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Chapter 1

Introduction

It is now reasonable to state that scalability of concurrent systems is much more achiev-
able, both theoretically and technically, in the absence of shared state. First it allows one
to reason about the sequential behavior of each node independently of the others and the
global architecture. Second it guarantees race-free execution, thus avoiding need for synchro-
nization. In these systems, the state isolation property must be enforced by the inter-node
communication mechanism so that no piece of data may be simultaneously accessed by more
than one node, which would otherwise result in inconsistent observations and updates of the
same data by several nodes.

Message-passing has been widely adopted as the main communication scheme in concur-
rent systems. The exchanged data are copied from one node’s memory region to another’s.
Since messages are replicated in the receiver’s private state, each node of the system reads
and updates its own copy of the data, thus isolation is trivially preserved. Ideally, copy
operations are transparent whether memories are physically disjoint or not. To obtain the
best performance, it is preferable to pass a message in a zero-copy fashion when the commu-
nication takes place in the same shared memory. However, in order to preserve the isolation
property and avoid data race with the receiver, the sender node must never access the content
of that message again.

In this thesis we study isolation and message-passing in the context of concurrent object-
oriented programming. Messages are aggregates of objects living in a shared heap and passed
by reference for the hereinbefore reasons. Object-oriented languages allows arbitrary objects
aliasing, a beneficial feature for developers, raising serious difficulties to avoid data races
when mixed with reference passing. The challenge accepted by all the previous works on that
aspect consists in making sure a node cannot find or use any access path to the aggregate
of objects after passing it to another node. Symmetrically when a node receives a message
it must be the sole allowed accessor so that no other node may spy or alter the aggregate
concurrently.

Several variations of ownership and reference uniqueness have been extensively employed
in the past to control aliasing in object-oriented programming languages, and more recently
to address concurrency. Strikingly the vast majority rely on a set of statically checkable
typing rules, either requiring an annotation overhead or introducing object aliasing restric-
tions. Our contribution with Siaam is the demonstration of a purely run-time, actor-based,
annotation-free, aliasing-proof approach to concurrent state isolation allowing reference pass-
ing of arbitrary objects graphs. Even though we claim its extreme simplicity, Siaam is not a
paradigm shifter, its modus operandi may also be understood in traditional terms of owner-
ship and uniqueness, but in a rather dynamic way. Unlike statically-checked approaches that
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10 CHAPTER 1. INTRODUCTION

prevent isolation violation mostly or completely ahead of time in a conservative way, Siaam
thwarts violation attempts just-in-time as the nodes access or communicate objects. By being
optimistic and simple, Siaam trades annotation burden and aliasing constraints with runtime
overhead. Nevertheless, we hope this tradeoff will facilitate a progressive adoption of all the
available forms of isolation.

Our dynamic approach can cooperate with traditional static aliasing control for mutual
benefits. Regarding runtime performance, Siaam would benefit from certain aliasing in-
variants enforced by static annotations. On the other hand, annotated portions of programs
would be able to safely interoperate with unannotated or untrusted portions by letting Siaam
dynamically enforce or verify some expected invariants at the sensible interfaces.

Furthermore, since our formal model of isolation accommodates an abstract concurrent
object-oriented machine, it is possible to extend available virtual machines such as a JVM
(for Java), a CLR (for .NET) or the VMKit[47] with only minimal modifications to obtain
the isolation guarantees offered by Siaam. We also see potential applications to sandboxing,
allowing for instance to run critical and untrusted programs in a unique Android virtual
machine. Finally, several languages and frameworks have recently emerged and provides
concurrency exclusively through message passing; some provide race-freedom (Dart) and
some other allow zero-copy (Go, Akka), but none is able to guarantee both. The ideas
developed in Siaam fits well in these projects and could be used to transparently enforce the
missing property.

1.1 Informal overview

Siaam is the acronym for simple isolation for an actor-based abstract machine, to em-
phasis the simplicity of our approach. Siaam encompass three components. First it is a
formal specification of an actor-based concurrent programming model for an abstract object-
oriented system and a definition of the isolation property that comes with it. Second, Siaam
is an implementation of this specification for the Java language in the Jikes Research Virtual
Machine. Third, it is a static analysis capturing the dynamic nature of Siaam with two objec-
tives: limit the runtime overhead of the modified virtual machine and assist the application
developers by pinpointing and explaining potential violations of the isolation property.

1.1.1 The actor model

The actor model [56, 38, 2] is a model of concurrent programming that emphasize on exe-
cution efficiency and expressiveness. Both objectives relates to scalability, the former in term
of performance and the latter in term of program understanding and behavior correctness.
Unlike an operating system where concurrent processes are very independent and carries out
computation without interacting with each others, an actor system is meant to allow large
number of actors to cooperate.

In the vocabulary used by Gul A. Agha[2], actors sends communications to each others
through a buffered mail system. Actors are sequential units of computation with a dynamic
behavior which for each incoming communication may undertake the following actions (i) send
communications to other actors, (ii) create new actors, (iii) compute a replacement behav-
ior to respond to the next communications received. A behavior may be history sensitive
meaning it contains stateful information that will influence the next response to an incoming
communication. The information an actor maintains and updates through consecutive behav-
iors is called its local state. Communications have asynchronous message-passing semantics,
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in [2] the mail system have a guarantee of delivery so that all sent messages are eventually
received, but no particular reception ordering is enforced. Other systems may chose different
semantics.

The actor model banishes any form of mutable shared state, data communicated through
message passing is usually copied from the sender to the receiver. This is the strategy adopted
by the Erlang[7] language. As a result, the local state of an actor cannot be read nor updated
by another actor, we may call that the strong isolation property.

1.1.2 Siaam’s actor model

In this thesis, we integrate the actor-based concurrency into an object-oriented envi-
ronment with a single shared heap. The provided message passing communications have a
zero-copy semantics, meaning that messages are not copied, only their references are com-
municated. As a result, after a communication, both the sender and the receiver possess
references to the objects contained in the message. In order to make sure that actors cannot
read or modify the same objects concurrently, each actor is attributed a unique colour and
may only access objects with a matching color. An object is initially coloured with the colour
of the actor that created it. Then, objects are recoloured through communications so that
they match the receiver’s colour.

Ownership. In Siaam’s terminology, we say an object belongs to an actor if the former
matches the unique colour attributed to the actor. Conversely the actor owns every object
with a matching colour. Objects with a common owner form an ownership domain or owner-
ship context. Ownership domains are never nested, therefore Siaam’s ownership topology is
very flat. The action of recoloring an object is called ownership transfer, and the verification
that an object colour matches an actor’s unique colour is called owner checking. There is ab-
solutely no restriction on the references between objects, in particular objects with different
owners may reference each-others. An actor may read the field of an object with a matching
colour and retrieve the reference to another object that it may or may not own. But accessing
a field of the retrieved object is forbidden, it raises a runtime exception.

We illustrate these notions in Figure 1.1. On the left side (a) is a configuration of the
heap and the ownership relation where each actor presented in gray owns the objects that
are part of the same dotted convex hull representing the ownership domain. Directed edges
are heap references. On the right side (b), the objects 1, 2, 3 have been transferred from the
ownership domain of a to b’s context, and object 1 has been attached to the data structure
maintained in b’s local state. The reference from a to 1 has been preserved, but actor a is
not allowed to access the fields of 1, 2, 3: owner-checking one of these objects against a would
fail.

Strong isolation property. Although many works make reference to the concept of mem-
ory isolation, very few have actually given a clear and formal definition of it. We now express
how we consider strong isolation in Siaam.

In Siaam the only means of information transfer between actors is message exchange. A
strongly isolated actor that makes all kind of actions but message receptions cannot observe
unexpected updates of the objects’ fields it is allowed to reach and access. By unexpected we
mean field updates that are not immediate side-effects of the considered actor.
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a
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Figure 1.1: (a) Three ownership domains with their respective actor in gray. (b) The config-
uration after the ownership of objects 1, 2, 3 was transferred from actor a to actor b.

Mail system. Each actor may have zero, one, or several mailboxes from which it can retrieve
messages at will. Mailboxes are created dynamically and may be communicated without
restriction. Any actor of the system may send messages through a mailbox. However each
mailbox is associated with a receiver actor, such that only the receiver may retrieve messages
from a mailbox. More detailed information on the mailboxes are deferred to the mailboxes
paragraph.

Actors. The local state of each actor is represented by an object, and the associated be-
haviour is a method of that object. The behaviour method is free to implement any algorithm,
the actor terminates when that method returns. Here we clearly deviate from the definition
of an actor given in 1.1.1, where actors “react” to received communications. Siaam’s actor
are more active in the sense that they can arbitrarily chose when to receive a message, and
from what mailbox.
Although it is possible to replicate Agha’s actor model with the Siaam actor model (and
conversely) by simply fixing a unique mailbox for each Siaam’s actor with an infinite loop
behaviour processing incoming messages one by one.

Ownership transfer. The ownership transfer procedure, previously described as a colour-
ing operation, happens in two situations; first when a message is communicated from one
actor to another, and second when a new actor is started. A message is a graph of objects
where all the objects have the same colour — or owner. An actor is not allowed to send
a message containing objects it does not own. Moreover an actor is not allowed to send
itself. The content of a message is defined as the set of objects in the transitive closure of
a starting reference which may be any arbitrary object. Given the reference to an object,
a message from that starting reference comprises all the objects reachable by traversing the
heap through objects’ fields.

Figures 1.2 to 1.4 features some examples of valid and invalid message starting objects.
In configuration (a) all the objects but the actor 0 may be employed as the starting object
for a valid message. The transitive closure of 1 contains the objects {1, . . . , 6}. Objects 2 to
5 have the same closure made of {2, . . . , 6}. And sending object 6 would only transfer the
ownership of that object.
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0 1 2 3 4 5 6

Figure 1.2: (a) Valid message starting objects are 1, 2, 3, 4, 5, 6.

In configuration (b) no object may be used as a starting reference for a valid message
since the actor 0 is transitively reachable from every object.

0 1 2 3

Figure 1.3: (b) No valid message starting objects.

In configuration (c) object 5 reaches the foreign object 3 which is not in the same ownership
domain as 5. Therefore actor 4 cannot transfer the ownership of the message starting from
5. All the others non-actor objects are valid message starting objects.

0 1 2 3 4567

Figure 1.4: (c) Valid message starting objects are 1, 2, 3, 6, 7.

Message passing. To pass a message, an actor simply enqueues a valid message’s starting
reference into a mailbox. The enqueue operation has the side-effect of erasing the ownership
of every object that is part of the message. This erasing can be seen as colouring all the
objects in black and ensuring no actor is ever assigned the black colour. This way objects in
pending messages are protected against any attempt to read or update their fields, from any
actor. Note that the message passing procedure preserves all the references between objects,
whether they are inside or outside of the message. However, since a valid message is by
definition the transitive closure of its starting reference, there can be no reference from the
inside to the outside of a message. In the colour metaphor, black objects only refer to other
black objects of the same message.
Figure 1.5 features examples of allowed and impossible references. Objects 1, 2, 3, 4 are “black
coloured”, they are outside any actor’s domain, we represent this with the black border
surrounding these nodes. Let 1 and 3 be the starting objects of two different messages
enqueued in potentially different mailboxes. We represented some impossible heap edges
with crossed gray arrows. Object 3 cannot hold a reference to 1 since they are not part of
the same message, indeed the automatic message validation process does not allow references
between different messages. Object 2 cannot refer to actor b nor any object outside of its own
message. The message passing mechanisms of Siaam simply prevents these situations from
happening by applying the message validation rules.
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1 2

3 4

◊
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Figure 1.5: Allowed and impossible heap edges. Graphs {1, 2} and {3, 4} are two different
messages.

m

(a) Before transfer.

m

(b) After transfer, first
alternative.

m

(c) After transfer, second
alternative.

Figure 1.6: Illustration of the ownership transfer with two alternative definitions of “a valid
message”.

When a message is dequeued from a mailbox, its entire graph of objects is recoloured
with the receiver’s colour, so that the objects that are part of the message are integrated into
the actor’s ownership domain. It is worth noticing that both the emission and the reception
are explicit operations undertaken by the actors. No object may enter nor exit an actor’s
ownership domain without the direct involvement of that actor.

We draw the reader’s attention to the fact that the definition of a valid message is an
arbitrary choice which could be exchanged. An alternative would, for instance, transfers the
ownership of the transitive closure of objects belonging to the sender actor and simply cut
the graph exploration when reaching a foreign object or even the sender. This way objects
inside a message would possibly refer to objects outside the message.
This alternative is illustrated in figure 1.6. Object m is a valid message starting in config-
uration (a), as a matter of fact any non-actor object would be valid. In configuration (b),
m has been used as a message starting object and enqueued in a mailbox. As a side-effect
all the non-actor objects reachable from m without going through a foreign object have been
transferred out of their initial ownership domain.
Another alternative would, in addition, nullify the references from objects inside the message
to objects outside of the message, as illustrated in (c).

Mailboxes. We now introduce the mailboxes in the big picture. Conceptually, a mailbox is
a name associated with a message queue and a receiver actor. In our object-oriented environ-
ment, that name is the reference to a mailbox object, but the message queue and the receiver
information associated with it are part of the mail system, outside the object representation.
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In other words, there is no heap edge going out of a mailbox object. Furthermore, mailbox
objects are outside every ownership domain.

An example of mail system is illustrated in Figure 1.7, it is a snapshot of a producer-
consumers system took at an arbitrary moment. We represent mailbox objects with double
circles nodes. In the example, p is a producer and ci actors are consumers. Actor p receives
orders through the mailbox M from which it can retrieve messages. The producer maintains
a linked list of consumers’s mailboxes, to which it distributes data in a round-robin fashion.
The mail system, described in the right part of the figure, contains 3-tuples ÈM, q, aÍ of a
mailbox object reference M , a message queue q and an actor object reference a — the re-
ceiver. M ’s queue contains the two messages starting respectively with objets 1 and 2, M ’s
receiver is set to p. Each consumer has a mailbox from which it can receive data to process,
and also holds a reference to the producer’s mailbox in order to issue special requests. A
special request is a message containing a reference to the mailbox of the consumer; messages
1 and 2 are special requests issued respectively by c0 and c1. Messages 3, 4 are pending in
c0’s mailbox, c1 already consumed all the messages sent to it.

p M

N

O

P

c0

c1

c2

1

2

3

4

5

mail system =

ÈM, [1, 2], pÍ

ÈN, [3, 4], c0Í

ÈO, [], c1Í

ÈP, [5], c2Í

Figure 1.7: Snapshot of a producer-consumers system.

In order to create a new mailbox, an actor must first allocate a fresh mailbox object.
The allocation is immediately taken into account in the mail system, by creating a new en-
try for the mailbox, where the message queue is empty and more importantly, the receiver’s
name is initially undefined: ÈM, [], •Í, but messages may already be enqueued. The fresh
mailbox object initially belongs to the actor that created it. Therefore it is subject to the
same ownership transfer rules as other regular objects. We say the mailbox is not initialized
until its receiver is set. The only actor that may initialize a mailbox is its current owner, the
initialization operation fixes the receiver (which may be different from the actor initializing
the mailbox) and erases the ownership of the mailbox object. We give a complete example
of mailbox initialization at the end of the next paragraph.

We conclude this paragraph with an updated definition of a valid message: if an object
o is a valid starting message object without taking references to initialized mailboxes into
account, then o is also a valid starting message object taking these references into account.

Actor creation and activation. The actor creation process is similar to the mailbox cre-
ation process, initially an actor is a single object owned by its creator. The creator is in
charge of crafting the initial state of the new actor out of the actor object. For instance, a
mailbox can be attached to the new actor object so that it may communicate with the rest of
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1.2 Contributions

A formal model of dynamic ownership-based isolation

— Specify a simple actor programming model.

— Extends Jinja, a Java-like machine-checked semantics.

— A proof of the isolation property verified with Coq.

A modified Java Virtual Machine

— Based on the JikesRVM.

— Provides low-level ownership machinery.

— Provides trusted APIs guaranteeing isolation.

A static analysis

— Significantly decreases the runtime overhead.

— Can provide programmer assistance.

— Implemented in Java using the Soot framework.

1.2.1 Contributions to the Open-Source communities

In this thesis, I used and modified the JikesRVM and the Soot framework. Those software
benefit from an excellent code material and some extremely qualified and devoted community
members. From time to time, I had a question that I couldn’t answer and there were always
someone to give me good advices. Less often, I found a bug that was important enough for
me to dig in and fix. Thus I invited myself in these two communities, most importantly in the
Soot’s one though. Both software are still evolving and I’ve been happy to add my modest
contributions.

1.3 Organization of this document

This document is organized around the threefold contribution. The current state of the
art is presented in Chapter 2. In Chapter 3 we develop the formal specification and give
an outline of the machine-checked proof of isolation. The fourth chapter details the actual
implementation of the virtual machine. Chapter 5 documents the static analysis, we show two
usages of the results and discuss the implementation in JikesRVM and Soot. The evaluation
of the virtual machine and the static analysis is deferred to Chapter 6. In the last chapter
we expose some future works perspectives along with our conclusions.
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Chapter 2

State of the Art
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2.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Isolation in scalable concurrent systems

A concurrent system is an environment where several units perform sequential compu-
tations in parallel. Whether units work on disjoint data sets or not is a design choice with
far-reaching implications. A pertinent metric is the potential scalability of a concurrent sys-
tem. Scalability measures the propensity of a system to maintain a given property as it
grows of an arbitrary order of magnitude. The computational performance of a system scales
if it is able to deliver near-linear acceleration as the number of processing units increase.
Another concern is the complexity to reason about large concurrent systems. If one need to
prove an invariant, then the required proof should be reasonably tractable regardless of the
architectural complexity of the system.

Sharing the data has been the dominant model since threads and fine-grained locks were
introduced with the advent of shared-memory multiprocessor computers, but it is now con-
sidered too error-prone and unscalable[67]. In this thesis we study the case when every units
can only access its own private state in a share-nothing fashion. The isolation property guar-
antees that a unit cannot access or corrupt the state of another unit. That approach has the
following benefits. First, since units don’t interfere with each others, each can be designed
and reasoned about independently. Second, no costly and error-prone synchronization is re-
quired to access data, which avoid an important bottleneck. Thus it offers a greater potential
of architectural design and scalability.

But share-nothing concurrency have very limited interest unless isolated units can commu-
nicate. Message-passing is a very well adapted communication pattern that is widely imple-
mented in modern concurrent systems. The concurrent units can only exchange data through
explicit messages that are copied from a unit’s memory region to another’s. Message-passing
is practical because it accommodates any memory hierarchy, once the data is marshaled at
the emitter’s location, it can be transmitted over arbitrary distances and supports to the
receiver’s location. Since messages are replicated in the receiver’s private state, each unit of
the system reads and updates its own copy of the data, thus isolation is trivially preserved.

19
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On a theoretical point-of-view, that scheme is entirely satisfiable.
Competing against traditional threaded programs for performances demands a less naive

solution. Indeed, if we focus on concurrent units accessing a shared memory, the message-
passing duplication cost is clearly disadvantaging the share-nothing approach. To overcome
this cost, communication mechanisms must leverage the availability of a shared memory to
pass messages without copying them. This is easily realizable at first sight, it suffices that
concurrent units communicate by exchanging memory pointers, very much like a threaded
program would proceed. However it becomes challenging to enforce the isolation property
once arbitrary memory references can be exchanged because one must ensure that after a
communication between a sender and a receiver, the sender won’t access the piece of data
reachable from the transferred pointer.

We identify three streams of runtime systems with respect to the isolation property. The
first, ownership-based isolation is mostly based on external uniqueness, a mix of reference
uniqueness and ownership. The second stream is specific to the Java language, it has a notion
of classloader isolation which guarantees isolation between objects of classes loaded from
different classloaders[34]. The third stream guarantees strong isolation between software-
based processes at the cost of deep-copy communications.

2.1.1 Ownership-based isolation

Uniqueness and ownership

Techniques of safe parallelism have been developed to prevent unintended side-effects
between threads sharing data. They are directly inspired by techniques that were initially
addressing side-effects control and encapsulation in sequential programs. In this section we
first describe the first works on uniqueness and ownership. Then we show how these two
concepts are reused for concurrent programming and isolation.

Minsky[79] balances the blessings of sharing objects with its hazards. The multiplication
of references to a given object makes it hard to reason about this object since it might be
modified by any method of the system that is given such alias. He points out the contradic-
tion with the fundamental principles of object-oriented programming, namely encapsulation
and hiding. The techniques of reference uniqueness and object ownership we present now
were introduced to cope with the difficulty to enforce information hiding in object oriented
programming languages.

Encapsulation. Encapsulation, one of the fundamental principles of object-oriented pro-
gramming, is the expression of a software design choice, an architectural dogma, where data
and procedures serving a common functionality are gathered inside a logical unit that supplies
services through a normalized interface without directly exposing its internal components.
Booch[21] gives the following definition that has been widely accepted:

“The process of compartmentalizing the elements of an abstraction that constitute its
structure and behavior; encapsulation serves to separate the contractual interface of an ab-
straction and its implementation.”

Such structure allows to share, reuse and update the implementation of a given service
with no update needed for the clients of that service. This modularity is a central concern in
software engineering because it allows the development of large programs as a set of separate
building blocks that can be assembled through pre-determined interfaces, regardless of their
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respective implementation.

Modern programming languages offer various forms of encapsulation, most imperative
languages provide at least a notion of module or package. In object-oriented programming,
the notion of classes and instances of classes allows encapsulation at a finer level of abstraction.

Information hiding. Although the concept of encapsulation creates a logical compartmen-
talization of the services in a program, it doesn’t prevent a module from exposing some of
its internal components to its clients. Information hiding aims at actually protecting, hiding,
the parts of a module that are specific to its implementation so that clients won’t interfere
with it. Again, Booch summaries the concept of information hiding as following:

“The process of hiding all the secrets of an object that do not contribute to its essential
characteristics; typically, the structure of an object is hidden, as well as the implementation
of its methods.”

As we can see, an arbitrary degree of porosity is left to the appraisal of the software
designer which is the sole judge of the “essential characteristics” of its module. The similar
definition given by Parnas[85] also includes a form of tolerance in the hiding:

“Every module [. . . ] is characterized by its knowledge of a design decision which it hides
from all others. Its interface or definition was chosen to reveal as little as possible about its
inner workings.”

Hiding is critical in the presence of shared memory and pointer aliasing because encap-
sulation would no longer hold if a reference to internal structures of a module is passed to a
client. Furthermore, if a “secret” escapes the encapsulation boundaries, it might be modified
in an uncontrollable way, leading to an inconsistent state of the module that would probably
cascade software faults to other clients. Conversely, if a module receives a reference from
a client and integrates it in its own encapsulation boundaries, it is required that the client
won’t attempt to modify the data by accessing its own copy of the reference.

Unfortunately, imperative languages offers very limited support for hiding. They usually
associate type declarations with visibility modifiers such as public and private that respec-
tively shows or hides a member of a module to the external world. But it’s not sufficient
to avoid uncontrolled aliasing of the internal state of a module. Consider a Java class with
an instance field of a reference type, nothing can prevent a public method of the class from
returning the value of the reference field, even if it is declared private. If the reference
escapes to a caller outside of the designed logical encapsulation boundaries of the class, then
invariants that are supposed to be guaranteed by the encapsulation might be violated from
external manipulations of the referenced data.

Reference Uniqueness

Minsky argues that the uncontrollable dispersal of pointers is mainly due to the “almost
universal practice in programming to transfer information by copy” – the copy of pointers. He
proposes the concept of unshareable objects through the unique pointer mechanism. Unique
pointers employ the destructive-read operation initially introduced by Hogg in Islands[58]
in order to maintain unaliasing of unique references, and later reused in the Baker’s “use-
once” variables[12]. Minsky identifies the inconvenience of references volatility induced by
the destructive-read operations and proposes a notion of non-consumable unique references.
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Reference uniqueness[58, 79, 4, 24, 23] eliminates the sharing of one object at a time by
making sure there is only one reference to an object.

Static and dynamic references. In object-oriented programming, stack variables and
instance fields either hold primitive value or reference to an object allocated in the heap.
References and objects form an evolving directed graph rooted in the growing and reducing
stack. The convention is that dynamic references are found on the stack and static references
in object fields. Dynamic references are short-living, they only exist temporarily and disap-
pear when the stack frame they are contained in is released. Static references on the other
hand have an indefinite lifetime.

Aliasing and uniqueness. As soon as there exists more than one reference to a given
object, we say these references alias each others. Aliases are either dynamic or static depend-
ing on the nature of the reference holding the alias, which are respectively stack variables
and object fields. An unaliased reference is therefore unique, meaning all the access paths to
the uniquely pointed object goes through that reference. Trivially, the reference to a freshly
allocated object is unique. However preserving that property requires some precautions since
copying such reference would immediately create an alias.

How uniqueness relates to information hiding. We saw previously that encapsulation
can be violated if the internal parts of a module can be accessed and therefore modified from
the outside. We gave the brief example of a Java object that can leak a private reference
simply by returning it from one of its public methods. Hogg’s proposal is to employ refer-
ence uniqueness as a way to prevent static aliasing from crossing encapsulation boundaries.
Indeed, if a static reference to an object is unique, then it is either held outside of any en-
capsulation boundaries, or by a single unit of encapsulation at a time. If a unique reference
is to be received by an encapsulation unit, then it cannot be held outside of it anymore. And
conversely if a module returns the unique reference to one of its internal component, then
the static reference to that component must vanish from the encapsulation boundaries to
prevent aliasing. Therefore reference uniqueness is a technique to enforce information hiding
in object oriented systems.

Destructive-read. The solution proposed by Hogg to enforce the uniqueness of a reference
is based on a destructive-read operation in which a unique reference variable or object field
is immediately nullified after being read so that only a single reference may subsist.

However destructive read is cumbersome as soon as one need to pass a unique field refer-
ence to a function since the field must be nullified at the call site to be available as a parameter
for the receiver. Restoring the value of the field requires that the function explicitly returns
the unaliased reference.

Borrowing. More flexible solutions have been proposed, in which a unique reference can
be borrowed instead of being destructed if the created aliases are temporary. A borrowed
variable is created from a unique reference field without consuming it, but its value cannot
be used to create a static alias. Borrowed variables can be safely passed to methods expecting
borrowed parameters, when they return all the aliases on borrowed values are framed-out.

The borrowing techniques must address the callbacks problem: the unique field for which
borrowed values exist must not be accessed until all its dynamic aliases die because otherwise
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some unexpected data dependencies may appear under the false assumption that the field
is unique. One solution is to scope each borrowing in a block during which the field is
nullified and restored at the end[32]. The alias-burying technique is based on a static analysis
removing the need for temporary nullification [23]. Another technique employs statically
verified capabilities[24, 53], a type system of permissions that can be consumed only once.

Object ownership. Ownership[34, 83, 35] aims at protecting aggregates of objects. The
ownership relation superimposes a topology over the objects of the heap so that every object
has an owner, and may owns other objects. This relation limits the visibility and the updates
of objects inside an aggregate from the outside. Ownership types are statically verified type
systems enforcing the encapsulation. They rely on types annotations at the source code level,
these annotations determine the ownership context in which the object is evolving. To be
correct, the annotations of a program are statically verified by the ownership type system, if
an inconsistency is detected the program must be rejected.

There exists two disciplines of ownership. The owner-as-dominator (aka. deep-ownership)
guarantees that every chain of references from an object o in a context to an object oÕ in
another context goes through the owner of oÕ. In this discipline an owner has the control over
the access ot the objects it transitively owns, and objects in the same context may reference
each-others freely. The second discipline, owner-as-modifier is less restrictive, it allows all
kind of references and no constraint on read operations, but objects may only modify other
objects they own or that are part of the same context.

External uniqueness. External uniqueness[32] is a restricted form of deep-ownership al-
lowing uniqueness-like operations on aggregates of objects. An owner is externally unique if
it is uniquely aliased from the outside of itself (it and the objects it owns) but freely aliased
from the inside. If an aggregate is owned by an externally unique object, then the whole
aggregate can be moved from one unique variable or field into another, the former being
nullified. Externally unique aggregates may also be borrowed. And most importantly the
ownership of an externally unique aggregate can be transferred. Ownership transfer is the
action of moving an aggregate in the ownership hierarchy by simply moving its reference from
one context to another.

The following projects use a notion of external uniqueness and ownership transfer in ways
that Siaam can relate to. Ownership transfer is particularly interesting to build actor-based
programming models because it allows actors to communicates externally unique messages
in a zero-copy fashion through their mailboxes.

PRJF. PRJF [22] is a static type system guaranteeing that well-typed programs are free of
data race. It is based on the observation that one can obtain the race-free property trivially
if every thread acquires a lock on every object it accesses. The type system of PRJF, which
mixes ownership types and uniqueness, reduces the amount of necessary locks in many typical
situations. First it introduces a special “thisThread” owner indicating thread-local objects
for which no synchronization is required. Second, PRJF employs ownership to embed owned
objects access permissions into the owner’s lock. Meaning it is sufficient to acquire a lock on
the owner of an aggregate in order to gain exclusive access to the enclosed objects. Finally,
reference uniqueness avoid locking an unaliased object since at most one thread can refer to
the object. That latest case composed with the previous one allows unsynchronized race-
free access to every objects owned by an unaliased object. For all the other shared objects
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where no protection invariant can be inferred, the compiler fallbacks to the traditional locking
mechanism.

Reference uniqueness permits ownership transfer of unaliased objects. To achieve this,
the thread holding the unique reference stores it in a shared container, by doing so it loses the
reference. Later, another thread may enter the shared container (protected by a traditional
lock) and retrieve the unique reference.

Minimal Ownership for Active Objects. In MOAO[33], the authors differentiate active
objects from passive objects. Active objects handle the concurrency control and encapsulate
unshared state made of passive ordinary objects. A minimal ownership type system guar-
antees that active objects can access the passive objects they embed without the need of
any locking mechanism (race freedom invariant). Unlike most existing ownership systems,
the ownership in MOAO is very flat, passive objects belong to an active object, and active
objects belong to the global owner. There is a unique type to declare unshared references;
uniqueness is preserved through destructive reads; the static semantics provides borrowing
blocks that temporarily nullify the borrowed reference.

Active objects expose a public interface, a set of methods expecting arguments pointing
to —by default— disjoint object graphs. When an asynchronous method of an active object
is called, the objects reachable from the parameters are either passed by reference (ownership
transfer) or copied depending on their owner. Active objects are always passed by reference.
Unique stack variables can be passed by reference (destructive read) but the references inside
an unshared object still need to be examined. For the other references, cloning is required in
order to obtain graph disjointness. From our understanding of the cloning process, it is safe to
pass an object by reference when there exists a unique path from the stack to that object and
that path is solely made of unique references. Consequently, asynchronous arguments should
be tree-shaped graphs of uniquely referenced objects in order to avoid any data copying.

Siaam has a similar notion of flat ownership, all the objects can be considered passive
excepting the mailboxes and the actors once they are activated. Actors in Siaam play the
same role as active objects in MOAO, they encompass a thread of execution and an unshared
state made of regular objects.

Kilim[91]. Kilim is a framework for developing isolated actor-based concurrent systems
on top of the Java Virtual Machine. It offers a zero-copy message-passing communication
scheme and employs light-weight cooperatively-scheduled threads.

The cooperative scheduler requires a bytecode post-processor that “weaves” (a kilim is a
Persian carpet) the application bytecode in a continuation passing style.

The isolation property is statically verified by an intra-procedural heap analysis performed
during a post-processing phase. To simplify this analysis, messages must be made of uniquely
aliased objects, meaning messages are tree-shaped. The Java source code requires some
ownership type qualifiers in order to guide the static analysis and render explicitly which
references are unique.

Kilim is used in the ActorFoundry framework and inspired the O-Kilim framework, both
described later.

The choice in Kilim is to post-process the application bytecode so that it may be exe-
cuted by an unmodified Java virtual machine. The reverse of the medal is the need for source
annotations and strong aliasing constraints on zero-copy transferred objects. With Siaam we
follow the opposite path, we introduce enough modifications in the Java virtual machine to
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offer an annotation-free and aliasing-proof actor-based programming model without chang-
ing the application bytecode. Furthermore Siaam does not enforce a particular underlying
scheduling policy, we implemented both a 1:1 actor-thread mapping and a N:M policy able
to schedule run-to-completion tasks for M actors over a pool of N Java threads.

Capabilities for Uniqueness and Borrowing. Haller & Odersky [53] propose a statically
checkable type system based on a “separate” uniqueness invariant to enforce race safety in
Scala’s actors. Two separate variables points to disjoint object graphs in the heap. A variable
is separately-unique if it is separate from all the remaining variables accessible in the stack,
accessible meaning potentially used before being redefined in the current execution. Using
this strong invariant, they prove it is safe to pass the reference of a separately-unique variable
among concurrent processes because 1) the sender won’t reuse the reference and 2) the receiver
becomes the sole holder of the unique reference.

The authors achieve efficient message passing; according to their experiment feedbacks
they managed to integrate their type system in the Scala compiler and the standard library
within less than 5000 lines of code and a limited number of annotations since the default
types where often adapted.

The message passing semantics in Siaam is very similar to the proposition of Haller &
Odersky: passed references point to disjoint graphs of objects. In Siaam the disjointness is
enforced when a message is about to be passed. The ownership of every object contained in a
message is dynamically switched to a fresh owner. Thus every existing external reference into
the message is virtually invalidated: if an actor tries to access an object of the fresh owner, a
special exception is raised. These run-time errors are statically avoided with capability-based
uniqueness.

O-Kilim[51]. Ownership-Kilim resurrects the event-driven actor model – without CSP
weaving – described in Kilim and brings the ability to transfer object graphs based on previous
works by Claudel et al.[36, 37] on “first-reachability”. First-reachability ownership fixes the
owner of a free object the first time it is pointed-to by an owned object. This runtime
mechanism is handled by write-barriers inserted whenever the field of an object is updated,
a very similar usage of write-barriers is employed in [43]. Unlike in most ownership systems,
here ownership isn’t designed to restrict the usage of references, instead it is employed to
delimit boundaries of aggregates of objects that can be safely passed by reference.

Initially allocated objects are free, meaning they do not belong to any ownership domain
(aka. context). The only exceptions are the instances of the Task and Message classes that
always own themselves. The desired invariant is that an object may at most belong to one
owner and there cannot be a reference from a domain to another or from a domain to a free
object. As soon as a free object becomes transitively reachable from an actor or a message,
it enters the ownership domain of that owner. The rule is applied transitively to every
object referenced by a freshly owned object. To preserve the invariant, references between
different ownership domains are illegal and raise a run-time exception during the ownership
propagation. All in all, the first-reachability mechanism guarantees full-encapsulation with
internal aliasing of messages and actor state.

Actors implement run-to-completion tasks called reactions, which is the equivalent of the
communications received by Agha’s actors[2]. Each actor is bound to one or several Mailboxes
and registers reactions to these mailboxes. Upon message reception, a mailbox calls back the
reaction registered by the actor it is bounded to, if any. Reactions are processed in a serial
way for a given actor. Message-passing is achieved by storing a Message reference in a mailbox.
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The reaction-based approach of O-Kilim was carefully chosen to allow temporary dynamic
(in stack) aliases of objects inside a message, the actual communication being deferred to the
termination of the current reaction. The tail-migration consists in waiting the completion of a
reaction before actually sending the messages it emitted. Once the reaction is completed, all
the dynamic aliases are costlessly framed-out and it is finally safe to pass message references
to other actors. That choice can be seen as a form of reference borrowing, encompassing all
the stack variables.

Although the ownership of an object is fixed without the explicit intervention of the de-
veloper, an extraction primitive is provided to free the graph of objects transitively reachable
from an arbitrary reference. The extract primitive can be seen as the matching pair of the
cut operation in Kilim. The extraction nullifies every remaining reference in the original
domain, leaving a “hole” of illegal pointers. Once freed, the objects can be absorbed by an-
other owner or will simply become garbage at the end of the current reaction. The extraction
mechanism is essential to create a durable heap reference from an actor’s state to a received
object that can be used in successive reactions. Indeed, it is illegal to transitively reference
an object of the Message class from an instance of Actor, which are both owners.

This work is, to our knowledge, one of the only actor-based system before Siaam where
the ownership is purely managed at run-time without any annotation being required. How-
ever it is not clear how the extraction function proceeds to find and nullify references internal
to a message when a subgraph is extracted and what are its complexity and run-time cost.
Furthermore we could not determine how O-Kilim prevents an actor from passing the same
message twice during a reaction and how (should?) it prevents an actor from extracting or
modifying a part of a message it has virtually already passed during the reaction. It would
also be interesting to understand the consequences of the communication latency induced by
the tail-migration.

In Siaam, the ownership relation is used to control data access whereas in O-Kilim it
is employed to control static aliasing. O-Kilim also get rid of the dynamic aliasing prob-
lems through the choice of a reactive execution model. The invariant guarantees that every
reachable object can be accessed safely during a reaction. Siaam doesn’t have any notion
of message instances, in particular our model doesn’t require extracting received objects to
create durable references because every received objects is automatically transferred in the
ownership domain of the receiver. Both approaches generate illegal references when a graph
of objects is transferred from one context to another (extraction in O-Kilim, message-passing
in Siaam). In both cases, accessing an illegal reference raises an exception that may be han-
dled by the program. However in O-Kilim, an illegal pointer is equivalent to a null pointer,
whereas in Siaam it is still referencing the original object and automatically recover to a legal
pointer when the object is received back, which allows new programming idioms.

Comparing the run-time costs of both approaches isn’t trivial. Siaam pays every object
access (not taking optimization into account) and O-Kilim pays every static reference created.
Siaam pays a transitive ownership-transfer of each passed graph and O-Kilim pays an equiv-
alent sum of transitive ownership-transfers to create a message. Forwarding an unmodified
message is free with O-Kilim if it has been received during the same reaction, but passing the
content of a message in a different reaction demands two extractions and two absorptions.
Our conclusion is that in average Siaam and O-Kilim probably have a very close run-time
overhead.



2.1. ISOLATION IN SCALABLE CONCURRENT SYSTEMS 27

2.1.2 Software-based processes.

Several projects aims to host multiple applications on the same runtime system. They
provide a form of full isolation inherited from operating systems where each process has its
own memory and cannot access to another process’ memory. Most runtime systems hosting
isolated software-based processes only support communication by copy[8, 54, 84, 61, 40]. A
few others rely on communication through shared heaps [11, 3, 59].

Erlang. Erlang[8] is a declarative programming language focusing on fault-tolerance and
large-scale parallel computing. The concurrency is modeled by lightweight processes that
can interact only by exchanging messages. Erlang has no shared memory and all the data
structures are immutable, therefore there are no locks and the processes are trivially isolated.
The messaging mechanism is asynchronous, the sender doesn’t wait for its message to be
processed, and the receiver is not interrupted in its current task. Although communications
use a costly deep-copying semantic, Erlang became the de-facto language to develop massively
concurrent systems thanks to its industrial-grade fault-tolerance. The main reasons of its wide
adoption are certainly its simplicity and its robustness.

More recently, Carlson et al. described a “message analysis” for a subset of Erlang that
enables zero-copy message passing whenever possible. This work is discussed in Section 2.2.

ActorFoundry. ActorFoundry[61] is an actor-based framework for the Java Virtual Ma-
chine. It provides a simple API including asynchronous messaging (send) with the possibility
to wait for an asynchronous response (call), and actor creation (create). In the early versions
of the framework each actor maps to a Java thread and messages are sent by deep-copying
their content with the Java’s serialization API. Therefore objects that are part of a message
must implement the java.lang.Serializable interface.

Later ActorFoundry was updated to integrate Kilim’s continuation passing style scheduler
based on the same bytecode weaver, so the number of concurrent actors is not limited by
the number of Java threads that may coexist in the virtual machine and the thread context
switching cost is limited. However the messages must still be copied, this constraint is
partially solved by SOTER which is discussed in the next section.

Java Application Isolation API. The Java community has fulfilled the Java Specification
Requirement JSR-121[74], the Java Application Isolation Specification (“Isolate API”). It
defines a fundamental set of classes and interfaces for supporting multiple strongly isolated
applications — Isolates — in a single JVM.

Each isolated application has a dynamic set of threads and everything happens like it
fully occupies the virtual machine. Even the system classes are replicated for each application
so they cannot communicate through static variables. Isolates cannot share objects except
communication channels called Links which have a single sender and a single receiver Isolates.
A communication through a Link consists in a rendezvous where a LinkMessage is transferred
from the sender to the receiver. A LinkMessage may only contain a limited range of datatypes:
a single string, a Link reference, an Isolate reference, a set of other LinkMessage references
or an array of bytes. Arrays of bytes are copied when the rendezvous eventually happens, so
that the communicating Isolates have their own private copy. Any other kind of data must
be serialized into a byte array before being sent, and deserialized by the receiver Isolate. In
particular objects graphs must be deep-copied.
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Isolates are created by specifying the name of a class and an string array. The given class
must declare a static main method that will be invoked with the string array parameter in
a new thread. Optionally the Isolate object can be given an initial set of Links before it is
started, so it may communicate with other applications.

The Isolated Application API enforces strong isolation between Isolates at the price of
deep-copy communications. The principles in the Isolated API where initially experimented
by Sun in an early prototype named The Multitasking Virtual Machine or MVM[41, 40].

Capability based isolates. In the Object Space Model[26] and the J-Kernel[54], bridges
and capabilities respectively, can be shared between isolates. These objects act as isolation
proxies for cross-domain calls.

Methods of a capability are invoked with a special calling convention: parameters and
returned value are passed by reference if they are capabilities, or by deep-copy if they are
primitive values or ordinary references. Methods of a bridge have a different calling conven-
tion: parameters and returned references are wrapped into bridges unless they are already
bridges.

The Object Space Model guarantees strong isolation because a context cannot obtain an
ordinary reference to an object of another context. But bridges must be created for every
object accessed from a foreign context, moreover bridges are cached in a map associating a
unique bridge to each object.

The J-Kernel modifies the application bytecode at runtime and runs over unmodified
JVMs. To reduce thread-switching costs on cross-domain calls, the threads actually perform
the calls directly like in the I-JVM.

Process isolation with exchange heaps. Both the KaffeOS[11] and the Singularity OS[3,
44, 59] provide isolated processes that communicates through shared heaps. In order to
communicate, a process must create an exchange heap and populate it with data.

The KaffeOS uses write barriers on every pointer write to check for illegal references. After
a shared heap is populated, it is frozen so that the object topology in the heap is fixed until
reclaimed by the garbage collector. Once frozen the heap may be communicated to other
processes, the specificity of KaffeOS is to allow concurrent modifications of the primitive-
typed fields in the frozen heaps. The authors admits the non-negligible overhead of the write
barrier, and conclude: “a good JIT compiler could perform several kind of optimizations to
remove write barriers. A compiler should be able to remove redundant write barriers . . . ”.

Singularity enforces strong isolation between software processes. Processes communicate
by passing messages through channels. Messages contain pointers to data allocated in the
exchange heap, however the exchange heap does not contain ordinary objects but only data
blocks. Furthermore pointers to the data blocks are unique, meaning that the sender of a
block loses the reference which is passed through a message to the receiver.

2.1.3 Classloader isolation.

Classloader isolation is based on the type-safety rules governing the Java language. It
distinguishes types not only by class name but also by the classloader from which the class
originates. This distinction make objects originating from different classloaders unusable for
each-others, meaning a method created by one classloader cannot read nor write the fields of
an object originating from a different classloader.
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This form of isolation does not impose a notion of software component, whether we call it
actors, processes etc. Although objects from different classloaders are isolated, objects from
common classloaders may be freely exchanged and accessed from different software compo-
nents of the system. Therefore encapsulation and information hiding is not trivial since
developers must carefully remember what classes are isolated and what objects are shared
and may mutate without control. Building complex dynamic systems based on classloader
isolation demands some global conventions. The OSGi[78] platform provides a software com-
ponent based environment, it specifies how components get isolated using private classloaders,
and how they can exchange shared data using common classloaders.

OSGi. OSGi is an open specification of dynamic component systems for the Java language.
Components in an OSGi system are called bundles, they can be installed, started, stopped
and updated at will without requiring the whole system to be halted. Bundles implement
and publish services which can be consumed by other bundles. A complete description of the
architecture of OSGi is out of the scope of this thesis, however we are particularly interested
in the isolation features offered by the specification.

Although OSGi integrates a weak notion of isolation: bundles can selectively share ob-
jects. Moreover a number of vulnerabilities have been identified[86] in the most common
implementations of OSGi, some of them showing flaws in the expected degree of isolation.

Bundles do not encompass threads, they only provide operations through object interface
methods and there are only application threads. When an application thread needs to obtain a
service from a bundle, it calls the appropriate method and enters the bundle’s implementation.
Such calls are inter-bundle calls by opposition to intra-bundle calls when an application thread
has already entered a bundle and invokes an internal method without crossing a bundle
interface.

In order to maintain state encapsulation and information hiding within a bundle, the
OSGi specification makes a strong difference between each bundle’s private and shared classes.
The isolation property is that objects of private classes of a bundle cannot be accessed by
other bundles. It uses the classloader isolation strategy where each bundle is given a private
classloader from which it loads its private classes. Bundles can also export public classes or
import the public classes of another bundle by loading them from the same classloader, these
classes instantiate shareable objects which may be used as parameters and return values of
inter-bundle calls.

I-JVM. I-JVM is a Java virtual machine supporting OSGi and solving some of its vulner-
abilities, in particular isolation related. Wide-spread implementations of OSGi let bundles
interfere through system classes static variables, either by modifying them or by locking
shared content referenced by static variables.

