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Sergei GRUDININ
PhD Charge de Recherche, Inria Rhone-Alpes Research Center et Laboratoire
Jean Kuntzman, CNRS, Co-Directeur de thèse



Abstract

The phenotype of every known living organism is determined mainly by the compli-
cated interactions between the proteins produced in this organism. Understanding
the orchestration of the organismal responses to the external or internal stimuli
is based on the understanding of the interactions of individual proteins and their
complexes structures. The prediction of a complex of two or more proteins is the
problem of the protein-protein docking field. Docking algorithms usually have two
major steps: exhaustive 6D rigid-body search followed by the scoring. In this work
we made contribution to both of these steps. We developed a novel algorithm for
6D exhaustive search, HermiteFit. It is based on Hermite decomposition of 3D
functions into the Hermite basis. We implemented this algorithm in the program
for fitting low-resolution electron density maps. We showed that it outperforms
existing algorithms in terms of time-per-point while maintaining the same output
model accuracy. We also developed a novel approach to computation of a scoring
function, which is based on simple logical arguments and avoids an ambiguous com-
putation of the reference state. We compared it to the existing scoring functions
on the widely used protein-protein docking benchmarks. Finally, we developed an
approach to include water-protein interactions into the scoring functions and val-
idated our method during the Critical Assessement of Protein Interactions round
47.
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Chapter 1

Introduction

1.1 Role of proteins and their interactions in the

cell

The main dogma of biology states: information in a cell flows from DNA to RNA
and then to proteins. Although the actual working of the cell is much more comlpex
to be contained in any dogma, it captures a large picture of the state-of-art of our
understanding of the working of a cell. Proteins in this picture have a crucial place:
they are the cogs of the cell machinery. These are the protein expressed in a cell
and their interactions that mainly define phenotype of that cell. Therefore gainig
new data on the protein interaction in a cell profoundly enhances our capabilities
to understand and change living organisms for the needs of the society.

1.1.1 Classification of protein-protein interactions

Commonly used classification of the protein-protein complexes uses the following
main criteria: composition of a complex, its lifetime and stability [94].

1.1.1.1 Protein composition and interface

The complex can be comprised of two identical or highly homologous proteins. An
example of such a complex is the D-alanyl carrier protein (pdb code 4BPG), which
consists of two identical polypeptide chains (Fig. 1.1). The proteins of this class
are called homo-oligomers. On the other hand, if the complex consists of two dis-
tinct proteins it is named hetero-oligomer. An example of hetero-dimer (Glycosidase
CelD bound to artificial affitin E12 protein, [28], pdb code 4CJ0) is shown on Fig
1.2. Homo-oligomers are further divided dependent on the interface of oligomeriza-
tion. If the two chains bind using the identical binding interace, their complex is
called isologous. We can see that D-alanyl carrier protein is an example of isolo-
gous homodimer (Fig. 1.2). On the contrary, the homo-oligomeric assemblies where
proteins bind through distinct interfaces are called heterologous.

1.1.1.2 Stability of protomers

The proteins that form a complex can be either stable or not on their own in vivo.
In the first case, when a complex is formed out of stable proteins it is called non-
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Figure 1.1: Example of a homodimeric
complex, D-alanyl carrier protein, pdb
code 4BPG.

Figure 1.2: Example of a heterodimeric
complex, Glycosidase CelD bound to ar-
tificial affitin E12 protein, [28], pdb code
4CJ0

obligate. In many cases these proteins are localized in different compartements of a
cell. Usually, interactions between receptor-ligand, enzyme-inhibitor, etc belong to
non-obligate interactions. In the other case when a complex of one or both chains
do not exist as folded proteins on their own, it is called obligate. An example of such
a complex is the Arc repressor dimer, which consists of two peptide chains. Upon
dimerization (catalized by DNA [82]) these chains obtain stable secondary structure,
that was absent in the monomer.

1.1.1.3 Complex lifetime

If two proteins form a very stable complex they said to interact permanently. In
many cases obligate complexes, such as Arc repressor dimer, are permanent. On
the other hand, if a complex is dissociated and formed continuously in vivo, the in-
teraction between its constituting proteins is called transient. Many of non-obligate
interactions are also transient. However, there are strong transient interactions that
require the presense of some molecule for the complex dissociation. An example
of a strong transient interaction is the formation of trimeric G protein, for which
guanine triphosphate is the dissociation trigger.
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1.2 Experimental methods to probe protein-protein

interactions

Giving importance and variety of protein-protein interactions in a cell, numerous
methods were developed to discover the fact that two or more proteins form a
complex by measuring kinetics and free energy of its formation or even by solving
the atomic structure of the complex. The openness of the proteomics community
also resulted in the construction of many databases of protein-protein interactions.
All experimental methods of identification and characterization of protein-protein
interactions can be classified using two parameters: scale(high-throuput, individual)
and system( in vivo, in vitro). Usually, a low-throuput approach gives much more
information about interaction properties, whereas a high-throuput one only identifies
the presense or absense of an interaction.

1.2.1 Yeast two-hybrid method (Y2H)

The Y2H is probably the oldest and most widespread method to identify interaction
of proteins in vivo, which was scaled up to proteome level. In the pioneering work
by Fields S. and Song O. [39] it was shown that if the domain of the transcription
activator that directs binding to a promoter (BD) is separated from a domain that
activates transcription from this promoter (AD), the transcription is deactivated.
Based on this principle, two proteins of interest are fused to BD and AD, respectively,
and the transcription of the reporter gene signals if they interact (Fig 1.3).

UAS Reporter gene

X Y

BD AD
mediator

UAS Reporter gene

X Y

BD AD
mediator

Figure 1.3: Schematic representation of the Y2H method. If the two protein X and
Y do interact, expression of the reporter gene is high (yellow star), otherwise AD
and BD domains of the promoter are separated and the expression is low. UAS
stands for the upstream regulating sequence.

The are at least two scaling schemes: matrix and library approaches [138, 61].
In the first one, clones expressing different proteins Xi are taken and plated each
in the rows of wells on a plate. The same set of clones is plated in colums of wells
on a plate. Then, when the two yeast cells in each well mate and make a diploid
that expresses both proteins Xi and Xj. Afterwards, the expression of a reporter
gene in a cell i, j means that proteins Xi and Xj interact. In the library-based
approach, clones containig protein Xi are screened agains a library of clones with
various proteins, which can be expressed from random cDNA or all open reading
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frames of a certain genome. In this case, the diploids expressing interacting proteins
are selected agains specific growing media. The proteins that interact with Xi are
determined by the DNA sequencing.

1.2.2 Mass spectrometry and tandem affinity purification

In this method, a certain protein is fused with the DNA sequence that expresses the
TAP tag (IgG binding domains of Staphylococcus protein A and calmodulin binding
peptide separated by the TEV protease site [108]). When the DNA construct is
expressed in a host, it produces the protein of interest that forms complexes with
other proteins of the host. During the purification, these protein complexes bind
to the IgG matrix. Other proteins that did not form complexes with the TAP-
tagged one, hop through the matrix. Afterwards, using TEV protease, one cleaves
of IgG binding domains and purified complexes are eluated from the matrix. The
second purification step is the binding to calmodulin-coated beads. The simple
representation of the two-step purification is shown on Fig. 1.4. Finally, the eluate
is loaded to the SDS-PAGE gel and the resulting bands are cleaved by proteases.

After the purification, one uses mass-spectrometry to identify the fragments of
the cleaved protein-protein complexes [31]. Mass-spectrometry identifies particles
based on their charge-to-mass ration. It allows to recognize fingerprints of short
peptides and therefore identify the proteins using the solution of peptide fragments.
A certain advantage of the TAP-MS method over Y2H is that it can detect not only
dimeric protein-protein interaction, but also multimeric complexes.

A

TEV
IgG

IgG

IgG

cell lysate

Step 1

Step 2

Figure 1.4: Schematic representation of the tandem affinity pyrification method.
Contaminants are shown with green stars, IgG binding domain is shown with pink
pentagon (as well as the IgG coating) and calmodulin (as well as calmodulin coating)
is shown with squares.

1.2.3 Gene co-expression

Recently the methods that allowed measuring expression of the genes on the scale of
the whole cell were invented. Using this methodology, one can measure the similarity
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of expression profiles over different conditions of the two or more genes that code
for interacting proteins. It turns out that they are significantly more similar than
the gene expression profiles of random non-interacting proteins [63].

1.2.4 Synthetic lethality

The mutations in the genome of an organism affect its phenotype. In many cases
this phenotype alternation is caused by the change in the protein-protein interaction
network. By introducing random mutations or deletions in the genes of two proteins,
one can monitor survival rate of these cells. The lethality of one such mutation can
point to presence of interaction between the two target proteins [95].

1.2.5 Fluorescence resonance energy transfer

The fluorescence resonance energy transfer (FRET) occurs between two molecules:
one (donor) in an excited state and the orther (aceptor) in the ground state. The
energy is transfered through the dipole-dipole interaction between the molecules and
does not involve emission [152]. The probability of such transfer to occur strongly
depends on the distance between the donor and the aceptor. However, it is almost
independent of the environmental conditions, which makes this method a great tool
to study molecular interactions in vivo. More specifically, the two fluorophores are
fused to the two proteins of interest (Fig. 1.5). One is then excited using a laser and
if these molecules form a complex, it transfers energy to the second fluorophore that
emits light at a certain wavelength. One of examples of FRET application is the
investigation of membrane proteins dimerization in vivo, in particular of melatonin
receptor types 1A and 1B [9].

ex
ci

ta
ti

o
n

e
m

is
si

o
n

transfer

ex
ci

ta
ti

o
n

no transfer

interacting not interacting

Figure 1.5: Schematic representation of the fluorescence resonance energy transfer
method. If the two proteins interact, the fluorophores (blocks) come close and the
energy transfer between them becomes possible. Therefore, exciting one fluorophore,
one detects the emission from another. Otherwise, if the proteins do not interact,
no emission of the second fluorophore is detected upon excitation of the first one.

1.2.6 Isothermal titration calorimetry

This method allows to measure stoichiometry, dissociation constant, enthalpy and
entrophy of the binding reaction between two proteins [144]. The experimental setup
consists of two thermally isolated chambers. One of the chambers is used as a ref-
erence and is filled with water. The other contains one of the interacting proteins.
Its interaction partner is titrated in a known amount to the chamber. The ther-
mometer measures temperature difference between these two chambers and controls

14



heaters to equilibrate their temperature (while maintaining the temperature of the
reference chamber constant). The amount of heat spent to make the two chamber
isothermic is measured during the experiment. Figure 1.6 shows a schematic ex-
ample of data obtained from an ITC experiment. The red line shows the peaks of
energy transfer that correspond to titration events. Fitting these peaks with the
interaction model (blue dashed line on Fig. 1.6) of a titration substance and a sub-
stance in the reservoir one can deduce the parameters of the model. In the simplest
case of protein-ligand interaction one obtains enthalpy, dissociation constant and
stoichiometry of the reaction.

E
n

e
rg

y
 t

ra
n
sf

e
re

d

Molar ratio

Figure 1.6: Schematic representation of the data obtained from an isothermal titra-
tion calorimetry device. The red line shows the energy transfered from the reservoir
with the protein to the reference reservoir. Blue dashed line is an example of model
fitted to the data.

1.2.7 Nuclear magnetic resonance spectroscopy (NMR)

This method is based on the absorbtion and emission of radio-frequency radiation
by the nuclei of certain atoms. The emission and absorbtion spectra depend on
the environment of nuclei and therefore the measurement allows to reconstruct the
distance matrix between certain atoms in a protein in solution. This method also
allows to measure the dynamics of proteins and their interaction. The classical
approach is based on the Nuclear Overhauser Effect (NOE). One of the examples of
the NMR results is the structure of the Twist protein, a transcription factor that
plays a key role in the epithelial-mesenchymal transition and the bromodomain-
containing protein 4 [124] (see Fig. 1.7). Due to the complexity of spectra measured
during the experiment, this approach is limited to protein complexes of the size up
to 300 amino acids.
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Figure 1.7: The structure of Twist protein(green) with the bromodomain-containing
protein 4 (red) measured using NOE-NMR technique [124]. PDB code 2MJV.

1.2.8 Cryo electron microscopy

The broad variety of methods go under the name of Cryo electron microscopy (Cryo-
EM). The basic principle underlying this method is the same as in the conventional
light microscopy. The difference lies in the radiation source. In Cryo-EM, the elec-
tron beam accelerated up to 300kV is used. This allows increasing the resolution
that depends on the wavelength of the incident radiation, up to atomic one (wave-
length of electrons accelerated by 300kV is about 0.02Å). However, the increased
resolution goes with the increased radiation dammage to the sample. Variety of
methods are used to diminish ionizing effect of electrons on the biological samples.
More precisely, measurement are conducted at low temperatures [34], averaging
many identical units [132], single-particle microscopy. The last one is probably the
most used one in structural biology.

The single-particle Cryo-EM is based on collecting information from many 2D
projections of an object to reconstruct its 3D low-resolution model (electron density
map, EDM). Afterwards, the supplementary information provided by NMR of X-
Ray crystallography is used to construct an atomistic model of the object.

The 3D reconstruction of the EDM is usually based on the central projection
theorem. It states that the Fourier images of 2D projections of a 3D object are the
central slices of its 3D Fourier images. The relative positioning of two projections
can be derived from the common lines in their Fourier images. These algorithms are
implemented in the programs like IMAGIC [140], SPIDER [121], FREALIGN [50]
etc.

The resolution that can be obtained using this technique is highly dependent on
the symmetry of the object measured. For example, highly symmetric icosahedral
viruses envelopes were measured with up to 3Å resolution [155]. The other exam-
ples of reconstructed protein complexes usually have resolution in the range of 7Å-
15Å. This method is the main source of information on the large protein-protein
assemblies today, like ribosomes [99] and chperonines [27].
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1.2.9 X-ray crystallography

The X-ray crystallography is the most time- and cost- demanding method, but it
provides the most detailed atomistic information on the structure of protein-protein
complexes. The starting point of this technique is a protein crystal. Obtaining crys-
tal of a certain protein-protein complex is often the major hurdle and sometimes
even impossible. Large protein-protein complexes and membrane proteins are es-
pecially hard to crystallize. Nontheless, the X-ray crystallography remains a major
method to study structures of protein-protein complexes. The method is based on
the diffraction of X-rays on the atoms, arranged in a lattice. The crystal of a pro-
tein is rotated with respect to the incident beam and the diffraction patterns are
measured for each rotation. From these patterns one can reconstruct the absolute
values of the Fourier image of a unit cell of the crystal. Afterwards, the phases of the
Fourier image have to be reconstructed or measured. One of the most used way to
obtain the phasing is the so-called molecular replacement. This means that approx-
imate theoretical molecular structure of the unit cell is fitted into the given dataset.
Afterwards, one minimizes discrepancy of the fitted structure with the diffraction
pattern and obtains the final one. The quality of the final structure is judged by
the R-factor. It shows to what extent the resulting structure explains the diffraction
peaks.
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1.3 Computational methods to probe protein-protein

interactions

The experimental methods described in the previous section give rich information
on the protein-protein interactions. However, in many cases the interactions being
identified using these techniques are incomplete and contradictory owing to certain
limitations and biases of the experimental conditions. To validate and cover the un-
known spots in the protein-protein interactome maps, a plethora of computational
techniques is used. These methods rely on different assumptions and use different
information sources to decipher interaction details of proteins. Despite the rich va-
riety one can approximatelly classify them in two major groups: top-down methods
that use whole-organism or even evelutionary information and bottom-up, methods
that employ the knowledge of single protein structures. They also differ by the
amount of information they provide: ranging from a simple fact of interaction down
to the details and precise conformation of the interaction interface.

1.3.1 Top-down approaches

This class of methods use the evolutionary and genomic data to predict if two
proteins interact and identify domains that contain the interaction interface.

1.3.1.1 Gene neighbour and gene cluster methods

This pack of methods rely on the assumption that genes encoding for possibly in-
teracting proteins often transcribed as a single operon in procariotes or co-regulated
in eukariotes. A simplified example on how co-regulation maintains a certain ste-
chiometry of a complex is shown on Fig. 1.8. For example, it was found that up to
75% of co-regulated genes in bacterial and achaeal genomes interact [30]. The evo-
lution tends to shuffle the order of genes in the distantly related organisms, however
co-regulated gene clusters are found to be conserved. A prominent application of
this method is the prediction of interaction of exsosome complex, that is capable of
degrading viral RNA, and the RNAse P complex by comparing the order of genes
in archaeal and eukariotic genomes [72].

co-regulated
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B
C

co-regulated

A A
A

B
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AB
C
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B
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A

BA

B

possible interactiongene regulation

Figure 1.8: Example of a gene co-regulated cluster and the probable complex with
the stechiometry set by the co-regulation.
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1.3.1.2 Phylogenetic profile methods

These methods are based on the hypothesis that the interacting proteins coevolve
and therefore have orthologous proteins among sequenced organisms [10]. If the
proteins related to the two proteins in question are present in majority of organisms
therefore, they probably constitute a pathway or physically interact. The phyloge-
netic profiles are constructed for the proteins where their presense indicated by 1 or
0. Then, these profiles are clustered and the proteins belonging to one cluster are
assumed functionally related or interacting.

1.3.1.3 Rosetta Stone method

This method relies on the observation that interacting proteins have homologs in
other organisms that are fused into one protein. These types of proteins are called
Rosetta Stone proteins. This fusion is the limiting case of the co-expression opti-
mization of functionally related proteins. Using this method Marcotte et all [81]
identified about 7,000 pair of potentially interacting proteins in E.Coli and fur-
ther analysis of the data revealed that around a half of these pairs are functionally
related.

1.3.1.4 Co-evolution based methods

During the evolution, mutations in one of the proteins of a complex should be
compensated by the mutations in its partner in order to maintain the function
(see Fig.1.9). The co-evolution based methods use the similarity measures between
phylogenetic trees of two interacting protein families. Studies showed that some
implementations of this method can predict up to 50% of real interactions with false
positive rate as low as 6.4% [97].

Protein family A Protein family B

Figure 1.9: Example of a genes co-evolution where evolutionary changes in one
protein compensate for the changes in its interaction partner.

1.3.2 Bottom-up approaches

Bottom-up approaches to the prediction of protein-prtoein interactions rely on the
known structure of the proteins that constitute the complex. The structures can
either be modelled by homology, obtained using evolutionary constraints or taken
from such experiments as NMR, X-Ray crystallography or Cryo-EM. These methods
are usually applied to infer the missing structural information about the protein-
protein complex rather than to predict the fact of interaction. Because bottom-up
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approaches use two or more protein structures that they dock into a complex, this
class of techniques are usually called docking algorithms. The pioneering work in
this field was done by Janin and Wodak [150]. Since then, this field has grown
enormously, with its own quality assessment [85, 86, 62]. The two major parts of all
the algorithms in this field are: sampling and scoring [110, 55]. As the name suggest,
the sampling part generates putative conformations of a complex of proteins and
scoring ranks them according to some criteria.

1.3.2.1 Search strategies

Suppose we have two molecules that are assumed to be rigid. One of the molecules
(usually the one of a higher molecular weight) is called receptor and is fixed at
the origin of the coordinate frame. The other, called ligand, is moved around the
receptor. The global search algorithm explores all possible rotations and translations
of the ligand movements. Complexity of this problem is O(N9), where O(N3) comes
from rotational, O(N3) from the translational degrees of freedom and O(N3) is
the complexity of the integration of the overlap integral that is computed for each
rotation and translation of the ligand. A rough estimate gives ≈ 1010[55] operations.
Several approaches allowed reducing this enormous complexity by at least an order
of magitude. These are the fast Fourier transform correlation and clever heuristics
in the direct search.

1.3.2.1.1 FFT-based rigid body docking The idea to perform correlations
in the Fourier space was first used by Katchalski-Katzir and colleagues [68]. In this
section I give a short description of this approach with a comprehesive 2D example.

Suppose that proteins receptor (R) and ligand (L) are represented as the num-
bers on a 3D grid:

R(l,m, n) =


1, (l,m, n) ∈ surface of R

ρ, (l,m, n) ∈ inside of R

0, (l,m, n) ∈ outside of R

L(l,m, n) =


1, (l,m, n) ∈ surface of L

δ, (l,m, n) ∈ inside of L

0, (l,m, n) ∈ outside of L

(1.1)

where ρ � −1 and 0 < δ < 1, according to the original work by Katchalski-Katzir
[68]. The shape complementarity score will therefore read:

C(p, q, r) =
N∑

l,m,n=1

R(l,m, n)× L(l + p,m+ q, n+ r), (1.2)

where the periodic boundary conditions are applied. Function C defined on the same
grid gives complementarity score that depends on the shift of the ligand (p, q, r).
This function can be computed using the FFT algorithm as follows:

C(p, q, r) = FFT−1
[
FFT[R]× FFT[L]

]
,

where FFT−1 stands for the inverse fast Fourier transform and overline for the
complex conjugate. This algorithm allows to rapidly sample translational degrees
of freedom. The rotations of the protein are separated from the translations in
the outer loop of the algorithm. Fig. 1.10 shows a comprehensible example of 2D
calculations using this approach.
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An example of the docking procedure is shown on Fig. 1.10. The first row shows
the picture of receptor and its Fourier image. The first column shows different ligand
poses. The border outlined with the dark-blue and the inner space with light-blue.
The numbers placed on the grid are described by Eq. 1.1. The second column shows
the Fourier images of receptor and individual ligand poses. Third column shows the
phases of Fourier image of the convolution FFT[C(p, q, r)] = FFT[R] × FFT[L].
The phases of the inverse Fourier transform of the data from the third column are
shown in the fourth one, it was computed according to Eq. 1.3.2.1.1. Finally, in the
last column the pose with the best score is shown, here the ligand is shown with
the light-blue and the receptor is depicted with the dark-blue color. The images
of Fourier transforms were built using the projection of complex values to the HSV
colorspace [100] with the amplitude fixed to V = 100.0.
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Figure 1.10: Example of a FFT-based docking procedure.
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The algorithms that use FFT-based search strategies outnumber the algorithms
relying on the other types of search strategies, to name a few: FTDock[44], GRAMM[139],
ZDOCK[103], PIPER[76], etc. This technique is also used to accelerate the search
not only in the space of translations but also in the rotational space [47, 111, 110]
and even in 5D rotation-translational space .

