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Objective statement:

The following study addresses the role of retinal ephrin-As in the formation of visual maps. 

Unraveling the role of these molecules requires a quantitative approach which can only be permitted 

by disturbing in a quantitative manner, the gradient of ephrin-As in the retina. This was achieved by 

the generation of the Isl2-ephrin-A3 knock-in mouse model in which ephrin-A3 is over expressed in 

50% of retinal ganglion cells creating an alternating gradient of retinal ephrin-As. The effect of this 

over-expression was then assessed on the formation of the retino and the cortico-collicular maps 

together with the behavioral consequences of altered visuotopic maps. 
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Résumé détaillé en Français

Notre capacité à nous représenter le monde extérieur et à interagir avec celui-ci dépend de

notre perception sensorielle. Celle-ci résulte de l'intégration de nos sens et nécessite la conservation

de la temporalité et de la spatialité de l'information sensorielle. La conservation de l'information

spatiale est primordiale dans la vision qui constitue le sens dominant chez l'homme. Afin de conserver

cette dimension, le système nerveux central est organisé sous forme de cartes nerveuses sensorielles

au sein des systèmes visuel (rétinotopie), somato-sensoriel (somatotopie), et auditif (tonotopie). 

Notre objet d'étude est la connectivité au sein du système visuel primaire, entre la rétine, le

colliculus supérieur (dans le mésencéphale) et le cortex visuel primaire (V1) et le role des molécules

de guidage de la famille des éphrines-A dans le maintien de la rétinotopie dans ce système de

connexions. 

Le colliculus est une structure sous-corticale majeure d'intégration multi-sensorielle, recevant

des afférences visuelles, auditives et somatosensorielles. D'un point de vue physiologique, le

colliculus supérieur est impliqué dans l'orientation du regard et la génération de saccades

(mouvements rapides de l'oeil), et plus récemment, son role a également été démontré dans des

processus cognitifs plus complexes, comme le controle de l'attention (Krauzlis et al., 2013). 

Au cours du développement, dès le jour embryonnaire 15 (E15), les cellules ganglionnaires de la

rétine (CGR) quittent la rétine par le biais du nerf optique et projettent dans le colliculus supérieur pour

former une carte rétinotopique au 8e jour post-natal (P8) chez la souris. De P9 à P12 des projections

en provenance de la couche V du cortex V1 viennent s'établir dans le colliculus supérieur et s'alignent

avec les projections rétiniennes. Le colliculus supérieur présente ainsi deux cartes visuelles continues,

les projections rétiniennes (carte rétino-colliculaire) et corticales (carte cortico-colliculaire). Les

mécanismes de mise en place et d'alignement de ces cartes sont encore peu caractérisés. 

La relation spatiale entre les CGR au niveau de la rétine se retrouve dans les connexions

synaptiques dans le colliculus supérieur : l'axe nasal-temporal de la rétine projetant le long de l'axe

rostral-caudal du colliculus supérieur et l'axe dorsal-ventral de la rétine projetant le long de l'axe

médio-latéral. Cette topographie est également maintenue dans la carte cortico-colliculaire, l'axe

latéro-médial de V1 projetant le long de l'axe caudal-rostral du colliculus supérieur, tandis que l'axe

antéro-postérieur projette sur l'axe latéro-médial. Parmi les problématiques soulevées, l'organisation

spatiale des projections rétinotopiques du colliculus supérieur demeure centrale et sa compréhension

ouvre de nombreuses perspectives fondamentales mais également biomédicales, dans le cadre des

maladies du neurodéveloppement (Trouble du déficit de l'attention, autisme)(Mathis et al., 2014).

Des études antérieures ont démontré un role essentiel des Ephs et éphrines dans la mise en place

des projections de la rétine vers le colliculus supérieur (carte rétino-colliculaire). Plus précisément les

EphAs/éphrines-A sont chargées de la mise en place de l'axe nasal-temporal tandis que les

EphBs/éphrines-B organisent l'axe dorsal-ventral. Les EphAs sont des récepteurs tyrosine kinase qui

reconnaissent avec un degré d'affinité similaire les différentes éphrines-A. Leur mode de signalisation

est bidirectionnel, les récepteurs Ephs pouvant être activés par les ligands (éphrines) et

réciproquement. L'expression des EphAs se fait selon un gradient croissant nasal-temporal au niveau

de la rétine, tandis que les éphrines-A sont exprimées de façon croissante selon l'axe rostral-caudal

au niveau du colliculus supérieur et activent les récepteurs EphAs portés par les axones rétiniens.

Une particularité du système EphAs/éphrines-A est la présence d'un contre-gradient d'éphrines-A

(temporal → nasal) dans la rétine et de EphAs (caudal → rostral) dans le colliculus supérieur, dont le

role est encore à ce jour mal connu. 
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Optimisation de la localisation des coordonnées rétiniennes : 

L'étude de la mise en place des cartes visuelles nécessite des techniques de traçage précises

afin de mettre en relation les coordonnées rétiniennes avec les coordonnées des sites de projections

dans le colliculus supérieur. L'obtention des coordonnées rétiniennes s'effectue grâce à une mise à

plat de la rétine après dissection. Cette méthode, laborieuse, introduit de nombreux biais. De plus, il

est nécessaire ultérieurement de projeter les coordonnées selon l'axe nasal-temporal, induisant une

perte d'information supplémentaire. Afin d'optimiser l'acquisition de ces coordonnées rétiniennes, nous

avons participé à la validation d'une méthode informatique intitulée IntactEye. 

En collaboration avec Stephen Eglen et Johannes Hjort du département de Mathématiques

Appliquées et de Physiques Théoriques de Cambridge, un algorithme permettant de localiser le site

d'injection a été développé. Cette méthode permet, à partir de rétines intactes, encore sphériques de

localiser avec précision le site d'injection à partir de deux images et de calculer sa position le long de

l'axe nasal-temporal, sans procéder à la mise à plat de la rétine. Un article présentant cette méthode a

été publié (Hjorth et al., 2015).

Rôle des éphrine-As rétiniennes dans la mise en place des cartes visuelles. 

Afin d'élucider la fonction du gradient d'éphrine-As rétiniennes, un modèle de souris knock-in a

été généré. Ces souris sur-expriment le ligand éphrine-A3, sous le controle du promoteur du gène

Islet-2, un facteur de transcription présent dans 50% des CGR. Ce modèle murin, les souris Isl2-

éphrine-A3 knock-in (KI) présente deux populations de CGR, l'une avec un niveau endogène

d'éphrines-A (éphrine-A2/A3/A5) et l'autre présentant une sur-expression d'éphrine-A3 qui s'ajoute au

niveau endogène d'éphrines-A, perturbant ainsi de manière quantitative le gradient d'éphrines-A

rétiniennes. 

Caractérisation moléculaire du modele Isl2-éphrine-A3KI : 

Le modèle murin Isl2-éphrine-A3KI a été caractérisé d'un point de vue moléculaire selon deux

approches : quantification des ARNm par PCR quantitative et mise en évidence de l'expression

protéique d'éphrine-A3 et d'Isl2 par techniques d'immunofluorescence. Les résultats obtenus

confirment que la sur-expression d'éphrine-A3 ne perturbe pas les niveaux de transcription endogène

des EphAs/éphrines-A et que le motif d'expression d'éphrine-A3 co-localise avec la présence d'Isl2,

induisant une surexpression ectopique. Ainsi, il a été possible de démontrer la présence de deux

sous-populations au niveau des CGR dans le modèle Isl2-éphrine-A3KI : l'une exprimant des niveaux

endogènes d'éphrines-A/EphAs, l'autre sur-exprimant éphrine-A3 sous le controle d'Isl2. Une fois le

modèle validé, la caractérisation phénotypique de la carte rétino-colliculaire a pu être établie. 

Carte rétino-colliculaire des Isl2-éphrine-A3KI: 

La carte rétino-colliculaire de ce modèle a été caractérisée par injection d'un traceur

lipophilique (DiI) au niveau de la rétine. Pour chaque injection, la localisation de la zone de

terminaison dans le colliculus supérieur a été identifiée par microscopie confocale, mesurée et mise

en relation avec la localisation de l'injection au niveau de la rétine après mise à plat. Cette étude a été

réalisée sur des animaux à P8. Une cartographie a ainsi pu être réalisée chez les homozygotes, les

hétérozygotes Isl2-éphrine-A3KI, ainsi que les souris controles. Nos données révèlent une absence

d'effet de la sur-expression d'éphrine-A3 dans les CGR sur la carte rétino-colliculaire, suggérant

qu'éphrine-A3 n'est pas directement impliquée dans la formation des connexions rétino-colliculaires. 
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Caractérisation des projections rétinogéniculaires : 

Des injections sub-rétiniennes focales de DiI ont permis la localisation des sites de terminaison

au sein du corps genouillé latéral (LGN), une autre cible majeure des projections de la rétine.

L'analyse par correspondance topographique en comparaison au souris sauvage ainsi que la

morphologie des sites de terminaison n'ont révélé aucune différence chez les souris Isl2-éphrine-

A3KI.

Caractérisation de la ségrégation ipsi et contralatéral des projections :

Des injections intra-oculaires de toxine cholérique couplée à un fluorophore permettent de

marquer dans leur intégralité les projections en provenance de la rétine et de déterminer leur domaine

d'occupation dans le LGN ainsi que dans le colliculus supérieur. Ce type de marquage permet de

vérifier la ségrégation des entrées en fonction de leur provenance. En effet, chez la souris, 5% des

CGR projettent de manière ipsilatérale et les éphrine-A ont été impliquées dans leur ségrégation

(Pfeiffenberger et al., 2005). Cette caractérisation n'a révélé aucun défaut chez la souris Isl2-éphrine-

A3KI quant à la séparation des projections.

Mise en évidence d'un chevauchement des sites de projection rétino et

corticocolliculaires:

Afin de mettre en évidence une interaction entre les projections en provenance de la rétine et

du cortex visuel primaire un double marquage a été réalisé. La totalité des projections rétiniennes a

été marquée à l'aide de la toxine cholérique couplée à un fluorophore tandis que les projections en

provenance de l'aire primaire visuelle ont été marquées par un traceur lipophilique (DiI). Ce double

marquage démontre un chevauchement et en conséquence une interaction entre ces deux types de

projections. Ces résultats ont ensuite été confirmés par une transfection par des adénovirus exprimant

une protéine fluorescente. 

Caractérisation des projections cortico-colliculaires : 

Des études antérieures portant sur les éphrines-A ont mis en évidence que celles-ci étaient

impliquées dans l'établissement de la carte cortico-colliculaire (V1 → SC) (Cang et al., 2005a) et que

la mise en place de cette dernière dépendait également de l'activité neuronale de la carte rétino-

colliculaire (Triplett et al., 2009). En effet, d'un point de vue développemental, les projections du cortex

vers le colliculus supérieur arrivent plus tardivement que les projections de la rétine. La duplication de

la carte rétino-colliculaire observée chez les mutants Isl2-EphA3 entraine également une duplication

des projections originaires de l'aire visuelle primaire V1 (Triplett et al., 2009). L'hypothèse émise par

ces auteurs suggérait alors un role de l'activté neuronale de la carte rétino-colliculaire dans le controle

de la formation de la carte cortico-colliculaire. 

En conséquence, les projections cortico-colliculaires chez le modèle Isl2-éphrine-A3 ont été

caractérisées par le biais d'injections de traceur neuronal dans V1 chez des souris à P15 pour

lesquelles la carte cortico-colliculaire est mature.De manière intéressante, des duplications ont été

observées chez 47% des animaux homozygotes et 43% des animaux hétérozygotes, bien que la carte

rétino-colliculaire soit similaire aux controles. De plus, la distance de séparation des zones de

projection est doublée chez les homozygotes par rapport aux hétérozygotes (7 et 13% de la longueur

de l'axe colliculaire), suggérant un effet dépendant du nombre de copies de l'allèle. Cette observation

serait en faveur d'un role important de la signalisation moléculaire, en plus de l'activité neuronale

rétino-colliculaire, pour la mise en place des projections cortico-colliculaires. L'hypothèse mécaniste

suggère que le ligand éphrine-A3 est transporté dans le colliculus supérieur par les axones rétiniens
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et fournirait une information positionnelle aux axones corticaux en provenance de V1. Le décalage de

maturation des cartes rétino et cortico-colliculaire au cours du développement (P8 versus P12) plaide

en faveur d'un tel mécanisme. 

La pénétrance partielle du phénotype pourrait s'expliquer par la nature stochastique de la

formation des cartes au sein du système visuel, supportée par d'autres travaux récents (Owens et al.,

2015). En effet, l'activité neuronale de la carte rétino-colliculaire étant normale, celle-ci pourrait contre-

balancer, dans une certaine mesure, la séparation induite par la signalisation moléculaire. De plus la

présence de zone de terminaisons dupliquées et simples a pu être observée au sein du même animal,

excluant une différence due à la pénétrance génique du phénotype. 

Carte rétino-colliculaire des Isl2-EphA3KI x Isl2-éphrine-A3KI 

Le modèle Isl2-éphrine-A3KI a ensuite été croisé avec le modèle Isl2-EphA3KI qui lui sur-

exprime dans la même sous population de CGR le récepteur EphA3. Cette mutation seule entraine

une duplication de la carte rétino-colliculaire chez les mutants homozygotes, et une duplication

partielle chez les mutants hétérozygotes, caractérisée par la présence de duplications au niveau

caudal et de terminaisons simples au niveau rostral (Brown et al., 2000; Reber et al., 2004). Nous

avons pu constater après réalisation de la cartographie chez les doubles hétérozygotes Isl2-

EphA3/éphrine-A3, une réversion du phénotype Isl2-EphA3KI, en d'autres termes, une absence de

duplication sur la totalité de l'axe rostral-caudal. Ce phénotype révèle que la co-expression d'éphrine-

A3 (au sein de la meme CGR) provoque une interaction en cis entre éphrine-A3 et EphA3 suffisante

pour inactiver EphA3 localement. 

Carte cortico-colliculaire des Isl2-EphA3KI x Isl2-éphrine-A3KI 

La cartographie cortico-colliculaire des doubles mutants a également été réalisée. L'absence

de détection de duplication indique une réversion du phénotype Isl-éphrine-A3KI/+, confirmant

l'inactivation conjointe du ligand éphrine-A3 ainsi que du récepteur EphA3. 

Modélisation in silico : 

Afin de valider la pertinence du modèle mécaniste proposé, une adaptation d'une modélisation

in silico existante a été réalisée. Le modèle original (Koulakov and Tsigankov, 2004) permet de

modéliser la formation de la carte rétinocolliculaire en fonction des gradients d'EphA et d'éphrine-A et

de l'activité neuronale. Afin de reproduire la formation de la carte corticocolliculaire qui arrive

séquentiellement après la formation de la carte rétinocolliculaire, nous avons dans un premier temps

modélisé les projections rétino-collicluares, puis transposé le gradient d'éphrine-A rétiniennes dans le

colliculus supérieur sur cette carte ainsi établie. Cette carte sert ensuite de support, fournissant les

informations positionnelles nécessaire pour guider la mise en place de la carte corticollculaire. Cette

signalisation se fait donc en fonction des gradients d'EphA présents dans le cortex visuel primaire et

des gradients d'éphrine-A originaires de la rétine, transposés dans le colliculus supérieur. Cette

modélisation séquentielle permet de simuler la mise en place des cartes chez les animaux sauvages

mais reproduit également nos observations, avec un taux de duplication et une distance de séparation

des projections similaires à ceux caractérisés chez les homozygotes et les hétérozygotes. 

Conclusion :

En conclusion, mes travaux ont pu identifier le role des éphrines-A rétiniennes, jusque là

controversé, en mettant en évidence un nouveau mécanisme moléculaire d'alignement des cartes

rétinotopiques impliquant ces molécules. Plus généralement, une carte sensorielle de référence
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fournit l'information moléculaire nécessaire à l'alignement d'une seconde carte sensorielle. D'un point

de vue conceptuel, ce mécanisme permet un ajustement précis des cartes sensorielles en

compensant la variabilité naturelle de la carte de référence. 

Etude comportementale du modele murin Isl2-EphA3KI

Le modele murin Isl2-EphA3KI

Le modèle murin Isl2-EphA3KI qui surexprime une molécule de guidage (EphA3) dans une

sous-population de cellules ganglionnaires de la rétine, a permis des avancées conceptuelles

majeures dans la compréhension des mécanismes moléculaires controlant la mise en place des

cartes visuelles (Bevins et al., 2011; Brown et al., 2000; Owens et al., 2015; Reber et al., 2004; Triplett

et al., 2009). D'un point de vue anatomique, ces souris présentent une duplication des projections

visuelles de la rétine et de l'aire corticale V1 vers le colliculus supérieur situé dans le mésencéphale.

Ces projections visuelles vers le colliculus sont organisées de manière topographique, en d'autre

termes, la topographie de l'espace visuel est représentée et conservée au sein du colliculus supérieur

(figure 1). Dans le cas du mutant Isl2-EphA3KI, cette duplication anatomique entraine la formation de

deux cartes, donc une représentation double de l'intégralité de l'espace visuel dans le colliculus

supérieur. Cette duplication provoque, lors de la stimulation d'un point de l'espace visuel, une

activation conjointe de deux zones distinctes dans le colliculus supérieur, induisant une hyper-

stimulation visuelle de celui-ci (Owens et al., 2015; Triplett et al., 2009).

Caractérisation comportementale 

Afin de déterminer quelles étaient les conséquences comportementales de l'hyperactivation de

ce centre d'intégration, nous réalisé des études comportementales et moléculaires chez le mutant

Isl2-EphA3KI (Mathis et al., 2015). Nous avons ainsi pu démontrer que les capacités visuelles et

mnésique, la locomotion et l'apprentissage ne sont pas altérés. Néanmoins, le modèle murin Isl2-

EphA3KI présente des troubles attentionnels, mis en évidence et confirmés par deux tests spécifiques

(le test de boite claire/obscure et la tâche de Go/No Go). Ces souris présentent donc, d'un point de

vue comportemental, une impulsivité augmentée et une tendance à la distractivité, en particulier

envers un distracteur visuel (Mathis et al., 2015). 

Signalisation cathécholaminergique

Afin de vérifier si notre modèle murin présentait une altération de la signalisation

monoaminergique (dopamine, sérotonine, adrénaline et noradrénaline), nous avons effectué la

quantification de ces molécules, de leurs récepteurs, des enzymes métaboliques ainsi que des

transporteurs dans différentes structures. Nos résultats ont révélé une absence de différences

significatives concernant l'expression des récepteurs, enzymes métaboliques et transporteurs. En

revanche, une augmentation significative (d'un facteur 2) de la noradrénaline dans les couches

visuelles du colliculus supérieur, où est présente la duplication rétinotopique, a été démontrée chez le

mutant homozygote.

Considérations thérapeutiques

Les symptomes que le modèle Isl2�EphA3KI présente sont similaires à ceux observés chez

l'homme dans le trouble du déficit de l'attention (TDA). Le TDA est, d'après le DSM-V, un mode

persistent d’inattention souvent accompagné d’hyperactivité-impulsivité qui apparait au cours du

développement de l'enfant avec une prévalence en France entre 3% et 5%. Ces troubles altèrent

durablement la vie scolaire, sociale et familiale. persistent à l'âge adulte dans près de 65% des cas. 
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Les résultats d'analyse génétique chez l'homme ne montrent pas d'association significative

avec un gène ou une famille de gènes donnés. L'hypothèse majeure actuelle quant à l'étiologie de

cette psychopathologie repose sur un déséquilibre de la balance monoaminergique, et notamment la

dopamine (Biederman, 2005; del Campo et al., 2011). Ces résultats proviennent de dosages sériques

chez des patients ainsi que sur le mode d'action des traitements pharmaceutiques efficaces pour cette

pathologie. En effet, le traitement de référence demeure le méthylphénidate, qui agit comme un

inhibiteur des transporteurs de la dopamine et de la noradrénaline responsables de la recapture de

ces molécules. Ces traitements n'apportent qu'un bénéfice modéré (Organisation Mondiale de la

Santé) et comportent de nombreux effets secondaires, notamment sur le système cardio-vasculaire.

Prenant en considération ces différents éléments, de nouvelles approches thérapeutiques sont

nécessaires. 

Cette altération de la noradrénaline est en accord avec la littérature, qui suggère qu'un

déséquilibre de la voie noradrénargique pourrait être responsable des troubles comportementaux

observés chez les patients. En parallèle, des travaux ont montré une implication du colliculus

supérieur dans les troubles attentionnels. Des études chez l'humain montrent qu'une hyperactivation

du colliculus supérieur est corrélé à une augmentation de la distractivité (Overton, 2008). Chez le rat,

il a été mis en évidence que le méthylphénidate induit une modification de la qualité du traitement de

l'information sensorielle dans le colliculus (Briggs et al., 2013; Dommett et al., 2009). 

Conclusion

Considérant ces résultats, le mutant Isl2EphA3KI semble être un modèle de choix pour le

TDA/H. Il présente en effet des symptomes similaires ainsi que les conséquences

physiopathologiques retrouvées dans ce trouble. Ce modèle murin constitue une approche

audacieuse comparé aux modèles basés sur une altération des voie monoaminergiiques (Sontag et

al., 2010). En effet, nos résultats démontrent qu'une altération du système sensoriel, en l'occurrence

la vision, est suffisante pour reproduire ces symptomes chez l'animal, suggérant que la disruption de

la balance noradrénergique pourrait n'être qu'une conséquence, et non pas la cause de la pathologie.

Cette approche sensorielle est souvent négligée en psychiatrie et ouvre de nouvelles pistes

thérapeutiques. Les troubles de la perception pourraient également induire d'autres pathologies du

développement chez l'enfant, notamment l'autisme qui présente une forte comorbidité avec la

synesthésie, un désordre sensoriel. 
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Maps in the nervous system

During development, cells have to find their precise location and differentiate in order to

establish functional organs. This is the result of the execution of a precise genetic program,

orchestrated in a specific temporal order. Cells also exchange a variety of information through both

cell-cell contacts and the secretion of molecules. As far as the nervous system is concerned, being

specialized and at the right place is not enough. Neurons have to send projections across long

distances in order to establish functional connections between the various structures within the brain.

Projections also emanate from the periphery, in order to transfer information about the environment

and the global state of the organism. How such connections are established at the right place and at

the right time remains one of the most fundamental, yet unanswered, questions in neuroscience, as

the overall structure and connectivity is the substrate for functions of the brain. Furthermore, fully

understanding how projections are established during development would allow for new strategies to

be devised regarding nerve regeneration, as well as providing an insight into ways for “rewiring” the

brain in some pathological states.

Our ability to interact and evolve in our environment depends on the accuracy of our

representation of the external world. This requires both spatial and temporal coding of a variety of

stimuli for ensuring an appropriate response. Temporal coding is performed by the responding

elements, with a variation in frequencies and delays, while spatial coding depends on the wiring of the

network, and how these connections are established. This wiring across long distance mostly takes

place during development. These long range projections will allow functional connectivity and an

accurate response through signal processing by different relays, each with a specific role.

A striking feature of the organization of the nervous system is the maintenance of spatial order

across different structures. This is often referred to as the "topographic order", which is the

maintenance of the spatial relationship between input neurons and their projecting sites in the target

structure; taking the form of maps. These maps can be found at different levels in the brain and allow

for an appropriate sensory representation as well as integration. They can take a variety of forms,

such as a discrete or continuous representation of the sensory space (Luo and Flanagan, 2007).

Topographic maps appear during development and seems to be linked through this process.

This form of organization seems to be appropriate for spatiotemporal computation, as well as proper

sensory representation and integration. Another functional aspect is sensory discrimination (Kaas,

1997).

Maps in the brain are topographic at the global level and modular at the local level. The first step

seems to be guided by molecular cues, (Flanagan, 2006; Wei et al., 2013) whilst the second step

seems to be refined by activity-dependent mechanisms (Katz and Shatz, 1996).

Considering the energetic cost of establishing neuronal connections, optimization of the

distance between functionally related neurons is required. This aspect has led to the formation of a

variety of maps in the nervous system, where afferences are organized according to different features.

Indeed, in the olfactory system, neurons with similar response properties end up projecting toward the

same cluster in the next relay, whereas in the auditory system, projections are organized according to

the tonotopy (frequency tuning). In the visual system, the spatial relationship is the key wiring

constraint, which allows a representation of the environment according to space. This retinotopic

organization allows neurons representing adjacent parts of the visual field to interact over short axonal

and dendritic pathways (Chklovskii and Koulakov, 2004).
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Figure 1: Overview of the mouse primary visual system. Light is sampled by the retina and transferred in

parallel to the lateral geniculate nucleus and superior colliculus. Projections from the retina target mostly the

contralateral side (blue). 5% of retinofugal projections target the ipsilateral side in mouse (purple). From the

lateral geniculate nucleus, projections are sent to the V1. The superior colliculus receives in turn feedback from

the primary visual cortex.

Retina

Primary visual
cortex

Superior colliculus

Lateral geniculate
nucleus
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Anatomical description of the visual system 

Vision is an active and constructive process that starts with sampling of the scenery. This is

possible with the coordination of eye-movement and attention. All visual information regarding the

outside world reaches the brain through the eye (Figure 1), where light is captured by a thin light-

sensitive sheet of cells called the retina. Our internal representations are built upon information

transmitted by the retinal ganglion cells (RGCs) after computation through the different cell layers of

the retina.

Retina

The retina is made of 3 layers of cells and two layers of connections which are called the

plexiform layers. The light information is gathered at the back of the eye by photoreceptors before

being transduced and computed to the RGCs, which are the sole retina outputs to the brain. Two

types of information transmission can be considered: vertical and the horizontal (Figure 2). 

Vertical transmission of light information

The outer part of the retina is made of photoreceptors, which are the light detectors. Their outer

segments, where the phototransduction operates, form the photoreceptor outer segments (OS). The

rods and cone cell bodies form the outer nuclear layer (ONL), and make contact in the outer plexiform

layer (OPL) with bipolar cells that form the inner nuclear layer (INL). Bipolar cells contact RGCs in the

inner plexiform layer (IPL), and their cell bodies make the ganglion cell layers (GCL) (Figure 2).

Rods and Cones:

Light is detected in the retina by two types of photoreceptors: rods and cones. Rods are

specialized for low-light vision and are highly sensitive, whereas cones mediate daylight vision and

display a higher temporal resolution. In mice, rods represent 97% of the photoreceptors in the retina

(Carter-Dawson and LaVail, 1979). Light sensitivity is conferred by visual pigments (opsins), for which

three types can be found in mice photoreceptors. Rhodopsin is expressed in rods, while cones

express two different types of opsins. The medium wavelength-sensitive (M) opsin has the highest

sensitivity at 508nm, whereas the short wavelength-sensitive (S) opsin responds mostly at 360nm,

and is in the UV spectrum (Nikonov et al., 2006; Tan et al., 2015). These two opsins display a

segregated distribution along the dorsal-ventral axis (Applebury et al., 2000; Szél et al., 1992).

According to this differential expression, the mouse retina can be divided into three parts:

• Dorsal retina, containing mainly MS cones with very little S opsin co-expression

• Central zone, in which the S/M opsin co-expression ratio increases

• Ventral retina, which strongly expresses S opsins

This particular distribution has been shown to be optimal for the processing of the visual

scenery, with the dorsal part of retina responding essentially to green light and the ventral part

responding to blue light (Baden et al., 2013).
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Phototransduction

The outer layer of the retina is composed of photoreceptors that can detect photons via the

activation of opsins. These visual pigments bind to retinal (retinaldehyde), which changes

conformation when hit by photons: from 11-cis retinal to the all-trans configuration. Once activated,

opsins interact with the G-protein transducin, which promotes the exchange of GDP to GTP, leading to

the active form of the alpha subunit. This subunit activates phosphodiesterase (PDE), which

hydrolyzes cGMP, leading to the reduction of the overall cytosolic cGMP concentration. This reduction

induces a closure of cyclic nucleotide-gated channels, which in turn reduces the Na+ and Ca2+ influx,

subsequently leading to the hyperpolarization of the cell and a reduction in glutamate release (Figure

3). Consequently, photoreceptors facilitate glutamate release in darkness, and reduces glutamate

release when activated by light.

Bipolar cells

Photoreceptors transfer light detection to bipolar cells. These cells can be mostly ON or OFF

and have different response properties to glutamate. OFF cells have ionotropic receptors (AMPA-

kainate receptors mostly), and glutamate release in darkness depolarizes these cells. ON cells invert

this response through G-coupled metabotropic receptors (mGluR6), which lead to the closure of cation

channels (Euler et al., 2014). For these cells, glutamate release induces a hyperpolarization. ON and

OFF bipolar cells target different parts of the IPL; the OFF cells making connections in the outer part,

and the ON cells making connections in the inner part (Figure 2). In addition, bipolar cells can be

divided in two groups according to their connections to either rods or cones. In mice, 12 types of

bipolar cone (CB) cells and one type of bipolar rod (RB) cell can be found (Ghosh et al., 2004).

Horizontal transmission of information

 Light information is gathered by photoreceptors and transferred to the RGCs via two parallel

pathways: the ON pathway and the OFF pathway (Figure 2). However, many different features of

vision are already extracted and sent through specialized types of RGCs, which is described below.

Part of this computation is already performed in the retina through lateral connections. These

connections are established by both horizontal and amacrine cells, which have their cell bodies in the

inner nuclear layer and make connections in the outer and inner plexiform layers respectively.

Horizontal cells

Horizontal cells modulate the connections between photoreceptors and bipolar cells, and

maintain the sensitivity of light detection over a broad range of intensities. This cell type is GABAergic,

and generates a linear surrounding inhibition in the first synaptic layer of the retina through feed-

forward excitation and inhibition (Thoreson and Mangel, 2012). Only one type of horizontal cell can be

found in mice – the so-called B type – which has an axon terminal postsynaptic to rods. Even if still

debated, current hypothesis suggest that the depolarization of horizontal cell dendrites suppresses

glutamate release from photoreceptors, allowing adaptation for different light intensities (Demb and

Singer, 2015a).

Amacrine cells

32 different types of amacrine cells have been identified, with their diversity highlighting their

variety of functions (Cherry et al., 2009). These interneurons are either GABAergic or glycinergic, and

can co-release dopamine or acetylcholine. These cells are broadly classified as either narrow- or

wide-field, on the basis of the diameter of their dendritic trees. Narrow-field cells are commonly
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glycinergic and wide-field cells are commonly GABAergic (Zhang and McCALL, 2012). Amacrine cells

are postsynaptic to bipolar cells and are responsible for the acquisition of specific features, such as

light motion detection and direction selectivity through local computation (Demb and Singer, 2015b). A

particular type – the starburst amacrine cell (SAC) – enables a direction-selective computation in the

retina. Both horizontal and vertical information are transferred to RGCs, the output of the retina.

Retinal ganglion cells

All visual information exits the retina through the RGCs. Both the connections and the spiking

patterns established by these cells are the sole output of the retina to the brain, regarding the visual

scenery. Current studies has revealed that RGCs are feature detectors, and send through parallel

pathways images, which are partially processed. To date, 30 functional output channels have been

identified according to both their morphology (Coombs et al., 2006) and their electrophysiological

response properties (Baden et al., 2016). Recently, a lot of effort has been made towards the

classification of RGCs, linking morphological types to molecular properties and to the type of stimuli to

which these RGCs respond (Sanes and Masland, 2015). Here, the major classes of RGCs will be

reviewed, with a particular focus on RGCs targeting the superior colliculus (SC).

Despite their diversity, RGCs share common properties. Their cell bodies are located in the

ganglion cell layers, their dendritic arborizations extend into the inner plexiform layer, while their axons

exit the retina through the optic nerve. From a molecular aspect, some pan-markers have been

identified, notably Thy1 and Brn3 (Liu et al., 1996; Xiang et al., 1995). Their transmission to brain

targets is mostly glutamatergic. A particular feature of RGC types is their homogeneous distribution

across the retinal space which forms so-called mosaics. As a consequence, visual information is

encoded by the same number of different RGC types.

On-Off DSGC:

At least 4 subtypes of ON-OFF direction-selective ganglion cells (DSGC) have been identified

(Sanes and Masland, 2015). This group expresses commonly the gene that encodes the neuropeptide

CART (cocaine- and amphetamine- regulated transcript) (Kay, 2011), in addition to different markers

according to their response properties in the retina (Posterior: CART, Mmp17, Upward: CART,

Col25a1, Cdh6, Downward: CART, Col25a1, Cdh6) (Dhande et al., 2015). ON-OFF DSGC respond to

both increases and decreases in light intensities, in a specific direction. This selectivity is believed to

be acquired from the direction-selective process of amacrine cells (Vaney et al., 2012). ON-OFF

DSGC have a bistratified dendritic tree with one dendritic arbor targeting the ON sublamina of the

inner plexiform layer (IPL), adjacent to the ganglion cell layer (GCL), whereas the other arbor stratifies

in the OFF sublamina, adjacent to the inner nuclear layer (INL) (Famiglietti, 1992).

ON-OFF DSGC target both dorsal and ventral lateral geniculate nucleus (LGN), and present a

laminar segregation in the SC where they target preferentially the upper parts of the SGS (stratum

griseum superficiale), rather than the lower part. These RGCs do not project to the superchiasmatic

nucleus, nor to the accessory optic nuclei or most of the pretectal nuclei (Hong et al., 2011; Kay,

2011).

ON DSGC:

Some DSGC only respond to ON stimuli; for example, moving light spots and moving light

rather than dark spots and dark edges (Sun et al., 2006). They can be divided into three groups,

according to their directional preference (upward, downward, or forward motion), and have a

monostratified dendritic tree in the inner plexiform layer, where ON amacrine starburst cells can be
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found. One of these subgroups can be specifically labeled with Hoxd10 and SPIG1, and targets the

accessory optic system, which mediates optokinetic responses for stabilizing images according to self-

motion (Dhande et al., 2013).

OFF DSGC

These cells are also named J-RGC, due to the expression of JAM-B (junction adhesion

molecule B), and they present an asymmetric dendritic arbor along the dorsal-ventral axis of the

retina. This induces a particular type of response: they respond to stimuli moving along the direction

from the soma to the dendrite, and have an OFF center and a highly asymmetric ON surround (Kim et

al., 2008a).

αRGCs

Three types of αRGCs have been described according to their response preferences (Van Wyk

et al., 2009). These commonly coexpress the markers Spp1 (secreted phosphoprotein osteopontin)

and kcng4 (a voltage-gated potassium channel subunit), are monostrastified, and have different

targets inside the IPL. These RGCs are center-surround spot detectors.

• Sustained ON αRGCs dendritic arborization target the lower IPL and express low levels of

melanopsin

• Sustained OFF αRGCs target the central part of the IPL and share the TYWY7 (W7) marker

with the transient OFF αRGCs

• Transient OFF αRGCs detect looming objects, and correspond to PV-5 or approach-sensitive

RGCs. Their dendritic arborization can be found in the upper part of the IPL and express

specifically CB2 (Huberman et al., 2008)

Local edge detectors or object motion sensing

W3B RGCs have small dendritic fields and target the center of the IPL. These cells have the

properties to distinguish a moving object from moving stimuli generated by head or eye movements.

This operates by suppressing their firing when both surround and center stimuli are moving at the

same time. These are specifically labelled in the TWY3 (W3) transgenic line (Zhang et al., 2012).

ipRGCs

5 different types of RGCs (M1-M5) are intrinsically photosensitive and express melanopsin.

They have a large dendritic arbor and project essentially to the suprachiasmatic nucleus (SCN), where

they play a role in synchronizing circadian rhythms.

Other RGC types

Whilst other types of RGCs can also be found, they are not to date fully characterized; among

them some are chromatically sensitive or orientation sensitive. Other morphologically inferred types

have been observed in the retina but have not been linked to a particular type.

Retinal ganglion cells target to the brain

RGCs target 46 different brain regions, among which are image forming and non-image

forming areas. In mice, the most densely innervated are:

• In the hypothalamus: peri-supraoptic nucleus, retrochiasmatic area and suprachiasmiatic

nucleus. These areas regulate circadian rhythm photo-entrainment and use light information as

cues for the time of the day.
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• In the thalamus: dorsal lateral geniculate nucleus, intergeniculate leaflet, para-habenular zone

peripeduncular nucleus and ventral lateral geniculate nucleus. It is from these entries that

sensory information will be relayed to cortical area.

• Pretectum, accessory optic system and all the layers of the SC except SGI (Stratum griseum

intermediale) (Morin and Studholme, 2014).

Interestingly, a single RGC can innervate both LGN and SC (Dhande et al., 2011). However,

differences can be found in the functional properties of RGCs that innervate the SC but not the dLGN

(Ellis et al., 2016).

Laminar specificity

When RGCs reach their target, they still have to find the proper laminar in which to establish

their connections. This phenomenon has been studied in the retino-recipient structures, mainly: the

LGN and the SC. Here, the laminar specificity will only be reviewed in the SC.

Superior colliculus

The lamina-specific targeting of some RGC subtypes has been characterized. Using CB2 as a

marker, the establishment of connections for OFF-αRGCs was studied. These RGCs establish their

final connections in the lower SGS but at P4-P5, and their arborization can also be found in the upper

SGS. At P12, the specific stabilization of appropriate targeted axon arbors is believed to occur through

the molecular compatibility between pre- and post-synaptic partners, and leads to the arbor retraction

and synapse elimination (Cheng et al., 2010).

The morphology and position of axonal arborizations have been characterized and linked to

RGCs subtypes in the SC. Combining a morphological and a molecular approach, the distribution of J

and BD RGCs in the SC was identified. Interestingly, these RGC cell types segregate into different

parts of the SGS, suggesting the existence of functional submaps in the SC. J-RGCs target between

37-95 % of the SC height, while FSTL4-RGCs target between 45-100 % of the SC map. DSGC are

known to establish most of their connections to the upper part of the SC, in which DS residing cells

can be found. A cluster analysis has been performed according to the maximum height reached by

different morphological subtypes of RGCs. Among well-defined types, the following segregation was

observed from top to bottom (Hong et al., 2011), and confirmed in other studies:

• LED (W3) (Kim et al., 2010)

• OFF DSGC (J-RGC) (Kim et al., 2008b, 2010), ON-OFF DSGC (FSTL4, DRD4, TRHR)

(Dhande et al., 2013; Huberman et al., 2009; Kay, 2011; Kim et al., 2010; Rivlin-Etzion, 2011)

• transient OFF alpha (CB2+) (Huberman et al., 2009), sustained OFF alpha (W7) (Kim et al.,

2010), sustained ON alpha RGC and M3, and other melanopsin cells (Hattar et al., 2006)  

• ipsilateral

No systematic relationship could be established between the laminar position of RGCs

dendrites and the laminar position of axonal arbors. However, a correlation was found between the

size of RGC dendritic fields and the depth at which axonal arborizations are established. RGCs with

large dendritic fields target lower parts of the SGS (Hong et al., 2011).

In addition to finding the appropriate lamina into the target, RGCs need to find their appropriate

location relative to each other, in order to maintain the topographic organization of the retina and the

appropriate location at which a stimulus was detected. This is based on three major mechanisms:

molecular gradients, cell-cell interaction (competition), and refinement by activity. One of the key goals

of neuroscience is to understand how these connections are established and maintained across

structures.

18



Superior colliculus

Anatomy

The superior colliculus (SC), located on the dorsal part of the midbrain, is one of the major

centers for multi-sensory integration. This structure is well conserved across species and plays a

fundamental role in attention, and in controlling orienting responses. The superficial layers that receive

essentially visual inputs, operate as a salience detector. This information is transferred toward the

deeper layers, which contains an eye movement map as well as converging auditory and

somatosensory inputs. This information is integrated and can result in the orientation of the eyes and

the head toward salient stimuli. Here, a particular focus will be made on the superficial layers of this

structure.

Laminae

This laminated structure is composed of seven alternating fibrous and cellular laminae, which

are distributed from dorsal to ventral as follows:

• stratum zonale (SZ), with a small density of cells

• stratum griseum superficiale (SGS), which receives visual input from retina and visual cortex

• stratum opticum (SO) – where the fibres enter the SC

These three layers compose the superficial layers of the SC. Below the SO, the intermediate

layers stratum griseum intermediale (SGI) and stratum album intermediale (SAI) can be found. The

stratum griseum profundum (SGP) and stratum album profoundum (SAP) are designated deep layers.

Classically, the SC is divided into two different parts: the superficial layers (above the stratum opticum,

sSC) and the deeper layers (dSC)(Figure 4).

Cell types

Among the cell types that can be found in the superficial layers, 4 major types have been

morphologically characterised, notably by Golgi studies (Langer and Lund, 1974) (Figure 5):

• Wide-field (WF) cells have their somas in the deepest portion of the sSC (the optic fibre layer),

and extend thin, elaborately branched dendrites obliquely to the dorsal surface of the sSC.

These cells have receptive field properties and project mostly to the pulvinar, while responding

to small moving stimuli.

• Horizontal cells have long, horizontally extending dendrites with relatively sparse branching.

These cells are GABAergic, which suggests that this cell type might be responsible for the

receptive field properties of WF. They have large receptive fields, respond to large stationary

or swiftly moving stimuli, and project to dorsal and ventral LGN (Lateral geniculate nucleus)

and PBGN (Parabigeminal nucleus) (Gale and Murphy, 2014).