The I-JVM employs a technique originating from the Java Isolates to solve this problems.
The static variables, the strings and the class objects are duplicated so that each OSGi
bundle manages its own copies. However in the Java Isolates API, threads are confined to a
single process to ensure strong isolation. The confinement obliges processes to communicate
through a costly object serialization protocol. In OSGI this mode of communication is not
realistic to maintain good performances since bundles communicates by direct calls with
shared parameters.

The contribution of I-JVM with respect to this problem is to allow thread migration
between bundles represented by different isolates. It introduces an indirection in the access
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to static variables. When a thread crosses an inter-bundle border, the indirection is updated
to point the memory region containing static variables managed by the entered bundle. I-
JVM pays a performance penalty less than 20% when running standard Java programs, the
cost for resource accounting and intra-bundle calls. The cost for inter-bundle calls, compared
with classical isolates communication, is extremely low since it does not introduce parameters
copy.

2.2 Static analyses for efficient concurrency

Message Analysis [28]. Asynchronous communications in the default configuration of
Erlang requires messages to be copied from the sender process to the receiver, with a cost
growing linearly with the message size. It is worth remembering that data is immutable
in Erlang but process-local heaps provide fast, synchronization-free allocation and garbage
collection.

In this article the authors investigates an hybrid architecture where each process has its
local heap and a shared heap is available to store inter-process messages. In comparison with
process-local heaps, the shared heap has less efficient synchronized allocation and garbage
collection but allows zero-copy pointer communications. The heap segregation comes with
the runtime invariants that “there are no pointers from the shared heap to the local heaps,
nor from one process-local heap to another”.

The allocation strategy at runtime is to speculatively allocate data that may be part of
a message in the shared heap, and the other data in the process-local heaps. Since it may
happen that process-local data is part of a message, the communication operations implement
a copy-on-demand mechanism, which verifies that transferred data resides in the shared heap
and copies the locally-allocated parts to the shared heap. Note that checking if an object was
allocated on the shared heap is a O(1) pointer comparison in the hybrid architecture designed
in this work. The verification must explore the graph of data reachable from a communication
operand, which can be a costly operation. Thanks to the pointer directionality invariant, the
graph exploration can be cut whenever a piece of data already allocated on the shared heap
is encountered, therefore if the top communication operand has been allocated on the shared
heap the verification may complete immediately.

The message analysis tries to identify allocations that should be performed on the shared
heap to avoid the cost of verifying and copying the data when it is eventually communicated.
It rewrites the analyzed program with shared-heap allocations at places where data is likely
to be part of a message. The copy-on-demand mechanism is still active in the runtime, so
that the static analysis may safely misses some shared allocations.

The message analysis benefits from the data immutability in Erlang. In Siaam objects are
mutable, meaning that it is not sufficient to pass messages by reference to enforce isolation,
we also have to make sure that only the receiver of the message may modify its content and
conversely that the other actors cannot access that content. Other than that, we can find
several common points between the message analysis and Siaam.

First, our virtual machine handles the communication of immutable objects in a very
similar way because the graph exploration can be cut when such object is encountered: an
immutable object may only points-to other immutable objects, which can be seen as having
a special heap for immutable objects with the invariant that there are no pointers from that
special heap to the heap of mutable objects.
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Second, our static analysis is able to identify an under-approximation of the message-
passing places where every object that is part of the message is owned by the current thread.
For these communications, it is not necessary to dynamically check the ownership of the
message graph. However it is still mandatory to explore the graph in order to switch the
objects’ owner and prevent the sender from accessing them further.

SOTER, inferring ownership transfer. SOTER[81] (for Safe Ownership Transfer en-
ableER) is a static analysis aiming to discover message-passing sites in an actor-based pro-
gram where the deep-copy semantics can be safely replaced by the zero-copy reference passing
semantics with respect to the isolation property. SOTER is applied to ActorFoundry appli-
cations where it replaces send and call methods of the API by their zero-copy alternative
when possible. The analysis is versatile enough to be adapted to handle other frameworks,
the authors mention they extended SOTER to support the Scala actor API in a couple of
weeks.

The analysis itself is inter-procedural but employs two intra-procedural sub-analyses. The
first one is a custom live variable analysis which computes the set of objects reachable from
live variables after each program point that potentially communicates objects (either directly
or through transitive calls). The second one is a forward data-flow problem over the call
graph nodes. It propagates the object liveness information along the call graph edges. At
the end of the propagation process, the analysis can tell which objects are live after a given
communication site. If any of the objects transferred by the communication site is live after
that site, then it is not safe to replace the deep-copy semantics with the zero-copy semantics
for that site.

The static analysis in Siaam comprises a phase that shares some common points with
SOTER but proceeds the other way around. In our analysis, it is the transferred objects
information that flows along the call graph edges. Our local object liveness analysis reduces
the amount of objects flowing through each edge. Although the Siaam analysis was not
designed to infer safe ownership transfer, it is well adapted for that task. The programming
assistant detects unsafe statements and identifies the possible communication sites where
the unsafe data was transferred. Using the result of the assistant we could replace the
incriminated zero-copy communications with a deep-copy message-passing semantics.

The weakness to SOTER’s pessimistic approach is that among the live objects, a sig-
nificant part won’t actually be accessed in the control-flow after a communication site. On
the other hand, Siaam do care about objects being actually accessed, which is a stronger
evidence criterion to incriminate message passing sites. It incriminates a message-passing
site only when it detects the actual usage of a transferred object. We provide a comparative
evaluation of SOTER’s and Siaam’s analyses accuracy in Chapter 6.

Other related works. Static analyses have been developed to optimize-out redundant
runtime checks to detect concurrency-related problems. They often rely on a pointer and es-
cape analysis[16, 30, 93, 80]. Runtime checks have been used to check dangling references to
region allocated objects[88], and an associated static analysis eliminates redundant checking.
User defined ownership policies in concurrent C++ programs are dynamically checked[72],
and a static analysis removes unnecessary verifications. Typical dynamic race detectors must
check memory accesses for concurrent races, in [45] the authors propose a static analysis to
remove redundant checking within a “release-free span”, it reduces the number of runtime
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checks by 40% in their experiments. In [31] the authors presents an analysis based on escape-
ment that allows stack allocation and synchronization removal for Java. Similarly a custom
thread escape analysis is developed in [19] in order to remove unnecessary synchronization in
Java.

Thread-Local heaps for Java[43]. This work is based on the observation that a single
shared heap is not the most scalable memory management scheme in a multithreaded system.
Authors propose to introduce thread-local heaps in the Java virtual machine, their approach
starts from the opposite side of the message analysis[28] but arrives to the same conclusion
that local heaps offer fast synchronization-free allocation and garbage collection.

Every object is flagged with a global bit. Initially objects have their global bit cleared so
they are considered as thread-local objects. Then the runtime system dynamically monitors
the locality of the objects using a write-barrier. As soon as a local object becomes reachable
from a global object, its global bit is set so it is also considered as global afterwards. Note
that the process is repeated recursively for every object pointed-to by a local object becoming
global. Global objects never return to local. The second contribution covers the specification
and the implementation of the local and global mark&sweep garbage collectors. Performance
measurements shows that the overhead introduced by the write barriers is balanced by the
speed gain of thread-local allocation and collection.

The heap management described in this work, the allocation scheme and the garbage
collection algorithm for both local and global heaps are certainly applicable in the Siaam
virtual machine. It would be straightforward to add a global bit to every object and set that
global bit the first time an object is transferred between two actors. Then following the ideas
of[28], a static analysis could infer allocation sites where the data is likely to be part of a
message and perform direct global allocation as suggested in[43].

A specificity of Siaam is to allow references between ownership contexts. It may sometime
happen that an object with the global mark is only reachable from actors in a different context.
In this case, if the object is not part of any pending message, there is no way it may reenter the
ownership context of an actor. Therefore it is theoretically possible to reclaim the object’s
space since no actor may be allowed to access its fields and simply replace the remaining
references with null or any dummy reference that would still trigger an owner mismatch
exception when accessed. But on the other hand it might not be correct to update these
references with a unique replacement object since the actors holding them may actually rely
on the inequality of foreign references. To circumvent this eventuality, it should be feasible
to shift the remaining addresses outside of virtual machine memory range, where a system
segmentation fault would be raised and caught in case of access and translated to an owner
mismatch exception in the application (a similar method is already in use in the JikesRVM to
“detect” null-pointer exceptions). Unfortunately the whole solution seems to bring us back
to the starting point since all the objects allocated at the same address would have the same
shifted address.

2.3 Motivations

The Erlang language has been well established in the industrial world, delivering fault-
tolerant, massively concurrent and actor-based software for decades. The recent apparition
of the Erlang-based trendy CouchDB[73] scalable database for web applications is revealing
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of the modernity of the actor approach.
With the explosion of multi-core processors in every consumer devices, we see a renewed

growing interest in the actor-based programming models. In the Java and Scala communities,
new frameworks such as Akka and Netty[87] emphasis on modularity, separation of concerns
and safe parallelism. It seems like bringing concurrency to the masses — of users, developers
and processor cores — requires a higher level of abstraction than the threading model which
has always been a matter of experts. In the .NET ecosystem, the Axum[52] project aimed to
bring agent-based isolation through deep-copy message passing.

Now even web developers are considering actors or structured concurrent programming
models because it captures parallelism in a much more natural and instinctive manner. Sev-
eral Javascript frameworks address concurrency, among them is the event-driven Node.js[75]
project. Not so long ago, Google initiated the Dart[60] language that compiles to Javascript
and provides in-language Isolates.

This extremely short go around the table shows the need for simple programming models
to address safe concurrency without actually thinking about applications being parallel. The
current propositions either provide strong isolation through deep-copy message passing or
unsafe but efficient zero-copy communications. Therefore we identify the need for a solu-
tion that stands in the middle, Siaam aims to blend strong isolation and efficient zero-copy
message passing. The variety of platforms where safe concurrency may be used motivates
us to propose a specification that abstracts as much as possible the underlying environment.
The fact that more and more developers, with very different backgrounds, are investigat-
ing new solutions to build scalable applications is our main argument to aim for simplicity
and dynamicity. Furthermore we see that many industrial projects are emerging, with their
own priorities and constraints in mind, and Siaam should fit them. The fact that many of
these projects have chosen isolation over efficiency (deep-copy over zero-copy) reinforce our
approach evicting any form of statically verified source code annotations even if it means
paying some runtime overhead.

We think that shifting the intelligence from the source code (the developer) to the runtime
is a promising approach, especially when the runtime can optimize the induced overhead.
Related works corroborates in that direction. The authors of the KaffeOS evaluates the
total cost of the write barriers and conclude that “a goot JIT compiler could perform several
kinds of optimizations to remove write barriers”. In Thread-Local Heaps for Java, a similar
write barrier monitors global reachability at runtime, although the authors advocates for a
fully dynamic approach, they agree that “it would be worthwhile to check how well static
determination of object locality works with our memory manager”.
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Formal specification of Siaam
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3.1 Introduction.

We extend Jinja [63, 62], a sequential object-oriented programming language with the
core features of the Java language and a formal semantics. The extension presented in this
chapter builds actor-based concurrency and isolation above Jinja’s sequential semantics.

In Siaam, every concurrent unit of sequential computation is identified as an actor. Ac-
tors mostly behave as independent sequential Jinja programs. However, occasionnaly they
have to interract with the global state of the system to communicate, initiate new actors and
access the heap which is shared by all the actors.

We follow the elegant methodology employed in JinjaThread[71] to extend Jinja with
threads. Thanks to an ingenious parametric interleaving framework, JinjaThreads builds a
multithreaded version of Jinja with only minimal modifications to the original source lan-
guage. Furthermore, the framework is instantiated a second time to create a multithreaded
virtual machine supporting the Jinja bytecode. For readers familiar with Jinja and its
threaded extension, we describe Siaam in similar terms and notations. However Siaam is
much simpler than JinjaThread because it doesn’t have to struggle with the concurrency of
the Java memory model. Since actors can only observe and mutate the objects they own,
sequential consistency is satisfied “for free” in our model.

The formal specification is divided in several logical components, as illustrated in Figure
3.1. This chapter is organized accordingly. The program representation (Section 3.3) fixes
how classes and methods of a program are encoded in Jinja, and provides predicates to query

35
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Figure 3.1: An overview of the components used in the formal specification of Siaam.

its structure. It also define an abstract syntax for the source language. Jinja defines small-
steps semantics for the sequential source code and a sequential virtual machine. We use them
as a basis to specify the small-steps semantics of a single-actor source code (Section 3.5) and
a single-actor virtual machine (Section 3.6).

A global semantics governs the reductions of the global state and interleaves the actors,
it is presented in Section 3.4.

The original work on Jinja proves the type safety of the two sequential small-steps seman-
tics, it also formalises a bytecode verifier and its correctness proof, as well as a compiler and
a proof of semantics and well-typeness preservation. We do not replicate this work here, how-
ever the additions we bring to the Jinja sequential semantics are orthogonal to the concern
of these proofs. Therefore we are confident that the original properties proved in Jinja are
preserved in Siaam. We are conforted in this orthogonality by the fact that Siaam’s isolation
property have be expressed and proved with a complete abstraction of the reduction rules
involved at the single-actor level. The formalization and the proof of the isolation property,
conducted with the Coq proof assistant[76], are described in Section 3.7.

3.2 HOL Language

For the sake of homogeneity, we respect as much as possible all the notations introduced
in the Jinja’s litterature. Thus we adopt the HOL language for the formal descriptions.
HOL includes notations for types, pairs and tuples, sets and lists, functions and inference
rules. The most frequent notations are described in this section, further specific writtings
are introduced over the course of the paper when they are required. Variable names are
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typed in italic (a, V , fn) and names of defined constants are slanted (a, V, fn). The relation
of implication is noted ≠æ and the equivalence is Ωæ; inference rules are displayed in the
following form:

P ≠æ Q P

Q
is equivalent to ((P ≠æ Q) · P ) ≠æ Q

HOL types. Basic HOL types are boolean (bool, naming convention b), natural numbers
(nat, naming convention n), integers (int, naming convention i) and strings (string). Type
variables are prefixed with a quote (Õa, Õb). The notation t :: · means term t is of hol type · .
The space of total functions is written ∆ .

hol-type = Õa | bool | int | nat | string |

· ◊ · Õ | · set | · list | · option |

· ∆ · Õ | · + · Õ

(3.1)

Pairs. A pair (a, b) of elements a :: · and b :: · Õ is of type · ◊ · Õ. Components of a pair
are accessed with the functions fst :: (Õa ◊ Õb) ∆ Õa and snd :: (Õa ◊ Õb) ∆ Õb. Tuples identify
with pairs nested to the right, meaning (a, b, c) is identical to (a, (b, c)) and (Õa ◊ Õb ◊ Õc) is
identical to (Õa ◊ (Õb ◊ Õc)). The disjoint sum of Õa and Õb is written Õa + Õb, with the injections
Inl :: Õa ∆ Õa + Õb and Inr :: Õb ∆ Õa + Õb.

Sets. Sets (type Õa set) are isomorphic to predicates (type Õa ∆ bool), such that y œ
{x. P x} Ωæ P y. The image operator f ‘A applies f to all elements of A, f ‘A = {f a | a.a œ
A}. The empty set is noted ÿ.

Lists. Lists have the HOL type Õa list. The empty list is [ ], the infix list constructor is · and
the infix @ operator appends two lists, just like the append function. Variables of a list type
usually ends with an “s” like in xs, and |xs| denotes the length of the list. If n < |xs|, xs[n] is
the n-th element of xs. The function hd returns the head element of a list, on the opposite
tl removes the head and returns the rest of a list. More generally, take n xs returns the list
of the first n elements of xs, and drop n xs removes the first n elements of xs and returns
the rest of the list. rev xs is the reverse of xs, and replicate n x is the list where the element
x is replicated n times. The usual functions map f xs and filter P xs respectively applies
the function f to each element of xs, and retains the elements satisfying predicate P. The
ordered list of integers in the half-opened interval [i, j[ is noted [i.. < j], similarly [i.. Æ j] is
the list of integers in the closed interval.

Optionals. The Õa option data type have the None element and all the elements from Õa
prefixed by Some. The notation ÂaÊ is identical to Some a, and the is a partial function
realizing the inverse of Some, such that the ÂaÊ = a.

datatype Õa option = None | Some Õa

Functions. Function update is written f (x := y) where f :: Õa ∆ Õb, x :: Õa and y :: Õb, which
is equivalent to ⁄ a . if a = x then y else f a.
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Maps. Partial functions (maps) are modeled out of total functions returning an option

type: Õa ∆ Õb option also written Õa Ô Õb; f x = Some y means the function f is defined
in x and maps to y, whereas f z = None denotes undefinedness in z. Partial function
update is written f(x ‘æ y) which is equivalent to f (x := Some y). For convenience, several
consecutive updates would be written f(x1 ‘æ y1, . . . , xn ‘æ yn); alternatively [ ‘æ] performs
bulk updates using lists f([x1, . . . , xn][ ‘æ][y1, . . . , yn]). The empty map ⁄a.None is noted
empty; it is updated by [x ‘æ y].

3.3 Abstract Syntax.

Types. Jinja uses the following variable conventions: V is a variable name, F is a field
name, M is a method name, C is a class name, e is an expression, v is a value, T is a type
and P is a program. Class names, method names and variable names have respectively the
type cname, mname and vname, which are all synonyms for the HOL type string. We typeset
strings either with double quotes “a string” or underlined AnotherString.

Values. Values in Jinja (HOL type val) use type constructors associated with a HOL value.
Types range over booleans (Bool b), integers (Intg i), references (Addr a and the null refer-
ence Null) and the dummy value Unit, where b :: bool, i :: int, a :: addr. The address type
addr is synonym for nat. Jinja types, of type ty, are the type Void for Unit, the primitive
types Boolean and Integer for Bool and Intg, the null reference type NT , and Class C for
classes references.

datatype val = Unit | Bool bool | Intg int | Null | Addr addr

datatype ty = Void | Boolean | Integer | NT | Class cname

Expressions. The Jinja source language is expression-based. Expressions, of type expr

(notation e) are presented in Table 3.2. Every expression in Jinja reduces to a final expression
that is either a value Val v or an exception throw (Val (Addr a)). Statement expressions
evaluate to Val Unit. User defined exceptions may throw any arbitrary object. There are also
system exceptions throwing an instance of one of the system exception classes: sys-xcpts ©
{NullPointer, ClassCast, OutOfMemory}. Pre-allocated instances of the system exception
classes are available through the function addr-of-sys-xcpt :: cname ∆ addr. To shorten the
notation of literal values and exceptions, Jinja introduces the following short-hands:

true © Val (Bool True) false © Val (Bool False)

addr a © Val (Addr a) null © Val Null

unit © Val Unit

Throw a © throw (addr a) THROW C © Throw (addr-of-sys-xcpt C )

Program representation. A Jinja program (of type Õm prog, Figure 3.3) is a list of class
declarations. Each class declaration (type Õm cdecl) is made of a class name and a class
definition (type Õm class). A class is defined with the name of its super-class, a list of field
declarations (each of type fdecl) and the list of method declarations. A field declares a name
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expression description

new C object allocation
Cast C e casting
Val v literal value
e1 πbop∫ e2 binary operation
Var V variable access
V := e variable assignment
e.F{D} field access
e1 .F{D} := e2 field assignment
e.M (es) method call
{V : T ; e} block with locally declared variable
e1 ; e2 sequential composition
if (e) e1 else e2 conditional
while (e) eÕ while loop
throw e exception throwing
try e1 catch (C V ) e2 exception catching

Table 3.2: Jinja source language expressions.

and a Jinja type. A method declaration (type Õm mdecl) comprises the method name, the
parameter types, the result type and the method body (type Õm). In Siaam we make the
method body optional in a method declaration. Native methods, introduced in [71, §2.1.3],
only declare a signature along with a None body, written Native. The parametrization of
the method body type is a convenience that allows us to specialize the program type for the
Jinja source language and later for the virtual machine language. The method body for the
source language (type J-mb) is made of the list of formal parameters names and the top-level
expression. The corresponding program type J-prog is the instantiated type J-mb prog.

type_synonym Õm prog = Õm cdecl list
Õm cdecl = cname ◊ Õm class
Õm class = cname ◊ fdecl list ◊ Õm mdecl list

fdecl = vname ◊ ty
Õm mdecl = mname ◊ ty list ◊ ty ◊ Õm option

J-mb = vname list ◊ expr

J-prog = J-mb prog

Figure 3.3: Program declaration.

In Figures 3.4 and 3.5 are demonstrated a small program in Java and its equivalent in
the Jinja source code. The top-level definition is program :: J-prog, which comprize the
declaration for the three classes Object, A and B. Since the Object class is the at the top
of the hierarchy, it has an empty superclass name. Assuming the hashCode and toString
methods of the Object class are implemented natively, both declarations have the Native

method body.
Focusing on the Jinja declaration for A, appear in order: the name of the class, the

name of its superclass (Object), the field declarations list containing “fi” and “fo”, and finally
the list of methods declared in A. The initializer method name is arbitrarily translated to
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1 class Object {

2 Object() {}

3 int hashCode() {...}

4 String toString() {...}

5 }

1 class B extends A {

2 int fi;

3 B(int i) {

4 super(i+1, null);

5 this.fi = i;

6 }

7 int getI() { return this.fi; }

8 int swapI(int i) {

9 int tmp = this.fi;

10 this.fi = i;

11 return tmp; }

12 }

1 class A extends Object {

2 int fi; Object fo;

3 A(int i, Object o) {

4 super();

5 this.fi = i;

6 this.fo = o

7 }

8 int getI() { return this.fi; }

9 Object getO() { return this.fo; }

10 int swapI(int i) {

11 int tmp = this.fi;

12 this.fi = i;

13 return tmp;

14 }

15 void main(String arg) {

16 B b = new B(0);

17 }

18 }

Figure 3.4: Small program.

“<init>”, though it is the name used internaly in Java.
A and B both declare an integer field named “fi”. Since B extends A, instances of the

former actually have two “fi” fields; the one inherited from A is accessible through the notation
e.“fi”{“A”}, wherease the one declared in B is accessible through e.“fi”{“B”}, where e is an
expression evaluating to the address of an object of class B.

Lookups predicates. Jinja defines a set of predicates for accessing program declarations.
In a program P, the subclass relation P „ D ∞ı C means D is a subclass of class C . The
subtype relation P „ _ Æı _ :: Õx prog ∆ ty ∆ ty ∆ bool is defined as:

P „ D ∞ı C ≠æ P „ Class D Æı Class C

The type of the null reference is a subclass of all classes:

P „ NT Æı Class C

The method lookup taking overriding into account is written P „C seesM : Ts æ T = mb inD
and means that starting from class C and scanning the class hierarchy upward, a method
named M is visible in class D. The visible method declares the arguments types Ts, the return
type T and the optional method body mb ::Õm option. The predicate P „C has-fields FDTs ver-
ifies that class C and its superclasses declares the fields FDTs :: ((vname ◊ cname) ◊ ty) list.
For a given class, the function fields :: prog ∆ cname ∆ ((vname ◊ cname) ◊ ty) list re-
trieves the corresponding FDTs.

As an exercise, we apply these lookup predicates to the example Figure 3.5. In the class
hierarchy, Object is at the top, A directly sublasses Object, and B is a direct subclass of A
and by transitivity a subclass of Object. Also note that every class is a subclass of itself.

P „ A ∞ı Object P „ B ∞ı A

P „ B ∞ı Object ’C œ {Object, A, B}, P „ C ∞ı C
(3.3)
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program = [ObjectC , AC , BC ]

ObjectC = (Object, “”, [ ],
[(<init>, [ ], Void, Â([ ], e1 )Ê),
(hashCode, [ ], Integer, Native),
(toString, [ ], Class String, Native)

])

AC = (A, Object, [(fi, Integer), (fo, Class Object) ],
[(<init>, [Integer, Class Object], Void, Â([i, o], e4 )Ê),
(getI , [ ], Integer, Â([ ], e5 )Ê),
(getO, [ ], Class Object, Â([ ], e6 )Ê),
(swapI , [Integer], Integer, Â([i], e7 )Ê),
(main, [Class String], Void, Â([arg], e8 )Ê)

])

BC = (B, Object, [(fi, Integer) ],
[(<init>, [Integer], Void, Â([i], e9 )Ê),

(getI , [ ], Integer, Â([ ], e10 )Ê),
(swapI , [Integer], Integer, Â([i], e11 )Ê)

])

(3.2)

Figure 3.5: Jinja representation of the example Java program of Figure 3.4. Not showing the
declaration for the String class.

The hashCode and toString methods declared by Object are visible from A and B since
none of them override the methods. The getI and swapI method declared by B take prece-
dence over those declared by A when looking from B. The main method declared in A is not
visible from the Object class.

’C œ {Object, A, B},

P „ C sees hashCode : [ ] æ Integer = Native in Object

P „ C sees toString : [ ] æ Class String = Native in Object

P „ B sees swapI : [Integer] æ Integer = Â([i], e11 )Ê in B

¬P „ B sees swapI : [Integer] æ Integer = _ in A

P „ B sees getO : [ ] æ Class Object = Â([ ], e6 )Ê in A

P „ A sees main : [Class String] æ Void = Â([arg], e8 )Ê in A

¬P „ Object sees main : [Class String] æ Void = _ in A

(3.4)

The predicate for fields lookup collects all fields declared from a specified class upward
to the top of the hierarchy. Therefore the Object class has no fields, A has the two fields it
declares and B has the fields it declares plus those inherited from A.

P „ C has-fields FDTs ≠æ FDTs = fields P C

fields P Object = [ ]

fields P A = [((fi, A), Integer), ((fo, A), Class Object)]

fields P B = ((fi, B), Integer) · fields P A

(3.5)
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3.3.1 Java’s features not offered by Jinja

Jinja only models a subset of the Java language. It lacks of class member qualifiers
such as static, final, private, protected, and public. Classes in Jinja cannot declare or
implement interfaces as in Java using the interface and implements keywords. The original
Jinja semantics does not encompass any concurrent construction, the Java Memory Model
and the multithreading support are described in [71]. The latter work also extends Jinja with
arrays. Finally, heap garbage collection is out of the scope of Jinja, the maximum heap size
is undefined, but the dynamic allocation expression new C may reduce to the OutOfMemory
exception.

3.4 Siaam Global Semantics

We divide the Siaam semantics between the single-actor semantics, and the global se-
mantics providing isolation and communication mechanisms for the actors. The single-actor
semantics reduces the actor-local state and the global semantics maintains a global state not
directly accessible from the single-actor semantics. In particular, actors cannot read nor up-
date objects’ fields without consent of the global semantics, and communications are handled
by the global semantics as well. The single-actor semantics can emit actor actions in order
to request intervention of the global semantics when it has to perform an operation involving
the global state. Actor actions express global preconditions that are not always immediately
satisfiable or may even never be, therefore the single-actor semantics should offer more than
one action if it doesn’t want to block indefinitely. Most available actions come by pairs with
dual preconditions so there is always an alternative with satisfiable preconditions. For in-
stance, an actor willing to read an object’s field should expect the cases when it owns the
objects and when it doesn’t. To do so, the actor must offer two actions, each satisfied by a
different case. The first action would reduce to the state where the value is retrieved, and
the second one would reduce to an exception.

Hence, out of global context, the single-actor semantics is non-deterministic since for a
fixed actor-local state it may offer several actions, each one reducing to a different state.
However the semantics and the actions are designed such that once the global semantics is
introduced, there is at most one action satisfiable for a given actor at each step. A step
of the global semantics picks an actor offering a satisfiable action, applies the correspond-
ing single-actor reduction and updates the global state accordingly. Globally, picking an
actor is non-deterministic, in practice there would be some kind of scheduler enforcing an
interleaving policy. Nevertheless, once an actor has been chosen, there is only one reduction
carrying a satisfiable action, so the actor-local evaluation is completely deterministic after-all.

Section 3.4.1 presents the API of Siaam; in section 3.4.2 we define the global state and
section 3.4.3 gives the associated semantics. The available actor actions are described in
section 3.4.5 after some major functions related to transitive ownership verifications and
transfers are detailed in section 3.4.4. The semantics for native calls to the Siaam API are
detailed in section 3.4.6. We defer the addressing of the single-actor semantics to sections 3.5
for the source language and 3.6 for the virtual machine.
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3.4.1 Siaam Native API.

Actor-oriented operations accessing and updating the global state are not implementable
with the Java syntax. Instead of extending the Jinja language with specific expressions,
Siaam’s actor features are available through native methods of certain system classes and
hard-wired in the dedicated native semantics addressed subsequently in section 3.4.6. The
signatures for native methods defined by Siaam are shown in Figure 3.6. Actors are reified by
objects sub-classing the Actor class. The behaviour of an actor of class A ∞ı Actor is imple-
mented in its run method of signature: A.run([ ]) :: Void. When the start method is called on
an actor object for the first time, a new instance of the single-actor semantics starts executing
the body of run, isolated from the other concurrent actors of the system. Object.currentActor

returns a reference to the object representing the actor currently executing. Since Jinja lacks
of static methods, we make currentActor an instance method of Object that can be invoked
with any receiver. Objects of the special Mailbox class represent one-way communication
mailboxes. User classes are not allowed to declare subclasses of Mailbox and the class itself
doesn’t declare any field. The put and get methods respectively sends and receives a message.
There is a unique recipient actor associated to each mailbox that is set with setReceiver and
cannot be changed afterward. Finally, it is an error to send an active actor as part of a
message.
We also define a few exception classes and add them to the set of system exception classes;
the OwnerMismatch exception is thrown when an actor attempts to access, update or send
an object it doesn’t own, or when it isn’t allowed to configure a mailbox; ReceiverMismatch

is thrown when an actor isn’t allowed to retrieve a message from a mailbox.

Actor.start([ ]) :: Void

Object.currentActor([ ]) :: Class Actor

Mailbox.setReceiver([Class Actor]) :: Void

Mailbox.put([Class Object]) :: Void

Mailbox.get([ ]) :: Class Object

sys-xcpts © {NullPointer, ClassCast, OutOfMemory,

OwnerMismatch, ReceiverMismatch}

Figure 3.6: Signatures of native methods for Siaam actor-based concurrency

3.4.2 Global State.

The global state (xs, ws, ms, h), defined in equation (3.6), comprises four components: a
store of actors xs, an ownership relation ws, a store of mailboxes ms, and a shared heap h. The
projection functions acs, ows, mbs, shp return respectively the actors store, the ownerships
relation, the mailboxes store, and the shared heap component of the global state.
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type_synonym Õx state = Õx actors ◊ ownerships ◊ mailboxes ◊ heap
Õx actors = owner Ô Õx

ownerships = addr Ô owner

mailboxes = addr Ô (addr list ◊ owner option)

heap = addr Ô obj

obj = cname ◊ fields

fields = (vname ◊ cname) Ô val

(3.6)

Shared heap. The shared heap is a map from addresses to objects. Jinja’s objects (type
obj) are pairs (C , fs) of the object’s class name C and the fields table fs. A field table is a
map holding value (type val) for each field of an object, where fields are identified by pairs
(F , D) of the field’s name F and the name D of the declaring class.

Ownership relation. Objects belong to actors, which are represented by heap objects
as well. The ownership relation (type ownerships) is a map from addresses of objects to
the identifier of their respective owner. Although the identifier of an owner may simply
be the address of an actor object, we prefer to introduce the opaque owner type, which
will be used to denote owner-IDs. Owner identifiers (notation convention w) come with the
operations w2a :: owner ∆ addr and a2w :: addr ∆ owner associating exactly one unique
owner identifier to each address. We say an object of address a currently belongs to an owner
w if the ownership relation maps a to w, and symmetrically we say w owns the object at a.

Actors store. The actors store (type Õx actors) maps from actor owner-IDs to local-states
of parametric type Õx. Basically, if w is the owner-ID of an object reifying an actor, then xs w
is the actor-local state of this actor in the current single-actor semantics. The global state
type is parametrized by Õx so it may be instantiated for various single-actor semantics with
custom actor-local state definitions.

Mailboxes store. The store of mailboxes (type mailboxes) is a map from Mailbox objects
addresses to pairs of a messages queue and a receiver owner-identifier. The queue is a list of
addresses corresponding to starting references of pending messages.
The predicate is-initialized-mailbox ms a verifies that the object a is a mailbox associated
with a receiver actor in the store ms.

is-initialized-mailbox :: mailboxes ∆ addr ∆ bool

is-initialized-mailbox ms a = case ms a of None ∆ False

| Â(_, None)Ê ∆ False

| Â(_, Â_Ê)Ê ∆ True

(3.7)

3.4.3 Global Semantics.

We give a definition of the global semantics parametrized by a single-actor semantics
function r :: (Õm, Õx) single-semantics where Õm is the type for representing method bodies,
and Õx is the type for representing actor-local state. A reduction of the single-actor semantics
computed by r P w (x, h) wa (x Õ, hÕ) is written P, w „(x, h)≠wa!(x Õ, hÕ), meaning in program
P, the actor w reduces its local state x and the shared heap h to the local state x Õ and the
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Global

acs s w = ÂxÊ P, w „ (x, shp s) ≠wa! (x Õ, hÕ)
ok-act P s w wa upd-act P s w wa = (xsÕ, wsÕ, msÕ, _)

sÕ = (xsÕ(w ‘æ x Õ), wsÕ, msÕ, hÕ)

P „ s æ sÕ

Figure 3.7: Global semantics reduction rule.

shared heap hÕ, performing action wa :: Õx actor-action. The definition of the actor-action

type is delayed to Section 3.4.5.

type_synonym (Õm, Õx) single-semantics = Õm prog ∆ owner ∆
Õx ◊ heap ∆ Õx actor-action ∆
Õx ◊ heap ∆ bool

(3.8)

locale global-semantics = fixes r :: (Õm, Õx) single-semantics (_, _ „ (_, _) ≠_! (_, _)) (3.9)

The locale[13] notation is borrowed from HOL/Isabelle where it is used to define parametric
modules, which is exactly the purpose here. We instantiate a locale with an interpretation of
its free variables using the keyword interpretation. The global-semantics is interpreted twice
in this document, first with the definitions of Õx, Õm and r from the single-actor small steps
semantics and then with the definitions from the virtual machine semantics.

The reduction rule for the global semantics is shown in Figure 3.7. The judgment, written
P „ s æ sÕ, means in program P, global state s reduces to global state sÕ. Global reduces the
global state by applying a single step of the single-actor semantics for the actor of owner-ID
w. The shared heap h and the current local state x for w are retrieved from the global state.
Then if the actor can reduce to x Õ with new shared heap hÕ and perform the action wa, ok-act

tests the action precondition against s. If the actor action is satisfiable, upd-act applies the
effects of wa to the global state, yielding the new tuple of state components (xsÕ, wsÕ, msÕ, _)
where the heap is actually left unchanged. The new state is assembled from the new mailbox
store, the new ownership relation, the new heap from the single actor reduction and the new
actor store where the state for the actor is updated with its new local state. Later we will
instantiate the global semantics with a single-actor semantics r corresponding either to the
source language or the virtual machine.

3.4.4 Transitive ownership verification and transfer.

Siaam’s message-passing scheme relies on dynamic ownership verification and transfer
of arbitrary graph of objects. In this section, we present the two primitives handling the
verification and the transfer of ownership in Siaam.

Setup. In a program P, the function addr-fields P C returns the list of reference-typed
fields (F , D) that an object of type Class C carries, where F is the name of a field declared
in a superclass C ∞ı D.

addr-fields :: Õm prog ∆ cname ∆ (vname ◊ cname) list

addr-fields P C = let FDTs = fields P C
in map fst (filter (⁄fdt. snd fdt = (Class _)) FDTs)

(3.10)
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Given the heap h and the address a of an object, non-null-addrs P h a (3.11) produces the list
of possibly duplicated addresses contained in a’s fields that are not Null. The class name C
and the field table fs of a are retrieved from h. Then FDs is assigned with the result of calling
addr-fields with C . Each field declaration in FDs is mapped in the list vs with the value
(either Addr aÕ or Null) found in a’s field table at the corresponding slot. Elements of vs are
filtered so that remain only the non-Null address values in As. Finally the list of addresses
(type addr list) is obtained by destructing each element of As with the-Addr (Addr aÕ) = aÕ.
It is worth noting that non-null-addrs always returns the empty list when the passed address
refers to a Mailbox object since they don’t declare any field.

non-null-addrs :: Õm prog ∆ heap ∆ addr ∆ addr list

non-null-addrs P h a =
let Â(C , fs)Ê = h a;

FDs = addr-fields P C ;
vs = map (⁄fd. the (fs fd)) FDs;
As = filter (⁄v. v ”= Null) vs

in map the-Addr As

(3.11)

In the following HOL definitions, the predicate exists P xs verifies the existence of an
element of the list xs satisfying the predicate P; concat concatenates a list of lists, and
distincts reduces duplicated elements of a list.

Transitive ownership checking. The transitive ownership checking (3.12) is achieved by
transitive-owner-check P s w a, verifying that every object transitively reachable from the
root address a belongs to w according to the ownership relation in the current global state
s, provided there is a path in the shared heap from a to the object, that doesn’t comprise an
initialized mailbox.

transitive-owner-check :: Õm prog ∆ Õx state ∆ owner ∆ addr ∆ bool

transitive-owner-check P s w a = twc P s w [a] (dom (shp s) \ {a})

twc :: Õm prog ∆ Õx state ∆ owner ∆ addr list ∆ addr set ∆ bool

twc P (xs, ws, ms, h) w roots unreached =
let rootsÕ = filter (⁄ a . ¬ is-initialized-mailbox ms a) roots
in if exists (⁄a. ws a ”= ÂwÊ ‚ a2w a = w) rootsÕ then False

else let reached = distincts concat (map non-null-addrs rootsÕ) ;
newroots = filter unreached reached

in if |newroots| = 0 then True

else twc P (xs, ws, ms, h) w newroots (unreached \ set newroots)

(3.12)

The auxiliary, tail-recursing function twc explores the object graph from a and performs
the verification for each node. It takes the same arguments as transitive-owner-check, plus
the list of reached-but-not-yet-verified object addresses (roots :: addr list) and the set of
not-yet-reached addresses unreached :: addr set. Initially, the roots list comprises the root
address a and the unreached set contains every addresses in the domain of the heap but a; the
verification succeeds when the roots list is empty. twc maintains the invariant (set roots) fl
unreached = ÿ.

Each iteration verifies the roots either belong to w or are initialized mailboxes, and then
looks for new reachable objects to verify. First the function filters-out initialized mailboxes
roots, and verifies the ownership of the retained objects. If at least one of them doesn’t belong
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to w the function immediately returns False. If the object with the owner-ID matching the
current owner w is reached, the function returns False as well. Indeed, the checking must fail
if it can reach the current actor to prevent an active actor from transferring itself.

When all the roots have passed the checking, the addresses of objects directly reachable
from the roots are collected. Among these, it retains addresses of not-yet-reached objects
(appearing in unreached). The retained addresses form a new list of roots, yet unverified. An
empty list means the complete closure of the initial a root has been explored and successfully
verified and the function returns True. Otherwise twc recurses with the list of new unverified
roots and the set of unreached objects addresses where the new roots have been removed.

Termination of twc is ensured since at each iteration, either it returns False, or no new
root can be found in unreached and it returns True or else unreached strictly decreases.

Transitive ownership transfer. Assuming the graph of objects to be transferred has
already been checked by transitive-owner-check, transferring the ownership of the graph is
straightforward. The initial ownership relation is progressively updated as objects with an
ownership mismatching the target are encountered while exploring the graph. Since the graph
has been checked previously, we know that initially all the reachable objects belong to the
same owner, except the initialized mailboxes.
The application transitive-owner-transfer P s target a (3.13) transfers the ownership of every
object reachable from address a to the target owner, discarding initialized mailboxes. The
target owner may be None or some owner-ID.

The auxiliary function twt takes a non-empty list roots of addresses of objects to transfer.
Initially the list only contains a, unless it corresponds to an initialized mailbox or an object
already owned by the target. However the latter case never happens because we always
transfer ownership between different owner-IDs.

First the ownership relation ws is updated so that all the root objects maps to target in
wsÕ. Then the function collects the addresses of every objects directly reachable from these
roots and filters-out those already transferred to target and those corresponding to initialized
mailboxes. If no addresses remains, all the transferable objects have been transferred so the
function returns wsÕ. Otherwise twt recurses with the updated ownership relation and the
addresses list of newly reached and not-yet-transferred objects.

The roots list is never empty and all its elements refer to objects not belonging to target, so
at each iteration of twt at least one object of the heap is transferred to the target. Therefore
the termination of twt is ensured since the heap contains a finite set of objects.

transitive-owner-transfer :: Õm prog ∆ Õx state ∆ owner option ∆ addr ∆ ownerships

transitive-owner-transfer P s target a =
if (is-initialized-mailbox ms a ‚ ws a = target) then ows s else twt P s target [a]

twt :: Õm prog ∆ state ∆ owner option ∆ addr list ∆ ownerships

twt P (xs, ws, ms, h) target roots =
let wsÕ = ws(roots [ ‘æ] replicate |roots| target)

reached = distincts concat (map non-null-addrs roots) ;
newroots = filter (⁄ a . wsÕ a ”= target · ¬ is-initialized-mailbox ms a) reached

in if |newroots| = 0 then wsÕ

else twt P (xs, wsÕ, ms, h) target newroots

(3.13)
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datatype Õx actor-action = Silent

| NewObj cname addr

| OwnerCheck addr bool

| Start Õx addr

| StartFail addr

| SetReceiver addr owner

| SetReceiverFail addr

| Send addr addr

| SendFail addr

| Receive addr addr

| ReceiveFail addr

Figure 3.8: Actor actions syntax

3.4.5 Actor actions.

Siaam defines ten actor actions (Figure 3.8) plus the always-satisfiable action identified
by the Silent element. Actor actions allow expressing conditions and updates on the global
state from the single-actor semantics. When the global semantics make a step, it picks an
actor reduction with a satisfiable condition and updates the global state accordingly.

Informal overview. We first give an informal description of each actor action. The
NewObj C a updates the ownership relation to record the fact that the object of class
C , allocated at address a belongs to the current actor. The owner checking action Own-

erCheck a True requires that the current actor is the owner of the object at address a. Sym-
metrically, OwnerCheck a False is the predicate requiring that the object at address a doesn’t
belong to the current actor. The Start x a action starts the actor object of address a by call-
ing it’s run method within a new isolated local-state. x is employed to pass the actual initial
local-state of the actor, its concrete type differs in the source language and the bytecode, thus
it is parametrized by the Õx type variable. The dual exceptional action StartFail a expresses a
failure in the process of starting the actor at a. The SetReceiver a w action sets the receiver
of the mailbox at address a with the actor of owner identifier w. The dual exceptional action
SetReceiverFail a is satisfiable when the current actor would fail at configuring a receiver for
the mailbox a. The Send a aÕ action sends the message starting with the object of address
aÕ through the mailbox a. The dual exceptional action SendFail aÕ is available when the
current actor would fail at sending the message starting with aÕ. Finally, the Receive a aÕ

action receive the underspecified message starting with the object of address aÕ from the mail-
box at a. When receiving from a would fail, the exceptional action ReceiveFail a is satisfiable.

Each Siaam’s actor action is associated with a precondition evaluation function ok-act

and a global state update function upd-act (3.14). Both functions takes a global state s, the
owner-identifier w of the current actor, and the actor action issued. ok-act evaluates to a
boolean indicating whether the condition associated with the actor action is met. upd-act

computes an updated global state accordingly to the specified action.

ok-act :: Õm prog ∆ Õx state ∆ owner ∆ Õx actor-action ∆ bool

upd-act :: Õm prog ∆ Õx state ∆ owner ∆ Õx actor-action ∆ Õx state
(3.14)
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Silent action. As expected, the precondition for the Silent action always evaluates to True

and the update function returns the global state unmodified.

ok-act P s w Silent = True

upd-act P s w Silent = s
(3.15)

Object allocation. The NewObj C a action is always satisfiable, it has the effect of asso-
ciating address a with the current owner-ID in the ownership relation. When the new object
is a mailbox, the mailboxes store is updated to associate the couple of an empty message
queue and the undefined receiver to the new mailbox.

ok-act P s w (NewObj C a) = True

upd-act P (xs,ws,ms,h) w (NewObj C a) =
let wsÕ = ws(a ‘æ w) in

case C of Mailbox ∆ (xs, wsÕ, ms(a ‘æ ([ ], None)), h)
| _ ∆ (xs, wsÕ, ms, h)

(3.16)

Owner checking. The precondition for OwnerCheck a b starts by matching the current
owner-ID w with the actual owner of a recorded in the ownership relation ows s of the global
state. If both the result of the matching and the boolean b equal, then the precondition
evaluates to true, otherwise it evaluates to false.

ok-act P s w (OwnerCheck a b) = ((ows s a = ÂwÊ) = b)
upd-act P s w (OwnerCheck a b) = s

(3.17)

Actor start. The Start x a action is a little more complex: the current actor must withdraw
the ownership over the new actor’s private state starting from the object at address a. The
precondition is that the current actor owns every object reachable from a and is not itself
aliased in the message. The latter condition, verified by transitive-owner-check also avoid
attempts to start the current actor in case a2w a = w. The native calls semantics, presented
in the next section, has the responsibility to make sure the object pointed-to by a is indeed
an instance of the Actor class.

If the conditions are met, a new global state is computed by upd-act as following. The
ownership relation is updated so that the current actor withdraw its ownership over the
message starting at a, and transfers the ownership to the starting actor. A new entry is
created in the actor store that maps the owner-ID a2w a of the starting actor to the initial
state x.