1.3.2.1.2 Sophisticated scoring during exhaustive search In modern al-
gorithms based on the idea described above, a simple shape complementarity is
usually coupled to the information about binding site [13], electrostatic energy [44],
atomic desolvation effect [25], knowledge-based potentials [87], etc. The general
idea behind the incorporation of additional scoring approaches can be shown on the
example of the ZDOCK program [87]. The scoring function that is used in addition
to shape complementarity in this algorithm contains the desolvation term, electro-
statics and knowledge-based scoring potentials. To estimate the desolvation energy,
the authors used atomic contact energies (ACE)[25]. It is defined as the free energy
change of breaking two protein atom contacts with water and forming a new contact
between these two atoms. The pairwise shape complementarity (PSC) and ACE are
represented on the grid in the following way:

RPSC = LPSC =


3 surface of a protein

32 protein core

0 empty space

Re [RDE] = Re [LDE] =

{
sum of ACE and PSC scores for nearby atoms empty space

0 otherwise

Im [RDE] = Im [LDE] =

{
1 grid point is the nearest grid point of an atom

0 otherwise
,

where R stands for receptor and L - for the ligand. The final score is:

SPSC+DE = Re [RPSC × LPSC ] +
1

2
Im [RDE × LDE]

The electrostatic energy calculation is performed similarily:

RPSC+ELEC = LPSC+ELEC =


3 surface of a protein

32 protein core

0 empty space

Im [RPSC+ELEC ] =

{
β × (electric potential of receptor) empty space

0 otherwise

Im [LPSC+ELEC ] =

{
−1× (atom charge) grid point is the nearest grid point of a ligand atom

0 otherwise
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Finally, the total score is computed as follows:

SPSC+DE+ELEC = Re [RPSC+ELEC × LPSC+ELEC ] +
1

2
Im [RDE × LDE]

We see that using not only real part of the grid values but also their imaginary part,
one can compute electrostatics, desolvation and shape complementarity using two
convolution calculations.

1.3.2.1.3 Direct search in Cartesian space In this type of approaches the
representation of the protein is also grid based, but simpler than in the FFT-based
ones. Grid values are either 1 if the grid is occupied by the protein or 0 otherwise.
The algorithms from this category use boolean logic and heuristic rules to speed up
the search [64, 134].

1.3.2.1.4 Local shape matching Algorithms implemented in such programs
as LZerD [146], GAPDOCK [45], PatchDock [35], etc represent protein as a set
of surface patches. Efficient search algorithms match the surface patches on two
proteins and recover the rotation and position of a candidate docking pose from the
patches.

1.3.2.1.5 Randomized search strategies An example of this type of ap-
proaches is the package RosettaDock[48]. It generates random starting positions
of a ligand around receptor. Afterwards, it minimizes the score while moving the
ligand along the line connecting their centers of masses. RosettaDock also uses
different representations of the protein at two distinct stages of minimization to re-
duce the number of degrees of freedom: coarse-grained and full-atom ones. The same
methodology is used by the programs like ATTRACT [153], HADDOCK [33], etc.
Another example of randomized search approach is the SwarmDock algorithm [80].
This program uses population-based search algorithm, called particle swarm opti-
mization. Each copy of the protein-protein complex being optimized is an agent.
During optimization of each agent it shares information about its state with the
neighbouring agents and they change the parameters of optimization accordingly.
The particle swarm optimization algorithm is especially well suited for exploring
energy landscapes with large number of local minima.

1.3.2.2 Scoring candidate conformations

Despite the vast variety of the methods to obtain the scoring functions, we can
group them into two major classes – physics-based SFs and statistical SFs. The
first class of SFs is constructed as a weighted sum of terms, such as desolvation
[149], electrostatic interactions [122], hydrogen bonds [38], hydrophobic interactions
[119], etc., given as E =

∑
i αiEi. Then, the weights αi are usually tuned to match

some experiments or to attain a minimum of the SF on a set of known structures
of protein complexes. On the other hand, statistical SFs are developed based on
the observation that the distances between the atoms in experimentally determined
structures follow the Boltzmann distribution [40]. More precisely, using ideas from
statistical theory of liquids, effective potentials between atoms are extracted using
the inverse Boltzmann relation: Eij(r) = −kBT ln

Pij(r)

Z
, where kB is the Boltzmann
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constant, Pij(r) denotes the probability to find two atoms of types i and j at a
distance r, and Z denotes the probability distribution in the reference state. The
latter is the thermodynamic equilibrium state of the protein when all interactions
between the atoms are set to zero. The score of a protein conformation is then
given as a sum of effective potentials between all pairs of atoms. Although this
concept is old ( it originates from the work of Tanaka and Scheraga [131], Miyazawa
and Jernigan [89] and Sippl [126] ), it is still under debates [135, 127, 73, 11].
Particularly, the computation of the reference state is a challenging problem and
only recently some attempts to rigorously justify and compute it have been made
[51]. Some scoring functions from this class were obtained without the computation
of the reference state. Among those we should mention SF obtained using linear
programming [137, 136, 145], quadratic programming, support vector machines [16,
53, 83], and iterative techniques [56, 57].

Here I describe some examples of knowledge-based scoring functions, used in
DFIRE [156], ATTRACT [153] and ZDOCK [87] algorithms. The approach chosen
by the authors of DFIRE scoring function uses the ideal-gas reference state that al-
lowed them to unify the folding and docking scoring functions. The pair distribution
function has the following dependence on the number of observed pairs:

Nobs(i, j, r) =
1

V
NiNjgij(r)4πr

2δr

Where Nobs(i, j, r) is the number of observed atoms of i-th and j-th types at the
distance r. The potential of mean-force is connected to the pair distribution function:
u(i, j, r) = −RT ln gij(r). When the interaction u(i, j, r) is set to zero, one obtains
the distribution in the reference state Nexp(i, j, r) = 1

V
NiNj4πr

2δr. However, due
to the finite size of the protein, the correction coefficient α was introduced:

Nexp(i, j, r) =
1

V
NiNj4πr

αδr

The potential is assumed to have finite range and the equation for the potential
is simplified by employing the pairwise distribution in the reference state at the
potential cutoff distance:

Nexp(i, j, rcut) = Nobs(i, j, rcut) =
1

V
NiNj4πr

α
cutδrcut

Finally, the form of the potential is the following:

u(i, j, r) =

−νRT ln Nobs(i,j,r)“
r

rcut

”α“
δr

δrcut

”
Nobs(i,j,rcut)

, r < rcut

0 otherwise

where ν = 0.0157, R is the gas constant, T was set to 300K and α = 1.61. The δr
and δrcut are the widths of bins at the distances r and rcut correspondingly. The
coefficient ν was tuned to maximize correllation between the experimental and the
predicted stability upon the mutations of monomeric proteins. The exponential
factor α is determined using the uniformly distributed points in a sphere for each
structure. The radii of the spheres were set to cRg, where Rg is the gyration radius
of a protein and c was tuned to equal the number of pairs within the rcut for the
reference state and the experimental structures. Such a choice of the reference
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state implies that the information about the protein-protein contacts is negligible
compared to the information on the interaction withing proteins. This fact let the
authors to unify folding and docking scoring functions.

D. Kozakov et. al. developed the “decoys as reference state” (DARS) potential
for scoring protein-protein interactions. The key idea was to dock the proteins in the
training set using only shape complementarity term in the scoring of conformations.
These structures simulate the absense of interactions between two proteins and were
used as the reference state. However due to computational complexity, the authors
chose only 22 protein-protein complexes to derive the reference state.

Zacharias and his team used a different approach: they used only the Leenard-
Jones type of interaction and the electrostatic interaction with distance-dependent
dielectric constant ε = 15r. They estimated the parameters of interaction potential
using the similar approach as in the work by Miyazawa and Jernigan [90].

1.3.2.3 Knowledge-based potentials in rigid-body search

During the rigid-body search algorithms typically filter out about ≈ 104 conforma-
tions. Most of them are later refined by the scoring procedure. However, due to
a simple scoring function used during the search, the conformations that are close
to the solution could be underrepresented in the output of rigid-body docking al-
gorithms. Therefore, two approaches exist to incorporate knowledge-based scoring
functions into exhaustive 6D search procedure. One of them, used in the ZDOCK3.0
program [87] integrates atomic contact potential into 6D search procedure in the fol-
lowing way. Suppose one has 2N atom types. For the ligand, N functions on a grid
are defined in the following way:

Re [Li] =

{
1 if grid cell is occupied by a ligand atom type i

0 otherwise

Im [Li] =

{
1 if grid cell is occupied by a ligand atom type i+1

0 otherwise

The N functions for the receptor are:

Im [Ri] =

{∑
ei,j Neighbours within rcut

0 non-neighbour atoms

Re [Ri] =

{∑
e(i+1),j Neighbours within rcut

0 non-neighbour atoms
,

where ei,j is the value of the contact potential between atom types i and j and rcut
is the contact radius. The sum of contacts looks as follows:

E =
2N∑
i=1

2N∑
j=1

eijnij =
N∑
k=1

[∑
x,y,z

Li ×Ri

]

Thus, to compute the contact potential energy one has to perform N forward Fourier
transforms and one backward (due to additivity of energy).
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Despite the usage of both complex and real parts during the computation of con-
tact potentials N can be around 10, which slows drastically the rigid-body docking
algorithm. In order to reduce the number of Fourier transforms Kozakov et. al. [76]
proposed to decompose the interaction matrix ei,j into the eigenvectors:

ei,j =
P∑
p

λpup,iup,j

where P depends on the allowed error rate. Ususally the aproximation of the pair-
wise potential energy using the grid yelds 10% error in energy, therefore the trun-
cation of the decomposition is well justified. The functions for the receptor and the
ligand look like:

Rp =

{∑
i up,i Over all neighbours i within rcut

0 no neighbour atoms

Lp =

{
up,j If atom of type j is in the cell

0 otherwise

This approach allows to compute only four Fourier correlations with the same error
as in the previous algorithm.

1.3.2.4 Modelling of water molecules

An important part of a protein-protein interface constitute the water-mediated in-
teractions. One pronounced example of the protein-protein complex where water
molecules play great role is the barnase-barstar complex. In the interface of this
complex 18 water molecules are fully burried mediating a considerable amount of
sidechain-sidechain interactions [19]. Water molecules also play a role in the inter-
action between protein and drug-like molecules [12, 58].

In spite of the importance of the water molecules prediction for the drug desing,
numerous works are devoted to predict positions of water molecules around a known
protein structure [41, 148, 114]. However, the amount of papers attempting to
predict the explicit solvation of protein-protein interfaces is substantially less [65,
20, 66, 5].

Historically, the first approach to account for the water-mediated interactions
during protein-protein docking was the use of the solvated rotamers [65]. The key
idea of this method is to attach the water molecules to the functional groups of
the residues and the backbone and treat different solvation modes as rotamers. Fig
1.11 shows an examples of water molecules placement around aromatic nitrogen in
histidine.

N N H WW

Figure 1.11: Water molecules placement around aromatic nitrogen in histidine
residue functional group.
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The water molecules placement around the protein was derived by the authors
from X-Ray crystallographic structures solved at high resolution. To avoid combi-
natoric explosion of the number of solvated rotamers they restricted the placement
of water molecules to the non-adjacent sites in a protein.

The other approach was implemented in the algorithm WATGEN [20]. First,
the hydrogens are added to the interacting proteins. These hydrogens, that interact
with the atoms of a protein are called donors. Afterwards, all possible positions of
water molecules are generated and those which have clashes with the atoms of the
two proteins are discarded. Then, the water sites are selected based on the number
of interactions they are involved into. Additionally, two water sites closer than
0.5Å are considered equal. Finally, geometry of the water hydrogens is optimized
to maximize the number of interactions.

1.3.2.5 Multimeric docking

Methods and algorithms described previously are applicable mainly to the problem
of doking dimeric protein-protein complexes. However, many proteins in a cell
form multimeric assemblies that play crucial role in recycling of the proteins in a
cell, folding of the proteins, translation, transcription and many other vital cellular
processes. There are two major ways in deciphering the structure of a multimeric
complex starting from its subunits. The first type of programs do not rely on any
other information except for the possible symmetry of a complex and the structures
of its subunits. The second one uses low-resolution electron density maps, obtained
from cryo-EM or small angle neutron scattering experiments.

The first class of methods deals with complexes of two general types: symmetric
and nonsymmetrical. The number of packages that can do symmetry-based multi-
meric docking is quite small: SymmDock [120], can build complexes with cyclic sym-
metry; Rosetta program protocol, that uses Monte-Carlo approach and can take into
account cyclic, dihedral, helical and icosahedral symmetries [7]; M-ZDOCK [101] re-
duces rotational search space assuming cyclic symmetry and relies on FFT-based
docking approach, etc.

A few programs can dock proteins into nonsymmetrical complexes: CombDock
[60] uses combinatorial approach, generating all pairwise pairs and finding among
them tripples with the optimal score; Kim and Hummer algorithm [70], which uses
Monte-Carlo approach and coarse-graining the protein models, HADDOCK [33];
ATTRACT [153]; Multi-LZerD [36] and DockTrina [107].

However, despite the variety of methods, they still perform poorly even on a
simple benchmark [107]. The most reliable and widely-used technique to obtain
atomic structure of a multimeric assembly is the docking of subunits into a low-
resolution electron density map, usually obtained from cryo-EM experiments.

1.3.2.5.1 Docking proteins into low-resolution electron density map For
this task, a number of software packages have been developed. Most notable of
them are Situs [151, 22], NORMA [130], EMFit [115], UROX [125], etc. Despite the
differences in the implementation, all algorithms maximize some score that shows
the goodness of the fitting using a certain optimization algorithm. An excellent
review on different types of the scoring functions used for cryo-EM density fitting
is given by Vasishtan and Topf [143]. According to them, one of the most popular
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scoring functions is the cross-correlation function (CCF) between the EDM and the
density of the fitted protein.

Given a protein structure that is described by its electron density f(r), and an
EDM obtained from e.g. a cryo-EM experiment described by the function g(r), we
can minimize the square root discrepancy between them. Precisely, this discrepancy
is given by

S =

∫
dr
(
T̂ R̂f(r)− g(r)

)2

, (1.3)

where T̂ and R̂ are the operators of the translation and the rotation respectively,
applied to the density f(r). We can rewrite the scoring function S as

S =

∫
dr
(
T̂ R̂f(r)

)2

+

∫
dr g2(r)− 2

∫
dr T̂ R̂f(r)g(r) (1.4)

Therefore, the minimization of the score S is equivalent to the maximization of the
CCF:

CCF =

∫
dr T̂ R̂f(r)g(r) (1.5)

with respect to the parameters of the operators T̂ and R̂. This scoring function has
been used in the majority of the algorithms and software packages that perform the
fitting into the EDM [151, 125, 130].

Another widely used scoring function is the Laplacian-filtered cross-correlation
function (LCCF). It originated from the observation that a human performing a
manual fitting a structure into an EDM tends to match the isosurfaces of the den-
sities rather than the densities themselves,

LCCF =

∫
dr
(
4T̂ R̂f(r)

)
(4g(r)) (1.6)

This scoring function works better than CCF for low resolution maps (∼ 10− 30 Å)
[151] and was used for the first time in the CoAn/CoFi algorithm [147]. Other
scoring functions that e.g. penalise symmetry-induced protein-protein contacts, or
make use of protein-protein docking potentials, etc., have also been developed [143].
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1.4 Aim of work

This work deals with the protein-protein docking problem. The aim of the work
was to propose and validate new algorithms in the area of 6D exhaustive search
and in the field of ranking the docking predictions. Particularly, the goal was to
invent and test new ways to solve general global rigid-body search approaches that
could be more effective than the state-of-art in the field. In order to convincingly
demonstrate their applicability, they have to be applied to one of the challenging
problems, like fitting of cryo-EM electron density maps or rigid-body protein-protein
docking and compared to the existing programs in the field. The scoring method
has to be applicable to a wide range of problems: from drug-like molecules docking
to crystallographic water prediction. It has to be free of methodological difficulties
as in the case of statistical potentials, where the debates about the validity of the
reference state computations are still going. This algorithm should be derived from
the basic logical statements and have acceptable convergence properties.
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Chapter 2

Hermite fitting

2.1 Introduction

As was already mentioned in the introduction, an important class of algorithms
in computer science and structural biology deals with the exhaustive search in the
six-dimensional space of translations and rotations of a rigid body.

Modern exhaustive search algorithms either implement the fast 3D translational
search using the fast Fourier transform (FFT) [22, 67, 43, 151, 125] or the fast
3D rotational search by means of the spherical harmonics decomposition and the
FFT [75] or even the fast 5D rotational search [74, 112]. Exhaustive search is also
widely used as a preliminary step preceding the local search or flexible refinement
procedures. Thus, the quality and the speed of the exhaustive search algorithms
have a great impact on the solution of the vast variety of problems. Therefore, we
believe that new directions of research on this topic are very important and highly
valuable.

In this section, we present the new HermiteFit algorithm that uses the orthog-
onal Hermite functions to perform exhaustive search in the six-dimensional space
of rigid-body motions. We apply this method to the problem of fitting of a high
resolution X-ray structure of a protein subunit into the cryo-electron microscopy
(cryo-EM) density map of a protein complex. As a part of the new method, we
developed an algorithm for the rotation of the decomposition in the Hermite basis
and another algorithm for the conversion of the Hermite expansion coefficients into
the Fourier basis. We demonstrate the ability of our algorithm to compete with the
well–established approaches by using two examples of different difficulty, the PniB
conotoxin peptide and the GroEL complex. The first example illustrates encoding
principles and demonstrates the influence of the encoding quality on the goodness
of fit. The second example is the gold standard of all electron density map fitting
algorithms. Our approach allows to analytically assess the quality of encoding of
the Hermite basis using an estimation of the crystallographic R-factor. We then
compare this estimation with the one computed numerically for the PniB conotoxin
density map. Finally, we compare the speed and the fitting accuracy of our algo-
rithm with the two popular programs, the ADP EM fitting method and the colores
program from the Situs package and demonstrate that HermiteFit spends less run-
ning time per one search point compared to the two other methods while attaining
a similar accuracy.

The HermitFit algorithm can be straightforwardly applied to a broad class of
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problems in different fields of research. For example, one of the bottlenecks of the
algorithms for molecular replacement in crystallography is the computation of the
Fourier coefficients (structure factors) of a molecule [92]. This operation is to be
precise and fast. However, the exact analytical evaluation of the structure factors is
too costly [118] when recomputing them for each rotation of the molecule. Therefore,
currently one uses the Sayre–Ten Eyck approach to compute the Fourier coefficients
[133]. Unfortunately, one has to be very careful tuning the parameters of the electron
density model and the grid cell size to obtain the desired precision [93, 4]. Unlike
the Sayre–Ten Eyck, our algorithm offers the analytical expression for the structure
factors of the Hermite decomposition of a molecule. Finally, our approach allows to
analytically estimate the quality of encoding using, e.g., crystallographic R-factors.
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2.2 Methods

2.2.1 Summary of the standard fitting algorithm

The standard FFT-based 3D fitting algorithm operates according to the workflow
shown in Figure 2.2.1 [67, 43, 22]. The input of this algorithm is a protein atomic
structure determined experimentally by, e.g., X-ray crystallography or nuclear mag-
netic resonance (NMR) experiments. Another input is an experimental EDM deter-
mined by means of, e.g., cryo-EM. First, the algorithm decomposes the experimental
EDM into the Fourier basis using the fast Fourier transform algorithm. Then, it
rotates the protein structure to a certain orientation r and decomposes the electron
density of the rotated structure into the Fourier basis.

Figure 2.1: Flowchart of the standard fitting algorithm based on the Fourier corre-
lations. Green blocks correspond to the operations in the Fourier space.
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The electron density is typically computed as a sum of Gaussians centred on
non-hydrogen atoms of the protein. Afterwards, the algorithm exhaustively explores
translational degrees of freedom of the rotated protein with respect to the EDM. For
every translation t, it determines the corresponding score, which is usually given by
the correlation between the two densities. This procedure is equivalent to computing
the convolution of two functions,

CCF(r, t) =

∫
dx f(r,x − t)g(x), (2.1)

where f(r,x − t) is the density of the protein rotated by r and translated by t, and
g(x) is the experimental electron density map. To speed up this step, the algorithm
computes the values of the Fourier transform of the CCF for all translational degrees
of freedom at once, using the convolution theorem. Finally, the algorithm computes
the inverse Fourier transform (IFT) of the convolution, generates a new rotation of
the protein structure, and returns to the second step. This procedure is repeated
until all rotational degrees of freedom of the protein with respect to the EDM are
explored (see Fig. 2.2.1). The solution of the fitting problem is then given by
(rmax, tmax) = argmaxr,t {CCF(r, t)}.

The bottleneck of the standard algorithm is the re-projection of the protein
electron density into the Fourier space after each rotation. To overcome it, we
propose to encode the electron density of the protein structure in the orthogonal
Hermite basis, prior to performing the rotational search. This allows to speed up the
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Operation Complexity Loop multiplier

Decomposition of the step function O(M3logM3)

1
Decomposition of the Gaussian O(NatomsN

3)
Construction of the rotation matrix O(NrotN

4)
Rotation O(N4)

Nrot
Evaluation of the Hermite series O(M3 · N + M2 · N2 + M · N3)

Multiplication O(M3)
Inverse Fourier Transform O(M3logM3)

Table 2.1: Complexity of the Hermite fitting algorithm. Here, M denotes the order
of the Fourier decomposition; N is the order of the Hermite decomposition; Natoms

is the number of atoms in the protein; Nrot – the number of rotations to be sampled.

projection of the protein density into the Fourier space. Since only the members of
the Fourier family of linear transforms can replace O(N2) operations of a convolution
in a time domain by O(N) operations in a frequency domain [128], we still need to
perform the convolution in the Fourier space. Figure 2.2.1 shows the workflow of the
proposed algorithm. Computational complexity of this algorithm is listed in Table
2.1.

Density 
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Fourier 
Transform
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Transform
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Structure
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Inverse 
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Sort

Hermite to 
Fourier 

Transform

Figure 2.2: Flowchart of HermiteFit, the new fitting algorithm based on the Hermite
expansions. Green blocks correspond to the operations in the Fourier space. Blue
blocks correspond to the operations in the Hermite space.

