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Abstract iii

To understand how the cerebral cortex does what it does, it is necessary to elucidate
both how its dynamic states are correlated with the functions it performs, and how
it is organised (because, contrary to man-made computing systems, the brain has no
software layer: the algorithm is in the physical design). From a computational point of
view, cortical information processing is based on hierarchical abstraction: different levels
deal with increasingly less detailed but more abstract representations. This allows for
both localisation of functions in specialised cortical areas, and integration of extracted
features into behaviourally relevant models governing the brain’s output (actions) and

long-term modification (learning and memory).

To contribute to the understanding of cortical computation, we have focused on the
level of cortical areas, and their connections and interactions. At this level of descrip-
tion, many functional and anatomical gradients have been described that reflect the
hierarchical abstraction at the heart of cortical computation. The most famous of these
functional gradients is probably the increase in the size of neuron’s receptive field and
complexity of their tuning along the series of visual areas in the rostrocaudal direction.
Later, it was showed that two flavours of cortical connections exist, and that in the visual
cortex they happen to transport information in opposite directions along this gradient.
It was also hypothesised that other modalities exhibit the same type of gradient in their
respective domains. However, how these two types of inter-areal connections interact
with intrinsic connectivity to give rise to more and more abstract representations along
these functional gradients remains an open question, one that requires knowledge of the
architecture at different levels (such as the cortical column) and a causal understanding

of the functional properties of these types of connections.

We have addressed this issue in a number of ways. First, we have studied the dynamics
of both feedforward and feedback propagation in the visual system of awake, behaving
macaque monkeys. Using the causal method of electrical microstimulation and recording,
we have found a dynamic signature of each type of projections and an asymmetry in the
way each type of input interacts with ongoing activity in a given visual area. Secondly, we
have “zoomed out” of the visual system to look at the properties of the whole cortical
network. Thanks to a rich and systematic data set in the macaque, we have found
a fundamental organisational principle of the embedded and weighted cortical network
that holds also in the more detailed level of neuronal connections inside an area. Finally,
we have combined known anatomical gradients with actual inter-areal connectivity into
a dynamic model, which exhibits another functional gradient, this time in the temporal
domain. This gradient of progressively longer timescales of the intrinsic dynamics of
areas has been observed in the brain, and here we show how it relates to both the
ordering of areas along a hierarchical gradient and the wiring diagram of the cortical

network.
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Résumé

Connectivité et traitement de ’information dans le cortex cérébral du

macaque

Pour comprendre comment le cortex cérébral extrait du sens et produit des actions a
partir des informations sensorielles, il est nécessaire de comprendre a la fois son archi-
tecture et ses états dynamiques. Dans la présente thése nous avons abordé cette relation
structure-fonction au niveau des aires cérébrales, leurs connections et leurs interactions
au sein du réseau cortical. Les aires sont connectées entre elles par deux grands types de
projections axonales. D’une part, les connections « feedforward » — littéralement « an-
téroactives » — transmettent 'information des aires sensorielles aux aires de plus haut
niveau dans la hiérarchie corticale (dont l'activité sous-tend des représentations plus
abstraites). A Pinverse, les connections « feedback » (rétroactives) relient des aires dans
la direction descendante de la hiérarchie corticale, vers les aires sensorielles primaires.
Pour explorer les roles respectifs des connections feedforward et feedback nous avons
utilisé une triple approche chez le macaque, a la fois anatomique, électrophysiologique,

et de modélisation mathématique du réseau.

Pour décrire les connexions entre les aires corticales avec une précision suffisante pour
comprendre les principes d’organisation du cortex, il est nécessaire de choisir des traceurs
corticaux spécifiques, d’appliquer des méthodes systématiques et de croiser les résultats
de plusieurs animaux. Dans un premier chapitre, nous montrons qu'une seule injection
de traceur dans une aire suffit pour établir le profil de connectivité complet de cette aire
de facon fiable, y compris pour les connexions les plus faibles. La stabilité du profil de
connectivité des aires corticales d’un individu a 'autre est en soi un résultat important,
qui a nécessité la modélisation statistique de la variabilité de la distribution des neu-
rones marqués par le traceur apres des injections multiples. Notre méthode révele non
seulement la présence ou ’absence d’une projection entre chaque aire et ’aire injectée,
et la force des connexions existantes, mais elle fournit également une mesure de leur
direction, c’est-a-dire la propagation bottom-up (feedforward) ou top-down (feedback)
de l'information traitée. Cette base de données obtenue par une méthode unifiée et
validée statistiquement forme la base de nos travaux sur les principes d’organisation de

I’anatomie corticale et des fonctions qu’elle réalise.
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Dans le chapitre suivant, nous nous sommes intéressés au réseau cortical en tant que
tel, en utilisant des méthodes de la théorie des graphes. Contrairement a la plupart des
études précédentes essentiellement descriptives, qualitatives et basées sur des données
incompleétes, nous avons tenté de construire un modeéle prédictif de la connectivité cor-
ticale. En utilisant le profil de connectivité pondérée de 30 aires réparties dans tout
le cortex, nous avons reconstitué un sous-graphe ou chaque connexion potentielle a été
testée et mesurée, ce qui permet d’inférer de fagon fiable les propriétés du graphe com-
plet. Cette approche a révélé i) que le réseau des aires corticales est extrémement dense,
mais que la grande variabilité de la force des projections donne a chaque aire sa spécificité
bien plus que lidentité des aires auxquelles elle est connectée ; ii) le réseau cortical est
composé d’un groupe de voies de communication a haute bande passante au milieu d’une
myriade de connexions mineures, et que la majorité des neurones corticaux participent
a des connexions a courte distance allouées au traitement local de I'information ; iii)
le poids des connexions est gouverné par la distance parcourue par les axones a travers
la matiere blanche entre 1’aire source et l'aire cible, avec une diminution exponentielle
avec cette distance du nombre d’axones impliqués. Cette régle de distance exponentielle
(EDR) est un principe fondamental d’organisation du cortex, si bien qu’un réseau aléa-
toire avec 'EDR comme seule contrainte de construction reproduit de pres la structure

du réseau réel.

En paralléle, nous avons exploré le fonctionnement électrophysiologique des connexions
feedforward et feedback. Des études précédentes de stimulation magnétique transcrani-
ennes (TMS) suggerent que la rétroaction d’aires de haut niveau sur les aires primaires du
cortex visuel est nécessaire pour la perception visuelle consciente. Pourtant, I'influence
du feedback cortico-cortical sur I'accés a la conscience visuelle et la nature des effets
médiés par les connexions feedback ne sont pas élucidés. Dans le chapitre 4, nous avons
abrdé cette question en micro-stimulant électriquement le cortex visuel de macaques en
comportement, ce qui induit une perception lumineuse artificielle (un phosphene). En
micro-stimulant le cortex visuel primaire (aire V1) et l'aire V4 a différents intervalles de
temps, nous avons observé que les singes peuvent détecter les phosphenes induits par
microstimulation dans V1, mais que la microstimulation de V4 sous le seuil de détection
d’un phosphéne n’influence pas le seuil de détection d’un phosphéne dans V1. Dans
une deuxieme expérience nous avons étudié 'influence de la microstimulation dans V4
sur la capacité des singes a détecter un court changement de luminance d’un stimulus
parmi trois présentés en vision parafovéale. La encore, la microstimulation d’un groupe
de neurones de V4 n’influence pas la perception du singe d’un stimulus dans le champ

récepteur concerné.

N’ayant pas réussi a détecter I'influence de la connexion feedback entre V4 et V1 dans
la perception visuelle consciente, nous avons décidé de comparer 'effet d’une connexion

feedforward (V1 vers V4) et d’une connexion feedback (V4 vers V1) sur l'activité de
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I’aire cible engagée ou non dans une tache visuelle de segmentation d’une scéne en objet
et fond (figure-ground segregation). Dans le chapitre 5 nous avons de nouveau utilisé la
technique causale de microstimulation pour tester la propagation de I'activité neuronale
le long d’une connexion feedforward et feedback. Dans le sens feedforward (microstim-
ulation dans V1, enregistrement dans V4) nous avons observé dans V4 une activation
immédiate et forte suivie d’'une désactivation. Dans le sens du feedback cependant (mi-
crostimulation dans V4, enregistrement dans V1), nous avons observé que la stimulation
des neurones de V4 provoque seulement une désactivation dans V1, et surtout, con-
trairement au sens feedforward, cet effet n’a lieu que si la microstimulation a lieu durant
la période plateau de la réponse a un stimulus visuel (apres le pic inital d’activation).
De plus, cette désactivation de 'activité des neurones cibles interagit avec la présence
d’un objet visuel dans le champ récepteur, d’'une facon qui suggere une contribution de
la connexion feedback dans tout le champ visuel, méme en I’absence d’objet (quand seul
le "fond" de la scene est pergu). Ce résultat sur Pasymétrie entre effet d’un input feed-
forward ou feedback sur 'activité électrique d’une aire corticale est nouveau. De plus, il
est en accord avec I’étude des propriétés oscillatoires des deux directions de propagation
réalisée dans ’équipe et qui montre des différences claires dans les bandes de fréquence
feedforward et feedback, ainsi que dans les couches corticales ciblées par chaque type de

connexion (van Kerkoerle et al., 2014).

Dans une derniére approche, nous avons combiné des données anatomiques et fonction-
nelles dans un modele dynamique a grande échelle du cortex du macaque (chapitre 6).
En stimulant ce modéle nous avons observé qu’émerge une hiérarchie de constantes de
temps, ou les aires sensorielles primaires ont une réponse bréve, immédiate et transitoire
a un stimulus, tandis que les aires de plus haut niveau inteégrent les inputs sur de plus
longues périodes et ont une activité plus durable. Selon la modalité de 'input (visuel,
auditif, etc) différentes hiérarchies dynamiques se mettent en place, suggérant des mé-
canismes d’établissement de ces "fenétres réceptives temporelles" de facon dynamique

selon les taches.

Mots-clef : Cortex cérébral, macaque, électrophysiologie, microstimulation, neuroanatomie,

modélisation, population de neurones.

Samenvatting

Connectivité et traitement de I’information dans le cortex cérébral du

macaque

Ici le résumé in nederlands.
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Chapter 1

Introduction

Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura

ché la diritta via era smarrita.

Dante Alighieri, Inferno

How the cerebral cortex creates actionable meaning from its environment is constrained by its
exquisitely complex architecture, and retro-engineering this particular computational system
might be the most fertile challenge we have ever been faced with. However, even if we could
(or rather, when we will) access the complete wiring diagram of the cortex down to individual
neurons, together with their activity at time ¢, this data would not get us closer to understanding
how the brain processes information. In fact, this approach would only work for the simplest of
problems and systems, like the one presented in fig. 1A: two sensors and two actuators linked
by a grand total of two connections are sufficient to implement a simple attraction or repulsion
behaviour. However, more complex algorithms require more components, and before long the
mapping between inputs and outputs is no longer apparent in the blueprint of the system.
Consider the system illustrated in fig. 1B: unless you happen to recognise the action of a piano key,
chances are you cannot predict that depressing the bottom right lever will result in the damper
lifting, the hammer hitting the string and springing back followed by the damper resuming
contact with the string, thus effectively stopping the sound. Even a trained engineer happening
upon an electrical wiring diagram may not be able to tell right away whether the resulting
system is a clock radio, a bomb timer, a kitchen scale, or whether it will do anything at all. In
the case of the cortex with its billions of neurons and thousands of billions of connections, the
task seems hopeless. Even worse, at this point the system is too high dimensional for our man-
made computing systems to handle, by many orders of magnitude. However, complex systems
are hierarchical in nature: their complexity emerges from the interaction of several levels of
nested subsystems, the operation of one level consisting of many more elemental operations.
Thankfully, understanding the integration that occurs between one particular level and the next

is a much more tractable problem than looking at the whole system in all its excruciating detail.

1
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FIGURE 1: Complexity in a system’s behaviour. (A) A simple mechanical im-
plementation of an attraction/repulsion to light: the back wheels (in blue) are driven
by the intensity of light that hits the detectors (in red). Depending on how the wheels
and detectors are wired, it is easy to see that the system on the left, with connections
(green) crossing over to the opposite side, will steer towards the light source. Without
this decussation (right) a light source on the left side will steer the system to the right
by increasing the speed of the left wheel. Figure adapted from (Edelman, 2008). (B)
A more complex system: the key action of an upright piano. Several interacting com-
ponents are needed for the key to trigger the desired behaviour from the hammer and
damper. Image by William Braid White [Public domain], via Wikimedia Commons.

The brain may be “the most complex toy you’ll ever come near, let alone get to play with”
(Edelman, 2008), yet it is no exception to this rule, as evidenced by the great achievements
obtained in such a recent research domain as cognitive neuroscience. In the present thesis, we
have focused on the level of cortical areas (a concept first defined by Brodmann 1909) and how

their interactions underlie sensory, motor and cognitive functions.

In the piano action example of fig. 1B, even if you know what the mechanism is designed to do, it
is still hard to grasp how this output is produced by the interaction of the different components
without watching the mechanism in action. The analogy is simple but illustrates how crucial
structure-function relations are at every level of abstraction in a complex computational system
like the cortex. On the one hand, the architecture of the cortex (what are the components and
how they can interact) constrains the type of computation that can be performed. In turn,
the functional correlates of cortical computation have to be entirely explained in terms of the
interacting components: there is no software running on neuronal hardware — the algorithm is
the design itself. In the present thesis we have therefore combined anatomical and functional

approaches, and have tested their possible interactions through modelling.

Interestingly, cortical computation is itself hierarchical: different processing stages deal with
increasingly less detailed but more abstract representations (Marr & Poggio, 1977). The pio-
neering work of Hubel and Wiesel in the 60’s showed that in the visual system this hierarchy
is implemented as a succession of specialised visual areas feeding into each other whose neurons
have gradually larger receptive fields and more complex tuning, culminating with neurons in
inferotemporal cortex tuned to specific objects and individual faces (fig. 2). The functional role
of projections routing raw visual information through this series of processing stages is quite

straightforward, but there are many more connections linking cortical areas, including pairs of
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reciprocally connected areas. (Rockland & Pandya, 1979) were the first to describe a different
laminar distribution of cell bodies (in the source area) and axon terminals (in the target arca)
between connections transporting raw visual information up the hierarchy (from V1 to higher
level areas) and connections linking areas in the other direction (fig. 3). Since the latter fed
processed information back to areas previously activated by the visual stimulus they were called
feedback projections, and by analogy the former were dubbed feedforward. The link between
this anatomical dichotomy and Hubel and Wiesel’s processing stages was later systematised by
Felleman and Van Essen. In their seminal paper (Felleman & Van Essen, 1991) they used the
same anatomical definitions and showed that it was possible to order all the areas involved in vi-
sual processing (from V1 to the prefrontal cortex and hippocampus) in 10 levels such that nearly
all known feedforward connections were ascending hierarchical levels and feedback connections
were descending (fig. 4). This property is far from trivial: the two types of projections did not
have to be segregated between the bottom-up and the top-down directions. Furthermore, the
fact that anatomical relations between areas are in agreement with the functional processing
stages of Hubel and Wiesel suggests that the bidirectional flow of information propagation (Ull-
man, 1995) is an important principle of cortical function. A similar structural and functional
hierarchy was also found in the somatosensory and motor systems and ever since, the concept
of two opposite directions of information propagation up and down a hierarchy has been central
in our understanding of cortical architecture. However, how feedforward and feedback input
from other hierarchical levels interact with intrinsic connectivity to give rise to more and more

abstract representations remains an open question.

Classical RF Tuning
y 4
w % QO
e "Up" direction e P ’/ (_
s "Down" direction [
Interactions within an AL f ’f /

area

FIGURE 2: Visual processing in the cortex is hierarchical. A gradient in size
of the neuron receptive fields and tuning complexity is evident in the series of ventral
visual areas feeding into each other. Hubel and Wiesel have found that each area
corresponds to a different processing stage of visual information, allowing for more
and more abstract representations along this gradient. Interareal projections therefore
transmit processed information up or down the hierarchy, and interact with the intrinsic
connectivity of an area (yellow). Note that areas are also physically aligned with the
gradient in the caudorostral direction. Adapted from Roelfsema (2006).

To study the architecture of the interareal network the Kennedy lab in Lyon has developed a
systematic method of tract tracing to uncover the connectivity of cortical areas, detailed in chap-
ter 2. The technique uses two highly sensitive retrograde tracers and a coherent parcellation of
the cortex; it has single-neuron resolution and produces direction, strength, and laminar infor-

mation. We show in chapter 2 that this method uncovers with a single injection the connectivity
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FIGURE 3: Anatomical distinctions between interareal projections. The two
kinds of laminar profiles described by Rockland & Pandya (1979) differ in their cortical
layers of origin and termination. They showed that in the early visual areas (V1, V2,
V4 and IT) this anatomical dichotomy corresponds to the two directions of information
propagation up and down the gradient of representational complexity. Adapted from
Felleman and Van Essen (1991).

profile of the injected area and that, contrary to previous estimations, this areal profile is stable

across individuals.

This rich, exhaustive dataset about the connectivity of 29 areas from all regions of the cortex
requires an appropriate theoretical framework. Graph theory has been the language of network
analysis ever since Euler addressed the famous problem of Koénigsberg’s bridges in 1736 (and
published the proof in Euler 1741), but the description of a network as a set of vertices (objects)
and a set of edges connecting them didn’t emerge until the late 19th century. Felleman and Van
Essen used it in their 1991 paper to express the then-known connectivity of visual areas in matrix
form (Felleman & Van Essen, 1991). We used an extended graph theoretical approach in chapter 3
to show that axonal wiring in the cortex occurs predominantly over short distances (indicating
a preponderance of local processing), forming a backbone of strong interareal projections in a
sea of weaker ones, with the full scale of strengths covering 5 orders of magnitudes. This result
helped us uncover a general principle of interareal brain connectivity (that also holds at the
level of single neurons), which is the exponential decay of the probability of an axonal projection
between two points of the cortical surface with the distance that this axon would have to cover
through the white matter to connect them. The fact that the strength of a connection depends
on the geometry of cortical sulci and gyri illustrates the important idea that cortical areas are
not connected in a vacuum: the network is embedded in the folded surface of the cortex and
there are physical constraints to wire them. Contrary to other concepts that have been claimed
to apply to the cortical network such as the Small World property, the exponential distance rule

(EDR) is also constrained by cortical geometry, and it can predict connectivity from a set of
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FIGURE 4: The landmark visual hierarchy of Felleman and Van Essen. The
building rule for this ordering is simple: feedforward projections must be ascending and
feedback projections must be descending. Based on the then known connectivity, there
are very few violations to this rule in the resulting model that counts 10 levels and 32
visual areas from the occipital to the prefrontal lobes. Importantly, this hierarchy is
not based on the properties of each area (like the size of its neurons’ receptive field) but
on the type of connections between areas, i.e. their relations. Figure from Felleman &
Van Essen (1991).

distance between nodes. In the case of actual cortical distances between a subset of cortical
areas, the connectivity predicted by the EDR captures many properties of the real-life macaque

network. Therefore, the EDR is not a feature of the cortical network but its very architecture.

We also investigated the feedforward/feedback dichotomy from a functional point of view using
electrophysiology. In particular, the question of why the brain needs feedback connections at all
in sensory processing is listed as one of 23 unresolved problems in systems neuroscience (Bullier,
2006). Many aspects of cognitive processing cannot be accounted for by purely feedforward
models (Moran & Desimone, 1985; Posner et al., 1980), but there is no unified theory of the
interaction of feedforward and feedback input with intrinsic connectivity or how it gives rise to

more and more abstract representations along the hierarchy.
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One of the proposed roles of feedback processing is that it gates access of sensory information
to consciousness (Dehaene & Changeux, 2011; Lamme & Roelfsema, 2000; Moran & Desimone,
1985; Super et al., 2001). In chapter 4 we have tested this hypothesis in the case of visual
awareness in behaving macaque monkeys. Primates rely heavily on vision to interact with the
world and the visual system has been studied in more detail than any other brain function,
becoming a model system of cortical information processing. Previous transcranial magnetic
stimulation studies suggested that feedback from higher to lower areas of the visual cortex
allows the access of visual information to awareness (Pascual-Leone & Walsh, 2001; Silvanto
et al., 2005). In the present study, we used electrical microstimulation in primary visual cortex
(V1) and area V4, but contrary to our expectations, stimulating the higher area feeding back
to V1 did not lower the threshold for reporting a microstimulation induced phosphene in V1,
nor did it influence the monkey’s ability to detect a change in one of three potential stimuli
(distributed attention).

Since microstimulation of a group of V4 neurons failed to modulate the monkeys’ perception of
a stimulus in their receptive field, we next sought to characterise more precisely the effects of
feedback and feedback inputs to an area. In chapter 5 we again used the causal technique of
clectrical microstimulation in macaque monkeys engaged in a visual task. We wanted to compare
the effect of microstimulating the feedforward V1 to V4 pathway onto the activity of area V4 with
that of microstimulating the feedback connection from V4 to V1 onto the activity of V1, as well
as their interaction with the presence of a visual stimulus. We chose a figure-ground segregation
task because it involves feedback influence (Poort et al., 2012) whose effect is measurable in V1
neurons after the initial response: their sustained activity is modulated depending on whether
the contents of their receptive fields, although identical across trials, is part of an object or falls on
the background. The choice of area V4 in particular was based on lesion studies showing that V4
damage led to impairment in complex shape recognition despite no loss in visual acuity (Merigan,
1996), so the recurrent connectivity from V4 seemed necessary to integrate local activity within
V1 in order to achieve object integration. Stimulating neurons in area V1 resulted in a fast
and strong activation of cells in arca V4 followed by a long lasting suppression. In contrast,
stimulating V4 neurons resulted only in a long lasting suppression of activity in area V1, but only
during the sustained response period. Moreover, this suppression interacted with the presence
of a figure in a way that suggests the presence of feedback contribution all across the visual field,

even in the absence of a figure stimulus.

Another important challenge to further our understanding of cortical processing is to relate
the properties of the EDR-governed weighted network to the concept of hierarchy based on
feedforward and feedback connections. To address this issue we used the laminar information
contained in the Kennedy dataset because it provides a measure of hierarchical distance: instead
of the traditional FF/FB dichotomy, there is a gradient from strongly feedforward projections
(crossing many hierarchical levels) to weakly feedforward, more lateral projections linking areas in
nearby levels, to strongly feedback projections descending many levels (Barone et al., 2000; Vezoli
et al., 2004). We combined these hierarchical distance with the data on strength of projections
into a 2D circular model where the distance from the centre reflects the hierarchical position
of an area, and the angular displacement is a measure of the bandwidth existing between two
arcas. This "update" of the Felleman and van Essen hierarchy, based on exhaustive data between

29 areas from all over the cortex, captures the functional clustering and highly local processing
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of the cortical network: the visual and somatosensory systems are clustered in different regions
of the disc, with sensory and motor arcas at the periphery converging to a group of high-level
association areas near the centre, in line with theoretical models of cognition (Dehaene et al.,
1998).

We used this 2D embedding of the cortical network to relate cortical architecture and func-
tion by simulating the dynamics of the cortical network with a large-scale dynamical model
presented in chapter 6. The aim was to probe the interplay of local microcircuitry and inter-
areal connectivity that underlies global cortical dynamics, but contrary to previous dynamical
models we did not treat areas as identical nodes. Instead, we used the findings of Elston and
colleagues about the increase of the number of spines per pyramidal neurons across the areas of
the cortical hierarchy in the macaque, culminating in the extreme anatomical specialisation of
the prefrontal cortices (Elston et al., 2011). In response to a deterministic or noisy input, the
model system displays a hierarchy of timescales (or “temporal receptive windows"), with rapid,
transient responses in early sensory areas and persistent activation in association areas integrat-
ing information across long periods of time. Importantly, by using different sensory inputs we
demonstrate the existence of multiple dynamical hierarchies subserved by the same anatomical
structure. Moreover, we dissect the contributions to the generation of this hierarchy by local
and long-range anatomical properties, including the role of weak feedback projections. We then
show that network heterogeneity has important consequences for global dynamics measured by
functional connectivity, a finding that has broad implications for interpretation of brain imaging
data.

To conclude the present thesis, we compare the multiple notions of hierarchy uncovered by
our results, and discuss how the different tools developed to study feedforward and feedback

connectivity can inform future models of cortical processing.






Chapter 2

A tract tracing method for the
quantitative analysis of interareal

connectivity

Travailler sans souct de gloire ou de fortune

A tel voyage, auquel on pense, dans la lune !

Edmond Rostand, Cyrano de Bergerac



10 Chapter 2. Tract Tracing Method

Introduction

Complete deciphering of cortical circuitry, in enough detail to shed light on cortical organisation,
has been made possible by selecting the right anatomical tracers, applying systematic methods
and testing the results across animals so as to yield significant results. In this chapter we will
show how one injection per area is enough to reliably establish the complete connectivity profile
of that area, down to the lightest projections. The fact that cortical areas exhibit a stable
connectivity profile across injections and animals is an important result in itself, made possible
by the statistical modelling of the variability of the distribution of labelled neurons following
repeated injections. Our method not only reveals the presence or absence of a projection between
areas, and the strength of existing pathways, it also provides information as to the nature of
these projections in terms of the bottom-up or top-down flow of information during cortical
processing. Such a rich data set obtained with a validated and exhaustive method, will be the
basis of a unified attempt to understand the organisational principles of brain anatomy and the

functions it subserves.

1 Tract tracing method and calculation of FLN and SLN

1.1 Principle

To reveal axonal pathways between cortical areas, injections of the retrograde tracers diamidino
yellow (DY) and Fast Blue (FsB) were made in the cerebral cortex of macaque monkeys. These
fluorescent dyes are picked up by axon terminals at the injection site and retrogradely transported
back to the cell body (fig. 1A; Kuypers et al., 1980).

After appropriate survival time the brain is removed, cut on a microtome, and sections are
examined for labelled neurons throughout the injected hemisphere. All labelled neurons, which
have axons terminating in the dye uptake zone, are localised and counted both within the borders
of the area where the injection has been made (intrinsic parent neurons) and outside this area
(extrinsic neurons). The injected area is referred to as the target area and the area containing
labelled neurons as the source area. The restricted region of the source area containing the
labelled cells is the projection zone. Each charted neuron is then assigned to a cortical area
or subcortical structure according to an atlas dividing the cortex into 91 areas (Markov et al.,
2014a). In the neocortex, each labelled neuron is also assigned to either the supragranular
compartment (layers 2 and 3, above the granular layer 4) or the infragranular compartment
(layers 5 and 6, below layer 4) (fig. 1B). The granular layer is clearly visible on the sections, but
contains no labelled neurons (layer 4 is an input layer in the cortex; its neurons project only to

other layers in the same column, that are in turn the output layers projecting laterally).

Two quantitative measures are derived from the localised parent neurons. The first is the frac-
tion of labelled neurons (FLN) attributed to a given source area, relative to the total number
of labelled neurons in the hemisphere following the injection (fig. 1C). Total FLN (FLNt) is
computed with all labelled neurons (both inside and outside the injected area), while extrinsic

FLN (FLNe) uses only labelled neurons outside the target area to look at interareal pathways.
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FIGURE 1: Principle of quantitative tract tracing. (A) Schematic view of the
depth of the cortical sheet in the target area where the injection takes place, and a
source area (with labelled cell bodies). (B) Mock example of the distribution of labelled
neurons in the source areas following injection in target area D. (C) Mock neuron
numbers from (B) are used to calculate the FLNt values for the pathways terminating
into the target area D. The FLN percentage of pathway (A — B) is defined as the
number of labelled neurons found in source area A over the total number of labelled
neurons in the brain after an injection in target area B. If the labelled neurons within
the injected area are excluded from the total FLN is called extrinsic (FLNe); otherwise
it’s the total FLN or FLNt. (D) Mock neuron numbers from (B) are used to calculate
the corresponding SLN values for the existing pathways terminating in area D. The
SLN percentage of pathway (A — B) is defined as the ratio of the number of labelled
neurons above layer 4 in source area A over the total number of labelled neurons in
area A (supragranular + infragranular), following an injection in target area B.

In the present thesis, unless indicated otherwise, FLN indicates this extrinsic measure. FLNe is
not defined for the injected area even though there are numerous labelled neurons around the
injection zone; it is equal to zero for absent pathways (arcas without labelled neurons). Since
FLN is the proportion of parent neurons present in each source area, it is also a measure of the
strength of the pathways in number of fibres. It shows the input bandwidth to each injected area
and allows us to build the weighted network of interconnected cortical areas. Figure 1B and C

shows a mock example of FLNt calculation.

The second measure is called SLN for “fraction of supragranular labelled neurons”. For each
pathway, it is the ratio of labelled neurons in the supragranular compartment of the source area,
relative to the total number of labelled neurons in the source area. Since Rockland & Pandya

(1979) this laminar distribution of parent neurons has been linked to the nature of the projection,
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with feedforward projections emanating predominantly from supragranular layers and feedback
projections predominantly from infragranular layers (see also Barone et al., 2000; Felleman &
Van Essen, 1991 and chapter 1 of this thesis). With SLN we have a graded measure of the type
of projection, going from purely feedforward pathways where all parent neurons are in layers 2/3
(SLN = 100% = 1) to more lateral projections (SLN around 0.5) to purely feedback ones (SLN

= 0). Figure 1B and D shows a mock example of SLN calculation .

1.2 Materials and methods

(a) Surgical procedures

A total of 39 injections of fluorescent retrograde tracers, Fast Blue (FsB) and diamidino yel-
low (DY), were administered to 28 macaque monkeys (27 Macaca fascicularis and 1 Macaca
mulatta). The cases are listed in table 2.1 (page 40). All procedures were in accordance with
national regulations concerning animal experiments, European requirements 86/609/EEC, and

were approved by the competent veterinary and ethical services.

After premedication with atropine (1.25 mg, intramuscular (i.m.)) and dexamethasone (4 mg,
i.m.), the monkeys were prepared for surgery under ketamine hydrochloride (20 mg/kg, i.m.) and
chlorpromazine (2 mg/kg, i.m.). After intubation, anaesthesia was continued with halothane or
isofluorane in a N,O/O, (70:30) mixture. Heart rate was monitored, and artificial respiration
was adjusted to maintain the end-tidal CO, at 4.5—6 %. The rectal temperature was maintained
at 37 °C. Single injections of DY and FsB (0.1-60 pL) were administered with Hamilton syringes
that in 4 of the 5 area V1 injections were equipped with glass pipettes (40—80 pm diameter).
Injections were made at a shallow angle to the cortical surface to form longitudinal injection
sites in the cortical grey matter. The cortex was penetrated to 2—4 mm and 0.1 pL of tracer

injected at regular intervals as the needle was retracted, leaving a bolus of dye in the cortex.

Injection of areas in non-exposed cortical regions was aided by an image-guided stereotaxic sys-
tem (Brainsight@® Frameless, Rogue Research Inc.) (Frey et al., 2004). Monkeys were equipped
with a bone-implanted fiducial marker screwed to the skull under anaesthesia. After recovery a
1.5 Tesla MRI scan was performed with 3 to 5 radio opaque arms fitted to the fiducial peg (IZI
Medical Products, Baltimore, USA) and a 3D reconstruction of the monkey brain was obtained.
During the tracer injection procedure, the Brainsight® system controlled and optimised the
trajectory of the injection needle with respect to a designated target site by matching on line

the position of the fiducial markers to the 3D MRI reconstruction.

In all cases, the uptake zone of the dye was characterised with respect to the retinotopic rep-
resentation of the area injected, sampling of cortical layers, and possible involvement of white
matter. The injections in the present study were restricted to the cortical gray matter except for
case 101LH: in this V2 injection, the injection site encroached on the underlying white matter.
This did not appear to influence either the FLN distribution in the cortex or the thalamus (the
profile was similar to other V2 injections, and very distinct from V1 profiles), so this injection

has been maintained in the study.
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Following 11 to 13 days of survival, animals were deeply anaesthetised before being perfused
transcardially with 4 8% paraformaldehyde/0.05% glutaraldehyde in phosphate buffer (0.1 M,
pH 7.4). Cryoprotection was ensured by sucrose (Kennedy & Bullier, 1985) or glycerol perfusion
gradients (Rosene et al., 1986). Brains were removed and kept in the cryoprotecting liquid
overnight or until sinking. Horizontal or coronal 40 pm thick sections were cut on a freezing
microtome and every third section was mounted on gelatinised glass slides and used to explore

projection pathways.

(b) Charting of neurons

We refer to the injected area as the target area and the areas containing labelled neurons as
the source areas. The restricted region of the source area containing the labelled cells is the
projection zone (Barone et al., 2000). The extent of the uptake zone (where the dye is picked

up) has been characterised (see section 2.1(b)) and is confined to the target area.

Sections were analysed without cover slips using an oil-immersion objective at a magnification
of 200 - 250 under ultraviolet light with a Leitz or Leica fluorescent microscope equipped with a
D-filter set (355—425 nm). Retrogradely labelled neurons were identified using standard criteria
(Keizer et al., 1983) to distinguish FsB (cytoplasm dyed blue) and DY (yellow label mainly in

nucleus) under these observation conditions.

Precise charts of labelled neuron location were acquired. For 4 injections, charts were made on
an X-Y plotting table electronically coupled to the microscope stage (see column "Charts" in
table 2.1, page 40). The large sheets of paper obtained with this setup were later matched to
projections of the subsequently stained sections so as to locate cortical layers and landmarks.
These 4 brains and all the remaining brains were subsequently investigated using the superior
Mercator®) software package running on ExploraNova®) technology. This much-improved sys-
tem digitally records and stores charts of whole-brain sections with the accurate counts and
coordinates of labelled neurons, making it possible to view the charted sections at different

magnifications.

After plotting, labelled neurons were assigned to a particular area and a cortical compartment
(supra- or infra-granular). To do so, sections used for charting neurons were counterstained
for Nissl substance and back-projected onto the charts of labelled neurons to delineate layer 4
(Batardiere et al., 1998). Areal boundaries in individual hemispheres were assigned, primarily
using gyral and sulcal landmarks relative to the M132 atlas (detailed in next section), with
recourse to cytoarchitectonic criteria when required. In some V1, V2 and V4 injections, the areal
limits of specific areas were determined by assessment of SMI-32 immunoreactivity (Sternberger
Monoclonals Incorporated, Hof et al., 1995). The limits determined by this method were the
borders between areas IPa and PGa, IPa and TE, PGa and STP, LIP and V3 and DP, and their
projections to V1; the border of the parahippocampal complex with TE and its projection to
V2; and the borders of the perirhinal complex with the entorhinal cortex and area TE (in a V4

injection).
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1.3 Cortical parcellation

The same parcellation of the cortex into areas was used throughout the study, and the cortical
surface was reconstructed in 3D to allow visualisation and comparison to existing datasets and

other cortical atlases.

(a) Cortical segmentation

Localisation of injection sites and labelled neurons was based on a new reference atlas of areal
limits that includes 91 cortical areas mapped to the left hemisphere of case M132. The cortical
parcellation was based on a combination of atlas-based landmarks (Paxinos et al., 2000; Saleem

& Logothetis, 2007) and histological criteria.

For visual areas we used our previously published segmentation criteria (Barone et al., 2000;
Falchier et al., 2002) as well as reported chemoarchitectonic and cytoarchitectonic criteria (Brewer
et al., 2002; Gattass et al., 2005; Hof et al., 1995). We used published criteria and landmarks to
delineate the separation between V4 and DP (Stepniewska et al., 2005). Region PO is split into
separate areas V6 and V6A (Colby et al., 1988; Luppino et al., 2005)

We used published criteria for prefrontal areas, and included the transitional areas 9/46d and
9/46v (Barbas & Pandya, 1989; Paxinos et al., 2000; Petrides & Pandya, 1999). In the dorsal
bank of the superior branch of the arcuate sulcus and extending medially, we identified area 8B
(Preuss & Goldman-Rakic, 1991). In ventrolateral prefrontal cortex, area 45A is distinguished
rostral to area 45B and ventral to the principal sulcus (Gerbella et al., 2010). A finer-grained
subdivision of area 8 in the arcuate sulcus enabled demarcation of a small area 45B ventral to
area 8/FEF and a small reported non-saccadic strip lining the caudal tip of the principal sulcus
which we refer to as 8r (Gerbella et al., 2007). Area 8/FEF is subdivided into a medial large
saccade-related area, area 8m, and a lateral small saccade-related area, area 81 (Schall et al.,
1995; Sommer & Wurtz, 2000).

