M. Lesperance, Etats-Unis) Les souris FVB/NJ sauvages ont été fournies par Janvier Labs. Les animaux ont été recueillis au sein de l'animalerie de l'Institut des Neurosciences de Montpellier. Leur hébergement et leur utilisation ont respectés le guide de bonne pratique de l

Z. Ahmed, S. Riazuddin, J. Ahmad, S. Bernstein, Y. Guo et al., PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23, Human Molecular Genetics, vol.12, issue.24, pp.3215-3223, 2003.
DOI : 10.1093/hmg/ddg358

A. Alberts, N. Bouquin, L. Johnston, and R. Treisman, Analysis of RhoA-binding Proteins Reveals an Interaction Domain Conserved in Heterotrimeric G Protein ?? Subunits and the Yeast Response Regulator Protein Skn7, Journal of Biological Chemistry, vol.15, issue.15, pp.8616-8622, 1998.
DOI : 10.1128/MCB.15.10.5246

C. Alexander, M. Votruba, U. Pesch, D. Thiselton, S. Mayer et al., OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28, Nature Genetics, vol.132, issue.2, pp.211-215, 2000.
DOI : 10.1146/annurev.bi.50.070181.002025

M. Amatuzzi, C. Northrop, M. Liberman, A. Thornton, C. Halpin et al., Selective Inner Hair Cell Loss in Premature Infants and Cochlea Pathological Patterns From Neonatal Intensive Care Unit Autopsies, Archives of Otolaryngology???Head & Neck Surgery, vol.127, issue.6, pp.629-636, 2001.
DOI : 10.1001/archotol.127.6.629

P. Antonellis, L. Pollock, S. Chou, A. Hassan, R. Geng et al., ACF7 Is a Hair-Bundle Antecedent, Positioned to Integrate Cuticular Plate Actin and Somatic Tubulin, Journal of Neuroscience, vol.34, issue.1, pp.305-312, 2014.
DOI : 10.1523/JNEUROSCI.1880-13.2014

T. Arima, T. Uemura, and T. Yamamoto, Three-dimensional visualizations of the inner ear hair cell of the guinea pig. A rapid-freeze, deep-etch study of filamentous and membranous organelles, Hearing Research, vol.25, issue.1, pp.61-68, 1987.
DOI : 10.1016/0378-5955(87)90079-7

J. Ashmore, Cochlear Outer Hair Cell Motility, Physiological Reviews, vol.88, issue.1, pp.173-210, 2008.
DOI : 10.1152/physrev.00044.2006

J. Assad, G. Shepherd, and D. Corey, Tip-link integrity and mechanical transduction in vertebrate hair cells, Neuron, vol.7, issue.6, pp.985-994, 1991.
DOI : 10.1016/0896-6273(91)90343-X

J. Attias, E. Raveh, A. Aizer-dannon, A. Bloch-mimouni, and A. Valevski, Auditory System Dysfunction due to Infantile Thiamine Deficiency: Long-Term Auditory Sequelae, Audiology and Neurotology, vol.17, issue.5, pp.309-320, 2012.
DOI : 10.1159/000339356

S. Baig, A. Koschak, A. Lieb, M. Gebhart, C. Dafinger et al., Loss of Cav1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness, Nature Neuroscience, vol.2, issue.1, pp.77-84, 2011.
DOI : 10.1523/JNEUROSCI.3411-05.2005

F. Bartolini and G. Gundersen, Formins and microtubules, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1803, issue.2, pp.164-173, 2010.
DOI : 10.1016/j.bbamcr.2009.07.006

URL : http://doi.org/10.1016/j.bbamcr.2009.07.006

F. Bartolini, J. Moseley, J. Schmoranzer, L. Cassimeris, B. Goode et al., The formin mDia2 stabilizes microtubules independently of its actin nucleation activity, The Journal of Cell Biology, vol.4, issue.3, pp.523-536, 2008.
DOI : 10.1038/nature02452

M. Bashtanov, R. Goodyear, G. Richardson, and I. Russell, ) sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment, The Journal of Physiology, vol.59, issue.1, pp.287-299, 2004.
DOI : 10.1016/0378-5955(92)90120-C

M. Beurg, R. Fettiplace, J. Nam, and A. Ricci, Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging, Nature Neuroscience, vol.18, issue.5, pp.553-558, 2009.
DOI : 10.1016/S0006-3495(96)79429-8

A. Brandt, J. Striessnig, and T. Moser, CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells, J Neurosci, vol.23, pp.10832-10840, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00757396

H. Chaib, C. Place, N. Salem, S. Chardenoux, C. Vincent et al., A Gene Responsible for a Sensorineural Nonsyndromic Recessive Deafness Maps to Chromosome 2p22-23, Human Molecular Genetics, vol.5, issue.1, pp.155-158, 1996.
DOI : 10.1093/hmg/5.1.155

C. Delettre, G. Lenaers, J. Griffoin, N. Gigarel, C. Lorenzo et al., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy, Nature Genetics, vol.303, issue.2, pp.207-210, 2000.
DOI : 10.1042/bj3030481

D. Dememes and E. Scarfone, Fodrin immunocytochemical localization in the striated organelles of the rat vestibular hair cells, Hearing Research, vol.61, issue.1-2, pp.155-160, 1992.
DOI : 10.1016/0378-5955(92)90046-P

D. Derosier and L. Tilney, The structure of the cuticular plate, an in vivo actin gel, The Journal of Cell Biology, vol.109, issue.6, pp.2853-2867, 1989.
DOI : 10.1083/jcb.109.6.2853

A. Deward and A. Alberts, Ubiquitin-mediated Degradation of the Formin mDia2 upon Completion of Cell Division, Journal of Biological Chemistry, vol.7, issue.30, pp.20061-20069, 2009.
DOI : 10.1091/mbc.7.9.1343

M. Drummond, M. Barzik, J. Bird, D. Zhang, C. Lechene et al., Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear, Nature Communications, vol.5, p.6873, 2015.
DOI : 10.1186/jbiol42

S. Duncker, C. Franz, S. Kuhn, U. Schulte, D. Campanelli et al., Otoferlin Couples to Clathrin-Mediated Endocytosis in Mature Cochlear Inner Hair Cells, Journal of Neuroscience, vol.33, issue.22, pp.9508-9519, 2013.
DOI : 10.1523/JNEUROSCI.5689-12.2013

M. Evangelista, S. Zigmond, and C. Boone, Formins: signaling effectors for assembly and polarization of actin filaments, Journal of Cell Science, vol.116, issue.13, pp.2603-2611, 2003.
DOI : 10.1242/jcs.00611