2.2.2 Hermite functions

Orthogonal Hermite function of order n is defined as:

ψn(x; λ) =

√
λ√

2nn!
√

π
exp(−λ2x2

2
)Hn(λx), (2.2)

where Hn(x) is the Hermite polynomial and λ is the scaling parameter. In Fig.
2.2.2 we show several orthogonal Hermite functions of different orders with different
parameters λ. These functions form an orthonormal basis set in L2 (R). A 1D
function f(x) decomposed into the set of 1D Hermite functions up to an order N
reads

f(x) =
N∑

i=0

f̂iψi(x; λ) (2.3)
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Here, f̂i are the decomposition coefficients, which can be determined from the or-
thogonality of the basis functions ψi(x; λ). Decomposition in Eq. 2.3 is called the
band-limited decomposition with ψi(x; λ) basis functions. To decompose the EDM
and the protein structures, we employ the 3D Hermite functions:

ψn,l,m(x, y, z; λ) = ψn(x; λ)ψl(y; λ)ψm(z; λ), (2.4)

which form an orthonormal basis set in L2 (R3). A function f(x, y, z) represented
as a band-limited expansion in this basis reads

f(x, y, z) =
N∑

i=0

N−i∑
j=0

N−i−j∑
k=0

f̂i,j,kψi,j,k(x, y, z; λ) (2.5)
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Figure 2.3: Left: 1D Hermite functions of order six for three different scaling pa-
rameters λ. Right: 1D Hermite functions of two different orders for the scaling
parameter λ = 1.

Figure 2.2.2 shows that Hermite functions are very similar to the cosine functions
near the coordinate axis origin.

Figure 2.4: Hermite function of the order 50 (solid line) and cosine function with
the frequency equal to 50 (dashed line).
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2.2.3 Decomposition of electron densities into the orthogo-
nal Hermite basis

One of the advantages of the orthogonal Hermite basis is that we can derive the exact
analytical expression for the decomposition coefficients of a molecular structure.
This allows to rapidly obtain the exact decompositions without costly numerical
integration over the 3D space. In our algorithm, the electron density of the protein
(f(x) in Eq. 2.1, upon which rotation and translation operators act) is expanded in
the Hermite basis using the Gaussian model. More precisely, we model the electron
density of a single atom in the molecular structure as a Gaussian centred at the
atomic position r

(i)
0 with the squared variance equal to α2/2. Then, the electron

density of the whole molecular structure is given by the following sum:

M(r) =
Natoms∑
i=1

e−|r−r
(i)
0 |2/α2

, (2.6)

where r
(i)
0 is the position of the i-th atom, α/

√
2 is the variance of the Gaussian

distribution, and r = (x, y, z) ∈ R3 is the sampling volume. Normally, each Gaus-
sian should be weighted with a coefficient corresponding to electron distribution of a
particular atom. However, we omit the weights in our approximation. In the section
2.2.4, we provide analytical expressions (Eqs. 2.8 and 2.14) for the decomposition
coefficients of M(r) in the 1D and the 3D cases.

2.2.4 Shifted Gaussian expansion

Here we provide the derivation of the expansion coefficients of a shifted Gaussian of
the following form:

g(r) = e−
|r−r0|

2

α2 (2.7)

into the orthogonal Hermite basis. The well known property of this basis (as well
as of any orthogonal basis) is the following:

if f(x, y, z) = f (1)(x)f (2)(y)f (3)(z)

and f (k)(t) =
N∑
i=0

f̂
(k)
i ψi(t;λ)

then

f̂i,j,k = f̂
(1)
i f̂

(2)
j f̂

(3)
k (2.8)

First, we derive the decomposition of a 1D Gaussian into the 1D orthogonal Hermite
basis. Then, using property (2.8) we obtain the decomposition of a 3D Gaussian
into the 3D orthogonal Hermite basis. More specifically, the 1D Gaussian function
reads as:

g(x) = e−
(x−ξ)2

α2 (2.9)
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Its decomposition coefficients are equal to:

ĝn(ξ;λ, α) =

∫
g(x)ψn(x;λ) dx =

n!
√
λe
− ξ2

α2

“
1− 1

α2β2

”
√

2nn!
√
π

[n
2

]∑
m=0

(−1)m

m!(n− 2m)!∫
e
−β2

“
x− ξ

α2β2

”2

(2λ(x− ξ

α2β2
) +

2λξ

α2β2
)n−2mdx, (2.10)

where β2 = λ2

2
+ 1

α2 . From now on we will, for brevity, write ĝn instead of ĝn(ξ;λ, α).

Changing the variables t = x− ξ
α2β2 and denoting a = ξ

α2β2 , we obtain:

ĝn =
n!
√
λe
− ξ2

α2

“
1− 1

β2

”
√

2nn!
√
π

[n
2

]∑
m=0

(−1)m (2λ)n−2m

m!(n− 2m)!∫
e−β

2t2(t+ a)n−2mdx (2.11)

Next, we decompose the sum (t+ a)k using Newton’s formula:

(t+ a)k =
k∑
i=0

(
k
i

)
tiak−i (2.12)

Thus, the integral in Eq. 2.11 will read:∫
e−β

2t2(t+ a)n−2mdx =

n−2m∑
i=0, i−even

(n− 2m)!

2i
(
i
2

)
!(n− 2m− i)!

√
πβ−1−ian−2m−i (2.13)

Substituting it to the formula for ĝn and denoting
∑n−2m

i=0, i−even =
∑[n−2m

2
]

l=0 (i = 2l),
we obtain the following expression for the coefficients:

ĝn(ξ;λ, α) = e
− ξ2

α2

“
1− 1

α2β2

”√
n!
√
πλ

2n

[n
2

]∑
m=0

[n−2m
2

]∑
l=0

(−1)m2n−2m−2lλn−2m

l!(n− 2m− 2l)!m!
β−2n+4m+2l−1

(
ξ

α2

)n−2m−2l

(2.14)

Finally, using Eq. 2.8 we obtain a decomposition of the 3D Gaussian into the 3D
Hermite basis. We should note that in order to avoid the rounding error, one should
begin the summation with the Gaussians that are located father from the origin.

2.2.5 Expansion of a function defined on a grid

In many docking algorithms the parwise interaction of particles is approximated as
the set of functions on the grid. Therefore in many important cases the protein
description goes beyond the sum of gaussians as in Eq. 2.6. In this section we
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provide a way to directly obtain decomposition of a function f(x, y, z) defined on a
regular grid. We can represent this function as a sum:

f(x, y, z) =
∑
i,j,k

f(xi, yj, zk)ηijk(x, y, z)

where ηijk(x, y, z) is a step-function in the position of ijk-th grid cell. Fig 2.2.5
shows the function η that begins at point a and has the width h. To derive the
decomposition of the general step-function in 3D and with arbitrary shift a we have
to begin with the basic 1D step-function that is fixed in a = 0 point.

a a+h

1

y

x

Figure 2.5: Shifted 1D step-function η.

The expression for function is the following:

η(x) =

{
1, 0 ≤ x < h

0, otherwise
(2.15)

The decomposition coefficients of the shifted η read:

η(x− a) =
N∑
i

αiψi(x;λ) (2.16)

αi =

∫ +∞

−∞
η(x− a)ψi(x;λ) dx =

∫ h+a

a

ψi(x;λ) dx (2.17)

We can obtain the coefficients αn by simple integration:

αn =
1√

2nn!
√
πλ

∫ λ(h+a)

λa

exp(−t
2

2
)Hn(t) dt (2.18)

Using the well known result for the finite integral of the Hermite polynomials:

∫
zq−1e−pz

2

Hn(z)dz = n!

[n2 ]∑
k=0

(−1)k−12n−2k−1zn−2k+q (pz2)
k−n+q

2 Γ
(
n+q

2
− k, pz2

)
k!(n− 2k)!

(2.19)
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with parameters q = 1 and p = 1/2 we obtain:∫
e−

z2

2 Hn(z)dz = (2.20)

n! (Sgn[z])n+1 ∑[n2 ]
k=0

(−1)k−1Γ
“
n+1

2
−k, z

2

2

”
23k− 3n

2 +1
2 k!(n−2k)!

+ C (2.21)

After deriving the missing coefficients Cn we obtain the following expression for
the coefficients αn:

αn =
2n
√
n!√

2
√
πλ

[n2 ]∑
k=0

(−1)k−1(
2
√

2
)2k

k!(n− 2k)![
(Sgn[h+ a])n+a Γ

(
n+ 1

2
− k, (λh+ λa)2

2

)
− (Sgn[a])n+a Γ

(
n+ 1

2
− k, (λa)2

2

)
−

(
(Sgn[h+ a])n+1 − (Sgn[a])n+1)Γ

(
n+ 1

2
− k, 0

)]
Next, we are moving to the 3D case:

η(x, y, z) =

{
1, 0 ≤ x < hx

∧
0 ≤ y < hy

∧
0 ≤ z < hz

0, otherwise

η(x, y, z) = η(x; hx)η(y; hy)η(z; hz)

η(x− ax, y − ay, z − az;hx, hy, hz) =
N∑
k

N∑
j

N∑
i

αiαjαkψi(x;λ)ψi(y;λ)ψk(z;λ)

As we see we have to multiply the coefficients of individual 1D-function with
the shifts corresponding to the grid cell position along individual axes. We begin
summation staring from the cells that farther from the frame origin because rounding
error substantially influences the final result.

2.2.6 Laplacian filter in the Hermite basis

For mid- to low- resolution maps the Laplacian-filtered cross-correlation function
gives a better match compared to the CCF [151]. In the Hermite basis, the Laplacian
filter has a particularly simple form. Using the well-known recurrence relation for
the derivatives of the Hermite functions, we can easily derive the following relation
for the second derivative of a 1D basis function:

d2

dx2
ψn(x;λ) =

λ2

2

(√
n(n− 1)ψn−2(x;λ) + (2n+ 1)ψn(x;λ) +

√
(n+ 1)(n+ 2)ψn+2(x;λ)

)
(2.22)

A similar relationship holds for the coefficients of the decomposition:

ĥ′′n =
λ2

2

(√
n(n− 1)ĥn−2 + (2n+ 1)ĥn +

√
(n+ 2)(n+ 1)ĥn+2

)
, (2.23)

where ĥn and ĥ′′n are the n-th order decomposition coefficients of the original basis
and its Laplacian representation, respectively. For n < 0 and n > N we let ĥn = 0
and ĥ′′n = 0. Due to the properties of the Laplace operator and the 3D Hermite
decomposition, the contribution of the derivatives along each axis are additive. The
derivation of the formula for the 3D decomposition derivative is straightforward and
we omit it for brevity.
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2.2.7 Rotation of the Hermite decomposition

Recently, Park et al. [96] presented the method to perform an in-plane rotation of a
2D orthogonal Hermite band-limited decomposition. Here, we extend their method
for the 3D case. Let us first consider the decomposition of a 2D function into a 2D
orthogonal Hermite function basis:

f(x, y) =
N∑
n=0

N−m∑
m=0

f̂n,mψn(x;λ)ψm(y;λ) (2.24)

The decomposition of a function f θ(x, y) rotated clock-wise by an angle θ reads

f θ(x, y) =
N∑
m=0

m∑
k=0

(
m∑
n=0

f̂n,m−nS
m
k,n)ψk(x;λ)ψm−k(y;λ), (2.25)

where coefficients Smk,n are computed using the following recurrent formulas [96]:

Sm+1
q,n =

√
n

m− q + 1
sin(θ)Smq,n−1 +

√
m− n+ 1

m− q + 1
cos(θ)Smq,n

Sm+1
q,0 =

√
m+ 1

m− q + 1
cos(θ)Smq,0

Sm+1
m+1,n =

√
n

m+ 1
cos(θ)Smm,n−1 −

√
m− n+ 1

m+ 1
sin(θ)Smm,n

Sm+1
m+1,0 = − sin(θ)Smm,0 (2.26)

The key idea that allows to generalize these formulas to a 3D decomposition is that
we can factorize a rotation in 3D space into 3 independent in-plane rotations around
three different axes, and then rotate each 2D decomposition using Eq. 2.25. Let us
consider the following 3D decomposition:

f(x, y, z) =
N∑
n=0

ψn(x;λ)
N−n∑
m=0

N−m−n∑
l=0

f̂n,m,lψm(y;λ)ψl(z;λ) (2.27)

If we rotate this decomposition about x axis, this rotation will be equivalent to N
rotations of different 2D decompositions in the yz-plane:

fn(y, z) =
N−n∑
m=0

N−m−n∑
l=0

f̂n,m,lψm(y;λ)ψl(z;λ) (2.28)

This observation means that in order to perform such rotation, we need to recompute
rank-3 tensor of coefficients f̂n,m,l slice by slice N times using Eq. 2.25. Figure

2.2.7 illustrates three subsequent rotations of tensor f̂n,m,l. Each rotation of the
coefficients in one plane corresponds to a multiplication of these coefficients with
a rotation matrix. Therefore, a 3D rotation defined with three Euler angles is
equivalent to three sequential rotations of coefficients in three planes.
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Figure 2.6: Sequential rotations of coefficients f̂n,m,l about different axes. The ro-
tated layer is shown with the solid cubes, other coefficients are shown with the
dashed cubes.To perform the complete rotation of the decomposition about one
axis, we rotate each layer of coefficients about the corresponding axis in the space
of coefficients.

2.2.8 Transition from the Hermite to the Fourier basis

In order to perform a fast convolution as in Eq. 2.1, we convert the decomposition
coefficients from the Hermite basis into the Fourier basis. This allows to use the
fast convolution algorithm based on the Fourier convolution theorem, which was
first introduced in protein-protein docking studies [67, 43] and then also applied
in the EDM fitting [22, 151, 125]. The key idea of this algorithm is to compute
the Fourier transform of the values of a scoring function on a grid, CCF(r, t) =∫
f(r,x)g(r,x− t)dx, using the convolution theorem:

F [f ∗ g] = F [f ]F [g], (2.29)

i.e. to multiply the complex conjugated coefficients of the Fourier transform of the
protein electron density with the coefficients of the Fourier transform of the EDM.
Then, we obtain CCF(r, t) by taking the inverse Fourier transform of F [f ∗ g],

CCF(r, t) = IFT
(
F [f ]F [g]

)
(2.30)

Now we explain how we convert the decomposition coefficients from the Hermite
basis into the Fourier basis. Consider the decomposition of a function f(r) in the
3D Hermite basis with the decomposition coefficients f̂i,j,k (Eq. 2.5). Orthogonal
Hermite functions are the eigenfunctions of the continuous Fourier transform:∫

ψn(x;λ)e−2πiωx dx = (−i)nψn(ω;
2π

λ
) ≡ ψ̃n(ω;λ), (2.31)

where ω is the frequency in the reciprocal space. In order to compute Fourier
coefficients of f(r) up to order M , we first compute the Fourier transforms of the
basis functions ψi(x;λ), ψj(y;λ), and ψk(z;λ) using Eq. 2.31. After, we substitute
these coefficients into Eq. 2.5 and obtain the following expression for f̃l,m,n, the
Fourier coefficients of f(r):

f̃l,m,n =
1

LxLyLz

N∑
i=0

N−i∑
j=0

N−i−j∑
k=0

f̂i,j,kψ̃i(
l

Lx
;λ)ψ̃j(

m

Ly
;λ)ψ̃k(

n

Lz
;λ) (2.32)

These values can be computed in O(M3 ·N +M2 ·N2 +M ·N3) steps (see section
2.2.9).
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2.2.9 Fast summation

Here we explain the fast summation in Eq. 2.33:

f̃l,m,n =
N∑
i=0

N−j∑
j=0

N−i−j∑
k=0

f̂i,j,kψ̃i,lψ̃j,mψ̃k,n, (2.33)

with indexes l,m, n ∈ [0,M ]. The summation in this formula can be performed
with less operations than a naive estimation O(M3N3) suggests. We perform the
fast summation by splitting the equation into three consecutive sums:

T̃ 1
i,j,n =

N−i−j∑
k=0

f̂i,j,kψ̃k,n (2.34)

T̃ 2
i,m,n =

N−i∑
j=0

T̃ 1
i,j,nψ̃j,m (2.35)

f̃l,m,n =
N∑
i=0

T̃ 2
i,m,nψ̃i,l (2.36)

It is easy to see that the construction of T̃ 1
i,j,n matrix takes O(MN3) operations, the

construction of T̃ 2
i,m,n matrix takes O(M2N2) operations, and the final summation

takes O(M3N) operation. In the common use case (N = 15, M � N) the last
sum takes much more time than the other two. To optimize it, we used the Gauss
method to multiply complex numbers and expressed the whole sum as a generalized
matrix product of three real-valued matrices. To implement these operations, we
used the ATLAS library.

2.2.10 Implementation details and running time

We chose to demonstrate the potential of the Hermite basis by implementing the
rigid-body fitting of an atomistic structure of a protein in an electron density map
of low resolution. The HermiteFit algorithm was implemented using the C++ pro-
gramming language and compiled using g++ with -O3 optimization. The running
times of the tested algorithms are measured on a single core of an Intel® Xeon®

CPU X5650 @ 2.67GHz processor with 24 GB of RAM on a Linux 64-bit operating
system.

Our fitting method typically samples some 1010 rigid-body configurations. There-
fore, it is practical to group its fitting solutions into clusters. There are multiple ways
to measure the similarity between rigid-body solutions. For example, the pair-wise
root–mean–square deviation (RMSD) is a fast and well-accepted similarity measure.
Thus, we clustered the fitting solutions using the rigid-body clustering algorithm im-
plemented with the RigidRMSD library [106] as follows. First, the fitting solution
with the best score (yet unassigned to any cluster) is taken as the seed for the new
cluster. Second, the pair-wise RMSDs between the seed and all other predictions
are measured and the predictions with the RMSD lower than a certain threshold are
put into the cluster. Finally, these two steps are iterated until all fitting predictions
are assigned to corresponding clusters.

41



2.3 Analysis

This section provides analytical and numerical analysis of the density encoding in the
Hermite basis. More specifically, we provide the choice of optimal model parameters
and assess the quality of encoding.

2.3.1 Choice of parameters of the method

Orthogonal Hermite functions (2.2) decay exponentially after a certain distance and
thus can encode information only within some interval. We can estimate this interval
using the formula for the last root of a Hermite polynomial, ξ1,N ≈

√
1+2N
λ

[109],
which gives an approximation for the half-size of the bounding box that we can
successfully encode:

Lbox/2 .

√
1 + 2N

λ
(2.37)

On the other hand, orthogonal Hermite functions are the eigenfunctions of the con-
tinuous Fourier transform (Eq. 2.31). Therefore, Hermite decomposition of order
N can encode only a certain interval of frequencies. Using the same approximation
as in the case of the real-space interval, we obtain the following equation for the
maximum encoding frequency:

ωmax =
λ

2π

√
2N + 1 (2.38)

In case of the the Fourier series expansion on an interval (0, Lbox), we can use
the same estimation for the maximum encoding index Mmax by setting Mmax =
2Lboxωmax. Resolution R of an X-Ray electron density map is defined by the size of
the reciprocal lattice as R = 1/(2ωmax), or, equivalently, R = Lbox/Mmax. Therefore,
using resolution of the map R and the order of the Fourier series expansion M , we
can estimate the lower bound on the Hermite scaling parameter λ required to encode
all the reflexes of the electron density diffraction pattern to be

λ &
π

max(R,Lbox/M)
√

2N + 1
(2.39)

Here, we bounded the actual resolution by Lbox/M , because this will be the limit
allowed by the finite Fourier series of order M .

The two inequalities (2.37 and 2.39) give approximate bounds on the scaling
parameter λ, provided that we know the size of the box Lbox containing a protein
density and the resolution of the map R. Using these inequalities, we obtain the
following relationship between parameters λ and N :

π√
2N + 1 max(R,Lbox/M)

. λ . 2

√
1 + 2N

Lbox
, (2.40)

which is valid for sufficiently large values of N . Nonetheless, we can use the following
empirical estimation for the optimal value of λ at any N :

λopt ≈
π

2 max(R,Lbox/M)
√

2N + 1
+

√
1 + 2N

Lbox
(2.41)
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Using dimensionless relative parameters λLbox and Lbox/R we may rewrite the pre-
vious expression as

λLbox ≈
πmin(Lbox/R,M)

2
√

2N + 1
+
√

1 + 2N (2.42)

If at a given expansion order N there is no such parameter λ that satisfies inequality
(2.40), then the protein representation might involve information loss. Therefore,
we can estimate the minimum order Nmin of the Hermite expansion that allows this
inequality to have solutions to be

Nmin ≈
π

4
min

(
Lbox
R

,M

)
(2.43)

Validity of the provided estimates and the graphical representation of the real–
space and the reciprocal–space bounds on parameter λ will be demonstrated in the
following sections.

The maximum order of the Fourier expansion Mmax can be estimated from the
resolution and the size of the density map as R = Lbox/Mmax. However, when
finding the global maximum of the cross-correlation function, we need to sample
the space of possible translations of a protein with respect to the EDM with a step
several times finer than the EDM resolution R. In protein crystallography, it is the
common practice to set the sampling step size to R/3 [4]. In principle, we can use
the same reasoning in choosing the optimal number of rotations Nrot. When using
spherical harmonics, the angular search step usually equals to the resolution of the
basis, 2π/N [46]. In case of the Hermite basis, we propose to use the same criterion.