• Narrow-field (NF) cells have thick primary dendrites that extend ventrally (into the optic fibre

layer) and dorsally to the sSC surface. NF cells exhibit a strong direction-selectivity, which

might be due to their connections with DS RGCs. They project toward the deeper layers of the

SC. NF cells have small spatial receptive fields, prefer small stimuli, are often direction

selective, and project to the PBGN and deeper layers of the SC

• Stellate cells have a limited field of thin dendrites and show no preferred orientation. Stellate

cells, like NF cells, have small receptive fields, prefer small stimuli, and project to the PBGN;

but unlike NF cells, they also project to LGN.
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From an evolutionary perspective, the distribution of these cells is conserved. However, the

morphology of WF cells varies across species, notably with a decrease in dendritic field size for

animals that rely more on vision (Hilbig et al., 2000). Interestingly, these 4 morphological cell classes

correspond to distinct electrophysiological characteristics and have been recently linked to molecular

markers in the mouse. These cell types also display different response properties, with wide-field cells

responding to movement and slow speed, horizontal cells to fast speed, stellate cells to slow speed,

while narrow field cells show a strong direction-selectivity (Gale and Murphy, 2014). In deeper layers,

multipolar cells can be found as well as small horizontal cells, but have not yet been subject to

extensive classification (May, 2006).

The superficial layers of the SC contain a high density of GABAergic cells, which represent

almost 50% of the cells in this region (Mize, 1992). These cell types have been extensively classified

in a variety of species (ferret, cat, rabbit, dog, hamster) (Behan et al., 1992, 2002; González-Soriano

et al., 2000; Lee et al., 2006; Mize et al., 1992) according to the expression pattern of calbindin,

parvalbumin and calretinin; however this data is not available in the mouse. These cells display

different electrophysiological properties and variable spiking patterns, including regular spiking, burst

spiking, and fast spiking patterns (Endo et al., 2003). In addition, a population of cells located in the

uppermost part of the SC displays a high direction selectivity, which decreases in deeper layers,

suggesting a laminar-specific organization of DS neurons (Inayat et al., 2015). Orientation columns

can also be found in the sSC, with groups of cells preferentially responding to a particular orientation

(Feinberg and Meister, 2015).

Connectivity

The superficial layers are mainly visual and receive inputs from the retina and cortical areas,

while auditory and somatosensory inputs are restricted to the deeper layers of the SC. Visual

information is later on transferred to these layers where they are aligned with other sensory modalities.

Afferences

The majority of visual afferents enter the SC through the SO and form connections in the SGS.

These inputs come directly from the retina and originate from the RGCs. In the mouse 70% of RGCs

target the SC (Hofbauer and Dräger, 1985) in a topographic and mostly contralateral manner. Another

source of visual information comes from cortical areas, with primary visual cortex (V1) providing

retinotopically organized inputs to the SGS and SO in different species (e.g. cat, monkey, rat, mouse),

and originate from layer V pyramidal cells. In rats, area 18a extends to the SGI while other areas (18b)

reach deeper layers of the SC.

The SC also receives inputs from the auditory system in the deeper layers, which originate

from various areas including: external nucleus of the inferior colliculus, nucleus of the brachium of the

inferior colliculus, nuclei of the lateral lemniscus, periolivary nucleus, and sagulum; according to

species. These auditory inputs are modulated by visual inputs originating from the SGS, as

demonstrated by cooling experiments in cats (Lomber et al., 2001).

A representation of the somatosensory periphery from a visual perspective can also be found

in the intermediate to deeper layers of the SC (Dräger and Hubel, 1976), and originate from the

cuneate and the gracile nuclei; while the head representation comes from the trigeminal nucleus. Part

of the deeper layers of the SC is dedicated to multi-sensory integration, with cells displaying multi-

sensory responses located in the SGI and SGP. These cells display a stronger response when

different modalities are spatially close to each other. Inputs come from different cortical regions,

notably from the auditory cortex, somatosensory cortex, and the insular cortex (Wallace et al., 1993).
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Intrinsic connectivity and processing

Intralaminar: Lateral inhibition

A notable response property of the SC is the suppression of responses in the SGS when a

distractor is presented in its response field (Lovejoy and Krauzlis, 2010). This feature is believed to

operate through a winner-takes-all mechanism through the entire visual space, which requires the

existence of long range inhibitory projections inside the SC (Trappenberg et al., 2001). These

projections have been identified and can be either excitatory or inhibitory. Furthermore, when two

different sites in the sSC are stimulated, sites in close proximity facilitate the excitation, while the

stimulation of remote sites inhibit the excitation induced by stimulation of a closer point. These lateral

interactions can enhance the spatial contrast of a visual stimulus, and suggests that the SC is

organized to localize salient stimuli (Phongphanphanee et al., 2014).

Interlaminar: Columnar organization

One of the major outputs for the superficial layers of the SC is the SGI. Indeed, NF cells send

their projections to the deeper layers (SGI), and target cells displaying similar response properties

(Isa, 2002). This was first demonstrated in tree shrew, in which electrical stimulation in the SGS

elicited excitatory synaptic responses in the SGI (Lee et al., 1997). Interestingly, the response

amplitude was at its highest when the stimulation and recording sites were vertically aligned, which

suggests a columnar-like organization of the interlaminar connection (Isa and Saito, 2001).

Efferences

The sSC presents 3 major outputs in mice: LGN (Harting et al., 1991), pulvinar (Tohmi et al.,

2014), and parabigeminal nucleus (Gale and Murphy, 2014) (Figure 6). Most of these projections are

topographically organized. More precisely, the SGS sends projections to the parabigeminal nucleus

ipsilaterally, which in turn projects back bilaterally to the superficial SC (May, 2006). SGS also sends

projections to the thalamus, notably to the dLGN, with a high conservation of topography (Harting et

al., 1991). The ventral part of the LGN is also a major target but displays a high variability across

species. Another output is the nucleus of the optic tract, the posterior pretectal nucleus and the olivary

pretectal nucleus, and are involved in the control of saccades.

The major output of the SC is the control of saccadic eye movement, which can be

decomposed into two major components: the horizontal and the vertical components. The

intermediate and deep layers send descending outputs to the brainstem reticular formation and spinal

cord, where the gaze center can be found.
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Primary visual cortex

Anatomy

The primary visual cortex also called V1, striate cortex, or area 17, and is one of the most

studied areas of the brain. This structure is located in the caudal part of the cortex, partially covering

the SC. Since Hubel and Wiesel's original work on receptive field properties and binocular matching in

the cat visual cortex (Hubel and Wiesel, 1962), much effort has been made to understand how the

visual field is represented in this structure, as well as which features of vision are encoded. V1 is the

first cortical area to receive visual information, which is latter on transferred to other cortical areas.

Mice have proven to be a valuable model to study vision (Huberman and Niell, 2011), even

though some differences can be found with cats and monkeys. Indeed, mice lack the large-scale map

of orientation selectivity, namely orientation columns (Métin et al., 1988), as well as having reduced

visual acuity than other species that are used as a model of vision (Prusky and Douglas, 2004).

Despite these differences, mice share many other features with mammals (Niell and Stryker, 2008),

and can contribute to a better understanding of visual processing.

Cell types

Recently, all cells types from the mouse visual cortex have been characterized through

transcriptomic analysis. This study revealed the existence of 19 types of glutamatergic cells, classified

according to their layer distribution as well as 23 types of GABAergic cells (Tasic et al., 2016).

Inhibitory cells can be distinguished by the expression of classical molecular markers, PV+

(parvalbumin), SST+ (somatostatin), VIP+ (Vasointestinal peptide) and Ndnf+ (neuron-derived

neurotrophic factor).

• SST+ cells corresponds largely to Martinotti cells and target layer I apical dendrites of

pyramidal cells, as well as other inhibitory neurons

• PV+ consist of two classes of morphological cells, basket cells, which target the soma of

pyramidal cells, and chandelier cells which target the axon initial segment of pyramidal cells

( Runyan et al., 2010)

• VIP+ and Ndnf+ interneuron roles are to date not well defined in the visual cortex

Connectivity

Intrinsic connectivity and processing

V1 represents the classical neocortex organization, with 6 different layers of excitatory cells

(Douglas and Martin, 2004). The majority of inputs received by inhibitory and excitatory cells in V1 are

intrinsic connections (Liu et al., 2013). A canonical circuit following the excitatory connectivity has

been characterized (Figure 7), in which thalamic inputs arrive in layers IV and pyramidal cells make

short range projections to layers II/III. These cells in turn project to layer V, which in turns project to

layer VI and to layers II/III and VI (Van Hooser, 2007).

Afferences

V1 receives inputs from the thalamus (Clascá et al., 2012), more precisely from dLGN, which

are tuned to orientation and direction (Sun et al., 2015). Both inhibitory and excitatory neurons also

receive projections from the LP (lateral posterior nucleus, pulvinar) (Liu et al., 2013). Comparable to

cats and monkeys, parallel pathways from the LGN can also be found in mice (Gao et al., 2010), with

a specific one for direction selectivity, originating from the shell of the LGN and preferentially targeting

the superficial layers of the visual cortex (layers I and II) (Cruz-Martín, 2014). Projections originating

from the core of the LGN target the deeper layers, mostly layer IV, but also layer V and VI (Kondo and
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Ohki, 2015).

In addition to local connections, V1 also receives inputs from other cortical regions, notably

from the RS (retrosplenial cortex) and Cg (Cingulate cortex) (Liu et al., 2013). Notably, the cingulate

region of mouse frontal cortex has been shown to influence sensory processing in V1, through long-

range projections that activate local γ-aminobutyric acid–ergic (GABAergic) circuits (Zhang et al.,

2014).

Efferences

V1 sends projections not only to other cortical areas – most of which are involved in visual

processing – but also to the cingulate cortex, retrosplenial cortex and somatosensory cortex. For most

of these projections, the topographic order is maintained (Wang and Burkhalter, 2007).

When looking at the response properties of these cortico-cortical projections, they are

functionally distinct according to the area that they target. More precisely, cortico-cortical neurons

targeting lateral-medial, anterolateral and postero-medial areas differ in their spatial and temporal

frequency tuning according to projecting site (Glickfeld et al., 2013).

Layer V pyramidal neurons in mice V1 target other brain regions including the striatum, the SC,

the pulvinar, the pons, as well as various cortical regions. These cells also show a difference in

orientation tuning and contrast sensitivity, according to their targets (Lur et al., 2016).

Finally, layer VI neurons send feedback signals to all cortical layers and some subcortical

structures, such as the LGN. Layer VI contains at least two distinct morphological subclasses of

pyramidal cells that in turn project to either the cortex, or provide feedback to the thalamus. These two

subclasses display different tuning properties. Layer VI cortico-cortical neurons show broad orientation

tuning while layer VI cortico-thalamic neurons show an extremely narrow orientation tuning, and

generally sparse activity (Vélez-Fort et al., 2014).Taken together, these results demonstrate that cells

in V1 are functionally specific according to their downstream target, suggesting parallel processing of

different features of the visual scene.

Visual information received in V1 is transferred to surrounding areas. In mice, the densest

cortico-cortical projections from V1 terminate in visual cortical areas LM (lateromedial), AL

(anterolateral) and PM (posteromedial) (Wang and Burkhalter, 2007). Similar to other mammalian

species, two major pathways can be found regarding visual information processing: the ventral and

the dorsal stream – which are often refereed as the “where” and the “what” components of vision. The

LM and AL areas are distinct areas which have been shown to be the starting point of these two

distinct streams of information (Wang et al., 2011). These results support the notion that LM and AL

are distinct areas of extrastriate visual cortex in terms of architecture, topography, and connectivity,

and that they are the gateways for the ventral and dorsal streams, respectively. This information will

ultimately be transferred to temporal circuits for object recognition and posterior parietal networks, for

visually guided actions.
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Retinotopy in the visual system

In addition to finding their appropriate laminar target in the structures they innervate, axons

also need to be organized relative to each other. Topography is the maintenance of the spatial

relationship between input neurons to their projecting sites. In the case of the visual system, the

maintenance of spatial order in the retina is referred as retinotopy. This spatial organization is found in

most retino-recipient structures.

Retinotopy in the superior colliculus

Retino-collicular map

The topographic organization of retinal afferents to the SC has been demonstrated in mice

through electrophysiological approaches. These studies demonstrated a representation of the entire

retinotopy in the SC, which is aligned with other sensory modalities (Dräger and Hubel, 1975, 1976).

Since the connections between the retina and the SC are monosynaptic, retinotopy can be assessed

directly through anatomical tracing. Lipophilic tracers allow direct visualization of RGC termination

zones (TZ) in the SC and constitute a robust and reliable way to quantify the retinotopic arrangement

of projections (Simon and O’leary, 1992). Functionally, the entire colliculus can also be visualized and

monitored using optical intrinsic imaging (Cang et al., 2008a). With this technique, the changes of the

intrinsic optical properties due to neuronal activity are visualized, displaying the entire map of the

retinotopic space during visual stimulation.

In the SC, retinal afferents are organized as following: the nasal-temporal axis of the retina

projects onto the caudal-rostral axis of the SC, whereas the dorsal-ventral axis maps onto the lateral-

medial axis (Figure 8).

Cortico-collicular map

Layer V pyramidal neurons from V1 send projections to the SC (cortico-collicular fibers), in

which they align into the retino-collicular map. The organization cortico-collicular projections was first

described in rat (Lund, 1966), and found to be topographically matched with retinal inputs. This was

later on described in mice also through anatomical studies (Rhoades et al., 1985). More precisely, the

lateral-medial axis of V1 aligns on the rostral-caudal axis of SC, while the rostral-caudal axis maps

onto the medial-lateral axis (Figure 8).

Retinotopy in the primary visual cortex

V1 receives inputs mostly from dLGN, and also presents a continuous representation of the

visual space. Evidence for a retinotopic organization of V1 come from electrophysiological studies

performed in mice. Retinotopy in V1 was characterized by the identification of receptive fields which

revealed a uniform cortical magnification factor across visual space with low inter-individual variability

(Dräger, 1975; Wagor et al., 1980). Optical intrinsic imaging is also a technical approach that revealed

the retinotopy in V1 (Kalatsky and Stryker, 2003; Schuett et al., 2002) that has been extensively used,

and has led to refinements of the mapping. This method is now the standard to validate other technical

approaches. The effect of wakefulness on retinotopy was also assessed, and revealed that the

intensity of hemodynamic responses depends critically on anesthesia and wakefulness (Pisauro et al.,

2013). Retinotopy in V1 has also been characterized with other approaches like voltage-sensitive dye

(Polack and Contreras, 2012), and genetically encoded voltage indicator (Carandini et al., 2015) and

2-photons imaging using genetically-encoded calcium indicators (Marshel et al., 2011). Retinotopy in

V1 can be found as a projection of the nasal-temporal axis onto the medial-lateral axis, whereas the

dorsal-ventral axis projects onto the anterio-posterior axis (Figure 8).
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Developmental timeline of retinotopy in the superior colliculus

Retino-collicular map

RGCs leave the retina at embryonic day 15 (E15) and reach the rostral edge of the SC at E17-

E18 (Simon and O’leary, 1992). In a first phase occurring at P0-P1 – which is called the overshoot

(Figure 9, A) – axons extend to the caudal end of the SC and fill the entire collicular space. Interstitial

branches are formed along the lateral-medial axis, in both directions at the level of the future TZ. At

P3, branches have reached the TZ, a retraction of the overshoot has begun to occur, and a higher

density of arborization at the topographically correct locations can be found (Yates et al., 2001)

(Figure 9, B). At P8, TZs are dense and focus and occupy less than 5% of the rostral-caudal axis

(Figure 9, C) (Triplett et al., 2009). All arborizations that were not in the topographically correct

location have been eliminated and the retino-collicular map is considered as mature (Hindges et al.,

2002).

Cortico-collicular map

Projections from the V1 enter the SC later during development, after the formation of the

retino-collicular map. These projections enter the SC by the rostral end through the SO at P6 (Figure

9, D). A broad TZ can be observed at P8 (Figure 9, E). The refinement of these projections starts at

P10 (Figure 9, F) and they can be considered as mature by P12 (Figure 9, G) (Triplett et al., 2009).

Taken together, these observations have indicated that when cortico-collicular projections

reach the SC, the retino-collicular map is already established, presumably providing support for the

mapping of these projections. To establish these maps during development, positional information

needs to be instructed to ingrowing axons, in order to find their correct location. Development involves

the execution of a genetic program, with many temporal and spatial constraints. The precise

mechanism through which projections are guided has been the subject of extensive studies,

specifically in topographic mapping. This mapping requires a precise guidance through development

of ingrowing axons.
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Chemoaffinity hypothesis:

How connections are established during development has been a matter of debate for

decades. Classically, two opposite view have been confronted, namely Sperry's chemoaffinity

hypothesis and Hebb's rule. Sperry's chemoaffinity hypothesis (Sperry, 1963), proposed the following:

“...an orderly cytochemical mapping in terms of two or more gradients of embryonic differentiation that

spread across and through each other with their axes roughly perpendicular. These separate

gradients successively superimposed on the retinal and tectal fields and surroundings would stamp

each cell with its appropriate latitude and longitude expressed in a kind of chemical code with

matching values between the retinal and tectal maps.”. On the other hand Hebb's rule, “cells that wire

together, fire together” seems to point toward the requirement of activity to establish functional

connections. Evidence have built up that both phenomenon are indeed required.

The molecular biology of axon guidance:

During development, axons have to travel long distance to find their appropriate targets and

establish connections. The way directional information is integrated by the ingrowing cell is through

the growth cone. Initially discovered by Santiago Ramon y Cajal, the growth cone can be found at the

distal tip of the axon, and is characterized by both widening and extensions. The growth cone

comprises two types of processes: filopodia and lamellipodia. Filopodia can be found at the periphery

of the growth cone and are thin extensions that constantly extend and retract. Lamellipodia can be

found between these filopodia and are also highly dynamic (Maskery and Shinbrot, 2005)(Figure 10).

Time lapse microscopy allowed real-time visualization of growth cones which revealed a highly

dynamic process (Aletta and Greene, 1988; Goldberg and Burmeister, 1986). The growth cone is

made of filamentous actin and tyrosinated microtubule which confers it its motility, based on

cytoskeletal rearrangement (Dent and Gertler, 2003; Maskery and Shinbrot, 2005).

Molecular cues are known to be involved in axonal pathfinding both during development and

regeneration (Politis et al., 1982; Tessier-Lavigne et al., 1988). These environmental cues can be

either diffusible or membrane-bound, and are integrated by the growth cone and induce modifications

of the cytoskeleton (Dent and Gertler, 2003). The growth cone responds in different ways to

extracellular molecular cues, which can be either attractive or repulsive (Figure 10). First, receptors

are activated by such cues, effectors are activated, and this signal is transduced to actin binding,

leading to the modulation of actin dynamics. The way molecular cues signal the growth cone and

remodel cytoskeleton rearrangements has been intensively studied, leading to the identification of key

downstream effectors.

Four major groups of receptors are known to induce subsequent changes at the growth cone:

netrins, semaphorins, slits and ephrins (Dickson, 2002). These families of molecules induce activation

or inactivation of pathways that lead to the Rho family of small GTPases, which will in turn direct the

assembly and disassembly of actin filaments. Attractive cues generally signal through the activation of

Rac and Cdc42, which will promote actin polymerization and induce growth cone extension. Repulsive

cues will trigger Rho activity which decreases actin polymerization and cause growth cone retraction.
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This rather simplistic view (one molecule triggers one type of response) does not take into

account a variety of factors that are responsible for the complexity of axon guidance. Indeed most

studies have been conducted in vitro, putting in contact ingrowing axons with a single molecule as in

vivo the environment is much more complex. Different actors will interact which each other, eliciting a

broad range of responses. In addition, the same molecule can trigger different responses, either being

attractant or repellant. Furthermore, the same axon response properties can also change through time

and space. As a consequence, the spatial and temporal variation can reverse the growth cone's

response from attractive to repulsive. Among factors that can modulate the growth cone's response

properties, are the level of cyclic nucleotides. For example, the repulsive effect of netrin-1 can be

modulated through cAMP and PKA activity, while Seam3A is sensitive to cGMP and PKG. More

generally, reducing the levels of cAMP or cGMP, or inhibiting PKA or PKG, converts an attractive

response to a repulsive one; whereas elevating cAMP or cGMP, or activating PKA or PKG, switches

repulsion to attraction (Dickson, 2002; Ming et al., 1997; Song et al., 1998, 1997). Taken together,

many different elements can contribute to the guidance of ingrowing axons.

Identification of molecular cues

Before molecular cues were identified, the adhesive properties of ingrowing axons were

studied, and were believed to play a key role in axonal pathfinding. The cell recognition of ingrowing

axons was highlighted in in vitro studies. When ingrowing axons originating from embryonic chick

retina were given a choice between a monolayer of tectal or retinal cells in vitro, a clear preference for

the in vivo target can be seen (Bonhoeffer and Huf, 1980). Later on, the positional preference was

demonstrated using different parts of the retina and the tectum. More precisely, nasal axons were

shown to display different response properties when compared to temporal ones, which can recognize

tectal cells according to positions along the rostral-caudal axis of the tectum. Even when using non

innervated tecta, from an earlier embryonic stage, temporal retinal axons can still demonstrate a

preference for the anterior tectum (Bonhoeffer and Huf, 1982).

Key experiments that led to the identification of guidance cues involved in topographic mapping

are the so-called stripe assays, which set the basis of understanding on cell-cell mediated signaling

(Walter et al., 1987a). In these experiments, growing axons were given the choice between alternating

layers of different substrates (Figure 11). This experimental paradigm demonstrated that temporal

axons had shown a preference for rostral tectum membranes whilst avoid the caudal one, whereas

nasal axons had shown no preference. It was later suggested that this was not a preference, but

rather a repulsive effect of the caudal part of the tectum. This repulsive effect could be abolished by

heating the membranes (Walter et al., 1987b), or by PI-PLC treatment (Walter et al., 1990). These

experiments confirmed the postulated idea by Sperry that gradients of molecules are expressed in the

target structure in order to inform growing axons of their location through repulsive signalling. 
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Eph and ephrins

Discovery of Eph/ephrins and their involvement in retino-collicular mapping:

Pioneer experiments in the identification and characterization of Eph receptor (erythropoietin-

producing human hepatocellular receptors) and ligands were initially performed in chicks (Tessier-

Lavigne, 1995). Eph receptors have for a long time been orphan receptors, without an identified

ligand. The first to be characterized was ELF-1 (ephrin-A2) in chick (Cheng and Flanagan, 1994), and

was found to interact with Mek4 (EphA3) and Sek (EphA4). Ephrin-A2 expression was characterized

and found to be expressed in complementary gradients to EphA receptors in the retina and tectum

(Cheng et al., 1995). RAGS (ephrin-A5) was later on identified, and its involvement in retino-tectal

mapping was demonstrated using ephrin-A5-expressing COS cells, which have a repulsive effect in

stripe assay on both temporal and nasal retinal axons in vitro (Drescher et al., 1995). Their discoveries

in different species led to a variety of names which were unified in 1997, with receptors being named

Eph, and ligands being named ephrins (Eph interacting protein)  (Eph nomenclature committee, 1997).

Eph and ephrin family

Ephs constitute the largest family of tyrosine kinase receptors, which transduce signals from

the surface by activating a tyrosine kinase in the cytosol. They can be divided in two families

according to homology and ligand affinity: EphA (A1 to A8) and EphB (B1 to B6) receptors (Figure 13).

On the other hand, their membrane-bound ligands are subdivided into two families according to their

anchoring to the membrane ephrin-As (A1 to A5), which are GPI anchored; and ephrin-Bs (B1 to B3),

which have a cytoplasmic tail (Davis et al., 1994; Flanagan and Vanderhaeghen, 1998).

Among the most remarkable features of Eph/ephrin signaling, is the existence of a so-called

reverse signaling. This is where the Eph receptor acts as a ligand to activate ephrins, and the

redundancy between the different ligands and receptors leads to a cross-talk among them. Taken

together, these different features add to the complexity of this signaling process, which makes the task

of determining the identification and roles of these molecules more difficult.

Eph receptor and ephrin ligand structure

EphA and EphB receptors share the same structure. These tyrosine kinase receptors display

on the extracellular part a ligand binding domain, a cystein-rich region, 2 fibronectin type III repeats,

and a transmembrane domain. On the intracellular part, two conserved tyrosine residues can be found

on the juxtamembrane region, as well as a protein kinase domain, a sterile alpha motif (SAM, involved

in the formation of dimers and oligomers) and PDZ binding domain (consensus binding region) (Figure

14, bottom).

Their ligands, ephrin-A and ephrin-B both display a receptor binding domain. Ephrin-As are

GPI anchored, whereas ephrin-Bs have cytoplasmic regions in addition to a PDZ binding domain

(Figure 14, top). This difference in structure is at the origin of the division of the 2 subclasses of EphA

and EphB, which can also be found in terms of affinity.
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Affinity between Eph/ephrin

Eph and ephrin show a variable degree of affinity within each family. Most EphA and ephrin-A

can interact with each other due to the high homology between them, and the same stands true

concerning EphB and ephrin-B. In addition, some members of the A group can interact with the B

group (Figure 13). Indeed, EphA4 is able to recognize ephrin-B2 and ephrin-B3, thus increasing the

possibility of interactions. More recently an interaction between EphB2 and ephrin-A5 has also been

demonstrated, increasing the different identified cross-talks (Gale et al., 1996; Himanen et al., 2004).

Eph and ephrin signaling

The way Eph/ephrin signaling operates to guide axons during development has been the

subject of intensive research, whilst providing insights into the intrinsic mechanisms of signaling. This

signaling process is quite versatile. Not only can Eph and ephrin can act as both ligands and

receptors, but they can interact by cell contact (trans) or within the same cell (cis)(Figure 14).

Concerning the effect on the growth cone guidance, EphA-mediated signaling through activation by

ephrin-As acts to induce a growth cone collapse or a turning (Weinl et al., 2003). On the other hand

ephrin-A activation can either promote growth cone extension or collapse, according to the system

and interactions with other receptors. In addition, an effect of dosage has been observed, with low

concentrations of ephrin-A leading to attraction, and higher concentrations leading to repulsion

(Hansen et al., 2004). Taken together, these findings highlight the complexity of Eph/ephrin signaling.

Here, interactions and downstream signaling that are relevant for axon guidance will be highlighted.

Forward signaling

Eph receptors are activated by clusters of membrane-bound ephrin ligand and dimerize (Egea

et al., 2005). Upon activation, each monomer autophosphorylates juxtamembrane tyrosine residues

(Ellis et al., 1996), leading to full activation of the receptor (Fang et al., 2008; Kullander et al., 2001).

This creates binding sites for SH2 domain-containing proteins (like Src family kinase), which transmit

the signal inside the cell (Arvanitis and Davy, 2008). Blocking Src familiy kinase abolishes the

repulsion of retinal axons by posterior tectal membranes in the stripe assay (Knoll, 2004).

Activation of Eph receptors can also be transferred through Abl and Arg, which regulate actin

polymerization, can associate with Eph receptors directly through the SH2 domain and tyrosine

phosphorylation, or indirectly through other proteins (Yu et al., 2001). Eph receptor activation results in

the recruitment of RasGAP, which then inactivates Ras and suppresses ERK activation (Elowe et al.,

2001). Stimulation of endogenous EphA kinases with ephrin-A1 inhibits the Ras/MAPK cascade (Miao

et al., 2001). Adenylate cyclase-1 has also been demonstrated to be essential for ephrin-A5 elicited

axon retraction (Nicol, 2006).

The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4, and has been

suggested to mediate the effect of EphA on the activity of both Rho GTPases (key regulators of the

cytoskeleton) and axon guidance, through activation of RhoA and inhibition of Rac and Cdc42 (Sahin

et al., 2005; Shamah et al., 2001). Inhibiting Rho GTPase reduces ephrin-A5 induces growth cone

collapse (Wahl et al., 2000).

Cleavage of Eph and ephrin:

The process through which Eph/ephrin signaling is terminated, is believed to operate through

Vav2, a guanosine exchange factor that activates Rac1. Indeed, to achieve repulsion, the binding

between Eph and ephrin has to be terminated through endocytosis – for which Vav is required. In

addition, RGCs from Vav2-/-Vav3-/- mice fail to respond to ephrin-A stimulation in culture, suggesting
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an important role for Vav in the regulation of growth cone collapse (Cowan et al., 2005).

Another process for terminating Eph/ephrin signaling, is the cleavage of this complex. Adam10

has been demonstrated to either interact with ephrin-A2 (Hattori et al., 2000) or EphA3 (Janes et al.,

2005) upon EphA/ephrin-A interaction, resulting in either the cleavage of ephrin-A2 in the

juxtamembrane domain, or leading to the internalization of the receptor respectively.

Reverse signaling

One of the most striking features of Eph/ephrin interactions is reverse signaling. In this

particular configuration, the ligand, ephrin, acts as receptor and induces an intracellular response.

First discovered in ephrin-B (that has an intracellular domain), evidence has built up concerning this

phenomenon in GPI-anchored ephrin-A also (Figure 14).

Ephrin-B

Ephrin-B cytoplasmic tail has 5 invariant tyrosine residues which suggested interaction with

other proteins. These residues on ephrin-B are phosphorylated by SFK (Src family kinase)(Palmer et

al., 2002) upon activation by EphB (Bruckner et al., 1997; Holland et al., 1996). Once phosphorylated,

Grb4 SH2/DH3 domain can be associated with the ephrin-B cytoplasmic domain, and recruit different

effector like Axin, Abi1 (Abl interacting protein 1) and CAP (c-Abl associated protein) which regulate

cytoskeleton dynamics (Cowan and Henkemeyer, 2001; Xu and Henkemeyer, 2009).

The ephrin-B cytoplasmic tail also has a PDZ domain binding site. Point mutations impairing

this site results in the agenesis of the corpus callosum, which suggests an important role for this

signaling process in vivo (Bush and Soriano, 2009). Upon activation, PTP-BL (Protein Tyrosine

Phosphatase, containing a PDZ domain) is recruited and ephrin-B is dephosphorylated. This allows

the recruitment of other cytoplasmic effectors (Palmer et al., 2002) (Figure 15).

Ephrin-A

Ephrin-As (which are GPI-anchored) can also transduce a signal when activated by EphA

receptors. This leads to the activation of integrin (Davy, 2000) through a 120kDa protein (p120), which

is phosphorylated upon ephrin-A activation (Huai and Drescher, 2001).

Activated ephrin-A also recruits the SKF Fyn (Davy et al., 1999), which leads to an increase in

cell adhesion. Ephrin-A has been demonstrated to interact with P75NTR (a receptor for neurotrophin),

and induces axon repulsion. In P75NTR knock-outs, EphA7 mediated repulsion is abolished in stripe

assays, suggesting that P75NTR is required for this repulsive effect. When looking at the retino-

collicular map of these animals, TZs are shifted rostrally. Interactions between ephrin-A2 and P75NTR

results in an increase in Fyn phosphorylation (Lim et al., 2008)(Figure 15). This effect is reversed by

proBDNF and BDNF (Marler et al., 2010).

Another BDNF mediated signaling through the ephrin-A ligand has also been shown. Indeed,

ephrin-A interacts with and inactivates TrkB in cis, following activation by EphA receptors (Figure 15).

TrkB responds to BDNF and promotes axon branching, when interacting with ephrin-A5. This effect is

reversed upon activation by EphA, through a decrease in PI3 kinase activity (Marler et al., 2008).

The modulation of TrkB receptor by ephrin-A is not the only interaction in cis that is known for

the Eph/ephrin family. Indeed, when co-expressed in the same cell, Eph and ephrin are also able to

interact with each other through a process called "cis-interaction" (Figure 14).
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Cis interaction:

Evidence for a role of retinal ephrin-A and cis-interactions is derived from in vitro studies in

chicks. Whenever ephrin-A5 or ephrin-A2 is over-expressed in RGC, temporal RGCs lose their

sensitivity to ephrin-A repulsive signaling in stripe assay with alternating caudal and rostral tectum.

This is correlated with an increase in EphA receptor phosphorylation. In addition, removal of ephrin-A

by PI-PLC treatment renders nasal axons sensitive to ephrin-A, through a supposed EphA mediated

mechanism. This has been further confirmed by the observation of targeting errors in the tectum,

when ephrin-A2 was over-expressed in the retina. Temporal axons overshoot their target, while nasal

ones are unaffected (Hornberger et al., 1999). Similar results were obtained with the over-expression

of ephrin-A5, with targeting defects observed for both temporal and nasal axons (Dütting et al., 1999).

In spite of this evidence, nasal axons from ephrin-A2/A5 knock-out mice gain in

responsiveness in stripe assays, containing anterior and posterior SC stripes from wild-type mice

(Feldheim et al., 2000), suggesting that ephrin-As are involved in silencing EphA receptors.

Co-expressed EphA4 receptors and ephrin-A2 results in a reduction of both EphA3-FC and

ephrin A5-FC binding on HEK293 cells, when compared to a single expression. This interaction

operates through the receptor-binding domain that becomes inaccessible upon cis-interactions

between ephrin-A2 and EphA4. To exclude the effects of cleavage, the GPI-anchor was replaced by a

SC1 transmembrane domain (Yin et al., 2004).The finding that Eph and ephrin can interact in cis in an

artificial expression system has raised questions regarding the function, relevance, and physiological

significance of such interactions in vivo, and how such signaling could be untangled.

In developing motor axons, the co-expression of Eph receptors and ephrin-A ligands can also

be found. Application of both the extracellular domain of EphA7 and EphA3-FC leads to growth cone

enlargement, whereas the application of the clustered extracellular domain of ephrin-A1-Fc induces

growth cone collapse. When ephrin-As are removed by PI-PLC treatment, the EphA7-FC-induced

spreading is abolished, suggesting that it is indeed mediated by ephrin-As. These opposing effects

can be explained by the segregated localization of EphA and ephrin-A proteins within the plasma

membrane. When misaddressing the ligand to the receptor-enriched sites – and vice versa – by the

generation of chimeric proteins, cis-attenuation can be observed. Taken together, these results

suggest that in motor axons, cis-attenuation does not operate since both the ligand and receptors are

segregated (Marquardt et al., 2005).

Despite these findings, this segregation process has not been demonstrated in RGCs. This

study suggests that the receptors and ligands are spatially segregated, leading to reductions cis

interactions, which would then lead to silencing whilst actually increasing the versatility of Eph and

ephrin signaling. In addition, this study has also suggested that ephrin-A reverse-signaling is

attractive, whereas EphA signaling is repulsive. However, when EphA7-Fc is applied on RGC

ingrowing axons, a repulsion effect can be observed (Rashid et al., 2005). In chick, EphA3 has been

demonstrated to interact in cis with ephrin-A5 through a ligand-binding domain-independent process,

leading to the desensitization of trans-signaling (Carvalho et al., 2006).

Conclusion

Much evidence highlights the versatility of Eph and ephrin signaling. Indeed, most of the

receptors and ligands can interact with each other within each group, and furthermore some cross-

talks can also be found. This renders the study of specific roles for each particular member somewhat

difficult. In addition, both forward- and reverse-signaling can be found, which makes the identification

of each member's contribution in different physiological phenomena quite difficult. Furthermore, the

co-expression of both ligands and receptors within the same cell and the existence of cis interactions
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increases the number of possibilities through which Eph and ephrin can signal.

Taken together, all of these different aspects of Eph/ephrin signaling renders difficult the

interpretation of their respective contribution to biological phenomena. In addition, most of the systems

used to reveal some of these interactions are cell culture assays, in which the level of expression of

these receptors and ligands is way above physiological concentrations. This could lead to interactions

that are not possible in vivo, notably due to the segregation of these different actors (Marquardt et al.,

2005). In addition, a dose-effect phenomenon has been described in vitro (Hansen et al., 2004), which

makes this interpretation even more difficult. Today, the contribution of ephrin-A reverse-signaling

remains controversial, due to the lack of direct evidence, as well as the plethora of different possible

interpretations.
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EphAs and ephrin-As

Expression of EphA and ephrin-A in the visual system (Table 1 and Figure 16)

 Sperry's postulate states that cells express molecular tags which allow them to recognize each

other and gives them guiding instruction regarding which directions to follow, through mechanisms of

repulsion and attraction. These genetically encoded labels should be expressed by both target and

projecting structure leading to a unique concentration of both, therefore giving precise localization.

Several candidates belonging to the Eph and ephrin family fulfilling these criteria have been identified.

Most members of this RTK family can be found expressed in complementary gradients along the

visual system, among which some have been implied in the formation of visuals maps. Here, the

temporal and spatial expression of different Eph members that are found in the visual system will be

described, as well as gradient orientation. The direction of gradient orientation indicates low to high

expression (ex: caudal-rostral → low caudal to high rostral expression). 

Retina

EphA receptors and ephrin-As have been described in the retina with different methods and at

different stages of development. Originally, EphA receptors have been demonstrated to interact with

collicular ephrin-As, which is referred as forward signalling. Later on, the presence of molecules able

to bind EphA receptors in the retina suggested the existence of countergradients, which are

complementary expression of ligands and receptors. The role of these gradients is still debated. 

EphAs

Different technical approaches have been extensively used to demonstrate the presence of

EphA receptors in the retina: in situ hybridization, ephrin-A-AP binding, reporter lines and

immunostaining. In situ hybridization reveals the presence of mRNA with a high spatial resolution and

specificity, but does not reveal the amount of protein that are translated and inserted at the

membrane. Ephrin-A-AP and ephrin-A-Fc binding consists in applying ligands of EphA receptors

coupled to an alkaline phosphatase or fused to the Fc portion of human immunoglobulin. However the

high redundancy of the Eph/ephrin family and the numerous cross-talks make it hard to point out a

specific receptor in case of a positive signal. Reporter lines carrying the lacZ gene, coding for

βgalactosidase were also used to monitor the endogenous expression of EphA receptors.

Immunostaining studies are quite recent, as no specific antibody were available for a long time.

However their sensitivity is not sufficient to detect graded expression considering the scattering of

receptors across the entire cell structure, especially when compared to mRNAs, which are mostly

concentrated in cell bodies. 

Early evidence pointing to the presence of gradients of EphA receptors came from binding

study. Initially in mouse, ephrin-A4 and ephrin-A1-FC were reported to display a graded binding in the

retina along the nasal-temporal axis, suggesting a corresponding gradient of EphA receptors (Marcus

et al., 1996).This was latter on confirmed using ephrin-A2 and ephrin-A5-AP which revealed a graded

binding activity in a nasal-temporal gradient in the retina (Feldheim et al., 1998). Direct evidence came

from in situ hybridization with which several EphAs have been identified in the retina:

• EphA3 can be found in the retina at P0 in an ungraded manner but not in the RGC layer

(Brown et al., 2000; Feldheim et al., 1998)

• EphA4 is expressed in the ganglion cell layer, however, no gradient can be found at P0 and P1

(Feldheim et al., 1998; Reber et al., 2004)

• EphA5 expression has been reported in a nasal-temporal gradient in the retina by ISH in wild-
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Figure 16: Overview of EphA/ephrin-A expression in the visual system. 

Counter-gradients of EphAs and ephrin-As can be found in the retina, the superior colliculus and primary visual

cortex. In the retina, EphA5 and EphA6 are expressed in low-nasal to high-temporal gradient while EphA4 is

ungraded. Ephrin-A2 and ephrin-A5 are expressed in the opposite orientation (temporal → nasal), and ephrin-A3

is ungraded. In the superior colliculus, EphA3, EphA4 and EphA7 are expressed in a low-caudal to high-rostral

gradient while EphA5 expression is constant along the rostral-caudal axis. Ephrin-A2 and ephrin-A5 are

expressed in low-rostral to high-caudal gradient and ephrin-A3 expression is constant. In primary visual cortex,

EphA4, EphA5, EphA6 and EphA7 have a graded expression from low-medial to high-lateral. Ephrin-A2 and

ephrin-A3 form a lateral-medial gradient and ephrin-A5 expression is ungraded. 
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type mice in the RGC layer at P0 and P1, suggesting this receptor as a potential candidate for 

the formation of topographic maps (Brown et al., 2000; Feldheim, 2004; Feldheim et al., 1998;

Reber et al., 2004). The level of expression is 2.6-fold higher at the temporal pole as compare

to the nasal pole (Diaz et al., 2003)

• EphA6 is expressed in a similar graded manner, with a low nasal-temporal gradient, at P0 in 

the RGC layer (Brown et al., 2000; Feldheim, 2004; Feldheim et al., 2000; Reber et al., 2004). 

Expression is 2.8-fold higher at the temporal pole than at the nasal pole (Diaz et al., 2003)

• EphA7 shows no obvious expression at P0 in the retina (Feldheim et al., 1998)

The summed concentration of all EphA receptors across the retina has revealed a 2.75 fold

increase in expression between the nasal and the temporal pole, at the mRNA level (Reber et al.,

2004). Some of these expressions were confirmed by other approaches. For example, the graded

expression of EphA5 was further confirmed with EphA5lacZ/lacZ mice by galactosidase staining

(Feldheim, 2004), as well as at the protein level with immmunostaining from E11 to E17, with a strong

signal at E17 in the GCL (Cooper et al., 2009).

ephrin-As

The presence of EphA-Fc receptor binding in the retina has suggested the presence of ephrin-

As. The E16.5 mouse retina shows an affinity for EphA7-Fc, with a stronger expression on nasal

axons when compared to temporal (Rashid et al., 2005), and indeed, a similar activity has been

reported for both EphA receptor fusion proteins EphA5–Fc and EphA2–Fc (Marcus et al., 1996).