The StartFail a action has the exact opposite preconditions as Start x a, and has no effect
on the global state.

ok-act P s w (Start x a) = transitive-owner-check P s w a
upd-act P (xs,ws,ms,h) w (Start x a) =

let wÕ = a2w a; wsÕ = transitive-owner-transfer P (xs, ws, ms, h) ÂwÕÊ a in
(xs(wÕ ‘æ x), wsÕ, ms, h)

(3.18)
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ok-act P s w (StartFail a) = ¬ transitive-owner-check P s w a
upd-act P s w (StartFail a) = s

(3.19)

Mailbox’ receiver. If the mailbox a belongs to the current owner w, the SetReceiver a wÕ

action is satisfiable. The update function sets the mailbox’s receiver with wÕ. a’s ownership is
switched to None so that any consecutive attempt to set the receiver for a will be unsatisfiable.
Note that the mailbox’s queue may already contains some messages, therefore the queue must
be preserved in the update of the mailboxes store. The dual action SetReceiverFail a has
indeed no effect on the state. Again, the native calls semantics verifies that a addresses an
instance of the Mailbox class.

ok-act P s w (SetReceiver a wÕ) = (ows s a = ÂwÊ)
upd-act P (xs,ws,ms,h) w (SetReceiver wÕ a) =

let wsÕ = ws (a := None);
msÕ = ms(a ‘æ (fst (the (ms a)), ÂwÕÊ))

in (xs, wsÕ, msÕ, h)

(3.20)

ok-act P s w (SetReceiverFail a) = ¬ (ows s a = ÂwÊ)
upd-act P s w (SetReceiverFail a) = s

(3.21)

Message emission. The Send amb amsg action requires that the current owner owns every
object reachable from the message starting address amsg, discarding initialized mailboxes.
If that prerequisite is satisfied, the ownership relation is updated so that every transferable
object of the message belongs to None. The starting address of the message is enqueued
in the message list of amb by simply updating the appropriate entry in the mailboxes store.
The dual action is satisfiable when at least one of the non-shared object reachable from amsg

doesn’t belong to the current owner. SendFail amsg has no side-effect on the global state.

ok-act P s w (Send amb amsg) = transitive-owner-check P s w amsg

upd-act P (xs,ws,ms,h) w (Send amb amsg) =
let wsÕ = transitive-owner-transfer P (xs, ws, ms, h) None amsg;

Â(msgs, rec)Ê = ms amb;
msÕ = ms(amb ‘æ (msgs @ [amsg]), rec)

in (xs, wsÕ, msÕ, h)

(3.22)

ok-act P s w (SendFail amsg) = ¬ transitive-owner-check P s w amsg

upd-act P s w (SendFail amsg) = s
(3.23)

Message reception. There are two prerequisites to message reception through the Re-

ceive amb amsg action. First the current owner-ID must match with amb’s receiver, and sec-
ond, the message queue associated with the mailbox shouldn’t be empty. The reception
failure action ReceiveFail only requires that the current owner and the mailbox’s receiver
differ. There is intentionally no behaviour defined when the current owner is the receiver but
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the mailbox is empty. In that case, none of the actions is satisfiable and the current actor is
simply blocked until a message is available in the mailbox’s queue. When the reception action
is satisfiable, the address at the head of the mailbox’s message queue is retrieved and the
queue is replaced with the rest of the messages. In the same time, ownership of the objects
reachable from the retrieved address is switched to match the current actor’s owner-ID.

ok-act P s w (Receive amb amsg) = let Â(msgs, rec)Ê = (mbs s) amb

in rec = ÂwÊ · msgs ”= [ ]
upd-act P (xs,ws,ms,h) w (Receive amb amsg) =

let Â(amsg · msgs, ÂwÊ)Ê = ms amb;
wsÕ = transitive-owner-transfer P (xs, ws, ms, h) ÂwÊ amsg

in (xs, wsÕ, ms(amb ‘æ (msgs, ÂwÊ)), h)

(3.24)

ok-act P s w (ReceiveFail amb) = ¬ (snd (the (mbs s amb)) = ÂwÊ)
upd-act P s w (ReceiveFail amb) = s

(3.25)

3.4.6 Native Calls Semantics.

We introduce the native calls semantics for the Siaam API methods presented in 3.4.1.
Each native method call executes in one atomic step of the form P, w „ Èa.M (vs), hÍ ≠wa!nc

Èvx, hÕÍ, meaning in program P the actor w can call the native method M on receiver object
a with parameters vs and heap h while the action wa is globally satisfiable. The call returns
the value or exception address vx :: native-ret, and updates the heap to hÕ. Native calls either
return a value v encoded Ret-Val v or throw an exception encoded Ret-Xcp a where a is the
address of the exception object. The type for the actor action wa is cname actor-action, thus
the actor start action is of the form Start C a where C is the class name of the started actor
object at address a.

type_synonym native-call = Õx prog ∆ owner ∆ addr ∆ mname ∆ val list

∆ heap ∆ cname actor-action ∆ native-ret ∆ heap ∆ bool

datatype native-ret = Ret-Val val | Ret-Xcp addr

_, _ „ È_._(_), _Í ≠_!nc È_, _Í :: native-call

(3.26)

Each of the next native rules carry one of the actor action introduced in section 3.4.5.
Most rules form couples of a normal execution reduction and an exceptional reduction for
the same premise. Obviously the native semantics is not deterministic per se, but it is care-
fully designed such that there is always at most one rule with a satisfiable actor action when
embedded in the context of the global semantics.

(CurrAct) The simplest rule implements the Object.currentActor() method, it returns the
address of the current actor obtained from the current owner-ID w. Notice that the rule can
always reduce since it carries the silent action.

CurrAct P, w „ Èa.currentActor([ ]), hÍ ≠Silent!nc ÈRet-Val (Addr (w2a w), hÍ

(Start/StartFail) The normal execution for the actor initiation returns unit and performs
the Start C a action with a being an object of class C sub-classing Actor. Both the source
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language and the bytecode must translate C into the appropriate representation of the initial
actor-state. The associated exceptional reduction carries the StartFail a action and throws
the OwnerMismatch exception.

Start
h a = Â(C , _)Ê P „ C ∞ı Actor

P, w „ Èa.start([ ]), hÍ ≠Start C a!nc ÈRet-Val unit, hÍ

StartFail
h a = Â(C , _)Ê P „ C ∞ı Actor

P, w „ Èa.start([ ]), hÍ ≠StartFail a!nc ÈRet-Xcp OwnerMismatch, hÍ

(SetRecv/SetRecevFail) The Mailbox.setReceiver(Class Actor) method normally returns
unit. Exceptionnaly it throws the OwnerMismatch exception warning that the current actor
is not allowed to setup the mailbox either because a receiver has already been chosen or the
ownership mismatches. In both rules the expected parameter for the method call is an Actor

object, otherwise the semantic blocks. This typing rule would typically be checked by the
compiler and the bytecode verifier.

SetRecv

h a = Â(Mailbox, _)Ê
h aÕ = Â(C , _)Ê P „ C ∞ı Actor

P, w „ Èa.setReceiver([Addr aÕ]), hÍ ≠SetReceiver a (a2w aÕ)!nc ÈRet-Val unit, hÍ

SetRecvFail

h a = Â(Mailbox, _)Ê
h aÕ = Â(C , _)Ê P „ C ∞ı Actor

P, w „ Èa.setReceiver([Addr aÕ]), hÍ ≠SetReceiverFail a!nc ÈRet-Xcp OwnerMismatch, hÍ

(Send/SendFail) Message emission (Mailbox.put) returns unit when the Send action is
satisfiable. Otherwise, it throws the OwnerMismatch exception when the SendFail action is
satisfied, meaning at least one object of the message does not belong to the current owner.

Send
h a = Â(Mailbox, _)Ê

P, w „ Èa.put([Addr aÕ]), hÍ ≠Send a aÕ
!nc ÈRet-Val unit, hÍ

SendFail
h a = Â(Mailbox, _)Ê

P, w „ Èa.put([Addr aÕ]), hÍ ≠SendFail aÕ
!nc ÈRet-Xcp OwnerMismatch, hÍ

(Recv/RecvFail) Successful message reception (Mailbox.get) is labeled with Receive a aÕ

where a is the address of a mailbox for which the current actor is the receiver, and aÕ receives
the address of the retrieved message. In this rule, aÕ corresponds to the address found at
the head of the a mailbox’ queue in the global state. The exceptional reduction carries
ReceiveFail a and throws a ReceiverMismatch exception, meaning the current actor is not
the receiver specified for the mailbox.

Recv
÷aÕ :: addr œ dom h h a = Â(Mailbox, _)Ê

P, w „ Èa.get([ ]), hÍ ≠Receive a aÕ
!nc ÈRet-Val (Addr aÕ), hÍ

RecvFail
h a = Â(Mailbox, _)Ê

P, w „ Èa.get([ ]), hÍ ≠ReceiveFail a!nc ÈRet-Xcp ReceiverMismatch, hÍ

3.5 Single-Actor small-steps semantics

Siaam’s single-actor small steps semantics reuses entirely the Jinja’s small step semantics,
and adds the ability to express actor actions within reductions. We already presented the
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abstract syntax of the source language and the type J-prog for the program representation
in section 3.3. First we overview the original state and semantics for the source language
in sections 3.5.1 and 3.5.2. Then in section 3.5.3 we show how this semantics is slightly
transformed to include actions and fit into the generic single-actor semantics as previously
defined in section 3.4.3.

3.5.1 Single-Actor state.

We keep the static semantics of the Jinja source language unmodified, in the literature it
is referred as state [63, §2.2.1], however we prefer the name J-state to avoid any confusion
with other state types we introduce in this document and because it also respects the naming
convention established in JinjaThreads. A single-actor state is a pair of a heap and a store of
local variables (type locals). The heap has exactly the same type as in the global semantics,
in fact the single-actor semantics doesn’t maintain a private heap, instead it receives the
shared heap and updates it at each step. A store is a map from variable names to values.
The naming conventions are h for a heap, l for a locals store, and s for an actor state – since
we don’t mix notations for global and local states there is no possible confusion about s. The
projection functions hp s and lcl s respectively return the heap and the store component of
the single-actor state.

type_synonym J-state = heap ◊ locals

locals = vname Ô val
(3.27)

3.5.2 Jinja’s source language semantics.

Jinja gives a small steps semantics with a judgment for the program P :: J-prog of the
form P „Èe, sÍ ! ÈeÕ, sÕÍ meaning the expression e :: expr with the state s :: J-state can reduce
to eÕ with the state sÕ. Expressions are reduced progressively at each step towards a final
value or an exception. The four forms of reduction rules are presented in Figure 3.9. The
normal evaluation reduction rules are divided between the rules reducing a sub-expression of
an expression and those reducing a whole expression to its final value. Whereas exceptional
reduction rules throw and propagate exceptions. The goal of the next paragraphs is to explain
the most representative or complex rules found in Jinja that are relevant to build Siaam. The
complete set of reduction rules can be found in appendix A.

Normal evaluation rules forms:

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èc . . . e . . . , sÍ ! Èc . . . eÕ . . . , sÕÍ
sub-expression reduction

P „ Èe, sÍ ! ÈeÕ, sÕÍ expression reduction

Exceptional evaluation rules forms:

P „ Èe, sÍ ! Èthrow eÕ, sÍ exceptional reduction

P „ Èc . . . throw e . . . , sÍ ! Èthrow e, sÍ exception propagation

(where c is an expression constructor)

Figure 3.9: The four forms of rules appearing in the original Jinja small steps semantics.
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Object allocation. New objects are allocated in the heap at a fresh addresses produced
by the function new-Addr :: heap ∆ addr option. The New rule initializes an object of class
C at the fresh address a. The list FDTs of fields ((F , D), T ) where F is the name of a field of
type T declared in class D (with C ∞ı D) is computed by has-fields. init-fields FDTs builds
the initial fields table (type fields) where each pair (F , D) maps to its default value of type
T . The default values are Bool False for the Boolean type, Intg 0 for Integer and Null for
the references. When no free address is available the exceptional reduction NewX throws
the OutOfMemory system exception.

New
new-Addr h = ÂaÊ P „ C has-fields FDTs

P „ Ènew C , (h, l)Í ! Èaddr a, (h(a ‘æ (C , init-fields FDTs)), l)Í

NewX new-Addr h = None

P „ Ènew C , (h, l)Í ! ÈTHROW OutOfMemory, (h, l)Í

Object field accesses. The notation for accessing an object’s field is e.F{D}, where e is
the expression reducing to the object’s address, and F is the name of the field declared in
class D. The class name is necessary to distinguish between fields declared with the same
name in several superclasses of the accessed object. If the object expression e reduces to
null (rules ReadN and WriteN) the NullPointer exception is thrown. To read a field, the
object’s fields table fs is retrieved from the heap and the value v is obtained by destructing
fs (F , D). To write v to the field a.F{D} , the heap object at a is updated so that its fields
table maps (F , D) to v.

Read
hp s a = Â(C , fs)Ê fs (F , D) = ÂvÊ

P „ Èa.F{D}, sÍ ! ÈVal v, sÍ

ReadN P „ Ènull.F{D}, sÍ ! ÈTHROW NullPointer, sÍ

Write
h a = Â(C , fs)Ê

P „ Èa.F{D} := Val v, (h, l)Í ! Èunit, (h(a ‘æ (C , fs((F , D) ‘æ v))), l)Í

WriteN P „ Ènull.F{D} := Val v, sÍ ! ÈTHROW NullPointer, sÍ

Method invocation. We now describe the various rules related to the reduction of a
method call expression of the form e.M (es). The first couple of rules reduces the sub-
expression e corresponding to the address of the object receiving the call. First, Robj is
applyied until e reduces to a value or an exception. In the latter case, the exceptional rule
RobjX reduces the whole remaining expression to an exception throwing expression.

Robj
P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èe.M (es), sÍ ! ÈeÕ.M (es), sÕÍ
RobjX P „ Èthrow e.M (es), sÍ ! Èthrow e, sÍ

In the third rule Rargs, the receiver has been completely reduced by Robj, and the
list of arguments es is being reduced. The notation [!] lifts ! to the reduction of a list
of expressions. Lists of expressions are reduced one element at a time, starting from the
first element and progressing towards the last one. The two rules for [!] are such that in
a single step, a single reduction is applied to the first non-final sub-expression of the list.
Rvalarg skips the values at the head of the list and Rexparg reduces the first encountered
sub-expression toward its final value. The process is repeated step after step until the whole
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list contains values, however if one of the sub-expressions reduces to an exception, the later
is immediately propagated and replaces the call expression (RargX).

Rargs
P „ Èes, sÍ[!]ÈesÕ, sÕÍ

P „ ÈVal v.M (es), sÍ ! ÈVal v.M (esÕ), sÕÍ

Rexparg
P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èe · es, sÍ[!]ÈeÕ · es, sÕÍ
Rvalarg

P „ Èes, sÍ[!]ÈesÕ, sÕÍ

P „ ÈVal v · es, sÍ[!]ÈVal v · esÕ, sÕÍ

RargX P „ ÈVal v.M (map Val vs @ (throw e · es
Õ)), sÍ ! Èthrow e, sÍ

When the receiver and all the arguments have been successfully reduced to respectively an
actual address and a list of values, Rcall inlines the invoke statement addr a.M (map Val vs)
with the method body’s expression body preceded by the parameters assignments. The blocks

function takes the lists of parameters names, types, and values and the called method’s
body expression, and produces the nested variable declaration blocks for each of the invoke
parameters:

blocks (V · Vs, T · Ts, v · vs, e) = {V : T ; V := Val v; blocks (Vs, Ts, vs, e)}

blocks ([ ], [ ], [ ], e) = e
(3.28)

In the case where the receiver sub-expression evaluates to null, the null pointer exception is
thrown (RcallX). Also note we adapt the Rcall rule for optional method bodies as defined in
J-prog. The case where C sees M is Native is deferred to the next section.

Rcall

hp s a = Â(C , fs)Ê
P „ C sees M : Ts æ T = Â(pns, body)Ê in D |vs| = |pns| |Ts| = |pns|

P „ Èaddr a.M (map Val vs), sÍ ! Èblocks (this · pns, Class D · Ts, Addr a · vs, body), sÍ

RcallX P „ Ènull.M (map Val vs), sÍ ! ÈTHROW NullPointer, sÍ

3.5.3 Single-Actor semantics

In this section we extend Jinja’s original source language semantics so it fits the generic
single-actor semantics expected by the global semantics. The modifications are mostly about
including the actor owner-ID and specifying the actor action within each reduction. We also
add rules to reduce calls to native methods.
The new reduction judgment is of the form P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ where w :: owner is
the current actor’s owner identifier, and wa :: J-mb actor-action is the action carried by
the reduction. Like in the original semantics, P is a program of type J-prog, e :: expr is
an expression and s :: J-state is an actor-local state. The general form of the normal and
exceptional reduction rules are thus adapted as following:

P, ww „ Èe, sÍ ≠ wawa ! ÈeÕ, sÕÍ

P, ww „ Èc . . . e . . . , sÍ ≠ wawa ! Èc . . . eÕ . . . , sÕÍ
sub-expression reduction

P, ww „ Èe, sÍ ≠ wawa ! ÈeÕ, sÕÍ expression reduction

P, ww „ Èe, sÍ ≠ wawa ! Èthrow eÕ, sÍ exceptional reduction

P, ww „ Èc . . . throw e . . . , sÍ ≠ SilentSilent ! Èthrow e, sÍ exception propagation



56 CHAPTER 3. FORMAL SPECIFICATION OF SIAAM

The sub-expression reductions are integrally preserved, they incur no modification but
the overridden judgment, the action wa flows unmodified from the premise to the conclusion
of each rule. Generally normal and exceptional expression reductions carry the silent action
Silent meaning they don’t require any particular condition nor specify any update of the
global semantics. These rules are strictly equivalent to the respective unlabeled Jinja rules.
Only the object allocation and the field access rules have specific actions.

Object allocation. The object allocation rule is labeled with the NewObj C a actor action,
so that when the global semantics picks this rule, it records the ownership relation between
the current actor w and the new object of class C allocated at address a.

New
new-Addr h = ÂaÊ P „ C has-fields FDTs

P, w „ Ènew C , (h, l)Í ≠ NewObj C aNewObj C a ! Èaddr a, (h ‘æ a(C , init-fields FDTs), l)Í

Object field accesses. The field access (Read) and assignment rules (Write), respec-
tively reading from and writing to a field of the object at address a, are now labeled with
the OwnerCheck a True action, requiring that the object at address a belongs to the current
actor w. We add the exceptional field access (ReadX) and assignment (WriteX) rules, la-
beled with the OwnerCheck a False, both throwing the OwnerMismatch exception to prevent
from reading or writing an object that do not belongs to the current owner.

Read
hp s a = Â(C , fs)Ê fs(F , D) = ÂvÊ

P, w „ Èa.F{D}, sÍ ≠ OwnerCheck a TrueOwnerCheck a True ! ÈVal v, sÍ

ReadX P, w „ Èa.F{D}, sÍ ≠ OwnerCheck a FalseOwnerCheck a False ! ÈTHROW OwnerMismatch, sÍ

Write
h a = Â(C , fs)Ê hÕ = h(a ‘æ (C , fs((F , D) ‘æ v)))

P, w „ Èa.F{D} := Val v, (h, l)Í ≠ OwnerCheck a TrueOwnerCheck a True ! Èunit, (hÕ, l)Í

WriteX P, w „ Èa.F{D} := Val v, (h, l)Í ≠ OwnerCheck a FalseOwnerCheck a False ! ÈTHROW OwnerMismatch, sÍ

Native method calls. Finally, Siaam introduces the CallNative reduction rule to handle
native calls in the small-steps semantics. Just like in Call, the rule reduces the method call
expression addr a.M (map Val vs) where a is an object of class C ; but C sees M is Native

meaning there is no actual expression defined for the body of M . Instead the expression in
the premise is reduced by an atomic step of the native calls semantics !nc defined in section
3.4.6.

CallNative

h a = Â(C , fs)Ê P „ C sees M : Ts æ T = Native in D

P, w „ Èa.M (vs), hÍ ≠wa!nc Èvx, hÕÍ
waÕ = native-wa2J wa eÕ = native-ret2J vx

P, w „ Èaddr a.M (map Val vs), (h, l)Í ≠waÕ
! ÈeÕ, (hÕ, l)Í

Figure 3.10: Native calls reduction.

The rule injects the call arguments and the heap into the native calls semantics and retrieves
the actor action, the new heap and the value returned by the native method. The function
native-wa2J rewrites the actor-action wa so that the actor-local state carried by the Start

action is adapted to the the source language representation (see upd-act). Native returned
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value Ret-Val v is translated to the value expression Val v, and native exception Ret-Xcp a
to Throw a.
native-wa2J :: J-prog ∆ cname actor-action ∆ (expr ◊ locals) actor-action

native-wa2J P wa = case wa of
(Start C a) ∆ let (D, _, _, m) = method P C run; Â(_, body)Ê = m

in Start (blocks ([this], [D], [a],body), empty) a
| _ ∆ wa

native-ret2J :: native-ret ∆ expr

native-ret2J Ret-Val v = Val v
native-ret2J Ret-Xcp a = Throw a

(3.29)

3.5.4 Actors interleaving.

Now we plug the single-actor small steps semantics into the global semantics. To this ex-
tend, we assign concrete types J-mb and (expr ◊ locals) to Õm and Õx in (Õm, Õx)single-semantics:

type_synonym J-semantics = (J-mb, (expr ◊ locals)) single-semantics =
J-prog ∆ owner ∆ (expr ◊ locals) ◊ heap ∆
(expr ◊ locals) actor-action ∆
(expr ◊ locals) ◊ heap ∆ bool

(3.30)

Then we provide the reduction function J-red-act of type J-semantics, which uses the single-
actor reductions from the small steps semantics.

J-red-act :: J-semantics

J-red-act P w (e, l) h wa (eÕ, l Õ) hÕ = P, w „ Èe, (l, h)Í ≠wa! ÈeÕ, (l Õ, hÕ)Í
(3.31)

Finally we instantiate the global semantics with J-semantics and the J-red-act single-actor
reduction function. The global start state for the program P and the main method M in
class C called with parameters vs is written J-start P C M vs. It comprises only one initiated
actor with the special owner-ID w0 . In the initial state, no mailboxes have been created. The
initial heap h0 contains every object reachable from vs, and the ownership relation ws0 is
populated accordingly so each object belongs to w0 . The supplied “this” pointer is set to
Null to emulate a call to a static method.

interpretation J-red : global-semantics J-red-act

J-start P C M vs =
let (D, Ts, T , m) = method P C M ; Âpns, bodyÊ = m;

e = blocks ( (this · pns), (Class D · Ts), (Null · vs), body)
in ([w0 ‘æ (e, empty)], ws0 , empty, h0 )

(3.32)

3.6 The Siaam Virtual Machine

3.6.1 Single-Actor Machine Model.

Our virtual machine reuses and extends the bytecode defined for the Jinja VM. Instruc-
tions of the bytecode are listed in Figure 3.11, where instructions with a modified operational
semantic are marked with ù and new ones are marked with ı. We modify the field access
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instructions GetField and PutFields so that an owner-check is performed to protect the
accessed object. The new instructions GetFieldOwned and PutfieldOwned are the alterna-
tives skipping the owner-checking operation. However these two instructions are restricted,
only the virtual machine can decide to replace an owner-checking access with its alternative
when it considers the verification is redundant or worthless. The Invoke instruction handles
native calls to the Siaam API methods, and the New instruction initializes the ownership of
allocated object with the current owner-ID.

The Siaam virtual machine reuses entirely the program representation of the Jinja VM. A
method body (msl, mxl, ins, xt) comprises the maximum operand stack size msl, the number
of local variables mxl not counting the the method’s parameters and the this pointer, the list of
instructions ins and the exception table xt. An exception table is a list of tuples (f, t, C , h, d)
describing a try/catch block in the method body. The try block protects instructions at
positions f Æ pc < t and catches exceptions of a subclass including C . The exception
handler catch block starts at h and d is the size of the operand stack the handler expects.

type_synonym jvm-mb = nat ◊ nat ◊ instr list ◊ ex-table

jvm-prog = jvm-mb prog

ex-table = (pc ◊ pc ◊ cname ◊ pc ◊ nat) list

(3.33)

The single-actor virtual machine state jvm-state comprises the exception flag, the heap
and the stack of call frames for the current actor. The exception flag is the address of the
last thrown and yet not caught exception. Each method invocation pushes a new call frame
containing the operand stack, the registers for local variables, the class and method names,
and the program counter indexing the method body’s instructions.

type_synonym jvm-state = xcpt-flag ◊ heap ◊ frame list

xcpt-flag = addroption

frame = opstack ◊ registers ◊ cname ◊ mname ◊ pc

opstack = val list

registers = val list

(3.34)

3.6.2 Operational Semantics.

We define the operational semantics of the Siaam single-actor VM in a functional style, for
consistency with the Jinja VM description. Like for the source language, the virtual machine
is defined by a single-actor semantics with actor actions. Later we instantiate the global
semantics and plug the single-actor VM semantics into it to obtain a multi-actors virtual
machine.
The Jinja VM makes one step of execution with the exec function taking a program and a
single-actor state and computing a new state. Again we adapt that function for the single-
actor operational semantics (3.35): Siaam’s exec function takes the owner-ID of the executing
actor, and returns a set of couples made of an actor-action and a single-actor state.

exec :: jvm-prog ∆ ownerowner ∆ jvm-state

∆ ((xcpt-flag ◊ frame list) actor-action ◊((xcpt-flag ◊ frame list) actor-action ◊ jvm-state ) set) set
(3.35)

Since the function doesn’t have access to the global state, it has to return the set of actions
the actor is willing to take, and the respective new state if these actions were to be taken.
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datatype instr =
Load nat load from register

| Store nat store into register
| Push val push a constant
| New cname ù create object on heap and associates to current owner
| Getfield vname cname ù owner-check object and then fetch field from it
| Putfield vname cname ù owner-check object and then set field in it
| GetfieldOwned vname cname ı fetch field from object, skip owner-check
| PutfieldOwned vname cname ı set field in object, skip owner-check
| Checkcast cname check if object is of class cname

| Invoke mname nat ù invoke instance method with nat parameters
| Return return from method
| Pop remove top element
| IAdd integer addition
| Goto int goto relative address
| CmpEq equality comparison
| IfFalse int branch if top of stack false
| Throw throw exception

Figure 3.11: Instructions of the virtual machine, with modified (ù) and added (ı) instructions.

Then the global semantics pick a satisfiable action among the set of offered alternatives and
updates the actor’s state accordingly. For most of the instructions, the function computes a
one-element set, comprising the Silent action and the successor local state, which is always
satisfiable. On the other hand, instructions performing an owner-checking operation offer two
alternatives: either the verification succeeds and the corresponding field access side-effect is
visible in the successor state, or ownership mismatches and an exception is flagged in the
successor state. Similarly, most native calls carry a not-always satisfiable action, thus the
exec function will offer both normal and exceptional continuations.

The single-actor execution function (Figure 3.12) returns the empty set only when the
actor’s call stack is empty, meaning w is in a final state. When the local state is flagged with
an exception, the silent action is offered, and the corresponding new local state is produced
with xcpt-step. The xcpt-step function looks for an exception handler in the current call
frame f that matches the class of the flagged exception a. If one is found, the operand stack
is adjusted to the size specified by the handler, and the program counter is updated to match
the handler’s first bytecode index. Otherwise the topmost frame is dropped and the previous
frame is flagged with the pending exception so it may be handled by a future execution step.
In normal conditions, the execution is delegated to exec-instr. Siaam’s version of exec-instr

is an adaptation of the original function in Jinja, where the current actor’s owner-ID w now
appears. Instead of returning a single local state, it now returns a set of action/state couples
following the exec specification.

3.6.3 Instructions execution

Now we give the complete description of exec-instr for instructions we modify or add. For
the other instructions, we simply reuse the original Jinja function (renamed jinja-exec-instr)
and encapsulate the result in a couple with the silent action. The parameters for exec-instr

are: the instruction I to execute, the program P, the current owner-ID w, the shared heap
h, the current frame’s compounds (operand stack stk, local variables loc, current method’s
class C0 and method name M0 , current program points pc) and the rest of the call frame
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exec P w (xcp, h, [ ]) = ÿ
exec P w (ÂaÊ, h, f · frs) = {(Silent, xcpt-step P a h f frs)}
exec P w (None, h, (stk, loc, C , M , pc) · frs) =

exec-instr (instrs-of P C M )[pc] P w h stk loc C M pc frs

exec-instr :: instr ∆ jvm-prog ∆ ownerowner ∆ heap ∆
opstack ∆ registers ∆ cname ∆ mname ∆ pc ∆ frame list ∆

((xcpt-flag ◊ frame list) actor-action ◊ jvm-state) set((xcpt-flag ◊ frame list) actor-action ◊ jvm-state) set

jinja-exec-instr :: instr ∆ jvm-prog ∆ heap ∆
opstack ∆ registers ∆ cname ∆ mname ∆ pc ∆ frame list ∆ jvm-state

Figure 3.12: Siaam execution

stack frs.

Object allocation. The object allocation instruction retrieve a free address of the heap
(new-Addr h), if the heap is out of addresses, a set comprising a single couple is returned,
where no particular actor-action is requested but the OutOfMemory exception is flagged in
the successive state. If address a is allocated, a new object of class C with all fields initialized
to default values is created by blank P C . The returned set has a unique couple made of the
NewObj C a action (always satisfiable) and the actor’s successor state where the heap has
been updated and a pushed on the operand stack.

exec-instr (New C ) P w h stk loc C0 M0 pc frs =
case new-Addr h of

None ∆ {(Silent, (Âaddr-of-sys-xcpt OutOfMemoryÊ, h, (stk, loc, C0 , M0 , pc) · frs))}
| ÂaÊ ∆ let hÕ = h(a ‘æ blank P C )

in {((NewObj C a), (None, hÕ, (Addr a · stk, loc, C0 , M0 , pc + 1) · frs))}

(3.37)

Object field accesses. The two instructions reading and writing an object’s field have
a common structure. The object’s reference is retrieved from the top of the operand stack
and Null-checked. If the reference is Null, a set with a single couple is returned, where the
NullPointer exception is flagged and no actor-action is requested. Otherwise the accessed
object must be owner-checked, thus two couples encoding the two possible outcomes of the
owner verification are returned. In the first one, the actor-action OwnerCheck a true specifies
that a belongs to w, and the side-effect of accessing the object’s field is visible in the associated
successor state. In the second couple, the actor-action OwnerCheck a false specified that a
is a foreign object, and the associated successor state is flagged with the OwnerMismatch

exception.
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exec-instr (Getfield F C ) P w h stk loc C0 M0 pc frs =
let v · stkÕ = stk; Addr a = v

in if v = Null then {(Silent, (Âaddr-of-sys-xcpt NullPointerÊ, h (stk, loc, C0 , M0 , pc) · frs))}
else let Â(D, fs)Ê = h a

in {(OwnerCheck a true, (None, h, (the (fs (F , C )) · stkÕ, loc, C0 , M0 , pc + 1) · frs)),
(OwnerCheck a false,

(Âaddr-of-sys-xcpt OwnerMismatchÊ, h, (stk, loc, C0 , M0 , pc) · frs))}

exec-instr (Putfield F C ) P w h stk loc C0 M0 pc frs =
let v · r · stkÕ = stk; Addr a = r

in if r = Null then
{(Silent, (Âaddr-of-sys-xcpt NullPointerÊ, h, (stk, loc, C0 , M0 , pc) · frs))}

else let Â(D, fs)Ê = h a; hÕ= h(a ‘æ (D, fs((F , C ) ‘æ v)))
in { (OwnerCheck a true, (None, hÕ, (stkÕ, loc, C0 , M0 , pc + 1) · frs)),

(OwnerCheck a false,
(Âaddr-of-sys-xcpt OwnerMismatchÊ, h, (stk, loc, C0 , M0 , pc) · frs))}

(3.38)

The alternative instructions GetfieldOwned F C and PutfieldOwned F C simply dele-
gate execution to jinja-exec-instr, passing the original instruction (Getfield F C or Put-

field F C ). The result from Jinja’s operational semantics is encapsulated in a couple with
the Silent action and returned in a set.

exec-instr (GetfieldOwned F C ) P w h stk loc C0 M0 pc frs =
{(Silent, jinja-exec-instr (Getfield F C ) P h stk loc C M pc frs)}

exec-instr (PutfieldOwned F C ) P w h stk loc C0 M0 pc frs =
{(Silent, jinja-exec-instr (Putfield F C ) P h stk loc C M pc frs)}

(3.39)

Method calls. Method invocation must differentiate between native and normal calls. If
the resolved method has a body Â(msl, mxl, ins, xt)Ê, a new frame is crafted with an empty
operand stack, the class and the name of the invoked method, a program counter set to zero,
and the register store containing from the lowest index to the highest: the receiver’s object
address r (this pointer), the call parameters ps in left-to-right order found in reverse order
at the top of the stack, and finally the arbitrary value replicated mxl times to initialize local
variable cells. The returned set is made of a single couple comprising the Silent action, an
empty exception flag, the shared heap and the call stack with the new frame at the top,
followed by the current frame assembled from the exec-instr parameters, and the rest of the
call frames.

exec-instr (Invoke M n) P w h stk loc C0 M0 pc frs =
let ps = rev (take n stk); r = stk [n]

in if r = Null then{(Silent, (Âaddr-of-sys-xcpt NullPointerÊ, h, (stk, loc, C0 , M0 , pc) · frs ))}
else let Addr a = r ; Â(C , _)Ê = h a; (D, Ts, T , m) = method P C M

in case m of Native ∆
{(native-wa2jvm P wa,

native-ret2jvm n hÕ stk loc C0 M0 pc frs vx)
| wa vx hÕ . (wa, vx, hÕ) œ exec-native P w a M ps h }

| Â(msl, mxl, ins, xt)Ê ∆ let f Õ = ([ ], [r ] @ ps @ replicate mxl arbitrary, D, M , 0)
in {(Silent, (None, h, f Õ · (stk, loc, C0 , M0 , pc) · frs))}

(3.40)

If the invoked method has a Native body, the function employs exec-native (Figure 3.13),
the functional implementation of the call-native presented in section 3.4.6. Like for the
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exec-native :: jvm-prog ∆ owner ∆ addr ∆ mname ∆ val list ∆ heap

∆ (actor-action ◊ native-ret ◊ heap)
exec-native P w a M vs h = case M of

currentActor ∆ {(Silent, Ret-Val (w2a w), h)}
| start ∆ let Â(C , _)Ê = h a

in { (StartFail a, Ret-sys-xcp OwnerMismatch, h),
(Start C a, Ret-Val unit, h) }

| setReceiver ∆ let Addr aÕ = hd vs
in { (SetReceiverFail a, Ret-sys-xcp OwnerMismatch, h),

(SetReceiver a (a2w aÕ), Ret-Val unit, h) }
| put ∆ let Addr aÕ = hd vs

in { (SendFail aÕ, Ret-sys-xcp OwnerMismatch, h),
(Send a aÕ, Ret-Val unit, h), }

| get ∆ { (ReceiveFail a, Ret-sys-xcp OwnerMismatch, h),
(Receive a aÕ, Ret-Val Addr aÕ, h) }

Figure 3.13: Native single step execution.

source language, the action and value returned by the native semantics must be translated
into the virtual machine representation. For each tuple (wa, vx, hÕ) returned by exec-native,
a new action/state couple is assembled. native-wa2jvm converts wa into the VM action
representation, just like native-wa2J does for the source language. native-ret2jvm creates a
new local state from the native return value or exception vx. If the native call returns a value
Ret-Val v, the function removes the n + 1 parameters from the operand stack, pushes the
return value v and increments the program pointer. Otherwise vx = Ret-Xcp a, and the new
local state is flagged with the exception address a.

native-wa2jvm P wa =
case wa of Start C a ∆

let (D, _, _, m) = method P C run; Â(_, body)Ê = m
in Start (None, [([ ], Addr a · replicate mxl arbitrary, D, run, 0)]) a

| _ ∆ wa

native-ret2jvm n h stk loc C0 M0 pc frs vx =
case vx of Ret-Val v ∆

(None, h, (v· drop (n + 1) stk, loc, C0 , M0 , pc + 1) · frs)
| Ret-Xcp a ∆ (ÂaÊ, h, (stk, loc, C0 , M0 , pc) · frs)

(3.41)

Other instructions. The execution of any other instruction I fallbacks to the default rule
which applies the original Jinja VM execution step (3.43). In this case, the result from jinja-

exec-instr is encapsulated in a couple with the silent action and returned by exec-instr in a
set, denoting there is a unique, unconditional, successive local state for the current actor.

exec-instr I P w h stk loc C0 M0 pc frs =
{(Silent, jinja-exec-instr I P h stk loc C0 M0 pc frs)}

(3.43)
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3.6.4 Virtual Machine Interleaving.

To instantiate the global semantics for the virtual machine, we first give a relational
notation of the exec function noted _, _ „ _ ≠_!jvm _:

(wa, sÕ) œ exec P w s

P, w „ s ≠wa!jvm sÕ

The single-actor semantics is instantiated with the concrete types jvm-mb for the method
body representation, and (xcpt-flag ◊ frame list) for the local state representation:

type_synonym jvm-semantics = (jvm-mb, (xcpt-flag ◊ frame list)) single-semantics =
jvm-prog ∆ owner ∆ (xcpt-flag ◊ frame list) ◊ heap

∆ (xcpt-flag ◊ frame list) actor-action

∆ (xcpt-flag ◊ frame list) ◊ heap ∆ bool

(3.44)

Then we provide the reduction function jvm-red-act of type jvm-semantics:

jvm-red-act :: jvm-semantics

jvm-red-act P w (xcp, frs) h wa (xcpÕ, frsÕ) hÕ = P, w „ (xcp, h, frs) ≠wa!jvm (xcpÕ, hÕ, frsÕ) (3.45)

The global semantics is instantiated with jvm-semantics and jvm-red-act. The initial global
state for the multi-actors virtual machine is written jvm-start P C M vs. It comprises a
single actor of owner-ID w0 with a local state where no exception is flagged, a single frame
in the call stack. The initial frame has an empty operand stack, the registers required for the
main method are initialized with the arbitrary value. The registers storing the parameters
for the main method are set with vs and Null for the this pointer to emulate a static method.
The initial program counter is set to index the first instruction of the method M visible in
D from C .

interpretation J-red : global-semantics jvm-red-act

jvm-start P C M vs =
let (D, Ts, T , m) = method P C M ; Â(msl, mxl, ins, xt)Ê = m;
in ([w0 ‘æ (None, [([ ], Null · vs @ replicate mxl arbitrary, D, M , 0)])], ws0 , empty, h0 )

(3.46)
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3.7 SIAAM isolation and formal proof

We formalize in this section the isolation property enforced by the Siaam abstract ma-
chine. The formalization and proof of the property have been conducted 1 with the Coq
proof assistant. We use excerpts from the Coq development to present the property and its
proof. The proof is not conducted directly using the operational semantics presented in the
previous sections, but instead on a formal actor model that abstracts away details from the
Java language. Hence, an actor is modeled just as a collection of local variables that can
hold base values or object references. The evolution of a configuration of actors sharing an
object heap is governed by rules that can be seen as abstractions of the global semantics rules
presented in the previous sections. We call “abstract SIAAM” this abstract model and its
rules of evolution.

3.7.1 Abstract SIAAM: Types

We make extensive use of a simple dictionary abstraction, called a table. A set, as
defined in the Coq standard library ListSet, is just a list of items.

Variable J : Type.
Variable A : Type.

Definition tentry := prod J A.
Definition table := set tentry.

We work mostly with well-formed tables, i.e. tables which associate a unique value to a given
index. In Coq:

Definition wf_table (t : table) : Prop := ’ (n : J) (v1 v2 : A),
set_In (n,v1) t æ

set_In (n,v2) t æ
v1 = v2.

Key operations on a table are updating and lookup, which are defined below (the term
Jeq_dec n m amounts to an equality check between indexes n and m).

Fixpoint up_table (n : J) (v : A)(t : table): table :=
match t with

| [] ∆ []
| (m,w)::ts ∆ if Jeq_dec n m

then (n, v) :: (up_table n v ts)
else (m,w):: (up_table n v ts)

end.

Fixpoint tlookup (n : J) (t : table) : option A :=
match t with

| [] ∆ None

| (m,v):: ts ∆ if Jeq_dec n m

then Some v

else tlookup n ts

end.

Basic types in abstract SIAAM are object references (addr), actor identifiers (aid), mail-
box identifiers (mid), object field identifiers (fid), local variable identifiers (vid), and message

1. The developments in Coq have been generously conducted by Jean-Bernard Stefani.
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identifiers (msgid). All these different sorts of identifiers in fact wrap up an integer (a nat),
to ensure we have a denumerable number of them at our disposal.

Inductive addr := mkaddr : nat æ addr.
Inductive fid := mkfid : nat æ fid.
Inductive vid := mkvid : nat æ vid.
Inductive aid := mkaid : nat æ aid.
Inductive mid := mkmid : nat æ mid.
Inductive msgid := mkmsgid : nat æ msgid

An object in abstract SIAAM is simply a table of pairs Èf, vÍ, where f is a field identifier,
and v is a value:

Definition object := table fid value.

A value can be either null (vnull), an integer (vnat), a boolean (vbool), an object reference,
an actor id or a mailbox id. The special value called mark (vmark) is used to formalize the
isolation property : it is simply a distinct constant value that marks the presence of a certain
piece of information in an actor or an object.

Inductive value : Type :=
| vnull : value

| vmark : value

| vnat : nat æ value

| vbool: bool æ value

| vadd: addr æ value

| vaid: aid æ value

| vmid : mid æ value.

We do not try in this formalization, compared to the more extensive Jinja specification, to
account for Java types. We just have a compatibility relation on values (vcompat) that is
later used to constrain what updates can take place within an object or an actor. Thus, one
may update a null value with any object reference, actor id or mailbox id, but not with a
boolean or an integer. The exact details of this compatibility relation are actually irrelevant
for the definition of the isolation property and its proof. It can just be seen as a place-holder
for typing information, should one envisage to refine the abstract SIAAM specification.

An actor in abstract SIAAM is simply construed as a set of pairs of variable ids coupled
with values, identified by an actor id. We have no explicit element in an actor state to
account for execution structures such as instruction stack or installed code. This in no way
restricts the generality of the abstract SIAAM model since any (such)denumerable local actor
state can be encoded using integer values. Contrary to the Jinja-based specification in the
preceding sections, actors (and mailboxes) are not objects in abstract SIAAM. This is just a
simplifying choice for the Coq development, which has no bearing on the isolation result.

Definition locals := table vid value.
Definition actor := tentry aid locals.

As in the previous specification based on Jinja, evolutions of a SIAAM system are modeled
as transitions between configurations. Configurations (type conf – called global states in
the preceding sections) are 4-tuples comprising: a set of actors (acs), an ownership table
documenting the ownership relation between objects and actors (ows), a set of mailboxes
(mbs), and a shared heap (shp):

Record conf : Type := mkcf { acs : actors;
ows : owners ;
mbs : mailboxes ;
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shp : heap }.

A heap is a table associating an object reference (addr) to an object. A mailbox is
essentially a queue of messages, owned by an actor. A message is just the association of a
message id and an object reference, the latter referencing in fact the root object of the graph
to be transferred as between a sender actor and a receiver actor, which owns the receiving
mailbox.

Definition actors := table aid locals.
Definition heap := table addr object.

Definition message := prod msgid addr.
Definition queue := list message.

Record mbox : Type := mkmb { own : aid ; msgs : queue}.
Definition mailboxes := table mid mbox.

Definition owners := table addr (option aid).

3.7.2 Abstract SIAAM : Transition rules

As mentioned above, evolutions of a SIAAM system are represented in abstract SIAAM
as transitions between configurations. Such transitions are governed by rules that mimic the
global transition rules in the Jinja-based specification described earlier, but do away with all
details pertaining to the Java language. Our abstract transition rules can be interpreted as
constraints that apply when a Siaam system evolves from one global state to another. In
other terms, transition rules in abstract SIAAM document under which conditions transitions
between configurations are possible.

We present each rule in turn and we comment on its relation with the corresponding
actor-action in the global reduction relation defined earlier in the Jinja-based specification.
The terms in the rules presented hereafter closely relates to the precondition function ok-act

and the update function upd-act defined earlier over the global system state.

Silent actions The rule Silent governs all state changes that can take place in an actor
that has no effect, and thus elicit no change, on other elements of a configuration (heap,
mailboxes, ownership table, or other actors).

Silent

Èa, l1Í œ (acs c1) l1 ≠æ l2
c2 = mkcf (up_actors a l2 (acs c1)) (ows c1)(mbs c1)(shp c1)

c1 ≠aæs c2

This rule abstracts the silent reductions of the single-actor semantics defined in the previous
sections, i.e. the rules that carry the Silent action and therefore do not request any pre-
condition nor impose any update on the global state. Such rule would have the form P, a „
((_, l1), shp c1)≠Silent!((_, l2), shp c1). The Silent rule also abstracts the reductions of the
global semantics where the picked action is a “failing” alternative, like SendFail, ReceiveFail

or StartFail. They all have preconditions on the global state, but these conditions are the
exact negation of their “succeeding” counter-part which are abstracted by the rules in the
next paragraphs. And more importantly, these actions do not require any update of the
global state (no change on other elements of a configuration than the local state of the actor
performing the transition).
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Notice that, in a transition c1 ≠aæs c2, we record the identifier a of the actor that is at
the origin of the transition. The same is true in all other transition rules below. We use this
information later on to formalize our isolation property.

In Coq, the rule is defined as follows (up_actors updates the actors table, and c1 =s a

∆ s2 is notation for reds c1 a c2):

Inductive reds : conf æ aid æ conf æ Prop :=
| reds_step : ’ (c1 c2 : conf)(a : aid)(l l’ : locals),

set_In (a,l) (acs c1) æ
action l l’ æ

c2 = mkcf (up_actors a l’ (acs c1)) (ows c1) (mbs c1) (shp c1) æ
c1 =s a ∆ c2

Transitions between locals, noted l1 ≠æ l2 in the rule above, are defined in turn by the follow-
ing rules (where vids_from_locals returns the set of indexes from a locals table, up_locals

updates a locals table, and the constructor mkcf creates a record with the elements passed
as parameters).