2.3.2 The transfer matrix

Below we describe an analytical model of encoding by the Hermite basis for the
one-dimensional case. Suppose we have a function f(x) that describes an electron
density of a non-periodic object. Without loss of generality, we assume that this
function is defined on a 1D interval of (−Lbox/2; +Lbox/2). This function has the
following decomposition into Fourier series:

f̃ exactk =
1

Lbox

∫ +Lbox/2

−Lbox/2
f(x)e−2πikx/Lbox dx (2.44)

We will refer to Fourier coefficients obtained using this expression as exact. The
original function is then recovered by the inverse Fourier transform:

f(x) =
+∞∑

k=−∞

f̃ exactk e2πikx/Lbox (2.45)

On the other hand, our algorithm computes approximate Fourier coefficients using
the Hermite to Fourier transform:

f̃approxk =
1

Lbox

N∑
n=0

f̂nψ̃n(
k

Lbox
;λ) (2.46)
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Assuming that function f(x) is zero outside of the bounding interval, Hermite coef-
ficients f̂n can be written as the finite integral:

f̂n =

∫ +Lbox/2

−Lbox/2
f(x)ψn(x;λ) dx (2.47)

Now, we can express the approximate Fourier coefficients as a linear combination of
the exact ones:

f̃approxk =
+∞∑
l=−∞

Tk,lf̃
exact
l , (2.48)

where the transfer matrix Tk,l reads as:

Tk,l =
1

Lbox

N∑
n=0

ψ̃n(k;λ)

∫ +Lbox/2

−Lbox/2
ψn(x;λ)e2πilx/Lboxdx (2.49)

The transfer matrix acts as a linear filter in the reciprocal space and demonstrates
how the input function is distorted by the finite size N of the Hermite basis. We
should note that, generally, its values are complex numbers. This matrix can also
be seen as a product of two matrices,

T = F(1)F(2), (2.50)

where the first matrix is a scaled Fourier transform of the basis functions,

F
(1)
kn = ψ̃n(k;λ)/

√
Lbox (2.51)

and the second matrix is a scaled Fourier series of the basis functions,

F
(2)
nl =

∫ +Lbox/2

−Lbox/2
ψn(x;λ)e2πilx/Lboxdx/

√
Lbox (2.52)

Figure 2.3.2 shows the absolute values of matrices F(1) and F(2) computed with
λ = 0.55 and Lbox = 23 Å. The values of the Fourier series F(2) were computed
numerically using adaptive quadrature. The dashed blue line shows the maximum
encoding frequency ωmax, according to Eq. 2.38, and bounds the encoding region.
The solid black line on the right plot demonstrates the maximum order of the Her-
mite expansion (Eq. 2.37), after which the Fourier series encode mainly the frequen-
cies near ωmax. This is because on a finite interval (−Lbox/2,+Lbox/2), high-order
Hermite basis functions become orthogonal to low-order Fourier basis functions.
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Figure 2.7: Absolute values of two matrices F(1) and F(2) that give the transfer
matrix as their product (Eq. 2.50). These matrices are computed with the scaling
parameter λ = 0.55 and the input box size of Lbox = 23.0 Å, which mimics the
first fitting example shown below. Left: F(1), the scaled Fourier transform of a 1D
Hermite function as given by Eq. 2.51. Right: F(2), the scaled Fourier series of
a 1D Hermite function as given by Eq. 2.52. The dashed blue line highlights the
maximum encoded frequency according to Eq. 2.38. The solid black line on the
right plot shows the maximum Hermite decomposition order Nmax, at which the
two matrices are still identical (Eq. 2.37).

Figure 2.3.2 shows several examples of the absolute values of the transfer matrix
components for three different values of the Hermite scaling parameter λ and three
values of the Hermite decomposition order N . The size of the transfer matrix was
limited to 60 × 60 and the box size Lbox was set to 23 Å. The ideal transfer matrix
should be identity, which is the case only at N → ∞, as we demonstrate below.
We see, however, that the transfer matrix at small values of λ encodes only low-
order reflexes. The index of the last encoded reflex can be estimated from Eq. 2.38
as kmax =

√
2N + 1λLbox/(2π). With the increase in order N and parameter λ,

the number of encoded frequencies rises. At the same time, increasing the scaling
parameter λ makes the quality of encoding of all the frequencies worse, as we see in
the right column. Therefore, it is very important to tune the value of λ according
to the class of input functions, such that the quality of encoding becomes optimal.
Below we will assess encoding quality by means of the crystallographic R-factor.
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Figure 2.8: Nine examples of the absolute values of the transfer T -matrices for three
different values of λ and three different values of the Hermite decomposition order N .
The number of Fourier coefficients is M = 60, and the input box size is Lbox = 23.0
Å, which mimics the first fitting example shown below. Hermite decomposition
orders are N ∈ {15, 20, 30}, parameter λ takes the values of 0.3 Å−1, 0.55 Å−1, and
1.0 Å−1. The first column corresponds to the relative λLbox value of 6.9, the middle
column corresponds to the relative λLbox value of 12.65, and the right column to the
relative λLbox value of 23. Notably, at low values of λ the transfer matrix encodes
only small order reflexes. The index of the last reflex can be estimated from Eq. 2.38

as kmax =
√

2N+1λLbox

2π
. Increasing the value of λ, the number of encoded frequencies

rises. However, at the same time, the quality of encoding of low frequencies worsens,
as can be seen from the values at the diagonal.
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2.3.3 Asymptotic behaviour of the transfer matrix

Here we demonstrate that the transfer matrix asymptotically achieves the Kronecker
delta function at N →∞. Recall the Mehler’s formula [84]:

N∑
n=0

unψn(x)ψn(y) =
1√

π(1− u2)
exp

(
−1− u

1 + u

(x+ y)2

4
− 1 + u

1− u
(x− y)2

4

)
(2.53)

If we rewrite the transfer matrix in the following way:

Tk,l =
1

Lbox

∫ +Lbox/2

−Lbox/2
dx

N∑
n=0

(−i)nψn(
k

Lbox
;
2π

λ
)e2πilx/Lboxψn(x;λ), (2.54)

and use the fact that
ψn(x;λ) ≡

√
λψn(λx), (2.55)

we see that we can use the Mehler’s formula to compute the limit

lim
N→∞

N∑
n=0

(−i)nψn(
k

Lbox
;
2π

λ
)ψn(

l

Lbox
;λ) (2.56)

After a simple derivation, we obtain the final result:

lim
N→∞

Tk,l =
1

Lbox

∫ +Lbox/2

−Lbox/2
e2πilx/Lboxe−2πikx/Lboxdx, (2.57)

which is exactly the Kronecker delta function.

2.3.4 Encoding quality

There are several ways to evaluate the quality of a model encoding with the subse-
quent reconstruction. For example, in the optimal control theory [18], the quality
of a linear filter is estimated using a certain norm of the transfer matrix. However,
in crystallography, the most used quality criterion is the crystallographic R-factor
[129]:

R =

∑
l

∣∣∣∣∣∣F̃ exact
l

∣∣∣− ∣∣∣F̃mod
l

∣∣∣∣∣∣∑
l

∣∣∣F̃ exact
l

∣∣∣ , (2.58)

where F exact and Fmod are the exact Fourier coefficients of a molecule and the
coefficients computed from the Hermite coefficients, respectively. This quantity
is a widely used measure of agreement between a crystallographic model and the
corresponding experimental X-ray diffraction data. In the case of an ideal electron
density encoding, R-factor is equal to zero. In protein crystallography, models with
R-factors less than 0.2 are regarded as good when working at a middle resolution.

Equations for the transfer matrix allow to estimate the R-factor values for certain
classes of electron density distributions. As described above (Eq. 2.6), we use the
Gaussian distribution to model the electron density of an atom. Exact Fourier
coefficients of a molecule with Natoms atoms at positions ri are then given as:

f̃ exactl,m,n (s) = α3π
3
2

Natoms∑
i=1

e−α
2π2s2lmne−2iπrislmn , (2.59)
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where sl,m,n is the wave vector, sl,m,n = (l/Lx,m/Ly, n/Lz), with Lx, Ly, and Lz
the dimensions of the bounding box along the corresponding axes. Similarly, one-
dimensional exact Fourier coefficients of the Gaussian function are given as:

f̃ exactl = απ
1
2

Natoms∑
i=1

e−α
2l2/L2

boxe−2iπril/Lbox (2.60)

To see how the Hermite basis encodes Gaussian densities with various level of detail,
we built models of electron density map with different parameters α. The width of
the Gaussian determines the resolution of the density map according to:

R =
πα

2
(2.61)

The derivation of this formula follows the one well known in crystallography, which
describes the extinction of diffraction reflexes. For the sake of completeness of the
thesis, we provide its derivation in the section 2.3.5.

To estimate R-factor for certain model parameters, we assume that the input
electron density is given as a sum of Gaussians with variance of α/

√
2 equispaced

at a distance α. Figure 2.3.4 shows analytical R-factors in one dimension computed
using Eqs. 2.48 and 2.60 as a function of the Hermite decomposition order N and
the scaling parameter λ. We bounded the input and output frequencies by M = 30
Fourier coefficients. The size of the input interval Lbox is set to 23.0 Å to mimic the
alpha-conotoxin PnIB peptide (pdb code 1AKG) decomposition used in the fitting
example below.

We should stress that due to the properties of the Hermite functions, the whole
model is scale–invariant. More precisely, if we keep the product λLbox constant,
then the relative shape of the Hermite basis functions would not change. Also,
if we scale Lbox and α simultaneously, then the value of R-factor is unchanged.
Therefore, it is useful to provide relative resolutions computed as R/Lbox. Figure
2.3.4 (Left) shows R-factors for the Gaussian parameter α = 0.2 Å, corresponding
to the absolute input signal resolution of R = 0.31 Å and the relative resolution
of R/Lbox = 0.014. However, in this case, the actual absolute resolution is cut at
Lbox/M = 0.77 Å, which corresponds to the relative resolution of 0.033. Figure
2.3.4 (Middle) shows R-factors computed using the Gaussian parameter α = 1.0 Å,
corresponding to the absolute input signal resolution of R = 1.57 Å and the relative
resolution of R/Lbox = 0.068. Figure 2.3.4 (Right) shows R-factors computed using
the Gaussian parameter α = 5.0 Å, corresponding to the absolute input signal
resolution of R = 7.85 Å and the relative resolution of R/Lbox = 0.34. The estimate
on the optimal parameter λ (Eq. 2.41) is plotted with the red dashed line. The real-
space bound on the optimal parameter λ (Eq. 2.37) is shown with the orange dashed
line. The reciprocal-space bound on the optimal parameter λ (Eq. 2.39) is shown
with the blue dashed line. We see that lowering the resolution of the input signal,
R-factors decrease, as can be expected from general considerations. We can also
see that the the lower (Eq. 2.37) and the upper (Eq. 2.39) bounds on the optimal
scaling parameter λ follow the isolines of the R-factor map. Therefore, their mean
given by Eq. 2.37 provides a reasonable estimation on the optimal value of λ.

Figure 2.3.4 shows R-factors as a function of input signal resolution R for three
different Hermite decomposition orders N , 15, 20, and 30. R-factors were estimated
in the same way as in the previous case. More precisely, we assumed the same

48



0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 2.9: Analytical R-factors in one dimension as a function of Hermite decom-
position order N and scaling parameter λ computed at three different resolutions.
The input signal is modelled as a sum of Gaussians (Eq. 2.6) with the variance of
α/
√

2 equispaced at a distance α. The number of Fourier coefficients is M = 30, and
the input box size is Lbox = 23.0 Å. These values are chosen to mimic the 1AKG
peptide decomposition. The estimate on the optimal parameter λ (Eq. 2.41) is
plotted with the red dashed line. The real-space bound on the optimal parameter
λ (Eq. 2.37) is shown with the orange dashed line. The reciprocal-space bound on
the optimal parameter λ (Eq. 2.39) is shown with the blue dashed line. Left: The
Gaussian parameter α = 0.2 Å, corresponding to the absolute input signal resolu-
tion of R = 0.31 Å and the relative resolution of R/Lbox = 0.014. However, in this
case, the actual absolute resolution is cut at Lbox/M = 0.77 Å, which corresponds
to the relative resolution of 0.033. Middle: The Gaussian parameter α = 1.0 Å,
corresponding to the absolute input signal resolution of R = 1.57 Å and the rel-
ative resolution of R/Lbox = 0.068. Right: The Gaussian parameter α = 5.0 Å,
corresponding to the absolute input signal resolution of R = 7.85 Å and the relative
resolution of R/Lbox = 0.34.

shape of input electron density and then used Eqs. 2.48 and 2.60 to compute the
analytical R-factors. For these plots, we computed the optimal scaling parameter
λ using Eq. 2.37. Parameter Lbox and the size of the transfer matrix M were
constant and equal to 23 Å and 30, correspondingly. As in the previous figure,
these values are chosen to mimic the alpha-conotoxin PnIB peptide decomposition
used in the fitting example below. The scale of the top horizontal axis gives the
absolute resolution for Lbox = 23 Å. The scale of the bottom horizontal axis gives
the relative resolution. In order to compute the absolute resolution, its values need
to be multiplied by the chosen value of Lbox. As expected, the values of R-factors
diminish as the resolution becomes lower. This is because at low resolutions, low-
frequency columns of the transfer matrix become more important. In the limiting
cases of zero and infinite resolutions, R-factor can be computed directly from the
transfer matrix as a certain norm of T − I. For the infinite resolution limit, it is
given as L1 norm of the central column of matrix T − I. For the zero resolution
limit, R-factor is given by the entry-wise L1 norm of T − I, R =

∑
i,j |Ti,j − δi,j|.

Figure 8 also shows an estimation of R-factors for the 3D case. It is based on the
assumption that the Hermite decomposition encoding in 3D behaves similar to the
1D case, with the number of coefficients scaled as N1D = 3

√
N3D.
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Figure 2.10: Analytical R-factors in one and three dimensions as a function of
relative resolution R/Lbox. The absolute resolution at box size Lbox = 23 Å is shown
in the top horizontal axis. Plots for three different Hermite expansions orders are
shown, N ∈ {15, 20, 30}. Parameters Lbox and M were constant and equal to 23
Å and 30, correspondingly. Scaling parameter λ was estimated using Eq. 2.41.

2.3.5 Resolution model

To illustrate the connection between parameter α in the model of electron density
(Eq. 2.6) and the resolution of the X-ray diffraction pattern, we use the simplest
model. More precisely, we model the electron density as the array of Gaussians in
a perfect 1D lattice perpendicular to the incoming radiation beam. Parameter α
then plays the role similar to the temperature B-factors. X-ray diffraction intensity
depends on the angle between the incoming beam and the direction to the detector
θ as:

I ∝
∣∣∣∣∫ dx f(x) exp

(
2πix

sin θ

λ

)∣∣∣∣2 (2.62)

where λ is the wavelength of the incoming radiation. Using the model density (Eq.
2.6), we obtain:

I ∝
∣∣∣∣α√πe−(π sin θ

λ
α)2
∫
dx ρ(x) exp

(
2πix

sin θ

λ

)∣∣∣∣2 , (2.63)

where ρ(x) is the sum of delta functions at the atomic positions. Therefore, the

extinction of the diffraction peaks is proportional to
∣∣∣e−(π sin θ

λ
α)2
∣∣∣2, where we neglect

the quadratic factor before the exponent. According to the definition used in crys-
tallography, resolution is the inter-planar distance in the real space corresponding
to the last observable peak in the reciprocal space. Unfortunately, the index of the
last peak depends on the detector’s noise and strongly depends on the character-
istics of the measurement device. Therefore, to give qualitative estimation on the
dependence of resolution on the model parameter α, we assume that the last ob-
servable peak is the one whose intensity decreases approximately by the factor e2.
The corresponding angle then reads:

sin θmax =
λ

πα
(2.64)
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Therefore, the minimum inter-planar distance, or, the resolution is given by Bragg’s
law as:

R = πα/2 (2.65)
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2.4 Results and Discussion

We tested and verified our algorithm using two examples of different difficulty. The
first example is a small polypeptide alpha-conotoxin PnIB. We generated the EDM
for this example from the coordinates of the polypeptide. The second example is
the fitting the GroEL domains into the electron density map of the GroEL complex.

2.4.1 Alpha-conotoxin PnIB

First, we explored the relationship between encoding quality and the quality of the
fitting. For this purpose, we chose the small 16–residue polypeptide alpha-conotoxin
PnIB. We downloaded the X-ray crystal structure of alpha-conotoxin PnIB (PDB
code 1AKG) [54] from the PDB database [14] and simulated the electron density
map (2mFo-DFc) using the Uppsala electron density server [71] with the resolution
R = 1.1 Å. We computed the protein density according to Eq. 2.6 with the Gaussian
width α = 1.0 Å using only the non-hydrogen atoms of the standard amino acids.
We rotated the initial 1AKG structure by the arbitrarily chosen Euler angles equal to
76, 234, and 56 degrees, respectively, and used it as the input for the fitting workflow.
We used Nrot = 500 (corresponding to an angular step of 36°) rotations represented
with uniformly distributed Euler angles spanning the space of 2π×π×2π. The order
of the Hermite expansion was set to N = 15, which is the minimum expansion order
allowed at this resolution according to Eq. 2.43. The order of the Fourier expansion
was twice the order of the Hermite expansion, M = 30 for each dimension.

To see how the encoding quality influences the fitting algorithm, we studied the
dependence of the decomposition on the scaling parameter λ. We chose a range
of λ parameters between 0.05 and 2.0. For each λ, we computed the best fitting
score along with the average fitting score. Fitting results are shown in Fig. 2.4.1.
We see that by choosing λ small, we neglect the details of the protein structure
(Fig. 2.4.1 A) and therefore, we can not discriminate between different orientations
of the protein (maximum score for λ = 0.05 is very close to the average score).
When choosing λ sufficiently large, we obtain satisfactory discriminative power to
find the near-native position of the protein (Fig. 2.4.1 C,D). We also see that, e.g.,
for λ = 0.5, the difference between the maximum and the average score is much
larger than in the case of λ = 0.05. Also, when we take λ too large, we can not
encode the whole protein (Fig. 2.4.1 E). The red dashed line on Fig. 2.4.1 shows
R-factors computed with Eq. 2.58. We see that the choice of parameter λ influences
the R-factors and thus determines the quality of the fitting. Notably, the minimum
of the R-factor curve corresponds to the maximum of the fitting score.

Due to the strong influence of the scaling parameter λ on the discrimination
power of the algorithm, we estimated its optimal value to gain the maximum sep-
aration between the score of the correct pose and the average score. Provided that
the box that contains all the rotations of the peptide has the size Lbox = 23 Å and
setting the resolution of the EDM R = 1.1 Å, Eq. 2.41 gives an estimate on the
optimal value of the scaling parameter λopt ≈ 0.50. Fig. 2.4.1 shows that this
estimation corresponds to the best discrimination between the near-native and all
other structures, which can be deduced from the maximum separation between the
score of the prediction and the average score. RMSD between the prediction and
the solution at this value of λ is 1.03 Å. We should note that the RMSD can be
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decreased by taking a finer angular search step.

Figure 2.11: Test of the fitting algorithm on artificially generated EDM for the
alpha-conotoxin PnIB (PDB code 1AKG). Here, we plotted the dependence of four
parameters, the maximum score, the average score, the score of the near-native con-
formation and the crystallographic R-factor on the scaling parameter λ. Isosurface
of the Hermite decomposition at protein model density equal to (ρmax+ρmin)/2 and
several values of λ are shown in sub-plots A (λ = 0.05), B (λ = 0.15), C (λ = 0.3),
D (λ = 0.55) and E (λ = 2.0).

2.4.2 GroEL complex

Here, we demonstrate that our approach obtains essentially the same results as other
programs, provided that the scoring function if the same (LCCF in this case). For
this purpose, we use a classical test for a fitting algorithm, the GroEL complex map.
We downloaded the EDM of the GroEL complex from the Electron Microscopy Data
Bank (EMDB), code EMD-2001 with resolution of 8.5 Å. Then, we downloaded the
crystal structure of the GroEL subunits from the PDB database. We used the
GroEL-GroES complex (PDB code 1AON), from which we extracted the chain A,
centered it and arbitrary rotated to exclude any bias. We chose the sampling grid
size according to the resolution and the size of the EDM. The EDM was first padded
with zeros and then transformed to the Fourier basis using the FFT algorithm. The
number of coefficients in the Fourier decomposition M was equal to 105×107×119.
The angular search step was set to 30°. We used the Hermite expansion order
of N = 15, which is larger than the minimum expansion order allowed at this
resolution, Nmin ≈ 9 (see Eq. 2.43). We sampled the rotations using the spiral
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algorithm [117], which generates an equispaced distribution of points on a sphere.
Unlike in the previous example, due to the lower resolution of the GroEL EDM,
here we fitted Laplacian filtered protein density into the Laplacian filtered EDM.

After the 6D exhaustive search, we clustered the solutions using the clustering
threshold of 10 Å and kept the top 14 poses. All the 14 poses corresponded to the
individual chains of the complex, which comprises 2 heptameric rings structure. Fig.
2.4.2 shows the result of the fitting. We compared the fitted model with the model
provided by the authors of the EDM (PDB entry code 4AAU). The average RMSD
between the chains due to flexible deformations measured using Cα atoms was 3.0 Å.
More precisely, we super-posed the corresponding chains of both models using rigid-
body transformations and then measured RMSD between them. Overall, the average
RMSD between Cα atoms was 5.35 Å. This includes both the discrepancy between
corresponding chains in the assembly due to flexible deformations and because of
the rigid body misfit. The average distance between the centers of mass of the
corresponding chains was 2.64 Å (Table 2.2).

Algorithm RMSD Cα, Å RMSD centers of masses, Å
ADP EM 4.61 2.29
Colores 5.42 2.52

HermiteFit 5.35 2.64

Table 2.2: Comparison of the models obtained using HermiteFit, Colores and
ADP EM algorithms with the model obtained by the authors of the electron density
map (PDB entry 4AAU). For each pair of models, RMSD was measured using the
Cα-atoms and the centers of mass of the corresponding chains and then averaged
over all chains comprising the assembly.

2.4.3 Runtime of Hermite- to Fourier- space transition

The use of the fast Fourier transform was the inevitable step in every fitting algo-
rithm up until now. Instead, we introduced the basis from which we can transform
a decomposition into the Fourier basis avoiding evaluation of the FFT on a grid.
When the grid becomes large, the asymptotic complexity of our algorithm becomes
O (M3N) (see Eq. 2.32 ). It is comparable to the complexity of the fast Fourier
transform algorithm, O (M3 logM). Intuitively, at large orders of the Fourier expan-
sion M , our algorithm should be faster compared to the FFT. However, prefactors
preceded the complexities of the two algorithms are different. Thus, we conducted
a numerical experiment to compare the actual running times. Fig. 2.4.3 shows the
time needed to compute the FFT on a cubic grid of size M and the time needed to
transform a Hermite expansion of order N = 15 to the same Fourier grid. We can
see that, generally, at large values of M , M ' 100, the transition from the Hermite
into the Fourier space is faster compared to the speed of the FFT. Also, the timing
of the transition grows evenly with respect to M in contrast to the timing of the
FFT. One has to take into account that we compared our algorithm with the highly
optimized FFTW3 library [42]. Probably, additional optimization of HermiteFit
could improve performance even further. One of the ways to speed up the transition
will be to use the Fast Hermite Transform instead of the naive matrix multiplication
[78]. This implementation will be the subject of our future work.
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Figure 2.12: Result of the fitting chain A of the GroEL-GroES X-Ray structure
(PDB entry 1AON) to the GroEL complex electron density map (EMD-2001). Two
heptameric rings are shown in different colors. The average RMSD measured using
the Cα-atoms between the two closest chains in the fitted structure and the flexibly
refined structure provided by the authors of the EDM (PDB entry 4AAU) is 5.35 Å
.

