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Abstract

THIS thesis deals with the theoretical analysis and the application of a new family
of cooperative games, where the worth of each coalition can be computed from
the contributions of single players via an additive operator describing how the

individual abilities interact within groups. Specifically, we introduce a large class of
games, namely the Generalized Additive Games, which encompasses several classes
of cooperative games from the literature, and in particular of graph games, where a
network describes the restriction of the interaction possibilities among players. Some
properties and solutions of such class of games are studied, with the objective of pro-
viding useful tools for the analysis of known classes of games, as well as for the con-
struction of new classes of games with interesting properties from a theoretic point of
view. Moreover, we introduce a class of solution concepts for communication situa-
tions, where the formation of a network is described by means of an additive pattern,
and in the last part of the thesis we present two approaches using our model to real-
world problems described by graph games, to the fields of Argumentation Theory and
Biomedicine.
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CHAPTER1

Introduction

A Transferable Utility (TU) game with n players specifies a vector of 2n − 1 real
numbers, i.e., a number for each non-empty subset of players, which is difficult to
handle for large n. Since the number of coalitions grows exponentially with respect
to the number of players, it is computationally very interesting to single out classes
of games that can be described in a concise way. Therefore, several models from the
literature on cooperative games focus on interaction situations which are characterized
by a compact representation of a TU-game, and such that the worth of each coalition can
be easily computed. A compact representation not only allows to reduce the complexity
of describing the game and computing solutions but also enables to collect a variety of
real problems under a unified formalism.
Several classes of games describing in a compact way the synergism among players are
found in the literature: among them, profit sharing and cost allocation games, market
games, optimization games (spanning tree games, flow games and linear programming
games) and voting games (see [17] and [54] for a survey on coalitional games and
operation research games).
In particular, there exist several approaches for defining classes of games whose concise
representation is derived by an additive pattern among coalitions. In some contexts,
due to an underlying structure among the players, such as a network, an order, or a
permission structure, the value of a coalition S ⊆ N , where N is a finite set of players,
can be derived additively from a collection of subcoalitions {T1, · · ·Tk}, Ti ⊆ S ∀i ∈
{1, · · · , k}. Such situations are modelled, for example, by the graph-restricted games,
introduced by Myerson in [75] and further studied by Owen in [78]; the component
additive games [30], and the restricted component additive games [29].

Sometimes, the worth of each coalition is computed from the values that single
players can guarantee themselves by means of a mechanism describing the interactions
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Chapter 1. Introduction

of individuals within groups of players. In the simplest case we can consider that,
when a coalition of players forms, each player brings his own value and the worth of
the coalition is computed as the sum of the single contributions of players that form it.
As an example, consider a cost game where n players want to buy online n different
objects and the value of a single player in the game is defined as the price of the object
he buys. Then if a group S of players agree to make the purchase together, the cost
of the operation will simply be the sum of the s = |S| prices of the objects bought by
players in S, i.e. the sum of the costs that the single players in S should bear if they
bought the objects separately.
This situation can be described by means of an additive game, where the value of a
coalition is computed as the sum of the disjoint coalitions that form it. An additive
game is indeed determined by the vector of the n values of the singletons players and
therefore provides a compact way to represent interaction situations among players.
However, such a model may fail to reflect the importance of a subset of players in
contributing to the value of the coalition it belongs to. In the previous example, it is
often the case that, by making a collective purchase, when a certain threshold price is
reached, some of the objects will be sold for free and therefore the price that a coalition
S should pay will depend only on the price of a subset of purchased objects.

In fact, in several cases the procedure used to assess the worth of a coalition S ⊆ N
is strongly related to the sum of the individual values over another subset S ⊆ N , not
necessarily included in S.
Many examples from the literature fall into this category. As a simple example, con-
sider the well-known glove game: the set of players N is divided into two categories,
the players in L that own a left-hand glove, and those in R with a right-hand glove.
The worth of a coalition of players S ⊆ N is defined as the number of pairs of gloves
owned by the coalition S. In this context, the valuable players in a coalition are those
whose class is represented by a minority of the players, since the value of S is given
by the minimum between the number of players in S ∩ L and in S ∩ R. Therefore, we
can represent this game by assigning value 1 to each player and by describing the worth
of each coalition S as the sum of single players’ values over the smaller subset among
S ∩ L and S ∩ R. A similar approach can be used to describe several other classes
of games from the literature and in particular some classes of graph games, among
them the airport games [63, 64], the connectivity game and its extensions [2, 62], the
argumentation games [16] and classes of operation research games, such as the peer
games [19] and the mountain situations [73].
A coalitional game describes a situation in which all players can freely interact with
each other, i.e. every coalition of players is able to form and cooperate. However, this
is not the case in many real world scenarios and in many cases it is necessary to drop
the assumption that all coalitions are feasible. A typical way to model the restriction of
the interaction possibilities between players is through a network structure.
In graph games, a graph (or network) describes the interaction possibilities between
players: the nodes of the network are the players of the game and there exists a link
between two nodes if the corresponding players are able to interact directly. As an
example, in argumentation games, an underlying direct graph describes the attack rela-
tions among the arguments in an opinion: there exists an edge from one argument to the
other if the former attacks the latter; in peer games a rooted directed network describes
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the hierarchical structure among agents: there exists a direct link from one node to the
other if the former is a superior of the latter in the hierarchy that has the leader of the
organization as the root node; in mountain situations a rooted directed graph represents
the connection possibilities among houses in a village and a source (e.g. a water puri-
fier): there is a link between a house and a lower one if it is possible to connect them in
order to create a channel that allows the water to reach the source.
The network structure models the restrictions of the interaction possibilities among
players, thus determining how the individual abilities interact within groups of players:
if we define the value of a coalition of arguments as its self-consistency, i.e.the number
of arguments that are not attacked by another argument in the coalition, then a player
in an argumentation game would contribute to a coalition it belongs to only if none of
his attackers belongs to the coalition; an agent in a peer game would contribute with
his individual value to the maintenance of the hierarchical organization if all players at
an upper level in the hierarchy cooperate with him, in other words he would contribute
only to those coalitions that contain all his superiors; a house in a mountain situation
would contribute to the division of the cost of connection to the source only if it lies on
the minimum cost tree connecting the players to the source.
In other words, in many cases, the network structure prescribes which players shall con-
tribute to the value (or cost) of a given coalition, by bringing together their individual
values.

In all the aforementioned models, the value of a coalition S of players is calculated
as the sum of the single values of players in a subset of S. On the other hand, in some
cases the worth of a coalition might be affected by external influences and players
outside the coalition might contribute, either in a positive or negative way, to the worth
of the coalition itself. This is the case, for example, of the bankruptcy games [5] and
the maintenance problems [58].

The first part of this thesis is devoted to the introduction of a game-theoretical model
that encompasses all the aforementioned classes of coalitional games. In Chapter 3,
we introduce the class of Generalized Additive Games (GAGs), where the worth of a
coalition S ⊆ N is evaluated by means of an interaction filter, that is a map M which
returns the valuable players involved in the cooperation among players in S.
The objective of this model is to provide a general framework for describing several
classes of games studied in the literature on coalitional games, and particularly on graph
games, and to give a kind of taxonomy of coalitional games that are ascribable to this
notion of additivity over individual values.
The general definition of the map M allows various and wide classes of games to be
embraced, as for example the simple games. Moreover, by making further hypothesis
on M, our approach enables to classify existing games based on the properties of M.
In particular, we introduce the class of basic GAGs, which is characterized by the fact
that the valuable players in a coalition S are selected on the basis of the presence,
among the players in S, of their friends and enemies, that is, a player contributes to the
value of S if and only if S contains at least one of his friends and none of his enemies
is present.
Several of the aforementioned classes of games can be described as basic GAGs, as
well as games deriving from real-world situations. As an example, this model turns out
to be suitable for representing an online social network, where friends and enemies of
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Chapter 1. Introduction

the web users are determined by their social profiles. Moreover, Chapter 7 presents an
application of basic GAGs to the field of Biomedicine.
The interest of this classification is not only taxonomical, since it also allows to study
the properties of solutions for classes of games known from the literature and provides
some potentially useful tools for computing solutions of new classes of games that may
fall into this classification.

In Chapter 4, we indeed provide results on classical solution concepts for basic
GAGs, and we address the problem of how to guarantee that a basic GAG has a non-
empty core. In particular, we give concise formulas for the semivalues for some families
of basic GAGs and we provide sufficient conditions for the core of a basic GAG to be
non empty.

In a GAG, the worth of each coalition is computed as the sum of the individual
values of a subset of players. On the other hand, in many cases, when an underlying
network describes the interaction among the players involved, it is possible to derive
the worth of each coalition of players as the sum of the contributions that their pairwise
interactions generate, that is as the sum of the individual values assigned to the edges
in the underlying network. As an example, in maintenance cost games [58], a tree de-
scribes a maintenance system such as a computer network, with a service provider as
root. The cost of connection of a set of computers to the provider is described by a
coalitional game and computed as the sum of the costs of maintenance of all the con-
nections among the computers lying on the corresponding minimum cost spanning tree,
that is as the sum of the costs associated to the edges in the induced tree.
As for the maintenance cost game, in several other graph games the worth of a coali-
tion can be additively computed starting from the values assigned to the edges in the
underlying graph. Moreover, as in graph-restricted game the value of a coalition can
be derived additively from a collection of subcoalitions of players, for the class of link
games, introduced by Meessen [70] and further studied by Borm et al. [18], the value
of a coaliton of links can be derived additively from a collection of subcoalitions of
links. Indeed, several approaches to coalitional games on networks rely on additive
patterns among links, not only for what concerns the definition of a game, but also for
the analysis of the relative solutions.

The second part of this thesis is indeed devoted to the introduction of a class of
solution concepts for communication situations [75], where the payoff to each player
is additively computed starting from the values generated by pairwise relations among
players. More precisely, in Chapter 5, we consider a communication situation in which
a network is produced by subsequent formation of links among players and at each
step of the formation process, the surplus generated by a link is shared between the
players involved, according to some rule. As a consequence, we obtain a family of
solution concepts that we investigate on particular network structures. In particular,
it turns out that the position value, introduced by Borm et al. [18] as a solution for
communication situations, is obtained when a specific symmetric rule is considered.
Moreover, in the same Chapter, we investigate the problem of computing this particular
solution on special classes of communication situations.

The third and last part of this thesis is devoted to two applications of the game-
theoretical models described so far. A first application, presented in Chapter 6, is to the
field of argumentation theory [37]. Argumentation theory aims at formalizing decision
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systems and associated decision making processes. One of its objectives is the search
for sets of accepted conclusions in an argumentation framework, which is modelled as
a directed graph where nodes represent arguments, i.e. statements or series of state-
ments, and direct edges represent attack relations, which express conflict between pairs
of arguments.
In the literature, several extension semantics or labellings have been associated to the
abstract argumentation framework with the objective to specify which arguments are
accepted or not, and which are undecided [21, 37]. Different from extension seman-
tics, the aim of gradual semantics is to assign a degree of acceptability to each argu-
ment [4, 13, 24, 49, 97].
Game theory has also been used to define intermediate level of acceptability of argu-
ments. Specifically, in [67] a degree of acceptability is computed taking into account
the minimax value of a zero-sum game between a ‘proponent’ and an ‘opponent’ and
where the strategies and the payoffs of the players depend on the structure of an argu-
mentation graph. More recently, coalitonal games have been applied in [16] to measure
the relative importance of arguments taking into account both preferences of an agent
over the arguments and the information provided by the attack relations. In the afore-
mentioned approaches, the weight attributed to each argument represents the strength
of an argument to force its acceptability. On the other hand, acceptability is not the
only arguments’ attribute that has been studied in literature from a gradual perspective.
In [98] an index has been introduced to represent the controversiality of single argu-
ments, where the most controversial arguments are those for which taking a decision
on whether they are acceptable or not is difficult. In a similar direction, the problem
of measuring the disagreement within an argumentation framework has been studied
in [3], where the authors provide an axiomatic analysis of different disagreement mea-
sures for argumentation graphs.

In Chapter 6, we firstly show that the properties introduced in [3] for argumenta-
tion graphs can be reformulated for single arguments, and may drive the definition of
a conflict-based ranking, that can be seen as an alternative ranking for measuring the
controversiality of arguments. Secondly, we show that the conflict-based ranking we
propose may be re-interpreted in terms of a classical solution for coalitional games,
that is as the average marginal contribution of each argument to the disagreement in-
duced by all possible coalitions of arguments in an argumentation graph. We do so by
defining a cooperative game, where the players are the arguments in an argumentation
graph and every coalition of arguments is assigned a value, which expresses the total
disagreement within the coalition. In particular, every node and every link inside a
coalition of arguments contributes to the value of the coalition with its individual share
of the disagreement, as measured by the attack relations it brings to the coalition. The
so-defined game is indeed representable in terms of basic GAGs, as a combination of
the original model which will be introduced in Chapter 3 and its variant defined on
links. We propose the Shapley value of such a game as a conflict index that measures
the controversiality of arguments, since it measures the power of each argument in
bringing conflict to the argumentation framework. Considering persuasion scenarios,
we argue that our conflict-based ranking may drive agents to select those arguments that
should be further developed in order to strengthen certain position in a debate, hence,
responding to the question raised in [98] about the definition of a ranking representing
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Chapter 1. Introduction

the potential for development of arguments.
While Chapter 6 describes a game-theoretic approach to the field of argumentation

theory, Chapter 7 presents a real-world application of the model of GAGs to the field
of Biomedicine, and in particular to the problem of assessing the relevance of genes in
a biological network. Among biological networks, gene regulatory networks (or path-
ways) are of great interest in the field of molecular biology and epidemiology to better
understand the interaction mechanisms between genes, proteins and other molecules
within a cell and under certain biological condition of interest [20,23,31,93]. A crucial
point in the analysis of genes’ interaction is the formulation of appropriate measures of
the role played by each gene to influence the very complex system of genes’ relation-
ships in a network.
Centrality analysis represents an important tool for the interpretation of the interaction
of genes in a gene regulatory network [12, 22, 44, 52, 53]. Classical centrality mea-
sures [41,57] are used in network analysis to identify the relevant elements in a network,
based on their position within the network structure. However, they are appropriate un-
der the assumption that nodes behave independently and the system is sensible to the
behaviour of each single node. On the contrary, in biological complex networks, as-
suming that the genes may express independently is not realistic and the consequences
on the system can be appreciated only if many genes change their expression. There-
fore, in a complex scenario, such as the pathogenesis of a genetic disease, we deal with
the problem of quantifying the relative relevance of genes, taking into account not only
the behaviour of single genes but most of all the level of their interaction.
Cooperative game theory has been proposed as a theoretical framework to face such
limitations. Recently, several centrality measures based on coalitional game theory
have been successfully applied to different kinds of biological networks, such as brain
networks [55, 56, 59], gene networks [72], and metabolic networks [85].

We propose an approach, using coalitional games, and in particular basic GAGs
to the problem of identifying relevant genes in a gene network. The problem has been
firstly addressed by means of a game-theoretical model in [72], where the Shapley value
for coalitional games is used to express the power of each gene in interaction with the
others and to stress the centrality of certain hub genes in the regulation of biological
pathways of interest. Our model represents a refinement of this approach, which gen-
eralizes the notion of degree centrality [77, 89], whose correlation with the relevance
of genes for different biological functions is supported by several practical evidences
in the literature (see [12], [22], [52], [53], [103]). We define a basic GAG with a bio-
logical interpretation on gene networks and propose the Shapley value of such a game
as a new relevance index for genes, that evaluates the potential of genes in acting as
intermediaries between hub nodes and leaf nodes and preserving the overall regulatory
activity within gene networks. This approach is supported by an axiomatic characteri-
zation, where the set of properties satisfied by our index have a biological interpretation.
Moreover, a formula for the computation of the new relevance index is provided, which
can be directly derived from the theoretical results presented in Chapter 4. An experi-
mental study is conducted on a gene expression dataset from microarrays, related to a
lung cancer disease, as well as a comparison with classical centrality indices.
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The outline of the thesis is the following. Chapter 2 provides some preliminaries
on coalitional games and networks. Chapter 3 introduces the main model of General-
ized Additive Game (GAGs) and some possible extensions. Chapter 4 investigates the
problem of computing the core and the semivalues for basic GAGs. In Chapter 5 a new
family of solution concepts for communication situations is introduced and investigated
on particular classes of networks. Chapter 6 presents a game-theoretical approach to
measure conflict in argumentation graphs and, lastly, Chapter 7 describes an applica-
tion of basic GAGs to the problem of assessing the relevance of genes in a biological
network.
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CHAPTER2

Preliminaries

This chapter is devoted to illustrate some preliminaries on coalitional games and
networks. We refer to Maschler, Solan and Zamir [66] for a more accurate illustration
of the following concepts.

2.1 Coalitional Games

A cooperative game with transferable utility (TU-game), also referred to as coalitional
game, consists of a pair (N, v), where:

— N denotes the set of players;

— v : 2N → R is the characteristic function, a real-valued function on the family of
subsets of N .

A group of players S ⊆ N is called coalition and the characteristic function asso-
ciates to each coalition S a real number v(S), which is called the value or worth of the
coalition, representing the total payoff to the coalition of players when they cooperate,
whatever the remaining players do. The value of a coalition may represent a gain, or a
cost, depending on the situation modelled by the cooperative game. By convention, we
assume v(∅) = 0.
If the set N of players is fixed, we identify a coalitional game (N, v) with its character-
istic function v. We shall assume throughout this monograph that N = {1, · · · , n} and
denote by s the cardinality |S| of coalition S.
We shall denote by G the class of all coalitional games and by GN the class of all coali-
tional games with players set N . Clearly, GN is a vector space of dimension 2n − 1.
The canonical basis for this vector space is given by the family of canonical games
{eS, S ⊆ N}, where eS is defined as:
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Chapter 2. Preliminaries

eS(T ) =

{

1 if S = T

0 otherwise
∀S ⊆ N,S 6= ∅.

Another basis for GN is the family of the unanimity games {uS, S ⊆ N}, where uS is
defined as:

uS(T ) =

{

1 if S ⊆ T

0 otherwise
∀S ⊆ N,S 6= ∅.

Every coalitional game v can be written as a linear combination of unanimity games as
follows:

v =
∑

S⊆N,S 6=∅

cS(v)uS, (2.1)

where the constants cS(v), referred to as unanimity coefficients of v, can be inductively
defined in the following way: let c{i}(v) = v({i}) and, for S ⊆ N of cardinality s ≥ 2,

cS(v) = v(S)−
∑

T(S,T 6=∅

cT (v). (2.2)

An equivalent formula for the unanimity coefficients is the following:

cS(v) =
∑

T⊆S

(−1)|S|−|T | v(T ). (2.3)

Let C ⊆ G be a subclass of coalitional games. Given a set of players N , we denote
by CN ⊆ C the class of coalitional games in C with N as set of players. A particular
class of games is that of simple games, where the characteristic function v can only
assume values in {0, 1}.
A game (N, v) is said to be monotonic if it holds that v(S) ≤ v(T ) for all S, T ⊆ N
such that S ⊆ T and it is said to be superadditive if it holds that

v(S ∪ T ) ≥ v(S) + v(T )

for all S, T ⊆ N such that S ∩ T = ∅.
Moreover, a game (N, v) is said to be convex or supermodular if it holds that

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T )

for all S, T ⊆ N .
Given a game (N, v), where |N | = n, we call allocation an n-dimensional vector
(x1, . . . , xn) ∈ Rn assigning to player i ∈ N the amount xi. A solution for a coalitional
game prescribes how to convert the information on the worth of every coalition of
players into a single attribution to each of the players. The solutions for coalitional
games are classified into two groups: the ones which provide a (possibly empty) set of
allocations (e.g. the core), called set-valued solutions, and the ones which provide only
one allocation (e.g. the nucleolus and the power indices), called one-point solutions.

A subset of the set of allocations is that of imputations. An imputation is a vector
x ∈ Rn such that

∑

i∈N xi = v(N) and xi ≥ v({i}) for all i ∈ N , that is the set of

10
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allocations that satisfy efficiency and individual rationality. An important subset of the
set of the imputations is the core, which represents a classical solution concept for TU-
games. The core of v is defined as C(v) = {x ∈ Rn :

∑

i∈N xi = v(N),
∑

i∈S xi ≥
v(S) ∀S ⊂ N}, that is the set of imputations that also satisfy coalitional rationality.
Note that all the definitions in this Section hold for TU-games where v represents a
gain, while the inequalities should be replaced with ≤ when v is a cost function.

A one-point solution (or simply solution) for a class CN of coalitional games is
a function ψ : CN → Rn that assigns a payoff vector ψ(v) ∈ Rn to every coalitional
game in the class. A well-known solution is the Shapley value, that has been introduced
in 1953 by an axiomatic approach, which consists of providing a set of properties that
a solution for TU-games should satisfy [88].
Let ΣN be the set of linear orders on the set N , that is the set of all bijections σ :
N → N , where σ(i) = j means that with respect to σ, player i is in the j-th position.
For σ ∈ ΣN , the marginal vector mσ(v) ∈ RN is defined by mσ

i (v) = v({j ∈ N :
σ(j) ≤ σ(i)}) − v({j ∈ N : σ(j) < σ(i)}) for each i ∈ N , where mσ

i (v) is the
marginal contribution of player i to the coalition of players with lower positions in σ.
The Shapley value φ(v) of a game (N, v) is defined as the average of marginal vectors
over all n! possible orders in ΣN . In formula

φi(v) =
∑

σ∈ΣN

mσ
i (v)

n!
for all i ∈ N. (2.4)

An alternative representation of the Shapley value for each i ∈ N is by the formula

φi(v) =
∑

S⊆N\{i}

1

n
(

n−1
s

)(v(S ∪ i)− v(S)). (2.5)

It assigns to every player the averaged marginal contribution to all the coalitions he
belongs to, with respect to a probability distribution that assigns equal probability to all
the different sizes that a coalition of players can have.
The formula, despite the meaningfulness of its interpretation, has a great disadvantage:
its computational complexity is exponential in the number of players, making it hard to
be computed for a high number of players. For this reason it is very interesting to single
out classes of games that lead to a concise formula, for which the Shapley value is easy
to compute. Indeed, much effort in the literature has been driven in this direction and
to the design of algorithms for computing the Shapley value efficiently.

We now introduce the classical characterization of the Shapley value. Indeed, the
Shapley value of a coalitional game (N, v) is the only solution that satisfies the follow-
ing four properties on the class of GN 1:

— efficiency (EFF), i.e.
∑

i∈N φi(v) = v(N);

— symmetry (SYM), i.e. if i, j ∈ N are such that v(S ∪ {i}) = v(S ∪ {j}) for all
S ⊆ N \ {i, j}, then φi(v) = φj(v);

— dummy player property (DPP), i.e. if i ∈ N is such that v(S∪{i})−v(S) = v({i})
for all S ⊆ N , then φi(v) = v({i});

1. Although this is a classical characterization for the Shapley value, note that it is not the one introduced by Shapley, which
was on the class of superadditive games. We refer to [88] for further details.
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— additivity (ADD), i.e. φ(v) + φ(w) = φ(v + w) for each v, w ∈ CN , where the
game v + w is such that v + w(S) = v(S) + w(S) ∀S ⊆ N .

This is not the only axiomatic characterization of the Shapley value. Among the
others, we cite the one by Young [102], Hart and Mas-Colell [47] and the one on the
class of simple games by Dubey [35]. We refer to [66] for further details.

Since its introduction, the Shapley value has been widely investigated and applied to
a range of diverse fields and disciplines, including social sciences, medicine and biol-
ogy, among the others [74]. Its success and application to a wide range of fields is due,
among other factors, to the axiomatic approach that has characterized its introduction.
The support for its employment in such a variety of fields of study often comes from an
axiomatic characterization, where the properties it satisfies have a specific interpreta-
tion for the application under analysis. This will also be the approach carried out along
this thesis, where the application of the Shapley value to the very different fields of
Argumentation Theory and Biomedicine is supported by an axiomatic approach.

The Shapley value belongs to the broader class of semivalues [36]:

Ψp

i (v) =
∑

S⊆N\{i}

pns
(

v(S ∪ {i})− v(S)
)

∀i ∈ N, (2.6)

where pns is such that pns ≥ 0∀s = 0, 1, . . . , n−1,
∑n−1

s=0

(

n−1
s

)

pns = 1 and represents
the probability that a coalition of size s+1 forms. If pns > 0 for all s, then the semivalue
is called regular semivalue. We shall write ps instead of pns when there is no ambiguity
about the players set. In particular, the Shapley value is a regular semivalue with

ps =
1

n
(

n−1
s

) . (2.7)

and is the only semivalue that satisfies EFF, while all the semivalues satisfy the other
three axioms: SYM, DPP, ADD.
Another well-known regular semivalue is the Banzhaf index [6], which is defined by
(2.6) with ps = 1

2n−1 , that is the probability distribution that assigns the same probability
to every coalition of players.

2.2 Networks

In our context, a network describes the restriction of interactions among players
in a cooperative game, and can be formally represented by a graph. In this thesis
we will mainly deal with undirected graphs, that describe situations in which player
i is able to interact directly with player j only if the converse is also true, i.e. the
edges in the graph are not oriented. On the other hand, an argumentation framework
as described in Chapter 6 is mathematically modelled by a directed graph, where the
edges are oriented: it is possible that argument i attacks argument j but argument j
does not attack argument i.

In this section we provide some basic notations and definitions for undirected graphs,
that we shall simply call graphs or networks. We refer to Chapter 6 for a description of
directed argumentation graphs.

A graph or network Γ is a pair 〈V,E〉, where V is a finite set of vertices or nodes

12
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and E ⊆ {{i, j} : i, j ∈ V, i 6= j} is the set of edges or links between pairs of nodes.
We define the set of neighbours of a node i in graph 〈V,E〉 as the set Ni(E) = {j ∈
N : {i, j} ∈ E}, and the degree of i as the number di(E) = |Ni(E)| of neighbours of
i in graph 〈V,E〉,i.e. the number of links incident to i in Γ. With a slight abuse of no-
tation, we denote by NS(E) = {j ∈ N : ∃i ∈ S s.t. j ∈ Ni(E)} the set of neighbours
of nodes in S ∈ 2N , S 6= ∅, in the graph 〈V,E〉.
Given a subset S ⊆ V of nodes, we define the induced subgraph ΓS = (S,ES), where
ES is the set of links {i, j} ∈ E such that i, j ∈ S. Similarly, we denote by ΓA the
graph (VA, A) induced by a subsetA ⊆ E of links, where VA is the set of nodes incident
to at least one link of A.
A path between nodes i and j in a graph Γ = 〈V,E〉 is a finite sequence of dis-
tinct nodes (i0, i1, · · · , ik) such that i0 = i, ik = j and {is, is+1} ∈ E for each
s ∈ {0, · · · , k − 1}. Two nodes i and j are said to be connected in Γ if i = j or
if there exists a path between them in Γ. The length of a path between i and j is the
number of edges in the path and a shortest path between i and j is a path between i
and j with minimum length. We call chain the set of nodes on a path with different
endpoints and we denote by s-chain a chain with s nodes.
A connected component in Γ is a maximal subset of V with the property that any two
nodes of V are connected in Γ. We denote by CΓ the set of connected components in
Γ. A graph Γ is said to be connected if there exists a path between every two elements
of V . A subset of nodes S ⊆ V (respectively a set of links A ∈ E) is connected if the
induced graph ΓS (respectively ΓA) is connected.
A cycle in Γ is a path (i0, i1, · · · , ik) such that i0 = ik. A forest is a graph without
cycles. A tree is a forest with only one connected component.
A graph 〈V,Ei

S〉, where the set of edges is Ei
S = {{i, j} : j ∈ S} is said a star

on S with center in i. Notice that the set of neighbours of nodes in 〈V,Ei
S〉 are

such that Ni(E
i
S) = S, Nj(E

i
S) = {i}, for each j ∈ S, and Nj(E

i
S) = ∅, for each

j ∈ V \ (S ∪ {i}).
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CHAPTER3

Generalized Additive Games

This Chapter is devoted to the introduction of the main model of Generalized Addi-
tive Games (GAGs), where the worth of a coalition S ⊆ N is evaluated by means of an
interaction filter, that is a map M which returns the valuable players involved in the co-
operation among players in S. In particular, we investigate the subclass of basic GAGs,
where the filter M selects, for each coalition S, those players that have friends but not
enemies in S. We show that well-known classes of TU-games can be represented in
terms of such basic GAGs, and we present some possible extensions of the model.

3.1 Introduction

A Transferable Utility (TU) game with n players specifies a vector of 2n − 1 real
numbers, i.e. a number for each non-empty coalition, and this can be difficult to handle
for large n. Therefore, several models from the literature focus on interaction situa-
tions which are characterized by a compact representation of a TU-game, and such that
the worth of each coalition can be easily computed. In particular, there exist several
approaches for defining classes of games whose concise representation is derived by
an additive pattern among coalitions. In some contexts, due to an underlying struc-
ture among the players, such as a network, an order, or a permission structure, the
value of a coalition S ⊆ N can be derived additively from a collection of subcoali-
tions {T1, · · ·Tk}, Ti ⊆ S ∀i ∈ {1, · · · , k}. Such situations are modelled, for example,
by the graph-restricted games, introduced by Myerson in [75] and further studied by
Owen in [78]; the component additive games [29, 30] and the non-negative additive
games with an acyclic permission structure [100].

Sometimes, the worth of each coalition is computed from the values of single play-
ers by means of a mechanism describing how the individual abilities interact within
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groups of players. In fact, in several cases the procedure used to assess the worth of
a coalition S ⊆ N is strongly related to the sum of the individual values over another
subset T ⊆ N , not necessarily included in S.
Many examples from the literature fall into this category, especially some classes of
graph games, among them the airport games [63,64], the connectivity game and its ex-
tensions [2, 62], the argumentation games [16] and some classes of operation research
games, such as the peer games [19] and the mountain situations [73]. In all the afore-
mentioned models, the value of a coalition S of players is calculated as the sum of the
single values of players in a subset of S. On the other hand, in some cases the worth
of a coalition might be affected by external influences and players outside the coalition
might contribute, either in a positive or negative way, to the worth of the coalition itself.
This is the case, for example, of the bankruptcy games [5] and the maintenance cost
games [17, 58]. In this chapter we introduce the class of Generalized Additive Games
(GAGs), where the worth of a coalition S ⊆ N is evaluated by means of an interaction
filter, that is a map M which returns the valuable players involved in the cooperation
among players in S. Our objective is to provide a general framework for describing
several classes of games studied in the literature on coalitional games and to give a
kind of taxonomy of coalitional games that are ascribable to this notion of additivity
over individual values.
The general definition of the map M allows various and wide classes of games to be
embraced. Moreover, by making further hypothesis on M, our approach enables to
classify existing games based on the properties of M. In particular, we investigate the
subclass of basic GAGs, where the filter M selects, for each coalition S, those play-
ers that have friends but not enemies in S. We also show that well-known classes of
TU-games can be represented in terms of such basic GAGs, as well as games deriv-
ing from real-world situations. As an example, this model turns out to be suitable for
representing an online social network, where friends and enemies of the web users are
determined by their social profiles, as we shall see in Chapter 4. Furthermore, Chapter
7 is devoted to an application of basic GAGs to the field of Biomedicine.

The chapter is structured as follows. In Section 3.2, we introduce the class of Gen-
eralized Additive Games (GAGs) and provide examples of games falling into this cat-
egory. In Section 3.3 we introduce some hypothesis on the map M and describe the
resulting subclass of basic GAGs, providing further examples from the literature. More-
over, in Section 3.4 we provide a characterization of basic GAGs. Some possible ex-
tensions of the model are finally presented in Section 3.5.

3.2 Generalized Additive Games (GAGs)

In this section we define the class of games that is the object of the Chapter, and we
provide some examples and basic properties.

The basic ingredients of our definition are the setN = {1, . . . , , n}, representing the
set of players, a map v : N → R that specifies the individual values of the players and
a map M : 2N → 2N , called the coalitional map, which assigns a coalition M(S) to
each coalition S ⊆ N of players.

Definition 1. We shall call Generalized Additive Situation (GAS) any triple 〈N, v,M〉,
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where N is the set of the players, v : N → R is a map that assigns to each player a
real value and M : 2N → 2N is a coalitional map, which assigns a (possibly empty)
coalition M(S) to each coalition S ⊆ N of players and such that M(∅) = ∅.

Definition 2. Given the GAS 〈N, v,M〉, the associated Generalized Additive Game
(GAG) is defined as the TU-game (N, vM) assigning to each coalition the value

vM(S) =

{
∑

i∈M(S) v(i) ifM(S) 6= ∅

0 otherwise.
(3.1)

Example 1. (simple games) Let w be a simple game. Then w can be described by the
GAG associated to 〈N, v,M〉 with v(i) = 1 for all i and

M(S) =

{

{i} ⊆ S if S ∈ W

∅ otherwise

where W is the set of the winning coalitions in w.
In case there is a veto player, i.e. a player i such that S ∈ W only if i ∈ S, then the
game can also be described by v(i) = 1, v(j) = 0 ∀j 6= i and

M(S) =

{

T if S ∈ W

R otherwise

with T,R ⊆ N such that i ∈ T and i /∈ R.

From Example 1 it is clear that the description of a game as GAG need not be unique.

Example 2. (glove game) Let w be the glove game defined in the following way. A
partition {L,R} of N is assigned. Define w(S) = min{|S ∩ L|, |S ∩R|}. Then w can
be described as the GAG associated to 〈N, v,M〉 with v(i) = 1 for all i and

M(S) =

{

S ∩ L if |S ∩ L| ≤ |S ∩R|

S ∩R otherwise.

Example 3. (connectivity games) [2, 62] Let Γ = (N,E) be a graph, where N is a
finite set of vertices and E is a set of non-ordered pairs of vertices, i.e. the edges of the
graph. Consider the (extended) connectivity game (N, vΓ), where each node i of the
underlying graph is assigned a weight wi. The weighted connectivity game is defined
as the game (N,w), where

w(S) =

{
∑

i∈S wi if S ⊆ N is connected in Γ and |S| > 1

0 otherwise.

Then w can be described as the GAG associated to 〈N, v,M〉 with v(i) = wi for all i
and

M(S) =

{

S if S ⊆ N is connected in Γ

∅ otherwise.
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Example 4. (bankruptcy games) Consider the bankruptcy game (N,w) introduced by
Aumann and Maschler [5], where the value of a coalition S ⊆ N is given by

w(S) = max{E −
∑

i∈N\S

di, 0}.

Here E ≥ 0 represents the estate to be divided and d ∈ RN
+ is a vector of claims

satisfying the condition
∑

i∈N di > E. It is easy to show that a bankruptcy game is the
difference w = vM1 − vM2 of two GAGs vM1 , vM2 arising, respectively, from 〈N, v1,M1〉
and 〈N, v2,M2〉 with v1(i) = E and v2(i) = di for all i,

M1(S) =

{

{i} ⊆ S if S ∈ B

∅ otherwise

and

M2(S) =

{

N \ S if S ∈ B

∅ otherwise

for each S ∈ 2N \ {∅}, and where B = {S ⊆ N :
∑

i∈N\S di ≤ E}.
An extension of the bankruptcy games has been introduced in [80] and can be de-

scribed as a sum of three GAGs. : an extended bankruptcy game (N,w) is defined
as

w(S) = max{E −
∑

i∈N\S

di,
∑

i∈S

ri}

whereE ≥ 0 represents the estate to be divided, d ∈ RN
+ is a vector of claims satisfying

the condition
∑

i∈N di ≥ E and r ∈ RN
+ is a vector of objective entitlements satisfying

the conditions 0 ≤ ri ≤ di for all i ∈ N . The extended bankruptcy game can be
represented as the linear combination w = vM1 −vM2 +vM3 of three GAGs vM1 , vM2 , vM3
arising, respectively, from 〈N, v1,M1〉, 〈N, v2,M2〉 and 〈N, v3,M3〉 with v1(i) = E,
v2(i) = di and v3(i) = ri for all i and

M1(S) =

{

{i} ⊆ S if S ∈ R

∅ otherwise

M2(S) =

{

N \ S if S ∈ R

∅ otherwise

and

M3(S) =

{

∅ if S ∈ R

S otherwise

for each S ∈ 2N \ {∅}, where R = {S ⊆ N :
∑

i∈N\S di +
∑

i∈S ri ≤ E}.

Observe that, clearly, despite the generality of the map M, not every game can be
described as a GAG. Obvious counterexamples can be provided for all n, in particular
for n = 2. Indeed, given a game (N, v), where N = {1, 2}, and given the values of the
singletons v({1}) and v({2}), in order for v to be described as a GAG vM, the value of
the grand coalition N can only assume values in the set {0, v({1}), v({2}), v({1}) +
v({2})}, which of course is not the case for a generic game.
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However, it is easy to show that every TU-game (N, v) can be described as a sum
of k GAGs. For example, every game with 3 players can be represented as the sum
of at most 3 GAGs. To see this, it suffices to consider 3 GAGs with maps, respec-
tively, M1, M2 and M3 such that M1(i) = {i} for all i, M1({i, j}) = ∅ for all
i, j, M1({1, 2, 3}) = ∅, M2(i) = ∅ for all i, M2({1, 2}) = {1}, M2({1, 3}) = {3},
M2({2, 3}) = {2}, M2({1, 2, 3}) = ∅, M3(i) = ∅ for all i, M3({i, j}) = ∅ for all i, j,
M3({1, 2, 3}) = {1} and v1, v2, v3 such that v1(i) = v({i}) for all i, v2(1) = v({1, 2}),
v2(2) = v({2, 3}), v2(3) = v({1, 3}), v3(1) = v({1, 2, 3}) and v3(2) = v3(3) = 0. In
general, at least 2n−1

n
GAGs are needed and such a description is therefore complicated,

but less GAGs might be sufficient if there are some “additive" coalitions, i.e. coalitions
such that their value can be derived as the sum of values of other coalitions, in which
case the complexity of such a description would be reduced.

