10 and 5 = 1/10, then u € [0.4,6.3] and
n € 10.6,7.9]. If « = g =1/5 and for ¢ = 1/6 and k = 0.05, then p € [0.4,4.3] and
n € 10.3,5.9].

We consider 6 methods in the experiment: the Lasso (L), the Adaptive Lasso (AL), the
Group Lasso (GL), the Adaptive Group Lasso (AGL), the Sparse Group Lasso (SGL)
and the Adaptive Sparse Group Lasso (ASGL).

There are several methods to numerically solve the non-differentiable statistical prob-
lem (2.5.1). Fan and Li (2001) proposed a local quadratic approximation (LQA) of the
first order derivative of the penalty function and a Newton-Raphson type algorithm.
To circumvent numerical instability, they suggest to shrunk to zero coefficients that are
close to zero, that is a coefficient |0;| < €, with € > 0 to be calibrated. The drawback
is that once it is set to zero, it will be excluded at any step of the LQA algorithm.
Hunter and Li (2005) proposed a more sophisticated version of the LQA algorithm
to avoid the drawback of the stepwise selection and numerical instability. They also
studied the convergence properties of the LQA method. Zou and Li (2008) proposed a
local linear approximation (LLA) of the penalty function such that the estimated co-
efficients have naturally a sparse representation, under the condition that the penalty

function satisfies the continuity condition. Zou (2006) or Zou and Zhang (2009) used
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the LQA algorithm for their empirical study. Other approaches are also possible such

as gradient descent methods.

When one consider the OLS loss function, closed form algorithms can be applied to our
problem. Bithlmann and van de Geer (2011) compiled these methodologies for solving
the Lasso and the Group Lasso using gradient descent methods for general penalized
convex empirical function. We used these algorithms in our study for solving the group
Lasso. As for the Lasso, we applied the shooting algorithm developed by Fu (1998),
which is a particular case of the gradient descent method. Simon and al. (2013)
proposed an algorithm for solving the SGL that can accommodate likelihood criteria.
This is a "two-step” method, where we first check whether the group is active, and
then, if active, check if the coefficient within this group is active. In this simulation
study, we used the alternative direction method of multipliers provided by Li, Mo,

Yuan and Zhang (2014) since it provides better convergence performances.

We used a cross-validation procedure to select both parameters Ay and yr such that
both terms are defined by Ay = T% and vy = T%, and 8 = a = 1/8. The adaptive
weights are computed as follows: we first compute an OLS estimator 8 such that the
adaptive weights entering the penalties correspond to 0: =0+ T " with k = 0.2. As
for the adaptive weights, they are chosen such that the above system is satisfied: we
set n = 3.5 and p = 2.5.

We report the variable selection performance through the number of zero coefficients
correctly estimated, denoted as C' and, the number of nonzero coefficients incorrectly
estimated, denoted IC'. Besides, the mean squared error is reported as an estimation

accuracy measure.

Stmulated experiment 1. We consider a data generating process
!
y=> By XY +om,
l

where 7 is a strong white noise, normally distributed, centered with unit variance and

o = 0.3. The matrices X follow ¢;- dimensional multivariate normal distributions,

centered and with variance covariance () such that the entries are defined as Zg) =

p‘(il)_jl, 1 < j,i < ¢ with pgy € U([0.5,0.9]) for each group. Moreover, the dimension
dr = [z x T"%] with T = 500, 2000, 4000 and 2 = 10, 30, 50 respectively for the values

of T. As dr = O(T°) with ¢ = 1/6, we can multiply by x to consider more realistic
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settings. The number of groups is defined as N, = 4 (resp. N, = 8, resp. N, = 18)
for T'= 500 (resp. for T' = 2000, resp. for T" = 4000) and the size of each of them
is randomly chosen among {5,---,30}. The number of active groups is defined as
|S| = 2ar with ar = [N,/3]. Moreover, zero coefficients are randomly chosen among
the whole vector 8 for active groups, such that the total number of zeros -both the
zero subvectors for inactive groups and zero components for active groups - matches
the total number of inactive indices. The total number of active indices is defined as
|A| = 3br with by = [dr/9]. Finally, we generate the active indices among a uniform

law U4([0.1,0.99]). Zou and Zhang (2009) experiment influenced our framework.

TABLE 2.1: Simulated experiment 1: Model selection and precision accuracy based
on 100 replications.

T dr N, |S] [A] Moded MSE C 1IC

500 28 4 2 9 Truth 19 0
Lasso 0.0178 13.13 0O
alLasso 0.0118 1798 0
GLasso 0.0146 12.77 0
AGLasso 0.0129 1357 0
SGL 0.0183 1297 0
ASGL  0.0101 18.83 0
2000 106 8 4 33 Truth 73 0
Lasso 0.0118 4965 O
aLasso  0.0103 7095 O
GLasso 0.0150 5748 0
AGLasso 0.0160 60.78 0
SGL 0.0125 5888 0
ASGL  0.0095 72,70 O
4000 199 18 12 66 Truth 133 0
Lasso 0.0105 87.17 O
aLasso 0.0093 131.33 O
GLasso  0.0140 113.42 0
AGLasso 0.0150 113.17 0
SGL 0.0102 9892 0
ASGL  0.0094 133 0

We can highlight some interesting remarks from this simulation study. First, the
adaptive versions of the Lasso, the Group Lasso or the SGL outperfom their non
adaptive versions. The difference is significant for the adaptive Lasso and the adaptive

SGL. This is in line with the asymptotic theory. The adaptive SGL performs well as it
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can discard inactive groups and inactive indices among active groups and outperform

other adaptive penalization methods.
Simulated experiment 2. We consider a data generating process
Y = Pryr1 + Poyp2 + uy,

with 5 = (Yia, - yne)s u ~ Nan(0,%) such that ¥ = D2RDz, with R, =
Pl 1 <4 i < N, D =diag(c?,--- ,0%), Vi,o; € U([0.01;0.03]) and p € U([0.5,0.9)).
We set N =5 and T' = 5000. It corresponds to a VAR(p) dynamic, with p = 2 such
that we generate ®; and ®, under the usual stationarity constraints together with an
ordering constraint, idest Vi, j, ®3,; < ®1,;. We also set zero coefficients among &,
and ®5: the number of zeros is 30 such that the number of nonzero coefficients is 20.
Each of these active coefficients is simulated in 2/(][0.05, 0.9]).

Then we estimate a VAR(p) model, with p = 4. The total number of estimated
parameters would be d = p x N? = 100 and the total number of zero to recover is 80.
In this setting d is not indexed by T. We define the group as the lags for the Group
Lasso and the SGL procedures, which implies there are 4 groups in total, with 2 active
groups.

TABLE 2.2: Simulated experiment 2: Model selection and precision accuracy based
on 100 replications.

Model MSE C IC

Truth 80 0
Lasso 0.1130 60.10 1.01
aLasso  0.0917 75.00 1.42
GLasso 0.1512 67.07 3.38
AGLasso 0.1545 67.07 3.38
SGL 0.1062 67.73 1.54
ASGL  0.0709 78.27 0.95

These results illustrate the abbility of the adaptive SGL procedure to properly perform
for variable selection. The adaptive Lasso also provide proper performance results

regarding both estimation precision and variable selection.
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2.7 Conclusion

We explored the asymptotic properties of the Sparse Group Lasso estimator within
the M-estimator framework for dependent variables. We showed that the non-adaptive
estimator does not satisfy the oracle property in the sense of Fan and Li (2001). We
then proposed the adaptive Sparse Group Lasso estimator using the approach of Zou
(2006) and proved that this estimator satisfies the oracle property both in a fixed and
double-asymptotic framework. Our asymptotic oracle theorems provide the proper

choices of the regularization parameters.

Our simulation experiment illustrated the asymptotic results as the adaptive Sparse
Group Lasso estimator provides better performance results than other oracle-like meth-

ods for model selection and estimation precision.