NwBool
i ”œ (vids_from_locals l1) l2 = l1 fi {Èi, vbool bÍ}

l1 ≠æ l2

NwNat
i ”œ (vids_from_locals l1) l2 = l1 fi {Èi, vnat nÍ}

l1 ≠æ l2

NwNull
i ”œ (vids_from_locals l1) l2 = l1 fi {Èi, vnullÍ}

l1 ≠æ l2

Compat
Èi, vÍ œ l1 Èj, wÍ œ l1 v_compat v w l2 = up_locals i w l1

l1 ≠æ l2

Forget
l2 µ l1

l1 ≠æ l2

The first three rules govern the creation of a new entry in an actor’s locals table. The fourth
rule governs the update of an actor’s local variable with a value taken from another local
variable. The last rule allows the deletion of an entry in an actor’s locals table.

In Coq, local actions are defined by:

Inductive action : locals æ locals æ Prop :=
| a_nwbool : ’ (l l’ : locals) (i : vid)(b : bool),

not (set_In i (vids_from_locals l)) æ
l’ = set_add Aeq_lentry (i, vbool b) l æ

action l l’
| a_nwnat : ’ (l l’ : locals) (i : vid)(n : nat),

not (set_In i (vids_from_locals l)) æ
l’ = set_add Aeq_lentry (i, vnat n) l æ

action l l’
| a_nwnull : ’ (l l’ : locals) (i : vid),

not (set_In i (vids_from_locals l)) æ
l’ = set_add Aeq_lentry (i, vnull) l æ

action l l’
| a_compat : ’ (l l’ : locals) (i j : vid) (vi vj : value),

set_In (i, vi) l æ set_In (j, vj) l æ
v_compat vi vj æ l’ = up_locals i vj l æ

action l l’
| a_forget : ’ (l l’ : locals), subset l’ l æ action l l’.
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Field read The rule FieldR governs the reading of a field f of an object o, whose reference
a is held in an actor local variable. Notice that the read operation is only allowed if the
referenced object belongs to the actor e doing the reading (condition Èa, Some eÍ œ (ows c1)).

FieldR

Èe, l1Í œ (acs c1) Èi, wÍ œ l1 Èj, vadd aÍ œ l1 Èa, oÍ œ (shp c1) Èf, vÍ œ o

Èa, Some eÍ œ (ows c1) v_compat w v l2 = up_locals i v l1
c2 = mkcf (up_actors e l2 (acs c1))(ows c1)(mbs c1)(shp c1)

c1 ≠eæfr c2

This rule abstracts the global semantics reduction picking the OwnerCheck a True action,
offered by a Read reduction of the single-actor semantics carrying the owner-ID of actor e

and performing read access to field f of the object o at address a.

In Coq :

Inductive redfr : conf æ aid æ conf æ Prop :=
| redfr_step : ’ (c1 c2 : conf)(e : aid)

(l1 l2 : locals)(i j : vid)
(v w : value) (a: addr)(o : object)(f: fid),

set_In (e,l1) (acs c1) æ set_In (i, w) l1 æ set_In (j,vadd a) l1 æ
set_In (a,o) (shp c1) æ set_In (f,v) o æ set_In (a, Some e) (ows c1) æ

v_compat w v æ l2 = up_locals i v l1 æ
c2 = mkcf (up_actors e l2 (acs c1)) (ows c1) (mbs c1) (shp c1) æ

c1 =fr e ∆ c2

Field write The rule FieldW governs the writing of a field f of an object o, whose reference
a is held in actor local variable. The write operation is only allowed if the referenced object
belongs to the actor e doing the writing.

FieldW

Èe, l1Í œ (acs c1) Èi, wÍ œ l1 Èj, vadd aÍ œ l1 Èa, oÍ œ (shp c1) Èf, vÍ œ o

Èa, Some eÍ œ (ows c1) v_compat w v

c2 = mkcf (acs c1) (ows c1) (mbs c1) (up_heap a (up_object f w o) (shp c1))
c1 ≠eæfw c2

The rule abstracts the global semantics reduction picking the OwnerCheck a True action,
offered by a Write reduction of the single-actor semantics carrying the owner-ID of actor e

and performing write access to field f of the object o at address a.

In Coq:

Inductive redfw : conf æ aid æ conf æ Prop :=
| redfw_step : ’ (c1 c2 : conf)(e : aid)

(l1 l2 : locals)(i j : vid)
(v w : value) (a: addr)(o : object)(f: fid),

set_In (e,l1) (acs c1) æ set_In (i, w) l1 æ
set_In (j,vadd a) l1 æ set_In (a,o) (shp c1) æ

set_In (f,v) o æ set_In (a, Some e) (ows c1) æ
v_compat v w æ
c2 = mkcf (acs c1) (ows c1) (mbs c1) (up_heap a (up_object f w o) (shp c1)) æ
c1 =fw e ∆ c2
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Actor creation The rule NewA governs the creation of a new actor.

NewA

Èe, leÍ œ (acs c1) Èi, wÍ œ le n ”œ aids_from_actors (acs c1)
(values_from_locals ln) µ (values_from_locals le)

k ”œ (vids_from_locals ln) Èm, mbÍ œ (mbs c1) v_compat w v

acs2 = up_actors e (up_locals i (vaid n) le)(acs c1)
an = Èn, up_locals k (vmid m) lnÍ

c2 = mkcf (acs2 fi {an}) (ows c1) (mbs c1) (shp c1)
c1 ≠eænwa c2

The rule abstracts the Start reduction of the native call semantics in response to a call
of the Actor.start() method, which offers the Start x an action. Where x is the initial state
for the new actor an.

Notice that in abstract SIAAM, a new actor is created with a reference to an existing
mailbox. This is just one possible scheme, adopted for its simplicity. The Jinja-based speci-
fication presented earlier adopts a different scheme by allowing an arbitrary initial state, but
which has no bearing on the isolation property. Indeed the actor creation in Siaam could
be divided in two phases, first create a new actor, allocates and initialize a new mailbox for
it, start the actor, and then pass the rest of the initial state to the new actor through that
mailbox.

In Coq:

Inductive rednwa : conf æ aid æ conf æ Prop :=
| rednwa_step : ’ (c1 c2 : conf)(e ne: aid) (m : mid)(mb : mbox)

(le lne: locals)(i k: vid)(w : value),
set_In (e,le) (acs c1) æ set_In (i, w) le æ

not (set_In ne (aids_from_actors (acs c1))) æ
subset (values_from_locals lne) (values_from_locals le) æ
not (set_In k (vids_from_locals lne)) æ
set_In (m, mb) (mbs c1) æ
v_compat w (vaid ne) æ
c2 = mkcf (set_add Aeq_actor (ne, (up_locals k (vmid m) lne))

(up_actors e (up_locals i (vaid ne) le) (acs c1)))
(ows c1) (mbs c1) (shp c1) æ

c1 =nwa e ∆ c2

Mailbox creation The rule NewM governs the creation of a new mailbox.

NewM

Èe, l1Í œ (acs c1) Èi, vÍ œ l1 n ”œ mids_from_mboxes (mbs c1)
v_compat v (vmid m) l2 = up_locals i (vmid m) l1

c2 = mkcf (up_actors e l2 (acs c1)) (ows c1) ((mbs c1) fi {Èm, mkmb e [ ]Í}) (shp c1)
c1 ≠eænwm c2

The rule abstracts the New rule of the single-actor semantics which offers the NewObj C m

action when the allocated object is an instance of class C and C is a sublcass of Mailbox.
In Coq:

Inductive rednwm : conf æ aid æ conf æ Prop :=
| rednwm_step : ’ (c1 c2 : conf)(e : aid) (m : mid)

(l1 l2: locals)(i: vid)(v: value),
set_In (e,l1) (acs c1) æ set_In (i, v) l1 æ

not (set_In m (mids_from_mboxes (mbs c1))) æ
v_compat v (vmid m) æ l2 = up_locals i (vmid m) l1 æ

c2 = mkcf (up_actors e l2 (acs c1))
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(ows c1)
(set_add Aeq_mbentry (m, mkmb e []) (mbs c1))
(shp c1) æ

c1 =nwm e ∆ c2

Object creation The rule NewO governs the creation of new object.

NewO

Èe, l1Í œ (acs c1) Èi, vÍ œ l1 a ”œ addrs_from_owners (ows c1)
(values_in_table o) µ (values_from_locals l1)

v_compat v (vadd a) l2 = up_locals i (vadd a) l1
c2 = mkcf (up_actors e l2 (acs c1)) ((ows c1) fi {Èa, Some eÍ}) (mbs c1) ((shp c1) fi {Èa, oÍ})

c1 ≠eænwo c2

The rule abstracts the New rule of the single-actor semantics which offers the NewObj C a

action when the allocated object is an instance of class C and C is not a subclass of Mailbox.
In Coq:

Inductive rednwo : conf æ aid æ conf æ Prop :=
| rednwo_step : ’ (c1 c2 : conf)(e : aid) (a : addr)(o:object)

(l1 l2: locals)(i: vid)(v : value),
set_In (e,l1) (acs c1) æ set_In (i, v) l1 æ

not (set_In a (addrs_from_owners (ows c1))) æ
subset (values_in_table fid value Aeq_value o)(values_from_locals l1) æ
v_compat v (vadd a) æ l2 = up_locals i (vadd a) l1 æ

c2 = mkcf (up_actors e l2 (acs c1))
(set_add Aeq_oentry (a,Some e) (ows c1))
(mbs c1)
(set_add Aeq_sentry (a,o) (shp c1)) æ

c1 =nwo e ∆ c2

Message send The rule Snd governs the emission of a message. The function trans_owner_check

verifies that all the objects reachable from object reference a have the same given owner (here
e) in the designated ownership table (here ows c1). The function trans_owner_update updates
the ownership table to set the owner of all the objects reachable from a to the same owner
(here None).

Snd

Èe, lÍ œ (acs c1) (vadd a) œ (values_from_locals l)
trans_owner_check (shp c1) (ows c1) (Some e) a = true

Èmi, mbÍ œ (mbs c1) ms ”œ (msgids_frommbox mb)
trans_owner_update (shp c1) (ows c1) None a = Some owns

mbÕ = mkmb (own mb) (Èms, aÍ :: (msgs mb))
c2 = mkcf (acs c1) owns up_mboxes mi mbÕ (mbs c1) (shp c1)

c1 ≠eænwo c2

The rule abstracts the reduction of the Send mi a action, offered when a native call
to Mailbox.put() is reduced by the single-actor semantics (Send rule of the native calls
semantics). In particular the trans_owner_check and trans_owner_update function correspond
to the transitive-owner-check and transitive-owner-transfer functions in the Siaam formal
specification.

In Coq:

Inductive redsnd : conf æ aid æ conf æ Prop :=
| redsnd_step : ’ (c1 c2 : conf)(e : aid) (a : addr)
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(l : locals) (ms: msgid)(mi: mid)
(mb mb’: mbox) (owns : owners),

set_In (e,l) (acs c1) æ
set_In (vadd a) (values_from_locals l) æ
trans_owner_check (shp c1) (ows c1) (Some e) a = true æ
set_In (mi,mb) (mbs c1) æ
not (set_In ms (msgids_from_mbox mb)) æ
Some owns = trans_owner_update (shp c1) (ows c1) None a æ
mb’ = mkmb (own mb) ((ms,a)::(msgs mb)) æ
c2 = mkcf (acs c1) owns (up_mboxes mi mb’ (mbs c1)) (shp c1) æ
c1 =snd e ∆ c2

Message receive The rule Rcv governs the reception of a message. The function lasto

retrieves the first message in a queue (the last one in the list that forms a queue, since
message are in-queued at the head of the queue list). The function removelast removes the
last message of a queue.

Rcv

Èe, l1Í œ (acs c1) Èmi, mbÍ œ (mbs c1) Èi, vÍ œ l1
(own mb) = e lasto (msgs mb) = Some m

mbÕ = mkmb (own mb) (removelast (msgs mb))
trans_owner_update (shp c1) (ows c1) (Some e) (snd m) = Some owns

v_compat v (vadd (snd m)) l2 = up_locals i (vadd (snd m)) l1
c2 = mkcf (up_actors e l2 (acs c1)) owns up_mboxes mi mbÕ (mbs c1) (shp c1)

c1 ≠eærcv c2

The rule abstracts the reduction of the global state where the picked action is a message
reception from mailbox mi: Receive mi (snd m), where snd m is the address of the top object
of the message.

In Coq:

Inductive redrcv : conf æ aid æ conf æ Prop :=
| redrcv_step : ’ (c1 c2 : conf) (e : aid) (m : message)

(l1 l2: locals) (mb mb’: mbox) (mi : mid)
(owns : owners)(i : vid)(v : value),

set_In (e,l1) (acs c1) æ
set_In (mi,mb) (mbs c1) æ
set_In (i,v) l1 æ
(own mb) = e æ

Some m = lasto (msgs mb) æ
mb’ = mkmb (own mb) (removelast (msgs mb)) æ
Some owns = trans_owner_update (shp c1) (ows c1) (Some e) (snd m) æ
v_compat v (vadd (snd m)) æ
l2 = up_locals i (vadd (snd m)) l1 æ
c2 = mkcf (up_actors e l2 (acs c1)) owns (up_mboxes mi mb’ (mbs c1)) (shp c1)

æ
c1 =rcv e ∆ c2

3.7.3 Isolation property

The SIAAM model ensures that the only means of information transfer between actors
is message exchange. We can formalize this isolation property using mark values. We call
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an actor a clean if its local variables do not hold a mark, and if all objects reachable from
a and belonging to a hold no mark in their fields. An object o is reachable from an actor
a if a has a local variable holding o’s reference, or if, recursively, an object o’ is reachable
from a which holds o’s reference in one of its fields. The isolation property can now be
characterized as follows: a clean actor in any configuration remains clean during an evolution
of the configuration if it never receives any message.

The theorem that formalizes this intuition is expressed as follows in Coq:

Theorem ac_isolation : ’ (c1 c2 : conf) (a1 a2: actor),
wf_conf c1 æ

set_In a1 (acs c1) æ
ac_clean (shp c1) a1 (ows c1) æ

c1 =@ (fst a1) ∆ú c2 æ
Some a2 = lookup_actor (acs c2) (fst a1) æ
ac_clean (shp c2) a2 (ows c2).

The theorem states that, in any well-formed configuration c1, an actor a1 which is clean,
expressed by ac_clean (shp c1) a1 (ows c1), remains clean in any evolution of c1 that does
not involve a reception by a1, which is expressed as c1 =@ (fst a1) ∆ú c2 and ac_clean (shp

c2) a2 (ows c2), where a2 is the descendant of actor a1 in the evolution.
The relation ≠@ aæú, which represents configuration evolution that does not involve a

reception by the actor identified by a, is defined as the reflexive and transitive closure of
the relation ≠@ aæ, itself defined as the smallest relation satisfying the following rules of
inference:

c1 ≠eæx c2 x ”= rcv

c1 ≠@ aæ c2

c1 ≠eærcv c2 e ”= a

c1 ≠@ aæ c2

In Coq, relation ≠@ aæ is defined as follows:

Inductive mred : aid æ conf æ conf æ Prop :=
| mred_silent : ’ (c1 c2 : conf) (e a: aid),

c1 =s e ∆ c2 æ c1 =@ a ∆ c2

| mred_fread : ’ (c1 c2 : conf)(e a: aid), c1 =fr e ∆ c2 æ c1 =@ a ∆ c2

| mred_fwrite : ’ (c1 c2 : conf)(e a: aid), c1 =fw e ∆ c2 æ c1 =@ a ∆ c2

| mred_newact : ’ (c1 c2 : conf)(e a: aid), c1 =nwa e ∆ c2 æ c1 =@ a ∆ c2

| mred_newmbox : ’ (c1 c2 : conf)(e a: aid), c1 =nwm e ∆ c2 æ c1 =@ a ∆ c2

| mred_newobj : ’ (c1 c2 : conf)(e a: aid), c1 =nwo e ∆ c2 æ c1 =@ a ∆ c2

| mred_send : ’ (c1 c2 : conf)(e a: aid), c1 =snd e ∆ c2 æ c1 =@ a ∆ c2

| mred_rcv : ’ (c1 c2 : conf)(e a: aid), e ”= a æ c1 =rcv e ∆ c2 æ c1 =@ a ∆ c2

The cleanliness of an actor is defined as follows in Coq:

Definition obj_clean (o : object) : Prop :=
’ (f : fid)(v: value), set_In (f,v) o æ v ”= vmark.

Definition addr_clean (h : heap) (a : addr) : Prop :=
’ (o : object), set_In (a,o) h æ obj_clean o.

Definition trans_clean (h : heap) (a: addr) (o : aid) (owns : owners) : Prop :=
’ (b : addr), oreachable h a b o owns æ addr_clean h b.

Definition loc_clean (h : heap)(l: locals)(o:aid)(owns: owners): Prop :=
’ (i: vid)(v:value),

set_In (i,v) l æ
v ”= vmark · (’ (a:addr), v = vadd a æ trans_clean h a o owns).
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Definition ac_clean (h : heap)(a: actor)(owns:owners): Prop :=
loc_clean h (snd a) (fst a) owns.

The assertion oreachable h a b o onws is true, in the context of heap h and ownership
relation owns, for two object references a and b if the object referenced by b is reachable
from a by a chain of objects that all belong to the same actor identified by o. The predicate
oreachable is defined as the smallest one satisfying the following inference rules:

Èa, Some oÍ œ owns

oreachable h a a o owns

Èa, Some oÍ œ owns ofield h a b

Èb, Some oÍ œ owns oreachable h b c o owns

oreachable h a c o owns

Its definition in Coq is as follows:

Inductive oreachable : heap æ addr æ addr æ aid æ owners æ Prop :=
| or_refl : ’ (h : heap)(a : addr)(o : aid)(owns : owners),

set_In (a,Some o) owns æ
oreachable h a a o owns

| or_trans : ’ (h : heap)(a b c: addr)(o : aid)(owns : owners),
set_In (a,Some o) owns æ

ofield h a b æ
set_In (b,Some o) owns æ

oreachable h b c o owns æ
oreachable h a c o owns.

The assertion ofield h a b merely states that, in the context of heap h, object reference b

appears as a value in a field of the object referenced by a. In Coq, this is formalized as :

Definition ofield (h : heap) (s a : addr) : Prop :=
(÷ (o : object), set_In (s,o) h · (÷ (f : fid), In (f, vadd a) o)).

The theorem ac_isolation is proved first by proving the invariance of well-formedness for
configurations. This is expressed as follows in Coq:

Theorem red_preserves_wf : ’ (c1 c2 : conf),
c1 ∆ c2 æ wf_conf c1 æ wf_conf c2.

The well-formedness of a configuration is defined as follows:

Definition wf_conf (c : conf) : Prop :=
wfc_heap (shp c)

· wf_owners (ows c)
· wf_mboxes (mbs c)
· wf_actors (acs c)
· consistent_heap_owners (shp c) (ows c)
· consistent_mboxes_actors (mbs c) (acs c)
· consistent_mboxes_heap (mbs c) (shp c)
· consistent_heap_actors (shp c) (acs c).

The different predicates appearing in the clauses above are defined as follows:

Definition wf_heap (h : heap) : Prop := wf_table addr object h.

Definition complete_heap (h : heap) : Prop :=
’ (a b: addr) (o : object),

set_In (a,o) h æ
set_In b (addrs_in_fields o) æ
set_In b (addrs_from_heap h).
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Definition wfc_heap (h : heap) : Prop := wf_heap h · complete_heap h.

Definition wf_actors (acts : actors) : Prop := wf_table aid locals acts.

Definition wf_owners (owns : owners) : Prop := wf_table addr (option aid) owns.

Definition wf_mboxes (mbxs : mailboxes) : Prop := wf_table mid mbox mbxs.

Definition consistent_mboxes_actors (mbs : mailboxes) (acts : actors) : Prop :=
subset (aids_from_mboxes mbs) (aids_from_actors acts).

Definition consistent_heap_owners (h : heap) (owns : owners) : Prop :=
subset (addrs_from_heap h) (addrs_from_owners owns).

Definition consistent_mboxes_heap (mbs : mailboxes) (h : heap) : Prop :=
subset (addrs_from_mboxes mbs) (addrs_from_heap h).

Definition consistent_heap_actors (h : heap) (acs : actors) : Prop :=
subset (addrs_from_actors acs) (addrs_from_heap h).

Notice that the well-formedness of the ownership table in a configuration c, expressed by the
clause wf_owners (ows c), ensures that in a well-formed configuration there is only one owner
for a given object.

The theorem red_preserves_wf is proved by induction on the derivation of the asser-
tion c1 ∆ c2. To prove the different cases, we rely mostly on simple reasoning with sets,
and a few lemmas characterizing the correctness of table manipulation functions and of the
trans_owner_update function.

Using the invariance of well-formedness for configurations, theorem ac_isolation is proved
by induction on the derivation of the assertion c1 =@ (fst a1) ∆ú c2. To prove the different
cases, we rely on a few lemmas dealing with reachability and cleanliness, for instance Lemma
oreachable_up_object_addr, which is part of a set of lemmas that clarify how reachability
evolves when the shared heap is modified, or Lemma clean_values_upobject_clean, which
states that writing a clean value does not alter the cleanliness of other values in a configura-
tion.

Lemma oreachable_up_object_addr :
’ (h1 h2 : heap)(a b c x: addr)(oa : object)

(f : fid) (o : aid) (owns:owners),
wfc_heap h1 æ set_In (a,oa) h1 æ
h2 = up_heap a (up_object f (vadd c) oa) h1 æ
oreachable h2 b x o owns æ

(oreachable h1 b a o owns · oreachable h1 c x o owns) ‚ (oreachable h1 b x o owns).

Lemma clean_value_upobject_clean :
’ (h1 h2 : heap)(a : addr)(oa : object)(v : value)

(f : fid) (o : aid) (owns:owners),
wfc_heap h1 æ value_clean h1 v o owns æ

set_In (a,oa) h1 æ
h2 = up_heap a (up_object f v oa) h1 æ
value_clean h2 v o owns.

The last theorem, theorem live_mark, is a liveness property that expresses that informa-
tion, in particular marks, can flow between actors during execution. In other terms, it shows
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that the isolation property is not vacuously true. In Coq:

Theorem live_mark : ÷ (c1 c2 : conf)(ac1 ac2 : actor),
c1 ∆ú c2 · set_In ac1 (acs c1) · ac_clean (shp c1) ac1 (ows c1)

· Some ac2 = lookup_actor (acs c2) (fst ac1) · ac_mark (shp c2) ac2 (ows c2).

The proof of the theorem is simple, it consists in exhibiting configurations meeting the con-
ditions. The one used in the proof is given below as a set of Coq definitions. It consists of
three configurations c1, c2, c3 with two actors, identified by e1 and e2, that exchange a sin-
gle message bearing a marked object oa with a single field f which bears a vmark value. We
have ac_clean h ac2 ow1, ac_mark h ac3 ow3, fst ac2 = e2, fst ac3 = e3, cf1 =snd e1 ∆ cf2

and cf2 =rcv e2 ∆ cf3.

Definition a: addr := mkaddr 1.
Definition f : fid := mkfid 1.
Definition oa : object := [(f, vmark)].
Definition h: heap := [(a,oa)].
Definition mi : msgid := mkmsgid 1.
Definition m : message := (mi, a).
Definition e1 : aid := mkaid 1.
Definition e2 : aid := mkaid 2.
Definition mb1 : mbox := mkmb e2 [].
Definition mb2 : mbox := mkmb e2 [m].
Definition i : vid := mkvid 1.
Definition j : vid := mkvid 2.
Definition l1 : locals := [(i, vadd a)].
Definition l2 : locals := [(j,vnull)].
Definition l3 : locals := [(j,vadd a)].
Definition ac1 : actor := (e1, l1).
Definition ac2 : actor := (e2,l2).
Definition ac3 : actor := (e2, l3).
Definition ow1 : owners := [(a, Some e1)].
Definition ow2 : owners := [(a, None)].
Definition ow3 : owners := [(a, Some e2)].
Definition acts1 : actors := [ac1, ac2].
Definition acts2 : actors := [ac1, ac3].
Definition mbi : mid := mkmid 1.
Definition mbs1 : mailboxes := [(mbi, mb1)].
Definition mbs2 : mailboxes := [(mbi, mb2)].
Definition cf1 : conf := mkcf acts1 ow1 mbs1 h.
Definition cf2 : conf := mkcf acts1 ow2 mbs2 h.
Definition cf3 : conf := mkcf acts2 ow3 mbs1 h.
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4.1 Introduction

In this chapter we modify the JikesRVM, a research-driven Java Virtual Machine, in order
to implement ownership-based isolation. We add a set of core primitives supplying the own-
ership machinery, which is then used to build trusted APIs. The Siaam actors programming
model is available as a trusted API directly inspired by the native API proposed in the formal
specification. We also developed other trusted APIs bringing ownership-based isolation to
existing actors frameworks. Our work is not a basic prototype, we focused on performance op-
timization as often as possible, we think it worth the effort since the original virtual machine
competes with industrial ones as a testbed for various state-of-the-art techniques. We discuss
solutions to support object immutability, static variables and enumerated types, which have
mostly not been considered by previous works on safe actor-based programming models.

4.1.1 JikesRVM

JikesRVM is a Java virtual machine written almost exclusively in Java, with the minimal
bootstrapping features written in C. It comprises a class loader and two just-in-time compilers
for transforming bytecode to either baseline or optimized native machine code. The baseline
compiler performs a straightforward translation of the bytecode, that can be considered as
“obviously correct”. The optimizing compiler, on the other hand, transforms the bytecode
through various intermediate representations, performing optimizations at each phase. Jikes
also comes with an adaptive optimization system (AOS), that identifies “hot-spots” as the
code is executed and selects recompilation plans to be performed progressively. The memory
management, including several allocator and garbage collector implementations is supplied
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by the Memory Manager Toolkit (MMTk). Finally, the Magic API provides low-level func-
tionalities that wouldn’t be possible to achieve using pure Java. Typical use of Magic is
for accessing raw process memory through arbitrary pointers arithmetic, invoking operating
system calls, or specifying “uninterruptible” sections of code.

4.1.2 Outline

Our modified Jikes virtual machine comprises a set of core features providing the raw
ownership mechanisms that are combined into trusted APIs. Core features alone cannot
enforce isolation, thus their usage is restricted to the implementation of high-level trusted
frameworks embedded in the virtual machine. Trusted code must be carefully written so it
cannot be exploited by malicious bytecode in order to violate the isolation property. The
Java standard library itself is trusted as long as it doesn’t manipulate any core primitive. In
these conditions, dynamically loaded application code is trusted in its turn since it can only
link with trusted parts of the VM.

Using the core primitives, we built the trusted Siaam actor-based programming model
as specified in section 3. We also wrote a “fully user-land” implementation of the Actor-
Foundry API on top of the Siaam actor programming model, which can be trusted in its
turn. Finally we implemented a trusted event-based actor programming model on top of the
core primitives. This last model can dispatch thousand of lightweight actors over pools of
threads, which enables to build high-level APIs similar to Kilim or Akka. For that matter, we
use this base to supply a Kilim-like programming model. We believe the core primitives are
versatile enough to support other actor-based frameworks such as Scala’s actors and Akka
that currently lack isolation mechanisms and must rely on developers following guidelines.

The virtual machine accepts any standard Java bytecode. Classes declaring mutable
static fields and the usage of threads are both serious threats to the memory isolation and
therefore should be avoided. Apart from these legitimate limitations, any legacy program or
library supported by the JikesRVM is also supported by our modified version and will benefit
from the ownership-based isolation. Most importantly, developers are not asked to annotate
their code neither shall they post-process class files with any code weaver. Instead, the
whole isolation intelligence is performed automatically at runtime. Owner-checking read and
write barriers[94] are seamlessly generated on-the-fly while the bytecode is being compiled.
Furthermore, the barriers overhead is significantly reduced as redundant or worthless owner-
checks are optimized-out by a fast data-flow analysis (Chapter 5).

4.2 Virtual Machine’s core

At the heart of the virtual machine stand a few key concepts. Each heap object has an
owner, which is the address of another object. Each thread of execution has an owner-ID,
which is a reference to an object implementing the special Owner interface. A thread can only
access objects belonging to the Owner instance referenced by its owner-ID. Object ownership
is transferable between Owners. As described earlier in the Siaam formal specification, the
transfer applies transitively through object’s field references.

The siaam.untrusted package gathers Siaam’s features that allow one to build high-level
trusted programming model APIs, but must not be accessible to applications running on top



4.2. VIRTUAL MACHINE’S CORE 79

Primitive Description

Owner me() Return the current thread’s owner-id.

Owner be(Owner w) Switch the current thread’s owner-id to w

and returns the previous owner-id.

Object owner(Object o) Return the current owner of object o.

Object withdraw(Object o) Withdraw ownership over objects
transitively reachable from o.

Object acquire(Object o) Acquire ownership over objects
transitively reachable from o.

Object concurrentAcquire(Object o) Like acquire, supports concurrent
acquire operations on o.

Table 4.1: Siaam virtual machine’s core primitives, static methods of siaam.untrusted.Core.

of the virtual machine because they can be employed to arbitrarily manipulate the identity of
the current thread in manner that can violate the isolation. Table 4.1 shows the available core
primitives, defined as static methods of the siaam.untrusted.Core class. Ownership transfer
is a two step operation. First, the current owner withdraws ownership over objects in the
graph starting from o by calling withdraw(o). After that operation, objects of the graph are
protected from any read or write access and cannot participate in a new withdraw operation.
Later, a thread holding the same starting reference may call acquire(o) in order to gain
ownership over the underlying objects. Concurrent attempts to acquire the same starting
reference have an unspecified behavior. Therefore it is the trusted APIs responsibility to
ensure that only one thread will engage an acquire operation over a given withdrawn graph.
The concurrentAcquire is a variant supporting concurrent attempts to acquire the same
graph, at the cost of a compare-and-swap operation. Remark that only a reference to the
starting object passed to withdraw can be used with acquire or concurrentAcquire in order
to recover ownership over the corresponding graph of objects.

4.2.1 Static contexts

The JikesRVM is fully written in Java, threads seamlessly execute application bytecode
and virtual machine’s internals bytecode, passing constantly from one to the other. For
instance, a simple object allocation “new C()” may trigger the loading of some new classes,
call the memory allocator, and may even lead to a full garbage collection. All these tasks
are handled by the thread devoted to the application that triggered the allocation, but the
methods are internal to the JikesRVM. Similarly, many methods of the standard library
must reenter the virtual machine bytecode to be completed. Although Siaam isolates the
application bytecode, a virtual border must be drawn so that the virtual machine’s internal
bytecode escapes the isolation mechanisms. Indeed threads that reenter the VM legitimately
access the same common resources and there is not reason to expand the notion of ownership
into the virtual machine machinery.

We chose an approach where it is possible to statically decide whether a method is in
the application context or the virtual machine context. A method in the application context
is instrumented with all the isolation mechanisms whereas methods in the VM context are
exempt. A naive approach is to hard-wire a set of Java package names that are in the
VM context, so all the others are considered to be in the application context. For instance
every package starting with “org.jikesrvm.” belongs to the VM context. However it is not
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sufficient to ensure a total distinction between the bytecode executed for the VM internals
and the bytecode executed for the application because the virtual machine itself employs the
standard library, hence packages starting with “java.” are in both contexts.

If a method can be in both context, it must be compiled in two versions, one is instru-
mented with the isolation mechanisms and the other for the VM context isn’t. When a
method is invoked, the context of the caller is used to deduce which version of the method
should be called. The decision is taken statically when the invoke instruction is compiled.
Given a calling context, a method resolves either to the application context or the VM con-
text. Methods in the library packages resolve to the same context as the call-site. If the
caller of a standard library method is in the application context, then the isolated version
of the method is linked. Otherwise the non-instrumented version is linked. Methods in the
virtual machine packages always resolve to the VM context, whatever is the calling context.
Finally methods in other packages always resolve to the application context.

The original JikesRVM doesn’t support contexts. It requires to clone methods of the
standard library and modify the virtual machine in several places to handle the context
information. We integrated the large patch by Michael Bond[20] that provides the necessary
adjustments to statically clone the methods from a selection of packages. The patch was
initially developed to instrument or modify the behavior of library methods called by the
application without changing the behavior of these same methods when called by the virtual
machine. On this occasion we fixed some bugs related to code inlining in the presence of
mixed contexts.

4.2.2 Object’s owners.

Siaam’s ownership-based isolation requires the ability to assign, retrieve and switch the
owner of any heap object. Heap objects are either arrays or scalars, but the Java Language
Specification does not regulate their representation in the memory. The object model in Jikes
RVM (Figure 4.2) comprises a leading header section and the trailing scalar object’s fields or
array’s length and elements. The header has a fixed structure regardless of the object nature.
This section is hidden to the application code, indeed it is not part of the Java Language
Specification and thus it has no official existence from the application point of view, nor it is
accessible through the standard Java’s reflection. It is only accessible from within the VM,
using the Magic API.

In the JikesRVM, object references are raw memory addresses that points several bytes
after (offset 0 in the figure) the object’s header first byte. Indeed, to avoid computing complex
displacement when accessing an array’s element, object’s references always points-to the raw
memory address of the first element, right before resides the array’s length. The header
can be found at a fixed negative offset from the object’s reference and is truly an array of
bytes that can be interpreted arbitrarily, although it is divided in word-sized slots which are
attributed a relative offset. The JavaHeader section originally comprises two words. The first
one, TIB, holds a pointer to a structure describing the type of the object. The second one,
STATUS, contains enough bits to store a lock, a hash code state and eight bits available for
garbage collectors and miscellaneous extensions. The GCHeader section may contain words
as required by the selected garbage collector, and the MiscHeader may contain other words
for experimental extensions.

We extend the object header with two reference-sized words: OWNER and LINK. The OWNER
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word stores a reference to the object’s owner. Compared to the centralized ownership relation
maintained by the global-state in our formal model, here the relation is distributed in every
object’s header.

The LINK word is inserted for technical reasons in order to optimize the efficiency of heap
graph traversal methods. We also use, again for technical efficiency, one available bit (noted
OPAQUE) in the STATUS. We comment on these two technical measures later.

Notice that there is an alternative layout of the STATUS word containing an inlined hash-
code for the object and only two free bits, however the garbage collector we employ already
consumes those two bits which left no available bit for our encoding. Although we could add
a supplementary header word, or piggy-back it at the least significant bit of the OWNER word,
it would be at the expense of memory foot-print or bitwise manipulations.

scalar: ObjectHeader fld0 fld1 . . . fldN≠1

array: ObjectHeader len elt0 . . . eltN≠1

offset to objref: -4 0 4 4(N-2)

-4 0 4 4(N-2)

ObjectHeader: GCHeader MiscHeader JavaHeader

JHOFF

JavaHeader: TIB STATUS OWNER LINK

OPAQUE
JHOFF OWNEROFF LINKOFF

Figure 4.2: JikesRVM object model. Offsets in bytes from the object’s reference are identified
under each compound.

The implementation code for the owner primitive is shown in Figure 4.3. Given an object’s
reference o and an offset f, Magic.getObjectAtOffset(o,f) interprets the designated address-
sized sequence of bytes into a Java Object reference.

1 package siaam.untrusted;

2 public abstract class Core {

3 public static Object owner(Object o) {

4 return Magic.getObjectAtOffset(o, JavaHeaderConstants.OWNEROFF);

5 }

6 }

Figure 4.3: Source code for the owner core’s primitive.

Since we introduce hidden references to heap objects, we have to be careful regarding
the garbage collector. Advanced garbage collectors, also known as moving collectors, reduce
heap space fragmentation by occasionally moving objects to obtain large regions of continu-
ous allocated or free memory. As objects are moved, references to relocated objects must be
updated to the new location. The Jikes RVM integrates the MMTk framework that provides
the garbage collection facilities. The framework however is unaware of the object-model and
requires that the virtual machine collaborates in the references scanning process by indicating
every memory location containing a reference. Thus we extend Jikes RVM collaboration so
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that the OWNER and LINK references are also reported to MMTk.

4.2.3 Thread’s owner-ID.

The virtual machine maps each Java Thread instance to an RVMThread instance, and each
RVMThread to a native thread of the underlying operating system. RVMThread instances hold
the VM-specific internal state of each Java thread, including the management of the thread’s
stack and the blocking operations. We introduce a new field Owner ownerId recording the
thread’s current owner-ID as illustrated in Figure 4.4. Both me and be primitives access this
field. Every new thread inherits the owner-ID of its creator, but trusted APIs must enforce
the following invariant:

There is at most one thread with a given owner-ID

executing bytecode in the application context.
(4.1)

The invariant obviously avoid having concurrent threads operating with the same owner-ID
and thus accessing the same objects. The invariant does not have to hold for bytecode in the
VM context.

When the virtual machine starts, a primordial thread is allocated to execute the applica-
tion’s main method. This main thread is automatically provided with a unique owner-ID so
it can run with the same isolation guarantee as any other thread.

1 package org.jikesrvm.scheduler;

2 import siaam.untrusted.ú;
3 public class RVMThread {

4 [...]

5 Owner ownerId;

6 }

Figure 4.4: Integration of the thread’s owner identifier.

Implementing both the me and be primitives is straightforward (Figure 4.5). The former
returns the value of the current thread’s ownerId field and the latter switches the field with
the specified new owner-ID before returning the old one. A programming pattern that we
will often use when implementing a trusted API consists in temporarily switching the current
thread’s owner-ID. The example in Figure 4.6 shows how to use a try/finally block in order
to guarantee that the initial owner-ID is always recovered whatever exception may be thrown
while performing operations with the alternative owner-ID.

It is worth noticing that threads are not owners in the sense that neither java.lang.Thread
nor org.jikesrvm.RVMThread implements the Owner interface. But while a thread “carries” the
identity of an Owner instance in its ownerId, it can access and update the fields of any object
with a matching OWNER header slot. We abusively say that a thread “owns” objects it is
allowed to access, and symmetrically that an object “belongs” to a thread.

4.2.4 Opaque objects.

Trusted APIs implement asynchronous communication channels with data structures stor-
ing withdrawn objects. These channels are represented by Java objects that must be shared
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1 package siaam.untrusted;

2 public abstract class Core {

3 public static Owner me() {

4 return RVMThread.getCurrentThread().ownerId;

5 }

6 public static Owner be(Owner newId) {

7 RVMThread thread = RVMThread.getCurrentThread();

8 Owner previousId = thread.ownerId;

9 thread.ownerId = newId;

10 return previousId;

11 }

12 }

Figure 4.5: The me and be core primitives.

1 // switch to the new identity, backup the current one

2 Owner prevId = be(newId);

3 try{

4 // do something under the identity

5 // of ‘newId‘

6 }finally{

7 // always switch back to the previous identity

8 be(prevId);

9 }

Figure 4.6: Common pattern using the be primitive.

between the senders and the receivers, meaning they can be part of any message without dis-
turbing the owner checking nor being affected by the ownership transfer mechanisms. In the
Siaam formal specification the mailbox objects are discarded by the transitive owner-check
and owner-transfer operations for the same reasons.

The Siaam core package defines the Opaque interface which is used to identify objects that
must be discarded while exploring a message object graph. Objects of classes implementing
the interface are opaque, they always belong to themselves and hide their content to the graph
exploration operations. Mailboxes of the Siaam actor programming model API implement
the Opaque interface, this way mailbox objects can be communicated between actors without
revealing the list of pending messages they contain.

In a sense, opaque objects are actors without a thread. Threads directly call opaque object
public methods and it is the opaque object’s responsibility to manage concurrent invocations.
Opaque objects are isolated since they own themselves from the moment they are allocated.
Therefore when a thread enters an opaque object method, the method must switch the thread
owner-ID so it matches the “this” pointer before accessing its internal state. Opaque objects
code must be designed with care, as a thumb rule it should not expose its internal state
through the invocation of an external object’s method otherwise the method could exploit
the current thread owner-ID to hijack the opaque object’s state.

4.2.5 Ownership transfer

Consistency model. Ownership transfer is designed as a two-step process in order to en-
sure strict consistency of data and ownership updates involving a given Owner, and sequential
consistency at the system level. In Siaam, Owners are fully aware of any ownership modifi-
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cation they are involved in. Whenever an object enters or exits an owner’s domain, it must
be the side effect of an explicit operation undertaken by the thread with the identity of the
object’s former or new owner respectively. An owner may lose the ownership over an object
only when a thread carrying that owner-ID is performing a withdraw primitive operation.
Symmetrically an owner may gain ownership of an object only when a thread with that
owner-ID is performing an acquire operation.

The owner-local strict consistency ensures that the context of an owner w is stable (the
set of objects within the context don’t change) between two ownership transfer operations
performed by a thread carrying the w owner-ID. Trusted programming model APIs must
enforce that property by avoiding having several threads concurrently operating with the
same owner-ID. Consequently, the OWNER header word of an object o, as observed by the
owner(o) primitive, is not strictly consistent unless it matches the current thread’s owner-ID.
If it doesn’t, o definitely does not belong to the current thread, but its exact owner isn’t
known due to potential concurrent ownership transfers involving o.

For instance, lets consider two concurrent threads respectively carrying the owner-ID w

and w’, and an object o. If w observes that owner(o) = w, then w can definitely deduce that
it owns o, at least until it performs an ownership withdraw operation. On the other hand,
w’ may observe owner(o) = w and deduce that it does not own o currently and definitely not
until it performs an ownership acquire operation. However w’ cannot expect the owner of
o to be stable since o’s current owner may transfer the ownership to another owner at any
moment.

Ownership withdraw. The operation verifies that all the objects in the transitive closure
of the given starting reference belong to the current thread, and switches their ownership so
that they become unusable to any owner. The withdraw operation does not modify the heap
graph, it simply checks and updates the OWNER slot of every transferred objects. If there exists
an object reachable from the starting reference that doesn’t belong to the current owner, the
operation is canceled and throws a OwnerMismatch exception.

The withdraw primitive is to the virtual machine what transitive-owner-check and transitive-

owner-transfer are to the Siaam’s formal model (see Section 3.4.4). In our formal model, the
full transitive closure of the starting reference is owner-checked and then the same graph is
explored again to update the ownership relation, all in a single, atomic step of the operational
semantics. It is however not realistic to process in the same way in the implemented virtual
machine for the following efficiency reasons:

— atomicity would require calls to withdraw to be globally serialized, which demands a
costly system-wide synchronization.

— folding the operation into the owner-checking phase followed by the ownership update
phase is costly in practice because it demands to explore the same graph of objects two
times in a row.

The next paragraphs describe a transitive ownership withdraw operation that can be exe-
cuted by a thread while other threads continue their current activity and potentially perform
ownership transfers of their own. In practice the proposed algorithm must be translated into
an iterative one because – recursive – calls are costly and the deepest message graph that
could be handled would otherwise be limited by the available stack space. We detail the
implementation of the iterative algorithm in the paragraph following the recursive one.
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Recursive algorithm. Internally withdraw(o) progressively switches the ownership of ob-
jects as it explores the message graph starting from o. The algorithm, in its recursive form,
is presented in Figure 4.7, in this paragraph we refer to lines with italic numbers preceded
by ¸ as in (¸3-5).
Transferred objects are put in a temporary ownership state where their OWNER slot points to
the root o of the message passed to withdraw (¸20). The reason is that we must use a value
for the OWNER word that is guaranteed to be different from any owner-ID a thread could carry
while the message exists, until an acquire operation receives it. That way no thread can
access the objects while they are part of a message. It is not possible to chose the same value
of OWNER for all the messages in the system because when the withdraw primitive explores a
graph, it must be able to distinguish between (i) objects of the current owner that are en-
countered for the first time, (ii) objects that have already been reached and switched to the
temporary ownership state (¸17), and (iii) objects that are either part of another message or
belong to another owner (¸18). To distinguish the last two cases, it is necessary that objects
that are part of different messages have different OWNER values. Notice that in the Siaam
formal specification all messages belong to None, this is only possible because the message
graph is entirely owner-checked before it is owner-transferred, therefore the owner-transfer
phase only reaches objects that must be part of the current message.

Let getReferenceOffsets(o) be the function returning the list offs of offsets, relative to
the address of object o, where references to other objects can be found (scalar fields or array
elements). In case (i) the OWNER slot of the current object is switched to the root reference
value (¸20) and the algorithm is applied recursively to every reference at offsets listed in offs

(¸21-24). In the second case the reference is discarded since it has already been taken into
account earlier. Finally in case (iii) the withdraw operation must be aborted while explor-
ing the graph, the OWNER slot of already reached objects must be rolled-back to their initial
state (the current thread owner-ID) (¸26) before throwing the OwnerMistmatch exception (¸9).

We said earlier that objects implementing the Opaque interface are immune to ownership
transfers. When such object is encountered while exploring the graph, it is simply discarded
as if it was already part of the message (¸15). This way the algorithm never follows ref-
erence fields of the opaque objects. Therefore any object in the transitive closure of the
message’s starting reference that is only reachable via an opaque instance has its ownership
left unmodified.

Moreover the withdraw primitive does not allow to send a message starting from an object
that owns itself unless it is opaque (¸5). The reason is that at line 17 in withdrawrec, the
starting object would be immediately discarded since it already belongs to itself. This would
leads to the situation where the message is accepted without owner-checking the objects
reachable from the starting reference.