M. Ferre, D. Bonneau, D. Milea, A. Chevrollier, C. Verny et al., mutations, Human Mutation, vol.30, issue.7, pp.692-705, 2009.
DOI : 10.1002/humu.21025

URL : https://hal.archives-ouvertes.fr/inserm-00372261

R. Fettiplace and C. Hackney, The sensory and motor roles of auditory hair cells, Nature Reviews Neuroscience, vol.354, issue.1, pp.19-29, 2006.
DOI : 10.1016/0378-5955(94)90040-X

R. Fettiplace and K. Kim, The Physiology of Mechanoelectrical Transduction Channels in Hearing, Physiological Reviews, vol.94, issue.3, pp.951-986, 2014.
DOI : 10.1152/physrev.00038.2013

A. Flock and H. Cheung, Actin filaments in sensory hairs of inner ear receptor cells, The Journal of Cell Biology, vol.75, issue.2, pp.339-343, 1977.
DOI : 10.1083/jcb.75.2.339

S. Francis, J. Krey, E. Krystofiak, R. Cui, S. Nanda et al., A Short Splice Form of Xin-Actin Binding Repeat Containing 2 (XIRP2) Lacking the Xin Repeats Is Required for Maintenance of Stereocilia Morphology and Hearing Function, Journal of Neuroscience, vol.35, issue.5, pp.1999-2014, 2015.
DOI : 10.1523/JNEUROSCI.3449-14.2015

I. Friedmann, T. Cawthorne, K. Mclay, and E. Bird, Electron Microscopic Observations on the Human Membranous Labyrinth with Particular Reference to M'eni'ere's Disease, J Ultrastruct Res, vol.49, pp.123-138, 1963.

D. Furness, C. Hackney, and P. Steyger, Organization of microtubules in cochlear hair cells, Journal of Electron Microscopy Technique, vol.18, issue.3, pp.261-279, 1990.
DOI : 10.1111/j.1550-7408.1984.tb04280.x

D. Furness, Y. Katori, S. Mahendrasingam, and C. Hackney, Differential distribution of ??- and ??-actin in guinea-pig cochlear sensory and supporting cells, Hearing Research, vol.207, issue.1-2, pp.22-34, 2005.
DOI : 10.1016/j.heares.2005.05.006

D. Furness, S. Mahendrasingam, M. Ohashi, R. Fettiplace, and C. Hackney, The Dimensions and Composition of Stereociliary Rootlets in Mammalian Cochlear Hair Cells: Comparison between High- and Low-Frequency Cells and Evidence for a Connection to the Lateral Membrane, Journal of Neuroscience, vol.28, issue.25, pp.6342-6353, 2008.
DOI : 10.1523/JNEUROSCI.1154-08.2008

B. Goode and M. Eck, Mechanism and Function of Formins in the Control of Actin Assembly, Annual Review of Biochemistry, vol.76, issue.1, pp.593-627, 2007.
DOI : 10.1146/annurev.biochem.75.103004.142647

R. Goodyear, P. Legan, M. Wright, W. Marcotti, A. Oganesian et al., A receptor-like inositol lipid phosphatase is required for the maturation of developing cochlear hair bundles, J Neurosci, vol.23, pp.9208-9219, 2003.

C. Greene, P. Mcmillan, S. Barker, P. Kurnool, M. Lomax et al., DFNA25, a Novel Locus for Dominant Nonsyndromic Hereditary Hearing Impairment, Maps to 12q21-24, The American Journal of Human Genetics, vol.68, issue.1, pp.254-260, 2001.
DOI : 10.1086/316925

C. Griguer, J. Lehouelleur, J. Valat, A. Sahuquet, and A. Sans, Voltage dependent reversible movements of the apex in isolated guinea pig vestibular hair cells, Hearing Research, vol.67, issue.1-2, pp.110-116, 1993.
DOI : 10.1016/0378-5955(93)90238-V

F. Haeseleer, Y. Imanishi, T. Maeda, D. Possin, A. Maeda et al., Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function, Nature Neuroscience, vol.85, issue.10, pp.1079-1087, 2004.
DOI : 10.1074/jbc.M312410200

E. Hangen, K. Blomgren, P. Benit, G. Kroemer, and N. Modjtahedi, Life with or without AIF, Trends in Biochemical Sciences, vol.35, issue.5, pp.278-287, 2010.
DOI : 10.1016/j.tibs.2009.12.008

T. Hasson, P. Gillespie, J. Garcia, R. Macdonald, Y. Zhao et al., Unconventional Myosins in Inner-Ear Sensory Epithelia, The Journal of Cell Biology, vol.92, issue.6, pp.1287-1307, 1997.
DOI : 10.1073/pnas.93.20.10826

M. Haustein, D. Read, J. Steinert, N. Pilati, D. Dinsdale et al., Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse, The Journal of Physiology, vol.501, issue.23, pp.4683-4693, 2010.
DOI : 10.1016/0006-8993(89)91043-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010138

W. Henry and M. Mulroy, Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift, Hearing Research, vol.84, issue.1-2, pp.81-90, 1995.
DOI : 10.1016/0378-5955(95)00014-U

N. Hirokawa, Cytoskeletal architecture of the chicken hair cells revealed with the quick-freeze, deep-etch technique, Hearing Research, vol.22, issue.1-3, pp.41-54, 1986.
DOI : 10.1016/0378-5955(86)90076-6

N. Hirokawa and L. Tilney, Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear, The Journal of Cell Biology, vol.95, issue.1, pp.249-261, 1982.
DOI : 10.1083/jcb.95.1.249

A. Hudspeth, Extracellular current flow and the site of transduction by vertebrate hair cells, J Neurosci, vol.2, pp.1-10, 1982.

T. Ishizaki, Y. Morishima, M. Okamoto, T. Furuyashiki, T. Kato et al., Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1, Nat Cell Biol, vol.3, pp.8-14, 2001.

R. Jaeger, J. Fex, and B. Kachar, Structural basis for mechanical transduction in the frog vestibular sensory apparatus: II. The role of microtubules in the organization of the cuticular plate, Hearing Research, vol.77, issue.1-2, pp.207-215, 1994.
DOI : 10.1016/0378-5955(94)90268-2

F. Jaramillo and A. Hudspeth, Localization of the hair cell's transduction channels at the hair bundle's top by iontophoretic application of a channel blocker, Neuron, vol.7, issue.3, pp.409-420, 1991.
DOI : 10.1016/0896-6273(91)90293-9

P. Ji, S. Jayapal, and H. Lodish, Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2, Nature Cell Biology, vol.74, issue.3, pp.314-321, 2008.
DOI : 10.1073/pnas.0400551101

S. Johnson, M. Beurg, W. Marcotti, and R. Fettiplace, Prestin-Driven Cochlear Amplification Is Not Limited by the Outer Hair Cell Membrane Time Constant, Neuron, vol.70, issue.6, pp.1143-1154, 2011.
DOI : 10.1016/j.neuron.2011.04.024

S. Jung, T. Maritzen, C. Wichmann, Z. Jing, A. Neef et al., Disruption of adaptor protein 2?? (AP-2??) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing, The EMBO Journal, vol.34, issue.21, pp.2686-2702, 2015.
DOI : 10.15252/embj.201591885

D. Kabzinska, T. Korwin-piotrowska, H. Drechsler, H. Drac, I. Hausmanowa-petrusewicz et al., Late-onset Charcot-Marie-Tooth type 2 disease with hearing impairment associated with a novel Pro105Thr mutation in the MPZ gene, Am J Med Genet A, vol.143, pp.2196-2199, 2007.