Chapter 3

Sparse dynamic variance-covariance

matrix processes

3.1 Introduction

The multivariate modeling has gained a significant relevance for both practitioners
and academics. The main challenge consists in developing a framework that is flexible
enough, idest sufficiently parameterized to capture complex patterns, and parsimo-
nious, where the parameters are constrained to avoid overfitting. In a discrete time
framework, the usual key quantity in such multivariate processes is the variance co-
variance matrix of the joint distribution. The curse of dimensionality is an inherent
hurdle as general dynamics imply an explosive number of parameters, even when some
two-step optimization procedures would be feasible. Furthermore, the corresponding
(quasi-)likelihood functions are highly nonlinear - multivariate Gaussian or Student -
with a significant number of free parameters that necessitates fast solving optimization

procedures.

Scalar versions are often considered: see the scalar Dynamic Conditional Correlation
(DCC, Engle, 2002) when modeling correlation processes, the scalar BEKK (Engle and
Kroner, 1995), for instance. However, it would be unrealistic to capture heterogenous
patterns with scalar dynamic models. Indeed, in such models, the influence of past
returns is similar for all components of the variance covariance matrix. But hetero-

geneity typically occurs when considering high-dimensional vectors. Another approach

145
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is the factor modeling, which aims at reducing the model complexity. Fan, Fan and
Lv (2008) emphasized the relevance of factor models for high-dimensional precision
matrix estimation. They proved that there is a statistical gain in terms of precision.
However, this modeling requires the identification of the relevant factors. An ”expert”
approach is based on some priors regarding the leading underlying factors. Otherwise,
latent unobserved factors induce particular estimation issues and their number is ques-

tionable.

In this paper, we propose to tackle both the curse of dimensionality within the mul-
tivariate GARCH framework. The objective of this paper consists in modeling high-
dimensional variance covariance matrices in a flexible way and breaking the curse of
dimensionality. To do so, we propose extensions of the univariate ARCH model to
multivariate ones and estimate such models through a penalized ordinary least squares
(OLS) procedure. Indeed, multivariate ARCH models admit a linear representation
with respect to the parameters, which is a clear advantage wrt GARCH ones as the
related loss function can be easily handled. Besides, our multivariate ARCH specifica-
tion can approximately recover the autoregressive feature of a general GARCH process
by using a large number of lags. The idea is to set to zeros the model coefficients
from a particular lag on using a regularization procedure. The OLS objective function
is particularly adapted for regularization procedures and fast closed form algorithms
can be applied. The natural regularization procedure is the Sparse Group Lasso of
Simon, Friedman, Hastie and Tibshirani (2013), as it fosters sparsity at a group level
and within a group, where the groups would be the lagged variables. The penalized
loss function satisfies the convex property such that the adaptive SGL satisfies the or-
acle property (Fan and Li, 2001). We thus propose a general penalized OLS objective

function for a wide range of multivariate ARCH processes.

The main challenge is the positive-definiteness constraint for generating conditional
variance covariance matrices. Indeed, the model parameters must then satisfy eigenvalue-
type constraints such that the estimation problem is not convex. This prevents from
using fast solving algorithms. Besides, the oracle property of Fan and Li (2001), which
ensures the right identification of the underlying sparse set, can not be satisfied as it
heavily relies on the convex property of the criterion and parameter set. To fix this
issue, we propose new multivariate ARCH parameterizations that ensure linear dynam-

ics with linear constraints, if any, imposed over the parameters. Our main objective is
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to devise processes that can be estimated thanks to a penalized OLS criterion, where

the regularizer is meant to select the relevant lag.

The rest of the paper is organized as follows. In Section 3.2, we describe the mul-
tivariate ARCH framework and the penalized ordinary least squares criterion. In
Section 3.3, we propose several ARCH-type parameterizations. In Section 3.4, we
describe a Cholesky-GARCH model. In Section 3.5, we use simulations to compare

the performance of the penalized multivariate ARCH process with other competitors.

3.2 Framework

3.2.1 Dynamic processes of variance covariance

We consider a N-dimensional vectorial stochastic process (r;);=1... 7 and denote by 6
the vector of the model parameters. Decompose the stochastic process (r;);—1,... r as

the sum of conditional expected returns and a residual

re = () +e,
€& = Ht1/2(9)77t-

The expected return given the past is u:(0) = E[ry| Fi—1] := Ei_1[rs], where F; de-
notes the market information until (and including) time ¢. We suppose H(0) =
Var(r|F;—1) := Var,_1(r;) = Var,_1(¢) is a N x N positive definite matrix. The
series (1) is supposed to be a strong white noise, i.e. a sequence of independent and

identically distributed random variables s.t. E[n;] = 0 and Var(n) = Iy.

The model will be semi-parametric. Its specification is complete when the law of »,
is specified and when the functional form of both u;(f) and H,(#) are given. In this
paper, we focus on the latter point. For convenience, we will denote p;(0) = p; and
H(0) = Hy = [hieithi<ki<n-

Actually, we will focus on the centered dynamics (€;) after removing the first conditional
moment. Typically, most authors suppose that the conditional expected returns are
modeled as an ARM A(p, q). Since we are interested in ¢, only in this paper, we simply

assume that () follows an AR(1) process. Then, we estimate p; by OLS and subtract
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it from r;. Now, these estimated residuals will be considered as our observations (still

denoted by ¢€;). The information set is defined by F; = o(rs,s <t) = (€5, 5 < ).

The quantity of interest is H; and we would like to specify directly its dynamics. A
significant stream of the literature has been developed in this direction. A general
formulation of H;-dynamics has been proposed by Bollerslev et al. (1988). In the
general VEC model, each element of H; is a linear function of the lagged squared
errors, cross-products of errors and the components of lagged H; matrices. The most

general formulation of a VEC(p, ¢) model is

q p
hi,j,t = Qi j + Z Ggkaijth,k + Z CijleGC(Ht,l), (321)

k=1 =1
for every t and every indices ¢, j in {1,..., N}. The model parameters are the unknown

N x N matrices By, 4,7 € {1,.... N} k=1,...,q, Cij forl =1,...,pand A := [a;]
are N(N + 1)/2 vectors. Some tedious constraints have to be fulfilled to ensure the

1

definite positiveness of H;. In this paper *, we will not consider the auto-regressive

part in (3.2.1). Then, the model can be rewritten

q
Hy=A+) (In®€_)Bi(In @ 1-4), (3.2.2)

k=1

where By, is the N? x N? block matrix given by By := [Bijk|i<ij<n, In is the identity
matrix in RY and & is the usual Kronecker product. In Gouriéroux (1997), it is noticed

that sufficient conditions for obtaining nonnegative covariance matrices H; are

(i) Aand Bg, k=1,...,q, are symmetric, and

(ii) A and By, k= 1,...,q, are non-negative.

Clearly, (i) can be imposed easily, but (ii) is a lot more tricky. Indeed, in general,
the latter condition imposes complex non-linear constraints on the model parameters.
Moreover, it is not realistic to estimate general non-negative matrices B, due to their
sizes (¢N?(N? + 1)/2 unknown parameters!), under the tedious nonlinear constraints
imposed by non-negativeness (particularly at the optimization stage). Therefore, we
have to exhibit flexible (but realistic) sub-families of models as (3.2.2). This will be

done hereafter.

L And for some reasons that will appear hereafter.
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Note that (3.2.2) can be rewritten as a linear model

q
aep=A+> (In® e )Bi(Iy ® €t) + ¢, E[GIFia] = 0. (3.2.3)
k=1

Introducing the usual operator Vech(.) that transforms any m x m symmetric matrix

M into the m(m + 1)/2 vector of its component, this is equivalent to

Vech(ee;) = Vech(A) + Z Vech ((In ® €,_1,)Be(In ® €—)) + Vech(().

k=1

More explicitly, this can be rewritten: for every couple (i,7) € {1,..., N}? such that
RSP

q N
€ia€ia =ij+ D Y Dijhrsera—r€si—r + Cijar BlGijalFima] =0, (3.2.4)

k=1 r,s=1

where Byji, = [bijk.rs]1<rs<n. Note that the elements of the N*-squared matrix By, will
be indexed by quadruplets (i, j, 7, s). The latter elements are related to the coefficients
of By, that define the dynamics of ¢;€;,. Moreover, note that B;jr = By and ¢, j; =
(¢ for every couple (4, j) and every k. Hereafter, the couples of indices (¢, j) and (r, s)

will be sorted in the lexicographical order
(1,1),(1,2),...,(1,N),(2,1),(2,2),...,(N,N — 1), (N, N),
even when we restrict ourselves to the couples (7, ) s.t. i < j.