• ephrin-A2 is expressed in the GCL at P1 in an ungraded manner (Pfeiffenberger et al., 2006).

• ephrin-A3 was not initially detected in the retina by ISH (Marcus et al., 1996), although more

recent studies have found its presence at P1 in an uniform distribution in the GCL

(Pfeiffenberger et al., 2006)

• ephrin-A4 could not be detected in the retina (Marcus et al., 1996)

• ephrin-A5 can be found in a temporal-nasal gradient  (Marcus et al., 1996)

Ephrin-A5 expression was further confirmed at the protein level by immunostaining at E16.5,

with a stronger signal at the nasal pole than at the temporal pole of the retina, in the GCL (Deschamps

et al., 2010). Receptor-AP staining in the ephrin-A2/ephrin-A5KO double mutants did not succeed at

detecting any binding, suggesting that ephrin-A2 and ephrin-A5 are the most abundant ligands that

are present inside the retina (Feldheim et al., 2000).

Superior colliculus

EphAs

Similar to ephrin-As in the retina, countergradients of EphA receptors have also been identified

in the SC. These gradients have either been detected by ISH or by immunostaining.

• EphA3 mRNA exhibit a caudal-rostral gradient in the SC at P1, and appears weaker in signal

as compared to EphA7 (Rashid et al., 2005)

• EphA4 RNA is detected in a caudal-rostral gradient at E12 (Yun et al., 2003), and broadly

expressed at high levels in a very shallow gradient at P1 (Rashid et al., 2005). EphA4 protein

can be found in the SC from E11 to P6 (Greferath et al., 2002)

• EphA5 expression was also reported in the developing mouse SC from E9 to E17 at the

protein level, as well as at adult stage (Cooper et al., 2009)

• EphA7 mRNA can be found at E12 in a caudal-rostral gradient (Feldheim et al., 2000; Yun et

al., 2003), stable from E16 to P6 to become barely detectable at P11 (Rashid et al., 2005)
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EphA7 was also detected by receptor affinity probe staining in situ in the SC between E12.5

and E14.5, and at P1 (Rogers et al., 1999), and also by western blot, with a stronger signal at

the rostral pole than the caudal pole (Rashid et al., 2005)

ephrin-As

Similar to the identification of EphA receptors in the retina, binding assays in the SC have

revealed a single rostral-caudal gradient. Using an EphA3-AP fusion protein, a staining was identified

in the SC at E18 (Feldheim et al., 1998). This gradient was further characterized by ISH and

immunostaining.

• ephrin-A2 is present at the mRNA level in a rostral-caudal gradient at E12 (Yun et al., 2003),

E15, and E18, with a high point of expression at the SC/IC boundary (Feldheim et al., 1998,

2000; Hansen et al., 2004). Ephrin-A2 is expressed 2.2-fold more in the caudal region than in

the rostral region of the SC (Diaz et al., 2003)

• ephrin-A3 can be found at low level in the SC at P1 and ungraded (Pfeiffenberger et al., 2006)

• ephrin-A5 is expressed in a rostral-caudal gradient at the mRNA level at E16 and P1 (Feldheim

et al., 2000; Hansen et al., 2004; Rashid et al., 2005; Yun et al., 2003). Quantification of RNA

has revealed a 5.5-fold increase from rostral to caudal (Diaz et al., 2003). Ephrin-A5 can also

be found at the protein level at E14.5 and E16.5 in the SC, but immunostaining has failed at

detecting a graded expression (Deschamps et al., 2010)

ISH was also performed against ephrin-A1, A3, and A4, and could not detect any expression in the SC

(Feldheim et al., 2000). EphA3-AP or EphA5-AP binding assays on ephrin-A2/ephrin-A5KO double

mutants could not detect any binding above the background level (Feldheim et al., 2000).

Primary visual cortex

The presence of retinotopic maps in V1 suggest a patterned organization of projections that

require a precise mapping mechanism. Molecules from the EphA/ephrinA family have been identified

in this structure, suggesting a role in the formation of these topographic projections.  

EphAs

Few studies have addressed the expression of EphA receptors specifically in V1. However,

whole brain studies have revealed a graded expression at different stages. At P0, ISH staining of

EphA4, EphA5, EphA6 and EphA7 mRNA shows a medial-lateral gradient across the posterior cortex,

while EphA3 seems to be expressed at a constant weak level; although boundaries of V1 are difficult

to determine (Yun et al., 2003). EphA4 receptors have been characterized at the protein level in the

developing mouse. Its expression can be found in the posterior cortex from E11 to P6, with a strong

peak of expression at E15 and E17.5 (Greferath et al., 2002). ISH at P0 in the posterior cortex has

revealed a strong expression of EphA7 (Rash and Grove, 2006). More specifically in V1, in situ

hybridization at P4 has revealed a staining for EphA7 and EphA4 that is similar to Cad8 expression, a

marker for V1. This expression is graded along the medial-lateral axis, with a slight peak that could

mark the border between V1 and V2 (Cang et al., 2005b).

 

ephrin-As

Expression of ephrin-A2 and ephrin-A3 mRNA can be found at P4 in the V1 in a lateral-medial

gradient (Cang et al., 2005b; Pfeiffenberger et al., 2006), whereas ephrin-A5 is expressed in a

complementary manner to Cad8, EphA4, and EphA7; suggesting a role in boundary formation of the

visual cortex (Cang et al., 2005a; Deschamps et al., 2010; Pfeiffenberger et al., 2006).
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Gene Technique Age Gradient Reference

Retina

EphA4 ISH P0 Ungraded (Feldheim et al., 1998)

EphA5

ISH P0

Nasal → Temporal

(2.6 fold)

(Brown et al., 2000; Cooper et al., 2009;

Diaz et al., 2003; Feldheim, 2004;

Feldheim et al., 1998)Immunostaining E11-E17

EphA6 ISH P0
Nasal → Temporal

(2.8 fold)

(Brown et al., 2000; Diaz et al., 2003;

Feldheim, 2004; Feldheim et al., 2000)

ephrin-A2 ISH P1 Ungraded (Pfeiffenberger et al., 2006)

ephrin-A3 ISH P1 Ungraded (Pfeiffenberger et al., 2006)

ephrin-A5
ISH E15

Temporal → Nasal (Marcus et al., 1996)
Immunostaining E16.5

Superior colliculus

EphA3 ISH P1 Caudal → Rostral (Rashid et al., 2005)

EphA4
ISH E12 and P1

Caudal → Rostral (Greferath et al., 2002; Rashid et al., 2005)
Immunostaining E11- P6

EphA5 Immunostaining E9-E17 Ungraded (Cooper et al., 2009)

EphA7 ISH E12-P11 Caudal → Rostral
(Feldheim et al., 2000; Rashid et al., 2005;

Rogers et al., 1999; Yun et al., 2003)

ephrin-A2 ISH
E12-E15-

E18
Rostral → Caudal

(Diaz et al., 2003; Feldheim et al., 1998;

Hansen et al., 2004; Yun et al., 2003)

ephrin-A3 ISH P1 Ungraded (Pfeiffenberger et al., 2006)

ephrin-A5

ISH E16-P1
Rostral → caudal (Deschamps et al., 2010; Feldheim et al.,

2000; Hansen et al., 2004; Rashid et al.,

2005; Yun et al., 2003)Immunostaining E14.5-E16.5 Ungraded

Primary visual cortex

EphA4
Immunostaining E11 → P6

Medial → Lateral
(Cang et al., 2005a; Greferath et al., 2002;

Yun et al., 2003)ISH P0

EphA5 ISH P0 Medial → Lateral (Yun et al., 2003)

EphA6 ISH P0 Medial → Lateral (Yun et al., 2003)

EphA7 ISH P0 and P4 Medial → Lateral
(Cang et al., 2005a; Rash and Grove,

2006; Yun et al., 2003)

ephrin-A2 ISH P4 Lateral → Medial
(Cang et al., 2005a; Pfeiffenberger et al.,

2006)

ephrin-A3 ISH P4 Lateral → Medial
(Cang et al., 2005b; Pfeiffenberger et al.,

2006)

ephrin-A5 ISH P4 Ungraded
(Cang et al., 2005a; Deschamps et al.,

2010; Pfeiffenberger et al., 2006)

Table 1: Summary of EphA and ephrin-A expression in the visual system 
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EphAs and ephrin-As in retino-collicular map formation

Since the discovery of molecular gradients and their implication in topographic mapping, a lot

of effort has been made towards understanding the contributions of the members of the Eph and

ephrin family. Here the major in vitro and in vivo findings, alongside the mouse models that have been

generated to study relative implications of EphAs and ephrin-As, will be described (Table 2).

In vitro

ephrin-A2

The implication of ephrin-As in retino-collicular mapping has come from the identification of

their graded expression and their effect in vitro in stripe assays on ingrowing chick RGCs. When given

the choice between an alternating stripe of 293T cells – either mock transfected or expressing ephrin-

A2 temporal axons – they show a preference for lanes without ephrin-A2, whereas nasal axons show

no preference at all (Monschau, 1997; Nakamoto et al., 1996). Similar results were obtained in mice

with the same experimental paradigm, with temporal axons avoiding lanes that contain ephrin-A2.

ephrin-A5

Similar to ephrin-A2, ephrin-A5 is also repulsive for temporal chick RGCs. Interestingly, nasal

axons also show a sensitivity to this molecule, with a decrease in response when compared to

temporal explants (Drescher et al., 1995; Monschau, 1997). In mice, wild-type E14-16 retinal explants

grown on homogeneous carpets of P0-P2 SC membranes from either WT or ephrin-A5KO, and they

do not display a difference in neurite outgrowth (Frisén et al., 1998). However, a difference can be

observed in stripe assays. Indeed, when temporal RGCs are given a choice between stripes of mock-

transfected, or ephrin-A5 expressing 293T cells, a preference can be seen for the absence of ephrin-

A5. This preference is abolished for nasal axons (Feldheim et al., 1998).

 ephrin-A2 and ephrin-A5

Stripe assays were also performed with material originating from double mutants which lack

both ephrin-A2 and ephrin-A5. In this experimental paradigm, the retina and SC originated from either

wild-type or double mutant animals. When WT temporal axons are grown on ephrin-A2/ephrin-A5KO

alternating SC stripes, caudal stripes lose their repulsive effect. Conversely, when nasal retinal axons

from the double mutants are grown on WT SC, they gain in responsiveness, showing a preference

when nasal axons are otherwise insensitive to repulsion (Feldheim et al., 2000).

EphA5

To study the involvement of EphA5 in retino-collicular mapping, an EphA5LacZ mutant was

generated. In this approach, the intracellular domain of EphA5 was replaced by β-galactosidase,

leaving intact the extracellular domain. This approach only alters the forward signaling. In stripe

assays using WT SC stripes, temporal RGCs derived from EphA5LacZ/LacZ mutants show a

decrease in repulsion sensitivity, when compared to WT and heterozygotes mutants. Nasal axons

show no obvious changes in the EphA5lacZ/lacZ mutants, remaining unresponsive to SC membranes

(Fig. 4 E). Similar experiments were performed using wild type RGC on EphA5KO SC membranes,

but showed no difference with the wild-type. This could be due to reverse signaling, since the

extracellular domain of EphA5 is intact, and thus one cannot rule out the implication of EphA5 in

reverse signaling through ephrin-As. These results suggest an implication of EphA5 forward signaling

in the repulsion of temporal RGC and in the formation of retino-collicular map (Feldheim, 2004).
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EphA7

EphA7, which is expressed only in the SC also shows a repelling activity in vitro. Using EphA7-

FC and Fc stripes, retinal axons had shown a preference for Fc stripes, without any differences

between nasal and temporal axons (Rashid et al., 2005)

In vivo

EphA3

To study the involvement of retinal EphAs specifically in the formation of the retinotopic map, a

gain of function mutant was generated (Brown et al., 2000). This model takes advantage of the

expression pattern of Islet2, which can be found in 50% of RGCs that target contra-laterally to the SC.

More specifically, Islet 2 is expressed in OFF αRGCs (CB2 +), but not in ON-OFF DSGC (DRD4 - ),

and innervate the entire depth of the SC (Triplett et al., 2014). As a consequence, in this mouse

model, the Isl2-EphA3KI, EphA3 is overexpressed in 50% of RGCs. This leads to a striking

phenotype, where projections along the nasal-temporal axis of the retina segregate into two distinct

zones along the rostral-caudal axis of the SC, leading to a duplication of the overall retino-collicular

map. Interestingly, heterozygotes only display a partial duplication of the retino-collicular map, with a

collapse point at 76% of the rostral-caudal axis (Brown et al., 2000; Reber et al., 2004). In addition

neither projections target the correct TZ, with wild-type projections being shifted caudally.

EphA5

In EphA5LacZ/LacZ mutants, targeting errors can be found in axons originating from both the

temporal and the nasal pole of the retina, with the formation of ectopic sites in 42 and 51% of the

animals, respectively. Ectopic sites are shifted rostrally for the nasal projections and caudally for the

temporal projections. Similar results were also obtained for central injections, with multiple

arborizations in 75% of the cases for homozygotes. No such phenotypes were observed in

EphA5LacZ/+ mutants. In EphA5LacZ mutants, forward signaling is specifically targeted, since only

the intracellular part of the receptor is replaced with a β-galactosidase (Feldheim, 2004).

  

EphA7

In EphA7-/-, ectopic TZ can be found with anterograde tracing in 62% of the animals, as well

as an extended scattering when RGCs are labelled retrogradely. Since EphA7 is only expressed in the

SC, these results suggest a role for reverse signaling in the formation of the retino-collicular map

through the suppression of branching that is located rostrally to future TZs. (Rashid et al., 2005)

Compound mutants

Isl2-EphA3KIxEphA4KO

Generation of compound mutants, heterozygous for EphA3 in Isl2 positive cells and EphA4-/+,

has provided insights into signaling mechanisms. In these double mutants, the collapse point is shifted

at 88% of the rostral-caudal axis, compared to 76% in the Isl2-EphA3KI; while the distance separation

between duplicated projections is increased from 20% of the rostral-caudal axis in Isl2-EphA3KI/+ to

75% in the Isl2-EphA3KI/+, EphA4+/-. These results have revealed a participation in the overall

signaling of EphA4, in which expression is ungraded in both the retina and the SC during RC map

formation (Reber et al., 2004); and has thus further identified the basic principles of the mapping

formation. Indeed, this study suggests that a dominant RGC (expressing the highest level of EphA

receptors) drives the mapping through comparing EphA relative signaling between RGCs.
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Isl2-EphA3KIxEphA5KO

Further insights in signaling mechanisms has come from studies of another compound mutant:

the Isl2-EphA3KIxEphA5KO. In these double mutants, at a heterozygote state for both alleles, a shift

in the collapse point when compared to the single EphA3KI/+ mutant, can be found. This also

suggests a relative signaling model with the participation of EphA5 in the formation of the retino-

collicular map (Bevins et al., 2011), and further suggests that EphA receptors can be considered as

functionally equivalent in this system.

Role of ephrin-A5 in retino-collicular mapping

To study the role of ephrin-A5 in retino-collicular mapping, a knock out was generated. In these

animals, the expression of ephrin-A2 – which also shows a grade expression in the SC – is unaltered.

In homozygotes, the mapping of projections originating from the temporal pole of the retina revealed in

50% of cases that the formation of an eTZ has shifted caudally, close to the main TZ site. In addition,

some axons overshoot towards the most caudal part of the SC, at the border with the inferior

colliculus. Retrograde tracing from the caudal pole of the SC has also revealed an increase in the

scattering of the retrolabeled RGCs (Frisén et al., 1998). The mapping of projections originating from

the nasal part of the retina has revealed stronger mapping defects in ephrinA5-/- (91% penetrance),

with an eTZ that is shifted rostrally (Feldheim et al., 2000).

Recently, a conditional mutant for ephrin-A5 was generated. In this model, ephrin-A5 is either

specifically removed from the retina or the SC. For axons originating from the temporal pole of the

retina, deletion of the collicular ephrin-A5 leads to minor targeting defects, with eTZ close to the

topographically correct location, but shifted caudally with a 100% penetrance. In 40% of cases, a

rostrally shifted eTZ could be found for projections from the temporal part of the retina for the ephrin-

A5 retinal KO. For nasal axons, a collicular deletion of ephrin-A5 leads to a formation of eTZs that are

shifted rostrally to the topographically correct location. However, the absence of retinal ephrin-A5 does

not induce targeting defects for projections from the nasal pole of the retina (Suetterlin and Drescher,

2014).

Role of ephrin-A2 in retino-collicular mapping

Similarly, the ephrin-A2KO was generated. In these animals, mapping defects can be found,

with the formation of eTZ being shifted more caudally in 57% of homozygous, for axons originating

from the temporal pole of the retina. However, no mapping defects can be found concerning the nasal

pole of the retina (Feldheim et al., 2000).

Role of ephrin-A2 and ephrin-A5 in retino-collicular mapping

The generation of compound mutants, by crossing ephrin-A2 and ephrin-A5KO, has revealed a

more striking phenotype that has a high penetrance. In double heterozygous animals, ephrin-A2+/- ;

ephrin-A5+/-, caudally shifted eTZ can be observed with 55% of penetrance. When nasal axons are

labeled, no mapping defects could be found. In ephrin-A2-/-;ephrinA5-/- mutants, mapping defects are

more severe in nasal RGCs than in temporal RGCs, with 92 and 85% penetrance, respectively.

Interestingly, eTZs are shifted in an opposite way, with temporal TZs shifted caudally and nasal TZs

shifted rostrally (Feldheim et al., 2000).

In addition, multiple ectopic sites can be found in double mutants, whereas a single site can be

found in the single homozygous mutants. These eTZs were also shifted along the medial-lateral axis,

which could be explained by an interaction between ephrin-A5 and EphB2 (Himanen et al., 2004); the

latter being involved in the mapping of the lateral-medial axis (Hindges et al., 2002).
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Role of ephrin-A3 in retino-collicular mapping 

The retino-collicular map of ephrin-A3KO mice has also been assessed. In these animals, both

the nasal and temporal axons target their correct locations without the formation of eTZ

(Pfeiffenberger et al., 2006). However, in triple homozygous knock-outs – ephrin-A2/A3/A5 – the

absence of ephrin-A3 has worsened the mapping deficits on the double homozygous ephrin-A2/A5KO

mutants (Pfeiffenberger et al., 2006).
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Mutant 

Mapping defect

References(Penetrance) 

Nasal

(Penetrance)

Temporal

ephrin-A2KO No mapping defect
(57%) 

Caudal shift
(Feldheim et al., 2000)

ephrin-A3KO No mapping defect No mapping defect (Pfeiffenberger et al., 2006)

ephrin-A5KO
(91%) 

Rostral shift

(50%) 

Caudal shift
(Frisén et al., 1998)

ephrin-A5 retinal KO No mapping defect
(40%) 

Rostral shift

(Suetterlin and Drescher,

2014)

ephrin-A5 collicular KO Rostral shift Caudal shift
(Suetterlin and Drescher,

2014)

ephrin-A2/ephrin-A5KO
(92%) 

Rostral shift

(85%) 

Caudal shift
(Feldheim et al., 2000)

EphA3KI/+ Duplication
Collapse point 

at 76% 
(Brown et al., 2000)

EphA3KI/KI x

EphA4-/- or EphA5-/-
Duplication Duplication 

(Bevins et al., 2011)

(Reber et al., 2004)

EphA3KI/+ x EphA4-/+ Duplication 
Collapse point 

at 88%
(Reber et al., 2004)

EphA3KI/+ x EphA4-/- Duplication 
Collapse point 

at 95%
(Reber et al., 2004)

EphA3KI/+ x EphA5-/+ Duplication 
Collapse point 

at 85%
(Bevins et al., 2011)

EphA3KI/+ x EphA5-/- Duplication 
Collapse point 

at 90%
(Bevins et al., 2011)

EphA5KO
(51%) 

Rostral shift

(42%) 

Caudal shift
(Feldheim, 2004)

EphA7KO
(62%) 

Rostral shift
No mapping defect (Rashid et al., 2005)

Table 2: Summary of mouse models used in the study of role of EphA/ephrin-A signalling in

the formation of retino-collicular map. 
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EphA and ephrin-As in cortico-collicular map formation and alignment

During development, retinal inputs form the retino-collicular map between P0 and P7, followed

by the formation of the cortico-collicular map, originating from layer V pyramidal cells in V1. These two

maps are topographic, and aligned in the SC, and represents the same part of the visual field. The

alignment and formation of the cortico-collicular map seems to depend on retinal inputs, since its

formation occurs at a later stage. In addition, mapping defects can be found in the absence of retinal

inputs and molecules of the Eph/ephrin family have been involved in the formation of this map.

Interactions between the retino- and the cortico-collicular map

Inputs from the retina and the V1 target to the same layers in the SC, mostly the SGS and the

SO (Lund, 1972). These projections are aligned in this structure, with a correspondence between their

respective axes (Rhoades et al., 1985). The medial-lateral axis of V1 aligns onto the rostral-caudal

axis of the SC, both of which reflects the nasal-temporal axis of the retina. Evidence suggests that

both the retino-collicular and cortico-collicular inputs converge on the same cells in the SC; and

electron microscopy studies have shown that cortico-collicular fibers contact small-caliber, non-

GABAergic dendrites in the SC (Boka et al., 2006). At the cellular level, both cortico-collicular and

retino-collicular fibers have been found to synapse on dorsally-oriented vertical (DOV) cells by co-

localization studies (Phillips et al., 2011) in the SC.

From a functional aspect, collicular neurons respond to a single impulse from V1,

demonstrating a direct functional connectivity (Bereshpolova, 2006). Recent studies have also

highlighted the coupling of oscillations between V1 and SC (Stitt et al., 2015), and also that cortico-

collicular projections can modulate the magnitude of responses in the SC (Zhao et al., 2014).

Furthermore, when these fibers are silenced in awake animals, a decrease in collicular neuronal

responses can be observed, with no alteration observed in anesthetized animals (Zhao et al., 2014).

Since cortical inputs are aligned onto retinal inputs and modulate their response, the receptive field of

the cortical afferents need to overlap with the receptive field of the collicular cells they contact.

Role of EphA and ephrin-As in V1 formation and alignment of projections

EphAs and ephrin-As present graded expression in V1, and topographic defects in V1 can also

be found in the ephrin-A2/A3/A5KO. An in situ hybridization study has revealed the presence of

EphA4 and EphA7 in a medial-lateral gradient, while ephrin-A2, -A3, -A5 can be found in a lateral-

medial gradient in V1. This graded expression suggests that these molecules could be used

throughout different structures in order to initiate the formation of topographic maps (Cang et al.,

2005a).

Retinotopy in V1 was also assessed in ephrin-A deficient mice, using optical intrinsic imaging.

These triple ephrinA2/A3/A5 mutants display an increase in scattering for both the elevation and

azimuth; a bigger cortical magnification factor and a shifted orientation for V1 (Cang et al., 2005a). In

addition, ectopic expression of ephrin-A5 in V1 disrupts the internal topography, while when expressed

in the lateral cortex, the positioning of V1 is altered (Cang et al., 2005a).

When looking at the alignment of V1 and SC in ephrinA2/A5 homozygote deficient mice, mis-

targeting can also be found in the projections from V1 (Wilks et al., 2010). Formation of eTZ occurs at

a lower frequency for cortico-collicular projections, when compared to retino-collicular projections,

suggesting a misalignment between the two maps. This could be due to the existence of non-

functional eTZs from the retina (Haustead et al., 2008), which would fail to establish/align connections

from V1.
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Isl2-EphA3KI

The Isl2-EphA3KI mouse model presents a duplicated retino-collicular map in the SC, as

demonstrated both at anatomical (Bevins et al., 2011; Reber et al., 2004) and functional levels (Owens

et al., 2015; Triplett et al., 2009). This duplication is due to an ectopic expression of EphA3 in 50% of

the RGCs, leaving the endogenous gradients EphAs/ephrinAs in the SC unaltered. Interestingly, the

topography within V1 is not altered in Isl2-EphA3KI, with a single representation of the retinotopy

(Triplett et al., 2009). However, mapping defects can be found in the projections from V1 to the SC

(the cortico-collicular projections). Remarkably, a duplication of the cortico-collicular projections has

been shown in these animals, mimicking the duplication of the retino-collicular map.  These results

have suggested that cortico-collicular map alignment in the SC is instructed by correlated retinal

activity. However at this point, a role of retinal guidance cues in cortico-collicular map alignment

cannot be excluded.

Models of altered retinal inputs:

To investigate the contribution of retinal inputs towards the formation of the cortico-collicular

map in the SC, mouse models that feature decreased retino-collicular inputs have been studied.

• In anophtalmic mice, cortico-collicular axons are still able to reach the SC, however these

inputs are disorganized (Khachab and Bruce, 1999).

• In monocularly enucleated animals at birth, projections from V1 reach the superficial layers of

the SC prematurely (Grant et al., 2016). When animals are enucleated at P6, these projections

are still able to form a coarse topography, with TZs at least four times larger than for wild-type

(Triplett et al., 2009).

• In Math5-/- mice, only 5 to 10% of RGCs remain (Lin et al., 2004). In these animals, cortico-

collicular projections are also unrefined similarly to enucleated animals (Triplett et al., 2009).

These studies suggest that retinal inputs are required for the formation of refined projections,

since a coarse topography can still be found. This phenomenon could be attributed either to the

absence of spontaneous correlated activity or to molecular instruction coming from the retina.

Indeed, two major hypotheses could explain how the retino- and cortico-collicular maps are

aligned in the SC. A gradient matching model suggests that projections from V1 are guided by

gradients expressed in the SC, using the same type of molecules than that used for the mapping of

the retino-collicular projections. This mechanism would allow for the alignment of both maps through

shared molecular cues.

A retinal matching model suggests that cortico-collicular projections are guided by activity, and

align through Hebbian mechanisms. Correlated activity for the same part of the retinotopic space

would drive the establishment of projections, and would allow their alignment. In addition, recent

studies have highlighted the necessity of reciprocal inputs for the formation of interconnected maps

along the visual system, which suggests an interdependence of maps for proper alignment (Shanks et

al., 2016).

50



EphB and ephrin-B 

Expression of EphB and ephrin-B in the visual system (Table 3)

EphA and ephrin-A have been identified as key actors in the organization of retinotopic

projections in the visual system. However, their expression by itself cannot account for the

organization of the entire retinotopic map that can be found in the SC. Indeed, EphA/ephrin-A organize

solely the nasal-temporal axis, while having little or no influence on the mapping of the dorsal-ventral

axis of the retina onto the lateral-medial axis of the SC. Molecules from the EphB subclass have been

found to be expressed as gradients along this axis.

Retina

The graded expression of EphBs along the dorsal-ventral axis of the retina, as well as their

effect on axon growth have suggested an implication in the formation of the retino-collicular map.

 

EphB

Experiments in the chick have shown a graded expression of EphBs along the dorsal-ventral

axis, (Braisted et al., 1997), suggesting an implication in the mapping of the lateral-medial axis in the

SC. Following this study, the expression of the EphB receptor was investigated in the mouse retina.

The generation of EphB1 and EphB2 reporter lines have allowed further study of receptor expression.

• EphB1 is expressed uniformly along the dorsal-ventral axis at the mRNA level in the GCL at

E14.5 and E16 (Birgbauer et al., 2000), while X-gal stains in EphB1LacZ mutants at E16.5, P1

and P8 had shown a high expression in the ventral-temporal region of the embryonic retina,

which becomes uniformly distributed at postnatal stages (Thakar et al., 2011)

• EphB2 mRNA is initially distributed in an ungraded manner at E13, but by E16, a ventral-dorsal

difference in expression can be detected (Birgbauer et al., 2000) The graded expression of

EphB2 is progressive as reported, when monitoring EphB2-β-gal protein expression from E13

to E16 retinas, with a dorsal-ventral gradient appearing at E16 (Birgbauer et al., 2000). EphB2

expression is at its strongest at the mRNA level at P0, found at P4 (Hindges et al., 2002) and

can still be detected by galactosidase staining at P8 (Thakar et al., 2011)

• EphB3 receptor mRNA is expressed uniformly along the dorsal-ventral axis in the retina at both

E13 and E16 (Birgbauer et al., 2000). A peak in expression can be found at P0, while mRNA

can still be detected at P4 (Hindges et al., 2002)

• EphB4 mRNA expression is detected at E14, but does not appear to be graded. A shallow

dorsal-ventral gradient can be found at P0 and P4 (Hindges et al., 2002)

• EphB6 mRNA is not detected in the retina (Hindges et al., 2002)

ephrin-B

Similar to ephrin-As, a counter-gradient of ephrin-B can be found in the retina.

• Ephrin-B1 is expressed in the GCL of both dorsal and ventral retina. (Birgbauer et al., 2000) At

P0, ephrin-B1 is expressed in a ventral-dorsal gradient in the GCL, which can still be found at

P4 (Hindges et al., 2002)

• Ephrin-B2 is not detected in the GCL at embryonic stages (Birgbauer et al., 2000), but at P0, a

ventral-dorsal gradient can be found in the RGC layer that remains at P4 (Hindges et al.,

2002). β-gal stains at E17.5, P0 and P8 show a graded expression of ephrin-B2 in a ventral-

dorsal gradient in the retina (Thakar et al., 2011).

• Ephrin-B3 is expressed in the GCL uniformly along the dorsal-ventral axis at E14.5 (Birgbauer

et al., 2000).
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Superior colliculus

Complementary expression of EphB and ephrin-B can be found in the SC. These graded

expressions in the target structure has suggested their implication in the formation of the retinotopic

map.

EphB

• EphB1 expression was detected in the EphB1LacZ mutants in which X-gal stains had shown a

strongly uniform expression, within cells of the SC (Thakar et al., 2011).

• EphB2 mRNA is expressed in a medial-lateral gradient in the SC ventricular zone at P0 and P4

(Hindges et al., 2002), while EphB2–β-gal fusion protein was reported to be expressed

uniformly in the SC at P1 and P8 (Thakar et al., 2011).

• EphB3 mRNA was detected in medial-lateral gradient in the SC ventricular zone at P0 and P4

(Hindges et al., 2002)

ephrin-B

• Ephrin-B1 mRNA is expressed in a lateral-medial gradient across the SC at P0 that persists at

P4 (Hindges et al., 2002). Immunostaining has failed to detecting a gradient, as well as finding

a low immunoreactivity in the SC (Buhusi et al., 2009; Migani et al., 2009)

• Ephrin-B2 expression was not detected in the SC (Hindges et al., 2002)

• Ephrin-B3 is strongly expressed at P0 at the midline, separating the left and right SCs

(Hindges et al., 2002)
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Gene Technique Age Gradient Reference

Retina

EphB1 ISH
E14.5-E16 ventral-temporal (Birgbauer et al., 2000; Thakar et

al., 2011)Postnatal Ungraded

EphB2 ISH
E13-E16 Ungraded

(Birgbauer et al., 2000)
P0,P4,P8 Dorsal → ventral 

EphB3 ISH E13-E16 Ungraded
(Birgbauer et al., 2000; Hindges et

al., 2002)

EphB4 ISH
E14 Ungraded

(Hindges et al., 2002)
P0-P4 Dorsal → Ventral

ephrin-B1 ISH P0-P4 Ventral → Dorsal
(Birgbauer et al., 2000; Hindges et

al., 2002)

ephrin-B2 ISH P0-P4 Ventral → Dorsal 
(Birgbauer et al., 2000; Hindges et

al., 2002)

ephrin-B3 ISH E14.5 Ungraded (Birgbauer et al., 2000)

Superior colliculus

EphB1
X-gal staining in

EphB1LacZ mutant
P1-P8 Ungraded (Thakar et al., 2011)

EphB2

ISH P0-P4 Medial → Lateral
(Hindges et al., 2002; Thakar et al.,

2011)
X-gal staining in

EphB2LacZ mutant
P1-P8 Ungraded

EphB3 ISH P0-P4 Medial → Lateral (Hindges et al., 2002)

ephrin-B1 ISH P0-P4 Lateral → Medial (Hindges et al., 2002)

ephrin-B3 ISH P0 Midline (Hindges et al., 2002)

Table 3: Summary of EphB and ephrin-B expression in the visual system 
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EphB/ephrin-B in the formation of the retino-collicular map in mouse 

Evidence for a role of EphB/ephrin-B signaling in organizing the lateral-medial axis of the SC

has come from the graded expression of EphB in the retina along the dorsal-ventral axis, and the

corresponding gradient of ephrin-Bs in the SC along the lateral-medial axis. As a consequence,

projecting cells expressing high level of EphB target zones of the SC that express high levels of

ephrin-B. In addition, counter-gradients of ephrin-B in the retina and EphB in the SC can also be

found. Few studies have addressed the role of EphB/ephrin-B signaling in the formation of the retino-

collicular map in mice. Most evidence is derived from in vitro studies, and loss of function studies of

EphBs, by global knock-out approaches and point mutations.

In vitro

Graded expression is not sufficient by itself to imply a causal role in the formation of

topographic map. Indeed, these molecules are also required to elicit a response from ingrowing axons,

either repulsive or attractive. In vitro studies have addressed the interactions between EphB and

ephrin-B in order to elucidate their mechanisms of action. Retinal explants, originating from different

parts of the retina were placed into contact with ephrin-B2. Ephrin-B2 induces a rapid growth cone

collapse, and sustained axon retraction of ventral-temporal RGCs, but has little effect on dorsal-

temporal RGCs (Petros et al., 2010).

This effect can be selectively reversed by using EphB4-Fc, which specifically blocks ephrin-B2

mediated inhibition of neurite outgrowth (Williams et al., 2003). Ephrin-B1, B2 and B3 show inhibitory

effects on neurite outgrowth for RGCs originating from the ventral-temporal part of the retina. Taken

together, these results suggest that EphB/ephrin-B signaling is a good candidate for organizing the

lateral-medial axis of the SC.

In vivo

EphB1

Retino-collicular mapping in EphB1 protein null mutants (Williams et al., 2003) have revealed a

mapping defect for RGCs, with the formation of eTZ originating from the ventral part of the retina with

a penetrance of 65% for homozygous animals, and 38% of heterozygous animals (Thakar et al.,

2011). The implication of forward signaling was pinpointed by a similar characterization in the EphB1

Tau-LacZ (Chenaux and Henkemeyer, 2011), in which the intracellular domain of EphB1 was replaced

by β-galactosidase. In these animals, forward EphB1 signaling is impaired, while reverse signaling is

maintained. Mapping defects could still be found in 59% of homozygous and 20% of heterozygous

animals, suggesting an implication of EphB1 forward signaling in retino-collicular mapping (Thakar et

al., 2011).

EphB2:

Evidence for the implication of EphB2 in dorsal-ventral mapping has come from the

characterization of EphB2 null mutants (Henkemeyer et al., 1996), which display mapping defects

originating from the ventral-temporal retina, in 21% of the homozygous animals and in 6% of the

heterozygous animals (Thakar et al., 2011). Further evidence has been derived from the

characterization of the EphB2LacZ mutant (Henkemeyer et al., 1996), in which the intracellular domain

of EphB2 was replaced by β-galactosidase; selectively disrupting forward signaling while maintaining

reverse signaling.
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A higher phenotype penetrance was observed when RGCs originate from the ventral-temporal

retina, with 62% penetrance in homozygous and 32% penetrance in heterozygous animals. A

dominant negative effect has been reported previously in EphB2LacZ animals (Cowan et al., 2000;

Dravis et al., 2004; Hindges et al., 2002), which can also be observed here with an increased

frequency of mapping errors, when compared with the EphB2 null protein mouse model. These

mapping defects are not found when injections are performed in the dorsal part of the retina,

suggesting that EphB2 is involved mainly in the mapping of ventral projections.

Further analysis of the different signaling pathways in point-mutated EphB2 mutants have

revealed the implication of the tyrosine kinase domain. EphB2K661R mutants (Genander et al., 2009)

have a point mutation that disrupts tyrosine kinase catalytic activity. Targeting defects from the ventral-

temporal zone can be found in 50% of homozygotes and in 21% of heterozygotes. These results

confirm the implication of EphB2 forward signaling, and indicates that the tyrosine kinase catalytic

activity is a key component in this signal transduction process (Thakar et al., 2011).

The involvement of the PDZ domain could not be excluded. To investigate this aspect, the

retino-collicular map of EphB2ΔVEV mutants (Genander et al., 2009) was characterized. These

mutants lack the ability to bind PDZ domain-containing proteins. Since no increase in the percentage

of animals displaying eTZ was found on the EphB3KO background, this binding site was considered

not to participate in the retino-collicular mapping (Thakar et al., 2011).

Analysis of the EphB2 F620D mutant that displays a constitutively active EphB2 (Holmberg et

al., 2006) has revealed in 29% of the animals, the formation of an eTZ along the lateral-medial axis

(Thakar et al., 2011), confirming the implication of the tyrosine kinase activity in retino-collicular

mapping.

EphB3:

Anatomical tracing in EphB3KO has revealed eTZ, originating from the ventral-temporal part of

the retina in 20% of animals, suggesting its implication in retino-collicular mapping (Thakar et al.,

2011).

ephrin-B1:

Given that ephrin-B1 is an X-linked gene, hemizygous male and heterozygous female ephrin-

B1KOs (Davy et al., 2004) were used to assess the implications of ephrin-B1 in retino-collicular map

formation. No mapping defects were found regarding RGCs that originate from the dorsal part of the

retina in these ephrin-B1 mutants. However, mapping defects that originate from the ventral part of the

retina were found in 25% of the ephrin-B1 hemizygous males and in 33% of heterozygous females.

ephrin-B2:

To test the implication of ephrin-B2 reverse signaling with regards to the guidance of the RGC

to the SC, the ephrin-B2 mutants that lack the intracellular domain of the ligand, was utilized (Dravis et

al., 2004; Thakar et al., 2011). In these animals, forward signaling is still functional whereas reverse

signaling is impaired.  ETZ can be found shifted medially to the main TZ in dorsal injections in 11% of

the heterozygotes, and in 27% of the homozygotes, and suggests that ephrin-B2 reverse signaling is

required for the dorsal RGC axon retino-collicular mapping. Mapping defects can also be found in

projections originating from the ventral part of the retina (42% of double mutants).
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Compound mutants:

Analysis of EphB1/EphB2KO double mutants have revealed severe mapping abnormalities for

projections originating from the ventral retina, with a lateral-caudal shift featuring a 100% penetrance

of the phenotype. Penetrance is decreased when EphB1KOs are crossed with the EphB2-LacZs (75%

for homozygotes, 66% for heterozygotes). However, no eTZs were found for projections originating

from the dorsal part of the retina.

In EphB2;EphB3KO double homozygous knock-outs, eTZs can be found shifted laterally in

roughly 40% of the animals. Further insights come from the use of EphB2KI, in which the intracellular

part of the receptor has been replaced by a β-galactosidase, which removes the function of

downstream signaling whilst retaining the function of upstream signaling. In double homozygous

EphB3KO;EphB2KI, laterally shifted TZs can be found in 60% of the animals, while 29% of the

EphB2KI/-; EphB3-/- mice display mapping defects (Hindges et al., 2002).

Conclusion

EphB and ephrin-B have been demonstrated to play a fundamental role in the mapping of the

RGC, from the ventral-temporal region of the retina, onto the medial-lateral axis of the SC. EphB1 and

EphB2 forward signaling is involved in the targeting of the ventral-temporal axons, as demonstrated by

studies in which the TK domain was specifically impaired, whereas EphB2 PDZ domain shows little

involvement. These results suggest an essential role for the tyrosine kinase activity in the formation of

the retino-collicular map. EphB3 seems to be involved also, although its ungraded expression in the

retina suggests that it is probably not carrying positional information by itself. This signaling is believed

to occur through interactions with ephrin-B1, as loss of function studies of this ligand unravel defects in

the mapping of the ventral-temporal axons. Ephrin-B2 is the only receptor to induce defects from the

dorsal part of the retina, and for which reverse signaling seems necessary for proper axon targeting.

The different responses can be explained by the expression of distinct molecules, according to

their location in the retina. Indeed, ventral-temporal axons are positive for EphB1, EphB2 and EphB3,

while dorsal-temporal axons are EphB3 and EphB2 positive. This spatial restriction suggests the

presence of combinatorial effects of these different receptors, regarding specific targeting in the SC.

The synergistic effects observed in compound mutants highlight the interplay between receptors and

ligands, which probably act together in order to instruct the final topographic location.

 The temporal dimension of the expression seems to play an important role in the different

implications of EphB and ephrin-B signaling. Gradients are subject to a variation during development,

and some only appear at particular time points, only to become uniform at later stages. Indeed,

EphB/ephrin-B signaling is also involved in the formation of the optic chiasm where in mice, 5% of the

RGCs project ipsilaterally. Evidence has accumulated concerning the role of EphB1 (Petros et al.,

2009) and EphB2 (Chenaux and Henkemeyer, 2011) in the formation of these ipsilateral projections.

This signaling takes place through interactions with ephrin-B2, expressed at the level of the optic

chiasm by radial glial cells (Williams et al., 2003).