Some natural properties of the map M can be translated into classical properties for
the associated GAG.

Definition 3. The map M is said to be proper if M(S) ⊆ S for each S ⊆ N ; it is
said to be monotonic if M(S) ⊆ M(T ) for each S, T such that S ⊆ T ⊆ N .

Note that a map M can be monotonic but not proper, or proper but not monotonic.
An example of map M which is not monotonic is the one relative to the glove game.
Maps that are not proper will be seen later.

The following results are straightforward.

Proposition 1. Let 〈N, v,M〉 be a GAS with v ∈ RN
+ and M monotonic. Then the

associated GAG (N, vM) is monotonic.

Proposition 2. Let 〈N, v,M〉 be a GAS with v ∈ RN
+ and M proper and monotonic.

Then the associated GAG (N, vM) is superadditive.

Proof. Let S and T be two coalitions such that S ∩T = ∅. By properness it is M(S)∩
M(T ) = ∅. By monotonicity it is

M(S) ∪M(T ) ⊆ M(S ∪ T ).

Thus, since v ∈ RN
+ ,

vM(S ∪ T ) =
∑

i∈M(S∪T )

v(i) ≥
∑

i∈M(S)∪M(T )

v(i) = vM(S) + vM(T ).

Observe that Propositions 1 and 2 provide only sufficient conditions, for instance the
glove game is monotonic and superadditive but the associated map M is not monotonic.

The following Example shows that, if the map M is proper and monotonic, the
corresponding GAG needs not be convex.

Example 5. Let N = {1, 2, 3, 4}, v(i) > 0 ∀i ∈ N and let M be such that M({2}) =
∅, M({2, 3}) = {3} and M(S) = S for all S 6⊆ {{2}, {2, 3}}. Then M is proper and
monotonic but the corresponding GAG is not convex, since it holds that vM(S ∪ T ) +
vM(S ∩ T ) < vM(S) + vM(T ) for S = {1, 2, 3}, T = {2, 3, 4}.
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The next Proposition shows that it is possible to provide sufficient conditions for a
monotonic map M to generate a convex GAG.

Proposition 3. Let 〈N, v,M〉 be a GAS with v ∈ RN
+ and M such that

M(S) ∩M(T ) = M(S ∩ T ), (3.2)

for each S, T ∈ 2N . Then the associated GAG (N, vM) is convex.

Proof. The convexity condition for the GAG (N, vM) can be written as follows:
∑

i∈M(S∪T ) v(i) +
∑

i∈M(S∩T ) v(i) ≥
∑

i∈M(S) v(i) +
∑

i∈M(T ) v(i)

=
∑

i∈M(S)∪M(T ) v(i) +
∑

i∈M(S)∩M(T ) v(i),
(3.3)

for each S, T ∈ 2N . It is easy to show that condition (3.2) implies monotonicity of M.
Then, we have that M(S) ∪M(T ) ⊆ M(S ∪ T ) and M(S ∩ T ) ⊆ M(S) ∩M(T )
for each S, T ∈ 2N . Thus, if M(S ∩ T ) = M(S) ∩M(T ) for each S, T ∈ 2N , then
relation (3.3) holds.

The condition provided by relation (3.2) can be useful to construct a monotonic map
M such that the corresponding GAG is convex when v ∈ RN

+ . The most trivial exam-
ple is the identity map M(S) = S for each S ∈ 2N . Another example is a map M of
a GAS 〈N, v,M〉 with N = {1, 2, 3} and v ∈ RN

+ such that M({1, 2, 3}) = {1, 2, 3},
M({1, 2}) = {1, 2}, M({2, 3}) = {2}, M({2}) = {2} and M({1}) = M({3}) =
M({1, 3}) = ∅.

We conclude this Section with an example showing that relation (3.2) is not a nec-
essary condition to have a convex GAG.

Example 6. Let N = {1, 2, 3}, v = (v(1), v(2), αv(2)) with v(1), v(2) ≥ 0 and M
be such that M({1, 2, 3}) = {1, 2, 3}, M({1, 2}) = {1, 2}, M({2, 3}) = {2} and
M({1}) = M({2}) = M({3}) = M({1, 3}) = ∅. The map M is monotonic, but
relation (3.2) does not hold (to see this, just take S = {1, 2} and T = {2, 3}). On
the other hand, one can check that relation (3.3) holds for each S, T ∈ 2N if and only
id α ≥ 1 (in particular note that for S = {1, 2} and T = {2, 3} relation (3.3) gives
v(1) + v(2) + αv(2) ≥ v(1) + 2v(2)).

3.3 Basic GAGs

We now define an interesting subclass of GASs. Consider a collection
C = {Ci}i∈N , where Ci = {F 1

i , . . . , F
mi

i , Ei} is a collection of subsets of N such
that F j

i ∩ Ei = ∅ for all i ∈ N and for all j = 1, · · · ,mi.

Definition 4. We denote by 〈N, v, C〉 the basic GAS associated with the coalitional map
M defined, for all S ⊆ N , as:

M(S) = {i ∈ N : S ∩ F 1
i 6= ∅, . . . , S ∩ Fmi

i 6= ∅, S ∩ Ei = ∅} (3.4)

and by 〈N, vC〉 the associated GAG, that we shall call basic GAG.
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For simplicity of exposition, we assume w.l.o.g. that m1 = m2 = · · · = mn := m.
We shall call each F k

i , for all i ∈ N and all k = 1, . . . ,m, the k-th set of friends of i,
while Ei is the set of enemies of i.

The basic GAG vC associated with a basic GAS can be decomposed in the following
sense: define the collection of n games vCi , i = 1, . . . , n, as

vCi(S) =

{

v(i) if S ∩ Ei = ∅, S ∩ F k
i 6= ∅, k = 1, . . . ,m

0 otherwise.
(3.5)

Proposition 4. The basic GAG vC associated with the map defined in (4) verifies:

vC =
n
∑

i=1

vCi . (3.6)

A particularly simple case is when every player has a unique set of friends, that we
shall denote by Fi.

Example 7. (airport games) [63, 64] Let N be the set of players. We partition N into
groups N1, N2, . . . , Nk such that to each Nj , j = 1, . . . , k, is associated a positive
real number cj with c1 ≤ c2 ≤ · · · ≤ ck (representing costs). Consider the game
w(S) = max{ci : Ni∩S 6= ∅}. This type of game (and variants) can be described by a
basic GAS 〈N, (Ci = {Fi, Ei})i∈N , v〉 by setting for each i ∈ Nj and each j = 1, . . . , k:

- the value v(i) = cj
|Nj |

,

- the set of friends Fi = Nj ,

and the set of enemies Ei = Nj+1∪ . . .∪Nk for each i ∈ Nj and each j = 1, . . . , k−1
and El = ∅ for each l ∈ Nk.

Example 8. (top-k nodes problem) [1, 94] Let (N,E) be a co-authorship network,
where nodes represent researchers and there exists an edge between two nodes if the
corresponding researchers have co-authored in a paper. Given a value k, the top-k
nodes problem consists in the search for a set of k researchers who have co-authored
with the maximum number of other researchers. The problem, introduced in [94], is for-
malized as follows. For any S ⊆ N , we define the function g(S) as the number of nodes
that are adjacent to nodes in the set S. Given a value k, the problem of finding a set S of
cardinality k such that g(S) attains maximum value is NP-hard [94]. Therefore, in [94]
and later in [1] a slightly different problem is studied through a game-theoretical ap-
proach, by using the Shapley value of a properly defined cooperative game as a measure
of the importance of nodes in the network. In the corresponding game (N,w), the worth
of a coalition S, for each S ⊆ N , S 6= ∅, is equal to the number of nodes that are con-
nected to nodes in S via, at most, one edge. Formally, w(S) = |S∪

⋃

i∈S Ni(E)|, where
Ni(E) is the set of neighbours of i ∈ N in the network (N,E). It is easy to check that
game w can be described as a basic GAS 〈N, v, (Ci = {Fi, Ei})i∈N〉, where v(i) = 1,
Fi = {i} ∪Ni(E) and Ei = ∅ ∀i ∈ N .

Example 9. (argumentation games) [16]: Consider a directed graph 〈N,R〉, where
the set of nodes N is a finite set of arguments and the set of arcs R ⊆ N × N is a
binary defeat (or attack) relation (see Dung 1995). For each argument i we define the
set of attackers of i in 〈N,R〉 as the set P (i) = {j ∈ N : (j, i) ∈ R}. The meaning is
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the following: N is a set of arguments, if j ∈ P (i) this means that argument j attacks
argument i. The value of a coalition S is the number of arguments in the opinion S
which are not attacked by another argument of S. This type of game (and variants)
can be described as a basic GAS 〈N, v, {Fi, Ei}〉 by setting v(i) = 1, the set of friends
Fi = {i} and the set of enemies Ei = P (i). This example still falls in the setting of
basic GAGs where each player has only one set of friends. However, there are also
different, and natural as well, types of characteristic functions that can be considered.
For instance, it is interesting to consider the game (N, vM) such that for each S ⊆ N ,
vM(S) is the sum of v(i) over the elements of the set D(S) = {i ∈ N : P (i) ∩ S =
∅ and ∀j ∈ P (i), P (j)∩S 6= ∅} of arguments that are not internally attacked by S and
at the same time are defended by S from external attacks:

vM(S) =
∑

i∈D(S)

v(i). (3.7)

It is clear that such a situation cannot be described by a basic GAG where each
player has a unique set of friends. The game in (3.7) can however be described as
a basic GAG 〈N, vC〉, where, given a bijection k : P (i) → {1, · · · , |P (i)|}, Ci =

{F 1
i , · · · , F

|P (i)|
i , Ei} is such that F k(j)

i = P (j) \ P (i) for all j ∈ P (i), and Ei = P (i)
for all i ∈ N.

Moreover, the following Examples show that the unanimity and canonical games
can be represented as basic GAGs with more than one set of friends.

Example 10. (unanimity games) Let S = {s1, · · · , ss} ⊆ N . Consider the unanimity
game (N, uS) defined as

uS(T ) =

{

1 if S ⊆ T

0 otherwise.

This game can be described by a basic GAS 〈N, v, {F 1
i , · · · , F

s
i , Ei}〉 by setting v(i) =

1 for some i ∈ S, v(j) = 0 ∀j 6= i, F k
i = {sk} ∀k = 1, · · · s and ∀i ∈ N , and Ei = ∅

∀i ∈ N .

Example 11. (canonical games) Let S ⊆ N . Consider the canonical game (N, eS)
defined as

eS(T ) =

{

1 if S = T

0 otherwise.

This game can be described as a basic GAS 〈N, v, {F 1
i , · · · , F

s
i , Ei}〉 by setting v(i) =

1 for some i ∈ S, v(j) = 0 ∀j 6= i, F k
i = {sk} ∀k = 1, · · · s and ∀i ∈ N , and

Ei = N \ S.

We now provide further examples of classes of coalitional games from the literature
which can be represented as basic GAGs, where in general each player can have several
sets of friends.
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3.3.1 Peer games

In peer games [19] over a player set N , the economic relationships among players
are represented by a hierarchy described by a directed rooted tree T with N as the
set of nodes and with 1 as the root (representing the leader of the entire group). The
individual features are agents’ potential economic possibilities, described by a vector
a ∈ RN , where ai is the gain that player i can generate if all players at un upper level in
the hierarchy cooperate with him. In other words, player i becomes effective and may
produce a gain ai only if his superiors cooperate with him.
For every i ∈ N , we denote by S(i) the set of all agents in the unique directed path
connecting 1 to i, i.e. the set of superiors of i. Given a peer group situation (N, T, a)
as described above, a peer game is defined as the game (N, vP ) such that for each
non-empty coalition S ⊆ N

vP (S) =
∑

i∈N :S(i)⊆S

ai.

A peer game (N, vP ) can be represented as the GAG associated to the basic GAS
on N where v(i) = ai and where M is defined by relation (3.4) with collections Ci =
{F 1

i , . . . , F
n
i , Ei} such that:

F j
i =

{

{j} if j ∈ S(i)

{i} otherwise

and Ei = ∅ for all i ∈ N.

An interesting example of peer games [19] (and indeed of GAGs) are coalitional
games arising from sealed bid second price auctions, where there is a seller who wish
to sell an object at price not smaller than a given r > 0 (reservation price). Each player
i ∈ N has his own evaluationwi of the object and can submit a bid bi in an envelope (not
necessarily equal to wi). The mechanism of the auction is such that after the opening
of the envelopes, the object is given to the player with the highest bid at the second
highest price 1. Suppose that w1 > w2 > . . . > wn ≥ r. It is easy to check that in such
a situation, a dominant strategy for each player i who acts alone (i.e., without colluding
with the other players) is to bid his own value bi = wi. This leads to a situation where
player 1 obtains the object at the price w2, so the players’ payoffs are v(1) = w1 − w2

and v(i) = 0 if i 6= 1.
Now, consider the possibility of collusion among the players, which means that play-

ers may form coalitions and agree on the bid each player should put in the respective
envelope. For a coalition S, the dominant strategy is that the player i(S) ∈ N with
the highest evaluation in S bids wi(S), and the other players in S bid r, the reservation
price. In this way, if all players collude, the worth of coalition N is v(N) = w1 − r. In
general, for every coalition S ⊆ N , we have that v(S) = 0 if 1 /∈ S (it is still dominant
for players in N \ S to play their true evaluation, and then 1 ∈ N \ S gets the object),
and v(S) = w1−wi(N\S) if 1 ∈ S, where i(N \S) is the player with highest evaluation
in N \S. Such a game (N, v) can be seen as the GAG associated to the basic GAS with
collections Ci = (F 1

i , . . . , F
i
i , Ei) where F j

i = {j} for every j in {1, . . . , i}, Ei = ∅
and v(i) = wi − wi+1 for every i ∈ N .

1. We do not consider here the case where players may submit equal bids.
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3.3.2 Mountain situations

Consider a special version of a directed minimum cost spanning tree situation, in-
troduced in [73], characterized by a groupN of persons whose houses lie on mountains
and are not yet connected to a water purifier downhill. It is possible but not necessary
for every person (house) to be connected directly with the water purifier; being con-
nected via others is sufficient. Only connections from houses to strictly lower ones are
allowed. Such a situation can be represented by a rooted directed graph< N∪{0}, A >
with N ∪ {0} as set of vertices, A ⊂ N × (N ∪ {0}) as set of edges and 0 as the root,
and a weight function w : A → R+, representing the cost associated to each edge.
We assume that for each k ∈ N , (k, 0) ∈ A (i.e., every node has the possibility to be
directly connected with the source) and in order to impose the fact that only connection
to lower houses are possible, no cycles are allowed.

Given such a mountain situation, the corresponding cooperative cost game (N, c) is
given by c(∅) = 0 and the cost c(T ) =

∑

a∈Γ(T )w(a) of a non-empty coalition T is
the cost of an optimal 0-connecting tree Γ(T ) ⊆ A(T ) in the mountain problem on the
directed graph < T ∪ {0}, A(T ) >, i.e. Γ(T ) is a tree of minimum cost connecting all
players in T to the source 0.

It can be checked that for each optimal 0-connecting tree Γ(T ) ⊆ A(T ), each node
i ∈ T is directly connected with his best connection in T ∪ {0}, that is a node bT (i) ∈
argminl∈T∪{0}:(i,l)∈Aw(i, l) (see [71] for further details).

Now, assume that for each a ∈ A, w(a) can assume only two values, let’s say m
or 0, with m > 0, and let Bi = {j ∈ N : w(i, j) = 0} the set of best connections
for i ∈ N (actually, every mountain situation can be decomposed as a sum of simple
dichotomous mountain situations like that). We can represent the cost game (N, c) as
the GAG associated to the basic GAS onN where v(i) = 0 ifw(i, 0) = 0, and v(i) = m
otherwise, and where M is defined by relation (3.4) with collections Ci = {Fi, Ei} such
that Fi = {i} and Ei = Bi for every i ∈ N .

3.3.3 Maintenance cost games

A maintenance problem [17,58] arises when a group of players N is connected by a
tree T (e.g., a computer network) to a root 0 (e.g., a service provider) and each edge of
the tree has an associated maintenance cost; the problem is how to share in a fair way
the cost of the entire network T among the players inN . More formally, a couple (T, t)
is given, where T=(N ∪ {0}, E) is a tree. N ∪ {0} represents the set of vertices (or
nodes) and E is the set of edges, i.e. the pairs {i, j} such that i, j ∈ N . 0 is the root of
the tree having only one adjacent edge, and t : E → R+ is a non-negative cost function
on the edges of the tree. Note that each vertex i ∈ N is connected to the root 0 by a
unique path Pi; we shall denote by ei the edge in Pi that is incident to i. A precedence
relation � is defined by: j � i if and only if j is on the path Pi. A trunk R ⊆ N ∪ {0}
is a set of vertices which is closed under the relation �, i.e. if i ∈ R and j � i, then
j ∈ R. The set of followers of player i ∈ N is given by F (i) = {j ∈ N |i � j} (note
that i ∈ F (i) for each i ∈ N ). The cost of a trunk R is then defined as

C(R) =
∑

i∈R\{0}

t(ei),
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and the associated maintenance cost game (N, c) is defined by

c(S) = min{C(R) : S ⊆ R and R is a trunk}. (3.8)

Note that edge ei is present in the cheapest trunk containing all members of S when-
ever a member of S is a follower of player i, i.e. S ∩ F (i) 6= ∅. Therefore, we can
represent the cost game (N, c) as the GAG associated to the basic GAS on N where
v(i) = t(ei) and where M is defined by relation (3.4) with collections Ci = {Fi, Ei}
such that Fi = F (i) and Ei = ∅ for every i ∈ N .

In a basic GAG, the worth of each coalition is computed as the sum of the individual
values of a subset of players. On the other hand, in many of the aforementioned classes
of games, when an underlying network describes the interaction among the players
involved, it is possible to derive the worth of each coalition of players as the sum of
the contributions that their pairwise interactions generate, that is as the sum of the
individual values assigned to the edges in the underlying network. In the previous
example, a maintenance cost game derives from a situation where a tree describes a
maintenance system such as a computer network, with a service provider as root. The
cost of connection of a set of computers to the provider is described by the coalitional
game defined in (3.8) and computed as the sum of the costs of maintenance of all the
connections among the computers lying on the corresponding minimum cost spanning
tree, that is as the sum of the costs associated to the edges in the induced tree.
Formally, this idea may be described by defining a link-based GAG, corresponding
to a link-based GAS 〈N,w,L〉, where N = {1, . . . , , n}, represent the set of nodes
in a network 〈N,E〉, w : E → R assigns a value to each edge in the graph and
L : 2E → 2E assigns to each subset A ⊆ E of edges another subset L(A) ⊆ E.
Then the corresponding link-based GAG (N, vL) would be defined by the following
expression, for every S ⊆ N :

vL(S) =
∑

e∈L(ES)

w(e),

where ES are the edges in the graph induced by S.
Similarly, within this formalism, a link-based basic GAS would be defined as the triple
〈N,w,L〉 associated to the map

L(A) = {e ∈ E : A ∩ F 1
e 6= ∅, . . . , A ∩ Fme

e 6= ∅, A ∩ Ee = ∅}

for every A ⊆ E, where Ce = {F 1
e , . . . , F

me
e , Ee} is a collection of subsets of E such

that F j
e ∩ Ee = ∅ for all e ∈ N and for all j = 1, · · · ,me.

Then a link-based basic GAG 〈N,wC〉 would be defined as the associated GAG.

In the aforementioned example, a maintenance cost game (N, c) can be defined as
the link-based basic GAG on N , where w(e) = t(e) is the cost associated to each edge
e ∈ E in the tree, and the map L is defined as above, with Ee = ∅ and Fe = F (e) for
every edge e ∈ E, where F (e) ⊆ E is the set of followers of edge e, which definition
is the equivalent to the one given in the previous example for nodes.

The same formalism can be employed to describe the other classes of graph games
presented in this Section. However, in what follows, and in Chapter 4, where we pro-
vide some theoretical results concerning solution concepts for the class of GAGs, we
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shall always refer to the original model of basic GAGs, since it seems easier to deal
with.

3.4 A characterization of basic GASs

As it has been shown in the previous sections, a variety of classes of games that
have been widely investigated in the literature can be described using the formalism
provided by basic GASs. Moreover, as we shall see in the next sections, it is possible
to produce, for basic GAGs, results concerning important solution concepts, like the
core and the semivalues. It is therefore interesting to study under which conditions a
GAS can be described as a basic one. To this purpose, the following theorem provides
a necessary and sufficient condition when the set of enemies of each player is empty.

Theorem 1. Let 〈N, v,M〉 be a GAS. The map M can be obtained by relation (3.4)
via collections Ci = {F 1

i , . . . , F
mi

i , Ei = ∅}, for each i ∈ N , if and only if M is
monotonic.

Proof. It is obvious that every map M obtained by relation (3.4) over a collections Ci =
{F 1

i , . . . , F
mi

i , Ei = ∅}, for each i ∈ N , is monotonic. Now, consider a monotonic map
M and, for each i ∈ N , define the set M−1

i = {S ⊆ N : i ∈ M(S)} of all coalitions
whose image in M contains i. Let SM,i be the collection of minimal (with respect to
set inclusion) coalitions in M−1

i , formally:

SM,i = {S ∈ M−1
i : it does not exist T ∈ M−1

i with T ⊂ S}.

For each i ∈ N , consider the collection Ci = {F 1
i , . . . , F

mi

i , Ei = ∅} such that

{F 1
i , . . . , F

mi

i } = {T ⊆ N : |T ∩ S| = 1 ∀S ∈ SM,i and |T | ≤ |SM,i|}, (3.9)

where each set of friends F k
i , k ∈ {1, . . . ,mi}, contains precisely one element in

common with each coalition in S ∈ SM,i and no more than |SM,i| elements. Denote
by M∗ the map obtained by relation (3.4) over such collections Ci, i ∈ N . We need to
prove that M(S) = M∗(S) for each S ∈ 2N , S 6= ∅. First note that for each i ∈ N and
for every coalition S ∈ M−1

i , we have i ∈ M∗(S). Let us prove now that i /∈ M∗(S)
for each S /∈ M−1

i . Suppose, by contradiction, that there exists T ⊆ N with T /∈ M−1
i

such that F k
i ∩ T 6= ∅, for each k ∈ {1, . . . ,mi}. Consequently, by the definition of

SM,i, we have that for every S ∈ SM,i, S \ T 6= ∅. Define a coalition U ⊆ N of no
more than |SM,i| elements and such that U contains precisely one element of S \ T
for each S ∈ SM,i, i.e. |U ∩ (S \ T )| = 1 for each S ∈ SM,i and |U | ≤ |SM,i|. By
relation (3.9), U must be a set of friends in the collection {F 1

i , . . . , F
mi

i }, which yields
a contradiction with the fact that U ∩T = ∅. It follows that for each i ∈ N , i ∈ M∗(S)
if and only if i ∈ M(S) for each S ⊆ N , which concludes the proof.

Based on the arguments provided in the proof of Theorem 1, the following Example
shows a procedure to represent a GAS with a monotonic map M as a basic GAS.

Example 12. Consider a GAS 〈N, v,M〉 with N = {1, 2, 3, 4} and M such that
M({1, 2, 3}) = {3}, M({3, 4}) = {2, 3}, M({2, 3, 4}) = {2, 3}, M({1, 3, 4}) =
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{2, 3, 4}, M(N) = {2, 3, 4}, and M(S) = ∅ for all other coalitions. The sets of
minimal coalitions are SM,1 = ∅, SM,2 = {{3, 4}}, SM,3 = {{1, 2, 3}, {3, 4}},
SM,4 = {{1, 3, 4}}. Such a map can be represented via relation (3.4), where F 1

1 =
∅, {F 1

2 , F
2
2 } = {{3}, {4}}, {F 1

3 , . . . , F
3
3 } = {{1, 4}, {2, 4}, {3}}, {F 1

4 , . . . , F
3
4 } =

{{1}, {3}, {4}} and such collections of friends are obtained via relation (3.9).

The following proposition characterizes monotonic basic GAGs.

Proposition 5. Let 〈N, v, C〉 be a basic GAS with v ∈ RN
+ and C = {Ci}i∈N . Then the

associated GAG (N, vC) is monotonic if and only if Ei = ∅ ∀i ∈ N .

Proof. The sufficient condition is obvious. Moreover, suppose Ei 6= ∅ for some i and
let j ∈ Ei. Consider S = F 1

i ∪ · · · ∪ Fm
i . Then i ∈ M(S), while i /∈ M(S ∪ j).

By Proposition 1, Theorem 1 and Proposition 5 we have the following corollary.

Corollary 1. Let 〈N, v,M〉 be a basic GAS with v ∈ RN
+ . Then the associated basic

GAG (N, vC) is monotonic if and only if M is monotonic.

3.5 Possible extensions

In this Section, we show that further extensions can be introduced, by generalizing
the idea of coalitional map, in order to embrace a wider range of games that can be
represented in a compact way into our framework.

The definition of GAG is based on the coalitional map M, which is a multimap that
assigns a coalition M(S) ⊆ N to each coalition S ⊆ N of players. A further gener-
alization is possible: think of the graph-restricted game introduced by Myerson [75],
where the worth of a coalition is evaluated on the connected components induced by an
underlying graph. This class of games can be represented by considering a multimap
M : 2N → 22

N

, which assigns to each coalition S ⊆ N , a subset M(S) ⊆ 2N .
Analogously, the definition of a basic GAG is based on a collection of sets C =

{Ci}i∈N , one for each player, where Ci = {F 1
i , . . . , F

m
i , Ei} is a collection of subsets

of N that satisfy some particular properties.
If we provide each player i with multiple collections {C1

i , · · · , C
k
i }, with

Cki = {F k1
i , . . . , F km

i , Ek
i }, we are then able to represent those games that are asso-

ciated to marginal contribution nets (MC-nets), introduced in [50] (see also [25]).
The basic idea behind marginal contribution nets is to represent in a compact way

the characteristic function of a game, as a set of rules of the form: pattern −→ value,
where a pattern is a Boolean formula over a set of n variables (one for each player)
and a value is a real number. Here we restrict our attention to Boolean formulas that
are conjunctions of literals, i.e. variables or their negations, and we shall call the corre-
sponding rule a basic rule. A basic rule is said to apply to a coalition S if S contains all
players whose variables appear unnegated in the pattern (represented by the literal xi),
and does not contain any of the players that appear negated (represented by the literal
¬xi). For example, a rule with pattern x1 ∧ x2 ∧¬x3 applies to the coalition {1, 2} and
{1, 2, 3, 4} but not to the coalitions {1} or {1, 2, 3}.
More formally, consider a collection of rules R = {r1, · · · , rm}, where rk = ψk −→
xk for each k = 1, · · · ,m, with ψi is being a basic rule over {x1, · · · , xn} and xk ∈ R
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for all k. A coalition S is said to satisfy ψ (and we write S |= ψ) if and only if
r : ψ −→ x applies to S. The set R defines a coalitional game (N, vR), introduced
by Ieong and Shoham (2005), where N = {1, · · · , n} and the value of a coalition is
computed by summing the values of all the rules that apply to it, i.e. vR is given by

vR(S) =
∑

ri∈R:S|=ψi

xi.

As an example, consider the following MC-net:

r1 : x1 ∧ x2 ∧ ¬x3 −→ 3

r2 : x2 −→ 4

The corresponding game is (N, v), with N = {1, 2, 3} and v = 3e{1,2} + 4u{2}, where
eS and uS are, respectively, the canonical and the unanimity game on S.

Indeed, every coalitional game can be represented through MC-nets by defining one
rule for each coalition S ⊆ N , where the pattern contains all the variables correspond-
ing to the players in S and the negation of all the other variables, and the corresponding
value is equal to the value of S in the game.

We show here how a game deriving from a MC-nets representation can be described
as a generalization of a basic GAG, where each player has multiple collections of set
of friends and enemies, one for each rule, and is assigned a vector of values. For each
rule rk = ψk −→ xk such that the variable xi appears unnegated in ψk, we provide
player i with a collection of sets of friends and enemies Cki = {F k1

i , . . . , F kmk

i , Ek
i },

defined as follows: F kj
i = {j} if xj appears unnegated in ψk and Ek

i = {j ∈ N
such that xj appears negated in ψk}, where mk is the number of variables that appear
unnegated in the pattern ψk. Moreover, for each player i we define a vector of values
v(i) = {v1(i), · · · , vm(i)}, where vk(i) = 0 if xi appears negated or does not appear in
ψk and, for each rule rk where xi appears unnegated, vk(i) is given by:

vk(i) =
xk

ck
,

where ck is the number of players whose corresponding variables appear unnegated in
rule rk. With the aforementioned definitions, a MC-nets game vR can be described as

vR =
∑

i∈N

vC
R
i ,

where vC
R
i is defined as follows for every i ∈ N :

vC
R
i (S) =







0 if S ∩ F kj
i = ∅ ∀j, k or S ∩ Ek

i 6= ∅ ∀k
m
∑

k=1

vk(i) otherwise.

For the previous example, the collections of friends and enemies would be defined
as:

C1
1 = {F 11

1 = {1}, F 12
1 = {2}, E1

1 = {3}}

C1
2 = {F 21

1 = {1}, F 22
1 = {2}, E2

1 = {3}}

C2
2 = {F 21

2 = {2}, E2
2 = ∅}
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3.5. Possible extensions

Moreover, v(1) = (3
2
, 0), v(2) = (3

2
, 4) and v(3) = (0, 0).

In this way, we are indeed able to describe every TU-game, since the representation
of MC-nets is complete. The computational complexity of such representation is in
general high. However, when a game can be described by a small collection of rules,
and therefore the associated extended GAS is described in a relatively compact way, the
complexity of its representation and of the computation of solutions is consequently re-
duced.
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CHAPTER4

Solutions for Generalized Additive Games

In Chapter 3, the class of Generalized Additive Games (GAGs) is introduced, where
the worth of a coalition S ⊆ N is evaluated by means of an interaction filter, that is a
map M which returns the valuable players involved in the cooperation among players
in S. Well-known classes of coalitional games are embraced by this model and several
of them can be described in terms of basic GAGs, where the filter M selects, for each
coalition S, those players that have friends and not enemies in S. This model turns out
to be suitable for representing an online social network, where friends and enemies of
the web users are determined by their social profiles. The objective of this Chapter is to
investigate the problem of computing solution concepts for this subclass of coalitional
games. In particular, we address the problem of how to guarantee that a basic GAG
has a non-empty core and we provide formulas for the semivalues for some families of
basic GAGs.

4.1 Introduction

It is well known that the problem of identifying influential users on a social net-
working web site plays a key role to find strategies aimed to increase the site’s overall
view [99]. The main issue is to target advertisement to the site members of the online
social network whose activities’ levels have a significant impact on the activity of the
other site members. The overall influence of a user can be seen as the combination
of two important ingredients: 1) the individual ability to get the attention of other site
members, and 2) the personal characteristic of the social profile, that can be represented
in terms of groups or communities to which users belong.

In Chapter 3, a new class of games, called Generalized Additive Games, has been
introduced. Given a finite set of players N and a map v assigning to each element of
N an individual value, a GAG on N assigns to each coalition S ⊆ N a worth that
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Chapter 4. Solutions for Generalized Additive Games

is computed according to an interaction filter M. More precisely, the interaction filter
M(S) specifies the valuable players involved in the cooperation among players in S; in
other words, M(S) specifies which players of N are somehow “‘obliged” to contribute
to the worth of S, and the worth of a coalition S, for every S ⊆ N , is computed as the
sum of the individual values of players in M(S).

In this Chapter, we further investigate a particular class of GAGs, namely the basic
GAGs, that seem to well represent an online social network as described at the begin-
ning of this Section. According to this model, the players (e.g., members of a social
network) are provided with a utility value that may represent their individual activity
in a social networking web site (for instance, measured in terms of the productive time
spent in uploading content files), and the participation of each player to the global ac-
tivity of the social network is based on a coalitional structure of friends and enemies
that is determined by their social profiles.

In the framework of coalition formation using hedonic games, in [34] a model where
each player divides other players into friends and enemies is studied. In [34], the pref-
erences over coalitions are based on the appreciation of friends and the aversion to
enemies. Despite the analogy of using coalitions whose formation is based on the pres-
ence of friends and enemies of each player, in our model we deal with the problem of
measuring the power of players in particular coalitional situations, and how to share a
joint utility value when the grand coalition forms, and not specifically with the coalition
formation problem.

The main objective of this Chapter is to analyse classical solutions from coalitional
game theory, like the well known Shapley value [88], the Banzhaf value [6] and other
semivalues [36], aimed at measuring the power (or influence) of players in basic GAGs.
We also address the problem of how to guarantee that a basic GAG has a non-empty
core.

With the aim of providing a tool for the analysis of a wide range of coalitional
games, in Section 4.2 we analyse classical solutions from coalitional game theory, like
the well known Shapley value [88], the Banzhaf Value [6] and other semivalues [36],
while in Section 4.3 we address the problem of how to guarantee that a basic GAG has
a non-empty core. Section 4.4 concludes.

4.2 Semivalues and GAGs

In this section we focus on some formulas for the semivalues, in the context of basic
GAGs. Since we are interested in evaluating additive power indices for the players in
basic GAGs, it becomes interesting to evaluate the indices on the games vCi defined via
relation (3.5).

Indeed, we recall here that the basic GAG vC associated with the basic GAS 〈N, v, C〉,
where C = {Ci}i∈N , Ci = {F 1

i , . . . , F
m
i , Ei} ∀i ∈ N , can be decomposed as the sum

of n games:

vC =
n
∑

i=1

vCi , (4.1)
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4.2. Semivalues and GAGs

where vCi is defined for i = 1, . . . , n as

vCi(S) =

{

v(i) if S ∩ Ei = ∅, S ∩ F k
i 6= ∅, k = 1, . . . ,m

0 otherwise.

First of all, we present some results concerning the Shapley and Banzhaf values
on interesting subclasses of basic GAGs, where each player has at most two sets of
friends. Furthermore, we extend our analysis to a generic basic GAG, with multiple
sets of friends.
Let us consider the basic GAS 〈N, v, {Ci = {F 1

i = {i}, F 2
i , Ei}}i∈N〉. We recall that

considering the set of friends F 1
i = {i} for all i ∈ N is equivalent to imposing the

properness property of the associated map M. Therefore, letting Fi := F 2
i ∀i ∈ N , the

resulting basic GAG is defined as:

vC(S) =
∑

i∈S,S∩Fi 6=∅,S∩Ei=∅

v(i), (4.2)

that can be decomposed according to (4.1), where:

vCi(S) =

{

v(i) if i ∈ S, S ∩ Fi 6= ∅, S ∩ Ei = ∅

0 otherwise.
(4.3)

In what follows, in order to simplify the notations, we fix i ∈ N and denote by f
the cardinality of Fi and by e the cardinality of Ei (in order to simplify the notations, if
Ei = ∅ we assume by convention that e = 0 and 1

e
= 0).

When i /∈ Fi, the following proposition holds.

Proposition 6. Let vCi be as in (4.3), with i /∈ Fi. Then the Shapley value is:

σj(v
Ci) =



























0 if j ∈ N \ (Fi ∪ Ei ∪ {i})

v(i)
(

1
e+1

− 1
f+e+1

)

if j = i
v(i)

(f+e)(f+e+1)
if j ∈ Fi

−v(i)
(

1
e(e+1)

− 1
(f+e)(f+e+1)

)

if j ∈ Ei

On the other hand, the Banzhaf value is:

βj(v
Ci) =



























0 if j ∈ N \ (Fi ∪ Ei ∪ {i})

v(i)
(

2f−1
2n−1

)

if j = i
v(i)

2f+e−1 if j ∈ Fi

−v(i)
(

2n−e−1
2n−1

)

if j ∈ Ei

Proof. Clearly, players not in Fi ∪ Ei ∪ {i} are null players. We call a player decisive
if he makes the worth of the coalition S changing, by joining it. This can happen only
if the value changes form 0 to v(i) and conversely. Let us now consider j ∈ Fi. He is
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Chapter 4. Solutions for Generalized Additive Games

decisive (with worth v(i)) if and only if i is in the coalition (preceding him according
to the characterization of Shapley index) and no other player k in Fi is in the coalition.
This provides the formula for βj , while for σ we need to consider all orderings of the
form i, j, . . . and in this case the result follows. Let us now consider i. He becomes
decisive (with worth v(i)) if and only if at least one player j ∈ Fi is present, and no
player in Ei is present. Counting all coalitions of this type provides the Banzhaf index.
Moreover

σi(v
Ci) =

v(i)

(f + e+ 1)!

f
∑

k=1

(

f

k

)

k!(f + e− k)!.

Finally, a player j in Ei is decisive (with negative worth v(i)) if and only if i, a player
k in Fi and no other player of Ei are present. Thus

σj(v
Ci) = −

v(i)

(f + e+ 1)!

f
∑

k=1

(

f

k

)

(k + 1)!(f + e− k − 1)!.

The formulas for the Banzhaf index are proved, while the result for Shapley follows
from Lemma 1 in Appendix A.

Another interesting case is that of a basic GAG with a single set of friends for each
player i 1. In this case the game vCi reduces to:

vCi(S) =

{

v(i) if S ∩ Fi 6= ∅, S ∩ Ei = ∅

0 otherwise

and the following proposition holds.

Proposition 7. Let us consider a basic GAS on 〈N, v, {Ci = {Fi, Ei}}i∈N〉. Then the
Shapley and Banzhaf values for the game vCi are given, respectively, by:

σj(v
Ci) =











0 if j ∈ N \ (Fi ∪ Ei)
v(i)
f+e

if j ∈ Fi

−v(i) f

e(f+e)
if j ∈ Ei

and

βj(v
Ci) =











0 if j ∈ N \ (Fi ∪ Ei)
v(i)

2f+e−1 if j ∈ Fi

−v(i) 2f−1
2f+e−1 if j ∈ Ei.