2.4.4 Comparison with Situs and ADP EM

We compared the HermiteFit algorithm with two popular existing fitting methods,
the colores program from the Situs package [22] and the ADP EM fitting tool [46].
These two packages represent the two major approaches to the problem of exhaustive
search in the six-dimensional space of rigid-body motions. Colores, a widely used
CCF-based fitting tool, rapidly scans the translational degrees of freedom using
the fast Fourier transform. The rotations, though, are sampled exhaustively by
enumerating a list of equispaced distributed rotations on a sphere. ADP EM choses
points in real space, places there the atomic structure and then rotationally matches
it to the EDM using the Fast Rotational Matching algorithm. The authors of the
ADP EM compared their algorithm with the 5D rotational matching and found
that the 3D rotational matching works faster in practice [46].

For the comparison, we normalized the running time of the fitting algorithms
by the sizes of the search space. For colores and HermiteFit, the size of the search
space is equal to the number of grid cells (M3 for a cubic grid in the HermiteFit
algorithm) multiplied by the number of sampled angles. The size of the search space
of the ADP EM algorithm is the number of points in real space times the number of
cells of the angular grid. The latter is built from uniformly sampled Euler angles on
a grid of 2π×π×2π. The size of the angular grid is determined by the order Nexp of
a spherical harmonics expansion and equals to 4N3

exp. For colores and HermiteFit,
we used the angular search step of 30 . The resolution of the EDM for colores and
HermiteFit was set to 8.5 Å. The Fourier grid that was used by colores and the
HermiteFit algorithm had dimensions 105 × 107 × 119. For ADP EM, we used the
spherical harmonics expansion order of Nexp = 16.
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Figure 2.13: Running times of the Hermite to Fourier space transition performed
using our algorithm and the FFT algorithm on a cubic grid of M ×M ×M as a
function of the Fourier expansion orderM . We used the FFTW3 library [42] with the
double precision real discrete Fourier transform using the flag FFTW ESTIMATE
to measure the speed of the FFT. The order of the Hermite expansion was N = 15.

Table 2.3 shows the normalized times of the complete 6D search for the three
algorithms in the case of fitting the GroEL subunit into the 8.5 Å GroEL electron
density map. Judging by the total running time, ADP EM has a big advantage
over the two other algorithms, which exhaustively search all the space of possible
translations. However, in terms of running time per one search point, the Hermit-
eFit algorithm is more effective than the other two. Interestingly, colores spends
about half of the total search time on the computation of the Fourier coefficients of
the rotated protein. Therefore, it was very important for us to speed up this step.
Nonetheless, all three tested algorithms have their own advantages and drawbacks.
For example, ADP EM can use smart heuristics to contract the number of search
points in the real space. However, its sample points in the space of rigid body ro-
tations are distributed non-uniformly. In particular, near the poles rotations are
sampled more densely, making this sampling scheme less effective [117]. On the
other hand, the HermiteFit algorithm along with the colores algorithm sample the
rotational space nearly uniformly using the spiral algorithm while the translational
space sampling also remains uniform. We would like to stress that the absolute
runtimes (shown in Table 2.3) are not very informative. In particular, they dra-
matically depend on the choice of the FFT library, code optimization, the choice
of compiler and compilation options, etc. However, this comparison clearly demon-
strates that the new approach paves the way to speed up one of the bottlenecks of
fitting methods, the projection of the rotated structure into the Fourier space.

To assess the fitting quality of the tested methods, we measured the RMSDs be-
tween the obtained models and the structure obtained by the authors of the electron
density map (PDB entry 4AAU). Table 2.2 shows the comparison of the measured
RMSDs for ADP EM, colores and HermiteFit. We used two different criteria for the
measurements. First, we measured the average RMSD between α-carbons. Second,
we measured the average distance between the centers of mass of the correspond-
ing chains. ADP EM produced a model with RMSD of 4.61 Å from the solution,
RMSDs for colores and HermiteFit were 5.42 Å and 5.35 Å, respectively. Clearly,

56



Table 2.2 demonstrates that the tested algorithms produce equal quality models.
However, results of ADP EM are slightly better, presumably because of the finer
rotational sampling.

Algorithm Num of rot-space points Num of trans-space points Runtime, s Time per point, ×10−7s
ADP EM 16384 23186 139 3.6
Colores 4416 1336965 1454 2.5

HermiteFit 4416 1336965 917 1.5

Table 2.3: Comparison of the HermiteFit algorithm with the Colores and ADP EM
algorithms. The comparison criterion was chosen to be the total running time and
the running time per one point of the search space.
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Chapter 3

Scoring functions for
protein-protein docking

3.1 Introduction

As was described in the introduction, scoring method is used to filter out false-
positive predictions of rigid-body docking step and refine those close to the native
conformation of a protein-protein complex. Therefore the method of scoring has a
decisive role in success of the whole docking workflow.

In this section we propose a new method to derive scoring functions. We base our
method on separation of the native structures and computationally generated non-
native conformations of a complex (decoys). Most of previously used algorithms
solving this problem separate all the decoys from all the decoys simultaneously.
The key new idea behind our algorithm is that the decoys of a particular complex
should be separated from its native structure only. However the form of the scoring
potentials should be the same for all the dataset. Based on these prepositions
we show that this problem leads to the well-defined convex quadratic optimization
problem. We measure the performance of the scoring functions obtained on the
commonly used benchmarks. We show that our algorithm has inherent stability
against overfitting. Also, due to the properties of the basis we used our scoring
potentials show some interesting coarse-graining properties.

Given the widely recognized importance of water molecules at the protein-protein
interface we also developed potentials for the prediction of water molecules relying
on the general ideology of the scoring potentials we developed for the protein-protein
contacts.
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3.2 Methods

3.2.1 Problem Formulation

Consider N native proteins configurations P nat
i , i = 1...N . For each protein complex

number i we generate D decoys, P nonnat
ij , j = 1...D, where the first index runs

over different protein complexes and the second index runs over decoys. Our goal
is to find a scoring functional F , defined for all possible protein-protein complex
structures (the set P), such that for each native complex i and its nonnative decoy
j the following inequality holds:

F (P nat
i ) < F (P nonnat

ij ) (3.1)

There are many ways to construct the functional F (Eq. 3.1). To outline its form,
we are relying on the following assumptions:

1. Functional F depends only on the interface between the proteins. We define
the interface as a set of all atom pairs at a distance smaller than a certain
cutoff distance rmax, such that the first atom in each pair belongs to the first
protein and the second atom in each pair belongs to the second protein.

2. The protein is represented as a set of discrete interaction sites that are located
at the centers of the atomic nuclei. All interaction sites are divided into M
types according to the properties of the corresponding atomic nuclei. In this
study we choose M = 20.

3. Functional F depends only on the distribution of the distances between the
interaction sites (the number of site pairs at a certain distance),

F (P ) = F (n11(r), .., nkl(r), .., nmm(r)) = F (n(r)), (3.2)

where nkl(r) is the number density of site-site pairs separated by a distance
r, with site k located on the first protein, and site l located on the second
protein. For homogeneous systems, such as liquids, functions nkl(r) can be ex-
pressed via site-site radial distribution functions gkl(r), which can be obtained
experimentally, as nkl(r) = 4πr2ρgkl(r)Na, where ρ is the number density and
Na is the total number of atoms in the system [52]. However, for proteins this
is not the case.

4. F is a linear functional, F (αn1(r) + βn2(r)) = αF (n1(r)) + βF (n2(r)).

One of the simplest functionals F (n(r)) fulfilling these assumptions can be writ-
ten as:

F (n(r)) ≡ F (n11(r), .., nkl(r), .., nMM(r)) =
M∑
k=1

M∑
l=k

rmax∫
0

nkl(r)Ukl(r) dr (3.3)

It contains unknown functions Ukl(r) that can be determined from the training
set of native protein complexes. From now on, we will call these functions scoring
potentials.1 Once the scoring functions are known, to compute the value of F we

1Though the scoring function (Eq. 3.3) is similar by the structure to e.g. the excess internal
energy [52], our scoring potentials Ukl(r) are not equal to the potential energy functions between
sites k and l.
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need to specify site-site number densities nkl(r). In practice, we calculate them as
a sum of all k − l distances in a given protein complex using the equation:

nkl(r) =
∑
ij

1√
2πσ2

e−
(r−rij)

2

2σ2 , (3.4)

where each distance distribution is represented with a Gaussian centered at rij with
the variance of σ2. The sum is taken over all k − l site pairs i and j separated
by the distance rij smaller than rmax, with site k located on the first protein of the
complex, and site l located on the second protein. In the limiting case of the variance
tending to zero, Eq. 3.4 turns into a sum over Dirac delta functions. In our study
we assume the value of σ to be fixed for all site-site distributions. However, if one
has an additional information about individual distance distributions, e.g. Debye-
Waller factors, molecular dynamics trajectories, etc., it can be used for more precise
parametrization of the variance or even instead of the Gaussian approximation in
Eq. 3.4. Finally, we compute the score of each conformation using equation 2:

Score =
∑
ij

Υkl(rij) (3.5)

where the sum is taken over all pairs of atoms i and j separated by the distance rij
smaller then rmax, with atom i of type k located on the first protein of the complex,
and atom j of type l located on the second protein. The function Υkl(r) is the Gauss
transform of the scoring potential Ukl(x):

Υkl(r) =
1√

2πσ2

rmax∫
0

e−
(x−r)2

2σ2 Ukl(x) dx (3.6)

3.2.2 Expansion of U(r) and n(r) in an orthogonal basis

Given a set of functions ξp(r) orthogonal on the interval [r1; r2] with a nonnegative
weight function Ω(r) such that

r2∫
r1

ξp1(r)ξp2(r)Ω(r) dr = δp1p2 , (3.7)

where δp1p2 is the Kronecker delta function, scoring potentials Ukl(r) and number
densities nkl(r) can be expanded on the interval [r1; r2] as:

Ukl(r) =
∑
p

wklp ξp(r)
√

Ω(r), r ∈ [r1; r2] (3.8)

nkl(r) =
∑
p

xklp ξp(r)
√

Ω(r), r ∈ [r1; r2] (3.9)

2 Generally, if the distance distributions have a non-Gaussian shape, nkl(r) =
∑

ij f(r − rij),
functions Υkl(r) will be computed as a convolution Υkl = f ∗ Ukl.
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Expansion coefficients wklp and xklp can be determined from the orthogonality
condition (Eq. 3.7) as

wklp =

r2∫
r1

Ukl(r)ξp(r)
√

Ω(r) dr (3.10)

xklp =

r2∫
r1

nkl(r)ξp(r)
√

Ω(r) dr (3.11)

Using expansions Eq. 3.8 and Eq. 3.9, the functional F (n(r)) can be rewritten
as:

F (n(r)) =
M∑
k,l

rmax∫
0

∑
p1

∑
p2

wklp1x
kl
p2
ξp1(r)ξp2(r)Ω(r) dr (3.12)

In this study we use two types of functions ξp(r) orthogonal on the interval
[0; 10] with a unit weight, (i) shifted Legendre polynomials and (ii) traditionally
used shifted rectangular functions. These two types of functions are plotted in Fig.
3.1. Other types of orthogonal functions can also be used. If the functions ξp(r)
are chosen to be negligibly small outside the interval [0; rmax] or if their interval of
orthogonality [r1; r2] coincides with the interval [0; rmax], as is the case for two sets
of our functions, then the scoring functional F (n(r)) can be expanded up to the
order P as:

F (n(r)) ≈
M∑
k=1

M∑
l=k

P∑
p

wklp x
kl
p = (w · x), w,x ∈ RP×M×(M+1)/2 (3.13)

We will refer to the vector w as to the scoring vector and to the vector x as to
the structure vector. Equations 3.4 and 3.11 provide the projection from a protein
complex structure into the scoring space RP×M×(M+1)/2. Using these formulas, we
can project structural information of each protein complex into a certain structure
vector x on RP×M×(M+1)/2.
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Figure 3.1: Two types of orthogonal functions. Left: shifted Legendre polynomials
orthogonal on the interval [0; 10]. Right: shifted rectangular functions.

61



3.2.3 Geometrical interpretation and connection to quadratic
programming

Using the expansion of the scoring functional F provided by Eq. 3.13, we can
reformulate the scoring problem (Eq. 3.1) as follows – given N native structure
vectors xnati and N × D nonnative structure vectors xnonnatij , find a scoring vector

w ∈ RP×M×(M+1)/2 such that:

∀i = 1...N,∀j = 1...D (xnati ·w) < (xnonnatij ·w), (3.14)

or, equivalently,

∀i = 1...N, ∀j = 1...D ([xnonnatij − xnati ] ·w) > 0), (3.15)

which is a set of N×D half-space equations in RP×M×(M+1)/2. Each of the half-spaces
is defined by a plane in RP×M×(M+1)/2 with the common normal w. Thus, finding
the scoring vector is equivalent to finding the common normal w to the planes in
Eq. 3.15. Geometrical representation of three groups of structure vectors separated
by three parallel hyperplanes with the common normal w is given in Fig. 3.2.

I

II
III

Figure 3.2: Structure vectors for three complexes are shown. Native structure vec-
tors are plotted as blue circles. Nonnative structure vectors are plotted as red
squares. Native structure vectors in each complex are separated from nonnative
ones by three hyperplanes with a common normal. This normal is the scoring vec-
tor w we are aiming to find.

In the training set, some decoy structures can be very close to the native struc-
tures. In practice, we define the native structure as a structure with ligand root-
mean-square deviation (lRMSD) smaller than 2 Å. Therefore, for each complex we
may have several native structure vectors along with several nonnative structure
vectors. Now the question is – how do we determine the set of separating hyper-
planes shown in Fig. 3.2 with common normal w? To answer this question we first
consider two special cases presented below.

3.2.3.1 Case I. Existence of many solutions

In Fig. 3.3A we present an example of a single complex when infinitely many hyper-
planes can separate two classes of structure vectors. A similar example can be easily
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constructed for the case with multiple complexes. In case of two classes of vectors,
Vapnik proposed to use a special kind of separator, the so-called optimal separating
hyperplane [142], which is unique and maximizes the distance to the closest point
from either class. We can generalize this idea and formulate the following quadratic
programming optimization problem:

Minimize (in w, bj)
1
2
w ·w

Subject to yij [w · xij − bj]− 1 ≥ 0, i = 1...N, j = 1...D
(3.16)

where yij = −1 when the structure vector xij is native and yij = 1 otherwise. Now
we are ready to formulate

Lemma 1. If exists such a linear scoring functional of form of Eq. 3.13 that cor-
rectly discriminates the native structure vectors for all complexes (Eq. 3.15), then
the optimal scoring vector is unique and given by the solution of problem (Eq. 3.16).

Remark. The scoring vector is optimal in the sense that it maximizes the separation
between native and nonnative structure vectors.

Generally, such a linear scoring functional (with a fixed value of the expansion
order P ) may not exist, as demonstrated below. Therefore, we will have to modify
the optimization problem (Eq. 3.16).

3.2.3.2 Case II. No solution exists

In Fig. 3.3B we present an example when no hyperplane can separate the two
classes of the structure vectors of a single complex. For this case, Cortes and Vapnik
proposed to relax the condition for the optimal separating hyperplane [29], including
an additional term. This term minimizes the sum of penalties for misclassified
vectors. We again generalize this idea and introduce for each decoy set j = 1...D
slack variables ξij, which are positive for misclassified structure vectors and zero
otherwise. A non-zero value of ξij allows the structure vector xij to overcome the
inequality condition in Eq. 3.16 at a cost proportional to the value of ξij (see Fig.
3.3B). The new soft-margin quadratic optimization problem reads:

Minimize (in w, bj, ξij):
1
2
w ·w +

∑
ij Cijξij

Subject to:
yij [w · xij − bj]− 1 + ξij ≥ 0, i = 1...N, j = 1...D

ξij ≥ 0
(3.17)

The solution of this problem provides a trade-off between how large will be
the separation between two classes of the structure vectors of each complex and how
many misclassified vectors will be in the solution. Parameters Cij can be regarded as
regularization parameters. The solution of Eq. 3.17 tends to maximize the structure
vector separation for small values of Cij or minimize the number of misclassified
structure vectors for large values of Cij. We choose parameters Cij to be different
for native and nonnative structure vectors of each complex because fewer native
structure vectors should have the larger weight (see for instance [6]). The following
lemma provides the foundation for the numerical scheme used in this work:

Lemma 2. The optimal scoring vector is unique and given by the solution of problem
(Eq. 3.17).
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Remark. Here, the scoring vector is optimal in the sense that it maximizes the sep-
aration between native and nonnative structure vectors and minimizes the number of
misclassified vectors. Regularization parameters Cij in Eq. 3.17 tune the importance
of either factors.

The proof of lemmas (1, 2) can be found, e.g., in [21]. Overall, the formulation of
the optimization problem (Eq. 3.17) is very similar to the formulation of soft-margin
support vector machine (SVM) problem [29]. Therefore, to solve this problem (Eq.
3.17) we will use techniques developed for SVM.

nonnative 
vectors

native vectors

A

native
vectors

B

nonnative
vectors

Figure 3.3: Two classes of structure vectors for a single complex are shown. Native
structure vectors are plotted as blue circles. Nonnative structure vectors are plotted
as red squares. A) The case when infinitely many hyperplanes can separate the two
classes. B) The case when no optimal separating hyperplane exists. Slack variables
ξi and ξj for misclassified structure vectors are added, which are the distances to
the corresponding margin hyperplanes. The optimal hyperplane, which maximizes
the separation between the two classes, is plotted as a dashed line. Two margin
hyperplanes are plotted as solid lines.

3.2.4 Algorithm

3.2.4.1 Dual problem

Properties and solutions of quadratic optimization problems similar to the one stated
above (Eq. 3.17) have been extensively studied in the theory of convex programming
[17, 142]. For instance, using the Lagrangian formalism , the optimization problem
(Eq. 3.17) can be converted into its dual form (Appendix A), and the resulting dual
optimization problem is convex :

Maximize L(λij): L(λij) =
∑

ij λij −
1
2

∑
ij

∑
kl yijyklλijλklxij · xkl

Subject to:
0 ≤ λij ≤ Cij∑
i yijλij = 0, ∀j

, (3.18)

where the maximization is performed with respect to the Lagrange multipliers λij.
This dual problem is similar to the the soft-margin SVM optimization problem [29].
The difference lies in the constraints. For the soft margin SVM, conditions on the
parameters written in the same two-indexed form as in Eq. 3.18, are

∑
ij yijλij = 0.
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Vectors xij for which λij > 0 are called support vectors. Once the dual problem
(Eq. 3.18) is solved and the Lagrange multipliers λij are found, we can express the
solution of the original primal problem (Eq. 3.17) (the scoring vector) as a linear
combination of the support vectors:

w =
∑

support vectors

yijλijxij (3.19)

The dual representation (Eq. 3.18) of the original primal quadratic problem (Eq.
3.17) allows us to break down the original large quadratic optimization problem into
a series of smaller sub-problems. Below we describe an algorithm that solves the
dual optimization problem (Eq. 3.18) using a decomposition technique.

3.2.4.2 Block sequential minimal optimization algorithm

Due to its enourmus size, the quadratic optimization problem can not easily be
solved by standard techniques. The quadratic form in Eq. 3.18 involves a matrix
with number of elements proportional to the squared number of the training struc-
ture vectors. This matrix often exceeds the size of available RAM, for instance,
explicit storage of the matrix used in the current study requires about 20GB of
memory. Nonetheless, algorithms that deal with large datasets are widely used in
machine learning. More precisely, various decomposition techniques have been de-
veloped to reduce the requirements of optimization solvers to the size of available
RAM [141, 104]. Here, we employ a block-decomposition technique and propose
the block sequential minimal optimization (BSMO) algorithm. Briefly, we partition
the training set into N blocks, each block containing one native structure vector
with its D nonnative structure vectors. Then, for each block i, we iteratively op-
timize each pair of Lagrange multipliers (λ1, λ2), preserving the equality constraint
y1λ1 + y2λ2 = const. To do this, we write the Lagrangian (Eq. 3.18) as a function
of λ1 and λ2:

L(λ1, λ2) =
1

2
ηλ2

2 − ηλ2λ
old
2 + λ2y2(y2 − y1) + λ2y2(xi1 − xi2) ·wold + Const.(3.20)

with

η = 2xi1 · xi2 − xi1 · xi1 − xi2 · xi2 (3.21)

Then, we analytically maximize this Lagrangian with respect to λ1 and λ2 according
to the sequential minimal optimization (SMO) algorithm [104]. After the minimiza-
tion, we obtain new values of λ1 and λ2. We provide more details about the SMO
algorithm in Appendix B. After each iteration, we recompute the current scoring
vector wnew (see Eq. 3.19) according to:

wnew = wold + ∆λ1y1xi1 + ∆λ2y2xi2 (3.22)

For each block i, we continue the iterative optimization of the Lagrangian (Eq. 3.20)
until the relative change in its value between two successive inner cycles of iterations
is less than the desired tolerance. Each inner cycle consists in the optimization of
all pairs of Lagrange multipliers for a given block i. Globally, we terminate the
optimization when the relative change in the value of the Lagrangian (Eq. 3.18)
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between two successive outer cycles is less than the desired tolerance. Each outer
cycle consists in the optimization of all blocks of the training set. The flowchart of
the BSMO algorithm is presented in Figure 3.2.4.2.

Load block i

Compute:
qij=1−w⋅xij

Cij
h
=C ij−αij

Cij
l
=αij

Solve the problem using SMO
Output: 

δ L> δ Lmax

δ Lmax=δ L

For all i

δ Lmax> ϵ

no

yes

no

exit

δ Lmax=0

yes

Output:
w ,αij

d j ,δ L

w :=w+∑ yij d j x ij

αij :=αij+ d j

Figure 3.4: The flowchart of block sequential minimal optimization algorithm.

As it is seen from Eq. 3.21, our BSMO algorithm requires only scalar products of
the structure vectors within the same block. Therefore, it is sufficient to load each
block into RAM sequentially, which results in memory efficiency of our method.
Precisely, RAM required for our implementation of the block-decomposition solver
is N2 times less compared to the direct quadratic problem solvers.