P. Kazmierczak, H. Sakaguchi, J. Tokita, E. Wilson-kubalek, R. Milligan et al., Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells, Nature, vol.15, issue.7158, pp.87-91, 2007.
DOI : 10.1038/nature06091

H. Kennedy, A. Crawford, and R. Fettiplace, Force generation by mammalian hair bundles supports a role in cochlear amplification, Nature, vol.2, issue.7028, pp.880-883, 2005.
DOI : 10.1016/0378-5955(91)90041-7

Y. Kikkawa, K. Pawlowski, C. Wright, and K. Alagramam, Development of Outer Hair Cells in Ames Waltzer Mice: Mutation in Protocadherin 15 Affects Development of Cuticular Plate and Associated Structures, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.219, issue.2, pp.224-232, 2008.
DOI : 10.1002/ar.20632

R. Kimura, The Ultrastructure of the Organ of Corti, Int Rev Cytol, vol.42, pp.173-222, 1975.
DOI : 10.1016/S0074-7696(08)60981-X

G. Kirkim, B. Serbetcioglu, T. Erdag, and K. Ceryan, The frequency of auditory neuropathy detected by universal newborn hearing screening program, International Journal of Pediatric Otorhinolaryngology, vol.72, issue.10, pp.1461-1469, 2008.
DOI : 10.1016/j.ijporl.2008.06.010

S. Kitajiri, T. Sakamoto, I. Belyantseva, R. Goodyear, R. Stepanyan et al., Actin-Bundling Protein TRIOBP Forms Resilient Rootlets of Hair Cell Stereocilia Essential for Hearing, Cell, vol.141, issue.5, pp.786-798, 2010.
DOI : 10.1016/j.cell.2010.03.049

M. Kovach, K. Campbell, K. Herman, B. Waggoner, D. Gelber et al., Anticipation in a unique family with Charcot-Marie-Tooth syndrome and deafness: Delineation of the clinical features and review of the literature, American Journal of Medical Genetics, vol.43, issue.4, pp.295-303, 2002.
DOI : 10.1002/ajmg.10223

A. Kozlov, J. Baumgart, T. Risler, C. Versteegh, and A. Hudspeth, Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale, Nature, vol.249, issue.7351, pp.376-379, 2011.
DOI : 10.1007/BF00215434

URL : https://hal.archives-ouvertes.fr/hal-00961008

J. Krey, N. Sherman, E. Jeffery, D. Choi, and P. Barr-gillespie, The proteome of mouse vestibular hair bundles over development, Scientific Data, vol.17, p.150047, 2015.
DOI : 10.1242/dev.067074

S. Kuhn and M. Geyer, Formins as effector proteins of Rho GTPases, Small GTPases, vol.15, issue.3, p.29513, 2014.
DOI : 10.1038/ncb2981

H. Lee, P. Raphael, J. Park, A. Ellerbee, B. Applegate et al., Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea, Proceedings of the National Academy of Sciences, vol.1403, issue.22, pp.3128-3133, 2015.
DOI : 10.1016/j.heares.2004.03.013

P. Legan, V. Lukashkina, R. Goodyear, M. Kossi, I. Russell et al., A Targeted Deletion in ??-Tectorin Reveals that the Tectorial Membrane Is Required for the Gain and Timing of Cochlear Feedback, Neuron, vol.28, issue.1, pp.273-285, 2000.
DOI : 10.1016/S0896-6273(00)00102-1

C. Leung, D. Sun, M. Zheng, D. Knowles, and R. Liem, Microtubule Actin Cross-Linking Factor (Macf), The Journal of Cell Biology, vol.57, issue.6, pp.1275-1286, 1999.
DOI : 10.1006/geno.1996.0625

M. Liberman, Chronic ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates, Hearing Research, vol.26, issue.1, pp.65-88, 1987.
DOI : 10.1016/0378-5955(87)90036-0

M. Liberman, E. Tartaglini, J. Fleming, and E. Neufeld, Deletion of SLC19A2, the High Affinity Thiamine Transporter, Causes Selective Inner Hair Cell Loss and an Auditory Neuropathy Phenotype, Journal of the Association for Research in Otolaryngology, vol.31, issue.Pt 3, pp.211-217, 2006.
DOI : 10.1093/oxfordjournals.jjco.a023220

M. Liberman, J. Gao, D. He, X. Wu, S. Jia et al., Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier, Nature, vol.78, issue.6904, pp.300-304, 2002.
DOI : 10.1016/S0959-4388(97)80026-8

E. Lumpkin and A. Hudspeth, Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells., Proceedings of the National Academy of Sciences, vol.92, issue.22, pp.10297-10301, 1995.
DOI : 10.1073/pnas.92.22.10297

E. Lynch, M. Lee, J. Morrow, P. Welcsh, P. Leon et al., Nonsyndromic Deafness DFNA1 Associated with Mutation of a Human Homolog of the Drosophila Gene diaphanous, Science, vol.278, issue.5341, pp.1315-1318, 1997.
DOI : 10.1126/science.278.5341.1315

S. Marlin, D. Feldmann, Y. Nguyen, I. Rouillon, N. Loundon et al., Temperature-sensitive auditory neuropathy associated with an otoferlin mutation: Deafening fever!, Biochemical and Biophysical Research Communications, vol.394, issue.3, pp.737-742, 2010.
DOI : 10.1016/j.bbrc.2010.03.062

T. Moser and A. Starr, Auditory neuropathy ??? neural and synaptic mechanisms, Nature Reviews Neurology, vol.20, issue.3, pp.135-149, 2016.
DOI : 10.1016/j.ajhg.2008.07.008

J. Neef, A. Gehrt, A. Bulankina, A. Meyer, D. Riedel et al., The Ca2+ Channel Subunit ??2 Regulates Ca2+ Channel Abundance and Function in Inner Hair Cells and Is Required for Hearing, Journal of Neuroscience, vol.29, issue.34, pp.10730-10740, 2009.
DOI : 10.1523/JNEUROSCI.1577-09.2009