In auditory cortex, we used the nomenclature and subdivisions of the Kaas group (Hackett et al.,
1998; Kaas & Hackett, 1998) and of Van Essen and Anderson for parietal cortex (Andersen et al.,
1990; Lewis & Van Essen, 2000), but arcas PGm and PEcg are combined into area 7m in the
medial parietal cortex (Margulies et al., 2009; Morecraft et al., 2004; Pandya & Seltzer, 1982).
All insular complexes were combined into a single entity we call Insula (Ins) (Jones & Burton,
1976; Mesulam & Mufson, 1982).

We subdivide the frontal cortex in areas F1-F7 (Luppino & Rizzolatti, 2000). Area Top is
located in the upper limb of the lateral sulcus caudal to area SII (Pandya & Seltzer, 1982;
Preuss & Goldman-Rakic, 1991). In the superior bank of the STS, we defined STP as including
cytoarchitectonic areas TAa and TPO based on published criteria using SMI-32 immunoreactivity
(Padberg et al., 2003). It is further subdivided into STPr (rostral), STPi (intermediate), and
STPc (caudal) (Cusick et al., 1995; Padberg et al., 2003).

In the fundus of STS rostral to FST and MST, we identified areas PGa and IPa (Seltzer and
Pandya 1978). Area TE was subdivided into area TEa/m p, TEa/m a, TEpd, TEpv, TEad
and TEav. The region immediately dorsal to TEO and buried in the ventral bank of STS is
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identified as area TEOm. The entorhinal (ENTORHINAL) cortex is medial to the perirhinal
(Amaral et al., 1987).

(b) Hemisphere reconstruction

A non injected brain (M132) was used in reconstructions for two purposes: a surface reconstruc-
tion of the left hemisphere for the constitution of a reference atlas and 3D visualisation, and an
MRI scan of the right hemisphere to help areal segmentation of brains cut in the horizontal and

parasagittal planes.

The majority of brains were sectioned in the coronal plane. So as to align the plane of section
to that used in our atlas, a 7T MRI scan was made of the cryoprotected right hemisphere
M132 brain. After acquisition of slices in a particular plane, ITK-SNAP software (http://www.
itksnap.org) makes it possible to shade a region of interest in a given plane and view this region
in an alternative plane. This proved to be an extremely powerful tool for identifying areas in
horizontal and parasagittal planes with respect to the M132 atlas as well as for compensating

for small deviations from the optimal coronal plane of section.

The left hemisphere of the M132 brain was cut in the coronal plane and the sections were stained
with neutral red to show the cytoarchitetonic structure. The sections, with indications of areal
boundary, constitute the reference atlas for segmentation of injected brains into the mosaic of

cortical areas.

The folded surface of the M132 cortex was then reconstructed from the contour drawings of
the sections with the Caret software suite developed in the Van Essen lab (Van Essen et al.,
2001a). Caret allows visualisation (including painting arcas onto the surface) and manipulation
of cortical surfaces like flattening and other deformations. The midthickness representation (i.e.
the surface running midway between the pial surface and the grey/white matter interface) was
chosen for reconstruction because despite cortical folding, each unit of surface area is associated

with a similar cortical volume for both gyral and sulcal regions (Van Essen et al., 2001a).

(c) Atlas registration

To allow comparison with other data sets of cortical parcellations, the 3D surface of M132LH
was registered to the rhesus monkey F99 atlas. This atlas was obtained by scanning the brain
of a single individual at high resolution (structural MRI with 0.5 mm? voxels). Probabilistic
locations of the grey-white matter transition and the pial outer boundary (both visible on T1
weighted images) were generated on each MRI slice by the SureFit method in the Caret suite. The
midthickness boundary is set midway between the most likely position of the inner and outer
boundaries, and tessellated across slices to form a geometrically defined surface (Van Essen,
2004a,b; Van Essen et al., 2005).

In order to register it onto the F99 atlas, our M132 cortical surface was inflated in Caret, mapped
to a sphere and deformed to fit the F99 surface using a landmark-constrained, surface-based
method (Van Essen, 2005; Van Essen et al., 2005, 2001b) with a total of 24 landmarks running
along geographically corresponding locations (gyri and sulci) in the M132 and F99 hemispheres.
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FIGURE 2: 3D surface reconstruction of the M132 atlas. (A) Lateral and medial
views of the M132LH midthickness surface reconstructed from section drawings, show-
ing our 91 area parcellation. (B) Parcellation after registration of M132 anatomical
surface onto the F99 right hemisphere reference atlas. (C) The inflated F99 surface
shows areas buried in sulci. (D) Flat map of F99 atlas with our parcellation and areal
identities, generated in Caret (Van Essen et al., 2001a).

The surface-based registration is the preferred method for interspecies comparison (M132 is
from a cynomolgus macaque while F99 is from a rhesus), and allows the study of homologous
structures in primates, both human and non human. Our areal boundaries defined on the M132
atlas were deformed accordingly so that our parcellation was fitted onto the reference F99 brain
and compared to others. Caret can show the areal assignation of any point on the surface in the

different registered parcellations.

Figure 2 shows our parcellation on the reconstructed M132 surface and the F99 surface (fiducial,
inflated and flattened).

Each injection site was localised relative to areal boundaries and anatomical landmarks, both
within the sections containing the needle track and along the axis orthogonal to the cutting plane
(the distance between sections being known). These distances to different landmarks were used
to position the injection sites on the M132 atlas and they were registered onto the F99 atlas

along with the M132 surface. The reported coordinates are likely to be accurate within 5 mm.

Figure 3 shows the location of the 39 injections represented on the F99 atlas surface. This
mapping provides each injection site with a well-defined stereotaxic location that is independent

of the underlying cortical parcellation for the stereotaxic coordinates of the injection sites. This
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FIGURE 3: Localisation of injection sites on the F99 atlas surface. Each injec-
tion site centre was identified on histological section contours, and its location relative
to areal boundaries used to estimate its atlas location. Colour key as in fig. 2. Left:
The 39 injection sites are shown on the F99 reference brain on lateral (upper) and
medial (lower) views. Right: Injections sites shown on inflated F99 surface.

way, while the focus of our analysis is on the pattern of area-to-area connectivity, these data can
also be evaluated in terms of the areal inputs to a set of atlas coordinates that have well-defined
locations relative to alternative parcellation schemes that have been mapped to the F99 atlas
(Van Essen et al., 2012a).

The entire dataset is available in the online supplementary materials of Markov et al. (2014a),

and at http://www.core-nets.org, including:

e all the section drawings of the M132 atlas with areal boundaries (figure S7),
e the sections containing the needle track of injections (figure S6),
e all the charts of labelled neurons with areal identities (figure S2),

e the table of number of neurons and FLN values with bibliographic references for known

projections (table S6).

In these SOM the charts of labelled neurons (figure S2) show selected section contours with the
injection site in solid red, the injected area in gray, and retrogradely labelled neurons as red dots;
labelled neurons intrinsic to the area are not shown. Areal boundaries are indicated by black
lines. Source areas representing newfound projections (NFP) are labelled in bold blue and marked
by an asterisk; the sections were selected to illustrate all the NFP. In a few places, the label in a
restricted region (identified by a black rectangle) comes from an adjacent section projected onto
the section shown. Red lettering indicates inferred known projections, which although illustrated
in previous studies listed in supplementary table 6 were not explicitly reported largely due to

differences in the parcellation scheme used.
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Surface-based atlas datasets are accessible on the website of the Van Essen lab at http://

sumsdb.wustl.edu/sums/directory.do?id=8287442&dir_name=MARKOV_CC12.

2 Validity of the labelling method

Scannell et al. (2000) emphasised the importance of sampling and statistical methodologies in
efforts to quantify cortical connectivity. Conventional approaches typically involve repeated
injections into each cortical area and examination of connectivity using only a small fraction of
the available histological sections, and averaging of connectivity data across multiple cases. We
chose an alternative strategy that includes sampling histological sections at high density and
across the entire hemisphere, thereby capturing as much data as is feasible. Furthermore, before
basing a large scale quantitative study on retrograde labelling, the tracers had to be thoroughly
characterised. In particular, it is crucial to know the spatial extent of the zone where they are
picked up after injection, and precisely how they are transported in the brain, in order to unveil
direct pathways to a particular target area. In this section we present evidence i) that the zone
of dye uptake is very small and can be confined within an area, ii) that after transport the
dyes are confined in the cell body without transynaptic labelling, iii) that it is possible to know
the total number of fluorescent neurons in labelled regions through adequate sampling, and iv)
that systematic parcellation and whole hemisphere charting uncover many previously unknown
projections, thereby giving a much more complete picture of the cortical wiring diagram than

was previously possible.

Together these results show that when injections are large, made in a stereotypical fashion
and restricted to the cortical grey matter, it is possible to use DY and FsB to quantitatively

characterise the population of cortical neurons sending afferents to the injected volume of cortex.

2.1 Characterisation of the tracing method

There is a large spectrum of available retrograde tracers that differ in several aspects: uptake
mechanism, interactions with other tracers, method of visualisation, cell toxicity, and fading.
For our present purpose we needed tracers that have a high sensitivity, are distinguishable in
the same observation conditions, can co-label cells without interactions and are not toxic for the
labelled cells.

(a) Choice of the dyes

The retrograde tracers Fast Blue and Diaminido Yellow have been available since the 80’s (Ben-

tivoglio et al., 1980; Kuypers et al., 1980). There are many advantages to combining them:

e DY and FsB have a high sensitivity compared to other retrograde tracers such as horseradish
peroxidase, marking an estimate of 70 to 80% of parent neurons (Bentivoglio et al., 1980).
Since FLN is a proportion, i.e. a relative measure of the strength of input, and because
both tracers label a similar percentage of parent neurons, we can use them for a quanti-

tative analysis of projection weights.



2. Validity of the labelling method 19

e The survival time necessary for efficient transport over long distances are similar (7 to 12

days).

e They both fluoresce when viewed with a D filter set (band pass 355—425 nm), and the

two tracers accumulate in different cell compartments allowing double labelling studies.

Moreover, retrograde transport of Fsb and DY is an active process carried out by healthy neurons
(FsB and DY are not toxic to the cells) during the survival time of 7 to 12 days (Bentivoglio
et al., 1980). This allows an even labelling of parent neurons, whose intensity essentially does
not decrease with axonal distance. Indeed we routinely observe bright labelling in parent cells
even for the longest known white matter distances, and when the source and target areas are
on opposite ends of the brain. Additionally, if the survival time exceeds 15 days, the quantity
of labelled neurons is not markedly different, but the dye starts to leak out of the cell bodies,
indicating that after normal survival time the tracer has already accumulated in the cell and

more transport does not result in better labelling.

(b) Identification of the uptake zone

At the injection site, the processed brains present a crystallised deposit of dye, visible in the
histological sections as a zone of dense extracellular fluorescence that extends 0.5 to 1 mm from
the needle track. Examples are shown in fig. 4, and the extent of the uptake zone is characterised

with respect to this dense colouring region.

A first line of evidence is to be found in the characteristic pattern of labelled cells near the
injection site in the cortex. In sections perpendicular to the needle track, locally labelled neurons
are found up to 3 mm away from the needle track in supra- and infra-laminar compartments,
but in layer 4 they are practically confined to the region of dense colouring as seen in fig. 5.
Layer 4 neurons only project very locally, while neurons in layers 2, 3, 5 and 6 send collaterals
several millimetres from the cell body (Lund et al., 1981), so layer 4 labelled neurons have to be
in or very near the uptake zone, while upper and lower neurons can pick up the dye from farther
away. This explains the two long stripes of fluorescent cell bodies in those compartments and
the absence of spread of labelled layer 4 neurons, and suggests that the uptake zone is almost

reduced to the region of dense colouring in all cortical layers.

Further characterisation of the uptake zone was done by Bullier et al. (1984), who made adjacent
injections (one of FsB and one of DY) at varying distances in area 17 of the cat cortex, and
looked at the topography of the projection of the lateral geniculate nucleus (LGN) on to area
17. This pathway being highly point to point, injections lead to a narrow column of labeled cells
spanning the layers of the LGN. When the injections were close enough for their zones of intense
colouring to mix, the two columns of labelled cells in the LGN were overlapping, with intense
double labelling (around 80%) in the overlap region. With gradually more distant injections,
columns of parent cells showed less and less overlap and double labelling, until for injections
about 2 mm apart the two columns in the LGN were separate (fig. 6). The terminal arborisation
of geniculocortical neurons does spread several hundred micrometres (Bullier & Henry, 1979;
Ferster & Le Vey, 1978), and yet none of these neurons could pick up both dyes when the

distance between the borders of the dense colouring regions of each dye was greater than this
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FIGURE 4: Zone of intense colouring at the injection site. Coronal plot charts
overlaid on coronal photomontages of Nissl stain (objective 310) for exemplar injection
sites. Uptake zones are indicated by arrows.

span. This indicates that the uptake zone essentially corresponds to the brightly fluorescent
crystallised dye around the needle track. An independent study by Condé (1987) posits an even

smaller uptake zone.

The small extent of the uptake zone even turned out to be a problem when making small, punctal
injections in retinotopically equivalent regions in areas 17 and 18: despite extensive mapping,
the two populations of labelled cells did not overlap in the LGN. The injection site had to span
several receptive fields along a path in the visual field, with the path for the injection in area 17
crossing the one for the injection in area 18 and thus having some RFs in common, for overlap

to be observed.

The experiment was repeated in the macaque in Kennedy & Bullier (1985) and again in Perkel
et al. (1986). Again, the populations of parent cells were two non overlapping columns spanning
all layers of LGN when the injections were 2 mm apart and the intensely fluorescent regions were
separate (fig. 7). Even with two injections 1.4 mm apart and the two colouring regions lying
within 0.5 mm of each other, the labelled regions in LGN are separate with some double-labelled
neurons at the interface (fig. 8). The scarcity or absence of double labelling found in this study
after injections in different areas is also proof that tracers do not show subpial spread, vascular

uptake or spread in the cerebrospinal fluid.

It is important to note that since the uptake zone is essentially restricted to the densely coloured

region, we can be sure that no uptake occurs in passing axons in the white matter as long as



2. Validity of the labelling method 21

FIGURE 5: Pattern of intrinsic labelling: charting of neurons following a DY
injection in V2 (horizontal sections). The black area represents the needle track; the
region enclosed in the line around the track corresponds to the region of dense yellow
colouring; the small dots are labelled neurons. Cortical layers and the V1/V2 limit are
identified. WM: white matter. Case BK5 from Bullier & Kennedy (1983), reproduced
with permission.

the extracellular fluorescence around the needle track does not reach the white matter and stays
confined to the cortex. This can be achieved by inserting the needle parallel to the surface in a
site spanning several millimetres, and slowly injecting the tracer while withdrawing the needle;
therefore we used this method in all injections. This leads to relatively large injection sites, which
though increasing the workload (more labelled neurons requires more person-months in charting
their location) are necessary for the uptake zone to span the six layers of the cortex (all of which
receive cortical afferents). Relatively large injection sites are also necessary to ensure that they
are sufficiently large to overcome possible heterogeneity in the injected area, as speculated by
Scannell, and because small injections could lead to between-injection variability (MacNeil et al.,
1997; Scannell et al., 2000).

Finally, these results show that FsB and DY allow the characterisation of afferent connectivity
of areas, even small ones, without contaminating the population of parent neurons with neurons
projecting to regions around the target area. Since the uptake zone is defined and restricted,
it is also possible to identify labelled neurons within the target area i.e. quantify the intrinsic

connectivity of the volume of cortex where the dye was deposited.

(c) Absence of transynaptic labelling

Another cause for concern is the possibility that after initial retrograde transport to the cell
body, the dye would not stay confined there but would cross the synapse and be transported to

the cell body of a neuron that does not directly project to the injected area.

The possibility of transynaptic transport was controlled in Bullier & Kennedy (1983) by exam-
ining the retinae of an animal after a large injection in area V1. Despite heavy labelling in the
LGN, no labelled neuron was found in the retina. It shows that no LGN neurons (labelled after
direct axonal transport along the LGN to V1 pathway) had transported the dye across a synapse
to the parent neurons of the pathway from the retina to the LGN.
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FiGUurE 6: LGN labelling in the cat following side-by-side injections in area
17. Charted neurons in frontal sections of LGN (section numbers increase from caudal
to rostral). DL: double-labelled neurons, positive for both dyes. Inset: Injection sites
in area 17, with needle track in black and a line enclosing the two zones of intense
colouring. Case BK29 from Bullier et al. (1984), reproduced with permission.

The absence of secondary uptake is further indicated by the pattern of interhemispheric labelling
following injections in areas V1 and V2. It is known that area V2 on the V1/V2 border shows
strong interhemispheric connectivity, while area V1 lacks callosal connections (Dehay et al. (1986,
1988) and the present study where injections in area V1 fail to label any neurons in the con-
tralateral hemisphere). Injections in area V2 fail to label neurons in the contralateral area V1 off
the V1/V2 border, while transynaptic labelling across the projection from V1 to V2 would have
made it possible. The lack of contralateral labelling after V1 injections is very reliable because
the density of the ipsilateral V2 labelling is extremely high (V2 projections to V1 are one of the
highest densities of intra-cortical connections), so that if there was secondary uptake, one would
expect some of the contralateral neurons that target the ipsilateral V2 to be labelled. They are
not. One possible objection to the observation that injection in V1 fails to label contralateral
V2 is that it is a long-distance connection. However, this does not hold against the fact that
paracentral V4 has no input from area V1 but a strong input from area V2. Given the strong
V1 to V2 projection, if transynaptic labelling were to occur, then one would find back-labelled

cells in V1 following large injections of DY and FsB in V4. This is not the case.
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FIGURE 7: LGN labelling after double injection in macaque V1. (A) Position
and extent of the two injections in V1 (horizontal sections, numbers increasing from
dorsal to ventral, 120 um of tissue between two adjacent sections). Solid regions rep-
resent the needle tracks and the surrounding areas filled with dots indicate the region
of dense extracellular labelling. Inset: Lateral view of the brain showing the two in-
jection sites, needle penetration, and location of the sections shown below. LS: lunate
sulcus; I0S: intra occipital sulcus; ST'S: superior temporal sulcus. (B) Charted neurons
in horizontal sections of LGN. Injection A: DY; injection B: FsB. DL: double-labelled
neurons. Case BK15 from Perkel et al. (1986), reproduced with permission.
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Ficure 8: LGN labelling after double injection in macaque V1 separated by
1.4 mm. Same conventions as in fig. 7. (A) Location of both injections on a horizontal
section and extent of the zone of dense extracellular labelling. (B) Charted neurons
in horizontal sections of LGN. Case M23RH from Perkel et al. (1986), reproduced with
Permission.
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Finally, here and elsewhere, we have shown that intrinsic labelling, although very dense, has
a sharp drop off over two or three millimetres. If there were any transynaptic labelling at all,
this could not be the case. These results, and numerous unpublished observations, mean that
following their retrograde transport to the source area, these tracers are not released and picked
up by neurons or by afferents to the source area in quantities sufficient to lead to secondary

labelling.

2.2 Sampling of the projection zone

The extent of the projection zones (the cortical regions containing labelled neurons) is not homo-
geneous but has a complex shape (Barone et al., 2000; Batardiere et al., 1998; Vezoli et al., 2004).
Labelled neurons are unevenly distributed in the projection zone, peaking in a central core region
and gradually decreasing toward its periphery. Furthermore, the gradient is sharper for supra-
granular layer neurons than for infragranular layer neurons, which means the infragranular layer
neurons tend to stretch further (fig. 9). Both FLN and SLN (percentage of supragranular labelled
neurons) values computed within a section can vary widely from the values computed from the
total numbers in the projection zone (examples of the different values of SLN across sections
are given in fig. 9B). Therefore, it is necessary to count neurons at close intervals throughout
the projection zones. Although laborious and time consuming, this is crucial in order to obtain
stable neuron counts that do not vary according to sampling frequency. However, because of the

curvature of the cortex it is complex to determine the appropriate sampling frequency.

To address this issue, Barone et al. (2000) have compared neuron counts obtained when using
every section kept for labelling search (1 in 3 slices from brain cutting) or lower frequencies
(1/2, 1/4 or 1/8 of these sections kept after cutting). They show that for both FLN and
SLN, the minimum sampling frequency is highly dependent on the FLN values: setting the
maximum acceptable error at 10%, a frequency of 1/2 is required to obtain reliable SLN values
for areas with an FLN above 0.36%, and for lower FLN values, it is necessary to sample at
1/1. Importantly, when sufficient numbers of sections have been scanned the contours of the
density profile (histograms of the number of labelled neurons per scanned sections) are smooth
(Batardiere et al., 1998; Vezoli et al., 2004).

In the present study, we estimated the number of neurons present in the 1 in 3 slices kept after
brain cutting and mounted on microscope slides, i.e. we inspected 40 pm of every 120 ym of
tissue. The actual numbers in the hemisphere following the injection are therefore three times
those numbers. Of course, FLN and SLN being relative indices, this does not change their values.
We chose the sampling frequency by inspection of the density profiles and ensuring they were
smooth across the whole projection zone, and linearly interpolated the number of neurons in
the non scanned sections in between. For spare connections, all sections retained for charting
neurons were explored (frequency of 1/1), whereas the sampling frequency was as low as 1/4 for
the strongest projections, and typically 1/2 in the rest of the hemisphere. Outside of projection
zones, a high frequency sampling was also carried out so as to not miss potential weak projections.
Both FLN and SLN were computed for entire areas; the values from individual sections from

fig. 9B only serve to show that the full extent of the projection zone must be sampled at a
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FIGURE 9: Geometry of the projection zone and neuron counts. (A) Schematic
representation of the extent of the projection zone. Top: Example coronal sections from
different parts of the projection zone. Dots represent retrogradely labelled neurons.
Bottom: the density profile represents the number of labelled neurons in each section
for supra- and infragranular compartments. The core of the projection zone is the
region containing labelled neurons in both compartments. (B) Neuron density profiles
(caudal to the left) of the PMLS area projection zone after area 17 injection in two cats,
for infra- (black squares) and supragranular (open circles) layers. Percentages indicate
SLN values for each individual section. Arrowheads indicate 5% of peak values used to
determine the limits of the projection zone. Cases CAT 1 and BK52 from Batardiere
et al. (1998), reproduced with permission.
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high density to correctly estimate the total numbers for the area. The scale bars in the figures

represent distances measured in the processed sections, without correction for tissue shrinkage.

2.3 Exhaustive mapping of projections

Since the seminal analysis of Felleman & Van Essen (1991), there has been a major increase
in the number of areas reported to project to visual areas, and in our database 36% of the
1,615 interareal pathways revealed by retrograde tracers have not previously been reported. To
make sure that all the projections previously unreported were indeed novel, we checked against
the CoCoMac text-based connectivity database for the macaque (Stephan et al. (2001); http:
//cocomac.org/) and performed extensive literature searches (see the online supplementary
material of Markov et al., 2014a). However, this database and other available datasets have
been collated from multiple studies using different methods of tracing and nonmatching areas,
nomenclatures, planes of section, etc., and they contain at best only a qualitative assessment of
connection weights (Felleman & Van Essen, 1991; Kotter, 2004; Stephan et al., 2001).

Importantly, to assess the presence of a projection it is sufficient to find a section with labelling
(as was done in many older studies), but the status of unreported pathways is unclear. As we
saw in the previous section, it is not enough to provide quantitative estimates of the numbers
of neurons involved, nor is it enough to rule out the presence of weak pathways: for this, a
high-resolution scan of the brain is required. Moreover, many studies on which the CoCoMac
database and others are based only scanned parts of the brain for projections. Typically, an
experiment on the connectivity of a visual area would look at other visual areas, including
parietal and some prefrontal regions, but not the rest of the hemisphere. On the contrary, we
performed a complete scanning of the hemisphere to determine the full set of ipsilateral cortical
source areas projecting to each injected area. This explains how “unexpected” projections like
the one of the core auditory region onto the periphery of area V1 (Falchier et al., 2002) could
be overlooked until our systematic method was applied. This also led Felleman & Van Essen
(1991) to estimate the actual network density at around 40% of possible projections. The crucial
distinction between projections checked and found absent, and unchecked pathways has led to
the development of an algorithm to interpolate the unknown components of the network (Jouve
et al., 1998). Such an interpolation is no longer necessary in our dataset since our connectivity
matrix of 29 injected areas and 91 source areas gives complete information about the existence,
strength and laminar profile of all projections to the injected area. The unprecedented scope
and detail of this study, along with the high sensitivity of FsB and DY, explain the high number
of new found projections (NFP) and reveal a density of the graph even higher than previously

estimated, which is a result in itself.

The pattern of source areas for each injection was determined using our own parcellation of the
entire cortical sheet into 91 architectonic areas drawn from published atlases (Paxinos et al.,
2000; Saleem & Logothetis, 2007) and other studies, rather than any of the numerous alternative
macaque cortical parcellations that are in common use (Van Essen et al., 2012b, 2005). Indeed,
in many regions, these other parcellations differ substantially from ours. While this choice of
parcellation obviously impacts our detailed results, use of alternative parcellations would only

modestly impact our main conclusions (see fig. 13 in section section 3.2(b)). More importantly,
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it is the use of the same parcellation across the whole study, rather than the choice of our
particular areal boundaries, that makes the resulting quantitative results reliable. In particular,
the reassessment of some areal limits with histology following some V1, V2 and V4 injections
did not significantly change the areal FLNe values, thereby supporting the use of geographical
delineation of areal limits for determining the FLNe of cortical projections. Since we have
registered our atlas onto the F99 dataset for comparison, it would be of interest to ultimately
determine a quantitative connectivity matrix using one or more alternative parcellations applied
to each of the cortical injection cases. Unfortunately, technical considerations make this an

enormous undertaking that was not feasible for the present study.

3 Using FLN values to study interareal connectivity

The paucity of corticocortical connectivity studies reporting quantitative neuroanatomical data
largely reflects the difficulty in accurately quantifying the weight of connections between cortical
areas. Even the motivation to pursue such analyses has been dampened by evidence that the
connection weight of any given pathway is highly variable or overdispersed with a more than 100-
fold range (MacNeil et al., 1997; Musil & Olson, 1988a,b; Olson & Musil, 1992; Scannell et al.,
2000). One of these studies suggests that it might require the analysis of 10 to 20 injections
to adequately characterise the profile for a given area (Scannell et al., 2000). However, these
reports examining the consistency of connection weights largely relied on data compilations
across laboratories, often from studies using different tracing techniques and definitions of areas;
these factors may have contributed to the observed overdispersion (Scannell et al., 2000). Here,
using multiple injections in the same area and ensuring minimal methodological variability,
we demonstrate that while connectivity strengths do display significant overdispersion, their
variability can be bracketed and their distribution characterised. With this knowledge, we have
explored statistical approaches that permit appropriate treatment of the issue of overdispersion,
and show that there is a specific connectivity profile for each area that can be uncovered by

single injections of FsB or DY.

3.1 Modelling the variability of FLNe values

A group of 11 animals was used for repeat injections to assess variability of FLN across animals.
A total of 13 injections were made in V1 (5 injections in 4 animals), V2 (3 injections and 2
animals), V4 (3 injections and 3 animals) and area 10 (4 injections in 4 animals), a higher
order area with about twice as many inputs as the early visual areas. The cases are detailed
in table 2.1 page 40, cases 1 to 10, 34, and 37 to 39. V1, V2 and V4 are large areas whose
borders and retinotopy are well established, making it possible to make stereotypic injections
of retrograde tracers in the central representation of these areas across animals (Gattass et al.,
2005). Similarly, area 10 was systematically injected at the rostral tip of the brain, and 3D
reconstructions of the 4 injection sites in relation to the pial surface and the grey/white border
were generated from the stack of sections containing the injection site using the Module Map3D
program in ExploraNova® (fig. 10). Inspection of these reconstructions, especially the medial

views (far right column), confirms that the uptake zones were restricted to the frontal pole,
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The dotted line indicates the limits of area 10.

spanning the cortical gray matter but not encroaching on the underlying white matter. The 2
smallest injections (M131 LH and BB341 LH, panels A and D) had almost identical locations
in the rostral pole. The 2 larger injections (panels B and C) also included the anterior pole but

extended further ventrolaterally.

With this dataset, we analyzed the consistency of individual pathways in order to determine
whether a connectivity profile exists. This entailed determining the statistical distribution that
best describes the data, including the average connection strength and its variability. To do so,
we used extrinsic FLN (percentage of labelled cells in each source structure but the total for

the brain does not include the labelled cells inside the injected area, which make up 80% of the
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FIGURE 11: Mean-SD relationship of FLNe values in repeated injections. The
graph shows the observed standard deviation of FLNe as a function of the observed
mean. The curves are the predictions for a Poisson (red), geometric (blue), and the
best-fitting negative binomial distribution (green). The dispersion parameter € of the
negative binomial distribution and its 95% confidence interval are indicated.

total). Interestingly, the full range of FLNe values still spans more than 5 orders of magnitude,
and the primary source of connectivity (areas that share a border with the injected area) still

make up for 80% of the total.

All statistical analyses were performed in the R statistical computing environment (R Develop-
ment Core Team 2010) with additional tools from the MASS and multcomp packages (Hothorn
et al., 2008; Venables & Ripley, 2002).

Count data are intrinsically heteroscedastic, that is, the standard deviation (SD) depends on
the mean p (Hilbe, 2007). In the simplest model of count data, the Poisson distribution, a
single parameter determines the mean and the SD is equal to the square root of the mean:
sd = /j. Proportions, where the count is conditioned on a fixed total sum N, then follow
a binomial law where the standard deviation is sd = /p(1 — p)/N, with p the mean value
of the proportion (in our case the mean FLNe). The geometric distribution is an alternative
model that predicts greater variation than the Poisson distribution. Under this model, the
SD increases as the square root of the mean plus the mean squared: sd = \/m Both
the Poisson and the geometric distributions are extreme examples from the negative binomial
distribution family that has proven valuable in the analysis of over-dispersed count data (Hilbe,
2007; Lindsey, 1999; Venables & Ripley, 2002). The negative binomial can be derived as a
Poisson distribution modified to have a gamma distribution of the mean. A second parameter 6
controls the dispersion of the distribution, with standard deviation sd = \/W Note that
the geometric distribution is simply a negative binomial with the dispersion parameter equal to
1.

The relation between the mean FL.Ne values and their SD is plotted in fig. 11 for all the pathways
to the 4 areas with repeated injections. The observed values were evaluated with respect to
the negative binomial family of models, with the Poisson and geometric distributions as upper
and lower limits. The expected mean-SD relations are plotted for each model (Poisson in red,
geometric in blue and the best-fit negative binomial in green). To derive the fit for the Poisson

distribution, we set N = 6 x 107, the approximate average total number of extrinsic neurons
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FIGURE 12: Mean-SD relationship of FLNe values in each area with repeated
injections. Same conventions as in fig. 11: Poisson model in red, geometric in blue,
best-fitting negative binomial in green with its dispersion parameter # and 95% con-
fidence interval indicated above the curves. (A) Area V1 (B) Areca V2 (C) Area V4
(D) Area 10.

observed across injections. The negative binomial fits were obtained by simulating counts from
a negative binomial distribution for mean values ranging from 2 to 106 and calculating the mean
and SD of the proportions for values of 0 ranging from 1 to 128. Average curves were based on a
spline interpolation of the mean of 20,000 repetitions. From these simulated curves, the values
of 6 and 95% confidence interval were estimated that generated the best fit to the data by a
least squares criterion. In fig. 11 we can see that the standard deviation of the FLNe for any
given pathway is about an order of magnitude or less, but exceeds the prediction for a Poisson-
distributed variable (red curve). Using the Poisson model for statistical tests would therefore
lead to increased Type 1 errors (rejecting the null hypothesis when it is true). Most data points
however fall below the geometric prediction (blue curve), suggesting that the geometric model
predicts too much variability in the data. Using this law would tend to generate Type 2 errors,
failing to reject the null hypothesis when it is false. The green curve in fig. 11 indicates the
prediction of the negative binomial distribution that best fits the data (its dispersion value and
95% confidence interval are indicated in the figure). Note that the confidence interval for 6
excludes 1, which would be the geometric distribution. Similar relations were found when areas

are considered separately (fig. 12).

A negative binomial model can also predict the symmetry of the distribution of the data. The
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95% confidence interval of the average of the median/mean of the FLNe (0.87—0.97) that mea-
sures this symmetry differs from the geometric prediction (In(2) = 0.69) and includes the value
of the negative binomial model with parameters indicated by the SD-mean relation of fig. 11
(0.96).

By extension, we assume that a negative binomial model with similar dispersion should be valid
for injections in other regions. For a negative binomial distribution with a known dispersion,
there is a functional relation between the variance o and the mean p, that is, the variance of the
negative binomial distribution is ¢ = p + p2/6, with  the dispersion. This relation improves
our statistical power and enables us to accurately estimate the random variability of the data
from repeated injections (next section). It also allows us to estimate the reliability of results
obtained from a single injection as well as to model the consistency of the sparse connections
(section 3.3).

3.2 Statistical analysis of connectivity profiles

(a) Existence of a connectivity profile

Overdispersion of the strength of projection from an individual area raises the issue of whether
the observed variability reflects genuine individual differences or is intrinsic to the technical
procedures used. Armed with our description of the distribution of the data, we can now test
the minimum set of factors accounting for the differences in the data from each target area. For
the 3 visual injection sites, models of the number of cells from each source area as a function of
various explanatory variables were fitted with a generalised linear model (McCullagh & Nelder,
1989) with a negative binomial family. The link function was chosen to be logarithmic. The
log of the total number of cells counted from each injection was used as an offset or constant
component added to the model so that in fact the connection density was modelled. Four
explanatory variables were evaluated for systematic effects: AREA (a factor with a level for
each source area), BRAIN (the individual from which the counts were obtained), DYE (a 2-
level factor indicating the tracer used), and HEMISPHERE (the hemisphere of the injection).
For example, if AREA is considered as an explanatory variable, then it is treated as a factor
with as many levels as source areas that contained marked cells from the injections in the target
areas. Fitting to the data a model containing only this factor provides estimates of the average

FLNe, and estimates of the variability associated with each level of the factor.

Including more factors and interactions will always improve the fit to the data, at the expense
of the explanatory power of single, likely explanatory variables. To optimise the likelihood
(quality of fit) while keeping a small number of parameters that best describe the data, we
used the Akaike information criterion or AIC (H., 1993; Venables & Ripley, 2002). The AIC
is equal to —2log(L) + 2P with P the number of parameters used to fit the data and L the
likelihood. It introduces a penalty for additional parameters, so that the model with the lowest
AIC corresponds to one in which likelihood and numbers of parameters are optimised. The best
model, selected in this way, was subsequently verified by evaluating the statistical significance
of adding and/or dropping additional terms. The principal hypothesis tested was whether the

neural counts across areas were independent of factor BRAIN. For the 3 visual areas with
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FIGURE 13: Mean-SD relationship of FLNe values for large cortical regions.
Cortical areas were grouped into 7 possible source regions and cumulative FLNe values
for these potential pathways were evaluated. Conventions as in fig. 11.

repeated injections (V1, V2, and V4), the model with the lowest AIC included no main effect
of factor BRAIN, subsequently confirmed by likelihood ratio tests (V1: Fz 39 = 2.1,p = 0.1;
V2: Fi29 = 0.07,p = 0.78; V4: Fy 30 = 0.91,p = 0.41). Thus, the simpler models without the
BRAIN term were retained. The absence of a main effect of BRAIN implies that quantitative
connectivity profiles do not differ significantly across cases, and therefore a robust signature

(connectivity profile) exists for each area.