The previous linear model will be estimated by a penalized least squares procedure.
In terms of inference, this is a dramatic advantage wrt the usual QML estimation
procedure of GARCH models. Therefore, in practical terms, it is easier to estimate
ARCH-type models with a lot of assets and lags (N >> 1, ¢ >> 1) than a GARCH
model with the same N and ¢ = 1.

3.2.2 Statistical criterion

Contrary to GARCH-type dynamics that require the optimization of a nonlinear objec-
tive function - typically Gaussian or Student type likelihoods -, the multivariate ARCH

process has the advantage of a direct linear estimation by specifying an ordinary least
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squares objective function. Assuming that the true model is (3.2.4), a regularization
procedure with ¢ sufficiently large would likely set to zero the parameters after the
true qo. Now if the true model is a GARCH process, then its autoregressive com-
ponent 2 can be written as in (3.2.4) with ¢ = oo. In such a case, a regularization
procedure performed over a large ¢ would produce a relevant approximation of the
GARCH process. For the sake of parsimony, the parameters need to be constrained
to avoid overfitting. That is the key idea of this paper: specifying a regularization
procedure to perform variable selection and estimation. The OLS objective function is
particularly adapted to the penalization procedures and the asymptotic properties of
the oracle-like penalties can be used such as the oracle property of Fan and Li (2001).
The regularization procedure aims at identifying this relevant subset to described the
instantaneous covariance. It belongs to a bigger set formed by the specified lagged
variables (typically a large number a priori). This means that the regularizer performs

both estimation and variable selection.

To illustrate this idea, consider a univariate ARCH(1) process, which is defined as
hi =w+aer |, w>0,a € 0,1).

This dynamics can be rewritten as a linear model
€ =w+ a6 +u, u =€ — hy,

by noting that Efu¢|F;—1] = 0. Then, it is natural to consider the corresponding OLS
estimator of 0 := (w, @): 0 is defined by

0 = arg min ||Y — X602 = (X'X)'X"Y,
0

where
2 2
1 € €5
1 € €
X = 2, v=
2
1 e 4 €

The previous criterion can be extended to the multivariate case, provided that the

estimated dynamics generate positive definite covariance matrices. Then our least

2think of the invertibility of the autoregressive matrix component
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squares objective function can be specified as

17T
Grl(0) = =D l(e;0),
l(0) Tt; (€ 0) (3.2.5)
e 0) = [[Vech(eer) — W(en)Oll5,

where W(e;_q) is a F;_j-measurable random matrix, whose particular analytic form
depends on the model specification. For instance, for the process (3.2.4) and without
any additional constraint on the parameters, the parameter vector can be decomposed
as

0 =01 1<i<j<N),

such that the ij-th sub-vector is

plid) .— (aij, AN ’g(ijq))’

ijk) .__ /
9( k) = (bz’jk,lla 2bijk,12> e 7zbijk,1Na bijk,ZQa 2bijk,237 cee 2bijk,(N—1)N7 bijk,NN) .

This means that the number of unknown parameters is d(1+¢d), with d = N(N+1)/2.
Then, in such a case, ¥(¢) is the d x d(1 + ¢d) matrix

V(&) O14ga Oitqd Or4ga -+ Oigga
0 e) 0 0 - 0

W(e) = 1—'i-qd ¢(%) 1-.i-qd 1—.&-qd | 1—'}—qd |
O14gd O14ga Oitqa -+ Oijqa (e)

where 01444 is @ 1 4 gd-row vector of zeros and

Y(e) = (1, Vech(e—1€;_y)', ..., Vech(e_q€;_,)").

Note that the latter criterion has most often to be rewritten as long as some con-
straints on the model parameters are included. Indeed, in such a case, the number
of free parameters is typically reduced, and/or some parameters are shared by several
univariate linear equations of the type (3.2.4). See for instance the so-called "homoge-

neous model” below.

The autoregressive feature of some MGARCH models should be reproduced by spec-
ifying a sufficiently large number of lags ¢ in the model (3.2.4). Moreover, in a lot

of situations, it is likely that the most recent observations should have a higher level
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effect on the current covariance matrix than older observations. In this setting it is
natural to assume that the coefficients decay as we move farther away from the current
observation. We could consider a procedure that would impose inequality constraints
among the coefficients to recover such ordering effect. Tibshirani and Suo (2016) pro-
posed an order-constrained version of the Lasso. This framework is left for further
extensions. At least, it makes sense that the coefficients go to zero from a certain rank,

which is a minimal assumption we make.

We propose a penalization approach to constrain the parameters and foster parsimony.
The intuition is as follows: we specify a large number of lags a priori to approximate
an autoregressive pattern. We assume that only a subset of potential features (the
lagged variances and covariances) has a statistically significant effect on the output:
that is the sparsity assumption. As this subset is unknown, the penalization procedure
enables to recover it since it provides an estimation of the set of indices for which
the corresponding coefficients are non-zero. To achieve this subset identification, the
Sparse Group Lasso is the most relevant regularizer as it fosters sparsity both at a group
level and within a group. Intuitively, the natural groups should be all the parameters
that are associated to a given lagged observed vector €,_y, (i.e. all quantities b,y s for

every quadruplet (7, 7,7, s)), but other choices are possible, obviously.

The statistical problem consists in minimizing over the parameter space © C R™ a

penalized criterion of the form

0 = arg min {Grp(6)}, (3.2.6)
0cO

where
1T N .
0= Gro(0) = 72 {l(e;0) +pi(Ar,0,0) +py(yr,0,0)}
=1

- GTZ(G) + pl(AT7 é? 0) +p2(’YT7 97 0)7

and both penalties are specified as

pl:R+X@X@—>R+, p2:R+X®X@—>R+,
~ ~ A m Ci ~ ~ faic
O,0,0) = 210, 0,6) = -0 a0 (. 8,0) = po(or,0,0) = 3 rall0
=1i= =1
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with a% = |9~§k)]_7’ and &, = [|09)5", where n > 0, > 0, and 6 is a first step

estimator, which is supposed to be a v/T-consistent estimator .

This reduces to the classic OLS estimator when there is no penalization. The proposed
penalization framework includes the usual Lasso criterion when 7 = 0, the Group

Lasso when Ay = 0 and the Sparse Group Lasso when A\r and ~7 are non zero.

Obtaining the positive definiteness of the conditional covariance matrices induced
by (3.2.4) is the main technical challenge in practice. To ensure this constraint, the
parameters in (3.2.4) must satisfy eigenvalue-type constraints such that © will not be
convex. This is a drawback from both an empirical and theoretical point of views: em-
pirically, it hampers fast solving algorithms; theoretically, the non-convexity prevents
the Sparse Group Lasso estimator from satisfying the oracle property of Fan and Li
(2001). Thus, in the next section we aim at devising parameterizations that allow for
generating positive definite matrices while remaining linear with respect to the param-
eters. This would discard processes that require a normalization step or non convex

constraint sets for the parameters.

3.3 ARCH Parameterizations

In this section, we propose parameterizations of (3.2.2) to ensure the positive definite-
ness of H;. Our main objective is to obtain a linear process with linear constraints
that must be satisfied by the parameters. These are sufficient conditions to obtain a

convex objective function for a convex parameter set.