K. Nicholson-tomishima and T. Ryan, Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I, Proceedings of the National Academy of Sciences, vol.162, issue.1, pp.16648-16652, 2004.
DOI : 10.1083/jcb.200301006

E. Norberg, S. Orrenius, and B. Zhivotovsky, Mitochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF), Biochemical and Biophysical Research Communications, vol.396, issue.1, pp.95-100, 2010.
DOI : 10.1016/j.bbrc.2010.02.163

R. Nouvian, D. Beutner, T. Parsons, and T. Moser, Structure and Function of the Hair Cell Ribbon Synapse, Journal of Membrane Biology, vol.406, issue.2-3, pp.153-165, 2006.
DOI : 10.1113/jphysiol.1996.sp021519

R. Nouvian, J. Neef, A. Bulankina, E. Reisinger, T. Pangrsic et al., Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins, Nature Neuroscience, vol.80, issue.4, pp.411-413, 2011.
DOI : 10.1016/S0896-6273(01)00243-4

URL : https://hal.archives-ouvertes.fr/hal-00619269

K. Oishi, S. Hofmann, G. Diaz, T. Brown, D. Manwani et al., Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice, Human Molecular Genetics, vol.11, issue.23, pp.2951-2960, 2002.
DOI : 10.1093/hmg/11.23.2951

A. Palazzo, T. Cook, A. Alberts, and G. Gundersen, ) mDia mediates Rho-regulated formation and orientation of stable microtubules, Nature Cell Biology, vol.3, issue.8, pp.723-729, 2001.
DOI : 10.1038/35087035

T. Pangrsic, L. Lasarow, K. Reuter, H. Takago, M. Schwander et al., Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells, Nature Neuroscience, vol.14, issue.7, pp.869-876, 2010.
DOI : 10.1038/nn.2578

URL : https://hal.archives-ouvertes.fr/hal-00548216

K. Pawlowski, Y. Kikkawa, C. Wright, and K. Alagramam, Progression of Inner Ear Pathology in Ames Waltzer Mice and the Role of Protocadherin 15 in Hair Cell Development, Journal of the Association for Research in Otolaryngology, vol.261, issue.2, pp.83-94, 2006.
DOI : 10.1007/s10162-005-0024-5

B. Perrin, K. Sonnemann, and J. Ervasti, ??-Actin and ??-Actin Are Each Dispensable for Auditory Hair Cell Development But Required for Stereocilia Maintenance, PLoS Genetics, vol.103, issue.Pt 6, p.1001158, 2010.
DOI : 10.1371/journal.pgen.1001158.s004

URL : http://doi.org/10.1371/journal.pgen.1001158

J. Pickles, S. Comis, and M. Osborne, Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction, Hearing Research, vol.15, issue.2, pp.103-112, 1984.
DOI : 10.1016/0378-5955(84)90041-8

J. Platzer, J. Engel, A. Schrott-fischer, K. Stephan, S. Bova et al., Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels, Cell, vol.102, issue.1, pp.89-97, 2000.
DOI : 10.1016/S0092-8674(00)00013-1

L. Pollock, B. Mcdermott, and J. , The cuticular plate: A riddle, wrapped in a mystery, inside a hair cell, Birth Defects Research Part C: Embryo Today: Reviews, vol.405, issue.2, pp.126-139, 2015.
DOI : 10.1038/35012009

B. Polster, AIF, reactive oxygen species, and neurodegeneration: A ???complex??? problem, Neurochemistry International, vol.62, issue.5, pp.695-702, 2013.
DOI : 10.1016/j.neuint.2012.12.002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610861

K. Poskanzer, K. Marek, S. Sweeney, and G. Davis, Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo, Nature, vol.426, issue.6966, pp.559-563, 2003.
DOI : 10.1038/nature02184

D. Pruyne, M. Evangelista, C. Yang, E. Bi, S. Zigmond et al., Role of Formins in Actin Assembly: Nucleation and Barbed-End Association, Science, vol.297, issue.5581, pp.612-615, 2002.
DOI : 10.1126/science.1072309

J. Puel, J. Durrieu, G. Rebillard, D. Vidal, R. Assié et al., Comparison between auditory brainstem responses and distortion products otoacoustic emissions after temporary threshold shift in guinea pig, Acta Acustica, vol.3, pp.75-82, 1995.

J. Puel, R. Pujol, S. Ladrech, and M. Eybalin, ??-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid electrophysiological and neurotoxic effects in the guinea-pig cochlea, Neuroscience, vol.45, issue.1, pp.63-72, 1991.
DOI : 10.1016/0306-4522(91)90103-U

J. Puel, J. Ruel, C. Gervais-d-'aldin, and R. Pujol, Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss, NeuroReport, vol.9, issue.9, pp.2109-2114, 1998.
DOI : 10.1097/00001756-199806220-00037

G. Rance and A. Starr, Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy, Brain, vol.138, issue.11, pp.3141-3158, 2015.
DOI : 10.1093/brain/awv270

Y. Raphael, B. Athey, Y. Wang, M. Lee, and R. Altschuler, F-actin, tubulin and spectrin in the organ of Corti: Comparative distribution in different cell types and mammalian species, Hearing Research, vol.76, issue.1-2, pp.173-187, 1994.
DOI : 10.1016/0378-5955(94)90098-1

E. Reisinger, C. Bresee, J. Neef, R. Nair, K. Reuter et al., Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis, Journal of Neuroscience, vol.31, issue.13, pp.4886-4895, 2011.
DOI : 10.1523/JNEUROSCI.5122-10.2011

S. Riazuddin, S. Khan, Z. Ahmed, M. Ghosh, K. Caution et al., Mutations in TRIOBP, Which Encodes a Putative Cytoskeletal-Organizing Protein, Are Associated with Nonsyndromic Recessive Deafness, The American Journal of Human Genetics, vol.78, issue.1, pp.137-143, 2006.
DOI : 10.1086/499164

A. Ricci, A. Crawford, and R. Fettiplace, Tonotopic Variation in the Conductance of the Hair Cell Mechanotransducer Channel, Neuron, vol.40, issue.5, pp.983-990, 2003.
DOI : 10.1016/S0896-6273(03)00721-9

I. Roux, S. Safieddine, R. Nouvian, M. Grati, M. Simmler et al., Otoferlin, Defective in a Human Deafness Form, Is Essential for Exocytosis at the Auditory Ribbon Synapse, Cell, vol.127, issue.2, pp.277-289, 2006.
DOI : 10.1016/j.cell.2006.08.040