(b) Influence of parcellation uncertainties on FLN variability

If our analysis overestimated the overdispersion of the data, our model would be less sensitive and
might lead to an underestimation of the systematic effect of the factor BRAIN. One possible
source of overdispersion could relate to the parcellation of the cortex into individual areas, so we
grouped cortical areas into 7 large regions having less uncertainty in the boundaries. Figure 13
shows that it reduces but does not eliminate overdispersion (a larger # means a smaller disper-
sion). Overdispersion is therefore an intrinsic feature of the cortex and not simply a consequence
of an experimental error in defining the limits of cortical areas. Significantly, even with this
reduction in overdispersion, factor BRAIN did not contribute a significant improvement to the
fit by the source regions themselves (V1: Fy 95 = 0.27,p = 0.89; V2: F5 15 = 1.39.p = 0.29; V4:
Fy14 = 1.12,p = 0.35). We also considered the possibility that the overdispersion was gener-
ated by the weakest projections, which tended to be more variable. However, the results were
unchanged when we repeated the analysis with the data set thresholded to eliminate projections
with FLNe values less than 0.0001, that is, BRAIN did not contribute a significant improvement
to the fit obtained by using ARE A alone (V1: F3g3 = 1.19,p = 0.32; V2: Fy 49 = 0.02,p = 0.88;
V4: Fy 36 = 0.08,p = 0.93). The result holds when adding injections in area 10 (also plotted in
fig. 13).

Note that the overdispersion can in part be attributed to interindividual differences because the
comparison of the standard deviations and means for the two cases of multiple injections within

an animal (fig. 14) indicates a smaller dispersion (larger 6).
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FIGURE 14: Mean-SD relationship of FLNe values from repeated injections
in the same animal. In two animals, several injections were made in the same area
using different hemispheres and/or dyes. Here we pool all the within-animal FLNe
values and plot the mean-SD relationship. Conventions as in fig. 11.

(c) Distinct connectivity profiles

While the three visual areas have a great number of common sources, the orderings are quite
different (fig. 15A; the inputs are sorted in descending order with respect to the V1 connection
weights). There is a broad similarity in the strengths of the projections from specific areas to the
3 targets, but the confidence intervals do not overlap for many pairwise comparisons (e.g., TE
projections to V4 are significantly stronger than to V1 or V2). The only case with no overlap
of all three confidence intervals is area TEO, whose projections are significantly different to V1,
V2, and V4. This, plus the complete absence of projections to some target areas for others,
indicates an overall different signature of input areas and strengths for each target. Figure 15B
shows the profiles of subcortical inputs. These are notable in terms of the small LGN input to

V1 (about 1%) and the large projections from the claustrum to the 3 target areas.
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FIGURE 15: Connectivity profiles of areas V1, V2, and V4. (A) Extrinsic FLNe
values of cortical projections and 95% confidence intervals for V1 (green), V2 (blue),
and V4 (red) as estimated with a negative binomial model. Stars: new previously
undocumented projections. (B) Mean log(FLNe) of subcortical projections with SDs.

The confidence intervals generally are less than an order of magnitude except for the weakest
connections, which tend to be more variable. The observed range of FLNe values for the four
injections in area 10 is less than one order of magnitude, except for the inputs from areas 45A, 31,
7A, and DP where the range exceeds orders of magnitude. Importantly, the confidence intervals
are much smaller than the range of strengths across pathways, thus establishing significant dif-
ferences between the projections onto a given target area, i.e. a distinct signature or connectivity

profile for each area.

3.3 Validity of single injections to estimate FLIN

One important question is how closely the weight of a pathway observed after a single injection

approximates the average connection weight determined from repeat injections.
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(a) Using single-injection FLNe values to predict the mean for multiple

injections

To evaluate how accurately FLNe values from a single injection can predict the mean obtained
from multiple injections, we compared the FLNe values from single injections to the mean FLNe
from all the repeats. Figure 16A shows the ordered FLNe values from a single V1 injection (white
circles), with a 95% confidence interval assuming a negative binomial distribution analysis with
the dispersion observed following the multiple injections. For most pathways, the difference be-
tween the observed single-case value and the mean of 5 injections (blue circles) is quite small,
and lies within the 95% confidence interval predicted by the negative binomial distribution. In
this exemplar injection, the difference is smaller than the error bar for all pathways (the 5 last
areas have no white dot value because the plotted injection had no labelled neurons in these
pathways but some of the other repeats had). The maximum difference is 0.99 log unit, corre-
sponding to a 9.5-fold difference between the single subject and group-average results. Another
example in area 10 (fig. 16B) shows a comparably good fit for most of the data involving strong
and moderate projections. However, for a few projections, the difference between individual and
group average exceeds an order of magnitude. For the full set of 14 repeats involving 544 single
FLNe values, the 95% confidence values included 98.5% of the observed FLNe means determined

from repeated injections.

Altogether, this analysis indicates that FLNe values obtained from single injections are usually
within a factor of 3 and highly likely to be within a factor of 10 of the mean value. However,
exceptions can occur, especially for sparse connections, which brings us to this issue: if a given
interareal pathway is observed after a single injection, what is the likelihood that the same
pathway will be observed after repeat injections, and to what extent does this likelihood depend

on the observed connection weight?

(b) Consistency of sparse connections

To analyze statistical characteristics of inconsistent projections, we computed the probabilities
of observing no neurons under several models. For the simple case of the Poisson distributed

counts, the probability of observing y neurons given the mean number of neurons p is

e Fuy

P(ylp) = "

For y =0,
P(y=0lp)=e* 1)

For the negative binomial distribution, the probability density is:

P(y|p,0) = F(g)(?(ﬁ)l) <0—iu>9 <9i”>y

where T' is the gamma function defined as I'(n) = (n — 1)! and @ the dispersion. Then, the

probability of observing zero neurons is
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Ficure 16: Relationship of means from multiple injections and values from
a single injection. Ordered FLNe values from a single injection (white circles) with
95% confidence intervals expected on the basis of a negative binomial distribution with
the dispersion observed in the multiple injections (error bars). The blue circles are the
geometric means of all the repeats; the small black dots correspond to values obtained
in the other repeats. (A) Injection in V1 (case 2, M85LH). Four other repeats were
made (black dots). For the 5 entries on the far right, there were no labelled neurons
from the plotted V1 injection used for FLNe rank ordering. (B) Injection M131LH in
area 10 (case 34). Three other repeats were made (black dots). The 6 entries on the
far right have no white circles because there were no labelled neurons from the plotted
injection.
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For the special case of the geometric distribution (6 = 1), the probability of a null count becomes:

Ply =0 = 4 3

Let p be the probability of observing zero neurons for a projection in a single injection, as given

by any of equations (1)—(3). The probability of observing one or more neurons in a projection
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(i.e. a non zero count) from a single injection is 1 — p. Since each injection is independent, the
probability that some neurons are observed in each of n injections is (1 —p)™, and the probability
of observing no neurons in at least 1 of n injections is 1 — (1 —p)™. This represents the probability

of observing zero neurons in the n injection experiments performed (one or more).

For the 37 projections to areas 10, V1, V2 or V4 having interpolated mean counts fewer than
10 neurons, 31 were inconsistent, i.e. their present/absent status was not identical across all
repeated injections. They are detailed in table 2.2 (page 41). Here, we want to distinguish
between inconsistency attributable to sampling error (e.g. due to incomplete sampling, given
that not all sections were examined) and genuine biological variability in which some pathways

are present in some but not all cases.

Figure 17 shows the probability of observing zero neurons (i.e. failing to detect a connection that
exists, namely a false negative) as a function of the mean (expected) number of labelled neurons,
u, after a single tracer injection for Poisson, negative binomial, and geometric distributions.
These probabilities are derived from the definitions of the three distributions as detailed in
equations (1)—(3). The probability of a false-negative falls below 0.05 (grey horizontal line in
fig. 17A) for means as low as 4 neurons for both the negative binomial and Poisson curves,
consistent with the convergence of their variance/mean ratio at small FLNe values shown in
fig. 11. The probability of observing at least one false-negative decreases as a sigmoid function
of the mean, as shown in fig. 17B for 2, 3, and 5 injections (spanning the range in our data set).
For an injection repeated 5 times, as in our V1 injections, the false-negative probability falls
below 0.05 (grey horizontal line) for a mean of 7 neurons. The probability of observing at least
one false-negative after 5 injections drops much more steeply for a negative binomial than for a

geometric distribution fig. 17C.

Taking the observed mean as the best estimate of the population mean (or expected value),
the probability of the observed inconsistency under the negative binomial model exceeds 0.05
for 27 of 39 projections having an observed mean fewer than 10 neurons (see the penultimate
column of table 2.2, page 41). Of the 12 cases with probabilities below 0.05, 3 are consistent
and had an observed mean exceeding 7 neurons. After applying the Bonferroni correction for
evaluating multiple probabilities (Bretz et al., 2010), only the projections of areas 7TA and DP
to area 10 were inconsistent despite a statistically very low probability of being so. Genuine
biological variability presumably exists in the connectivity profiles for different individuals, and
it is possible that some pathways are present in some individuals and altogether absent in others.
However, statistical fluctuations in the data largely accounts for the observed inconsistency of
very sparse projections. These observations on inconsistency depend on the fine sampling that we
employed. In simulations of sparse projections having a negative binomial distribution, coarser
sampling had little effect on the expected proportion of zero counts observed, but the variability
in the estimates was proportional to the square root of the sampling interval (e.g. a 1/16 sampling
interval results in 4 times as much variability in the estimated occurrence of zero counts compared

with a 1/1 sampling).
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FIGURE 17: Theoretical analysis of projection consistency. (A) Probability of
observing zero counts as a function of the true mean for Poisson (red), negative binomial
(green), and geometric (blue) distributions. (B) Probability of observing at least one
case of zero counts in n injections as a function of the true mean for a negative binomial
distribution with dispersion parameter equal to 7.2. (C) Comparison of the probability
of observing at least 1 zero count, as a function of the true mean in n = 5 replications
for the geometric (blue) and negative binomial (§ = 7.2) distributions.

Conclusion

In summary, this analysis of repeat injections provides objective constraints on what can and
cannot be learned from making a single injection into any given cortical area. Specifically, a
single-injection approach can 1) detect all but the most sparse projections with high probability,
2) provide a reasonable estimate of the connection weight of each pathway (generally within an
order of magnitude), and 3) identify some of the sparse connections that are statistically likely
to be inconsistent across multiple injections. Repeat injections enable identification of a few
additional sparse projections and also provide better estimates of average connection weights.
However, given the paucity of quantitative data on interareal connection weights in the macaque,
the single-injection results described here have advantages in terms of the overall information
gained when applied to a large number of areas. Indeed, the variability of any single projection is
considerably less than the range of connectivity weights from the full complement of areas feeding

into a given target area, thus permitting the connectivity profile of this area to be revealed.
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TABLE 2.1: List of cases and procedures. LH: left hemisphere; RH: right hemi-
sphere; planes of section: H horizontal, C coronal, Para parasagittal; M: Plots of charted
neurons produced in Mercator®); P: neurons plotted on paper. For injections in V1, V2
and V4 the site is in the central representation of the visual field. The plot frequency is
given within the 1 in 3 sections kept after cutting. Monkey NICO is a rhesus macaque,
all the others are cynomolgus.

Animal and Injected Plane of Plot
Case hemisphere Tracer area section Charts frequency
1 M81 LH DY V1 H M 1/2
2 M85 LH FB Vi1 H M 1/2
3 M85 RH FB+DY V1 H M 1/2
4 M88 RH FB V1 H M 1/2
5 M121 RH DY Vi1 C M 1/2
6 M101 LH DY V2 C M 1/2
7 M101 RH FB V2 C M 1/2
8 M103 LH DY V2 C M 1/2
9 M121 RH FB V4 C M 1/2
10 M123 LH DY V4 C M 1/2
11 M119 LH FB TEO C M 1/2
12 MI106 LH FB 9/46d  C M 1/2
13 M106 RH DY F5 C M 1/2
14 BB272 LH DY 8m C M 1/2
15 BB135 LH DY TA H P/M 1/4
16 M89 LH DY DP H M 1/2
17 M89 LH FB area 2 C M 1/2
18 M70 LH FB+DY areab H P/M 1/4
19 M68 LH DY 7B Para M 1/2
20 BB289 LH FB STPr C M 1/4
21 BB289 LH DY STPi C M 1/4
22 M90 RH FB STPc C M 1/4
23 M108 LH FB PBr C M 1/2
24 M128 LH FB TEpd C M 1/2
25 NICO RH FB 24c¢ C M 1/2
26 M69 LH DY F1 H P/M 1/4
27 M102 LH DY F2 C M 1/2
28 M102 LH FB F7 C M 1/2
29 M98 LH DY ProM C M 1/2
30 BB272 RH FB 81 C M 1/2
31 M116 RH FB 9/46v C M 1/4
32 M116 RH DY 46d C M 1/4
33 M128 LH DY 8B C M 1/2
34 M131 LH FB area 10 C M 1/2
35 M133 LH DY MT C M 1/2
36 M136 LH DY 7m C M 1/2
37 M136 LH FsB area 10 C M 1/2
38 M137 LH FsB area 10 C M 1/2
39 BB341 LH FB area 10 C M 1/2
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TABLE 2.2: Probability of occurrence of weak projections in repeated injec-

tions.

& N
Q&\@ o \'&\
& & Y > T
N C)@% Ok’\ & & .
& & & N N N\
SO S s o
Pathway QO Qo° %0 0 Q\ 9 9
7TA — 10 33.25 3 4 5.0 0.000 0.000 1.000
DP — 10 2225 3 4 5.0 0.000 0.001 0.999
8r — V4 950 1 2 7.1 0.000 0.005 0.995
Ins — V4 850 2 2 7.1 0.000 0.007 0.993
V6A — V2 767 3 3 9.7 0.000 0.011 0.989
LB —» V1 760 4 5 6.6 0.000 0.031 0.969
Ento — V4 750 2 2 7.1 0.000 0.012 0.988
9/46v — 10 6.7 3 4 5.0 0.000 0.055 0.945
8m — V2 6.67 2 3 9.7 0.000 0.019 0.981
Core — V1 6.60 2 5 6.6 0.000 0.050 0.950
44 — 10 6.50 3 4 5.0 0.000 0.061 0.939
MB — V1 560 3 5 6.6 0.000 0.084 0.916
PIP — 10 400 1 4 5.0 0.000 0.195 0.805
45B — V4 4.00 2 2 7.1 0.002 0.082 0.918
F5 — 10 350 2 4 5.0 0.000 0.253 0.747
TEp/v — 10 350 4 4 5.0 0.000 0.253 0.747
TEa/mp — 10 3.25 2 4 5.0 0.000 0.289 0.711
TEad — 10 3 2 4 5.0 0.000 0.330 0.670
STPr — V1 280 3 5 6.6 0.000 0.399 0.601
TEpd — 10 250 3 4 5.0 0.000 0.432 0.568
Top — V1 240 1 5 6.6 0.00 0.499 0.501
MB — V2 233 3 3 9.7 0.002 0.327 0.673
V2 — 10 200 2 4 5.0 0.001 0.561 0.439
Top — 10 200 1 4 5.0 0.001 0.561 0.439
F4 — 10 1.7 3 4 5.0 0.002 0.636 0.364
STPr — V2 1.67 1 3 9.7 0.010 0.516 0.484
9/46v — V4 150 1 2 7.1 0.066 0.447 0.553
MST — 10 1.50 1 4 5.0 0.005 0.715 0.285
LIP — 10 1.25 3 4 5.0 0.012 0.796 0.204
V6 — V2 1.00 1 3 9.7 0.058 0.769 0.231
LB — V4 1.00 1 2 7.1 0.154 0.631 0.369
TPt — V1 0.80 1 5 6.6 0.023 0.958 0.042
9/46d — V4 050 1 2 7.1 0.380 0.853 0.147
MIP — 10 050 1 4 5.0 0.149 0.979 0.021
F1 — 10 050 1 4 5.0 0.149 0.979 0.021
F3 — 10 050 1 4 5.0 0.149 0.979 0.021
PBc — V2 033 1 3 9.7 0374 0.978 0.022
TPt — V2 033 1 3 9.7 0374 0.978 0.022
8r — V1 020 1 5 6.6 0.373 1.000 0.000
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Introduction

The primate cortex is one of the largest complex networks in existence, yet it has only recently
been receiving appropriate attention from a graph theoretical angle (Sporns, 2011). Many earlier
studies were based on incomplete data and are primarily descriptive characterisations using
various graph theoretical measures, generating qualitative inferences concerning brain function.
The present study is based on consistent and coherent brain-wide tracing data at the interareal

level, aiming to provide a generative model with predictive capacity.

As reported in the previous chapter, with a single DY or FsB injection it is possible to reveal
the connectivity profile of a cortical area, that is, the identity of other cortical or subcortical
structures projecting to it, and the weight of these projections within one order of magnitude
among 6. We are confident that a pathway found with this method will be consistent across
animals even if they are very sparse. However, it is still possible that a pathway not found with a
single injection could in fact be present in that animal with a very low number of neurons (< 7)
but have escaped detection because of statistical fluctuations inherent to even our high resolution
sampling method. Such a detailed dataset necessitated a huge experimental effort (around 70
man-years of work) but in turn revealed the principles governing cortical connectivity, which
are the subject of this chapter. Namely, i) the cortical network is very dense if one looks at the
presence or absence of connections, but the weights of its connections give each area its specificity
much more than the identities of the areas connected to it, ii) the cortical network is made of a
subset of high-bandwidth information highways in a sea of weak projections, with most of the
neurons being allocated to local processing and iii) these weights are governed by the distance
axons have to cover to connect two areas and show an exponential decrease with this distance.
Together, these weight- and distance-related features describe the structural organisation of the
cortex, so much so that a random network built under these constraints closely resembles the

experimental cortical interaeal network.

1 Highly local processing in the brain

Individual injections made into 25 cortical areas in addition to multiple injections in areas V1,
V2, V4, and 10 provided extensive new information of several different types. This includes
the identification of many previously unreported pathways, the demonstration of the lognormal

distribution of FLNe and the high cortical investment in local processing.

1.1 FLN values: local, long distance and subcortical

The number of labelled neurons in a given source structure (cortical area or subcortical nuclei)
relative to the total number of labelled neurons in the brain for that injection, including intrinsic
neurons that are in the injected area itself, defines the FLN (FLNt) of that structure (see fig. 1 in
chapter 2 and Falchier et al. 2002). The extrinsic FLN (FLNe) equals the strength of connections

with the intrinsic neurons excluded.
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(a) Intrinsic connectivity

FLNt (based on all labelled neurons in the brain included those in the injected area) was de-
termined in a selected number of injected areas: V1, V2, V4, 8 (grouping areas 8r, 8l and 8m),
9/46d, F5, TEO, and 7TA. The mean FLNt value of the intrinsic (within-area) connectivity was
79% (68-89%) (fig. 1A). Because the uptake zone of these tracers is defined and restricted (see
chapter 2), it is possible to determine the number and spatial location of labelled intrinsic neu-
rons. This intrinsic connectivity is highly local. With very small injections, we could accurately
measure the local spatial distribution, which revealed an exponential decrease in the density of
labelled neurons with distance (fig. 1B), as shown in previous publications (Barone et al., 2000).
The density profiles (number of labelled neurons in each section of the projection zone) were
used to measure the spatial extent of intrinsic labelling in the large injections that are required
for optimal labelling of the full complements of inputs and their FLN values. This showed that
80% of intrinsic neurons arise within a distance of 1.2 mm from the injection site and 95% within
1.9 mm (fig. 1C).

A 100 B
T B - 150 -
80 il
u 5 k*exp[-Ad]
2 60 @ 100 A =0.23mm
c
= 5
T a0 3
£
z
20 \{
o
CRIEEEENEEEREEnInE 8
5?;8&”@5 0 05 1 15 2
h S
g .
Areas Distance (mm)
c - O 95% FLNt%
-~ W 80% FLNt%
1. —— W 75% FLNt%
€ 2
E
@D
(&)
c
s HERJIL |
°
ARl & &
oL

Vi V2 V4 TEO F5 B
Areas

FIGURE 1: Intrinsic and extrinsic connectivity. (A) Intrinsic FLNt values of
9 areas. V1 and V4 are averages for repeated injections. (B) Exponential decay of
density of intrinsic neurons with distance following injection in area V1. (C) Distances
within which the 3 thresholds (75%, 80%, and 95%) of intrinsic FLNt are attained in 7
injected areas. Dashed lines indicate mean distance at which each threshold is reached.
Error bars are SD.
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(b) Global contributions to the input

Figure 2 compares FLNt values for intrinsic, interareal (short and long distance), and subcortical
connections, averaged after injections in the same 8 areas from the occipital, parietal, temporal
and frontal lobes. After the FLNt value of the intrinsic connections, the next largest contribution
is from the adjoining cortical areas (i.e., areas that share a border with the injected target area
and labelled "short" in fig. 2), with FLNt values on the order of 16% (2.5-39%). When only
the interareal projecting neurons are considered, the neighbouring area has an average FLNe of
80%. The remaining connectivity is shared between long-range corticocortical connections (i.e.
all the remaining cortical areas beyond the nearest neighbours) with a cumulative FLNt value
of 5% (0.8-11%) and subcortical connections with a cumulative FLNt value of 1.1% (0.4-2.8%)
(fig. 2). This pattern of high local connectivity coupled with very small sub-cortical input and

weak long distance connectivity is consistent across the cortex.
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Mean sum FLNt %
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FiGure 2: FLNt values of the different sources. Mean cumulated FLNt of 4
projection classes for injections to 9 exemplar areas from different lobes (V1, V2, V4,
TEO, F5, 9/46d, 81, 8r and 8m). Intrinsic: intra-areal; short: projection from imme-
diate neighbours; long: all the remaining corticocortical projections to the target area;
SC: subcortical projections. Error bars indicate the SD.

(c) Local processing in the brain

The small FLNt of the thalamic input to the cortex (fig. 2) coupled with the high FLNt values
of intrinsic connectivity (fig. 1A) fits with the evidence that local recurrent excitatory networks
amplify a numerically sparse feedforward signal (Douglas et al., 1995). For instance, we find that
the FLNt of the lateral geniculate nucleus projection onto arca V1 is 0.16% (FLNe 1.45%, sce
fig. 15B in previous chapter). This result is consistent with the fact that fewer than 2% of all
synapses found in area V1 arise from the lateral geniculate nucleus (Latawiec et al., 2000). The
intrinsic FLNt of area V1 that we observe is 85%, consistent with the vast majority of synapses
in area V1 originating from local neurons (Binzegger et al., 2004, 2007). The similarly low
subcortical FLNt values to various cortical areas indicate that this pattern is repeated across the
cortex and reveal the high investment of the cortex in local processing. The massive allocation
of the neuronal resources of the cortex to local processing and its ongoing patterned activity

likewise accounts for much of the brain’s energy consumption (Kenet et al., 2003; Raichle &
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Mintun, 2006; Tsodyks et al., 1999). This view of the cortex emphasises the importance of
intrinsic operations, so that the input to a given level of the cortical hierarchy interacts with

ongoing activity.

In the connectivity matrix for area 17 of the cat, the vast majority of excitatory synapses in
area 17 originate from local neurons, consistent with the intrinsic FLNt of 85% reported here
(Binzegger et al., 2004, 2007). Reports from the same laboratory suggest that the synaptic
input to a cortical area from a distant area is comparable numerically with the thalamic input
(Anderson & Martin, 2002; Anderson et al., 1998). These results are compatible with our findings
that many different sources converge on area 17 with FLN values equal or inferior to that of the
LGN (fig. 15 in previous chapter). This is very relevant to experimental (Bruno & Sakmann,
2006; Gil et al., 1999; Stratford et al., 1996) and theoretical (Wang et al., 2010) analyses of
how weak cortical inputs can be operationally robust and reliable. Mechanisms that ensure
the reliability of the thalamic input to the cortex including synchronisation of inputs may also
contribute to effective transmission between cortical areas (Tiesinga et al., 2008; Wang et al.,
2010).

1.2 Interareal pathways

(a) Lognormal distribution of input weights

Next, we looked at the connectivity profiles, i.e. the distribution of projections from outside
the injected area (FLNe values). Interestingly, even without the 80% of labelled neurons that
are intrinsic, the full range of FLNe values still spans more than 5 orders of magnitude, and
the primary source of connectivity (areas that share a border with the injected area) still make
up for 80% of the total. Therefore, using logarithmic coordinates was key for visualising this

distribution.

Figure 3 show the ordered average experimental values and their empirical standard deviations
indicated as error bars for both cortical and subcortical projections to areas V1, V2, and V4. The
black curves are the predictions for an ordered sample from a lognormal distribution with the
same number of points as the data points in each area and the same mean and SD as the data.
These curves fit the data reasonably well and the points and standard deviations fall within the
estimated 95% confidence interval for the lognormal distribution, indicated by the grey bands

around each curve.

For all 29 areas, we found that the ordered FLNe was well described by a lognormal distribution.
Figure 4 show a further selection of 5 areas, chosen to illustrate a greater than 3-fold range in
number of incoming projections to the target area (the remaining 21 connectivity profiles are
shown in the supplementary online material of Markov et al. (2014a). Importantly, the curves
in each plot are based only on the mean and SDs of the log(F'LNe) values and the number of
projections; no free parameters were used to constrain the shape of the curves. This consistency
in the weight distribution indicates a strong regularity in the cortex, because although these
curves are necessarily monotonically decreasing by the way they were constructed, there is no a

priori reason why the distribution must be well fit by a lognormal distribution.
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A, , B,

FicUrRE 3: Connectivity profiles of visual areas Source areas are ordered by
log(FLNe) values. The solid curves correspond to the predicted order statistics for a
lognormal distribution with the same mean and SD as the data. The error bars are
95% confidence intervals, assuming that the data follow a negative binomial distribution
with dispersion equal to 7.

The curves shown in fig. 3 and fig. 4 illustrate common features in the connectivity profiles,
including just how closely the single FLNe values track the lognormal distribution as well as the
progressive widening of the 95% confidence interval with decreasing FLNe values. For each area,
the midpoint of the distribution occurs at an FLNe of about 1073, with half the projections
being stronger and half being weaker. A few areas on the upwardly curved portion on the far
left represent notably strong pathways (FLNe > 10~2); a few on the downwardly curve portion
on the far right represent notably weak pathways (FLNe < 1074). The majority of pathways
are in the middle range (1072 > FLNe > 107%).

(b) Possible origin of the lognormal profile

One source of lognormal distributions is via the product of independent random variables (New-
man, 2005). A simple hypothesis could suppose, for example, that the distribution of weights to
a given area arises from a common developmental process of neural growth in which the proba-
bility of an axon growing a given distance before making a synapse is the product of randomly
varying probabilities that it will stop and make a synapse at any area along its path. This
common profile of weights is likely to be the substrate for a common mechanism of information
distribution or neural computation by a cortical area. Such a mechanism would suggest a very
specific layout of cortical areas and could require some sort of optimisation in the location of
cortical areas in the 3D structure of the brain (Cherniak et al., 2004; Kaiser & Hilgetag, 2006).
Interestingly, random outgrowth models have been proposed for the formation of local connec-
tivity, which if modified to take on board the weight distributions could be extended to concepts

of interareal formation (Kaiser et al., 2009).



49

ighly local processing in the brain

1.

din

™id

od1Ss

- dW3L
- €4
- OLIN3
- 8L
- dIY
- O¥dO

- NSNI

- €

(aN14)607

~ 0€/62
~ LS

~ o2

[~ €d

dwegy —
143d |+
ewe3l —
[e-ETRES
no -

€ -

da

4 1k

g1 -

| 1IS|

AR R RN RN NSO RE NR Y

L ER)

(eN"11)607

i hm -
di -
94 -

VL. =1
ans -4
da -
1S -4
1SN -
7l =
Idld -4
W3 -
Idl -
€3 -

G2 -1

6 -1

1SNI -4
B9d -
€€ =1
OddO -
'POY -4
Id -4
OLN3 -
0L -4
HI/HL -4
LS -
3400 -
08d -
lellS -1+

s
a. uﬂ

CULTTTITTTYSSRaLLEL 11y,
CTTTTYPP Dbty
SETTTTTTToAL 1

POITYSRLLLL Il eis
PIYPPTSRAALE L ivnnas:

=

ity < T

11

B ‘l’il'
ITSOhhhit

1

]

1

!

b (& i

€l
POY/6
‘'S'd

-Gl

0E/6e
€2

a7
Id1s
an
dNEL
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ventions as in fig. 3.
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(c) Lognormal distributions at different scales

The lognormal distribution of FLNe values that we observe is a heavy-tailed and heterogeneous
distribution that is different from a power law. Lognormal distributions have been reported for
a number of biological phenomena, including the nonzero synaptic strengths on single cortical
neurons (Song et al., 2005). An interesting parallel can be drawn between interareal (long-range)
and intrinsic (local) properties: 1) as we have shown here, local, intrinsic connectivity shows an
exponential decay in density, echoing the decrease in the likelihood of synaptic contact with
distance (Braitenberg & Schiiz, 2012); 2) intrinsic source distributions, just like the extrinsic
interareal source distributions, have a patchy character (Yoshioka et al., 1992); 3) lognormal
distributions like the one described here for interareal weights have been found for the distribution
of synaptic strengths of single neurons (Song et al., 2005). These parallels, at both the cellular

and areal levels, suggest that similar logical principles might function over multiple scales.

1.3 Role of weak interareal projections

Interareal connections from neighbouring areas may provide inputs that interact with recurrent
local connectivity very much in the same way as the feedforward inputs from the thalamus to
cortex as described above. However, long-range interareal pathways have FLNe values up to 4
orders of magnitude weaker than the FLNe of the LGN. These weak corticocortical connections
might contribute to long-range coordination of neuronal assemblies, possibly required for high-
level representations (Buzsaki & Draguhn, 2004). Interaction of ascending activity with ongoing
activity of dense local networks may contribute to multiple brain rhythms, which are in some
way controlled by the long-range very sparse connections (Buzsaki, 2007; Kopell et al., 2000;
Lakatos et al., 2008; Uhlhaas et al., 2009; von Stein et al., 2000). Importantly, these long-range
connections are not randomly organised but instead, as shown here, link specific sets of areas
with precisely determined connection weights, having weights that are typically consistent within
a range of 58, although some of the weakest projections have a variability exceeding 10-fold
(see fig. 15 in chapter 2). The function of the long-range cortical connections may complement
nonspecific corticothalamic loops (Llinas et al., 1998). In this respect, corticoclaustral loops may
also be important (Crick & Koch, 2005), as an intriguing finding in the present study is that the

claustrum provides the strongest subcortical input to the cortex.

2 Network density and connection weights

2.1 A dense interareal network

(a) New cortical pathways

Injections in all 29 target areas revealed a total of 1,615 cortical pathways. Of these, 579 have
not been previously described (newly found projections or NFP). Each target area received
projections from between 26 to 87 source areas. The evidence for the existence of the known

connections is generally relatively good with most projections reported in several studies, but in
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some case their existence can only be inferred from suggestive and not compelling evidence. For
the target areas in each cortical region, the NFP constituted a substantial fraction of the total
number of connections (limbic 13%, prefrontal 40%, frontal 30%, parietal 30%, temporal 43%,
and occipital 37%). Figure 5 shows a histogram of connection weights for known projections
(white bars) and NFP (red bars) in intervals of 0.5 log(FLNe). Known connections are on
average stronger than NFP, but the two populations overlap extensively. Remarkably, 43% of
the NFP had FLNe of moderate strength, and a few (2%) are classified as strong connections. For
very low FLNe values, NFP correspond up to 90% of the population, but constitute a decreasing

fraction of the source areas with increasing FLNe.

250 ~100
o = NFP
- —— —GKnown - =
200 L 80
@
0 == A =
£ 1504 60 ¥
S . =
3 B
= 100 4 L 40 3
=
z -
50 H - 20
6= ‘“,—[U Lo

FLNe (Log)

FI1GURE 5: Weight comparisons for known projections and NFP. Distribution of
known projections and NFP as a function of projection magnitude (FLNe) at intervals
of half a log unit, following the injection of the 29 target areas. Blue line indicates the
percentage of NFP within each interval.

In the present study, we also report some very weak connections containing a few dozens neurons
or less. For a few projections we report just 1 or 2 neurons, which are found in only 1 or 2 cases.
However, the numbers of neurons reported reflect only a small fraction of the total number of
neurons associated with an area-to-area pathway. If the entire target area were filled with tracer,
the numbers of labelled neurons would be many orders of magnitude greater than the numbers

reported here.

(b) Connectivity matrix

A convenient way to encode and manipulate network information is the connectivity matrix,
where rows and columns represent areas (nodes of the graph) and each cell contains connectivity
data between the area of its row and the area of its column (edges of the graph, i.e. pathways
linking nodes). The pathways of the cortical graph are directed because information only flows
one way along axons, and retrograde tract tracing reveals incoming projections to a given area.
Thus the matrix is asymmetric, in contrast to many connectivity matrices obtained using neu-
roimaging methods that cannot distinguish the directionality of connections. The connectivity

matrix revealed by our tract tracing experiments has 29 columns for the 29 injected areas and
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91 rows because our cortical parcellation contains 91 areas, i.e. 91 potential sources of pathways

to the injected area.

Figure 6A shows this 29 by 91 weighted connectivity matrix where the colour of each entry rep-
resents the log(F LNe) value for that pathway (brighter shades representing stronger connection
weights; black represents no connection). Each column gives the FLNe profile of inputs observed
for a given area and each row its outputs. The rows and columns of this matrix were clustered
on the basis of similarity of connectivity profile, i.e. similar columns and rows were close. The
dissimilarity between 2 rows (columns) was defined as the reciprocal of the dot product between
them (Jouve et al., 1998). This measure is like a distance: the more similar the weights for two
areas, the smaller it is. If the areas shared no common inputs (outputs) this distance would be
infinity, but we observed no areas for which this situation arose. We then used a non-metric, mul-
tidimensional scaling (MDS) algorithm (de Lecuw & Mair, 2009) on the row (column) distances,
ordering them by the first component. Visual areas are concentrated in the upper left quadrant
of the matrix. Motor and somatosensory areas are concentrated in the lower right quadrant.
Higher-level areas of the frontal, parietal, and temporal cortex are mainly in the middle portion.
Green squares indicate the “identity” entry for the same area in a row and column. These entries
are mostly located near the diagonal, suggesting that areas having a similar pattern of inputs
also have a similar pattern of outputs. However, the many deviations from the diagonal suggest
that some areas having similar input profiles have distinctly different output profiles, and vice

versa.

(c) Estimation of cortical density

Existing databases do not provide reliable estimates of the density of the network of cortical areas,
nor has there been a concerted effort to extrapolate from the existing data to the connectivity of
the full interareal network (FIN). Here, we explore the classical, binary notion of graph density,
i.e. the present/absent status of connections, independently of their strength (Janson et al., 2011;
Newman, 2010). Graph density is a fundamental measure of the graph’s overall connectedness,
extensively used in network science and also in earlier analyses of cortical connectivity (Bullmore
& Sporns, 2009; Sporns & Zwi, 2004).

Based on the M132 atlas parcellation (fig. 2 of chapter 2), the FIN contains Npyy = 91 cortical
areas that represent the nodes of the complete Ggyx91 graph. The directed edges of the FIN
correspond to directed connections between nodes, based on the FLN. Our analysis of the FIN
makes use of the Gagx91 directed subgraph of projections within FIN, which reveals all the in-
degrees (number of incoming pathways) of the 29 injected nodes. It also makes use of the Gagyx29
edge-complete subgraph of FIN, corresponding to the connections among just the 29 injected
areas (fig. 6B). Both Gagx91 and Gagx29 contain complete information about the status of their
edges and would not be influenced by injections into additional areas elsewhere in the cortex.
Given that the 29 injected areas are widely distributed among the 6 lobes, the Gagx29 subgraph

is likely to reflect major characteristics of the FIN.