3.2.5 Training database for protein-protein interactions

In the present study we used the training database of 851 non-redundant protein-
protein complex structures prepared by Huang and Zou [56]. This database contains
protein-protein complexes extracted from the PDB [14] and includes 655 homod-
imers and 196 heterodimers. We updated three PDB structures from the original
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training database: 2Q33 supersedes 1N98, 2ZOY supersedes 1V7B, and 3KKJ su-
persedes 1YVV. The training database contains only crystal dimeric structures de-
termined by X-ray crystallography at resolution better than 2.5 Å. Each chain of the
dimeric structure has at least 10 amino acids, and the number of interacting residue
pairs (as defined as having at least 1 heavy atom within 4.5 Å) is at least 30. Each
protein-protein interface consists only of 20 standard amino acids. No homologous
complexes were included in the training database. Two protein complexes were re-
garded as homologues if the sequence identity between receptor-receptor pairs and
between ligand-ligand pairs was > 70%. Finally, Huang and Zou [56] manually in-
spected the training database and left only those structures that had no artifacts of
crystallization.

Our algorithm requires as input native and nonnative structure vectors (see, e.g.,
Eq. 3.15). Native structure vectors can be computed from the native protein-protein
contacts in the training database using Eq. 3.11. However, for the computation of
the nonnative structure vectors for each protein-protein complex from the training
database, we need to generate decoys for each complex. Since our optimization algo-
rithm is very general and has no special requirements for nonnative protein-protein
contacts, we generated them by ”rolling” a smaller protein (ligand) over the surface
of a bigger protein (receptor) using HEX protein docking software [113, 2]. To do
so, we initialized HEX exhaustive search algorithm with the radial search step of
1.5 Å and expansion order of the shape function equal to 31. We used only the
shape complementarity energy function from HEX (i.e., electrostatic contribution
was omitted). Afterwards, we clustered HEX docking results with a root mean
square (RMS) threshold of 8 Å. The top 200 clusters, ranked by HEX surface com-
plementarity function, plus the native protein-protein complex conformation (giving
in total 201 structures) were then used to compute the distance distribution func-
tions (Eq. 3.4). Then, we computed the structure vectors using Eq. 3.11 and labeled
them as ”native” if the root mean square deviation (RMSD) of the corresponding
ligand was < 2 Å from its native position. Otherwise, the structure vector was
labeled as ”nonnative” or ”decoy”. On average, we obtained about 2.5 native struc-
ture vectors (and, correspondingly, about 198.5 nonnative structure vectors) per
protein-protein complex. To each structure vector xij we assigned a regularization
parameter Cij according to

Cnative
ij = CDnonnative

j /Dj

Cnonnative
ij = CDnative

j /Dj

(3.23)

We repeated the same procedure for each protein-protein complex from the training
database. We used M = 20 atom-centered interaction sites based on the atom
types definitions provided by Huang and Zou [56]. These atom types were defined
by the classification of all heavy atoms in 20 standard amino acids according to
their element symbol, aromaticity, hybridization, and polarity. These 20 atom types
result in total of 210 pair potentials.

Our training set has several proteins homologous to the ones from the two widely
used docking benchmarks, Rosetta, and Zdock, which we employ below to validate
our results. We define two protein complexes to be homologous if for each chain
in the first complex there is a chain in the second complex with sequence identity
more than 60%. We determined the sequence identity using the FASTA36 program
[98]. Below, we benchmarked our scoring function while both excluding homologs
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from the training set and leaving it unchanged. The comparison of the benchmark
results in these two cases is shown in supplementary Tables S1 and S2.

3.2.5.1 Training database for water-protein interactions

To obtain potentials for the water molecules we employed the same set of complexes
prepared by Huang and Zou [56]. We added a new atom type to the set of 20
atom types for docking corresponding to the water oxygen. We generated a cube
with dimensions 130 × 130 × 130Å of TIP3P water molecules and equlibrated it
using molecular dynamics at room temperature with periodic boundary conditions.
Afterwards native structures and decoys from the training set were immersed into
this water-box. In the case when the size of the protein was more than 130Å we
periodically continued the water box. Then, in case of native structures initial water
molecules presented in the crystallographic structures were retained. In the case of
decoys we removed all the original water molecules. The placed bulk molecules were
then removed if they clashed with either the proteins or retained water molecules.
The clashing distance was set to be 2Å. We also removed each water molecules
farther than 12Å from all protein atoms. Although we aimed to obtain all pairwise
potentials we did not use water-water potential for the predictions, because it influ-
ences the equilibrium structure of bulk water, thus in principle after obtaining this
potential we had to recalculate water box. However this procedure goes beyond our
method of obtaining scoring potentials.
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3.3 Results and Discussion

3.3.1 Overfitting and Convergence

Various methods of derivation of the knowledge-based potentials usually produce
results biased towards the training data set. Typically, such algorithms maximize
the predictive accuracy of the corresponding potential on a set of training data,
which does not mean that the same potential will perform equally well on a new set
of data. Indeed, fitting the potential to the training data set also fits the noise in
the data. Thus, very often a knowledge-based potential memorizes noisy features
of the training data instead of deducing general predictive concepts from it. This
phenomenon is usually referred to as overfitting [32]. A clear indication of an ”over-
fitted” potential can be, for example, the need for post-smoothing techniques applied
to the initial knowledge-based potential, as in [56, 88]. ”Overfitting” is clearly not
desirable. In order to avoid it, many optimization techniques (regularization, cross-
validation, etc.) have been successfully proposed to penalize the initial objective
function with various additional terms [8, 69]. These terms serve to achieve a better
predictive accuracy on the off-training data based on the predictions of the training
data.

To avoid overfitting, we used two techniques – regularization and cross-validation.
Regularization penalizes the initial objective function with various additional terms
[8, 69]. We introduced two regularization parameters, σ for the width of the Gaussian
distribution of distances in Eq. 3.4, and C for the hinge loss function in Eq. 3.17. To
find the best values of these parameters we used the following cross-validation pro-
cedure. First, we divided the training set into two parts, consisting of 650 complexes
(temporary test set) and 200 complexes (temporary training set). Then, for each
value of σ and C, we obtained the scoring potentials using the temporary training
set and verified it on the temporary test set. Finally, we chose those values of σ and
C that correspond to the maximum number of guessed structures in the temporary
test set. We define the structure as guessed if its native complex has the score
better than all of its decoys. Figure 3.5 shows the predictive performance of the
scoring potential on the two sets as a function of σ and C. Obviously, the maximum
predictive performance on the training set is achieved at the highest values of C.
However, the validation on the test set highlights the best choice of values of C and
σ. These values are C = 106 . . . 107 and σ = 0.4 Å (Fig. 3.5B).

Figure 3.6 shows the convergence of the success rate on the training set with the
number of iterations of the training BSMO algorithm. The success rate was mea-
sured as the number of guessed structures divided by the total number of protein-
protein complexes. We can see a fast convergence of the method. In principle, a
hundred optimization steps is sufficient to obtain the final result. We have also ob-
served that increasing the regularization parameter C leads to the slower convergence
and vice versa. We should note that thanks to the convexity of our optimization
problem, its solution is unique and does not depend on the starting point and the
optimization method used.
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Figure 3.5: Predictive performance of the scoring potential as a function of the
smoothing parameter σ and the regularization parameter C. A) Performance ob-
tained if the scoring functions are trained on the whole database and verified on
the same database. B) Performance obtained if the scoring functions are trained
on 200 protein complexes and verified on the other 650 complexes from the training
database. Here the best performance is obtained with σ = 0.4 Å and C = 106 . . . 107.
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Figure 3.6: Performance rate of the scoring potentials on the training set versus
the number of iterations of the BSMO algorithm. The scoring potentials were ob-
tained using the Legendre basis and the whole training set, without excluding any
homologous proteins. Parameters σ and C were set to the optimal values of σ = 0.4
Å and C = 105.

3.3.2 Extracted Potentials

Our method can in principle use any type of orthogonal polynomials to decompose
the structural statistics and reconstruct the potentials. However, since rectangular
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functions are the most widely used to collect statistics, we employed this basis as
a reference. Then, we also used the Legendre basis, orthogonal on the interval
[0;10]. We chose this basis because of its simplicity, in particular because the weight
function for this basis does not depend on the distance.

From now on, we call the obtained scoring potentials the Convex Protein Protein
(ConvexPP) potentials. Figure 3.7 shows typical scoring potentials derived using
two different orthogonal bases. Obtained potentials are smooth by construction,
thanks to the smooth Gaussian kernel in Eq. 3.6. According to the plot, the shape
of the potentials does not depend on the basis set that was used to derive it. This is
the consequence of the global convergence of the optimization problem (see lemma
2). We can also see that the obtained potentials tend to zero as the interaction
distance increases. On the other hand, all the potentials approach zero at short
distances. This is due to the absence of statistics for the native structures at short
distances and the result of the w ·w term in optimization problem 3.17. We discuss
this behaviour in more detail below.

Due to the Gaussian smoothing of statistics, it is sufficient to use the expan-
sion order of P = rmax/σ. For σ = 0.4 Å and rmax = 10 Å, the estimate on the
number of basis functions is P = 25. However, due to the adjustment of σ with
the cross-validation procedure, in our experiments we used a larger expansion or-
der, P = 40. Figure 3.8 demonstrates how the resulting potentials depend on the
expansion order. We should note that the decompositions of orders above 25 are
almost indistinguishable and thus are not shown. Indeed, increasing the order of
the polynomial P decreases the distance between two consecutive zeros in the poly-
nomial basis. Therefore, at a constant value of σ, the integral in Eq. (3.11) tends
to zero with the growth of the value of P due to the oscillatory behaviour of the
basis polynomials. Such behaviour of the integral confines all the useful information
about the distributions and the scoring potentials in the first few coefficients of the
polynomial decomposition. The number of these coefficients depends solely on the
value of σ and does not change with the training set or the value of parameter C.
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Figure 3.7: The scoring potentials trained in two different polynomial bases. Dashed
lines correspond to the scoring potentials that were obtained using the Legendre
basis functions. Solid lines correspond to the potentials that were obtained using
the rectangular basis functions. Left: Potential between aliphatic carbons bonded
to carbons or hydrogens only. Right: Potential between a guanidine nitrogen with
two hydrogens and an oxygen in carboxyl groups.
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Figure 3.8: Dependence of the extracted scoring potentials on the order of the
decomposition in the Legendre basis. After order P = 25, the potentials are indis-
tinguishable from each other and thus not shown for clarity. Left: Potential between
aliphatic carbons bonded to carbons or hydrogens only. Right: Potential between a
guanidine nitrogen with two hydrogens and an oxygen in carboxyl groups.

3.3.3 Protein-Protein docking benchmark version 3.0

First we tested the ConvexPP scoring function on the protein-protein docking bench-
mark version 3.0. It consists of 124 crystallographic structures of protein-protein
complexes from PDB database [59]. They are divided into three groups: rigid,
medium and difficult cases. The division criteria is the scale of conformational
changes of the proteins upon binding: from minor changes in rigid cases to major in
difficult. The nonredundancy of the benchmark was set at the level of family-family
pairs. That means that if a complex in Benchmark v3.0 is formed of the protein
of family A and another one of family B, then there are no more family A - family
B complex in the benchmark. The assignment of a protein to a family was taken
according to SCOP database [91].

The decoys for scoring were generated using ZDOCK3.0 [103] with the sampling
step equal to 6 degrees (we call this set of docking position ZDOCK benchmark
below). They were downloaded from the ZLAB website [3]. The docking program
ZDOCK3.0 generates the rigid-body protein-protein docking predictions with the
corresponding scores. Scoring function used in this program includes shape com-
plementarity, statistical pair potentials and electrostatics. To compare our scoring
function to the well established one downloaded the decoy set reranked by ZRANK
[102]. It is the program for reranking the ZDOCK3.0 predictions. In addition to the
factors used in ZDOCK3.0, it computes detailed electrostatics, estimates desolvation
and uses additional Van-der-Waals potential to re-score the decoys.

The benchmark 3.0 has several complexes homologous to certain protein com-
plexes in the training set. Therefore, to see the effect of training set and test set
similarity we trained our potential both excluding homologs from the training set
and leaving it unchanged. Table 3.1 shows results of ZDOCK3.0, ZRANK and our
scoring functions on the ZDOCK benchmark.
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Rigid-Body
1AHW 54 8.30 1.58 0.60 175 2.68 1.26 0.72 547 2.14 0.91 0.79

1BVK - - - - - - - - - - - -

1DQJ - - - - - - - - - - - -

1E6J 1 3.80 1.59 0.64 12 6.06 2.35 0.40 35 4.21 2.26 0.48

1JPS 1 3.90 1.04 0.70 254 4.32 1.26 0.65 62 4.14 1.11 0.78

1MLC 5 4.61 1.14 0.36 54 4.61 1.14 0.36 5 4.70 1.12 0.39

1VFB 997 10.89 2.48 0.30 798 0.89 2.48 0.30 1239 10.89 2.48 0.30

1WEJ 2 2.44 0.79 0.91 41 2.44 0.79 0.91 1 4.13 1.30 0.75

2FD6 15 18.67 2.42 0.73 9 9.76 2.42 0.80 8 15.65 2.16 0.80

2I25 1534 7.92 2.21 0.36 1 4.45 1.87 0.33 83 4.45 1.87 0.33

2VIS 8 27.81 2.02 0.63 150 6.31 2.18 0.57 617 23.89 2.37 0.43

1BJ1 19 6.29 1.19 0.62 1 4.22 0.97 0.88 2 2.82 0.98 0.86

1FSK 1 2.69 1.04 0.91 3 1.39 0.65 0.93 3 3.98 1.39 0.81

1I9R 40 3.07 1.53 0.79 493 3.07 1.53 0.79 462 16.85 2.30 0.48

1IQD 169 5.25 1.01 0.60 3 3.08 0.88 0.73 16 4.20 0.97 0.67

1K4C 587 7.42 1.67 0.43 1615 9.12 1.64 0.45 242 5.78 1.31 0.62

1KXQ 14 2.04 1.28 0.70 1 1.75 0.93 0.93 1 3.06 1.04 0.88

1NCA 14 2.85 0.92 0.83 150 1.75 0.97 0.76 12 4.50 1.38 0.86

1NSN 473 4.95 2.00 0.50 728 2.41 1.06 0.79 636 4.95 2.00 0.50

1QFW 192 5.05 1.24 0.71 310 4.21 1.41 0.77 1315 5.12 1.35 0.73

1QFW 192 5.05 1.24 0.71 310 4.21 1.41 0.77 1315 5.12 1.35 0.73

2JEL 1239 6.12 1.90 0.55 223 6.12 1.90 0.55 957 6.83 2.30 0.31

1AVX 11 7.49 1.61 0.56 7 6.73 1.86 0.54 3 4.85 2.23 0.39

1AY7 74 3.82 2.13 0.52 468 3.82 2.13 0.52 185 5.73 1.82 0.45

1BVN 16 2.60 1.54 0.43 1 3.74 1.85 0.46 3 4.09 1.74 0.50

1CGI 89 4.27 2.34 0.43 14 4.27 2.34 0.43 61 3.20 2.30 0.49

1D6R - - - - - - - - - - - -

1DFJ 2 5.12 2.08 0.55 1 3.82 1.87 0.52 1 5.97 2.42 0.50

1E6E 5 2.97 2.00 0.42 15 2.98 1.72 0.53 9 4.01 2.41 0.42

1EAW 1 9.32 2.48 0.46 42 9.32 2.48 0.46 1 2.60 1.03 0.70

1EWY 21 3.16 1.74 0.56 9 3.32 1.88 0.61 21 3.16 1.74 0.56

1EZU - - - - - - - - - - - -

1F34 62 7.51 2.34 0.41 34 5.95 2.46 0.49 38 3.41 1.45 0.54

1HIA - - - - - - - - - - - -

1MAH 3 2.77 1.12 0.72 1 2.77 1.12 0.72 1 3.64 1.26 0.69

1N8O 92 4.60 1.51 0.60 1 5.15 1.51 0.68 1 2.94 1.24 0.74

1OPH - - - - - - - - - - - -

1PPE 1 1.84 0.77 0.79 1 2.25 0.86 0.83 1 4.62 1.52 0.71

1R0R 70 1.83 0.71 0.74 178 1.32 0.74 0.60 2 8.36 2.46 0.40

1TMQ 71 4.92 2.08 0.35 61 3.61 1.49 0.60 8 6.11 1.97 0.45

1UDI - - - - - - - - - - - -

1YVB 38 12.34 2.32 0.54 6 7.33 1.92 0.71 8 7.33 1.92 0.71

2B42 10 6.17 1.17 0.89 1 6.17 1.17 0.89 8 9.44 2.23 0.43
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2MTA 748 4.86 2.41 0.59 1352 2.96 1.81 0.59 125 3.76 1.88 0.50

2O8V - - - - - - - - - - - -

2PCC 920 6.29 2.19 0.44 975 5.67 2.17 0.39 458 6.29 2.19 0.44

2SIC 1 6.47 1.44 0.52 3 8.89 2.40 0.43 3 5.92 1.19 0.73

2SNI 178 4.14 1.44 0.53 230 6.34 2.16 0.42 8 8.57 2.45 0.57

2UUY 22 12.46 2.11 0.74 380 13.94 2.39 0.66 233 13.72 2.38 0.66

7CEI 3 4.33 1.36 0.65 1 0.68 2.44 0.44 4 8.41 2.46 0.65

1A2K - - - - - - - - - - - -

1AK4 - - - - - - - - - - - -

1AKJ 175 6.35 2.15 0.53 637 4.22 1.70 0.65 395 3.30 1.54 0.60

1AZS 123 11.64 1.86 0.69 8 2.49 1.74 0.65 1 11.04 1.88 0.69

1B6C 2 7.35 2.37 0.74 1 3.47 2.38 0.87 2 3.67 2.23 0.90

1BUH 353 4.13 1.56 0.60 18 3.42 1.81 0.63 1 3.42 1.81 0.63

1E96 24 5.56 1.99 0.54 219 9.54 2.38 0.42 261 6.03 2.18 0.58

1EFN - - - - - - - - - - - -

1F51 237 3.41 1.82 0.60 368 3.41 1.82 0.60 16 3.41 1.82 0.60

1FC2 - - - - - - - - - - - -

1FQJ - - - - - - - - - - - -

1GCQ 922 1.98 1.19 0.71 1171 1.98 1.19 0.71 118 1.98 1.19 0.71

1GHQ - - - - - - - - - - - -

1GLA 12 3.38 1.52 0.32 919 3.38 1.52 0.32 57 4.91 2.22 0.37

1GPW 1 5.05 2.03 0.58 39 7.13 2.39 0.50 1 7.10 2.44 0.39

1HE1 43 6.92 2.20 0.47 2 8.68 2.35 0.47 301 5.93 1.74 0.38

1I4D - - - - - - - - - - - -

1J2J 1897 5.59 2.12 0.55 277 5.59 2.12 0.55 86 5.59 2.12 0.55

1K74 1 5.86 2.29 0.42 1 6.11 2.35 0.52 8 7.90 2.02 0.48

1KAC 11 4.47 2.07 0.40 438 5.35 2.22 0.36 287 4.47 2.21 0.36

1KLU - - - - - - - - - - - -

1KTZ 397 6.04 1.15 0.63 1486 4.25 1.54 0.74 282 5.39 1.25 0.63

1KXP 40 4.94 1.79 0.49 1 6.29 2.09 0.46 1 7.43 2.17 0.51

1ML0 1 2.27 1.25 0.76 1 5.05 2.07 0.51 1 4.47 1.89 0.61

1QA9 - - - - - - - - - - - -

1RLB 25 8.50 2.05 0.55 2 9.11 1.93 0.66 7 9.11 1.93 0.66

1S1Q 1195 2.35 1.53 0.58 420 2.35 1.53 0.58 766 2.35 1.53 0.58

1SBB - - - - - - - - - - - -

1T6B 351 6.12 1.49 0.52 166 5.90 1.87 0.48 89 5.91 2.03 0.64

1XD3 135 6.68 2.21 0.55 62 4.87 2.49 0.30 6 4.87 2.49 0.30

1Z0K 19 4.60 1.99 0.74 1 5.52 1.99 0.74 11 4.59 1.68 0.56

1Z5Y 77 5.69 1.97 0.50 46 5.80 2.27 0.41 8 6.58 1.97 0.50

1ZHI 71 4.80 1.32 0.71 119 8.39 1.79 0.65 78 9.90 1.96 0.61

2AJF - - - - - - - - - - - -

2BTF 655 5.61 2.31 0.31 398 5.61 2.31 0.31 655 6.00 2.20 0.33

2HLE 1 3.38 2.11 0.42 9 5.95 2.43 0.42 9 6.84 2.35 0.35

2HQS 1092 8.94 2.30 0.37 1162 8.94 2.30 0.37 576 8.94 2.30 0.37

2OOB - - - - - - - - - - - -

Medium
1BGX - - - - - - - - - - - -

1ACB - - - - - - - - - - - -
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1IJK 444 7.43 1.65 0.31 376 5.02 1.35 0.38 124 6.42 1.83 0.25

1KKL 1002 6.23 2.50 0.44 1774 6.23 2.50 0.44 325 6.23 2.50 0.44

1M10 - - - - - - - - - - - -

1NW9 - - - - - - - - - - - -

1GP2 - - - - - - - - - - - -

1GRN 1365 7.10 2.49 0.00 676 7.10 2.49 0.00 1785 7.10 2.49 0.00

1HE8 - - - - - - - - - - - -

1I2M - - - - - - - - - - - -

1IB1 - - - - - - - - - - - -

1K5D 1111 8.04 2.03 0.29 466 8.04 2.03 0.29 1185 8.04 2.03 0.29

1N2C - - - - - - - - - - - -

1WQ1 - - - - - - - - - - - -

1XQS 314 6.91 2.47 0.34 19 6.91 2.47 0.34 199 5.60 2.28 0.38

2CFH 237 5.20 2.12 0.36 1 3.83 1.86 0.47 1 5.20 2.12 0.36

2H7V 525 13.69 2.47 0.44 98 3.69 2.47 0.44 8 13.69 2.47 0.44

2HRK - - - - - - - - - - - -

2NZ8 - - - - - - - - - - - -

Difficult
1E4K - - - - - - - - - - - -

2HMI - - - - - - - - - - - -

1FQ1 - - - - - - - - - - - -

1PXV - - - - - - - - - - - -

1ATN - - - - - - - - - - - -

1BKD - - - - - - - - - - - -

1DE4 - - - - - - - - - - - -

1EER - - - - - - - - - - - -

1FAK - - - - - - - - - - - -

1H1V - - - - - - - - - - - -

1IBR - - - - - - - - - - - -

1IRA - - - - - - - - - - - -

1JMO - - - - - - - - - - - -

1R8S - - - - - - - - - - - -

1Y64 - - - - - - - - - - - -

2C0L - - - - - - - - - - - -

2OT3 - - - - - - - - - - - -

Homologs Top1: 8.1% (10/124) Top1: 12.9% (16/124) Top1: 10.5% (13/124)

included Top10: 16.1% (20/124) Top10: 22.6% (28/124) Top10: 27.4% (34/124)

Homologs Top1: 12.1% (15/124)

excluded Top10: 29.0% (36/124)

Table 3.1: ZDock benchmark 3.0 results. Proteins homologous to the ones in the
training set are shown with the bold font. Absense of hits among first 2000 predic-
tions is shown with hyphens.