URL : https://hal.archives-ouvertes.fr/hal-00111976

J. Ruel, S. Emery, R. Nouvian, T. Bersot, B. Amilhon et al., Impairment of SLC17A8 Encoding Vesicular Glutamate Transporter-3, VGLUT3, Underlies Nonsyndromic Deafness DFNA25 and Inner Hair Cell Dysfunction in Null Mice, The American Journal of Human Genetics, vol.83, issue.2, pp.278-292, 2008.
DOI : 10.1016/j.ajhg.2008.07.008

URL : https://hal.archives-ouvertes.fr/inserm-00349467

R. Santarelli, R. Rossi, P. Scimemi, E. Cama, M. Valentino et al., OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation, Brain, vol.138, issue.3, pp.563-576, 2015.
DOI : 10.1093/brain/awu378

E. Sarzi, C. Angebault, M. Seveno, N. Gueguen, B. Chaix et al., The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse, Brain, vol.135, issue.12, pp.3599-3613, 2012.
DOI : 10.1093/brain/aws303

D. Scheffer, D. Zhang, J. Shen, A. Indzhykulian, K. Karavitaki et al., XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia, Cell Reports, vol.10, issue.11, pp.1811-1818, 2015.
DOI : 10.1016/j.celrep.2015.02.042

F. Schmitz, A. Konigstorfer, and T. Sudhof, RIBEYE, a Component of Synaptic Ribbons, Neuron, vol.28, issue.3, pp.857-872, 2000.
DOI : 10.1016/S0896-6273(00)00159-8

M. Schneider, I. Belyantseva, R. Azevedo, and B. Kachar, Structural cell biology: Rapid renewal of auditory hair bundles, Nature, vol.21, issue.6900, pp.837-838, 2002.
DOI : 10.1016/0006-8993(96)00147-3

C. Schoen, M. Burmeister, and M. Lesperance, Diaphanous homolog 3 (Diap3) Overexpression Causes Progressive Hearing Loss and Inner Hair Cell Defects in a Transgenic Mouse Model of Human Deafness, PLoS ONE, vol.5, issue.2, p.56520, 2013.
DOI : 10.1371/journal.pone.0056520.s004

C. Schoen, S. Emery, M. Thorne, H. Ammana, E. Sliwerska et al., Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila, Proceedings of the National Academy of Sciences, vol.249, issue.5, pp.13396-13401, 2010.
DOI : 10.1006/jmbi.1995.0349

I. Schrauwen, S. Helfmann, A. Inagaki, F. Predoehl, M. Tabatabaiefar et al., A Mutation in CABP2 , Expressed in Cochlear Hair Cells, Causes Autosomal-Recessive Hearing Impairment, The American Journal of Human Genetics, vol.91, issue.4, pp.636-645
DOI : 10.1016/j.ajhg.2012.08.018

C. Schulman-galambos and R. Galambos, Brain Stem Evoked Response Audiometry in Newborn Hearing Screening, Archives of Otolaryngology - Head and Neck Surgery, vol.105, issue.2, pp.86-90, 1979.
DOI : 10.1001/archotol.1979.00790140032006

R. Seal, O. Akil, E. Yi, C. Weber, L. Grant et al., Sensorineural Deafness and Seizures in Mice Lacking Vesicular Glutamate Transporter 3, Neuron, vol.57, issue.2, pp.263-275, 2008.
DOI : 10.1016/j.neuron.2007.11.032

URL : http://doi.org/10.1016/j.neuron.2007.11.032

J. Seaman, J. Walls, S. Wise, S. Jaeger, and R. , Caveat emptor: rank transform methods and interaction, Trends in Ecology & Evolution, vol.9, issue.7, pp.261-263, 1994.
DOI : 10.1016/0169-5347(94)90292-5

T. Self, M. Mahony, J. Fleming, J. Walsh, S. Brown et al., Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells, Development, vol.125, pp.557-566, 1998.

T. Self, T. Sobe, N. Copeland, N. Jenkins, K. Avraham et al., Role of Myosin VI in the Differentiation of Cochlear Hair Cells, Developmental Biology, vol.214, issue.2, pp.331-341, 1999.
DOI : 10.1006/dbio.1999.9424

M. Senften, M. Schwander, P. Kazmierczak, C. Lillo, J. Shin et al., Physical and Functional Interaction between Protocadherin 15 and Myosin VIIa in Mechanosensory Hair Cells, Journal of Neuroscience, vol.26, issue.7, pp.2060-2071, 2006.
DOI : 10.1523/JNEUROSCI.4251-05.2006

Y. Sergeyenko, K. Lall, M. Liberman, and S. Kujawa, Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline, Journal of Neuroscience, vol.33, issue.34, pp.13686-13694, 2013.
DOI : 10.1523/JNEUROSCI.1783-13.2013

H. Shahin, T. Walsh, T. Sobe, A. Sa, J. et al., Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss, The American Journal of Human Genetics, vol.78, issue.1, pp.144-152, 2006.
DOI : 10.1086/499495

N. Slepecky and S. Chamberlain, Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells, Hearing Research, vol.20, issue.3, pp.245-260, 1985.
DOI : 10.1016/0378-5955(85)90029-2

N. Slepecky, R. Hamernik, and D. Henderson, Re-examination of a hair cell organelle in the cuticular late region and its possible relation to active processes in he cochlea, Hearing Research, vol.2, issue.3-4, pp.413-421, 1980.
DOI : 10.1016/0378-5955(80)90077-5

H. Sobkowicz, S. Slapnick, and B. August, The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates, Journal of Neurocytology, vol.7, issue.9, pp.633-653, 1995.
DOI : 10.1016/B978-0-12-615080-3.50034-3

R. Spencer, W. Shaia, A. Gleason, A. Sismanis, and S. Shapiro, Changes in calcium-binding protein expression in the auditory brainstem nuclei of the jaundiced Gunn rat, Hearing Research, vol.171, issue.1-2, pp.129-141, 2002.
DOI : 10.1016/S0378-5955(02)00494-X

H. Spoendlin and J. Brun, The block-surface technique for evaluation of cochlear pathology, Archives of Oto-Rhino-Laryngology, vol.75, issue.2, pp.137-145, 1974.
DOI : 10.1007/BF00453927

S. Stamataki, H. Francis, M. Lehar, B. May, and D. Ryugo, Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice, Hearing Research, vol.221, issue.1-2, pp.104-118, 2006.
DOI : 10.1016/j.heares.2006.07.014

A. Starr, T. Picton, Y. Sininger, L. Hood, and C. Berlin, Auditory neuropathy, Brain, vol.119, issue.3, pp.741-753, 1996.
DOI : 10.1093/brain/119.3.741