Only subtlety, the ownership transfer mechanism must not be exploited to violate the
invariant (4.1). If the object pointed-to by the current owner-ID is transferred, the receiver
may start a new thread carrying the same owner-ID, which clearly breaks the invariant. This
situation may only arise if the current thread’s owner-ID is an object belonging to itself
since otherwise it cannot be transferred. Trusted APIs probably want to check that, after the
ownership withdraw operation, the object pointed-to by the current owner-ID does not belong
to the message starting object because it indicates that the object is part of the message.
If the API detects that the owner-ID is part of the message, it may rollback the ownership
transfer by calling acquire with the message starting reference and throw an exception to
notify the application.
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1 function withdraw(Object o) returns Object

2 begin

3 {prevent case when root object owns itself

4 and is not opaque}

5 if (owner(o) == o) and not (o instanceof Opaque)

6 then throw new IllegalArgumentException end

7

8 if withdrawrec(o, o) then return o

9 else throw OwnerMismatch end

10 end

11

12 function withdrawrec(Object o, Object root) returns boolean

13 begin

14 if (o == null) then return true end

15 if o instanceof Opaqueo instanceof Opaque then return true end {discard opaque object}

16

17 if owner(o) == root then return true end {discard already reached object}

18 if owner(o) != me() then return false end {owner mismatch}

19

20 updateOwner(o, root) {switch ownership}

21 for off in referenceFieldOffsets(o)referenceFieldOffsets(o)

22 do

23 o2 := getObjectAtOffset(o, off)

24 if not withdrawrec(o2, root)withdrawrec(o2, root) {recurse over reference fields}

25 then {rollback}

26 updateOwner(o, me())

27 return false

28 end

29 end

30 end

Figure 4.7: Recursive algorithm for the withdraw primitive. Parts that requires particular
optimisation are highlighted.

Iterative implementation The optimization of the zero-copy message passing implemen-
tation is given a particular attention because the performance of the whole actor system
depends on it. The three critical points of the algorithm are highlighted in Figure 4.7. First,
deciding whether an object of the graph must be discarded or not should not be based on the
relatively costly instanceof instruction that inspects VM internal structures through several
indirections. Instead we read the OPAQUE bit of the object header where that information is
encoded. Second, scanning the reference fields of an object (or the elements of an array of
reference) is one of the most time consuming operation and should be optimized as much
as possible. We use some techniques inspired by garbage collectors. Third, the conversion
from recursion to iteration demands to translate the call stack into an explicit list structure.
Furthermore the ownership acquire operation should not have to re-explore the message ob-
jects graph since the objects that are part of the message have already been discovered by
the withdraw phase. We leverage the LINK word to support the iterative graph exploration
algorithm. The produced linked list is maintained as long as the message exists so that the
ownership acquire operation can efficiently traverse the objects of the message.

The iterative algorithm chains objects that are part of the message through their LINK

word. We define the class TransitiveClosure(Figure 4.8) in charge of chaining objects and
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listing the reference fields for each object of the list. Its tail member stores a reference to the
last enqueued object. Objects are chained together by calling enqueue(o), which sets the LINK

word of the current tail to o and updates the tail reference to o, making o the new tail of
the linked list. The entry point for the graph exploration is the method explore that expects
the root of the graph has already been enqueued. The graph exploration algorithm traverses
the linked list, starting from the message’s root object. At each iteration, heap edges out
of the current object are enumerated and passed to processEdge(base, offset) in the form
of the current base object and the offset relative to base’s raw address where a reference
is stored. Classes that extend TransitiveClosure must implement the processEdge method.
The latter is in charge of enqueuing the reference found at the specified offset so that the
graph exploration follows that edge. The constructed linked list is always terminated by the
DUMMY object (¸18) so that every object that is part of a message has a non-null LINK word.
We leverage specialized methods to efficiently enumerate the reference offsets for a given
base object (¸15). The technique, detailed in [46], was initially introduced in the JikesRVM
to optimize the references scanning phase of the garbage collections. We simply adapted it
for our transitive closure exploration class and observe about 20% speed improvement when
transferring the ownership of a message.

1 abstract class TransitiveClosure {

2 protected abstract void processEdge(Object base, Offset offset);

3 public static final DUMMY = new Object();

4 private Object tail;

5

6 protected void enqueue(Object obj) {

7 if(tail != null) setLink(tail, obj);

8 tail = obj;

9 }

10

11 protected void explore() {

12 try{

13 Object base = tail;

14 while(base != null) {

15 call this.processEdge(base, offset) for each reference offset in base

16 base = getLink(base);

17 }

18 }finally{ enqueue(DUMMY); tail = null; }

19 }

20 }

Figure 4.8: The TransitiveClosure class.

The iterative ownership withdraw algorithm is implemented by class ZeroCopy (Figure
4.9) which extends TransitiveClosure. Its root field stores a reference to the root object of
the current message, and its ownerId field refers to the current thread’s owner-ID so it can
be accessed efficiently. During the graph exploration, the following invariant is maintained:
enqueued objects belong to the root object and are not opaque according to their OPAQUE

header bit. Therefore when processEdge is called-back, the specified base object always
belongs to root and isn’t opaque. In ZeroCopy the processEdge method reads the object
reference at the specified object and delegates the work to processObject (¸29-30). The
object ref received by processObject can be anything and may belong to any object, it is
enqueued in the message list only if it meets the requirements to be part of the message. If
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ref is null or opaque (¸34-35) it is discarded immediately. If ref’s owner has already been
set to root, it is discarded as well since it must have already been enqueued (¸36-37). Finally
if ref’s owner matches the current thread’s owner-ID, its ownership is switched (¸39) and the
reference is enqueued in the message list (¸40) so that heap edges from ref will eventually
be inspected. In case ref belong to a different owner, an exception is thrown (¸42) so the
ownership transfer can be canceled.

The public entry-point to ownership withdraw is the withdraw method. It first makes sure
that the root object is not self-owned unless it is opaque (¸10). Then it bootstraps the graph
exploration by calling processObject with the specified message root reference (¸15). Unless
the root is null or opaque (¸34-35), its ownership is checked against the current owner-ID
(¸36-38) and switched to itself before being enqueued (¸39-40). Line 10 cannot return ac-
cording to the initial test at line 10. Once bootstrapped, the graph exploration is performed
by calling explore (¸16). Whenever an exception is raised, it is caught and the objects that
have been withdrawn so far are re-acquired to rollback the ownership relation to its initial
point (¸19). Once the graph exploration is complete, non-opaque objects that are part of the
message belongs to the root object and are chained through their LINK header word, the root
object being the head of the list.
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1 class ZeroCopy extends TransitiveClosure {

2 private Object root;

3 private Owner ownerId;

4

5 public <T> withdraw(T root) {

6 this.ownerId = me();

7

8 // prevent case when root object owns itself

9 // and is not opaque

10 if(owner(root) == root && (!isOpaque(root)))

11 throw new IllegalArgumentException();

12

13 try{

14 this.root = root;

15 processObject(root);

16 explore();

17 return root;

18 }catch(RuntimeException e){

19 receive(root, ownerId);

20 throw e;

21 }finally{

22 this.root = null;

23 this.ownerId = null;

24 }

25 }

26

27 /ú called back for each edge explored ú/
28 protected void processEdge(Object base, Offset offset) {

29 Object ref = Magic.getObjectAtOffset(base, offset);

30 processObject(ref);

31 }

32

33 private void processObject(Object ref) {

34 if(ref == null) return;

35 if(isOpaque(ref)) return;

36 Object refOwner = owner(ref);

37 if(refOwner == root) return;

38 if(refOwner == ownerId) {

39 updateOwner(ref, root);

40 enqueue(ref);

41 }else{

42 throw new OwnerMismatch(ownerId, refOwner, ref);

43 }

44 }

45 }

Figure 4.9: The ZeroCopy class.

Acquire primitive. The acquire primitive, in its iterative form, is presented in Figure
4.10. It must be passed the root reference of a message, formerly supplied to and returned
by the withdraw primitive. The primitive checks the root object owns itself, if it doesn’t then
the passed object is definitely not representing a receivable message (¸4). If the specified
object is an Owner that owns itself, it might be an active owner instead of a message root.
This ambiguity is removed by checking the message invariant saying that every object that is
part of a message has a non-null LINK word (¸4). After these verifications, the message list
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is traversed and the ownership of each object is switched to the current thread’s owner-ID
(¸9). The LINK words are cleared as they are read (¸10-12), until the DUMMY object is reached,
marking the end of the chain.

1 public static <T> T acquire(T root) {

2 if(root == null) return null;

3 if(isOpaque(root)) return root;

4 if(owner(root) != root || getLink(root) == null) throw new NotReceivable(root);

5

6 Owner ownerId = me();

7 Object o = root;

8 do{

9 updateOwner(o, ownerId);

10 Object next = getLink(o);

11 updateLink(o, null)

12 o = next;

13 }while(o != TransitiveClosure.DUMMY);

14

15 return root;

16 }

Figure 4.10: The acquire primitive.

Example. We illustrate the iterative ownership withdraw algorithm with the example
shown in the following diagrams. Let consider the initial configuration of the heap depicted
immediately below. Objects are represented by the circle nodes. Objects belonging to the
same owner are surrounded by a a dotted border, the owner of an ownership domain is the
only grey-colored node inside the delimited area (in this examples every owner owns itself).
The current thread owner-ID is a, indicated by the pointer ownerID. Edges with a filled arrow
represent field references, with the name of the field attached when necessary, for instance
b’s f field points-to c. Object e is opaque as denoted by the ring around its representative
node. In this example we chose to withdraw the ownership of the message starting from b.

a

b c

d e

f g
f

g
h

i
ownerID

(4.2)

Below is the configuration after the initial call to processObject(b) at line 13 in Figure
4.9. The root pointer marks the message root. The tail pointer is initialized to the root as
well after b was enqueued at line 38. Furthermore b’s ownership has been switch so that it
no longer belongs to the current thread. It now included in its own ownership domain.
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d e

f g
f

g
h

i
ownerID

root

tail

(4.3)
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The next diagram illustrates the configuration right after the first iteration of explore

complete. During this iteration the base pointer was pointing to b. The zero-copy processEdge

method has been called twice. First with the offset of field f, which checked the ownership of
c and switched it to b. We represent the references in the LINK words with dashed edges, here
we see the link from b to c produced by enqueueing c. processEdge was then called a second
time with the offset of field g. Again, d’s ownership was checked, transferred into b’s domain
and finally enqueued after c. Therefore at the end of the iteration, the tail points-to d.
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i
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root
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(4.4)

The second iteration of the graph exploration loop uses c as the base object since it is the
next object in the LINK chain. There is no edge starting from c in the example configuration,
maybe c has no reference field or because its reference fields are all null. The configuration
at the end of the second iteration is illustrated below, only the base pointer moved compared
to the previous configuration.

a

b c

d e

f g
f

g
h

i
ownerID

root

base

tail

(4.5)

At the end of the third iteration, the configuration below shows no particular update
except the base pointer used for the iteration was d. The processEdge method has been
called with h’s offset and then with i’s offset. In the first case, c’s ownership was already set
to the message root b therefore no particular action was required (Figure 4.9 line 37). The
edge from d to e through field i has been discarded to avoid adding e in the message list since
e is opaque and should be left unmodified (line 35). As a result no new object were chained
in the message list.
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(4.6)

The fourth and last iteration of explore completes early since the new base pointer, d’s
LINK word, is null. The finally clause (Figure 4.8 line 18) enqueues the DUMMY reference —
noted ‹ in the diagram — so that d’s link word respects the message invariant. The final
configuration when withdraw returns is depicted below. Every non-opaque object transitively
reachable from the root b now belongs to b, and there is a chain from b through the LINK
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header word that traverses these objects and ends with the dummy reference. The ownership
withdraw algorithm did not change the heap graph, the edges from a to objects that no longer
belong to a have been preserved.

a
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d e

f g

‹

f

g
h

i
ownerID

root

(4.7)

Deep-copy message passing. We developed a fast deep-copy algorithm leveraging the
OWNER and LINK words in order to copy arbitrary graph of objects without requiring an ex-
ternal mapping from original objects to copies. The deep-copy operation reuses the Transi-

tiveClosure infrastructure,
In a first phase, copy objects are generated and references between originals and copies

are created so that each original objects has its LINK word pointing-to its copy, and each
copy has its OWNER word referring to the original. The bootstrapping consists in copying the
message root object, creating the references, and then inserting the copy in the work-list.

At each iteration of the graph exploration loop, one copy object b is removed from the
work-list and its reference fields are inspected. Initially copy objects fields still points-to
original objects, therefore each object o pointed-to by a field f of b is original. If the original
has not been copied yet, it is immediately copied and its copy c is inserted in the work-list
(via c’s LINK). Now o has its LINK word pointing to c and c’s OWNER is o, thus b.f must be
updated with c. Once every fields of b have been inspected, b only points-to copy objects.

At the end of the first phase, every object of the original message has been copied and
the copies are all linked together (plus the dummy object marking the end). In the second
phase the list of copies is traversed, the ownership of each copy is set to the reference of the
original message root’s copy and the LINK word of every original object is reset to null. The
deep-copy function returns the copy of the original message root, which may later be passed
to the acquire primitive like if it was withdrawn by the withdraw operation.

Of course the deep-copy operation does not copy the opaque objects and performs own-
ership checking on the original objects.

4.3 Ownership-based isolation

4.3.1 Owner-checking barriers.

Siaam’s ownership-based isolation mechanism ensures that a thread with a given owner-ID
may only access fields and array elements of objects with a matching owner. This verification
is performed at runtime each time an instruction uses a reference to read or write a field
or an element of the pointed object. Our solution consists in performing an owner-checking
barrier before every such access. These barriers are automatically inserted for the bytecode
instructions listed in the first column of Table 4.11. The Java bytecode has variants of the
array load and store instructions for each type of element, for instance aaload loads a ref-
erence element and iastore stores an integer. The second column in the table shows what
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are the expected operands at the top of the current stack, the topmost operand being on the
right. Array element indexes use an integer (index). Values of a long or double type occupy
two word-sized slots (value-1 value-2) of the Jikes RVM stack, other types occupy a single
slot (value). Finally the reference of the accessed objects (objref) takes one slot.

Bytecode Jikes RVM Operand Stack (32bits slots) Description

slot 3 slot 2 slot 1 slot 0

[abcdfils]aload objref index Load an array element.
[abcfis]astore objref index value Store an array element.

[dl]astore objref index value-1 value-2 Store an array element.
getfield objref Read an instance field.
putfield objref value Write an instance field.
putfield objref value-1 value-2 Write an instance field.

Table 4.11: Owner-checked Java bytecodes and the expected operand stack.

We modify the Jikes RVM compilers in order to inject the ownerCheckRead barrier before
an object is read by ?aload or getfield, and the ownerCheckWrite barrier before an object
is written by ?astore or putfield. At the current stage, both barriers behave the same, we
only show the source code for the write barrier in Figure 4.12. In section 4.4 we introduce
immutable objects and modify the read barrier. The barriers take the accessed object’s
reference as a parameter and return silently if the current thread can proceed. They return
immediately if the passed reference is null and let the virtual machine handle the null pointer
exception (¸2). Otherwise the current thread’s owner-ID is compared with the accessed object
owner (¸5) and an exception is thrown only if the two references do not match (¸6).

1 public static void ownerCheckWrite(Object obj) {

2 if(obj == null) return;

3 Owner threadid = me();

4 Object owner = owner(obj);

5 if(owner == threadid) return;

6 throw new OwnerCheckWriteException(threadid, owner, obj);

7 }

Figure 4.12: Write owner-check barrier.

4.3.2 Constructors and instance fields.

When the Java virtual machine allocates an object, it clears every instance fields with
a default value (false for booleans, 0 for numbers, null for references). When the object’s
initializer is executed, non-blank fields are implicitly set to their declaration value after the
superclass initializer is implicitly invoked and returns. If a partially initialized object is
passed to another owner during the construction process, the construction will fail if one
of the initializers tries to access a field of the object. Although the isolation cannot be
violated by passing a partially instantiated object, it can lead to unexpected behaviors of
the partially initialized object’s methods. In our implementation, we chose to allow passing
partially initialized objects. After all the equivalent situation may arise in a classical threaded
program if an object becomes accessible to a concurrent thread while it is being initialized.
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1 class Strange extends Parent {

2 boolean b = true;

3 int i; // blank instance field

4 Strange(Mailbox<Strange> mb) {

5 // Parent constructor is implicitly invoked here

6 // this.b is implicitly set to its initial value here

7 mb.put(this); // lost ownership over ’this’.

8 // setting this.i here would fail.

9 mb.get(); // assume the object pointed by ’this’

10 // is in the received message, here

11 // we gain back ownership over ’this’.

12 this.i = 1; // succeed provided the previous assumption

13 // otherwise fails.

14 }

15 }

Figure 4.13: A strange constructor that may complete in a specific case.

Java developers should already be aware of the unexpected behaviors that may arise in such
situation.

The only possibility for the constructor to complete properly after passing the object is to
receive it back first, which is illustrated by the special case in Figure 4.13. The same remark is
applicable if one of the superclasses constructor passes the receiver object; the object must be
received back before any field can be accessed. In Figure 4.13 the Strange initializer assumes
that this belongs to the current actor when the Parent constructor returns.

4.3.3 Native methods.

Native methods are portion of programs not implemented using the Java bytecode but
rather using ultimately a platform dependent binary code. These methods are not subject to
the JVM management, they can access the address space of the virtual machine and interact
with the underlying operating-system or the hardware with the same privileges as the JVM’s
process itself. Enforcing isolation in the presence of native methods is hardly possible since
they can read and write arbitrary memory locations, including any isolated state. For these
reasons, native methods are considered harmful by default, and the application bytecode
should not be allowed to make native method invocations. This strict policy can be enforced
during class-loading by rejecting bytecode containing native invocations.

4.3.4 Threads

In the JVM, concurrency is provided through the threading mechanism. However Siaam
delegates concurrency matters to the trusted programming models. Applications should not
be allowed to use other forms of concurrency than those provided by the trusted APIs. Thus
any user bytecode that would create a thread of execution outside of the trusted APIs should
be rejected.

4.3.5 Object finalizers

Every Java class can override the Object.finalize() method which is called when the
garbage collector determines that there are no more references to an object. In the Jikes
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RVM, a dedicated thread is in charge of calling the finalize method of each object before it
is permanently discarded.

Finalizers are problematic because they may take any action including accessing the
finalizing object and any object it may reach. Therefore isolation must be enforced, but what
should be the owner-ID carried by the finalizer thread? On one hand it should match the
object’s owner so that the finalizer method can access the object. On the other hand an
application thread may already be carrying that owner-ID and it would break the isolation
invariant to have more than one thread executing with the same owner-ID. Although the
finalizing object is definitely not reachable by any application thread, other objects reachable
from it still might.

We define the special owner FINALIZER OWNER that is only used by the virtual machine
thread in charge of executing object’s finalizers. The read owner-check barrier let the finalizer
thread read any object. Before the finalize method of an object is called, its ownership is
switched to FINALIZER OWNER so the method can at least write fields of the “this” object
without raising an owner mismatch exception.

4.4 Support for immutability and static variables

4.4.1 Final instance fields.

Should final instance fields of mutable objects be accessible to any actor? Instance fields
declared final have their value set only once, during the object initialization, then their value
don’t mutate for the rest of the object’s lifetime. Therefore final fields should not require
to be preceded by a read owner-check when accessed. However, in the event that an object
is passed before its final fields are initialized, the default values will be observable by the
receiver thread. If the object is sent back to its “birth” actor, there is a chance that the
constructor complete the initialization (like in the example Figure 4.13) and set the actual
value of the final fields. The consequence in that very unusual situation is that a thread which
first observed the object partially initialized, might observe different values of the object’s
final fields after its construction completes.

Therefore the question of allowing any actor to read an object’s final field when that
object isn’t immutable must be asked. From the “birth” actor point-of-view, we see no ob-
jection since the actor is fully aware of passing the object and will be able to set the final
field only if it acquires its ownership back. From the receivers point-of-view, observing an
uninitialized field can lead to unexpected behavior if reading false, zero or null isn’t ex-
pected. Furthermore, the receiver may suddenly read the actual value of the field (if he first
passed the objects back to its “birth-place” where the initialization could continue). That
observation would violate the invariant expected for a final field value. Moreover the isola-
tion property would be violated in the sense that an unexpected side-effect could be observed.

Note that it is a known flaw of the initial Java Memory Model that has been fixed by the
Java Specification Request 133 “Java Memory Model and Thread Specification Revision” [69],
but from our own experimentations, the JikesRVM 3.1.2 does not implements that revision
or at least not for our particular problem. In the absence of JSR133 implementation, some
“safe” construction techniques are discussed in [48] where the author recommends not to
publish the this reference during construction.

We shall formulate the same recommendation here if we allow concurrent threads to read
final fields of the same object regardless of its ownership, at least until the JikesRVM is
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compliant with the JSR-133 regarding final fields. Of course, allowing or forbidding uncon-
ditional read of final fields is a major programming model feature. In the current state of the
virtual machine, it should be forbidden in order to guarantee strict isolation, meaning the
read owner-checking barrier must be maintained before a final field is read.

4.4.2 Immutable objects

Definition. An immutable object has a fixed state after it is constructed. Because an im-
mutable object cannot change during its lifetime, sharing such object wouldn’t violates the
isolation property. Immutable objects are extensively used in Java for various reasons. Strings
and Integers make excellent map keys and set elements, saving memory space as different
data-containers may use the same object with no synchronization issue. The ability to share
immutable objects is performance critical since maps and sets are very common containers in
programs. Siaam not only ensures immutables have a fixed state but also requires that they
only refer to other immutables; to this extend we give the following recursive definition. A
reference may only points to immutable objects if all the followings are met: (i) its declared
type is a final class T, (ii) every declared and inherited non-static fields of class T are final,
(iii) recursively, reference fields of T may only points to immutables or opaque objects. In-
stances of a class are immutable objects if the class verifies the last two points.

Example. We illustrate these concepts with the example shown in Figure 4.14. Class A, B
and I have final non-static fields only. Class A isn’t final, therefore the virtual machine could
load new subclasses of A declaring non-final fields. For this reason, a reference declared of
type A may points to a mutable object. Class B is final but it has a field of type A that might
reach a mutable object, therefore instances of B aren’t immutable in the Siaam’s definition.
Class I is final, it declares two final fields of a primitive type and inherits a final primitive and
a final I reference (field i) from A. The circular dependency introduced by field i is solved
by induction. Assuming references of type I may only reach immutable objects, then field
i may only reach immutable objects and every fields of I reach immutable objects, which is
correct. Obviously, instances of I are immutable. Although A isn’t declared final, it is worth
noticing that instances of A are even immutable since the class fulfill requirements ii and iii.

Initialization. Any thread can allocate and construct an immutable instance, new objects
belong to the current owner until their construction complete. After a new object is allocated,
the corresponding instance initializer is invoked. There are two kinds of instance initializer,
primary constructors invoke a direct superclass constructor and alternate constructors invoke
alternative initializer of the same class. Noticeably, given a final non-static field V of class
C, the Java Language Specification[49] states V is definitely assigned after an alternate con-
structor invocation, meaning at each level of the class hierarchy, only the deepest invoked
alternate initializer (a primary constructor) can and must assign the non-static final fields
declared at its level. Since immutable objects only have non-static final fields, only primary
instance initializers need a write access to the object. Consequently, the last method that
may modify a “wannabe” immutable object of class C is a primary constructor declared by C.

Again we clarify these concepts with Figure 4.14 where super constructors are invoked
explicitly. Class B declares three constructors, line 11 the alternate constructor invokes an
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1 // has immutable instances.

2 // a reference of that type may reach a mutable object.

3 class A {

4 final char c; final I i;

5 A() { super(); ... } // primary

6 }

7

8 // has mutable instances.

9 final class B extends A {

10 final A a;

11 B() { this(new I()); } // alternate

12 B(A _a) { super(); this.a = _a; } // primary

13 B(long l) { super(); this.a = new I(l); } // primary

14 }

15

16 // has immutable instances.

17 // a reference of that type may only reach immutable objects.

18 final class I extends A {

19 final long l; final double d;

20 I() { this(7); } // alternate

21 I(long _l) { this(_l, 3.3); } // alternate

22 I(long _l, double _d) {

23 super(); this.l = _l; this.d = _d; } // primary

24 }

Figure 4.14: Various classes producing mutable or immutable instances.

alternative. At line 12 and 13, both methods are primary constructors declared by B. Since B

is final, we know these two constructors are the last methods requiring a write access to this.
A similar reasoning applies for I: the first alternate constructor line 20 invokes a second one
in line 21 which in its turn invokes the primary constructor line 22. Curiously, A’s unique
primary constructor isn’t necessarily the last method requiring a write access to this since
it may be invoked from a primary constructor declared in a direct subclass of A.

We modify the Jikes RVM in order to transfer the ownership of an immutable instance
to the special IMM OWNER owner before its last primary constructor returns. The ownership
transfer is systematic when the primary constructor is declared in a final immutable class.
On the other hand, when a primary constructor of a non-final class returns, we must verify at
runtime that the constructed object is exactly of that class type before setting its final owner.
The verification is generated by the compiler only if there is a chance that the constructed
object is immutable. In our example, the primary initializer of class A must dynamically
ensure the this reference points to an allocated instance of A before switching its ownership
to IMM OWNER. Indeed if the allocated object is of class I, the initializer of A is not the last
initializer to require a write access to this. On the other hand, the primary initializer of I

can definitely lock the state of the constructed object since I is final.

The ownership transfer isn’t recursive, it only applies to the constructed object. Fields
of an immutable object points to other immutables, therefore when a field is initialized to
a non-null reference, the object pointed-to has already been constructed and indeed already
belongs to IMM OWNER.
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Owner-check barriers. The read owner-check barrier is modified (Figure 4.15) to return
silently when the owner of the checked object is IMM OWNER (¸5). We chose to set the IMM -

OWNER constant to null so the verification is efficiently handled without requiring to access
a static field to get the actual value of IMM OWNER at runtime — although the just-in-time
compiler might be smart enough to perform that kind of constant propagation. The write
barrier do not need to be changed because the Java specification enforce that a final field is
never modified except when it is initialized so there should be no write barrier ever generated
to check the ownership of an object owned by IMM OWNER. Even though a write barrier is
emitted, it would raise an ownership exception, as expected, since no thread owner-ID can
match IMM OWNER. Remember when the final field of an immutable object is initialized, the
object still belongs to the current thread’s owner-ID, therefore the write barrier is generated
and should succeed on that particular occasion.

1 public static void ownerCheckRead(Object obj) {

2 if(obj == null) return;

3 Owner threadid = me();

4 Object owner = owner(obj);

5 if(owner == threadid || owner == IMM_OWNER) return;

6 throw new OwnerCheckReadException(threadid, owner, obj);

7 }

Figure 4.15: Read owner-check barrier.

Zero-copy message passing. Immutable objects can be concurrently accessed without
breaking the isolation property. Regarding the zero-copy message passing scheme described
in section 4.2.5, immutables must be handled like opaque objects. The invariant that only
immutables are reachable from immutable objects allows to discard any immutable object
without risking to miss any mutable object in the transitive closure of the message’s root.
Immutables’ headers are flagged with the OPAQUE bit at the same time as their OWNER word is
set to IMM OWNER.

4.4.3 Arbitrary frozen objects

Frozen objects[68] are mutable objects that became immutable. They are very useful to
share large structures that must initially be mutable to be elaborated. For instance, we can
imagine an actor-based compiler, inside this compiler a series of actors load the source code
and elaborate an intermediate representation, then the IR is frozen and passed by reference
to several concurrent actors performing various analyses on the structure without modifying
it. Since the structure is immutable, the objects are not owner-checked when transferred,
thus the communication has an O(1) cost.

The core primitive freeze(Object o) transfers the ownership of the objects transitively
reachable from o to IMM OWNER and sets their OPAQUE bit to true. The implementation of the
primitive (Figure 4.16) is as simple as acquiring the ownership over the message starting from
o, but instead of setting the OWNER words to the current thread’s owner-ID, they are set to
IMM OWNER.

Object freezing limits the opportunities of optimizing-out owner-check barriers The opti-
mization algorithm assumption is that if a read or write owner-check barrier succeeds at one
point in the program, the checked object belongs to the current thread until an instruction
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1 public T <T> freeze(T root) {

2 if(root == null) return null;

3 if(isOpaque(root) || owner(root) != root || getLink(root) == null)

4 throw new NotFreezable(root);

5

6 Object o = root;

7 do{

8 updateOwner(o, IMM_OWNER);

9 setOpaque(o,true);

10 Object next = getLink(o);

11 updateLink(o, null);

12 o = next;

13 }while(o != TransitiveClosure.DUMMY);

14

15 return root;

16 }

Figure 4.16: The freeze primitive.

that potentially changes that object’s ownership is executed. It means, in particular, that if
a field of an object is successfully read by an instruction, a write of any field of that object
is expected to succeed at the next instruction, therefore it is possible to eliminate the write
owner-check. Now, if we introduce frozen objects, a successful read of an object’s field may
succeed because that object is frozen, meaning a consecutive write of that object may fail. As
a result, only a successful write owner-check barrier can guarantee that a consecutive write
on the same object must succeed. By introducing frozen objects, we limit the possible op-
timizations and increase the runtime overhead due to owner-check barriers. Note that truly
immutable objects are not a concern here because Java prevents final fields updates in the
first place, so there is no write barrier to eliminate anyway.

Our experiments with the Dacapo benchmarks show that allowing frozen objects increases,
by 10% in average, the total number of owner-check barriers performed by a program. The
intra-procedural optimization algorithm maintains 11% of the barriers it usually removes
when freezing is not possible. The measured execution time increases in average by less than
3%, which is affordable considering the benefits in term of programming.

4.4.4 Static fields and Enum types

Static fields. Class variables, or static fields, or even static variables, provide shared state
that is not bound to a particular instance. In Java and most object-oriented languages, static
fields are bound to a class. These variables are a serious threat to isolation since they pro-
vide a data sharing mechanism. In order to enforce isolation, the most straightforward way
to deal with static fields is to systematically prevent actors from accessing them. This can
be checked during class-loading, by refusing any bytecode loading or storing a value from a
class variable. Or at runtime, by raising an exception when one of these bytecode is evaluated.

However we opt for a less restrictive approach where we allow the use of final static

class variables of a primary type or referencing immutable objects. We also think it is fair to
supply arbitrary immutability for arrays holding primitive values or references to immutables
since they are necessary to support Java’s enum types. Immediately before a class is needed
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for the first time (the possible situations are detailed by the Java specification), its static
initializer is executed and assigns the static fields to their initial values. Class initializers are
executed by normal threads with their current owner-ID, but there is not way a thread may
leak data through class variables. First, Siaam makes sure only final class variables may be
initialized. Final class variables of a primitive type indeed can’t be employed to share muta-
ble state. Second, since Siaam only allows to store references to immutable objects into final
class variables, it is again impossible to share mutable objects through them. Finally, Siaam
allows to store references to arrays (or multi-dimensional arrays) of primitive or immuta-
bles elements. Unfortunately we cannot rely on the Java virtual machine to enforce array’s
immutability since Java lacks of such feature. Java’s enum types could serve as immutable
arrays, however enums are syntactic sugars that compile to classes and final static arrays that
shall not be modified, which bring us back to where we started.

Our solution is to apply the freezing mechanism, presented in the previous section, to
arrays that are reachable from the static fields of a class. The compiler generates the necessary
instructions right before the end of each class initializer method. When the initializer is about
to return, the static fields of the class are inspected and those of an array type are frozen.
Since we allow some arrays to be read but not written, we must modify the optimization
algorithm, as explained in the previous section, so that a successful array read owner-check
barrier does not imply that a consecutive array write owner-check barrier will succeed. Our
measures in the Dacapo benchmarks shows that allowing frozen arrays has a non-significant
impact on optimization and performances. The total number of performed barriers increases
by less than 2%, and less than 1% of the barriers removed in absence of frozen arrays are
maintained. The average execution time is increased by approximatively less than 1%. These
results are explained by the relatively sparse usage of arrays in the benchmarks and in object
oriented programming languages in general. Note that using frozen scalar objects, it is
possible to offer arbitrary static objects by freezing any object reachable from a final static
field.

Enum types. The enum types accepted by Siaam must be immutables. The Java language
provides the enum keyword to declare type safe enumerations. For instance enum MyEnum

{ ELT1, ELT2 }; creates the enumeration MyEnum with two elements of type MyEnum. Each
element of a particular enum type is an instance of the class generated by the compiler for
the enum type, and the user cannot instantiate other objects of that type. The enum type
class gets static final fields pointing to each generated instance. The elements are also listed
in a static array of the enum class. It is even possible to declare arbitrary instance fields
and methods in an enumeration, which makes elements of an enumeration not necessarily
immutables. The code in Figure 4.17 illustrates how the compiler transforms an enum type
declaration into a standard Java class. Instances of the MyEnum class is not immutable because
of its non final c field. Consequently the generated static fields, and the static array, are not
compatible with the constraints expressed in the previous paragraph. If we remove the
problematic c field, we make MyEnum an immutable type and its static final fields verifies
Siaam’s constraints.

4.4.5 Conclusion

The relaxation of the "share-nothing" ideology, associated with the properties of im-
mutable objects, guarantees the isolation and allows developers to use the classic program-
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1 enum MyEnum {

2 ELT1, ELT2;

3 public int c = 0;

4 public void inc() { c++; }

5 }

1 final class MyEnum extends Enum {

2 public static final MyEnum ELT1;

3 public static final MyEnum ELT2;

4 private static final MyEnum[] $VALUES;

5 public int c = 0;

6 public void inc() { c++; }

7 private MyEnum(String name, int value) {

8 super(name, value);

9 }

10 static {

11 ELT1 = new MyEnum("ELT1", 0);

12 ELT2 = new MyEnum("ELT2", 1);

13 $VALUES = new MyEnum[]{ELT1,ELT2};

14 }

15 }

Figure 4.17: Java enum type example. Left: Java declaration for the MyEnum enum type.
Right: equivalent of the compiler-generated class in Java. The accessor for the $VALUES static
field is not presented.

ming idioms involving enumerated types and global constant definitions as well as static
frozen arrays without sacrificing the performances.

Some JVMs implementing software-based processes solves the problem of static variables
by simply providing each isolated application with a copy of the variables so they can be
safely modified. Although we could replicate that mechanism in Siaam, holding a copy of
all the static variables for each actor may consume a non-negligible part of the memory in
configurations where thousands of actors are alive. It is nonetheless an issue requiring more
investigations since we currently have to allow a few methods of the Java standard library to
mutate static variables and access shared objects through them.

Another solution would be to create a system actor with granted access to all the static
variables defined in the standard library. Other actors would communicates with this actor
in order to access the variables. Similar actors could govern the mutation of static variables
for user-defined classes.

4.5 Trusted programming models

In this section we presents the trusted APIs we developed, either using the untrusted core
primitives or above another trusted API.

4.5.1 Siaam Actors API.

The Siaam actor-based trusted API implements the formal model given in section 3. Two
classes are publicly available, siaam.actor.Actor and siaam.actor.Mailbox.

Actors. Classes extending Actor must implement the behavior of the actor in the run

method. Calling the start method of an actor creates a dedicated thread executing the
actor’s run method. Each thread dedicated to an actor uses that latter’s reference for its
owner-ID. The start method is detailed in Figure 4.18, it proceeds as following. First the
current thread withdraw its ownership over the started actor (¸8) private state. Then the
current owner-ID is temporarily switched to the starting actor’s reference (¸14-20). In that
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short period, the starting actor’s private state is acquired (¸16) so that its ownership matches
its own reference. The dedicated thread is created (¸17), which inherits the current owner-ID.
Finally at (¸18), the dedicated thread is started, which simply calls the run method of the
starting actor, with the starting actor object reference being the current owner-ID (Figure
4.19).

1 package siaam.actor;

2 import static siaam.untrusted.Core.ú;
3

4 public abstract class Actor implement Owner {

5 protected abstract void run();

6

7 public final void start() {

8 Actor actor = withdraw(this);

9 if(owner(me()) != me()) {

10 acquire(actor);

11 throw new RuntimeException("Forbidden, sent current thread owner ID.");

12 }

13

14 Owner prev = be(actor);

15 try{

16 actor = acquire(actor);

17 ActorThread t = new ActorThread(actor);

18 t.start();

19 }finally{

20 be(prev);

21 }

22 }

23 }

Figure 4.18: The siaam.actor.Actor class.

1 final class ActorThread extends Thread { // package private

2 private final Actor actor;

3 ActorThread(Actor actor) {

4 this.actor = actor;

5 }

6 public void run() {

7 this.actor.run();

8 }

9 }

Figure 4.19: The ActorThread class definition.

Mailboxes. The Mailbox interface (Figure 4.20) specifies the get method that returns a
pending message and the put method that sends a message.

We give the definition of the abstract mailbox siaam.actor.AbstractMailbox in Figures
4.21–4.24. The abstract mailbox must be backed by a message queue implementing the
enqueue and dequeue methods. The backing queue must support concurrent enqueue oper-
ations. We made AbstractMailbox opaque so that references of mailboxes may be shared.
Each mailbox is assigned a receiver actor upon construction, stored in the receiver field.
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1 package siaam.actor;

2 public interface Mailbox<T> {

3 public T get();

4 public void put(T message);

5 }

Figure 4.20: The siaam.actor.Mailbox interface.

1 package siaam.actor;

2 import siaam.untrusted.Opaque;

3 abstract class AbstractMailbox<T> implements Mailbox<T>, Opaque {

4 protected abstract T dequeue();

5 protected abstract void enqueue(T message);

6 private final Actor receiver;

Figure 4.21: The siaam.actor.AbstractMailbox class.

The constructor sets the receiver reference, for that it must temporarily wear the owner-ID
matching the constructed mailbox (this), since opaque objects owns themself.

7 AbstractMailbox(Actor receiver) {

8 Owner prev = be(this);

9 try{

10 this.receiver = receiver;

11 }finally{ be(prev); }

12 }

Figure 4.22: The AbstractMailbox constructor.

The put method is presented in the Figure 4.23. To deposit a message in a mailbox, the
current thread must withdraw the ownership over the objects of that message using withdraw,
then the invariant that the current owner-ID is not part of the message is verified and the
operation is canceled when necessary by re-acquiring the message and throwing an excep-
tion. When the objects of the message have been successfully withdrawn, the owner-ID is
temporarily switched to the mailbox’s this reference and the message is enqueued.

13 public void put(T message) {

14 message = withdraw(message);

15 if(owner(me()) != me()) {

16 acquire(message);

17 throw new RuntimeException("Forbidden");

18 }

19 Owner prev = be(this);

20 try{

21 enqueue(message);

22 }finally{ be(prev); }

23 }

Figure 4.23: The AbstractMailbox.put method.

Getting a message from the mailbox requires that the current thread’s owner-ID at the
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entry of the get method matches the receiver set for the mailbox. To access the this.receiver

field, the owner-ID must be temporarily switched to this, storing the previous owner-ID in
the prev local variable. If the mailbox’s receiver and the prev reference matches, a message
is dequeued, otherwise an exception is thrown to notify that the entry thread is not the ap-
propriate receiver. After switching the owner-ID back to pred, the thread acquires ownership
over the received message so it can be returned to the application.

24 public T get() {

25 T message;

26 Owner prev = be(this);

27 try{

28 if(prev != receiver) throw new RuntimeException(

29 "Current thread is not receiver for this mailbox.");

30 message = dequeue();

31 }finally{ be(prev); }

32 return acquire(message);

33 }

34 }

Figure 4.24: The AbstractMailbox.get method.

We provide concrete implementations of the abstract mailbox with various backing queues,
such as the Java’s FIFO LinkedBlockingQueue which support concurrent enqueues (Figure
4.25).

1 public final LinkedMailbox<T> extends AbstractMailbox<T> {

2 private final LinkedBlockingQueue<T> queue;

3 public LinkedMailbox(Actor receiver) {

4 super(receiver);

5 Owner prev = be(this);

6 try{

7 queue = new LinkedBlockingQueue<T>(); // "unbounded" capacity

8 }finally{ be(prev); }

9 }

10 protected void enqueue(T message) { // assume: me() == this

11 queue.put(message);

12 }

13 protected T dequeue() { // assume: me() == this

14 return queue.take();

15 }

16 }

Figure 4.25: The siaam.actor.LinkedMailbox class.

4.5.2 ActorFoundry.

Using the trusted Siaam actors API, we build an implementation of the ActorFoundry
API as described in [61]. Since it is entirely relying on trusted bytecode, it can be supplied
as a third-party library instead of being integrated in the VM bytecode. Our implementation
is compliant with existing ActorFoundry applications, although it currently does not support
synchronization constraints.
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The API provides three methods of the osl.manager.Actor class:

— void send(ActorName actor, String message, Object... args). Sends an asynchronous
message to the specified actor with the given arguments.

— Object call(ActorName actor, String message, Object... args). Sends an asynchronous
message to the specified actor with the given arguments and wait for a response that
is returned by the primitive.

— ActorName create(Class<? extends Actor> cls, Object... args). Creates a new ac-
tor from a specified class extending osl.manager.Actor and the specified arguments
passed to its constructor. Returns the new actor’s name.

Each actor created with create has a fixed, unique name and a dedicated thread. Ac-
tor names are opaque objects implementing the osl.manager.ActorName interface. Name
references can be shared system-wide, they are employed as communication channels by
the send and call primitives. The message string passed to the asynchronous communi-
cation methods must correspond to a method name of the receiver actor marked with the
osl.manager.annotation.message annotation (otherwise the message will be discarded). In-
ternally actor names are backed by a mailbox of the Siaam actors API, and actors are backed
by a Siaam actor. The behavior of each Siaam actor is a loop that waits for a message to be
available in the actor’s mailbox and dispatches it using the Java Reflection API by matching
the message’s string and arguments types to an actor’s method. The call method uses a
temporary trusted mailbox (supplied by siaam.actor) to wait for the response of the receiver
before returning it to the sender.

4.5.3 M:N cooperatively scheduled actors

The number of concurrent actors in the Siaam API and the ActorFoundry API is limited
by the maximum OS thread count and the amount of available memory for stacks. In order
to overcome this limitation, it is necessary to provide a programming model where actors
execute a run-to-completion task for each received message. This way a large number of
actors can be scheduled over a small number of threads. Each actor occupies a worker thread
for the duration of a certain number of tasks and eventually hands-off to another actor which
have pending messages. This is the mutualisation strategy adopted for instance by Kilim,
O-Kilim and Akka.

We implemented a trusted API on top of the virtual machine untrusted core primitive
that is able to efficiently schedule a large number of actors over one or several pools of threads.
Then we adapted the API to mimic the ActorFoundry and O-Kilim official APIs so we could
directly run programs from the ActorFoundry, SOTER and Kilim code-base, with Siaam’s
ownership-based isolation.
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Chapter 5

Static analysis and its usages
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5.1 Introduction

This section describes a whole-program static analysis[39] to optimize away owner-checking
on field read and write barriers. The analysis is based on the observation that an instruction
accessing an object’s field does not need an owner-checking if the object accessed belongs to
the executing actor. Any object that have been allocated or received by an actor and hasn’t
been passed to another actor ever since, belongs to that actor. The algorithm’s output is
interpreted as an under-approximation of the owner-checking removal opportunities in the
analyzed program. In a program not performing any message passing, the analysis would
eliminate all owner-checks.
Considering a point in the program, we say an object (or a reference to an object) is safe when
it always belongs to the actor executing that point, regardless of the execution history. By
opposition, we say an object is unsafe when sometimes it doesn’t belong to the current actor.
We extend the denomination to instructions that would respectively access a safe object or
an unsafe object. Finally an instruction passing at least one unsafe object to another actor
is unsafe, otherwise it is a safe message passing instruction. A safe instruction won’t ever
throw any OwnerException, whereas an unsafe instruction might.
The result of this analysis is employed both offline and at runtime. First, it is accurate
enough to assist programmers by pinpointing potential misuses of unsafe references during
the application development process. Second, it provides information to effectively eliminate
redundant or worthless owner-checking, thus reducing the owner-checking barriers overhead

107
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at runtime.

5.1.1 Outline

The algorithm is structured in two phases, first the safe dynamic references analysis
employs a local must-alias analysis to propagate owner-checked references along the control-
flow edges. It is optionally refined with an inter-procedural pass propagating safe references
through method arguments and returned values. Then the safe objects analysis tracks safe
runtime objects along call-graph’s and method control-flow’s edges by combining an inter-
procedural points-to analysis and an intra-procedural live variable analysis. Both phases
depends on the transfered abstract objects analysis that propagates unsafe abstract objects
from the communication sites downward the call graph edges.

By combining results from the two phases, the algorithm computes conservative approxi-
mations of unsafe runtime objects and safe variables at any control-flow point in the program.
The owner-check elimination for a given instruction s accessing the reference in variable V
processes as following (figure 5.1). First the unsafe objects analysis is queried to know whether
V may points-to an unsafe runtime object at s. If not, the instruction can skip the owner-
check for V . Otherwise, the safe reference analysis is consulted to know whether the reference
in variable V is considered safe at s thanks to dominant owner-checks of the reference in the
control-flow graph.

The two phases of our analysis are independent, it is possible to disable one and replace
it with a very conservative approximation. Disabling one phase allows faster computation
but less accurate results. We implemented the safe references analysis as a code optimization
pass in the Siaam virtual machine, so that intra-procedural owner-check eliminations are
performed without the need of a costly whole-program analysis.

access V .F

V points-to
unsafe

objects ?

V safe
reference ?

can eliminate
V owner-
checking

must keep
V owner-
checking

yes

no

yes

no

Figure 5.1: Owner-check elimination decision diagram. The left-most question is answered by
the safe objects analysis. The right-most question is answered by the safe references analysis.
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5.2 Intermediate Representation

5.2.1 Program representation.

The Siaam analysis framework employs an intermediate representation of the program of
type I-prog (figure 5.2). It is handy to instantiate the parametric program type defined in
section 3.3 with a new method body definition. The method body (type I-mb) comprises the
the map from local variables names to their respective type, the list of lexical statements and
the body’s control-flow graph.

type_synonym I-mb = (vname Ô ty) ◊ statement list ◊ cfg

I-prog = I-mb prog

Figure 5.2: Intermediate program declaration.