Deciphering the relative contribution of each of the actors to these different processes is a

daunting task. The spatial-temporal expression pattern may provide insights into these mechanisms,

the same molecules being expressed at different time points, and localization being involved in

different processes, which together add to the complexity of EphB and ephrin-B signaling in the

formation of the retino-collicular map.
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Activity in the formation of visual maps

The formation of appropriate connections is essential for proper sensory processing. Even if

molecular cues play a fundamental role in establishing topological and topographic order, these

projections are later reshaped by activity. In particular, evidence has accumulated concerning the role

of activity during the formation of the retino-collicular map. Originally considered as mutually exclusive

mechanisms, a consensus has emerged whereby molecular cues are establishing a rough map,

during which activity is being involved in the refinement of the map (Cline, 2003; Tsigankov and

Koulakov, 2010).

Hebb theory

The contribution of activity towards the formation of appropriate connections both during

development, and later during learning, has been the subject of intensive study in the field of

neuroscience. The underlying debate involves the relative roles of nature (genetically encoded

developmental program) versus nurture (experience). Current viewpoints in the domain suggest a

cooperative process occurring at the interface between activity-dependent mechanisms and molecular

guidance cues. These two forces are acting together to properly wire the nervous system. Historically,

Hebb's initial postulate (Hebb, 2002) is often summarized as “Cells that fire together, wire together",

states that the correlated activity between two cells will lead to a remodeling of their connection

pattern, leading to either a decrease, or an increase, in their connections (Figure 18). This

mechanism, which is believed to be the cellular basis of learning and plasticity, allows individuals to

adapt to their environment in respect to optimization of sensory circuits (Cline, 2003).

This universal mechanism has also been studied in the context of map formation. More

specifically, the role of activity was investigated in the formation of the retino-geniculate (eye-specific

segregation) and retino-collicular map (retinotopy). The visual system displays some interesting

features for understanding the contribution of activity in the formation of the appropriate connections

during development. Indeed, from embryonic stages, the retina displays a spontaneous activity with a

high spatial and temporal correlation (“cells that fire together”), which are transferred to the target

structures. Indeed, a correlation between retinal waves and spontaneous activity in the SC and V1 has

been demonstrated, confirming the propagation of this activity (Ackman et al., 2012). This link was

confirmed by enucleation and pharmacological blockade of retinal inputs, leading to an altered

correlated activity in downstream targets (Ackman et al., 2012; Colonnese and Khazipov, 2010; Siegel

et al., 2012).These characteristics would maintain and refine the topographic order across brain

regions, because the connections between neighboring cells are strengthened (“wire together”),

whereas the connections from more distant cells are lost (Eglen et al., 2003).

The relative contribution of either molecular or activity-based cues has been a subject of

intensive debates over the years. Two different aspects will be described here: eye specific

segregation in the LGN and retinotopy in the SC.
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Figure 18: Refinement of projections by correlated activity. During development, correlated

activity propagates in the retina, leading to the sequential activation of neighboring cells. Correlated

activity (top, left). When adjacent cells fire together, this leads to the activation of the corresponding

collicular cell. This will lead to the reinforcement of connections. Uncorrelated activity (top, right).

When distant cell fire, their activity is uncorrelated. Connections are not maintained and are

eliminated. 

 Correlated activity

Δt between A and A' is small enough
to trigger SC cell firing

Uncorrelated activity

Δt between A and B is too big
to trigger SC cell firing

Retinal wave propagation
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Retinal wave propagation
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Spontaneous activity in the retina during development

Retinal waves (Ford et al., 2012; Torborg and Feller, 2005)

The role of activity in the formation of connections in the nervous system came from Hebb's

postulate. In the development of the visual system, this activity takes a particular form in the source

structure; the retina. Evidence for spontaneous activity in the retina came from recordings of neonatal

rabbit retinae, which display spontaneous bursting activity (Masland, 1977). Later on, a strong

correlation among neighboring RGCs was identified in fetal rat retina (Galli and Maffei, 1988; Maffei

and Galli-Resta, 1990; Meister et al., 1991).The simultaneous recordings of a large cell population by

electroretinogram, and optical recordings of intracellular calcium levels revealed a strong spatial and

temporal correlation of this activity, which became the so-called retinal waves (Feller, 1999, Wong,

1999). Further characterization of these waves revealed that they could start at any random location

and spread through the entire retinal space (Feller et al., 1996; Meister et al., 1991; Wong et al.,

1993). This correlated bursting activity was also found in the developing mouse retina and

demonstrated to be transferred to the LGN (Mooney et al., 1996).

Cells involved in the propagation of these waves were also characterized. Blockade of

cholinergic transmission alters these waves, which suggested a cholinergic transmission, thus

highlighting a potential implication of starburst amacrine cells (Feller et al., 1996). The implication of

RGCs was confirmed by a patch-clamp technique, suggesting that these waves may be conveyed to

downstream targets in the developing visual system (Feller et al., 1996; Wong et al., 1993). Both

amacrine and RGC display synchronized oscillations as demonstrated by calcium imaging (Wong et

al., 1995). Compelling efforts have been made to understand the mechanisms through which these

waves originate and propagate. Indeed in mice, these retinal waves can be separated into three

distinct stages, from E16 to P0 (stage I), P0-P11 (stage II) and P11-P21 respectively.

Stage I waves

Stage I retinal waves are large propagating waves that occur between E16 and P0 in mice

prior to the formation of retinal synapses, and initiated by RGCs. These waves can be reduced by

nAChR antagonists (Bansal et al., 2000), suggesting that they are partially driven by acetylcholine.

Other components involved may dependent on gap junctions and adenosine, since 18β-GA (a blocker

of gap junction coupling) completely abolishes stage I waves in the rabbit retina (Syed et al., 2004).

Stage II waves

Stage II retinal waves are mediated by cholinergic transmission (Feller, 2002; Feller et al.,

1996; McLaughlin et al., 2003; Zhou, 2001), and occur during the first postnatal week in mice. These

waves start at a random location and propagate across the entire retina (Feller et al., 1997). They are

initiated by spontaneous depolarization of starburst amacrine cell (SACs), which display a transient

recurrent excitatory connectivity in rabbits (Zheng et al., 2004, 2006). This recurrent network of SACs

was also confirmed in mice (Ford et al., 2012; Xu et al., 2016). To demonstrate the implication of

SACS, selective ablation of these cells was performed in ferrets (Huberman et al., 2003), leading to a

decrease in the correlation of activity in neighboring SACs. Depolarization of a single SAC triggers the

initiation of stage II waves, and occurs through volume release of acetylcholine that will depolarize

both neighboring RGCs and SACs, allowing the propagation of these waves. (Ford et al., 2012).

Additionally, the α3β2 nAChR subunit has been demonstrated to be a requirement for the propagation

of these waves. Indeed α3−/− mice have altered spatiotemporal retinal waves with 2 distinct types of

waves (large and small), whereas β2KO have no correlated waves (Bansal et al., 2000).
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Stage III waves

Stage III waves occur between P10 and P15, are mostly glutamatergic, and are initiated by

bipolar cells (Firth et al., 2005; Kerschensteiner, 2016). These waves are no longer sensitive to AchR

antagonists, and the switch from cholinergic to glutamatergic transmission correlates with the

maturation of bipolar cells (Miller et al., 1999; Wong et al., 2000). Recently, All amacrine cells have

been involved in the generation and propagation of glutamateric retinal waves (Firl et al., 2015). The

propagation of these waves is mediated by the volume release of glutamate (Blankenship et al., 2009;

Firl et al., 2013). Gap junctions are also involved in the dynamics of retinal waves. Indeed, the

absence of Connexin36 – a major component of the gap junction gates – leads to an altered firing

pattern during the second postnatal week (Akrouh and Kerschensteiner, 2013; Torborg et al., 2005).

Effect of altered activity in the retina

Effect on retinotopy: Chemical studies

Early evidence pointing toward the implication of activity in the formation of topographic maps

in the visual system was derived from drug-induced activity blockade, during development. In

mammals, tetrodotoxin (TTX) injections, which specifically block voltage-gated sodium channel, has

an effect on the refinement of the projections. Indeed, when blocking RGCs activity in rats with TTX,

targeting errors are maintained due to the overshooting (O’Leary et al., 1986). More specifically,

epibatidine application (a cholinergic antagonist) in ferrets (Huberman et al., 2003; Penn et al., 1998)

and mice (Cang et al., 2005b; Chandrasekaran, 2005; Rossi et al., 2001; Sun et al., 2008a) blocks

stage II retinal waves, leading to a reduced refinement of the termination zones (TZ) of the projecting

RGCs to the SC, and in the LGN. However, the retinotopic location of these TZs is maintained.

Controversies were raised when epibatidine was shown not only to block retinal waves, but also by

silencing only 50% of RGCs while increasing the remaining spontaneous activity (Sun et al., 2008a).

Effect on retinotopy: genetic studies

Chemical studies have demonstrated the implication of cholinergic transmission in the

propagation of retinal waves and on the refinement of retino-collicular projections. Many studies have

been conducted using the β2 knock-out mouse model (β2−/−). These animals lack the β2 subunit of

the nicotinic receptor (nAChR), which is involved in stage II retinal waves. As a consequence, these

mice display spontaneous uncorrelated firing, which disrupts the spatial feature of retinal waves

(Bansal et al., 2000; McLaughlin et al., 2003; Rossi et al., 2001). Stage II retinal waves in β2-/- animals

are mediated by gap junctions that display different spatiotemporal properties, as compared to

cholinergic waves (Kirkby et al., 2013; Sun et al., 2008a; Torborg and Feller, 2005).

In contrast to WT animals, P4 β2−/− mice show a reduced correlation in the firing patterns

between neighboring retinal neurons (McLaughlin et al., 2003). Further investigation revealed that

correlated activity is still present in these animals, with an increase in frequency of the traveling

waves, and a lack of direction preference (Stafford et al., 2009; Sun et al., 2008b). This suggests that

wave directionality coupled to short-range correlated bursting patterns of RGCs, work together to

refine retinofugal projections (Stafford et al., 2009)

Anatomical characterization of β2−/− animals by DiI tracing showed abnormally diffuse TZs in

the SC at the topographically correct location. When looking at single RGCs arborizations, a larger

axonal arborization can also be found in these knock-outs (Dhande et al., 2011). Furthermore this

improper refinement could still be observed at P20 after eye opening, suggesting that it is not rescued

by stage III retinal waves (McLaughlin et al., 2003a).
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Electrophysiological recordings in β2- / - animals also demonstrated larger receptive fields

(Chandrasekaran, 2005). Functional imaging showed that regions activated by a single visual stimulus

are larger and more diffused when compared to wild-type. In addition, a distortion of the overall map

can be found (Mrsic-Flogel, 2005). Together these results suggest that the cholinergic-driven waves

during the first postnatal week are required for retinal axon refinement in the SC (Firth et al., 2005).

Effect on eye specific segregation: Chemical studies

Activity is also involved in the eye-specific segregation in the LGN. Early evidence came from

prenatal chronic diffusion of TTX in cats, which lead to the abolition of eye-specific segregation in the

LGN (Shatz and Stryker, 1988). However, binocular TTX injections from birth to P10 are shown to

delay, but not prevent eye-specific segregation in ferrets (Cook et al., 1999). In mice and ferrets

treated with epibatidine, an overlap of ipsi and contralateral axons can be observed in the LGN,

suggesting the involvement of stage II retinal waves in eye-specific segregation (Penn et al., 1998;

Rossi et al., 2001). Interestingly, if these animals are kept until the occurrence of stage III retinal

waves, this segregation is partially rescued with the formation of patchy, random patterns of eye-

specific zones in the LGN (Huberman et al., 2002; Muir-Robinson et al., 2002). A decrease in

correlation by a specific removal of SAC, is not sufficient to alter the eye specific segregation,

indicating that the presence – but not the normal pattern – of spontaneous RGCs discharges, is

required for eye-specific retino-geniculate segregation (Huberman et al., 2003). When activity is

increased in one eye by elevating cAMP levels, a spreading of the eye-specific zone in the LGN in

ferrets can be found (Stellwagen and Shatz, 2002).

Genetic studies

Eye-specific segregation was also studied in the β2KO animals. Eye-specific segregation fails

to occur in the normal time frame (Cang et al., 2005a; Chandrasekaran, 2005; Grubb et al., 2003;

Muir-Robinson et al., 2002; Pfeiffenberger et al., 2005; Rossi et al., 2001), suggesting an implication of

activity in eye patterning. In another model, the Cx36− / − mice exhibit an altered spontaneous firing

activity, and displays tonic firing at low rates between bursts. In these animals a normal eye-specific

segregation in the LGN can be found, suggesting that high-frequency bursts that are synchronized

across nearby RGCs are correlated with eye-specific segregation, whereas additional asynchronous

spikes do not inhibit segregation (Torborg et al., 2005) .

Effect of altered activity in the superior colliculus

In Xenopus, a specific blockade of NMDA receptors in the tectum by AP5 (a selective NMDA

receptor antagonist) alters the early development of the tectal cell's dendritic arbor. At later stage both

AMPA and NMDA blockade decrease the dendritic arbor branch length, consistent with the role of

glutamatergic synaptic transmission in maintaining dendritic arbor structure (Rajan and Cline, 1998).

In rats, chronic treatment of an NMDA-receptor antagonist reduces the elimination of mistargeted

axonal arborization (Simon et al., 1992).

The topography of the retinotopic maps in the hamster with a partially ablated SC (via an

electric lesion), was determined by multi-unit mapping and was subsequently found unaltered. NMDA

receptor blockade increases the receptive field size of single units in normal maps (Huang and Pallas,

2001), but does not affect the velocity or the size tuning (Razak, 2003). In addition, when NMDA

receptors are blocked during development in rats, the size of retinal axon's synapse are increased at

P6, P8 and P10 (Colonnese and Constantine-Paton, 2006).
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Conclusion

 The instructive versus permissive role of activity in the establishment a refined topographic

map has been controversial. A permissive role would suggest that activity by itself does not induce

subsequent changes, whereas an instructive role suggests that activity is required for specific

targeting of the projections. Untangling both process remains challenging. Indeed, if activity is solely

permissive (allowing other types of signaling), alteration could induce changes in molecular signaling,

which would mimic an instructive role.

However, evidence for an instructive role for activity has built up recently (Chandrasekaran,

2005; Xu et al., 2011). Historically, experiments in amphibians have demonstrated that forcing two

eyes to innervate the same tectal lobe results in the formation of ocular dominance bands that can be

reversed by blocking the activity. These results suggest that this segregation is induced by the

correlated activity within each eye (Constantine-Paton and Law, 1978; Reh and Constantine-Paton,

1985).

As described above, improper refinement can be observed in many cases in the absence of activity.

Further evidence has come from the fact that a disrupted activity also induces subsequent changes.

Indeed, β2KO were initially thought to lack correlated activity in stage II retinal waves, but more recent

studies demonstrated that residual correlated activity could still be found in these mutants. As

mentioned earlier, they present unrefined retino-collicular TZs, strongly suggesting that the presence

of activity is not only required for the refinement of retino-collicular projections, but that it must follow

specific spatial-temporal features (Stafford et al., 2009, Shah and Crair, 2008). β2 rescued  animals –

in which β2 expression is restored solely in RGCs – display altered cholinergic retinal waves (Xu et al.,

2011), which result in an impaired refinement of the retino-collicular projections; suggesting that stage

II retinal waves must originate within SACs for proper correlation.  

Concerning the role of activity in the formation of the retino-collicular map, patterned activity

may be solely involved in the elimination of eTZs. Furthermore, concerning eye specific segregation, a

partial recovery can be observed when animals are allowed to reach adult stages, suggesting a delay

in maturation rather than a disruption in the refinement process (Huberman et al., 2003). Experiments

altering the activity at the level of the SC also lead to an increase in ectopic arborization.

The mechanisms through which correlated activity shapes the refinement of the retino-

collicular projections are still under investigation. The presence of correlated firing both from a

temporal and spatial aspect suggest an instructive role of activity. Indeed, according to Hebbian-based

processes, these retinal waves will make RGCs that are close to each other to fire together and

reinforce their synaptic strength, leaving those that are far apart with a temporal delay in firing and no

synaptic reinforcement. As a consequence, the timing of correlated firing indicates that RGCs are

close neighbors in the retina, suggesting that retinal waves also carry spatial information from the

retina to the SC (Butts and Rokhsar, 2001). Support for the requirement of a specific temporal pattern

and such a mechanism come from in vitro induction of LTP among immature synapses in the SC, by

mimicking retinal waves. (Shah and Crair, 2008)

In addition, these waves have been demonstrated to travel to downstream targets. However,

little is known about the mechanism by which these waves could be read out in the target structure.

Indeed, among Hebbian rules that could apply in this condition, the phenomenon of spike-time

dependent plasticity (Bi and Poo, 1998) (that can be considered as a coincidence detector) gives a

particular time window for synaptic reinforcement to occur. This type of plasticity is believed to be

NMDA receptor-mediated. NMDA receptors have been demonstrated to be involved in the refinement

of retinotopic projection and selective branch elimination (Ruthazer et al., 2003).
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Manipulation Retinal activity Retinotopic refinement Reference

Binocular epibatidine in

mouse

Stage II retinal wave

blockade
Reduced refinement

(Cang et al., 2005b;

Rossi et al., 2001; Sun

et al., 2008a)

β2-nAChR KO

in mouse

Gap junction-mediated

retinal waves with

reduced nearest

neighbor correlations;

increased uncorrelated

firing between waves

Reduced refinement

(McLaughlin et al.,

2003; Muir-Robinson et

al., 2002; Rossi et al.,

2001)

Rescue of β2-containing

nAChRs in RGCs of β2-

nAChR KO mouse

Small-range cholinergic

retinal waves
Normal refinement (Xu et al., 2011)

AC1 KO mouse (lacks

the calcium-dependent

adenylate cyclase 1) 

Normal retinal waves Reduced refinement
(Dhande et al., 2012;

Plas et al., 2004)

MAOA KO mouse

(lacks monoamine

oxidase A resulting in

excess serotonin)

Unknown Reduced refinement
(Upton et al., 1999,

2002)

Altered ephrin

expression/signaling

in mouse

Normal 
Disrupted targeting but

normal refinement 

(Cang et al., 2008a;

Huberman et al., 2005;

Pfeiffenberger et al.,

2005, 2006)

Ten-m3 KO and Ten-

m2 KO mice (lack

members of teneurin

family of glycoproteins) 

Normal retinal waves
Altered ipsilateral

mapping

(Leamey et al., 2007;

Young et al., 2013)

Table 4: Summary of the effects of altered activity on retinotopy in the superior colliculus in

mouse
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Controversies regarding the instructive role of activity came from in vitro study in which ephrin-

A5 collapse response was altered in the presence of TTX (Nicol et al., 2007), demonstrating that

neuronal activity modulates the repellent action of ephrin-As through the downstream second

messengers calcium and cAMP. Taken together, these results suggest that activity is required for the

proper read-out of molecular cues.

Activity-dependent refinement processes seem to occur at a local rather than a global

refinement of TZs. Indeed, topographically incorrect termination sites can be found in molecular

guidance mutants, which would otherwise be eliminated by correlated activity. Indeed eTZs, which are

located far from the topographically correct location, should not be strengthened throughout this

process. A way to test the contribution of activity in the refinement of projections would be to

pharmacologically block the activity in ephrin-As KO mutants. If activity is involved in the elimination of

eTZs, this would lead to an increase in the number of these sites by blocking the process of collateral

elimination. Indeed, even if this has already been tested in compound β2/ephrin-A2/A3/A5KO, eTZs

are likely to be refined by locally correlated activity, which is still present β2 KO.

Isl2-EphA3KI heterozygotes could also be used as a read-out of the contribution of activity. In these

animals, projections from the nasal pole of the retina are duplicated, while projections from the

temporal pole are single. The existence of this collapse point has been suggested to be due to a

counterbalancing effect originating from correlated activity. By altering activity in these animals, the

relative contribution of each mechanism can be better understood.

In summary:

Concerning spontaneous activity:

• RGCs present a correlated activity during development

• This correlated activity spreads to downstream targets

Altering/blocking activity in the retina or in the SC leads to:

• Unrefined TZs

• Larger receptive fields

• Compressed map

• Increased number of synapses

• Same tuning properties
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Competition in the formation of visual maps: biology 

Competition for space seems to be an important process for the formation of a retino-collicular

map. This mechanism is indeed required to explain map expansion and compression as observed in

original experiments with partial ablation of either the retina (Attardi and Sperry, 1963), or the SC

(Yoon, 1971). If positional information was solely carried by molecular tags, maps would not be able to

adapt to changes in the collicular space. In addition, in the absence of a counter-balancing force, all

axons would target the rostral pole of the SC, where the ephrin-As repulsion is the lowest. An

interaction and a competition for space between these entering fibers is therefore required to order

themselves relative to one another, and to fill the entire collicular space.

In models with decreased retinal inputs, the competitive strength is decreased. In these cases,

axons tend to occupy more space, making extended TZs.

Math5-/-

In the Math5-/- mutant, only 5-10% of the RGC population remains, and is evenly distributed

throughout the retina (Lin et al., 2004). When tracing the entire population of RGCs, only the rostral-

medial part of the SC is innervated (Triplett et al., 2011), suggesting that the projections are highly

repulsed by ephrin-As at the caudal pole of the SC, and attracted medially by  EphB gradient. These

forces need to be counterbalanced by competition in order to yield an ordered topographic map.

Indeed, when tracing focal zones in the SC with retrograde tracing by CTB (Cholera toxin B subunit),

RGCs in Math5-/- animals are spread across the entire retina, with a broad distribution, suggesting

that projections lose their topographic location. Similarly, anterograde labeling reveals a sparse and

unrefined TZ, suggesting that in absence of competition, projections are not able to refine properly and

to reach their topographically correct position.

Dicer

A conditional deletion of retinal progenitor cells also gave an insight into the competitive

mechanisms driving retino-collicular map formation. Using Pax6α as a driver for the deletion of

Dicer1, retinal progenitor cells are specifically ablated in the distal-most nasal and temporal pole of

the retina.  In these animals, 40% of the RGCs remains, but whole eye-fill tracing reveal that

projections occupy 85% of the collicular space, leading to an expansion of the map. In this case, the

general retinotopy is maintained, but retrograde labeling show an increased dispersion of RGCs in

the retina as compared to wild-types (Maiorano and Hindges, 2013).
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Mechanistic models of retino-collicular map development

The presence of complementary gradients of EphAs and ephrin-As in both projecting and

target structures, along with their opposite gradients of expression within a given structure, their

forward and reverse signalling modes, their ligand-receptors binding similarities and the controversies

between in vitro and in vivo observations; has dramatically increased the complexity of the

identification and design of mechanistic models of action of EphA/ephrin-A signaling.  However, the

use of elaborated genetic studies (conditional knock-outs, knock-ins, compound knock-in/knock-out,

multiple knock-outs) led to many recent insights, notably regarding the signaling mode (relative vs

absolute) and the counter-balancing forces required for robust mapping mechanisms (competition vs

dual-gradient vs servomechanism).

Different hypotheses have been made regarding contribution of forward signalling (retinal EphA

receptors interacting with collicular ephrin-As) to the formation of the retino-collicular map. Indeed

different forces are required to explain plasticity and phenotypes observed in mouse models, in which

Eph/ephrin signalling is partially disrupted. Theoretical work has given many insights into the

requirements and constraints for establishing topographic maps.

Forward signalling is relative

Gain-of-function studies and genetic approaches gave a further explanation on how maps can

be plastic, such as in-map compression or ablation studies, or respond to gradient perturbation. These

experiments provided an insight into the signaling mode through which EphA and ephrin-As interact to

provide positional information. Forward signaling is characterized by the binding of retinal EphAs to

collicular ephrin-As, inducing a repulsive response. As a consequence, RGCs with the highest level of

EphA receptors connect to collicular targets that carry the fewest amount of ephrin-As, and vice versa.

Indeed, ephrin-As are chemorepellent (especially for temporal axons), which will establish connections

in the rostral pole of the SC. First evidence for the operation of forward signaling in the establishment

of the retino-collicular map in vivo came from the characterization of ephrin-A2KO. Indeed, ephrin-A2

expression is only graded in the SC and mapping defects, with the presence of eTZs, can be observed

in these mutants. These observations corroborate with the implication of forward signaling.

Relative signaling

Evidence for a relative signaling principle came from the generation of the Isl2-EphA3KI mice

(Brown et al., 2000). In this mutant, EphA3s are selectively expressed in 50% of RGCs that induce a

map duplication, due to the differential segregation of two RGCs sub-populations: the Isl2-positive

RGCs that express wild-type levels of EphAs, and ectopic EphA3 and Isl2-negative RGCs, which

express the wild-type level of EphAs. In heterozygous animals, the retino-collicular map is partially

duplicated, with the appearance of a collapse point along the rostral-caudal axis of the SC for retinal

projections arising from the temporal end of the retina (≥ 76% of the nasal-temporal axis). This

suggest that the Islet-2 positive RGCs that express high levels of EphA receptors, still map in the SC

independently of their absolute level of EphAs. Moreover, the presence of a collapse point in the

heterozygous animals suggest that the superimposed level (spikes) of EphA3 beyond the collapse

point (≥ 76% of the nasal-temporal axis) is too low, relative to the high endogenous EphA4, A5 and A6

level of expression, in order to allow the system to discriminate between an EphA3 (Islet-2 positive)

and a wild-type (Islet-2 negative) RGC. In addition, both projecting sites in homozygotes are shifted

from wild-type projections, which means that wild-type RGCs are also displaced from their correct

location in the SC. These observations suggest a competition between ganglion cells for the
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Figure 20: Models of counter-balancing forces in retino-collicular mapping. Repulsion from forward

EphA/ephrin-A signalling (retinal EphAs, (blue) and collicular ephrin-As (red or purple)) need to be counter

balanced. Dual-gradient. In this model, retinal ephrin-As (red) signal with collicular EphAs (blue), exerting a

repulsive force originating from the rostral pole of the superior colliculus. Servomechanism model. In  this

model, collicular ephrin-As (purple) have a bifunctional signalling, where they can either exert repulsive or

attractive forces (purple arrow).  Competition model.  RGC can interact with each other and repel other toward

the caudal pole of the superior colliculus. 

Figure 21: Theoretical model for neural map formation.
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innervation of the SC. These results provided a strong support for the Relative signaling model, in

which RGCs compete for termination sites along the rostral-caudal axis of the SC through a

comparison of relative, or ratio-based differences in the EphA signaling intensity. This model was also

tested and validated in compound mutants in which EphA4 (Reber et al., 2004) and EphA5 (Bevins et

al., 2011) was removed.

This suggests that EphA and ephrin-A signaling operates through a relative rather than an

absolute-forward signaling mode, and that competition is involved in the formation of the retino-

collicular map.

Counter-balancing repulsion 

Servomechanism model

In the absence of a counterbalancing force, RGCs would all target to the rostral pole of the SC,

since the caudal pole exerts repulsion. One way to counter-act this repulsion would be to have the

same molecular mechanism exert a differential role according to the concentration. Servomechanism

models posit that a single graded molecule can have both positive and negative effects that serve to

guide retinal axons to their correct position. This hypothesis is supported by in vitro findings, which

demonstrated that the repulsive effect of ephrin-A2 and ephrin-A5 varies continuously with retinal

position, and can either inhibit or promote neurite outgrowth (Hansen et al., 2004). Another possibility

would be that the optimal concentration of EphA/ephrin-As would be permissive for BDNF-induced

branching. However, this differential response to different levels of ephrin-A2 is observed in the

membranes of 293T cells transfected with ephrin-A2, compared to wild-type rostral membranes, and

does do not promote axonal outgrowth in an absolute way (Weth et al., 2014).

Dual gradient model

A possible way to counter-balance EphA/ephrin-A forward repulsive signaling from the caudal

pole of the SC, would be the presence of another repulsive gradient running in the opposite direction.

The presence of counter-gradients of EphAs in the SC and ephrin-As in the retina suggest that they

could fulfill this role. EphA7 is only expressed in the SC, and loss-of-function studies of this receptor

has revealed the formation of eTZs; further confirming the implication of reverse signaling in retino-

collicular mapping (Rashid et al., 2005). This suggests that retinal ephrin-As are activated by collicular

EphAs, leading to a repulsive reverse signaling. However a bidirectional signaling that is fully based

on dual gradients (reverse and forward signalling) as suggested here, would preclude the entry of

nasal axons into the SC, since they carry high levels of ephrin-As, and would therefore encounter a

high level of EphAs. However, as observed in vitro, nasal axons might be desensitized in a first step

and acquire their sensitivity to collicular EphAs in the SC in a second step.

Competition

Another way to account for the necessity of a counter-balancing force is through competition.

If the chemical cues are read in a relative manner and all projections show a differential (graded)

affinity towards the source target, then competition plays a fundamental role in the organization of the

retino-collicular map.

Axonal interaction

Even if competition seems to be a required process for the formation of the retino-collicular

map, molecular cues involved in this particular process remain to be elucidated. A good candidate to

sort out axons relative to each other is axon/axon interactions. In vitro experiments in chick, in which
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ingrowing axons were given a choice between temporal or nasal axons to grow along, had

demonstrated that growth cones from the temporal half of the retina preferentially grew along temporal

axons, whereas nasal retinal axons do not distinguish between nasal and temporal ones (Bonhoeffer

and Huf, 1985). Axon-axon interactions could occur in the SC during the over-shooting phase, and the

presence of gradients and counter-gradients strongly suggests these interactions.

A recent in vitro study demonstrated that temporal growth cones collapse when contacting

nasal axons. This retraction can be prevented by PI-PLC treatment, suggesting an implication of

ephrin-As. In addition, a conditional ephrin-A5KO was generated, where ephrin-A5 can be either

specifically removed from the retina or the SC. The phenotype observed suggests that nasal axons

repel temporal axons from the caudal pole of the SC through an axon-axon interaction (Suetterlin and

Drescher, 2014). Some ephrin-As could be engaged in axon/axon mediated repulsion, according to

their localization on the axon shaft, while other ephrin-As could interact with collicular gradients of

EphAs.

Theoretical modeling

Theoretical modeling of the retino-collicular map formation, and to a greater extend of

topographic maps relies essentially on 3 aspects which have been developed earlier: 1) Chemoaffinity

2) Competition 3) Correlated activity. Prestige and Willshaw (1975) were the first to formalize notions

of chemospecific matching suggested by Sperry's hypothesis and to computationally investigate the

importance of competition in this context. They defined a crucial distinction between two forms of

chemical matching termed “type I” and “type II”. In “type I” matching each retinal cell has an affinity for

just a small neighborhood of tectal cells, with a peak affinity for the topographic matching cell in the

target tissue. In schemes of “type II” matching, all axons have high affinity for making connections at

one end of the tectum and progressively less for tectal cells elsewhere. Conversely, tectal cells have

high affinity for axons from one pole of the retina and less from others; there is graded affinity between

the two sets of cells. However, constraints about the number of connections each cell can make is

important. If this number is not limited, then no map results, but introducing competition, by restricting

the total connections, does lead to a map. These key concepts led to the formulation of different

computational models. Here only computational models based on Eph/ephrin-A chemoaffinity will be

considered.

Servomechanism model 

The “Mass Action Model” (Nakamoto et al., 1996) proposed that axons stop growing across the

SC whenever they encounter a standard value of a negative signal from a receptor (i.e. law of mass

action, [RL] = KA[R][L], with receptor concentration, R, ligand concentration, L, and KA, affinity

constant). This is purely a “type I” model, specifying when axons should stop growing, however it does

not address how they seek out appropriate targets. Developing axons carry a particular value of

receptor (R) according to their position along the nasal-temporal axis, and encounter different amounts

of ligand across the rostral-caudal axis of the SC (L) and compare it to a standard signal strength (S).

To simulate the formation of the map at each step, a new value of ligand is encountered and the

repulsive strength is computed as follow,  R•L-S. If the repulsive strength is smaller at the new site,

then the axon terminal migrates towards it, otherwise it remains on the same site. This procedure is

repeated until repulsion is minimized. This model is type I, and cannot account for map plasticity. An

extended version of this model was developed that added competition (Honda, 2003), although some

of its assumptions are arbitrary and its explanatory power is limited.
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Arrow model and extensions

In the original “Arrow Model” (Hope et al., 1976), axons exchange position if they are

relatively in the wrong location. This mechanism was originally described as instructions given to

soldiers that need to be lined up according to their size:

“Choose either of your neighbours:

If you have chosen your left-hand neighbour, then

if he is taller than you stay put;

if he is shorter than you change places.

If you have chosen your right hand neighbour, then

If he is taller than you, change places;

If he is shorter than you stay put. “

In this case, only one connection can be established in the SC, which is considered as a discrete

space. A randomization is also implemented. This model failed to account for translocated maps since

it relies exclusively on local rather than global information. Overton and Arbib (1982) presented a more

sophisticated version of the “Arrow Model”, termed the “Extended Branch-Arrow Model”, which is

much more realistic as it considers the tectum as a continuum rather that a discrete array of positions.

An additional force that directs axons to their appropriate position was also added.

More recently, a probabilistic version of combined Arrow models and a servomechanism model

was proposed (Koulakov and Tsigankov, 2004), based on a stochastic interchange between

neighboring axon terminations in the SC – The Markov Chain Model. In this model, axons exchange

their connections in order to minimize their energy levels, according to the amount of receptors and

ligands. This Markov Chain Model models the formation of disturbed maps generated by EphA

mis/over-expression. However, the weakness of this model resides in the lack of robustness in the

constraints, varying according to the type of mis/over-expression.

Marker induction model

Von der Malsburg and Willshaw (1977) proposed the “Tea Trade Model” based on the idea that

map formation might be dependent on induction of molecules from the retina into the tectum. There

are no pre-existing tags encoding position in the tectum, it is assumed that retinal markers are

transported to the tectum via induction. Subsequent experimental data have made it clear that there

are pre-existing gradients in the tectum and that these play a crucial role in retino-tectal mapping. 

Gierer model (Counter-gradient model)

Gierer (1983, 1987) proposed a model based on the matching of pre-existing gradients in

retina and tectum based closely on Sperry's chemoaffinity hypothesis and introducing the concept of

counter-gradients (two gradients running in the opposite direction in the tectum). However, competition

and axon-axon interaction were not considered, and the rigidity of the matching strongly limits its

explanatory power. 

Branching model

Following experimental data (Yates et al., 2001), a computational model in which topographic

specificity is based on axonal branching, was developed (Yates et al., 2004). In this “Branching

Model”, counter-gradients of both branch-promoting/inhibiting (counter-gradients of ephrin-As and

EphAs in the tectum) molecules are required in the SC to generate topographic specificity. This is

mostly a type I model, where branching occurs probabilistically, with some flexibility due to the ability

of axons to interact.
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Relative signaling model

Based on experimental data acquired in the Isl2-EphA3KI, the “Relative signaling Model” was

proposed (Reber et al., 2004), based on relative signaling and competition between axons for

collicular innervation (“type II matching model”). However, this model does not account for the

dynamics of the mapping during development.

Balancing reverse and forward signaling

Another model was also proposed recently (Gebhardt et al., 2012), in which chemoaffinity is

extended to include ephrin-A/EphA-based fiber/fiber chemospecificity, eventually out-competing

fiber/target interactions. This model takes into account signals generated from axon–target, axon–

axon, and intra-axon interactions between ephrin-As and EphAs.

Most of the theoretical formulations of Sperry's chemoaffinity hypothesis done so far find their

roots in the pioneering work of Prestige and Willshaw, representing a hallmark in the field of

theoretical neurobiology.
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Visual maps and behavior

Originally, the SC gained interest with the description of a contralateral neglect of visual stimuli

following a lesion of this structure, despite the fact that other visual pathways were intact (Sprague

and Meikle, 1965). Further studies demonstrated that the SC, through its projections, controls

essentially two components that are involved in attention: saccades and head movement.

Saccades are rapid, ballistic eye movements that abruptly change the point of fixation, during

which the eye is relatively stationary and gathering visual information. The circuit for saccade

generation has been extensively characterized in cats and monkeys, but fewer studies have been

conducted in mice. Indeed, the laterality of the eyes suggested that head movement was mostly used

for gaze orientation. However, electrical stimulation of the SGI can induce eye movements similar to a

saccade in mice, suggesting the existence of saccade generator circuits downstream of the mouse

SC, in a similar manner to that of cats and monkeys.

The SC plays an essential role in orientation through representations of space, in integration of

different sensory inputs, and in sending direct motor outputs. These spatial representations take the

form of maps, which can be found along the height of the SC, with superficial layers receiving visual

inputs, and deeper layers receiving auditory and somatosensory inputs. This multi-sensory integration

is also subject to modulation from cortical regions. Due to the small amount of studies conducted in

mice, results obtained in two other species of rodents, hamsters and rats, will also be considered.

Superior colliculus and behavior

A behavioral study in mice demonstrated that unilateral optogenetic activation or inhibition of

one half of the intermediate and deep layers of the SC can lead to a significant shift in the movement

direction during a sensorimotor decision task. A controlateral bias could be induced when the

corresponding half of the SC was activated, while inhibition resulted in an ipsilateral bias (Stubblefield

et al., 2013).

Catecholaminergic modulation of the superior colliculus

The SC receives noradrenergic innervation from the locus coeruleus (LC) and RGCs,

dopaminergic innervation from the substantia nigra, as well as serotoninergic innervation from the

raphe nucleus (May, 2006). When the colliculus is activated by environmental stimuli (mostly visual

and auditory), signals triggered by these stimuli have to be above the background firing in order to be

processed and integrated. A high signal-to-noise ratio is required to retain salient (strong) stimuli and

to weaken distractible stimuli (Dommett et al., 2009). Dopamine is known to increase the signal-to-

noise ratio in striatal cells (Volkow et al., 2001), and is believed to play a similar role in the SC (Gowan

et al., 2008). Recently, a segregation in the distribution of D1 and D2 receptors in the superficial and

intermediate layers of the SC has been demonstrated. Dopamine in the SC originates from small

diencephalic cell group called A13, and appears primarily inhibitory to SC neurons (Bolton et al.,

2015). Accordingly, D-AMPH and MPH increase the signal-to-noise ratio in the SC of rats (Dommett et

al., 2009). From a behavioral aspect, an altered signal-to-noise ratio can transform a non-salient

stimulus into a salient stimulus, leading to inappropriate responses and increased distractibility.

Superior colliculus and attention deficits

The SC plays a fundamental role in orientating gaze towards salient stimuli, and is known to

control and generate saccadic eye movements (May, 2006). More recently, it has been shown to

participate in visuo-spatial orientation and attention (Lovejoy and Krauzlis, 2010). Consistent with its
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role, dysfunction of the SC has been involved in several psychological diseases and syndromes such

as epilepsy (Ross and Coleman, 2000), schizophrenia (Cutsuridis et al., 2014), supranuclear palsy

(Armstrong, 2011) and ADHD (Dommett et al., 2009; Miller, 2009; Overton, 2008).

Attention deficits

Considered as the first psychiatric disorder to be diagnosed in children, Attention

Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disease, generally diagnosed before

the age of 7, of complex etiology. It affects 8-12% of children – of which half retain ADHD symptoms

as adults – and also it shows a 75% of heritability and a sex ratio of 3 to 6 males for 1 female

(Biederman, 2005). Patients show increased impulsivity, distractibility and activity (Himelstein et al.,

2000).

Although the etiology of this disease is not fully understood, therapeutic effects of MPH

(methylphenidate) and D-AMPH (dextroamphetamine) suggest that noradrenergic and dopaminergic

transmission is impaired (Volkow et al., 2001). MPH is known to inhibit both dopamine (DAT) and

noradrenalin transporters (NAT), leading to increased levels of dopamine and noradrenalin in the

synaptic cleft. D- AMPH has a non-specific action as it increases both noradrenalin release and

reduces monoamine oxydase activity (MAO - involved in monoamine catabolism) (del Campo et al.,

2011). Structural and functional imaging have also pointed out a dysfunction in fronto-cortical

pathways (Biederman, 2005). Even if some findings regarding noradrenalin levels in ADHD are

conflicting (decrease or increase), an important aspect seems to be the balance between the

catecholamines rather than their absolute concentrations. Indeed, relationship between catecholamine

levels and performance is often viewed as a U-shaped function (del Campo et al., 2011), meaning that

both an increase or a decrease can lead to impaired performance. In addition the balance between

dopamine and noradrenalin seems to be critical for ensuring an optimal performance (Aston-Jones

and Cohen, 2005). Recent findings suggest that ADHD symptoms (in particular impulsivity and

distractibility) are the result of a collicular hyperstimulation (Overton, 2008). Supporting this idea,

ADHD patients are often unable to produce certain saccadic types (anti-saccade and express

saccade), and show an increased distractibility in tasks linked to the colliculus (Overton, 2008).

Collicular dysfunction in animal models of ADHD

Recently, the characterization of visual responses in animal models of ADHD, the New

Zealand genetically hypertensive rat (GH) (Sutherland et al., 2009) and the spontaneously

hypertensive rat (SHR) (Sagvolden, 2000) has been conducted. In both strains, an increased

responsiveness of the superficial layers of the SC was observed, with an increased response

amplitude to whole field light flashes in GH rats (Clements et al., 2014), and a longer response

duration without desensitization in SHR rats (Brace et al., 2015). In GH animals, this response change

could be reduced by a widely used treatment of ADHD: D-Amphetamine.