A. Starr, H. Michalewski, F. Zeng, S. Fujikawa-brooks, F. Linthicum et al., Pathology and physiology of auditory neuropathy with a novel mutation in the MPZ gene (Tyr145->Ser), Brain, vol.126, issue.7, pp.1604-1619, 2003.
DOI : 10.1093/brain/awg156

A. Starr, B. Isaacson, H. Michalewski, F. Zeng, Y. Kong et al., A Dominantly Inherited Progressive Deafness Affecting Distal Auditory Nerve and Hair Cells, Journal of the Association for Research in Otolaryngology, vol.111, issue.1 Suppl, pp.411-426, 2004.
DOI : 10.1007/s10162-004-5014-5

P. Steyger, D. Furness, C. Hackney, and G. Richardson, Tubulin and microtubules in cochlear hair cells: Comparative immunocytochemistry and ultrastructure, Hearing Research, vol.42, issue.1, pp.1-16, 1989.
DOI : 10.1016/0378-5955(89)90113-5

S. Stritt, A gain-of-function variant in DIAPH1 causes dominant macrothrombocytopenia and hearing loss, Blood, vol.127, issue.23, pp.2903-2914, 2016.
DOI : 10.1182/blood-2015-10-675629

K. Szarama, N. Gavara, R. Petralia, M. Kelley, and R. Chadwick, Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea, Development, vol.139, issue.12, pp.2187-2197, 2012.
DOI : 10.1242/dev.073734

T. Takasaka, H. Shinkawa, S. Hashimoto, K. Watanuki, and K. Kawamoto, High-Voltage Electron Microscopic Study of the Inner Ear: Technique and Preliminary Results, Annals of Otology, Rhinology & Laryngology, vol.5, issue.1_suppl, pp.1-12, 1983.
DOI : 10.1016/S0022-5320(61)80025-7

R. Taylor, A. Bullen, S. Johnson, E. Grimm-gunter, F. Rivero et al., Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice, Human Molecular Genetics, vol.24, issue.1, pp.37-49, 2015.
DOI : 10.1093/hmg/ddu417

L. Tilney, D. Derosier, and M. Mulroy, The organization of actin filaments in the stereocilia of cochlear hair cells, The Journal of Cell Biology, vol.86, issue.1, pp.244-259, 1980.
DOI : 10.1083/jcb.86.1.244

L. Tilney, M. Tilney, and D. Derosier, Actin Filaments, Stereocilia, and Hair Cells: How Cells Count and Measure, Annual Review of Cell Biology, vol.8, issue.1, pp.257-274, 1992.
DOI : 10.1146/annurev.cb.08.110192.001353

L. Tilney, E. Egelman, D. Derosier, and J. Saunder, Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent, The Journal of Cell Biology, vol.96, issue.3, pp.822-834, 1983.
DOI : 10.1083/jcb.96.3.822

T. Ueyama, Y. Ninoyu, S. Nishio, T. Miyoshi, H. Torii et al., Constitutive activation of DIA1 (DIAPH1) via C???terminal truncation causes human sensorineural hearing loss, EMBO Molecular Medicine, vol.8, issue.11, 2016.
DOI : 10.15252/emmm.201606609

J. Valat, C. Griguer, J. Lehouelleur, and A. Sans, Motile responses of isolated guinea pig vestibular hair cells, Neuroscience Letters, vol.127, issue.2, pp.231-236, 1991.
DOI : 10.1016/0304-3940(91)90801-Y

R. Varga, M. Avenarius, P. Kelley, B. Keats, C. Berlin et al., OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele, Journal of Medical Genetics, vol.43, issue.7, pp.576-581, 2006.
DOI : 10.1136/jmg.2005.038612

W. Verhagen, P. Huygen, A. Gabreels-festen, M. Engelhart, P. Van-mierlo et al., Sensorineural Hearing Impairment in Patients with Pmp22 Duplication, Deletion, and Frameshift Mutations, Otology & Neurotology, vol.26, issue.3, pp.405-414, 2005.
DOI : 10.1097/01.mao.0000169769.93173.df

F. Vranceanu, G. Perkins, M. Terada, R. Chidavaenzi, M. Ellisman et al., Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction, Proceedings of the National Academy of Sciences, vol.31, issue.27, pp.4473-4478, 2012.
DOI : 10.1523/JNEUROSCI.0521-11.2011

B. Wallar and A. Alberts, The formins: active scaffolds that remodel the cytoskeleton, Trends in Cell Biology, vol.13, issue.8, pp.435-446, 2003.
DOI : 10.1016/S0962-8924(03)00153-3

B. Wallar, A. Deward, J. Resau, and A. Alberts, RhoB and the mammalian Diaphanous-related formin mDia2 in endosome trafficking, Experimental Cell Research, vol.313, issue.3, pp.560-571, 2007.
DOI : 10.1016/j.yexcr.2006.10.033

Q. Wang, R. Gu, D. Han, and Y. W. , Familial Auditory Neuropathy, The Laryngoscope, vol.21, issue.9, pp.1623-1629, 2003.
DOI : 10.1097/00005537-200309000-00041

URL : https://hal.archives-ouvertes.fr/pasteur-00649415

Q. Wang, Q. Li, S. Rao, K. Lee, X. Huang et al., AUNX1, a novel locus responsible for X linked recessive auditory and peripheral neuropathy, maps to Xq23-27.3, Journal of Medical Genetics, vol.43, issue.7, p.33, 2006.
DOI : 10.1136/jmg.2005.037929

D. Weil, S. Blanchard, J. Kaplan, P. Guilford, F. Gibson et al., Defective myosin VIIA gene responsible for Usher syndrome type IB, Nature, vol.374, issue.6517, pp.60-61, 1995.
DOI : 10.1038/374060a0

Y. Wen, C. Eng, J. Schmoranzer, N. Cabrera-poch, E. Morris et al., EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nature Cell Biology, vol.114, issue.9, pp.820-830, 2004.
DOI : 10.1016/S1046-2023(02)00023-3

S. Yasunaga, M. Grati, M. Cohen-salmon, A. El-amraoui, M. Mustapha et al., A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness, Nat Genet, vol.21, pp.363-369, 1999.

P. Yu-wai-man, Multi-system neurological disease is common in patients with OPA1 mutations, Brain, vol.133, issue.3, pp.771-786, 2010.
DOI : 10.1093/brain/awq007

D. Zenisek, V. Davila, L. Wan, and W. Almers, Imaging calcium entry sites and ribbon structures in two presynaptic cells, J Neurosci, vol.23, pp.2538-2548, 2003.