3.3.1 Evaluation of A

We first focus on a covariance targeting procedure for the estimation of A. Although
this parameter could be estimated with B simultaneously, the covariance targeting
step fosters dimension reduction as it splits the problem. This will allow to satisfy the

non-negativeness of the (estimated) A matrix more easily. To do so, note that taking

3For instance, f can be an unpenalized OLS estimator. The V/T-consistency is a necessary condition
to satisfy the oracle property.
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the unconditional expectation of (3.2.4), we have

q N
Eleiseje] = aij + Z Z bijkrsEl€r1—k€si—k),

k=1 r,s=1

for every couple (i,7). If the coefficients b;;x,s were known, and assuming we have
estimated consistently Ele; ,€;,] by C/O\Vm, then the coefficients a; ; could be estimated
as . N
Qi ; = COVij — Z Z DijkrsCOVys.
k=1 r,s=1

When T is large and assuming the model is well specified, a; ; will converge towards a; ;
and we would observe that the estimated matrix A := [a; ] is definite positive if this is
the case for A. Nonetheless, at finite distance, it is likely the latter condition will not
be the satisfied. Fortunately, our OLS estimation procedure does not require per se
that we manipulate nonnegative matrices A and B. This is required only for prediction
and likelihood-based methods. Therefore, to estimate (3.2.2) (and then (3.2.4)), we
propose to replace a; ; by a;;, and the model is then parameterized by B only. Once
B is estimated (see below) by B, the matrix A will be approximated by A whose
components are

q N
;5 = COVyj — E E bijk:,rscovr,s-

k=1 r,s=1

Afterwards, a projection of A on the cone of nonnegative matrices would provide the

final estimate of A.

As an alternative strategy, we can invoke a parametrization of A in the cone of non-
negative matrices directly. The natural basis would be provided by the spectral de-
composition of E[ee)] (or its empirical approximation [¢ov; ;| instead). Indeed, there
exists an orthonormal basis (vy,...,vy) in RY s.t.
N
Elere}] ~ [6oVi jhi<ijen = Y Moy,

=1

where (Aq,...,Ay) is the associated spectrum, Ay > Ay > -+ > Ay > 0. Then, we

would assume that there exist nonnegative real numbers p;, [ =1,..., N s.t.

N
A= E ,U/Z'UZ’U;'
=1
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We have replaced the N(N + 1)/2 unknown coefficients of A by only N parameters

(A, ..., An). And such a matrix A will be nonnegative by construction.

We now focus on the evaluation of B-type matrices in (3.2.4). To do so, we propose
three ARCH-type parameterizations that aim at reducing the dimensionality while
generating positive definite processes. These models share the fact that they are linear
with respect to the parameters and shall satisfy, if any, convex constraints. First, we
propose a constraint free multivariate ARCH dynamic, where the B-parameters are
unconstrained and the corresponding process is projected onto the space of positive
definite matrices to generate a variance covariance matrix sequence. The second case
is called "homogeneous” and is relevant for random vectors with positively correlated
components. Finally we propose a ”heterogenous” parameterization that it is adapted

to random vectors with discordant patterns.

3.3.2 Constraint free and matrix projection

This approach consists in projecting a matrix process, which may not be necessarily
positive definite, onto the space of positive definite matrices. This method allows flexi-
bility because one can independently specify /estimate the processes that are associated
to each component of vec(ese;). We rewrite the general dynamics given by (3.2.4) for

each component of the €;6; matrix as

qg N q N
2
€in€ia = Qigt Y > bijrarery x> O bijkrseri—iesi—k+Ciger Bl Fiea] =0,

k=1 r=1 k=1 r,s=1,r<s

(3.3.1)
if i < j. The OLS is a natural estimator but the symmetric matrix coefficients A and
B are not necessarily positive definite. Nonetheless, these matrix can be approximated
by positive definite ones. Here is a loss we need to accept as we eventually obtain

an approximation of (3.3.1) that would generate true conditional covariance matrices

(Hy).

To this goal, we propose two methods: consider the singular value decomposition
of a symmetric matrix M as M = P'diag(Ay,---,Ay)P, where P is an orthogonal
matrix composed with N eigenvectors. We define two projections fy : Myxn(R) —
MY, n(R) with & =1,2. A first projection would be

fl(M> = Pldlag(Af7 7)\J+V)P7
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with A} the positive part of A;. A second projection would be
Jo(M) = (M + Apinda) /(1 4 Ain)

with . the negative part of the minimum eigenvalue of M. The eigenvectors remain

the same as M.

The first stage estimated matrix is denoted by H, = [ﬁm], given by

g N q N
~ 7 2 7
hije = @i ; + E g bijhrr€rp_j T E E 2bijrs€rt—kEs t—ks

k=1 r=1 k=1 r,s=1,r<s

for any couple (i,7). For and projection method &k = 1 € {1,2}, the final estimated

covariance matrix of ¢; given F;_; would be H; = fk(lflt).

This method allows for an equation-by-equation estimation procedure, where each
equation corresponds to a couple, which is particularly adapted for high-dimensional
regression settings. Such dynamics are linear with respect to the parameters so that
the estimation can be carried out by the ordinary least squares objective function or
by penalized OLS.

3.3.3 The homogeneous case

First, we need some matrix notations.

e For any subset J of indices in I := {1,...,m}, the m-column vector e,, ; of zeros
and ones is defined by e,, s := [1(i € J)|i<i<m- When its size is obvious, it is

written e; simply. Moreover, set e,, ;1 = e, the m-vector of ones.
e For any vector ¢ € R™, D(x) denotes the m x m diagonal matrix given by

D(x) = [1(i = j)zii<ij<m-

Set J = {1, N+2,2N+3,...,(N=2)N+N—1,(N—1)N+N}, asubset of {1,..., N?}.

Let us consider the parametric family B of matrices given by

B={M € Mp2un2(R) | M = aen2€ly2 + Bege; +vD(es), (a, B,7) € [0,1]°}.
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Clearly, all matrices in B are non-negative. By assumption, we will choose our matrices
By, k=1,...,q, inside B. More explicitly, the model becomes: for every indices i, j

and time ¢, then

q
€it€jt = Q5 + Z (g + B+ el(i = 7))€it—r€ja—i + Z €rt—kEsi—k | + Cijit
k=1 (r,8)#(1,9)

where ;1 = €€j0—hije = {minjt —1}hije. Note that the matrix ese’; can be rewritten
as a block-matrix [Ej;]1<; j<n, where E;; = [1((4,7) = (r,5))]1<rs<1. In other words,

this model tries to capture three effects on the dynamics of €; ;€;;:

(i) a uniform effect of all past cross-product among the components of €, through

the oy, coefficients;
ii) a more important bump caused by the past values of ¢; ¢, on itself through £y;
y €5, g

(iii) an additional bump when variances are managed (ie when i = j) through the

parameters vg.

As for the estimation step, the (non penalized) OLS objective function in (3.2.5) cor-
responds to

0:(aly‘--7aqaﬁla"‘7/8(]7717"'7711’)7

when the constant a; ; has been removed as explained in Subsection 3.3.1. In this case,

the matrix W(e;,_1) of regressors is

St—1 -+ St—q €llitgq €l1,t,q
St—1 -+ St—q €12,t,q 0
V() =
St—1 ... St—q €NNitq €ENNtgq
: . N = —
with s;_j 1= Zmzl €rt—k€st—k, TOr k=1,...,qand €14 = (646541, , €it—q€jt—q)-

Note that the size of W(e;—1) is N(N +1)/2 x 3g. Moreover, the regressors in the last

column of are W(e;_) are zero, except when i = j (lexicographical order).
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3.3.4 The heterogenous case

In this case, we have identified two homogeneous sub-portfolios but whose dynamics
behave differently. The first (resp. second) portfolio corresponds to the assets that are
numbered {1,...,p} (resp. {p+1,...,N}). This necessitates to extend the previous

model and to introduce more parameters. Let us introduce additional notations:

e For any real numbers aq, as, as, and two integers n and m, n < m. Set the m xm

matrix

/ /
‘ aienel, Qgenel, .
M (o, a9, 3, m,m) := ) )
Q2€m—n€h  Q3€m_n€hn

By some standard algebraic calculations, we can prove that the characteristic

polynomial of the symmetrical matrix M (aq, ag, as, m,n) is

x> (=1)"2™ 2 [(z — noy ) (z — (m — n)as) — n(m — n)aj) .

Therefore, the associated spectrum is {0,,0_,0}, z+ = (nag + (m — n)ag +

VA)/2, where
A = (nay + (m —n)asz)? — 4n(m — n)(a1as — a3).