Behavior in mice with altered visual maps: ephrin-As deficient mice

Ephrin-A5/ephrin-A2KO has been suggested as a mouse model of Autism Spectrum Disorders

(ASD), since they display a repetitive grooming behavior (Wurzman et al., 2015). The single ephrin-

A2KO also presents a particular learning deficit. Even if these mice have similar learning rates and

sensitivity to a stimulus when compared to WT mice during the initial acquisition of a visual

discrimination task, they employ a different learning strategy during reversal learning (Arnall et al.,

2010). However, these animals present other altered pathways than the retino-collicular map, due to

the general expression of ephrin-As throughout the brain during development.
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Defective response inhibition and collicular noradrenaline enrichment in mice with duplicated

retinotopic map in the SC. 
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Biehlmann, A., Goumon, Y., Lacaud, A., Lelièvre, V., Kelche, C., Cassel, JC., Pfrieger, F. W., Reber,

M. (2014).  Brain Structure and Function, 220(3), 1573-1584.

Isl2-EphA3KI mice

The SC is involved in attentional processes as well as gaze orientation, but behavioral

consequences of an altered retinotopy specifically has not been investigated. The Isl2-EphA3KI over-

expresses EphA3 (an EphA receptor), in Isl2+ cells that represent 50% of retinal ganglion cells, that

are homogeneously spread throughout the retina. This leads to a strong phenotype in both the cortico-

and the retino-collicular map, due to the differential responses of Isl2 + and Isl2- RGCs during the

formation of visual maps, which carry different levels of EphAs. As a consequence, both maps are

duplicated (Brown et al., 2000; Reber et al., 2004). This anatomical duplication is also functional, with

the coexistence of two maps in the SC covering the entire retinotopic space, leading to the activation

of two distinct zones for the stimulation of a single part of the visual field (Owens et al., 2015; Triplett

et al., 2009).

Behavioral characterization

To investigate behavioral consequences of an over-stimulation of the SC, a behavioral and

molecular characterization study was conducted. This study demonstrated that visual acuity,

locomotion and memory are unaltered in the Isl2-EphA3KI. However, attentional defects were

revealed through two different tests: the Go/No Go and the dark/light box test. These mutants

displayed an enhanced impulsivity in addition to a tendency towards distractibility, especially in the

presence of visual distractor.  

Monoaminergic signaling

Monoaminergic signaling was also characterized in these animals through a quantification of

dopamine, serotonin, adrenalin and noradrenalin, their receptors, metabolic enzymes, and

transporters. These results had revealed no subsequent changes in expression at the mRNA level in

the structures under study. However, a 2-fold increase in noradrenalin was found in the superficial

layers of the SC in homozygote mutants, where the duplication can be found.

Therapeutic considerations

Behavioral defects found in the Isl2-EphA3KI mouse model are similar to symptoms observed

in humans with attention deficit disorders (ADD). ADD is, according to DSM-V, a persisting attention

deficit, that is often associated with hyperactivity and impulsivity, occurring during development. To

date, GWAS studies have not associated this disorder with any particular gene. Current hypothesis

concerning etiology suggest an imbalance in monoaminergic signaling, especially in dopamine levels.

These results come from quantification of monoamines levels in patients and therapeutic effects of

current drug treatment for this pathology (del Campo et al., 2011). Indeed, the most widely used

treatment to date is methylphenidate, which acts as an inhibitor of dopamine and noradrenalin

transporters. These treatments have limited benefits and strong side effects, notably on the cardio-

vascular system. Taking into consideration these different aspects, new therapeutic approaches are

required.

Noradrenergic imbalance found in the Isl2-EphA3KI mouse model is in line with the literature,
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which suggests that such impairments could be responsible for the symptoms observed in patients. In

addition, other studies have revealed an implication of the SC in attentional defects. FMRI studies in

patients shown that a collicular hyper-activation increases distractibility (Overton, 2008). In rats,

methylphenidate has been shown to alter the signal-to-noise ratio in the SC (Dommett et al., 2009).  

Conclusion

Considering these results, the Isl2-EphA3KI mouse seems to be good candidate as a model for

ADD. Indeed, both symptoms and pathophysiological consequences can be found. In addition, when

compared to other model that is available based on altered catecholaminergic transmission, the

approach is quite innovative. Our results demonstrate that an alteration in sensory integration – in this

particular case, vision – is sufficient to mimic ADD symptoms as well as a noradrenalin balance

disruption. This suggests that catecholamine imbalance could be a consequence rather than a cause

in this pathology. Furthermore, sensory processing disorders are often neglected in the etiology of

psychiatric disorders and could be, at least in part, responsible for these troubles.
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Abstract The superior colliculus is a hub for multisen-
sory integration necessary for visuo-spatial orientation,

control of gaze movements and attention. The multiple

functions of the superior colliculus have prompted
hypotheses about its involvement in neuropsychiatric

conditions, but to date, this topic has not been addressed

experimentally. We describe experiments on genetically
modified mice, the Isl2-EphA3 knock-in line, that show a

well-characterized duplication of the retino-collicular and

cortico-collicular axonal projections leading to hyperstim-
ulation of the superior colliculus. To explore the functional

impact of collicular hyperstimulation, we compared the

performance of homozygous knock-in, heterozygous
knock-in and wild-type mice in several behavioral tasks

requiring collicular activity. The light/dark box test and

Go/No-Go conditioning task revealed that homozygous
mutant mice exhibit defective response inhibition, a form

of impulsivity. This defect was specific to attention as other

tests showed no differences in visually driven behavior,
motivation, visuo-spatial learning and sensorimotor abili-

ties among the different groups of mice. Monoamine

quantification and gene expression profiling demonstrated a
specific enrichment of noradrenaline only in the superficial

layers of the superior colliculus of Isl2-EphA3 knock-in

mice, where the retinotopy is duplicated, whereas transcript
levels of receptors, transporters and metabolic enzymes of

the monoaminergic pathway were not affected. We dem-

onstrate that the defect in response inhibition is a conse-
quence of noradrenaline imbalance in the superficial layers

of the superior colliculus caused by retinotopic map

duplication. Our results suggest that structural abnormali-
ties in the superior colliculus can cause defective response

inhibition, a key feature of attention-deficit disorders.

Keywords Retinotopy ! Visual system ! EphA signaling !
Superior colliculus ! Noradrenaline ! Response inhibition !
Attention-deficit disorders

Introduction

The superior colliculus (SC) is a midbrain structure that

integrates sensory inputs from multiple modalities (Wal-
lace et al. 1993; Holmes and Spence 2005; May 2006) and

plays a central role in visuo-spatial orientation, attention

and sensorimotor processing (Stein 1984; May 2006;
Gandhi and Katnani 2011). Defects in SC function have
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A. Lacaud ! V. Lelièvre ! F. W. Pfrieger ! M. Reber (&)
Institute of Cellular and Integrative Neurosciences, CNRS UPR
3212, University of Strasbourg, 5, rue blaise Pascal,
67084 Strasbourg, France
e-mail: michael.reber@inserm.fr

N. Bevins
Molecular Neurobiology Laboratory, The Salk Institute,
La Jolla, San Diego, CA 92037, USA

N. Bevins
Department of Neurosciences, University of California, La Jolla,
San Diego, CA 92039, USA

D. Sage-Ciocca
Chronobiotron, UMS 3415, CNRS, 67084 Strasbourg, France

123

Brain Struct Funct (2015) 220:1573–1584

DOI 10.1007/s00429-014-0745-5

79

http://dx.doi.org/10.1007/s00429-014-0745-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-014-0745-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-014-0745-5&amp;domain=pdf


been associated with a number of neuropathological and
neuropsychiatric disorders including epilepsy (Ross and

Coleman 2000), schizophrenia (Fuentes 2001) and autism

spectrum disorder (ASD) (Kleinhans et al. 2011). Recently,
collicular hyperstimulation has been proposed to underlie

attention-deficit/hyperactivity disorder (ADHD) symptoms,

especially the impulsivity and distractibility associated
with the disorder (Overton 2008; Miller 2009; Dommett

et al. 2009). However, direct experimental evidence for

such a link remains elusive.
The SC presents a particular feature, namely the topo-

graphic organization of its sensory inputs (Sperry 1963;

Lemke and Reber 2005; May 2006). Axons of retinal
ganglion cells (RGCs) project to the superficial layers of

the SC along spatial axes reflecting their position along

corresponding axes in the retina (the retino-collicular map).
Layer V neurons of the V1 cortex also project in a topo-

graphic manner to the superficial layers of the SC, the

cortico-collicular map, which is in register with the retino-

collicular map (May 2006; Triplett et al. 2012). This cre-
ates a topographic representation of the visual field in the

superficial layers of the SC, also called retinotopy. Audi-

tory and somatosensory afferents projecting to deep layers
of the SC are also aligned with the visual maps (Meredith

and Stein 1985; King et al. 1998; May 2006) enhancing

perception of salient stimuli and influencing decision and
overt behavior (Stein et al. 2009).

We took advantage of a specific disruption of the reti-

notopy in the superficial layers of the SC that has been
observed in the Isl2-EphA3 knock-in mice (Fig. 1; Brown

et al. 2000). In this mouse model, the EphA3 tyrosine

kinase receptor, which acts as a guidance molecule during
map formation, is over-expressed by a subset of RGCs.

This leads to a well-characterized duplication of the retino-

collicular and cortico-collicular maps along the anterior–
posterior axis of the SC. Over-expression of the EphA3

receptor neither affects retinal organization and integrity,

nor the topography of collicular somatosensory inputs

Fig. 1 Topographic retino-
collicular projections in WT and
Isl2-EphA3KI animals.
Micrographs illustrate nasal
1,10-dioctadecyl-3,3,3030-
tetramethylindocarbocyanine
perchlorate (Dil) injections in
P8 retinas and the
corresponding termination
zone(s) in the SC. Top an
injection in nasal WT retina
leads to a single caudal
termination zone in the SC.
Middle an injection in a nasal
EphA3KI/? retina leads to two
caudal termination zones in the
SC. Bottom an injection in a
nasal EphA3KI/KI retina leads
to two distant termination zones
in the SC. Scale bars 1 mm
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(Brown et al. 2000; Reber et al. 2004; Triplett et al. 2009;

Bevins et al. 2011; Triplett et al. 2012). The duplicated
visual maps are functional as single visual stimuli trigger

the activation of two distinct areas in the SC (Triplett et al.

2009). Unlike other mouse models that target Eph/ephrin
signaling (Dottori et al. 1998; Feldheim et al. 2000; Feld-

heim 2004), the genetic modification in the Isl2-EphA3

knock-in mice affects only a subset of RGCs and does not
affect other structures in the brain (Brown et al. 2000;

Reber et al. 2004, Thaler et al. 2004).
To determine if hyperstimulation of the SC, due to

duplication of the retinotopic projections, influences col-

licular-related behavior, wild-type (WT), heterozygous
(EphA3KI/?) and homozygous (EphA3KI/KI) Isl2-EphA3KI

mice were subjected to a series of well-established

behavioral tests. As a first approach, we tested general
visual ability (cliff test, optokinetic reflex, Morris water

maze with visible platform) as the effects of disrupted

EphAs gradients in the RGCs and duplicated retinotopy in
the SC on visual perception have never been described

before. We then focused on general sensorimotor (loco-

motor activity, circadian rhythmicity, light/dark box test)
and integrative features (beam walking test) and on col-

licular-related behavior, especially visuo-spatial orientation

and memory (Morris water maze with hidden platform) and
response inhibition (Go/No-Go task). Our results show that

EphA3KI/KI mutant mice exhibit defective response inhi-

bition when compared to WT or EphA3KI/? littermates.
Visual acuity, sensorimotor activity, visuo-spatial learning,

motivation and memory were similar in the different

genotypes. Molecular characterization demonstrated ele-
vated noradrenaline levels in the superficial layers of the

SC in EphA3KI/KI animals where the retinotopy is dupli-

cated. Expression levels of receptors, transporters and
enzymes of the monoaminergic signaling pathway were

similar to WT littermates. Interestingly, these changes

resemble specific symptoms of the adult and predominantly
inattentive-type of ADHD patients (Diamond 2005; Bie-

derman and Faraone 2005).

Materials and methods

Animals

Mice were bred and housed in our mouse facility (Chro-
nobiotron, UMS 3415, CNRS, Strasbourg) and tested

during the light phase (ZT2–ZT10) of their light/dark cycle

except for indicated experiments. All procedures were in
accordance with national (council directive 87/848, Octo-

ber 1987) and European community (2010/63/EU) guide-

lines. Official agreement numbers for animal
experimentation were 67-292 for CM, 67-215 for J-CC and

67-358 for KG, AG was under their responsibility. Mice

were genotyped by PCR of genomic DNA from tail biop-
sies as described previously (Reber et al. 2004). Four- to

seven-month-old male littermates of each genotype

(EphA3KI/KI, EphA3KI/? and WT) on a mixed genetic
background (C57/Bl6 9 129Sv/J) were subjected to

behavioral tests and molecular analyses. Standard labora-

tory rodent food and water were available ad libitum
throughout all experiments, except for the Go/No-Go task,

for which all mice were kept at 85 % of their free-feeding
weight.

Behavioral tests

Three distinct cohorts of 4- to 7-month-old WT, EphA3KI/?

and EphA3KI/KI males littermates were characterized using
fixed sequences of test ranging as much as possible from

the least to the most invasive test. Inter-test intervals (ITI)

varied along the sequences to limit order effect. The first
cohort of 4- to 7-month-old males littermates (n = 6–9 per

group) was first tested in the light/dark box test (Boeuf

et al. 2009) (ITI 5 days) and then only in the Go/No-Go
task (Meziane et al. 1993). The second cohort of 4- to

7-month-old males littermates (n = 7 per group) was

dedicated to sensorimotor evaluations. They were first
tested for circadian wheel running activity (Mendoza et al.

2008) and general locomotor activity (Yassine et al. 2013)

(ITI 15 days) followed by the Morris water maze paradigm
(Moreau et al. 2008) (ITI 15 days), the beam walking test

(Moreau et al. 2008) (ITI 3 days) and the visual cliff test

(Gibson and Walk 1960) (ITI 21 days). The optokinetic
reflex (Douglas et al. 2005) was studied on a third cohort of

4-month-old (n = 7–10) male littermates. Detailed

descriptions can be found in Online resource 1.

Molecular analysis

Transcript levels were analyzed by semi-quantitative PCR

and monoamine levels were measured by high-pressure

liquid chromatography as described in the Online resource
1.

Statistical analysis

Unless otherwise indicated, data were analyzed by analysis

of variance with repeated measure factors to study inter-
actions between genotype and side, trial, day, 15-min

block, quadrant, runway (rANOVA). All statistical out-

comes were confirmed by a Kruskal–Wallis test applied on
the light–dark single factors or within each repeated mea-

sure, as group sizes in behavioral studies were relatively

small. When required, post hoc analyses were performed
with the Newman–Keuls (NK) multi-comparison test
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(Statistica 8.0; Statsoft, Inc., Tulsa, OK). The time spent in

the goal quadrant of the water maze was compared to the
15-s chance value by means of a t test. The 15-s chance

value corresponds to the time spent for random search in

four quadrants during the 60 s probe test. All behavioral
data are expressed as mean ± standard error of the mean

(SEM). HPLC and qPCR data were analyzed using the

non-parametric Kruskal–Wallis (KW) test. All expression

data are represented using boxplots (min, q1, median, q3,
max).

Results

The functional contribution of the SC in specific behavior
has been investigated in a variety of experiments, including

electrophysiological recording, inactivation and lesion
approaches (Binns 1999; Huberman and Niell 2011) but

little has been done at a more integrated level in animal

models with congenital defects.

Visual acuity

We first asked whether the modified collicular retinotopy

affects visual acuity using the visual cliff test, which

measures visual depth perception in rodents. Mice from all
three experimental groups spent significantly more time on

the opaque side compared to the cliff side (side:

F1,18 = 10.15, p = 0.005; Fig. 2a) and stepped earlier
onto the opaque side than onto the cliff side (side:

F1,18 = 16.61, p\ 0.001; Fig. 2b) indicating normal

visual perception. There was no significant difference
between genotypes for the latency to step down and the

time spent on either the checkered side or the cliff side (no

genotype effect or genotype 9 side interaction). We next
tested visual acuity by stimulating and measuring the

optokinetic reflex (OKR). This reflex mediates compensa-

tory head motions elicited by moving full-field visual
stimuli, to maintain a constant image on the retina. Mice

from all three genotypes showed similar threshold values

for the minimum contrast that triggers an OKR at spatial
frequencies ranging from 0.064 to 0.272 cycles/degree

(Fig. 2c). Together, these results indicated normal visual

acuity in EphA3KI/KI and EphA3KI/? mice.

General locomotor activity, sensory motor coordination

and circadian rhythm

We next tested locomotor activity using horizontal cage

activity and wheel running. Mice of each experimental
group showed a similar decrease in locomotor activity over

the course of a 3-h session corresponding to habituation to

the new cage (15-min block: F11,198 = 55.17, p\ 0.0001;
Fig. 3a) and no significant effect of the genotype was

observed in total wheel running activity, all three genotypes

showing normal rhythmic activity (Fig. 4b, Online resource
2). The key role of the SC in the integration of sensorimotor

modalities led us to test sensorimotor coordination. All

three genotypes underwent the beam walking test and
showed similar latencies to leave the start segment

A

B

C

Fig. 2 Visual acuity in Isl2-EphA3 knock-in mice. a In the visual
cliff test, WT, EphA3KI/? and EphA3KI/KI mice spent significantly
more time on the opaque side compared to the cliff side. The three
groups of mice did not differ in terms of mean time (s) spent on the
opaque side and cliff side during the 10 min session. b The latency to
step down toward the opaque side was significantly lowered
compared to the cliff side, but similar in all genotypes. c In the
OKR test, the average contrast sensitivity (threshold contrast as %, y
axis) for spatial frequencies ranging from 0.064 to 0.272 cycles/
degree (x axis) varies similarly in the three groups of mice.
***p\ 0.0001
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(genotype x trial: F6,54 = 0.65, p[ 0.10, not shown) and

to reach the platform, which decreased significantly during
subsequent trials (trial: F3,54 = 16.48, p\ 0.0001;

Fig. 3b). Sensorimotor coordination and latency to leave the

start segment were similar among genotypes. Moreover, we
tested whether the running activity of knock-in mice fol-

lows light-entrained and endogenous circadian patterns. All

three genotypes showed similar running activity in 12 h
light–dark and dark–dark cycles with similar endogenous

period (WT: 23.57 ± 0.26 h, EphA3KI/?: 23.76 ± 0.35 h

and EphA3KI/KI: 23.69 ± 0.26 h; Fig. 4). Together these
results indicate normal locomotor activity, sensory motor

processing and circadian activity in EphA3KI/KI and

EphA3KI/? animals.

Visuo-spatial orientation and memory

We then tested vision and motor skills using the Morris
water maze visible platform test, where mice must locate a

cue at close range, and swim toward it. After 2 days of

habituation, mice were tested for their performance in
reaching a visible platform. Swim speed and distance were

measured in four trials. Swim speed remained stable and

similar for all groups. Swimming distance was similarly
reduced among all groups over the four consecutive trials

(trial: F3,54 = 16.07, p\ 0.0001). No significant differ-

ence was observed among genotypes or genotype 9 trial
interactions (Fig. 5a). Next we used a variant of the Morris

water maze test where the platform is hidden to evaluate

visuo-spatial learning and memory. Here, mice must find
the hidden platform based on distant visual cues outside the

pool. Over the course of the four training days, mice of all

three genotypes showed similar swim speeds and learned
the position of the hidden platform equally well (day:

F3,54 = 20.67, p\ 0.0001; Fig. 5b). No difference was

observed between genotypes, suggesting that EphA3KI/?

and EphA3KI/KI animals are able to learn a task requiring

visuo-spatial orientation abilities. In a probe test performed

24 h later, all mice showed a clear bias toward the target
quadrant where they spent significantly more time than the

15-s chance level (WT: t6 = 6.68, p = 0.0005, EphA3KI/?:

t6 = 4.62, p = 0.004; EphA3KI/KI: t6 = 6.01, p = 0.001;
Fig. 5c). Taken together, these results indicated normal

visuo-spatial orientation, preserved motivation to reach a

visible and hidden platform and intact spatial learning and
memory in EphA3KI/KI and EphA3KI/? mice.

Anxiety, response inhibition

As the behavioral output in several tasks (e.g., visual cliff,

Go/No-Go and Morris water maze) can be modulated by
levels of anxiety, they were determined in the Isl2-EphA3

knock-in mice using the light/dark box test (Crawley

2007). This conflict test evaluates anxiety based on the
tendency of a mouse to explore a novel environment

against the aversive effect of a brightly lit open field (the

light box). We measured both the time spent in the light
box (aversive environment) and the number of attempts to

enter this box (defined as an incomplete body entrance).

Animals from the three genotypes spent a similar amount
of time in the aversive environment (the light box) indi-

cating comparable levels of anxiety (Fig. 6a). In support of

that, habituation times in a novel activity cage and latency
to leave the start segment in the beam walking test, pre-

sented above, did not differ between the three genotypes
further suggesting that the Isl2-EphA3KI animals exhibit

normal levels of anxiety. Surprisingly, EphA3KI/KI and

EphA3KI/? mice made significantly fewer attempts to enter

A

B

Fig. 3 Locomotor activity and sensorimotor coordination in Isl2-
EphA3 knock-in mice. a During the 3-h habituation phase, EphA3KI/
KI and EphA3KI/? mice did not differ from their WT littermates in
terms of exploration of a new environment (expressed as mean
horizontal activity per 15-min block). b EphA3KI/KI mice did not
differ from their WT littermates in terms of mean time per trial to
reach the platform over 4 trials of the beam test. In all three
genotypes, this parameter decreased significantly over consecutive
trials
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the light box (incomplete body entrances) compared to

their WT littermates (attempts: F2,21 = 4.24, p\ 0.05,
NK post hoc: p\ 0.05; Fig. 6b). In other words,

EphA3KI/KI and EphA3KI/? mice were less hesitant and
entered the light box more readily suggesting that they fail

to refrain from exploring an aversive environment. In

addition, EphA3KI/KI and EphA3KI/? mice showed a
decreased latency for complete body entrance into the light

box compared to WT littermates (latency: F2,21 = 3.24,

p = 0.06; Fig. 6c). This provides further evidence that they
did not hesitate to enter an aversive environment. However,

EphA3KI/KI mice showed no increase in time spent in the

light box and no impairment in the visual cliff test, opto-
kinetic reflex and both versions of the water maze in which

performance depends on intact visual abilities (Yassine

et al. 2013). Alternatively, reduced hesitation to enter the
light box could be related to a diminished response inhi-

bition, a key feature of impulsivity (Chamberlain and Sa-

hakian 2007).
To confirm defects in response inhibition of knock-in

mice, we performed a Go/No-Go task. Go/No-Go para-

digms are based on a cue discrimination conditioning and

are commonly used to assess attention and response inhi-

bition, but also learning and memory functions in humans
and mice (Meziane et al. 1993; Aron and Poldrack 2005;

Gubner et al. 2010; Loos et al. 2010). This test required food
restriction, during which the mice were kept at 85 % of their

weight to ensure motivation for food reward. Mice of all

three genotypes showed similar weight loss and motivation
for food during food restriction (not shown) (Meziane et al.

1993). In our version of the task, mice were conditioned to

run successively down two runaways differing in colors,
one color runaway being always baited with food (Go trail)

and the other never baited (No-Go trial). Both EphA3KI/?

and WT littermates progressively learned to discriminate
between the reinforced (Go trials) and non-reinforced (No-

Go trials) runways as indicated by a significant decrease in

running time on Go trials and stable running times on No-
Go trials (Go trials: F2,34 = 18.9, p\ 0.0001; Fig. 7a, b)

as usually observed in this task (Meziane et al. 1993). This

suggested normal learning, motivation and response inhi-
bition in EphA3KI/? and WT mice. Running duration of

EphA3KI/KI animals decreased similarly than WT and

EphA3KI/? littermates on Go trials. Surprisingly, and in

A BFig. 4 Circadian activity in
Isl2-EphA3 knock-in mice. All
three groups of mice showed
similar endogenous periods
after a 15 days of light–dark
(LD) cycle followed by 10 days
of constant darkness (DD)
(a) and similar diurnal and
nocturnal wheel running activity
(b)
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contrast to WT and EphA3KI/?, EphA3KI/KI running times

also significantly decreased on No-Go trials (No-Go trails:
F4,34 = 4.03, p\ 0.01, NK p\ 0.05; Fig. 7a, b) indicat-

ing their failure to refrain themselves from running in the

non-reinforced runway on No-Go trials. Preserved perfor-
mances of the EphA3KI/KI animals on Go trials suggested

intact motivation for food and efficient learning. A

discrimination learning deficit in these mice is unlikely

since amnesic treatments are known to affect essentially Go

running times (Meziane et al. 1993, 1998). In addition, their
performance in the visible and hidden versions of the Morris

water maze as well as in the visual cliff test and optokinetic

reflex suggests that their visual acuity and visuo-spatial
memory are comparable to those of WT and EphA3KI/?

littermates. Taken together, these results further support the

hypothesis of a defective response inhibition in the
EphA3KI/KI animals.

A

B

C

Fig. 5 Visuo-spatial orientation, spatial navigation, learning and
memory in Isl2-EphA3 knock-in mice. a In the visible platform test
of the Morris water maze paradigm, all three groups of mice required
similar mean swimming distances per trial to reach the visible platform
and showed a similar decrease in the swimming distance over
consecutive trials. b During the 4-day-long training period in the
hidden platform test of the Morris water maze paradigm, Isl2-EphA3
knock-in mice and their WT littermates required similar swimming
distances to reach the platform and showed a similar decrease over
consecutive trials. c In the 60-s probe test without platform, mice spent
significantly more time in the target quadrant compared to the mean
time in other quadrants regardless of their genotype. ***p\ 0.0001

A

B

C

Fig. 6 Anxiety-related behavior in Isl2-EpA3 knock-in mice. a In the
light/dark box test, Isl2-EphA3 knock-in mice spent the same amount
of time (s) in the light box as their WT littermates. b EphA3KI/KI
animals showed a significant decrease in the number of attempts to
enter the light box compared to the WT littermates. c EphA3KI/KI
and EphA3KI/? animals showed a tendency to a decreased latency
(s) to enter the light box compared to their WT littermates. *p\ 0.05
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In principle, this defective behavior could be caused by

impaired attention or increased distraction (Barkley 2004).
To test this possibility, we repeated the reinforced Go task,

but added visual (flashing light) and auditory (tone) dis-

tractors. Mice of all genotypes showed significantly
increased running times by reducing their speed in trials

with tones (70 dB tone: F1,18 = 5.48, p\ 0.05; 90 dB

tone: F1,18 = 9.18, p\ 0.01; Fig. 7c) and flash lights
(F1,18 = 92.06, p\ 0.0001; Fig. 7c) compared to non-

distracted trials. Notably, all EphA3KI/KI mice increased

their running times when exposed to a flashing light, (one
mouse stopped to look toward the origin of the stimulus)

although the difference between EphA3KI/KI and WT lit-

termates did not reach statistical significance (Flash
latency: F2,18 = 1.17, p = 0.33; Fig. 7c). These data

indicate that a flashing light and loud tones are effective

distractors during the Go task.

Analysis of regional monoamine levels

The observed defective response inhibition in EphA3KI/KI

mice, corresponding to an ADHD phenotypic feature, could

be induced by abnormal catecholamine levels (van der Kooij

andGlennon2007; Sontag et al. 2010). To test this possibility,
we determined levels of monoamine neurotransmitters in

distinct areas of themousebrain, namely the superficial layers

of the superior colliculus (SC), the prefrontal cortex, the
striatum, the parietal cortex and the cerebellum, all involved

in attentional processes and motor control (Himelstein et al.

2000; Aron and Poldrack 2005; Biederman and Faraone
2005; Overton 2008). Levels of dopamine, adrenaline and

serotonin were not significantly different between genotypes

in the five structures studied (Fig. 8; Online resource 2). In
contrast, the levels of noradrenaline were significantly

increased in the superficial layers of the SC of EphA3KI/KI

compared to their EphA3KI/? and WT littermates (KW test
p\ 0.05; Figs. 8a, 9). The increase in noradrenaline in the

superficial layers of the SC prompted us to examine the

expression of receptors, transporters and enzymes that are
involved in monoaminergic metabolism and associated with

attention-deficit diseases (Himelstein et al. 2000; Biederman

and Faraone 2005). All three genotypes showed similar
expression of transporters, metabolic enzymes and down-

stream receptors of dopamine, noradrenaline, adrenaline and

A

C

BFig. 7 Go/No-Go performance
in Isl2-EpA3 knock-in mice.
a Over the three sessions, WT,
EphA3KI/? and EphA3KI/KI
mice reduced their mean
running time per trial in the
reinforced Go trials. b Over the
three sessions, WT and
EphA3KI/? mice show stable
mean running time in the non-
reinforced No-Go trials, as
opposed to EphA3KI/KI
littermates, which also reduced
their running times in No-Go
trials NK *p\ 0.05. c Auditory
(70, 90 dB tone) and visual
(flash light) distractors led to
significant increases in the
running times in Go trials of all
three genotypes. Note that
EphA3KI/KI mice appeared
slightly more sensitive to a
visual distractor than their
littermates. *p\ 0.05;
**p = 0.01; ***p\ 0.0001
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serotonin in the superficial layers of the SC and in other brain

regions (Online resource 2).

Discussion

Our study provides first evidence for specific behavioral

and molecular changes in mice with genetically altered
retinotopy in the superior colliculus and consequently

enhanced visual inputs. In the Go/No-Go task, EphA3KI/KI

mice performed normally on Go trials by increasing their

running speed, but they were completely unable to inhibit

their running response on No-Go trials.
In the light/dark box test, EphA3KI/KI mice entered the

aversive light box more readily than control mice. Alto-

gether, our behavioral tests revealed that EphA3KI/KI mice
exhibit defective response inhibition, a form of impulsivity.

The observation that heterozygous EphA3KI/? mice behave

like WT littermates in the Go/No-Go task suggests that a
partial duplication of the retino-collicular map (Brown et al.

2000) is not sufficient to trigger defective response inhibi-

tion. The observed behavioral changes were remarkably

A

C

E

D

BFig. 8 Monoamine
concentrations in selected brain
regions of Isl2-EphA3 knock-in
mice. Radar-plot representation
of total dopamine, adrenaline,
noradrenaline and serotonin
content (median values, ng/mg
of proteins) in the a superficial
layers of the SC, b prefrontal
cortex, c cerebellum, d striatum
and e parietal cortex. The
noradrenaline content was
significantly increased in
superficial SC layers of
EphA3KI/KI compared to
EphA3KI/? and WT
littermates. *p\ 0.05 KW test.
SC superior colliculus
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specific, as all other paradigms tested, namely vision, visuo-

spatial orientation, sensorimotor function, motivation,

learning and memory as well as exploratory behavior and
anxiety were similar in WT, EphA3KI/? and EphA3KI/KI

mice. Defective response inhibition could be the conse-

quence of enhanced levels of noradrenaline that we detected
in the superficial layers of the SC of EphA3KI/KI mice.

Enhanced noradrenaline levels in the SC could alter the

behavior of the EphA3KI/KI mice by modulating the signal-
to-noise ratio in this structure (Mooney et al. 1990; Tan et al.

1999) and thereby changing its level of activation (Dommett

et al. 2009). In hamsters, in vivo and in vitro studies dem-
onstrated a suppression of collicular neuron response upon

noradrenaline application (Mooney et al. 1990; Tan et al.

1999). In rats, Sato and Kayama reported that iontophoreti-
cally applied noradrenaline exerts an excitatory action,

indicating an increase of the signal-to-noise ratio, in accor-

dance with our hypothesis (Sato and Kayama 1983). Whe-
ther noradrenaline increases or decreases the signal-to-noise

ratio in the superficial layers of the SC is still debated.

However, it clearly affects the processing of salient stimuli in
a context-specific manner (Sato and Kayama 1983; Mooney

et al. 1990; Tan et al. 1999).

The increase in noradrenaline was specific to the super-
ficial layers of the SC, where the retinotopy is duplicated.

Moreover, the increase only concerned noradrenaline,

whereas other monoamines including dopamine, serotonin
and adrenaline showed similar concentrations for all

genotypes and brain regions. The increase in noradrenaline

was not accompanied by changes in transcript levels of

genes involved in monoamine metabolism. Therefore, we
hypothesize that the increase of noradrenaline in the

superficial layers of the SC may be the consequence of the

duplication of the RGCs projections, which are functional,
as shown by optical intrinsic imaging (Triplett et al. 2009).

Previous studies revealed that RGC axons release nor-

adrenaline upon activation (Osborne and Patel 1985).
Alternatively, the increase may come from a duplication of

projections from the locus coeruleus (LC), the major source

of noradrenaline in the brain, to the superficial layers of the
SC (Takemoto et al. 1978; Fritschy et al. 1990). Whether

LC projections to the SC are duplicated is unknown as the

mapping of the LC to the SC is hindered by the small size
and specific sub-nuclei organization of the LC. However, it

appears possible given that cortico-collicular projections

are also duplicated in the EphA3KI/KI animals although
projecting V1 neurons do not express ectopic EphA3

(Triplett et al. 2009). RGCs project to different brains areas,

including lateral geniculate nucleus (LGN) and non-image
forming structures such as the suprachiasmatic nucleus

(SCN), the medial tegmental nucleus (MTN) or the olivary

pretectal nucleus (OPN). Triplett and colleagues show no
targeting defects in the LGN of Isl2-EphA3 animals

(Triplett et al. 2009). The same group recently demon-

strated that among 1 % of RGCs projecting to the SCN
(the intrinsically photoreceptive RGCs—ipRGCs), 3 % are

A B

C D

Fig. 9 Monoamine content in the SC of Isl2-EphA3 knock-in mice.
Boxplot representation (min, q1, median, q3, max) of total a dopa-
mine, b adrenaline, c noradrenaline and d serotonin content (in ng/mg

of proteins) in the superficial layers of the superior colliculus (SC)
showing significant increase in noradrenaline in EphA3KI/KI animals
compared to EphA3KI/? and WT littermates. *p\ 0.05 KW test
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Isl2-positive and that these SCN-targeting Isl2-positive

RGCs only transiently innervate the SCN during the
development (Triplett et al. 2014). MTN and OPN also

show innervation by Isl2-positive RGCs at early postnatal

stages which is pruned by P6 (Triplett et al. 2014). The
behavioral and molecular changes in EphA3KI/KI mice

including defective response inhibition and noradrenaline

enrichment in the superficial layers of the SC phenocopy
some of the symptoms observed in ADHD patients, spe-

cifically the adult and predominantly inattentive-type
(Barkley 1997; Aron and Poldrack 2005; Biederman and

Faraone 2005; Bekker et al. 2005; Fisher et al. 2011;

American Psychiatric Association 2013). These symptoms
are also main features of Autism Spectrum Disorder (ASD)

(Murray 2010). Our findings support the hypothesis that

adult ADHD patients present collicular hyperstimulation
leading to the appearance of impulsivity and attentional

impairments (Overton 2008; Miller 2009; Dommett et al.

2009). Moreover, they are in line with the idea that dys-
regulation of the central noradrenergic systems contributes

to the pathophysiology of ADHD (Biederman and Spencer

1999). Currently, progress on the etiology, diagnosis and
treatment of ADHD is hindered by the limited number of

experimental models. Most of the available rodent models

are based on impaired monoaminergic transmission (van der
Kooij and Glennon 2007; Sontag et al. 2010) and present

some of the phenotypic features of ADHD patients. Our

findings suggest that EphA3KI/KI animals may serve as a new
model to study ADHD pathology and complement the lim-

ited arsenal of ADHD/ADD-related experimental approaches

to understand and treat these neuropsychologic diseases.
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Mendoza J, Pévet P, Challet E (2008) High-fat feeding alters the
clock synchronization to light. J Physiol 586:5901–5910. doi:10.
1113/jphysiol.2008.159566

Meredith MA, Stein BE (1985) Descending efferents from the
superior colliculus relay integrated multisensory information.
Science 227:657–659

Meziane H, Devigne C, Tramu G, Soumireu-Mourat B (1993) Effects
of anti-CCK-8 antiserum on acquisition and retrieval by mice in
an appetitive task. Peptides 14:67–73

Meziane H, Dodart JC, Mathis C et al (1998) Memory-enhancing
effects of secreted forms of the beta-amyloid precursor protein in
normal and amnestic mice. Proc Natl Acad Sci USA
95:12683–12688

Miller L (2009) Perspectives on sensory processing disorder: a call for
translational research. Front Integr Neurosci. doi:10.3389/neuro.
07.022.2009

Mooney RD, Bennett-Clarke C, Chiaia NL et al (1990) Organization
and actions of the noradrenergic input to the hamster’s superior
colliculus. J Comp Neurol 292:214–230. doi:10.1002/cne.
902920205

Moreau P-H, Cosquer B, Jeltsch H et al (2008) Neuroanatomical and
behavioral effects of a novel version of the cholinergic

immunotoxin mu p75-saporin in mice. Hippocampus 18:610–622.
doi:10.1002/hipo.20422

Murray MJ (2010) Attention-deficit/hyperactivity disorder in the
context of autism spectrum disorders. Curr Psychiatry Rep
12:382–388. doi:10.1007/s11920-010-0145-3

Osborne NN, Patel S (1985) The presence of dopamine-?-hydroxy-
lase-like enzyme in the vertebrate retina. Neurochem Int 7:51–56

Overton PG (2008) Collicular dysfunction in attention deficit
hyperactivity disorder. Med Hypotheses 70:1121–1127. doi:10.
1016/j.mehy.2007.11.016

Reber M, Burrola P, Lemke G (2004) A relative signalling model for
the formation of a topographic neural map. Nature 431:847–853.
doi:10.1038/nature02957

Ross KC, Coleman JR (2000) Developmental and genetic audiogenic
seizure models: behavior and biological substrates. Neurosci
Biobehav Rev 24:639–653

Sato H, Kayama Y (1983) Effects of noradrenaline applied ionto-
phoretically on rat superior collicular neurons. Brain Res Bull
10:453–457

Sontag TA, Tucha O, Walitza S, Lange KW (2010) Animal models of
attention deficit/hyperactivity disorder (ADHD): a critical
review. ADHD Atten Deficit Hyperact Disord 2:1–20. doi:10.
1007/s12402-010-0019-x

Sperry RW (1963) Chemoaffinity in the orderly growth of nerve fiber
patterns and connections. Proc Natl Acad Sci USA 50:703–710

Stein BE (1984) Development of the superior colliculus. Annu Rev
Neurosci 7:95–125

Stein BE, Stanford TR, Rowland BA (2009) The neural basis of
multisensory integration in the midbrain: its organization and
maturation. Hear Res 258:4–15. doi:10.1016/j.heares.2009.03.
012

Takemoto I, Sasa M, Takaori S (1978) Role of the locus coeruleus in
transmission onto anterior colliculus neurons. Brain Res
158:269–278

Tan H, Mooney RD, Rhoades RW (1999) Effects of norepinephrine
upon superficial layer neurons in the superior colliculus of the
hamster: in vitro studies. Vis Neurosci 16:557–570

Thaler JP, Koo SJ, Kania A et al (2004) A postmitotic role for Isl-
class LIM homeodomain proteins in the assignment of visceral
spinal motor neuron identity. Neuron 41:337–350

Triplett JW, Owens MT, Yamada J et al (2009) Retinal input instructs
alignment of visual topographic maps. Cell 139:175–185. doi:10.
1016/j.cell.2009.08.028

Triplett JW, Phan A, Yamada J, Feldheim DA (2012) Alignment of
multimodal sensory input in the superior colliculus through a
gradient-matching mechanism. J Neurosci 32:5264–5271.
doi:10.1523/JNEUROSCI.0240-12.2012

Triplett JW, Wei W, Gonzalez C et al (2014) Dendritic and axonal
targeting patterns of a genetically-specified class of retinal
ganglion cells that participate in image-forming circuits. Neural
Dev 9:2. doi:10.1186/1749-8104-9-2

Van der Kooij MA, Glennon JC (2007) Animal models concerning
the role of dopamine in attention-deficit hyperactivity disorder.
Neurosci Biobehav Rev 31:597–618. doi:10.1016/j.neubiorev.
2006.12.002

Wallace MT, Meredith MA, Stein BE (1993) Converging influences
from visual, auditory, and somatosensory cortices onto output
neurons of the superior colliculus. J Neurophysiol 69:1797–1809

Yassine N, Lazaris A, Dorner-Ciossek C et al (2013) Detecting spatial
memory deficits beyond blindness in tg2576 Alzheimer mice.
Neurobiol Aging 34:716–730. doi:10.1016/j.neurobiolaging.
2012.06.016

1584 Brain Struct Funct (2015) 220:1573–1584

123
90

http://dx.doi.org/10.1146/annurev-neuro-061010-113728
http://dx.doi.org/10.1146/annurev-neuro-061010-113728
http://dx.doi.org/10.1111/j.1530-0277.2010.01219.x
http://dx.doi.org/10.1016/j.cub.2005.08.058
http://dx.doi.org/10.1016/j.cub.2005.08.058
http://dx.doi.org/10.1016/j.tins.2011.07.002
http://dx.doi.org/10.1016/j.tins.2011.07.002
http://dx.doi.org/10.1016/j.neuroimage.2010.07.037
http://dx.doi.org/10.1016/j.neuroimage.2010.07.037
http://dx.doi.org/10.1146/annurev.cellbio.20.022403.093702
http://dx.doi.org/10.1016/j.bbr.2010.05.027
http://dx.doi.org/10.1113/jphysiol.2008.159566
http://dx.doi.org/10.1113/jphysiol.2008.159566
http://dx.doi.org/10.3389/neuro.07.022.2009
http://dx.doi.org/10.3389/neuro.07.022.2009
http://dx.doi.org/10.1002/cne.902920205
http://dx.doi.org/10.1002/cne.902920205
http://dx.doi.org/10.1002/hipo.20422
http://dx.doi.org/10.1007/s11920-010-0145-3
http://dx.doi.org/10.1016/j.mehy.2007.11.016
http://dx.doi.org/10.1016/j.mehy.2007.11.016
http://dx.doi.org/10.1038/nature02957
http://dx.doi.org/10.1007/s12402-010-0019-x
http://dx.doi.org/10.1007/s12402-010-0019-x
http://dx.doi.org/10.1016/j.heares.2009.03.012
http://dx.doi.org/10.1016/j.heares.2009.03.012
http://dx.doi.org/10.1016/j.cell.2009.08.028
http://dx.doi.org/10.1016/j.cell.2009.08.028
http://dx.doi.org/10.1523/JNEUROSCI.0240-12.2012
http://dx.doi.org/10.1186/1749-8104-9-2
http://dx.doi.org/10.1016/j.neubiorev.2006.12.002
http://dx.doi.org/10.1016/j.neubiorev.2006.12.002
http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.016
http://dx.doi.org/10.1016/j.neurobiolaging.2012.06.016


Estimating the location and size of retinal injections from orthogonal images of an intact retina.