D. Zhang, V. Piazza, B. Perrin, A. Rzadzinska, J. Poczatek et al., Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia, Nature, vol.28, issue.7382, pp.520-524, 2012.
DOI : 10.1128/MCB.01282-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267870

Y. Zhao, E. Yamoah, and P. Gillespie, Regeneration of broken tip links and restoration of mechanical transduction in hair cells, Proceedings of the National Academy of Sciences, vol.65, issue.5, pp.15469-15474, 1996.
DOI : 10.1121/1.382791

J. Zheng, W. Shen, D. He, K. Long, L. Madison et al., Prestin is the motor protein of cochlear outer hair cells, Nature, vol.405, issue.6783, pp.149-155, 2000.
DOI : 10.1038/35012009

L. Zong, Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder, Journal of Medical Genetics, vol.33, issue.Suppl 21, pp.523-531, 2015.
DOI : 10.1097/AUD.0b013e3182263460

URL : http://jmg.bmj.com/content/jmedgenet/52/8/523.full.pdf

F. Bartolini and G. Gundersen, Formins and microtubules, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1803, issue.2, pp.164-173, 2010.
DOI : 10.1016/j.bbamcr.2009.07.006

URL : http://doi.org/10.1016/j.bbamcr.2009.07.006

F. Bartolini, J. Moseley, J. Schmoranzer, L. Cassimeris, B. Goode et al., The formin mDia2 stabilizes microtubules independently of its actin nucleation activity, The Journal of Cell Biology, vol.4, issue.3, pp.523-536, 2008.
DOI : 10.1038/nature02452

M. Beurg, R. Fettiplace, J. Nam, and A. Ricci, Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging, Nature Neuroscience, vol.18, issue.5, pp.553-558, 2009.
DOI : 10.1016/S0006-3495(96)79429-8

R. Bobbin, M. Fallon, and S. Kujawa, Magnitude of the negative summating potential varies with perilymph calcium levels, Hearing Research, vol.56, issue.1-2, pp.101-110, 1991.
DOI : 10.1016/0378-5955(91)90159-7

R. Bobbin, P. Jastreboff, M. Fallon, and T. Littman, Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea, Hearing Research, vol.46, issue.3, pp.277-287, 1990.
DOI : 10.1016/0378-5955(90)90009-E

D. Corey and A. Hudspeth, Analysis of the microphonic potential of the bullfrog's sacculus, J Neurosci, vol.3, pp.942-961, 1983.

D. Derosier and L. Tilney, The structure of the cuticular plate, an in vivo actin gel, The Journal of Cell Biology, vol.109, issue.6, pp.2853-2867, 1989.
DOI : 10.1083/jcb.109.6.2853

A. Deward and A. Alberts, Ubiquitin-mediated Degradation of the Formin mDia2 upon Completion of Cell Division, Journal of Biological Chemistry, vol.7, issue.30, pp.20061-20069, 2009.
DOI : 10.1091/mbc.7.9.1343

D. Drenckhahn, K. Engel, D. Höfer, C. Merte, L. Tilney et al., Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein, The Journal of Cell Biology, vol.112, issue.4, pp.641-651, 1991.
DOI : 10.1083/jcb.112.4.641

M. Drummond, M. Barzik, J. Bird, D. Zhang, C. Lechene et al., Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear, Nature Communications, vol.5, p.6873, 2015.
DOI : 10.1186/jbiol42

A. Ercan-sencicek, Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans, European Journal of Human Genetics, vol.195, issue.2, pp.165-172, 2015.
DOI : 10.1083/jcb.200805107

M. Evangelista, S. Zigmond, and C. Boone, Formins: signaling effectors for assembly and polarization of actin filaments, Journal of Cell Science, vol.116, issue.13, pp.2603-2611, 2003.
DOI : 10.1242/jcs.00611

H. Farris, G. Wells, and A. Ricci, Steady-State Adaptation of Mechanotransduction Modulates the Resting Potential of Auditory Hair Cells, Providing an Assay for Endolymph [Ca2+], Journal of Neuroscience, vol.26, issue.48, 2006.
DOI : 10.1523/JNEUROSCI.3569-06.2006

R. Fettiplace and K. Kim, The Physiology of Mechanoelectrical Transduction Channels in Hearing, Physiological Reviews, vol.94, issue.3, pp.951-986, 2014.
DOI : 10.1152/physrev.00038.2013

A. Flock and H. Cheung, Actin filaments in sensory hairs of inner ear receptor cells, The Journal of Cell Biology, vol.75, issue.2, pp.339-343, 1977.
DOI : 10.1083/jcb.75.2.339

P. Fuchs, E. Glowatzki, and T. Moser, The afferent synapse of cochlear hair cells, Current Opinion in Neurobiology, vol.13, issue.4, pp.452-458, 2003.
DOI : 10.1016/S0959-4388(03)00098-9

D. Furness, C. Hackney, and P. Steyger, Organization of microtubules in cochlear hair cells, Journal of Electron Microscopy Technique, vol.18, issue.3, pp.261-279, 1990.
DOI : 10.1111/j.1550-7408.1984.tb04280.x

D. Furness, Y. Katori, S. Mahendrasingam, and C. Hackney, Differential distribution of ??- and ??-actin in guinea-pig cochlear sensory and supporting cells, Hearing Research, vol.207, issue.1-2, pp.22-34, 2005.
DOI : 10.1016/j.heares.2005.05.006

D. Furness, S. Mahendrasingam, M. Ohashi, R. Fettiplace, and C. Hackney, The Dimensions and Composition of Stereociliary Rootlets in Mammalian Cochlear Hair Cells: Comparison between High- and Low-Frequency Cells and Evidence for a Connection to the Lateral Membrane, Journal of Neuroscience, vol.28, issue.25, pp.6342-6353, 2008.
DOI : 10.1523/JNEUROSCI.1154-08.2008

B. Goode and M. Eck, Mechanism and Function of Formins in the Control of Actin Assembly, Annual Review of Biochemistry, vol.76, issue.1, pp.593-627, 2007.
DOI : 10.1146/annurev.biochem.75.103004.142647

C. Greene, P. Mcmillan, S. Barker, P. Kurnool, M. Lomax et al., DFNA25, a Novel Locus for Dominant Nonsyndromic Hereditary Hearing Impairment, Maps to 12q21-24, The American Journal of Human Genetics, vol.68, issue.1, pp.254-260, 2001.
DOI : 10.1086/316925

H. Higgs, Formin proteins: a domain-based approach, Trends in Biochemical Sciences, vol.30, issue.6, pp.342-353, 2005.
DOI : 10.1016/j.tibs.2005.04.014

T. Ishizaki, Y. Morishima, M. Okamoto, T. Furuyashiki, T. Kato et al., Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1, Nat Cell Biol, vol.3, pp.8-14, 2001.