Proof. Clearly, players not in Fi ∪ Ei are null players. We call a player decisive if he
makes the worth of the coalition S changing, by joining it. Let j ∈ Fi. He is decisive
(with worth v(i)) if and only if no player i in Fi and no player k in Ei is in the coalition
(preceding him according to the characterization of Shapley index).
Let j ∈ Ei. He is decisive (with worth −v(i)) if and only if at least one player i in Fi is

1. Note that this case does not coincide with the previous one, where we restricted our attention to basic GAGs associated with
a proper map M.
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4.2. Semivalues and GAGs

in the coalition (preceding him according to the characterization of Shapley index) and
no player k in Ei is in the coalition.
This provides directly the formulas for β, and σ is derived by considering all the possi-
ble orderings of the players.

Next, we introduce an example of computation of the Shapley value according to
Proposition 7, together with some considerations about an associated strategic problem.

Example 13. As a toy example, consider an online social network with four users
N = {1, 2, 3, 4} where each user spends the same amount of time T (e.g., on a per
month basis) in uploading new content files and, according to her/his social profile,
each user i ∈ N belongs to a single community Fi ⊆ N (e.g., the set of users with whom
i intends to share her/his content files) which is in conflict with the complementary one
Ei = N \ Fi (here, enemies in Ei are interpreted as those members that have no
permission to access the content files of player i). Suppose, for instance, that F1 =
{1, 2, 3}, F2 = {2, 3}, F3 = {3} and F4 = {1, 2, 3, 4}. Following the discussion
about social networking web sites introduced in Section 4.1, we can represent such a
situation as a basic GAS 〈N, v, {Ci = {Fi, Ei = N \ Fi}}i∈N〉. How to identify the
most influential users? According to Proposition 7, the influence vector provided by the
Shapley value is: σ(vC) = (T

6
, 4T

6
, T, −5T

6
). So, user 3 results the most influential one,

followed by 2, then 1 and finally 4, who is the only user to get a negative index.
Suppose now that user 2 wants to improve her/his influence as measured by the

Shapley value. It is worth noting that if user 2 eliminates 3 from her/his set of friends
(and all the other sets of friends and enemies remain the same), then player 2 gets
exactly the same Shapley value of user 3 (independently on whether 3 is in the set of
enemies of 2 or not). Precisely, if now F2 = {2} and E2 = {1, 3, 4}, then σ2(vC) =
σ3(v

C) = 2T
3

, whereas if F2 = {2} and E2 = {1, 4}, then σ2(vC) = σ3(v
C) = 3T

4
.

Note that, when Ei = ∅, the formulas in Proposition 7 are further simplified and the
following corollary holds.

Corollary 2. Consider a basic GAS on 〈N, v, {Ci = {Fi, Ei = ∅}}i∈N〉. Then the
Shapley value σ and the Banzhaf value β for the game vCi are given, respectively, by:

σj(v
Ci) =

{

0 if j ∈ N \ Fi
v(i)
f

if j ∈ Fi

and

βj(v
Ci) =

{

0 if j ∈ N \ Fi
v(i)
2f−1 if j ∈ Fi.

Proposition 7 and Corollary 2 represent a useful tool for computing the Shapley
and Banzhaf values of a subclass of basic GAGs. Their advantage relies on the fact
that, once a game is described in terms of basic GAGs, the formulas can be derived
in a straightforward way from the individual values of the players and the cardinalities
of the sets of friends and enemies. As an example, consider the game introduced in
Example 8. The Shapley value of such a game has been proposed as a measure of
centrality in networks in [94], where an approximate algorithm for its computation is
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Chapter 4. Solutions for Generalized Additive Games

provided. Moreover, in [1], an exact formula for the Shapley value of such game is
provided, but its proof relies on elaborate combinatorial and probabilistic arguments.
On the other hand, the description of that game as a basic GAG, which can be easily
derived from the definition of the game itself, leads to the same formula in a direct and
intuitive way, since the Shapley value (and the Banzhaf value) can be directly derived
from Corollary 2 and relation (3.6).

When generalizing the previous results to the case of a basic GAG with multiple sets
of friends, it is natural to extend the analysis to other solutions, beyond the Shapley and
Banzhaf values. In what follows, we focus on the class of semivalues.

Let F =
⋃m

k=1 F
k
i and let Γi = {1, . . . , f 1

i } × . . . × {1, . . . , fmi } (if clear from the
context, in the following we shall omit the lower index i), where f and fki are the car-
dinalities of F and F k

i , for each k = 1, . . . ,m.

The following Theorem generalizes the results in Proposition 6 and 7.

Theorem 2. Consider a GAS situation 〈N, v, {F 1
i , . . . , F

m
i , Ei}i∈N〉 with F j

i ∩F
k
i = ∅

for all i ∈ N and j, k = 1, · · · ,m, j 6= k.
For all j ∈ N \ (F ∪ Ei), we have that πp

j (v
Ci) = 0.

Take j ∈ F b
i , with b ∈ {1, . . . ,m}. Then πp

j (v
Ci) is equal to the following expres-

sion:

v(i)
∑

(k1i ,...,k
b−1
i ,0,kb+1

i ,...,kmi )∈Γ

∑n−e−f
l=0

(

f1i
k1i

)

× . . .×
(

fmi
kmi

)

×
(

n−e−f
l

)

ph+l (4.4)

where e = |Ei| and h =
∑m

j=1 k
j .

Now, take j ∈ Ei. Then πp

j (v
Ci) is given by:

πp

j (v
Ci) = −v(i)

∑

(k1i ,...,k
m
i )∈Γ

∑n−t−f
l=0

(

f1i
k1i

)

× . . .×
(

fmi
kmi

)

×
(

n−e−f
l

)

ph+l. (4.5)

Proof. Players in N \ (F ∪ Ei) are dummy players, so they receive nothing. Now,
consider the case j ∈ F b

i and take a coalition S ⊆ N \ {j} that does not contain j. The
marginal contribution of j to coalition S is vCi(S ∪ {j})− vCi(S) = v(i) if S contains
at least one friend from each set of friends F t

i with t 6= b (i.e, S ∩ F t
i 6= ∅ for t 6= b),

and S does not contain neither any element of F b
i nor any element of Ei; otherwise,

vCi(S ∪ {j})− vCi(S) = 0.
Given a vector (k1i , . . . , k

b−1
i , 0, kb+1

i , . . . , kmi ) ∈ Γ (i.e., kb = 0) and l ∈ {0, . . . , n−e−

f}, the product
(

f1i
k1i

)

× . . .×
(

fm

kmi

)

×
(

n−e−f
l

)

represents the number of sets S containing

kti elements of F t
i , for each t ∈ {1, . . . ,mi} with t 6= b, l elements of N \ (F ∪ Ei)

and such that vCi(S ∪ {j}) − vCi(S) = v(i). Of course, the probability of such a set
S to form is ph+l, and relation (4.4) follows. Now, consider the case j ∈ T and take
a coalition S ⊆ N \ {j} that does not contain j. The marginal contribution of j to
coalition S vCi(S ∪ {j})− vCi(S) = −v(i) if S contains at least one friend from each
set of friends F t

i for each t (i.e, S ∩ F t
i 6= ∅ for each t = 1, . . . ,mi), and S does not

contain any element of Ei; otherwise, S vCi(S ∪ {j}) − vCi(S) = 0. Given a vector
(k1i , . . . , k

m
i ) ∈ Γ and l ∈ {0, . . . , n− e− f}, the product

(

f1i
k1i

)

× . . .×
(

fm

kmi

)

×
(

n−e−f
l

)

represents the number of sets S containing kti elements of F t
i , for each t = 1, . . . ,mi, l

elements of N \ (F ∪Ei) and such that vCi(S ∪ {j})− vCi(S) = −v(i). Of course, the
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4.2. Semivalues and GAGs

probability of such a set S to form is ph+l, and relation (4.5) follows.

Formulas for the semivalues on vCi when each i ∈ N has only one set of friends can
be derived directly from the previous theorem. Indeed, the following corollaries hold.

Corollary 3. Consider a basic GAS on 〈N, v, {Ci = {Fi, Ei}}i∈N〉. Then a semivalue
πp for the game vCi is given by:

πp

j (v
Ci) =











0 if j ∈ N \ (Fi ∪ Ei)

v(i)
∑n−f−e

k=0

(

n−f−e
k

)

pk if j ∈ Fi

−v(i)
∑f

k=1

(

f

k

)
∑n−f−e

h=0

(

n−f−e
h

)

pk+h if j ∈ Ei.

Corollary 4. Consider a basic GAS on 〈N, v, {Ci = {Fi, Ei = ∅}}i∈N〉. A semivalue
πp for the game vCi is given by:

πp

j (v
Ci) =

{

0 if j ∈ N \ Fi

v(i)
∑n−f

k=0

(

n−f
k

)

pk if j ∈ Fi.

Note that, in the basic GASs 〈N, v, {Ci = {Fi, Ei}}i∈N〉 considered in Corollary
3, a semivalue πp for the game vCi assigns to a player j ∈ Fi a positive share of vi,
proportionally to the probability (according to p) that j enters in a coalition not con-
taining any player of the set Fi ∪ Ei; on the contrary, each player l ∈ Ei receives
a negative share of vi, proportionally to the probability that l enters in a coalition
containing at least one player of Fi. In particular, the unique semivalue such that
∑

i∈Fi
πp

i (v
Ci) =

∑

i∈Ei
πp

i (v
Ci), for every Fi, Ei ⊆ N , Fi ∩ Ei = ∅, Fi 6= ∅ and

Ei 6= ∅, is the Shapley value.
Observe that from Corollary 3 we can derive a formula for the Shapley and Banzhaf

value of a basic GAG when each player has a unique set of friends:

σj(v
Ci) =











v(i)
∑n−f−e

k=0

(

n−f−e
k

)

k!(n−k−1)!
n!

if j ∈ Fi

−v(i)
∑f

k=1

(

f

k

)
∑n−f−e

h=0

(

n−f−e
h

) (k+h)!(n−k−h−1)!
n!

if j ∈ Ei

0 otherwise

and

βj(v
Ci) =











v(i)
∑n−f−e

k=0

(

n−f−e
k

)

1
2n−1 if j ∈ Fi

−v(i)
∑f

k=1

(

f

k

)
∑n−f−e

h=0

(

n−f−e
h

)

1
2n−1 if j ∈ Ei

0 otherwise.

The equivalence with the formulas of Proposition 7 can be verified through Lemma
1 for the Shapley value (see Appendix 8).

Another interesting case, which is not covered by Theorem 2 since the set of friends
are not disjoint, relates to the basic GAS 〈N, v, C〉, where Ci = {F 1

i = {i}, Fi, Ei}i∈N〉
and the set Fi does contain i for all i ∈ N .

In this case the following result holds.
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Proposition 8. Let vCi be as in (4.3), with i ∈ Fi. Then the Shapley and Banzhaf value
of each j ∈ N are given, respectively, by:

σj(v
Ci) =























0 if j ∈ N \ (Fi ∪ Ei)
v(i)
e+1

if j = i

0 if j ∈ Fi \ {i}

− v(i)
e(e+1)

if j ∈ Ei

and

βj(v
Ci) =



















0 if j ∈ N \ (Fi ∪ Ei)
v(i)
2e

if j = i

0 if j ∈ Fi \ {i}

−v(i)
2e

if j ∈ Ei

Proof. Observe that players different from player i, and not belonging toEi, are dummy
players. We call a player decisive if he make the worth of the coalition S changing, by
joining it. This can happen only if the value changes form 0 to v(i) and conversely.
Consider player i, and players in Ei. Then i is decisive if and only if he precedes all
players in Ei. since the ordering of the players in Ei are irrelevant, the result follows.
To conclude, use efficiency of the Shapley value and symmetry of the players in Ei.

4.3 The Core of GAGs

In this section we consider GAGs where v(i) > 0 represents a revenue for each
i ∈ N and we present some results concerning the core of the GAGs. The first result
we present in this section is quite simple, and relates to the core of general GAGs.

Proposition 9. Let 〈N, v,M〉 be a GAS with v ∈ RN
+ where M is proper and such that

M(N) = N . Then, the core of the associated (reward) GAG (N, vM) is non-empty.

Proof. Let x ∈ RN be the allocation with xi = v(i) for each i ∈ N . Consider the
game w defined as: w(S) =

∑

i∈S v(i). Notice that x ∈ C(w). Moreover, it holds
that vM(S) ≤ w(S) ∀S ⊆ N , by properness of M, and vM(N) = w(N). Thus
x ∈ C(vM).

We now turn our attention to basic GAGs. An obvious way to find conditions under
which the core of vC is non empty is to look for conditions under which C(vCi) 6= ∅
for every i ∈ N since, if xi ∈ C(vCi), then x =

∑

i∈N xi ∈ C(vC). As we shall see
later, the condition is only sufficient. Condition M(N) = N for a map M defined
via relation (3.4) is equivalent to impose Ei = ∅ for each i ∈ N . We then focus on
games associated to a GAG on N where M is defined by relation (3.4) with collections
Ci = {F 1

i , . . . , F
m
i , Ei = ∅}. In this case, the game vCi defined in (3.5) becomes:

vCi(S) =

{

v(i) if S ∩ F k
i 6= ∅, ∀k = 1, . . . ,m

0 otherwise.
. (4.6)
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Denote by Ii = {j ∈ N : ∃ F k
i ∈ Ci s.t. F k

i = {j}} the set of players that appear
in collection Ci as singletons. Note that Ii may be empty. Otherwise, players in Ii are
veto players in the associated game vCi . From the above considerations the following
Proposition holds, which characterizes the core of the game vCi .

Proposition 10. Consider the game vCi , where M is defined by relation (3.4) with
collections Ci = {F 1

i , . . . , F
m
i , Ei = ∅}. Then C(vCi) 6= ∅ if and only if Ii 6= ∅.

Moreover, if Ii 6= ∅, then it holds that:

C(vCi) = {x ∈ RN
+ :
∑

j∈Ii

xj = v(i)} (4.7)

Proof. Note that Ii is the set of veto players in vCi . Therefore, C(vCi) 6= ∅ if and
only if Ii 6= ∅. Moreover, if Ii 6= ∅, relation (4.7) simply follows from the fact that
vCi(N) = v(i).

It follows that if Ii 6= ∅ ∀i ∈ N , then C(vC) 6= ∅. However, when games vCi such
that Ii = ∅ are combined with games vCj such that Ij 6= ∅, the resulting GAG can have
a nonempty core, as shown in the following example.

Example 14. Consider a two-person basic GAS 〈N, v, C〉 with N = {1, 2} with no en-
emies such that v(1) = α, v(2) = 2 and C1 = {{1}, {2}, E1 = ∅}, C2 = {{1, 2}, E2 =
∅}. By Proposition 10, we have that C(vC1) 6= ∅, and C(vC2) = ∅. The core of the
resulting GAG vC = vC1 + vC2 is non-empty if and only if α ≥ 2.

The situation described in the previous example can be generalized as follows. We
first define the set I = {i ∈ N : Ii 6= ∅}. The following proposition provides a
necessary and sufficient condition for the non-emptiness of the core of a special class
of basic GAGs of the type introduced in Example 14.

Proposition 11. Let vC be the GAG corresponding to a basic GAS 〈N, v, C〉 with v(i) ≥
0 and Ci = {F 1

i , . . . , F
m
i , Ei = ∅} for each i ∈ N . Suppose there exists a coalition

S ⊆ N , S 6= ∅, satisfying the following two conditions:
(i) S ⊆ Ii for each i ∈ I;
(ii) for each i ∈ N \ I, there exists k ∈ {1, . . . ,m} such that F k

i = S.
Define the equal split allocation among players in S as the vector y such that

y = eS
vC(N)

s
,

where s is the cardinality of S and where eS ∈ {0, 1}N is such that eSk = 1, if k ∈ S
and eSk = 0, otherwise. The allocation y is in the core of the game vC iff

vC(N) ≥ s
∑

i∈N\I

v(i). (4.8)

Proof. First, we prove that condition (4.8) is necessary. Suppose that (4.8) does not
hold, i.e. vC(N) < s

∑

i∈N\I v(i). Consider a coalition T ⊆ N , such that |T | ≥ 2,
T ∩ S = {t} and T ∩ F k

i 6= ∅ ∀i ∈ N , ∀k = 1, · · · ,m. It holds that:
∑

j∈T

yj = yt =
vC(N)

s
<
∑

i∈N\I

v(i) = vC(T )
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and therefore y /∈ C(vC).
Moreover, we prove that condition (4.8) is also sufficient. Clearly,

∑

i∈N

yi =
∑

i∈S

yi = vC(N) =
∑

i∈N

v(i). (4.9)

In order to prove that y ∈ C(vC) we have to show that if relation (4.8) holds then
∑

i∈N yi ≥ vC(T ) for each coalition T ⊆ N .
First consider a coalition T ⊆ N such that S ⊆ T . Note that

∑

i∈N v(i) ≥ vC(T ), and
then by relation (4.9),

∑

i∈T yi ≥
∑

i∈S yi =
∑

i∈N v(i) ≥ vC(T ).
Now consider a coalition T ⊆ N such that S ∩ T = ∅. By condition (i) and (ii), we
have that vC(T ) = 0, which is not greater than

∑

i∈T yi since yi ≥ 0 for each i ∈ N .
Finally, consider a coalition T ⊆ N such that S ∩ T 6= ∅ and S * T . Since S ⊆ Ii for
each i ∈ I, then no term v(i) with i ∈ I contributes to the worth of T . This means that

vC(T ) =
∑

i∈M(T )

v(i), (4.10)

with M(T ) ⊆ N \ I and where M is defined by relation (3.4). Now consider a player
i ∈ S ∩ T . If condition (4.8) holds, then we have that

∑

j∈T

yj ≥ yi ≥
∑

i∈N\I

v(i) ≥ vC(T ),

where the last inequality follows by relation (4.10), which concludes the proof.

Observe that, even if the equal split allocation does not belong to the core, the core
might be non empty, as the following example shows.

Example 15. Consider a GASG = 〈N, v,M〉 withN = {1, 2, 3} with no enemies such
that C1 = {{1}, {2}, {3}, E1 = ∅}, C2 = {{2, 3}, E2 = ∅} and C3 = {{2, 3}, E2 = ∅}.
The coalition {2, 3} satisfies the hypothesis in Proposition 11 but relation (4.8) is not
satisfied. However, the allocation (v(1), v(2), v(3)) belongs to the core of vC .

The previous Propositions provide sufficient conditions for the non-emptiness of the
core for basic GAGs. If a game can be represented in terms of a basic GAG, these
conditions can be directly verified by considering only the collections of friends and
enemies of each player, without having to check any further property of the character-
istic function (for instance, the balancedness property [15,86]), that in general involves
much more complex procedures. Consequently, the results provided in this section can
be used to construct non-trivial classes of games with a non-empty core, or to easily
derive core allocations. For instance, even if a game is not itself representable in terms
of a basic GAG, Proposition 10 may be applied to generate allocations in the core of
games that can be described as the sum of proper basic GAGs where no player has
enemies, as next example shows.

Example 16. Consider the game introduced in [33], in which the players are nodes of
a graph with weights on the edges, and the value of a coalition is determined by the
total weight of the edges contained in it. Formally, an undirected graph G = (N,E)
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is given, with weight wi,j on the edge {i, j} 2, and the game v is defined, for every
S ⊆ N , as v(S) =

∑

i,j∈S wi,j . If all weights are non-negative, the game is convex
and therefore the core is non empty. However, finding allocations in the core is not
straightforward and in [33] necessary and sufficient conditions for the Shapley value
to belong to it are provided.

Indeed, game v can be described as the sum of n basic GAGs, one for each player
i ∈ N , where each other player j 6= i contributes to the worth of a coalition S ⊆ N
with half of the weight wi,j if and only if i and j belong to S, while i contributes to
any coalition it belongs to with the weight wi,i. Formally, v =

∑

i∈N v
Ci

, where vC
i

is
a proper basic GAG associated to collections Cij = {F 1

j = {i}, F 2
j = {j}, Ej = ∅}

and v(j) = wi,j

2
, for every j ∈ N , j 6= i, while Cii = {F 1

j = {i}, Ej = ∅} and v(i) =
wi,i. As a sum of n proper GAGs such that M(N) = N , Proposition 9 immediately
implies the non-emptiness of the core of game v. Moreover, notice that according to
Proposition 4 each basic GAG vC

i

can be decomposed as the sum vC
i

=
∑

j∈N v
Ci
j , for

each i, j ∈ N , and then the repeated application of Proposition 10 on each vC
i
j can be

used to efficiently derive allocations in the core of the sum game v.

Following similar intuitions, we argue that the simple structure of basic GAGs could
be useful to generalize some of the complexity results about the problem of finding core
allocations provided in [33], for instance, considering classes of more sophisticated
games that can be generated as a positive linear combination of basic GAGs.

4.4 Concluding remarks

In Chapters 3 and 4 we introduced and studied a class of coalitional games, namely
the class of basic GAGs, where the worth of each coalition is calculated additively
over the individual contributions and keeping into account social relationships among
groups of players, that is by means of a map M that selects the valuable players in the
coalition.

Several examples from the literature of classical coalitional games that can be de-
scribed within our approach have been presented. Our approach enables to classify
existing games based on the properties of M.
The interest of the classification is not only taxonomical, since it also allows to study
the properties of solutions for classes of games known from the literature, which are
studied in connection with the properties of the filtering map M introduced and dis-
cussed in Chapter 3.

Indeed, we showed that, in many cases, basic GAGs allow for an easy computa-
tion of several classical solutions from cooperative game theory and, at the same time,
provide quite simple representations of practical situations (for instance, arising from
online social networks).

One of the goal of our future research is to apply these models on real social network
data. As shown by Example 13, the information required to compute classical power
indices on basic GAGs representing online social networks (like the users’ activity
time or the users’ social profiles and social affinities) is not very demanding and can
be obtained by available records and models from the literature [82]. Moreover, as it

2. Since the graph is undirected, we assume by convention that, if an edge between i and j is present, wi,j 6= 0 and wj,i = 0
for i < j.
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has been stressed in the same example, it would be interesting to explore the strategic
issues related to the attempt of players to increase their influence (as measured by the
Shapley value or by other power indices) on a social network.
An interesting direction for future research is indeed that of coalition formation, since
for generic basic GAGs associated to GASs with non-negative v, where the sets of
enemies are not empty, the grand coalition is not likely to form. As an example of
coalition formation problem that can be well represented in these terms, consider the
following “triangle” situation on three researchers, namely, Alice, Bob and Carol. Due
to their characters’ affinities, Alice and Bob love to do research together, but they do
not like at all to be involved in research projects with Carol. Instead, Carol loves to do
research with Bob, but not with Alice. On the other hand, in order to make a successful
research, they need to perform a certain number of expensive experiments. Because
of the bad financial status of their respective departments, Alice and Bob’s personal
research funds are very limited, whereas Carol can rely on a conspicuous international
funding. Such a situation can be represented by as basic GAS on the three researchers
N = {Alice,Bob,Carol} where the set of friends of Alice contains only Bob, the set
of friends of Bob and Carol is the same and coincides with the singleton Alice, the set
of enemies of Alice and Bob is the singleton Carol and, finally, the set of enemies of
Carol is the singleton Alice. In addition, the function v = (v(Alice), v(Bob), v(Carol))
of their individual contribution is given by their respective research funds. The cor-
responding basic GAG is vC(Alice,Bob) = v(Alice) + v(Bob), vC(Bob,Carol) =
v(Carol) and vC(S) = 0 for all the other coalitions S ⊆ N . It is quite natural to expect
that if v(Carol) is quite larger than v(Alice) + v(Bob), then the coalition {Bob,Carol}
will form, despite the reciprocal friendship between Alice and Bob.

In general, we believe that the issue about which coalitions are more likely to form
in a basic GAG is not trivial and deserves to be further explored.
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CHAPTER5

On the Position Value for Special Classes of

Networks

In this Chapter we deal with a particular class of TU-games, those whose coopera-
tion is restricted by a network structure. We focus on the so-called cooperative games
with restricted communication, where a cooperative game and a network that describes
the restriction on the feasible coalitions lead to the definition of a communication sit-
uation and to the search for solution concepts that take into account the constraints
imposed by the underlying network structure. In particular, we consider a communica-
tion situation in which a network is produced by subsequent formation of links among
players and at each step of the network formation process, the surplus generated by
a link is shared between the players involved, according to some rule. As a conse-
quence, we obtain a family of solution concepts for communication situations that we
investigate on particular network structures. This approach provides a different inter-
pretation of the position value since it turns out that a specific symmetric rule leads to
this solution concept.

5.1 Introduction

In Chapter 3, we introduced the class of GAGs, where the worth of each coalition
is computed as the sum of the individual values of a subset of players. We showed that
several coalitional games on networks can be described within this formalism. On the
other hand, in many cases, when an underlying network describes the interaction among
the players involved, it is possible to derive the worth of each coalition of players as
the sum of the contributions that their pairwise interactions generate, that is as the sum
of the individual values assigned to the edges in the underlying network, as we have
shown, as an example, for the class of maintenance cost games described in Section
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3.3.3. As it has been shown in Chapter 3 , this idea may be described by defining a link-
based GAG, corresponding to a link-based GAS 〈N,w,L〉, where N = {1, . . . , , n},
represent the set of nodes in a network 〈N,E〉, w : E → R assigns a value to each
edge in the graph and L : 2E → 2E assigns to each subset A ⊆ E of edges another
subset L(A) ⊆ E. Then the corresponding link-based GAG (N, vL) would be defined
by the following expression, for every S ⊆ N :

vL(S) =
∑

e∈L(ES)

w(e),

where ES are the edges in the graph induced by S.
As for the maintenance cost games, in several other graph games the worth of a

coalition can be additively computed starting from the values assigned to the edges in
the underlying graph. Moreover, as in graph-restricted game the value of a coalition
can be derived additively from a collection of subcoalitions of players, for the class of
link games, introduced by Meessen [70] and further studied by Borm et al. [18], the
value of a coaliton of links can be derived additively from a collection of subcoalitions
of links. Indeed, several approaches to coalitional games on networks rely on additive
patterns among links, not only for what concerns the definition of a game, but also for
the analysis of the relative solutions.

This Chapter is indeed devoted to the introduction of a class of solution concepts for
communication situations [75], where the payoff to each player is additively computed
starting from the values generated by pairwise relations among players. More precisely,
we consider a communication situation in which a network is produced by subsequent
formation of links among players and at each step of the formation process, the surplus
generated by a link is shared between the players involved, according to some rule. As
a consequence, we obtain a family of solution concepts that we investigate on particu-
lar network structures. In particular, it turns out that the position value, introduced by
Borm et al. [18] as a solution for communication situations, is obtained when a specific
symmetric rule is considered. Moreover, we investigate the problem of computing this
particular solution on special classes of communication situations.

The Chapter is organized as follows. We first discuss some related literature in Sec-
tion 5.2. Then in Section 5.3 we describe the concept of communication situation and
introduce the position value. In Section 5.4 we introduce the notion of allocation pro-
tocol and the class of solution concepts that derives. Furthermore, we focus on the
computation of the position value. Section 5.5 presents some preliminary results and
in Section 5.6 we give formulas for the position value on specific communication situ-
ations. Section 5.7 concludes.
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5.2 Related Work

A TU-game describes a situation in which all players can freely interact with each
other, i.e. every coalition of players is able to form and cooperate. However, this is
not the case in many real world scenarios. A typical situation is when there exists a
restriction on the communication possibilities among players, as in the context of so-
cial interactions between groups of people, political alliances within parties, economic
exchange among firms, research collaborations and so on. In order to represent and
study such situations it is necessary to drop the assumption that all coalitions are fea-
sible. Then a natural question arises: how can we model restrictions of the interaction
possibilities between players? Different approaches to model the restrictions on the
interaction possibilities among players exist in literature. A typical way to do so is that
of considering a network structure 1 that describes the interaction possibilities between
the players: the nodes of the network are the players of the game and there exists a
link between two nodes if the corresponding players are able to interact directly. In this
context it is usual to refer to such networks as communication networks, since a typical
situation they model is a restriction of communication possibilities between players.
This approach leads to the definition of a so-called communication situation 2 [75] and
to the search for solution concepts that take into account the constraints imposed by the
underlying network structure. This corresponds to a flourishing stream in the literature
on Game Theory, whose crucial point is to study how the communication constraints
influence the allocation rules. There are at least two ways to measure this impact, that
correspond to two different main streams in the recent literature.

In a first approach, the communication constraints determine how a coalition is eval-
uated. There is no actual restriction constraint on the set of feasible coalitions, but if a
coalition is not connected through the communication graph, its worth is evaluated on
the connected components in the induced graph. This approach is investigated in the
seminal paper by Myerson [75], who introduces the Myerson value in order to gener-
alize the Shapley value from TU-games to graph games. Jackson and Wolinsky [51]
extend Myerson’s model by considering a function assigning values to networks as a
basic ingredient. Borm et al. [18] introduce the position value for communication sit-
uations. Like the Myerson value, the position value is based on the Shapley value,
but it stresses the role of the pairwise connections in generating utility, rather than the
role of the players. The value of a pairwise connection is derived as the Shapley value
of a game on the set of links of the network and the position value equally divides
the value of each link among the pair of players who form it. The position value has
been extended in [90] to the setting of network situations introduced in Jackson and
Wolinsky [51] and an axiomatic characterization in this context is given in [101].

In a second approach, the communication constraints determine which coalitions
can actually form. The definition of the Shapley value relies on the idea of a one-by-
one formation of the grand coalition: its interpretation assumes that the players gather
one by one in a room; each player entering the room gets his marginal contribution to
the coalition that was already there and all the different orders in which the players en-

1. Other models introduced in the literature are discussed in [92], including extensions of the interaction channels to hyper-
graphs and probabilistic networks, among others.

2. Note that the term graph game is sometimes used in the literature as a synonym for communication situation, while in
this monograph we shall keep the two terms separate, to distinguish two different ways in which coalitional games and networks
interact.
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ter are equiprobable. To take into account the communication constraints, the orderings
of the players that induce disconnected coalitions are ruled out: the formation of the
grand coalition requires a communication at any stage. In order to satisfy the commu-
nication constraints Demange [32] proposes to model the sequential formation of the
grand coalition by a rooted spanning tree of the communication graph.
Each rooted spanning tree represents a partial order on the players set such that the
arrival of a new player forms a connected coalition. Demange [32] introduces the hier-
archical outcome in order to extend the concept of marginal contribution from orderings
of the players to rooted spanning trees. This second approach is also studied by Her-
ings et al. [48] who introduce the average tree solution for graph games in which the
communication graph is a forest (cycle-free graph). This allocation is the average of the
hierarchical outcomes associated with all rooted spanning trees of the forest. Herings
et. al. [48] and Baron et al. [7] show how an extension of the average tree solution to ar-
bitrary graph games can be seen as another generalization of the Shapley value. In Béal
et al. [10], the principle of compensation formulated by Eisenman [39] is generalized
from orderings of the players to rooted spanning trees and the compensation solution
for graph games is introduced.

Based on the idea that the formation of the grand coalition requires a communica-
tion at any stage, our approach is different in spirit with respect to the aforementioned
models. We assume indeed a different mechanism of coalition formation which results
from subsequent connection of links among players, where the payoff to each player is
additively computed starting from the values generated by the links that subsequently
form. This idea naturally leads to consider a communication situation where a network
between the players is produced by a permutation of links and we suppose that, at each
step of the network formation process, the surplus generated by a link is shared between
the players involved according to a certain protocol. Taking into account this mecha-
nism, we propose a class of solution concepts where each solution corresponds to a
different allocation protocol. In particular, at a certain step when a link between two
players forms, it is reasonable to equally share the surplus between the players that are
responsible for this connection, i.e. the two nodes incident to the link that is formed. It
turns out that the solution obtained by this particular allocation protocol is indeed the
position value introduced in [18]. Our model thus provides a different interpretation for
this well-known solution concept and proposes a family of solution that embraces the
basic principles of both the approaches described above, providing a bridge between
two different ways of modelling the restriction of communication possibilities between
players in a coalitional game.

5.3 Cooperative Games with Restricted Communication: the Position

Value

A coalitional game describes a situation in which every coalition of players is able
to form and cooperate. If there exists a restriction on the interaction possibilities among
players, not all coalitions are feasible. We can represent this situation by introducing
a network structure that models the interactions between players. This leads to the
definition of a communication situation.

Given a graph Γ and a coalitional game (N, v) we recall that a communication sit-
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uation [75] is defined as the triple (N, v,Γ), where N is the set of players, (N, v) is
a coalitional game and Γ is an undirected graph with N as set of vertices. The graph
Γ = (N,E) describes the communication possibilities between players: an indirect
communication between i and j is possible if there is a path that connects them; if
{i, j} ∈ E, then i and j can communicate directly.

In order to model the restriction of interactions among players described by a com-
munication situation, Myerson introduced in [75] the so-called graph-restricted game
vΓ, defined by:

vΓ(S) =
∑

T∈CΓS

v(T ), (5.1)

where CΓS
is the set of connected components in ΓS . Note that, if S is connected in

Γ, then vΓ(S) = v(S). Given a communication situation (N, v,Γ), the Myerson value
µ(N, v,Γ) is defined as the Shapley value of the graph-restricted game, that is:

µ(N, v,Γ) = Φ(vΓ).

Borm et al. introduced in [18] a solution concept for a communication situation
based on the approach of Meessen [70]: given Γ = (N,E) and A ⊆ E, the link game
vL is defined by:

vL(A) =
∑

T∈CΓA

v(T ), (5.2)

where CΓA
is the set of connected components in ΓA. We denote by GL the vector space

of all link games on Γ = (N,E), E ⊆ {{i, j} : i, j ∈ V, i 6= j}, where N is a fixed set
of players. Note that the dimension of GL is equal to the number of connected subsets
of E; i.e. the cardinality of {A ⊆ E : ΓA is connected}.
Every link game vL can be written as a linear combination of unanimity link games as
follows:

vL =
∑

A⊆E

cA(v
L)uA, (5.3)

where cA are the unanimity coefficients of vL:

cA(v
L) =

∑

B⊆A

(−1)|A|−|B| vL(B); (5.4)

or equivalently c{l}(vL) = vL({l}) and for A ⊆ E, |A| ≥ 2:

cA(v
L) = v(A)−

∑

B(A,B 6=∅

cB(v
L). (5.5)

Given a communication situation (N, v,Γ), the position value π(N, v,Γ) is defined
as:

πi(N, v,Γ) =
1

2

∑

a∈Ai

Φa(v
L) ∀i ∈ N, (5.6)

whereAi = {{i, j} ∈ E, j ∈ N} is the set of all links for which player i is an endpoint.
Note that, since the players in vL are the elements of E, i.e the links of Γ, in formula

47



Chapter 5. On the Position Value for Special Classes of Networks

(5.6) we compute the Shapley value of a link. We shall write π(v) when there is no
ambiguity about the underlying network.

We point out here a particular property satisfied by the position value that will be
useful for our purpose, namely the superfluous arc property [101]. Given a commu-
nication situation (N, v,Γ), with Γ = (N,E), we call superfluous a link a such that
vL(A ∪ {a}) = vL(A) ∀A ⊆ E. The superfluous arc property states that if a is a
superfluous arc, then π(N, v,Γ) = π(N, v,Γ′), where Γ′ = (N,E\{a}). The property
follows directly by formula (5.6): the links (or arcs) that provide a marginal contribu-
tion equal to zero to every coalition of links (not containing the link itself) do not give
contribution to the sum in (5.6), thus the position value does not change if they are
removed from the network.

Note that, like the Shapley value, every semivalue Ψp induces a solution concept ψp

for communication situations given by:

ψp

i (N, v,Γ) =
1

2

∑

a∈Ai

Ψp

a (v
L). (5.7)

We write ψ(v) when there is no ambiguity about the underlying network. Note that,
by definition of semivalue, the superfluous arc property still holds for every solution ψ
corresponding to a given semivalue.

See [90], [91] and [101] for an axiomatic characterization of the position value for
network situations, which generalize the context of communication situations.

5.4 Coalition formation and allocation protocols

In Chapter 2 we introduced the Shapley value and gave a formula to compute it.
Formula (2.5) has the following interpretation: suppose that the players gather one by
one in a room to create the grand coalition. Each player entering the room gets his
marginal contribution to the coalition that was already in the room. Assuming that all
the different orders in which they enter are equiprobable, one gets the formula, where
n! is the number of permutations on a set of n elements.

Let us consider a different mechanism of coalition formation: let us assume that a
coalition forms by subsequent formation of links among players. This naturally leads
to consider a communication situation, where a network between the players is pro-
duced by a permutation of links and all the different orders in which the links form are
considered to be equiprobable. In this scenario, we can imagine that, when a link be-
tween two players forms, the players that are connected to each other receive a certain
value according to some rule. Let us suppose that, at each step of the network forma-
tion process, when a link between two players i and j forms, the value of the coalition
S, where S is the connected component containing i and j, reduced by the values of
the connected components formed by the players of S at the previous step, is shared
between the players involved according to a certain protocol. Then a natural question
rises: How to share this value?

Given a communication situation (N, v,Γ), let us consider a possible permutation σ
of links. At each step k of the network formation process, when the k-th link a = {i, j}
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in the sequence determined by σ forms, let us consider the surplus produced by a:

Sσk = v(S)− v(C i
k−1,σ)− v(Cj

k−1,σ) (5.8)

where S is the connected component in Γ containing i and j at the step k, and C i
k−1,σ

and Cj
k−1,σ are the connected components in Γ at the step k − 1, containing i and j

respectively.
An allocation protocol is a rule that specifies how to divide Sσk between the players in
S. Given an allocation protocol r and a communication situation (N, v,Γ), a solution
of v, that we shall denote by φr(v), is given by:

φri (v) =
1

|E|!