If ajaz > a2, then z, and x_ are nonnegative and the matrix M (ay, oo, az, m, n)
is nonnegative. Note that this can be achieved in an optimization program with

linear constraints by assuming that ap < min(ay, ).

e Set the partitioned matrix J\;[(/Bl, Ba, B3, p) = [M; j]1<ij<n, Where

MiJ = [1((T’ 8) = (2’])){611(T < b,s < p) + 531(T >Dp, s> p)
+ Bol(r < p,s>p)+ Fol(r >p,s < P)}hgr,sgN'

By a similar reasoning as previously, it can be proved that the matrix M (B1, B2, B3, D)
is nonnegative if 5133 > B2. Again, in the optimization stage, we will assume
that Sy < min(fy, f£3).

e Let v, and 7, be two arbitrary nonnegative real numbers, and an integer p < N.
Let J:={1,N+2,2N+3,....,(p—1)N+ptand J:= {pN+p+1,(p+1)N +
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p+2,...,(N—=1)N+ N}. Set the diagonal matrix

N(7,72,p) = D (vien2. + Y2€n2.5)
= (U9 = @) {nii=jen+nili=jed)}].

Obviously, N (1,72, p) is nonnegative when 7, and ~, are nonnegative.

With the notations above, we will choose the matrices By of (3.2.2) in the following

parametric family:

B = {B € MNQXNZ(R) |B = M(a17a27a37N27Np) + M(ﬁl)ﬁ?yﬁi’);p) + N(’}/l)ry%p))
a1 >0,a3 > 0,103 > a3, > 0,85 > 0,58 > 5,7 > 0,7 > 0}.(3.3.2)

To be more explicit, for any k =1,...,q,

a
€it€jt = @ij—i‘z (Oégf) + 51(3]6) + %(k)lu = J))€it—k€j1—k + Oég-g) Z €rt—k€st—k | TGijt,
k=1 (r8)#(1.7)

olf) = al1((i,5) € 1) + o§P1((1,5) € ) + a8V1((i,5) € T x Jor (i, 5) € J x J),

1,

B = B, 4) € 7)) + 871G, ) € T + 8571((5,§) € T x T or (i,5) € T x ),

=1 e ) + M6 e ).
This parametric model tries to capture three effects on the dynamics of €; s€;;:

(i) a uniform effect of all past cross-products on the ¢; €, through the coefficients
a.; when ¢ and j belong to the first (resp. second) group of assets, we use oy

(resp. as). When i and j do not belong to the same group, we invoke «s.

(ii) a more important bump caused by the past values of €; ;€;, on itself, through the

B.; as above, such effects depend on the group of 7 and j.

(iii) an additional bump when variances are managed (ie when i = j) through the
parameters 7.; if 7 belongs to the first or the second group of assets, we apply v,

or 7, respectively.

Actually, the latter model specification can be criticized because the effect of €, ;€ ¢
(k)
ij
dently of the identify of the (r, s)-group. For instance, it is likely that this effect should

On € ¢ k€ji—k, (1,8) # (1,7), is transmitted through the same coefficient «;;’, indepen-
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be stronger when (7,s) and (i,7) belong to the same subset, typically. Therefore, a
more general parametric model could be considered, where there are different cross-
effects on the dynamics of €; €;,, depending on the considered couples of indices (r, s),

with our previous notations.

It makes sense to introduce the family of block matrices M := {M = [M,;]1<i j<n},
where the N x N matrices Mi,j are defined as

M; ;= M(agl), ozé ), ozé ), N,p) if i and j belong to the first group,

M; ;= M(a?), ozg ), ozg ), N,p) if i and j belong to the second group, and

,

M; j = M(81, 09,083, N,p) if i and j do not belong to the same group.

This would enrich the flexibility and the realism of the model. But the calculation of
the spectrum of matrices M € M is difficult. And only highly nonlinear conditions

will be able to guarantee that such matrices will be nonnegative.

Nonetheless, we are convinced that it is valuable to study the impact of cross-effects
on any product dynamics €; €, differently. To stay tractable and to keep the same
notations as above, we will simplify the framework by assuming that §; = d9 = d3 := 9.
This means that the effect of all cross products on the dynamics of €;€;; is uniform
when i and j do not belong to the same portfolio ¢ Therefore, under this simplifying

assumption, any matrix M in M is written

[ M(a®) o M@@D) MG - M(6)
T M(a(l)) M(a(l)) M) - M() | (333)
M) - M) M(oz(Q)) .. M(oz(Q))
| M(9) M(9) M@@)) M(a®) |

where

M(aWy = MV, oV, oV, N, p) appears p* times,
M(a®) := M(af”, a5”, af”, N, p) appears (N = p)* times, and

M(6) := dene’y, 6 € RT, appears 2p(N — p) times.

4This is reasonable, because the dynamics of €,t€5,¢, when ¢ and j do not belong to the same group,
is “poorer” than when ¢ and j belong to the same group.
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Proposition 3.3.1. A matriz M defined as in (5.5.3) is definite positive iff

AW agl)ag ) (« (1)) > 0, ag )a:(f) > (ag))2, and
2 2 2 2
@ 52 - (ozé ))252 . @ 52 B (oag ))252 . @ 52 - (ag ))252
i ORENOING @3 ORENOING, a2 DEENOING
oy ay A oy a; A ay a;j ’A
(

As a consequence, the latter condition (3.3.4) is satisfied if og) < min(a§2), ag)).

Proof of Proposition 3.3.1. First let us study the positiveness of the quadratic form ¢q

that is associated to the pN x p/N symmetrical matrix
By = : e : ; (3.3.5)

where a = (a1, ag, a3). Let the two sets of indices
Z={1,....,p,N+1,... N+p,2N+1,...,2N+p,...,(p—1)N+1,...,(p—1)N+p},

J={p+1,...,N,N+p+1,... 2N, 2N+p+1,...,3N,...,(p—1)N+p+1,... ,pN}.

Obviously, {1,...,pN} =Z U J. Then, for any & € RPY,

Y mEptos Yy w4 20 (Zm)(Z%)

(,5)€Z? (i,§)€T? i€l JjeT
9 2
103 — Oy
(sz+—zxa) —<Z%‘> -
ieT jed 0 jeT

Therefore, the positiveness of ¢y (or By) is equivalent to a > 0 and aja3 > 3.

Now, we consider the quadratic form ¢ that is associated to M € M. Introduce
Z=7Z+ Npand J =J + Np. Set y; := Doicr Tir Y2 = D icq Ty Y3 1= D ;07 T; and
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Ys = ) ;7 Ti- By simple calculations, we get

1 1 1 2 2 2
g(x) = oty + ol y? + 208 y1ys + Py + afPy? + 208 ysya + 20(y1 + o) (43 + 1)

2
= o [y + ﬁyz + s +uyd) | + ﬁ Y2 — @@3 + y4)
= o
NOLCRINO oD AD
1 1

o fa® 2 () 2 a - 02 (ay”)%”

. oV VA 7 oV AW
52 (agl))252>

+ 2y | o) — -
’ agl) agl)A(l)

providing the result.

Therefore, we propose a second family of parametric matrices By in the case of het-

erogenous portfolios (with two groups):

B - {B € MNQXNQ(R> |B = M(a(l),a(Q),5) + M(Blaﬁ?vﬂi‘]ap) + N(717727p)7
V) e R, j=1,2, (o, a? §) e R’ satisfies the conditions of Proposition 3.3.1,
By >0,85>0,518 > B3, m > 0,7 > 0}.