The density of a directed graph is given by the ratio p = M /(N (NN — 1)) between the number of
directed edges (connections) M of the graph and the total number of possible edges, N(N — 1),
where N is the number of nodes in the graph. The Gagxa9 graph has M = 536 (binary) directed
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FI1GURE 6: Weighted connectivity matrix. Each row represents 1 of the 91 source
areas; each column represents 1 of the 29 injected target areas. The colour shows the
strength of the projection as indicated by the colour bar. Black cells correspond to
absent connections and green cells to the intrinsic projections that are not included
here. For multiple injections, shading is based on geometric mean values. (A) The
row and column ordering was determined by clustering based on similarity of the input
and output profiles between areas. (B) Complete weighted connectivity matrix for the
G929 subgraph.

links from the maximum possible of N(IN —1) = 812, and therefore, it is strongly interconnected,
with a graph density of p = 0.66 (66%). Because it is an edge-complete subgraph of the FIN,
the density of Gagxag is expected to be comparable to that of the FIN.

The in-degrees of the Gagxg1 graph (i.e. the number of source areas projecting to each of 29
target areas, fig. 7) range from 26 to 87 with a mean of (k);, = 55.4; their distribution (shown
as a marginal histogram in gray) is concentrated around the mean. The density of the FIN was
estimated as follows. Because every directed edge is an in-link to some node, the total number
of edges Mprn equals the total number of in-links in the FIN. We lack data on the in-links to

nodes that were not injected, but we can assume that they are characterised by the same average
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FIGURE 7: In-degree distribution. The number of areas projecting to each of the
target areas of this study. Horizontal dashed line indicates the mean in-degree (57.4).

in-degree as the 29 injected nodes. Assuming Mgy ~ (k)in, Nprny = 5,071 for the FIN (that is,
G91><91) leads to the prediction PFIN = MFIN/(NFIN(NFIN — 1)) =~ <k>in/(NFIN — 1) ~ 0.62
(62%), which is of the same order as the density for the edge-complete graph Gagx2g.

A dominating set analysis on Gagx29 provides further evidence that the FIN is indeed dense. In
graph theory, a subset D of nodes of a graph G with node set V is said to be dominating G if all
elements of V have a link to at least one node in D (Kulli & Sigarkanti, 1991). Here, we modify
this definition slightly by saying that D dominates x% of the nodes of G, if x% of all nodes in V/
are linked to one or more nodes in D. The x% = 100% corresponds to “full” domination. This
definition includes also nodes from D. The minimum dominating set (MDS) D,y is defined as
the one that fully dominates G and has the smallest size (number of nodes). For all sets of 2
target area combinations from the 29 target areas (406 pairs), 26.6% of them dominate 90-100%
of the 91 areas. One pair of areas (8l, 7Tm) receives projections from all 91 areas, revealing an
MDS size of 2.

A low MDS indicates either a very dense graph or a scale-free graph, which is usually dominated
by hubs, areas with extremely high degree k >> (k) (Barabasi & Albert, 1999). The actual
in-degree distribution of Gagxo1 (fig. 7) is inconsistent with a scale free graph (see next section),
as is the fact that slightly increasing the size of dominating sets to include 3, 4, and more nodes
quickly increases their number. For triplets of areas there are 69 dominating sets (1.88% of
3,654), and for sets of 4 areas, there are 1,978 (8.33% of 23,751). Morcover, all combinations of
8 sites (out of 29, ~ 4.29 million) will dominate at least 90% of all the areas. As more injections
add links but not new nodes, they can only enhance these strong domination effects, confirming

that the FIN is indeed a dense graph when considered in terms of binary connectivity.
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2.2 The binary network does not have small-world properties

(a) History of the concept of small-world networks

Recently an alternative approach to understanding cortical pathways appeals to graph theoretic
analysis of cortical networks. Since the early 1990s there has been an increasing focus on net-
work representations of complex systems with the goal of gaining an insight into the functional

processes supported by these networks (Barabasi & Albert, 1999; Newman, 2003).

Among the major discoveries coming out of this approach was the recognition that many real-
world networks, on the binary connectivity level, share small-world (Watts & Strogatz, 1998) and
scale-free properties (Barabasi & Albert, 1999). The description of the small-world and scale-free
phenomena seemed to be particularly relevant to understanding the brain (Watts & Strogatz,
1998). Small-world networks are characterised by short path lengths between nodes and high
levels of clustering, which provides maximum integration with minimum wire length. Translated
into anatomical terms, nodes are arcas and a small world network would imply that the average
number of connections forming the shortest path between any two areas would be small, even
though areas are mostly linked to a few other areas that are themselves highly interconnected,
forming a densely clustered neighbourhood. Minimum wire would mean that there would be
multiple interconnections within a set of neighbouring areas but only some of these areas will
have extensive connections that form long-distance pathways to other tightly grouped areas, thus

effectively providing the shortcuts necessary to keep average path lengths optimally short.

Small world networks were initially used for describing social networks where it has been claimed
that no two individuals on the planet are more than 6 handshakes from each other. This prover-
bial small world exists because, although most of our friends know each other (clustering), some
of them plug into other social groups (and provide the shortcuts across the graph). These fea-
tures provide the integrative function typical of modern society, and it is easy to imagine that

they are important in cortical function (Bassctt & Bullmore, 2006).

Inspired from these early studies on small worlds, and using the compilation of Felleman &
Van Essen (1991), several studies have confirmed the clustering of functionally related areas and
found evidence of short average path lengths suggestive of small-world architecture (Hilgetag
et al., 2000; Sporns et al., 2000).

(b) Previous estimates of the graph density

In fig. 8 we show how average shortest path length relates to graph density. At 66% (that is with
all observed connections included) we have a path length of 1.34 and as connections are randomly
removed, there is a progressive increase of the average path length. This allows us to compare our
graph density to those of earlier studies, some of which have claimed small world architectures in
cortical interareal connectivity. The Felleman & Van Essen (1991) study provided a compilation
of data taken from over 300 anatomical studies. The authors cautiously questioned their network
and found it to have a density of 30%. They distinguished three possible states: documented
(existing), not found (explored but reported absent), and unknown (non explored connections).

By taking into account the unknown connections they predicted that the real density of cortex
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would be around 45%. Later Jouve et al. (1998) first updated the database of Felleman and Van
Essen and then implemented an algorithm that uses the properties of the network to predict
if there are projections within the unknown category that are very likely to exist (Jouve et al.,
1998). This led to a density prediction of 50%. All subsequent studies examining the small
world properties of the cortex have used the database of Felleman and Van Essen. However,
these studies firstly considered that unknown connections were non-existing and secondly, they
increased the number of areas by referring to publicly available databases where the unknown
category is actually higher than that in the Felleman and Van Essen database. This automatically
increased the sparseness of their graphs (15-20%) (Modha & Singh, 2010; Sporns et al., 2007,
2000; Young, 1993).
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FIGURE 8: Previous estimates of graph density. Comparison of the average
shortest path length and density of the Gagxa9 subgraph with the graphs of previous
studies. Sequential removal of weak connections causes an increase in the characteristic
path-length. Black triangle: Gagx29; gray area: 95% confidence interval following
random removal of connections from Gaogx29. Dotted horizontal lines indicate the 5 to
95% interval with at least one unreachable node (after repeated and graded, random
edge removal). The three least dense graphs are near their 5% unreachability levels.
Data incompleteness meant that some of the initial networks have unreachable nodes
(the latter are removed and not considered here); 14 unreachable nodes are from Modha
& Singh (2010); 1 unreachable node is from Young (1993); and 2 unreachable nodes
are from Felleman & Van Essen (1991). The other references are Honey et al. (2007);
Jouve et al. (1998). “Jouve et al., 1998 predicted” indicates values of the graph inferred
using their published algorithm.

These earlier works claim that the interareal network is sparse, exhibits short path lengths
and high clustering, and that these properties form an organisation principle of information
integration in the cortex (Bassett & Bullmore, 2006; Bullmore & Sporns, 2012; Honey et al.,
2007; Modha & Singh, 2010). However, in fig. 8 all the graphs this claim is based on are near or
within the 95% confidence interval of progressive removal of random connections in the graph
(grey trace), thus indicating that they are edge-incomplete subgraphs of our dataset. Moreover,

these graphs are near unreachability, meaning that removing only a few random edges will
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isolate one or more areas: they cannot be reached because not all other areas have a directed
(even multi-step) path to them any more. Two of these datasets even have unreachable nodes
without removing any links. In our edge-complete subgraph this is very far from being the
case, and we hypothesise that this a strong property of the FIN: on the contrary, the network is
highly parallel and redundant (Felleman & Van Essen, 1991). Therefore we estimate that these
datasets, because of their edge-incompleteness, do not reflect the properties of the FIN as the

edge-complete Gogyxog does.

(c) The cortical graph is not a SW

The novel anatomical connectivity data, including the strengths of connections and spatial infor-
mation suggest a revision of the cortical network given by previous studies. In particular, at such
a high density as we have discovered, the binary features of the cortex like small world properties
(average directed path length = 1.34 and diameter = 2) and hubs are not significant and provide
little functional insight. Neither can the network be described as scale-free in terms of its binary

connectivity, given its small number of nodes and its non-power-law degree distribution.

Small world properties were described for real world sparse graphs (typically with a density
< 0.01%), because at these densities it is unlikely that a random graph, obtained by rewiring
existing connections, would exhibit both local high density of projections (clustering) and a
short path to any other node in the graph (short average path length). A highly dense graph
on the contrary, where a large part of possible connections do exist, has both these properties
but cannot be rewired in a manner not to express short average path length and high clustering.
In the extreme case where every node is connected to every other (density 100%), the average
path length is 1 and a there is single large cluster, but there is no other possible binary wiring.
In other words, short path lengths and clustering can be identified at various densities but for a
dense graph they are uninformative about any architectural specificity. That is why small world
properties only become interesting when the number of nodes is large and the number of links

is small.

We suggest that instead of looking for hubs or Small World properties, the range of weights of
connection and distance must be examined. Doing so reveals a strong regularity of the cortex,
where each area has strong connections with its neighbours, and where weights of connections
fall off exponentially with distance to give place to weak, mid to long distance projections.
These latter connections greatly contribute to linking areas standing on very distant levels of
the cortical hierarchy and yet appear to make only a poor contribution to the global efficiency
of the cortex. We see a dichotomy between the circuit of few very strong connections and the
myriad of weak links that do not provide channels broad enough to transfer detailed, extensive

fine grain information.

A simple way to illustrate the role of connection weights is to plot the graph either using a
binary or weighted, adjacency matrix. When weights are not taken in to account the algorithm
converges to a layout where there is no biologically relevant node clustering. Remarkably when
the weighted matrix is provided to the algorithm it converges to groupings that strongly reflect

the functional lobes and suggest their functional interactions (fig. 10).
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Ficure 9: Effect of density on Watts and Strogatz’s formalisation of the
small world. (A) Clustering and average path-length variations generated by edge
rewiring with probability range indicated on the x axis applied to regular lattices of
1,000 nodes in a 1D ring as in Watts & Strogatz (1998), of increasingly higher densities.
The pie charts show path length L and clustering C' colour-coded for graph density. On
the y axis, we indicate the average path length ratio L, /L, and clustering ratio C,/C,
of the randomly rewired network, where L, and C, are the path length and clustering
of the regular lattice, respectively. L, and C), are the same quantities measured for the
network rewired with probability p. Hence, for each density value indicated in the L
and C pie charts, the corresponding L,/L, and C,/C, curves can be identified. (B)
The small-world coefficient (C,/C,)/(Lp/Lo) (Sporns & Honey, 2006) corresponding
to each lattice rewiring. Colour code is the same as in (A). Dashed lines in (A) and
(B) indicate 42% and 48% density levels. (C) Diagrams illustrating the lattice (left),
sparsely rewired (middle), and randomised (right) networks.

2.3 A backbone of strong projections

(a) Weighted measures to characterise the graph

The five orders of magnitude range of connection weights mean that information capacity is
expected to vary differently along the high-bandwidth, within-lobe pathways and the weak,
interlobe connections. To investigate how differences in connection strength shape the functional
structure of the cortical graph, we approach the problem from a communication efficiency point
of view. The FLN f;; between areas ¢ and j can be interpreted as a measure of the capacity
of information transfer between the source ¢ and its target j. The higher f;; (the stronger the
projection), the higher the bandwidth of information transfer along the ¢ — j link. Thus, to a
first approximation, the probability for signals along the i — j link to induce activity in node k
via the i — j link is proportional to the product f;; x fjr = exp(In(fi;) + In(fjx)). Therefore,
it is more convenient to work with w;; = —In(f;;) > 0 as link weights, so that they are additive
along directed paths. The w;; is equivalent to link resistance, with larger w;; means a weaker
link or a higher resistance. For every pair of nodes (4, j), we define r;; as the minimum sum of
link weights (sum of w;; weights taken along a path) among all paths directed from i to j . For

constant weights, 7;; is proportional to the length (number of links) of the shortest directed path
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FI1GURE 10: Force-based layout of the graph. Relative spatial placement of the ar-
eas that is optimal with respect to the weights, generated via the Kamada-Kawai (KK)
force-based graph-drawing algorithm (Kamada & Kawai, 1989). Top: Full density (all
536 links), all weights taken as unity (binary graph). Bottom: Link weights given by
their FLN values.

from 4 to j (fig. 11A). We examined two communication efficiency measures, namely a global

measure F, and a local measure .

The global network communication efficiency measure F, introduced by Latora & Marchiori
(2003) is defined as:
1 1
E,=——— —
Y N(N-1) ; Tij
where the summation is over all the N(N — 1) possible pairs (4,j) of nodes. E; is a global
conductance measure for information transfer between two arbitrary nodes, calculated as the

mean of the conductance 1/r;; over all the N(N — 1) possible pairs (fig. 11A).

The local network communication efficiency measure E; introduced by Vragovié et al. (2005) is

defined as: .

1 1

B = N EZ: ki(k; — 1) ithetsy T/

Here a local efficiency is calculated for all pairs j, k of neighbours of node i after node 7 and its
links are removed from the graph (obtaining 7;;/; through the remaining graph), then this is
averaged over all nodes i. The local efficiency is essentially the average conductance between all
the areas connected to an area X, after removal of area X with its links (that is, through the
rest of the network). It is similar to assessing how easily one can travel between the satellites of
a town, without using routes passing through the town. Again, this is averaged across the entire
graph (fig. 11B).
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FIGURE 11: Definition of efficiency measures. (A) Link resistance and global
efficiency. (B) Local efficiency.

(b) Few strong projections in a sea of weak ones

We explored the role of the connection weights in communication efficiency, by simulating a
threshold effect via progressively deleting the weakest links (green and blue solid lines in fig. 124A).
The effect on global efficiency starts to decline sharply only after 76% of links (containing 5%
of total neurons) have been removed. Hence, efficiency is assured by the remaining 24% of
links exhibiting the largest FLN values and accounting for 95% of neurons. These links with
the highest FLN assuring global efficiency have a mean projection distance of 16 mm (SD 8.4),
considerably shorter than the 27 mm mean of the removed connections. This high FLN network
constitutes the global efficiency backbone of the graph, shown in fig. 12B. As more weak links
are removed, regional groups of areas cluster in a connected network, forming a high-strength,
high-bandwidth subgraph of the cortex. Note that given the large average path length (3.7) and
the diameter of the graph (9) the efficiency backbone does not seem to correspond to a small

world architecture.

Interestingly, with decaying density, global efficiency (green solid line in fig. 12A) remains virtu-
ally unchanged, while local efficiency (blue solid line) increases, peaking in the region just prior
to the breakdown of the global backbone (i.e. when only the 19% strongest projections are still
present in the graph).

(c) Consequences on the system’s dynamics

Moreover, the differential response of the local and global efficiencies suggests interesting dy-
namics of the system. High activity levels in the network could raise neuron response threshold
(Azouz & Gray, 2003; Braitenberg & Schiiz, 2012; Destexhe & Paré, 1999), which is comparable
to removing the weakest connections as we did in the data. This in turn suggests that activity
dependent increases in threshold (Braitenberg & Schiiz, 2012) could lead to a small decrease in
global efficiency that is off-set by a large increase in local efficiencies, as has been suggested in the
local microcircuit (Binzegger et al., 2004). In this way the control of assembly dynamics in the
cortex will have a spatial component in large part due to the spatial and weight characteristics

of the cortical network described here.
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FIGURE 12: Global and local efficiency in the graph. (A) Effects of graph
density on efficiency via sequentially deleting weak (blue, green) and strong (black, red)
links. (B) Kamada-Kawai force-based layout for the backbone i.c. the 130 strongest
connections (blue links, 0.16 density) left after weak link (thin gray) removal.

3 Relation between axonal distance and FLN

3.1 The exponential distance rule (EDR)

(a) Measure of distances

To measure interareal distances through the white matter we first calculated the geometric centre
of each area in CARET. We then transposed them onto the reconstructed M132 surface brain (see
section 1.3(b) in chapter 2) using sulcal landmarks. Except for the large visual areas V1, V2 and
V4 we evaluated in CARET the shortest physical distance between geometric centres of cortical
areas through the white matter. Areas V1, V2 and V4 were injected in the central representation
of visual space, so for these 3 areas we measured distances to and from the injection sites (Markov
et al., 2013).

(b) Definition of the rule

We have shown that for each injected area, the distribution of FLNs (incoming link weights) is
lognormal. Figure 13A shows that the pooled distribution of FLN values for all the 29 injections

also has a lognormal distribution, hence exhibiting a heavy tail (fig. 13B). Here we show that
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the FLN decays exponentially as a function of projection distance. This allows formulation of
a global distance rule as a principle of allocation of resources in the cortex. Figure 14A shows
the log(FLN) values for all 1,615 projections of Gagxg1 as a function of interareal projection
length. In spite of the variability in the data, there is a clear decay trend (red, linear fit)
with increasing distance. However, the FLNs group neuronal counts via the injected areas,
thus providing a binning by areas. Projections at longer distances come at a metabolic cost for
individual neurons. To better express this cost principle as a global (areca-independent) property,
fig. 14B shows a histogram for all retrogradely labelled neurons found from the 29 injections (a
total of 6,494,974) as function of the projection distance between cortical areas. This exhibits
an exponential decay that we refer to as the "exponential distance rule" (EDR). Accordingly,

p(d) can be interpreted as the probability of a projection length d, irrespectively of the areas

involved.
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FIGURE 13: Lognormal distribution of FLN. (A) FLN values span five orders of
magnitude and follow a lognormal distribution in this density plot. log(FLN) values
were binned (bin size 0.5 log unit), the height of each bin (ordinate) corresponds to
the fraction of projections with log(FLN) falling within that bin divided by the bin
width. Blue, Gaussian fit with mean at pgquss = —3.17 (location parameter) and SD
of 0Gauss = 1.42 (scale parameter), both in units of log(FLN). (B) Right tail (large
FLN values) of the distribution exhibits a slow, power-law decay as shown by the double
logarithmic plot. Blue line: right tail of the lognormal in (A). This is also a density
plot, as in (A). In this case, the binning was done directly on the FLN values with a bin
width of 0.025 FLN. With this choice for bin width, the right tail of the distribution is
formed by those high FLN values that fall outside of one sigma (0gquss = 1.42) in (A).

Based on fig. 14B, we express this principle as:
p(d) = ce ™M (3.1)

where ¢ is a normalisation constant and A = A\q = 0.188 mm~! (obtained from least-squares
fitting, fig. 14B). The blue line in fig. 14A corresponds to eq. (3.1) with A = )4, indicating
that it is a good approximation for the linear decay trend (red line with Ay, = 0.150 mm~*
in fig. 14A) of the log(F'LN) values as well. Since the fraction of labelled neurons f;; can be
interpreted as the probability of a neuronal projection from i to j, the agreement in fig. 14A shows
that, on average, we can approximate the FLN values with their distance-dependent projection
probabilities, i.e., fi; &~ p(d;;) = ce % where d;; is the distance between the areas. From

this, the distance between two areas can on average be expressed in terms of the corresponding
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FIGURE 14: Projection Length Distributions. (A) FLNvalues (log(fi;)) for all
1,615 projections as a function of projection length (d;;) estimated through the white
matter. Red circles, averages within 5 mm distance bins; the red line is an exponential
fit to all the black points giving a decay rate of Apry = 0.150 mm~*. (B) Histogram
of interareal projection length for all labelled neurons (n = 6,494,974). Blue line, ex-
ponential fit with decay rate Ay = 0.188 mm !, also shown in (A). (C) Distribution of
interareal distances in Gagxg1 matrix, a purely geometrical property, is best approxi-
mated by a Gaussian (mean (d) = g = 26.57 mm; SD ¢ = 10.11 mm).

log(FLN) values (natural log) as:

1 1
dij = =5 log(fis) + ylog 0 (32)

The distribution of the interareal distances (i.e., the fraction of area pairs separated by distance

d) conforms to a Gaussian (sce fig. 14C), i.e.

1

ovV2m

i) = o cap (550 ?) (33)
with ¢ = 26.57 mm and o = 10.11 mm. Note that eq. (3.3) expresses a geometrical property of
the cortex, the distribution of areal separations, and is not related to neuronal counts or densities.
Substituting the distance variable in eq. (3.3) with its expression in terms of log(FLN) from
eq. (3.2) gives an approximation to the fraction of ordered area pairs that have a given log(FLN)
value, i.e., an approximation to the log(FLN) distribution:

Pllog(})) = a(d(f) cap (—#(zogm - ,,)2> (3.4)

A
B YV 2T
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with v = oA and v = pX — log(c). This is indeed a Gaussian, consistent with the experimental
observation that the FLN distribution is a lognormal. Note that this derivation captures only
the lognormal form, as we have replaced distances in eq. (3.3) by an expression of the FLNs that
holds only on average, eq. (3.2). Accordingly, the width of the Gaussian distribution in fig. 13A

(data) is wider than that of eq. (3.4), due to fluctuations around the average.

(¢) An EDR-Based network model of the cortex

Because the Gagxa9 graph is a densely connected network, one might expect there to be little
structural specificity on the binary level (nodes connected or not). However, Gagxag is actually a
special graph even at the binary level. This specificity follows directly from the EDR (decreasing
probability of projection with distance principle), acting as a physical constraint and the spatial
embedding of the cortex acting as a geometrical constraint. To explore further the role of distance
in the structural properties of the cortical network, we generated two random graph models using
different distance rules. One obeys the observed exponential distance rule of eq. (3.1) (EDR
graphs), the other a constant distance rule p(d) = const, in which the probability of a projection
having a distance d is a constant (CDR graphs). The CDR model can be considered a special
case of EDR with A = 0. To construct the model graphs, we first chose a connection length d
according to the distance rule p(d). We next pick uniformly at random (to avoid biases, following
Jaynes’ maximum entropy principle; Jaynes 1957) an area pair (i, ) from the set of area pairs
in the 29 by 29 matrix of measured distances, whose separation is in the same distance bin as
d, then insert a connection in the graph directed from j to ¢. Multiple connections from j to
1 are allowed, thus generating the projection’s weight; the process is halted after accumulating
M = 536 binary connections (i.e., the number of connections in the Gagyx29). To compare graph
theoretical properties between the model and the cortical graph Gagx29, we generated 1,000
random realisations of each model graph, averaged the measured quantity over these realisations,

and compared this average to the same measure on Gagxo9.

3.2 Predictions in EDR-based random networks

(a) Frequency of uni- and bidirectional connections

Previous studies of collated data had suggested that connections between cortical areas are
dominated by reciprocally interconnected pathways (Felleman & Van Essen, 1991). Markov
et al. (2013) reported a higher incidence of unidirectional, nonreciprocal connections. Here we
show that this feature is well captured by the EDR. If M; and M, are the number of uni-
and bidirectional connections, respectively, the total is M = M; + 2M5. The simplest quantity
that we can compare between model and data graphs is the total number of unidirectional
connections M; (because M is specified, M, is automatically determined). Varying A modulates
the distribution of M; and Ms, see fig. 15A. Since A is the only model parameter, we set it to
A=Ay ~ 0.174 mm~?t (fig. 15A) so that (M;)(\) = M; = 108, the experimental number of
unidirectional connections. Thus, Aps is set by a purely binary graph theoretical measure of the

data, not by weights, distances, or neuronal counts, yet it agrees closely with the decay rate
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FIGURE 15: Distance-rules-based network models of the cortex. (A) The only
model parameter A here is set by setting the number of unidirectional links M; to that
in the data. (B) Motif fractions in the EDR and CDR models and data. Statistics were
carried out on 1,000 random graph realisations; error bars show the SD. (C) Logarithm
of motif ratio counts between model and data. (D) The SD of the deviations in (C) as
function of A, optimal agreement (minimum o) is at Aa = 0.180 mm™!.

Ag¢ = 0.188 mm~*, obtained from the histogram of projection lengths of fig. 14B. This agreement

stems from the fact that the EDR rule is a strong determinant of the cortical network structure.

(b) Motif distribution

A basic binary characteristic of a directed network is its frequency distribution of directed small
binary subgraphs that can be considered as network building blocks that are characteristic of
different types of networks (Milo et al., 2002). For example, Milo et al. (2002) looked at three-
node motifs and showed that information-processing networks were characterised by certain,
abundant triangular motifs. There are 16 possible three-node motifs (abscissa symbols in panels
(B) and (C) of fig. 15). The EDR model returns motif frequencies similar to those found in the
data as shown in fig. 15B. Figure 15C compares the deviations by considering the log of the ratio
of the model motif count to the count of the same motif in the data. Let o denote the SD
of the fluctuations in fig. 15C. Figure 15D plots oa versus A, showing that the best agreement
(minimum point) is achieved at Aa. Thus, the EDR fits the data much better than the CDR:
the SD o between the experimental data and CDR is over 2.6 times larger (0.0377) than the
deviation for EDR (0.0145), at A = Aa = 0.180 mm~!. This A value does not necessarily equal
An because it is derived from an entirely different binary graph measure. The similarity of
these values indicates that the EDR captures important aspects of cortical network structure. In

the following, unless specified otherwise, we used Aa to generate the EDR graphs (0.150 mm *
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= Arn < Ay < Aa < A\g = 0.188 mm_l). Although the graphs are small (29 nodes) and the
degree distributions noisy, the comparisons between models and data nevertheless show that the
EDR better captures the frequency distributions than does the CDR.

(c) Global and local efficiency during removal of projections

Evidence that the differential effect of weak link removal is largely due to the distance rule is
shown in fig. 16. Both local and global efficiencies decay slowly for the CDR, whereas the EDR

model displays a similar behaviour as the data.

A 04 ;r LS T T T I
X
L E & EDR
- L B .
W oaf fw = -
(-] N
w L
1)
2 0. e
&
[ =t
2
Q
=
w
B f i .
0 01 02 03 04 05 06
Density P
B 04 T T | T T 1
n CDR
W ooal R
i A | oaa|E|E
2 J ‘x\ strong |— |—
QD02 — ——— 1 weak |—— |—
g s ‘__""":_'—”- _,_.-’j) N -
o P P e EDR/CDR| Eg | Ei
© ’ = rETESE P
£ o1} J),/ L a=s? strong
1l Iy e : b - weak [—= = |——
Ty =
=
f. 7

Densi!y P '

FIGURE 16: Efficiency in the two models. Effects of graph density on efficiency
measures via sequentially deleting weak (blue, green) or strong (black, red) links. Data
comparison with (A) EDR model, dashed lines and (B) CDR model, dashed lines.

The higher local, compared to global, efficiency suggests that local information processing is
more voluminous and that within the clusters of areas in the backbone, the strong connections
provide multiple alternative paths for functional interactions. Mathematically speaking, those
terms increase in Fj for which the central node 7 loses a weakly connected neighbour j during the
removal process. Due to the distance rule, however, if j is a weak link neighbour of 7, then all its
connections to the strong link neighbours of ¢ must be weak, since j is then a node physically far
from i and its immediate neighbourhood (e.g., since Lyon is far from the Hague and the Hague
is close to Amsterdam, then Lyon is also far from Amsterdam).
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Conclusion

Spatial information is a crucial feature of the cortical network. The EDR coupled with interareal
distances generates the lognormal distribution of connection strengths as well as the basic binary
connectivity properties of the interareal network. It is interesting that binary network properties
are recovered from a distance rule, which is a continuous spatial property of the system. Because
the EDR strongly shapes the cortical network structure, it is to be expected that it is a selector

for the types of information theoretic algorithms implemented by the cortex.
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Abstract

Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher
to lower areas of the visual cortex is important for the access of visual information to awareness.
However, the influence of corticocortical feedback on awareness and the nature of the feedback
effects are not yet completely understood. In the present study, we used electrical microstimu-
lation in the visual cortex of monkeys to test the hypothesis that corticocortical feedback plays
a role in visual awareness. We investigated the interactions between the primary visual cortex
(V1) and area V4 by applying microstimulation in both cortical areas, at various delays. We
report that the monkeys detected the phosphenes produced by V1 microstimulation but that
subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A sec-
ond experiment examined the influence of V4 microstimulation on the monkeys’ ability to detect
the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4
neurons failed to modulate the monkeys’ perception of a stimulus in their receptive field. We
conclude that conditions exist where microstimulation of area V4 has only a limited influence on

visual perception.

1 Introduction

The question of how visual awareness emerges in our brain is one of the major challenges that
remain to be addressed in neuroscience. There is not yet a consolidated theory of how visual
percepts reach awareness (Dechacne et al., 2006; Lamme, 2003; Zeki, 2003). One influential the-
ory posits that information reaches consciousness when it ignites reciprocal interactions between
multiple brain areas (Edelman, 1987) that allow sharing of information in a global workspace
(Dehaene & Changeux, 2011; Dehaene et al., 2003). Feedback connections might be important
for this process, as they can amplify neuronal activity in the lower areas gating the access to
consciousness (Dchaene & Changeux, 2011; Lamme & Roelfsema, 2000; Super et al., 2001). Neu-
rophysiological experiments have implicated corticocortical feedback in visual awareness (Super
et al., 2001), figure-ground segregation (Lamme et al., 1998; Super et al., 2001) and shifts of
visual attention (Moore et al., 2003; Moore & Fallah, 2001, 2004; Noudoost & Moore, 2011;
Roelfsema et al., 1998). Specifically, neuronal responses in primary visual cortex (V1) are en-
hanced by feedback connections if a monkey detects a figure on a background (Lamme et al.,
1998; Poort et al., 2012) but this amplification does not occur if the monkey fails to perceive the
figure (Super et al., 2001).

Transcranial magnetic stimulation (TMS) experiments provided additional support for the role
of feedback connections in awareness. Silvanto et al. (2005) applied TMS to V1 to evoke
phosphenes, artificial percepts of light. They showed that an additional sub-threshold TMS
pulse in motion-sensitive area V5 increases the probability of detecting a moving phosphene
instead of a stationary one, but only if it precedes V1-TMS by 10-50ms, in accordance with a
role of feedback connections. At the same time, V1-TMS can also interfere with the perception
of phosphenes that are evoked by V5-TMS (Pascual-Leone & Walsh, 2001). This interference
effect was only observed if V5-TMS preceded V1-TMS, again suggesting a role for feedback

connections.
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Our main experiment was modelled after these TMS experiments, but we applied microstim-
ulation (MS) in two areas of the visual cortex of monkeys. The advantage of MS is that the
technique activates a more circumscribed population of neurons (Histed et al., 2009; Schiller &
Tehovnik, 2008; Tehovnik, 1996; Tehovnik et al., 2005). Will subthreshold MS in a higher visual

area influence the perception of phosphenes evoked with MS in V17

In a first experiment we applied subthreshold MS in area V4 in a task where monkeys had to
detect a phosphene evoked by MS of V1 neurons with overlapping receptive fields (RFs). We
expected that V4-MS would modulate the perception of phosphenes elicited by V1-MS. To our
surprise, even though feedback connections from V4 to V1 have a strength that is comparable
to that of those from MT to V1 (Markov et al., 2011b), we observed no effect of V4-MS on
the phosphene detection threshold in V1. We next tested if V4-MS influences the distribution
of spatial attention across a visual stimulus, in a contrast change detection task as has been
observed with MS of the frontal eye fields (Moore & Fallah, 2001). However, we also did not
observe any effect of V4-MS in this task. Our results imply that there are conditions where
V4-MS neither influences the detection of V1-evoked phosphenes nor the distribution of visual

attention.

2 Methods

2.1 Surgeries and mapping

Two male Rhesus macaques (monkeys B and C) participated in this study. In a first operation,
a head holder was implanted. In a separate surgery, arrays of 4x5 or 5x5 electrodes, 80 pm
thick 1 or 1.5 mm long (Blackrock Inc.) were chronically implanted in arecas V1 and V4. The
surgical procedures were performed under aseptic conditions and general anaesthesia. They
complied with the US National Institutes of Health Guidelines for the Care and Use of Labora-
tory Animals, and were approved by the Institutional Animal Care and Use Committee of the
Royal Netherlands Academy of Arts and Sciences. Details of the surgical procedures and the

postoperative care have been described elsewhere (Poort et al., 2012; Super & Roelfsema, 2005).

We measured the receptive field (RF) dimensions of every V1 recording site by determining the
onset and offset of the response to a slowly moving light bar for each of four movement directions
(Kato et al., 1978). V4 RFs were mapped by presenting white squares (1x1 degree of visual angle
(deg)) on a grey background at different positions of a grid (1 deg spacing).

2.2 Microstimulation

For microstimulation (MS), we used a custom-made two-channel constant current stimulator
to generate trains of negative-first biphasic pulses of 400 ps duration (200 ps per phase) at a
frequency of 200 Hz, through one of the electrodes in V1 or V4. We varied the amplitude and
number of pulses (see below), but all currents stayed within the range of 5250 pA. We tested
the impedance of the stimulated electrodes before every session and obtained values between
40 and 280 kQ (mean 107 k9, s.d. 62 k). Even though unlikely, to rule out any changes in
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impedance over days due to the MS, we checked in monkey C whether there was a significant
change in impedance across sessions. The mean difference was -13.7 kQ + 12.6 kQ (mean +

s.e.m) and as expected, it was not significantly different from zero (p > 0.1,¢;; = —1.09).

2.3 Behavioural setup

The monkeys performed both tasks while seated at a distance of 75 cm from a 21 inch CRT
monitor with a refresh rate of 70 Hz (phosphene detection task) or 100 Hz (dimming detection
task) and a resolution of 1024x768 pixels. The eye position was monitored with a video-based
eye tracker (Thomas Recording) and sampled at 250 Hz. A trial was initiated when the monkey
had maintained his gaze for 300 ms within a (virtual) fixation window, 1.5 deg in diameter,
centred on the fixation point. The monkey obtained a juice reward at the end of each correct

trial.

2.4 Phosphene detection task

To estimate the phosphene detection threshold we used a yes/no forced choice task with delayed
saccade (fig. 1A). On each trial we presented a fixation dot in the center of the screen (0.3 deg in
diameter) and a “catch dot” in the periphery (the same size as the fixation dot). We randomly
selected 50% of the trials as MS trials and on those trials we delivered a train of MS pulses after
300 ms of fixation to elicit a phosphene at the location of the stimulated electrode’s RF in the
monkey’s visual field. The other 50% of trials were catch trials without MS. In both conditions
the monkeys were required to maintain fixation during an additional delay of 500 ms. After this
delay the fixation dot turned blue, cueing the monkey to make a saccade. The additional delay
excludes reflexive saccades that might be elicited by the direct activation of motor structures
like the superior colliculus (Tehovnik et al., 2005, 2003). The monkeys reported the detection
of a phosphene by making a saccade to the location of the receptive field and the absence of a
phosphene by making a saccade to the catch dot. The trial was considered correct only if the
monkey reported a phosphene in MS trials or made an eye movement to the catch dot in catch

trials, and incorrect otherwise. The monkeys obtained a juice reward after every correct trial.

Before they could perform this task, the monkeys were trained on a very similar task, in which
they had to report the presence of a visual stimulus that was flashed for 20 ms on 50% of the
trials. The stimuli were presented at various positions on the screen and we decreased their
luminance as the monkeys became better in the task. Once the monkeys’ accuracy was higher

than 80% with dim targets, we replaced the visual stimuli by MS.