∑

σ∈ΣE

|E|
∑

k=0

f ri (S
σ
k ), ∀i ∈ N, (5.9)

where ΣE is the set of possible orders on the set of links E in Γ and f ri is a function
that assigns to each player i ∈ N a fixed amount of the surplus Sσk , depending on the
allocation protocol r. In other words, the solution φr(v) is computed by considering all
possible permutations of links, and summing up, for each player i, all the contributions
he gets with the allocation procedure r, averaged by the number of permutations over
the set of links among the players, with the interpretation discussed at the beginning of
this section.

This idea leads to the introduction of a class of solution concepts: different choices
of the allocation protocol define different solutions for a communication situation. At
a certain step, when a link a = {i, j} forms, it is possible to consider the allocation
protocol that equally divides the surplus between players i and j only. The solution
obtained by this particular allocation protocol is indeed the position value π defined in
(5.6).

Note that other solution concepts can be achieved by sharing the surplus among the
players involved in a different way.

The rest of the Chapter is devoted to the problem of computing such a solution on
particular classes of communication situations.

5.5 Preliminary Results

In this Section we present some preliminary results that will be useful in the next
Sections.

Proposition 12. Let (N, v,Γ) be a communication situation and vL the corresponding
link game. Then cA(vL) = 0 for any coalition A ⊆ E which is not connected in Γ,
where cA(vL) are the unanimity coefficients of vL.

Proof. We prove the result by induction on a = |A|.
Suppose a = 2, i.e. A = {l1, l2}, l1, l2 ∈ E, where l1 and l2 belong to two different
connected components. From this hypothesis and from (5.2) and (5.5) we get:

vL(A) = v({l1}) + v({l2})

= c{l1}(v
L) + c{l2}(v

L) (5.10)
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and

vL(A) =
∑

B⊆A

cB(v
L)

= c{l1}(v
L) + c{l2}(v

L) + cA(v
L) (5.11)

By comparing (5.10) and (5.11), we get that cA(vL) = 0.
Let us now consider k ≥ 2 and suppose by inductive hypothesis that
cB(v

L) = 0, ∀B such that |B| ≤ k and B is not connected in Γ. We shall prove
that cA(vL) = 0 ∀A such that A is not connected and |A| = k + 1. Let B1 ⊂ A be a
connected component in Γ, i.e. B1 ∈ CΓA

. Then by hypothesis A\B1 6= ∅. It follows
that:

vL(A) = vL(B1) + vL(A\B1). (5.12)

Moreover it holds:

vL(A) =
∑

B⊆A

cB(v
L)

=
∑

B⊆B1

cB(v
L) +

∑

B⊆A\B1

cB(v
L) +

∑

B⊆A:A∩B1 6=∅∧B∩(A\B1) 6=∅

cB(v
L)

= vL(B1) + vL(A\B1) +
∑

B(A:B∩B1 6=∅∧B∩(A\B1) 6=∅

cB(v
L) + cA(v

L)

= vL(B1) + vL(A\B1) + cA(v
L), (5.13)

where (5.13) follows from the inductive hypothesis.
Then, by comparing (5.12) and (5.13) we get: cA(vL) = 0, which ends the proof.

Note that an equivalent result has been proved by Van den Nouweland et al. [101]
for a value function (i.e. a characteristic function over subsets of links).

Corollary 5. The family of unanimity games {uA, A ⊆ E, where A is connected in Γ}
is a basis for GL

Proof. From Proposition 12, we get that {uA, A ⊆ E, where A is connected in Γ} is a
spanning set for the vector space GL. Moreover the cardinality of this set is equal to the
dimension of GL.

Equivalent results hold in the context of graph-restricted games and the proofs can
be found, for example, in [46]. Moreover, the previous results hold for a generic
value function v that satisfies the component additivity property, i.e. such that v(A) =
∑

T∈CΓA
v(T ) for every network Γ over the set of nodes N .

5.6 The Position Value on Particular Classes of Communication Situa-

tions

In general, given a communication situation (N, v,Γ) it is not easy to compute the
position value. However, it is so for particular classes of games and graphs. In this
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Section we give formulas to compute the position values on particular classes of com-
munication situations, where the underlying network is described by a tree or a cycle.
We assume w.l.o.g throughout the Chapter that v({i}) = 0 ∀i ∈ N .

5.6.1 The Position Value on Trees

Let (N, v,Γ) be a communication situation, where Γ = (N,E) is a tree and |N | = n.
Given a node i ∈ N and a coalition S ⊆ N , we define fringe(S) = {j ∈ N\S such
that {i, j} ∈ E for some i ∈ S}. Let f(S) := |fringe(S)|, degS(i) the degree of i in
S, i.e. the number of nodes in S that are directly connected to i in Γ and degfringe(S)(i)
the number of nodes in fringe(S) that are directly connected to i in Γ.

We provide a formula for the position value on eS , with S ⊆ N connected in Γ such
that |S| ≥ 2. If S is not connected, it doesn’t make sense to consider the position value
of eS , since the associated link game eLS is the null game.

Proposition 13. Let S ⊆ N connected in Γ, where Γ is a tree and |S| ≥ 2. Then the
position value on the canonical game eS is given by:

πi(eS) =































1
2
(s−2)!(f(S)−1)!

(m−1)!
δi(s) if i ∈ S

−1
2
(s−1)!(m−s−1)!

(m−1)!
if i ∈ fringe(S)

0 otherwise

(5.14)

where m = s+ f(S) and δi(s) = f(S)degS(i)− (s− 1)degfringe(S)(i).

Proof. We observe that every link not inES∪fringe(S) is superfluous. Therefore πi(eS) =
0 for every i /∈ S∪fringe(S) and we can reduce the network to (S∪fringe(S), ES∪fringe(S)).

Consider i ∈ S. Node i gets a positive contribution (equal to 1/2) every time a link
incident to it is the last one to form inside S and no link outside S already formed. This
happens degS(i) times. Moreover it gets a negative contribution (equal to −1/2) when
all the links in S already formed and a link incident to i is the first one to form outside
S. This happens degfringe(S)(i) times. Therefore we get

πi(eS) =
1
2

[

(s−2)!(m−s)!
(s−1)!

degS(i)−
(s−1)!(m−s−1)!

(m−1)!
degfringe(S)(i)

]

,

where m = s+ f(S) and the expression (5.14) follows directly.
Consider i ∈ fringe(S). Node i gets a negative contribution when all the links in

S already formed and the only link that connects i to S is the first one to form outside
S. Therefore we get πi(eS) = −1

2
(s−1)!(m−s−1)!

(m−1)!
.

Note that the formula holds also for S = N , with fringe(N) = ∅, which implies
that f(N) = 0. On the other hand, when S = {i}, the associated link game eLS is the
null game, as for S not connected.

Let us consider the unanimity games {uS, S ⊆ N}. We also provide a formula for
the position value on uS , with S ⊆ N connected in Γ such that |S| ≥ 2.
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Proposition 14. Let S ⊆ N connected in Γ, where Γ is a tree and |S| ≥ 2. Then the
position value on the unanimity game uS is given by:

πi(uS) =











1
2
degs(i)

1
s−1

if i ∈ S

0 otherwise.

(5.15)

Proof. We observe that every link not in ES is superfluous. Therefore πi(uS) = 0 for
every i /∈ S and we can reduce the network to (S,ES).
Consider i ∈ S. Node i gets a positive contribution (equal to 1/2) every time a link
incident to it is the last one to form inside S. This happens degS(i) times. Therefore
we get

πi(eS) =
1

2

(s− 2)!(m− s)!

(m− 1)!
degS(i),

where m = s and the result follows directly.

Moreover, if S = {j}, easy calculations show that:

πi(uS) =











1
2

if i = j
1

2f(S)
if i ∈ fringe({j})

0 otherwise.

5.6.2 The Position Value on Cycles

Let (N, v,Γ) be a communication situation, where Γ = (N,E) is a cycle and |N | =
n. We provide a formula for the position value on eS , where S ⊆ N is a s-chain (i.e.
S is connected in Γ) with 2 ≤ s ≤ n − 2. If S is not connected, or S = {i}, it does
not make sense to consider the position value of eS , since the associated link game eLS
is the null game.

Proposition 15. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and 2 ≤ s ≤ n− 2.
Then the position value on the canonical game eS is given by:

πi(eS) =



















































1
2
(s−2)!(m−s−1)!

(m−1)!
(m− 2s+ 1) if i ∈ Se

(s−2)!(m−s)!
(m−1)!

if i ∈ Si

−1
2
(s−1)!(m−s−1)!

(m−1)!
if i ∈ fringe(S)

0 otherwise

(5.16)

where m = s + f(S), Se is the set of the extremal nodes and Si = S\Se is the set of
the internal nodes.

Proof. We observe that every link not inES∪fringe(S) is superfluous. Therefore πi(eS) =
0 for every i /∈ S∪fringe(S) and we can reduce the network to (S∪fringe(S), ES∪fringe(S)).
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Consider i ∈ S. We shall distinguish between the internal and extremal nodes of the
chain S. Let i ∈ Se the set of endpoints in ΓS . Node i gets a positive contribution when
the link incident to it in the chain is the last one to form inside S and no link outside
S already formed. Moreover it gets a negative contribution when all the links in S al-
ready formed and the link incident to i in fringe(S) is the first one to form outside S.
Therefore we get

πi(eS) =
1

2

[(s− 2)!(m− s)!

(m− 1)!
−

(s− 1)!(m− s− 1)!

(m− 1)!

]

,

where m = s+ f(S) and the expression (5.16) follows directly.
Let i ∈ Si = S \ Se. Node i gets a positive contribution when one of the two links
incident to it in S is the last one to form inside S. Therefore we get

πi(eS) = 2
[1

2

(s− 2)!(m− s)!

(m− 1)!

]

.

Consider i ∈ fringe(S). Node i gets a negative contribution when all the links in S
already formed and the only link that connects i to S is the first one to form outside S.
Therefore we get

πi(eS) = −
1

2

(s− 1)!(m− s− 1)!

(m− 1)!
.

On the other hand, if S = N\{j}, the following proposition holds.

Proposition 16. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and s = n− 1. Then
the position value on the canonical game eS is given by:

πi(eS) =































4−n
2n(n−1)(n−2)

if i ∈ Se

2
n(n−1)(n−2)

if i ∈ Si

− 1
n(n−1)

if i ∈ fringe(S)

(5.17)

where Se is the set of the extremal nodes and Si = S\Se is the set of the internal nodes.

Proof. Using the same argument of the previous proof, formulas for i ∈ S are derived
by noting that there is no superfluous link and m = n. Moreover, the only node i ∈
fringe(S) gets twice the contribution he gets in the previous case since it is directly
connected to S by its incident links.

Note that if S = N , there is no superfluous link and by symmetry πi(eS) = 1
n

, for
all i ∈ N .

We provide a formula for the position value on uS , with S ⊆ N a s-chain. If
2 ≤ |S| ≤ n− 1, the following proposition holds.
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Proposition 17. Let S ⊆ N be a s-chain in Γ, where Γ is a cycle and 2 ≤ s ≤ n− 1.
Then the position value on the unanimity game uS is given by:

πi(uS) =































1
2

[

(n−s+1)
n(s−1)

+ (2s− 3) 1
n(n−1)

]

if i ∈ Se

1
2

[

2 (n−s+1)
n(s−1)

+ 2(s− 2) 1
n(n−1)

]

if i ∈ Si

(s− 1) 1
n(n−1)

if i /∈ S

where Se is the set of the extremal nodes, i.e. the endpoints in ΓS , and Si = S\Se is the
set of the internal nodes.

Proof. We observe that there is no superfluous link. Consider i ∈ Se. Node i gets a
positive contribution (equal to 1/2) every time the link incident to it in the chain is the
last one to form inside S (no matter which links already formed outside S).
Moreover it gets a positive contribution when the link incident to it outside the chain
is the last one to form in E \ {a}, where a is the link incident to i in the chain S
and every time one of the two links incident to i is the is the last one to form in E \
{b}, where b is one of the links in the chain S not incident to i. Note that the first
case happens

∑n−s
k=0

(

n−s+1
k

)

times; the second one only occurs once and the last case
happens 2(s − 2) times. This yields the following formula for i ∈ Se: πi(uS) =
1
2

[
∑n−s

k=0

(

n−s+1
k

) (s−2+k)!(n−s−k+1)!
n!

+ (2s − 3) 1
n(n−1)

]

. Consider i ∈ Si. Node i gets
a positive contribution (equal to 1/2) every time one of the two links incident to it
in the chain is the last one to form inside S (no matter which links already formed
outside S). Moreover it gets a positive contribution whenever one of the two links
incident to it is the last one to form in E \ {a}, where a is other link incident to i in
the chain S and every time one of the two links incident to i is the is the last one to
form in E \ {b}, where b is one of the links in the chain S not incident to i. Note
that the first case happens 2

∑n−s
k=0

(

n−s+1
k

)

times; the second one only occurs twice
and the last case happens 2(s− 3) times. This yields the following formula for i ∈ Si:
πi(uS) =

1
2

[

2
∑n−s

k=0

(

n−s+1
k

) (s−2+k)!(n−s−k+1)!
n!

+2(s−2) 1
n(n−1)

]

. Consider i /∈ S. Node
i gets a positive contribution (equal to 1/2) every time one of the two links incident to
it is the last one to form in E \ {a}, where a is one of the links in the chain S. This
happens 2(s− 1) times. It follows that, for i /∈ S, πi(uS) = (s− 1) 1

n(n−1)
.

This formula can be simplified by using Lemma 2 in Appendix B:

n−s
∑

k=0

(

n− s+ 1

k

)

(s− 2 + k)!(n− s− k + 1)!

n!

=
1

n

n−s
∑

k=0

(

n− s

k

)

n− s+ 1

n− s− k + 1

(s− 2 + k)!(n− s− k + 1)!

(n− 1)!

=
n− s+ 1

n

n−s
∑

k=0

(

n− s

k

)

(s− 2 + k)!(n− s− k)!

(n− 1)!

=
(n− s+ 1)

n(s− 1)
, (5.18)
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where (5.18) follows from identity (8.3). This ends the proof.

Note that if S = N , all players are symmetric and πi(uS) = 1
n

. On the other hand if
S = {j}, the position value is very easy to compute. In fact, the links a = {i, j} and
b = {j, k} are symmetric players in the link game, while all the remaining links are
superfluous. This implies that Φa = Φb =

1
2

and Φc = 0 ∀c ∈ E\{a, b}.

πi(uS) =











1/2 if i = j

1/4 if i 6= j, {i, j} ∈ E

0 otherwise.

5.6.3 The Position Value For a Generic Coalitional Game

In the last two Sections we provided formulas for the position value on particular
classes of games. We shall use those formulas and the results of Section 5.5 to derive
an expression that shows the relation between the position value for a generic game and
the position value of unanimity games.

Proposition 18. Let (N, v,Γ) be a communication situation. Then the position value
for i ∈ N is given by

πi(v) =
∑

A⊆E connected

cA(v
L)πi(w), (5.19)

where w is such that wL = uA.

Proof. By definition of position value and by Corollary 5 we get that:

πi(v) =
1

2

∑

a∈Ai

Φa(v
L) =

1

2

∑

a∈Ai

∑

A⊆E connected

cA(v
L)Φa(uA)

=
∑

A⊆E connected

cA(v
L)πi(w)

where w is such that wL = uA.

This result implies that, in order to compute the position value of a generic game,
we have to consider the position value on those games whose corresponding link game
is a unanimity game on a connected subset of links.
However, when Γ is a tree, the formula (5.19) can be simplified and a direct relation
between the position value for a generic game and the position value of unanimity
games can be obtained.

Corollary 6. Let (N, v,Γ) be a communication situation, where Γ is a tree. Then the
position value for i ∈ N is given by

πi(v) =
∑

S⊆N connected

cES
(vL)πi(uS). (5.20)
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Proof. ConsiderA ⊆ E connected in Γ. Let S be the set of nodes in ΓA. This definition
of S induces a bijection between the set {w : wL = uA, A connected in Γ} and the set
{uS : S ⊆ N,S connected in Γ}. Therefore the result follows directly.

However, the computation of the position value for a generic game remains difficult
even if the underlying graph is a tree. Indeed, deriving the position value using formula
(5.20) requires listing all subtrees of a tree (the problem has been extensively addresses
in the literature, see, for example, [81], [95] and [40]) and computing the corresponding
unanimity coefficients.

5.7 Concluding remarks

In this Chapter we proposed a family of solution concepts for communication situ-
ations that embraces the principles of the two main approaches existing in the related
literature. We also provided a different interpretation of the position value, as the solu-
tion concept arising from a particular symmetric allocation protocol, which prescribes
how to share the surplus generated by a link among the players involved in the net-
work formation process. Moreover, we provide an expression for the position value of
a game when the underlying network is a tree, which relates its computation to the one
for unanimity games.

The computation of the position value and its complexity remains an open problem,
which has not been studied in the literature and deserves, in our opinion, further investi-
gation. Another interesting direction for future research is to provide a characterization
of the family of solution concepts we introduced, based on some reasonable proper-
ties that an allocation protocol should satisfy. Moreover, it would be interesting to
investigate the relationship between different allocation protocols and known solution
concepts, besides the position value.
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CHAPTER6

GAGs and Argumentation Theory

This Chapter is devoted to the introduction, by means of a property-driven approach,
of a conflict-based ranking of arguments in an argumentation graph. This approach is
based on the observation that an argumentation graph, which consist of arguments and
attack relations between pairs of arguments, is conflictual. We introduce a conflict in-
dex that measures the contribution of each argument to the total disagreement of the
graph, therefore yielding a conflict-based ranking or arguments in an argumentation
framework, and we provide a game-theoretical interpretation of such index in terms of
coalitional games.

Indeed, we show that the conflict-based ranking we propose may be re-interpreted
in terms of a classical solution for coalitional games, that is as the average marginal
contribution of each argument to the disagreement induced by all possible coalitions of
arguments in an argumentation graph. We do so by defining a cooperative game, where
the players are the arguments in an argumentation graph and every coalition of argu-
ments is assigned a value, which expresses the total disagreement within the coalition.
In particular, every node and every link inside a coalition of arguments contributes to
the value of the coalition with its individual share of the disagreement, as measured
by the attack relations it brings to the coalition. The so-defined game is indeed repre-
sentable in terms of basic GAGs, as a combination of the original model introduced in
Chapter 3 and its variant defined on links, briefly described in Section 3.3. We propose
the Shapley value of such a game as a conflict index that measures the controversiality
of arguments, since it measures the power of each argument in bringing conflict to the
argumentation framework.

57



Chapter 6. GAGs and Argumentation Theory

6.1 Introduction

Abstract argumentation [38] deals with the construction and the analysis of non-
monotonic reasoning systems based on the complex interplay among distinct argu-
ments. Basically, in this framework, arguments are represented as atomic entities (with-
out any regard to their internal structure) whose interaction is modelled via a binary
attack relation expressing a (possible) disagreement between pairs of arguments. In the
literature, several extension semantics or labellings have been associated to the abstract
argumentation framework with the objective to specify which arguments are accepted
or not, and which are undecided [21, 37].

Different from extension semantics, the aim of gradual semantics is to assign a
degree of acceptability to each argument. An example of gradual semantic is the h-
Categorizer introduced in [13], which is intended to quantify the relative strength of
an argument taking into account how much such an argument is challenged by other
arguments, and by recursion, how much it challenges its counter-arguments. Another
gradual interaction-based evaluation reflecting the way in which arguments weaken
each others has been introduced in [24] for a bipolar argumentation framework (i.e.,
supporting both attack and support relations between arguments). Other examples are
the ranking-based semantics introduced in [4], where a procedure to transform an ar-
gumentation graph (i.e., a digraph where the nodes are the arguments and the arrows
represent the attack relation) is introduced following a property-driven approach. Still
different examples are the probabilistic approaches studied in [49, 97], which interpret
the probability of an argument as the degree to which the argument is believed to hold.

Game theory has also been used to define intermediate level of acceptability of ar-
guments. Specifically, in [67] a degree of acceptability is computed taking into account
the minimax value of a zero-sum game between a ‘proponent’ and an ‘opponent’ and
where the strategies and the payoffs of the players depend on the structure of an argu-
mentation graph. More recently, coalitonal games have been applied in [16] to measure
the relative importance of arguments taking into account both preferences of an agent
over the arguments and the information provided by the attack relations.

In the aforementioned approaches, the weight attributed to each argument represents
the strength of an argument to “force” its acceptability. On the other hand, acceptability
is not the only arguments’ attribute that has been studied in literature from a “gradual”
perspective. In [98] an index has been introduced to represent the controversiality of
single arguments, where the most controversial arguments are those for which taking
a decision on whether they are acceptable or not is difficult. In a similar direction,
the problem of measuring the disagreement within an argumentation framework has
been studied in [3], where the authors provided an axiomatic analysis of different dis-
agreement measures for argumentation graphs. Both definitions of controversial-based
ranking and disagreement measure are strictly related to the notion of enforcement in-
troduced in [8], and aimed at identifying the minimal changes needed to enforce the
acceptability of a set of arguments (see [98] for a discussion on the relation between
controversiality and enforcement).

The objective of this Chapter is twofold. First, we want to show that the properties
introduced in [3] for argumentation graphs can be reformulated for single arguments,
and may drive the definition of a conflict-based ranking, that can be seen as an alter-
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native ranking for measuring the controversiality of arguments. Our second goal, is to
merge the abstract argumentation framework into a game theoretical coalitional frame-
work similar to the one already proposed in [16], and re-interpret our conflict-based
ranking in terms of a classical solution for coalitional games, that is as the average
marginal contribution of each argument to the disagreement induced by all possible
coalitions of arguments in an argumentation graph. Considering persuasion scenarios,
we argue that the conflict-based ranking introduced in this Chapter may drive agents to
select those arguments that should be further developed in order to strengthen certain
positions in a debate, hence, responding to the question raised in [98] about the defini-
tion of a ranking representing the potential for development of arguments.

The Chapter is structured as follows. In Section 6.2 we introduce the concept of
argumentation framework and the disagreement measure proposed in [3]. In Section 6.3
we focus on the properties for a conflict index for arguments. Section 6.4 is devoted to
the property-driven analysis of conflict indices. Section 6.5 deals with the analysis of an
associated coalitional framework and the reformulation of the conflict index introduced
in Section 6.4 as a solution for these games.
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6.2 Argumentation Graphs and Disegreement Measures

In this Section we introduce some preliminary notations and definitions on argu-
mentation graphs and we introduce the disagreement measure proposed in [3].

An argumentation framework is a directed graph in which nodes represent argu-
ments and direct edges represent attack relations [38]. Formally, an argumentation
framework (or argumentation graph) A is a pair < A,R > where A = {1, . . . , n} is a
non empty finite set of arguments and R ⊆ A×A is an attack relation. Given two argu-
ments a, b ∈ A, (a, b) ∈ R, or equivalently aRb, if a attacks b. We denote by A the set of
all argumentation graphs and by AA the set of all argumentation graphs with A as the
set of arguments. The number of arguments in the graph, that is n = |A|, is called the
size of the graph. A path in A is a sequence of arguments (a1, · · · , ak), where ai ∈ A
for all i = 1, · · · , k such that aiRai+1 for all 1 ≤ i < k and ai 6= aj for all i 6= j.
An elementary cycle is a path (a1, · · · , ak) such that akRa1. A cycle represents a set of
arguments which contradicts itself. Let i, j ∈ A, i 6= j. The distance between i and j
di,j is defined as the length of the shortest path from i to j if such path exists, otherwise
di,j = |A|+ 1. If i = j then di,i is the length of the shortest elementary cycle in which
i is involved, otherwise di,i = |A|+ 1.
Let A = < A,R > and A′ = < A′,R′ > be two argumentation graphs. An isomorphism
from A to A′ is a bijective function f : A → A′ such that for all a, b ∈ A, aRb iff
f(a)R′f(b).

An argumentation graph is by definition conflictual, since it describes the attack
relations among arguments in an argumentation system. In order to quantify this inner
conflict, it is possible to associate to each argumentation framework a disagreement
measure.
A disagreement measure [3] is a function K : A → [0,1] with the interpretation that,
for every A, A′ ∈ A, A is more conflicting than A′ if K(A) > K(A′). Note that
K = 0 corresponds to the absence of disagreement in a graph, while the maximum
disagreement is set to K = 1.

Different measures can be proposed in order to quantify the disagreement in a graph.
A property-driven approach has been proposed in [3], which leads to the introduction
of a measure that is based on the concept of global distance among arguments in an
argumentation framework.
Let A = < A,R > be an argumentation framework. The global distance D(A) is
defined as

D(A) =
∑

i∈A

∑

j∈A

di,j.

To compute D(A) it is possible to build a matrix of distances D:

D =







d1,1 d1,2 ...

d2,1 d2,2 ...

... ... ...






,

in which the element di,j is the distance between argument i and argument j, and to
sum all its elements.
The maximum value of D(A) corresponds to the case where R = ∅ and it equals
n2(n + 1). On the other hand, when R = A × A, D(A) takes minimum value, that is
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n2. The maximum value of D(A) corresponds to the case in which the disagreement
is minimal and the minimal value to the case in which the disagreement is maximal.
For this reason it makes sense to define a disagreement measure that depends on the
opposite value of D(A).

Definition 5 (Distance-based measure [3]). Let A =< A,R > be an argumentation
graph. The distance-based measure KD(A) is defined as:

KD(A) =
max−D(A)

max−min
, (6.1)

where max = n2(n+ 1) and min = n2.

The distance-based measure is normalized by the value max − min in order to
obtain a value between 0 and 1 that makes possible to easily compare different argu-
mentation graphs. In [3] it is shown that this measure satisfies the following set of
axioms: it depends only on the structure of the graph and not on the label of the nodes
with the consequence that it assigns the same value to isomorphic graphs (abstraction);
it assigns 0 to graphs without attack relations and 1 to complete graphs (coherence
and maximality); the disagreement value of a graph does not increase if an isolated
argument is added, i.e. if an argument is added without modifying the set R, and it
does not decrease if an attack between two arguments is added (free independence and
monotonicity); it detects cycles by assigning them a higher disagreement with respect
to acyclic graphs of the same size (cycle sensitivity) and, when comparing two cycles,
it assigns a higher value to the cycle with less arguments, following the idea that cycles
are seen as dilemmas or paradoxes and the less arguments are needed to produce a cy-
cle, the stronger is the disagreement (size sensitivity).

6.3 A Property-driven Approach to Measure Conflict of Arguments

Given a disagreement measure, it is interesting to assess which are the arguments
that contribute the most to to the total disagreement in an argumentation graph. To this
purpose, we introduce, by using an axiomatic approach, a conflict index that evaluates
the contribution of each argument to the total disagreement.

A conflict index K : AA → Rn is a function that assigns to every argumentation
graph with n = |A| nodes (arguments) a vector in Rn, representing the contributions
of each argument to the conflict in the graph. The higher the value that such index
assigns to an argument, the larger is the disagreement brought by that argument to
the graph. Let A = < A,R > be an argumentation framework. For every argument
i ∈ A, Ki(A) measures the contribution of argument i to the total disagreement in the
graph: an argument i brings more disagreement than j if Ki(A) > Kj(A). In terms of
controversiality, an argument with a large conflict index is highly constroverse and is
pointed as deserving further development in order to decide on its acceptability.

Following the approach proposed in [3], we introduce eight axioms that a conflict
index should satisfy in order to describe the behaviour of arguments in a graph.

The first axiom states that the contribution to the disagreement of each argument de-
pends only on the structure of the graph. This means that the label of an argument does
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not add information about the contribution to the disagreement. Therefore if two ar-
gumentation graphs are isomorphic, the index assigns the same value to corresponding
nodes.

Axiom 1. (Abstraction) Let A =< A,R > and A’ =< A′,R′ > be two argumentation
graphs. If A and A′ are isomorphic, then for all i ∈ A, Ki(A) = Kf(i)(A

′), where f(.)
is an isomorphism between A and A′.

The second axiom set to zero the conflict index of arguments in a graph without
attack relations. This is a natural request that follows from the absence of disagreement
in the graph.

Axiom 2. (Coherence) Let A = < A,R > be an argumentation graph. If R = ∅, then
Ki(A) = 0 for all arguments i ∈ A.

In order to state the third axiom, the concept of star must be introduced. An argu-
mentation graph is a star if an argument i exists that attacks all the other arguments and
receives attacks from all the arguments, included itself, and there is not other attack
relation between arguments. i is called centre of a star.

The third axiom states that the argument that brings the maximum of disagreement
in a graph is the centre of the star.

Axiom 3. (Maximality) Let A = < A,R > be a star and let i be the center of the star.
Then Ki(A) > Kj(A) ∀j 6= i ∈ A and for all the argumentation graphs A′ of the same
size, ∀h ∈ A′

Ki(A) > Kh(A
′).

The fourth axiom states that adding isolated arguments to an argumentation graph
which contains attacks does not increase the contribution of each argument to the total
disagreement.

Axiom 4. (Free independence) Let Args be the universe of arguments. Let A =
< A,R > be an argumentation graph with R6= ∅ and let A′ = < A∪a,R > an ar-
gumentation graph with a ∈ Args\A. Then Ki(A) > Ki(A

′) ∀i ∈ A.

Next axiom states that if a new attack is added to an argumentation graph, no argu-
ment will decrease its contribution to the total disagreement.

Axiom 5. (Monotony) Let A = < A,R > be an argumentation graph and let A′ =
< A,R∪R’ > be an argumentation graph with R’ ⊆ (A × A)\R. Then, for all i ∈ A,
Ki(A) 6 Ki(A’).

Next results for the centre of a star follows from the previous axioms.

Proposition 19. If a conflict index satisfies Axioms 3 and 5, then adding attacks does
not change the conflict index of the centre of the star.

Proof. Let A = < A,R > be a star of size n and centre i and let A′ be a graph in which
one attack is added to a star of size n. Thanks to axiom 3, Ki(A) > Kh(A

′) ∀h ∈ A′,
but axiom 5 states that ∀j ∈ A Kj(A) 6 Kj(A

′), so the centre of the star does not
change its value.
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Axiom 6 states that, among argumentation graphs of the same size, arguments that
belong to an elementary cycle have larger contribution to the disagreement than argu-
ments that belong to an acyclic graph.

Axiom 6. (Cycle sensitivity) Let A = < A,R > be an acyclic argumentation graph
and A′ = < A’,R’ > an elementary cycle. If |A| = |A′| then, for all i ∈ A and for all
j ∈ A′, Ki(A) < Kj(A

′).

Axiom 7 states that the larger is the size of an elementary cycle, the smaller is the
contribution of each argument to the total disagreement.

Axiom 7. (Size sensitivity) Let A = < A,R >and A′ = < A’,R’ > be two elementary
cycles with |A| < |A′|. Then, for all i ∈ A and for all j ∈ A′, Ki(A) > Kj(A

′).

Last axiom prescribes that the sum of the contributions of each node to the disagree-
ment in a graph should be equal to the total disagreement in the graph, as measured by
the disagreement measure in (6.1).

Axiom 8. (Efficiency) Let A = < A,R > be an argumentation graph. and let KD be
the distance-based disagreement measure defined by (6.1). Then

∑

i∈N

Ki(A) = KD(A).

6.4 A Distance-based Conflict Index for Arguments

In this Section we introduce a distance-based conflict index, which is linked to the
disagreement measure introduced in [3], and show that it satisfies all the axioms stated
in the previous Section.

Definition 6 (Distance-based conflict index). Let A = < A,R > be an argumentation
graph of size n. We define the distance-based conflict index KD

i as the conflict index
that assigns to every i ∈ A the following value:

KD
i (A) =

1

∆
(
max

n
− ϕi), (6.2)

where max = n2(n + 1), ∆ = max − min = n2(n + 1) − n2 = n3 and ϕi =
1
2

∑

j∈A\i

di,j +
1
2

∑

j∈A\i

dj,i + di,i.

The value KD
i (A) depends on ϕi, which takes into account all the distances from i

to the other arguments and vice versa.

Example 17. Let A=< A,R > be the argumentation graph where A = {1, 2, 3} and
R = {(1, 1), (1, 2), (2, 3)}, as depicted in Figure 6.1.
The corresponding matrix of distances D is

D =







1 1 2

4 4 1

4 4 4







and the value of max and min are 36 and 9 respectively. Thus ϕ1 = 13
2

, ϕ2 = 9,
ϕ3 = 19

2
and the conflict index are K1 = 0.20, K2 = 0.11, K3 = 0.09. The most

conflictual argument according to our measure is argument 1, followed respectively by
arguments 2 and 3.
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1 2

3

Figure 6.1: An argumentation graph with three arguments.

Theorem 3. The distance-based conflict index defined by (6.2) satisfies all the eight
axioms introduced in Section 6.3.

Proof. Let A = < A,R > be an argumentation graph. 1. If A and A′ are isomorphic,
then ϕi =ϕf(i) that implies Ki(A) = Kf(i)(A

′). Abstraction is therefore satisfied. 2. If
R = ∅ then ϕi = n(n+ 1). It follows that

Ki (A) =
1

∆

(max

n
− ϕi

)

=
1

n3

(

n2(n+ 1)

n
− n(n+ 1)

)

= 0.

Coherence is therefore satisfied. 3. Let i ∈ A be an argument such that ∀j ∈ A jRi and
iRj and such that there are not other attack relations between arguments. Then ϕi = n
and ϕj = 2n− 1 that implies

Ki(A) =
1

n

and

Kj(A) =
n2 − n+ 1

n3
.

It follows that Ki(A) > Kj(A) ∀j ∈ A. Furthermore n is the minimum possible value
of ϕ for a node. This means that for all the argumentation graphs A′ of the same size,
∀h ∈ A′Ki(A) > Kh(A

′). Maximality is therefore satisfied. 4. Let A′ =< A∪a,R > be
an argumentation graph with a ∈ Args\A. For all the arguments i ∈ Aϕi(A

′) > ϕi(A).
This implies Ki(A) > Ki(A

′) ∀i ∈ A. Free independence is therefore satisfied. 5. Let
A′=< A,R’ > be an argumentation graph with R′ ⊆ (A × A)\R. Then, for all the
arguments i ∈ A, ϕi(A) > ϕi(A

′) and it follows that Ki(A
′) > Ki(A) ∀i ∈ A.

Monotony is therefore satisfied. 6. Let A = < A,R > be an acyclic argumentation
graph and A′ =< A′,R′ > an elementary cycle and let | A |=| A’ |. In order to
prove this axiom, first the acyclic configuration in which i gives the maximum possible
disagreement is found and then it is shown that all the arguments in a cycle has a greater
conflict index than i. The acyclic graph in which i gives the most possible disagreement
is the one in which there is only one attack between i and all the other arguments
h ∈ A \ i (∀h ∈ A iRh ⊻ hRi). In this case ϕi has the minimum value possible for a
node in a acyclic graph because ∀j 6= i ∈ A (di,j = 1 and dj,i = n+ 1) ⊻ (di,j = n+ 1
and dj,i = 1). Therefore

ϕi(A) =
1

2
(n+ 1)(n− 1) +

1

2
(n− 1) + (n+ 1) =

1

2
n2 +

3

2
n
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It follows that

Ki(A) =
n− 1

2n2
.

For an elementary cycle, for all the arguments j ∈ A′ it holds that

ϕj(A
′) = 1 + 2 + ...+ n =

n(n+ 1)

2

and

Kj(A
′) =

n+ 1

2n2
.

So for all i ∈ A and for all j ∈ A′, Ki(A) < Kj(A
′). Cycle sensitivity is therefore

satisfied. 7. Let A be an elementary cycle. As it is proved in the cycle sensitive
property, ∀i ∈ A

ϕi(A) =
n(n+ 1)

2
,

so it follows:

Ki(A) =
n+ 1

2n2
.

Let A′ = < A′,R′ > be another elementary cycle with | A |<| A′ |= m, then ∀j ∈ A′

Kj(A
′) =

m+ 1

2m2
.

It’s easy to check that if n > 1 and n < m, Ki(A) > Kj(A
′) for all i ∈ A and for all

j ∈ A′. Size sensitivity is therefore satisfied.
8. Let KD(A) = max−D(A)

max−min
= 1 + 1

n
− D(A)

n3 be the disagreement measure of the graph
A. Then

∑

i∈N

max

n
− ϕi = max−D(A)

implies
∑

i∈N

KD
i (A) =

max−D(A)

max−min
.

Efficiency is therefore satisfied and this concludes the proof.

The distance-based conflict index associates to each argument a value that depends
on the distance from an argument to the others and vice versa. Every isolated argument
has measure equal to zero which means that it does not bring any disagreement. Fur-
thermore, this index detects arguments that belong to cycles giving them a high value.

By assigning to each argument a real value, the index enables the comparison among
arguments in contributing to the conflict in argumentation frameworks, which naturally
leads to consider the conflict index as a ranking-based semantic, that is a function that
transforms every argumentation graph into a ranking on the set of arguments.

A ranking on a set A is a binary relation � on A that is � is total, i.e. ∀a, b ∈ A, a �
b or b � a and transitive, i.e. ∀a, b, c ∈ A, if a � b and b � c then a � c.
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V NV

CFSRISVPT

PP AP

Figure 6.2: An argumentation framework representing a debate between two transplant coordinators.

A ranking-based semantic [4] is a function S that transforms any argumentation frame-
work A =< A,R > into a ranking on A.
The distance-based conflict index generates a ranking between arguments since it as-
signs a real number to each argument and R is totally ordered. In particular, the higher
is the conflict index of an argument, the least will be its position in the ranking, with the
interpretation that an argument controversiality is directly proportional to the amount
of disagreement it produces.