3.3.5 Stationarity conditions

The model dynamics are specified by the N? equations (3.2.4). Strictly speaking, they
define a Vectorial Autoregressive model of order p and dimension N? (or N(N +1)/2
to avoid redundant equations). The vector of noises (() is a difference martingale. In
other words, setting the N? vector 4, = l€iree(

ij)en?, its dynamics is

q
615 = A"‘ZCk'Ut,k +Ct7 (336)

k=1
where C}, = [b@'jk,rs]{(i7j)7(7‘,s)€N2}, with the previous notations. Obviously, there is a
one-to-one mapping between Ci,...,C, and (B, ..., B,). For instance, in the case of

an homogeneous portfolio, the parametrization that we proposed in Subsection (3.3.2)
induces the matrices Cy = [oy + Bpl((¢,5) = (1,9)) + %1l = j = 7 = 9)](5).(9)>
k=1,...,q.
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It is well-known that the system given by (3.3.6) has a unique strongly stationary

solution when all complex number A s.t.
det(\Iy2 — N7MCL — ... = XCyy — C) =0

satisfies |A\| < 1. See Hamilton (1994), for instance. Those A are the eigenvalues of the
gN? x gN? matrix

[ One Ine One or oo Ope |
Op2  Ipn2
Mq =
Ope2
: On> Iy
| C, Cpn o O

Unfortunately, calculations in some simple cases show that the stationarity conditions
are nonlinear functional of the model parameters. For instance, when ¢ = 1 and in
the case of an homogeneous portfolio, the stationarity condition is equivalent to the
following: the modulus of the eigenvalues is C are strictly smaller than one. In this

case, simple algebraic calculations show that the characteristic polynomial of M is
X(@) = (B+7—2)N 1 (B—2)V N (2% — (N2 + 28+ )z + (N2 + B+7)8 + ay) .
Its roots are strictly smaller than one iff

B+y<1,and (N’a+B+7)(1-8)<1—8+ay. (3.3.7)

The latter condition is nonlinear. Note that it is fulfilled if N2a + 3+~ < 1. Note
that, when N — 0o, (3.3.7) can be satisfied only if a(N) tends to zero as O(1/N?).

When p = 2, similar calculations allow the calculation of the characteristic polynomial

of M¢, but its roots cannot be calculated analytically easily due to a four-order factor.

Remark 3.3.2. Despite that lack of explicitly written eigenvalues of M¢, some (strong)
sufficient conditions for stationarity can be obtained. For instance, following Higham

and Tisseur (2003) (Equation (2.12)), any eigenvalue A of M¢ satisfies

A §max( [Colh 5 [Chanlly k—l,...,p—2>.

I1Cp—alls™™ NGkl ™
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In the case of our “homogeneous portfolio” model, ||Cy|ly = N2ax + Br + Y&, and the

latter sufficient condition means
2 1,
N=agi1 + Brs1 + Vi1 < §(N ag + Bk + V),

for any £k =1,...,p — 1. In other words, we get stationarity when the autoregressive
coefficients of successive lags should decrease to zero exponentially fast (with the lag
index k).

The positive definite constraint is a key hurdle since it requires particular constraint
sets for the parameters. This constraint is nonlinear - space of positive definite ma-
trices -, which hampers any flexible parameterization. Although the constraint free
model is flexible, the variance covariance matrix is not directly evaluated. As for the
homogeneous and heterogenous evaluations, the parameters are still constrained to
obtain positive definite matrices. In the next section, we present an alternative dy-
namic, where the driving parameters are not constrained since the generated variance

covariance matrix is positive definite by construction.

3.4 Cholesky-GARCH

Let the N-dimensional random vector &; s.t. & = Htl/ 277t where (7;) is a white noise
and H; is F;-measurable. We observe the series (¢;);=;1... r. Asin Darolles et al. (2017),
we propose to use the Cholesky decomposition of Hy, i.e. H, = L,G;L}, where L, is
lower triangular with ones on the diagonal, and G, is diagonal. Set G; = diag(g;,) and

L, = [4;j], where {;;, = 0 when j > 1.

We want to define a process for (H;), by specifying the dynamics of (G;) and (L;). Set
the random vectors v; s.t. ¢ := Lyv;. Then, given F;_;, the components of v; are

uncorrelated: Cov;_1(v;) = G;. Note that vy, = €14 is observable.

First, we assume a dynamics for the conditional volatility of

E[8%t|ft*1] = E[U%tl}-tfl] = J1t,
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and we assume an ARCH-type model
g1t = a1+ Z a1k St
k=1

where every random factor f, is F;_j-measurable and for some nonnegative constants
a0, a1k, k=1,...,m. Typically, the factors fy, are functions of €,_1,&;_9,... and of

some of their relevant crossproducts. For instance,
m N
=aio+ a1 jkEs (3.4.1)
g1t = aipo 11,5kE t— k> 4.
k=1 j=1

for some nonnegative constants a o, a11 ;5. We can estimate the latter linear equation

by penalized OLS, as
m N
2 2
€14 = 10 + g E a11,jk€5 41 + Cines
k=1 j=1

with E[(114|Fi—1] = 0. This means we can consider we "know” the process (gi¢).

Moreover, for every i > 1, we have by definition
i—1 i—1
Eit = Z UijeVjt + Vig, OF Vg = — Z Biji€jt + it
=1 j=1
by introducing L; ' := [~8;;]. Then, if i > j, we will assume
m
Bije = aijo+ > ijkfras i > J.
k=1

We can estimate the latter coefficients thanks to the ordinary least squares objective

funtion. For instance, we would have

m
€or = Porere + v = (a21,0 + Z a9 i frer)e1 + Vo,
k=1

with E[vy|ey,] = 0. This gives us the dynamics of (f12,).



Chapter 3. Sparse dynamic variance-covariance matrix processes 166

This can be done for every couple (7, ), i > j, and provides the dynamics of the pro-
cesses (f;;¢) and then (¢;;;), i > j, that are "known”. Note that we can estimate any

vector v;; because we "know” L; and we observe &;.

Now, we evaluate the process (go:) by noting that vy = €9 — l124614 is "observed”.

Then, as above , we can assume a process as

m
Gop = Q20 + g a2k fio t-
k=1

The corresponding linear regression is here
m
2
Vg = G20 + E aga i frr + G, E[Cooy|Fioa] = 0.
k=1

And so on. Iteratively, we estimate the processes (g;t).

This procedure automatically generates non negative covariance matrices by construc-
tion. Moreover, the necessary and sufficient conditions to get stationary solutions
of (3.4.1) are provided by Darolles, Francq and Laurent (2017). But it seems impossi-

ble to explicitly take such conditions into account during the estimation stage.

To be able to compare the size of all these coefficients, it may be useful to normalize
the vector of returns. For instance, by centering and normalizing any component of &,
but by the unconditional volatility of every component and not by their conditional

volatilities. Indeed, otherwise, this would induce some annoying constraints as

i—1

Z ézzjﬂtgj,t + 9t = Et—l[eit] =1,

j=1

for every 1.

The Cholesky-GARCH process can be iteratively estimated over the index levels such
that we would consider "local” OLS objective functions. Each components are observ-
able such that the ordinary least squares objective function can be used to derive the
OLS estimator.
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3.5 Simulation experiments

In this section, we carry out a simulation study to explore the accuracy performance
of the sparse ARCH. To do so, we consider three simulation settings, where we will
compare the estimated variance covariance process to the true variance covariance pro-
cess. Based on the DGP (3.2.4) and given initial values, we simulate the successive
values of a MGARCH process with conditional covariance matrices (H;) of size N = 4.
We do this iterative procedure for T = 10000 and we consider 100 different variance
covariance matrix patterns. Once a series is simulated, we estimate the model under
different model assumptions: a scalar DCC, a homogeneous ARCH, a constraint free
ARCH, a Cholesky ARCH and their penalized versions. The estimated parameters
allow the calculation of successive variance covariance matrices, which are here I:It“{CC
for the DCC model, H*™ (resp. H!'™) for the homogeneous ARCH (resp. penalized
homogeneous ARCH), H' (resp. Hf'*) for the constraint free ARCH (resp. penal-
ized constraint free ARCH), and H (resp. H*) for the Cholesky ARCH (resp.
penalized Cholesky ARCH).

The adaptive version of the Sparse Group Lasso estimator is implemented, where the
first step estimator is the unpenalized OLS estimator. In Chapter 2, we described
the cross-validation procedure to select the regularization parameter together with the
system that determines the convergence rate of the regularization parameters to satisfy
the oracle property. The lags in the homogeneous, constraint free and Cholesky models
are defined a priori a follows: in the experiments 1 and 2, ¢ = 10 (resp. ¢ = 8) for
the homogeneous model (resp. for the constraint free and Cholesky models). As for
the experiment 3, ¢ = 20 (resp. ¢ = 10) for the homogeneous model (resp. for the

constraint free and Cholesky models).