5.2.2 IR language.

The intermediate representation language (Figure 5.3) is a sparse version of the virtual
machine language (Figure 3.11) where the stack locations are reified by local variables, the
branching instructions are translated into a control-flow graph and the instructions on prim-
itive data types are deliberately absent because they are not relevant to our analysis.

Local variable names are of the vname type, parameters are indexed by natural number
(type synonym pindex, naming convention fi) from zero in the declaration order, the this

pointer being at index 0. Lexical statements are of the following kinds: body entry-point,
parameter index to local variable identity, caught exception to local variable identity, local
variable assignment, object’s field assignment, return statement, exception throwing. Right-
hand side of assignment expressions comprise the null reference, read of variable, object
allocation, read of object’s field, method invocation.

The reserved local variable name any is used in place of variables of the Void type or
any non-reference type and any literal constant or any operation on primitives. All other
local variables are of a reference type Class C . The intermediate language doesn’t include
any control flow statement such as conditionals, loops or try/catch, instead the control-flow
graph of every method body is available, as described in the following section.

5.2.3 Body’s control-flow graph.

A control-flow graph[6, 82] (type cfg) for a method body is a set of directed edges (n, nÕ) ::
nat◊nat from the lexical statement at position n to a successor lexical statement at position
nÕ. Each edge represents a possible path followed by the execution flow.

type_synonym cfg = (nat ◊ nat) set

A control-flow graph has a unique head which is an entry statement. There is a unique
tail as well, which is a return statement. There must be only a single entry and a single
return statement in each control-flow graph. Methods with a Void return type can return
the any variable. Thus the shortest method body lexical statements list is [entry, ret any]
with the following control-flow graph: {(0, 1)}. Note that the statements could be ordered
differently in the body list, any permutation is acceptable as long as the control-flow graph
is adapted accordingly.
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datatype statement =
entry entry-point

| vname := Par pindex parameter identity
| vname := CaughtXcpt caught exception identity
| vname := rhs-expr local variable assignment
| vname.vname{cname} := var-expr field assignment
| ret var-expr return
| throw vname exception throw

rhs-expr =
var-expr

| Val Null null pointer reference value
| new cname object allocation
| vname.vname{cname} field access
| vname.mname(vname list) invoke method

var-expr = Var vname load variable

Figure 5.3: Lexical statements of the intermediate representation.

Exceptional flow edges. Each exceptional path is modeled with a control-flow edge to
the first instruction of every potential trap handlers. The beginning of a trap handler is
materialized by a caught exception identity statement of the form V := CaughtXcpt, loading
the caught exception into the local variable V . For every potentially throwing instruction,
there is an edge starting from each of its predecessors. If an instruction may have a side-
effect before throwing an exception, there is also an edge starting after that instruction.
Exceptions that are not caught by any trap handler do not generate any control-flow edge.
Call statements have exceptional edges before and after themselves to model possible side-
effects of the callee before an exception is raised.
Siaam introduces the OwnerMismatch exception that may be thrown before a field access
statement, but not after since the exception prevents unwanted side-effects violating the
isolation property.

5.3 Standard analyses framework.

Our analysis is client of several standard intra- and inter-procedural program analy-
ses. It requires a call-graph representation, an inter-procedural points-to analysis, an intra-
procedural liveness analysis and an intra-procedural must-alias analysis. Each of these anal-
yses exists in many different variants offering various tradeoffs of results accuracy and al-
gorithmic complexity, but regardless of the implementation, they provide a rather standard
querying interface. In the next paragraphs, we define a standard model for each class of
analysis used in Siaam. In order to instantiate the standard analyses framework, one has to
provide an implementation of each model (an adapter from the actual analysis representation
to the model defined by Siaam).

We declare the HOL locale standard-framework (5.1) fixing the concrete implementations
of the standard analyses required by Siaam. The next paragraphs provides a description of an
abstract model for these analyses. For the rest of the chapter, we assume all the definitions
are in the context of this locale or an extension of this locale, so every function fixed in the
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framework’s locale is directly available.

locale standard-framework =

fixes targets :: cg-targets

and sources :: cg-sources

and pt :: pointsto

and aoc :: absobjclass

and maa :: mustalias

and live :: liveness

(5.1)

5.3.1 Program’s call graph.

A call graph[50] is a directed graph that represents the invocation relationship between
the program’s methods. Edges of the graph go from source call sites to target call graph
nodes. A single method of the program may be represented by zero, one or several nodes
in the program’s call-graph. Methods that cannot be reached by any execution path isn’t
represented in the call graph.

Sensitivity. In a context-insensitive call graph, each reachable method has exactly one
node because no calling context is taken into account at the call sites. Whereas in a context-
sensitive call-graph, various kind of context can be employed to distinguish calls from the
same syntactic call site, thus several nodes may represent the same method, each within a
different calling context. The program representation for the Siaam analysis can handle any
kind of context.

Abstraction. Our model for a call-graph node (naming convention m) is a tuple (c, C , M ) ::
cg-node where M :: mname and C :: cname are the name and class of the represented method
and c :: nat is the unique identifier of the calling context. We note NP the finite set of nodes
created in the call graph for the program P.

With the definition of a call graph node, we can identify a precise lexical statement in the
context of a node. A node statement (naming convention s) is of the form (m, n) :: stmt where
m :: cg-node is the specified node and n is the index of the designated lexical statement in the
body of the method represented by m. For instance, the node statement ((c, List, insert), n)
designates the (n + 1)-th lexical statement in the body of method List.insert with the calling
context c. The formal notations for program points are Before s (abbreviated •s) for the
program point before statement s and After s (abbreviated s•) for the program point after
s.

type_synonym cg-node = nat ◊ cname ◊ mname

stmt = cg-node ◊ nat

datatype program-point = Before stmt | After stmt

(5.2)

We now give the type definitions for the two functions targets :: cg-targets and sources ::
cg-sources fixed by the analysis framework (5.1) that are employed to query the call graph.
targets P s must return the set of call graph nodes that may be called as an effect of
executing the node statement s in the program P. Symmetrically, source P m must return
the set of node statements that may invoke the call graph node m. The two functions must
guarantee that every node targeted by a given statement has that statement in its set of
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sources and every statement that is a source of a given node has that node in its set of
targets: m œ targets P s Ωæ s œ sources P m.

type_synonym cg-targets = I-prog ∆ stmt ∆ cg-node set

cg-sources = I-prog ∆ cg-node ∆ stmt set
(5.3)

Since we may work with node statements (stmt) more often than lexical statements, we
introduce the following shorthands. stmts-of P m constructs the list of node statements
for the call graph node m, it simply creates as many elements (m, n) as the count of lexical
statements in the body of the method associated with m. Similarly cfg-of P m constructs the
control-flow graph for the method associated with m where vertices are couples of statements
instead of lexical statement indexes (reminder, f ‘A is the image of set A by the function f).
The function type-of P m V returns the type of variable V as it is declared in the body of
the method associated with the call graph node m.

stmts-of :: I-prog ∆ cg-node ∆ stmt list

stmts-of P m = (let (c, C , M ) = m; (_,stmts,_) = method P C M
in map (⁄ n . (m,n)) [0 .. <|stmts|] )

cfg-of :: I-prog ∆ cg-node ∆ (stmt ◊ stmt) set

cfg-of P m = (let (c, C , M ) = m; (_,_,cfg) = method P C M
in (⁄ (n, nÕ) . ( (m, n), (m, nÕ) ))‘cfg)

type-of :: prog ∆ cg-node ∆ vname ∆ ty

type-of P m V = (let (c, C , M ) = m; (lcls,_,_) = method P C M in lcls V )

(5.4)

We note preds P s and succs P s the set of respectively the predecessors and the successors
of statement s in the control-flow graph of s’s node.

preds :: I-prog ∆ cg-node ∆ stmt set

preds P (m, n) = {sÕ | (sÕ, (m, n)) œ cfg-of P m}

succs :: I-prog ∆ cg-node ∆ stmt set

succs P (m, n) = {sÕ | ((m, n), sÕ) œ cfg-of P m}

(5.5)

The head and tail statements of the control-flow graph of the node m are produced by
entry-of :: I-prog ∆ cg-node ∆ stmt and exit-of :: I-prog ∆ cg-node ∆ stmt (not shown).

The notation P „ ÈSÍ(m,n) verifies that in program P the statement (m, n) where m =
(c, C , M ) represents the lexical statement S :: statement at position n in the body of C .M .
For the succinctness of this notation we will often omit the program notation. For instance
we write Èr1 := new ListÍ((_,List,insert),3) to designate the fourth lexical statement of method
List.insert.

_ „ È_Í
_

:: I-prog ∆ statement ∆ stmt ∆ bool

P „ ÈSÍ(m,n) Ωæ S = (stmts-of P m)[n]

(5.6)

5.3.2 Points-To Analysis.

A points-to analysis[65, 92, 57] for object-oriented programs computes an over-approximation
of the runtime objects a reference variable or a reference object field may points-to. Runtime
objects are usually coalesced into abstract objects by their allocation site, so statically it isn’t
possible to distinguish between the infinite number of runtime objects that can be allocated
by a given statement.
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Sensitivity. The sensitivity of the points-to analysis[89] is often linked to the sensitivity
of the call-graph and conversely. A points-to analysis is context-sensitive if it computes a
different points-to graph for each call-graph node. The analysis is flow-sensitive if it produces
a different points-to graph for each statement of a method.

Abstraction. In our abstraction, a reference variable is a couple (m, V ) :: ref-var repre-
senting the reference variable V :: vname in the call graph node m :: cg-node. An abstract
object is an arbitrary name o :: absobj, to simplify the model we will assume that names
are natural numbers in the finite set OP µ N. OP contains all the names used to identify
abstract objects while analyzing the program P. The runtime objects can be coalesced in an
arbitrary way by the points-to analysis. A reference field (o, (F , C )) designates the value of
the field F :: vname declared in class C :: cname for the abstract object o.

Internally the analysis constructs a points-to graph with edges going from references to
abstract objects. The general form of an edge is (x, o), where x is either a reference variable
or a reference object field. We say the reference x may points-to the runtime objects coerced
by the abstract object o, and the points-to set of x is the set of all successors of x in the
points-to graph. Two references may-alias if and only if their respective points-to set have a
non-empty intersection, otherwise we say the references must-not alias meaning they never
points-to the same runtime object.

The analysis framework locale fixes the functions pt :: pointsto returning the points-to set
(type absobj set) for a given variable reference or object field reference, and aoc :: absobjclass

returning the class name of the nearest common superclass of the runtime objects coalesced
into a specified abstract object.

type_synonym absobj = nat

ref-var = cg-node ◊ vname

ref-field = absobj ◊ (vname ◊ cname)

pointsto = I-prog ∆ stmt ∆ (ref-var + ref-field) ∆ absobj set

absobjclass = I-prog ∆ absobj ∆ cname

5.3.3 Must-Alias Analysis.

The must-alias analysis[5] answers the must-alias question, indicating whether two ref-
erences at their respective position in a method always alias a common object at runtime.
Our model considers two kinds of reference: value computed by right-hand-side expression of
statements, and value of local variables at a given statement. The must-alias analysis maps
each reference to a key with the following interpretation: if two references maps to the same
key then they must-alias, otherwise they may not always alias. Two variables V and V Õ taken
at their respective position s and sÕ must-alias if both couples (s, V ) and (sÕ, V Õ) map to the
same key. Similarly a variable V taken at s must-alias the right-hand-side of statement sÕ if
both (s, V ) and sÕ map to the same key. Sometime the must-alias analysis cannot give any
aliasing information about a reference and associates it with the unknown key. The value
numbering approach is described in [17], inspired by SSA numbering[66]
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Abstraction. The function maa :: mustalias fixed by the analysis framework locale com-
putes the must-alias key (type key option) associated with a given reference that is either
a call graph node statement or a variable name in the context of a node statement. The
returned key is an optional natural number, when Some Ÿ is returned, the must-alias infor-
mation is available and the key associated with the reference is Ÿ :: key. When no aliasing
information is available the undefined key None written Unknown is returned. We note
Km µ N the finite set of keys that can appear in the must-alias analysis of the call graph
node m.

datatype key = nat

Unknown © None

type_synonym mustalias = I-prog ∆ (stmt + (stmt ◊ vname)) ∆ key option

(5.7)

For a single example of how to use the must-alias analysis, consider the statements ÈV1 :=
V2 .F{C}Ís1

and ÈV1 .F{C} := V3 Ís2
with s2 being the sole successor of s1 in the flow graph.

If the must-alias information for V11 at s1 is ÂŸÊ = maa P (Inr (s1 , V1 )) we deduce that
V1 must-alias every other reference associated to the key Ÿ at the program-point before
s1 . Note that V1 is assigned at s1 but takes its new value at the program-point after
s1 , therefore the key Ÿ reflects the value of V1 before the assignment. Let’s assume the
key of the right-hand-side expression in s1 is ÂŸÕÊ = maa P (Inl s1 ), then we should have
maa P (Inr (s2 , V1 )) = ÂŸÕÊ as a consequence of the assignment in s1 .

sensitivity. Field-insensitive must-alias analyses only track local variables, but field-sensitive
ones are able to track object fields as well. An object field is trackable over a range of state-
ments if it isn’t updated neither by the current method nor any method that is invoked inside
the range. An intra-procedural escape analysis or an inter-procedural side-effects analysis is
usually employed to determine whether an object field reference can be tracked. Back to
our previous example, we can consider a third statement ÈV4 := V1 .F{C}Ís3

that is the sole
successor of s2 . If the field of V1 is trackable then the right-hand-side expression of s3 have
the same key as V3 at s2 : maa P (Inl s3 ) = maa P (Inr (s2 , V3 )), otherwise it has its own key.

For completeness, the must-alias key of the special variable any, which is however not of
a reference type, is fixed to Unknown.

5.3.4 Liveness Analysis.

Liveness analysis[6] gives the set of live local variables at a specified program point. A
variable is live at specified point of the control-flow if its value may be read before its next
write. We say a variable is dead otherwise. More specifically, a variable is live-in the statement
s if it is live at the program point •s (before), and live-out if it is live at the program point
s• (after).

Our abstraction of the liveness analysis also tracks live and dead method parameters.
A method parameter, identified by its index (type pindex), is read by parameter identity
statements (È_ := Par fiÍs) but never written. A method parameter is live from the method
entry-point to its last use, or immediately dead if it is never assigned to a local variable.
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liveness is the type of the functions associating a set of variable names and formal pa-
rameter indexes to a program point.

type_synonym liveness = I-prog ∆ program-point ∆ (vname + pindex) set (5.8)

5.4 The Siaam analysis framework.

5.4.1 Ownership-oriented programming models semantics.

We define the analysis-framework locale that extends the standard-framework and fixes
three functions expressing the ownership semantics of the programming model(s) employed
in the analyzed program. The generic framework offers a mean to encode various ownership-
oriented programming models semantics through the definition of functions describing the
requirements and the side-effects of every program’s statement in terms of object and reference
ownership.

locale analysis-framework = standard-framework +

fixes pre-conditions :: requirements

and side-effects :: effects

and pt-filter :: pointstofilter

(5.9)

A statement can require the following over-approximated pre-conditions to be verified at it’s
entry-point in order to guarantee a normal execution, otherwise it may throw an exception:

— a set of local variables must be safe.

— a set of abstract objects must be safe.

For instance, let’s consider the following invoke statement Èmb.put([msg])Ís and assume the
variable mb is of type Class Mailbox. The statement s calls the message passing method de-
fined in the Siaam actor API, which requires that all the objects transitively reachable from
the parameter msg are safe. Thus all the abstract objects transitively reachable from msg

in the points-to graph of the analyzed program must appear in s’s ownership preconditions.
The statement ÈV .F{C} := unitÍsÕ only succeeds if the variable V is safe (regardless of the
objects it may points-to), therefore the set of reference variables that must be safe before sÕ

must comprise V .

A statement may enforce some ownership side-effects if its pre-conditions are satisfied:

— a set of local variables must become safe.

— a set of abstract objects may become unsafe.

The execution semantics associated with ownership side-effects for a given statement are:

— either the statement completes and all the side-effects happen,

— or the statement fails with an exception and none of the side-effects happen.

In the previous example, s transfers all the objects reachable from msg to another owner, the
set of abstract objects that may become unsafe is over-approximated by the abstract objects
in the transitive closure of msg in the program’s points-to graph. The statement sÕ accesses
a field of the object pointed-to by V and implicitly performs an owner-check of that object,
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so in the control-flow point after sÕ, V is necessarily safe, because otherwise an exception is
raised and the execution doesn’t flow to sÕ’s normal successor.

We don’t offer the possibility to declare a set of abstract objects that must become safe
because an abstract object may represent more than one instance of runtime object. Declaring
such a set would mean the statement has the side-effect of checking the ownership of every
objects represented by the abstract objects, which is likely impracticable or very strange.
Declaring a set of local variables that may become unsafe is also voluntarily avoided, instead
the analysis will automatically manage unsafe variables according to the set of abstract objects
that may become unsafe.

Ownership pre-conditions. The ownership preconditions are checked at the very end of
the Siaam analysis in order to partition safe statements and unsafe statements. At the end
of the Siaam analysis, the safety information for every local variables and abstract objects at
every program point is available. Thus it is possible to compare the pre-conditions expressed
by each statement with the safety information computed for the program point before the
statement. The requirements of a statement are encoded as a set of requirement elements.
SafeV V encodes that variable V must be safe, and SafeO o encodes that the abstract object
o must be safe. A function of type requirements returns the set of pre-conditions associated
with a given statement.

datatype requirement = SafeV vname | SafeO absobj

type_synonym requirements = I-prog ∆ stmt ∆ requirement set
(5.10)

Ownership side-effects. The ownership side-effects of a statement are encoded as a set
of effect elements. UnsafeEff o encodes the effect that invalidates the safety of the abstract
object o, meaning at least one runtime object represented by o may be unsafe from the
program-point after the statement. The SafeEff Ÿ encoding indicates that the safety of any
reference with a must-alias key equal to Ÿ is validated from the program-point after the
statement. The usage of must-alias keys greatly simplify the program analysis because we
are more interested in treating indifferently all references to the same object than tracking
the content of every variables independently.

A function of type effects returns the set of effects associated with a given statement.

datatype effect = SafeEff key | UnsafeEff absobj

type_synonym effects = I-prog ∆ stmt ∆ effect set
(5.11)

Filtered points-to information. Programming models can filter-out arbitrary points-
to graph edges to hide some heap paths, for instance actor’s mailboxes contains refer-
ences to messages but these messages should be hidden. The framework-fixed function
pt-filter :: pointstofilter returns a boolean indicating if the specified edge, a head reference
and a tail abstract object, should be visible to the Siaam analysis. We define the points-to
analysis filtered-pt :: pointsto that filters-out edges from the standard framework’s points-to
graph according to pt-filter. Finally, filtered-pt-trans computes the set of abstract objects
transitively reachable via visible points-to edges from a reference variable or an abstract
object at a given statement.
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type_synonym pointstofilter = I-prog ∆ stmt ∆ (ref-var + ref-field) ∆ absobj ∆ bool

filtered-pt :: pointsto

filtered-pt P s r = {o œ pt P s r | pt-filter P s r o}

filtered-pt-trans :: I-prog ∆ stmt ∆ (vname + absobj) ∆ absobj set

(5.12)

5.4.2 Programming models API abstraction.

Until now we have only provided abstractions to analyze sequential parts of programs.
We can model the sequence of statements an actor may execute, and associate it with cus-
tomized ownership semantics. Our choice is to employ existing standard analyses instead of
providing new implementations of them that would fit exactly the semantics of ownership-
based concurrent programming models. We now face the problem that the standard call
graph and points-to analyses must be aware of the underlying operations performed by the
programming models APIs in order to faithfully reproduce their effects. Therefore we have to
provide a minimal mockup implementation of each API’s methods that mimic the necessary
side-effects. Although analyzing the program with the full API implementation is possible, it
might introduce unnecessary burden in the construction of the points-to graph and call graph.

For instance we must provide a fake Mailbox.put method that at least stores the reference
of the passed message in the mailbox instance object, so that later the fake Mailbox.get

method can return that reference. By doing so, the points-to analysis will correctly report
that the set of abstract objects returned by get corresponds to the set of abstract objects
passed to put. Notice that the filtered points-to graphs are introduced to hides the edges
from the mailbox objects to the messages they contain.

Some standard analyses can even be sensitive to concurrency, usually to support multi-
threaded programs. We must provide a supplementary statement Spawn V .M (Vs) to model
the invocation of V .M (Vs) in a concurrent thread of execution.

datatype statement = . . . | Spawn vname.mname(vname list)

The mockup implementation of Siaam’s Actor.start includes the spawn statement ÈSpawn V .run([ ]) Í
to model the call to the run method of actor V in a concurrent thread of execution.

5.5 Some programming models and their ownership-based se-

mantics.

The following functions will help constructing sets of ownership side-effects. optional-to-

set takes an optional value and produces a set. safe-effects produces a set of safe side-effects
given a set of must-alias keys. Similarly, unsafe-effects produces a set of unsafe side-effects.
safeo-preconds produces a set of safe-object preconditions given a set of abstract objects.

optional-to-set :: Õa option ∆ Õa set

optional-to-set x = case x of None ∆ ÿ | Some a ∆ {a}
safe-effects :: key set ∆ effect set

safe-effects keys = (⁄ Ÿ . SafeEff Ÿ)‘keys
unsafe-effects :: nat set ∆ effect set

unsafe-effects absobjs = (⁄ o . UnsafeEff o)‘absobjs
safeo-preconds :: key set ∆ requirements set

safeo-preconds absobjs = (⁄ o . SafeO o)‘absobjs

(5.13)
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5.5.1 Implicit owner-checks

We formalize in this section the ownership-based semantics implicitly attached to the
statements of the IR language. We only show the rules producing non-empty preconditions
and side-effects.

Ownership requirements. Both reading from and writing to an object’s field referenced
by the variable V requires V to be safe:

implicit-pre-conds :: requirements

implicit-pre-conds P È_ := V .F{C}Ís = {SafeV V }

implicit-pre-conds P ÈV .F{C} := _Ís = {SafeV V }

(5.14)

Ownership side-effects. As a direct consequence of the previous preconditions, success-
fully reading from or writing to a field of the object referenced by the variable V at statement
s confirms that V , hence the must-alias key of V at s, is safe. Freshly allocated objects are
always safe. Finally, the Null value may always be considered safe. Note that none of the
implicit rules generate unsafe side-effects.

implicit-side-effects :: effects

implicit-side-effects P È_ := V .F{C}Ís = safe-effects ( optional-to-set (maa P (Inr (s, V ))))
implicit-side-effects P ÈV .F{C} := _Ís = safe-effects ( optional-to-set (maa P (Inr (s, V ))))
implicit-side-effects P È_ := new C Ís = safe-effects ( optional-to-set (maa P (Inl s)))
implicit-side-effects P È_ := Val NullÍs = safe-effects ( optional-to-set (maa P (Inl s)))

(5.15)

Filtered points-to analysis. The points-to graph filtering function associated with the
implicit owner-checks accepts all edges from the original graph.

implicit-pt-filter :: pointstofilter

implicit-pt-filter P s r o = True
(5.16)

5.5.2 Siaam actor programming model.

Filtered points-to analysis. The points-to graph filter hides edges from and to mailbox
objects. This way mailboxes and enqueued messages are not visible by the Siaam analysis
when it traverses the filtered graph. The filter is to the static analysis what opaque objects
are to the virtual machine implementation.

siaam-actor-pt-filter :: pointstofilter

siaam-actor-pt-filter P s (Inr (o, (F , C ))) oÕ = ¬ (P „ (aoc P o) ∞ı Mailbox

‚ P „ (aoc P oÕ) ∞ı Mailbox )
siaam-actor-pt-filter P s (Inl (m, V )) oÕ = ¬ (P „ (aoc P oÕ) ∞ı Mailbox)

(5.17)

In equation (5.17), since aoc returns the nearest common superclass of the objects co-
alesced into o, it may happen that o represents some mailboxes among other objects and
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hence: P „ Mailbox ∞ı aoc P o. In this situation the filter may accept edges from mailbox
objects to messages they contain. Therefore we employ the result of the filter knowing it may
include hidden edges. Note that with most pointer analyses, abstract objects are coalesced
by allocation site and therefore have precisely the type of the allocated objects.

Ownership pre-conditions. Hereafter are presented the ownership preconditions associ-
ated with the methods of the Siaam actors API, they directly relate to ok-act defined in the
formal model of Siaam. To start the actor pointed-to by V , the objects transitively reachable
from V in the filtered points-to graph must be safe:

siaam-actor-pre-conds :: requirements

siaam-actor-pre-conds P È_ := V .start([ ])Ís =
let T = type-of P s V
in if P „ T Æı Class Actor

then safeo-preconds (filtered-pt-trans P s (Inl V ) ) else ÿ

(5.18)

Similar preconditions apply for the emission of the message pointed-to by V Õ:

siaam-actor-pre-conds P È_ := V .put([V Õ])Ís =
let T = type-of P s V
in if P „ T Æı Class Mailbox

then safeo-preconds (filtered-pt-trans P s (Inl V Õ) ) else ÿ

(5.19)

Ownership side-effects. The ownership side-effects presented in this paragraph are re-
lated to upd-act in the formal model. Starting an actor invalidates the safety of every objects
reachable from the actor’s reference:

siaam-actor-effects :: effects

siaam-actor-effects P È_ := V .start([ ])Ís =
let T = type-of P s V
in if P „ T Æı Class Actor

then unsafe-effects (filtered-pt-trans P s (Inl V ) ) else ÿ

(5.20)

Similarly message emission invalidates the safety of every objects reachable from the message
starting reference:

siaam-actor-effects P È_ := V .put([V Õ])Ís =
let T = type-of P s V
in if P „ T Æı Class Mailbox

then unsafe-effects (filtered-pt-trans P s (Inl V Õ) ) else ÿ

(5.21)

The starting reference of a received message is guaranteed to be safe. Our current static
analysis is not designed to leverage the fact that all the runtime objects transitively reachable
from a received message are safe as well.

siaam-actor-effects P È_ := V .get([ ])Ís =
let T = type-of P s V
in if P „ T Æı Class Mailbox

then safe-effects ( optional-to-set (maa P (Inl s))) else ÿ

(5.22)
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5.5.3 Reflection-based message dispatch APIs

Certain APIs use the Java reflection features to dispatch messages, hence it is necessary
to modify the call graph to render explicit every possible dispatches since standard analyses
frameworks cannot handle reflection in the general case (although some notable efforts [70, 18]
must be cited). For instance the ActorFoundry API dispatches received messages according
to the method name specified in every message. Fortunately, methods receiving messages
are annotated with @message. To analyze ActorFoundry programs, we implemented a pre-
processing phase that generates dispatching loop methods for each class of actor. Another
difficulty is to cope with reflection-based actor creation. ActorFoundry actors are created
from the name of their behavior class. Fortunately in every programs that we analyzed
the specified class name is a constant literal, therefore the pre-processing phase is able to
replace reflection-based every actor creation with a normal allocation followed by a call to the
generated dispatching loop. These two tricks allow to use the standard analyses transparently
with the Siaam analysis. Of course the ownership semantics for the send and call methods
must be encoded, but they are equivalent to the Siaam mailboxes’ put method, although in
ActorFoundry several parameters are passed instead of a single one.

5.6 The Siaam Analysis

The analysis computes an under-approximation of the safe reference variables and an over
approximation of the unsafe abstract objects at each program-point. These results are then
compared with the ownership pre-conditions of each statement to determine whether a given
statement can be considered safe or not. A statement can be statically declared safe if all its
pre-conditions are met at its entry point.

We present a data-flow analysis that propagates the ownership side-effects of the pro-
gram’s statements. The ownership side-effects are declared by the programming model ab-
straction presented in section 5.4.1, they express sets of must-alias keys that must become
safe and abstract objects that may become unsafe after a given statement.

Data-flow lattice.

Must-alias keys and abstract objects take an ownership state in the totally ordered set S =
{Safe, Unsafe} where Safe indicates that the reference is safe and Unsafe that the reference
is unsafe. A third state will be introduced as an extension in section 5.7. We define the join
‚S and the meet ·S operators on S, with the total order relation 6S as follows:

Unsafe 6S Unsafe = True Unsafe 6S Safe = True

Safe 6S Unsafe = False Safe 6S Safe = True

The lattice has a greatest element noted €S and a least element noted ‹S :

€S =
fl

S
S = Safe ‹S =

fi

S
S = Unsafe

It can easily be showed that (S,6S ) is a lattice[27] by showing either commutativity, asso-
ciativity, idempotence and absorption on ·S and ‚S , or by showing a ·S b and a ‚S b exist
for all a, b œ S. Then we can show that (S,6S ) is a complete lattice by showing that

x

S A

and
w

S A exist for all A ™ S. Since S comprises only two elements, we can exhibit all the
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cases:

‚S , ·S Unsafe Safe

Unsafe Unsafe, Unsafe Safe, Unsafe

Safe Safe, Unsafe Safe, Safe

A
x

S

w

S

ÿ ‹S €S

{Unsafe} Unsafe Unsafe

{Safe} Safe Safe

S €S ‹S

The analysis operates over lists of ownership states. We define the set of lists of a given
length l over elements of a given set A by lists l A. Therefore any list of ownership states
of a certain length l is in the set lists l S. We use indifferently the notations z[n] © z[n] to
denote the element at position n in a list z :: Õa list.

lists :: nat ∆ Õa set ∆ (Õa list) set

lists l A = {as | |as| = l · set as ™ A}
(5.23)

We lift the ordering relation over S to operate point-wise over lists of ownership states of the
same length, defined as the partial ordering noted ıS :

(’z, zÕ :: S list) z ıS zÕ = ord z zÕ

ord [ ] [ ] = True

ord (x · xs) (y · ys) = x 6S y · ord xs ys

(5.24)

[U,U,U]

[S,U,U] [U,S,U] [U,U,S]

[S,S,U] [S,U,S] [U,S,S]

[S,S,S]

Figure 5.4: Hasse-diagram for the set lists 3 S ordered by ıS . “U” and “S” stand respectively
for Unsafe and Safe

A set lists l S has a greatest element noted €l
S

and an lowest element ‹l
S

. They are the
lists of length l filled respectively with Safe and Unsafe.

€l
S = replicate l €S ‹l

S = replicate l ‹S

We provide sets of S lists of the same length with the definitions of the least upper bound
(join operator)

g

S and the greatest lower bound (meet operator)
d

S
. They respectively

apply the point-wise join and meet operators defined over S. The least upper bound of a
couple of lists is written z ÛS zÕ and produces the list where each element at position n is the
greatest of those found at z[n] and zÕ[n]. Symmetrically the greatest lower bound is written
z ÙS zÕ and produces the list where each element is the least of those at z[n] and zÕ[n].
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It can be showed[42] that for all size l, the partially ordered set (lists l S, ıS ) equipped
with the pointwise meet ÙS and join ÛS operators is a complete lattice, as a product of l

complete lattices.

Definitions.

Let be NP the set of call-graph nodes for the program P, EP the set of every statements,
OP the set of every abstract objects in the points-to graph for P, Km the set of must-alias
keys defined in the call-graph node m. When the program is not mentioned, N stands for
NP , E for EP , O for OP . Program points are in the set produced by the cartesian product
{before, after} ◊ EP .

For the necessities of the analysis, we define the following sets of lists over ownership
states. Lm

K is the set of lists of size max(Km) + 1 over S, with m œ NP and max(Km) the
highest natural number identifying a must-alias key for the references in the context of that
node. Similarly LO is the set of lists of size max(OP ) + 1 over S, with max(OP ) the highest
natural number identifying an abstract object in the points-to graph of the program.

Lm
K = lists (max(Km) + 1) S LO = lists (max(OP ) + 1) S

Consequently the least element of Lm
K is noted ‹m

K , the greatest element is noted €m
K , the

least and greatest elements of LO are, respectively, ‹O and €O.

‹m
K © ‹

max(Km)+1
S

€m
K © €

max(Km)+1
S

‹O © ‹
max(O)+1
S

€O © €
max(O)+1
S

We introduce the following helpers to build ownership states lists. mk-unsafe-list X X Õ takes
two sets of natural numbers and produces the list of length max(X) + 1 where the element
at index n œ [0.. Æ max(X)] is Unsafe iif n œ X Õ or Safe otherwise. The mk-safe-list function
operates the other way around, elements are unsafe by default and safe if they can be found
in X Õ.

mk-unsafe-list :: nat set ∆ nat set ∆ S list

mk-unsafe-list X X Õ = map (⁄ n . if n œ X Õ then Unsafe else Safe) [0.. Æ max(X)]

mk-safe-list :: nat set ∆ nat set ∆ S list

mk-safe-list X X Õ = map (⁄ n . if n œ X Õ then Safe else Unsafe) [0.. Æ max(X)]

(5.25)

We note SOp œ LO the states list for the abstract objects at the program point p such
that SOp[o] is the ownership state for o in the result computed by the analysis. If q is a
program-point defined in the call graph node m, we note SKq œ Lm

K the list of states of the
must-alias keys at q such that SKq [Ÿ] is the ownership state for the key Ÿ in the result of the
analysis. The goal of the Siaam analysis is to compute SOp and SKp for every program-point
p where the Safe elements are under-approximated, meaning that an abstract object or a
must-alias key will be considered Safe if the corresponding abstract objects or variables must
be safe at runtime.

Organization.

We describe the Siaam static analysis in progressive steps, each step brings more accuracy
but also requires more knowledge about the whole program. Each version of the analysis pre-
sented in a step computes a sound result, therefore it is possible to mix results from several
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versions by choosing the most adapted one for each piece of the analyzed program.

In an introductory step, we present a trivial version of the analysis that provides the most
conservative results. Then we develop a fast data-flow analysis which doesn’t requires the
program’s call graph. In the other steps the analysis progressively takes advantage of a call
graph and a points-to graph, first in an intra-procedural fashion and finally using the whole
program knowledge in an inter-procedural version of the analysis.

5.6.1 Most conservative analysis.

The most conservative approximation consists in considering all the references unsafe
whether they are variables or object fields. It is the strategy we have used for the formal
model of the Siaam actor-based concurrent programming model. With that pessimistic ap-
proximation, the algorithm associates the Unsafe state to every abstract objects and every
must-alias keys at every program-point.

’p. SOp = [Unsafe, . . . , Unsafe] · SKp = [Unsafe, . . . , Unsafe] (5.26)

Verification of the statements pre-conditions. With a result obtained so rapidly, we
can detail how the pre-conditions of each statement are verified at the end of the analysis.
The precondition SafeO o required by the statement s is met, according to the static analysis,
if SO•s[o] = Safe. To verify that a reference variable V is safe before the statement s (pre-
condition SafeV V ), at least one of the following must be true at •s:

1. all the objects in the points-to set of V are safe, or

2. the must-alias key of V is safe.

If the key is unknown, no aliasing information is available for the variable, and one must
consider it unsafe. Otherwise the ownership state of the key Ÿ is SK•s[Ÿ] and must be equal
to Safe.
The function verify-cond verifies a single pre-condition for a given statement s. Given a
statement and its pre-conditions set, unverified-conds returns the set of requirements that
are not met. Finally the function verify-conds verifies that all the pre-conditions are met for
the specified statement.

verify-cond :: I-prog ∆ stmt ∆ requirement ∆ bool

verify-cond P s (SafeO o) = (SO•s[o] = Safe)
verify-cond P s (SafeV V ) =

let (m, fi) = s
in if (⁄ o . verify-cond P s (SafeO o))‘(filtered-pt P s (Inl (m, V ))) = {True} then True

else (case (maa P (Inr (s, V ))) of Unknown ∆ False | Some Ÿ ∆ SK•s[Ÿ] = Safe)

unverified-conds :: I-prog ∆ stmt ∆ requirement set ∆ requirement set

unverified-conds P s conds = {cond œ conds | ¬ verify-cond P s cond}

verify-conds :: I-prog ∆ stmt ∆ requirement set ∆ bool

verify-conds P s conds = (unverified-conds P s conds = ÿ)

(5.27)
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Instantiation of the frameworks. The most conservative implementations of the stan-
dard analyses are sufficient to provide the level of approximation required by this introductory
step. The points-to analysis can be reduced to its most conservative form where all the ref-
erence seems to point to the single abstract object 0 of class type Object — the root of the
class hierarchy. The must-alias analysis simply associates the unknown key to every refer-
ences. We don’t show the definitions for the most conservative call graph functions and the
most conservative live analysis since we don’t need these analyses for the moment and we
will prefer more accurate implementations of them later. We give life to the corresponding
standard framework with the interpretation standard-framework0.

pt0 P s x = {0} aoc0 P 0 = Object

maa0 P x = Unknown

interpretation standard-framework0 : standard-framework targets0 sources0 pt0 aoc0 maa0 live0

(5.28)

Once a programming model is chosen, and the functions required to describe its ownership-
based semantics are implemented, one can give an interpretation of the analysis framework.
For the purpose of this example, we create a framework embedding the semantics of the
Siaam actor API and the implicit owner-checks, both described in section 5.5. The example
interpretation (5.29) of the analysis framework (5.9) uses the most conservative standard
analyses (5.28) and the programming model abstraction functions pm-pre-conds, pm-effects

and pm-pt-filter. The first couple of function simply aggregate respectively the ownership
pre-conditions and side-effects expressed by the two semantics we chose to embed. The last
one makes a points-to edge visible if both programming models semantics agree to that.

pm-pre-conds :: requirements

pm-pre-conds P s = implicit-pre-conds P s fi siaam-actor-pre-conds P s

pm-effects :: effects

pm-effects P s = implicit-effects P s fi siaam-actor-effects P s

pm-filtered-pt :: pointsto

pm-pt-filter P s r o = implicit-pt-filter P s r o · siaam-actor-pt-filter P s r o

interpretation pm-analysis-framework :
analysis-framework standard-framework0 pm-pre-conds pm-effects pm-pt-filter

(5.29)

5.6.2 Intra-procedural SafeEff side-effects propagation

In this section we present a fast intra-procedural flow-sensitive analysis that only takes
into account the side-effects of the form SafeEff V . It computes safe references without any
knowledge of the “outside world”, in particular the worst assumptions must be made about
the ownership state of the references at the entry-point of the control flow graph and after
the call sites. Later we will progressively increase the knowledge of this outside world thanks
to static whole-program analysis techniques.

Informally, the propagation of safe references is based on the observation that if a refer-
ence r is safe (owned by the thread of execution) at the program point before s, then either s
is a statement passing the object pointed-to by r to another owner and r becomes unsafe after
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s, or else r is also safe after s. Furthermore, if a statement s has the side-effect guaranteeing
that r becomes safe, then r is owned at the program point following s. A reference r must be
safe after every predecessors of a given statement in order to be considered safe before that
statement, otherwise r may be unsafe.

We describe the Safe References Analysis as an equational kill/gen data-flow problem
that determine: For each program point, which reference must have already been owned by
the current thread of execution, and not later passed to another owner, on all paths to the
program point. The Safe References Analysis can be seen as an available expression analysis
[82] in which we are not interested in the value of expressions but in their ownership status.
We often use the term reference in place of must-alias key, in our analysis they can be con-
sidered as the same concept, hence the Safe References Analysis is computing the ownership
status of must-alias keys.

Equational data-flow formulation. We formulate the safe references analysis as a set of
data-flow equations extracted from the analyzed method m œ NP . A first class of equations
relate ownership informations after a statement to ownership informations before the same
statement. These equations have the form:

SKs• = fs(SK•s)

A second class of equations relate ownership informations before a statement to the informa-
tions after every predecessors of the statement:

SK•s = f Õ
s({SKsÕ• | sÕ œ preds P s})

We will define the functions SRAentry :: I-prog ∆ stmt ∆ Lm
K and SRAexit :: I-prog ∆

stmt ∆ Lm
K such that:

SKs• = SRAexit P s

SK•s = SRAentry P s
(5.30)

Every statement kills a set of references and generates a set of safe references. A reference
is killed by a statement if that statement potentially transfers the ownership of the object
pointed-to by the reference. The function killSRA :: I-prog ∆ stmt ∆ Lm

K produces the list
where each must-alias key corresponds to an element that is either Unsafe if the key is killed
by the statement or Safe otherwise. Assume z = killSRA P s then the statement s kills the
key Ÿ iif z[Ÿ] = Unsafe otherwise z[Ÿ] = Safe.
A reference is generated by a statement if it is guaranteed that the reference is owned by the
thread of execution after the statement has been successfully evaluated. The list produced by
the function genSRA :: I-prog ∆ stmt ∆ Lm

K associates Safe to every element corresponding
to a generated must-alias key, and Unsafe for all the other elements. Assume zÕ = genSRA P s
then the statement s generates the key Ÿ iif z[Ÿ] = Safe otherwise z[Ÿ] = Unsafe.

We now define entirely the data-flow functions for SRA (5.31). SRAentry computes the
ownership state of each reference at the program point before a given statement also called
the statement’s entry. For the method’s entry point, we pessimistically assume that all
the references points-to unsafe objects because we don’t know whether or not the objects
reachable from the parameters might have been transferred to another owner before the
method is called. Otherwise the references that are safe at the entry of a statement are the
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references that are safe at every of the exits from the predecessors of that statement.
SRAexit produces the ownership state of each reference at the program point after a given
statement (statement’s exit). The safe references at a statement’s exit are the references that
are safe at its entry minus the references it kills, plus the safe references generated by the
statement. In more formal words, the “minus” operation is handled by the meet operator
that finds the greatest lower bound of the ownership states for the statement’s entry and the
list produced by killSRA for the same statement. The “plus” operation is handled by the join
operator that find the least upper bound for the result of the minus operation and the list
produced by genSRA.

SRAentry P s =

;

‹m
K if ÈentryÍsd
S

{SRAexit P sÕ | sÕ œ preds P s} otherwise

SRAexit P s = (SRAentry P s ÙS killSRA P s) ÛS genSRA P s

(5.31)

We are interested in the greatest ownership state list satisfying the equation for SRAentry.

The keys killed and generated by each statement are found by querying the programming
model abstraction function side-effects :: effects defined in the analysis-framework locale.
The gen-list for a given statement s is filled with Unsafe and each side-effect of the form
SafeEff Ÿ is translated into a Safe element at the corresponding position in the list produced
by genSRA.

genSRA P s = let (m, n) = s; keys = {Ÿ | SafeEff Ÿ œ side-effects P s}
in mk-safe-list Km keys

(5.32)

An killing side-effect of the form UnsafeEff o at a statement s indicates that the abstract
object o may become unsafe as a side-effect of s, therefore all the references pointing-to o are
killed by s. Since there is no direct mapping between must-alias keys and abstract objects,
one have to proceed in two steps to find the points-to set corresponding to a must-alias key
Ÿ:

1. find a variable V Õ declared in the analyzed method and a statement s in that method,
such that the couple of sÕ and V Õ maps to Ÿ according to the must-alias analysis. Such
couple should exists because the key was initially found by querying the same must-
alias analysis (see 5.4.1). The exception is when the key corresponds to the value of a
right-hand-side expression that is never used in another statement. In that case there
is no variable ever associated with the must-alias key, however to be sound in prevision
of the next improvements of the analysis, the greatest points-to set must be returned.

2. retrieve the points-to set of Ÿ which is computed by the points-to analysis for the
variable V Õ at the statement sÕ.

key-pt :: I-prog ∆ cg-node ∆ key option ∆ absobj set

key-pt P m Unknown = O
key-pt P m ÂŸÊ = if (÷ sÕ œ set stmts-of P m, ÷ V Õ œ dom lcls-of P m. maa P (Inr (sÕ, V Õ)) = ÂŸÊ)

then filtered-pt P sÕ (Inl (m, V Õ)) else O

(5.33)

For a statement s with some behavior governed by the programming model abstraction, the
set of killed must-alias keys corresponds to the set of keys having in their points-to set at
least one of the abstract objects that become unsafe as a side-effect of s:
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if pm-governed P s:
killSRA P s = let (m, n) = s; unsafes = {o œ O | UnsafeEff o œ side-effects P s};

killed = { Ÿ œ Km | key-pt P m ÂŸÊ fl unsafes ”= ÿ }
in mk-unsafe-list Km killed

(5.34)

Where pm-governed P s verifies that the statement s has a behavior directly governed by the
programming model abstraction, which might be a non-empty set of ownership pre-conditions
or a non-empty set of ownership side-effects.

pm-governed :: I-prog ∆ stmt ∆ bool

pm-governed P s = pre-conditions P s ”= ÿ ‚ effects P s ”= ÿ
(5.35)

We have to introduce artificial kills for invocation statements in order to take into account
objects that might become unsafe because of the ownership side-effects of the –transitively–
invoked methods. For the time being we don’t dispose of any knowledge of the program
outside of the analyzed method, we have to assume that any object may be passed to another
owner when a method is called, therefore the kill-list for a call-site in the method m is equal
to ‹m

K . For all the other statements, that don’t have a direct ownership semantic and aren’t
call-site, the associated kill-list is set to the greatest element so that it has no killing effect
in SRAexit (5.31).

if¬pm-governed P s :

killSRA P s =

;

‹m
K if targets P s ”= ÿ

€m
K otherwise

(5.36)

5.6.3 Using the call graph information.

In the safe references analysis presented in the previous section, while analyzing a given
method, we had to make very pessimistic assumptions about the side effects of the other
methods that may be called and the ownership state of the references at the method entry-
point because each method was processed independently from the others.