Hjorth, J. J., Savier, E., Sterratt, D. C., Reber, M., & Eglen, S. J. (2015) BMC neuroscience, 16(1), 80

To study the formation of a topographic map during development, precise tracing techniques

are required, notably to establish the relationship between the origin of projections and the position

that they target. To investigate visual map formation, coordinates in the retina have to be matched to

coordinates in the collicular space.

The SC can be considered as a planar surface on the medial part, but the retina is a spherical

object. To obtain retinal coordinates, the retina has to be flat mounted after dissection. This method

induces a lot of error. Indeed, in addition to its tediousness, coordinates have to be projected along the

nasal-temporal axis, inducing a reduction in dimension. To optimize the acquisition of these

coordinates, an algorithm that preserves the native coordinate system was developed.

This algorithm, IntactEye, calculates the location of an injection site from two views (top and

side) of an intact retina. This method improved the accuracy of measurements in the retina, leading to

a more precise mapping of the retino-collicular projections.  
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Estimating the location and size 
of retinal injections from orthogonal images 
of an intact retina
J. J. Johannes Hjorth1, Elise Savier2, David C. Sterratt3, MichaÎ l Reber2,4²  and Stephen J. Eglen1,4*²  

Abstract 
Background:  To study the mapping from the retina to the brain, typically a small region of the retina is injected with 
a dye, which then propagates to the retina' s target structures. To determine the location of the injection, usually the 
retina is dissected out of the eye, Øat tened and then imaged, causing tears and stretching of the retina. The location 
of the injection is then estimated from the image of the Øat tened retina. Here we propose a new method that avoids 
dissection of the retina.

Results: We have developed IntactEye, a software package that uses two orthogonal images of the intact retina to 
locate focal injections of a dye. The two images are taken while the retina is still inside the eye. This bypasses the dis-
section step, avoiding unnecessary damage to the retina, and speeds up data acquisition. By using the native spheri-
cal coordinates of the eye, we avoid distortions caused by interpreting a curved structure in a Øat  coordinate system. 
Our method compares well to the projection method and to the Retistruct package, which both use the Øat tened 
retina as a starting point. We have tested the method also on synthetic data, where the injection location is known. 
Our method has been designed for analysing mouse retinas, where there are no visible landmarks for discerning 
retinal orientation, but can also be applied to retinas from other species.

Conclusions:  IntactEye allows the user to precisely specify the location and size of a retinal injection from two 
orthogonal images taken of the eye. We are solving the abstract problem of locating a point on a spherical object 
from two orthogonal images, which might have applications outside the Æe ld of neuroscience.

Keywords: Retinotopic mapping, Retinal injection, Native coordinate system

© 2015 Hjorth et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The connections from the retina are topographically 
organised into maps in the brain, meaning nearby cells 
in the retina project to neighbouring cells in each target 
structure [1]. To study the connectivity of the retina and 
its targets we need a reliable system to specify retinal 
locations precisely. This is complicated by a lack of vis-
ible retinal landmarks that are consistent between indi-
viduals. Furthermore, the curvature of the eye means we 

cannot simply represent a location on the retina in Carte-
sian coordinates, as this would lead to distortions.

The retinal projections to the brain have been studied 
extensively as a model system for self-organisation of the 
brain [1± 3]. The most widely-used technique to analyse 
retinotopy is to inject a dye into a small region of the 
eye to label a region of the retina (Fig.  1A, B). The dye 
is then transported through retinal axons to label target 
structures [4± 6]. Although this method is over twenty 
Æv e years old [7], it is still commonly used today [8]. A 
common alternative for assessing retinotopic map order 
is to use imaging techniques [9]. However, these imaging 
methods require the retina to generate visual responses, 
around postnatal day 10 in mouse, by which time the 
mouse retinocollicular map has already been established.
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To determine the location of the dye injection in the 
retina, it is dissected out and Ø attened so that it can be 
imaged (Fig. 1C) [10]. This is a delicate procedure and the 
Ø attening causes distortions and tears in the retina. The 
retinal location of the injection is then estimated from 
the image using the projection method [5, 6] or Retist-
ruct [11]. In the projection method the location of the 
nasotemporal axis is Æ rst estimated based on the vestigial 
nictitating membrane at the nasal pole, and then the loca-
tion of the injection site is projected onto the nasotem-
poral (NT) axis. The injection location is reported as 
a fraction of the NT axis, measured from the nasal pole 
(Fig. 2). The dorsoventral axis is calculated by orthogonal 
projection of the NT axis. This projection method uses 
a Cartesian coordinate system to describe a curved sur-
face, which leads to distortions. To address this issue, the 

Retistruct program [11] was developed recently indepen-
dently from earlier work using relaxation techniques [12]. 
Retistruct refolds the retina back onto a sphere to try and 
recover the original geometry. Internally it minimizes an 
energy function such that the stretching of the surface is 
as small as possible. Using Retistruct' s mapping of the Ø at 
image onto the sphere the injection site can be speciÆ ed in 
the native three dimensional coordinates of the eye with-
out distortions due to incompatible coordinate systems.

Retistruct is a signiÆ cant improvement over the projec-
tion method, however, it still requires the retina to be dis-
sected out and Ø attened. It also requires manual labelling 
of the outline of the retina. Here we propose a method 
that bypasses the need to dissect out the retina from the 
eye. Instead of using one image of the Ø attened retina, 
the IntactEye method uses two orthogonal images of 
the intact retina. With the help of two user-placed wire-
frame spheres that are aligned with the pictures of the eye, 
IntactEye can calculate the location of the marked injec-
tion site in the 3D coordinate frame of the eye. The accu-
racy of the IntactEye method compares well with both the 
projection method and Retistruct. By avoiding the retinal 
ex  vivo Ø attening, the acquisition is faster and we also 
reduce measurement artefacts and increase reproducibil-
ity and reliability. The IntactEye method is developed with 
the retina in mind, but we solve a general problem of locat-
ing a point in a three dimensional sphere from two images, 
which could have applications outside neuroscience.

Fig. 1 Example mouse eye at postnatal day P8 with a retinal injec-
tion. a, b Bright-Æe ld images of the intact retina, view from top and 
the side. 1 Retinal rim. 2 optic disc. 3 dye injection. c Flattened retina. 
Four nasal, temporal, dorsal and ventral cuts (4) were made to Øat ten 
the retina. The injection site is visible as a claret-coloured mark (3) on 
the retina. Scale bar 1 mm. Nasal (N) and Dorsal (D) directions are 
marked

N1

N2

N

A T

N

D

Fig. 2 Illustration of projection method. The two end points of the 
nasal cut (N1,N2) are connected by a line, the centre of which is 
deÆne d as the nasal pole (N). The same procedure is repeated on the 
temporal side, and the nasal (N) and temporal (T) poles are connected 
by a line (NT). The centre of the injection site (marked in red) is pro-
jected onto the nasotemporal axis, and the fraction of the distance is 
calculated as � � � � � � � � � , where � � � �  is distance between N and A, and 
� � � �  is distance between N and T. Scalebar 1 mm. Nasal (N) and Dorsal 
(D) directions are marked
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Implementation
In the Ærs t section we describe how to use the IntactEye 
method. We then describe the animal procedures used, 
and describe two other approaches of analysis that we 
compare to the IntactEye method. We also describe the 
new wedge coordinate system used to deÆn e the loca-
tion of the retinal injection. The last section describes the 
veriÆc ation of the IntactEye method using both known 
experimental retinal landmarks and synthetic data.

Installation
IntactEye is free to download from [13]. An archived ver-
sion of our program is also available from http://dx.doi.
org/10.6084/m9.Æg share.1605574. The zip Æl e contains 
the source code and some example images. This article 
acts as the main documentation for the program. Unpack 
the zip Æl e, then start MATLAB. In the MATLAB GUI 
click the ™ Set pathº  icon, and add the IntactEye directory 
to the path. Alternatively this can be done from the com-
mand line by executing addpath(í /your/path/to/
IntactEyeí ); savepath.

Preparation of images
To localise a retinal injection using IntactEye two images 
of the intact retina, with the injection site visible, must 
be prepared. We suggest one taken from the top looking 
down at the iris, and a second one taken from the side. 
For mouse we recommend a small cut at the vestigial 
nictitating membrane as a nasal marker. Make sure this 
cut is visible in at least one of the two images. The two 
images can be loaded separately or as a part of a compos-
ite image. The software reads images in tiff, png and jpeg 
format. The images need to have the same magniÆc ation 
and either have the same height or width so they can be 
automatically merged.

How to use the software
A video of the following four-step procedure can be 
found on YouTube [14].

Step 1 Open up Matlab and type IntactEye to start 
the program. In the user interface click ™ Load Imageº . 
This brings up a dialog box to select which composite Æl e 
to load. Alternatively, ™ Load Imagesº  allows you to load 
the two views from two separate Æl es. The images of the 
eye are displayed with two wire-frame spheres overlaid. 
The ™ Left Eyeº /™ Right Eyeº  button lets the user select if it 
is a left or right eye that is being analysed; this switches 
the dorsoventral (DV) axis accordingly.

Step 2 Using the computer mouse, the wire-frame 
spheres can be interactively resized and repositioned 
(Fig. 3). The left mouse button is used when the sphere 
is resized (by clicking and dragging on the axis handles) 
or moved (by clicking and dragging the centre). The 

right mouse button is used when rotating the wire-frame 
sphere. There are also two sliders to adjust the rim angle 
and rotate the eye around its central axis. If a nasal cut 
was made, it must be aligned with the nasal marker. The 
wire-frame spheres can be temporarily hidden by click-
ing the ™ Hideº  button. Clicking the button again shows 
the wire-frame spheres. If the nasal cut is only visible in 
the top view, then the injection can sometimes be used to 
help align the second sphere.

Step 3 Once the spheres match the images of the eye, 
the next step is to mark the injection site. Start by mark-
ing it in the top view by clicking ™ Mark topº  and then 
clicking on the injection location. A line is then displayed 
in the side view with the possible locations. Click ™ Mark 
sideº  and place a mark in the side view and the program 
computes the nasal and dorsal positions.

Step 4 Click ™ Saveº  to create a MAT Æ le with the eye 
image as well as the location of the wire-frame and injec-
tion. This information can be accessed by using the 
™ Reloadº  button to return to a previously saved state. The 
™ Export Figureº  button saves a 2D picture of the injection 
location (and, optionally, extent) in polar coordinates, as 
well as an image with the wire-frame spheres overlaid on 
the original images.

Experimental protocol
To test the IntactEye method we collected two sets of 
retinal images from mouse. First we dissected out and 
imaged the intact retina, then we performed additional 
dissection to acquire images of the Ø attened retina that 
could be analysed for comparison.

C57/Bl6J mice were housed at the Chronobiotron, 
CNRS UPS 3415, Strasbourg, under a 12/12 h light/dark 
cycle. All procedures were in accordance with European 
community (2010/63/EU) guidelines. Official agreement 
number for animal experimentation was 01831.01 (MR). 
Standard laboratory rodent food and water were available 
ad libitum.

Neuronal lipophilic tracer injection and dissection 
procedure were performed as previously described [15]. 
Small volumes (30± 50  nl) of 1,1-dioctadecyl-3,3,3,3-
tetramethylindocarbocyanine perchlorate (DiI) were 
injected in the left retina of P7-P8 C57/Bl6 mice. DiI was 
dissolved in dimethylformamide, loaded into a pulled 
glass pipette, and pressure injected into the retina using a 
Picospritzer. After 16 to 18 h, animals were euthanized by 
a lethal dose of pentobarbital (800  � g/g), perfused with 
4  % PFA and decapitated. The head skin was removed 
and a cut was made at the level of the nictitating mem-
brane (Ø ap) indicating the nasal pole of the retina. Ocu-
lomotor muscles were then cut and Æ ne tilted forceps 
were used to enucleate the eye. Cornea, sclera and pig-
mented epithelium were then delicately removed using 
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tweezers, revealing the retina. The intact retina was then 
photographed from a top-down and a side view, showing 
the injection site (Fig. 1A, B) using a Zeiss binocular cou-
pled to digital camera. These can then be analysed using 
IntactEye.

The projection method (Fig.  2) and Retistruct both 
require additional steps to be performed. For Ø at-mount 
dissection (Fig.  1C), cardinal cuts (temporal, dorsal and 
ventral) were performed according to the original nasal 
cut. The retina was then Ø attened on a coverslip and 
mounted onto a glass slide. A picture at low magniÆc a-
tion of the full Ø at-mounted retina was taken using Zeiss 

Axioskop 2. These Ø attened images can then be used with 
the projection method or Retistruct.

Projection method
The projection method [5, 6] is a standard method used 
to estimate the location of the nasotemporal axis based 
on the nasal cut and the optic disc (Fig. 2). In the image 
of the Ø attened retina, the two nasal points (N1, N2) that 
were separated by the cut are reconnected by a straight 
line. The middle of this line is deÆn ed as the nasal pole 
(N). The same procedure is applied to Æn d the temporal 
pole (T). A second line is drawn from N to T. This line 

1    2      3

4
5      6
7
8      9

10
11      12

13 14
15

16

17

Fig. 3 Screenshot of IntactEye being used used to mark up the eye and injection. The two images have a wire-frame overlaid such that the axes 
can be reconstructed. 1 Load image. 2 Reload a previously saved Æl e. 3 Toggle left and right eye coordinate system. 4 Slider to rotate the eye around 
the centre axis in top view. 5 Hide wire-frame for top view. 6 Reset top view. 7± 9 Same as 4± 6, but for side view. 10 Slider to adjust rim angle (yellow 
circle in Æ gure). 11 Mark injection in top and side views. 12 Estimate area of injection side from top or side view. Slider adjusts threshold. 13 Save results 
to MAT Æl e and export Æg ures. 14 Controls to generate synthetic data and verify user accuracy on the synthetic data. 15 Flat view of injection site 
location, showing spherical coordinates. The red dot is centred on the location and drawn to scale to reØe ct the approximate area of the injection. 16 
Retinal rim. 17 Injection location. Coordinate axes of the nasal and ventral axis are shown. As a visual guide the axes lines are shown as solid if they 
are above the image plane, and dashed if below it. The optic disc is visible close to the centre of the eye in the top view. A thin white line just under 
has been drawn by the experimentalist in the image to mark the nasal injection site, barely visible under the nasal axis in the top view
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(NT), which runs from the nasal pole to the temporal 
pole via the optic disc, deÆn es the nasotemporal axis. The 
injection location is projected onto this line and the posi-
tion (A) reported as a fraction of the whole nasotemporal 
axis (� � � � � � � � � , where � � � �  is the length of the line NA).

Retistruct method
The Retistruct method [11] is used here as a control to 
evaluate our method. Retistruct' s starting point is a Ø at-
tened retina. The user provides the algorithm with a 
mark-up of the periphery of the retina indicating where 
the cuts and tears were. This information is used to fold 
the Ø attened retina back onto a sphere. The refolding 
takes into account the rim angle and is done so as to min-
imize the amount of stretching and compression of the 
retinal image. The location of the injection is then calcu-
lated in the native 3D space of the eye.

IntactEye method
By using two images taken from different angles, the loca-
tion of an injection mark in an eye can be found without 
Ø attening the retina. To estimate the view angle for each 
of the images, the user needs to indicate where the eye 
is positioned and which way it is turned. This is done 
by placing a wire-frame eye-ball over the image of the 
intact retina. The controls in the program allow the user 
to rotate the eye along the three axes and to adjust the 
lengths � � , � �  and � �  of the semi-axes of the ellipsoid. The 

rim angle (Fig. 4) of the eye-opening is manually adjusted 
to improve the Æt  between the wire-frame model and the 
image of the eye. By marking the position of the injection 
in the top image ( � � � � � � � � � ), the location of the injection 
site can be narrowed down to a line segment between 
� � � � � � � � � � � � � � � � � � �  and � � � � � � � � � � � � � � −� � � � �  per-
pendicular to the imaging plane, where � � � �  is the largest 
radius of the ellipsoid. The view transform is

where for rotation ϑ � � ϑ � � ϑ �  around the x,  y,  z-axis the 
rotation matrix is

and � � � � � �  is a vector. The inverse transform is

and the line representing possible locations for the 
injection in the eye frame runs from � � � � −� � � � �  to 
� � � � −� � � � � . By plotting this line in the second view 
overlaid on the eye, we can quickly establish which point 
in 3D space corresponds to the injection. This method 
relies on accurately placing the two wire-frame eyes on 
top of the real images.

Internally the program stores the coordinates of the 
injection ( � � � � � � � � � � � � � � ) in Cartesian coordinates in the 
coordinate frame of the eye (E). The program also stores 
the viewing transforms for each of the two views, which 
tracks the 3D rotation and the translation of the spheres.

Wedge coordinate system
A coordinate system which deÆ nes arcs running from the 
nasal to the temporal poles, along which the fractional 
distance f from nasal to temporal can be measured. A 
fractional distance from the dorsal to the ventral poles 
can be deÆn ed analogously. This section is presented for 
information only; the user can use the program without 
studying the new coordinate system.

Assume the retina is oriented as shown in Fig. 4, with 
the rim lying at a colatitude of φ�  measured from the 
south pole. Each point on the surface of the curtailed 
sphere can be reached by a system of coordinates � ψ � � �  
where ψ is the angle to the vertical made by a plane pass-
ing through the nasal and temporal poles and f is the 
fractional distance along the circle deÆn ed by the inter-
section of this plane and the curtailed sphere. Assuming 
a sphere of unit radius, the forward transformation from 

(1)� � � � � � � � � � � � � � � � � �

(2)

� � � � �

⎛

⎝

� � �

� � � � ϑ � − � � � ϑ �

� � � � ϑ � � � � ϑ �

⎞

⎠

⎛

⎝

� � � ϑ � � � � � ϑ �

� � �

− � � � ϑ � � � � � ϑ �

⎞

⎠

⎛

⎝

� � � ϑ � − � � � ϑ� �

� � � ϑ� � � � ϑ � �

� � �

⎞

⎠

(3)� −� � � � � � −�
� � � � � − � � � � � � �

Φ0

Nasal
Dorsal

Fig. 4 The wedge coordinate system. The coordinate of each point 
can be found by taking a plane through the nasal pole (N), temporal 
pole (T) and the point of interest (red dot). The intersection of the 
plane and the sphere forms an arc (solid arrow and dotted line). The 
nasotemporal coordinate is the fraction (f) of the distance along the 
arc from the nasal to the temporal pole. The rim angle (φ � ) is used 
when calculating the wedge coordinates. The dorsoventral coordi-
nate is deÆne d analogously
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wedge coordinates � ψ � � �  to Cartesian coordinates (x, y, z) 
is:

where

Here ρ is the radius of the circular arc whose centre is 
� �� � � � � � � , and α �  is the value of the angular parameter 
along the circle at the rim.

To invert (x, y, z) back to � ψ � � �  the following equations 
are used:

where

Internally, IntactEye uses Cartesian coordinates, and the 
inverse transformation (Eqs. 6, 7) is used to generate the 
output. The forward transformation (Eqs. 4, 5) is given as 
reference.

Injection area estimation
As well as reporting the location of the centre of the reti-
nal injection, the area can also be estimated from either 
the top view or the side view, as long as the entire injec-
tion site is visible. IntactEye automatically converts the 
image from RGB into the L*A*B* colour space, which has 
one value for lightness and the other two for colour hues. 
The lightness value is discarded. If the injection centre in 
the image is located at (p,q) then the distance in colour 
space for a pixel at (i, j) is calculated as

where � � � , � � � , � � � , � � �  are the hue values. The image 
is thresholded (default threshold 5) so that only the 
parts with similar colour hue to the injection centre are 
selected. To Æn d the corresponding points on the sphere, 

(4)

� � ρ � � � � α � � � � � π − � α� � �

� � � � − ρ � � � ψ � � � � α� � � � � π − � α� � �

� � � � � ρ � � � ψ � � � � α � � � � � π − � α � � �

(5)

ρ �

√

� � � � φ� � � � � � φ� � � � � ψ

� � � − � � � ψ � � � ψ � � � φ �

� � � − � � � � ψ � � � φ �

α � � − � � � � � �

(

� � � φ �

ρ

)

(6)

ψ � � � � � � � � −ρ � � � φ� − � �

� � −� � − � � � � � � ψ � � � − � � � � � � ψ

α � � � � � � � � � �

� � � α − α� � � � � π − � α � �

(7)� � � � � � � � � �

⎧

⎨

⎩

� � � � � � � � � � � − π � � � � � � � � �
� � � � � � � � � � � � π � � � � � � � � �
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(8)� � � � � �

√
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IntactEye takes a line through each injection pixel, per-
pendicular to the image plane, and Æn ds its intersection 
with the eye ellipsoid. This is done by calculating

(where � � � � � � � �  are the lengths of the semiaxes of the 
ellipsoid) for 2000 points on the line, and picking the one 
with the smallest v. The fraction of the total area of the 
eye is reported as the injection size. The injection area is 
calculated using MATLAB' s built in alpha hull [16] func-
tion (alphaShape); this functionality requires matlab 
version 2014b or newer; older versions of matlab will not 
calculate the area of injections, but can still calculate the 
location.

Synthetic data
We generated a set of synthetic data to train the user, and 
also to verify the accuracy of the method. The length of 
the semi-axes of the ellipsoid representing each eye are 
drawn from a normal distribution (� � � � � � � � � ), corre-
sponding to a P12 mouse eye [11]. The rim angle deÆ n-
ing the opening was sampled from a normal distribution 
(� � ◦ � � ◦). For the top and side views, the view angle and 
location was varied approximately within a range of � � � ◦ 
around the x and y axis (normal distribution (� ◦ � � ◦) 
and freely rotating around the z-axis. The nasal cut was 
marked with a M. The location of the injection centre 
(spherical coordinates θ� � � ∈ � � ◦ � � � � ◦ � � φ� � � ∈ � � ◦ � � � � ◦ � ) 
was randomized from a uniform distribution. The injec-
tion site was represented by 100 points, with spherical 
coordinates sampled from a normal distribution centered 
on the injection centre, and with standard deviation � ◦. 
Any points placed above the rim were discarded. Three 
observers were asked to estimate the location of the 
centre of the injection site in synthetic data. The user-
provided location and the known location were then 
compared.

Locating the optic disc
By using the location of the optic disc as a known land-
mark close to the geometric centre of the eye [17] we can 
estimate the accuracy of the Retistruct and IntactEye. 
Images where the optic disc was not clearly visible were 
excluded from this veriÆc ation step.

Results and discussion
We have created a software package named ™ IntactEyeº  
to calculate the location of a retinal injection from two 
orthogonal pictures of an intact retina. IntactEye lets the 
user manually place two reference wire-frame spheres on 
the images of the eye. The program reports the nasotem-
poral and dorsoventral coordinates of the injection as a 

(9)� � � � �
(

� � � � �� � � � � � �� � � � � � �� − �
)
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fraction along the respective axes using our wedge coor-
dinate system (Fig. 4). The injection size is reported as a 
fraction of the area of the retina.

To compare IntactEye with the projection method 
and Retistruct, a set of wild type mouse retinas (N� 11) 
which had been imaged both before and after Ø atten-
ing was analysed. Fig. 5 compares the position estimates 
from the three methods, for the nasotemporal axis (A) 
and the dorsoventral axis (B). We see that there is a good 
correspondence between all three measures, but there is 
a larger variation in the dorsoventral coordinates than in 
the nasotemporal coordinates (compare Pearson correla-
tion coefficients in Table  1). For the projection method 
the nasal cut and Ø attening will cause a larger distortion 

of the dorsoventral axis than the nasotemporal axis due 
to the direction of the cut.

We assess the accuracy of the IntactEye using two 
methods. First we used the location of the optic disc, a 
known retinal landmark. The optic disc was visible in 
six out of eleven images investigated. By marking the 
optic disc in the images using IntactEye we estimated 
the location as � � � � �  (mean  �  SD) nasotemporal and 
� � � � �  dorsoventral (Fig. 6). This is comparable to the 
results from Retistruct when applied to the same retinas: 
� � � � �  nasotemporal and � � � � �  dorsoventral (Fig. 6).

We also created synthetic images of eyes with label 
injections where the exact location was known. This 
allowed us to assess the variability with the IntactEye 
method that comes from Æ tting the spheres to the image 
of an idealised eye. Three observers each marked a unique 
set of synthetic data. Figure  7 shows the known NT 
(DV) coordinates on the x-axis and the corresponding 
estimates on the y-axis. We see a good correspondence 
between the true location and the estimated position in 
the synthetic data (Pearson correlation coefficient 0.98 
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Fig. 5 Comparison of nasotemporal and dorsoventral coordinates for 
retinal injections derived from three different methods. a The coordi-
nates on the Øat tened retina from the projection method are shown 
on the x-axis and the NT coordinates on the spherical eye from both 
Retistruct and the IntactEye method are shown on the y-axis. b As in 
a, but for the DV axis. Points estimated from the same eye are shown 
in the same colour and connected by a thin grey line. The diagonal 
line shows the case when the coordinates in the Øat  and spherical 
coordinate system agree

Table 1 Pearson correlation coefficient for NT (DV) coordi-
nates between the three methods for data shown in Fig. 5

Retistruct IntactEye

Projection 0.97 (0.88) 0.98 (0.74)

IntactEye 0.98 (0.92) ±
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Fig. 6 Estimating the precision of the IntactEye method by locating 
the optic disc. The optic disc is located in the centre of the eye and 
was visible in 6 out of 11 retinas. For each of the six retinas, the optic 
disc location was estimated in polar coordinates using IntactEye (tri-
angles) and Retistruct (Æ lled circles). Lines connect two estimates from 
the same retina. In all six cases, The optic discs were located within 2◦ 
of the geometric centre; by comparison the rim is located at 127◦ and 
so the error in locating the optic disc was under 2 %
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and 0.99 for NT and DV axis). These images are relatively 
clean, lacking deformations of the eye and imperfections 
such as debris and limited depth of Æe ld. However, it pro-
vides us with images where the centre of the injection is 
known and allows us to test misalignment of the wire-
frame spheres onto the images of the eye.

Limitations
Each point that is localised using IntactEye must be 
uniquely identiÆe d in both images of the retina. Because 
of this limitation the IntactEye method is best suited for 
Æn ding single injections and other distinct landmarks. If 
more than one distinct region is labelled with the same 
dye, it may be difficult to uniquely identify the same 
region in the two different images. This is known as the 
correspondence problem in stereo vision [18]. This may 

limit the use to anterograde injections where the retinal 
marking is focused. For retrograde injections in animals 
where the label is spread over a large region of the ret-
ina (e.g. when topographic maps are perturbed, such as 
Figure 4 of [19]), it is currently better to dissect the retina 
and then use a program like Retistruct, which analyses 
the entire retina and can generate density estimates.

Future work
By using the IntactEye method we can locate the centre 
of a single injection from images taken from any two dis-
tinct views where the injection is visible. The program 
currently only tracks one injection, but could be extended 
to handle multiple injections of different coloured dyes. 
This, together with the area estimation, might allow the 
processing of focal retrograde injections as well, as long 
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Fig. 7 VeriÆcat ion of IntactEye using synthetic data. a Example of synthetic data used in the test. The injection site is represented by 100 rand-
omized points sampled from a normal distribution centred around the injection site. The nasal cut is marked with the letter M. b, c Known NT/DV 
coordinates of synthetic injections plotted against user-estimated NT/DV coordinates from IntactEye. Vertical black lines indicate deviation from 
correct location
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as they are wholly visible in the images, potentially by 
allowing for additional views of the retina.

The manual placement and alignment of the wire-
frames takes a few minutes, and is a candidate for aut-
omisation. However currently the time-intensive part is 
the data acquisition; for example dissecting out the retina 
and Ø attening procedures takes 10± 15 min.

An alternative method to our current problem of locat-
ing an injection site might be to image the entire eye to 
generate e.g. a z-stack of images. Although this would 
avoid the need for any retinal dissection, it does not in 
itself solve the subsequent problem of registering the 
retinal location in a standard coordinate space. Therefore, 
generating volumetric images of eyes would not allow 
the injection sites to be compared meaningfully with 
each other. By contrast, if a z-stack is already available 
for an eye, it should be possible (resolution permitting) to 
extract two orthogonal images suitable for our program.

Conclusions
We have developed a method that uses two images of 
an intact retina to derive the location of a retinal injec-
tion. This bypasses the need to cut and Ø atten the retina, 
improving the accuracy of the localisation as the tissue 
undergoes less distortion, and saving the experimentalist 
time. By analysing the data in a coordinate system native 
to the shape of the eye, we avoid the problem of represent-
ing a spherical structure in a Ø at coordinates. To verify 
our results we analysed the data in three different ways. 
We found good correspondence between the coordinates 
of our IntactEye method and of Retistruct, which uses 
Ø attened images and then folds them back onto a sphere. 
Both methods produce coordinates in the native curved 
space of the eye. We have solved the abstract problem 
of deducing the location of a point on a spherical object 
from two images, and implemented it for our use analys-
ing mouse retinae, where there are no discernable land-
marks for orientation within the retina. It can however be 
used in other species where retinal landmarks are avail-
able, such as the corneal marks in goldÆ sh. Furthermore, 
this technique might have clincial applications to human 
retinas, where a reliable coordinate system is required for 
describing retinal locations, based for example on MRI 
images. Finally, as our approach is to treat the retina as a 
simple geometrical, rather than neuronal object, we imag-
ine this technique can be applied straightforwardly to a 
wide range of Æ elds outside of neuroscience.

Availability and requirements
Project name: IntactEye. Project home page: http://
github.com/hjorthmedh/IntactEye. Archived version  
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1605574. Operating system(s): Any platform that runs 

MATLAB 2014b or later (tested on mac, linux and win-
dows). Programming language: MATLAB. Other require-
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GPL/MIT.

Abbreviations
N: nasal; T: temporal; D: dorsal; V: ventral; NT: nasotemporal axis; DV: dorsoven-
tral axis.

Authors'  contributions
JJJH and DCS designed the algorithm. JJJH wrote the code. ES and MR 
performed the experiments. JJJH, ES, MR, SJE evaluated the technique. JJJH, 
DCS, ES, MR, SJE wrote the manuscript. All authors read and approved the Æ nal 
manuscript.

Author details
1 Cambridge Computational Biology Institute, University of Cambridge, 
Wilberforce Road, Cambridge CB3 0WA, UK. 2 Institute of Cellular and Integra-
tive Neuroscience, CNRS UPR 3212, 5 rue Blaise Pascal, 67084 Strasbourg, 
France. 3 Institute for Adaptive and Neural Computation, School of Informatics, 
University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK. 4 Univer-
sitÈ de Strasbourg Institut d' … tudes AvancÈ es, 5 rue Blaise Pascal, 67084 Stras-
bourg, France. 

Acknowledgements
SJE and MR gratefully acknowledge the support of the University of Stras-
bourg Institute for Advanced Study (USIAS). SJE and JJJH were supported by 
the Wellcome Trust (grant number 083205). The authors wish to thank Ellese 
Cotterill for analysing synthetic data for veriÆ cation of accuracy.

Competing interests
The authors declare that they have no competing interests.

Received: 12 June 2015   Accepted: 5 November 2015

References
 1. McLaughlin T, O' Leary DDM. Molecular gradients and development of 

retinotopic maps. Annu Rev Neurosci. 2005;28:327±5 5. doi:10.1146/
annurev.neuro.28.061604.135714.

 2. Chklovskii DB, Koulakov AA. Maps in the brain: what can we learn 
from them? Annu Rev Neurosci. 2004;27:369±9 2. doi:10.1146/annurev.
neuro.27.070203.144226.

 3. Goodhill GJ, Xu J. The development of retinotectal maps: a review of 
models based on molecular gradients. Network. 2005;16:5±3 4.

 4. Simon DK, O' leary DDM. Development of topographic order in the mam-
malian retinocollicular projection. J Neurosci. 1992;12:1212±3 2.

 5. Brown A, Yates PA, Burrola P, OrtuÒ o D, Vaidya A, Jessell TM, Pfaff SL, 
O' Leary DDM, Lemke G. Topographic mapping from the retina to the 
midbrain is controlled by relative but not absolute levels of EphA recep-
tor signaling. Cell. 2000;102:77±8 8. doi:10.1016/S0092-8674(00)00012-X.

 6. Reber M, Burrola P, Lemke G. A relative signalling model for the formation 
of a topographic neural map. Nature. 2004;431:847±5 3. doi:10.1038/
nature02957.

 7. Nakamura H, O' Leary DDM. Inaccuracies in initial growth and arboriza-
tion of chick retinotectal axons followed by course corrections and axon 
remodeling to develop topographic order. J Neurosci. 1989;9:3776±9 5.

 8. Suetterlin P, Drescher U. Target-independent ephrinA/EphA-mediated 
axon-axon repulsion as a novel element in retinocollicular mapping. 
Neuron. 2014;84(4):740±5 2. doi:10.1016/j.neuron.2014.09.023.

 9. Cang J, Wang L, Stryker MP, Feldheim DA. Roles of Ephrin-as and 
structured activity in the development of functional maps in the 
superior colliculus. J Neurosci. 2008;28:11015±2 3. doi:10.1523/
JNEUROSCI.2478-08.2008.

 10. Ullmann JFP, Moore BA, Temple SE, Fern· ndez-Juricic E, Collin SP. The 
retinal wholemount technique: a window to understanding the brain 
and behaviour. Brain Behav Evol. 2012;79:26±4 4.

100

http://github.com/hjorthmedh/IntactEye
http://github.com/hjorthmedh/IntactEye
http://dx.doi.org/10.6084/m9.figshare.1605574
http://dx.doi.org/10.6084/m9.figshare.1605574
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135714
http://dx.doi.org/10.1146/annurev.neuro.28.061604.135714
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144226
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144226
http://dx.doi.org/10.1016/S0092-8674(00)00012-X
http://dx.doi.org/10.1038/nature02957
http://dx.doi.org/10.1038/nature02957
http://dx.doi.org/10.1016/j.neuron.2014.09.023
http://dx.doi.org/10.1523/JNEUROSCI.2478-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.2478-08.2008


Page 10 of 10Hjorth et al. BMC Neurosci  (2015) 16:80 

 11. Sterratt DC, Lyngholm D, Willshaw DJ, Thompson ID. Standard anatomical 
and visual space for the mouse retina: computational reconstruction and 
transformation of Ø attened retinae with the Retistruct package. PLoS 
Comput Biol. 2013;9:1002921. doi:10.1371/journal.pcbi.1002921.

 12. Curcio CA, Sloan KR, Meyers D. Computer methods for sampling, 
reconstruction, display and analysis of retinal whole mounts. Vision Res. 
1989;29:529±4 0. doi:10.1016/0042-6989(89)90039-4.

 13. Hjorth,J.: Github Repository±I ntactEye. https://github.com/Hjorthmedh/
IntactEye/archive/master.zip.

 14. Hjorth J. IntactEye Instruction Video. https://www.youtube.com/
watch?v� dn3MqbRjS1Q.

 15. Bevins N, Lemke G, Reber M. Genetic dissection of EphA receptor signal-
ing dynamics during retinotopic mapping. J Neurosci. 2011;31:10302±1 0. 
doi:10.1523/JNEUROSCI.1652-11.2011.

 16. Edelsbrunner H, Kirkpatrick D, Seidel R. On the shape of a set of points 
in the plane. IEEE Trans Inform Theor. 1983;29:551±9 . doi:10.1109/
TIT.1983.1056714.

 17. Dr‰ ger UC, Olsen JF. Ganglion cell distribution in the retina of the mouse. 
Invest Ophthalmol Vis Sci. 1981;20:285±9 3.

 18. Marr D, Poggio T. Cooperative computation of stereo disparity. Science. 
1976;194(4262):283±7 . doi:10.1126/science.968482.

 19. McLaughlin T, Torborg CL, Feller MB, O' Leary DDM. Retinotopic map 
reÆ nement requires spontaneous retinal waves during a brief criti-
cal period of development. Neuron. 2003;40:1147±6 0. doi:10.1016/
S0896-6273(03)00790-6.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

101

http://dx.doi.org/10.1371/journal.pcbi.1002921
http://dx.doi.org/10.1016/0042-6989(89)90039-4
https://github.com/Hjorthmedh/IntactEye/archive/master.zip
https://github.com/Hjorthmedh/IntactEye/archive/master.zip
https://www.youtube.com/watch?v=dn3MqbRjS1Q
https://www.youtube.com/watch?v=dn3MqbRjS1Q
http://dx.doi.org/10.1523/JNEUROSCI.1652-11.2011
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1109/TIT.1983.1056714
http://dx.doi.org/10.1126/science.968482
http://dx.doi.org/10.1016/S0896-6273(03)00790-6
http://dx.doi.org/10.1016/S0896-6273(03)00790-6


.

Savier, E., Eglen, SJ., Perraut, M., Pfrieger, FW., Reber, M., submitted

Isl2-ephrin-A3KI mouse model

To gain insights on the role of the retinal ephrin-As gradient, a knock-in mouse model was

generated: the Isl2-ephrin-A3KI. In this model, 50% of RGCs over-express ephrin-A3 due to the

pattern of expression of Islet-2. As a consequence, the Isl2-ephrin-A3KI has two distinct populations of

RGCs: one with endogenous levels of ephrin-As (ephrin-A2/A3/A5), and one over-expressing ephrin-

A3 in addition. This over-expression quantitatively disrupts the retinal ephrin-A gradient.

 

Molecular characterization of the Isl2-ephrin-A3KI mouse model

The Isl2-ephrin-A3KI mouse model was characterized by immunostaining and qPCR to assess

the over-expression of ephrin-A3. No perturbation was found concerning endogenous ephrin-A

expression; mRNA levels of ephrin-A3 in the retina are increased in mutants as compared to wild-

types and a strong ephrin-A3 immunostaining colocalize with Isl2 + RGCs. Taken together, these

results validated the Isl2-ephrinA3KI mouse model.

Isl2-ephrin-A3KI retino-collicular map

Using lipophilic tracer injections (DiI) and IntactEye (Hjorth et al., 2015), the retino-collicular

map was measured in wild-type, heterozygote, and homozygote mutants. Each injection site in the

retina is associated to its corresponding projection site in the SC. The map obtained in mutants did not

reveal any particular phenotype when compared to the wild-type. These results suggest that retinal

ephrin-A3 is not involved in the formation of the retino-collicular map.

Isl2-ephrin-A3KI cortico-collicular map:

Previous studies have revealed an implication of ephrin-As in the formation of the cortico-

collicular map (Cang et al., 2005a), and that alignment onto the retino-collicular map depends on the

retinal inputs (Triplett et al., 2009). From a developmental aspect, projections from V1 reach the SC

after the establishment of the retino-collicular map. Full duplication of the retino-collicular map in Isl2-

EphA3KI homozygous mice leads to a duplication of the cortico-collicular map, which originally

suggested that activity drives the alignment of both maps (Triplett et al., 2009). Considering these

results, the cortico-collicular map was characterized in the Isl2-ephrin-A3KI mouse model with focal

DII injections in V1 at P15, when this map is mature. Interestingly, duplications were observed in 47%

of homozygous animals and 43% of heterozygous animals, in the absence of a retino-collicular

duplication. In addition, the distance separation is doubled in homozygous animals as compared to

heterozygous (7 and 13% of rostral-caudal collicular axis), suggesting an effect that depends on the

number of alleles. These observations suggest that molecular signaling plays an important role in the

alignment of cortico-collicular projections, in addition to activity. A plausible mechanism is the

transportation of retinal ephrin-As to the SC, giving instructions to ingrowing cortical axons. The delay

in the formation of both maps is in favor of such a mechanism.