We compare the true variance covariance process and the estimated correlation pro-
cesses through the aforementioned models. To do so, we specify a matrix distance,
namely the Frobenius norm, defined as ||A — B||r := \/Trace((A — B)'(A — B)). We

compute the previous norm for each t and for

A= Rt, and B € {]f[tch’ ]f[thomj [A{thom*’ ]—A[th7 I_Ajtcf*’ ]f]'tcho7 [:[tcho*}.

We take the average of those quantities over T = 10000 periods of time. We obtain an

average gap for all those simulations as this procedure is repeated 100 times.
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Simulated experiment 1. As a particular case of (3.2.4), we consider a data generating

process

E Ert—k€st—k + Cij,tv

q
€it€jt = ij + Z (g + Br +Y1(i = 7))€it—r€ja—i +
k=1 (r,8)#(1,9)

for any couple (i,7). All coefficients (g, Bk, k) are set to zero except (ay, B4,74), a
case for which we consider different grid values. The symmetric and positive definite
matrix A is simulated as A;; ~ U([—0.02,0.02]), ¢ # j and A; ~ U([0.1,0.2]). Denoting

w = (au, B4,74), we consider the grids

w® = (0.001,0.1,0.2),
w® = (0.005,0.3,0.1),
w® = (0.01,0.5,0.1),
w® = (0.01,0.3,0.2).

For each of these 100 patterns, w¥) remains fixed for j = 1,2, 3,4 and A is simulated

as described above.

We remind that ¢ = 10 for the homogeneous model and ¢ = 8 for both the constraint

free and Cholesky processes.

TABLE 3.1: Simulated experiment 1: Average distance between true and estimated
variance covariance matrices

w | B=H|B=HM"|B=H""|B=H|B=H"]|B=H"|B=H""
w® [ 0.2015 0.0776 0.1540 0.1042 0.0816 0.1516 0.1657
w® | 0.4647 0.1497 0.3117 0.1514 0.1401 0.3219 0.3346
w® | 1.2292 0.5341 0.7675 0.5063 0.3983 0.8386 0.8486
w® [ 0.7353 0.2782 0.3545 0.2378 0.2047 0.4157 0.4350

We can highlight some interesting remarks from this simulation study. First, the DCC
specification is outperformed by the competing models, especially by the homogeneous
model, which is not surprising. Moreover, there is a gain in precision when applying
a regularization procedure: the penalized version of the constraint free model outper-
forms the unpenalized version. This support the need of constraining the parameters

when considering a large number of parameters, even when N = 4.
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Stmulated experiment 2. We consider a data generating process

q
€it€jt = Qg5 + Z (g + B +v61(i = j))€ir—k€j1—k + Z €rt—k€si—k | + Cijt
k=1 (r,8)#(4,9)

for any couple (7, 7). We set all coefficients (ax, 5k, V) to zero except for k = 4,5,6,
where we consider different grid values. A is parameterized as in simulated experiment

1. We denote w = (aa, B2, 72, a3, f3, V3, a4, B, v4) and consider different grids, with

w®

(0.02,0.2,0.02,0.01,0.1,0.01,0.001, 0.01, 0.01),
w® = (0.001,0.3,0.05,0.0005,0.2,0.02,0.00001, 0.1,0.01).

For each of these 100 patterns, w') remains fixed for j = 1,2 and A is simulated.

We remind that ¢ = 10 for the homogeneous model and ¢ = 8 for both the constraint

free and Cholesky processes.

TABLE 3.2: Simulated experiment 2: Average distance between true and estimated
variance covariance matrices

w | B=H|B=HM"|B=H"|B=H|B=H"|B=H"|B=H""

w® ] 0.4914 0.2512 0.4095 0.2079 0.1537 0.4488 0.4503

w® | 0.9787 0.5209 0.7895 0.3669 0.3364 0.7658 0.7812

The same remarks hold here as in simulated experiment 1.

Simulated experiment 3. In this experiment setting, we simulate (3.2.4) with

q
H, =A+ Z([N ® €,_1)Be(In ® €1-),

k=1
where we select ¢ = 5. The N? x N? matrices By, are selected as B;jj ~ U([—0.2,0.2])
and By r ~ U([0.1,0.15]) such that they satisfy the positive definite, stationarity
and ”ordering” constraints. This ordering constraint, idest Vi, j, |Biji| < |Bijr-1]
for k = 2,--- 5. As for the symmetric and positive definite matrix A, we define
A;j ~U(]—0.02,0.02]), ¢ # j and A;; ~ U([0.1,0.2]). We consider two settings: setting
1, where the Bj’s are not null matrices for each k; setting 2, where B; and By are
null matrices and the Bj’s are not null matrices for k = 3,4, 5. For each of these 100

patterns, the By, and A matrices are simulated.
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We remind that ¢ = 20 for the homogeneous model and ¢ = 10 for both the constraint

free and Cholesky processes.

TABLE 3.3: Simulated experiment 3: Average distance between true and estimated
variance covariance matrices

B=H{|B=H""|B=H!"|B=H'|B=H1"|DB=H"|B=H""
Setting 1 | 0.4044 | 0.4181 0.4457 [ 03780 | 0.2024 | 0.2833 | 0.2251
Setting 2 | 0.2870 | 0.2875 02952 [ 0.1979 | 0.1121 | 0.1688 | 0.1440

These results emphasize the good performances of the constraint free and the Cholesky
processes when the observed patterns are heterogeneous. The gain in precision is
significant once the adaptive SGL regularization is applied. Not surprisingly, the DCC

and the homogeneous are outperformed in this simulated framework.

3.6 Conclusion

We proposed several parameterizations for multivariate ARCH models that are linear
with respect to the parameters. These models can be estimated thanks to an Ordinary
Least Squares procedure. Then we considered a large number of lagged values to
approximate a multivariate GARCH pattern such that the optimal lag is selected
thanks to a regularization procedure. To do so, the Sparse Group Lasso penalty is
relevant as it fosters sparsity both at a group level and within a group. Besides, our
multivariate ARCH framework is devised such that the penalized objective function is
convex with convex constraints. The regularization procedure thus satisfies the oracle

property and identifies the right underlying sparse model.

Our simulated experiments emphasized the abbility of the ARCH-type dynamics to
outperform the scalar DCC process. More interestingly, there is a gain in regularizing
the estimates once the parameter vector size becomes significant, even for small vector

sizes.



Conclusion générale

Le présent manuscrit a traité du probleme de la grande dimension, en particulier dans
le cadre de la modélisation multivariée en temps discret. Son ambition était de pro-
poser un nouveau processus de matrices de corrélation flexible et parcimonieux au sein
des modeles MGARCH et d’en faire I’étude théorique et empirique. 1l visait également
a apporter des éléments théoriques aux outils de réduction de dimension de type esti-

mateurs pénalisés.

Pour modéliser les dynamiques matricielles de corrélation, le choix a été porté sur
la famille des GARCH multivariés. Le processus généralement usité est le Dynamic
Conditional Correlation (DCC, Engle, 2002) en version scalaire, cas dans lequel la
dynamique de corrélation nécessite 1’estimation de deux parametres si la procédure
de ”correlation targeting” est appliquée. Le premier chapitre a proposé une nouvelle
dynamique dite vine-GARCH et dont la paramétrisation reposait sur un graphe non
dirigé appelé ”"vine”. Celui-ci décrit la structure des corrélations partielles au travers
des niveaux du graphe controlant le degré d’information par la taille des ensembles con-
ditionnant. Cette approche présente les avantages de générer des dynamiques définies-
positives et de spécifier des processus de corrélations partielles univariés ouvrant la voie
a des approches parcimonieuses. En effet, une des propriétés théoriques de la ”vine”
mise en évidence est la possibilité de spécifier des corrélations partielles nulles a partir
d’un certain niveau du graphe et de telle sorte que la structure de celui-ci aux niveaux

suivants n’a aucune influence sur la matrice de corrélation ”usuelle”.