Example 18. Let A the argumentation graph in Figure 6.2. The graph summarizes a
debate between two transplant coordinators that must take a decision about the viability
of an organ. One coordinator is against the viability while the other is in favour of the
viability of the organ. The first argues that the organ is not viable, since the donor
had endocarditis due to streptococcus viridans and the recipient could then be infected
by the same microorganism. In contrast, the other argues that the organ is viable,
because the organ presents a correct function and a correct structure and the infection
could be prevented with post-treatment with penicillin, even if the recipient is allergic
to penicillin, since there is the option of post-treatment with teicoplanin. The following
seven arguments constitutes the debate:

— NV: organ is non viable;

— V: organ is viable;

— CFS: organ has correct function and correct structure;

— RISV: recipient could be infected with streptococcus viridans;

— PP: post-treatment with administer penicillin;

— PT: post-treatment with administer teicoplanin;

— AP: recipient is allergic to penicillin.

The distance-based conflict index defined in (6.2) provides the following ranking:
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Ranking position Argument KD
i (A)

1 V 0.0816
2 NV 0.0772
3 RISV 0.0481
4 PP 0.0364
5 AP 0.0321
6 PT 0.0262
7 CFS 0.0190

Based on this ranking, we can conclude that V (the organ is viable) and NV (the
organ is not viable) are the two arguments that bring more disagreement in the argu-
mentation framework. In particular, V is the more controverse one. If a mediator is
asked to evaluate the arguments in order to take a decision about the transplant, we
argue that he should suggest, according to this ranking , to further develop these two
arguments, by investigating the likelihood of a risk of infection on one hand, and the
correct function and structure of the organ, on the other hand.

6.5 A Game-Theoretical Interpretation of the Conflict Index

In the previous Section, an index of conflict for arguments in an argumentation graph
is proposed. The introduction of such index has been justified by means of an axiomatic
approach: we proved that the index satisfies a number of interesting properties. More-
over, in this Section, we show that it coincides with the Shapley value of a properly
defined game.

Let A = < A,R > be an argumentation graph, where A has cardinality n. We
introduce a cooperative game (A, v), where the set of players coincides with the set of
arguments A in the argumentation graph and the characteristic function is defined as
follows for every S ⊆ A:

v(S) =
max−D(S)

max−min
, (6.3)

where D(S) =
∑

i,j∈S

di,j , max = n2(n + 1) is the maximal value that D can attain in

an argumentation graph with n arguments and min = n2 is the minimal one. D(S)
measures the global distance among arguments in a coalition S, taken into account the
attack relations that exist among them on the whole graph: it is defined as the sum of
distances among the nodes of the coalition S, where the distance between two nodes
is computed on the entire graph. The smaller is the global distance in a coalition,
the higher is the value of that coalition in the game v, reflecting the fact that the overall
conflict in a coalition of arguments inversely depends on the distance among arguments.

We observe that such a game can be can be expressed in terms of basic GAGs, as
a combination of the original model introduced in Chapter 3 and its variant defined on
links, briefly described in Section 3.3.

Indeed, it is possible to write v as follows

v(S) =
max

∆
−
D(S)

∆
,

where ∆ = max−min = n3. Therefore, v can be written as the linear combination of
two games: v = 1

∆
(vmax+vD), where vmax is a constant game that assumes valuemax
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for every coalition and vD(S) = D(S). Moreover, we notice that vD can be expressed
in terms of unanimity games, by associating to the game a complete weighted graph,
with |A| = n nodes, where the weight on the edge {i, j} is precisely the distance di,j ,
as depicted in the following figure for a graph with two arguments.

1 2
d1,2

d1,1

d2,1

d2,2

Given this graph, it is easy to observe that D can be reformulated in terms of una-
nimity games as follows:

vD =
∑

i,j∈N

αi,ju{i,j} +
∑

i∈N

αiu{i},

where:

— αi,j = di,j + dj,i;

— αi = di,i;

— u{i,j} and u{i} are the unanimity games on {i,j} and {i}.

It follows that, for every S ⊆ A:

vD(S) =
∑

e={i,j}∈RS

αi,j +
∑

i∈S

αi

:= v1(S) + v2(S),

where RS is the set of edges in the argumentation graph induced by coalition S. vD

is therefore the sum of two games, v1 and v2, where v2 is a basic GAG associated to
the GAS 〈A, v2,M2〉, where each player i ∈ A is assigned the value v2(i) = αi and
M is associated to the collection of sets of friends and enemies defined as follows:
Fi = {i} and Ei = ∅ for all i ∈ A. On the other hand, v1 can be represented in terms of
a link basic GAG 〈A,w,L〉, as described in Section 3.3, where w(e) = αi,j for every
e = {i, j} ∈ R and L is associated to the collection of sets of friends and enemies
defined as follows: Fe = {e} and Ee = ∅ for all e ∈ R.

We show that the conflict index introduced in the previous section coincides with
the Shapley value of the game defined in (8). Indeed, the following proposition holds.

Proposition 20. The distance-based conflict index defined by (6.2) coincides with the
Shapley value of the game (A, v) defined in (8).

Proof. As we obsevred above, v can be written as the linear combination of two games:
v = 1

∆
(vmax + vD), where vmax is a constant game that assumes value max for every

coalition and vD(S) = D(S). Therefore, the Shapley value of v, for every i ∈ A, is
given by

σi(v) =
1

∆
(σi(v

max) + σi(v
D)).
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The value σi(vmax) is easy to calculate because vmax is a constant game and thus
σi(v

max) = max
n
. Moreover, the game vD can be written in terms of unanimity games

as follows:
vD =

∑

i,j∈N

αi,ju{i,j} +
∑

i∈N

αiu{i},

where αi,j = di,j + dj,i and αi = di,i. It follows that the Shapley value of vD for every
i ∈ A has the following expression:

σi(v
D) =

1

2

∑

j∈A\{i}

di,j +
1

2

∑

j∈A\{i}

dj,i + di,i.

Therefore, the Shapley value of v, for every i ∈ A, is given by

σi(v) =
1

∆
(
max

n
)−

ϕi
∆
,

which coincides with the expression in (6.2).

Example 19. Let A the argumentation graph of Example 17. The matrix of distances
D in the entire graph is

D =







1 1 2

4 4 1

4 4 4







and D(S) is the sum of the elements of the submatrix whose rows and columns corre-
spond to the arguments in S.
As an example, to compute the value of coalition {1, 2}, we shall sum up all the terms
in the following submatrix:

[

1 1

4 4

]

,

which results in v({1, 2}) = max−10
max−min

. Thus the game associated to this argumentation
graph is such that v(∅) = 0, v({1}) = 35

27
,v({2}) = 32

27
, v({3}) = 32

27
, v({1, 2}) = 26

27
,

v({1, 3}) = 25
27

, v({2, 3}) = 23
27

and v(A) = 11
27

. The Shapley value of the game
coincides with the disagreement measure found in Example 17. According to the in-
terpretation provided by the Shapley value, node 1 is the one which brings the most
conflict to the graph, followed by node 2 and node 3.

Indeed, the distance-based conflict index we have introduced can be interpreted as an
index of the contribution of each argument to the total disagreement in the graph, since
it takes into account the marginal contribution, in terms of conflict, that each argument
provides to any other coalition of arguments, weighting it according to a probabilistic
coefficient that depends on the size of the coalition.

Note that it is possible to define other games on an argumentation graph, where the
value of a coalition represents in some way the conflict among arguments in the coali-
tion. The game we have considered takes into account the distance among arguments in
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the original graph. However, one can imagine to restrict the attention to the only argu-
ments in the coalition, and therefore compute the distances among them in the induced
graph. This idea leads to the definition of the following game, for every S ⊆ A,

w(S) =
max|S −D|S(S)

max|S −min|S
, (6.4)

where D|S(S) =
∑

i∈S

∑

j∈S

d|Si,j is the global distance in the induced graph, max|S =

|S|2(|S|+1) is the maximum value of the global distance in a graph with |S| nodes and
min|S = |S|2 is the minimum one.

Example 20. Let A the argumentation graph of Example 17. For each S ⊆ A, in order
to compute D|S(S), the matrix of distances in the graph induced by coalition S has to
be considered. As an example, to compute the value of coalition {1, 2}, we shall sum
up all the terms in the following matrix:

[

1 1

3 3

]

,

which results in w({1, 2}) =
max|S−8

max|S−min|S
.

Thus the game associated to this argumentation graph is such that w(∅) = 0,
w({1}) = 1,w({2}) = 0, w({3}) = 0, w({1, 2}) = 1

2
, w({1, 3}) = 1

4
, w({2, 3}) = 1

4

and w(A) = 11
27

. The Shapley value of the game is σ(w) = (331
648
, 7
648
,− 37

324
), which

differs from the Shapley value of v found in the previous example. However the ranking
it induces among arguments is the same of the one induced by the Shapley value of v,
the interpretation is different: according to the latter measure, node 3 brings a negative
contribution to the conflict in the graph, indicating in a sense that it contrasts the inner
disagreement among arguments.

We observe, however, that the Shapley value of game w as defined in (6.4) does not
satisfy all the axiom stated in the previous Section. Indeed, the following proposition
holds.

Proposition 21. The Shapley value of game w as defined in (6.4) does not satisfy Ax-
ioms 4 and 5.

Proof. First we show that Axiom 4 is not satisfied. Let A =< A,R > the argumenta-
tion graph with A = {1, 2}, R = {(1, 1), (1, 2)} and let A′ =< A′, R′ >, with A′ =
{1, 2, 3} and R′ = R. On the graph A w assumes the following values: w({1}) = 1,
w({2}) = 0 and w({1, 2}) = 1

2
.The Shapley value is σ(w) = (3

4
,−1

4
). On the other

hand, the game w on graph A′ assumes the following values: w({1}) = 1,w({2}) = 0,
w({3}) = 0, w({1, 2}) = 1

2
, w({1, 3}) = 1

4
, w({2, 3}) = 0 and w(A) = 2

9
and the

Shapley value of argument 2 is σ2(w) = − 10
108

≃ −0.09. Since σ2(w) increases its
value, free independence is not satisfied.

We now prove that Axiom 5 is not satisfied. Let A =< A,R > be such that A =
{1, 2, 3}, R = {(1, 2)} and A′ =< A′, R′ > such that A′ = A, R′ = R ∪ {(2, 3)}. On
the graph A w assumes the following values: w({1}) = 1, w({2}) = 0, w({3}) = 0,
w({1, 2}) = 1

4
, w({1, 3}) = w({2, 3}) = 0 and w(A) = 1

9
.The Shapley value of
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node 1 is σ1(w) = 17
216

). On the other hand, the game w on graph A′ assumes the
following values: w({1}) = 1, w({2}) = 0, w({3}) = 0, w({1, 2}) = w({2, 3}) = 1

4
,

w({1, 3}) = 0, w(A) = 2
9

and the Shapley value of argument 1 is σ1(w) = − 7
216

. Since
σ1(w) decreases its value, monotonicity is not satisfied.

6.6 Conclusions

In this Chapter, we proposed a conflict index that quantifies the contribution of each
argument to the total disagreement in an argumentation framework, as evaluated by
the the disagreement measure introduced in [3]. Our index is introduced through a
property-driven approach, where the properties introduced in [3] are translated in terms
of properties for arguments, and results in a ranking on the set of arguments, from
the most controversial to the less controversial, therefore leading to the definition of a
ranking-based semantic. Moreover, we show that the index coincides with the Shapley
value of a suitable game built on argumentation graphs and can be therefore interpreted
as the average marginal contribution of each argument to the disagreement induced by
all possible coalitions of arguments.

The study of ranking-based semantics is quite recent, and many contributions can
be further provided in the future. In [3] and in this Chapter reasonable axioms have
been identified in order to define a disagreement measure and consequently a conflict
index for arguments. Using a similar approach, other axioms could be stated and new
measures could be proposed in order to define new ranking-based semantics, whose
comparison with the one proposed here may help in providing better support to the
analysis of complex decision processes.
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CHAPTER7

GAGs and Biomedicine

This Chapter is devoted to a real-world application of the model of GAGs to the
field of Biomedicine. Game Theory has been employed ever since its introduction to
solve many real-world problems. An important stream in the literature on coalitional
games of networks is that of graph games, where a cooperative game is defined by
assigning to each coalition of nodes a value that depends on the underlying network,
in order to formally describe the interactions among nodes of a network, and game-
theoretical tools and solutions are used with the goal of extracting some information
from the network itself, for example, how to share costs or benefits, which are the
influential nodes, the detection of communities and so on. Many graph games from the
literature have been described in Chapter 3. On the other hand, an approach using graph
games to the field of Biomedicine is presented in this Chapter. In particular, we propose
an approach, using basic GAGs defined on graphs, to the problem of assessing the
relevance of genes in a biological network such as gene co-expression networks. The
problem has been firstly addressed by means of a game-theoretical model in [72]. We
introduce a new relevance index, which is characterized by a set of axioms defined on
gene networks and provide formula for its computation, which can be directly derived
from the results in Chapter 4. Furthermore, an application to the analysis of gene
expression data from microarrays is presented, as well as a comparison with classical
centrality indices.

7.1 Introduction

Gene regulatory networks and co-expression networks are of great interest in the
field of molecular biology and epidemiology to better understand the interaction mech-
anisms between genes, proteins and other molecules within a cell and under certain
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biological condition of interest [20,23,31,93]. A crucial point in the analysis of genes’
interaction is the formulation of appropriate measures of the role played by each gene
to influence the very complex system of genes’ relationships in a network.
In our work, we will focus on a particular kind of networks, that are gene co-expression
networks, but our approach may be used to analyse other kinds of networks, such as
protein-protein interaction networks or cell-cell interaction networks. Co-expression
networks [104] may be built from gene expression data collected by means of microar-
ray technology and other high-throughput experimental techniques [79], which allows
the simultaneous quantification of the expression of thousands of genes. The nodes in
the co-expression network represent genes (or proteins) and their connection is deter-
mined by the co-expression of the genes in the data samples, often measured by the
Pearson correlation coefficient between gene expression profiles. Co-expression hints
at co-regulation [65]. This assumption is called the guilt-by-association heuristic: if
two genes show similar expression profiles, they are supposed to follow the same reg-
ulatory regime. Since the coordinated co-expression of genes encode interacting pro-
teins, studying co-expression patterns can provide insight into the underlying cellular
processes and enable the reconstruction of gene regulatory networks.
Centrality analysis represents an important tool for the interpretation of the interaction
of genes in a co-expression network [12, 22, 44, 52, 53]. The relationship between cen-
trality of genes or proteins in a co-expression network and their relevance (measured by
biological features such as lethality or essentiality) has been stressed in several works
in the literature. Most central elements of protein networks have been found to be
essential to predict lethal mutations [52]. Highly connected hub genes, largely respon-
sible for maintaining network connectivity, have been discovered to be likely essential
for yeast survival [22]. In [44] it has been shown how betweenness centrality is gen-
erally a positive marker for essential genes in A. thaliana. Similarly, the relationship
between the degree centrality and the essentiality of genes in transcript co-expression
networks has been highlighted in [12]. Moreover, other centrality measures have been
investigated in this sense in the recent literature [53, 103].

However, classical centrality measures [41,57] are appropriate under the assumption
that nodes behave independently and the system is sensible to the behaviour of each
single node. On the contrary, in biological complex networks, assuming that the genes
may express independently is not realistic since the coordinated co-expression of genes
is responsible for the regulatory mechanisms within cells and the consequences on the
system can be appreciated only if many genes change their expression. Therefore, in
a complex scenario, such as the pathogenesis of a genetic disease, we deal with the
problem of quantifying the relative relevance of genes, taking into account not only the
behaviour of single genes but most of all the level of their interaction.

Cooperative game theory has been proposed as a theoretical framework to face such
limitations. Recently, several centrality measures based on coalitional games have been
successfully applied to different kinds of biological networks, such as brain networks
[55, 56, 59], gene networks [72], and metabolic networks [85].

We propose an approach, using basic GAGs, to the problem of identifying relevant
genes in a gene network. The problem has been firstly addressed by means of a game-
theoretical model in Moretti et al. [72], where the Shapley value for coalitional games
is used to express the power of each gene in interaction with the others and to stress the

74



7.2. Related Work

centrality of certain hub genes in the regulation of biological pathways of interest.
Our model represents a refinement of this approach, which generalizes the notion of

degree centrality, whose correlation with the relevance of genes for different biological
functions is supported by several practical evidences in the literature [12,22,52,53,103].
We define a coalitional game, where the value of a coalition of genes depends on the
structure of the gene network as well as on a parameter that specifies the a priori im-
portance (or weight) of each gene. The strength of a set of genes is measured by means
of the weights of all the genes that directly interact with them in the network. We
therefore propose the Shapley value [88] of such a coalitional game as a new relevance
index that quantifies the potential of a gene in preserving the regulatory activity in a
gene network. This approach is supported by a property-driven approach, where the
properties satisfied by our index have a biological interpretation. Moreover, an experi-
mental study is conducted on a gene expression dataset from microarrays, related to a
lung cancer disease. Three relevance analyses are performed, for different choices of
the genes’ weights: firstly, no a priori knowledge is assumed, i.e. all genes are assigned
the same weight; secondly, a list of known oncogenes is taken into consideration by di-
viding the set of genes in key-genes and non-key-genes and lastly, the game-theoretical
approach is combined with clustering analysis in order to assess the relevance of genes
in the network. A comparison among the three analysis, as well as a comparison of our
index with classical centrality indices is presented and the results are investigated from
a biological point of view.

The Chapter is organized as follows. Section 7.2 introduces some related work
in the literature, by describing classical centrality measures and the game-theoretical
centrality measure presented in [72]. Section 7.3 presents a motivating example, in
order to clarify the significance and scope of our index and the difference with respect
to classical centrality measures, as well as the target genes whose relevance we want
to assess. In Section 7.4 we introduce our model and an axiomatic characterization of
the game-theoretical relevance index in terms of biological properties. An application
to gene expression data from microarray technology is presented in Section 7.5 and
Section 7.6 concludes.

7.2 Related Work

The concept of centrality [41, 57] plays an important role in many real-world appli-
cations and has been widely investigated in the field of network analysis. It is often
natural to ask which are the more relevant nodes in a network; for example which are
the most influential persons in a social network, the main roads in an infrastructure
network or the most relevant genes in a gene regulatory network.

The idea of centrality was introduced by Bavelas in 1948 [9], and applied to human
communication. The first studies on centrality were aimed at assessing the relationship
between structural centrality and influence in group processes. His research highlighted
that centrality was strongly linked to efficiency in problem-solving within groups of
individuals. Applications of the concept of centrality, however, have not been confined
to experimental studies of group problem-solving. Several studies were carried out in
the following decades, in a variety of applications, and several centrality measures were
introduced. In what follows we describe four of the main classical centrality measures.
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7.2.1 Classical Centrality Measures

Centrality measures assign to each node in a network a value that corresponds to
some extent to the relevance of that node within the network structure. The four classi-
cal centrality measures considered in this Chapter are the following:

(1) Degree centrality [77, 89]: the degree centrality of i ∈ N is defined as |Ni(E)|,
i.e. the number of neighbours of i in graph 〈N,E〉. It is an index of the potential
communication activity of a node.

(2) Closeness centrality [11, 83]: the closeness centrality of node i is defined as
|N |−1∑
j∈N d(i,j)

, where d(i, j) is the distance between i e j, i.e. the length of the short-

est path between i and j. It measures to what extent a node can avoid the control
potential of the others nodes.

(3) Betweenness centrality [9, 42]: the betweenness centrality of a node k is defined
as
∑

i,j∈N bij(k), where bij(k) =
gij(k)

gij
and gij is the number of shortest paths

between nodes i and j, while gij(k) is the number of shortest paths between nodes
i and j that contain k. It is an index of the potential of a node for control of
communication.

(4) Eigenvector centrality [14]: the eigenvector centrality of a node i is defined as
the i− th element of the principal eigenvector of the adjacency matrix A = (aij)
corresponding to 〈N,E〉, where aij = 1 if {i, j} ∈ E and aij = 0 otherwise.
It assigns high centrality to nodes that are highly connected to nodes with high
degree.

7.2.2 A Game-Theoretical Centrality Measure

An approach using coalitional games has been introduced in [72] to evaluate the
centrality of genes in a biological network keeping into account genes’ interactions.
The Shapley value for coalitional games is used to express the power of each gene in
interaction with the others and to stress the centrality of certain hub genes in the regu-
lation of biological pathways of interest. We briefly describe here the game-theoretical
model and refer to [72] for further details.

In [72], a setK of key genes is considered and these genes are assumed to be equally
important for the regulation of a certain biological process. Let N be the set of genes
who are studied together with genes in K on a sequence of (microarray) experiments
under a condition of interest for instance, a genetic disorder. Let I ⊆ N ×K be the set
of interactions between genes in N and key genes in K, that is, a gene i ∈ N and a key
gene k ∈ K interact if and only if {i, k} ∈ I . The triple (N,K, I) is said a gene-k-gene
(gkg) situation.

Given a gene-k-gene situation, a coalitional game (N, v) is introduced, in order to
measure the strength of association of pathways of genes in N : for each group S ⊆ N ,
v(S) is computed as the number of key genes interacting only with genes in S, based
on the idea that the higher is the number of key genes which interact with genes in S,
the higher is the likelihood that genes in S are also involved in the regulation of the
biological process of interest.

Moreover, an interaction network 〈N,Γ〉 is considered, which describes the inter-
actions between genes in N . Given a gkg situation (N,K, I) with the corresponding
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association game (N, v) and an interaction network 〈N,Γ〉, following the approach by
Myerson [75], a new game (N, vΓ) is considered, where vΓ is the graph-restricted game
introduced in Section 5.3.

Starting from the basic paper by Shapley and Shubik [87] (Shapley and Shubik,
1954), the Shapley value of a game has been considered as a player’s power in several
different applications [74]. Here, players are genes and the Shapley value is considered
as a gene’s power. The intuition behind the meaning of gene’s power attributed to the
Shapley value follows from this consideration. An order σ on a set of genes N may be
interpreted as a sequence of activations of study genes and the corresponding marginal
vector may be seen as a measure of the power of study genes to establish relevant
interactions with key genes according to σ. However, in absence of information about
which sequences of activations are more likely, it is reasonable to average the marginal
vectors over all possible orders as an indication of the expected power of genes.

The difference between the power of a gene in the graph-restricted game and its
power in the association one is proposed as a centrality measure for co-expression net-
works, following an approach introduced in in [45] in the context of social networks.

7.3 A Motivating Example

Consider the network in Figure 7.1. All classical centrality measures assign the
highest relevance to the hub of the graph, i.e. node 1. Such a node has maximum
degree, is the closest node to all other nodes in the graph, lies on the highest number
of shortest paths connecting the other nodes and is directly connected with the most
nodes of high degree. These features correspond to four of the most known classical
centrality measures: degree centrality [77, 89], closeness centrality [11, 83], between-
ness centrality ( [9,42] and eigenvector centrality [14], which give highest centrality to
node 1.
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Figure 7.1: A network with 21 nodes.
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However, in some cases, genes that lie in the periphery of a network might have
an important role in the biological condition it represents. As an example, in [43]
it has been shown that differentially expressed genes in major depression (i.e. those
genes that present a statistically different behaviour in depressed patients compared
to healthy patients) reside in the periphery of resilient gene co-expression networks,
thus suggesting that the hub genes are not always the most relevant in the regulatory
processes within gene networks.

In particular, the set of nodes {2, . . . , 6} has two characteristics that make them
relevant genes when the network depicted in Figure 7.1 represents a gene regulatory
network:

(1) through their connections, the nodes in the set are able to influence the expression
of all other genes in the network, i.e. they interact directly with all the other genes
within the network;

(2) its removal (or inhibition) breaks down the regulatory activity of the network, by
leaving all the leaf nodes isolated and therefore not able to maintain their regula-
tory activity.

With these two features in mind, we introduce an index that aims at measuring
the potential of a gene in preserving the regulatory activity within a gene network,
by stressing the ability of a gene in influencing the overall expression of genes in the
network and to absorb the effects of the inhibition of a correlated gene, or in another
words its resilience to the removal of a connected node. In this sense, node 2 (as well as
nodes 3,4, 5 and 6) is more relevant than node 1: when node 1 is removed, the network
is divided into five components, whose overall regulation is maintained thanks to the
presence of nodes 2,3,4,5 and 6 respectively. On the other hand, when one of these last
nodes is removed, the network is split in four component, three of whom are no longer
able (as being isolated nodes) to maintain their regulatory activity.

The index we propose aims at highlighting the role of genes in the overall "connec-
tivity" of the network, by taking into account the effects that their inhibition have over
the induced subnetworks.
A relevant set of genes to this extent would be able to interact directly with the maxi-
mum number of other nodes in the network and its removal would split the network in a
maximum number of connected components with few genes, or eventually constituted
by isolated genes.

To this purpose, we introduce in the next Section a cooperative game, specifically
a basic GAG, where the value of a coalition of genes depends on the cardinality of
the coalition itself and of its neighbourhood. The more the genes that are directly
interacting in the network with genes in the coalition, and therefore the ability of the
coalition to keep the network connected, the higher the strength of the coalition.
We propose the Shapley value of such a game as a relevance index for genes, which
takes into account the marginal contributions of genes to the connectivity of all the
coalitions of genes in the network, therefore assigning maximum relevance to nodes
2,3,4,5 and 6 in the example in Figure 7.1.

We introduce the index by an axiomatic characterization on gene networks and
we provide a formula for its computation, which has a straightforward interpretation.
Moreover, we use our index to assess the relevance of genes in a real dataset related to
lung cancer, by means of three different analysis. On such a network, when no a priori
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knowledge is assumed about the genes under analysis (first analysis), the index is able
to highlight the role of genes in the overall connectivity of the network, by assigning
the highest relevance to those genes that share the two aforementioned characteristics.
Furthermore, these ideas are combined with other techniques to assess the relevance
of genes: in the second and third analysis, further assumptions about the a priori im-
portance of genes are taken into account, thus enabling to combine the considerations
made in this Section with other techniques from network analysis.

7.4 A Relevance Index for Genes

Let 〈N,E〉 be a gene network, that is a network where the set of nodes N represents
a set of genes and the set of edges E describes the interaction among genes, i.e. there
exists an edge between two genes if they are directly interacting in the biological con-
dition under analysis. Moreover, let k ∈ RN be a parameter vector that specifies the a
priori importance of each gene.

We define a coalitional game (N, vkE), where N is the set of genes under study
and the characteristic function vkE assigns a worth to each coalition of genes S ⊆ N
representing the overall magnitude of the interaction between the genes in S, which
takes into account the weight (a priori importance) of each gene directly connected to
S in the biological network.
More precisely, the map vkE : 2N → N assigns to each coalition S ∈ 2N \ {∅} the value

vkE(S) =
∑

j∈S∪NS(E)

kj (7.1)

that is the sum of the weights associated to the genes in S and to the ones that are
directly connected in 〈N,E〉 to some genes in S (by convention, vkE(∅) = 0). The class
of games (N, v) defined according to relation (7.1), on some gene network G ≡ 〈V,E〉
and with parameter k ∈ RN , is denoted by EKN .

We observe that the so-defined game is clearly described as the basic GAG asso-
ciated to the GAS 〈N, v,M〉, where v(i) = ki for every i ∈ N and M is the map
associated to the collections Ci = {Fi = Ni(E), Ei = ∅} ∀i ∈ N . A gene i contributes
to the worth of a coalition with its individual value, the weight ki, if and only if it be-
longs to the coalition or if at least one of the genes which interacts directly with it are
present.

Another way to keep into account the a priori importance of genes has been proposed
in [72] by means of the so-called association game, where a set of key-genes K ⊂
N (e.g. a set of genes known a priori to be involved in biological pathways related
to chromosome damage) is considered and the value assigned to a coalition S is the
number of key-genes interacting only with S, as described in Section 7.2.

However, the definition proposed in relation (7.1) seems more flexible to explore all
possibilities of reciprocal influence among genes. It generalises the game introduced in
[94] for determining the "top-k nodes" in a co-authorship network, by the introduction
of a parameter that specifies the a priori importance of each node. The parameter vector
k allows for an a priori ranking of the genes according to their importance, while in the
previous model introduced in [72] only a two-level distinction was made between key-
genes and non key-genes. Moreover, by measuring to what extent a coalition of genes
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is connected to the rest of the network, relation (7.1) generalizes the notion of degree
centrality for groups of genes, which is justified by some practical evidences showing a
strong correlation between the degree centrality and genes that are essential for different
biological functions (see, for instance, [12, 22, 52, 53, 103]). In fact, if only the weight
of genes inside a coalition was to be considered (and not the one of the neighbours,
as in our definition), the centrality measure obtained through the following approach
would coincide with the weighted degree centrality.

We now introduce some properties for a relevance index for genes, that is a map
ρ : EKN → RN . We start with a reinterpretation of the classical properties of SYM,
DPP and EFF on the class EKN (see Section 2.1 for a formal definition on the class of
all TU-games).

Consider a gene network 〈N,E〉 and a vector of weights k ∈ RN . The property of
SYM implies that if two genes i, j ∈ N have the same weight (ki = kj) and in addition,
they are connected to the same set of neighbours (Ni(E) = Nj(E)), then they should
have the same relevance. For instance, nodes 2, 3, 4 and 5 in the star depicted in Figure
7.2 are symmetric.

✟
✟

✟✟

❍
❍
❍❍

✐

✐

✐ ✐

✐

✐

5

4

3

1 2 6

Figure 7.2: A star 〈{1, 2, 3, 4, 5, 6}, E1

{2,3,4,5}〉.

The property DPP also has an intuitive interpretation on the graph: every discon-
nected node i ∈ N (like node 6 in Figure 7.2) should have relevance ki. Finally, the
EFF property implies that the sum of the relevance of all genes should be equal to
∑

i∈N ki, the total sum of weights.
We introduce now a new axiom, saying that the transformation of a node i with zero

weight to a node with weight ki should affect only the genes directly connected to i,
and its impact on the relevance of its neighbours should be equal to the one had in an
equivalent star of centre i.

Axiom 9 (Star Additivity, SADD). Let 〈N,E〉 be a gene network with parameter vector
k−i ∈ RN such that gene i has weight 0 and let vk−i

E be the corresponding game defined
according to relation (7.1). Then consider the game vkE defined according to relation
(7.1) on 〈N,E〉 and with parameter vector k that assigns a positive weight ki to gene
i and the same weight as k−i to all the other genes. An index ρ : EKN → RN satisfies
the SADD property iff

ρ(vkE) = ρ(v
k−i

E ) + ρ(vs
i

Ei
Ni(E)

),

where vs
i

Ei
Ni(E)

is the game defined according to relation (7.1) on the star 〈N,Ei
Ni(E)〉 on

Ni(E) with centre i and si is the parameter vector that assigns ki to i and 0 to j 6= i.
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For instance, consider again the network of Figure 7.2, and suppose that ρ′ ∈ R6

is the relevance index corresponding to a parameter vector k−1. Moreover let ρ′′ ∈ R6

be the relevance index on the same network with parameter s1 such that only node 1
has a positive weight k1. Then, the SADD property says that in the situation where the
parameter vector is given by k = k−1 + s1 and ρ′′′ ∈ R6 the corresponding relevance
index, then it must hold ρ′′′ = ρ′ + ρ′′.
Roughly speaking, Axiom SADD states that increasing the weight of a node i from 0 to
a positive value should only affect the total relevance of gene i and its neighbours at the
same extent for whatever graph. As a consequence, a positive change in the weight of a
gene produces the same effect on its relevance and on the one of their neighbours inde-
pendently from the topology of the network, and the effect of the changes is comparable
along different networks.

Proposition 22. The Shapley value is the unique relevance index ρ that satisfies SYM,
DPP, EFF and SADD on the class EKN . Moreover, for each gene network 〈N,E〉 with
k ∈ RN as a vector of weights, it can be computed according to the following formula:

ρi(v
k
E) =

∑

j∈(Ni(E)∪{i})

kj
dj(E) + 1

, (7.2)

for each i ∈ N .

Proof. Let 〈N,Ei
Ni(E)〉 be a star on Ni(E) with centre in i, and such that only i has a

positive weight equal to ki and let vs
i

Ei
Ni(E)

be the corresponding game defined according

to relation (7.1). It is easy to check that the unique index that satisfies the properties of
SYM, DPP and EFF is the one such that

ρj(v
si

Ei
Ni(E)

) = φj(v
si

Ei
Ni(E)

) =

{ ki
di(E)+1

if j ∈ Ni(E) ∪ {i},

0 otherwise.
(7.3)

By the repeated application of axiom SADD, and since
∑

i∈N v
si

Ei
Ni(E)

= vkE , we have

that
ρ(vkE) =

∑

i∈N

ρ(vs
i

Ei
Ni(E)

). (7.4)

Then, the proof follows by relation (7.3) and the additivity of the Shapley value.

Moreover, we observe that, equivalently, the formula in (7.2) can be directly derived
form Corollary 2 in Section 4.2.

The interpretation of the formula in (7.2) is straightforward: a gene is assigned a
high relevance if it is connected to many genes which are in turn connected with few
other genes, that is the more neighbours with low degree, the highest the relevance.

Example 21. Consider the gene network 〈N,E〉 depicted in the Figure 7.3 and with
k = (1, 0, 3, 0). The game vkE defined according to relation (7.1) is such that vkE(1) =
vkE({1, 4}) = 1, vkE({1, 3}) = vkE({1, 3, 4}) = 4, vkE(S) = 4 if 2 ∈ S and vkE(3) =
vkE(4) = vkE({3, 4}) = 3. By Proposition 22, we have that ρ(vkE) = (1

2
, 3
2
, 1, 1).
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Figure 7.3: A gene network with four nodes.

Example 22. Consider the gene network in Figure 7.1. Suppose all the genes have the
same a priori importance, and let for simplicity ki = 1 ∀i ∈ N . Then, by Proposition
22 ρ(vkE) = (35

30
, 56
30
, 56
30
, 56
30
, 56
30
, 56
30
, 21
30
, . . . , 21

30
). Therefore, our index gives the highest

relevance to nodes 2, 3, 4, 5 and 6, followed by node 1 and the least relevance to the
leaf nodes {7, . . . , 21}. On the other hand, all the other classical centrality measures
defined in Section 7.2 provide the following ranking: node 1 has the maximum central-
ity, followed by nodes {2, 3, 4, 5, 6} and finally the leaf nodes.

7.5 An application to real data

The purpose of this Section is the validation of our model by analyzing a gene ex-
pression dataset and comparing the results with the related literature.

We consider a co-expression network, where the co-expression of two genes is mea-
sured by the correlation between their expression profiles (by means of the Pearson’s
correlation coefficient). In constructing such a network from a gene expression dataset,
a cut-off has to be specified, that establishes which pairs of genes interact in the gene
network: an edge between two genes is created if their correlation is above a certain
threshold, while no edge is established otherwise [20, 23, 31, 104]. The choice of the
threshold is critical to the analysis and has to rely on biological considerations and on
the evaluation of different network parameters.

7.5.1 Robustness Evaluation

As a first result, the robustness of our model with respect to different choices of
such threshold is shown. The model has been tested on a randomly generated sym-
metric matrix of size 1000 with entries in the range [0, 1], that is a matrix where the
element in row i and column j represents the correlation between gene i and gene j
in a fictitious, randomly drawn dataset of 1000 genes. For the sake of this analysis the
parameter vector k has been fixed in such a way that ki = 1 for every i. The matrix
has been transformed in a boolean adjacency matrix (where 1 represents a connection
in the network and 0 no connection) according to three different thresholds, 0.7, 0.8
and 0.9 respectively. A network has been generated in the three cases according to the
aforementioned interpretation and the relevance index for each gene, i.e. the Shapley
value of the game defined in (7.1), has been computed. A comparison between the
results for the different threshold has been conducted. In particular, the list of the 5%
of genes with the highest Shapley value has been selected for the three thresholds and
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the comparison yields the following results: 18 genes are commonly selected by our
relevance index for cut-off 0.7 and 0.8; 15 genes are commonly selected for cut-off
0.8 and 0.9 and 5 genes are commonly selected for cut-off 0.7 and 0.9, thus showing
a discrete degree of robustness with respect to the choice of the cut-off. The previous
results are summarized in Table 7.1.

0.7 0.8 0.9

0.7 50 18 5
0.8 18 50 15
0.9 5 15 50

Table 7.1: Number of common genes by using a cutoff of 0.7, 0.8 and 0.9, respectively.

7.5.2 Relevance Analysis

We present here the application of our model to a lung cancer dataset. A description
of the dataset and three different analysis are described in what follows: firstly, the
dataset is analysed by assuming no a priori knowledge of the importance of the genes
in the network; secondly, the knowledge about some key oncogenes is included in the
analysis and lastly a method from clustering analysis is used to assess their a priori
importance of genes.

Description of the Dataset

A gene expression dataset related with a very common kind of lung cancer called
adenocarcinoma has been studied. Adenocarcinoma cancers are usually found in lung
outer areas as the lining of the airways. This dataset with accession number GDS3257
is available in NCBI repository. These data were generated in a study where 107 sam-
ples of several tumour stages in a population of smoker and not smoker people were
analysed [60]. These raw data has been preprocessed with Babelomics tool [69] using
several standard filtering steps. Those gene profiles with a standard deviation under 0.5
were removed in order to only consider genes differentially expressed. The resulting
gene expression matrix is composed by 2517 gene expression profiles (rows) and 107
samples (columns).