The call graph provides information about the interactions between the methods of the
program, or more precisely between the call graph nodes, since the same method can be
present multiple times in the graph with different calling contexts. In this section we extend
the analysis to propagate safe references along the call graph edges both downward and up-
ward. In the downward direction the parameters that are safe at the exit-point of a method
are propagated towards the callers of that same method. The same technique is employed to
propagate safe returned values down to the call-site. Symmetrically, in the upward direction,
safe parameters at a given call-site are propagated toward every possible callee entry-point.

We base our inter-procedural safe references propagation algorithm on a call-by-value
evaluation strategy. In the call-by-value strategy, methods receive their own copy of the
parameters’ values so that arguments in the callers scope are left unchanged by the side-effects
of the call. The receiver method can update its own copy of the arguments, but the changes
don’t interfere with the arguments at the call-site. Regarding reference parameters, it is worth
noticing the must-alias relation between arguments at a given call-site and the corresponding
arguments at the entry of the called method. Therefore we observe the following:

1. there is a mapping from must-alias keys of the call-site arguments to keys of the argu-
ments received by the callee,
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2. meaning that inside a method, whenever a reference must-alias the entry value of a
parameter, it also must-alias the caller’s copy of the corresponding parameter.

Lets consider briefly a call-site targeting a method, and that method is only called by
that call-site. The interesting corollary from the previous observations is that pairs of corre-
sponding arguments at the call-site and at the callee’s entry-point have the same ownership
state, determined at the call-site. Indeed, if the must-alias key of the k-th argument is safe
at the call-site, then the key of the k-th argument at the callee entry-point is safe as well.
Furthermore, at the callee’s exit-point, the ownership state of the received arguments deter-
mines the ownership state of the caller’s arguments when the call returns. If the must-alias
key of the k-th argument is safe at the exit of the callee, then the corresponding key is safe
after the call-site.

If we now rollback to a more general case where call-sites have several targets and call
graph nodes have several callers, we must reevaluate the previous points. The k-th argument
at a method entry is safe if the k-th argument is safe at every call-site targeting that method.
And if the k-th argument is safe at the exit of every targets of a given call-site, then the
corresponding key is safe after the call-site.

Propagation of the SafeEff side-effects towards the callers. The propagation of
safe references towards the callers is done through the gen-list of the call-sites. For a call-
site statement s, genSRA P s is made of two components that are joined together. The first
component gen-paramsSRA produces the ownership states list where some Safe elements are
set according to the ownership side-effects of the invoked method over the passed parameters.
The second component gen-retSRA may comprise a Safe element if the invoked method returns
a safe reference.

if ÈV := V .M (Vs)Ís · ¬ pm-governed P s · targets P s ”= ÿ:
genSRA P s = gen-paramsSRA P s ÛS gen-retSRA P s

(5.37)

To compute gen-paramsSRA we first build the maps from parameter indexes to must-alias
keys at call-sites and method entry-points. For an invoke statement È_:=V0 .M ([V1 , . . . , Vn ])Ís,
call-mapping Ps produces the map from the parameter indexes to the associated must-alias
key at s. The call-by-value evaluation strategy guarantees the mapping is still valid when the
call returns.
call-mapping :: I-prog ∆ stmt ∆ (pindex Ô key)
call-mapping P ÈV Õ := V0 .M (Vs)Ís = let vars = V0 · Vs

in (⁄ fi . if fi < |vars| then maa P (Inr (s, vars[fi])) else None )
(5.38)

The function entry-mapping creates a mapping from parameter indexes to must-alias keys at
the entry point of the specified call graph node. The key associated with a parameter index fi

is looked-up with param-key, that searches for a parameter identity statement È_ := Par fiÍsÕ

and returns the right-hand-side must-alias key of sÕ if it exists.

entry-mapping :: I-prog ∆ cg-node ∆ (pindex Ô key)

entry-mapping P m = (⁄ fi . param-key P m fi)

param-key :: I-prog ∆ cg-node ∆ pindex ∆ key option

param-key P m fi =

;

maa P (Inl sÕ) if ÷sÕ œ set stmts-of P m.ÈV := Par fiÍsÕ

Unknown otherwise

(5.39)
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We now dispose of the key-maps (type pindex Ô key) at both call-sites and method entry-
points. Given a key-map and the ownership states list for a program-point, we produce a
state-map (type pindex Ô S) with the function export (5.40), that maps indexes of parame-
ters with a known key to ownership states.

export :: (pindex Ô key) ∆ S list ∆ (pindex Ô S)
export keymap states = ⁄ fi . case keymap fi of

ÂŸÊ ∆ Âstates[Ÿ]Ê
| Unknown ∆ None

(5.40)

State-maps are used as an interchange format to propagate ownership states of the arguments
between an export-point and an import-point. The function import (5.41) translates inter-
procedural state-maps into intra-procedural ownership states lists. It takes fis the list of
parameter indexes to process, statemap the state-map for the export point obtained with
export, keymap the key-map for the import point and states the initial states list for the
import point. For each parameter index fi œ fis, the states list is updated if both the state-
map and the key-map are defined (not None) for fi. If they produce respectively the ownership
state ‡ and the must-alias key Ÿ, the states list element for Ÿ is updated with the greatest
ownership state between ‡ and the current state.

import :: pindex list ∆ (pindex Ô S) ∆ (pindex Ô key) ∆ S list ∆ S list

import [ ] statemap keymap states = states
import fi · fis statemap keymap states =

let statesÕ = import fis statemap keymap states
in case statemap fi of

Â‡Ê ∆ case keymap fi of
ÂŸÊ ∆ statesÕ[Ÿ := ‡ ‚S statesÕ

[Ÿ]]
| Unknown ∆ statesÕ;

| None ∆ statesÕ

(5.41)

To propagate the ownership status of the parameters from the exit-point of a call graph
node down-to one of its call-site, we first export the state-map of the exit-point using the
node’s entry key-map and then we import it at the call-site using the call’s key-map. By
applying the export-import operation to each target of a given call-site, we obtain a set of
ownership states lists. The gen-paramsSRA component of the gen-list for that call-site is the
greatest lower bound of the obtained set.

gen-paramsSRA P s = let (m, _) = s;
in

d
S

{ import [0 .. Æ|Vs|]
(export (entry-mapping P mÕ) SK•(exit-of P mÕ) )
(call-mapping P s)
‹m

S

| mÕ œ targets P s }

(5.42)

If the right-hand-side expression at the call-site has a defined must-alias key, a lower
bound for the ownership status of that key when the call returns corresponds is the infimum
of the ownership status for the references returned by the targeted call graph nodes. The
function ret-state returns the ownership state associated with the variable returned by a
specified node, which is SK•s[Ÿ] for a return statement Èret V Ís where V has the must-
alias key Ÿ, or conservatively Unsafe when V ’s key is undefined. The ownership states list
produced by gen-retSRA P s is based on ‹m

K where m is the node containing s, meaning no
key is generated by default when s returns. If the must-alias analysis associates the key Ÿ to
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s, the default ownership states list is updated at position Ÿ with the greatest lower bound of
the set of ret-state P mÕ for every node mÕ targeted by s in the call graph.

gen-retSRA P s = let (m, _) = s;
in case maa P (Inl s) of

ÂŸÊ ∆ ‹m
K [Ÿ :=

w

S
{ ret-state P mÕ | mÕ œ targets P s}]

| Unknown ∆ ‹m
K

ret-state P m = let Èret V Ís = exit-of P m
in case maa P (Inr (s, V )) of ÂŸÊ ∆ SK•s[Ÿ] | Unknown ∆ Unsafe

(5.43)

Propagation of the SafeEff side-effects towards the callees. Upward propagation
from call-sites to node entry-points employs the export-import mechanism described in the
previous paragraph. We define a new version of SRAentry P s for the call graph nodes entry
statements that may comprises non-Unsafe elements at positions corresponding to parame-
ters’ keys.

if ÈentryÍs · ¬ pm-governed P s · sources P (fst s) ”= ÿ:
SRAentry P s = let (m, _) = s; (_, C , M ) = m; (_,Ts, _, _) = method P C M

in
d

S
{ import [0 .. Æ|Ts|]

(export (call-mapping P sÕ) SK•sÕ)
(entry-mapping P m)
‹m

K

| sÕ œ sources P m }

(5.44)

Refining call-sites kills. In section 5.6.2 we introduced “artificial” kills to model the
undetermined side-effects of the methods transitively reached from call-sites. Thanks to the
call graph information, we can now detect whether or not a method invocation may actually
transfer some objects’ ownership. Let NU ™ N be the set of call graph nodes containing at
least one statement with an ownership side-effect of the form UnsafeEff o, and trans-targets

the transitive closure of targets that produces the set of nodes that might be reached by
successive call graph edges from a given invoke statement. Then we must introduce artificial
kills for the call-site s only if the set of nodes reachable from s has a non-empty intersection
with NU .

if¬pm-governed P s :

killSRA P s =

;

‹m
K if trans-targets P s fl NU ”= ÿ

€m
K otherwise

(5.45)

5.6.4 Using accurate points-to information.

In the previous versions of the analysis, we assumed the standard framework fixed a very
conservative points-to analysis like pt0 presented in the standard-framework0 interpretation
(5.28). In the following steps, we consider an interpretation of the standard framework that
features an accurate inter-procedural points-to analysis. The points-to analysis used there-
after is able to distinguish between several abstract objects.
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The immediate benefit from using accurate points-to information is the improvement of
precision in the ownership side-effects. It becomes possible to invalidate the safety of only
a subset of all the abstract objects. Similarly the points-to set of a given must-alias key
can be computed with more accuracy because most references don’t alias every objects in
a program. Thus, in the definition of killSRA P s (5.34) we may now have unsafes ”= ÿ,
key-pt P m ÂŸÊ ”= ÿ and unsafes fl key-pt P m ÂŸÊ = ÿ, meaning the must-alias key Ÿ does
not points to any object invalidated by the statement. If that key is safe before s then it is
still safe at s•.

Always safe abstract objects. By inspecting the ownership side-effects of every state-
ment in the analyzed program, it is possible to determine the set of abstract objects that may
be transferred during the program execution, and conversely the set of abstract objects that
are always safe because they are never passed to another owner. Using this set we obtain
a greatest lower bound on SO for a particular program by setting the maybe-transferred
abstract objects to Unsafe and the never-transferred objects to Safe.

maybe-transferred :: I-prog ∆ absobj set

maybe-transferred P = {o œ O | ÷s œ E. (UnsafeEff o) œ effects P s}

never-transferred :: I-prog ∆ absobj set

never-transferred P = O \ maybe-transferred P

’p. SOp ˆS mk-unsafe-list O (maybe-transferred P)

(5.46)

Consequently, we must revise the artificial kills introduced for the invocation statements in
equation (5.36) and refined in equation (5.45). Instead of killing all the must-alias keys, in-
vocation statements that actually reaches an ownership transfer now only kills the keys with
a point-to set intersecting the set of maybe-transferred abstract objects.

if ¬pm-governed P s · trans-targets P s fl NU ”= ÿ:
killSRA P s = let (m, _) = s; killed = { Ÿ œ Km | key-pt P m ÂŸÊ fl maybe-transferred P ”= ÿ}

in mk-unsafe-list Km killed
(5.47)

Refinement at call-site. Using the points-to analysis it is possible to refine the set of
abstract objects that may be transferred as a side-effect of a given call-site s. Notice that the
objects exchanged between a call-site and the invoked method are those transitively reachable
from the parameters before and after the call, plus those reachable from the returned value.
We say these objects, reachable by both the caller and the callee, escape from the callee
through the considered call-site. At a given call-site s, it is only meaningful to consider the
ownership side-effects involving objects that escape through s, all the others are definitely
generated by different execution paths.

We now express the upper bound on the set of abstract objects for which ownership
side-effects must be taken into account at a call-site ÈV Õ := V .M (Vs)Ís. The function may-

escape-through (5.48) takes an abstract object o and an invoke statement s, and produces a
boolean indicating if at runtime an object represented by o may escape the called method
through the parameters or the value returned at s. If true, a data-flow fact generated by the
callee about the specified abstract object, must be propagated down to the specified call-site.
It proceeds as following. If it can find a parameter variable Vi , with a must-alias key pointing-
to oÕ, then it looks for o in the transitive closure of oÕ in the points-to graphs before and
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after s. The points-to graph after s is in fact the merge of the points-to graph before every
successor of s. If a flow-insensitive pointer analysis is employed, the set of objects reachable
from the parameters before and after the call are the same, otherwise they may differ if the
called method updates the heap graph in a visible manner for the caller. The second part
of the predicate search for o in the transitive closure of the returned reference in the points-
to graphs after s, it uses the must-alias key of the invoke expression to find the objects oÕ

immediately pointed-to by the returned value, and searches for o in the transitive closure of
every oÕ. In may-escape-through we explore the filtered points-to graph, so that, for instance,
objects reachable from mailboxes do not interfere in the process.

may-escape-through :: I-prog ∆ absobj ∆ stmt ∆ bool

if ¬ pm-governed P s · ÈV Õ := V .M (Vs)Ís:
may-escape-through P o s = let (m,_) = s in

(÷Vi œ set (V · Vs),
÷oÕœ key-pt P m (maa P (Inr (s, Vi)) ),

o œ filtered-pt-trans P s (Inr oÕ)
‚ (÷sÕ œ succs P s, o œ filtered-pt-trans P sÕ (Inr oÕ) ) )

‚ (÷oÕ œ key-pt P m (maa P (Inl s)),
÷sÕ œ succs P s, o œ filtered-pt-trans P sÕ (Inr oÕ) )

otherwise:
may-escape-through P o s = false

(5.48)

The SRA kill-list for the statement s is updated so that only the objects comprised
in maybe-transferred that escape through s are killed (nothing escapes from non call-site
statements):

if ¬ pm-governed P s:
killSRA P s =

let (m, _) = s;
maybetransferred = {o œ maybe-transferred P | may-escape-through P o s};
killed = { Ÿ œ Km | key-pt P m ÂŸÊ fl maybetransferred ”= ÿ}

in mk-unsafe-list Km killed

(5.49)

5.6.5 Inter-procedural Transferred Abstract Objets analysis

In this section we generalize the notion of kills to the inter-procedural level. We built
several versions of killSRA, each one more precise than the previous. They have the common
point of considering an over-approximation of the set of abstract objects that may be trans-
ferred as a side effect of calling a method. We now fix the definition of killSRA and make it
depends on the Transferred Abstract Objects analysis (TAO). For each call graph node m,
TAOm produces the set of abstract objects potentially transferred as a side-effect of calling m.

The kill-list of keys associated with a statement s that has no ownership semantics de-
fined by the programming model can be expressed with the unique equation (5.50), where
maybe-transferred is the set collecting the objects transferred by targets of s in the call-graph
(non call-site statements simply have no targets):
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if ¬ pm-governed P s:
killSRA P s = let maybe-transferred =

t

’mœtargets P s TAOm;
transferred-through = {o œ maybe-transferred | may-escape-through P o s};
killed = { Ÿ œ Km | key-pt P m ÂŸÊ fl transferred-through ”= ÿ}

in mk-unsafe-list Km killed

(5.50)

Naive definitions. In the most conservative version of the Siaam analysis we considered
that each method potentially transfers the ownership of all the abstract objects, which cor-
responds to fixing 0TAOm = O for every call graph node m.
Then thanks to the accurate call graph and point-to informations, we identified the set NU

of call graph nodes comprising some killing side-effects, which allows to define TAO with
more precision. Calling a node m may transfer the ownership of some objects iif m or any
other node transitively called by m is in NU . The following equation allows to reproduce the
results of equation (5.47):

1TAOm =

Y

]

[

maybe-transferred P if (m œ NU )
‚(÷s œ stmts-of P m, trans-targets P s fl NU ”= ÿ)

ÿ otherwise
(5.51)

To improve TAOm we can collect the side-effects defined for every statement possibly
executed when calling m:

2TAOm = let nodes = {m}
t

’sœstmts-of P m

trans-targets P s;

stmts =
t

’mÕœnodes

stmts-of P mÕ

in
t

’sÕœstmts

{ o | UnsafeEff o œ effects P sÕ }

(5.52)

The naive approach described in the above equation have a flaw, unsafe abstract objects
inexorably accumulate downward from the leafs to the roots of the call graph. The uncondi-
tional accumulation of side-effects is a sound but still improvable over-approximation.

Refinement. In this paragraph we give a recursive definition of TAOm made of the union
of two components. The first component is the set of abstract objects directly transferred
by statements of m with ownership side-effects governed by the programming model. The
second component is the set of abstract objects transferred as side-effects of the call-sites in
m. For each statement s of m, and each target mÕ of s, the contribution to TAOm is the part
of TAOmÕ that may escape through s:

3TAOm =

3

t

’sœstmts-of P m

{o | UnsafeEff o œ side-effects P s}

4

fi

Q

c

a

t

’sœstmts-of P m
’mÕ

œtargets P s

(TAOmÕ fl {o œ O | may-escape-through P o s})

R

d

b

(5.53)

Notice that it is possible to adapt the precision of TAO for each call graph node. To
this extend we do not impose a specific version of TAOmÕ in the second term of 3TAOm . For
instance, if one of the call graph node is a method for which the body is absent, it is still
possible to select TAOmÕ = 1TAOmÕ .
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We are interested in the least solution (the smallest set) satisfying 3TAOm for each call
graph node m in the call graph. It is clearly a data-flow problem which can be solved by
an iterative algorithm where initially 3TAOm is the empty set for every nodes, and each step
computes an updated TAOm until a fixed point is reached.

5.6.6 Intra-procedural UnsafeEff side-effects propagation

In the previous sections we showed how to statically compute an under-approximation of
the safe references in the analyzed program. We now describe a data-flow analysis, similar
to SRA in many aspects, that produces the ownership state of each abstract object at each
program point. The following Safe Abstract Objects analysis (SOA) is divided into an intra-
procedural and an inter-procedural part. Its goal is to compute SO•s and SOs•, the lists of
abstract objects ownership states respectively before and after each statement s.

SO•s = SOAentry P s

SOs• = SOAexit P s
(5.54)

The ownership states list at the entry of the statement s is produced by SOAentry P s.
We use the set of maybe-transferred abstract objects to over-approximate the unsafe abstract
objects at the entry-point of the analyzed method. Before any other statement s, the data-
flow information is equal to the greatest lower bound of the data-flow information after every
predecessor of s, precisely: an abstract object is considered safe at the entry of a statement
if it is considered safe at the exit of every predecessors of that statement.

The data-flow information SOAexit P s at the exit of the statement s is again expressed
in the form of a kill/gen equation, where killSOA P s is the ownership states list associating
Unsafe to the elements at indexes of abstract objects killed by s and Safe to the others, and
symmetrically genSOA P s is the list associating Safe to the abstract objects that become safe
after s and Unsafe to the others.

SOAentry P s =

;

mk-unsafe-list O (maybe-transfered P) if ÈentryÍsd
S

{SOs• | sÕ œ preds P s} otherwise

SOAexit P s = (SO•s ÙS killSOA P s) ÛS genSOA P s

(5.55)

The abstract objects killed by a statement with some ownership side-effects defined by the
programming model abstraction corresponds to the objects becoming unsafe as a side-effect
of that statement:
if pm-governed P s:
killSOA P s = let killed = { o œ O | UnsafeEff o œ effects P s}

in mk-unsafe-list O killed
(5.56)

The kill-list for a statement s with no side-effect defined by the programming model is
generated using the Transferred Abstract Objects analysis and the set of objects escaping
through s:

if ¬ pm-governed P s:
killSOA P s = let maybe-transferred =

t

’mœtargets P s TAOm;
transferred-through = {o œ maybe-transferred | may-escape-through P o s}

in mk-unsafe-list Km transferred-through

(5.57)

Although the ownership side-effects declared by the programming model abstraction does
not allow to specify abstract objects that must become safe after a statement, we design
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a recovery mechanism able to locally regenerate the safety state of the abstract objects.
The recovery is based on a local liveness analysis. As a reminder, a variable (or a formal
parameter) is live at a given program point if its value may be read before its next update,
otherwise the variable is dead. We extend the local liveness definition to abstract objects:
an abstract object is locally live at a given program point if it is transitively reachable from
a live local variable or a live formal parameter. liveobjs P p returns the set of live abstract
objects at the specified program point:

liveobjs :: I-prog ∆ program-point ∆ absobj set

liveobjs P •s =
t

vnœlive P •s

filtered-pt-trans P s (Inr (filtered-pt’ P s vn))

liveobjs P s• =
t

sÕœsuccs P s

liveobjs P •sÕ

(5.58)

The auxiliary function filtered-pt’ returns the abstract objects directly pointed-to by the
given variable or the formal parameter vn:

filtered-pt’ :: I-prog ∆ stmt ∆ (vname + pindex) ∆ absobj set

filtered-pt’ P s (Inl V ) = filtered-pt P s (Inl V )
filtered-pt’ P (m, _) (Inr fi) = key-pt P m (param-key P m fi)

(5.59)

We state that an unsafe abstract object o may be recovered at statement s if it is locally
dead before s and not killed by that statement. Indeed, there is only two possibilities for o to
become live again: (i) a new instance of an object represented by o is allocated and becomes
reachable from a live variable, (ii) an object represented by o is received by an ownership
transfer communication and becomes reachable from a live variable. In both cases, the object
is necessarily safe when its reference reappears. The hypothesis where after s a finite number
of object fields are read in order to retrieve a reference to o is definitely swept aside since
before s there is no local variable reaching o. Notice that our reasoning is valid even if some
methods are invoked after s since the only objects they might reach without performing an
allocation or a message reception are those live after s.

With a wealth of these observations, the safe abstract objects generated by the statement
s are the objects of O which are not live before s:

genSOA P s = let generated = O \ liveobjs P •s
in mk-safe-list O generated

(5.60)

We insist on the fact that the recovery process described above does only apply to the
scope of the analyzed method. An abstract object, recovered locally and still safe at the exit
of the analyzed method is not necessarily safe for the callers when the method returns. We
can recover unsafe objects locally because they become unreachable (dead), however we must
assume that these objects are live for the callers.

5.6.7 Propagation of the safe abstract objects towards the callees.

For each call graph node m, the inter-procedural propagation phase supplies the ownership
states lists for the entry-point of m based on the ownership states computed by SOA at every
call-site targeting m.

We already established that the abstract objects passed by a call-site s to its targets are
those transitively reachable from the parameters before s. Therefore it is only relevant to
propagate the ownership state for these passed abstract objects towards the targets. We use
this property to limit the amount of unsafe abstract objects propagated to the entry of the
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call-graph nodes. The contribution of a call-site ÈV .M (Vs)Ís is the list of ownership states
SO⇥

s such that:

SO⇥

s [o] =

;

SO•s[o] if ÷Vi œ (V · Vs), o œ filtered-pt-trans P s (Inl Vi)
Safe otherwise

(5.61)

The ownership states list for the entry-point of a call-graph node m is €O for the call-
graph roots, or the greatest lower bound of the set of ownership states list contributed by
the call-sites targeting m:

SOAentry P ÈentryÍ(m,n) =

;

€O if sources P m = ÿ
d

S
{SO⇥

s | s œ sources P m} otherwise
(5.62)

5.6.8 Escapement analysis for TAO

In this section we propose a custom escapement analysis[30, 88] that refines further the
Transferred Objects Analysis. Earlier we presented a variation of TAO where transferred
objects are filtered at each call-site according to the set of objects that may escape through
the parameters and the returned value of the call-sites. Although that measure improves the
accuracy of TAO, it is still limited in the following situation:

— call-site s passes abstract object o in parameters to call graph node m. Therefore we
say that o escapes from m through s.

— the method in m allocates a new object that is also represented by o and transfers the
ownership of that object. Therefore o is in TAOm even if at runtime the transferred
object is definitely different from the one received from s in the parameters.

— at call-site s, the fact that o is transferred as a side-effect of calling m is used to kill
the variables pointing-to o because o seems to escape through s.

This quick example brings out the necessity for an algorithm that may prevent an abstract
object to be inserted in TAO when it is possible to determine that the transferred (runtime)
object does not escape the analyzed method down to its callers.

A flow-sensitive weak escapement judgement. The escapement judgement required
to improve TAO is defined as follows. The abstract object o transitively reachable from a live
variable before statement (m, n) œ EP is said to escape the call graph node m if the lifetime
of at least one runtime object represented by o may exceeds the lifetime of the method
represented by m. We weaken the escapement judgement by considering objects received
from a message passing communication not to be aliased by callers of the analyzed method.
Meaning there must be an evidence that a received object eventually escapes through a formal
parameter or the return value in order to report that the object is escaping the method. In
other words allocated objects and received objects may be treated the same way. As we shall
show next, this weakening does not endanger the soundness of the SRA analysis nor the SOA

analysis, both using TAO.
We note P „ Esc s o the fact that in program P, o œ OP is transitively reachable from

a live variable before s œ EP and escapes the call graph node fst s, with the hereinbefore
specificities.
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Refinement of TAO. The variation of TAO leveraging the escapement judgement is de-
fined by the two following rules.

The rule 4TaoDirect infers that the abstract object o may be transferred as a side-effect
of calling m if there is a statement s of m, with a killing side-effect UnsafeEff o, for which o
weakly escapes.

4TaoDirect
s œ EP m = fst s UnsafeEff o œ side-effects P s P „ Esc s o

P „ o œ 4TAOm

(5.63)

The rule 4TaoInvoke infers that the abstract object o may be transferred as a side-
effect of calling m if there is a call-site s of m invoking another method mÕ and mÕ transfers
the abstract object o. Moreover it is necessary that o escapes mÕ through the call-site and
eventually weakly-escapes from m.

4TaoInvoke

s œ EP m = fst s mÕ œ targets P s o œ TAOmÕ

may-escape-through P o s P „ Esc s o

P „ o œ 4TAOm

(5.64)

Soundness. We shall now explain why SOA and SRA are sound even with our weak es-
capement judgement. First it is worth remembering that TAO is used to invalidate the safety
of abstract objects that may become unsafe and kill must-alias keys that may points-to in-
validated (unsafe) abstract objects. Second it should be noticed that if an abstract object is
already considered as unsafe before a call-site, then it is unnecessary to track the ownership
transfer for that object through the call-site since it won’t change the outcome: the abstract
object is still unsafe after the call-site. Conversely, an object received in the scope of a given
method must already be considered unsafe at the call-sites targeting that method where that
object is live before the call. Consequently it is sound, with respect to SOA and SRA, not
to include in TAO the received abstract objects when there is no evidence of escaping in the
analyzed method because in this case the object is either not aliased or already considered
unsafe by the callers.

Weak escapement semantics. In this paragraph we present the inference rules governing
the flow-sensitive escapement judgement designed specifically for TAO.

The rule EscPar infers that every abstract object o reachable from the formal parameter
n at statement s escapes the call graph node of s.

EscPar
P „ È_ := Par nÍs o œ filtered-pt-trans P s (Inr (filtered-pt’ P s (Inr n) ))

P „ Esc s o

The rule EscRet infers that every abstract object o reachable from the method return
value V at statement s escapes the call graph node of s.

EscRet
P „ Èret V Ís o œ filtered-pt-trans P s (Inl V )

P „ Esc s o

The rule EscFwd propagates escapement facts forward in the control-flow graph based
on the abstract objects liveness defined in Section 5.6.6.

In order to infer that o reachable from a live-in variable at statement s does escape, the
rule requires that o is already escaping in a predecessor sÕ of s and o must be live-out sÕ to
ensure that it may represents the the same runtime object as in s.
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EscFwd
o œ liveobjs P • s sÕ œ preds P s P „ Esc sÕ oÕ o œ liveobjs P sÕ•

P „ Esc s o

The rule EscEdg propagates escapement to abstract objects reachable from already
escaping objects through new edges of the points-to graph when the pointer-analysis is flow-
sensitive (because the visibility of a particular edge may be deferred up to the successors of the
field assignment statement generating that edge). Note that EscEdg is not required when
a flow-insensitive points-to analysis is employed because every object eventually reachable
from a parameter or the returned value of the method is already discovered by EscPar and
EscRet.

EscEdg

{o, oÕ} ™ liveobjs P • s sÕ œ succs s P „ Esc s oÕ

o œ filtered-pt-trans P sÕ (Inr oÕ)

P „ Esc s o

The rules EscBwd propagates escapement facts backward in the control-flow graph. In
order to infer that o reachable from a live variable at s does escape, the rule requires that
the object does escape from a successor sÕ of s. Moreover o must be live after s and before sÕ

to make sure that it may represents the same runtime object.

EscBwd
o œ liveobjs P s• o œ liveobjs P • sÕ P „ Esc sÕ oÕ

P „ Esc s o

Examples. In Figure 5.6 the statements of the analyzed call graph node are presented on
the left, the liveness of various abstract objects is presented in the central part, where each
column represents an object. In the first column we see that o– is live from before the method
entry-point to s2 , dead after s2 until s4 allocates an object represented by o– that becomes
live right after s4 through variable q. Since the method returns q, the object pointed-to by
q is live up to s9 included. We see that parameter of index 0 points-to o–, and initially its
field F points-to o—. In this example the pointer analysis is flow sensitive, therefore field
assignments are only visible after the assignment statement, for instance s5 assigns y.G with
z, although y is dead after the assignment, the field G of o— eventually points-to o3 after
s5 . The similar situation happens after s8 where both o3 and o6 are dead but the new edge
through the field H of o3 is visible. Object o6 is filled with black to indicate that it is unsafe
after s7 and as long as it is live.

The right side of the figure shows the live abstract objects escaping for each statement.
Let see how to infer that o6 reachable from s7 escapes the analyzed method. The equation in
Figure 5.5 summarize the series of rules and goals used to infer P „ Esc s7 o6. Starting from
the parameter identity statement s1 , EscPar infers P „ Esc s1 o—. Then EscFwd is applied
to progress up to s5 . One application of EscEdg uses the edge G to infer P „ Esc s5 o3.
The progression continues forward until EscEdg is applied at s8 to infer P „ Esc s8 o6. The
last step goes backward from there and infer the final goal.

Knowing P „ Esc s7 o6, we can apply 4TaoDirect to show P „ o6 œ 4TAOm .
In order to infer that the object o– pointed-to by q escapes, we apply EscRet at s9

showing that o– escapes, and then we apply EscBwd up to s5 . Notice that starting from
P „ Esc s1 o– and forward we cannot infer that the object pointed-to by q escapes because
o– in the range s0 -s2 does not represent the same runtime object as o– in the range s5 -s9 .

The example in Figure 5.7 is the same sequence of instructions but the objects liveness is
computed with a flow-insensitive points-to analysis. The accuracy is particularly degraded.
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P „ Èx := Par 0Ís1
(EscPar) ≠æ P „ Esc s1 o—(EscFwd) ≠æ P „ Esc s2 o—

(EscFwd) ≠æ P „ Esc s3 o—(EscFwd) ≠æ P „ Esc s4 o—(EscFwd) ≠æ P „ Esc s5 o—

(EscEdg) ≠æ P „ Esc s5 o3(EscFwd) ≠æ P „ Esc s6 o3(EscFwd) ≠æ P „ Esc s7 o3

(EscFwd) ≠æ P „ Esc s8 o3(EscEdg) ≠æ P „ Esc s8 o6(EscBwd) ≠æ P „ Esc s7 o6P „ Esc s7 o6

Figure 5.5: Inferring P „ Esc s7 o6 in the example Figure 5.6

o– o— o3 o6

ÈentryÍs0

Èx := Par 0Ís1

Èy := x.FÍs2

Èz := new C Ís3

Èq := alloc–()Ís4

Èy.G := zÍs5

Èu := new C Ís6

Èput(u)Ís7

Èz.H := uÍs8

Èret qÍs9

x

F
Par 0

y

z

G

u

H

q

Esc = {o–, o—}

Esc = {o–, o—}

Esc = {o–, o—}

Esc = {o—}

Esc = {o— , o3}

Esc = {o–, o— , o3}

Esc = {o–, o3}

Esc = {o–, o3, o6}

Esc = {o–, o3, o6}

Esc = {o–}

Figure 5.6: Example of escapement analysis, using an ideal flow-sensitive points-to analysis.

First the points-to graph is the same at every program point therefore many edges are visible
at statements where they would not exist at runtime. Since y is live from s3 • to •s5 , and q

is live from s4 •, the abstract object o— is continuously live and so are o3 and o6, maintained
transitively reachable by the formal parameter 0, x, y and q consecutively.

It is worth noticing that inferring P „ Esc s7 o6 can be achieve either starting from
the formal parameter 0, or starting from the returned reference. In the first case we have
immediately: P „ Èx := Par 0Ís1

(EscPar) ≠æ P „ Esc s1 o6, and then EscFwd is applied
until s7 is reached. In the second case: P „ Èret qÍs9

(EscRet) ≠æ P „ Esc s9 o6, and then
EscBwd is applied until s7 is reached.

Thrown exceptions. Until know we have brilliantly dodged the issue of exceptions. Ob-
jects reachable from a thrown exception may escape down to the call graph root unless the
exception is caught in the way. The good point is that an exception and the objects reachable
from that exception are only accessible from the moment the exception is caught. Therefore
as long as the thrown exception “flies” down the call graph, overflew methods do not have to
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o– o— o3 o6

ÈentryÍs0

Èx := Par 0Ís1

Èy := x.FÍs2

Èz := new C Ís3

Èq := alloc–()Ís4

Èy.G := zÍs5

Èu := new C Ís6

Èput(u)Ís7

Èz.H := uÍs8

Èret qÍs9

x

F
Par 0

y

z

G

u

H

q
F

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o— , o3, o6}

Esc = {o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Esc = {o–, o— , o3, o6}

Figure 5.7: Same as example 5.6, using a flow-insensitive points-to analysis.

worry about the ownership state of the objects reachable from the exception.
In order to take exceptions into account, we shall improve the escapement analysis and

the TAO so that ownership state of exceptions propagates from throwing statements to
the matching CaughtXcpt statements. An inter-procedural exception analysis[29] would be
helpful to establish the matchings.

5.7 Extension to frozen objects.

In the chapter devoted to the virtual machine implementation we explained how frozen
arrays brings support for type enumerations and static array variables. We also described
how arbitrary frozen scalar objects may limit the opportunities of optimizing-out owner-check
barriers. In this section we give a quick overview of the extension of the Siaam analysis to
support frozen arrays and frozen scalars.

5.7.1 The Read ownership state

We extend the lattice S with a new ownership state indicating that a reference is definitely
safe for a field read operation but a field write of that reference may raise an ownership
mismatch exception.

S = {Safe, Read, Unsafe}

The ordering on S places Read between Safe and Unsafe:

Unsafe 6S Read Read 6S Safe
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Accordingly, we define a new kind of ownership pre-condition ReadV V denoting that the
variable V is expected to be readable or safe. And a new kind of ownership side-effect
ReadEff Ÿ denoting that the must-alias key Ÿ becomes at least readable:

datatype requirement = SafeV vname | ReadV vname | SafeO absobj

datatype effect = SafeEff key | ReadEff key | UnsafeEff absobj
(5.65)

Then we extend the verification function defined in equation (5.27). The readability condition
on variable V is verified at statement s either if V is safe or if the must-alias key associated
with V at s has the Read ownership status:

verify-cond P s (ReadV V ) =
if verify-cond P s (SafeV V ) then True

else let (m, fi) = s
in (case (maa P (Inr (s, V ))) of Unknown ∆ False | Some Ÿ ∆ SK•s[Ÿ] = Read)

(5.66)

The definition of genSRA is revised to take the new kind of side-effect into account. mk-

read-list is the function similar to mk-safe-list that produces a list of ownership status where
the specified indexes are set to Read and the remaining to Unsafe:

genSRA P s = let (m, n) = s; safekeys = {Ÿ | SafeEff Ÿ œ side-effects P s};
readkeys = {Ÿ | ReadEff Ÿ œ side-effects P s}

in (mk-safe-list Km safekeys) ÛS (mk-read-list Km readkeys)
(5.67)

In Section 5.6.6 we introduced a mechanism to recover the safety of the abstract objects
under certain liveness conditions. We have to modify this mechanism so that abstract objects
that might be frozen are recovered up to the Read state instead of the Safe state. There is no
absolute solution to declare which objects might become frozen at one point in the program
history, it is up to the programming model abstraction to provide that information. For
instance an abstraction supporting static variables would declare the abstract objects transi-
tively reachable from these variables as potentially frozen since it is a necessary condition to
enforce the isolation property. A programming model featuring a “freeze” method to freeze
arbitrary objects would proceed similarly with the frozen references.

5.7.2 A programming model with frozen arrays

To support array elements accesses we first define a special field name ARR. We inter-
pret the expression V .ARR{} as an access of an element of the array V at an unspecified
index. We now define a new programming model abstraction that supports frozen arrays.
This programming model may be used in conjunction with the default implicit owner-checks
programming model (Section 5.5.1) and the siaam actor programming model (Section 5.5.2),
as demonstrated in (5.29). We do not explicit how the arrays may become frozen, in this
abstraction we simply assume that any array may be in a frozen state.

Ownership pre-conditions. Reading an element of the array pointed-to by V requires
V to be at least readable. The condition to write an array element is the same as writing a
scalar’s field, the reference must be safe:

frozen-arrays-pre-conds :: requirements

frozen-arrays-pre-conds P È_ := V .ARR{}Ís = {ReadV V }

frozen-arrays-pre-conds P ÈV .ARR{} := _Ís = {SafeV V }

(5.68)
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Ownership side-effects. The ownership side-effects of reading from and writing to an
array element are set accordingly to the preconditions expressed previously. A successful
read guarantees that the array is readable and a successful write asserts the entire safety of
the accessed array:

frozen-arrays-side-effects :: effects

frozen-arrays-side-effects P È_:=V .ARR{}Ís = ReadEff ‘( optional-to-set (maa P (Inr (s, V ))))
frozen-arrays-side-effects P ÈV .ARR{} :=_Ís = SafeEff ‘( optional-to-set (maa P (Inr (s, V ))))

(5.69)

5.7.3 A programming model with frozen scalars

This exercise is similar in every points to the previous one. Assuming that any object
may be frozen, reading an object’s field requires that object to be at least in the Read state
and guarantees this state if the access is successful.

5.8 Usages of the Siaam analysis results

5.8.1 Owner-check elimination

The analysis identifies safe object accesses, for such statements it is statically guaranteed
that the accessed object belongs to the current thread owner-ID. A runtime system, like our
virtual machine implementation, can use the fact that an access is safe in order to skip the
owner-checking operation for the safe accesses. A single owner-checking operation introduces
only a very small overhead at runtime, however object accesses are extremely frequent in
object-oriented programs. Therefore the owner-checks elimination can provide a sensible
performance gain.

The function verify-conds defined in equation (5.27) returns true if every precondition
associated with a given statement has been statically verified by the analysis. A runtime
system handles bytecode instructions and is usually not able to benefit from context-sensitive
informations, thus it is necessary to project the contextual statements safety information
to bytecodes safety information. We benefits from the direct mapping between the lexical
statements in the method body representation (the statement list in I-mb) and the underlying
bytecode representation. Hence the lexical statement at position n in the body of method
C .M corresponds to the bytecode at the same position in the bytecodes array of the method
once compiled. A call graph node statement ((c, C , M ), n) is projected to the bytecode at
position n in the bytecode array of C .M , the calling context information c is lost in the
process. The safety information for a given bytecode is the merge of the safety information of
every statement projected to that bytecode. A bytecode is safe if all the statements projected
into it are safe:

safe-bc P C M n = ’c, verify-conds P ((c, C , M ), n) (5.70)

The virtual machine can use safe-bc to decide whether a bytecode instruction perform-
ing a field access requires to owner-check the accessed object or if the owner-check may be
omited. In the formal definition of the Siaam virtual machine, Section 3.6, we included
the two restricted instructions GetfieldOwned and PutfieldOwned performing field access
and skipping the owner-check operation. When a bytecode instruction is statically safe, the
virtual machine can replace the traditional Getfield (or Putfield) instruction with the
appropriate alternative omitting the dynamic owner verification.
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5.8.2 Programming assistant

The programming assistant helps the application developers understand why a given
program statement is potentially unsafe and may throw an ownership exception at runtime.
Developers can use this functionality to review their programs and add appropriate try/catch
blocks if they estimate that an alert is legitimate. The static analysis guarantees that there
will be no false negative, but in order to limit the amount of false positives it is necessary to
use a combination of the most accurate standard analyses.

Let be s an unsafe statement with a non-empty set U of unverified ownership preconditions
produced by unverified-conds P s (pre-conditions P s). The programming assistant tracks
the program P backward starting from s to find every program points that may explain why
a given pre-condition in U is not met at s. For each unsatisfied precondition, it can exhibit
the various shortest execution paths that may result in an exception being raised at s.

An ownership requirement (5.10) is either that a variable is safe (SafeV V ) or that an
abstract object is safe (SafeO o). When a requirement is not satisfied before the statement s,
it raises one or several questions of the form “why the abstract object o is unsafe before s?”.
The precondition SafeO o generates a single question about o. The precondition SafeV V
generates one question for each abstract object pointed-to by V . The goal of the assistant is
find answers to these questions. It traverses the control-flow backward, looks for immediate
answers at each reached statement and propagates the questions further if necessary, until
no new question can be generated. In fact it performs the reverse propagation of the SOA

analysis, another way of designing the assistant would be to modify the SOA so it records
at each program point what are the original statements responsible for the invalidation of a
given abstract object.

Q&A game. Informally, in order to answer the question “why o is unsafe before s”, it is
necessary to generate the question “why o is unsafe after sÕ?” for every predecessor sÕ of s
where o is actually unsafe after sÕ. We now have a second form of question. A first explanation
is that o is already unsafe before sÕ, in which case it generates the question “why o is unsafe
before sÕ?”, of the first form. Another explanation for the second form of question is that
the statement actually invalidates the abstract object. If the invalidation is an immediate
side-effect governed by the programming model, then we have found one explanation for the
series of questions that engendered this response. If the invalidation is the side-effect of a
call-site, then a third form of question must be propagated to each target m of that call-site
that potentially transfers the ownership of the tracked abstract object: “what statement of m
transfers the escaping abstract object o?”. Finally, when s is the entry statement of the call
graph node m, the question “why o is unsafe before s?” generates the equivalent question
for every potential call-site targeting m and passing o through the formal parameters.

Q&A graph. We now show how to construct a graph where nodes are questions and ex-
planations, and directed edges goes from a question to an engendered question and from a
question to its explanation. The assistant generates the initial questions from unsafe state-
ments, and once the graph is fully expanded, finding answers to a given question consists in
collecting all the explanation nodes in its transitive closure.

We write (o? • s) the question “why o is unsafe before s?”. Similarily (o?s•) encodes
“why o is unsafe after s”. “what statement of m transfers the escaping abstract object o” is
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written (o?m). Finally (o!s) explains that o is transfered as an immediate side-effect of s.
The transition P „ G æ? GÕ means that the graph G can be extended to the graph GÕ. The
function mkedge G q qÕ produces the new graph corresponding to G with an edge from q to
qÕ. The dummy root node (0) is used as an origin for the initial questions. The empty graph
is noted ÿ.

Initial questions. As explained above, the programming assistant generates initial ques-
tions from the unverified preconditions. For an abstract object o, it generates a single question
to know why o is unsafe before s:

WhyO
(SafeO o) œ unverified-conds P s (pre-conditions P s)

P „ G æ? mkedge G (0) (o? • s)

The rule WhyV must be applied for every object o in the points-to set of variable V at
statement s in order to generate all the appropriate questions:

WhyV

(SafeV V ) œ unverified-conds P s (pre-conditions P s)
o œ filtered-pt P s (Inl V )

P „ G æ? mkedge G (0) (o? • s)
’o œ OP

Graph expansion. The following rules add edges to propagates the initial questions and
provide answers. The graph is fully expanded when no more rule can be applied on the
current graph G to obtain a larger graph GÕ ∏ G.

The rule WhyPred propagates a question from the entry of a statement to the exit of
its predecessors where the specified abstract object is also unsafe.

WhyPred
q œ G q = (o? • s) sÕ œ preds P s SOsÕ

•[o] = Unsafe

P „ G æ? mkedge G q (o?sÕ•)
’s

Õ œ EP

The rule WhyBfr propagates a question from the exit of a statement to its entry where
the specified abstract object is also unsafe.

WhyBfr
q œ G q = (o?s•) SO•s[o] = Unsafe

P „ G æ? mkedge G q (o? • s)

The rule Expl explains that the specified object is unsafe after s because the statement
has the immediate side-effect of transferring the object’s ownership.

Expl
q œ G q = (o?s•) UnsafeEff o œ side-effects P s

P „ G æ? mkedge G q (o!s)

The rule WhySrc propagates a question from the entry of a call graph node to the
call-sites targeting that node and passing the abstract object through the formal parameters.
This rule reflects the fact that o may have already been transferred before the call graph
node m is called from s.

WhySrc

q œ G q = (o? • (m, n)) P „ ÈentryÍ(m,n)

s œ sources P m o œ may-escape-through-upward P s

P „ G æ? mkedge G q (o? • s)
’s œ EP

The rule WhyTrg propagates a question from the exit of a call-site s to the invoke targets
of s. The invoked method must transfer the object and the object must escape through the
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call-site. This rule reflects the fact that a method transitively invoked by s transfers the
ownership of o.

WhyTrg

q œ G q = (o?s•)
m œ targets P s o œ TAOm may-escape-through P o s

P „ G æ? mkedge G q (o?m)
’m œ NP

The rule WhyTransTrg propagates a question towards the leafs of the call graph with
respect to the escapement judgement presented in Section 5.6.8. A question is propagated
from a node to one of its successor if the successor may transfer the abstract object and that
abstract object eventually escapes.

WhyTransTrg

q œ G q = (o?m) s œ stmts-of P m

mÕ œ targets P s o œ TAOmÕ

may-escape-through P o s P „ Esc s o

P „ G æ? mkedge G q (o?mÕ)
’m œ NP , ’s œ EP

The last rule TransExpl find an explanation for a question of the form (o?m). There
must be a statement of m with an immediate side-effect invalidating o and that object must
escape m.