We reranked top 2000 decoys generated by ZDOCK3.0 using our scoring poten-
tials. A hit is a predicted near-native decoy with iRMSD (RMSD of Cα atoms of
the predicted interaction interface residues after superposition onto the crystallized
complex) less than 2.5 Å. The number of hits when only the top one prediction
considered (Top1) obtained by ZRANK is higher than that obtained by ConvexPP
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potentials (15 vs 12 hits). Although if we consider top 8 predictions our scoring
function outperforms ZRANK (32 vs 26 hits) and gives the same number of hits for
top 5 to 8 predictions. Excluding homologs from the training set results in a slight
improvement of the results (Table C.1).

Figure 3.9 shows ROC curves (success rate vs the number of top predictions
considered). We see that ConvexPP scoring functions outperform ZRANK and
ZDOCK if the number of considered predictions is more than eight.
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Figure 3.9: Dependence of the success rate on ZDOCK benchmark on the number
of top predictions in consideration for the three methods.

3.3.4 Rosetta Benchmark

Baker, Gray et al generated the Rosetta benchmark using 54 complexes of the
ZDOCK Benchmark 0.0 [24] using a flexible docking protocol, which is a part of the
RosettaDock suite [49]. The first step in the protocol is the random translation and
rotation of one of the proteins constituting the complex. Afterwards, the side chain
is optimized simultaneously with the rigid body displacement. Finally, the full-atom
minimization is done to refine the conformation. For each complex, Baker and Gray
generated 1000 decoys following the described protocol. The resulting decoys with
the corresponding scores assigned by the RosettaDock program can be obtained from
[1]. We calculated the success rate of RosettaDock using the same quality criteria
as in Critical Assessment of PRediction of Interactions [85, 86, 62]. The Rosetta
benchmark contains 5 complexes homologous to the ones present in the training set.
Therefore we trained our scoring function using training sets with and without these
homologs (Table S2). Table 3.2 compares the results of RosettaDock[49], ITScore-
PP[56] and our ConvexPP scoring functions.
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1ACB 3 3 9.08 3.41 0.13 3 4 9.04 3.39 0.11 2 1 4.31 1.13 0.78

1A0O 2 1 10.29 4.18 0.57 2 1 10.29 4.18 0.57 3 1 11.33 5.79 0.35

1AHW 2 1 6.41 2.37 0.51 3 4 6.46 3.00 0.49 2 1 4.82 2.31 0.44

1ATN 3 1 5.83 2.79 0.49 3 1 9.49 4.70 0.38 1 1 2.34 0.71 0.77

1AVW 2 1 6.02 2.09 0.67 2 1 5.07 1.81 0.71 2 1 6.01 1.38 0.75

1AVZ 3 37 8.08 4.05 0.29 3 22 11.47 5.55 0.35 3 20 8.41 4.41 0.12

1BQL 1 1 1.57 0.86 0.64 1 5 1.81 0.72 0.65 1 1 1.40 0.96 0.89

1BRC 2 4 3.77 1.21 0.75 2 1 3.77 1.21 0.75 2 1 7.24 1.62 0.76

1BRS 2 1 4.78 1.73 0.64 3 1 8.68 4.46 0.33 3 1 8.70 3.79 0.31

1BTH 3 4 18.21 5.54 0.30 3 2 5.60 2.35 0.42 3 1 5.59 2.67 0.44

1BVK 3 1 7.91 3.93 0.20 3 1 7.18 3.54 0.20 3 1 7.75 3.45 0.22

1CGI 2 2 3.79 1.86 0.50 3 8 6.01 2.37 0.42 3 3 6.44 2.11 0.38

1CHO 3 1 6.31 2.19 0.46 3 1 10.32 3.76 0.18 2 1 6.35 1.81 0.66

1CSE 2 6 10.10 3.12 0.56 2 1 8.81 2.66 0.71 3 1 7.87 2.29 0.40

1DFJ 2 1 5.69 2.66 0.59 2 1 5.69 2.66 0.59 2 1 5.63 2.55 0.67

1DQJ 3 1 6.71 3.35 0.31 3 5 5.00 2.12 0.34 3 1 14.01 6.06 0.38

1EFU 3 44 5.98 3.78 0.16 3 26 7.83 4.21 0.10 3 20 5.90 4.65 0.11

1EO8 3 1 10.73 5.54 0.31 3 31 6.12 3.36 0.15 3 1 10.90 3.29 0.42

1FBI 2 1 2.79 1.37 0.54 2 1 3.64 1.86 0.51 3 1 11.03 4.23 0.36

1FIN 3 364 9.88 5.38 0.12 3 109 8.26 4.19 0.12 3 200 8.27 6.06 0.10

1FQ1 3 1 11.37 5.43 0.31 3 1 9.33 5.09 0.41 3 1 6.79 4.02 0.43

1FSS 1 1 3.07 0.97 0.74 2 1 4.46 1.42 0.46 2 1 3.89 1.54 0.63

1GLA 2 4 5.96 1.85 0.65 3 7 11.96 3.83 0.35 2 1 6.20 1.70 0.84

1GOT 3 12 7.86 3.95 0.19 3 4 9.71 4.26 0.19 3 2 12.91 3.21 0.17

1IAI 3 8 6.60 3.42 0.22 2 1 4.18 1.61 0.62 2 1 3.82 1.62 0.33

1IGC 1 1 2.15 0.63 0.85 1 1 2.15 0.63 0.85 1 1 1.92 0.56 1.00

1JHL 3 3 8.56 4.51 0.26 2 2 6.09 2.66 0.56 3 2 7.65 3.94 0.31

1MAH 2 1 3.72 1.19 0.70 3 1 8.66 2.77 0.26 2 1 3.71 1.15 0.78

1MDA 3 1 8.77 3.59 0.19 3 1 9.84 3.92 0.26 2 2 6.65 2.38 0.52

1MEL 2 1 8.47 2.62 0.50 2 4 8.47 2.62 0.50 2 1 7.89 2.84 0.52

1MLC 2 7 4.91 1.37 0.52 3 1 15.36 3.45 0.20 3 1 15.41 3.04 0.24

1NCA 2 1 3.06 1.53 0.61 1 1 1.24 0.64 0.75 2 1 7.62 2.13 0.66

1NMB 1 1 0.90 0.44 0.80 1 6 2.66 0.76 0.85 1 1 2.66 0.57 1.00

1PPE 1 1 1.38 0.52 0.73 3 1 7.42 2.39 0.28 1 1 1.38 0.54 0.89

1QFU 2 1 3.02 1.10 0.64 1 4 2.93 1.00 0.69 1 1 3.89 0.98 0.67

1SPB 1 1 1.06 0.62 0.68 1 1 1.47 0.70 0.69 1 1 1.04 0.54 0.82

1STF 1 1 1.91 0.68 0.89 1 2 1.57 0.54 0.91 1 1 1.57 0.51 0.94

1TAB 2 1 4.16 1.30 0.74 2 1 4.39 1.37 0.76 2 1 4.11 1.47 0.68

1TGS 2 1 2.48 1.44 0.59 2 1 2.26 1.38 0.64 3 1 8.41 3.55 0.44

1UDI 2 1 3.35 1.43 0.63 2 1 2.08 1.01 0.74 2 1 2.08 1.09 0.71

1UGH 1 1 1.78 0.86 0.67 2 1 4.64 1.90 0.46 2 1 4.61 1.96 0.60

1WEJ 3 15 9.28 2.92 0.44 2 2 6.90 2.55 0.62 3 1 9.37 4.79 0.23

1WQ1 3 1 5.53 2.46 0.34 2 1 3.38 1.92 0.39 2 2 3.83 1.59 0.58

2BTF 3 1 10.03 3.23 0.22 1 1 1.52 0.60 0.75 1 1 1.31 0.60 0.90
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2JEL 2 1 4.82 2.22 0.52 2 1 6.55 1.98 0.65 2 1 6.42 1.26 0.86

2KAI 1 2 2.02 0.97 0.67 2 2 2.48 1.05 0.70 1 8 2.26 0.89 0.88

2PCC 3 2 9.19 3.39 0.24 3 1 9.38 3.84 0.29 3 1 9.40 4.31 0.48

2PTC 1 4 0.82 0.44 0.80 2 4 5.86 1.82 0.70 2 1 5.30 1.16 0.74

2SIC 2 1 5.18 1.53 0.85 2 1 5.18 1.53 0.85 1 1 4.84 0.96 0.82

2SNI 2 1 6.70 2.01 0.60 1 1 2.88 0.99 0.73 2 1 7.38 2.00 0.61

2TEC 1 1 2.46 0.81 0.74 1 1 2.59 0.85 0.78 1 1 1.97 0.59 0.80

2VIR 3 1 7.53 4.19 0.26 2 2 5.74 2.17 0.70 2 1 5.78 1.03 0.67

3HHR 3 50 9.84 3.95 0.26 3 3 8.17 4.03 0.30 3 1 9.41 3.47 0.33

4HTC 2 1 3.81 1.54 0.61 3 1 5.95 2.25 0.42 2 1 4.04 1.50 0.76

Top1: 66.7% (36/54) Top1: 59.3% (32/54) Top1: 83.3% (45/54)

Homologs Top1 and quality 1: 16.7% (9/54) Top1 and quality 1: 11.1% (6/54) Top1 and quality 1: 20.4% (11/54)

included Top1 and quality 1 or 2: 48.1% (26/54) Top1 and quality 1 or 2: 38.9% (21/54) Top1 and quality 1 or 2: 57.4% (31/54)

Top10 and quality 1 or 2: 61.1% (33/54) Top10 and quality 1 or 2: 57.4% (31/54) Top10 and quality 1 or 2: 63.0% (34/54)

Top1: 81.5% (44/54)

Homologs Top1 and quality 1: 16.7% (9/54)

excluded Top1 and quality 1 or 2: 55.6% (30/54)

Top10 and quality 1 or 2: 61.1% (33/54)

Table 3.2: Rosetta unbound benchmark results. Proteins homologous to the ones
in the training set are shown with the bold font.

Table 3.2 shows that our potentials significantly improve Top1 prediction rate
over ITScore-PP and RosettaDock scoring functions while also outperforming them
according to the other criteria (Top1 and quality 1 etc.). We computed the percent-
age of the structures for which the first acceptable prediction was ranked within the
top predictions for each complex and plotted it on Fig. 3.10. According to the plot
our scoring function outputs the plausible structure (quality ≥3) for more complexes
than ITScore-PP and RosettaDock. Unlike the results on the ZDock benchmark,
the results on the Rosetta unbound benchmark slightly decrease when we remove
homologous complexes from the training set. Among the prediction quality criteria
it is the number of predicted high quality structures that changed the most. On the
other hand Top1 prediction rate stayed almost the same. This observation signal-
izes that the number of predicted high-quality structures is amenable to overfitting.
Therefore unlike the Top1 criterion, it can not serve as a reliable measure of a scor-
ing function predictive power. Table C.2 shows the per-complex comparison of two
scoring functions trained with and without homologs.
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Figure 3.11: Knowledge-based solvation scoring functions Uk(r) between the oxygen
of a water molecule and protein atoms as a function of the separation distance.
Left: water – aromatic carbon scoring function is plotted. Middle: water – carboxyl
oxygen (like in aspartic and glutamic acids) scoring function is plotted. Right: water
– charged nitrogen (like in lysins) scoring function is plotted.
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Figure 3.10: The percentage of the structures with plausible predictions (quality
higher than 3) that are ranked within a certain number of top predictions. The
data for ITScore-PP was taken from original publication [56]. Scoring data for
RosettaDock was taken from [1].

3.3.5 Water interaction potentials prediction for CAPRI
T47 target

We used the scaled Legendre polynomials as the basis to obtain the potentials for
water oxygen interactions. Obtained solvation scoring functions for three atom types
(aromatic carbon, carboxyl oxygen, and charged nitrogen) are shown in Figure 3.11.
There, one can clearly see the difference between hydrophobic and hydrophilic in-
teractions. Another property of our solvation scoring functions is a same peculiarity
at short distances as in the other potentials. Precisely, as there is no training data
for distances from 0 to about 2 Å, all obtained scoring functions are close to zero in
this range. Therefore, if one would like to use these function for minimization, one
might need to adjust them at short distances with some additional information.

The Critical Assessment of Predicted Interaction (CAPRI) [85, 86, 62] is the
community-wide competition in prediction of protein-protein complexes. To validate
our poteintials for water prediction we took part in predicting the structure of the
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target 47 [79]. The participants were asked to predict the interface of the two
proteins: DNase domain of colicin E2 and IM2 immunity protein. After docking
prediction were performed groups, taking part in this event were invited to predict
the positions of the water molecules near the interaction interface of the two proteins.
Figure 3.12 shows the crystall structure of this complex that was published after the
23rd round of CAPRI ended.

Figure 3.12: The crystallographic X-Ray structure of DNase domain of colicin E2
and IM2 immunity protein (PDB code 3U43). IM2 imunity protein is show in green
and DNAse domain in red. Blue spheres denote the positions of interfacial water
oxygens. The interfacial water molecule is the one within 3.5Å of both receptor
and ligand.

Each contestant was required to submit 10 models that incuded predicted com-
plex and water molecules. We obtained each model as follows. First, we constructed
a protein-protein complex by homology using Modeller [37]. Then, we refined the
protein-protein interface using our protein-protein docking potentials. Finally, we
immersed the complex into the water box and minimized the value of the score,
obtained by the summation over all interactions between water pseudo-atoms and
other atom types, with respect to the positions of water oxygens.

The criteria of model quality was based on definition of water-mediated contacts
between ligand and receptor. A residue of receptor and a residue of ligand were
assumed to have water-mediated contact when one of their heavy atoms were closer
than 3.5Å to the same water oxygen. The quantity fwmc(nat) was computed as the
fraction of native water-mediated contacts, predicted by the model. Additionally
the organizers of the competition computed number of native and model interface
water molecules and number of clashes in each model. The two water molecules
assumed to clash if the distance between their oxygen atoms is less than 2.5Å. All
models were then checked for the number of clashes and those where the number
of clashing molecules exceeded the number of native interface water molecules were
rejected. Other models were ranked according to the criteria in the Table 3.3.
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0 Bad 0 ≤ fwmc(nat) < 0.1
+ Fair 0.1 ≤ fwmc(nat) < 0.3
2+ Good 0.3 ≤ fwmc(nat) < 0.5
3+ Excelent 0.5 ≤ fwmc(nat) < 0.8
4+ Bad 0.8 ≤ fwmc(nat) ≤ 1.0

Table 3.3: Classification of model quality according to the fraction of predicted
water-mediated contacts.

Among the models that we submitted 9 were of good and one of fair quality
according to the criterium described above. Overall our approach was ranked 4th
among others competing techniques. The group ranked first (Nakamura et all)
and the group ranked third (Zou et all) were using the water molecules that were
derived from the interfaces of the homologs as the initial positions of their predic-
tions. Afterwards they optimized the positions of water molecules using the AMBER
forcefield. The second-ranked group led by Zacharias used ab-initio water prediction
technique. They combined energy-like scoring functions with the well-established
forcefield (AMBER), energy minimization and short molecular dynamics runs to
generate the final predictions. It is worth to note that our method generated almost
no false-positive predictions compared to other competing approaches ([79], SI).

81



3.3.6 Discussion

3.3.6.1 Short Distances
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Figure 3.13: The plots of the ConvexPP versus the lRMSD for the decoy structures
from the training set (1A7N, 1J7L), Rosetta benchmark (1SPB, 2KAI) and ZDOCK
benchmark(1N8O, 2CHF). On the left we show the plots that exhibit funnel-like
behaviour near the frame origin. On the right side the plots without obvious funnels
are shown.

The key property of a scoring function is the existence of the correlation between
the score of a structure and its similarity to the corresponding native structure.
Conventionally, the lRMSD is taken as the measure of similarity of the decoys to the
native structure. lRMSD is the ligand (the smaller protein in a complex) root mean
square deviation of Cα atoms of a decoy relative to the native complex structure
when receptors (the larger proteins in the complexes) are superposed. To verify that
our potentials indeed correlate with the similarity to the native structures, we plotted
the ConvexPP score of each decoy versus the lRMSD for all decoys from the ZDOCK
and Rosetta benchmarks. Figure 3.13 shows some typical plots for the complexes
from the training set and the two benchmarks. Typically, in the training set we see
a wide separation between native and non-native structures. This happens because
decoys in the training set have only a few near-native structures with lRMSD<10Å.
On the contrary, about 28% of the Rosetta decoys are the near-native structures.
The ZDOCK benchmark has few near-native decoys compared to Rosetta, only 1.5%
of the decoys have the near-native conformations.

For the decoys from the ZDOCK and Rosetta benchmarks, we computed the
Pearson correlation between lRMSD and the score using near-native decoys with
lRMSD<10Å. In this calculation, we considered only the structures that have at
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least 50 such decoys. All 54 complexes from the Rosetta benchmark fulfilled this
criterion whereas only 24 complexes from the ZDock benchmark had more than 50
near-native decoys. The average Pearson correlation for the Rosetta benchmark is
0.31 whereas for the ZDock benchmark it is approximately 0.21. We investigated
the reason of this discrepancy by looking at the atom-pairs distance distributions
of the decoys from the training set, the ZDock and Rosetta benchmarks. For our
analysis, we used decoys of the three common structures from these sets, PDB codes
1PPE, 1CGI, 1ACB. For these decoys, we computed the average total number of
atom pairs at a certain distance using Eq. 3.4. Then, we normalized these dis-
tributions on a reference number of pairs αr3. We tuned coefficient α in such a
way to make each plot approach the value 1.0 when the distance approaches 12.0Å.
Figure 3.14 plots normalized atom-pairs distance distributions for the three above-
mentioned complexes. From this figure we see that the distance distributions for
the Rosetta benchmark are much closer to the native distributions compared to
the ZDOCK and training set distributions. We can also see that the Hex dock-
ing program [111], which we used for the generation of the training set, produces
fewer short-distance atom contacts compared to ZDOCK. Since Rosetta decoys were
additionally minimized using the Rosetta scoring function, they do not have short-
distance atom contacts and generally their distance distributions resemble the native
statistics. Native structures neither have statistics at short distances. Therefore,
reconstructed potentials in the vicinity of zero are not reliable and can not provide
fair scores for e.g. decoys generated with ZDOCK, since these decoys have many
short-distance contacts. Ideally, one needs to additionally penalize short-distance
contacts using, e.g., empirical scores that cannot be obtained with statistics from
the native structures. However, in this study we do not attempt to provide such
additional penalization and only focus on the potentials directly obtained from the
training set of the protein structures.
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Figure 3.14: The normalized atom-pairs distance distributions for three complexes
1PPE, 1CGI, and 1ACB. For each complex, four plots are shown: average ZDOCK
distribution, average Rosetta distribution, average training set distribution and the
native distribution. The average is taken over all decoys from the two benchmarks
and the training set.

3.3.6.2 Filtering

Some knowledge-based potentials are smoothed with a smoothing filter a posteriori.
For example, Mitchel et al. [88] and Huang et al. [56] used a “1:2:4:2:1” filter,
DOPE potential is smoothed using cubic polynomials [123], etc. On the contrary,
our method introduces an assumption about interaction pair distance uncertainty a
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priory. More specifically, we collect statistics using gaussian events of a variance σ
(Eq. 3.4). We determine the value of the variance from the afore-mentioned cross-
validation procedure. Then, according to Eqs. 3.5–3.6, ConvexPP scoring function
is smooth by construction. In other words, we do not need to apply a smoothing
filter to the obtained potentials, since we introduce the uncertainty when we collect
statistics.

Another parameter that indirectly influences the smoothness of the resulting
potential is the regularization parameter C (3.23). According to Eq. 3.19, the
scoring vector w, from which the scoring potentials are derived, is a weighted sum
of the support structure vectors xij. The more support structure vectors are in the
sum, the more regular the scoring vector w will be. On the other hand, this number
equals to the number of non-zero Lagrange multipliers λij (Eq. 3.19) , which is
uniquely defined by the value of the regularization parameter C [105]. Decreasing C
results in the increase of the number of non-zero λij therefore resulting in smoother
scoring potentials. We also determine the value of this parameter by the cross-
validation procedure.

The consistent determination of the two parameters σ and C allows us to obtain
smooth potentials (Eq. 3.6) directly as the solution of the optimization problem
(Eq. 3.17).

3.3.6.3 Uniqueness of the solution and the reference state

The concept of the statistical knowledge-based potentials is based on the definition
of two states: the observed state and the reference state [131, 89, 126]. The ob-
served state is usually the state when a single protein or a complex has the native
conformation. It can be derived from the crystal structures. Reference state was
introduced as an atom pair distance distribution when the interactions between the
atom pairs are absent. The knowledge-based potential is then expressed in terms of
these two states as:

uij(r) = −RT ln

(
N obs
ij (r)/N obs

ij

N ref
ij (r)/N ref

ij

)
,

where N ref
ij (r) and N obs

ij (r) are the numbers of atomic pairs i, j at a distance r in the

reference and observed states, correspondingly, and numbers N ref
ij and N obs

ij are the
total numbers of pairs i, j in these states. Some widely used approaches to derive the
reference state for protein folding are the ideal-gas approximation [156], the shuffling
of atoms [116], a random-walk chain [154], etc. For protein docking Chuang et al.
used decoys as the reference state [26], Bernard and Samudrala took the average over
the atomic pairs and a cumulative distribution function for all pairs as two reference
states [15], etc. The very wide variety of approaches to derive the reference state
has its roots in the loose definition and the complexity of the problem.