A gene co-expression network has been generated, by establishing a link between
two genes if and only if the Pearson’s correlation between their gene expression pro-
files is a higher than a fixed threshold. The choice of the threshold is based on the
following considerations: a suitable network should consist in connected components
with the highest possible cardinality and should also be as sparse as possible in order to
better reveal the relationships between the nodes (genes). Therefore, the network must
be experimentally built according to an equilibrium between connectivity and sparsifi-
cation [27]. The BioLayout tool [96] has been used to conduct an experimental study,
which has led to the choice of 0.8 as the value for the correlation threshold. The net-
work so obtained is composed by 2154 nodes (genes) and 24821 edges. Figure 7.4
shows a picture of the network.
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Figure 7.4: Gene co-expression network generated with lung cancer dataset.

First Analysis

A first analysis has been carried out on the aforementioned network, with no a priori
knowledge of the importance of the different genes, thus considering each gene equally
important, i.e. setting ki = 1 for each gene i ∈ N . Following this approach, the
relevance index ρ is computed. The density distribution of ρ is shown in Figure 7.5.
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Figure 7.5: First analysis: The density distribution of the index ρ is shown, for ki = 1 for every gene i. The dotted
vertical line represents the cut-off: the 5% of genes with highest index is selected.

In particular, we select the 5% of genes with highest relevance for further analysis.
This list of genes is investigated with respect to the features described in the motivating
example. It turns out that, in the comparison with the classical centrality measures, our
index is able to highlight these characteristics. In particular, the lists of the 5% of genes
with highest value according to the different centrality measures are compared with the
following results:

84



7.5. An application to real data

(i) the 108 genes selected by our index are directly interacting in the network with
1412 genes, comparably with the ones selected by the betweenness centrality,
whose neighbourhood consists in 1423 genes. The other measures are much less
effective in this sense: the genes selected by the degree centrality interact with
1062 genes, the ones by closeness centrality with 668 and the ones by eigenvector
centrality with 383 genes.

(ii) when the 108 genes selected by ρ are removed, the network is split in 165 con-
nected components, 125 of which are isolated nodes. Three of them contain a
high number of genes (550, 826 and 338), one of them 42 nodes, and the rest very
few nodes (2 to 10 nodes each). A similar behaviour is observed after the removal
of the 108 nodes selected by the betweenness centrality: the network is split in
170 components, 122 of which are isolated nodes. On the other hand, the effects
of the removal of the genes selected by the other measures are definitively less
severe. See Figure 7.6 for a comparison with the different measures. Note that
the histogram has been constructed by considering only the components with less
than ten nodes, since the bigger components have very similar frequencies for all
measures.
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Figure 7.6: The histogram represents the frequency of components cardinality after the removal of the
genes selected by the different centrality measures.

Second Analysis

A second analysis has been conducted by taking into account the presence in the
network of some known lung cancer key-genes, i.e. setting ki = 1 for each key-gene
i ∈ N and ki = 0 otherwise. In particular, we consider a set of 23 known lung
oncogenes found through the Network Cancer of Genes tool (NCG5.0).

The relevance index ρ is computed according to this selection and the 5% of genes
with highest relevance is selected for further analysis. The density distribution of ρ is
shown in Figure 7.7.
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Figure 7.7: Second analysis: The density distribution of the index ρ is shown, for ki = 1 for every key-gene i and
ki = 0 otherwise. The dotted vertical line represents the cut-off: the 5% of genes with highest index is selected.

Third Analysis

A strength of our model relies on the possibility to integrate different tools from
network analysis to assess the relevance of genes in a network. Indeed, even if the a
priori weight of genes is not known, the freedom in the choice of parameter vector k
allows for a variety of approaches. In particular, we use some techniques from cluster
analysis to define the a priori importance of genes.
A third analysis has been conducted by measuring the a priori importance of genes by
a parameter vector that depends on the clusters structure of the network.
The underlying idea is the following: the relevance of a gene is assessed by dividing the
network in clusters, through the algorithm ClusterONE [76], and counting how many
clusters a gene belongs to, i.e. ki for every gene i ∈ N is defined as the number of
cluster in the network it belongs to. This approach follows the idea [61] that overlapping
genes among clusters are to some extent important in the network, and we use the
aforementioned parameter vector to quantify their importance.

Traditional clustering algorithms report a partition of data such that all clusters are
disjoint. However, the overlapping among clusters is interesting in the context of gene
interaction networks, since genes are usually involved in several processes and might, as
a consequence, belong to different clusters [61]. ClusterONE is a clustering algorithm
that captures overlapping clusters of genes in a network. This algorithm is a greedy
search process that finds groups of genes with a high cohesiveness among them [76].

The algorithm has been run using the default values for the advance parameters [76].
Basic parameters has been chosen as 5 and 0.5 for minimum cluster size and minimum
cluster density respectively. The algorithm has finally reported 204 clusters. Figure 7.8
shows the number of genes per cluster. Note that the first and the second clusters have
306 and 107 genes respectively. The maximum value in the y axis has been chosen
equal to 100 in order to improve the figure visualization.

All the clusters generated through the aforementioned procedure are considered and
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Figure 7.8: Number of genes per cluster.

each gene i belonging to these clusters (1444 out of 2154 in the whole dataset) is as-
signed a weight ki equal to the number of clusters it belongs to.
The relevance index ρ is then computed and its density distribution is shown in Figure
7.9. Moreover, the 5% of genes with highest relevance is selected for further analysis.
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Figure 7.9: Third analysis: The density distribution of the index ρ is shown, for ki defined as the number of clusters
gene i belongs to. The dotted vertical line represents the cutoff: the 5% of genes with highest index is selected.

7.5.3 Results Comparison

The results from the three different analyses have been compared with the results
from classical centrality measures. Table 7.2 shows the number of common genes
among the different lists and the correlation among the different measures is shown in
Table 7.3.

Among the classical centrality measures, the relevance index computed according to
the first analysis shows a maximum overlap with betweenness centrality, with 66 genes
in common (out of the 108 selected with highest value) and a high positive correlation
on the whole list of genes. In the second analysis, on the other hand, most of the genes
selected by our index are not selected by other measures, with a maximum overlap
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ρ(1) ρ(2) ρ(3) degree closeness betweenness eigenvector
ρ(1) 108 27 61 49 40 66 28
ρ(2) 27 108 33 22 20 19 12
ρ(3) 61 33 108 31 49 55 10

degree 49 22 31 108 19 28 86
closeness 40 20 49 19 108 48 0

betweenness 66 19 55 28 48 108 7
eigenvector 28 12 10 86 0 7 108

Table 7.2: Number of common genes among the relevance vectors of 108 genes provided by the different
relevance measures.

ρ(1) ρ(2) ρ(3) degree closeness betweenness eigenvector
ρ(1) 1 0.265 0.808 0.694 0 0.804 0.269
ρ(2) 0.265 1 0.305 0.220 -0.016 0.178 0.073
ρ(3) 0.808 0.305 1 0.665 0.250 0.660 0.211

degree 0.694 0.220 0.665 1 -0.005 0.456 0.790
closeness 0 -0.016 0.250 -0.005 1 0.148 -0.145

betweenness 0.804 0.178 0.660 0.456 0.148 1 0.067
eigenvector 0.269 0.073 0.211 0.790 -0.145 0.067 1

Table 7.3: Correlation among the lists obtained by different centrality measures. Note that the correla-
tion coefficients are computed on the entire lists of 2154 genes.

of 22 genes with degree centrality, suggesting that the introduction of a priori known
key-genes strongly influences the analysis towards the selection of genes that interact
with this particular set of genes. On the other hand, the third analysis seems to produce
results that are more similar to the ones of the first analysis, with a maximum overlap
with the list selected by betweenness centrality, followed by closeness and degree cen-
trality.
Moreover, all the three analysis select very few genes in common with the eigenvector
centrality, which is not surprising since our relevance index selects those genes that are
co-expressed with many genes that have low degree, while on the contrary eigenvector
centrality selects genes that are highly connected to genes with high degree.
The relationship among the degree of a node and the degree of its neighbours is high-
lighted in Figure 7.10. The coloured points represent the genes selected by the different
measures. In particular, the red points are the ones selected only by our index, while
the degree centrality selects all the nodes with degree higher than 100.

7.5.4 Biological Interpretation of the Results

The results of the three analysis have also been compared from a biological point of
view. The number of relevant genes stored in biological repositories has been consid-
ered as a quantitative criterion to compare them. Firstly, a Literature Mining approach
has been used with a Cytoscape plugging called Agilent Literature Search [84]. Sec-
ondly, a Reactome study has also been performed with the same goal. It is important to
note that the first 100 genes for each analysis have only been studied due to these tools
limitations.
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Figure 7.10: The points represent genes and their coordinates are given, respectively, by the degree of a
gene (on the x-axis) and the mean degree of its neighbours (on the y-axis).

The Cytoscape plugging searches a set of genes in published papers available in
public repositories such as PubMed. The search has been performed by taking as in-
put the list of genes selected by our relevance index and a set of key-words, namely
“Homo sapiens” and "Adenocarcinoma". The tool provides as a result the subset of
genes that are cited in the related literature. Note that this information is approximated,
in the sense that the genes are cited in the literature but it is not known to what extent;
false positives genes could be reported by this tool. Figure 7.11 shows on the left-hand
side the results of the Literature Mining-based comparison. The first, second and third
analysis report 70, 57 and 62 genes that are cited in the literature, respectively. The
first analysis seems to report more known genes but the three analysis obtain compa-
rable results, by finding in the literature more than a half of the genes selected by our
relevance index.

Moreover, a study based on Reactome [28] has been performed in order to compare
the three analysis. Reactome is a repository of biological pathways, namely groups
of reactions among nucleic acids, proteins and another kind of molecules that inter-
act as part of biological processes as for example the regulation of gene expression,
metabolism, etc. The three lists of 100 genes have been analysed, yielding the follow-
ing results: the first analysis identifies 51 genes, the second 45 and the third 47 (see the
right-hand side of Figure 7.11). These results are coherent with the Literature Mining-
based results. However, the Reactome study mainly shows the pathways where the
input genes are identified. Although these pathways have not been carefully studied,
it is interesting to note that the first analysis reports 329 pathways, the second 379 and
the third 219. This information could indicate that the quality of the genes found by the
second analysis is higher that the other two analysis.
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Figure 7.11: Comparison of three analysis based on Literature Mining and Reactome study.

Biological qualitative analysis

The Network Cancer of Genes tool (NCG5.0) has been used to further investigate
the results of the analysis from a biological point of view. This tool only provide in-
formation about known cancer genes and it is therefore too restrictive to be used in a
quantitative comparison as in Section 7.5.4. For example, a gene could be relevant as
acting as a "switch" of a known oncogene (cancer gene) or co-regulate an important
related process but it would not be reported by NGC, unless it is itself an oncogene.
However, this tool provides some useful information from a qualitative point of view,
allowing us to evaluate the results of our analysis and to compare them on the basis of
the information it provides.

The first 100 genes for each analysis have been studied with NCG, with the objec-
tive of understanding their biological relevance from a qualitative perspective. The first
analysis finds 5 oncogenes, the second 20 and the third 11. These results support the
idea that the second analysis reports genes with a higher quality. However, it is im-
portant to emphasize that the second analysis uses a priori information, by considering
as input 23 well-known lung cancer genes, precisely obtained using NCG. It must be
noted that 15 genes out of this 20 were used as input key-genes. Therefore, we could
state that each analysis identifies, respectively, 5, 20 − 15 = 5 and 11 not previously
known oncogenes. The first and the third analysis do not use any a priori knowledge.
Nevertheless, 4 out of 5 genes obtained by the first analysis are in the well-known set
of 23 lung cancer genes, as well as 2 out of 11 genes obtained by the third analysis.

Moreover, it is interesting to further investigate those genes that are reported only
by the proposed relevance index but not by the other (classical) centrality measures.
With respect to this, the first analysis presents 19 genes, the second 71 and the third
33 that are selected only by our index. These sets of genes have also been analysed
using the NCG tool. The first analysis does not show any cancer gene according to
the information supported by the tool. However, the second analysis reports 18 of
71 genes as cancer genes and the third analysis 3 of 33. It could be inferred that the
second analysis presents the best results in this sense, but it must be noted that 17
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of the 18 genes are precisely part of the 23 lung cancer genes used as a priori infor-
mation in the second analysis. Therefore, it only reports 1 cancer gene which is not
previously known and used as input. The cancer genes reported by the second anal-
ysis that belongs to the set of key genes used as input are NRAS, PDIA4, DACH1,
RUNX1T1, CDH104, HLA-A4, GRM84, ZMYND10, ATXN3L, DNAH3, PTPRD,
PAK3, COL11A1, COL1A1, PPP1R3A, CTNNA3 and CCKBR. The gene G6PC is
also reported by the second analysis but it is not included in the input set of key genes.
This gene is a liver cancer gene with a functionality related with the regulation of in-
tracellular processes and metabolism. Furthermore, the cancer genes reported by the
third analysis are GNATI, CD1B and GML, which are respectively leukemia, lung and
glioblastoma cancer genes. The gene CD1B is a lung cancer that belongs to the set of
key genes used in the second analysis. It is important to note that this a priori informa-
tion is not used in the third analysis. The gene G6PC reported by the second analysis
and the aforementioned three genes are examples of genes that can be identified by
using the proposed relevance index but not the other centrality measures.

7.6 Concluding remarks

In this Chapter, we proposed a relevance index for nodes in gene co-expression net-
works, with the objective of measuring the potential of genes in acting as intermediaries
between hub nodes and leaf nodes and preserving the regulatory activity within gene
networks. For this purpose, we used a game-theoretic approach, by defining a basic
GAG where the strength of a coalition of genes depends on the a priori importance of
the genes in its neighbourhood. The Shapley value of such a game is proposed as a new
relevance index for genes. Our approach is supported by an axiomatic characterization,
where the set of properties satisfied by our index have a biological interpretation. More-
over, an experimental study is conducted on a gene expression dataset from microarray
technology, related to a lung cancer disease and the results of our index are compared
with classical centrality measures.

The versatility of our model allows the combination of a game-theoretical approach
with other techniques from network analysis. Indeed, we used an algorithm from clus-
ter analysis that identifies overlapping clusters of genes, in order to assess the a priori
importance of genes in the network under analysis. An interesting direction for future
research is the further study of these techniques, in order to refine the relevance anal-
ysis, and the application of our model to other gene networks in order to provide new
biological knowledge.
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CHAPTER8

General conclusions

In recent times, network analysis has become a flourishing field of study, integrat-
ing knowledge from diverse disciplines, among them Social Sciences, Statistics, Game
Theory and Computer Science. From a practical perspective, the amount of data col-
lected from modern technology that is available to researchers gives potential new in-
sights and opens new questions about the behaviour of interacting entities, such as users
of a social network, or genes in a biological network. The interactions among entities
within a network can be identified and analyzed using game theory models, with the
aim of accounting for the properties of existing networks and predicting the emergence
of new networks via the analysis of observed data.

Game Theory has been employed ever since its introduction to solve many real-
world problems. A graph may be used, as an example, to formally describe an entity or
object under analysis, like a power grid or a telecommunication network. In this con-
text, a cooperative game may be defined by assigning to each coalition of nodes a value
that depends on the underlying network, in order to formally describe the interactions
among nodes of a network, and game-theoretical tools and solutions may be used with
the goal of extracting some information from the network itself, for example, how to
share costs or benefits, which are the influential nodes, the detection of communities
and so on. The related literature is quite vast and only a portion of it is listed in the
bibliography of this thesis. However, we noticed that many coalitional games on net-
works that have been studied in the literature share a common structure, that prescribes
how the players involved contribute to the formation and maintenance of a network by
bringing together their individual abilities.

Following this observation, we introduced in this thesis the model of Generalized
Additive Games (GAGs), where the worth of a coalition is evaluated by means of an
interaction filter that selects the valuable players involved in the cooperation. This gen-
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eral framework is able to reveal the common structure of several types of known games,
and has a twofold objective: on one hand, that of making their analysis more transparent
and general, and on the other hand that of providing new tools for constructing classes
of games whose properties and solutions can be analysed within this theoretical frame-
work of reference. In particular, many classes of coalitional games on networks that has
been introduced and studied in the literature of cooperative games can be described in
terms of GAGs. In such games, the underlying network structure which describes the
interactions among players "forces" the players to contribute to the worth of coalitions
in a way that reflects the constraints imposed by the pairwise relations between players.

Moreover, our model highlights that several games introduced in the literature, for
which it is possible to easily derive some solutions (for example, the Shapley value
has a concise formula, or the non-emptiness of the core can be easily verified) share a
common additive structure, that allows for a compact representation of the interactions
among players and for a decrease in the complexity of computation of the relative
solutions.

Besides the possible directions for future research highlighted in each chapter, we
argue that our model represents a useful tool for the analysis of a variety of situations
and fields, as suggested by the wide range of games that it encompasses, also thanks to
the fact that specific subclasses of our model enable a simple and efficient analysis of
the relative solutions.

An application of our model to two very different fields of research has been pre-
sented in Chapter 6 and 7, suggesting that it may be used as a flexible and simple tool
for the investigation of a variety of problems within the framework of network analy-
sis, such as the analysis of terrorist networks [62] or the detection of communities in a
social network [26, 68]. Indeed, as suggested by Example 13, our model may be suit-
able for the analysis of other real data such as online social networks, whose collection
however requires an effort which is beyond the scope of this thesis but represents an
interesting direction for future research. Moreover, to the sake of the analysis of a wide
range of real data, another direction for future work is the creation of software tools and
libraries for implementing our model in its general version, in order to allow its cus-
tomisation and employment on big datasets different from the ones already analysed in
this thesis.
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Appendix A

Lemma 1. For all n, t ∈ N it holds:
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Proof. We prove only the first, an analogous argument proves the second one. By using
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On the other hand
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By comparing (8.1) and (8.2) we get the result.

Appendix B

Lemma 2. Given n, s ∈ N and 2 ≤ s ≤ n, the following combinatorial identity holds:
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Proof. To derive the position value on trees for the unanimity games uS , we made
use of the superfluous arc property. An equivalent formula can be obtained directly by
considering all the possible coalitions to whom a given link provides a positive marginal
contribution.
Each i /∈ S gets a null contribution from every incident link, because of the superfluous
arc property. Consider i ∈ S. Node i gets a positive contribution (equal to 1/2) every
time a link incident to it is the last one to form inside S (no matter which links already
formed outside S). This happens degS(i) times. It follows that:
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From the equivalence of formulas (5.15) and (8.4), the result follows directly.

We point out that other combinatorial identities arise by considering a generic regu-
lar semivalue Ψ and computing the corresponding ψ(N, uS,Γ) as in (5.7), when Γ is a
tree.
As for the position value, the solution ψ(uS) can be obtained directly or by using the su-
perfluous arc property. From the equivalence of the corresponding formulas, it follows
that:
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where {pmj }j is a probability distribution over the subsets of links in a network with m
links. Precisely, pmj represents the probability for a link to join a coalition of cardinality
j, with 0 ≤ j ≤ n− 1.
For example, by considering the Banzhaf index, we get the trivial identity
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Non-trivial identities can be derived by considering other regular semivalues, such as
the p-binomial semivalues:

n−s
∑

k=0
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n− s

k

)

qs+k−2(1− q)n−s−k = qs−2, (8.7)

where q ∈ (0, 1).

Note that the combinatorial identities that we derived can be easily obtained through
classical game-theoretical tools by computing the corresponding power indices on the
unanimity games.





Résumé

Les jeux coalitionnels décrivent des situations dans lesquelles tous les joueurs sont
libres d’interagir entre eux, c’est-à-dire que n’importe quelle coalition de joueurs peut
se former et coopérer. Quand la restriction de possibilités d’interaction entre joueurs
est décrite par une structure de réseau, on parle de coalitional games on networks, qui
seront au centre de cette thèse. Un jeu coalitionnel, traditionnellement appelé jeu co-
opératif avec utilité transférable, consiste en une paire (N, v), oùN dénote un ensemble
fini des joueurs et v : 2N → R est la fonction caractéristique, une fonction reélle sur la
famille de sous-ensembles deN . Un groupe de joueurs S ⊆ N est appelé coalition et la
fonction caractéristique associe à chaque coalition S une valeur réelle v(S), qui repré-
sente le total des profits de la coalition des joueurs quand ils coopérent, quoi que fassent
les joueurs restants. La valeur d’une coalition peut représenter un gain ou un coût, selon
la situation modélisée par le jeu coopératif. Par convention, on pose v(∅) = 0.

Un jeu coalitionnel avec n joueurs est ainsi caractérisé par un vecteur de 2n−1 réels,
i.e. une valeur pour chaque sous-ensemble non vide des joueurs, ce qui devient difficile
à traiter quand n est grand. Puisque le nombre de coalitions croit exponentiellement
avec le nombre de joueurs, il est très intéressant, pour des raisons de calcul, de sélec-
tionner des classes de jeux qui peuvent être décrites d’une façon concise. Par consé-
quent, de nombreux modèles dans la littérature sur les jeux coopératifs se concentrent
sur des situations d’interaction caractérisées par une représentation compacte d’un jeu
coalitionnel, de manière que la valeur de chaque coalition puisse être facilement cal-
culée. Une représentation compacte permet non seulement de réduire la complexité de
description d’un jeu et le calcul des solutions mais aussi de réunir de nombreux pro-
blèmes réels sous un formalisme unifié.
De nombreuses classes de jeux qui décrivent d’une façon compacte le synergisme entre
joueurs se trouvent dans la littérature, entre autres : profit sharing games, cost alloca-
tion games, market games, optimization games (spanning tree games, flow games and
linear programming games) et voting games (voir [17] et [54] pour une étude sur les
jeux coalitionnels et les operational research games).
En particulier, il existe de nombreuses approches pour la définition des classes de jeux
dont la représentation concise est dérivée d’un système additif entre coalitions. Dans
certains contextes, en raison d’une structure sous-jacente entre les joueurs, telle qu’un
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réseau, un ordre, ou une structure de permission, la valeur d’une coalition S ⊆ N
peut être dérivée additivement à partir d’une collection des sous-coalitions {T1, · · ·Tk},
Ti ⊆ S ∀i ∈ {1, · · · , k}. De telles situations sont modélisées, par exemple, par les
graph-restricted games, introduits par Myerson dans [75] et étudiés davantage par
Owen dans [78] ; les component additive games [30], et les restricted component addi-
tive games [29].

Parfois, la valeur de chaque coalition est calculée à partir des valeurs que les joueurs
peuvent s’assurer par un mécanisme qui décrit les interactions entre les individus au
sein d’un groupe de joueurs. Dans le cas le plus simple on peut considérer que, quand
une coalition de joueurs se forme, chaque joueur apporte sa propre valeur et la valeur de
la coalition est calculée comme la somme des contributions individuelles des joueurs
qui la constituent. Par exemple, on peut considérer un jeu des coûts où n joueurs veulent
acheter en ligne n objets différents et la valeur d’un joueur dans le jeu est définie comme
le prix de l’objet qu’il achète. Ainsi, si un groupe de joueurs s’accorde pour faire un
achat ensemble, le coût de l’opération sera simplement la somme du s = |S| prix des
objets que les joueurs dans S achètent, c’est-à-dire la somme des coûts que les joueurs
dans S devraient supporter individuellement s’ils achetaient les objets séparément.
Cette situation peut être décrite par un jeu additif, où la valeur d’une coalition est cal-
culée comme la somme des coalitions disjointes qui la constituent. Un jeu additif est en
effet déterminé par le vecteur des n valeurs individuelles des joueurs et constitue donc
une façon compacte pour réprésenter les situations d’interactions entre joueurs.
Cependant, un tel modèle peut échouer à souligner l’importance d’un sous-ensemble
des joueurs à contribuer à la valeur d’une coalition dont il fait partie. Dans l’exemple
précédent, il arrive souvent qu’en faisant un achat collectif, quand un certain prix li-
mite est atteint, des objets soient offerts et donc le prix qu’une coalition S doit payer
dépendra seulement du prix d’un sous-ensemble des objets achetés.

En effet, dans certains cas la procédure utilisée pour estimer la valeur d’une coalition
S ⊆ N est fortement liée à la somme des valeurs individuelles dans un autre sous-
ensemble S ⊆ N , non nécessairement inclus dans S.
De nombreux exemples dans la littérature rentrent dans cette catégorie. Par exemple,
le célèbre glove game : l’ensemble des joueurs N est réparti en deux catégories, les
joueurs dansL qui possèdent un gant gauche et ceux dansR qui possèdent un gant droit.
La valeur d’une coalition des joueurs S ⊆ N est définie comme le nombre de paires de
gants possédés par la coalition S. Dans ce context, les joueurs qui apportent une valeur à
une coalition sont ceux dont la classe représente la minorité des joueurs, car la valeur de
S est définie par le minimum entre le nombre des joueurs dans S ∩L et dans S ∩R. On
peut donc représenter ce jeu en attribuant une valeur de 1 à chaque joueur et en calculant
la valeur de chaque coalition S comme la somme des valeurs individuelles des joueurs
dans le sous-ensemble le plus petit entre S∩L et S∩R. Une approche similaire peut être
utilisée pour décrire de nombreuses classes de jeux dans la littérature et en particulier
certaines classes de graph games, entre eux les airport games [63], [64], le connectivity
game et ses extensions ( [2], [62]), les argumentation games [16] et certaines classes de
operation research games, comme les peer games [19] ou les mountain situations [73].

Dans les graph games, un graphe (ou réseau) (N,E) décrit les interactions entre
joueurs : les nœuds (ou sommets) du réseau sont les joueurs dans N et il existe une
arête (ou lien) e = {i, j} ∈ E entre deux nœuds i et j si les joueurs correspondants



sont capables d’interagir directement. Par exemple, dans les argumentation games, un
graphe orienté décrit les relations d’attaque entre les arguments qui font partie d’une
opinion : il existe une arête entre un argument et l’autre si l’un attaque l’autre ; dans
les peer games un réseau orienté décrit la structure hiérarchique entre des agents : il
existe un lien orienté entre un nœud et l’autre si l’un est supérieur à l’autre dans la
hiérarchie et le chef de l’organisation est la source du graphe ; dans les mountain situa-
tions un graphe orienté représente les possibilités de connexion entre les maisons dans
un village de montagne et une source d’eau : il existe un lien entre une maison et une
autre plus en bas s’il est possible de les relier afin de créer une voie qui permet à l’eau
d’arriver depuis la source.
Le réseau modélise les restrictions de possibilité d’interaction entre joueurs et établit
la façon dont les compétences individuelles interagissent dans des groupes de joueurs :
si on définit la valeur d’une coalition d’arguments comme le nombre d’arguments qui
ne sont pas attaqués par un autre argument dans la coalition, alors un joueur dans un
jeu d’argumentation contribue à la valeur d’une coalition dont il fait partie seulement
si aucun de ses attaquants ne fait partie de la coalition ; un agent dans un jeu de pairs
contribue avec sa propre compétence au fonctionnement de l’organisation si tous ses
supérieurs dans la hiérarchie coopèrent avec lui, en d’autres termes il contribue seule-
ment aux coalitions qui contiennent tous ses supérieurs ; une maison dans une mountain
situation contribue à la division du coût de connexion à la source seulement si elle se
trouve dans l’arbre de coût minimal qui relie les maisons à la source.
En d’autres termes, dans plusieurs cas, la structure de réseau détermine quels joueurs
doivent contribuer à la valeur (ou coût) des coalitions, en assemblant leurs valeurs in-
dividuelles.

Dans tous les modèles mentionnés ci-dessus, la valeur d’une coalition S de joueurs
est calculée comme la somme des valeurs individuelles des joueurs dans un sous-
ensemble de S. D’un autre côté, dans certains cas la valeur d’une coalition peut être
affectée par des influences extérieures et des joueurs en dehors de la coalition peuvent
contribuer, soit d’une façon positive soit négative, à la valeur de la coalition même.
C’est le cas, par exemple, des bankruptcy games [5] et des maintenance problems [58].

La première partie de cette thèse est dediée à l’introduction d’un modèle de théorie
des jeux qui embrasse toutes les classes de jeux coalitionnels mentionnées ci-dessus.
Dans le Chapitre 3, on introduit la classe de Generalized Additive Games (GAGs), où
la valeur d’une coalition S ⊆ N est evaluée par un filtre d’interaction, c’est-à-dire une
fonction M qui élit les joueurs qui contribuent à la valeur de la coalition S.
L’objectif de ce modèle est de fournir un cadre général pour décrire de nombreuseus
classes des jeux étudiées dans la littérature sur les jeux coalitionnels, et en particulier
sur les graph games, et de fournir une sorte de taxonomie des jeux coalitionnels qui
sont attribuables à cette notion d’additivité sur les valeurs individuelles.
On appelle Generalized Additive Situation (GAS) un triplet 〈N, v,M〉, où N est l’en-
semble des joueurs, v : N → R est une fonction qui associe à chaque joueur une valeur
réelle et M : 2N → 2N est une fonction de coalition , qui associe une coalition (qui
peut être vide) M(S) à chaque coalition S ⊆ N des joueurs et telle que M(∅) = ∅.

Étant donné le GAS 〈N, v,M〉, le Generalized Additive Game (GAG) associé est
défini comme le jeu coalitionnel (N, vM) qui associe à chaque coalition la valeur



vM(S) =

{
∑

i∈M(S) v(i) siM(S) 6= ∅

0 sinon.
(1)

La définition générale de la fonction M permet d’embrasser diverses classes de
jeux, comme par exemple les simple games. Soit w un jeu simple. w peut être décrit par
le GAG associé à 〈N, v,M〉 où v(i) = 1 pour tous i et

M(S) =

{

{i} ⊆ S siS ∈ W

∅ sinon

où W est l’ensemble des coalitions gagnantes dans w. Dans le cas où il y a un veto
player, c’est-à-dire un joueur i tel que S ∈ W seulement si i ∈ S, alors le jeu peut
aussi être décrit par v(i) = 1, v(j) = 0 ∀j 6= i et

M(S) =

{

T siS ∈ W

R

avec T,R ⊆ N tels que i ∈ T et i /∈ R. Ceci montre en particulier que la description
d’un jeu comme GAG n’est pas nécessairement unique.

De plus, en faisant plus d’hypothèse sur M, notre approche permet de classifier des
jeux existants sur la base des propriétés de M.
En particulier, on définit la classe de basic GAGs, qui est caractérisée par le fait que les
joueurs qui contribuent à une coalition S sont sélectionnés sur la base de la présence,
parmi les joueurs dans S, de leurs amis et ennemis, c’est-à-dire que un joueur contribue
à la valeur de S si et seulement si S contient au moins un des ses amis et aucun des ses
ennemis.
Soit C = {Ci}i∈N une collection, dont Ci = {F 1

i , . . . , F
mi

i , Ei} est une collection de
sous-ensembles deN telle que F j

i ∩Ei = ∅ pour tous i ∈ N et pour tous j = 1, · · · ,mi.
On note 〈N, v, C〉 le basic GAS associé à la fonction de coalition M définie par :

M(S) = {i ∈ N : S ∩ F 1
i 6= ∅, . . . , S ∩ Fmi

i 6= ∅, S ∩ Ei = ∅} (2)

et par 〈N, vC〉 le GAG associé, qu’on appelle basic GAG.
Pour simplifier, on peut supposer sans perte de généralité que m1 = m2 = · · · =

mn := m. On appelle chaque F k
i , pour tous i ∈ N et tous k = 1, . . . ,m, le k-ème

(k-th) ensemble des amis de i, et Ei l’ensemble des ennemis de i.
Plusieurs classes de jeux susmentionnées peuvent être décrites comme basic GAGs,

ainsi que des jeux qui dérivent de situations réelles. Par exemple, ce modéle, se révèle
approprié pour représenter un réseau social en ligne, dont les amis et ennemis des utili-
sateurs du web sont déterminés par leurs profils sociaux. De plus, le Chapitre 7 présente
une application des basic GAGs au domaine de la biomédecine.
Un cas particulièrement simple est celui où chaque joueur a un seul ensemble d’amis,
qu’on note par Fi.

Exemple 1. (airport games) [63, 64] : Soit N l’ensemble des joueurs. On divise N en
groupes N1, N2, . . . , Nk tels que á chaque Nj , j = 1, . . . , k, est associé un nombre
réel positif cj avec c1 ≤ c2 ≤ · · · ≤ ck, qui représentent des coûts. Soit w le jeu
dont la valeur d’une coalition S est définie par w(S) = max{ci : i ∈ S}. Tel jeu (et
ses variantes) peut être décrit par un basic GAS 〈N, (Ci = {Fi, Ei})i∈N , v〉 dont pour
chaque i ∈ Nj et chaque j = 1, . . . , k :



- v(i) = cj
|Nj |

,

- Fi = Nj ,
et Ei = Nj+1 ∪ . . . ∪ Nk pour chaque i ∈ Nj et chaque j = 1, . . . , k − 1 et El = ∅
pour chaque l ∈ Nk.

Par des arguments similaires, il est possible de montrer que les maintenance games
[17, 58], qui généralisent les airport games, peuvent aussi être représentés comme ba-
sic GAGs. De plus, on fournit d’autres exemples de classes de jeux coalitionnels qui
peuvent être décrits comme basic GAGs, où en générale chaque joueur a plusieurs en-
sembles d’amis.

Exemple 2. (argumentation games) [16] Soit 〈N,R〉 un graphe orienté, où l’ensemble
des nœuds N est un ensemble fini d’arguments et l’ensemble des arêtes R ⊆ N × N
est une relation binaire d’attaque [38]. Pour chaque argument i, on définit l’ensemble
des attaquants de i dans 〈N,R〉 comme l’ensemble P (i) = {j ∈ N : (j, i) ∈ R}.
L’interprétation est la suivante : si j ∈ P (i) cela signifie que l’argument j attaque
l’argument i. La valeur d’une coalition S est le nombre d’arguments dans l’opinion
S qui ne sont pas attaqués par un autre argument dans S. Ce jeu (et ses variantes)
peut être décrit comme un basic GAS 〈N, v, {Fi, Ei}〉 en fixant v(i) = 1, l’ensemble
des amis Fi = {i} et l’ensemble des ennemis Ei = P (i). Cet exemple peut être dé-
crit comme un basic GAG où chaque joueur a un seul ensemble d’amis. Pourtant, il
existe aussi d’autres genres de fonctions caractéristiques qui peuvent être naturelle-
ment considérées. Par exemple, il est intéressant de considérer le jeu (N, vM) tel que
pour chaque S ⊆ N , vM(S) est la somme des v(i) sur les éléments de l’ensemble
D(S) = {i ∈ N : P (i) ∩ S = ∅ et ∀j ∈ P (i), P (j) ∩ S 6= ∅} des arguments qui
ne sont pas intérieurement attaqués par S et en même temps sont défendus par S des
attaques extérieurs :

vM(S) =
∑

i∈D(S)

v(i). (3)

Il est clair que cette situation ne peut pas être décrite par un basic GAG où chaque
joueur a un seul ensemble d’amis. Le jeu dans (3) peut, cependant, être décrit comme
un basic GAG 〈N, vC〉, où, étant donnée une bijection k : P (i) → {1, · · · , |P (i)|},
Ci = {F 1

i , · · · , F
|P (i)|
i , Ei} est tel que F k(j)

i = P (j) \ P (i) pour tous j ∈ P (i), et
Ei = P (i) pour tous i ∈ N.

Exemple 3. (peer games) [19] Soit N = {1, . . . , n} l’ensemble des joueurs et T =
(N,A) un arbre orienté avec une source, décrivant la hiérarchie parmi les joueurs,
avecN comme ensemble des sommets, 1 comme source (représentant le chef du groupe)
et A ⊂ N × N comme ensemble des liens. Chaque agent i a un potentiel individuel
ai qui représente le gain que le joueur i peut produire si tous les joueurs aux niveaux
supérieurs dans la hiérarchie coopèrent avec lui. Pour chaque i ∈ N , on note S(i)
l’ensemble des tous les agents dans l’unique chemin orienté qui relie 1 à i, c’est-à-dire
l’ensemble des supérieurs de i. Étant donné une peer group situation (N, T, a) décrite
comme ci-dessus, un peer game est défini comme le jeu (N, vP ) tel que, pour chaque
coalition non vide S ⊆ N

vP (S) =
∑

i∈N :S(i)⊆S

ai.



Un peer game (N, vP ) peut être décrit comme le GAG associé au basic GAS sur
N où v(i) = ai et où M est définie par la relation (3.4) avec les collections Ci =
{F 1

i , . . . , F
n
i , Ei} telles que :

F j
i =

{

{j} si j ∈ S(i)

{i} sinon

et Ei = ∅ pour tous i ∈ N.

Exemple 4. (maintenance cost games) [17, 58] Soit N un groupe de joueurs reliés
par un arbre T (par exemple, un réseau d’ordinateurs) à une source 0 (par exemple,
un fornisseur de services) et supposons que chaque arête de l’arbre ait un coût de
maintenance ; le problème qui se pose est comment diviser d’une façon convenable
le coût du réseau entier parmi les joueurs dans N . Plus formellement, soit (T, t) une
paire, où T = (N∪{0}, E) est un arbre.N∪{0} représente un ensemble de sommets et
E l’ensemble de arêtes, les paires {i, j} telles que i, j ∈ N . 0 est la source de l’arbre,
qui a une seule arête adjacente, et t : E → R+ est une fonction de coût non négative
sur les arêtes de l’arbre. Notons que chaque sommet i ∈ N est relié à la source 0 par
un unique chemin Pi ; on note ei l’arête dans Pi qui est incidente à i. Une relation de
précédence � est définie par : j � i si et seulement si j se trouve sur le chemin Pi.
Un tronc R ⊆ N ∪ {0} est un ensemble de sommets qui est fermé pour la relation �,
c’est-à-dire si i ∈ R et j � i, alors j ∈ R. L’ensemble de followers du joueur i ∈ N
est défini comme F (i) = {j ∈ N |i � j} (notons que i ∈ F (i) pour tous i ∈ N ). Le
coût d’un tronc R est défini comme

C(R) =
∑

i∈R\{0}

t(ei),

et le maintenance cost game (N, c) associé est défini par

c(S) = min{C(R) : S ⊆ R and R is a trunk}.