H. Jensen-smith, J. Eley, P. Steyger, R. Ludueña, and R. Hallworth, Cell type-specific reduction of ?? tubulin isotypes synthesized in the developing gerbil organ of Corti, Journal of Neurocytology, vol.32, issue.2, pp.185-197, 2003.
DOI : 10.1023/B:NEUR.0000005602.18713.02

S. Johnson, M. Beurg, W. Marcotti, and R. Fettiplace, Prestin-Driven Cochlear Amplification Is Not Limited by the Outer Hair Cell Membrane Time Constant, Neuron, vol.70, issue.6, pp.1143-1154, 2011.
DOI : 10.1016/j.neuron.2011.04.024

T. Kim, B. Isaacson, T. Sivakumaran, A. Starr, B. Keats et al., A gene responsible for autosomal dominant auditory neuropathy (AUNA1) maps to 13q14-21, Journal of Medical Genetics, vol.41, issue.11, pp.872-876, 2004.
DOI : 10.1136/jmg.2004.020628

S. Kitajiri, T. Sakamoto, I. Belyantseva, R. Goodyear, R. Stepanyan et al., Actin-Bundling Protein TRIOBP Forms Resilient Rootlets of Hair Cell Stereocilia Essential for Hearing, Cell, vol.141, issue.5, pp.786-798, 2010.
DOI : 10.1016/j.cell.2010.03.049

D. Kovar, Molecular details of formin-mediated actin assembly, Current Opinion in Cell Biology, vol.18, issue.1, pp.11-17, 2006.
DOI : 10.1016/j.ceb.2005.12.011

J. Krey, N. Sherman, E. Jeffery, D. Choi, and P. Barr-gillespie, The proteome of mouse vestibular hair bundles over development, Scientific Data, vol.17, p.150047, 2015.
DOI : 10.1242/dev.067074

C. Kros and A. Crawford, Potassium currents in inner hair cells isolated from the guinea-pig cochlea., The Journal of Physiology, vol.421, issue.1, pp.263-291, 1990.
DOI : 10.1113/jphysiol.1990.sp017944

M. Liberman, Chronic ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates, Hearing Research, vol.26, issue.1, pp.65-88, 1987.
DOI : 10.1016/0378-5955(87)90036-0

W. Marcotti, S. Johnson, M. Holley, and C. Kros, Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells, The Journal of Physiology, vol.548, issue.2, pp.383-400, 2003.
DOI : 10.1113/jphysiol.2002.034801

T. Moser and A. Starr, Auditory neuropathy ??? neural and synaptic mechanisms, Nature Reviews Neurology, vol.20, issue.3, 2016.
DOI : 10.1016/j.ajhg.2008.07.008

R. Nouvian, Temperature enhances exocytosis efficiency at the mouse inner hair cell ribbon synapse, The Journal of Physiology, vol.5, issue.2, pp.535-542, 2007.
DOI : 10.1007/s10162-004-4051-4

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277147

D. Oliver, M. Knipper, C. Derst, and B. Fakler, Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels, J Neurosci, vol.23, pp.2141-2149, 2003.

A. Palazzo, T. Cook, A. Alberts, and G. Gundersen, ) mDia mediates Rho-regulated formation and orientation of stable microtubules, Nature Cell Biology, vol.3, issue.8, pp.723-729, 2001.
DOI : 10.1038/35087035

D. Pruyne, M. Evangelista, C. Yang, E. Bi, S. Zigmond et al., Role of Formins in Actin Assembly: Nucleation and Barbed-End Association, Science, vol.297, issue.5581, pp.612-615, 2002.
DOI : 10.1126/science.1072309

G. Rance and A. Starr, Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy, Brain, vol.138, issue.11, pp.3141-3158, 2015.
DOI : 10.1093/brain/awv270

M. Schneider, I. Belyantseva, R. Azevedo, and B. Kachar, Structural cell biology: Rapid renewal of auditory hair bundles, Nature, vol.21, issue.6900, pp.837-838, 2002.
DOI : 10.1016/0006-8993(96)00147-3

C. Schoen, M. Burmeister, and M. Lesperance, Diaphanous homolog 3 (Diap3) Overexpression Causes Progressive Hearing Loss and Inner Hair Cell Defects in a Transgenic Mouse Model of Human Deafness, PLoS ONE, vol.5, issue.2, p.56520, 2013.
DOI : 10.1371/journal.pone.0056520.s004

C. Schoen, S. Emery, M. Thorne, H. Ammana, E. Sliwerska et al., Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila, Proceedings of the National Academy of Sciences, vol.249, issue.5, pp.13396-13401, 2010.
DOI : 10.1006/jmbi.1995.0349

N. Slepecky and S. Chamberlain, Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells, Hearing Research, vol.20, issue.3, pp.245-260, 1985.
DOI : 10.1016/0378-5955(85)90029-2

A. Starr, B. Isaacson, H. Michalewski, F. Zeng, Y. Kong et al., A Dominantly Inherited Progressive Deafness Affecting Distal Auditory Nerve and Hair Cells, Journal of the Association for Research in Otolaryngology, vol.111, issue.1 Suppl, pp.411-426, 2004.
DOI : 10.1007/s10162-004-5014-5

A. Starr, T. Picton, Y. Sininger, L. Hood, and C. Berlin, Auditory neuropathy, Brain, vol.119, issue.3, pp.741-753, 1996.
DOI : 10.1093/brain/119.3.741

P. Steyger, D. Furness, C. Hackney, and G. Richardson, Tubulin and microtubules in cochlear hair cells: Comparative immunocytochemistry and ultrastructure, Hearing Research, vol.42, issue.1, pp.1-16, 1989.
DOI : 10.1016/0378-5955(89)90113-5

F. Vranceanu, G. Perkins, M. Terada, R. Chidavaenzi, M. Ellisman et al., Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction, Proceedings of the National Academy of Sciences, vol.31, issue.27, pp.4473-4478, 2012.
DOI : 10.1523/JNEUROSCI.0521-11.2011

B. Wallar and A. Alberts, The formins: active scaffolds that remodel the cytoskeleton, Trends in Cell Biology, vol.13, issue.8, pp.435-446, 2003.
DOI : 10.1016/S0962-8924(03)00153-3

Y. Wen, C. Eng, J. Schmoranzer, N. Cabrera-poch, E. Morris et al., EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration, Nature Cell Biology, vol.114, issue.9, pp.820-830, 2004.
DOI : 10.1016/S1046-2023(02)00023-3

D. Zhang, V. Piazza, B. Perrin, A. Rzadzinska, J. Poczatek et al., Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia, Nature, vol.28, issue.7382, 2012.
DOI : 10.1128/MCB.01282-07