To determine the threshold for the electrical stimulation we varied the amplitude of the electrical
MS using a Bayesian adaptive psychometric method called QUEST (Watson & Pelli, 1983) set
to determine a threshold of 80% correct. To increase the robustness of the estimation we did
not use every single correct or incorrect answer as input to the QUEST but we introduced a
counter for both correct and incorrect MS trials. Every time there was a correct or incorrect
MS trial we incremented the corresponding counter. Once either of the counters reached a value
of two the QUEST was updated and both counters were set to 0. The update of the QUEST

was done in the following manner: if the correct trial counter reached 2 first, then the QUEST
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FIGURE 1: Phosphene detection task. (A) After an initial period of 300 ms of
fixation, a train of pulses was delivered to V1 to evoke a phosphene at the retinotopic
location of the RF of the stimulated cells (circle). We also presented a “catch” dot
that was the target of the saccade on trials without microstimulation. After a delay
of 500 ms, the fixation point changed colour, cuing the monkeys to make a saccade.
Saccades to the receptive field in MS trials and to the catch dot on trials without MS
were followed by a juice reward. (B) All combinations of V1 and V4 receptive fields
for monkeys B and C that were tested in the phosphene detection experiment. The
colour maps show V4 receptive fields and the white squares illustrate V1 receptive
fields. Colour scale as in fig. 3A.
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was fed with a value of 1, meaning that it should decrease the amplitude of MS. If the counter
of incorrect trials was the first one to reach a value of 2, the QUEST was fed with a value of
0, indicating that it should increase the current. After 15 reversals (a reversal being a change
in the monotonicity of the series of successive current amplitudes) the QUEST stopped and the

threshold was computed as the mean of the last 10 reversals.

In each session we tested a combination of one V4 electrode and one V1 electrode with overlapping
RFs. First we measured the threshold for phosphene detection in the V4 electrode, with 3
(monkey C) or 4 pulses (monkey B) with a separation of 5 ms (200 Hz). We used one more
pulse in monkey B to keep the current thresholds below 100 pA. The average V4 threshold
was 51 + 33pA (mean + s.d.). We then determined the phosphene detection threshold for the
electrode in V1 with trains of 5 pulses. Of all trials, 50% were V1-MS trials and the other 50%
were catch trials, without microstimulation in V1. There were 11 conditions for V1-MS trials.
Ten of these conditions combined the train of pulses in V1 (evoking the phosphene) with V4-MS
at 50% of the V4 threshold (measured at the start of the session). These 10 conditions tested 10
different stimulus-onset asynchronies (SOAs) so that V4-MS either preceded or followed V1-MS.
V4-MS was between -68 ms and 22 ms after V1-MS in steps of 10 ms (“V4-V1” conditions).
The 11th condition monitored the phosphene detection threshold in V1 without V4 stimulation
(“V1-only” condition). The average threshold in this condition was 32+18 nA. These 11 QUEST

procedures ran in parallel, in a randomly interleaved fashion.

Of the catch trials, 90% were without any MS and the animal was required to make a saccade
to the catch dot. In the other 10% of catch trials we only stimulated V4 to investigate if the
V4-MS at 50% of the threshold could elicit a phosphene by itself. In these trials the monkeys
were also rewarded for eye movements to the catch dot (just as in the regular catch trials) and
no reward was given for making a saccade toward the receptive field of the V4 stimulation site.
We will refer to subthreshold V4-MS trials in which the monkey made an erroneous saccade to
the overlapping V1/V4 receptive fields as “V4 false alarm responses” (keep in mind the monkeys
were required to make saccades to the V1/V4 receptive field location only upon V1-MS). To
investigate the influence of V4-MS on catch trials, we compute the standard false positive rate
(FPR) on regular catch trials as the percentage of catch trials in which the monkeys reported a
phosphene, and the V4 false positive rate (V4 FPR) as the percentage of subthreshold V4-MS

trials in which monkeys reported a phosphene.

We collected a total of 15 sessions in monkey B and 16 sessions in monkey C. In average every
session had 815 4 108 trials. Figure 1B illustrates the V1-RFs (white rectangles) that have been
superimposed on the V4-RFs (colour plots). On every test day we used a different electrode
combination. For each SOA, threshold values either lower or higher than 5 times the standard
error across sessions were considered outliers and removed from the analysis. On average, 15%

of the single-session thresholds were removed.

2.5 Analysis of behavioural data

All statistical tests were performed using Matlab standard functions. Unless noted otherwise,
all t-test are one-sample, two-tailed tests. Paired t-test were also two-tailed. In the phosphene

detection task we used a one-way ANOVA to assess the influence of SOA and we computed
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the monkey’s d-prime using the Palemedes Matlab toolbox (Prins & Kingdom, 2009). For each
session, we first computed the psychometric functions of two conditions by fitting the data a
logistic function. The first condition grouped the trials with MS in V1 only, with the FPR as the
data point for zero current (V1-only condition). The other grouped all the trials with MS in both
V1 and V4 regardless of SOA (V1-V4 condition), with the V4 FPR as the data point for zero
current. This way, we provided an accurate measure of the false alarm rate in each condition,
and the psychometric functions expressed d-prime as a function of stimulation current. We then
averaged the d-primes across sessions, clipping values larger than 4 to a value of 4 because these

very high d-prime values depended strongly on the presence of one or a few errors.

2.6 Dimming detection task

To test the influence of V4 microstimulation in a distributed attention task, we trained the
monkeys to perform a three-option forced-choice task in which they had to detect the dimming
(transient decrease in luminance) of one of three bars (fig. 2A). Each bar was 5 deg long and
0.21 deg wide; one was presented in the RF of the tested V4 electrode and the other two at the
same eccentricity but at a position rotated by 120° around the fixation point. We also presented
line segments in the background (1 deg long and 0.05 deg wide) with the same luminance of
47.6 cd/m? as the target bars (background: 11 cd/m?). They were randomly oriented and
placed with 0.5 deg of both horizontal and vertical spacing plus a randomised jitter on their
central position based on a normal distribution with a s.d. of 0.2 deg. These background line

elements covered the whole screen except from a region 1 deg wide around each target bar.

We started each session by measuring the threshold for phosphene detection at the tested V4
electrode, with 20 pulse trains (200 Hz, total duration 100 ms). In the main task, after the initial
300 ms of fixation, we presented the three bars and the background. The monkey had to detect
the dimming of one of the three bars and report it by making an eye movement to the relevant
bar within 500 ms of the dimming. Reaction times (RTs) shorter than 100 ms were considered
as false alarms and the trial was discarded. All bars were equally likely to dim, but only one did
so on each trial, between 200 and 900 ms after the presentation of the stimulus. The dimming
lasted for 100 ms and on MS trials (50% of the trials) the dimming was immediately preceded by
the 100 ms MS train applied to a V4 electrode with a RF that overlapped with one of the bars.
We used an amplitude of half the V4 phosphene detection threshold value. We also carried out
a few sessions with suprathreshold V4 stimulation. In these sessions we set the current at 200%
the V4 phosphene detection threshold.

The temporal expectation of an event can modulate perceptual processing (Vangkilde et al.,
2012) so we maintained a constant hazard rate for the dimming event. Specifically, we used
an exponential distribution of dimming times between 200 ms and 900 ms. In addition, 10%
of the trials were “long” trials with a dimming time of 1200 ms. As a result, the hazard rate
was constant between 200 and 900 ms, which means the dimming did not become more and
more likely to occur as the time passed after stimulus presentation. If the dimming still had
not occurred at 900 ms, however, the trial automatically became a long trial with dimming at
1200 ms. These long trials were not included in the analysis, they were just used to balance the

hazard rate for the monkey.
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FICGURE 2: Dimming detection task. (A) After 300 ms of fixation, three large bars
were presented among smaller distractor segments. One of the larger bars overlapped
with a V4 RF. In half of the trials a train of 20 pulses (total duration 100 ms) with
a current corresponding to 50% of the phosphene detection threshold was delivered to
V4. After the end of the pulse train, one of the bars dimmed for 100 ms and monkeys
had to make a saccade towards this bar. The luminance decrement was controlled
by a staircase procedure that kept performance at 79.4%. (B) Receptive fields of V4
recording sites in the dimming detection task relative to one of the target bars (grey
bars). Colour scale as in fig. 3A.
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During the experiment we measured the luminance change threshold for detection of the dimming
(in percentage of the bar luminance) with and without MS, separately for each bar. We used
a 3 up/1 down staircase procedure. The 6 staircases (3 bars x 2 MS conditions) were run in
parallel with interleaved trials. The gamma-corrected RGB luminance of the bar was 47.6 cd/m?,
and the 8 luminance values for the dimmed bars were 29.4, 31.9, 34.3, 36.7, 39.2, 41.6, 44 and
46.4 cd/m? respectively.

Across days, we gathered data from 25 sessions in monkey C and 24 sessions in monkey B,
approximately equally distributed across three V4 electrodes per monkey (6 to 10 sessions per
electrode). All the combinations of V1 and V4 RFs are shown in fig. 2B.

3 Results

3.1 Influence of V4 microstimulation on V1-induced phosphenes

Our first experiment investigated how interactions between areas of the visual cortex influence the
detection of phosphenes, and was modelled after previous TMS studies on the interaction between
higher and lower areas of the visual cortex (Pascual-Leone & Walsh, 2001; Silvanto et al., 2005).
We trained two monkeys to detect a phosphene elicited by suprathreshold microstimulation of an
electrode of one of the chronically implanted arrays in V1 and to report the phosphene by making
a delayed saccade to its spatial location in the visual field. We paired V1-MS with subthreshold
microstimulation of an electrode of a V4 array where neurons had overlapping receptive fields, at
various stimulus-onset asynchronies (SOAs). We tested the interaction between microstimulation
in V1 and V4 in 15 combinations of V1 and V4 electrodes in monkey B and in 16 combinations

in monkey C (the neurons’ RFs are shown in fig. 1A).

At the start of every experimental session, we determined the threshold value for the detection
of a phosphene evoked by MS in a V4 electrode, and we then set the V4-MS intensity at 50% of
that threshold for the remainder of the session. This choice of 50% of the threshold was inspired
by previous studies using MS in frontal cortex to elicit behavioural changes (Moore & Fallah,
2001). The average V4 threshold was 51 £ 33 pA (mean =+ s.d.). The threshold for evoking
phosphenes with MS in V1 (in the absence of V4-MS) was 32 4= 18 pA, which is slightly higher
than thresholds obtained with acutely inserted electrodes (Tehovnik et al., 2005).

We next investigated the influence of the subthreshold V4-MS on the phosphene detection thresh-
old in V1, at various SOAs between V1-MS and V4-MS. Figure 3A shows an example electrode
combination from a session with monkey C. In this session, the V4-MS threshold was 38.3 pA
(we therefore stimulated with 19 pA in the rest of the session) and the threshold in V1 in the
absence of V4-MS was 27.3 pA. Figure 3B illustrates the sequence of applied currents according
to the QUEST staircase in the V1-only condition (in the absence of V4-MS), and in the V1-V4
condition with an SOA of -38 ms (i.e. V4-MS preceding V1-MS by 38 ms). The MS threshold
in V1 for the -38 ms SOA was 22.7 pA. Thus, in this particular example, V4-MS led to a small
reduction in V1 threshold.

In order to quantify the influence of V4-MS on the phosphene threshold in V1, we computed
the phosphene threshold ratio (PTR) for each SOA, defined as the ratio between the threshold
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FIGURE 3: Example session of the phosphene detection task. (A) Overlap
between RFs of stimulated neurons in V1 and V4 in an example session with monkey
C. White square indicates the RF of the neurons in V1, the heatmap indicates the RF
of the neurons in V4. (B) Example of QUEST staircase that was used to determine
threshold of phosphenes elicited in V1 in the V1-only (black) condition and in the
V1/V4-MS condition with an SOA of -38ms (red). (C) Relationship between the
phosphene threshold ratio (PTR) in V1 and the SOA between subthreshold MS in V4
and MS in V1. Negative values on the x-axis indicate the V4 MS preceded V1 MS.
Y-axis shows PTR, the ratio between V1 MS detection thresholds with and without
V4-MS.

for phosphene detection in the V1-V4 condition at this SOA and the threshold in the V1-
only condition. Thus, a PTR value of 1 means that V4-MS had no effect on the V1 phosphene
detection threshold, a value higher than 1 indicates that V4-MS impaired V1 phosphene detection
and a value lower than 1 that V4-MS facilitated V1 phosphene detection. In the example session
illustrated in fig. 3C, PTR values were lower than 1 across all SOAs, indicating that V4-MS
produced a general decrease of the MS threshold in V1.

To investigate the mean influence of V4-MS on V1 phosphene thresholds, we averaged values
across SOAs to compute PT Rpfeqn for every session (N = 15 for monkey B and N = 16 for
monkey C; fig. 4, coloured arrows on the Y-axis). PT Rpjeqn Was significantly lower than 1 for
monkey B (p < 0.05, t14 = —6.34) and there was a trend in the same direction in monkey C
(p < 0.1, t15 = —1.75). Thus, V4-MS caused a general decrease in V1-MS thresholds. Inspection
of the individual data points in fig. 4 suggests that this effect is relatively independent of the
SOA, although previous studies suggested that V4-MS might interact most strongly with V1
phosphene detection if it precedes V1-MS. We therefore specifically tested the influence of SOA
on the PTR with a one-way ANOVA but did not observe a significant effect of SOA on the
PTR in either monkey (Fy 127 = 0.41, p > 0.1 in monkey C; Fy 117 = 1.62, p > 0.1 in monkey
B). Thus, the effect of V4-MS on V1 phosphene detection did not depend on SOA, although we

observed a general decrease in phosphene detection thresholds (fig. 4).

We suspected that this general increase in phosphene sensitivity might be caused by the detection
of the V4-MS pulses themselves. Although we set the V4-MS pulse amplitude at 50% of the
threshold and we did not reward the monkeys for saccades to V4 phosphenes, it is conceivable
that the monkeys made saccades to phosphenes elicited by V4-MS on a fraction of the trials. To
investigate the detection of V4 phosphenes, we measured a V4 false positive rate (V4-FPR) by
delivering V4-MS in 10% of the catch trials without V1-MS and compared it to the false alarm
rate on trials without MS in either area in the other 90% of catch trials (see Methods). V4-MS
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the x-axis indicate that V4 MS preceded V1 MS. PTR is defined as the threshold with
V4-MS expressed as fraction of the threshold in V1 without V4 MS. Error bars indicate
the s.e.m. across sessions. Coloured arrows on the Y-axis indicate PT Rpfean-

increased the FPR from 10% to 15% in monkey C (paired t-test; p < 0.05, t15 = 2.8) and from
8% to 23% in monkey B (p < 0.01, t14 = 4.3) (fig. 5A), which indicates that monkeys made
saccades to phosphenes elicited in V4 at 50% of the threshold in some of the trials even though

they were never rewarded for these saccades.

We used signal-detection theory (Green et al., 1966) to investigate if the induction of V4-
phosphenes could account for the general decrease in the apparent V1-MS threshold caused
by V4-MS. A genuine increase in the sensitivity for V1-phosphenes should increase the d-prime,
whereas the detection of V4-phosphenes should only change the criterion, i.e. induce a general
increase in the probability of reporting the presence of a phosphene. The signal-detection analy-
sis revealed that the d-prime as function of V1-MS stimulation amplitude was hardly influenced
by V4-MS in either monkey (fig. 5B). For example, the current in V1 at which d-prime reached
a value of 2.12 did not differ between V1-only and V4-V1 MS trials (paired t-test, p > 0.1,
t15 = 1.65 for monkey C and p > 0.1, t14 = 0.68 for monkey B: see arrows on the vertical axis
of fig. 5B). In contrast, the bias was significantly different between conditions (paired t-test,
p < 0.05, t15 = —2.86 for monkey C and p < 0.01, ¢34 = —4.8 for monkey B). As a better
measure for the PTR ratio (which corrects for the influence of V4-MS on the monkeys’ criterion)
we computed a d-prime threshold ratio (DTR), defined as the ratio between the currents at
which the d-prime reached a value of one. In this analysis we had to bin SOAs in groups of
two because the number of trials per SOA bin was insufficient for a reliable determination of
d-primes in individual sessions. As expected, DT Rpscqr did not differ significantly from one
(p = 0.71, t14 = 0.38 in monkey B; p < 0.8, t14 = 0.25 in monkey C; fig. 5C). Thus, although the
V4 stimulation was intended to be subthreshold, the induction of V4-phosphenes on a fraction of

trials accounted for the apparent decrease of the threshold for detecting V1 phosphenes, which
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FIGURE 5: Effect of false positive rates on d-prime. (A) False positive rate
is the fraction of the trials when monkeys made a saccade towards the RF in catch
trials without (dark bars) or with V4 MS (coloured bars). Error bars indicate the
s.c.m. across sessions. (B) Average d-prime as function of V1-MS current in the V1-
only (dark line) and the V4/V1 combined MS condition (coloured line). Shaded areas
indicate the s.e.m. across sessions. (C) Average dependence of V1 d-prime threshold
ratio (DTR) on SOA across all sessions. Negative values on the x-axis indicate that V4
MS preceded V1 MS. DTR is defined as the current in V1 that yields a d-prime value
of one in trials with V4 MS expressed as fraction of V1 current that yields a d-prime
of one without V4 MS. Error bars indicate the s.e.m. across sessions. In this analysis
adjacent pairs of SOAs were combined in bins to have enough data for the computation.

was independent of the SOA (fig. 4). These results, taken together, indicate that V4-MS did not
influence the perception of V1-phosphenes themselves at any SOA.

3.2 Influence of V4 microstimulation on dimming detection

Despite the well-established theoretical and experimental basis for our first experiment, we did
not observe a specific influence of V4-MS on the detection of phosphenes evoked in V1. One of the

reasons for this negative result could be the nature of the microstimulation technique. Little is
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known about the influence of V4-MS on visual perception and we therefore asked if subthreshold
MS in area V4 might at the same time have influenced perception at the location of the V4
receptive fields. Such an effect of MS on perception would not be without precedent. In an elegant
study, Moore & Fallah (2001) demonstrated that MS in the frontal eye fields (FEF) influences
the performance of monkeys in a task in which they had to detect the contrast decrement of a
stimulus in a crowded visual scene. They found that FEF-MS facilitated the detection of the
contrast decrement, but only if the motor field of the stimulated neurons overlapped with the
visual stimulus. One possible interpretation of this result is that the FEF-MS summoned spatial
attention to the FEF motor field, thereby facilitating dimming detection at the corresponding
location in the visual field while interfering with dimming detection at other locations. Could
V4-MS exert a comparable facilitating influence on the detection of a small change in a visual

stimulus, or conversely, might it interfere with visual perception?

To address this question we trained the monkeys to detect the dimming of one of three larger
bars that were presented on a background of smaller, irrelevant line elements (fig. 2A). In half
of the trials the dimming was preceded by a train of 20 MS pulses (subthreshold as determined
in each session with the phosphene detection task) applied to a V4 electrode with a RF that
overlapped with one of the bars. We measured the luminance change threshold for detection of
the dimming (in percentage of bar luminance) with and without MS, separately for each bar.
Across days, we gathered data from 25 sessions in monkey C and 24 sessions in monkey B,
approximately equally distributed across three V4 electrodes per monkey (6 to 10 sessions per
electrode; fig. 2B).

Does V4-MS decrease the detection threshold of the dimming at the V4 RF, perhaps at the
expense of higher thresholds at other retinotopic locations? Figure 6 illustrates the effect of
V4-MS on the dimming detection threshold in an example session. One of the three target bars
was placed in the RF of the stimulated V4 electrode (fig. 6A). It can be seen that the staircases
for the bar at the RF location in the presence and absence of V4-MS converged to a similar
value of ~ 8.6% for the luminance decrement (fig. 6B). We measured the dimming detection
threshold condition as the average decrement for the last 10 reversals (fig. 3C), but did not
observe a significant difference between the MS and the blank condition in the example session

(comparison of the last ten reversals of the staircase, p > 0.1, 15 = 0.59).

We compared the contrast decrement detection thresholds with and without V4-MS across all
sessions in both monkeys (fig. 7A). The average thresholds for the RF-bars were 7.74% and
5.54% (monkey C and B respectively) without V4-MS and 7.94% and 5.25% with V4-MS. For
the bars outside the RF, the average thresholds were 8.88% and 6.62% with V4-MS and 9.12%
and 5.49% without V4-MS. These thresholds were lower than those found by Moore & Fallah
(2001), presumably because they used flashing distractors while our distractors had a constant
luminance. MS did not have a significant influence on the threshold of dimming detection for
any of the bars (paired t-test with Bonferroni correction for testing 2 types of bars, RF-bars and
non RF-bars; monkey B: RF-bar, p > 0.05, to3 = —2.0; non RF-bars p > 0.1, t47 = 0.91; monkey
C: RF-bar, p > 0.1, toy = 0.57; non RF-bars p > 0.1, t49 = —0.94). Thus, V4 microstimulation
influenced dimming detection neither in the RF of the stimulated neurons nor at the other

locations far outside the RF.



82 Chapter 4. Microstimulation in V1/V4 for phosphene induction

A B
—— MS Trials
— = —— Blank Trials
o =
S it
s 2
c [ =
S -
= (&)
&
E (]
| [ =
< =
—
|
0
-14 -9 -4 o 20 40 60 80
Horizontal Position [deg] Trials
c 25
T2
©
E 15
(3}
g 10
g :d :
E
=5 2

Biank MS
Stimulation Condition

FIGURE 6: Example session of the dimming detection task. (A) Overlap be-
tween the RF of the stimulated V4 recording site and the bar in an example session.
Colour scale as in fig. 3A. (B) Staircases of an example session; both for the blank (i.e.
no MS) and the MS condition with a bar in the stimulated V4 RF. (C) Thresholds for
blank and MS conditions of the example session computed as the mean of the last 15
reversals. Error bars indicate s.e.m. of the staircases.

Next, we investigated the possibility that MS influenced the reaction time. In monkey B, the
average reaction time across sessions if the RF bar dimmed was 231.3 £15.6 ms (mean + s.e.m.)
in the MS condition, and 234.9 4+ 10.6 ms without MS, a difference that was not significant
(paired t-test, p > 0.1, to3 = —1.3). If one of the bars outside the RF dimmed, the average
reaction time in the MS condition was 211.9 4 10.2 ms and 212.1 £ 10.5 ms without MS (paired
t-test, p > 0.1, 23 degrees of freedom, t47 = —0.02). Similar results were obtained in monkey
C, with a mean reaction time of 275.5 £ 17.3 ms with MS and 275.9 4+ 16.9 ms without MS if
the dimming bar fell in the RF (paired t-test, p > 0.1, to4 = —0.1). If one of the other two bars
dimmed, the mean response time was 258.2 £ 12.1 ms with V4-MS and 257.2 4+ 13 ms without
MS (paired t-test, p > 0.1, t49 = 0.59). Thus, subthreshold microstimulation in area V4 did not

influence response time in the dimming detection task either.

To probe whether we would see an effect of V4-MS on dimming detection at higher currents,
we also tested MS at 200% of V4 phosphene detection threshold in a few experiments to ensure
that the MS-pulses exert an effect on activity in V4. We ran three sessions in monkey B and
two in monkey C. In monkey C we did not observe an effect of V4-MS on contrast detection.
However, we did observe a consistent effect in monkey B across the three sessions. MS in V4
increased the dimming detection threshold for the bar that was in the receptive field (overlap;
noted "OV" in fig. 7B) and reduced the threshold for bars outside the receptive field (no overlap;
noted "'no OV" in fig. 7B). It should be noted however that the phosphene induced at 200% of
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FIGURE 7: Effect of V4 MS on dimming detection thresholds. (A) Dimming
detection thresholds for the V4-MS trials (x-axis) and the blank trials (y-axis) for
the bar in the RF (left panels) and the two bars outside the RF (right panels) in
monkey B (upper panels) and monkey C (lower panels). (B) Sessions with supra-
threshold V4 stimulation (stimulation current was set at 200% of the threshold). We
computed the difference between dimming detection thresholds (% contrast change) for
bars overlapping with the stimulated V4 RF (OV) and non-overlapping bars (no OV).
Shown are average results of 3 sessions in monkey B and 2 sessions in monkey C.

the threshold makes it difficult to disentangle possible effects of V4-MS on attention from the

effects caused by the creation of a visual percept.

4 Discussion

In the present study we tested the hypothesis that neuronal activity in V4 may gate the access
of neuronal activity in lower visual areas into awareness or may cause shifts of visual attention.
To this end we electrically stimulated V4 and probed the effects on the perception of phosphenes
evoked in V1 or on the perception of a contrast change of a visual stimulus. We did not observe
an effect of V4 MS on behavioural thresholds in either task, which implies that subthreshold
MS in V4 neither has a strong impact on the sensitivity for V1-induced phosphenes nor on the

distribution of attention.

4.1 Influence of V4 microstimulation on V1 phosphene detection

Microstimulation in area V4 had little influence on the threshold for the detection of phosphenes

that were elicited by MS in V1. The absence of an interaction between MS in V1 and V4 may
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seem unexpected in view of previous TMS studies in areas V1 and MT (Pascual-Leone & Walsh,
2001; Silvanto et al., 2005). These studies demonstrated that a suprathreshold TMS pulse in arca
V1 interacts with a subthreshold TMS pulse applied to motion-sensitive area MT by decreasing
the threshold for motion perception, but only if MT stimulation precedes V1 stimulation. This
effect was strongest if the delay between MT and V1 TMS was approximately 50ms, which

suggested the involvement of feedback connections.

Here we did not observe such a delay-specific influence of V4-MS on the threshold for phosphenes
evoked by V1 stimulation, but only a general decrease of the threshold that was compatible with
the detection of the V4-phosphenes on a fraction of trials. There are a number of differences
between the previous TMS studies and the present study that could explain the disagreement.
The most notable difference is the method used to influence neuronal activity in the cortex. TMS
stimulates a large region of cortex (several millimetres to centimetres; (Walsh & Cowey, 1998,
2000). In contrast, MS influences a much smaller region of 1 mm or less around the tip of the
electrode (Histed et al., 2009, 2013; Tehovnik, 1996) and allows for a much more precise control
over the retinotopic overlap of stimulated neurons in the two brain areas. In the present study
we only selected pairs of recording sites with overlapping receptive fields, as V4 neurons with
RFs that overlap with those in V1 are predicted to exert a stronger control over V1 activity than
V4 neurons with RFs that do not overlap. This difference between the present MS study and
previous TMS studies raises the possibility that retinotopically non-overlapping regions targeted
by TMS contributed to the interaction between the two areas. Another difference is that the
TMS experiments observed that activation of MT influenced the sensory quality of the perceived
phosphene rather than the threshold itself. Because we only tested if feedback from V4 influenced
the threshold of phosphenes induced in V1, we cannot rule the possibility that altered feedback

from V4 changed the sensory qualities of the phosphene, like its perceived shape or colour.

4.2 Influence of V4 microstimulation on the distribution of attention

We considered the possibility that the absence of a specific V4-microstimulation effect on V1
phosphene detection is related to side effects of the microstimulation procedure. For example,
V4 microstimulation might interact with visually driven activity to alter visual perception. Our
second experiment therefore paired subthreshold MS in V4 with the dimming of a visual stim-
ulus. We did not observe an effect on the detection of a dimming stimulus, thus demonstrating
that subthreshold V4 microstimulation does not cause gross impairments in the perception of
subtle changes of visual stimuli. Previous experiments with a similar paradigm showed that
microstimulation of FEF does influence dimming detection, in a manner that can be explained
by an attention shift (Moore et al., 2003; Moore & Fallah, 2001, 2004) and comparable results
were recently obtained in area LIP as well (Dai et al., 2014). Specifically, MS in area LIP or FEF
enhanced detection of changes in the contrast of a visual stimulus, but only for stimuli inside the
location of receptive field of the stimulated neurons. However, despite using a similar paradigm
and the same stimulation current levels (mean of 20 pA in our experiment vs. median of 10 pA in
Moore & Fallah (2001) and 40 pA in Dai et al. 2014), our second experiment also failed to reveal
an effect of MS on the threshold in a dimming detection task. This second null result suggests
that the influence of V4 stimulation on covert attention is limited. In contrast, stimulation of

FEF or LIP appears to trigger feedback mechanisms to the visual cortex that influence the spatial
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distribution of attention (Dai et al., 2014; Moore et al., 2003). The influence of microstimulation
in FEF or LIP on the distribution of attention is consistent with the previously proposed role
of frontal and parietal cortex in attentional control (Rossi et al., 2009). In contrast, the present
results demonstrate that MS of V4 does not cause a shift of attention, which suggests that it is

more involved in visual processing than in the control of spatial attention.

4.3 Orthodromic or antidromic microstimulation effects?

MS activates a sparse set of neurons that most likely have axons running in the vicinity of the
tip of the stimulation electrode (Histed et al., 2009). The MS effects are specific to the stim-
ulated area if the stimulated axons are part of neurons with cells bodies in this area. These
stimulation effects can propagate to other cortical or subcortical regions such as the pulvinar
(Kaas & Lyon, 2007; Purushothaman et al., 2012). Moreover, MS can also cause long-range,
antidromic stimulation effects if it activates the terminals of neurons with cell bodies in another
area. In our V1-V4 microstimulation experiment we therefore have to consider the possibility
that V4-MS antidromically activated V1 neurons. However, there are a number of reasons why
the contribution of antidromic activation of V1 cells is likely to be minor. First, at the cur-
rent levels we used, most cells in the stimulated region are activated by the electrical stimulus
not directly but only transynaptically (i.e. the collision test is negative for these cells) and
these transynaptically activated neurons can, in turn, only cause orthodromic stimulation ef-
fects (Butovas & Schwarz, 2003). Accordingly, previous studies demonstrated that orthodromic
stimulation effects are many times stronger than antidromic effects, even between areas with
strong direct projections (Bullier et al., 1988; Girard et al., 2001; Movshon & Newsome, 1996).
Second, the projection from V1 to V4 is relatively weak (Markov et al., 2011b) and most of the
interactions between V1 and V4 are presumably mediated by intermediate area V2. If V2 cells
would be activated antidromically by V4-MS, the activated V2 cells will still provide a genuine
feedback signal to V1. Thus, the most likely effect of V4-MS on V1 activity is through feedback

connections, although we cannot completely rule out a contribution of antidromic MS effects.

4.4 Interactions between brain areas for the perception of phosphenes

Although we did not observe an influence of V4 microstimulation on V1 phosphene thresholds,
our results do not exclude the possibility that V4-MS changed the perceptual quality of the
phosphenes. Schiller et al. (2011) recently trained monkeys to report the size, colour and
brightness of phosphenes evoked by cortical MS. They provided evidence that V1 phosphenes
evoked by currents in the same range used here have a small size (less than 0.5 deg), a relatively
weak contrast (less than 10%) and in some cases have a specific colour. Future studies could
use the double MS paradigm to test the influence of MS in higher visual areas on the perceived
quality of phosphenes evoked in area V1. For instance, it is conceivable that subthreshold
stimulation of cells tuned for colour in V4 could change in the perceived colour or shape of
phosphenes evoked by MS in area V1. A similar argument can be made about the absence of an
effect of V4 stimulation on the distribution of attention. We did not obtain evidence that V4 MS
influences the distribution of spatial attention, but cannot exclude that V4 can exert an influence

of feature-based attention. For example, MS of V4 neurons tuned to red might lead to a specific
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improvement in the detection of the dimming of red bars relative to the dimming of green bars.
Future experiments along these lines might further our understanding of the functional role of

feedback connections between extrastriate cortex and area V1.



Chapter 5

Microstimulation of feedforward

and feedback pathways

Ludwig van Beethoven,

Sinfonia eroica, composta per festeggiare il sovvenire d’un grand’Uomo

87



88 Chapter 5. Microstimulating feedforward and feedback pathways

1 Introduction

Studying how visual activity propagates through the visual cortex is crucial in order to under-
stand the mechanisms of visual perception. One of the pillars of this area of research is the
distinction between feedforward and feedback propagation (Lamme & Roelfsema, 2000). Such a
distinction is based in both anatomical and functional studies. From an anatomical perspective,
there is a clear distinction between feedforward and feedback connections. Feedforward pathways
relay information from the lower to the higher areas of the cortical hierarchy, whereas feedback
connections follow the opposite direction (Felleman & Van Essen, 1991; Salin & Bullier, 1995).
Interestingly, these anatomical differences have a functional counterpart. Depending on whether
a stimulus is consciously perceived or not, it will engage feedforward and feedback connections
differently (Dehaene & Changeux, 2011; Lamme, 2006). A similar dichotomy can be observed in
different attentional tasks. Depending on the experimental conditions, a cognitive task could be
solved mostly through feedforward connections or it could require the involvement of feedback

connections as well (Buschman & Miller, 2007; Connor et al., 2004).

A clear example of a cognitive task that engages both types of connections is the Figure-Ground
segregation task. Originally it was shown that neurons in the primary visual cortex (area V1)
enhance their firing rate when their receptive field (RF) is on the figure compared to when it
is on the background (Lamme, 1995; Super et al., 2001). This effect is known as figure-ground
modulation (FGM). In a recent paper, Poort and colleagues (Poort et al., 2012) showed that
boundary detection is computed in the lower areas in a bottom-up manner, whereas modulation
on the centre of the figure depends on feedback connections. From electrophysiology (Poort
et al., 2012) as well as lesion experiments (Schiller, 1995), there is evidence that V4 plays a
major role on figure ground segregation and object recognition. However, despite it being known
that both V1 and V4 are key cortical areas in segregating a figure from the background, the

precise way they interact is not yet known.

One of the main reasons this is not yet clear is that most of the studies that analysed how neural
activity propagates through the visual system use a passive approach. They engage animals or
humans in different visual tasks and record with invasive or non-invasive methods how visual
activity propagates. However, especially in experiments involving primates, only a small fraction
of studies interfere or manipulate neural activity using techniques like micro stimulation (MS). In
a recent paper Logothetis et al. (2010) showed that after electrical stimulation of the LGN, BOLD
activity in higher areas was increased only in monosynaptically connected ones and decreased
otherwise. However, in these experiments monkeys were either under anaesthesia or performing
a passive fixation task. Thus, it remains to be explored how electrically induced changes in
activity would propagate both in feedforward and feedback direction while monkeys perform a

cognitive task.

In the present study, we delivered MS to the visual cortex (areas V1 and V4) while recording with
chronically implanted electrodes in monkeys performing a figure ground segregation task. Will
the induced changes propagate through the visual cortex under these conditions? And if so, would
there be any difference between feedforward and feedback pathways? Would that propagation

depend on whether the stimulated receptive field falls on the figure or on the background? And
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if there is a difference, what can that tell us about the properties and dynamics of feedback as

well as feedforward connections?

We found that changes in neural activity induced by MS under a demanding cognitive task prop-
agate through the visual cortex both in feedforwad and feedback directions, but with different
properties and dynamics. Moreover, the propagation is affected by the figure or ground condition
in a way that suggests feedback from V4 to V1 across the whole visual field, even in the absence

of a relevant stimulus.