Notons que l’arête ei est presente dans le tronc de coût minimal qui contient tous les
membres de S chaque fois qu’un membre de S est un follower du joueur i, c’est-à-dire
S ∩ F (i) 6= ∅. On peut donc représenter le jeu de coût (cost game) (N, c) comme le
GAG associé au basic GAS sur N où v(i) = t(ei) et où M est définie par la relation
(3.4) avec des collections Ci = {Fi, Ei} telles que Fi = F (i) et Ei = ∅ pour tous
i ∈ N .

L’intérêt de cette classification n’est pas seulement taxonomique, puisqu’elle permet
aussi d’étudier les propriétés des solutions des classes de jeux connus dans la littéra-
ture et elle fournit des outils potentiellement efficaces pour calculer des solutions de
nouvelles classes de jeux qui peuvent être décrites dans ce cadre formel. En particu-
lier, il est possible de déduire, pour la classe de basic GAGs, des résultats concernant
d’importants concepts de solutions, comme le core et les semivalues.

Il est donc intéressant d’étudier sous quelles conditions une GAS peut être décrite
comme un basic GAS. Dans cette optique, on démontre le théorème suivant, qui décrit
une condition nécessaire et suffisante quand l’ensemble des ennemis de chaque joueur
est vide.



Théorème 1. Soit 〈N, v,M〉 une GAS. La fonction M peut être obtenue par la rela-
tion (3.4) avec des collections Ci = {F 1

i , . . . , F
mi

i , Ei = ∅}, pour tous i ∈ N , si et
seulement si M est monotone.

Dans le Chapitre 4, on fournit quelques résultats sur des concepts des solutions clas-
siques pour les basic GAGs, et on s’intéresse au problème de garantir le fait que le cœur
d’un basic GAG soit non vide. En particulier, on fournit des conditions suffisantes pour
que le cœur soit non vide et des formules concises pour les semivalues pour basic GAGs
où chaque joueur a un seul ensemble d’amis, ou deux ensembles, dont un est le single-
ton F k

i = {i}.

Dans un GAG, la valeur de chaque coalition est calculée comme la somme des va-
leurs individuelles d’un sous-ensemble de joueurs. D’autre part, dans plusieurs cas,
quand une structure de réseau décrit les interactions parmi les joueurs concernés, il est
possible de dériver la valeur de chaque coalition comme la somme des contributions qui
sont produites par les interactions par paires, c’est-à-dire comme la somme des valeurs
individuelles associées aux arêtes du réseau. A titre d’exemple, dans les maintenance
cost games [58], un arbre décrit un système de maintenance, avec un fournisseur de ser-
vices comme source. Le coût de connexion d’un ensemble d’ordinateurs au fournisseur
est décrit par un jeu coalitionnel et calculé comme la somme de coûts de maintenance
de toutes les connexions parmi les ordinateurs qui se trouvent dans l’arbre de coût mini-
mal associé, c’est-à-dire comme la somme des coûts associés aux arêtes dans le graphe
induit.

Comme pour les maintenance cost game, dans plusieurs autres graph games la valeur
des coalitions peut être calculée additivement à partir des valeurs associées aus arêtes
dans le graphe sous-jacent. De plus, comme dans les graph-restricted games la valeur
d’une coalition peut être dérivée additivement d’une collection de sous-coalitions de
joueurs, aussi pour la classe de link games, introduite par Meessen [70] et davantage
étudié par Borm et al. [18], la valeur d’une coalition des liens peut être dérivée ad-
ditivement à partir d’une collection des sous-coalitions des arêtes. En effet, plusieurs
approches avec les coalitonal games on networks s’appuient sur des structures additives
parmi les arétes, non seulement pour ce qui concerne la définition d’un jeu, mais aussi
pour l’analyse des solutions respectives.

La deuxième partie de cette thèse est dediée à l’introduction d’une classe de concepts
des solutions pour les communication situations [75], où le paiement de chaque joueur
est calculé additivement à partir des valeurs produites par les relations binaires parmi
les joueurs. Dans le Chapitre 5, on considère une situation de communication (N, v,Γ)
dans laquelle un réseau Γ est produit par la formation des liens parmi les joueurs et, à
chaque étape du processus de formation, le surplus créé par un lien est partagé parmi les
joueurs impliqués, selon une certaine règle. Plus précisement, on suppose qu’un réseau
Γ parmi les joueurs dans un jeu coalitionnel (N, v) soit produit par une permutation
des arêtes et que tous les différents ordres dans lesquels les liens se forment soient
équiprobables. De plus, on suppose que à chaque étape du processus de formation du
réseau, quand un lien entre deux joueurs i et j se crée, la valeur de la coalition S, où
S est la composante connexe qui contient i et j, réduite par les valeurs des composants
connexes formées par les joueurs dans S à l’étape précédent, soit partagée parmi les



joueurs impliqués selon un certain protocole. Plus formellement, étant donnée une si-
tuation de communication (N, v,Γ), soit σ une permutation des liens. À chaque étape k
du processus de formation du réseau, quand le k-ème lien a = {i, j} dans la séquence
déterminée par σ se forme, soit Sσk le surplus produit par a :

Sσk = v(S)− v(C i
k−1,σ)− v(Cj

k−1,σ) (4)

où S est la composante connexe dans Γ qui contient i et j à l’étape k, et C i
k−1,σ et

Cj
k−1,σ sont les composantes connexes dans Γ à l’étape k− 1, qui contient i et j respec-

tivement. On appelle protocole d’allocation une règle qui spécifie comment partager
Sσk parmi les joueurs dans S. Étant donnée un protocole d’allocation r et une situation
de communication (N, v,Γ), une solution pour v, que l’on note φr(v), est définie par :

φri (v) =
1

|E|!

∑

σ∈ΣE

|E|
∑

k=0

f ri (S
σ
k ), ∀i ∈ N, (5)

où ΣE est l’ensemble des toutes les permutations sur l’ensemble des liens E dans Γ
et f ri est une fonction qui associe à chaque joueur i ∈ N une quantité fixée du surplus
Sσk , qui dépend du protocole d’allocation r.
En d’autres termes, la solution φr(v) est définie en considérant toutes les permutations
possibles de liens, et en sommant, pour chaque joueur i, toutes les contributions qu’il
reçoit avec la procédure d’allocation r, en faisant la moyenne pour toutes les permuta-
tions sur l’ensemble des liens parmi les joueurs. Cette idée amène à l’introduction d’une
nouvelle classe de concepts de solutions : différentes choix du protocole d’allocation
définissent différentes solutions pour une situation de communication.

En particulier, lors d’une étape, quand le lien a = {i, j} se forme, il est possible
de considérer le protocole d’allocation qui partage également le surplus entre les seuls
joueurs i et j. La solution obtenue par ce protocole d’allocation coïncide avec le posi-
tion value, introduit par Borm et al. [18], fournissant donc une interprétation différente
de ce concept de solution.

De plus, dans le Chapitre 5, on enquête sur le problème de calculer cette solution
pour des classes particulières de situations de communication. En particulier, on fournit
une expression pour le position value d’un jeu quand le réseau sous-jacent est un arbre,
qui relie son calcul à celui des jeux d’unanimité.

La troisième partie de cette thèse est dediée à deux applications des modèles de
théorie des jeux décrits jusqu’ici. Une première application, présentée dans le Chapitre
6, concerne le domaine de la théorie de l’argumentation. La théorie de l’argumenta-
tion a pour objectif de formaliser les systèmes de décision et les processus de décision
associés. Un de ses objectifs est la recherche d’ensembles de conclusions acceptées
dans un cadre d’argumentation, qui est modelisé par un graphe orienté où les nœuds
représentent des arguments, c’est-à-dire des affirmations ou séries des affirmations, et
les arêtes représentent des relations d’attaque, qui expriment le conflit parmi paires des
arguments.
Dans la littérature, plusieurs sémantiques d’extension (extension semantics) ont été as-
sociées au cadre de l’argumentation abstraite avec l’objectif de spécifier quels argu-



ments sont acceptés, lesquels ne le sont pas et lesquels sont incertains [21, 38]. Diffé-
rentes des sémantiques d’extensions, le but des sématiques graduelles (gradual seman-
tics) est d’associer à chaque argument un degré d’acceptabilité [4, 13, 24, 49, 97].
La théorie des jeux a aussi été employée pour la définition des niveaux intermédiaires
d’acceptabilité des arguments. Précisément, dans [67] un degré d’acceptabilité est dé-
fini en prenant en compte la valeur de minmax d’un jeu à somme nulle entre un ‘par-
tisan’ et un ‘opposant’ et où les stratégies et les paiements des joueurs dépendent de
la structure du graphe d’argumentation. Plus récemment, les jeux coalitionnels ont
étés utilisés dans [16] pour mesurer l’importance relative des arguments en prenant
en compte les préférences d’un agent sur les arguments et l’information fournie par les
relations d’attaque. Dans les approches susmentionnées, le poids attribué à chaque ar-
gument représente la force d’un argument pour imposer son acceptabilité. D’autre part,
l’acceptabilité n’est pas le seul attribut des arguments qui a été étudié dans la littéra-
ture dans une perspective graduelle. Dans [98] un index a été introduit pour représenter
la controversialité individuelle des arguments, où les arguments les plus controversés
sont ceux pour lesquels prendre une décision sur leur acceptabilité est difficile. Dans
la même direction, le problème de mesurer le désaccord (disagreement) dans un cadre
d’argumentation a été étudié dans [3], où les auteurs fournissent une analyse axioma-
tique des différents mesures pour les graphes d’argumentation.

Dans le Chapitre 6, on montre que le propriétés introduites dans [3] pour les ar-
guments individuels, peuvent être reformulées pour les graphes d’argumentation et
peuvent amener à la définition d’un classement basé sur le conflit (conflict-based ran-
king), qui peut être vu comme un classement alternatif pour mesurer la controversialité
des arguments.

Plus formellement, soit A=< A,R > un cadre d’argumentation (ou graphe d’argu-
mentation), où A = {1, . . . , n} est un ensemble fini non vide des arguments et R ⊆ A×A
est une relation d’attaque. Étant donnés deux arguments a, b ∈ N, on écrit (a, b) ∈ R
(où aRb) si a attaque b.
On note A l’ensemble des tous les graphes d’argumentation et AA l’ensemble de tous
les graphes d’argumentation avec A comme ensemble d’arguments.
Une mesure de désaccord (disagreement measure) [3] est une fonction K : A →
[0, 1] avec l’interprétation que, pour chaque A, A′ ∈ U , A est plus conflituel de A′

si K(A) > K(A′). Notons que K = 0 correspond à l’absence de désaccord dans un
graphe, alors que le maximum du désaccord est fixé par K = 1.
En particulier, on considère une mesure basée sur les distances (distance-based mea-
sure) introduite dans [3], qui est définie comme :

KD(N) =
max−D(A)
max−min

(6)

où |N | = n,max = n2(n+1),min = n2 etD(A) =
∑

i∈A

∑

j∈A

di,j est la distance globale

parmi les arguments dans A, où di,j est la distance entre l’argument i et l’argument j,
qui est définie comme la longueur du chemin le plus court entre i et j si un tel chemin
existe ou n+ 1 autrement.

Étant donnée une mesure de désaccord, il est intéressant d’établir quels arguments
contribuent le plus au désaccord total dans un graphe d’argumentation. Dans ce but, on
introduit, par une approche axiomatique, un index de conflit (conflit index) qui évalue la



contribution de chaque argument au désaccord total. Un index de conflit K : AA → Rn

est une fonction qui associe à chaque graphe d’argumentation avec n = |A| nœuds
(arguments) un vecteur dans Rn, qui représent les contributions de chaque argument
au conflit dans le graphe. Plus la valeur que tel index associe à un argument est haute,
plus grand est le désaccord apporté par cet argument au graphe et par conséquence sa
controversialité.

On introduit un index de conflit basé sur les distances (distance-based conflit index)
défini comme l’index de conflit qui associe à chaque i ∈ N la valeur suivante :

KD
i (A) =

1

∆
(
max

n
− ϕi), (7)

où max = n2(n+ 1), ∆ = max−min = n2(n+ 1)− n2 = n3 et ϕi = 1
2

∑

j∈A\i

di,j +

1
2

∑

j∈A\i

dj,i+ di,i. Cet index de conflit associe à chaque argument une valeur qui dépend

de la distance d’un argument de tous les autres et vice versa. On montre que cet index de
conflit satisfait huit propriétés : abstraction, coherence, maximality, free independence,
monotonicity, cycle sensitivity, size sensitivity et efficiency, qui reformulent pour les
arguments les propriétés introduites dans [3] pour une mesure de désaccord sur les
graphes d’argumentation, et relient notre index de conflit à la mesure de désaccord
basée sur les distances définies dans (6).

De plus, on montre que l’index de conflit dans (7) peut être re-interprété en termes
de solution classique pour les jeux coalitionnels, c’est-à-dire comme la contribution
marginale moyenne de chaque argument au désaccord induit par toutes les coalitions
possibles de joueurs. On arrive à ce résultat en définissant un jeu coopératif, où les
joueurs sont les arguments dans un graphe d’argumentation et à chaque coalition des
arguments est associée une valeur, qui exprime le conflit total dans la coalition. En
particulier, chaque nœud et chaque lien dans la coalition des arguments contribue à
la valeur de la coalition avec la part du désaccord qu’il apporte à la coalition même,
mesuré par les relations d’attaque qu’il provoque dans le graphe. Le jeu ainsi défini peut
en effet être représenté en terms de basic GAGs, comme une combination du modèle
original introduit dans le Chapitre 3 et sa variante définie sur les arêtes.
Soit A = < A,R > un graphe d’argumentation, où A a pour cardinal n. On introduit un
jeu coopératif (A, v), où l’ensemble des joueurs est l’ensemble des arguments A dans
le graphe d’argumentation et la fonction caractéristique est définie comme suit pour
chaque S ⊆ A :

v(S) =
max−D(S)

max−min
, (8)

oùD(S) =
∑

i,j∈S

di,j ,max = n2(n+1) est la valeur maximale queD peut atteindre dans

un graphe d’argumentation avec n arguments etmin = n2 celui minimal.D(S) mesure
la distance globale entre les arguments dans la coalition S, en prenant en compte les
relations d’attaque qui existent parmi eux dans le graphe entier : elle est définie comme
la somme des distances entre les nœuds dans la coalition S, où le distance entre deux
nœuds est calculée sur le graphe entier. Plus la distance globale dans une coalition est
grande, plus haute est la valeur de la coalition dans le jeu v, ce qui reflète le fait que le
conflit global dans une coalition des arguments dépend inversement de la distance entre
arguments.



On propose la valeur de Shapley [88] de ce jeu comme un index de colflict qui me-
sure la controversialité des arguments, puisqu’il mesure le pouvoir de chaque argument
d’apporter du conflit dans le cadre d’argumentation, et on montre que il coïncide avec
l’index de conflit défini dans (7).

Bien que le Chapitre 6 décrive une approche utilisant la théorie de jeux appliquée
au domaine de la théorie de l’argumentation, le Chapitre 7 présente une application
réelle du modèle de GAGs au domaine de la biomedécine, et en particulier au problème
d’évaluer l’importance des gènes dans un réseau biologique. Parmi les réseaux bio-
logiques, les réseaux de régulation de gènes (gene regulatory networks ou pathways)
suscitent un grand intérêt dans le domaine de la biologie moléculaire et dans l’épidé-
miologie où il s’agit de mieux comprendre les mécanismes d’interaction entre gènes,
protéines et d’autres molécules dans une cellule sous certaines conditions biologiques
d’intérêt [20, 23, 31, 93]. Un point crucial de l’analyse des interactions entre gènes est
la formulation des mesures appropriées de l’influence de chaque gène dans le système
complexe des interactions dans un réseau.
Centrality analysis représente un outil important pour l’interprétation de l’interaction
entre gènes dans un réseau de régulation de gènes [12, 22, 44, 52, 53]. Les mesures de
centrality classiques [41, 57] sont utilisées dans l’analyse des réseaux pour identifier
les éléments importants dans un réseau, sur la base de leur position dans la structure
donnée par le réseau. Cependant, elles sont appropriées sous la condition que les nœuds
agissent de manière indépendante les uns des autres et que le système soit sensible au
comportement individuel de chaque nœud. Au contraire, dans des réseaux biologiques
complexes, il n’est pas réaliste de supposer que les gènes puissent s’exprimer indé-
pendamment et les conséquences sur le système peuvent être appréciées seulement si
plusieurs gènes changent leur expression. Ainsi, dans un scénario complexe comme
la pathogenèse d’une maladie génétique, on fait face au problème de quantifier l’im-
portance relative des gènes, en tenant compte non seulement de leur comportement
individuel mais surtout de leur niveau d’interaction.
La théorie des jeux coopératifs a été proposée comme cadre théorique pour faire face à
ces limitations. Récemment, de nombreuses mesures basées sur les jeux coalitionnels
ont été appliquées avec succès aux différentes sortes de réseaux biologiques, comme
les réseaux cérébraux (brain networks) [55, 56, 59], les réseaux des gènes (gene net-
works) [72], et les réseaux metaboliques (metabolic networks) [85].

Nous proposons une approche, avec les jeux coalitionnels, et en particulier avec les
basic GAGs au problème de l’identification des gènes importants dans un réseau de
gènes. Le problème a été examiné pour la première fois par un modèle de théorie des
jeux dans [72], où la valeur de Shapley pour les jeux coalitionnels est utilisée pour
exprimer le pouvoir de chaque gène dans son interaction avec les autres et pour souli-
gner l’importance des certains hub gènes dans la régulation des pathways biologiques
d’intérêt. Notre modèle représente un raffinement de cet approche, qui généralise la no-
tion de degree centrality [77, 89], dont la corrélation avec l’importance des gènes pour
differentes fonctions biologiques est supportée par plusieurs indices pratiques dans la
littérature [12, 22, 52, 53, 103]. Nous définissons un basic GAG avec une interprétation
biologique sur les réseaux des gènes et nous proposons la valeur de Shapley de ce jeu
comme un nouveau index d’importance pour les gènes. Cet approche est supportée par



une caracterisation axiomatique, où les propriétés satisfaites par notre index ont une in-
terprétation biologique. De plus, on fournit une formule pour calculer le nouvel index,
qui peut être directement derivé des résultats théoriques présentés dans le Chapitre 4.

Soit 〈N,E〉 un réseau de gènes (gene network), c’est-à-dire un réseau où l’en-
semble des nœuds N représente l’ensemble des gènes et l’ensemble des arêtes E décrit
l’interaction entre les gènes : il existe une arête entre deux gènes s’ils interagissent
directement dans la condition biologique analysée. De plus, soit k ∈ Rn un vec-
teur de paramètres qui spécifie l’importance a priori de chaque gène. On définit l’en-
semble des voisins (neighbours) d’un nœud i dans le graphe 〈N,E〉 comme l’en-
semble Ni(E) = {j ∈ N : {i, j} ∈ E}, et le degré (degree) de i comme le nombre
di(E) = |Ni(E)| de voisins de i dans le graphe 〈N,E〉, c’est-à-dire le nombre des liens
incidents à i dans Γ. On note NS(E) = {j ∈ N : ∃i ∈ S s.t. j ∈ Ni(E)} l’ensemble
des voisins des nœuds dans S ∈ 2N , S 6= ∅, et dans le graphe 〈N,E〉. Étant donné
un sous-ensemble S ⊆ V des nœuds, on définit le sous-graphe induit ΓS = (S,ES),
où ES est l’ensemble des liens {i, j} ∈ E tel que i, j ∈ S. Un graphe 〈N,Ei

S〉, où
l’ensemble des arêtes est Ei

S = {{i, j} : j ∈ S} est appelé une étoile (star) sur S
avec centre dans i. Notons que les ensembles de voisins des nœuds dans 〈N,Ei

S〉 sont
tels que Ni(E

i
S) = S, Nj(E

i
S) = {i}, pour chaque j ∈ S, et Nj(E

i
S) = ∅, pour tous

j ∈ N \ (S ∪ {i}).
On définit un jeu coalitionnel (N, vkE), où N est l’ensemble des gènes à l’étude et

la fonction caractéristique vkE associe une valeur à chaque coalition de gènes S ⊆ N
qui représente la magnitude globale de l’interaction entre les gènes dans S, qui prend
en compte le poids (importance a priori) de chaque gène directement lié à S dans le
réseau biologique.

Plus précisément, la fonction vkE : 2N → R associe à chaque coalition S ∈ 2N \ {∅}
la valeur

vkE(S) =
∑

j∈S∪NS(E)

kj (9)

qui est la somme des poids associés aux gènes dans S et à ceux qui sont directement liés
dans 〈N,E〉 à quelques gènes dans S (par convention, vkE(∅) = 0). La classe de jeux
(N, v) définie par la relation (9), sur un réseau de gènes G ≡ 〈V,E〉 et avec paramètre
k ∈ Rn, est dénotée par EKN .

On observe que le jeu ainsi défini est clairement décrit comme le basic GAG associé
à la GAS 〈N, v,M〉, où v(i) = ki pour tous i ∈ N et M est la fonction associée aux
collections Ci = {Fi = Ni(E), Ei = ∅} ∀i ∈ N . Un gène i contribue à la valeur d’une
coalition avec sa valeur individuelle, le poids ki, si et seulement si il appartient à la
coalition où au moins un des gènes qui interagissent directement avec lui est présent.

Par rapport au modèle précédent dans la littérature [72], la définition proposée par la
relation (9) semble explorer toutes les possibilités d’influence mutuelle entre les gènes
plus flexiblement. Elle généralise le jeu introduit dans [94] pour déterminer les "top-k
nodes" dans un co-autorship network, par l’introduction d’un vecteur de paramètres qui
spécifie l’importance a priori de chaque nœud. Le vecteur de paramètres k permet de
classifier a priori les gènes selon leur importance, alors que dans le modèle précédent
[72] seulement une distinction à deux niveaux est faite, entre ‘key-genes’ et non ‘key-
genes’. De plus, en évaluant dans quelle mesure une coalition est liée au reste du réseau,
la relation (9) généralise la notion de degree centrality pour les groupes des gènes,



qui est justifiée par plusieurs indices pratiques qui démontrent une forte corrélation
entre la degree centrality et les gènes qui sont essentiels pour différentes fonctions
biologiques [12, 22, 52, 53, 103]. En effet, si seulement les poids des gènes dans une
coalition était considéré (et non celui des voisins, comme dans notre définition), la
mesure d’importance obtenue par l’approche suivante coïnciderait avec la weighted
degree centrality.

Nous proposons la valeur de Shapley de ce jeu comme une mesure de l’importance
des gènes dans le maintien de l’activité de régulation globale dans un réseau de gènes
(voir la Section 7.3 pour un exemple qui motive cette approche, en clarifiant l’objectif
de notre index et la différence par rapport aux mesures d’importance classiques), et
nous supportons cette idée avec une caractérisation axiomatique de notre index, où
les propriétés ont une interprétation biologique sur les réseaux des gènes. On décrit
quatre propriétés pour un index d’importance (relevance index) pour gènes, qui est
une fonction ρ : EKN → Rn. On commence par une réinterprétation des propriétés
classiques de SYM (symmetry), DPP (dummy player property) et EFF (efficiency) sur
la classe EKN (voir la Section 2.1 pour une définition formelle sur la classe de tous les
jeux coalitionnels).

Soit 〈N,E〉 un réseau de gènes et k ∈ Rn un vecteur des poids. La propriété de
SYM implique que si deux gènes i, j ∈ N ont le même poids (ki = kj) et si ils sont
liés au même ensemble de voisins (Ni(E) = Nj(E)), alors ils doivent avoir la même
importance. La propriété de DPP a aussi une interprétation intuitive sur le graphe :
chaque nœud i ∈ N qui est sans voisins doit avoir une importance égale à ki. Enfin,
la propriété de EFF impose que la somme de l’importance de tous les gènes doit être
égale à

∑

i∈N ki, la somme totale des poids.
De plus, on introduit un nouvel axiome, qui impose que la transformation d’un nœud

i avec un poids nul dans un nœud avec poids non nul ki doit affecter seulement les gènes
directement liés à i, et son impact sur l’importance des ses voisins doit être égal à celui
dans une étoile équivalente avec centre dans i.

Axiome 1 (Star Additivity, SADD). Soit 〈N,E〉 un réseau de gènes avec un vecteur de
paramètres k−i ∈ Rn tel que le gène i a poids nul et vk−i

E le jeu correspondant défini
par la relation (9). Soit vkE le jeu défini par la relation (9) sur 〈N,E〉 et avec vecteur
de paramètres k qui associe un poids non nul ki au gène i et les mêmes poids que k−i
à tous les autres gènes. Un index ρ : EKN → Rn satisfait la propriété SADD si et
seulement si

ρ(vkE) = ρ(v
k−i

E ) + ρ(vs
i

Ei
Ni(E)

),

où vs
i

Ei
Ni(E)

est le jeu défini par la relation (9) sur l’ étoile 〈N,Ei
Ni(E)〉 sur Ni(E) avec

centre i et si est le vecteur des paramètres qui associe un poids ki à i et 0 à chaque
j 6= i.

L’Axiome SADD impose que l’augmentation de poids d’un nœud i de 0 à une valeur
positive doit affecter l’importance totale du gène i et des ses voisins dans la même
mesure pour tous graphes. En conséquence, le changement de poids d’un gène produit
le même effet sur sa propre importance et sur celle de ses voisins, indépendamment
de la topologie du réseau, et l’effet du changement est comparable parmi différents
réseaux.



La proposition suivante fournit une caractérisation de notre index d’importance,
ainsi qu’une formule pour son calcul, qui peut être démontré à partir des axiomes ou
directement des résultats du Chapitre 4.

Proposition 1. La valeur de Shapley est l’unique index d’importance ρ qui satisfait
les propriétés de SYM, DPP, EFF et SADD sur la classe EKN . De plus, pour chaque
réseau de gènes 〈N,E〉 avec un vecteur des poids k ∈ Rn, il peut être calculé à partir
de la formule suivante :

ρi(v
k
E) =

∑

j∈(Ni(E)∪{i})

kj
dj(E) + 1

, (10)

pour tous i ∈ N .

L’interprétation de la formule dans (10) est directe : un gène reçoit une grande im-
portance s’il est lié a de nombreux gènes qui sont à leur tour liés à peu d’autres gènes,
c’est-à-dire plus le nombre des voisins avec un degré faible est important, plus l’indice
est élevé.

Enfin, on présent dans la Section 7.5 une application à des données réelles. Un étude
expérimentale a été conduite sur un réseau d’expression des gènes, en lien avec le can-
cer du poumon, et une comparaison avec des mesures d’importance classiques conclut
l’analyse.

Les deux application dćrites ci-dessus, qui concernent deux domaines de recherche
très différents, comme la théorie de l’argumentation et la biomédecine, indiquent que
notre modèle représente un important et flexible outil pour l’analyse d’une variété des
situations et problèmes réels, aussi grâce au fait que pour certaines sous-classes il est
possible d’étudier d’une façon simple et efficace les solutions correspondantes.



Riassunto

UN gioco di coalizione descrive una situazione in cui tutti i giocatori sono liberi di
interagire tra di loro, ovvero ogni coalizione di giocatori può formarsi e coope-
rare. Quando le restrizioni delle interazioni tra giocatori sono descritte da una

struttura di network, abbiamo a che fare con i cosiddetti giochi di coalizione su grafi,
che sono l’oggetto centrale di questa tesi. Un gioco di coalizione, tradizionalmente
chiamato gioco cooperativo ad utilità trasferibile (TU-game), è definito da una coppia
(N, v), dove N denota un insieme finito di giocatori e v : 2N → R è la funzione ca-
ratteristica, una funzione a valori reali sulla famiglia dei sottoinsiemi di N . Un gruppo
di giocatori S ⊆ N è detto coalizione e la funzione caratteristica associa ad ogni coali-
zione S un numero reale v(S), che è detto valore della coalizione e rappresenta l’utilità
totale che i giocatori all’interno della coalizione possono ricavare dalla cooperazione,
indipendentemente dagli altri giocatori. Il valore di una coalizione può rappresentare
un guadagno o un costo, a seconda della situazione descritta dal gioco cooperativo. Per
convenzione, si assume che v(∅) = 0.

Un gioco di coalizione con n giocatori è descritto da un vettore di 2n − 1 numeri
reali, ovvero il numero di sottoinsiemi non vuoti dell’insieme dei giocatori. Poiché il
numero di coalizioni cresce esponenzialmente con il numero di giocatori, è interessante,
dal punto di vista computazionale, trovare classi di giochi che possono essere descrit-
ti in maniera concisa. Di conseguenza, diversi modelli introdotti nella letteratura sui
giochi cooperativi si concentrano su situazioni carratterizzate da una rappresentazione
compatta di un TU-game, e tali che il valore di ogni coalizione può essere facilmente
calcolato. Una rappresentazione compatta non solo permette di ridurre la complessità
di descrizione del gioco e del calcolo delle soluzioni, ma permette anche di descrivere
una varietà di problemi reali all’interno di un formalismo unificato.
In letteratura vi sono diverse classi di giochi che descrivono in maniera compatta il
sinergismo tra i giocatori: tra di esse, i profit sharing games, cost allocation games,
market games, optimization games (spanning tree games, flow games e i linear pro-
gramming games) e i voting games (si rimanda a [17] e [54] per un survey sui giochi di
coalizione e gli operation research games).
In particolare, esistono diversi approcci in cui la rappresentazione concisa di classi di
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giochi deriva da una struttura additiva tra le coalizioni. In alcuni casi, per via di una
struttura sottostante il gioco, come un network, un ordine o una permission structure,
il valore di una coalizione S ⊆ N può essere ricavato in maniera additiva a partire da
una collezione di sottocoalizioni {T1, · · ·Tk}, Ti ⊆ S ∀i ∈ {1, · · · , k}. Tali situazioni
sono descritte, per esempio, dai graph-restricted games, introdotti da Myerson in [75]
e studiati successivamente da Owen in [78]; dai component additive games [30], e dai
restricted component additive games [29].

Talvolta, il valore di ogni coalizione è calcolato a partire dai valori che i singoli
giocatori sono in grado di garantirsi, tramite un meccanismo che descrive le interazioni
degli individui all’interno di un gruppo. Nel caso più semplice possiamo considera-
re che, quando una coalizione di giocatori si forma, ognuno apporti il proprio valore
individuale e che il valore della coalizione sia calcolato come la somma dei singoli con-
tributi dei giocatori che la formano. Ad esempio, consideriamo un gioco di costo in cui
n giocatori vogliono acquistare online n oggetti differenti e il valore di ogni giocatore
all’interno del gioco è definito dal prezzo dell’oggetto che acquista. Se un gruppo di
giocatori S decide di fare l’acquisto assieme, il costo dell’operazione è semplicemente
la somma degli s = |S| costi degli oggetti comprati dai giocatori in S, cioè la somma
dei costi che i singoli giocatori dovrebbero sostenere se acquistassero gli oggetti sepa-
ratamente.
Questa situazione è descritta da un gioco additivo, in cui il valore di una coalizione è
la somma dei valori delle coalizioni disgiunte che la costituiscono. Il vettore degli n
valori dei singoli giocatori d̀unque sufficiente per rappresentare il gioco e descrivere in
modo compatto l’interazione tra i giocatori.
Tuttavia, tale modello può risultare inefficace nel riflettere l’importanza che un sottoin-
sieme di giocatori può avere nel contribuire al valore di una coalizione a cui appartiene.
Nel precedente esempio, accade spesso che, nel fare un acquisto collettivo, quando una
certa soglia di prezzo è raggiunta, alcuni degli oggetti vengano ceduti gratuitamente e
di conseguenza il prezzo che una coalizione S deve pagare dipenda solo dal prezzo di
un sottoinsieme degli oggetti acquistati.

Di fatto, in molti casi la procedura utilizzata per definire il valore di una coalizione
S ⊆ N è fortemente legata alla somma dei valori individuali in un altro sottoinsieme
S ⊆ N , non necessariamente incluso in S.

Diversi esempi in letteratura ricadono in questa categoria. Un semplice esempio è il
noto gioco dei guanti: l’insieme dei giocatori N è diviso in due categorie, i giocatori in
L che possiedono un guanto sinistro, e quelli inR con un guanto destro. Il valore di una
coalizione di giocatori S ⊆ N è definito come il numero di coppie di guanti posseduti
dalla coalizione S. In questo contesto, i giocatori che contribuiscono al valore della
coalizione sono quelli la cui categoria è costituita dalla minoranza dei giocatori, poiché
il valore di S è dato dalla cardinalità dell’insieme più piccolo tra S∩L e S∩R. Il valore
di una coalizione si può quindi ottenere considerando che ogni giocatore abbia un valore
individuale pari a 1 e sommando i contributi dei singoli giocatori che appartengono al
sottoinsieme meno numeroso tra S ∩ L e S ∩R. Con un approccio analogo è possibile
descrivere numerose altre classi di giochi in letteratura e in particolare alcune classi di
graph games, tra cui gli airport games [63], [64], i connectivity games e loro estensioni
( [2], [62]), gli argumentation games [16] e alcune classi di operation research games,



quali i peer games [19] e le mountain situations [73].

Nei graph games, un grafo (o network) (N,E) descrive le possibilità di interazione
tra i giocatori: i nodi del network sono i giocatori in N e esiste un link e = {i, j} ∈ E
tra due nodi i e j se i giocatori corrispondenti sono in grado di interagire direttamente
tra di loro. Ad esempio, negli argumentation games, un grafo diretto descrive le rela-
zioni di attacco tra argomenti che formano un’opinione: esiste un link tra un argomento
e l’altro se il primo attacca il secondo; nei peer games un network descrive la struttura
gerarchica tra agenti: esiste un link diretto tra un nodo e l’altro se il primo è superiore
al secondo nella gerarchia dominata dal capo dell’organizzazione; nelle mountain si-
tuations un grafo diretto rappresenta le connessioni tra le case in un villaggio ed una
fonte d’acqua: esiste un link tra due case se è possibile collegarle per creare un canale
che consente il passaggio d’acqua dalla fonte.
La struttura di network impone una restrizione sulle possibilità di interazione dei gioca-
tori, determinando di conseguenza come le abilità individuali si compenentrano all’in-
terno di un gruppo di giocatori: se definiamo il valore di una coalizione di argomenti
come il suo livello di coerenza interna, in particolare come il numero di argomenti che
non sono attaccati da un altro argomento della coalizione, allora un giocatore in un ar-
gumentation game contribuisce ad una coalizione a cui appartiene solo se nessuno dei
suoi attaccanti ne fa parte; un agente in un peer game contribuisce con il proprio po-
tenziale individuale al mantenimento dell’organizzazione gerarchica se tutti gli agenti
ad un livello superiore cooperano con lui, in altri termini un agente contribuisce solo a
quelle coalizioni che contengono tutti i suoi superiori; una casa in una mountain situa-
tion contribuisce alla divisione dei costi di connessione alla fonte se e solo se giace sul
cammino di costo minimo che connette i giocatori alla fonte.
In altre parole, in molti casi, la struttura di network determina quali giocatori devono
fornire il proprio contributo individuale ad una data coalizione.

In tutti i modelli sopracitati, il valore di una coalizione di giocatori è calcolato co-
me la somma dei singoli valori dei giocatori che appartengono ad un suo sottoinsieme.
D’altro canto, in alcuni casi il valore di una coalizione può essere influenzato dai con-
tributi di giocatori esterni alla coalizione stessa, sia positivamente che negativamen-
te. È questo il caso, ad esempio, dei bankruptcy games [5] e dei maintenance cost
games [58].

La prima parte di questa tesi è dedicata all’introduzione di un modello di teoria dei
giochi che abbraccia tutte le sopracitate classi di giochi di coalizione. In particolare,
nel Capitolo 3, viene introdotta la classe dei Generalized Additive Games (GAGs), in
cui il valore di una coalizione S ⊆ N è misurato attraverso un "filtro d’interazione",
ovvero una mappa M che seleziona quali giocatori contribuiscono al valore di S.
L’obiettivo di questo modello è quello di fornire un quadro generale per la descrizione
di numerose classi di giochi studiati in letteratura, e in particolare nell’ambito dei graph
games, e di fornire una tassonomia dei giochi di coalizione ascrivibili a questa nozione
di additività sui valori individuali. Definiamo Generalized Additive Situation (GAS)
una terna 〈N, v,M〉,dove N è l’insieme dei giocatori, v : N → R è una funzione che
assegna ad ogni giocatore un valore reale e M : 2N → 2N è una mappa di coalizione,
che associa una coalizione M(S) (eventualmente vuota) ad ogni coalizione di giocatori
S ⊆ N e tale che M(∅) = ∅.

Dato il GAS 〈N, v,M〉, il Generalized Additive Game (GAG) associato è definito



come il gioco (N, vM) che associa ad ogni coalizione il valore

vM(S) =

{
∑

i∈M(S) v(i) seM(S) 6= ∅

0 altrimenti.
(1)

La definizione generale della mappa M consente di abbracciare numerose e ampie
classi di giochi, tra cui ad esempio i giochi semplici. Sia w un gioco semplice. w può
essere descritto dal GAG associato a 〈N, v,M〉 con v(i) = 1 per ogni i e

M(S) =

{

{i} ⊆ S seS ∈ W

∅ altrimenti

dove W è l’insieme delle coalizioni vincenti in w. Se esiste un giocatore di veto, ossia
un giocatore i tale che S ∈ W solo se i ∈ S, allora il gioco w può essere descritto
anche attraverso v(i) = 1, v(j) = 0 ∀j 6= i e

M(S) =

{

T seS ∈ W

R altrimenti

con T,R ⊆ N tali che i ∈ T e i /∈ R. Questo esempio mostra, in particolare, che la
descrizione di un gioco in termini di GAG non è necessariamente unica.