Isl2-EphA3KI x Isl2-ephrin-A3KI retino-collicular map

The Isl2-ephrin-A3KI was crossed with the Isl2-EphA3KI, which expresses EphA3 in the same

subpopulation of RGCs. This mutation (Isl2-EphA3KI) leads to a full duplication of the retino-collicular

map in homozygous, and a partial duplication in heterozygous animals, with systematic duplication on

the caudal pole of the SC, and single termination zones at the rostral pole (Brown et al., 2000; Reber
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et al., 2004). Mapping of the retino-collicular projections revealed a single map, with single termination

zones along the rostral-caudal axis in the double mutant, reversing the Isl2-EphA3KI/+ phenotype.

This rescue suggests that ephrin-A3/EphA3 co-expression in the same RGC leads to an inactivation of

the EphA3 receptor.

Isl2-EphA3KI x Isl2-ephrin-A3KI cortico-collicular map

The cortico-collicular map was also assessed in double mutants. In these animals, no

duplications were found, rescuing the Isl2-ephrin-A3KI/+ phenotype, which confirms joint inactivation

of ephrin-A3 ligand and EphA3 receptor.

In silico modeling

To further validate the mechanistic model that was suggested, a computational model was

adapted and used to test the results that were obtained. The original model (Koulakov and Tsigankov,

2004) allows for the formation of the retino-collicular map, according to EphA/ephrinA gradients and

correlated activity. To reproduce the formation of the cortico-collicular map, the model was extended

as follows: 1) Formation of the retino-collicular map 2) Transposition of the retinal ephrin-A gradient to

the SC 3) Formation of the cortico-collicular map by interaction between cortical EphAs and

transposed ephrin-As. This modeling reproduces the formation of the wild-type cortico-collicular map,

but also our findings, with a penetrance and a distance separation similar to the observations in both

homozygous and heterozygous Isl2-ephrin-A3KI.
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Abstract 12 

The processing of sensory information requires the proper alignment of neural maps throughout the 13 

brain. In the superficial layers of the superior colliculus of the midbrain, converging anterograde axonal 14 

projections from ganglion cells in the eye and retrograde projections from neurons in visual cortex 15 

must be aligned to form a visuotopic map, but the basic mechanisms that mediate this convergent 16 

alignment remain elusive. In a new mouse model, ectopic expression of ephrin-A3 in a subset of 17 

retinal ganglion cells does not affect retinocollicular map development but disrupts corticocollicular 18 

map alignment onto the retinocollicular map, creating a visuotopic mismatch. In vivo inactivation of 19 

ectopically expressed retinal ephrin-A3 restores a wild-type corticocollicular map. Theoretical analyses 20 

using a new mapping algorithm model both map formation and alignment, and recapitulate our 21 

experimental observations in normal and aberrant conditions. The algorithm is based on a leading 22 

sensory map, the retinocollicular map, which carries intrinsic molecular information, the retinal ephrin-23 

As, to the superior colliculus. These ephrin-As subsequently topographically align ingrowing visual 24 

cortical axons to the retinocollicular map, allowing the corticocollicular map to compensate for 25 

retinocollicular mapping variability. 26 

 27 
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Brain function relies on efficient processing of sensory information, which in turn requires the proper 28 

formation and interaction of multiple sensory maps of the world. The superior colliculus (SC) of the 29 

midbrain is a major hub for sensory processing as it receives organized inputs from visual, auditory, 30 

and somatosensory modalities1. The SC is a laminated structure controlling visuo-spatial orientation 31 

and attention1,2. As such, defective sensory processing in the SC has been associated with psychiatric 32 

conditions3. Visual information reaches the superficial layers of the SC, which are innervated both by 33 

retinal ganglion cells (RGCs - the retino-collicular projection) and by layer V neurons of the primary 34 

visual cortex V1 (the cortico-collicular projection). During development, the retino-collicular map forms 35 

during the first post-natal week followed by the cortico-collicular map which develops between P6 and 36 

P124. These visuotopic maps must be aligned to ensure efficient modulation of the SC’s response by 37 

V1 inputs5,6. It has been suggested that the formation of the visuotopy is a stochastic process 38 

instructed by a balanced contribution of molecular cues and correlated neuronal activity4,7-11. However 39 

the basic principles and underlying molecular mechanisms governing the alignment of converging 40 

maps have not yet been fully identified. Potential candidates are gradients of Eph tyrosine kinase 41 

receptors and their membrane-bound ligands, the ephrins, already known to control retino-collicular 42 

map formation. In the mouse, EphA4/A5/A6 receptors are present on projecting RGCs in a low-nasal 43 

to high-temporal gradient. RGC axons are repelled upon EphAs activation by collicular ephrin-44 

A2/A3/A5, expressed in a low-rostral to high-caudal gradient in the SC12,13. Counter-gradients of 45 

ligands (ephrin-A2/A3/A5) and receptors (EphA3/A4/A7) are also present in the RGCs and the SC 46 

respectively, but their role remains controversial14-17. In V1, gradients of EphA4/A7, running from high-47 

lateral to low-medial have also been shown and evidence from genetic analyses suggests their 48 

involvement in the development of the cortico-collicular projections18,19. Moreover, the formation of the 49 

cortico-collicular map requires retinal input4,20, but again, the underlying molecular mechanism 50 

remains elusive. Here, we analyze the role of retinal ephrin-As gradients in visuotopic map formation 51 

in the SC using new transgenic mice in which ephrin-A3 is ectopically expressed specifically in Isl2(+) 52 

RGCs. Surprisingly, Isl2-ephrin-A3KI mice exhibit a normal retino-collicular/geniculate maps and 53 

normal ipsi/ contra-lateral projections. In marked contrast, the formation of the cortico-collicular map 54 
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was severely disrupted, leading to a mix of single and duplicated projections and generating a 55 

mismatch with the retino-collicular map. The causal role of ephrin-A3 -ectopic expression was further 56 

confirmed when in vivo inactivation by co-expressed EphA3 receptor in the same Isl2(+) RGCs 57 

restored a wild-type map. Theoretical modelling recapitulated the observed visuotopic abnormalities 58 

induced by ephrin-A3 ectopic expression and therefore validated the basic principle and mechanism of 59 

map alignment.  60 

 61 

Results 62 

Knock-in mice for ephrin-A3 ectopic expression in Isl2(+) RGCs show normal retino-collicular 63 

and retino-geniculate projections. 64 

To test the role of retinal ephrin-A ligands in visuotopic map formation, we generated knock-in mice by 65 

insertion of a full length ephrin-A3 cDNA into the 3'-UTR region of the Islet-2 gene locus 66 

(Supplementary Fig. 1a), similar to a previous approach21. Immunohistochemical staining confirmed 67 

selective ectopic expression of ephrin-A3 in somata and axons of Isl2(+) RGCs in postnatal day 1 (P1) 68 

and P8 ephrin-A3 homozygous knock-in (ephrin-A3KI/KI) mice compared to wild-type (WT) littermates 69 

(Fig. 1a-f) without affecting Islet-2 expression at P1 (Fig. 1g,h). Ephrin-A3KI/KI mice present two sub-70 

populations of RGCs: Isl2 (-) cells, expressing wild-type levels of ephrin-A3 and Isl2(+) cells 71 

expressing additional ephrin-A3 (Fig. 1e-f,i-n). Ephrin-A3 is observed on RGC neurites in vitro (Fig. 72 

1o, o’). Ectopic expression of ephrin-A3 in Isl2(+) RGCs did not induce perceptible changes in 73 

synaptic layers nor in retinal organization (Fig. 2a,b). Quantitative RGC-specific transcript (mRNA) 74 

analyses confirmed a two-fold increase of ephrin-A3 and normal levels of ephrin-A2/A5 in ephrin-75 

A3KI/KI mutants when compared to WT littermates (Fig. 2c). Together, these data confirmed ectopic 76 

expression of ephrin-A3 in Isl2(+) RGCs in our new mouse model. 77 

To study retino-collicular map formation, we performed focal DiI anterograde labelling in the retina of 78 

P7 mice and analyzed the termination zones (TZs) in the SC at P8, as described21-24. For quantitative 79 

analysis, we measured the locations of the termination zones along the rostral-caudal axis of the SC 80 

and the location of the focal DiI injections along the nasal-temporal axis of the retina (Supplementary 81 
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Fig. 1b,c). Plotting these values in Cartesian coordinates, as described previously, revealed normal 82 

retino-collicular maps in ephrinA3KI/KI and ephrin-A3KI/+ mice similar to WT littermates (Fig. 3a). 83 

Retrograde labelling confirmed that axons from both Isl2(-) and Isl2(+) RGCs project to the SC (Fig. 84 

3b-g). Moreover, anterograde focal injections show normal retino-geniculate mapping (Fig. 3h-k) and 85 

labelling by full-eye fills showed normal retino-collicular/geniculate eye-specific segregation (Fig. 3l-o’) 86 

in ephrin-A3KI/KI similarly to WT littermates. These results demonstrated that ectopic expression of 87 

retinal ephrin-A3 in Isl2(+) RGCs does not disturb the formation of the retino-collicular/geniculate 88 

mapping nor the eye-specific segregation.  89 

 90 

Cortico-collicular maps are duplicated in Isl2-ephrin-A3KI mutants 91 

To test whether retinal ephrin guidance cues influence the formation of the V1 cortico-collicular map, 92 

we traced cortico-collicular projections from V1 cortex by focal DiI injection in P14 mice and analyzed 93 

the location of the TZs in the SC at P15. Quantitative analyses revealed a remarkable duplication of 94 

the cortico-collicular map along the rostral-caudal axis of the SC in 47% of ephrin-A3KI/KI (n = 9/19, 95 

Fig. 4a) and 43% of ephrin-A3KI/+ (n = 7/16, Fig. 4b) animals when compared to WT littermates (n = 96 

9, Fig. 4c). If this heterogeneity is caused by genetic variation between animals, the same type of 97 

projections (either single or duplicated) should be observed in both colliculi of a given animal. This 98 

was not observed in 60% of ephrin-A3KI/KI (n = 3/5) and 57% of ephrin-A3KI/+ (n = 4/7) animals when 99 

we traced the cortico-collicular projections in both left and right colliculi (Fig. 4d). Therefore, genetic 100 

variation is unlikely to contribute to map heterogeneity between animals which is rather the 101 

consequence of a stochastic process of map formation, as suggested previously11. In 40% of ephrin-102 

A3KI/KI animals showing the same type of projections between colliculi, all of these projections were 103 

duplicated whereas in the ephrin-A3KI/+ animals, the remaining 43% presented only single projections 104 

in both left and right colliculi, suggesting an effect of the level of ephrin-A3 ectopic expression onto 105 
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cortico-collicular map duplication. As expected, all WT animals tested (n = 4) showed single 106 

projections in both colliculi (Fig. 4d).  107 

Next, we calculated the average distance of separation ('Sexp) between the duplicated maps in 108 

Isl2-ephrin-A3KI mutants as a percentage of the rostral-caudal axis of the SC (Fig. 4a,b). This 109 

revealed a significant two-fold difference in map separation between ephrin-A3KI/KI ('Sexp median = 110 

13 %, n = 9) and ephrin-A3KI/+ ('Sexp median = 7 %, n = 7) animals which correlates with the 111 

presence of one or two alleles of Isl2-ephrin-A3 (Fig. 4e). Since Isl2 is not expressed in the cortex, 112 

these results indicate that ephrin-A3 ectopic expression in Isl2(+) RGC axons destabilizes the 113 

stochastic process of cortico-collicular mapping leading to map duplication in Isl2-ephrin-A3KI 114 

animals. This in turn implies that V1 EphA+ cortical axons sense the alternating ephrin-A3 levels on 115 

RGCs terminals by direct contact with these terminals in the SC18. Anterograde labelling from retina 116 

and V1 cortex showed that both cortical and retinal axons terminals overlap in the superficial layers of 117 

the SC (Fig. 4f)4,25. Retrograde labelling confirmed that the cortico-collicular projections originate from 118 

layer V neurons in V1 cortex in P14 ephrin-A3KI/KI animals (Supplementary Fig. 2a). Transcript 119 

analyses in colliculi and V1 cortices revealed normal levels of ephrinA2/A3/A5 and EphA4/A7 120 

receptors in ephrin-A3KI/KI compared to WT littermates at P7 (Supplementary Fig. 2b) excluding 121 

indirect effects caused by local changes of gene expression. No bi-cistronic expression of Isl2-ephrin-122 

A3 in either SC or V1 cortex of WT and ephrin-A3KI/KI animals could be detected (Supplementary Fig. 123 

2c) ruling out any indirect effects of ectopic ephrin-A3 ectopic expression. 124 

 125 

In vivo cis-inactivation of ephrin-A3 ectopic expression restores a wild-type cortico-collicular 126 

map 127 

If the defective cortico-collicular maps in the Isl2-ephrin-A3KI animals were solely due to ephrin-A3 128 

ectopic expression in Isl2(+) RGCs, then inactivation of this ectopic expression should rescue the 129 

phenotype and restore a wild-type map. Previous work showed that co-expression of ephrin-A3 ligand 130 

and EphA3 receptor in the same cell leads to their mutual inactivation through cis-masking26. To 131 

accomplish this in vivo, we generated double heterozygous mice carrying ephrin-A3 on one allele of 132 
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the Islet-2 gene and EphA3 on the second allele (ephrin-A3KI/EphA3KI). Immunohistochemical 133 

staining confirmed co-expression of ephrin-A3 and EphA3 in acutely isolated double heterozygous 134 

RGCs (Fig. 5a). Importantly, previous studies demonstrated that ectopic expression of the EphA3 135 

receptor in Isl2(+) RGCs in heterozygous EphA3KI/+ animals results in a duplicated retino-collicular 136 

map (Supplementary Fig. 3)21. Remarkably, ephrin-A3KI/EphA3KI double-mutant mice exhibited a 137 

rescued, non-duplicated retinocollicular map, and at the same time, a rescued, non-duplicated cortico- 138 

collicular map (Fig. 5b,c). This double restoration of the two maps indicates that cortico-collicular 139 

defects in Isl2-ephrin-A3KI animals were caused by ectopic expression of ephrin-A3 in Isl2(+) RGCs 140 

and were restored by concomitant expression of EphA3. The cis-inactivation mechanism was cross-141 

validated by the observation of a normal retino-collicular map in the ephrin-A3KI/EphA3KI double 142 

mutant mice, indicating EphA3 inactivation (Fig. 5c). To further evaluate any residual ephrinA3 or 143 

EphA3 signaling activity, we generated ephrin-A3KI/EphA3KIxEphA4KO compound mutants. In these 144 

mice, decreasing the overall level of retinal EphA receptors by suppressing EphA4 expression would 145 

reveal subtle changes in retinal EphA signaling strength22,23. According to the Relative Signaling model 146 

in the EphA3KI/+::EphA4KO animals analyzed previously22 any residual EphA3 signaling on map 147 

formation would generate duplicated retinal TZs, particularly in the caudal part of the SC where nasal 148 

RGCs axons, expressing low levels of EphA receptors, project. Anterograde DiI tracing revealed no 149 

duplications, even in the caudal pole of the SC, in ephrin-A3KI/EphA3KI::EphA4+/- and ephrin-150 

A3KI/EphA3KI::EphA4-/- compound mutants confirming inactivation of EphA3 and ephrin-A3 (Fig. 151 

5d,e). Altogether, these results suggest that EphA3 and ephrin-A3 ectopic expression in the same 152 

RGCs lead to their mutual inactivation and confirm that cortico-collicular mapping duplications 153 

observed in Isl2-ephrin-A3KI animals are the consequence of retinal ephrin-A3 ectopic expression. 154 

 155 

In silico modelling and theoretical analysis of cortico-collicular map alignment 156 

Our results suggest that the level of ephrin-A3 on RGC projections innervating the SC influences the 157 

mapping and alignment of the cortico-collicular projections. To simulate the mechanism of map 158 

alignment, we created a 3-step Map Alignment model based on an algorithm originally developed to 159 
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model the retino-collicular mapping8,9,11. Our version generates first the retino-collicular map based on 160 

retinal EphA receptors and collicular ephrin-A graded expression. The second step transposes the 161 

retinal ephrin-A gradients onto the rostral-caudal axis of the SC according to the layout of the retino-162 

collicular map generated in step one. In the third step, the cortico-collicular map is generated based 163 

on cortical EphA receptors expression and the transposed retinal ephrin-As in the SC. Each map is 164 

generated by a stochastic process based on balanced forces between repelling EphAs forward 165 

signaling and associating correlated neuronal activity8,9,11 (see Experimental Procedures). To improve 166 

the validity of our model, we replaced the theoretical values of the retinal EphAs and ephrin-As 167 

gradients previously used7,8,11,27 by our experimental quantification of retinal EphA mRNAs22 (RA(x)
retina) 168 

and ephrin-A mRNAs (LA(x)
retina) (Fig. 6a,b, Box1). LA(x)

retina equations were derived from semi-169 

quantitative in situ hybridization as described22 (Fig. 6a, b) and from our transcripts analyses 170 

measuring the relative expression levels of ephrin-As in acutely isolated RGCs (Fig. 2c). In 171 

accordance with previous work15-17, we observed graded expression of ephrin-A2 and A5 along the 172 

nasal-temporal axis of the retina, whereas ephrin-A3 is homogeneously expressed in WT animals 173 

(Fig. 6a, b).  174 

Curve fitting using MATLAB revealed the equation LA(x)
retina WT

 modelling WT retinal ephrin-As 175 

ligands (Box 1, equations 1-4). The two-fold increase of ephrin-A3 in ephrin-A3KI/KI RGCs compared 176 

to WT (Fig. 2c) was included into the model by adding a constant 'LA3 to LA (x)
retina WT

 thus generating 177 

the LA (x)
retina KI alternating ectopic expression in the Isl2-ephrin-A3KI retinas (Box 1, equation 5, 6). The 178 

3-step Map Alignment model simulates the sequential mapping of 100 RGCs onto a 1D array of 100 179 

SC neurons along the rostral caudal axis, followed by 100 V1 cortical neurons innervating the SC. We 180 

made two assumptions: (1) endogenous collicular ephrin-As were no longer active for incoming V1 181 

axons as they have been engaged previously in RGCs axon guidance by binding to retinal EphAs 182 

(forward signaling) which leads to the cleavage of their extracellular domains28, (2) retinal ephrin-A3 183 

expression alone cannot provide positional information in the SC as its expression is not graded in the 184 

RGCs. Consequently, a proportion of graded retinal ephrin-A2/A5 acts together with ephrin-A3 to 185 

provide positional information in the SC. Initially, the TZs of all RGCs and V1 axons in the SC are 186 
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generated randomly and exchanged with a probability proportional to the degree to which the switch 187 

reduces the energy of the system7,8,11 (see Experimental Procedures for detailed description of the 188 

model). After 107 iterations per run (n = 20 runs) for each genotype, stable and organized retino-189 

collicular maps were formed (Fig. 7a,d,g). Thereafter, a proportion of retinal ephrin-As gradients were 190 

transposed in the SC (Fig. 7b,e,h). After this transposition, the cortico-collicular maps are generated in 191 

a similar fashion (Fig. 7c,f,i). We further analyzed the theoretical cortico-collicular maps using a linear 192 

regression (Fig. 7c,f,i, red lines) and an exclusion parameter EP (Fig. 7f,i, dashed grey lines) which 193 

corresponds to the variability of the WT single map (Fig. 7c, dashed grey lines, VWT = 2.18 %) added to 194 

the genotype-specific average map separation ('Sexp) calculated for Isl2-ephrin-A3KI animals (Fig. 4f; 195 

EPKI/KI = 15.18 %; EPKI/+ = 9.18 %; Fig. 6f,i). The points, simulating the position of the cortico-collicular 196 

TZs along the rostral-caudal axis of the SC, located outside EP correspond to duplicated projections 197 

whereas the points located within EP correspond to single projections (Fig. 7f,i). The percentages of 198 

duplicated projections generated by the model for ephrin-A3KI/KI and ephrin-A3KI/+ were similar to 199 

the percentages of observed duplications (Fig. 4a,b) (one sample t-test, ephrin-A3KI/KI, P = 0.17; 200 

ephrin-A3KI/+, P = 0.22; Fig. 7j).  201 

These results indicated that the 3-step Map Alignment model simulates both the retino- and 202 

cortico-collicular mapping and accurately recapitulates the normal and defective visual maps. It 203 

predicts the stochastic nature of the mapping abnormalities in ephrin-A3KI/+ and ephrin-A3KI/KI 204 

animals due to the ephrin-A3 ectopic expression in a subset of RGCs. Hence the model provides 205 
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further evidence that retinal ephrin-A3 contributes to the alignment of the cortico-collicular map by 206 

providing positional information in the SC for ingrowing V1 axons carrying EphAs.  207 

 208 

Discussion 209 

Using mouse molecular genetics and theoretical modelling, we describe a molecular mechanism and 210 

associated principles governing the alignment of converging neural maps in the brain.  211 

Retinal ephrin-A3 in cortico-collicular mapping 212 

We showed that modestly elevated expression of ephrin-A3 exclusively in a subset of RGCs disturbed 213 

cortico-collicular map alignment in the SC, pointing to a mechanism where retinal ephrin-A3 provides 214 

positional information to ingrowing V1 cortico-collicular axons. Further confirmation came from the 215 

genetic inactivation of over-expressed ephrin-A3 using co-expressed EphA3 receptor. Trans-binding of 216 

ephrin-As and EphAs could be abolished through cis-interaction when EphA3/ephrin-A3, are co-217 

expressed in the same cell, including RGCs26,29-33. We therefore generated double heterozygous 218 

mutants, ephrin-A3KI/EphA3KI. The strength of this approach resides in the fact that each individual 219 

ephrin-A3KI/+ and EphA3KI/+ mutant shows robust visuotopic map abnormalities4,11,21-23. The 220 

presence of wild-type retino- and cortico-collicular maps in the ephrin-A3KI/EphA3KI double 221 

heterozygous mutants provides compelling evidence that both ephrin-A3 and EphA3 were inactivated 222 

in Isl2(+) RGCs. Further evidence of ephrin-A3/EphA3 inactivation came from the presence of normal 223 

retino-collicular maps in compound mutants ephrin-A3KI/EphA3KI::EphA4 knock-outs. These results, 224 

together with the normal expression levels of collicular and cortical EphA receptors and ephrin-As 225 

ligands in Isl2-ephrin-A3KI animals, confirmed the causal role of retinal ephrin-A3 ectopic expression 226 

on cortico-collicular alignment defects and suggested that retinal projections play an instructive role in 227 

cortico-collicular map formation.  228 

The heterogeneity of the cortico-collicular phenotype in the Isl2-ephrin-A3KI mutants, revealed 229 

by a mix of single and duplicated projections, is in accordance with previous data showing a variable 230 

penetrance of the retinotopic mapping abnormalities in constitutive or conditional ephrin-As knock-231 

outs34-36. Such variable penetrance of the mutant phenotype can be explained by the stochastic nature 232 
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of map formation driven by opposing forces resulting from EphA signaling, which tends to separate 233 

neighboring RGCs through repulsion, and correlated neuronal activity, which tends to reinforce 234 

neighboring RGCs projections on adjacent target cells4,35. The general pattern of V1 collicular 235 

projections (Fig. 4a-c) is consistent with the involvement of cortical EphA receptors gradients (high-236 

lateral to low-medial)18 repelled by low-rostral to high-caudal ephrin-As gradients of retinal origin in the 237 

SC (forward signaling). In the Isl2-ephrin-A3KI animals, retinal ephrin-A3 oscillation in the SC 238 

organizes neighbor-neighbor relationships of V1 axons through repulsion locally inducing a small 239 

distance of map duplication. Our model is consistent with retinal matching, suggesting that retinal 240 

inputs are required for proper cortico-collicular mapping4,13,20.  241 

In our model, retinal inputs carry molecular cues, ephrin-A3 and likely other retinal ephrin-As, 242 

to provide positional information for ingrowing V1 axons (Fig. 8). Retinal ephrin-As act then together 243 

with correlated neuronal activity pattern shared between RGCs and V1 axons4,13 for cortico-collicular 244 

map alignment. Triplett and colleagues37 also suggested a gradient-matching model which posits that 245 

collicular ephrin-As are required for the mapping of somatosensory inputs to the SC which behave 246 

similarly to the retino-collicular projections as they also require collicular ephrin-As37. In contrast, the 247 

requirement of collicular ephrin-As for cortico-collicular mapping is unlikely. In this particular scenario, 248 

cortico-collicular projections in previously characterized EphA3KI/KI mutants would have led to a 249 

single TZ in the SC, leading to a mismatch between cortico- and retino-collicular maps which was not 250 

observed4,13. More investigations are required, in particular using conditional ephrin-As knock-outs, to 251 

identify the role of ephrin-As from input structures versus collicular ephrin-As in the formation of the 252 

sensory maps across the layers of the SC. 253 

Retinal ephrin-A3 in retino-collicular mapping 254 

The presence of non-duplicated retino-collicular maps in both ephrin-A3KI/+ and ephrin-A3KI/KI 255 

mutants, as revealed by DiI tracing, suggests that retinal ephrin-A3 does not play a significant role in 256 

the formation of this map, consistent with previous work on ephrin-A3-null mutants27. Several 257 

hypotheses have been raised as to how retinal ephrin-As may participate in retino-collicular map 258 

formation using in vitro, ex vivo and in vivo approaches in mouse and chick. For example, ephrin-As 259 
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on RGC axons are activated by collicular EphAs (reverse signaling), leading to axon repulsion38-40 or 260 

branch inhibition in the SC41. In our mouse model, this mechanism would generate a segregation 261 

between Isl2(-) and Isl2(+) RGC axons in the SC, the latter being more repelled by collicular EphAs. 262 

However, such a segregation did not occur, excluding the involvement of retinal ephrin-A3 in such 263 

reverse signaling. In vitro and in vivo transfection analyses in chick suggested that retinal ephrin-As 264 

bind to co-expressed retinal EphAs in the same RGCs leading to inactivation/masking of the EphA 265 

receptors rendering those axons are less sensitive to ephrin-As binding in the target tissue29-32,42,43.  266 

In our model, this mechanism would lead to a stronger inactivation of the EphA4/A5/A6 267 

receptors in the Isl2(+) RGCs expressing high levels of ephrin-A3, compared to RGCs with normal 268 

ephrin-A3 expression level. According to the Relative Signaling model, distinct RGCs population with 269 

different levels of active EphAs should generate a duplicated retino-collicular map (partial or full)21-23. 270 

However, we did not observe any retino-collicular mapping defects regardless of the mutant 271 

genotypes, suggesting that ephrin-A3 ectopic expression does not inactivate co-expressed 272 

EphA4/A5/A6 receptors in RGCs, although we showed specific inactivation of EphA3, suggesting 273 

specific interactions in cis between ephrin-A/EphA pairs as previously observed26,33,43. Conditional 274 

ablation revealed that high retinal ephrin-A5 on nasal RGCs axons prevents temporal RGC axons 275 

from targeting the caudal SC through fiber-fiber interaction36. In our mice, such mechanism would 276 

have generated a local duplication between Isl2(+) and Isl2(-) RGCs or an extension of the TZs in the 277 

SC which was not observed, suggesting that retinal ephrin-A3 is not involved in fiber-fiber interaction. 278 

However, these results do not exclude the contribution of the fiber-fiber interaction mechanism to map 279 

development. Together with recent results36, our data suggest also that retinal ephrin-A3 and ephrin-280 

A5 present distinct functions in visuotopic mapping, suggesting a member-specific role of retinal 281 

ephrin-As in map formation. This is in contrast with retinal EphA receptors which are considered as 282 

functionally interchangeable22,23. 283 

Theoretical modelling further confirms mapping mechanism 284 

Previous work modelled the stochastic nature of retino-collicular map formation based on the 285 

Koulakov model8,9,11. Here, we have substantially modified this algorithm using our measured ephrin-A 286 
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expression data instead of theoretical values ,and simulated the retino- and cortico-collicular mapping 287 

process sequentially. We assumed that retinal ephrin-A3 expression alone cannot provide positional 288 

information, due to its homogeneous expression profile in WT RGCs. Therefore other ephrin-As or 289 

other guidance molecules, either retinal or collicular, must participate in the regulation of map 290 

alignment. Although retinal ephrin-A5 has been recently shown to participate in RGCs fiber-fiber 291 

interactions36 we cannot exclude that a given proportion is also involved in map alignment. Moreover, 292 

contribution of endogenous collicular ephrin-As to cortico-collicular map alignment seems unlikely as 293 

these mediated previous RGCs axons guidance. Therefore, we chose to retain 80% of the retinal 294 

ephrin-A5 level and 100% of retinal ephrin-A2/A3 levels in the algorithm. The 3-step Map Alignment 295 

model replicates features of both retino- and cortico-collicular maps observed in WT and Isl2-ephrin-296 

A3KI animals. It validates a stochastic mechanism of retinal-dependent molecular cues, involving 297 

ephrin-A3, providing positional information in the SC for V1 axons which may then coordinate with 298 

correlated neuronal activity4 to align visuotopic maps. 299 

These data raise important new questions as to the function of the different endogenous 300 

ephrin-As in the formation of topographic maps, requiring additional development of cell-specific gene 301 

targeting approaches. From a functional standpoint, this new principle may serve as a general 302 

framework for sensory map alignment, where positional information, carried by the leading map, acts 303 

together with correlated activity, enabling fine adjustments of the subsequent projections alignment 304 

and therefore compensating for subtle mapping variations.  305 
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Methods 306 

Generation of the Isl2-ephrin-A3KI mice, animals and housing. 307 

The targeting construct containing a ribosomal entry site (IRES) followed by the mouse ephrin-A3 308 

ORF-SV40polyA and the selection cassette PGK-Neo was inserted by homologous recombination in 309 

the 3' untranslated region of the Islet-2 gene locus as previously performed21. The mouse line was 310 

generated by the Mouse Clinic Institute, project IR3483 (Illkirch-France) in a C57/Bl6J background. 311 

Mice were hosted in a 12h/12h light-dark condition, fed ad lib. at the CNRS UMS3415 Chronobiotron 312 

(Strasbourg – France). All procedures were in accordance with national (council directive 87/848, 313 

October 1987) and European community (2010/63/EU) guidelines. Official agreement number for 314 

animal experimentation is A67-395, protocol number 01831.01 (M.R). Males and females C57/Bl6J 315 

ephrin-A3KI, EphA3KI and EphA4KO mice and pups were genotyped by PCR from genomic DNA 316 

from tail biopsies as described previously22. Primers are available upon request. All experiments were 317 

made blind to genotype. 318 

Projections analysis/mapping. 319 

Anterograde and retrograde DiI (1,1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate) 320 

and/or retrograde CTB-488 (Cholera Toxin B subunit-Alexa 488) labelling were performed as 321 

described4,22. Whole-mount SC were processed as described and TZs were plotted along the rostral-322 

caudal axis on Cartesian coordinates (y axis)22. For cortico-collicular map analyses, sagittal vibratome 323 

sections were performed on P14 SC and TZs were plotted along the rostral-caudal axis on Cartesian 324 

coordinates (y axis). Retinas were dissected and imaged using Zeiss Axioscope 2 and Axiovision 325 

software. Retinal coordinates of the DiI injections were calculated using IntactEye algorithm24, 326 

confirmed using the projection method22 and plotted on Cartesian coordinates (x axis). V1 cortices 327 

were photographed as whole-mount and focal injections plotted along the V1 lateral-medial axis (x 328 

axis)4. Retino-collicular and cortico-collicular maps were generated using non-parametric smoothing 329 

technique, termed LOESS smoothing44, to estimate the profile of the one-dimensional mapping either 330 

from retina to SC, or from V1 to SC. To estimate the variability in a mapping containing N data points, 331 

we repeat the procedure N times with N-1 datapoints, each time dropping a different datapoint. This is 332 
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termed a "leave-one-out" method and was used in the R statistical computing environment. Scripts are 333 

available upon request. Retino-geniculate and binocular tracings were performed as described27 on 334 

ephrin-A3KI/KI (n = 4) and WT (n = 3) P7 animals.  335 

Immunohistochemistry. 336 

Retinas were dissected after animal perfusion with PFA4%, post-fixed O/N in PFA4%, cryoprotected in 337 

PFA4%/sucrose 30% for several hours at 4°C. Retinas were cryostat-sectioned (14-18 Pm) and 338 

processed for immunohistochemistry. Briefly, sections were incubated in blocking solution 339 

(PBS1X/BSA1%/serum10%) for 1hr at RT then incubated with primary antibody O/N at 4°C in 340 

PBS1X/BSA1%/serum1%. The following day, sections were washed (3X5' in PBS1X at RT) and 341 

incubated for 1hr at RT with secondary Alexa-labelled antibodies in PBS1X/BSA1%/serum1%. After 3 342 

washes at RT (3X5' PBS1X), slides were mounted in Aqua-Polymount (Polysciences Europe GmbH, 343 

Eppelheim, Germany) and visualized under a confocal microscope (Leica SP5 II, Leica Microsystems, 344 

Wetzlar, Germany). Sections were imaged using Leica LASAF software. Antibodies: anti-Isl2 (ref. LS-345 

C165303), anti-ephrin-A3 (ref. LS-C6547) and anti-EphA3 (ref. LS-C150188) at respectively 1/400, 346 

1/300 and 1/100 dilutions (LifeSpan Biosciences Inc., Seattle, WA), anti-ephrin-A3 (ref. 36-7500, 347 

1/200, Invitrogen, Invitrogen Co., Camarillo, CA), anti-synaptophysin (ref. S5768, 1/200, Sigma), anti-348 

rabbit Alexa 488 / anti-goat Alexa 594 (1/500, Invitrogen, Invitrogen Co., Camarillo, CA) 349 

Quantitative RT-PCR. 350 

V1 cortices, superficial layers of the SC and retinas were freshly dissected. Retinas were cut in three 351 

equal pieces along the NT axis (Nasal, Central, Temporal RGCs) and RGCs acutely isolated45,46. Total 352 

RNA was extracted and quantified as previously described3. Relative quantification was performed 353 

using the comparative Delta Ct method. Triplicates were run for each sample and concentration for the 354 

target gene and for two housekeeping genes (hypoxanthine-guanine phosphoribosyl transferase - 355 

HPRT and glyceraldehyde 3-phosphate dehydrogenase – GAPDH) were computed. Primer 356 

sequences are: ephrin-A2 (forward: TCCCCCTTGATCATGTGACCT, reverse: 357 

GGTAGGTAGCTCCCCTTCCT), ephrin-A5 (forward: TTGATGGGTACAGTGCCTGC, reverse: 358 

TTCCGAGAACTTCAGCGGTC), ephrin-A3 (forward: TATGAATTCCATGCCGGCCAA, reverse: 359 
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GCAGACGAACACCTTCATCCT), EphA4 (forward: GAGGCTCCTGTGTCAACAACT, reverse: 360 

AGTTGCCAATGGGTACCAGC), EphA7 (forward: TCCTCCTTAGTCGAGGTCCG, reverse: 361 

GCCACTCTCCTTCTGCACTG) 362 

Retinal ganglion cell isolation. 363 

P3/P4 retinas were freshly dissected and RGCs were isolated and purified (>99%) as previously 364 

described45,46. After isolation, RGCs were either treated for RNA extraction or fixed with PFA4% 15' at 365 

RT and processed for immunohistochemistry. Stainings were performed and cells were visualized as 366 

described above. 367 

Semi-quantitative in situ hybridization and gradient fitting. 368 

Analysis of ephrin-As expression was performed as previously described22 on nasal-temporal 20um 369 

thick sections of P1/P2 WT retinas. Probes used were: mouse ephrin-A2 (NM007909.3, 879bp, pos. 370 

387-1266), mouse ephrin-A3 (NM010108, 791bp, pos. 208-999) and ephrin-A5 (NM207654, 696bp, 371 

pos. 189-885). Experimental values (mean +SD, ephrin-A2/A3/A5, for each ephrin-As, n = 18 sections 372 

total, 3 sections/retina, from 6 retinas -2 left, 2 right- from 3 animals were plotted along the nasal-373 

temporal axis and fitted using MATLAB (curve fitting application). 374 

In silico replication of the duplication of the cortico-collicular map. 375 

The Koulakov model8,9 was used to simulate the formation of both the retino- and cortico-collicular maps 376 

in the presence of an oscillatory ephrin-A gradient in the target structure. Each brain structure (retina, 377 

SC, V1) is modelled as a 1-d array of 100 neurons in each network. Two maps are generated: first, the 378 

map from retina to SC; second, the map from V1 to SC. Each map is modelled sequentially in the same 379 

way. This model consists in the minimization of affinity potential (E) which is computed as follow:  380 

E = Eact + Echem  381 

At each step, this potential is minimized by switching two randomly chosen axons probabilistically 382 

according to the degree such a switch reduces the energy in the system by Delta E ('E). The 383 

probability of switching, p, is given by: p = 1 / (1 + e(4'E)) 384 

Echem is expressed as follow: 385 

Echem = 6i € synapses D [RA(i) – RA(r’)] [LA(i) – LA(r’)] 386 
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where D is the strength (D�= 200), RA(i) the receptor concentration in the retina and LA (r’) the ligand 387 

concentration at the corresponding position in the SC.  388 

The contribution of activity-dependent process is modelled as:  389 

Eact = - J/2 6i € synapses Cij U (r’I rj) 390 

ZKHUH�Ȗ� ���LV�WKH�VWUHQJWK�SDUDPHWHU��&ij is the cross-correlation of neuronal activity between two 391 

RGCs during retinal waves, and U simulates the overlap between two SC cells. Here, we use Cij = 392 

e�íU�5�, where r is the retinal distance between axons i and j, R = 0.11 × N, and U(r’) = e�íU¶���G��, where r’ 393 

is the distance between two SC points and d = 3.  394 

Receptor and ligand gradients were modelled as follow: 395 

Retinal EphAs gradients22    RA(x)
retina = 0.26e0.023x + 1.05  396 

Cortical V1 EphAs gradients7,8   RA(x)
V1 = e(-x/N) – ex/(N-2) 397 

Collicular ephrin-As gradients 7,8  LA(x)
SC = e(x-N)/N – e(-x-N)/N  398 

LA(x)
retina is the ephrin-A gradient which was modelled by an exponential fitting the in situ hybridization 399 

data. This retinal ephrin-A gradient is translated to the SC for the simulation of the cortico-collicular 400 

map. 401 

Retinal ephrin-As gradients (see Results): LA(x)
retina = 0.56e0.14x + 0.54e0.08x + 0.44 402 

where x = 1…N is the coordinate along the NT axis.  403 

Oscillatory gradient was generated by randomly attributing to 50% of collicular cells an overexpression 404 

of ephrinA3 �ǻLA3) with ǻLA3 = 0.44 for homozygotes and ǻLA3 = 0.22 for heterozygotes. Iterations 405 

were ran for 107 epochs. Codes and scripts are available upon request. 406 

Quantitative analysis of theoretical maps. 407 

To determine the amount of duplication that could be found in heterozygotes and homozygotes 408 

mutants a linear regression was calculated using implemented functions in Matlab. The residuals were 409 

then used to calculate the percentage of duplication. Duplication were considered when values were 410 

outside EP = 9.18 % for ephrin-A3KI/+ and EP = 15.18 % for ephrin-A3KI/KI, which corresponds to the 411 

averaged experimental distances measured between duplicated termination zones ('Sexp) to which 412 

was added the wild-type map variability (average of residuals, VWT = 2.18 %, n = 20 runs). Twenty runs 413 
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were performed and averaged to find the proportion of duplicated termination zones for Isl2-ephrin-414 

A3KI.  415 

Data/Codes Availability. 416 

All relevant data in the manuscript and supplementary files are available from authors upon request. 417 

Codes for the Leave-One-Out method and for the 3-Step Alignment model are available upon request.  418 
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Figure 1 #$%"

Figure 1 Validation of the ephrin-A3KI/KI model I. (a-f) Immunostaining of ephrin-A3 in P1 (a, b) ##&"

and P8 (c) WT (n = 3 animals) and P1 (d, e) and P8 (f) ephrin-A3KI/KI (n = 5 animals) RGCs. In (e, f) ##'"

arrows indicate ephrin-A3 WT expression level in RGCs, arrowheads indicate ephrin-A3 ectopic ##!"

expression in RGCs and asterisk indicates high ephrin-A3 labelling in the fiber layer. Scale bars ##("

represent 200 Pm (a, d), 20 Pm (b-f). (g-h) Immunostaining of Islet-2 in P1 WT (n = 3 animals) (g) and ##$"

ephrin-A3KI/KI (n = 5 animals) (h) RGCs. Arrowheads indicate Isl2(+) RGCs. Scale bars represent 20 ###"

Pm. (i-n) Immunostaining of Islet-2 (i, l), ephrin-A3 (j, m) and merged (k, n) in P1 and P7 ephrin-##)"

A3KI/KI (n = 5 animals) RGCs. Arrowheads indicate Isl2(+) / high ephrin-A3 RGCs. Arrows indicate ##*"