2 Results

2.1 Effect of cortical microstimulation

It is well known that electrical stimulation of the cortex results in a brief but strong activation
of neurons near the tip of the stimulating electrode (Histed et al., 2009, 2013; Ni & Maunsell,
2010; Schiller & Tehovnik, 2008; Seidemann et al., 2002; Tehovnik, 1996; Tehovnik et al., 2005).
This excitatory response has been widely used as a mean to study different aspects of system
neuroscience (Ekstrom et al., 2008; Houweling & Brecht, 2008; Moore & Fallah, 2001). On top
of this excitatory response previous studies have shown that this brief excitation is followed by
a long lasting (~ 100 ms) reduction of activity (Butovas & Schwarz, 2003; Houweling & Brecht,
2008; Seidemann et al., 2002). Despite its incredible potential in the study of cognition, this
long lasting suppression of activity has been somehow neglected. In the present study we took
advantage of both the excitatory and the suppressive effects of MS. Since this suppressive effect
has been documented in several studies (Butovas & Schwarz, 2003; Houweling & Brecht, 2008;
Seidemann et al., 2002), we did not perform a full characterisation of this effect, but rather
corroborated in an example electrode that after MS of area V4 we observed both the excitatory
and inhibitory phase of the MS induced changes in the vicinity of the stimulated electrode.
To this effect, we delivered a single pulse of 60 pnA through one of the V4 chronically implanted
electrodes and recorded single unit activity from a neighbouring electrode while the monkeys were
looking at a static texture (fig. 1A). After the pulse artifact was removed (see methods), the band
passed signal was thresholded for single units (fig. 1B). In almost every trial there was a spike
immediately after the MS pulse, followed by a clear long lasting suppression in activity (fig. 1C).
Moreover, the MS-induced spikes and the texture-driven ones have the same waveform, which
indicates that they belong to the same neuron (fig. 1D). Thus, as in previous studies (Butovas
& Schwarz, 2003; Houweling & Brecht, 2008; Seidemann et al., 2002), we provided evidence that
the MS induced changes in the cortex area of a biphasic nature. There is a strong, fast and
brief excitation, followed by a long lasting suppression of activity. In the following experiments
we used this fact in our favour in order to unveil differences between feedforward and feedback
propagation of activity as well as to gain insight on how they are involved in a figure-ground

segregation task.
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FIGURE 1: Effect of electrical stimulation in the cortex. (A) Schematic of the
textured stimulus presented to the monkeys during the fixation-only task. (B) Band
passed signal of a single trial for the fixation-only task. Circles indicate detected spikes.
Yellow area indicates the period of MS. During that period data samples have been set
to zero to remove the MS artifact. (C) Raster plot for MS trials on the fixation only
task. Each dot represent a spike, red dots are spikes detected right after stimulation.
Yellow area indicates the period of stimulation. (D) Spike count histogram for all the
recorded MS trials. Red count indicates spike count right after MS pulse. Inset pictures
detailed the average waveform for spikes detected right after MS (red) and the rest of
the detected spikes (black).

2.2 Propagation of V1-MS effect

In the previous section we recorded from an electrode in the vicinity of the stimulation site and
confirmed the biphasic nature of MS-induced changes. A natural question that follows is how do
these changes in activity propagate in the feedforward direction. If we stimulate in area V1, will
both phases be echoed in a higher area like V4 or will only one of them be transmitted? To answer
this question we stimulated area V1 while recording in area V4. Logothetis et al. (2010) provided
evidence that MS induced excitation could propagate only to monosynaptically-connected areas.
In their experiments however, the monkeys were either under anaesthesia or performing a very
simple fixation-only task. Thus, in the present study we engaged the monkeys in a figure-ground
segregation task in order to study this propagation in the context of a cognitive task. In this
figure-ground segregation task one third of the trials were Catch trials (i.e. trials in which there
was no figure present and the monkeys were requested to hold fixation for an extended period
of time). In the other two thirds of the trials there was a figure present at one of two locations
of the visual field and the monkeys were requested to make a saccade to the figure after 350 ms.
Thus, we had a two-by-to design with MS/Blank trials and Figure/Catch ones, resulting in
four conditions MS-Catch, MS-Figure, Blank-Catch and Blank-Figure. In order to gain a better
understanding of the propagation of MS-induced changes from V1 to V4, we analysed first only
trials of the Catch condition. The exact dynamics of the visual response evoked in V4 by Catch

trials differed between monkeys (fig. 2A, left and middle panels); however since both are visual
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responses of area V4 to the same stimuli we worked with the average response (fig. 2A, right

panel).

Next, we studied how this evoked response in V4 was affected by electrical stimulation of area
V1. To this end, in each session we stimulated one of the V1 electrodes 50 ms before stimulus
onset, while recording from several V4 electrodes with different degrees of overlapping between
their receptive fields and the one of the stimulated electrode (fig. 2E, C). Thus, given a certain V1
electrode we had several electrodes in V4 from which we recorded. A certain unique combination
of V1 and V4 electrode could occur in more than one session, in which case we averaged across
sessions. An exploration of the MS effect on individual sessions revealed the presence of both
an excitatory as well as an inhibitory phase on V4 (fig. 2C). In order to quantify this effect, and
since the excitatory phase clearly dominated the phenomena, we computed the mean difference
between the average responses to MS-Catch trials minus Blank-Catch trials over a window of
50 ms after MS onset (fig. 2D). It is important to notice that the effect starts to take place during
the stimulation window and peaks right after stimulation offset. This is indicative that the effect
we observed is really an excitatory phase and not an artifact of the stimulation. This can be
appreciated even in more detail on the signal of individual trials when comparing MS-Catch trials
with Blank-Catch ones (fig. 2E). Of all the recorded electrodes 90.1% had a significant effect
(fig. 2F). Moreover, the average effect size of the significant electrodes 0.62 £ 0.03a.u. (mean +
s.e.m.) was significantly different from zero (p < 0.01, 146 = 23.5). It is interesting to notice
that as expected, the normalised effect size (i.e. the effect size divided by the current used for
that electrode) correlates positively (r? = 0.1, p < 0.01) with the degree of overlapping between
the receptive fields (fig. 2F). All in all, after averaging across electrodes with a significant effect,
we can clearly observe the presence of both an excitatory and an inhibitory phase on V4 induced
by V1 MS (fig. 2G).

As a first step in studying the propagation of MS-induced changes in V1 in the feedforward
direction, we started stimulating before stimulus onset. Next we studied how this changes in V4
due to V1 MS depended on the SOA between the texture and the stimulation onset.

2.3 Influence of SOA on V1-MS effect

To address this question we stimulated at 50 ms and 150 ms after stimulus onset and computed
the average response to MS-Catch and Blank-Catch trials in the same manner as in the previous
section (fig. 3A, C). As before, in order to compare the effect of different SOAs, we computed
the difference between the MS-Catch and Blank-Catch traces. Again, in every SOA we observed
a presence of both the excitatory and inhibitory phase (fig. 3D, E). Even though the suppressive
phase was independent of the SOA, an ANOVA analysis revealed a significant effect of the SOA
on the strength of the excitatory phase (F3s4 = 61.91, p < 0.01, e of both the excitatory
and inhibitory phase (fig. 3D, E). Moreover, a post-hoc testing revealed significant differences

between all three groups (p < 0.01 for all three comparisons, Bonferroni corrected).

Since the strongest effect occurred when stimulating during the baseline period, the weakest
during the peak response and stimulation during the sustained period yielded an intermediate
effect, we studied whether the effect size was dependent on the level of activity in V4 during the

stimulation period. To that end, we computed the average response on Blank-Catch trials on the
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FIGURE 2: Feedforward propagation of MS-induced changes. (A) Average
MUA response to Blank-Catch (catch trials without MS). Left: monkey B; Middle:
monkey C; Right: Average. (B) Overlap between the RF of the stimulated V1 elec-
trode and the RF of the V4 recording site for an example combination of electrodes.
(C) Average MUA in response to Catch trials of an example combinations of electrodes
for Blank trials (black) and MS trials with an SOA of -50 ms (red). Yellow area indi-
cates the period of MS. (D) Difference between MS and Blank trials for the example
traces of Fig. 2e. The arrow indicates the value of the effect size for this example. (E)
Single trials for this example electrode for MS as well as Blank trials. Dashed lines
indicate the stimulation period on MS trials and the equivalent period on Blank trials
for comparison. (F) On the left panel, the correlation between normalised effect size
(effect size/amplitude of stimulation) and the degree of overlap between the stimulated
V1 RF and the RF of the corresponding V4 electrode. Dark red circles indicate signifi-
cant electrodes. On the right panel: a histogram of the effect sizes. (G) Average MUA
across monkeys and electrodes for Blank trials (black) and MS trials with an SOA of
-50 ms (red). Yellow area indicates the period of stimulation.
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FiGURE 3: SOA dependence of feedforward propagation of MS-induced
changes and its interaction with a figure stimulus. (A)-(C) Average MUA
across monkeys and electrodes for Blank (black) and MS trials for SOAs of -50ms,
50ms and 150ms respectively. Yellow area indicates the period of stimulation. (D)
Difference between MS-Catch and Blank-Catch trials for all SOAs aligned to stimula-
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SOAs. Error bars indicate s.e.m. (F) Correlation between effect size and the average
MUA during blank catch trials for the same time window in which the effect size was
computed. Green data points represent single electrodes at an SOA of 50ms. Green
dashed line indicates the linear regression. Blue data points and dashed lines represent
equivalent data for the SOA of 150 ms. (G) Schematic representation of the different
conditions utilised to study the interaction between the feedforward propagation of MS
induced changes and the presence of a figure stimulus. Electrodes were divided in two
groups based on whether they would or not overlap with the figure on figure trials.
Dark grey and dark orange represent electrodes on figure trials; whereas light grey
and light orange represent those same electrodes during Catch trials (in the absence
of a figure stimulus). (H) Average effect size for conditions in Fig. 3g. Orange bars
represent electrodes that overlap (or would overlap) with the figure, while grey bars
indicate electrodes that do not (or would not) overlap with the figure. Light colours
indicate Catch trials, while dark ones indicate Figure trials. Error bars indicate s.e.m
(I) Average MUA for conditions in Fig. 3g on Blank trials measured in the same time
windows utilised to compute the effect Size. Orange bars represent electrodes that
overlap (or would overlap) with the figure, while grey bars indicate electrodes that do
not (or would not) overlap with the figure. Light colours indicate Catch trials, while
dark ones indicate Figure trials. Error bars indicate s.e.m.
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same window of time in which we computed the effect size on MS-Catch trials and plotted those
values against the effect size of the corresponding electrode. Since during pre-stimulus onset time
the activity level will always be zero due to the normalisation of the data, we computed this
correlation only for positive SOAs. For both SOAs, the effect size was inversely correlated with
the level of activity during Blank-Catch trials (r? = 0.17, p < 0.01 for SOA 50 ms; r? = 0.28,
p < 0.01 for SOA 150 ms; fig. 3F). In other words, the level of excitation induced in V4 due
to V1 MS depends on the activity level. The higher the activity in V4, the lower the induced

excitation will be.

So far we have only analysed the effect of MS on trials of the Catch condition. Since we wanted
to shed some light on how feedforward and feedback signals are involved in the perception of a
visual stimulus, we next analysed how this excitatory phase of the MS-induced changes interacted
with the presence of a figure on Figure trials. To this end, we divided V4 electrodes based on
whether they were overlapping or not with the figure. As an internal control, we kept the same
division also for Catch trials even though there was not a figure present in them. This allowed
us to directly compare how the effect size on a given electrode was affected by the presence
of the figure compared to when there was only a texture (fig. 3G). Since we wanted to study
the interaction with the figure, we only included trials with MS SOA of 150 ms (i.e. during
the sustained activity period). For electrodes overlapping with the figure, the effect size was
significantly reduced on Figure trials compared to Catch trials (p < 0.01, to91 = 7.01). However,
for non-overlapping electrodes there was no significant difference between conditions (p > 0.3,
tgs = 1.04, fig. 3H). Since the effect size is inversely correlated with the level of activity, and
we know from previous studies that the presence of a figure enhances the firing of the neurons
(Lamme, 1995; Poort et al., 2012; Roelfsema et al.; 1998), this reduction of effect size in the
presence of a figure is somehow expected. To check that indeed the level of activity increased
in the presence of the figure, we computed the mean activity during Blank trials in the same
time window in which we computed the effect size. As expected, the activity for the overlapping
electrodes is higher in the presence of the figure compared to the activity during Catch trials
(p < 0.01, t20; = —3.8). On the non-overlapping electrodes we observed the opposite effect. The
presence of a figure in the vicinity of the electrode resulted in a reduction in activity (p < 0.01,
tgg = 7, fig. 31).

As we previously showed, the effect size in the feedforward direction is inversely correlated with
the level of activity. Thus, the changes in the presence of the figure for the RFs that fall on
the figure can be explained by the increase in activity induced by the figure. When the figure
is present and it overlaps with the electrode, the activity increases and hence the effect size
is reduced. On the ground however we did not observed the same pattern. Even though the
activity level in V4 was reduced in the presence of the figure, the effect size did not change,
suggesting that either V1 cells are less susceptible to MS-induced changes when they fall on
the background or that connections from V1 to V4 in that condition are less effective. All in
all, the propagation of excitatory MS-induced changes in the feedforward direction is at least to
some extent dependent on the activity level in V4 at the moment of the stimulation, whereas
inhibitory effects are independent. Thus, suggesting that this late suppression is a local reaction

to the excitatory phase, probably due to the recruitment of nearby inhibitory cells.
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FIGURE 4: SOA dependence of feedforward propagation of MS-induced
changes and its interaction with a figure stimulus. (A) Overlap between the
RF of the stimulated V4 electrode and the RF of the V1 recording site for an example
combination of electrodes. Colour scale as in (D). (B) Average MUA for electrodes
combination in (A) in response to Blank-Catch trials (black) and MS-Catch trials with
an SOA of 150 ms (blue). Yellow area indicates the period of MS. (C) Difference
between MS and Blank trials for the example traces of (B). The arrow indicates the
value of the effect size for this example. (D) On the left panel, the correlation between
normalised effect size (effect size/amplitude of stimulation) and the degree of overlap
between the stimulated V4 RF and the RF of the corresponding V1 electrode. Dark
blue circles indicate significant electrodes. On the right panel: a histogram of the effect
sizes. (E) Average MUA across monkeys and electrodes for Blank-Catch trials (black)
and MS-Catch trials with an SOA of 150 ms (blue). Yellow area indicates the period
of stimulation.

If we stimulated in V4 while

recording in V1, will we see both phases as well or will it be that only one of the phases (either

Next, we wondered what happened in the opposite direction.

the excitatory or the inhibitory one) is reflected in V17

2.4 Propagation of V4-MS effect

To study how MS induced changes in area V4 were reflected in area V1, we did the inverse
experiment. We recorded from electrodes in area V1 while stimulating one of the chronically
implanted electrodes in area V4 (fig. 4A). Since a specific combination of V4-V1 electrodes
was repeated in more than one session, we averaged across days in order to obtain the average
response of an electrode. As we were analysing propagation in the feedback direction we started
analysing MS-induced changes during the sustained activity period (i.e. SOA of 150 ms). An
exploration of the individual electrodes yielded a surprising result. After stimulation of V4 there
was no replication in V1 of the excitatory phase. However in a significant amount of the sessions
there was a reflection of the inhibitory phase (fig. 4B). To quantify this effect we computed the
difference between the average of MS-Catch trials minus the average of Blank-Catch trials and
computed the size effect as the average difference over a 175 ms window after stimulation offset
(fig. 4C). Out of the 268 electrodes combinations from which we recorded, 108 showed a significant

effect. Unlike the V1 stimulation experiments, in this case there is no correlation between the
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overlap between stimulation and recording RFs (2 = 0.01, p > 0.4, fig. 4D). This might sound
counter-intuitive, however it is important to notice that the feedback connections from V4 to
V1 are not as localised as the ones that run from V1 to V4 (Salin & Bullier, 1995). Thus, the
spread of the inhibition in V4 could be reflected in V1 electrodes nearby the stimulated V4 RF
even though they are a couple of degrees away form the V4 hotspot. All in all, the average effect
size for the electrodes with a significant effect is —0.03 4= 0.003 a.u. (mean + s.e.m., p < 0.01,
ti07 = —9.7, fig. 4D, E).

This is quite an intriguing result. Even though MS in V4 elicits both an excitatory and an
inhibitory phase, we only observed a reflection of the inhibitory one in V1. In one hand, the lack
of an excitatory effect in V1 reveals a clear asymmetry in the system. While on the feedforward
direction both fast (excitatory) and slow (inhibitory) changes propagated, on the feedback di-
rection only the slow changes did. These results provide evidence that feedback connections are
more susceptible to propagate slow “modulatory-like® signals. Fast signals seemed to get filtered

out.

Regarding the suppressive phase, there are two ways in which it could be explained. One option
is that the activation of V4 cells with axons reaching V1 triggers inhibitory neurons in V1, which
in turn suppress the activity of V1 excitatory cells. Another possible explanation is that due
to the inhibition in V4 generated by the MS V1 cells get less feedback input from V1, thus
decreasing their firing. However, before discussing these possibilities, it is important to study
how this suppression depends on the SOA and furthermore, how it is affected by the presence of

a figure.

2.5 Influence of SOA on V1-MS effect

To study how the effect depended on the SOA, we stimulated also 50 ms after and 20 ms before
stimulus onset. As before, we first analysed the results of the Catch trials alone. Even though
there was a significant amount of suppression in all SOAs, an ANOVA analysis confirmed an
effect of SOA on the effect size (Fz351 = 50.97, p < 0.01). Morecover, the effect size between
SOAs of -20 ms and 50 ms were not significantly different (p > 0.017), while for the SOA of
150 ms the effect size was significantly bigger than for the other two SOAs (p < 0.01, fig. 5A-E)
. These results provide clear evidence that the suppression of activity in V4 is strongly linked
to the dynamics of feedback connections. During baseline period, in which there is little or
no contribution of feedback connections from V4 to V1 there was only a mild suppression. In
contrast, during the sustained activity period (in which feedback connections are known to play
a major role (Khayat et al., 2004; Lamme, 1995; Lamme & Roelfsema, 2000; Poort et al., 2012;

Roclfsema et al., 2002) we observed a much stronger suppression effect.

Next, we studied how the amount of suppression depended on the level of activity in V4 at the
moment of the suppression. The first indication that the effect size and the level of activity might
not be correlated comes from the population traces. Even though the activity level for the 50 ms
SOA is much higher than for the 150 ms SOA, its effect size is considerably smaller. Nonetheless,
to properly address this question we looked at the correlation between effect size and activity
level of Blank-Catch trials for SOAs of 50 ms and 150 ms. If it is the case that the amount of

suppression in V1 depends on the level of activity at the moment and during the stimulation,



2. Results

97

A B
1 —BL ! —BL 1 —BL
08 —Ms 08 =Mg 08 =W
06 \. 06 06 L
S04 0.4 04 i
s v v
02 , A 02 ’ \,. 02 ’
0 0| 0 @
01 0 01 02 03 01 0 01 02 03 01 0 01 02 03
Time [s] Time [s] Time [s]
D i E F
s — -20ms 0
= 50ms 0.1
— raoms it 008 A
= @ F ﬂ ’ °s
@ 0 & -0.02 B Of-ta. a5
1 52 P 0% TP
W S S | %l ere >
2 v £ -0.03 £ -005 mgﬂx, %
-0.4 o %ok, ”
-01 -0.04 P
1 =015 v
0,05t
-0 0 0.1 20 50 150 -04-02 0 02
Time [s] SOA [ms] Average MUA
FiGURE 5: SOA dependence of feedforward propagation of MS-induced

changes and its interaction with a figure stimulus. (A)-(C) Average MUA
across monkeys and electrodes for Blank-Catch trials (black) and MS-Catch trials for
SOAs of -20 ms, 50 ms and 150 ms respectively. Yellow area indicates the period of stim-
ulation. (D) Difference between MS-Catch and Blank-Catch trials for all SOAs aligned
to stimulation onset. Yellow area indicates the period of stimulation. (E)Average effect
size for all SOAs. Error bars indicate s.e.m. (F) Correlation between effect size and
the average MUA during blank catch trials for the same time window in which the
effect size was computed. Green data points represent belong to single electrodes at an
SOA of 50 ms. Green dashed line indicates the linear regression. Blue data points and
dashed lines represent equivalent data for the SOA of 150 ms.

then these two measures should be correlated. However, in support of our hypothesis, they were
not correlated (r? = 0.004, p > 0.4 for SOA 50 ms, 2 = 0.002, p > 0.5 for SOA 150 ms; fig. 5F).

These results provide evidence that the propagation of the suppressive phase of the MS-induced
changes form V4 to V1 is strongly linked to the dynamics of feedback connections. Knowing
this and knowing that feedback connections are heavily involved in figure-ground tasks, we next
studied how this effect would be affected by the presence of a figure, either overlapping or non-

overlapping with the V1 RF.

2.6 Interaction of V4-MS effect and figure-ground task

We divided electrodes in three groups depending on their position relative to the figure on Figure
trials. We defined different regions based on the radial distance from the centre of the figure
to the center of the V1 RF, with boundaries at 3 and 6 degrees of visual angle (deg) (fig. 6).
Thus, we had three groups: electrodes that on Figure trials would overlap with the figure (FIG
condition), electrodes that will be in the near ground (i.e. in the vicinity of the figure; NEAR
condition) and electrodes in the far-ground (i.e. far away from the figure; FAR condition). As
expected, the activity of electrodes that overlapped with the figure increased in Figure trials
compared to Catch trials (fig. 7A), while the activity of electrodes far away from the figure
remained unchanged between conditions (fig. 7C). The activity of electrodes in the vicinity of
the figure deserves a special mention. Consistent with recent literature (Poort et al., 2012), we

observed that the activity of these electrodes decreased when compared to their activity during
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FIcGURE 6: RFs and figure configuration.(A) Schematic representation of the dif-
ferent conditions utilised to study the interaction between the feedback propagation of
MS induced changes and the presence of a figure stimulus. Electrodes were divided
into three groups (FIG, NEAR and FAR) based on what their distance would be to the
centre of the figure on Figure trials. Dark boxes represent electrodes on Figure trials;
while light ones represent those same electrodes during Catch trials (in the absence of
a figure stimulus). (B) Distribution of V1 electrodes with respect to the centre of the
figure. Dashed circles indicate the boundaries for the groups’ categories. Black circle
has a radius of 2 degrees of visual angle whereas the red one has a radius of 6 degrees
of visual angle.

Catch trials (fig. 7B). This result, even though it is not novel per se, reinforces the idea that the
neurons close to the figure either receive less input from higher areas or get actively suppressed

by them.

Next, we studied the interaction between these different conditions (i.e. FIG, NEAR and FAR)
and the reduction of activity during the sustained activity period observed in the last section.
For FIG electrodes, the effect size increased when comparing Figure trials with Catch trials
(p < 0.01, t115 = 2.9, fig. 7D, F), while for NEAR electrodes the effect size was completely
abolished (p < 0.01, t11; = —5.7, fig. 7D, G). On the FAR condition the effect size was not
affected by the presence of a figure (p > 0.05, t140 = —1.7, fig. 7D, H). Thus, the effect size is
correlated with the difference in activity between catch and Figure trials. In we consider this
difference in activity to be the feedback contribution form higher areas to lower areas, we can

conclude that the amount of suppression is positively correlated with the amount of feedback
from V4 to V1.

However, as we just pointed out, activity levels on the near-ground condition on Figure trials is
decreased when compared to Catch trials, while it is increased on the figure condition. Thus, it
could be that we did not observe suppression on near-ground electrodes because their activity
was already so low that they could not go any lower. To test this potential confound we plotted
the effect size of each electrode for the two conditions against the mean level of activity (fig. 7E).
Especially interesting were the electrodes with a positive mean value (i.e. activity during the
sustained activity period was higher than during baseline, meaning that their activity level could
have been lower). From this plot we can see that the mean effect size for the figure condition is

significantly bigger than for the near-ground one, even for identical levels of activity.

3 Discussion

In the present study we analysed how electrically-induced changes propagates through the visual

cortex. We first corroborated that electrical stimulation of the cortex results in a biphasic
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FIGURE 7: Interaction between the feedback propagation of MS-induced
changes in the cortex and a figure stimulus. (A)-(C) Average MUA response for
Catch trials (light traces) and Figure trials (dark traces) for the three conditions FIG,
NEAR and FAR respectively. (D) Average effect size for the different conditions at an
SOA of 150 ms. Grey bars represent electrodes that overlap (or would overlap) with the
figure. Red bars indicate electrodes that are (or would be) on the near surrounds of the
figure. Green bars represent electrodes that are (or would be) far away from the figure.
Light colors indicate Catch trials, while dark ones indicate Figure trials. Error bars
indicate s.e.m. (E) Relationship between effect size and mean MUA response in Catch
trials during the same time window utilised to compute the effect size. Dots represent
single electrodes, while the continuous line corresponds to the average effect size for
5 equispaced bins. Error bars indicate s.e.m. Red dot and continuous line represent
electrodes from the NEAR condition; while black ones represent electrodes from the
FIG condition. (F)-(H) Difference between MS and Blank trials aligned to stimulation
onset at an SOA of 150ms for Catch trials (light traces) and Figure trials (dark traces)
for the three conditions FIG, NEAR and FAR respectively. Yellow area indicates the
period of stimulation.

phenomenon composed of a fast and brief excitatory phase, followed by a long lasting suppression
of activity. Next, we studied how these two phases would propagate from V1 to V4 (feedforward)
as well as from V4 to V1 (feedback). When stimulating in V1, we observed that both phases
were replicated in V4, while when we stimulated V4 only the suppressive phase was present in
V1. Finally, we tested whether these effects interact with the presence of a figure in the visual
field. In both cases we observed an interaction with the figure. On the feedforward direction the
effect was correlated with the amount of activity in V4 at the moment of the stimulation, while
in the feedback direction results indicate that the effect size depends on the amount of feedback
input from V4 to V1. Moreover, the results presented here suggest the presence of feedback

contribution all across the visual field, even in complete absence of a figure stimulus.
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3.1 Feedforward and feedback pathways

Both in the feedforward and in the feedback direction we observed a suppression of the activity
due to MS. However, we only observed a propagation of the excitatory phase in the feedforward
direction. This excitation is likely due to the propagation of excitatory activity from V1 to V4,
which triggers a very similar response as the one that would be evoked by a visual stimulus. The
reasons behind the inhibitory phase that follows the excitatory one in V4 are less clear. One
possible explanation for this suppression is the reduction in activity in V1 caused by the MS. If
there is less activity in V1 there is less input to V4 cells, thus resulting in a reduction of activity
in V4. Another plausible explanation is that inhibitory cells in V4 are recruited by the excitatory
phase. By the time that inhibition arrives the electrical stimulation is over and there is much
more inhibition than excitation which also results in an increased amount of suppression. If
this would be the case then the amount of suppression should be proportional to the amount of
excitation, however this is not what we observed. Thus, even though we cannot rule out any of

these two hypotheses we believe the data presented here argues in favour of the first alternative.

These results do not give us new insight into the mechanisms and dynamics of feedforward
connections, however they are very interesting when compared to what happened on the feedback
direction. We observed that feedforward pathways are sensitive to both fast and slow changes
in neural activity. In contrast, when stimulating in V4 we only observed a reflection of the slow,
suppressive phase in V1. Even though there are direct connections from V4 to V1 and it is
very likely that they are being activated as a consequence of the MS, the activation does not
trigger a fast and strong activation of excitatory cells in V1. V4 MS is reflected in V1 only
through the long lasting suppression in activity. In a way it acts as a low pass filter: only slow
and long lasting changes in activity are transmitted through feedback connections. This result
is consistent with previous work that showed that feedforward connections are linked to AMPA
receptors, which have fast dynamics, while feedback pathways involve NMDA receptors, which

have slower reaction times (Self et al., 2012).

One possible explanation for this reduction in activity is that the cells activated in V4 target
inhibitory cells in V1 (or in intermediate areas like V2), thus provoking local suppression that
results in a reduction of activity in V1. Since we did not see any signs of excitatory signals in
V1, it seems somehow unlikely that there would be only activation of inhibitory cells but not
of excitatory ones. Even though it is not known for primates, there is evidence in rat visual
cortex that feedback connections target approximately the same amount of inhibitory cells as
excitatory ones (Wang & Burkhalter, 2013). If a similar results hold across species, then we
should have seen at least as much excitation as suppression. Moreover, even though there is
evidence of inhibitory effects of feedback connections (Chen et al., 2008; Nassi et al., 2013), most
of the effects of feedback pathways are thought to have a net excitatory effect. Even though we
cannot completely rule out this mechanism, we believe that a more likely explanation is that the
suppression we see in V1 is a consequence of the reduction in activity in V4. Thus, the reduction
of activity in V1 would not be caused by the fast excitatory effect induced by MS in V4, but
rather by the long lasting suppression that follows. This hypothesis would be in agreement with
the vast body of literature that reported excitatory effects of feedback connections and would

also explain why the suppression in V1 occurs even in the absence of a previous excitatory effect.
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Moreover, it would also explain why we observed an effect mostly during the sustained activity

period and not so much during the baseline period or during the peak response.

An interesting consequence of this interpretation is that since the reduction in activity also
occurred during Catch trials, it implies that there is a feedback contribution from V4 to V1 even
in the absence of a relevant stimulus. This is a very interesting observation, since the normal
interpretation is that feedback contributions only take place during the segmentation of the
figure from the background. There have been some propositions that this might not be the case
(Lamme, 2006; Super et al., 2001). However, as far as we know, this is the first experimental

evidence that can contribute to this proposal.

3.2 Figure-ground interactions — Feedforward

To gain understanding on the role of feedforward and feedback connections in a figure ground

segregation task, we leveraged on the effects triggered by MS.

In the feedforward direction we divided V4 electrodes in two groups depending on whether the
centre of the figure overlapped or not with their corresponding receptive field. On the overlapping
electrodes we observed a reduction of the effect size when the figure was present compared to
Catch trials. We were not surprised to see such a reduction because we knew that there is a
negative correlation between the activity level that would have been evoked by the textured
background and the amount of excitation that can be induced in V4 due to V1-MS. We observed
that the higher the activity level in V4 the smaller the amount of excitation that can be induced.
In other words, the reduction of effect size when the figure is present can be explained by the

extra activity it induced in V4.

More interesting are the electrodes whose receptive field did not overlap with the figure. In these
electrodes we did not observe a difference in effect size, although we did observe a significant
reduction in activity on Figure trials. This result is rather odd since in all the other cases there
was a negative correlation between levels of activity in V4 and the effect size. Since activity in V4
during Figure trials without MS is reduced by the presence of the figure in the surroundings, we
expected to observe an increase in effect size. This change in the properties of the propagation
could be due to a change in the efficiency of the connections or because V1 itself is less susceptible
to MS-induced changes. It is not possible to decide from the data presented here which one is
the correct answer. It is however clear that the presence of the figure modifies the properties of

the network on the surroundings of the figure.

3.3 Figure-ground interactions — Feedback

To study how feedback connections are involved in a figure-ground segregation task we divided
V1 electrodes in three groups depending on their distance to the centre of the figure on Figure
trials (FIG: on the figure, NEAR: on the surroundings of the figure and FAR: far away from the
figure). As expected, the activity of V1 with RFs that overlapped with the figure increased their
activity while activity in electrodes far away from the figure did not change. However, activity in

the intermediate electrodes decreased during Figure trials. The same pattern is observed when
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quantifying the effect size: it increases in overlapping electrodes, stays the same on distant ones

and is completely absent on the intermediate ones.

As discussed previously, the most likely explanation for the reduction of activity in V1 is a
reduction in the amount of feedback received from V4. Thus for the role of feedback connections
in a figure-ground segregation task, this result suggests that cells that overlap with the figure get
increased feedback while cells in the vicinity of the figure do not get any feedback at all. This
could be expected, however the surprising part is that it suggests that cells far away from the
figure keep getting a substantial amount of feedback from V4. This contribution of V4 to lower
areas in regions of the visual field which in principle are not involved in the task at hand are a

unique contribution to the field and could have not been predicted based on previous studies.

There is one potential confound with this interpretation and it is that the only case in which we
observed a complete reduction in effect size is also the one in which the level of activity is the
lowest. To address this issue we studied whether it was not a flooring effect by plotting the effect
size against the mean level of activity in Blank trials during the same time window for both FIG
and NEAR electrodes. Since electrodes with positive average activity have completely different
effect sizes dependent on whether they are from the FIG or the NEAR group, we can conclude
that the reduction of the effect size on the NEAR electrodes is not very likely to be due to a

flooring effect.

There is a general agreement that feedback connections are involved in the increase of activity
at the location of the figure, however there is debate in what happens both on the vicinity of the
figure and at distant locations. Our results confirmed the involvement of feedback connections
at the figure locations as well as provided new insight on what happens at the other locations.
We provide conclusive evidence that there is V4 input to V1 through out all the visual field,
even at locations that are far away from the figure. When there is a figure present, that input is

increased at the location of the figure and completely reduced in its surroundings.

This lack of feedback in the nearby location could also explain why we observed a reduction in
efficacy transmission of activity in the feedforward connection. If feedback from V4 to V1 is
reduced on the vicinity of the figure it could have consequences on how susceptible those cells

are to stimulation coming from area V1.

3.4 Antidromic vs orthodromic effects

In this study we used microstimulation to perturb activity in one area and to investigate the
influence on activity in another area. Microstimulation activates axons in the vicinity of the
electrode tip (Butovas & Schwarz, 2003; Histed et al., 2009) and can cause orthodromic and
antidromic stimulation effects. By combining microstimulation in a lower area with recording
in higher areas, we aimed to investigate the orthodromic influence of feedforward connections
and we combined microstimulation in a higher area with recording in a lower area to investigate
the orthodromic effects of feedback connections. However, there is one important caveat. We
also have to consider antidromic effects, which occur if axon terminals of projection neurons
are stimulated and action potentials travel back to their cell bodies in another area. These

antidromic effects might blur the distinction between feedforward and feedback influences. We



4. Methods 103

took a number of measures to reduce the contribution of antidromic stimulation. Firstly, we used
current levels that cause most neurons to be stimulated transynaptically (Butovas & Schwarz,
2003), which in previous studies between areas with strong direct projections caused orthodromic
stimulation effects that were several times stronger than antidromic effects (Girard et al., 2001;
Movshon & Newsome, 1996). Secondly, we chose two areas, V1 and V4, with relatively sparse
direct connectivity (Markov et al., 2011b). Most of the interactions between neurons in these
areas are therefore presumably mediated by intermediate area V2, which is strongly intercon-
nected with both V1 and V4. Antidromic activation of V2 neurons by V1 microstimulation
can only cause transynaptic, feedforward effects in V4. Vice-versa, if V4 stimulation antidromi-
cally activates of V2 neurons, these cells can, in turn, only cause genuine feedback effects in
V1. Thirdly, the direct comparison of V1 and V4 microstimulation provides an internal control
for the purity of the feedforward and feedback effects. If the influence of microstimulation in
both directions would have been the same, it would have indicated that antidromic influences
blurred the distinction. However, since there is a clear asymmetry it provides support for the
predominance of orthodromic influences. All in all, even though is not possible to rule it out
completely, we believe that any possible contribution of an antidromic effect is either negligible

or non-existent.

3.5 Conclusions

As a mean to study how visually-evoked activity propagates through the cortex as well as how it
gives rise to perception we stimulated the visual cortex while recording in other areas. We found
that electrical activity evoked by MS under a demanding cognitive task propagates through
the visual cortex both in feedforwad and feedback directions, but with different properties and
dynamics. Feedforward pathways are susceptible to both fast and slow changes in activity while
feedback connections filter out fast changes and convey only slow modulations of neural activity.
In particular V4 MS resulted in a reduction of activity in V1, most likely as a result of a reduction
of activity in V4 itself. In addition, the propagation in both feedback and feedforward directions
showed an interaction with the figure stimulus in a figure-ground segregation task. All together,
these results suggest that during a figure-ground segregation task there is a feedback contribution
from V4 to V1 all over the visual field even in the absence of a relevant stimulus. Moreover, in
the presence of a figure that feedback input is increased at the figure location and decreased in

the surroundings of the figure while it remains unchanged on distant locations.

4 Methods

4.1 Surgery and mapping

Two monkeys (monkeys B and C) participated in this study. In a first operation, a head holder
was implanted. In a separate surgery, arrays of 4x5 or 5x5 electrodes (Blackrock Inc.) with a
thickness of 80 ym and a length of 1 or 1.5 mm were chronically implanted in areas V1 and
V4. The surgical procedures were performed under aseptic conditions and general anaesthesia
and complied with the US National Institutes of Health Guidelines for the Care and Use of
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Laboratory Animals and were approved by the Institutional Animal Care and Use Committee
of the Royal Netherlands Academy of Arts and Sciences. Details of the surgical procedures and
the postoperative care have been described elsewhere (Poort et al., 2012; Super & Roelfsema,
2005). We measured the receptive field dimensions of every V1 recording site by determining
the onset and offset of the response to a slowly moving light bar for each of four movement
directions (Kato et al., 1978). V4 RFs were mapped by presenting white squares (1x1 deg) on a
grey background at different positions of a grid (1 deg spacing).