Ce chapitre a proposé une étude théorique approfondie du modele vine-GARCH. Dans
un premier temps, les propriétés probabilistes d’existence et d’unicité de solutions sta-
tionnaires ont été mises en évidence. Puis les propriétés de consistance faible et nor-

malité asymptotique de 'estimateur en deux étapes ont été démontrées. Par ailleurs,

171
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les performances empiriques du vine-GARCH soulignent sa capacité a capturer des

dynamiques complexes, en particulier lorsque les tailles des vecteurs sont significatives.

La problématique de la modélisation en grande dimension est naturellement apparue
et la spécification a base de graphe peut potentiellement fournir des dynamiques parci-
monieuses. De facon plus générale, les approches a base d’estimateurs pénalisés sont
une approche au sein de laquelle le choix de conserver certaines variables pour prédire
la variable de sortie n’est pas réalisé a priori. Le second chapitre de ce présent docu-
ment propose ainsi un cadre général de M-estimateurs pénalisés dans lequel la fonction
de régularisation étudiée est le Sparse Group Lasso, proposé initialement par Simon
et al. (2013). Ce chapitre effectue une analyse asymptotique approfondie, non réalisée
jusqu’a présent pour le Sparse Group Lasso, et propose un nouvel estimateur sparse,
1" adaptive Sparse Group Lasso” en utilisant 'idée de Zou et son adaptive Lasso (2006).
Le probleme de la grande dimension est traité en considérant le cadre dans lequel la
taille du vecteur des parametres diverge avec ’échantillon. Dans cet asymptotique
double, le principal résultat démontré est la propriété oracle, idest la capacité de
I'estimateur "adaptive Sparse Group Lasso” a identifier le support sparse théorique
et sa propriété de normalité asymptotique. Pour ce faire, les vitesses de convergence
des parametres de régularisation sont explicitement données, notamment le compro-
mis entre la pénalisation [* Lasso et pénalisation ' /I* Group Lasso. Les résultats de
simulations obtenus illustrent la capacité de 'adaptive Sparse Group Lasso a retrouver

le vrai support sparse.

Dans ce cadre général M-estimateurs pénalisés, le dernier chapitre a proposé une
application de ces procédures de pénalisations pour des dynamiques ARCH multi-
variées. Celles-ci peuvent étre estimées grace aux moindres carrés ordinaires a l'instar
de PARCH univarié. Cette représentation linéaire permet des estimations en forme
fermées et procure des gains de temps significatifs. En outre, les estimateurs pénalisés
par 1"””adaptive Sparse Group Lasso” vérifient la propriété oracle du fait de la convexité
de la fonction objectif régularisée. Le caractere autoregressif du GARCH peut-étre ap-
proximé en spécifiant un nombre significatif de retards de telle sorte que le retard
optimal soit selectionné par la procédure de régularisation. L"”adaptive Sparse Group
Lasso” est particulierement adapté dans ce cas dans la mesure ou les retards sont

traités comme des groupes dans la composante ' /I et la réduction de dimension est
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encouragée pour les groupes conservés par la composante !

Pour résumer, ce projet de these s’est situé a la charniere de la modélisation multi-
variée non linéaire et de la statistique en grande dimension. Les objectifs de ce projet
de these ont été de fournir une méthode innovante pour générer des processus de
corrélation de maniere flexible et parcimonieuse ainsi qu’un travail théorique portant
sur des M-estimateurs pénalisés et d’en proposer des applications. L’idée directrice a
été de considérer des processus pouvant accueillir des dynamiques jointes potentielle-
ment grandes. Dans le cadre de la grande dimension, ’analyse théorique menée sur le
Sparse Group Lasso a souligné sa capacité a identifier le vrai support sparse, idest a

identifier les ”facteurs” pertinents pour décrire la dynamique observable.

Trois principaux axes de recherche pertinents ont été identifiés a l'issue de ces travaux.
D’une part, les propriétés asymptotiques d’estimateurs pénalisés seront étudiés dans le
cadre ou les marges sont estimées non-paramétriquement. L’idée est de considérer des
combinaisons linéaires de densité de copule pour approximer la distribution jointe et
d’appliquer une procédure de régularisation qui doit sélectionner le bon sous-ensemble
de copules. Le second axe porterait sur les propriétés asymptotiques des M-estimateurs
pénalisés pour des fonctions objectives non convexes. Pour ce faire, cela nécessite
de faire appel a des résultats de consistence ne reposant pas sur des hypotheses de
régularité trop fortes, idest différentiabilité et convexité. En travaillant avec une fonc-
tion objectif explicite - mais non nécessairement convexe -, les inégalités de types oracles
en échantillon fini pourraient étre obtenues en utilisant les inégalités de concentration
données dans Massart (2003). Par exemple Chesneau et Hebiri (2008) utilisent ces
outils afin d’obtenir des inégalités dites de sparsité pour des criteres quadratiques. En-
fin, le troisieme axe de recherche porte sur la modélisation dynamique de la sparsité
pour des modeles de réseaux stochastiques. Sur la base des travaux de Biihlmann
et Meinshausen (2006), dans le cadre gaussien, les branches d’un graphe représentant
des corrélations partielles pouvent étre estimées par régressions linéaires. Dans le con-
texte de variables dépendantes, l'idée principale est que la sparsité peut connaitre
des changements de telle sorte que le graphe sous-jacent serait pénalisé différemment.
Pour ce faire, I'introduction de variables latentes de type chaines de Markov serait une

approche naturelle, le parametre de régularisation variant selon les régimes.
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Résumé

Ce document traite du probléme de la grande
dimension dans des processus GARCH
multivariés. L'auteur propose une nouvelle
dynamique vine-GARCH pour des processus de
corrélation paramétrisés par un graphe non
dirigé appelé "vine". Cette approche génére
directement des matrices définies-positives et
encourage la parcimonie. Aprés avoir établi des
résultats d'existence et d'unicité pour les
solutions stationnaires du modéle vine-GARCH,
l'auteur analyse les propriétés asymptotiques du
modele. Il propose ensuite un cadre général de
M-estimateurs pénalisés pour des processus
dépendants et se concentre sur les propriétés
asymptotiques de I'estimateur "adaptive Sparse
Group Lasso". La grande dimension est traitée
en considérant le cas ou le nombre de

paramétres diverge avec la taille de I'échantillon.

Les résultats asymptotiques sont illustrés par
des expériences simulées. Enfin dans ce cadre
l'auteur propose de générer la sparsité pour des

dynamiques de matrices de variance covariance.

Pour ce faire, la classe des modéles ARCH
multivariés est utilisée et les processus
correspondants a celle-ci sont estimés par
moindres carrés ordinaires pénalisés.

Mots Clés

Corrélations partielles, Estimateur du
quasi-maximum de vraisemblance,
M-estimateurs pénalisés, Propriété oracle,
Stationnarité, Vine réguliére.

Abstract

This document contributes to high-dimensional
statistics for multivariate GARCH processes.
First, the author proposes a new dynamic called
vine-GARCH for correlation processes
parameterized by an undirected graph called
vine. The proposed approach directly specifies
positive definite matrices and fosters parsimony.
The author provides results for the existence
and uniqueness of stationary solution of the
vine-GARCH model and studies its asymptotic
properties. He then proposes a general
framework for penalized M-estimators with
dependent processes and focuses on the
asymptotic properties of the adaptive Sparse
Group Lasso regularizer. The
high-dimensionality setting is studied when
considering a diverging number of parameters
with the sample size. The asymptotic properties
are illustrated through simulation experiments.
Finally, the author proposes to foster sparsity
for multivariate variance covariance matrix
processes within the latter framework. To do so,
the multivariate ARCH family is considered and
the corresponding parameterizations are
estimated thanks to penalized ordinary least
square procedures.

Keywords

Oracle property, Partial correlations, Penalized
M-estimators, Quasi-maximum likelihood
estimator, Regular vine, Stationarity.
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