TransExpl

q œ G q = (o?m) s œ stmts-of P m

UnsafeEff o œ side-effects P s P „ Esc s o

P „ G æ? mkedge G q (o!s)
’s œ EP

Interpretation. As seen earlier, finding answers for a particular question consists in col-
lecting every answer (o!s) in the transitive closure of the question. The reverse Q&A graph
exhibits execution paths from potential ownership transfer of a given object to potential mis-
uses of that unsafe object. This information is currently reported textually, but it would
takes on its full meaning once exposed in a graphical Integrated Development Environment
such as Eclipse[77].

5.9 Implementation

The analyses described in this chapter have been implemented in two contexts. First
as an optimization phase of the just-in-time compiler of the JikesRVM. And second as a
whole-program analysis using the Soot framework.

Just-in-time owner-checks elimination in JikesRVM. The intra-procedural Safe Ref-
erence Analysis has been included in the JikesRVM optimizing compiler. Despite its relative
simplicity and the very conservative assumptions the analysis have to make, it efficiently
eliminates about 55% of the owner-check barriers introduced by the application bytecode
and the standard library for the representative benchmarks we have tested (see Chapter 6).
The implementation comprises the extension supporting frozen arrays which are required to
safely handle type enumerations and static arrays.

We modified the JikesRVM classloader in order to read non-standard safety bytecode
annotations generated by the external tool detailed in the next section. This way we were
able to compute the whole-program static analysis offline and embed the results into the class
files loaded by the virtual machine.
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Whole-program static analysis in Soot. The SRA and the SOA analyses have been
entirely implemented in their inter-procedural version as an offline tool written in Java – by
opposition to the just-in-time optimization. The implementation contains a restricted version
of TAO analysis, which corresponds to the third refinement (3TAO, equation (5.53)) given in
this document.

The tool is designed to be as generic as possible regarding the program representation and
the standard analyses it uses. Programming model abstractions are extensible and generic
as well. We followed the same organization as the formal description of the analysis in the
current chapter, the standard analyses are provided by a third party framework and integrated
through a thin interfacing module.

Our prototype is interfaced with the Soot analysis framework[64], which provides the
program representation, the call-graph, the inter-procedural pointer analysis, the must-alias
analysis and the liveness analysis exactly as described by the standard-framework in Section
5.3. The Siaam analyses accounts for about 3600 lines of code (not counting statement-less
lines), and the interface with the Soot framework accounts for roughly 550 LOC.

We had to slightly modify Soot for two reasons:

1. Generate exceptional execution paths in the data-flow graphs to handle the potential
ownership mismatch exceptions implicitly raised by statements accessing object fields
and array elements. This was done by modifying Soot’s Throw Analysis module be-
cause the framework’s API does not comes with a handy way to switch the default
throw analysis with a custom one. Most probably because it is unusual to add implicit
exceptions to instructions of the Java language.

2. Annotate input class files with safety information without producing modified byte-
codes for the methods code. The traditional workflow in Soot is to transform the input
bytecode to the intermediate representation, apply analyses, transformations, optimiza-
tions and annotations on the IR, and finally generate output class files with obtained
by translating the IR back to the java bytecode. Even when disabling all the transfor-
mations and the optimizations, the output bytecode still presents some differences with
the input one. To be completely fair in our comparative benchmarks, we wanted the
output annotated bytecode to be identical to the input bytecode in terms of instruc-
tions. Therefore we wrote a custom output module for Soot, using ASM[25] to inject
our own annotations in the original input class files.



Chapter 6

Evaluation

6.1 Overall performances

6.1.1 Dacapo Benchmark

The Dacapo[14] suite offers a collection of non-trivial benchmarks based on widely used
Java programs, representative of various real industrial workloads. These applications use
regular Java and thus make no mailbox-based communications. The bytecode is instrumented
with Siaam’s owner-checkings and all threads share the same owner-ID. With this benchmark
we measure the overhead of the dynamic ownership machinery, encompassing the object owner
initialization and the owner-checking barriers, plus the allocation and collection costs linked
to the object header modifications.
We benchmarked five configurations:

— nosiaam is the reference JikesRVM without modifications.

— opts designates the modified JikesRVM with JIT ownership elimination.

— noopts designates the modified JikesRVM without JIT ownership elimination, an owner-
checking barrier is performed for every field access except for stack-allocated objects.

— sopts is the same as opts but the application bytecode has safety annotations issued
by the offline Siaam static analysis tool.

— sopts-nosc is the same as sopts without library methods cloning and therefore with-
out owner-check barriers generated for the standard library bytecode. Note that this
configuration does not enforce isolation, it is just provided as an ideal optimization
reference.

The opts, noopts and sopts have standard library methods duplicated with the appli-
cation context version instrumented with owner-checking barriers.

We executed the version 2010-MR2 of the Dacapo benchmark, each run consists of one
program of the suite executed five times for warmup and a last time for execution time
measurement. Every run was repeated several times, although some programs have more
variability than others, the repetition of the experience with different machines and operating
systems confirms the tendency of the following results. Two workloads are benchmarked, the
default and the large. We force methods to be compiled with the optimizing compiler, the
adaptive optimization system is disabled, after the first warmup turn most of the bytecode is
compiled. The heap size is set to 2GB, the allocation and collection system is the generational
immix[15]. The provided results were obtained using a machine equipped with an Intel Xeon
W3520 2.67Ghz processor.

147
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The following execution time results are normalized with respect to the reference virtual
machine for each program of the suite: lower is better. We include the geometric mean to
summarize the typical overhead for each configuration. The second geometric mean given in
the histograms excludes the jython program, although it does not changes the interpretation
of the results in a significant way.

The table in Figure 6.1 shows the results for the Dacapo 2010-MR2 runs. The graphical
representation is exposed in figures 6.2 for the default workload and 6.3 for the large one.
A quick look at the histograms and the geometric means let us concludes that as expected the
configuration without any owner-check elimination has the worst overhead, followed by the
configuration where runtime JIT elimination is performed. Statically annotated bytecode
provides a significant performance improvement. Removing the barriers in the standard
library provides more or less significant improvement, certainly depending on the more or
less intensive usage of the library.

Benchmark opts noopts sopts sopts-nosc

default workload
antlr 1.20 1.32 1.09 1.11
bloat 1.24 1.41 1.17 1.05
hsqldb 1.24 1.36 1.09 1.06
jython 1.52 1.73 1.41 1.24
luindex 1.25 1.46 1.09 1.05
lusearch 1.31 1.45 1.17 1.18
pmd 1.32 1.37 1.29 1.24
xalan 1.24 1.39 1.33 1.35
geometric mean 1.28 1.43 1.20 1.16

large workload
antlr 1.21 1.33 1.11 1.10
bloat 1.40 1.59 1.14 0.96
hsqldb 1.45 1.60 1.29 1.10
jython 1.45 1.70 1.45 1.15
luindex 1.25 1.43 1.09 1.03
lusearch 1.33 1.49 1.21 1.21
pmd 1.34 1.44 1.39 1.30
xalan 1.29 1.41 1.38 1.40
geometric mean 1.34 1.50 1.25 1.15

Table 6.1: Dacapo benchmark 2006-10 MR2 release.

The main conclusion of the quantitative analysis of the results is that the modified virtual
machine including JIT barrier elimination has an overhead of about 30% compared to the
not-isolated reference. The JIT elimination improves the performances by slightly less than
20% compared to the noopts configuration. When the bytecode is annotated by the whole-
program static analysis the performances are 10% to 20% better than with the runtime-only
eliminations. Although we must precise here, the Dacapo benchmarks uses the Java reflection
API to load classes and invoke methods, therefore the static analysis with Soot was not able
to process all the bytecode with the best precision. We can expect better results with other
programs for which the call graph can be entirely built with precision. Moreover the we used
a context-insensitive, flow-insensitive pointer analysis, meaning the Siaam analysis could be
even more accurate with sensitive standard analyses. Although sopts is currently backed by
an offline analysis, we can expect at least equivalent results from a whole-program analysis
integrated in the virtual machine.
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Figure 6.2:

Finally the standard library bytecode is not annotated by our tool, it is only treated
by the just-in-time elimination optimization. In order to give a preview of the performances
that we may expect from further optimizations of the standard library, we provide the sopts-
nosc configuration. The results show constant overhead (w.r.t. application) with a mean of
15% overhead, which shoud be considered as an acceptable price to pay for the simplicity of
developing isolated programs with Siaam.

6.2 Micro benchmarks

Methodology. We repeatedly measure the execution time of the benchmarked operation.
Time is red with System.nanoTime() to get the most precise timestamp right before and after
the operation. The benchmarking stops when a given amount of time has been totalized. The
total amount of time measured divided by the execution count gives the micro-benchmark run
result in operations/unit of time. The higher is the result, the faster the operation executes.

The JikesRVM AOS is disabled and methods are initially compiled with the highest level of
optimizations. We select the GenImmix two-generations copying collector and allocate a 2GB
heap. The virtual machine is compiled for the 32-bit x86 architecture with four-byte memory
words and addresses size. For each benchmarking run, we execute warmup iterations up to
ten seconds, and continue with the performance measurement phase totalizing one minute.
We run the experiments several times on various hardware and observed only non-significative
variance in the results.

Realistic messages workload. Our main workload for the micro-benchmarks is based on
the study by Garner et al. [46] where they characterize the most-frequent reference fields lay-
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Figure 6.3:

outs in objects allocated by the SPECjvm98 and the Dacapo benchmarks. Both benchmarks
includes representative, real-purpose applications such as databases, the java compiler, XML
and XSLT processors, bytecode analysis tools, parser generators and more. We produce a
mix of objects in the proportions presented in the latter study. The mix contains objects of
32 different fields layouts. The eight most frequent patterns totalize 93% of the mix. the
most common pattern (33% of the mix) has no references, then 18% of the objects have one
reference localized in their first field, the third, fourth and fifth patterns have respectively
three, six and two reference fields localized at the begining of the layout. The sixth most
frequent kind of object is array of references (we use one-element arrays for that pattern).
Objects with references located after the 16th field represent about 0.15% of the typical mix.
The analysis of the Dacapo benchmarks by Blackburn et al. [14] suggests the mean object
size is sixty-two bytes. Assuming this size includes a two-words header, there is room left for
thirteen four-bytes fields or array elements. Thus in our mix, object field layouts are padded
with integers up to thirteen fields to ensure a mean size of about sixty-eight bytes – sixty-four
plus the two header bytes required by Siaam. Although some objects in the mix are larger
than sixty-eight bytes, they represent less than 0.2% of the total demography.

6.2.1 Zero-Copy vs. Deep-Copy.

Table 6.4 compares message construction performances of the deep-copy and the zero-
copy methods for various message sizes with the SPECjvm98/Dacapo mix of objects. Each
row fixes the number of objects in one message, ranging from ten to one million. The results
in the central part of the table are expressed in number of messages that can be constructed
in one second for each method. The right-most column presents how faster is the zero-copy
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method compared to the deep-copy. Zero-copy is about three to almost five times faster
than deep-copy. The bottom row give the mean number of messages that can be constructed
in one second given the count 10n of objects in each message. We don’t take into account
the results for ten objects messages because the timing information is too imprecise in that
case. Under is the corresponding mean time to process one object of a message. In average,
zero-copy outperforms deep-copy by a factor of four in this experiment.

Message constructions/s

Objects count Deep-copy Zero-copy Ratio

1 ◊ 101 2.5 ◊ 105 8.4 ◊ 105 ◊3.4
1 ◊ 102 3.2 ◊ 104 1.3 ◊ 105 ◊4.1
1 ◊ 103 3.5 ◊ 103 1.3 ◊ 104 ◊3.7
1 ◊ 104 3.4 ◊ 102 1.4 ◊ 103 ◊4.1
1 ◊ 105 3.1 ◊ 101 1.3 ◊ 102 ◊4.2
1 ◊ 106 2.7 ◊ 100 1.3 ◊ 101 ◊4.8

1 ◊ 10n 3.2 ◊ 106≠n 13.2 ◊ 106≠n ◊4.1
s/object 313 ◊ 10≠9 75 ◊ 10≠9

Table 6.4: Message construction performances with a representative mix of objects, thirteen-
fields padded layouts. On a Intel Xeon W3520 2.67GHz, 8MB cache.

We reproduced the benchmark over several machine with different processors. The re-
sults are summarized in Table 6.7. One-hundred-thousand objects per message may not be
representative of the typical value in a real-purpose program, but it amortize the timing
imprecision. For comparison we present results for one hundred objects per messages. The
observed ratio corroborates the previous results, zero-copy outperforms deep-copy by a factor
of three up to almost five.

◊104 message constructions/s message constructions/s

100 objects 105 objects

Processor Deep-copy Zero-copy Ratio Deep-copy Zero-copy Ratio

Core 2 E8400 3.0Ghz 5.2 15.9 ◊3.0 56 179 ◊3.2
Xeon W3520 2.67GHz 3.2 12.9 ◊4.0 30 133 ◊4.4
Xeon L5420 2.50Ghz 2.2 10.5 ◊4.7 19 86 ◊4.5
Opteron 6164 HE 1.7Ghz ◊ ◊

Table 6.5: Message construction performances with a representative mix of objects. Com-
paring several processors performances.

We ran the same micro-benchmarks without padding object fields layouts, so objects are
only large enough to contain their last reference field. Except for objects without reference
fields (33%) which have one primitive field. Most objects in the mix have all their reference
fields within six fields, so the mean object size is

6.2.2 Graph-traversal optimizations

Method specialization techniques discussed in section 4.2.5 leads to an 18% reduction
in message graph exploration time compared to naive type reflection (Table 6.8). This im-
provement is consistent with the 21% reduction measured by Garner et al.[46] when applying
method specialization to the garbage collector scanning mechanism.
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Message constructions/s

Objects count Deep-copy Zero-copy Ratio

1 ◊ 101 3.5 ◊ 105 1.0 ◊ 106 ◊2.9
1 ◊ 102 5.0 ◊ 104 1.6 ◊ 105 ◊3.2
1 ◊ 103 5.6 ◊ 103 1.7 ◊ 104 ◊3.0
1 ◊ 104 5.8 ◊ 102 1.8 ◊ 103 ◊3.1
1 ◊ 105 5.7 ◊ 101 1.8 ◊ 102 ◊3.2
1 ◊ 106 4.7 ◊ 100 1.8 ◊ 101 ◊3.8

1 ◊ 10n 5.05 ◊ 106≠n 16.2 ◊ 106≠n ◊3.2
s/object 198 ◊ 10≠9 56 ◊ 10≠9

Table 6.6: Message construction performances with a representative mix of objects, non-
padded fields layouts. On a Intel Xeon W3520 2.67GHz, 8MB cache.

◊105 message constructions/s message constructions/s

10 objects 106 objects

Processor Deep-copy Zero-copy Ratio Deep-copy Zero-copy Ratio

Core 2 E8400 3.0Ghz 3.8 10.9 ◊2.9 4.0 17.1 ◊4.3
Xeon W3520 2.67GHz 3.5 10.3 ◊2.9 4.7 17.8 ◊3.8
Xeon L5420 2.50Ghz 2.2 7.8 ◊3.5 3.3 13.7 ◊4.1
Opteron 6164 HE 1.7Ghz 1.5 5.0 ◊3.3 2.0 7.5 ◊3.8

Table 6.7: Message construction performances with a representative mix of objects. Com-
paring several processors performances.

Objects count (1) RVMType Reflection (1)+(2) Hand-Inlining (1)+(2)+(3) Specialization

1 ◊ 104 1.7 ◊ 103 1.9 ◊ 103 2.0 ◊ 103

1 ◊ 105 1.7 ◊ 102 1.9 ◊ 102 2.0 ◊ 102

1 ◊ 106 1.6 ◊ 101 1.9 ◊ 101 1.9 ◊ 101

Table 6.8: Graph-traversal optimizations performances. Intel Xeon W3520 Gulftown
2.67GHz, 8MB cache.

6.2.3 Owner Check

We measure the amount of time required for an owner-checking operation. The micro-
benchmark accumulate execution time by slices of 10◊106 owner-check operations in 10◊104

iterations of 100 consecutive hard-coded owner-checks. So about 1% of the total executed in-
structions is spent incrementing and comparing the for loop counter. Various constant prop-
agation and field analysis are disabled so that consecutive owner-checks are not optimized-out
by the compiler.

The measurement reveals that a single owner-check consumes about 5.5ns on a Intel R•Core
2 Duo 2.8Ghz. We also decompose the owner-check operation into i) reading the current
owner-ID in the current thread (2.1ns). ii) reading the object owner from the object’s header
(< 1ns).

6.2.4 Memory consumption

The Siaam virtual machine tends to consume more heap space than the unmodified
JikesRVM. First, classes of the standard Java library used by both the virtual machine
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and the application are duplicated, meaning two versions of the native code generated by the
just-in-time compiler must reside in memory. Second, since more methods must be compiled,
more short living objects are produced by the compiler’s activity. Hopefully the compilation
phases usually don’t span the entire application lifetime so the heap is not constantly polluted
by compiler’s garbage. Third, the two words we add in every object’s header may have a
more or less significant impact on the application’s heap space consumption, depending on
the average size of the allocated objects. The average object size in the Dacapo benchmarks
is [14] sixty-two bytes, so we increase it by 13%. We have measured a 13% increase in the
full garbage collection time, which account for the tracing of the two additional references
and the memory compaction.

6.3 Owner-checking elimination

6.3.1 Actory Foundry Benchmarks

We compare the efficiency of the Siaam whole-program analysis to the SOTER algorithm.
Table 6.9 contains the results that we obtained for the benchmarks reported in [81]. For each
analyzed application we give the total number of owner-checking barriers and the total number
of message passing sites in the bytecode. The columns “Ideal safe” show the expected number
of safe sites for each criteria. The column “Siaam safe” gives the result obtained with Siaam.
The analysis execution time is given in the third main colum. The last column compares the
result ratio to ideal for both SOTER and Siaam. Our analysis outperforms significantly. The
number of sites reported in the “message passing” colum is different in Table 6.9 compared to
Negara’s “passed arguments” article because we count one site when they count one or several
arguments passed at that site, but we count one site when an actor is created (because actor
creation is translated to Siaam actor creation) when they do not count it. Anyway when we
obtain a 100% ratio to ideal this difference is meaningless.

Comparison with SOTER. SOTER relies on an inter-procedural live-analysis and a
points-to analysis to infer message passing sites where by-ref semantic can applies safely.
Given an argument ai of a message passing site s in the program, SOTER computes the set
of objects passed by ai and the set of objects transitively reachable from the variables live
after s. If the intersection of these two sets is empty, SOTER marks ai as eligible for by-ref
argument passing, otherwise it must use the default by-value semantic. The weakness to
this pessimistic approach is that among the live objects, a significant part won’t actually be
accessed in the control-flow after s. On the other hand, Siaam do care about objects being
actually accessed, which is a stronger evidence criterion to incriminate message passing sites.
Although Siaam’s algorithm wasn’t designed to optimize-out by-value message passing, it is
perfectly adapted for that task. For each unsafe instruction detected by the algorithm, there
is one or several guilty dominating message passing sites. Our diagnosis algorithm tracks
back the application control-flow from the unsafe instruction to the incriminated message
passing sites. These sites represent a subset of the sites where SOTER cannot optimize-out
by-value argument passing.

Diagnosis. (1) Siaam reports five problematic message passing sites. Among them, three
are legit, for the two others the algorithm is tricked by the dispatching loop allowing se-
quences of messages that would not happen at runtime.
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(2) Siaam reports five problematic ownercheckings and seven problematic message passing
sites. The reported ownercheckings are explained in (3) along with five of the problematic
message passing sites. The two remaining message passing sites are legitimately reported
because the analyzed program passes the same array to multiple actors.

(3) The program is safe but our analysis is again tricked by the dispatching loop allowing
sequences of message reception, and in some cases cannot statically infer the safety of certain
parts of the actor’s private state.

(4) Siaam legitimately reports one problematic message passing site. The program syn-
chronously sends (call) the same object twice in a row. The problem is trivially fixed by
making the object’s class immutable.

Ownercheck Message Passing ratio to Ideal

Sites
Ideal
safe

Siaam
safe Sites

Ideal
safe

Siaam
safe

Time
(sec) Siaam SOTER

ActorFoundry
threadring 24 24 24 8 8 8 0.1 100% 100%

(1)concurrent 99 99 99 15 12 10 0.1 98% 58%
(2)copymessages 89 89 84 22 20 15 0.1 91% 56%

performance 54 54 54 14 14 14 0.2 100% 86%
pingpong 28 28 28 13 13 13 0.1 100% 89%

refmessages 4 4 4 6 6 6 0.1 100% 67%

Benchmarks
chameneos 75 75 75 10 10 10 0.1 100% 33%
fibonacci 46 46 46 13 13 13 0.2 100% 86%

leader 50 50 50 10 10 10 0.1 100% 17%
philosophers 35 35 35 10 10 10 0.2 100% 100%

pi 31 31 31 8 8 8 0.1 100% 67%
shortestpath 147 147 147 34 34 34 1.2 100% 88%

Synthetic
quicksortCopy 24 24 24 8 8 8 0.2 100% 100%

(3)quicksortCopy2 56 56 51 10 10 5 0.1 85% 75%

Real world
clownfish 245 245 245 102 102 102 2.2 100% 68%

(4)rainbow fish 143 143 143 83 82 82 0.2 99% 99%
swordfish 181 181 181 136 136 136 1.7 100% 97%

Table 6.9: ActorFoundry analyses.
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Conclusion

7.1 Synthesis

We presented the specification of Siaam, a simple actor programming model enforcing a
strong isolation property based on a flat ownership relation. The specification is divided into
an actor-local semantics which is inspired by the Java language, and a global semantics that
controls and interleaves certain actor actions. The global semantics is orthogonal to the local
semantics, it allows to abstract the local behavior and focus on the dynamic ownership at the
global level. We formalized an abstraction of Siaam’s global semantics with the Coq proof
assistant and conducted the proof of our isolation property.

We have implemented our ownership-based isolation specification in the JikesRVM, a
trustworthy Java virtual machine. We were able to run programs representative of industrial
workloads with an acceptable overhead, ranging from 30% in average with the just-in-time
intra-procedural barriers elimination to 15% using a whole-program analysis and forecasting
future improvements in the way the standard Java library may be optimized. Our effort
to make the ownership management as versatile as possible allowed us to provide not only
the Siaam actor programming model but also some bytecode compatible APIs that mimic
existing models while immediately bringing zero-copy message-passing and strong isolation.

The static analysis addresses a larger scope than the actor model specified in Chapter
2. It captures the evolving ownership relation and the essence of the various programming
models that may adopt the ownership transfer as a communication mechanism. The analysis
is based on an abstract description of the programming models in term of ownership side-
effects. We showed briefly how to combine several programming models in a single program.
Furthermore the analysis is not tied to a particular interleaving semantics as long as each
logical unit of sequential execution represents a unique and fixed owner. The result of the
analysis is used at runtime to eliminate redundant owner checking barriers, the evaluation
shows that a fast intra-procedural analysis performed just-in-time successfully removes the
half of the barriers. The whole-program version of the analysis, currently computed ahead-
of-time, offers very promising results and it makes no doubt that it may be embedded in the
virtual machine as well.
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7.2 Future Work

7.2.1 Just-in-time whole-program analysis.

We believe that for long-running applications like web servers, databases or enterprise
frameworks, a virtual machine could incrementally compute the inter-procedural analysis
with more and more accuracy for hot-spot methods. Existing works on runtime adaptive
optimization[9, 10] and incremental call-graph construction[90] indicates that state-of-the-
art runtime systems are already providing the necessary machinery.

Furthermore, when new classes are dynamically loaded, the virtual machine can rollback
the previous optimizations and start a new cycle of gradual optimization.

The method cloning technique employed in the virtual machine could also be employed
to clone methods dynamically and eliminate owner-checkings based on inter-procedural cri-
teria. For instance if the same method is called from a particular set of contexts with many
unsafe parameters and from another set of contexts with only safe objects reachable from
the parameters, it may be worth duplicating the method and have two version of it. This
idea was already suggested in [11], while dealing with write barriers overhead the authors
conclude: “[the JIT compiler] could even perform method splitting to specialize methods, so
as to remove useless barriers along frequently used call paths”. It is worth noticing that the
aggressive inlining[55] done in the JikesRVM is a primitive form of specialization since our
optimization pass eliminates owner checking barriers after the IR is inlined.

7.2.2 Cohabitation with ownership types annotations.

The Siaam model and the static analyses described in this chapter demonstrates that
it is possible to build an isolated actor programming model without requiring any explicit
ownership type annotation in the program’s source code. Although it does not necessarily
mean annotations should be forbidden in the source code, nor that ownership types analyses
shouldn’t be used. In most previous works where ownership types are statically verified,
the authors suggest a default mode for variables, arguments, fields etc. so that developers
only need to annotate places where the default mode is not appropriated because it is too
constraining.

We shall study the mutual benefits of having an analysis like Siaam working in collabo-
ration with a static ownership type verifier. Since they both compute sound approximations,
it may happen that a given property is not verified by one analysis and verified by the
other, in which case the first analysis can safely assume that the property holds and continue
with that fact. The question is to define what properties can be checked by both analyses,
or what property may only be checked by one of the analyses but would be useful to the other.

Another field of interest is to use ownership types annotations on commonly used libraries,
particularly the Java standard library in our case. Modular static ownership types verifiers[34,
1] are particularly interesting because they can check pieces of code without requiring the
whole-program to be available. In [53] authors report that they successfully annotated parts
of the Scala standard library with significantly few annotations. Therefore it suggests that
the same kind of work should be tractable on the Java library. Modular ownership verification
is based on annotated interfaces specifying ownership constraints on the the arguments of
the modules or software components. If a non-annotated program is to use an annotated
module, it is necessary to make sure, statically or dynamically, that the non-annotated code
will actually respect the module’s specification. A Siaam-like analysis may help identifying
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places where the constraints cannot be guaranteed, so the appropriate runtime verifications
may be handled dynamically by a Siaam-like virtual machine.

7.2.3 Modular actor analysis.

In future works we shall study how to precisely analyze a single actor without considering
the whole-program knowledge. The challenge is to obtain a sound call-graph and a sound
pointer analysis in the absence of information about the objects that might be received by
inter-actor communications. The following questions must be studied:

— For each message reception site, what is the shape of the received message? By shape
we mean what topology has the graph of received objects, what can be the type of the
objects in that graph.

— If a received object is of an interface class type or a non-final class type it is not possible
to determine what will be its exact instance class statically. Therefore it is not possible
to know what are the (ownership) side-effects of calling the methods of such object.

We can think of the following methodology:

— Close the classes hierarchy by adding an artificial final class extending each known non-
final class and make each artificial class implements all the known interfaces. Also add
a single artificial final class implementing all the known interfaces. Declare a single field
of type Object in each of the artificial classes.

— Use the most conservative variant of the Transferred Objects Analysis to approximate
the set of objects invalidated by the methods of the artificial classes.

— Transform every message reception statement so that the set of abstract objects tran-
sitively reachable from the message comprises every abstract object that might have
already been sent by the actor before the reception, plus one fresh abstract object
representing the reception of an object never sent nor received before.

7.2.4 Demand-driven Siaam analysis

In Section 5.8.2 we presented a programming assistant for the whole-program static anal-
ysis. The assistant explores the inter-procedural program control-flow in the reverse direction
in order to find every previous program point that could lead to an ownership exception at
one or several starting points. Interestingly, if we puts every object access statements in the
set of starting points, the exploration goes through every program point that must be ana-
lyzed by the Safe Objects Analysis, all the other program points may be discarded. Therefore
the graph expansion algorithm detailed in Section 5.8.2 may be used to drive the SOA and
limit the amount of processing required by this phase of the analysis.
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Appendix A

Jinja

type_synonym jvm-state = addr option ◊ heap ◊ frame list
frame = opstack ◊ registers ◊ cname ◊ mname ◊ pc
opstack = val list
registers = val list
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P „ Èe, sÍ ! ÈeÕ, sÍ

P „ ÈCast C e, sÍ ! ÈCast C eÕ, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ ÈV := e, sÍ ! ÈV := eÕ, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ Èe.F {D}, sÍ ! ÈeÕ.F {D}, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ Èe.F {D} := e2, sÍ ! ÈeÕ.F {D} := e2, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ ÈVal v.F {D} := e, sÍ ! ÈVal v.F {D} := eÕ, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ Èe πbop∫ e2, sÍ ! ÈeÕ πbop∫ e2, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÍ

P „ ÈVal v πbop∫ e, sÍ ! ÈVal v πbop∫ eÕ, sÕÍ

P „ Èe, (h, l (V := None))Í ! ÈeÕ, (hÕ, lÕ)Í lÕ V = None ¬assigned V e

P „ È{V : T ; e}, (h, l)Í ! È{V : T ; eÕ}, (hÕ, lÕ (V := l V ))Í

P „ Èe, (h, l (V := None))Í ! ÈeÕ, (hÕ, lÕ)Í lÕ V = ÂvÊ ¬assigned V e

P „ È{V : T ; e}, (h, l)Í ! È{V : T ; V := Val v; eÕ}, (hÕ, lÕ (V := l V ))Í

P „ Èe, (h, l(V ‘æ v))Í ! ÈeÕ, (hÕ, lÕ)Í lÕ V = ÂvÕÊ

P „ È{V : T ; V := Val v; e}, (h, l)Í ! È{V : T ; V := Val vÕ; eÕ}, (hÕ, lÕ (V := l V ))Í

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èe.M(es), sÍ ! ÈeÕ.M(es), sÕÍ

P „ Èes, sÍ[!]ÈesÕ, sÕÍ

P „ ÈVal v.M(es), sÍ ! ÈVal v.M(esÕ), sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èe; e2, sÍ ! ÈeÕ; e2, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èif (e) e1 else e2, sÍ ! Èif (eÕ) e1 else e2, sÕÍ

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èe · es, sÍ[!]ÈeÕ · es, sÕÍ

P „ Èes, sÍ[!]ÈesÕ, sÕÍ

P „ ÈVal v · es, sÍ[!]ÈVal v · esÕ, sÕÍ

Figure 1.1: Subexpression reduction
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new-Addr h = ÂaÊ P „ C has-fields FDTs

P „ Ènew C, (h, l)Í ! Èaddr a, (h ‘æ a(C, init-fields FDTs), l)Í

hp s a = Â(D, fs)Ê P „ D ∞ı C

P „ ÈCast C (addr a), sÍ ! Èaddr a, sÍ
P „ ÈCast C null, sÍ ! Ènull, sÍ

lcl s V = ÂvÊ

P „ ÈVar V, sÍ ! ÈVal v, sÍ
P „ ÈV := Val v, (h, l)Í ! Èunit, (h, l (V ‘æ v))Í

binop(bop, v1, v2) = ÂvÊ

P „ ÈVal v1 π bop ∫ Val v2, sÍ ! ÈVal v, sÍ

hp s a = Â(C, fs)Ê fs(F, D) = ÂvÊ

P „ Èa.F {D}, sÍ ! ÈVal v, sÍ

h a = Â(C, fs)Ê

P „ Èa.F {D} := Val v, (h, l)Í ! Èunit, (h (a ‘æ (C, fs ((F, D) ‘æ v))) , l)Í

hp s a = Â(C, fs)Ê
P „ C sees M : T s æ T = (pns, body) in D |vs| = |pns| |T s| = |pns|

P „ Èaddr a.M(map Val vs), sÍ ! Èblocks(this · pns, Class D · T s, Addr a · vs, body), sÍ

P „ È{V : T ; V := Val v; Val u}, sÍ ! ÈVal u, sÍ P „ È{V : T ; Val u}, sÍ ! ÈVal u, sÍ

P „ ÈVal v; e2, sÍ ! Èe2, sÍ

P „ Èif (true) e1 else e2, sÍ ! Èe1, sÍ P „ Èif (false) e1 else e2, sÍ ! Èe2, sÍ

P „ Èwhile (b) c, sÍ ! Èif (b) (c; while (b) c) else unit, sÍ

Figure 1.2: Expression reduction

new-Addr h = None

P „ Ènew C, (h, l)Í ! ÈTHROW OutOfMemory, (h, l)Í

hp s a = Â(D, fs)Ê ¬P „ D ∞ı C

P „ ÈCast C (addr a), sÍ ! ÈTHROW ClassCast, sÍ

P „ Ènull.F {D}, sÍ ! ÈTHROW NullPointer, sÍ

P „ Ènull.F {D} := Val v, sÍ ! ÈTHROW NullPointer, sÍ

P „ Ènull.M(map Val vs), sÍ ! ÈTHROW NullPointer, sÍ

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Èthrow e, sÍ ! Èthrow eÕ, sÕÍ
P „ Èthrow null, sÍ ! ÈTHROW NullPointer, sÍ

P „ Èe, sÍ ! ÈeÕ, sÕÍ

P „ Ètry e catch (C V ) e2, sÍ ! Ètry eÕ catch (C V ) e2, sÕÍ

P „ Ètry Val v catch (C V ) e2, sÍ ! ÈVal v, sÍ

hp s a = Â(D, fs)Ê P „ D ∞ı C

P „ Ètry Throw a catch (C V ) e2, sÍ ! È{V : Class C; V := addr a; e2}, sÍ

hp s a = Â(D, fs)Ê ¬P „ D ∞ı C

P „ Ètry Throw a catch (C V ) e2, sÍ ! ÈThrow a, sÍ

Figure 1.3: Exceptional expression reduction
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P „ ÈCast C throw e, sÍ ! Èthrow e, sÍ

P „ ÈV := throw e, sÍ ! Èthrow e, sÍ

P „ Èthrow e.F {D}, sÍ ! Èthrow e, sÍ

P „ Èthrow e.F {D} := e2, sÍ ! Èthrow e, sÍ

P „ ÈVal v.F {D} := throw e, sÍ ! Èthrow e, sÍ

P „ Èthrow e πbop∫ e2, sÍ ! Èthrow e, sÍ

P „ ÈVal v πbop∫ throw e, sÍ ! Èthrow e, sÍ

P „ È{V : T ; Throw a}, sÍ ! ÈThrow a, sÍ

P „ È{V : T ; V := Val v; Throw a}, sÍ ! ÈThrow a, sÍ

P „ Èthrow e.M(es), sÍ ! Èthrow e, sÍ

P „ ÈVal v.m(map Val vs @ (throw e · es
Õ)), sÍ ! Èthrow e, sÍ

P „ Èthrow e; e2, sÍ ! Èthrow e, sÍ

P „ Èif (throw e) e1 else e2, sÍ ! Èthrow e, sÍ

P „ Èthrow throw e, sÍ ! Èthrow e, sÍ

Figure 1.4: Exception propagation
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Siaam
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CastE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ ÈCast C e, sÍ ≠wa! ÈCast C eÕ, sÕÍ

StoreE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ ÈV := e, sÍ ≠wa! ÈV := eÕ, sÕÍ

ReadE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe.F{D}, sÍ ≠wa! ÈeÕ.F{D}, sÕÍ

WriteLE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe.F{D} := e2 , sÍ ≠wa! ÈeÕ.F{D} := e2 , sÕÍ

WriteRE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ ÈVal v.F{D} := e, sÍ ≠wa! ÈVal v.F{D} := eÕ, sÕÍ

BopLE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe πbop∫ e2 , sÍ ≠wa! ÈeÕ πbop∫ e2 , sÕÍ

BopRE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ ÈVal v πbop∫ e, sÍ ≠wa! ÈVal v πbop∫ eÕ, sÕÍ

VarDeclE
P, w „ Èe, (h, l (V := None))Í ≠wa! ÈeÕ, (hÕ, l Õ)Í l Õ V = None ¬assigned V e

P, w „ È{V : T ; e}, (h, l)Í ≠wa! È{V : T ; eÕ}, (hÕ, l Õ (V := l V ))Í

VarDefE
P, w „ Èe, (h, l (V := None))Í ≠wa! ÈeÕ, (hÕ, l Õ)Í l Õ V = ÂvÊ ¬assigned V e

P, w „ È{V : T ; e}, (h, l)Í ≠wa! È{V : T ; V := Val v; eÕ}, (hÕ, l Õ (V := l V ))Í

VarUpdtE
P, w „ Èe, (h, l(V ‘æ v))Í ≠wa! ÈeÕ, (hÕ, l Õ)Í l Õ V = ÂvÕÊ

P, w „ È{V : T ; V := Val v; e}, (h, l)Í ≠wa! È{V : T ; V := Val vÕ; eÕ}, (hÕ, l Õ (V := l V ))Í

CallE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe.M (es), sÍ ≠wa! ÈeÕ.M (es), sÕÍ

Args
P, w „ Èes, sÍ[≠wa!]ÈesÕ, sÕÍ

P, w „ ÈVal v.M (es), sÍ ≠wa! ÈVal v.M (esÕ), sÕÍ

ArgE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe · es, sÍ[≠wa!]ÈeÕ · es, sÕÍ
ArgV

P, w „ Èes, sÍ[≠wa!]ÈesÕ, sÕÍ

P, w „ ÈVal v · es, sÍ[≠wa!]ÈVal v · esÕ, sÕÍ

SeqE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èe; e2 , sÍ ≠wa! ÈeÕ; e2 , sÕÍ

CondE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èif (e) e1 else e2 , sÍ ≠wa! Èif (eÕ) e1 else e2 , sÕÍ

WhileE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èwhile (e) e1 , sÍ ≠wa! Èwhile (eÕ) e1 , sÕÍ

ThrowE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Èthrow e, sÍ ≠wa! Èthrow eÕ, sÕÍ

TryE
P, w „ Èe, sÍ ≠wa! ÈeÕ, sÕÍ

P, w „ Ètry e catch (C V ) e2 , sÍ ≠wa! Ètry eÕ catch (C V ) e2 , sÕÍ

Figure 2.1: Siaam Subexpression reduction
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New
new-Addr h = ÂaÊ P „ C has-fields FDTs

P, w „ Ènew C , (h, l)Í ≠NewObj C a! Èaddr a, (h ‘æ a(C , init-fields FDTs), l)Í

Cast
hp s a = Â(D, fs)Ê P „ D ∞ı C

P, w „ ÈCast C (addr a), sÍ ≠Silent! Èaddr a, sÍ

CastN P, w „ ÈCast C null, sÍ ≠Silent! Ènull, sÍ

Load
lcl s V = ÂvÊ

P, w „ ÈVar V , sÍ ≠Silent! ÈVal v, sÍ

Store P, w „ ÈV := Val v, (h, l)Í ≠Silent! Èunit, (h, l (V ‘æ v))Í

Bop
binop(bop, v1 , v2 ) = ÂvÊ

P, w „ ÈVal v1 π bop ∫ Val v2 , sÍ ≠Silent! ÈVal v, sÍ

Read
hp s a = Â(C , fs)Ê fs(F , D) = ÂvÊ

P, w „ Èa.F{D}, sÍ ≠OwnerCheck a True! ÈVal v, sÍ

Write
h a = Â(C , fs)Ê hÕ = h(a ‘æ (C , fs((F , D) ‘æ v)))

P, w „ Èa.F{D} := Val v, (h, l)Í ≠OwnerCheck a True! Èunit, (hÕ, l)Í

Call

hp s a = Â(C , fs)Ê
P „ C sees M : Ts æ T = Â(pns, body)Ê in D |vs| = |pns| |Ts| = |pns|

P, w „ Èaddr a.M (map Val vs), sÍ ≠Silent! Èblocks (this · pns, Class D · Ts, Addr a · vs, body), sÍ

VarDef P, w „ È{V : T ; V := Val v; Val u}, sÍ ≠Silent! ÈVal u, sÍ

VarDecl P, w „ È{V : T ; Val u}, sÍ ≠Silent! ÈVal u, sÍ

Seq P, w „ ÈVal v; e2 , sÍ ≠Silent! Èe2 , sÍ

CondTrue P, w „ Èif (true) e1 else e2 , sÍ ≠Silent! Èe1 , sÍ

CondFalse P, w „ Èif (false) e1 else e2 , sÍ ≠Silent! Èe2 , sÍ

While P, w „ Èwhile (b) e, sÍ ≠Silent! Èif (b) (e; while (b) e) else unit, sÍ

Try P, w „ Ètry Val vs catch (C V ) e, sÍ ≠Silent! ÈVal vs, sÍ

Catch
hp s a = Â(D, fs)Ê P „ D ∞ı C

P, w „ Ètry Throw a catch (C V ) e, sÍ ≠Silent! È{V : Class C ; V := addr a; e}, sÍ

ReThrow
hp s a = Â(D, fs)Ê ¬P „ D ∞ı C

P, w „ Ètry Throw a catch (C V ) e, sÍ ≠Silent! ÈThrow a, sÍ

Figure 2.2: Siaam Expression reduction
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OutOfMem new-Addr h = None

P, w „ Ènew C , (h, l)Í ≠Silent! ÈTHROW OutOfMemory, (h, l)Í

BadCast
hp s a = Â(D, fs)Ê ¬P „ D ∞ı C

P, w „ ÈCast C (addr a), sÍ ≠Silent! ÈTHROW ClassCast, sÍ

ReadNull P, w „ Ènull.F{D}, sÍ ≠Silent! ÈTHROW NullPointer, sÍ

ReadBadOwner P, w „ Èa.F{D}, sÍ ≠OwnerCheck a False! ÈTHROW OwnerMismatch, sÍ

WriteNull P, w „ Ènull.F{D} := Val vs, sÍ ≠Silent! ÈTHROW NullPointer, sÍ

WriteBadOwner P, w „ Èa.F{D} := Val v, (h, l)Í ≠OwnerCheck a False! ÈTHROW OwnerMismatch, sÍ

CallNull P, w „ Ènull.M (map Val vs), sÍ ≠Silent! ÈTHROW NullPointer, sÍ

ThrowNull P, w „ Èthrow null, sÍ ≠Silent! ÈTHROW NullPointer, sÍ

Figure 2.3: Siaam Exceptional expression reduction

CastT P, w „ ÈCast C throw e, sÍ ≠Silent! Èthrow e, sÍ

StoreT P, w „ ÈV := throw e, sÍ ≠Silent! Èthrow e, sÍ

ReadT P, w „ Èthrow e.F{D}, sÍ ≠Silent! Èthrow e, sÍ

WriteLT P, w „ Èthrow e.F{D} := e2 , sÍ ≠Silent! Èthrow e, sÍ

WriteRT P, w „ ÈVal v.F{D} := throw e, sÍ ≠Silent! Èthrow e, sÍ

BopLT P, w „ Èthrow e πbop∫ e2 , sÍ ≠Silent! Èthrow e, sÍ

BopRT P, w „ ÈVal v πbop∫ throw e, sÍ ≠Silent! Èthrow e, sÍ

VarDeclT P, w „ È{V : T ; Throw a}, sÍ ≠Silent! ÈThrow a, sÍ

VarDefT P, w „ È{V : T ; V := Val v; Throw a}, sÍ ≠Silent! ÈThrow a, sÍ

CallT P, w „ Èthrow e.M (es), sÍ ≠Silent! Èthrow e, sÍ

ArgsT P, w „ ÈVal v.M (map Val vs @ (throw e · es
Õ)), sÍ ≠Silent! Èthrow e, sÍ

Throw P, w „ Èthrow e; e2 , sÍ ≠Silent! Èthrow e, sÍ

CondT P, w „ Èif (throw e) e1 else e2 , sÍ ≠Silent! Èthrow e, sÍ

ThrowT P, w „ Èthrow throw e, sÍ ≠Silent! Èthrow e, sÍ

Figure 2.4: Exception propagation



Annexe C

Abstracts

C.1 Résumé en français

Dans cette thèse nous étudions l’isolation mémoire et les mesures de communications
efficaces par passage de message dans le contexte des environnements à mémoire partagée
et la programmation orientée-objets. L’état de l’art en la matière se base presque exclusi-
vement sur deux techniques complémentaires dites de propriété des objets (ownership) et
d’unicité de références (reference uniqueness) afin d’adresser les problèmes de sécurité dans
les programmes concurrents. Il est frappant de constater que la grande majorité des travaux
existants emploient des méthodes de vérification statique des programmes, qui requirent soit
un effort d’annotations soit l’introduction de fortes contraintes sur la forme et les références
vers messages échangés.

Notre contribution avec SIAAM est la démonstration d’une solution d’isolation réalisée
uniquement à l’exécution et basée sur le modèle de programmation par acteurs. Cette solution
purement dynamique ne nécessite ni annotations ni vérification statique des programmes.
SIAAM permet la communication sans copie de messages de forme arbitraire. Nous présentons
la sémantique formelle de SIAAM ainsi qu’une preuve d’isolation vérifiée avec l’assistant
COQ. L’implantation du modèle de programmation pour le langage Java est réalisé dans
la machine virtuelle JikesRVM. Enfin nous décrivons un ensemble d’analyses statiques qui
réduit automatiquement le cout à l’exécution de notre approche.

C.2 English abstract

In this thesis we study state isolation and efficient message-passing in the context of con-
current object-oriented programming. The ’ownership’ and ’reference uniqueness’ techniques
have been extensively employed to address concurrency safety in the past. Strikingly the
vast majority of the previous works rely on a set of statically checkable typing rules, either
requiring an annotation overhead or introducing strong restrictions on the shape and the
aliasing of the exchanged messages.

Our contribution with SIAAM is the demonstration of a purely runtime, actor-based,
annotation-free, aliasing-proof approach to concurrent state isolation allowing efficient com-
munication of arbitrary objects graphs. We present the formal semantic of SIAAM, along
with a machine-checked proof of isolation. An implementation of the model has been realized
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in a state-of-the-art Java virtual-machine and a set of custom static analyses automatically
reduce the runtime overhead.
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