4.2 Behavioural setup

The monkeys performed the task while seated at a distance of 75 cm from a 21 inch CRT monitor
with a refresh rate of 100 Hz and a resolution of 1024x768 pixels. The eye position was monitored
with a video based eye tracker (Thomas Recording) and sampled at 250 Hz. A trial was initiated
when the monkey had maintained his gaze for 300 ms within a (virtual) fixation window, 1.5 deg
in diameter, centred on the fixation point. The monkey obtained a juice reward at the end of

each correct trial.

4.3 Fixation only task

To measure the neural changes induced by MS of the visual cortex we requested the monkeys to
perform a simple fixation task while exposed to a texture. On each trial we presented a fixation
point in the centre of the screen (0.3 deg in diameter) and the monkeys were requested to fixate
on it for 300 ms in order to begin the trial. After that period, a texture of white lines on a
black background (fig. 1A) was presented on the screen for a period of 500 ms, period in which
the monkeys were requested to maintain fixation. After each correctly completed trial, a juice
reward was delivered. In half of the trials MS was delivered to the cortex but monkeys did not

had to react to it or report it in any way.

4.4 Figure-Ground task

To measure how the changes induced by MS in neural activity propagate through the cortex,
we requested the monkeys to perform a figure-ground segregation task. A trial began with
the fixation point (a red circle of 0.3 degrees of visual angle in diameter) presented on a grey
background and the monkey triggered the beginning of the trial by directing gaze to a one degree
fixation window centred on the fixation point. After 300 ms of fixation the texture stimulus was
presented. After a further 350 ms, the fixation circle changed colour and the monkey was required
to make a saccadic eye-movement into a target-window (2 deg in diameter) centred on the figure
position. In this type of trials (figure condition), the figure could appear at two different locations.
These locations changed across recording session. Correct responses were rewarded with juice.
Trials in which the animal broke fixation before the fixation point was extinguished were aborted.
On 33% of trials we presented a homogeneous texture without a figure (catch condition) and the
animals were rewarded for carrying on fixating within the fixation window for a further 400 ms.

All stimulus conditions were presented in a pseudorandom order.
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The figure-ground stimuli were full-screen bitmaps of textures consisting of black oriented line
elements (45 and 135 deg of orientation) on a white background. Two bitmaps of each texture
orientation (i.e. two leftwards oriented and two rightwards oriented textures) were made with
randomly placed elements. To make the figure stimuli, a square region of one bitmap of 4x4 deg

was copied onto the same position of a full-screen bitmap of the orthogonal orientation.

In half of the trials MS was delivered to the cortex but monkeys did not have to react to it or

report it in any way.

4.5 Microstimulation

We used negative-first biphasic pulses of 400 ps duration (200 ps per phase) at a frequency
of 200 Hz, through one of the V1/V4 electrodes using a custom-made two-channel constant
current stimulator. During the “fixation only” task only one pulse 150 ms after stimulus onset,
with amplitude of 60 1A, was delivered through a V4 electrode. In the “figure-ground” task, we
delivered a train of 5 pulses at -50 ms, 50 ms and 150 ms with respect to stimulus onset. To study
the propagation in the feedback direction MS was delivered through one of the V4 chronically

implanted electrodes, whereas to study feedforward propagation electrodes in V1 were used.

4.6 Data acquisition and artifact removal algorithm

Recordings were made with microelectrode grids in V1 and V4. Neuronal data was collected
with TDT (Tucker Davis Technology) recording equipment using a high-impedance headstage
(RA16AC) and a preamplifier (either RA16SD or PZ2) and sampled with a rate of 24.4 kHz.

For the “fixation only task” the data was band-pass filtered (500 Hz,—,5 kHz) and thresholded
for spikes. On trials with MS the average ERP across trials was removed before the band-pass

filter and a period of 1 ms (24 samples) was removed from the signal before thresholding.

For the “figure-ground task”, on trials without MS, the digitised signals were band-pass filtered
(500 Hz,—,5 kHz), full-wave rectified and low-pass filtered (200 Hz) to produce an envelope of
the multi-unit activity (MUA). On trials with MS a modified version of this procedure was
applied. Firstly, in each recording session, the average ERP across trials was subtracted from
each individual trial. Then, after the signal was band-passed and rectified, a period of 1 ms (24
samples) centred around each pulse was removed from the signal. Consequently, the signal was
low-pass filtered and finally missing samples were linearly interpolated. This procedure was not
applied to non-MS trials because MUA obtained by both procedures did not differ.

This MUA signal provides an average of spiking activity of a number of neurons in the vicinity
of the tip of the electrode and the population response obtained with this method is therefore
expected to be identical to the population response obtained by pooling across single units. For
the spectral properties of neuronal activity MUA gives a higher signal-to-noise ratio than single
unit data (Super & Roelfsema, 2005).






Chapter 6

A Large-Scale Dynamical Model
of Hierarchical Processing in the
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Hiiter, ist die Nacht bald hin?
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Felix Mendelssohn Bartholdy, symphony-cantata Lobgesang
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Abstract

We developed a large-scale dynamical model of the macaque neocortex, which is based on re-
cently acquired directed and weighted connectivity data from tract-tracing experiments, and
which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from
this system: sensory areas show brief, transient responses to input (appropriate for sensory
processing), whereas associative areas integrate inputs over time and exhibit persistent activ-
ity (suitable for decision-making and working memory). The model displays multiple temporal
hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation.
Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain
dynamics. These findings establish a circuit mechanism for "temporal receptive windows" that
are progressively enlarged along the cortical hierarchy, suggest an extension of time integration
in decision making from local to large circuits, and should prompt a re-evaluation of the analysis
of functional connectivity (measured by fMRI or electro/magnetoencephalography) by taking

into account interarcal heterogeneity.

1 Introduction

The receptive field is a central concept in neuroscience, defined as the spatial region over which
an adequate stimulus solicits rigorous response of a neuron (Sherrington, 1906). In the primate
visual cortical system, the receptive field size of neurons progressively enlarges along a hierarchy
(Hubel, 1988; Hubel & Wiesel, 1962; Wallisch & Movshon, 2008). As a result, higher arcas
can integrate stimuli over a greater spatial extent, which is essential for such functions as size-
invariance of object recognition in the ventral ("what") stream for visual perception (Kobatake
& Tanaka, 1994).

Accumulating evidence suggests that the brain also displays a hierarchy in the temporal domain.
This allows neurons in higher areas to respond to stimuli spread over a greater temporal ex-
tent and to integrate information over time, while neurons in early sensory areas rapidly track
changing stimuli. In human studies, preserving the short timescale structure of stimuli while
scrambling long timescale structure changes responses in association areas but not early sensory
areas (Gauthier et al., 2012; Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens
et al., 2013). Notably, using electrocorticography (ECoG), Honey et al. (2012) found that cortical
areas sensitive to long time structure in the stimulus also shows lower decays in their temporal
autocorrelation (and hence slower dynamics), and Stephens et al. (2013) made a similar obser-
vation with fMRI. In the macaque, Murray et al. (2014) found a hierarchical organisation in the
timescales of spontaneous fluctuations of single neurons across 7 cortical areas, and an area’s
timescale was well predicted by its position in the anatomical hierarchy of Felleman & Van Essen
(1991). Similarly, temporal correlations in neural activity reveal slower decay rates in the frontal
eye fields than area V4 (Ogawa & Komatsu, 2010), the timescales of reward memory lengthen
from parietal to dorsolateral prefrontal to anterior cingulate cortex (Bernacchia et al., 2011),
and, more generally, persistent activity after a brief stimulus can last for seconds, even across
inter-trial intervals, in association areas (Amit et al., 1997; Curtis & Lee, 2010; Histed et al.,

2009). Finally, normative theories of predictive coding suggest that a hierarchy of timescales
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would allow animals to form a nested sequence of predictions about the world (Kiebel et al.,
2008). What underlying neurobiological mechanisms might give rise to such a range of temporal
dynamics? For example, spatial patterns of convergence can produce increasing receptive field
sizes in the visual hierarchy. Are there basic anatomical motifs that produce a hierarchy of

timescales?

Here we report a large-scale circuit mechanism for the generation of a hierarchy of temporal
receptive windows in the primate cortex. This hierarchy naturally emerges in a dynamical model
based on a recent quantitative anatomical dataset containing directed and weighted connectivity
for the macaque neocortex (Ercsey-Ravasz et al., 2013; Markov et al., 2013, 2014a, 2011b). The
data were obtained using the same experimental conditions and measures, ensuring a consistent
database (Kennedy et al., 2013), and include both the number of projections between areas
and their laminar origins. Based on a separate anatomical study (Elston, 2000; Elston et al.,
2011), we introduced heterogeneity across cortical areas in the form of a gradient of excitatory
connection strengths. Strong recurrent excitation has been proposed as a mechanism by which
prefrontal cortex could implement "cognitive-type" computations, such as information integration
and memory-related delay activity; we hypothesized that differences in recurrent excitation might

allow the generation of a temporal hierarchy.

The model thus incorporates anatomically constrained variation in both within-area and in-
terareal connectivity and enables us to probe the interplay of local microcircuitry and long-
range connectivity that underlies a hierarchy of timescales. Using different sensory inputs, we
demonstrate the existence, in our model, of multiple dynamical hierarchies subserved by a single
integrated global and local circuit. We then investigate the implications of local circuit het-
erogeneity for macroscopic dynamics measured by functional connectivity (i.e., correlations in
activity across areas). Here we find a disproportionate role for slow dynamics in the prefrontal
and other association cortices in shaping resting-state functional connectivity. This role is not
predicted by long-range connections, suggesting that interpretations of brain imaging data will

need to be revised to account for interareal heterogeneity.

While we have used the model to investigate the origin of a hierarchy of timescales, it can be a
platform for future models relating connectivity to dynamics and the functions of cortical areas.
Most statistical analyses of connectivity (Bullmore & Sporns, 2009; Sporns, 2014) and computa-
tional models (Deco & Corbetta, 2011; Deco et al., 2014; Ghosh et al., 2008; Honey et al., 2007,
2009) have lacked comprehensive high-resolution data, relying either on collating qualitative
tract-tracing data across disparate experiments and conditions or on diffusion tensor imaging,
which is noisy and cannot reveal the direction of a pathway. Moreover, such models typically
treat cortical areas as identical nodes in a network, distinguished by connection patterns but
not by local properties or computational capabilities. Although this approach is reasonable for
certain purposes, it is doubtful that functional specialization of cortical areas can be elucidated
without considering heterogeneity. Our model provides a framework to explore how dynamical
and functional specialization can emerge from inter-areal pathways coupled with local circuit

differences.
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FiGURE 1: The network consists of 29 widely distributed cortical areas. The
connectivity between this subset of the 91 areas is entirely known. (A) Lateral (left)
and medial (right) plots of the macaque cortical surface with areas in colour. Plots
generated with Caret (Van Essen et al., 2001a). (B) Connection strengths between all
29 arcas. The strength of the projection from area A to area B is measured by the
Fraction of Labelled Neurons or FLN (see section 4.1 of the Methods and table A.1).
(C) Three-dimensional positions of areas along with strongest connections between
them (FLN > 0.005). Connection strength is indicated by line width.
2 Results

2.1 Model design

We developed the model in three steps. First, we used recent connectivity data for the macaque

neocortex (Markov et al., 2014a), designed to overcome the limitations of collated anatomical
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datasets, and collected by the same group under similar conditions, with quantitative measures of
connectivity. The connectivity weights are directionally specific and cover 29 widely distributed
cortical areas, with 536 connections whose strengths span five orders of magnitude (fig. 1). The
presence or absence of all projections in this network has been established; thus, there are no

unknown pathways.

Second, each cortical area was described by a threshold linear recurrent network with interacting
excitatory and inhibitory populations and calibrated by the neurophysiology of the primary visual
cortex (Binzegger et al., 2009), but rescaled as described below. This is a highly simplified
description of the dynamics of an area and ignores most within-area variability. In particular,
note that the model is large-scale in that it addresses macroscopic cortical dynamics but is not
large-scale in the sense of having millions of neurons or very high-dimensional activity. However,
this level of complexity allows us to parsimoniously capture essential requirements for a hierarchy
of timescales. We extend our results in fig. 7 and suggest further extensions in the discussion

section.

Third, we hypothesised that the local microcircuit is qualitatively canonical (Douglas & Martin,
1991), i.e., the same across areas, but that quantitative inter-areal differences are crucial in
generating the timescales of areas. Specifically, the number of basal dendritic spines on layer
three pyramidal neurons increases sharply from primary sensory to prefrontal areas (Elston,
2000; Elston et al., 2011). Taking spine count as a proxy for excitatory synapses per pyramidal
cell, we introduced a gradient of excitatory input strength across the cortex. We modelled this
by scaling the strength of excitatory projections in an area according to the area’s position in

the anatomical hierarchy described below.

2.2 Gradient of excitation along the cortical hierarchy

The laminar pattern of interareal projections can be used to place cortical areas in a hierarchy:
neurons mediating feedforward connections from one area to another tend to originate in supra-
granular layers of the source area, whereas feedback projections tend to originate in infragranular
layers (Barbas & Rempel-Clower, 1997; Felleman & Van Essen, 1991). This was quantified by
Barone et al. (2000), who observed that the fraction of projecting neurons located in the supra-
granular layers of the source area defines a hierarchical distance between two areas; this allowed
them to reproduce the hierarchy of Felleman & Van Essen (1991) using data from connections
to only two areas (V1 and V4).

The laminar data included with this paper (table A.1 page 167) contain hierarchical distance
measured this way for all pairs of cortical areas included in the model (fig. 2A). We follow
the approach of Markov et al. (2014b), and use these to estimate each area’s position in an
underlying hierarchy. We found that an area’s position in this anatomical hierarchy is strongly
correlated with counts of spines on pyramidal neurons in that area (Elston, 2007). This allowed
us to introduce a systematic gradient of excitatory connection strength per neuron along the
cortical hierarchy, and to explore how such heterogeneity interacts with the pattern of long-

range projections to produce large-scale dynamics.
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FICURE 2: Hierarchical organisation of the cortex. (A) Fraction of neurons
in a projection originating from the supragranular layers of the source area (SLN).
Areas are arranged by hierarchical position. Thus, most feedforward projections (SLN
> 0.5) lie below the diagonal and most feedback projections (SLN < 0.5) lie above the
diagonal. Absent projections are shown in black. (see section 4.1 of the Methods and
table A.1) (B) Hierarchical position of an area is well correlated with the number of
spines on pyramidal neurons in that area (Elston, 2007). For details on area labels
in this image, see section 4.2(b) of the methods. (C) Two-dimensional plot of areas
determined by long-range connectivity and hierarchy. The distance of an area from
the edge corresponds to its hierarchical position, while the angular distance between
two areas is inversely related to their connection strength (see section 4.2(c) of the
methods). Areas are coloured by cortical lobe.

As a visual and conceptual aid, in fig. 2C we use a two dimensional embedding to plot hierarchy
and connectivity for the 29 areas. The angle between two areas reflects connection strength
(closer areas have stronger connections), and the distance of an area from the centre reflects
hierarchy (higher areas closer to the centre). The low-dimensional embedding is approximate
but captures broad features of cortical organization and provides intuitive understanding of the
model’s behaviour. It suggests two hierarchical streams of sensory input originating in area
V1 (primary visual cortex) and area 2 (part of primary somatosensory cortex) respectively, and

converging on densely connected association areas. We next explored the response of the network
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to these sensory inputs.

2.3 Response to visual inputs

We simulated the response of the network to a pulsed input to primary visual cortex (area V1).
The response is propagated up he visual hierarchy, progressively slowing as it proceeds (fig. 3A).
Early visual areas, such as V1 and V4, exhibit fast, short-lived responses. Prefrontal areas, on
the other hand, exhibit slower responses and longer integration times, with traces of the stimulus
persisting several seconds after stimulation. As with the response to a pulse of input, white-noise
input is integrated with a hierarchy of timescales: the activity of early sensory areas shows rapid
decay of autocorrelation with time whereas cognitive areas are correlated across longer periods
(fig. 3B and 3C). Thus, a hierarchy of widely disparate temporal windows or timescales emerges

from this anatomically calibrated model system.
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FIGURE 3: A hierarchy of timescales in response to visual input. (A) A pulse of
input to area V1 is propagated along the hierarchy, displaying increasing decay times
as it proceeds. In all images, areas are arranged (and coloured) by position in the
anatomical hierarchy. (B) Autocorrelation of area activity in response to white-noise
input to V1. The autocorrelation decays with different time constants in different areas,
showing a functional hierarchy ranging from area V1 at the bottom to prefrontal areas
at the top. (C) Traces contrasting the activity of area V1 and dorsolateral prefrontal
cortex in response to white-noise input to area V1. (D) The dominant time constants
in various areas of the network, extracted by fitting exponentials to the autocorrelation
(colours as in (B)). Time constants tend to increase along the hierarchy but depend on
the influence of long-range projections (for example, contrast area 8m with area TEpd).
See also fig. 10 and fig. 11.

To quantitatively compare areas, we fit single or double exponentials to the decay of each area’s
autocorrelation function (see fig. 10 for plots of the fits). These fits capture a dominant charac-
teristic timescale for each area in our model in response to visual stimulation. The time constants

from the fits are plotted in fig. 3D, with areas ordered by position in the anatomical hierarchy.
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As can be seen from the bar plot, the dominant timescale of an area tends to increase along
the hierarchy (i.e., left to right), suggesting an important role for a gradient of excitation in

generating the temporal hierarchy.

Nevertheless, an area’s timescales are not entirely determined by its hierarchical position, and
the plotted timescales do not increase monotonically with hierarchy. To gain some intuition for
the role of long-range projections in the model, consider area 8m (part of the frontal eye fields),
which is low in the hierarchy and would show a rapid decay of correlation in the absence of
long-range projections (far-right graph of fig. 5A) but instead demonstrates long timescales in
the model (and in the empirical observations Hasson et al. (2008). As can be seen from fig. 2C,
area 8m participates in a strongly-connected core of prefrontal and association areas (Ercsey-
Ravasz et al., 2013; Markov et al., 2013), allowing it to show long timescales that emerge from
inter-areal excitatory loops (these timescales are strongly attenuated in the absence of feedback
projections). The shared slower timescales are particularly characteristic of prefrontal areas in
our model (see fig. 10, especially areas best fit by two timescales). Conversely, whereas area
TEpd is high in the hierarchy, it does not participate in this core and is instead strongly coupled

to ventral stream visual areas. Thus, it reflects the faster timescales of visual input.

2.4 Multiple functional hierarchies

The response to visual input reveals an ascending hierarchy of timescales in the visual system.
We next stimulated primary somatosensory cortex (area 2), which is weakly connected to the
visual hierarchy and strongly connected to other somatosensory and motor areas (fig. 2C). As
previously, input propagates up a hierarchy of timescales (fig. 4A). However, the somatosensory
response uncovers a different dynamical hierarchy to visual stimulation. Primary somatosensory
cortex shows the fastest timescale, followed by primary motor cortex (area F1) and somatosensory
association cortex (area 5). Parietal and premotor areas show intermediate timescales and, as
with visual stimulation, prefrontal areas show long timescales. Visual areas demonstrate much
weaker responses than before and are mostly driven by top-down projections from association
areas. Thus, in the absence of direct input, they reflect the slower timescales of a distributed
network state. In fig. 4B, we contrast time constants for visual and somatosensory stimulation

acCross areas.

An area’s timescales emerge from a combination of local circuit properties, the specificity of long-
range projections, and the particular input to the network. Our model allows us to examine the
contribution of each. These can be intuitively summarized by noting that each area in fig. 2C
shows timescales approximately determined by its distance from the periphery (hierarchical
position), proximity to the central clusters (long-range connectivity), and distance from the

source of input.

2.5 Role of local and long-range projections

To further dissect the contributions of local and long-range projections, we examined time con-
stants in response to visual input after removing either differences in local microcircuitry or

interareal projections. In the second graph of fig. 5A, we show that the range of timescales
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Autocorrelation

Somatosensory input

FIGURE 4: The response to somatosensory input reveals a different functional
hierarchy subserved by the same anatomical network. (A) Autocorrelation
of activity for areas that show strong responses to input to area 2 (part of primary
somatosensory cortex). Area labels are arranged according to position in the underlying
anatomical hierarchy. Inset: time constants fitted to the autocorrelation function for
each area. (B) Timescales in response to visual (left) and somatosensory input (right)
shown with lateral (top) and medial (bottom) views of the cortex. See also fig. 12.

is drastically reduced in the absence of differences in the microcircuit across areas. Moreover,
there is no longer a relationship to an area’s position in the anatomical hierarchy. Thus, while
differences in long-range inputs and outputs to each area are significant, they are insufficient to

account for disparate timescales and local heterogeneity is needed.

In the third graph of fig. 5A , we show the effect of removing long-range feedback projections,
and for the far right image, we remove all long-range projections and stimulate individual areas
separately. The range of time constants is lower, reflecting the propensity of slow areas to form
long-range excitatory loops with each other. More significantly, once long-range projections are

removed, an area’s time constant simply reflects its position in the hierarchy.

We extend our investigation of the role of long-range projections by contrasting the resting-state
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FIGURE 5: Role of local and long-range projections in determining timescales.
(A) Time-constants fit to network activity after removing gradient of excitation or long-
range projections. Far left: time constants for intact network. Centre left: network
with no gradient of excitatory synapses across areas. Centre right: network with feed-
back projections lesioned. Far right: network with all long-range projections lesioned.
(B) Effect of scrambling long-range connectivity on resting-state network dynamics,
measured by the time taken for an area’s activity to return to 5% of baseline after a
250 ms pulse of input. Distribution of timescales when all connection strengths are
randomly permuted. Dark blue, lighter blue and very light blue circles indicate median
value, 10" to 90*" percentiles and 5" to 95" percentiles respectively. Intact network
shown in black for comparison. Timescales for scrambled networks are much more
similar to each other (compare black to blue), and fast visual areas show the greatest
disruption. (C) Distributions when only non-zero connection strengths are permuted,
thus preserving the connectivity pattern but not strengths.

response (i.e., equal white-noise input to all areas) of the intact network to networks where
long-range connections are scrambled while preserving the gradient of excitation. A number of
these networks show responses that are poorly fit by exponentials, so we measure time scale
non-parametrically as the time after pulse offset for activity to decay to within 5% of baseline.
In fig. 5B, we show that scrambling almost entirely removes the hierarchy of timescales, further

confirming that a gradient of excitation alone is insufficient to separate timescales.

The connectivity data show specificity in which projections exist and in their strengths, and
both connection probability and strength decay exponentially with inter-areal distance (Ercsey-
Ravasz et al., 2013; Markov et al., 2013, 2014a, 2011b). In fig. 5C, we preserve network topology
(i.e., which areas are connected), but scramble the strengths of non-zero projections. Here the
separation of timescales is strongly attenuated for most areas, suggesting that specificity in

projection strengths and not just network topology is required for the timescales we see.
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2.6 Localised eigenvectors and separated timescales

The model for a single area is threshold-linear, meaning we ignore non linearities besides the
constraint that firing rates be positive. This allowed us to explore the genesis of separated
timescales with linear systems analysis. The activity of a linear network is the weighted sum of
characteristic activity patterns, called eigenvectors (Rugh, 1995). Each eigenvector evolves on a

timescale given by a corresponding eigenvalue and is differently driven by different inputs.

‘ 0.7

4ams 128 ms 244 ms 626s

FicURE 6: Eigenvectors of the network coupling matrix are weakly localized,
corresponding to segregated temporal modes. Each column shows the amplitude
of an eigenvector at the 29 areas, with corresponding timescale labelled below. The 29
slowest eigenvectors of the system are shown.

The eigenvectors of the linearised network are localised: those with short timescales are broadly
concentrated around sensory areas and those with long timescales are concentrated at frontal
areas (fig. 6). In general, if an eigenvector is small at a node, then its amplitude at that node in
response to input will also be small, and the corresponding timescale will be weakly expressed.
Thus, localisation means that for most inputs network dynamics will be dominated by rapid
timescales at sensory areas and slower timescales at cognitive areas. In previous theoretical
work, we have shown how localised eigenvectors can arise in networks with gradients of local

properties and produce a diversity of timescales (Chaudhuri et al., 2014).

2.7 Extension to nonlinear dynamics and multistability

The threshold-linear local circuit let us highlight the requirements for a hierarchy of timescales
and provide intuition from linear systems theory. Moreover, many systems can be linearly
approximated, and neural responses are often near linear over a wide range of inputs (Chance
et al., 2002; Wang, 1998), making linear and threshold-linear models used for neural circuits
(Dayan & Abbott, 2001).

Nevertheless, linear models show limited dynamics and cannot capture features such as persistent
activity or multistability, which are thought to be important for cognitive capabilities in higher

areas (Wang, 2013). We thus replaced our local circuit with a firing rate ("mean-field") version
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of a spiking network with more realistic synaptic dynamics (Wang, 2002; Wong & Wang, 2006).
When isolated, an area in this network can display qualitatively different regimes (fig. 7A).
For relatively weak recurrent connections, an area shows a single stable state. As recurrent
excitation is increased, there is a transition to a regime with two stable states, with low and
high firing rates that correspond to a resting state and a self-sustained persistent activity state.
In this regime, an area can integrate inputs over time and maintain activity in the absence of a
stimulus. Such dynamical regimes have been proposed to underlie "cognitive-type" computations

such as working memory and decision-making (Wang, 2002, 2013).
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FIGURE 7: Hierarchy of timescales in a nonlinear model. (A) Possible steady
states (bifurcation diagram) for an area as a function of recurrent strength (normalised
by value at V1). Stable steady states are shown with solid lines. Areas with compara-
tively low recurrent strength display only a single steady state. Increasing the recurrent
strengths leads to a regime with a high-activity steady state. The dashed line is an
unstable intermediate steady state. The thick blue line shows the parameter range
supporting bistability, while the light blue shaded region indicates the range used for
areas in the model. Steady states are shown as fractional activation of NMDA conduc-
tance. (B) Response of disconnected areas to a strong pulse of input. As in (A), V1
only shows a single stable state, whereas area 24c shows sustained delay activity. (C)
The timescales of responses to a small perturbation serve as a probe of the recurrent
strength of a local area. These timescales are much smaller than those in response to a
larger input but emerge from the same underlying gradient in recurrent strengths. (D)
Response of connected network to a brief pulse of input to area V1. As in fig. 3, the
input is propagated up the hierarchy, slowing down as it proceeds. Note that the input
is not strong enough to switch any area into the high-activity stable state.

With this model for each area in the large-scale network, we introduced the previous gradient

of excitation. Consequently, sensory areas show single stable states while areas further up the
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hierarchy can also show persistent activity when driven by strong inputs (fig. 7B). Small pertur-
bations are insufficient to shift the state of a node but take longer to decay away in arcas further
up the hierarchy (fig. 7C).

For small inputs, the network response resembles the threshold-linear model: a brief input to V1
is propagated up the hierarchy, with rapid decays in sensory areas and slow decays in association
areas (fig. 7D). Thus, the previous results extend to a nonlinear model with a larger dynamical
repertoire. Exploring the complex dynamical behaviours that this network can show is beyond
the scope of this paper, but one interesting consequence of the extended model is that the
timescales of small fluctuations around baseline predict the ability of an area to show much
longer timescales in response to larger inputs (fig. 7C and see the discussion), as observed in
Honey et al. (2012) and Murray et al. (2014).

We now investigate the implications of local heterogeneity for network organization as measured
by correlations in resting state activity (resting- state functional connectivity). In our model,
frontal and association areas reflect a slowly varying network state, and we hypothesized that

this state should strongly shape functional connectivity.

In fig. 8A, we show functional connectivity in our threshold linear model with heterogeneity
in local area properties, or without it (as typically assumed in models relating functional to
anatomical connectivity). The inclusion of a gradient of local excitation reduced the correlation
(r?) between functional and anatomical connectivity from 0.83 to 0.53 (fig. 14 shows results using
a BOLD kernel as in Boynton et al. (1996)).

2.8 Functional connectivity

Multiple studies find that the strength of an anatomical connection between areas ("structural
connectivity") partially predicts correlations in neurophysiological signals from those areas (func-
tional connectivity), but there are significant differences (Damoiseaux & Greicius, 2009; Deco &
Corbetta, 2011; Deco et al., 2014; Hagmann et al., 2008; Honey et al., 2009). Our results also
suggest that interareal connections are insufficient to predict functional connectivity. However,
we find that heterogeneity in local connectivity could help account for the previously unexplained
variance. In our model, slower frontal and temporal areas in particular show enhanced functional
connectivity. Consequently, areas with slow timescales play a predominant role in the network,
as shown by "lesioning" individual areas (fig. 8B, left panel). For the simple case of identical in-
put to each area, the effect of lesioning an area is well predicted by the time constant of intrinsic
fluctuations (fig. 8B, right panel). Note that areas most important for functional connectivity
are not simply those at the highest positions in the hierarchy (i.e. with the most recurrent
connections), and hierarchy alone poorly predicts impact on functional connectivity (r? = 0.18).
For instance, the caudal superior temporal polysensory region (STPc) and the rostral parabelt
(PBr) are at intermediate hierarchical positions but have strong connections to other parts of
STP (darker lines in fig. 8B) forming a cluster that shapes functional connectivity. In general,
areas combining intermediate to high hierarchical position and strong connections to slow areas

have the strongest influence on global activity patterns.
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FIGURE 8: Functional connectivity depends on local microcircuitry. (A) Func-
tional connectivity for two networks with identical long-range connectivity. The network
on the left has the same properties at each area, while that on the right has a gradient
of local recurrent strengths. Top panel: correlations in area activity for uncorrelated
background input to each area. Bottom panel: functional connectivity (correlation)
versus structural connectivity (FLN) for non-zero projections. The network with a
gradient of local recurrence has enhanced functional connectivity for slow areas, and
a smaller overall correlation between functional and anatomical connectivity (showing
that long-range connections alone cannot predict global brain activity patterns). (B)
Effect of lesioning areas, one at a time, on functional connectivity. Left panel: darker
areas are those with a greater influence on resting-state functional connectivity. Right
panel: the effect of lesioning an area on functional connectivity is well correlated with
the time constant of spontaneous fluctuations in that area. See also fig. 13 and 14.

3 Discussion

The main findings of this work are 3-fold. First, it establishes a circuit mechanism for a hi-
erarchy of temporal receptive windows, which has received empirical support in recent human
(Gauthier et al., 2012; Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens
et al., 2013) and single-unit monkey experiments (Murray et al., 2014). The model extends time
integration in decision making from local circuits (Wang, 2008) to a large-scale system across
multiple timescales (Hasson et al., 2015). Second,interareal heterogeneity implies that areas
cannot be treated as identical nodes of a network and slow dynamics in association areas can
play a disproportionate role in determining the pattern of functional connectivity. This suggests

that functional connectivity analyses be revised. Third, this is the first large-scale dynamical
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model of the macaque cortex based on weighted and directed connectivity and incorporating

heterogencity across areas.

The ability to integrate and hold information across time is critical for cognition. On the other
hand, the brain must rapidly and transiently respond to changing stimuli. Complex behaviour
thus requires a multitude of coexisting timescales. We demonstrate how such timescales (or
temporal receptive windows) naturally emerge in a model of primate cortex built with quanti-
tative anatomical data. Our work reveals multiple functional hierarchies converging on a slow

distributed network of densely connected frontal and other association areas.

A long-standing observation is that strong recurrent connections can produce slower dynamics
(Wang, 2008), and we show how this basic anatomical motif can interact with the pattern of long-
range connections to produce a hierarchy of timescales. The hierarchies we observe with different
stimuli thus emerge from a combination of heterogeneity in excitatory connection strengths across
areas and the profile of long-range connectivity (which is highly specific to each area, (Markov
et al., 2013)), and neither alone can predict an area’s timescales. For example, while differences in
local recurrence play a crucial role in generating timescales, the correlation between anatomical
hierarchy and timescale is relatively weak (r? = 0.25, 0.14, 0.22 in the visual, somatosensory,
and resting-state conditions respectively). Moreover, areas can show quite different timescales
in response to different inputs: as seen in fig. 4B, even early visual areas with relatively weak
recurrence can have slower timescales. To characterise the dependence of timescales on local
and long-range properties, we first removed the gradient of local properties and observed that
the hierarchy of timescales vanishes. Separately, we preserved the local properties of areas and
either removed (fig. 5A, right panels) or scrambled the long-range projections both globally and
while preserving network topology (fig. 5B and 5C).

It will be important to further probe the interaction of local and long-range connectivity. This will
require additional anatomical and physiological data, and our model can be a platform to explore
the consequences of these data for large-scale dynamics. For example, following the finding of
Markov et al. (2011b) that the proportion of local to long-range synapses is roughly conserved
across areas, we have chosen to scale both local and long-range projections by an area’s position
in the hierarchy. Nevertheless, local and long-range synapses may have different strengths and
properties and may differentially target cell types and dendritic locations. Relatedly, long-range
inputs may be differentially gated depending on task demands and the local circuit regime.
Conversely, in the nonlinear model, long-range input can shift the dynamical regime of the local
circuit: an area that lacks persistent activity when isolated may show persistent activity in the
presence of a weak long-range control signal. These interactions can provide the network with

an enhanced computational repertoire.

To examine timescales in the clearest way possible, we modelled individual areas with a threshold-
linear rate model, where time constants are mathematically well defined. However, the results
hold for a nonlinear local circuit with multiple stable states. Note that this work did not focus
on the latency of neural responses (Bullier, 2001; Schmolesky et al., 1998), for which a spiking
model is needed. Nevertheless, single neurons in the monkey cortex display slow responses during
stimulus presentation as shown in the model; for example, in decision tasks prefrontal and parietal

neurons can show quasi-linear ramping with a time constant that may appear effectively infinite
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(Brunton et al., 2013; Gold & Shadlen, 2007; Smith & Ratcliff, 2004; Wang, 2008). Thus, the

model is the simplest that is adequately designed to reveal a hierarchy of timescales in the cortex.

We systematically introduced heterogeneity into our model by assigning each cortical area a
hierarchical position determined by its pattern of feedforward and feedback projections. A
priori, there is no reason why excitatory input would vary systematically along this anatomical
hierarchy. However, we find that hierarchical position correlates very strongly with the number
of spines per neuron in an area (fig. 2B). This suggests an underlying cortical organizational
principle, which could be explored in future (see Scholtens et al. (2014) for a similar observation
and Barbas & Rempel-Clower (1997) and Hilgetag et al. (2002) for correlation of hierarchy with

lamination and relative density of an area).

There are no systematic measurements of the timescales of areas in response to different stimuli,
but recent studies have compared temporal responses and integration timescales across areas
and report a hierarchical organization (Bernacchia et al., 2011; Gauthier et al., 2012; Hasson
et al., 2008; Honey et al., 2012; Lerner et al., 2011; Murray et al., 2014; Ogawa & Komatsu,
2010; Stephens et al., 2013). Notably, Honey et al. (2012) connected a functional hierarchy in
the timescales of preferred stimuli to a dynamical hierarchy in the timescales of correlation in
network activity, and found autocorrelation timescales similar to those we model (in particular,
see Figure 6 of Honey et al. (2012)). Similarly, Murray et al. (2014) found that autocorrelation
traces were well-described by exponentials, the hierarchical ordering of arcas they observe agrees
with our model, and the timescales of small fluctuations in that study are close to the intrinsic
time constants of areas in the model (i.e., in the absence of long-range projections such as in
fig. 5A, far right panel).