Isl2 (-) / wild-type ephrin-A3 expressing RGCs. Scale bars represent 10 Pm. (o, o’) ephrin-A3 ##+"

immunostaining on P4 RGC in culture (DIV 6) (n = 4 animals). Arrowheads indicate stained neurites. ##%"

Scale bars represent 10 Pm. GCL, ganglion cell layer, RGC, retinal ganglion cell. #)&"
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Figure 2 $%&#

Figure 2 Validation of the ephrin-A3KI/KI model II. (a, b) Synaptophysin and DAPI staining in P34 $%!#

WT (n = 4 animals) (a) and ephrin-A3KI/KI (n = 4 animals) (b) retinas. Scale bars represent 50 Pm. (c) $%"#

Ephrin-As expression relative to WT nasal from nasal (N), central (C) and temporal (T) RGCs and $%'#

normalized against GAPDH and HPRT in P3 WT and ephrin-A3KI/KI (WT, n = 6 animals / 12 retinas; $%$#

ephrin-A3KI/KI, n = 8 animals / 16 retinas, variables are normally distributed, two-way ANOVA: ephrin-$%%#

A2 genotype F11,3 = 1.79, p = 0.11; ephrin-A5 genotype F11,3 = 2.08, p = 0.07; ephrin-A3 genotype F11,3 $%(#

= 8.11, ***p < 0.001). WT, wild-type; GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner $%)#

nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; S, outer and inner segments. $%*#

  $(+#
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Figure 3 $%&#
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Figure 3 Anterograde mapping and retrograde DiI labelling in P8 animals. (a) Retino-collicular 572 

maps generated by the Leave-One-Out method at P8 in WT (n = 38 animals), ephrin-A3KI/+ (n = 15 573 

animals) and ephrin-A3KI/KI (n = 43 animals) mutants. (b-g) P8 DiI retrograde labelling coupled to 574 

immuno-staining of ephrin-A3 (b-d) and Isl2 (e-g) in ephrin-A3KI/KI (n = 4 animals) mutant retinas. 575 

Arrowheads indicate Isl2(+) / high ephrin-A3 DiI labelled RGCs. Scale bars represent 10 Pm. (h-k) 576 

Anterograde focal DiI injections showing no difference in retino-geniculate mapping from the temporal-577 

ventral (T-V) (h, i) and nasal-ventral (N-V) (j, k) retinal quadrants between ephrin-A3KI/KI (n = 4 578 

animals) and WT (n = 4 animals) P8 littermates. Scale bars represent 400 Pm. (l-o’) Anterograde full-579 

eye injections showing normal binocular projections in P8 WT (n = 3 animals) SC (l, l’), LGN (n, n’) 580 

and in ephrin-A3KI/KI (n = 4 animals) SC (m, m’) and LGN (o, o’). WT, wild-type; T, temporal; N, 581 

nasal; R, rostral; C, caudal, vLGN, ventral lateral geniculate nuclei; dLGN, dorsal lateral geniculate 582 

nuclei. 583 

  584 
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Figure 4 $%$#

 $%"#

Figure 4 Anterograde cortico-collicular mapping in P14 animals. (a-c) Cortico-collicular maps $%&#

generated by the Leave-One-Out method at P15 in ephrin-A3KI/KI (n = 19 animals) (a), ephrin-A3KI/+ $%%#

(n = 16 animals) (b) and WT (n = 9 animals) (c) mutant littermates. Right panels in a, b and c show an $%'#

example of duplicated and/or single cortical TZs in collicular sagittal sections in different animals. The $'(#

corresponding coordinates are labelled by an asterisk (duplicated) or a hashtag (single). Scale bars $')#

represent 400 Pm. (d) Percentage of heterogeneous duplicated/single (D/S) or homogeneous $'!#

single/single or duplicated/duplicated (S/S or D/D) projections in both colliculi of the same animal $'*#

(ephrin-A3KI/KI, n = 5 animals; ephrin-A3KI/+, n = 7 animals; WT, n = 4 animals). Right panel show an $'+#

example of cortico-collicular TZs from left and right colliculi in a P15 ephrin-A3KI/+ animal. Scale bars $'$#

represent 400 Pm. (e) Mean separation between duplicated maps measured experimentally ('Sexp) in $'"#
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ephrin-A3KI/KI (median = 13 %, 1st quartile = 10 %, 3rd quartile = 13 %, n = 9 animals) and ephrin-597 

A3KI/+ (median = 7 %, 1st quartile = 6 %, 3rd quartile = 9.5 % n = 7 animals) (non-parametric Mann & 598 

Whitney test, ** p = 0.020). (f) Sagittal section of P15 ephrin-A3KI/KI (n = 4 animals) DiI labelled 599 

cortical projection (left) and merged image of CTB-488 full-eye fill and cortical DiI projection (right). 600 

Scale bars represent 200 Pm. L, lateral; M, medial; R, rostral; C, caudal; S, single; D, duplicated. 601 
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Figure 5 $%&#

 $%'#

Figure 5 Retino- and cortico-collicular maps in ephrin-A3KI/EphA3KI double heterozygous and $%(#

compound ephrin-A3KI/EphA3KI::EphA4KO mutants. (a) Co-immunostaining of ephrin-A3 and $%$#
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EphA3 in P4 acutely isolated EphA3KI/ephrin-A3KI (n = 8 animals / 15 retinas) RGCs. Arrowheads 607 

indicate EphA3/ephrin-A3 co-expression in the same RGCs. Scale bars represent 10 Pm. (b, c) 608 

Retino-collicular (n = 11 animals) (b) and cortico-collicular (n = 18 animals) (c) maps generated by the 609 

Leave-One-Out method at P8 and P15 respectively in EphA3KI/ephrin-A3KI double mutants. (d, e) 610 

Retino-collicular projections in P8 ephrin-A3KI/EphA3KI::EphA4+/- (n = 6 animals) (d) and ephrin-611 

A3KI/EphA3KI::EphA4 -/- (n = 6 animals) (e) mutants. Scale bars represent 200Pm. T, temporal; N, 612 

nasal; R, rostral; C, caudal; L, lateral; M, medial; RGCs, retinal ganglion cells.  613 

  614 
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Figure 6 $%&#

Figure 6 Retinal ephrin-As quantification. (a) Section of P2 mouse retina (n = 6 retinas from 3 $%$#

animals) hybridized with ephrin-A5, ephrin-A2 and ephrin-A3 probes. Quantification was performed for $%'#

10 segments of the RGC layer along the nasal-temporal axis. Scale bar, 100 Pm. (b) ephrin-A5, A2 $%(#

and A3 expression profile (dots) fitted by the equations (lines) corresponding to equations (1), (2) and $%)#

(3) respectively in Box 1. $*"#

  $*%#
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Figure 7 $%%#
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Figure 7 Theoretical analysis and modelling. (a-i) Retino- (a, d, g) and cortico- (c, f, i) collicular 623 

maps generated by the 3-step Map Alignment model in WT (a, c), ephrin-A3KI/KI (d, f) and ephrin-624 

A3KI/+ (g, i) after n = 20 runs and 107 iteration/run. Translated retinal ephrin-As gradients (% retinal 625 

expression: ephrin-A2 = 100%, ephrin-A3 = 100% and ephrin-A5 = 80%) into the SC in WT (b), 626 

ephrin-A3KI/KI (e) and ephrin-A3KI/+ (h). Red lines in (c, f, i) represent the linear regression. 627 

Variability of the WT map in (c) is calculated by VWT = 2.18%. Grey lines in (f, i) represent the 628 

exclusion parameter (EP) corresponding to EP  =  VWT + 'Sexp: EPKI/KI = 15.18%, EPKI/+ = 9.18%. (j) 629 

Dot plot representation of the percentage of duplicated cortico-collicular projections (observed versus 630 

theoretical) for n = 20 runs in ephrin-A3KI/KI (experimental = 47%, n = 9 animals; theoretical mean = 631 

46.1 %, ± 95 %CI = 1.2%, one sample t-test, t = 1.42, 19 d.f., P = 0.17) and ephrin-A3KI/+ 632 

(experimental = 43%, n = 7 animals; theoretical mean = 41.4%, ±95 %IC = 2.4%, variables are 633 

normally distributed, one sample t-test, t = 1.28, 19 d.f., P = 0.22) (theoretical ephrin-A3KI/+ vs ephrin-634 

A3KI/KI, two-sample t-test, t = 3.4, 38 d.f., *** P = 0.0016). 635 
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Figure 8 #!$"

Figure 8. Schematic representation of the map alignment mechanism. RGCs axons in WT and ephrin-#!%"

A3KI animals project to the SC during the first postnatal week and form the retino-collicular map #!&"

through forward signaling activated by collicular ephrin-As and fiber-fiber interactions (left side). In #'("

both WT and ephrin-A3KI animals, the retino-collicular map is single and coherent. In WT and ephrin-#')"

A3KI, each RGCs axon is loaded with a different concentration of retinal ephrin-As (high-nasal, low-#'*"

temporal) carried to the SC. Due to the coherence of the retino-collicular map, a smooth retinal ephrin-#'!"

As gradient is formed in the SC in WT, whereas in ephrin-A3KI animals, Isl2+ RGC axons carry extra #''"

ephrin-A3 (in red) which creates an oscillatory retinal ephrin-As gradient once transposed in the SC #'+"

(right side). During cortico-collicular mapping, V1 axons carrying EphA receptors are facing a smooth #'#"

gradient of retinal ephrin-As in the SC, leading to a single coherent map in WT. In ephrin-A3KI #'$"

animals, V1 axons carrying EphA receptors are facing an oscillatory gradient of retinal ephrin-As (due #'%"
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to ectopic expression of ephrin-A3 in Isl2+ RGCs) which leads to the duplication of the cortico-649 

collicular map (43% in ephrin-A3KI/+ and 47% in ephrin-A3KI/KI) through local neighbor–neighbor 650 

relationships of V1 axons via repulsion. Abbreviations, C, caudal; R, rostral; WT, wild-type.  651 

  652 
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Box 1. Best fit equations of retinal ephrin-As graded expression. $"!#
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Complementary data

Due to space restriction in the manuscript for “A mechanism for sensory map alignment in the

midbrain.”, some results were excluded. In this section, supplementary materials are provided

regarding the role of retinal ephrin-As in cortico-collicular map formation and alignment.

Ephrin-A3 expression on retinal ganglion cells axons 

To detect the presence of ephrin-A3 on RGCs axons in ephrin-A3KI/KI animals, we performed

a immunohistochemistry using two mouse specific ephrin-A3 antibody (LSBio LS-C6547 or Invitrogen

36-7500), after DiI RGCs labeling, in P2 and P8 SC parasagittal sections. As shown below, incoming

RGC axons can be observed (in red). Labeling with ephrin-A3 shows a specific staining in collicular

cells but no co-staining on DiI labelled RGCs axons.

Figure 22: Ephrin-A3 expression on RGCs entering the superior colliculus. Ephrin-A3 immunostaining

(green) after RGC DiI labelling by subretinal injection (red). SC parasagittal sections from P2 (A) and P8 (B and

C) Isl2-ephrinA3KI/KI animals. Scale bars: 30μm (A), 10μm (B, C). 

In addition, ephrin-A3 immunohistochemistry was performed on P3 ephrin-A3KI/KI optic nerve

longitudinal sections (proximal, medial and distal of the optic cup), using signal amplification

(streptavidin/biotin). As shown below, specific ephrin-A3 labeling could be detected on fibers within the

proximal and medial part of the optic nerve, but not in the distal part, suggesting that ephrin-A3 is not

detectable on RGCs axons. The absence of staining in the distal part suggests that ephrin-A3 ligands

are spread along the axons, and reach a low concentration that lies below the immunohistochemistry

detection limit.  
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Figure 23: Ephrin-A3 expression on optic nerve. Ephrin-A3 immunostaining (green) after RGC DiI labelling by

subretinal injection (red) and DAPI staining (blue). Proximal, medial and distal part of the optic nerve from P3

Isl2-ephrinA3KI/KI animals. Controls performed omitting primary antibody. Scale bars: 30μm, insets, 10μm.
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A similar issue was raised in Triplet et al. (2009) -Figure S4- in EphA3KI/KI mice. In these

animals, the dramatic collicular phenotype (full duplication) should generate two different retinal

ephrin-A gradients, one covering the rostral half of the SC (running from low-rostral to high-mid-SC)

and the other covering the caudal half (running form low mid-SC to high-caudal). However, no such

staining could be detected.

The failure to detect retinal ephrin-A3, and more generally any retinal EphAs/ephrin-As, in situ

on RGCs axons traveling within the colliculus may be the consequence of the spreading of these

molecules along the axons, which then generates a low concentration locally precluding any detection

using conventional immunohistochemical methods. Another explanation for the absence of detection

could be a specific folding of these proteins along the axon, masking the epitope.

Ephrin-A3 expression in the superior colliculus 

The expression of ephrin-A3 in the SC is still debatable. As shown below, Suetterlin and

Drescher (2014) (Sup. Figures S1H, I) suggested that there is no ephrin-A3 expression in retino-

recipient layers of the SC at P2.

Figure 24: EphrinA3 expression in the superior colliculus. mRNA in situ data for ephrin-A3 performed at P2

in wild-type and conditional knock-out for ephrin-A5 in the superior colliculus, adapted from Suetterlin and

Drescher, 2014.

In contrast, a snapshot from the Allen Brain Atlas shows ephrin-A3 expression using in situ

hybridization at P4 and P14 in retino-recipient layers, along the rostral-caudal axis of the SC. We used

the scale bar as provided by Allen Brain Atlas to measure the ephrin-A3 expression in the SC at P4

and P14. Ephrin-A3 expression appears between 200 and 280 μm below the surface of the SC, which

corresponds to the retino-recipient layer – dashed lines) lying 50-400 μm beneath the surface of the

SC.
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Figure 25: Ephrin-A3 expression in the superior colliculus. In situ hybridization at P4 and P14 in the superior

colliculus. Adapted from the Allen Brain Atlas.

 

Careful examination and appropriate measurements of the data from Pfeiffenberger et

al. (2006) (Supp. Figure 1 D, E, F) and Triplett et al. (2012) (Figure 5A, B, F) shown below

also suggest that ephrin-A3 is expressed in the retino-recipient layers of the SC (although

some controversies exist regarding the expression profile).
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Figure 26: Ephrin-A3 staining in the superior colliculus. 

(D, E) Ephrin-A3 is expressed at low levels in the developing SC. P1 sagittal sections treated with ephrin-A3

antisense (D) or ephrin-A3 sense (E) probes reveal a low level of uniform expression in deep layers of the SC.

Arrowheads identify the region of ephrin-A3 expression. The dotted lines in (D) and (E) denote the region

analyzed by the intensity plot shown in (F), with “a” and “b” corresponding to “a” and “b” along the x-axis of the

plot. The plot shows a small increase in intensity in the antisense tracing associated with the region of ephrin-A3

expression. D, dorsal; A, anterior; Adapted from Pfeiffenberger et al., 2006. 

Figure 27: Ephrin-A3 staining in the superior colliculus. 

Parasagittal sections through the SC, marked by arrows, of postnatal day 4 wild-type pups stained for ephrin-A3
(B). F. Quantification of the relative expression levels in the SC across the anteroposterior axis. Adapted from

Triplett et al., 2012. 

In addition to the work previously described, we performed multiple ephrin-A3 antibody

staining in the SC at different time points, using two ephrin-A3 antibodies, (LSBio-C6547 and

Invitrogen 36-7500) which gave specific staining on retinal sections (Fig.1, 2). Below are

examples of P3, P8 and P14 collicular sections stained with an  ephrin-A3 antibody. A clear

staining can be detected on collicular cells within the retino-recipient layers (note that no fiber-

like, nor termination zones-like staining can be observed). C’’ 
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Figure 28: EphrinA3 immunostaining in the superior colliculus. A. Ephrin-A3 immunostaining at P3 in the

superior colliculus. A'. Inset of superficial layers at higher magnification. A''. Control omitting primary antibody.

B. Ephrin-A3 immunostaining at P8 in the superior colliculus. B'. Inset of superficial layers at higher

magnification. B''. Control omitting primary antibody. C. Ephrin-A3 immunostaining at P14 in the superior

colliculus. C'. Inset of superficial layers at higher magnification. C''. Control omitting primary antibody. (scale

bars: 200 μm (A, B, C), 30 μm (A’ – C’’)).

Altogether, these data suggest that ephrin-A3 is homogeneously expressed in the retino-

recipient layers of the SC during retino- and cortico-collicular map formation, although at a

lower level compared to ephrin-A2 and ephrin-A5. 
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Termination zones morphology in Isl2-ephrin-A3KI/KI 

In addition to measuring retino-collicular termination zone position along the rostral-caudal

axis, the lamina targeting as well as extension was also assessed in wild-type and Isl2-ephrin-A3KI/KI

animals. Overall, no significant differences could be found between wild-type TZs and homozygous

animals at different location along the rostral-caudal axis of the superior colliculus. 

Figure 29: Morphology of the retinal ganglion cells termination zones in the superior colliculus. Superior

colliculus parasagittal sections in DiI injected animal in the retina at P7. Left panel. Wild-type termination

zones in the superficial layers of the superior colliculus ending in the caudal, medial and rostral pole of the

superior colliculus. Right panel. Isl2-ephrin-A3KI/KI termination zones in the superficial layers of the superior

colliculus ending in the caudal, medial and rostral pole of the superior colliculus. (scale bars: 200 μm)

Figure 30: Cortico- and retino-collicular termination zones. Retinal and cortical inputs targets to the upper

superficial SGS: saggital section of the superior colliculus, AAV1-CAG-tdTomato (red) and AAV9-Synapsin-GFP

(green) transfection of retinal and cortical inputs. Dashed line: SC boundary and limits between the superficial

layers and optic layer. 
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Distance separation in cortico-collicular duplication in Isl2-ephrin-A3KI/+ and KI/KI 

We further analyzed the average distance of duplication in both ephrin-A3KI/+ and ephrin-

A3KI/KI mutant cortico-collicular maps. A two-fold difference in average duplication distance between

ephrin-A3KI/+ and ephrin-A3KI/KI, can be found, which is relevant with the presence of 1 or 2 alleles

of Isl2-ephrin-A3 (gene dosage effect). However, as shown below, this distance slightly varies along

the rostral-caudal axis of the SC and becomes similar for both genotypes in the caudal-most 20% of

the SC (from 80% to 100% on x axis). 

Figure 31: Distance separation between cortico-collicular termination zones in the superior colliculus in

Isl2-ephrin-A3KI.Duplication distance is expressed as a percentage of the total length of the rostral-caudal axis

and matched with position along the rostro-caudal axis of the superior colliculus. In grey, heterozygous , in black,

homozygous.

This observation is in accordance with the Relative Signaling model characterized in Brown et

al. (2000) and conceptualized in Reber et al. (2004) and Bevins et al. (2011) which predicts the

variation of the duplication distance and the occurrence of a collapse point according to a Relative

EphA signaling threshold. Although no collapse points are observed in cortico-collicular mapping in

ephrin-A3KI animals, this model seems, in which EphA forward signaling on V1 axons mediates

cortico-collicular mapping, seems to apply. In contrast to the EphA3KI model where differences in

relative EphA signaling on RGCs axons is provided by oscillatory EphA3 receptors on RGCs, in the

ephrin-A3KI model, the difference in relative EphA signaling on V1 axons is provided by oscillatory

retinal ephrin-A3 transposed to the SC. An increase in the relative difference of retinal ephrin-As

(between Isl2+ and Isl2- RGCs for example in compound mutant ephrin- A3KI/ephrin-A5 retinal KO)

may generate a collapse point in the cortico-collicular map. 
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Discussion
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Our results highlight another form of plasticity and adaptability in the formation of connections

during development. Indeed, a molecular disruption localized in the source, the retina, can lead to an

unaltered phenotype in the target (here the SC), but induce defects in the feedback projections

emanating from V1. The cortico-collicular map formation is subsequent to the formation of the retino-

collicular map, allowing an adaptability prior to sensory experience. This interdependence relies on

precise timing in the establishment of the maps, and pinpoints how adaptive this process is. To explain

molecular mechanisms driving such plasticity, we suggest that the gradients of retinal ephrin-As are

transposed to the SC, where they can be read by entering cortical fibers. These findings also highlight

an unsuspected role for retinal ephrin-As, which have also been involved in axon-axon interaction-

mediated competition.

Role of counter-gradients in the visual system

Map interdependence

The idea that counter-gradients of EphA and ephrin-As participate in map alignment came from

their expression pattern, as well as the fact that most regions in the nervous system are both the

target and the projecting areas. This feature requires a precise alignment of projections because they

carry information that needs to be spatially matched. Recent work also demonstrated an

interdependence of subsequent mapping processes. The study of topographic maps in other systems

has revealed that their formation depends on each other (Grant et al., 2016; Shanks et al., 2016). The

sequential development, the transfer topographic information, and the alignment suggests a common

signaling framework that has to account for potential variation during development and adaptability.

Role of retinal ephrin-As

Several hypotheses have been raised over the last two decades about the role of retinal

ephrin-As (discussed in detail in the submitted manuscript above). Some work suggested that retinal

ephrin-As are involved in cis-masking, which could lead to a sharpening of the EphA retinal gradient.

However, most demonstrations come from in vitro experiments whereby EphA and ephrin-As are co-

expressed at high levels in the same cell. Recent experiments in which ephrin-A is specifically ablated

in either the retina or the superior colliculus, do not show targeting defects when ephrin-A5 is not

expressed in the retina. This suggests a minimal role for a retinal ephrin-A counter-gradient in the

reshaping of the EphA receptor gradient (Suetterlin and Drescher, 2014). However, retinal ephrin-As

could play an important role during the overshooting phase, where they could desensitize nasal axons

by cis-binding, in order to reach the caudal part of the SC.

Duplication or termination zone extension

The effect of retinal ephrin-A3 on axonal outgrowth through reverse signaling, has not yet been

addressed. Following the hypothesis of a role of retinal ephrin-As in outgrowth promotion, the level at

which ephrin-A3 expression is driven in the Isl2-ephrin-A3KI may induce growth promotion, leading to

an increase in the axonal arborization of retinal terminals in the SC, which has not been observed in

the Isl2-ephrin-A3KI animals. Addressing this question in vivo seems quite challenging. However, in

vitro assays quantifying the effect of ephrin-A3 could partially answer this question. In addition, the

presence of duplication or TZs extension in the retino-collicular map induced by retinal ephrin-A3

ectopic expression seems unlikely, as shown previously (complementary data, figure 29).
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Dose-dependent effect of ephrin-A3 in cortico-collicular mapping

To assess in a quantitative manner the effect of ephrin-A3 over-expression on distance

separation in the cortico-collicular map, it would be interesting to perform similar experiments in the

ephrin-A5 retinal KO model. This would increase the ephrin-A ratio between Isl2-positive and negative

RGCs expressing the endogenous levels of ephrin-As. This increase in the ephrin-A ratio may lead to

an increase in the duplication distance of the cortico-collicular map. In the absence of such a

phenotype, one can hypothesize a differential role; thus testing the effect of ephrin-A3 on an ephrin-

A2KO background would also be of interest. Both experiments would further confirm the participation

of retinal ephrin-As in the mapping of cortico-collicular projections.

Distance separation in the Isl2-ephrin-A3:

When compared to this Isl2-EphA3KI, the distance separation observed is noticeably smaller

(20% for Isl2-EphA3KI heterozygotes, and 7 and 13% for Isl2-ephrin-A3KI heterozygotes and

homozygotes, respectively) even if expression is regulated by the same gene. The duplication

distance observed in the Isl2-EphA3KI/KI mice (Brown et al., 2000) is the consequence of a

segregation between cells over-expressing EphA3, and cells expressing endogenous level of EphAs

through forward EphA signaling at the level of the entire RGC population. The smaller duplication of

the cortico-collicular map, with roughly a 45% penetrance, as observed in the ephrin-A3KI animals,

occurs locally due to the oscillation of retinal ephrin-A3 in the SC that organizes local neighbor–

neighbor relationships of V1 axons via repulsion. Such an effect at a local level may explain the small

distance in the map duplication in ephrin-A3KI.

Interestingly, a 2-fold increase on distance separation is observed between Isl2-ephrin-A3KI

homozygotes and heterozygotes, which corroborates with the presence of 1 or 2 alleles of Isl2-ephrin-

A3, suggesting a gene dosage effect. However, the distance separation slightly varies along the

rostral-caudal axis of the SC and becomes similar for both genotypes in the caudal-most 20% of the

SC (from 80% to 100% on x axis).

This difference can be explained with the Relative Signaling model (Bevins et al., 2011; Brown

et al., 2000; Reber et al., 2004), which predicts variation in the duplication distances. Indeed, the over-

expression of ephrinA3 is constant across the entire collicular space, which leads to a variation in the

signaling ratio. This should also apply for EphA forward signaling on V1 axons mediating cortico-

collicular mapping. In contrast to the EphA3KI model whereby differences in relative EphA signaling

on RGCs axons is provided by oscillatory EphA3 receptor expression on RGCs in the ephrin-A3KI

model, the difference in relative EphA signaling on V1 axons is provided by oscillatory retinal ephrin-

A3 transposed to the SC, which might dampen local variations.

An increase in the relative difference of retinal ephrin-As (between Isl2+ and Isl2- RGCs for

example in compound mutant Isl2-ephrin-A3KI/ephrin-A5 retinal KO) may generate a collapse point in

the cortico-collicular map. In addition, no difference in the occurrence of duplications was found as a

function of localization along the rostral-caudal axis.

EphA3/ephrin-A3 double mutants

To demonstrate the full inactivation of EphA3 in the Isl2-ephrin-A3KI/EphA3KI, these animals

were crossed with the EphA4KO. According to the phenotype of the Isl2EphA3KI/+ x EphA4KO, in

which distance separation is increased, this should have induced the same effect if a residual amount

of EphA3 is available. Given that both EphA3KI/ephrin-A3KI double mutants and EphA3KI/ephrin-

A3;EphA4KO compound mutants present systematically single retino-collicular projections –

particularly in the caudal pole of the SC – this provides compelling evidence that signaling through

151



ectopic EphA3 is inactivated.

Cis interaction in vivo

The silencing of EphA3 by ephrin-A3 in the Isl2-ephrin-A3/EphA3 suggests a cis-interaction

between these molecules. This interaction could be specific to this particular pair since no phenotype

on the retino-collicular map can be observed. Indeed, if ephrin-A3 could interact with other EphAs, this

would lead to a decrease in the EphA receptors available, and a segregation between the Isl2 positive

and the wild-type population of RGCs. However, since EphA3 is not endogenously expressed in

RGCs, interactions with ephrin-A3 could be caused by an insertion of this receptor in the same

microdomains as ephrin-A3, where they can interact specifically, whereas endogenous receptors

(EphA4/A5/A6) are segregated.

Role of retinal ephrin-As in the alignment of visual maps

To date only a few analyses have been performed on the cortico-collicular map formation in

EphA/ephrin-A mutants (Triplett et al., 2009; Wilks et al., 2010). In the Isl2-EphA3KI, the interpretation

was that the alignment occurred by retinal-matching of the activity pattern of the duplicated retino-

collicular map. In ephrin-As KO, the cortico-collicular ectopic termination zone could be observed with

a lower incidence than in the retino-collicular map. The interpretation was that not all of the retino-

collicular ectopic termination zones are functional, which made them unable to drive the alignment of

the cortico-collicular projections. The lower occurrence of the ectopic termination could be due to the

redistribution of remaining ephrin-As ligands in the SC, which could dampen the relative difference in

expression. A specific role of ephrin-A3 could not be excluded. The analysis of single full ephrin-A3KO

has been performed (Pfeiffenberger et al., 2006), and did not reveal any effect on retino-collicular

mapping, which does not exclude an altered cortico-collicular map. It must be emphasized that these

results were obtained from full ephrin-As knock-out, precluding any relevant conclusions concerning

the specific role of retinal ephrin-As in cortico-collicular map alignment. From this perspective, it would

be interesting to see the effect of a specific loss of retinal ephrin-As using ephrin-As conditional knock-

out animals.

Generation of an oscillatory gradient in the SC

Redistribution of retinal ephrin-As carried by retinal axons could indeed dampen the oscillatory

expression of these ligands through overlapping TZs. Nevertheless, the variability in the degree of

overlap will create smaller or larger areas containing high levels of retinal ephrin-A3. This

phenomenon may participate towards the incomplete penetrance of the cortico-collicular phenotype,

and may explain the reduced distance separation when compared to Isl2-EphA3KI.

A similar issue was raised in the Isl2-EphA3KI/KI mice (Triplett et al., 2009). In these animals,

the dramatic collicular phenotype (full duplication) should generate two different retinal ephrin-A

gradients; one covering the rostral half of the SC (running from low-rostral to high-mid-SC) and the

other covering the caudal half (running form low mid-SC to high-caudal). However, no such staining

could be detected.

The failure to detect retinal ephrin-A3, and more generally any retinal EphAs/ephrin-As in situ

on RGC axons traveling within the colliculus may be the consequence of the spreading of these

molecules along the axons, which then generates a low concentration locally, precluding any detection

using conventional immunohistochemical methods. Another explanation for the absence of detection

could be a specific folding of these proteins along the axon, masking the epitope.
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Possible alteration of the retino-geniculate pathway

Duplications observed in the SC of incoming projections from the V1 could be due to an

abnormal mapping of the retino-geniculo-cortical pathway, which would then be transferred to

feedback projections form V1. To test this eventuality, DiI injections were performed in the retina, and

their TZs were assessed in the dLGN. No abnormalities were observed, suggesting that retinal ephrin-

A3 is unlikely to participate in the formation retino-geniculate topography.

Gradient matching and retinal-matching model

To date, two alternative hypothesis have been suggested to account for duplication of the

cortico-collicular map: gradient matching and retinal-matching (Cang and Feldheim, 2013).

Gradient matching hypothesis suggests that collicular ephrin-As interact with cortical EphAs

and lead to the formation of the cortico-collicular map. This seems unlikely regarding the results

obtained in the Isl2-EphA3KI, since ephrin-As collicular expression is unaltered and a duplication of

the cortico-collicular projections can be observed. This is in favor of retinal matching, where activity

drives the formation of the cortico-collicular map. However, if molecular information is (at least in part)

carried by retinal axons, the rearrangement of the retinal ephrin-A gradient through the duplication of

the retino-collicular map accounts for the duplication of the cortico-collicular map and explains the

phenotype observed in the Isl2-EphA3KI.

In addition, in silico modeling of the Isl2-EphA3KI using the three-step model revealed that a

duplication of the cortico-collicular can be obtained through the segregation of the Isl2 positive and

wild-type RGCs and the consequent resorting of retinal ephrin-As.

Timing is everything

In the absence of a complete expression profile at the different time points during development,

deciphering the respective role for each EphA and ephrin-As is quite difficult. Much evidence has

accumulated that different Ephs and ephrins are implicated in different functions. Gradients are

dynamic since homogeneous or graded expression can be found at different developmental stages,

and eventually a disappearance of some of these gradients in adulthood. However no information is

available concerning the expression profiles at the protein level, which could greatly vary with

internalization of both receptors and changes in translation dynamics. In addition, this could have

major effects if we assume that ephrin-A levels have attractive and repulsive properties according to

their expression levels, or if the balance between reverse and forward signaling is an important factor

in the formation of a topographic map.

The formation of visual maps is a highly dynamic and sequential process, in which the timing of

the different actors plays an essential role. One likely timeline for the formation of such maps, is:

• Overshooting. Cis masking could be required at this particular time point. Indeed if reverse

signaling is involved in retino-collicular mapping through a repulsive effect, nasal axons,

carrying high levels of ephrin-As could probably not enter the SC and reach the caudal pole.

Localization of EphA/ephrin-As close to each other would silence both, which could be later on

segregated in different micro-domains and could therefore be involved in both forward and

reverse signaling

• Repulsive interaction through reverse signaling between ingrowing axons (fiber-fiber

interaction) that would mediate competition

153



• Threshold effect due to the probability of interactions between the different levels of EphAs and

ephrin-As, to prevent extension and induce the retraction of overshooting. This signaling

should be relative

• Branching extension at the local topographically correct location through interactions with

BDNF

• Refinement by correlated activity

When, but also where.

In addition to the need for information on the expression dynamics of EphAs and ephrin-As

during the formation of the visuotopic maps, the precise location of these molecules would also be

required. The overshooting phase could be explained by a delay in the transport of receptors and

ligands, which would still be in the translation phase before they are carried along the axon where they

can signal. The amount of EphAs/ephrin-As mRNA translated and the location of their insertion in the

axonal membrane (distal, proximal) seems to be critical. According to the proportion localized (either

on axonal arborization or along axons), different types of interactions could be considered. In addition,

if EphA receptors are internalized as they interact with ephrin-As, this could lead to a decrease in

signaling during the formation of the map.

Similarly, our results suggest a cis-interaction between EphA3 and ephrin-A3 in vivo, leading to

silencing of both partners; but since EphA3 is not normally expressed in RGCs, this could induce a

different segregation of the receptor along the axon when compared to the wild-type situation.

Stochasticity in molecular guidance

Our results also point toward an adaptability of the developmental program, and highlights the

existence of inter-individual variations. Another recent study, (Owens et al., 2015), showed that the

interplay between activity and molecular cues could lead to differences at the individual level. The

formation of topographic maps during development can be viewed as a dynamical system, where

different forces are combined until an equilibrium is reached. This equilibrium, even if the system

shows robustness, can be shifted toward a breaking point and induce a chaotic behavior.

Stochasticity is found at different levels during map formation. During a receptor/ligands

interaction, thermal noise is believed to induce errors at the molecular level. EphA and ephrin-A

amounts can only be detected and integrated by the ingrowing axons, through the indirect and noisy

process of chance encounters with a limited number of receptors on the sensing device (Goodhill,

2016).

Gradients are not enough

There are limits regarding the information content and the robustness of signaling that can be

carried by linear or exponential gradients. The systematic investigation and quantification of gradients

regarding one particular axis probably induced a bias, regarding their actual shape and expression

profile. Diffusion occurs in all directions so it seems more likely that EphA and ephrin-A gradients

when stretched in the second dimension of the structure are rather concentric, which would explain

the exponential shape. This could also account for the rostral-caudal axis perturbation as observed in

EphB2KO (Hindges et al., 2002), and some dorsal-ventral perturbations as observed in ephrin-

A2/A5KO (Feldheim et al., 2000).

Mapping of retino-collicular projections is probably a more complex process than that which

can be carried by a single class of molecules. The causal effect of gradient perturbation remains to be

fully demonstrated, since other actors are probably involved. To ensure robustness other mechanisms
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need to be involved. Activity is not required for the establishment of a rough topography (Benjumeda

et al., 2013), but seems critical in refinement.

Different processes for different maps.

The results obtained in the Isl2-ephrin-A3KI raises questions regarding the implication of

correlated activity in refinement of the cortico-collicular map. Indeed, a spontaneous correlated activity

pattern seems unlikely to occur between the retinal and the cortical inputs, since a delay would be

introduced between the mono- (Retina → SC) and the tri-synaptic pathway (Retina → dLGN → V1 →

SC). This would explain the presence of duplications with short distance separations observed, since

these eTZs cannot be eliminated through correlated activity. According to spike-time dependent

plasticity (STDP), connections are either strengthened or weakened according to both the temporal

window as well as the order of pre- and post-firing. In addition, activity-dependent refinement through

STDP probably eliminates eTZ in ephrin-As KO in a particular distance, and reinforces them past a

critical zone. This suggests that a minimal distance is required for the stabilization these connections

and as consequence, eTZs far from the correct topographic site are not eliminated.

Similarly, the mapping of the rostral-caudal axis and the dorsal-ventral seems to occur through

different processes. Indeed, the nasal-temporal one is specifically disrupted in ephrin-As KO in the V1

(Cang et al., 2008b). The presence of a dorsal-ventral patterning in the optical nerve, a presorting of

axons, also suggest different mapping mechanisms for the different classes of Ephs (Plas et al.,

2005).

Different EphAs and ephrin-As for different functions.

Over-expression of ephrin-A3 in Isl2+ RGCs does not seem to lead to inactivation of

endogenous EphAs, suggesting a high specificity pf EphA/ephrin-A interactions in cis. Such specificity

in cis-binding between given ephrin- A/EphA pairs have been shown previously (Carvalho et al., 2006;

Yin et al., 2004) in different cell types, including RGCs. Cis-inactivation of endogenous EphA4/A5/A6

receptors by over-expressed ephrin-A3 would generate a distinct population of RGCs expressing

different levels of active EphA receptors that would lead – according to the Relative Signaling

mechanism (Bevins et al., 2011; Brown et al., 2000; Reber et al., 2004) – to the formation of a

duplicated (partial of full) retino-collicular map. In ephrin-A3KI, such duplications are not observed in

the retino-collicular map, suggesting that ephrin-A3 does not cis-inactivate endogenous retinal EphA

receptors. To further confirm this, retino-collicular projections from compound mutants ephrin-

A3KI/KI;EphA4KO were also assessed. Here, decreasing the overall level of retinal EphA receptors by

suppressing EphA4 expression (in EphA4+/- and EphA4-/- backgrounds) would reveal a cis-

interaction with endogenous EphA5/A6, which will lead retino-collicular map duplication. An effect on

map duplication should be particularly pronounced in the nasal pole of the retina (projecting caudally

in the SC), where EphA5/A6 are expressed at very low levels compared to EphA4. As shown below, in

both ephrin-A3KI/KI;EphA4+/- and ephrin-A3KI/KI;EphA4-/-, retino-collicular maps are not duplicated,

suggesting that ephrin-A3 does not cis-inactivate endogenous EphA5/A6 receptors.

Behavior of the Isl2-EphA3KI

The behavioral study conducted in the Isl2-EphA3KI mouse model is to date, the only one

conducted in an animal model in which the retinotopy is specifically altered in the SC. In other models

with an EphA/ephrin-A disruption, the targeting is global, which can lead to an impairment in many

different brain structures/pathways. The fact that the representation of the visual space is specifically
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altered in the SC, has allowed the investigation of its implication in behavior. The results are quite

remarkable and demonstrates that even if vision is unaltered, some specific behavioral defects related

to visual attention can be found in these animals.

However, since both the retino- and the cortico-collicular maps are fully duplicated in these

animals, specific projections that are involved cannot be addressed; however a partial duplication of

both retino- and cortico-collicular maps is not sufficient to induce significant attentional deficits. In

addition, a recent study demonstrated that when mice are trained to run constantly on a spinning disk,

an arrest behavior (stop in locomotion) can be induced by solely activating the cortico-collicular fibers

(Liang et al., 2015). As a consequence, it would be very interesting to perform the same behavioral

tests in the Isl2-ephrin-A3KI mouse model in which the disruption is specific for the cortico-collicular

map. The mismatch between both maps might induce conflicting behavioral outputs in tasks with a

distractor.

Functional imaging

The results obtained at an anatomical level might not show significant functional changes, as

ectopic sites might not be strengthened by correlated activity, and as a consequence, only make a

small contribution to the function. Optical intrinsic imaging might not be able to reveal a duplication of

the cortico-collicular map, since the relative contribution of the retino- and the cortico-collicular map to

the overall signal is to date not known, and anesthesia is known to decrease cortical signals. In

addition the distance separation might not be sufficient to reveal an alteration in the retinotopy,

according to the spatial resolution. However a 2-photon calcium imaging approach, with a specific

labeling of the cortico-collicular projections, might allow the investigation of these duplications.
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Elise SAVIER

Rôle des éphrines-A rétiniennes
dans la mise en place des cartes

visuelles

Résumé

L'intégration sensorielle nécessite un alignement correct des cartes nerveuses dans le cerveau. Dans les
couches superficielles du colliculus supérieur, situé dans le mésencéphale, des projections en provenance
de la rétine ainsi que du cortex visuel primaire doivent être alignés, mais les mécanismes sous-jacents de ce
processus demeurent à ce jour méconnus. Afin d'élucider ces mécanismes, éphrine-A3 a été sur-exprimée
dans un modèle murin, dans une sous-population des cellules ganglionnaires de la rétine, induisant un
disruption de l'alignement de la carte rétino-colliculaire sur la carte cortico-colliculaire. L'inactivation in vivo
d'éphrine-A3 dans la rétine restaure un phénotype sauvage. Une analyse théorique utilisant un modèle
informatique a permis la modélisation des donnés obtenues. Ces résultats ont permis l'identification d'un
principe de base dans l'alignement des cartes et des mécanismes associés, validés par un modèle
théorique. 

Neuroscience, Développement, carte visuelle, éphrine-A, retine, colliculus supérieur, cortex visuel
primaire

Résumé en anglais

Efficient sensory processing requires correct alignment of neural maps throughout the brain. In
the superficial layers of the superior colliculus in the midbrain, projections from retinal ganglion cells and V1
cortex must be aligned to form a visuotopic map, but the basic principle and underlying mechanism are
elusive and still incomplete. In a new mouse model, over-expression of ephrin-A3 in a subset of retinal
ganglion cells disrupts the cortico-collicular map alignment onto the retino-collicular map,  creating a
visuotopic mismatch. In vivo inactivation of retinal ephrin-A3 over-expression restores a  wild-type cortico-
collicular map. Theoretical analyses using an original algorithm models the stochastic nature of maps
formation and alignment, and recapitulates our observations. Our results identify a  basic principle for the
alignment of converging maps and the associated mechanism, validated by a theoretical model. 
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