Inoltre, facendo ulteriori ipotesi su M, il nostro approccio permette di classificare
giochi noti in letteratura sulla base delle proprietà di M.
In particolare, introduciamo la classe dei basic GAGs, che è caratterizzata dal fatto che
i giocatori che contribuiscono ad una coalizione S sono selezionati sulla base della
presenza, all’interno di S, dei loro amici e nemici, ovvero un giocatore contribuisce al
valore di S se e solo se S contiene almeno uno dei suoi amici e nessun nemico.
Sia data la collezione C = {Ci}i∈N , dove Ci = {F 1

i , . . . , F
mi

i , Ei} è una collezione di
sottoinsiemi di N tale che F j

i ∩ Ei = ∅ per ogni i ∈ N e per ogni j = 1, · · · ,mi.
Denotimao con 〈N, v, C〉 il basic GAS associato alla mappa di coalizione M definita
da:

M(S) = {i ∈ N : S ∩ F 1
i 6= ∅, . . . , S ∩ Fmi

i 6= ∅, S ∩ Ei = ∅} (2)

e con 〈N, vC〉 il GAG associato, che chiameremo basic GAG.
Per semplicità, assumiamo, senza perdita di generalità, che m1 = m2 = · · · =

mn := m. Chiameremo ogni F k
i , per ogni i ∈ N e ogni k = 1, . . . ,m, il k-esimo

insieme di amici di i, e Ei l’insieme dei nemici di i.
Molte delle sopracitate classi di giochi possono essere descritte come basic GAGs,

così come alcuni giochi derivanti da situazioni reali. Ad esempio, tale modello può
essere impiegato per rappresentare un social network, dove gli amici e i nemici degli
utenti del web sono determinati dai loro profili sociali. In aggiunta, il Capitolo 7 pre-
senta Un’applicazione dei GAGs al campo della Biomedicina.
Il caso più semplice è quello in cui ogni giocatore ha un unico insieme di amici, che
denoteremo con Fi.

Esempio 1. (airport games) [63, 64]: Supponiamo che l’insieme dei giocatori N sia
partizionato nei gruppi N1, N2, . . . , Nk tali che ad ogni Nj , j = 1, . . . , k, è associato
un costo positivo cj con c1 ≤ c2 ≤ · · · ≤ ck. Consideriamo il gioco w(S) = max{ci :
i ∈ S}. Tale gioco può essere descritto da un basic GAS 〈N, (Ci = {Fi, Ei})i∈N , v〉
definendo per ogni i ∈ Nj e per ogni j = 1, . . . , k:



- il valore v(i) = cj
|Nj |

,

- l’insieme degli amici Fi = Nj ,

e l’insieme dei nemici Ei = Nj+1 ∪ . . .∪Nk per ogni i ∈ Nj e ogni j = 1, . . . , k− 1 e
El = ∅ per ogni l ∈ Nk.

In maniera simile, è possibile mostrare che anche i maintenance games [17,58], che
generalizzano gli airport games, possono essere descritti come basic GAGs.

Di seguito, mostriamo altri esempi di classi di giochi di coalizione che possono es-
sere rappresentati come basic GAGs, dove in generale ogni giocatore può avere diversi
insiemi di amici.

Esempio 2. (argumentation games) [16] Sia 〈N,R〉 un grafo diretto, dove N è un
insieme finito di argomenti e l’insieme dei link R ⊆ N × N è una relazione binaria
di attacco [37]. Per ogni argomento i, P (i) = {j ∈ N : (j, i) ∈ R} è l’insieme
degli argomenti che lo attaccano. Il valore di una coalizione S è il numero di argo-
menti nell’opinione S che non sono attaccati da nessun altro argomento appartenente
ad S. Tale gioco può essere descritto come un basic GAS 〈N, v, {Fi, Ei}〉 imponen-
do v(i) = 1, Fi = {i} e Ei = P (i). Tale esempio ricade ancora nella categoria
dei basic GAGs in cui ogni giocatore ha un solo insieme di amici. Tuttavia, in que-
sto contesto, possiamo considerare altre naturali definizioni di funzione caratteristica.
Ad esempio, è interessante considerare il gioco (N, vM) tale che per ogni S ⊆ N ,
vM(S) è la somma dei v(i) sugli elementi dell’insieme D(S) = {i ∈ N : P (i) ∩ S =
∅ and ∀j ∈ P (i), P (j) ∩ S 6= ∅}, ossia l’insieme degli argomenti che non sono in-
ternamente attaccati da S e allo stesso tempo sono difesi da parte di S da attacchi
esterni:

vM(S) =
∑

i∈D(S)

v(i). (3)

È chiaro che tale situazione non può essere rappresentata da un basic GAG in cui ogni
giocatore ha un unico insieme di amici. Il gioco in (3) può tuttavia essere descritto
come il basic GAG 〈N, vC〉, in cui, data una biiezione k : P (i) → {1, · · · , |P (i)|},
Ci = {F 1

i , · · · , F
|P (i)|
i , Ei} è tale chet F k(j)

i = P (j) \ P (i) per ogni j ∈ P (i), e
Ei = P (i) per ogni i ∈ N.

Esempio 3. (peer games) [19] Sia N = {1, . . . , n} l’insieme dei giocatori e T =
(N,A) un albero (ossia un grafo aciclico) diretto che descrive la gerarchia tra i gio-
catori, dove N è l’insieme dei nodi, 1 la radice (il leader del gruppo) e A ⊂ N × N
l’insieme dei link. Ogni agente i ha un potenziale individuale ai che rappresenta il
guadagno che il giocatore i può generare se tutti i suoi superiori cooperano con lui.
Per ogni i ∈ N , denotiamo con S(i) l’insieme di tutti gli agenti nell’unico cammino di-
retto che connette 1 a i, ovvero i superiori di i. Data una peer group situation (N, T, a)
come quella sopra descritta, un peer game è definito come il gioco (N, vP ) tale che per
ogni coalizione non vuota S ⊆ N

vP (S) =
∑

i∈N :S(i)⊆S

ai.



Un peer game (N, vP ) può essere descritto come il GAG associato al basic GAS
su N in cui v(i) = ai e M è definita dalla relazione (3.4) tramite le collezioni Ci =
{F 1

i , . . . , F
n
i , Ei} tali che:

F j
i =

{

{j} if j ∈ S(i)

{i} altrimenti

e Ei = ∅ per ogni i ∈ N.

Esempio 4. (maintenance cost games) [17, 58] Sia N un gruppo di giocatori connessi
da un albero T (e.g., un network di computer) ad una fonte 0 (e.g., un fornitore di
servizi) e supponiamo ad ogni lato dell’albero sia associato un costo. Si consideri la
coppia (T, t), dove T=(N ∪ {0}, E) è un albero, con insieme di nodi N ∪ {0} insieme
di lati E, e t : E → R+ è una funzione di costo positiva sull’insieme dei lati. 0 è la
radice ed ha un solo lato incidente. Osserviamo che ogni nodo i ∈ N è connesso alla
radice 0 da un unico cammino Pi; denotiamo con ei il lato in Pi incidente ad i. Una
relazione di precedenza � è definita da: j � i se e solo se j giace sul cammino Pi. Un
tronco R ⊆ N ∪ {0} è un insieme di nodi chiuso rispetto alla relazione �, ovvero se
i ∈ R e j � i, allora j ∈ R. Sia F (i) = {j ∈ N |i � j} l’insieme dei nodi che seguono
il nodo i ∈ N nel cammino che lo congiunge alla radice. Osserviamo che i ∈ F (i) per
ogni i ∈ N . Il costo di un tronco R è definito da

C(R) =
∑

i∈R\{0}

t(ei),

e il maintenance cost game associato (N, c) è definito da

c(S) = min{C(R) : S ⊆ R e R è un tronco}.

Notiamo che ei appartiene al tronco di costo minimo che contiene tutti i membri di S
ogniqualvolta S ∩ F (i) 6= ∅. Possiamo quindi rappresentare il gioco (N, c) come il
GAG associato al basic GAS suN dove v(i) = t(ei) e dove M è definita dalla relazione
(3.4) tramite le collezioni Ci = {Fi, Ei} tali che Fi = F (i) e Ei = ∅ per ogni i ∈ N .

L’interesse di questa classificazione non è soltanto tassonomico, in quanto consente
l’analisi delle proprietà delle soluzioni di classi di giochi note in letteratura e fornisce
strumenti potenzialmente utili per il calcolo delle soluzioni di nuove classi di giochi che
possono essere descritte all’interno di questo formalismo. In particolare, è possibile
ricavare alcuni risultati per i basic GAG riguardanti due noti concetti di soluzione, il
nucleo e i semivalues.

Risulta quindi interessante studiare sotto quali condizioni un GAG possa essere de-
scritto come un basic GAG. Con questo obiettivo, presentiamo il Teorema seguente,
che ne descrive una condizione necessaria e sufficiente, nel caso in cui l’insieme dei
nemici di ogni giocatore è vuoto.

Teorema 1. Sia 〈N, v,M〉 un GAS. La mappa M può essere ottenuta dalla relazione
(3.4) per mezzo delle collezioni Ci = {F 1

i , . . . , F
mi

i , Ei = ∅}, per ogni i ∈ N , se e solo
se M è monotona.

Nel Capitolo 4, forniamo alcuni risultati riguardo a classici concetti di soluzione per
i giochi cooperativi sulla classe dei basic GAGs, e affrontiamo il problema di come



garantire che il nucleo di un basic GAG sia non vuoto. In particolare, forniamo alcune
condizioni sufficienti affinchè ciò non accada e ricaviamo formule concise per i semi-
values di basic GAGs in cui ogni giocatore ha un solo insieme di amici o al più due
insiemi di amici, di cui uno è l’insieme F k

i = {i}.

In un GAG, il valore di ogni coalizione è calcolato a partire dai valori individuali di
un sottoinsieme di giocatori. D’altro canto, in molti casi, quando un network descrive
le interazioni tra i giocatori, è possibile ricavare il valore di una coalizione di giocatori a
partire dai contributi generati dalle interazioni binarie tra i giocatori, ossia come somma
dei singoli valori associati ai lati del sottostante grafo. Ad esempio, nei maintenance
cost games [58], il costo della connessione di un insieme di computer S al gestore di
rete è calcolato come la somma dei costi di mantenimento di tutte le connessioni tra
i computer che giacciono sull’albero di minimo costo che connette i computer in S al
gestore, ovvero come la somma dei costi associati ai link nel grafo indotto.
Così come per i maintenance cost game, in molti altri graph games il valore di una coa-
lizione di nodi può essere ricavato in maniera additiva a partire dai valori associati ai
link nel sottostante network. Inoltre, così come per i graph-restricted game il valore di
una coalizione si ricava in maniera additiva a partire da una collezione di sottocoalizio-
ni di nodi, per la classe dei link games, introdotta da Meessen [70] e successivamente
studiata da Borm et al. [18], il valore di una coalizione di link può essere ricavato addi-
tivamente da una collezione di sottocoalizioni di link. In effetti, diversi approcci nella
letteratura sui giochi di coalizione su grafi si basano su strutture additive tra link, non
solo per quanto riguarda la definizione di una classe di giochi, ma anche per l’analisi
delle relative soluzioni.

La seconda parte di questa tesi è dedicata all’introduzione di una classe di soluzioni
per le communication situations [75], in cui i payoff di ogni giocatore sono calcolati
additivamente a partire dai valori generati dalle interazioni a coppie tra i giocatori. Nel
Capitolo 5, consideriamo una situazione di comunicazione (N, v,Γ) dove un network
Γ è generato dalla formazione successiva di link tra i giocatori e ad ogni step del pro-
cesso di formazione, il surplus generato dalla cooperazione tra i nodi che stabiliscono
un link tra di loro è diviso tra i giocatori coinvolti secondo una qualche regola. Più
precisamente, assumiamo che un network Γ tra i giocatori nel gioco (N, v) sia prodotto
da una permutazione di link e che tutti i possibili ordini in cui i link si formano a crea-
re il network siano equiprobabili. Inoltre, supponiamo che ad ogni step del processo
di formazione del network, quando un link tra i giocatori i e j si crea, il valore della
coalizione S, dove S è la componente connessa contenente i e j, meno il valore delle
componenti connesse formate dai giocatori di S allo step precedente, sia suddiviso tra
i giocatori coinvolti seguendo un certo protocollo. Formalmente, data una situazione di
comunicazione (N, v,Γ), consideriamo una possibile permutazione di lati σ. Ad ogni
step k del processo di formazione del network, quando il k-esimo link a = {i, j} nella
sequenza σ si forma, consideriamo il surplus prodotto da a:

Sσk = v(S)− v(C i
k−1,σ)− v(Cj

k−1,σ) (4)

dove S è la componente connessa in Γ contenente i e j allo step k, e C i
k−1,σ e Cj

k−1,σ

sono le componenti connesse in Γ allo step k − 1, contenenti i e j rispettivamente.
Chiamiamo protocollo di allocazione una regola che specifica come dividere Sσk tra i



giocatori di S. Dato un protocollo di allocazione r e una situazione di comunicazione
(N, v,Γ),una soluzione di v, che denotiamo con φr(v), è data da:

φri (v) =
1

|E|!

∑

σ∈ΣE

|E|
∑

k=0

f ri (S
σ
k ), ∀i ∈ N, (5)

dove ΣE è l’insieme dei possibili ordini sull’insieme E in Γ e f ri è una funzione che
assegna ad ogni giocatore i ∈ N una quantità fissata del surplus Sσk , che dipende dal
protocollo di allocazione r.
In altre parole, la soluzione φr(v) è calcolata considerando tutte le possibili permuta-
zioni di link e sommando, per ogni giocatore i, tutti i contributi che riceve tramite la
procedura di allocazione r, facendo la media su tutte le permutazioni dell’insieme dei
link. Tale idea porta all’introduzione di una classe di concetti di soluzione: differenti
scelte del protocollo di allocazione portano alla definizione di differenti soluzioni per
una situazione di comunicazione.

In particolare, quando un link a = {i, j} si forma, è naturale considerare il pro-
tocollo di allocazione che divide equamente il surplus soltanto tra i giocatori i e j.
La soluzione ottenuta da questo particolare protocollo di allocazione coincide con il
position value, introdotto da Borm et al. [18]. Sulla base di queste osservazioni, nel
Capitolo 5 forniamo quindi una diversa interpretazione di questo noto concetto di solu-
zione. Inoltre, analizziamo il problema di calcolare tale soluzione su alcune particolari
classi di communication situations. In particolare, forniamo un’espressione per il posi-
tion value di un gioco quando il network sottostante è un albero, che mette in relazione
il calcolo di tale soluzione su un gioco generico con quello sui giochi di unanimità.

La terza e ultima parte di questa tesi è dedicata a due applicazioni dei modelli teorici
descritti fin qui. Una prima applicazione, presentata nel Capitolo 6, è al campo della
teoria dell’argomentazione [37]. La teoria dell’argomentazione ha lo scopo di forma-
lizzare i sistemi decisionali e i processi di decisione associati. Uno dei suoi obiettivi
è la ricerca di insiemi di conclusioni accettate in un quadro argomentativo, che è de-
scritto da un grafo diretto in cui i nodi rappresentano argomenti, ovvero affermazioni o
serie di affermazioni, e i lati diretti rappresentano relazioni di attacco, che esprimono il
conflitto tra copie di argomenti.
In letteratura, numerose semantiche d’estensione, anche dette labellings sono state de-
finite nell’ambito dell’argomentazione astratta con l’obiettivo di descrivere quali argo-
menti sono accettati o meno, e su quali non è possibile prendere una decisione [21,38].
Diverse dalle semantiche d’estensione, lo scopo delle semantiche graduali è quello di
assegnare un grado di accettabilità ad ogni argomento [4, 13, 24, 49, 97].
Anche la teoria dei giochi è stata utilizzata per definire livelli intermedi di accettabilità
di argomenti. In particolare, in [67] il grado di accettabilità di un argomento è definito
prendendo in considerazione il valore di minmax di un gioco a somma zero tra un ‘so-
stenitore’ e un ‘oppositore’ in cui le strategie e i payoff dipendono dalla struttura del
grafo d’argomentazione. Più recentemente, i giochi di coalizione sono stati impiegati
in [16] per misurare l’importanza relativa degli argomenti sulla base sia delle preferen-
ze di un agente sugli argomenti sia dell’informazione fornita dalle relazioni d’attacco.
Negli approcci descritti sopra, il peso attribuito ad ogni argomento riflette il potere di un



argomento nel forzare la sua accettabilità. D’altro canto, l’accettabilità non è l’unico
attributo studiato in letteratura da un punto di vista graduale. In [98] viene introdot-
to un indice per misurare la controversialità di un argomento, dove gli argomenti più
controversi sono quelli per cui è difficile prendere una decisione riguardo alla loro ac-
cettabilità. In una direzione simile, il problema di misurare il disaccordo all’interno
di un grafo di argomentazione è stato studiato in [3]. In tale lavoro, viene presentata
un’analisi assiomatica di diverse misure di disaccordo per grafi di argomentazione.

Nel Capitolo 6, mostriamo in primo luogo che le proprietà introdotte in [3] per grafi
d’argomentazione possono essere riformulate per i singoli argomenti e portare ad una
classificazione degli argomenti sulla base della loro conflittualità, che può essere vista
come una classificazione alternativa per misurarne la controversialità.

Formalmente, sia A=< A,R > un quadro d’argomentazione (o grafo d’argomenta-
zione), dove A = {1, . . . , n} è un insieme finito e non vuoto di argomenti e R ⊆ A×A
una relazione d’attacco. Dati due argomenti a, b ∈ N, scriviamo (a, b) ∈ R (o aRb) se a
attacca b.
Denotiamo con A l’insieme di tutti i grafi d’argomentazione e con AA l’insieme di tutti
i grafi d’argomentazione con A come insieme di argomenti.
Una misura di disaccordo [3] è una funzione K : A → [0, 1] con l’interpretazione che,
per ogni A, A′ ∈ U , A è più conflittuale di A′ se K(A) > K(A′). Osserviamo che
K = 0 corrisponde all’assenza di disaccordo in un grafo, mentre il massimo disaccordo
è fissato a K = 1.
In particolare, consideriamo la misura basata sulle distanze introdotta in [3],definita
come:

KD(N) =
max−D(A)
max−min

(6)

dove |N | = n, max = n2(n + 1) e min = n2 and D(A) =
∑

i∈A

∑

j∈A

di,j è la distanza

globale tra gli argomenti in A, dove di,j è la distanza tra gli argomenti i e j, definita
come la lunghezza del cammino più corto tra i e j se tale cammino esiste o n + 1
altrimenti.

Data una misura di disaccordo, è interessante stabilire quali sono gli argomenti che
contribuiscono maggiormente al disaccordo totale in un grafo di argomentazione. A
tale scopo, introduciamo, attraverso un approccio assiomatico, un indice di conflitto
che misura il contributo di ogni argomento al disaccordo totale. Un indice di conflit-
to K : AA → Rn è una funzione che assegna ad ogni grafo di argomentazione con
n = |A| nodi (argomenti) un vettore di Rn, che rappresenta i contributi di ogni ar-
gomento al conflitto all’interno del grafo. Più alto il valore di tale indice, maggiore
l’apporto di disaccordo di un argomento all’interno del grafo e di conseguenza la sua
controversialità.

Nel Capitolo 6 introduciamo in particolare un indice di conflitto basato sulle di-
stanze, definito come l’indice di conflitto che associa ad ogni i ∈ N il seguente
valore:

KD
i (A) =

1

∆
(
max

n
− ϕi), (7)

dove max = n2(n + 1), ∆ = max − min = n2(n + 1) − n2 = n3 e ϕi =
1
2

∑

j∈A\i

di,j +
1
2

∑

j∈A\i

dj,i+ di,i. Tale indice di conflitto associa ad ogni argomento un va-



lore che dipende dalla sua distanza da tutti gli altri argomenti e viceversa dalla distanza
di tutti gli altri argomenti dall’argomento stesso. Mostriamo inoltre che tale indice di
conflitto soddisfa otto proprietà: abstraction, coherence, maximality, free independen-
ce, monotonicity, cycle sensitivity, size sensitivity e efficiency, che riformulano per i
singoli argomenti le proprietà introdotte in [3] per una misura di disaccordo, e mettono
in relazione il nostro indice di conflitto con la misura di disaccordo basata sulle distanze
definita in (6).

In secondo luogo, nello stesso capitolo, mostriamo che l’indice di conflitto da noi
introdotto, può essere interpretato in termini di una classica soluzione per i giochi di
coalizione, ossia come il contributo marginale medio di ogni argomento al disaccordo
interno a tutte le possibili coalizioni di argomenti. Lo facciamo definendo un gioco
cooperativo, in cui i giocatori sono gli argomenti all’interno di un grafo di argomenta-
zione e ad ogni coalizione di argomenti è associato un valore che esprime il disaccordo
totale all’interno dela coalizione. In particolare, ogni nodo e ogni lato all’interno di
una coalizione contribuiscono al valore della coalizione stessa con la propria porzione
di disaccordo, misurata attraverso le relazioni d’attacco che apportano all’interno della
coalizione. Il gioco così definito può in effetti essere rappresentato mediante i basic
GAGs, come combinazione del modello originale introdotto nel Capitolo 3 e della sua
variante definita sui link.
Sia A = < A,R > un grafo d’argomentazione, dove A ha cardinalità n. Introduciamo
un gioco cooperativo (A, v), in cui l’insieme dei giocatori coincide con l’insieme degli
argomenti A e la funzione caratteristica è definita come segue, per ogni S ⊆ A:

v(S) =
max−D(S)

max−min
, (8)

dove D(S) =
∑

i,j∈S di,j , max = n2(n + 1) è il massimo valore che D può assumere
in un grafo d’argomentazione con n argomenti e min = n2 è quello minimo. D(S)
misura la distanza globale tra gli argomenti all’interno della coalizione S, prendendo in
considerazione le relazioni d’attacco che esistono tra di essi nell’intero grafo: è definita
come la somma delle distanze tra i nodi della coalizione S, dove la distanza tra due nodi
è calcolata a partire dall’intero grafo. Minore è la distanza globale all’interno di una
coalizione, maggiore il valore di tale coalizione nel gioco v, in quanto il conflitto totale
in una coalizione di argomente dipende inversamente dalla distanza tra gli argomenti.
Nel Capitolo 6, proponiamo il valore Shapley [88] di tale gioco come indice di conflit-
to che quantifica la controversialità degli argomenti, in quanto misura il potere di ogni
argomento nell’apportare conflitto all’interno del grafo di argomentazione, e dimostria-
mo che esso coincide con l’indice di conflitto definito in (7).
Considerando scenari di persuasione, sosteniamo che la nostra classificazione degli ar-
gomenti in base al conflitto che apportano in un grafo di argomentazione può guidare
gli agenti nella scelta di quegli argomenti che meritano un maggiore sviluppo al fine
di rafforzare certe posizioni all’interno di un dibattito, rispondendo quindi alla que-
stione sollevata in [98] sulla definizione di un indice del potenziale di sviluppo degli
argomenti.

Mentre il Capitolo 6 descrive un approccio con la teoria dei giochi al campo del-
la teoria dell’argomentazione, il Capitolo 7 presenta un’applicazione del modello dei
GAGs al campo della Biomedicina, e in particolare al problema di valutare la rile-
vanza di geni all’interno di un network biologico. Tra i network biologici, i network



(o pathway) di regolazione genica sono oggetto di grande interesse nel campo della
biologia molecolare e dell’epidemiologia allo scopo di comprendere meglio i meccani-
smi di interazione tra geni, proteine a altre molecole all’interno di una cellula, in una
condizione biolgica di interesse. [20, 23, 31, 93]. Un punto cruciale nell’analisi delle
interazioni tra geni è la formulazione di misure appropriate del ruolo ricoperto da ogni
gene nell’influenzare i sistemi estremamente complessi che descrivono le relazioni tra
geni all’interno di un network.
L’analisi di centralità rappresenta uno strumento importante per l’interpretazione delle
interazioni tra geni in un network di regolazione genica [12, 22, 44, 52, 53]. Le misu-
re di centralità classiche [41, 57] sono utilizzate per identificare gli elementi rilevanti
all’interno di un network, sulla base della loro posizione all’interno della struttura del
network. Tuttavia, esse rappresentano uno strumento appropriato se assumiamo che
i nodi agiscano in maniera indipendente gli uni dagli altri e che il sistema in analisi
sia sensibile al comportamente di ogni singolo nodo. Al contrario, nei complessi net-
work biologici, assumere che i geni si esprimano indipendentemente non è realistico e
le conseguenze sul sistema possono essere apprezzate solo se molti geni cambiano il
loro livello di espressione. Dunque, in uno scenario complesso quale la patogenesi di
una malattia genetica, abbiamo a che fare con il problema di quantificare l’importanza
relativa dei geni, tenendo conto non solo del loro comportamento individuale, ma so-
prattutto del livello della loro interazione.
La teoria dei giochi cooperativi è stata proposta come quadro teorico per affrontare
tali limitazioni. Di recente, numerose misure di centralità basate sui giochi coopera-
tivi sono state applicate con successo a svariati tipi di network biologici, quali le reti
neurali [55, 56, 59], i network di geni [72], e le reti metaboliche [85].

Nel Capitolo 7, proponiamo un approccio con i giochi di coalizione, e in particolare
con i GAGs, al problema di identificare i geni rilevanti all’interno di un network di geni.
Tale problema è stato affrontato per la prima volta per mezzo della teoria dei giochi
in [72], dove il valore Shapley di un gioco di coalizione è usato per esprimere il potere di
ogni gene nell’interazione con gli altri e per sottolineare l’importanza di particolari geni
nella regolazione di pathway biologiche di interesse. Il nostro modello rappresenta un
raffinamento di tale approccio, che generalizza la nozione di degree centrality [77, 89],
la cui correlazione con la rilevanza di geni per diverse funzioni biologiche è supportata
da diverse evidenze pratiche in letteratura [12,22,52,53,103]. Definiamo un basic GAG
con interpretazione biologica su network di geni e proponiamo il valore Shapley di tale
gioco come nuovo indice di rilevanza di geni. Tale approccio è supportato da una
caratterizzazione assiomatica, in cui le proprietà soddisfatte dal nostro indice hanno
un’interpretazione biologica. Inoltre, forniamo una formula per il calcolo del nuovo
indice di rilevanza, che può essere direttamente dedotta dai risultati teorici presentati
nel Capitolo 4.

Sia 〈N,E〉 un network di geni, ossia un grafo il cui insieme di nodi N rappresenta
un insieme di geni e l’insieme dei link E descrive le interazioni tra geni, ovvero esiste
un link tra due geni se essi interagiscono direttamente all’interno di una condizione
biolgica in esame. Inoltre, sia k ∈ RN un vettore di parametri che specifica l’importan-
za a priori di ogni gene. Definiamo l’insieme dei vicini di un nodo i nel grafo 〈N,E〉
come l’insieme Ni(E) = {j ∈ N : {i, j} ∈ E}, e il grado di i come il numero
di(E) = |Ni(E)| di vicini di i nel grafo 〈N,E〉, ovvero il numero di link incidenti a



i in Γ. Denotiamo inoltre con NS(E) = {j ∈ N : ∃i ∈ S s.t. j ∈ Ni(E)} l’insieme
dei vicini dei nodi in S ∈ 2N , S 6= ∅ nel grafo 〈N,E〉. Dato un sottoinsieme S ⊆ V
di nodi, definiamo il sottografo indotto ΓS = (S,ES), dove ES è l’insieme dei link
{i, j} ∈ E tali che i, j ∈ S. Un grafo 〈N,Ei

S〉 in cui l’insieme dei link è dato da
Ei
S = {{i, j} : j ∈ S} è detto stella su S di centro i. Osserviamo che l’insieme dei

vicini di un nodo in 〈N,Ei
S〉 è tale che Ni(E

i
S) = S, Nj(E

i
S) = {i}, per ogni j ∈ S,e

Nj(E
i
S) = ∅, per ogni j ∈ N \ (S ∪ {i}).

Definiamo quindi un gioco cooperativo (N, vkE), dove N è l’insieme di geni sot-
to analisi e la funzione caratteristica vkE associa un valore ad ogni coalizione di geni
S ⊆ N che rappresenta il livello di interazione globale all’interno della coalizione S,
tenendo conto del peso di ogni gene diretamente connesso ad S nel network biologico.

Più precisamente, la mappa vkE : 2N → N associa ad ogni coalizione S ∈ 2N \ {∅}
il valore

vkE(S) =
∑

j∈S∪NS(E)

kj (9)

ovvero la somma dei pesi associati ai geni in S e ai loro vicini (per convenzione,
vkE(∅) = 0). La classe dei giochi (N, v) definiti dall relazione (9), su di un network
di geni G ≡ 〈V,E〉 e con vettore di parametri k ∈ RN , è denotato con EKN .

Osserviamo inoltre che il gioco così definito può essere facilmente descritto come il
basic GAG associato al GAS 〈N, v,M〉, dove v(i) = ki per ogni i ∈ N e M è la mappa
associata alle collezioni Ci = {Fi = Ni(E), Ei = ∅} ∀i ∈ N . Un gene i contribuisce
al valore di una coalizione con il proprio peso ki, se e solo se esso appartiene alla
coalizione o se almeno uno dei geni con cui interegisce direttamente all’interno del
network ne fa parte.

Rispetto al precedente modello in letteratura [72], la definizione proposta in (9) ap-
pare più flessibile per esplorare tutte le possibilità di influenza reciproca tra geni. Essa
generalizza il gioco introdotto in [94] per l’individuazione dei "top-k nodes" in un co-
autorship network, introducendo un parametro che specifica l’importanza a priori di
ciascun nodo. Il vettore di parametri k consente un ordinamento a priori dei geni sulla
base delle informazione disponibili riguardo la loro importanza, mentre nel precedente
modello introdotto in [72] veniva fatta solamente una distinzione a due livelli tra geni
chiave, noti per avere un ruolo nella condizione biologica in esame, e tutti gli altri geni.
Inoltre, valutando in che misura una coalizione di geni è connessa al resto del network,
la relazione (9) generalizza la nozione di degree centrality per gruppi di geni, che è nota
per avere una forte correlazione con l’essenzialità dei geni in diverse funzioni biologi-
che [12, 22, 52, 53, 103]. In effetti, se nella definizione del valore di una coalizione di
geni si considerasse solamente il peso dei geni al suo interno (e non quello dei loro vi-
cini, come nella nostra definizione), la misura di centralità che ne deriva coinciderebbe
con la degree centrality pesata.

Sulla base delle precedenti considerazioni, proponiamo dunque il valore Shapley di
tale gioco come misura dell’importanza di geni nel preservare l’attività di regolazione
globale all’interno di un network di geni (nella Sezione 7.3 si trova un esempio che
motiva tale approccio, il quale chiarisce l’obiettivo del nostro indice e le sue peculiarità
rispetto ad alcune misure di centralità classiche). Un supporto a tale idea è fornito
da una caratterizzazione assiomatica del nostro indice, in cui le proprietà hanno un
significato biologico nel contesto dei network di geni. Di seguito descriviamo quattro



proprietà per un indice di rilevanza di geni, ossia una mappa ρ : EKN → RN . Per
prima cosa, forniamo una reinterpretazione delle classiche proprità di symmetry (SYM),
dummy-player property DPP e efficiency (EFF) sulla classe EKN (si veda la Sezione 2.1
per una definizione formale sulla classe di tutti i TU-games).

Consideriamo un network di geni 〈N,E〉 e un vettore di pesi k ∈ RN . La proprietà
di SYM implica che due geni i, j ∈ N che hanno lo stesso peso (ki = kj) e che in ag-
giunta sono connessi allo stesso insieme di vicini (Ni(E) = Nj(E)), abbiano la stessa
rilevanza, ossia ρi(vkE) = ρj(v

k
E). La proprietà di DPP ha anch’essa un’interpretazione

intuitiva per un network di geni: ogni nodo disconnesso i ∈ N deve avere rilevanza ki.
Infine, la proprietà di EFF implica che la somma degli indici di rilevanza di tutti i geni
sia uguale alla somma totale dei pesi

∑

i∈N ki.
Inoltre, introduciamo un nuovo assioma, che afferma che la trasformazione di un

nodo i con peso pari a zero in un nodo con peso positivo ki deve influenzare solo i geni
direttamente connessi a i, e il suo impatto sulla rilevanza dei suoi vicini deve essere lo
stesso che avrebbe in una stella equivalente di centro i.

Assioma 1 (Star Additivity, SADD). Sia 〈N,E〉 un network di geni con vettore di
parametri k−i ∈ RN tale che il gene i ha peso nullo e sia vk−i

E il gioco corrispondente
definito dalla relazione (9). Consideriamo inoltre il gioco vkE definito da (9) sul network
〈N,E〉 e con vettore di parametri k che associa un peso positivo ki al gene i e lo stesso
peso del vettore k−i a tutti gli altri geni. Un indice ρ : EKN → RN soddisfa la
proprietà di SADD se e solo se

ρ(vkE) = ρ(v
k−i

E ) + ρ(vs
i

Ei
Ni(E)

),

dovevsi
Ei

Ni(E)

è il gioco definito dalla relazione (9) sulla stella 〈N,Ei
Ni(E)〉 su Ni(E) di

centro i e si è il vettore di parametri che assegna peso ki ad i e peso nullo ad ogni
j 6= i.

In altre parole, l’Assioma SADD afferma che l’incremento di peso di un nodo i
da nullo ad un valore positivo dovrebbe influenzare solo la rilevanza del gene stesso e
dei suoi vicini, allo stesso modo per ogni grafo. Di conseguenza, un cambio positivo
nell’importanza a priori di un gene produce lo stesso effetto sulla sua rilevanza e su
quella dei suoi vicini, indipendentemente dalla topologia del network, e l’effetto del
cambiamento è confrontabile tra network differenti.

La Proposizione seguente carattterizza il nostro indice di rilevanza in termini delle
sopracitate proprietà, e fornisce una formula per il suo calcolo, che può essere facilmen-
te dimostrata a partire dalle proprietà stesse o, equivalentemente, dai risultati descritti
nel Capitolo 4.

Proposizione 1. Il valore Shapley del gioco definito dalla relazione (9) è l’unico indice
di rilevanza ρ che soddisfa le proprietà di SYM, DPP, EFF e SADD sulla classe EKN .
Inoltre, per ogni network di geni 〈N,E〉 con k ∈ RN come vettore di pesi, esso può
essere calcolato secondo la seguente formula:

ρi(v
k
E) =

∑

j∈(Ni(E)∪{i})

kj
dj(E) + 1

, (10)

per ogni i ∈ N .



L’interpretazione della formula in (10) è diretta: un gene risulta molto rilevante se è
connesso a molti geni che solo viceversa connessi a pochi altri geni, ovvero maggiore
è il numero di vicini con grado basso, maggiore è l’indice di rilevanza di un gene.

Nel Capitolo 7 è inoltre presentata un’applicazione del modello sopra descritto ad
un dataset reale. Un’analisi viene condotta su un network di co-espressione genica
derivante da un esperimento di microarray, relativo ad un campione di pazienti affetti
da adenocarcinoma, e infine un confronto dei risultati ottenuti dal nostro indice con
alcune classiche misure di centralità conclude l’analisi.

Le due applicazioni sopra descritte, relative a due ambiti di ricerca molto diversi
tra di loro come la teoria dell’argomentazione e la biomedicina, mostrano come la
flessibilità del nostro modello lo renda un utile strumento per l’analisi di una varietà
di situazioni e problemi reali, anche grazie al fatto che per particolari sottoclassi è
possibile una semplice ed efficiente analisi delle relative soluzioni.
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Résumé 

Mots Clés 

Abstract 

Keywords 

Cette thèse traite de l’analyse théorique et 
l’application d’une nouvelle famille de jeux 
coopératifs, où la valeur de chaque coalition  
peut être calculée  à partir des contributions des 
joueurs par un opérateur additif qui décrit 
comme les capacités individuelles interagissent 
au sein de groupes. Précisément, on introduit 
une grande classe de jeux, les Generalized 
Additive Games, qui embrasse plusieurs classes 
de jeux coopératifs dans la littérature, et en 
particulier de graph games, où un réseau décrit 
les restrictions des possibilités d’interaction entre 
les joueurs. Des propriétés et solutions pour 
cette classe de jeux sont étudiées, avec l’objectif 
de fournir des outils pour l’analyse de classes de 
jeux connues, ainsi que pour la construction de 
nouvelles classes de jeux avec des propriétés 
intéressantes d’un point de vue théorique.  
De plus, on introduit une classe de solutions 
pour les communication situations, où la 
formation d’un réseau est décrite par un 
mécanisme additif, et dans la dernière partie de 
cette thèse on présente des approches avec 
notre modèle à des problèmes réels modélisés 
par des graph games, dans les domaines de la 
théorie de l’argumentation et de la biomédecine. 

This thesis deals with the theoretical analysis 
and the application of a new family of 
cooperative games, where the worth of each 
coalition can be computed from the 
contributions of single players via an additive 
operator describing how the individual abilities 
interact within groups. Specifically, we introduce 
a large class of games, namely the Generalized 
Additive Games, which encompasses several 
classes of cooperative games from the 
literature, and in particular of graph games, 
where a  network describes the restriction of the 
interaction possibilities among players. Some 
properties and solutions of such class of games 
are studied, with the objective of providing 
useful tools for the analysis of known classes of 
games, as well as for the construction of new 
classes of games with interesting properties 
from a theoretic point of view.  
Moreover, we introduce a class of solution 
concepts for communication situations, where 
the formation of a network is described by 
means of an additive pattern, and in the last 
part of the thesis we present two approaches 
using our model to real-world problems 
described by graph games, in the fields of 
Argumentation Theory and Biomedicine.
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