Recently, the new algorithms that avoid the reference state calculation appeared.
We should mention the iterative scheme used by Huang et al.[56] and the neural
network classifier by Chae et al. [23]. These algorithms indeed avoid the definition
of the reference state. However, they do not guarantee the uniqueness of their
solution. On the contrary, we showed that our algorithm converges to the global
minimum of the function (Eq. 3.17). Thus, we avoid dependence on the initial guess
of the interaction potential.
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Chapter 4

Conclusion and outlook

The aim of the work was the development and validation of new algorithms that
could lead to certain advances in the fields of exhaustive rigid-body search and
scoring of protein-protein complexes conformations. During this work the Hermite
fitting algorithm was proposed that is not only competable with the state-of-art
approaches to this problem, but adds a new class of algorithms, that operate in
Hermite functions space, to the existing ones, that function if spherical harmonics
and grid representations of a function. A new algorithm to obtain a scoring functions
was proposed that is derived from basic logical considerations about the nature of
the training dataset. It avoids common unsolved problems with the reference state
and has a valuable property of global convergence. It was applied with success to
the problems of protein-protein conformations scoring as well as to the prediction
of positions of crystallographic water molecules at the protein-protein interaction
interface. It was validated using well established benchmarks and community-wide
critical prediction of protein interaction assessement challenge.

4.0.7 Future developments

With the advent of the post-genomic era, the cost of whole-genome sequencing
plummets and the number of sequenced organisms grows rapidly. However, the pro-
teomics field still did not step into the phase of the exponential growth. Therefore I
believe, that probing protein-protein interactions on the scale of proteome will rev-
olutionize the fields of interactomics, evolution and systems biology. The methods
that currently applied to discover protein interaction network are either large-scale,
but give big number of false- positives and negatives or fit for the discovering de-
tailed picture of single protein-protein complex. Bridging the gap between these two
classes of methods would be a tremendous leap forward in the field of protein-protein
interaction prediction.

Therefore it is worth trying to optimize current rigid-body search algorithms to
scale the computations up. The parallel computing paradigm and especially gen-
eral GPU programming could lead to a considerable HermiteFit algorithm runtime
reduction.

In the area of scoring functions I believe that the paradigm of predefined atom
types should be overcomed. The newly emerging area of dimentionality reduction
and deep learning surely will bring new advances to the scoring field.

Another direction of expanding this work is to integrate the developed algorithms
into one user-friendly package for the convenient use by those who do not posess
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programming skills required to implement them.
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Appendix A

Dual optimization problem

Optimization problem (Eq. 3.17) can be solved by the classical method of Lagrange
multipliers [17, 29]. If we introduce N × D nonnegative Lagrange multipliers λij
associated with the first set of inequality constraints from Eq. 3.17 and N × D
nonnegative Lagrange multipliers νij associated with the second set of inequality
constraints from (3.17), the solution of problem in Eq. 3.17 is equivalent to deter-
mining the saddle point of the following Lagrangian function:

L =
w ·w

2
+
∑
ij

Cijξij −
∑
ij

λij (yij [w · xij − bj]− 1 + ξij) −
∑
ij

νijξij (A.1)

with L = L(w,b, ξ,λ,ν), where b = (b1, b2, . . . , bD), ξ = (ξ11, ξ12, . . . , ξND), λ =
(λ11, λ12, . . . , λND), and ν = (ν11, ν12, . . . , νND). At the saddle point, L has a mini-
mum with respect to w, b and ξ and a maximum with respect to λ and ν. According
to the classical Karush-Kuhn-Tucker (KKT) conditions [77, 17], which is a general-
ization of the method of Lagrange multipliers to inequality constraints, the saddle
point of the Lagrangian function (Eq. A.1) satisfies four following conditions:

1. Stationarity conditions:

∂L

∂w
= w −

∑
ij

yijλijxij = 0 (A.2)

∂L

∂bj
=
∑
i

yijλij = 0 (A.3)

∂L

∂ξij
= Cij − λij − νij = 0 (A.4)

2. Complementary slackness conditions:

λij (yij [w · xij − bj]− 1 + ξij) = 0 (A.5)

νijξij = 0 (A.6)

3. Primal feasibility conditions:

yij [w · xij − bj]− 1 + ξij ≥ 0 (A.7)

ξij ≥ 0 (A.8)
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4. Dual feasibility conditions:

λij ≥ 0 (A.9)

νij ≥ 0 (A.10)

Using equation A.1 along with the aforementioned KKT conditions (Eq. A.2 -
Eq. A.10), we can rewrite the original optimization problem (Eq. 3.17) as:

Maximize L(λij): L(λij) =
∑

ij λij −
1
2

∑
ij

∑
kl yijyklλijλklxij · xkl

Subject to:
0 ≤ λij ≤ Cij∑

i yijλij = 0
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Appendix B

Sequential minimal optimization
algorithm

Here we describe how the SMO algorithm [104] solves the problem in Eq. 3.18 for two
Lagrange multipliers, λ1 and λ2. All quantities that refer to the first multiplier have
a subscript 1 and all quantities that refer to the second multiplier have a subscript 2.
SMO first computes the constraints on these multipliers and then solves the problem
(Eq. 3.18) for the constrained maximum. The inequality constraints in Eq. 3.18
force the two multipliers to lie within a box [0, C1] × [0, C2], while the equality
constraints force the two multipliers to lie on a diagonal line segment:

y1λ1 + y2λ2 = γ (B.1)

This equation explains why we need to optimize two Lagrange multipliers simulte-
niously. Precisely, it is not possible to optimize a single multiplier without breaking
the equality constraints in Eq. 3.18 and, subsequently, breaking the constraints (Eq.
B.1).

Without loss of generality, SMO first computes the second Lagrange multiplier
λ2 and then expresses the ends of the diagonal line segment in terms of λ2. The
following lower and upper bounds, L2 and H2, apply to λ2:

1. if y1 = y2:

L2 = max(0, γy2 − C1)

H2 = min(C2, γy2)

2. if y1 6= y2:

L2 = max(0, γy2)

H2 = min(C2, γy2 + C1)

On the next step SMO computes the location of the unconstrained maximum of the
Lagrangian with respect to λ2:

∂L(λ1, λ2)

∂λ2

= 0 (B.2)

The corresponding unconstrained λ2 will be:

λnew
2 = λold

2 + y2
(x2 − x1) ·wold + y1 − y2

ν
(B.3)
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Next, SMO computes the constrained maximum by clipping the unconstrained max-
imum to the ends of the line segment:

λnew,clipped
2 =


L, if λnew

2 ≤ L

λnew
2 , if L < λnew

2 < H

H, if λnew
2 ≥ H

(B.4)

Finally, SMO determines the value of λ1 from the new clipped value of λ2:

λnew
1 = λold

1 − y1y2(λnew,clipped
2 − λold

2 ) (B.5)
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Appendix C

Docking benchmarks results
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Rigid-Body
1AHW 547 2.14 0.91 0.79 465 2.14 0.91 0.79

1BVK - - - - - - - -

1DQJ - - - - - - - -

1E6J 35 4.21 2.26 0.48 63 3.78 1.92 0.68

1JPS 62 4.14 1.11 0.78 127 3.54 0.98 0.70

1MLC 5 4.70 1.12 0.39 2 4.70 1.12 0.39

1VFB 1239 10.89 2.48 0.30 948 10.89 2.48 0.30

1WEJ 1 4.13 1.30 0.75 1 2.20 1.16 0.75

2FD6 8 15.65 2.16 0.80 99 15.65 2.16 0.80

2I25 83 4.45 1.87 0.33 195 7.92 2.21 0.36

2VIS 617 23.89 2.37 0.43 326 23.89 2.37 0.43

1BJ1 2 2.82 0.98 0.86 8 2.82 0.98 0.86

1FSK 3 3.98 1.39 0.81 2 3.52 1.25 0.74

1I9R 462 16.85 2.30 0.48 119 16.85 2.30 0.48

1IQD 16 4.20 0.97 0.67 8 6.90 1.95 0.46

1K4C 242 5.78 1.31 0.62 1177 5.78 1.31 0.62

1KXQ 1 3.06 1.04 0.88 1 3.06 1.04 0.88

1NCA 12 4.50 1.38 0.86 29 4.50 1.38 0.86

1NSN 636 4.95 2.00 0.50 409 4.95 2.00 0.50

1QFW 1315 5.12 1.35 0.73 1274 5.12 1.35 0.73

1QFW 1315 5.12 1.35 0.73 1274 5.12 1.35 0.73

2JEL 957 6.83 2.30 0.31 485 6.83 2.30 0.31

1AVX 3 4.85 2.23 0.39 5 4.85 2.23 0.39

1AY7 185 5.73 1.82 0.45 126 7.85 2.46 0.45

1BVN 3 4.09 1.74 0.50 2 4.09 1.74 0.50

1CGI 61 3.20 2.30 0.49 37 3.20 2.30 0.49

1D6R - - - - - - - -

1DFJ 1 5.97 2.42 0.50 1 5.97 2.42 0.50

1E6E 9 4.01 2.41 0.42 8 3.87 1.59 0.69
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1EAW 1 2.60 1.03 0.70 1 2.60 1.03 0.70

1EWY 21 3.16 1.74 0.56 49 3.16 1.74 0.56

1EZU - - - - - - - -

1F34 38 3.41 1.45 0.54 30 3.41 1.45 0.54

1HIA - - - - - - - -

1MAH 1 3.64 1.26 0.69 2 4.17 1.48 0.61

1N8O 1 2.94 1.24 0.74 1 2.94 1.24 0.74

1OPH - - - - - - - -

1PPE 1 4.62 1.52 0.71 1 3.92 1.43 0.74

1R0R 2 8.36 2.46 0.40 4 8.36 2.46 0.40

1TMQ 8 6.11 1.97 0.45 1 6.11 1.97 0.45

1UDI - - - - - - - -

1YVB 8 7.33 1.92 0.71 9 7.33 1.92 0.71

2B42 8 9.44 2.23 0.43 1 9.44 2.23 0.43

2MTA 125 3.76 1.88 0.50 197 3.76 1.88 0.50

2O8V - - - - - - - -

2PCC 458 6.29 2.19 0.44 622 6.29 2.19 0.44

2SIC 3 5.92 1.19 0.73 2 5.92 1.19 0.73

2SNI 8 8.57 2.45 0.57 2 8.57 2.45 0.57

2UUY 233 13.72 2.38 0.66 346 13.72 2.38 0.66

7CEI 4 8.41 2.46 0.65 1 6.39 1.94 0.65

1A2K - - - - - - - -

1AK4 - - - - - - - -

1AKJ 395 3.30 1.54 0.60 388 5.59 1.96 0.57

1AZS 1 11.04 1.88 0.69 5 12.49 1.74 0.65

1B6C 2 3.67 2.23 0.90 1 3.67 2.23 0.90

1BUH 1 3.42 1.81 0.63 4 3.42 1.81 0.63

1E96 261 6.03 2.18 0.58 425 5.56 1.99 0.54

1EFN - - - - - - - -

1F51 16 3.41 1.82 0.60 11 3.41 1.82 0.60

1FC2 - - - - - - - -

1FQJ - - - - - - - -

1GCQ 118 1.98 1.19 0.71 141 1.98 1.19 0.71

1GHQ - - - - - - - -

1GLA 57 4.91 2.22 0.37 273 4.91 2.22 0.37

1GPW 1 7.10 2.44 0.39 1 7.10 2.44 0.39

1HE1 301 5.93 1.74 0.38 324 5.93 1.74 0.38

1I4D - - - - - - - -

1J2J 86 5.59 2.12 0.55 97 5.59 2.12 0.55

1K74 8 7.90 2.02 0.48 1 6.65 2.30 0.70

1KAC 287 4.47 2.21 0.36 105 4.47 2.21 0.36

1KLU - - - - - - - -

1KTZ 282 5.39 1.25 0.63 735 5.39 1.25 0.63

1KXP 1 7.43 2.17 0.51 4 7.43 2.17 0.51

1ML0 1 4.47 1.89 0.61 1 4.47 1.89 0.61

1QA9 - - - - - - - -

1RLB 7 9.11 1.93 0.66 10 9.11 1.93 0.66

1S1Q 766 2.35 1.53 0.58 1187 2.35 1.53 0.58
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1SBB - - - - - - - -

1T6B 89 5.91 2.03 0.64 1 5.91 2.03 0.64

1XD3 6 4.87 2.49 0.30 8 5.34 1.96 0.40

1Z0K 11 4.59 1.68 0.56 5 4.59 1.68 0.56

1Z5Y 8 6.58 1.97 0.50 8 6.58 1.97 0.50

1ZHI 78 9.90 1.96 0.61 165 4.85 1.68 0.52

2AJF - - - - - - - -

2BTF 655 6.00 2.20 0.33 736 6.00 2.20 0.33

2HLE 9 6.84 2.35 0.35 8 4.11 2.08 0.54

2HQS 576 8.94 2.30 0.37 117 8.94 2.30 0.37

2OOB - - - - - - - -

Medium
1BGX - - - - - - - -

1ACB - - - - - - - -

1IJK 124 6.42 1.83 0.25 319 5.02 1.35 0.38

1KKL 325 6.23 2.50 0.44 311 6.23 2.50 0.44

1M10 - - - - - - - -

1NW9 - - - - - - - -

1GP2 - - - - - - - -

1GRN 1785 7.10 2.49 0.00 1758 7.10 2.49 0.00

1HE8 - - - - - - - -

1I2M - - - - - - - -

1IB1 - - - - - - - -

1K5D 1185 8.04 2.03 0.29 1656 7.24 2.31 0.19

1N2C - - - - - - - -

1WQ1 - - - - - - - -

1XQS 199 5.60 2.28 0.38 319 5.60 2.28 0.38

2CFH 1 5.20 2.12 0.36 1 5.20 2.12 0.36

2H7V 8 13.69 2.47 0.44 8 13.69 2.47 0.44

2HRK - - - - - - - -

2NZ8 - - - - - - - -

Difficult
1E4K - - - - - - - -

2HMI - - - - - - - -

1FQ1 - - - - - - - -

1PXV - - - - - - - -

1ATN - - - - - - - -

1BKD - - - - - - - -

1DE4 - - - - - - - -

1EER - - - - - - - -

1FAK - - - - - - - -

1H1V - - - - - - - -

1IBR - - - - - - - -

1IRA - - - - - - - -

1JMO - - - - - - - -

1R8S - - - - - - - -

1Y64 - - - - - - - -

2C0L - - - - - - - -
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2OT3 - - - - - - - -

Homologs Top1: 10.5% (13/124) Top1: 12.1% (15/124)

included Top10: 27.4% (34/124) Top10: 29.0% (36/124)

Table C.1: ZDock benchmark results. Proteins homologous to the ones in the
training set are shown with bold font. Absense of hits among first 1000 predictions
is shown with hyphens.
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1ACB 2 1 4.31 1.13 0.78 2 1 4.31 1.13 0.78

1A0O 3 1 11.33 5.79 0.35 3 1 6.35 3.44 0.47

1AHW 2 1 4.82 2.31 0.44 2 1 4.82 2.31 0.44

1ATN 1 1 2.34 0.71 0.77 1 1 2.34 0.71 0.77

1AVW 2 1 6.01 1.38 0.75 2 1 6.01 1.38 0.75

1AVZ 3 20 8.41 4.41 0.12 3 16 8.41 4.41 0.12

1BQL 1 1 1.40 0.96 0.89 2 1 3.78 2.35 0.37

1BRC 2 1 7.24 1.62 0.76 2 1 7.24 1.62 0.76

1BRS 3 1 8.70 3.79 0.31 3 1 8.70 3.79 0.31

1BTH 3 1 5.59 2.67 0.44 3 1 5.59 2.67 0.44

1BVK 3 1 7.75 3.45 0.22 3 1 8.72 3.78 0.22

1CGI 3 3 6.44 2.11 0.38 3 5 6.46 2.05 0.47

1CHO 2 1 6.35 1.81 0.66 2 1 6.35 1.81 0.66

1CSE 3 1 7.87 2.29 0.40 3 1 7.87 2.29 0.40

1DFJ 2 1 5.63 2.55 0.67 2 1 5.63 2.55 0.67

1DQJ 3 1 14.01 6.06 0.38 3 1 14.01 6.06 0.38

1EFU 3 20 5.90 4.65 0.11 3 14 5.90 4.65 0.11

1EO8 3 1 10.90 3.29 0.42 3 1 10.90 3.29 0.42

1FBI 3 1 11.03 4.23 0.36 3 1 11.03 4.23 0.36

1FIN 3 200 8.27 6.06 0.10 3 240 8.27 6.06 0.10

1FQ1 3 1 6.79 4.02 0.43 3 1 6.79 4.02 0.43

1FSS 2 1 3.89 1.54 0.63 2 1 3.89 1.54 0.63

1GLA 2 1 6.20 1.70 0.84 2 1 6.20 1.70 0.84

1GOT 3 2 12.91 3.21 0.17 3 2 10.92 3.22 0.13

1IAI 2 1 3.82 1.62 0.33 2 1 3.82 1.62 0.33

1IGC 1 1 1.92 0.56 1.00 1 2 1.92 0.56 1.00

1JHL 3 2 7.65 3.94 0.31 3 3 8.55 3.90 0.38

1MAH 2 1 3.71 1.15 0.78 2 1 3.55 1.16 0.75

1MDA 2 2 6.65 2.38 0.52 2 2 6.65 2.38 0.52

1MEL 2 1 7.89 2.84 0.52 2 1 7.89 2.84 0.52

1MLC 3 1 15.41 3.04 0.24 3 1 15.41 3.04 0.24

1NCA 2 1 7.62 2.13 0.66 2 1 7.62 2.13 0.66

1NMB 1 1 2.66 0.57 1.00 1 1 2.66 0.57 1.00

1PPE 1 1 1.38 0.54 0.89 1 1 1.38 0.54 0.89

1QFU 1 1 3.89 0.98 0.67 1 1 3.89 0.98 0.67

1SPB 1 1 1.04 0.54 0.82 1 1 1.04 0.54 0.82
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1STF 1 1 1.57 0.51 0.94 1 1 1.57 0.51 0.94

1TAB 2 1 4.11 1.47 0.68 2 1 4.11 1.47 0.68

1TGS 3 1 8.41 3.55 0.44 3 1 8.41 3.55 0.44

1UDI 2 1 2.08 1.09 0.71 2 1 2.08 1.09 0.71

1UGH 2 1 4.61 1.96 0.60 2 1 4.61 1.96 0.60

1WEJ 3 1 9.37 4.79 0.23 3 1 9.37 4.79 0.23

1WQ1 2 2 3.83 1.59 0.58 3 3 8.42 3.29 0.35

2BTF 1 1 1.31 0.60 0.90 1 1 1.31 0.60 0.90

2JEL 2 1 6.42 1.26 0.86 2 1 6.42 1.26 0.86

2KAI 1 8 2.26 0.89 0.88 1 7 2.26 0.89 0.88

2PCC 3 1 9.40 4.31 0.48 3 1 9.40 4.31 0.48

2PTC 2 1 5.30 1.16 0.74 2 1 5.30 1.16 0.74

2SIC 1 1 4.84 0.96 0.82 1 1 4.01 0.79 0.86

2SNI 2 1 7.38 2.00 0.61 2 1 7.38 2.00 0.61

2TEC 1 1 1.97 0.59 0.80 1 1 2.10 0.59 0.84

2VIR 2 1 5.78 1.03 0.67 2 1 5.78 1.03 0.67

3HHR 3 1 9.41 3.47 0.33 3 1 9.74 3.74 0.38

4HTC 2 1 4.04 1.50 0.76 2 1 4.04 1.50 0.76

Top1: 83.3% (45/54) Top1: 81.5% (44/54)

Homologs Top1 and quality 1: 20.4% (11/54) Top1 and quality 1: 16.7% (9/54)

included Top1 and quality 1 or 2: 57.4% (31/54) Top1 and quality 1 or 2: 55.6% (30/54)

Top10 and quality 1 or 2: 63.0% (34/54) Top10 and quality 1 or 2: 61.1% (33/54)

Table C.2: Rosetta unbound benchmark results. Proteins homologous to the ones
in the training set are shown with bold font. Absense of hits among first 1000
predictions is shown with hyphens.
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EM structure of a nonenveloped virus reveals a priming mechanism for cell
entry. Cell, 141(3):472–482, 2010.

[156] Hongyi Zhou and Yaoqi Zhou. Distance-scaled, finite ideal-gas reference state
improves structure-derived potentials of mean force for structure selection and
stability prediction. Protein Science, 11(11):2714–2726, 2002.

107


	Introduction
	Role of proteins and their interactions in the cell
	Classification of protein-protein interactions

	Experimental methods to probe protein-protein interactions
	Yeast two-hybrid method (Y2H)
	Mass spectrometry and tandem affinity purification
	Gene co-expression
	Synthetic lethality
	Fluorescence resonance energy transfer
	Isothermal titration calorimetry
	Nuclear magnetic resonance spectroscopy (NMR)
	X-ray crystallography

	Computational methods to probe protein-protein interactions
	Top-down approaches

	Aim of work

	Hermite fitting
	Introduction
	Methods
	Decomposition of electron densities into the orthogonal Hermite basis
	Shifted Gaussian expansion
	Expansion of a function defined on a grid
	Laplacian filter in the Hermite basis
	Rotation of the Hermite decomposition
	Transition from the Hermite to the Fourier basis
	Fast summation
	Implementation details and running time

	Analysis
	Choice of parameters of the method
	The transfer matrix
	Asymptotic behaviour of the transfer matrix
	Encoding quality
	Resolution model

	Results and Discussion
	Alpha-conotoxin PnIB
	GroEL complex
	Runtime of Hermite- to Fourier- space transition


	Scoring functions for protein-protein docking
	Introduction
	Methods
	Problem Formulation
	Expansion of U(r) and n(r) in an orthogonal basis
	Geometrical interpretation and connection to quadratic programming
	Algorithm
	Training database for protein-protein interactions

	Results and Discussion
	Overfitting and Convergence
	Protein-Protein docking benchmark version 3.0


	Conclusion and outlook
	Future developments

	Dual optimization problem
	Sequential minimal optimization algorithm
	Docking benchmarks results