Our model has several testable predictions. Though there are multiple combinations of local
time constants and network connection strengths that could produce a particular set of observed
timescales, the model suggests that timescales of small fluctuations should reflect the intrinsic
properties of areas (far right panel of fig. 5A), while larger responses should reflect time con-
stants that emerge from the entire system (far left panel of fig. 5A). In the model, slow network
timescales corresponding to a slowly varying global state. Inactivating these areas should de-
crease slow dynamics in connected areas lower in the hierarchy. The differential responses to
visual and somatosensory input suggest that when a particular input is not involved in a task,
the corresponding sensory areas better reflect slow changes in global cortical state. This may
explain decreases in low-frequency ECoG power (i.e., slow modes) when a subject engages in a
task (He et al., 2010; Honey et al., 2012), as well as the observation of Stephens et al. (2013) that,
despite fast timescales in response to visual input, early visual areas have slow timescales during
auditory processing. Finally, we predict that areas with longer timescales, such as prefrontal and
superior temporal areas, can shape functional connectivity to a greater degree. This highlights
the importance of incorporating heterogeneous local dynamics in studying the determinants of
functional connectivity and, intriguingly, suggests that functional connectivity might be used to
probe local properties. Whereas there is some evidence that frontal and association areas show
enhanced functional connectivity (Sepulcre et al., 2010) and of a correlation between enhanced
functional connectivity and slow timescales (Baria et al., 2013), it would be interesting to use
functional imaging to better understand the link between functional connectivity and response

timescales (for example, as determined by the approach of Gauthier et al. (2012); Hasson et al.
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(2008); Honey et al. (2012); Lerner et al. (2011)). The link between slow timescales and enhanced
functional connectivity might also explain observations that functional connectivity is greater at
low frequencies (Salvador et al., 2005). Moreover, because distant areas tend to lack strong direct
connections, their functional connectivity will be primarily driven by slow distributed network
modes and will be further biased toward low frequencies, as previously observed (Salvador et al.,
2005).

We mostly used a threshold-linear model for local areas, but the hierarchy of timescales holds
when areas are modelled by a nonlinear microcircuit, similar to one proposed as a model for
general "cognitive-type" computations (Wang, 2002, 2013). Depending on connectivity and input
parameters, such networks show a single stable state, multistability with persistent firing, or
continuous slow fluctuations between metastable states. While we do not explore this broader
range of behaviours, note that in the nonlinear model the timescales of small fluctuations around
baseline predict an area’s ability to show much longer timescales in response to larger inputs.
This can be seen by comparing the timescales of fig. 7C with the steady states of fig. 7A, and by
contrasting responses to large and small perturbations in fig. 7B and 7D (note that timescales
in response to large perturbations tend to be slower than those from small perturbations even
if the area is not bistable). This may explain why the timescales of spontaneous fluctuations
in an area (on the order of hundreds of milliseconds) correlate with its sensitivity totemporal
structure in stimuli across seconds (Honey et al., 2012) as well as with slow drifts in baseline

neural activity and the timescales of reward memory (Murray et al., 2014).

Our model is parsimonious, designed to capture a basic mechanism underlying a hierarchy of
timescales, and can be extended in several ways. First, the local area model could be made
more complex, and an interesting direction is using the SLNs to incorporate a laminar structure.
Second, in our model activity propagates along the hierarchy with significant attenuation. This
attenuation can be substantially decreased by changing model parameters (M. Joglekar and X.-J.
Wang, unpublished data) and may be removed by synchronous firing (Diesmann et al., 1999) or
more sophisticated feedback projections (Moldakarimov et al., 2015). Third, we only consider
cortico-cortical connections. Whereas these form the major input to a cortical area (Markov
et al., 2011b), subcortical projections will play an important role. For example, incorporating
thalamocortical projections would allow us to more realistically model input and may help set
network state and gate inter-areal interactions, whereas neuromodulators such as acetylcholine
might modulate the excitability of local populations and enhance information transmission at
other synapses. Fourth, as a first step, we used two global parameters to scale long-range
connection strengths but emerging data relating long-range anatomy and physiology should
be incorporated. Fifth, extensions should include other interareal heterogeneities, such as in
interneuron types and densities (Medalla & Barbas, 2009) and in neuromodulatory signalling
(Hawrylycz et al., 2012). For example, it would be interesting to model the higher numbers
of dopaminergic projections to prefrontal arcas. Finally, while we have focused on how areas
are able to accumulate incoming information on different timescales, processing input requires
synthesising it with previous input. Future work should explore how different areas in our model
integrate information from more realistic time-varying stimulation such as a movie or a song and
to probe how these responses change when the correlation structure of the input is disrupted

(for example, by scrambling).
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In conclusion, we report a novel, quantitatively calibrated, dynamical model of the macaque
cortex with directed and weighted connectivity. The identification of a specific circuit mechanism
for a hierarchy of timescales (temporal receptive windows) represents a key advance toward
understanding specialized processes and functions of different (from early sensory to cognitive-
type) cortical areas. Our findings demonstrate the importance of heterogeneity in local areal
properties, as well as the specific profile of long-range connectivity, in sculpting the large-scale

dynamical organization of the brain.

4 Methods

4.1 Anatomical data

The connectivity data are from an ongoing project to quantitatively measure all connections
between cortical areas in the macaque, with areas defined according to a 91 area parcellation
scheme (Markov et al., 2014a) (fig. 1). Briefly, connection strengths between areas are measured
by counting the number of neurons labelled by retrograde tracer injections. The number of
neurons labelled in a projection ranges from a few neurons to on the order of 100,000 neurons.
To control for injection size, these counts are then normalised by the total number of neurons
labelled in the injection, yielding a fractional weight or FLN (Fraction of Labelled Neurons) for
each pathway, defined as:

# neurons projecting to area A from area B

FLN, = .
B=A4 ™ Yotal neurons projecting to area A from all areas

The retrograde tracing technique only uncovers the inputs to an area, but within the subnetwork
of the 29 injected areas all the output pathways are also input pathways to another injected area.
Therefore the presence or absence of every connection is known bidirectionally. This is why used
this particular subnetwork of 29 nodes distributed across the entire cortex to represent the full
91x91 graph. In this subnetwork, of all the possible connections, 66% are present, though with
widely varying strengths. The connectivity matrix of this subgraph (pathways and connections

weights) is shown in fig. 1B.

We also use data on the fraction of neurons in each projection that originate in the upper layers
of the source area, which we call the SLN, for Supragranular Layer Neurons (Markov et al.,
2014b). These are defined as:

# supragranular neurons projecting to area A from area B
SLNp .4 =

total neurons projecting to area A from area B

The whole dataset is included in table A.1 (page 167), and all data can be downloaded from
www.core-nets.org. Further details of data collection can be found in (Markov et al., 2014a,
2011b). All the procedures used in the study followed the national and European regulations
concerning animal experiments (EC guidelines 86/609/EC) and were approved by the authorised

national and veterinary agencies.
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4.2 Hierarchy and low-dimensional connectivity embedding

(a) Building the hierarchy from connectivity data

In the visual system, projections directed from early visual areas to higher-order areas (i.e.
increasing size of receptive field, position-invariance, and so on) tend to originate in the supra-
granular layers of the cortex and terminate in layer 4 (Barone et al., 2000; Felleman & Van Essen,
1991). Conversely, projections from higher-order areas to early visual areas originate in the infra-
granular layers and terminate outside of layer 4. This observation was systematized Felleman &
Van Essen (1991), who used these anatomical constraints to place cortical areas in a hierarchical

ordering.

Felleman and Van Essen used a discrete classification of projections: in their framework projec-
tions are either feedforward, feedback or lateral depending on where the majority of projections
originate and terminate. However, such binary relations are typically insufficient to specify a
unique hierarchy (Hilgetag et al., 1996). Subsequently, it was observed that rather than clas-
sifying a projection as feedforward, feedback or lateral, the fraction of neurons in a projection
originating in the supragranular layers (the SLN) could be used as a continuous measure of hier-
archical displacement: the difference of the SLN from 50% is positive for feedforward projections
and negative for feedback projections, and its magnitude gets larger as a projection moves further
away from lateral (Barone et al., 2000). For example, a projection with an SLN of 90% would
be very strongly feedforward, while a projection with an SLN of 65% would be only moderately
feedforward. Using these values, the Felleman and van Essen hierarchy could be reproduced

using observations of connections to only two areas (V1 and V4) (Barone et al., 2000).

To construct the hierarchy from the data in fig. 2A we follow the framework of (Markov et al.,
2014b) and use a generalised linear model. We assign hierarchical values to each area such that
the difference in values predicts the SLN of a projection. Specifically, we assign a value H; to
each area A; such that

SLNa, 4, = g '(H; - Hj)

We choose g~! to be a logistic function (logistic regression), which is standard for probabilities
and fractional values, but we note that other functions yield similar values (see fig. 9A). We have
one such constraint for each projection (536 in total), and we find the set of hierarchical values
that best fit these constraints. In the fit we weight the contribution of each projection by the
log of its FLN to preferentially match stronger and less noisy projections. We then normalise by

the maximum hierarchical value, yielding h; = H;/H,,q.. The result is shown in fig. 9

(b) Adding local heterogeneity from spine counts data

Regional variations in the pyramidal cell phenotype have been studied across cortical areas and
species by Elston and colleagues (Elston, 2007, 2002; Elston et al., 2005, 2011, 2006; Elston
& Rockland, 2002). They have found a remarkable specialisation of L3 pyramidal neurons
in the primate that is linked to higher cognitive functions (Elston, 2000; Elston et al., 2011,
2006). Unlike in the rodent, the size, complexity and spine density of the terminal dendritic
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FIGURE 9: Hierarchy fitted from pairwise SLN relationships. (A) Left panel:
Hierarchy fitted from logistic regression (and used in main text). The hierarchical
position of an area is normalised to lie between 0 and 1. Right panel: Hierarchy fitted
from beta regression (Cribari-Neto & Zeileis, 2010). (B) SLN values predicted from
logistic regression compared to observed SLNs.

arbours of L3 neurons of the macaque increase from sensory areas to higher order areas, and
reach maximum complexity and variability in the pre-frontal cortex (Elston, 2007). Given the
evolutionary significance of this phenotype we based areal heterogeneity in our model on spine
counts data. Spines receive at least one excitatory input, so we scaled the strength of excitatory

projections to an area according to the number of spines of pyramidal (excitatory) neurons in

this area.

We extract the spine counts in fig. 2B from (Elston, 2007) and plot the areas in common with our
data set. The parcellation in that paper is coarser than the parcellation we use, so we report the
results in terms of that parcellation. For area 7 we average together the hierarchical positions

of TA, 7B and Tm; for 6 we average F2, F5 and F7; and for 46 we average together 46d, 9/46d
and 9/46v.
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(c) A new hierarchical model: 2D circular embedding

As seen in the previous chapters of this thesis, the strength of projections between two areas
reflects their proximity both in terms of physical position in the brain and in terms of function,
as evidenced by the force-directed graph representation in fig. 10 from chapter 3. When weighted
projections are used instead of binary relations (presence/absence of a projection), areas group by
modalities and pathways, mirroring the physical organisation of areas in the cortex. This is linked
to Felleman and Van Essen’s proposal that each cortical modality has its own hierarchy (Felleman
& Van Essen (1991) also describes the somatosensory and motor hierarchy) and Dehaene’s global
workspace model for the activation of these modalities in effortful cognitive tasks (Dehaene
et al., 1998). Following this, we built a two-dimensional circular embedding of the cortical graph
that maps hierarchical positions onto the radial axis and connection strengths onto angular

displacement.

To construct this two-dimensional embedding we first convert the FLN to a measure of dissimi-

larity according to

—lOg(FLN(AZ‘, AJ)) for FLN(AZ A]) >0
D(A;, Aj) =
' —log(FLN,,,) for FLN(A;,A;)=0
Here, A; is the ith area, and F'LN,,;, is some value less than the smallest FLN in the network.

We use FLN,,;», = 1077 but the results are robust to the precise choice of this value.

We then assign angles 6; to each area such that
d(A;, A;) =~ Rmin(|6; — 6,|,2m — |6; — 0,|)

where R is a free parameter and area V1 is constrained to have § = 0. Finally, we plot the areas
on a 2-dimensional polar plot with 6(A4;) = 0; and R(A4;) = /(1 — h;).

The resulting circular hierarchy of the 29 areas is presented in fig. 2C. In the dynamic model we
directly include the radial position to scale the excitatory input but the angular distance of the

embedding is not directly used, only the connection weights.

4.3 Model architecture

The network has 29 nodes (areas), each consisting of an excitatory and an inhibitory subpopu-
lation, which summarise the effective dynamics of the area. Their firing rate depends on input
current in a threshold-linear fashion, with a rectifying threshold at 0. Long-range connectivity
is excitatory and targets both subpopulations. Connectivity weights are proportional to the
anatomical strength of the connection, with one scaling parameter for excitatory-excitatory and
another for excitatory-inhibitory projections. Excitatory connections within an area, both local

and long-range, are scaled by the area’s position in the hierarchy.
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The variation of firing rate is defined as:

dv
TEj—tE = —vgp + PfellE|+
v
Tld_tl = —vr+ Brll1]+

where v is the firing rate of the excitatory population, with time constant 7z and input current
Ig, and for which the firing rate vs. input (f-I) curve is a straight line of slope Sg. [[g]+ =
maz(Ig,0). The inhibitory population has corresponding parameters 77, I and 8;. These values
are taken from Binzegger et al. (2009): 7 = 20 ms; 77 = 10 ms, 8g = 66 x 1073 Hz/pA and
Br = 351 x 1073 Hz/pA.

At each node, the input current to each subpopulation has a component from itself, one from
the other subpopulation (those are the local input), and another that comes from other areas
(long range input). All excitatory connections are scaled according to the area’s position in the

hierarchy. The input current to area a is defined as follows:

Iy = —wervi + (wesvl + I 5 ) (14 0hi) + Ly
1} = —wirv + (wisvip + I ) (U 0ha) + g

The wggp and wgr terms are couplings from the excitatory population to the excitatory and
inhibitory population respectively; we use wgr = 24.3 pA/Hz and wgg = 19.7 pA/Hz. IZ;~,E
is the long-range input to the excitatory population and both depend on the area’s position
in the hierarchy, h; (normalised between 0 and 1). The effect of hierarchy in the model is
controlled by the parameter n; by setting 7 = 0 we remove intrinsic differences between areas.
I’ém, g is external input (both stimulus input and any noise we add to the system). The wyg,
wrr, I lir, ; and Iémt’ ; terms are corresponding parameters for the inhibitory population; we use
wrgp = 12.2 pA/Hz and w;; = 12.5 pA/Hz. Note that unlike [fryl (excitatory input from other
areas to the inhibitory subpopulation) and local excitatory input, local inhibitory connections

are not scaled by hierarchical position.

Following Binzegger et al. (2009), we write w;; = «;S;;, where ¢ and j can be E or I; ag
(resp. ay) measures the charge introduced per excitatory (inhibitory) spike times the transmitter
release probability. Both are slightly modified from Binzegger et al. (2009): ap = 0.007 pC and
ar = 0.025 pC. 5;; is the number of synapses from cells of type j to cells of type 4, taken from
the counts for layer 2/3 cells (Binzegger et al., 2004). Inhibitory values are weighted averages of
basket, double bouquet and chandelier cells, with weights chosen according to their projections

to the excitatory population.

We scale the excitatory inputs to an area, both local and long-range, by its position in the
hierarchy, h;. h; is normalized between 0 and 1, and 7 is a scaling parameter that controls the
effect of hierarchy. By setting n = 0 we remove intrinsic differences between areas. Note that we
scale both local and long-range projections with hierarchy, rather than just local projections, in
accordance with the observations of Markov et al. (2011b), who find that the proportion of local

to long-range connections is approximately conserved across areas.
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Long-range input to area a is modelled as the sum of excitatory currents from all other areas,

scaled by the strength of each pathway, to both excitatory and inhibitory cells:

I p=pee Y _ FLN; vi,
j

Ij,; = pip ) FLN; vy,
j

Here j ranges over all other areas. [, lir’ g and 1, lir, ; are the inputs to the excitatory and inhibitory
populations, V% is the firing rate of the excitatory population in area j and FLN;; is the FLN
from area j to area i¢. Global parameters ugpg and purg control the strengths of long range input
to the excitatory and inhibitory populations, respectively (they do not vary between connections;

all the specificity comes from the FLNs).

The network thus has three parameters: pgpg and pu;g control the connection strengths of long-
range projections, and 7 maps the hierarchy into excitatory connection strengths. For our
simulations, we use ugg = 33.7 pA/Hz, urg = 25.3 pA/Hz and 1y = 0.68. We choose the
background input for each area so that the excitatory population has a firing rate of 10 Hz and

the inhibitory population has a rate of 35 Hz.

We can choose the excitatory to inhibitory ratio of an input current, v = Iinp £/ Linp,1, such that
the steady-state firing rate of the excitatory population does not change when the current is
present. Given input of I;, g to the excitatory population, an input of v/, g to the inhibitory
population increases the inhibitory firing rate sufficiently to cancel out the additional input to
the excitatory population. We call such inputs balanced. Our values for pggp and p;g give a

ratio slightly above this value so that projections are weakly excitatory.

4.4 Pulse input, autocorrelation, and fitted time constants

For figs. 3 to 5 and 8, we choose the background input for each area so that the excitatory and

inhibitory populations have rates of 10 and 35 Hz respectively.

In fig. 3A, V1 receives a 150 ms pulse of input that drives its rate to 100 Hz. For the remaining
images of this figure and fig. 5A, the stimulus to V1 is white noise with a mean of 2 Hz and a
standard deviation of 0.5 Hz. The other areas receive a small amount of background input (SD
of the order of 10~°), but are primarily driven by long-range input propagating out from area
V1. For fig. 4, the currents are the same except that area 2 receives the stimulus rather than
V1.

For each area, we extract time constants by fitting both one and two exponentials to the part
of the autocorrelation function that decays from 1 to 0.05. If the sum of squared errors of the
single exponential fit is less than eight times that of the double exponential, then we report that
time-constant. Otherwise, we use the sum of time constants from the double exponential fit,
with each weighted by its amplitude. Fits in response to V1 and area 2 input and for resting

state activity are shown in figs. 10, 12 and 13.
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For fig. 4B, we map the time constants logarithmically to a heatmap and plot them using Caret
(Van Essen et al., 2001a).

4.5 Network with conduction delays

In our simulations we ignore conduction delays between areas. While these will be important for
oscillations, synchronisation and other fine temporal structure, the timescales we consider are

typically slow enough that conduction delays do not play an important role.

In fig. 11 we demonstrate that our results hold in a network with realistic conduction delays. We
use distances from the same data set as the connectivity strengths (Ercsey-Ravasz et al., 2013)
and, to ensure a fair comparison, assume a relatively low conduction velocity of 1.5 m/s (Deco
et al., 2009). As shown in fig. 11B, the response of this network to a pulse of input to area V1

is almost identical to that of a network without conduction delays.

4.6 Scrambled connectivity

For the simulations shown in fig. 5B, we scramble the connectivity matrix by permuting all
entries of the matrix randomly. For fig. 5C, we preserve the absent entries and permute the non-
zero entries. Note that the connectivity data show specificity both in terms of which projections
exist and in their strengths, and both the probability of a connection and its strength decay
exponentially with distance between areas (Ercsey-Ravasz et al., 2013; Markov et al., 2013,
2014a, 2011b). In particular, nearby areas tend to be strongly connected and to have similar

timescales (see fig. 2C); thus scrambling projections should reduce the separation of timescales.

We examine the response of these scrambled networks to a pulse of input to all areas, similar
to the "resting-state" condition. In the intact network, areas are dominated by a few timescales
and are well fit by one or two summed exponentials. However, a number of the scrambled
networks show responses that consist of many mixed timescales and are not well described by two
exponentials. Thus we use a non-parametric measure of timescale: we compute the time taken
after pulse offset for the area’s activity to decay to within 5% of its value at baseline. Scrambling
the connection strengths makes about 20% of networks unstable, meaning that responses to input
grow instead of decaying, and we exclude these networks. We then compute the median and the
5t 10", 90*" and 95" percentile of the decay time distribution for each area, and contrast it

with values for the intact network.

4.7 Functional connectivity for a linear network

To highlight the effect of intrinsic hierarchy, in fig. 8A we contrast a network hierarchy with a
network that has a gradient of local excitatory connections but unlike in the remaining figures, no

gradient in the long-range projection strengths (thus, these networks have the same long-range
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connection strengths and differences emerge from local properties). We replace

N
(14 nh;) | wpevs + peE ZFLNZ-]-I/JJE
j=1

with
N .
j=1
for the excitatory population, and similarly for the inhibitory population. For fig. 8B, we use the
same network as elsewhere, so that all incoming excitatory projections are scaled by an area’s

hierarchical position.

If a linear network is driven by white noise input then, away from the threshold, it evolves
according to the equation
z(t) = Azx(t) + I + BE(1),

where [ is the mean of the noise, B is its covariance matrix and A is the coupling matrix, which

includes any intrinsic leak of activity.

In the steady state the covariance, C, of this matrix is the solution to the equation (Gardiner
et al., 1985)
AC =CA"+ BB =0.

This equation can be solved given the eigenvector basis (Deco et al., 2013). In the eigenvector
decomposition, A = VAV ™!, where A is the diagonal matrix of eigenvalues and the columns of

V are the right eigenvectors of A. Define

Q=V~'BB'V
Qi
Mi' = - - )
/ (A + A7)

then C = VMV,

As an aid to intuition, assume that A is a normal matrix so that V! = V. Then Q = VIBBV,
and the covariance matrix of the network is a rescaled version of the covariance structure of the

input noise.

We calculate functional connectivity as the correlation matrix of area activity in response to equal
white-noise input to all areas. For fig. 8B, we determine this correlation matrix analytically: since
the input noise is independent and identical at each node, then the covariance matrix of the noise
is diagonal with constant entries (and all correlations come from the structure of the network). If

this has the value 02 at each node then, for a normal matrix, Q;; = 025;;, and M is diagonal with

2R
ith entry 1;02/2, where 7; = —1/)\;. Hence the covariance of the i*" eigenmode is proportional

to its corresponding timescale.

Now C = VMV', meaning that the matrix is rotated out of the eigenvector basis giving a
non-diagonal matrix. Thus eigenvectors that are more broadly shared contribute more to the

functional connectivity. In this case C' o< A71/2.
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We also note that Baria et al. (2013) conduct a similar analysis on a linear network with nodes
having identical properties and binary connectivity, and find that nodes with more anatomi-
cal connections and, consequently, higher functional connectivity show greater activity at low

frequencies (i.e., slower timescales).

For fig. 14, we convolve the firing rates of the excitatory population at each node with a hemo-

dynamic response function of the form:

(t — d)e= =D/
H(t) = p) P
Th

with timescale 7, = 1.25 and delay d = 2.25 s (Boynton et al., 1996). This yields a simulated
BOLD signal, and we calculate the functional connectivity as the correlation matrix of this

activity.

The effect of lesioning an area, A, is measured as || Cr.a — Crs.a || / || Crs,a || where Cp 4 is
the correlation matrix after lesioning A, 5 4 s the intact correlation matrix without the row and
column corresponding to A, and the double lines indicate the norm. The values are then scaled

to lie between 0 and 1.

4.8 Nonlinear network

The single area model is a variant of the model developed in Wong & Wang (2006) as a sim-
plified mean-field version of the spiking network of Wang (2002). There the dynamics were
assumed to be dominated by the slow time-constant of NMDA synapses, and the activity of
the inhibitory population was incorporated into the effective connection strengths between the
excitatory populations. As in that study, we assume that the dynamics of the excitatory popu-
lation are modelled by a dimensionless gating variable, sy, reflecting the fractional activation of
the NMDA conductance, with timescale set by the slow MDA time-constant. However, we also
consider an inhibitory population, modelled with a threshold-linear differential equation (as in

the previous sections).

The equation for the excitatory population is:

v =¢(Ip) = ¢ ((1 + nh;) (wEES?v + Ilir,E) —wEv; + féxt,E)
dst

dzjfv = 733'\, + 1N (1 — sﬁv)u}z

N

Here vg is the excitatory firing rate and sy is the NMDA gating variable, which is bounded
between 0 and 1. ¢ models the firing rate-current dependence of a leaky integrate-and-fire neuron
(Abbott & Chance, 2005) and is defined as:

alsyn, —b
¢(Isyn) = 1 _ e—d(aloyn—b)

with ¢ = 0.27 Hz/pA, b = 108 Hz and d = 0.154 s.
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The inhibitory population is described with a threshold-linear equation as before:

dV}
dt

T = Vi 4 B [I}}+ = —v} + Br [(1 +nhi) (wrpshy + I]ir,]) —wi vy + Iémt,]]+ .

Parameter values are: 7y = 60 ms, 77 = 10 ms, v = 0.641, wgg = 250.2 pA, wg; = 8.110 pA/Hz,
wrg = 303.9 pA and wgr = 12.5 pA/Hz.
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when only non-zero connection strengths are permuted, thus preserving the connectivity
pattern but not strengths. As before, median shown in dark blue, 10%—90% range in
lighter blue, and 5% —95% in very light blue, along with intact times in black.



5. Supplementary figures 139

unctional connectivity,

* - ‘ . 4 3 *
0 fime=constant 7

FIGURE 15: Functional connectivity of simulated BOLD signal. (A) As in
Colours as in fig. 7TA, the network on the left has the same local properties at each
node, while the network on the right has a gradient of local recurrent strengths. Firing
rate is convolved with a gamma function to generate a simulated BOLD signal (Boynton
et al., 1996). Top panel: functional connectivity in response to background white noise
input to each node. Bottom panel: functional connectivity (correlations in BOLD) vs.
structural connectivity (FLN) for non-zero projections. (B) Effect of lesioning areas on
functional connectivity measured via simulated BOLD signal. Plots are as in fig. 7B.






Chapter 7

Outlook

Let Hercules himself do what he may,

The cat will mew and dog will have his day.

William Shakespeare, Hamlet

141
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In this thesis we have studied the anatomy and dynamics of interareal connections in the cere-
bral cortex, motivated by open questions linked to the well-established notions of hierarchical
organisation and feedforward vs. feedback propagation. While the presence of both types of
projections throughout the brain has been long known, compelling evidence for the specific roles

that these different paths play in cortical function and perception has been harder to attain.

To further our understanding of this issue we have microstimulated and performed electrophysi-
ological recordings in the visual system of the macaque monkey, while the animals were engaged
in an attention-demanding visual task. We have chosen areas V1 and V4 because of their clearly
established "canonical' relationship, with a feedforward pathway from V1 to V4 in the bottom-up
direction, reciprocated by a descending feedback projection from V4 to V1. The main paradigm
we used (the figure-ground segregation of a texture) is well established and the modulation ob-
served in V1 involves feedback from V4 (Lamme et al., 1998). Furthermore, we were able to
artificially activate these two pathways with electrical microstimulation, which is to our knowl-
edge the first causal evidence of FB influence on a target area. Although contrary to our working
hypothesis we did not find evidence that V4 influences whether or not activity in V1 triggers a
percept (chapter 4), we did uncover an important functional asymmetry between FF input in
V4 and FB input in V1 (chapter 5). In particular, MS in V1 always activated the corresponding
RFs in V4 but MS in V4 did not evoke a visual response in V1, and V4 influence on V1 was only
detected when V1 was engaged in the visual task, after the initial response to the texture, during
the modulation period. Without sustained input from V4 however, the figure-ground modulation
disappears in V1, and we have shown that during the task V4 input is increased at the figure
location and decreased in the surroundings of the figure while it remains unchanged on distant
locations. These findings are in line with the results of reversible inactivation of macaque area
MT on figure-ground discrimination in areas V1, V2 and V3 (Hupé et al., 1998). Interestingly,
the authors of this study show that this potentiation of the centre/surround effects mediated by
feedback inputs into early visual areas is greater for low salience stimuli. It makes sense that
when the task is made easy by high-salience stimuli the influence of FB is smaller and therefore
more difficult to detect. For this reason we suggest that future work could evaluate V4 influence

on V1 for different saliencies.

In parallel, other work from the Amsterdam team further explored this pivotal asymmetry of
feedforward and feedback effects in the early visual system by investigating the hypothesis that
these two types of processing result in oscillatory activity at different frequencies (Engel et al.,
2001; Wang et al., 2010). In van Kerkoerle et al. (2014) (see the list of publications), laminar
electrodes were used to record from all cortical layers of V1 and V4 during two visual tasks
(figure-ground segregation and curve tracing). It showed that within an area, gamma waves
are initiated in feedforward input layer 4 and propagate to the deep and superficial layers of
cortex, whereas alpha waves propagate in the opposite direction, starting in layers targeted by
feedback projections. Simultaneous recordings from V1 and downstream area V4 confirmed that
gamma and alpha waves propagate between areas in the feedforward and feedback direction,
respectively. This oscillatory signature of feedforward and feedback processing will likely prove
useful when it comes to disentangle the influence of horizontal and feedback projections during

processing. Moreover, using microstimulation as in chapters 4 and 5 of this thesis, we showed
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that the propagation of alpha oscillations was stimulus-dependent: it was blocked by the presence
of a task-relevant stimulus in the recorded receptive field. On the contrary, gamma oscillations
propagated in the feedforward direction whether or not the stimulus was task-relevant, thus

confirming the asymmetry of feedback and feedforward influence that we uncovered in chapter 5.

From a functional point of view, the idea that feedforward projections are driving the activity of
their target area while feedback can only modulate ongoing activity (Sherman & Guillery, 1998)
has shaped our understanding of cortical processing. This dichotomy is based on the clearcut
difference between thalamocortical and corticothalamic connections, a difference that has been
extended to corticocortical pathways (Crick & Koch, 1998) based on the anatomical similarities
in the layers of origin and termination. Of course, there is strong evidence, that FF projections
are of the driver type: inactivation of macaque area V1 leads to a complete absence of response
to visual stimuli in area V2, and a cessation of activity in many downstream areas including the
inferotemporal cortex. However, even after complete V1 inactivation there is residual activity
in area MT, and weak motion perception in humans with V1 lesions (reviewed in Bullier et al.
1994). More importantly, Bullier (2006) notes that in the macaque all the evidence about the
strong driving property of FF projections come from inactivation of area V1, which also happens
to be the virtually unique entry point into the cortex for visual information. Given the strong
reciprocal connections between areas V2 and V4, it would be interesting to test whether area

V4 stops responding when V2 instead of V1 is inactivated.

For this reason we suggest that future work using our MS technique should test the FF projections
from V1 to V2 (the most massive in the cortex) as well as the one from V2 to V4. This is especially
relevant because in the parafoveal representation where we recorded there is no direct projection
from V1 to V4 (although there is one for the central representation), so the pathway we have
looked at is a two-step FF path through V2. Thus microstimulating V2 while recording V4 in
the parafoveal representation would allow us to test the FF input from V2 without interference
from the FF input from V1. Ideally, we would also study the simultaneous FF and FB inputs
to an arca during a task, to understand how these inputs interact with the ongoing activity
in the local circuitry. Again, V2 would be the target of choice to record while simultaneously

microstimulating the parafoveal representations of V1 and V4.

Hierarchies in the cortex

The notion that the cortex is hierarchically organised is widely accepted, but it is used in many
more or less abstract ways so it is important to define what we mean by it. The word hierarchy
comes from the Greek iepopylo (hierarchia) which means "rule of a high priest", itself from
iepdpyme (hierarkhes), a "leader of sacred rites". It is an arrangement of items (objects, names,
values, categories, etc.) in which the items are represented as being "above," "below," or "at the
same level as" one another. In our case, the items are the cortical areas, and after Felleman and
Van Essen’s building rule, if area A projects in a feedforward fashion onto area B, then A is
below B. Conversely if B is above A the projection from B to A should be feedback. Finally if
two areas are connected by a lateral projection they are at the same level as one another. Of
course, there are both anatomical and functional definitions of feedforward and feedback, but
both the items and the relations are identified. On the other hand, some hierarchical models like
Fuster’s famous diagram of the double hierarchy of perception and action (Fuster, 2004) are more

abstract. This plot represents components of the mind/brain complex system such as "primary
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(lower) associative", but what the arrows connecting the boxes represent is left to the reader to
devise. This is not to say that this concept of hierarchy is not useful as a general framework to
guide experimentation. It means however that it must not be confused with the hierarchy we are
looking for in the present thesis. It should not be confused either with the hierarchical structure
of actions performed (or problems solved) by the brain. Hierarchically structured behaviour can
be decomposed in nested levels from long term goals to immediate motor plans (Botvinick, 2008)
but although it is tempting to assume as much, it does not mean that the system performing it

has a hierarchical structure itself.

There are also two ways to derive a hierarchy. One is from data about the relations between
items (the feedforward or feedback nature of interareal connections), but being "above" or "below"
can also be determined by a gradient, i.e. a measurable property of the items themselves that
makes it possible to order them. From anatomical data, the former is what the GLM method
computes based on each projection’s SLN, while an example of the latter is Elston’s data on
the number of spines per pyramidal neurons across areas. As we have shown in chapter 6,
the hierarchical ordering given by these two datasets yield very similar results, which indicates
that the anatomical hierarchy first devised by Felleman and Van Essen is a strong feature of
the cortex. It is, however, not perfectly hierarchical: in the edge-complete subgraph of the
29 injected areas there are many violations to the building rule. However, since the Kennedy
dataset provides weighted connectivity and a graded measure of hierarchical distance, we need a
weighted approach to quantify the extent of these "anti hierarchical" components in the network.
For this, the approach by Ispolatov & Maslov (2008) to find the dominant direction of flow of

information in dense networks looks promising.

Regarding functional data, the technique designed by the Roelfsema lab (van Kerkoerle et al.,
2014) provides a novel way to identify feedforward and feedback projections from the frequency
of their oscillations. The evidence is based on areas V1 and V4 but we hypothesise that this
feature will hold across the cortex. Indeed, a different approach by Pascal Fries’ lab in Frankfurt
has uncovered the same frequency signatures for feedforward and feedback processing in different
areas (Bastos et al., 2015). They used grids of cortical surface electrodes which cannot pinpoint
the layers of origin and direction of propagation of alpha and gamma waves within an area
as the probes that were used in (van Kerkoerle et al., 2014); however they allow simultaneous
recording of several areas (8 in this case). From this data and using Granger causality as
in van Kerkoerle’s approach, they characterised the feedforward or feedback nature of each
directed relation, and found a hierarchical ordering of the 8 areas that is in general agreement
with our anatomically derived hierarchy. This is a particularly exciting outcome as it seems to
provide a functional correlate associated with the previously demonstrated anatomical hierarchy.
Other studies provide hierarchical orderings based on functional properties of areas: the intrinsic
timescale of resting state activity measured in 7 regions (Murray et al., 2014) or the implication
in cognitive control or more and more abstract representations in human prefrontal cortex based
on fMRI data (Badre, 2008; Badre & D’Esposito, 2007; Koechlin et al., 2003). In the latter
case the ordering is clearly rostro-caudal all the way up to area 10 at the tip of the brain. This
disagrees with our hierarchical ordering of the 29 areas where area 10 occupies an intermediate

level and not the top of the hierarchy (or the centre in the 2D circular embedding).
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A possible insight into these discrepancies is to be found in the multiplicity of functional hierar-
chies subserved by the same structural hierarchies. Indeed, in chapter 6, the intrinsic timescale
of primary sensory areas varied greatly depending on the sensory modality of the input. Further-
more, Fries’ team has been able to build slightly different functional hierarchies based on areal
interaction at three epochs of the task (Bastos et al., 2015). This makes sense in the light of
the dynamic changes in the RF properties of V1 neuron during a visual task (Roelfsema, 2006):
after recurrent connections have fed back the processed information into V1, its activity reflects
the result of progressively higher processing stages, making it effectively a high order area itself.
Moreover, since the dorsal stream exhibits smaller latencies, it is likely that the results of dorsal

processing are fed into the slower ventral stream from primary areas like V1 and V2.

In the light of this parallels between the structural hierarchy (with its potentially interesting
violations) and the multiple functional hierarchies, we deem it necessary in future studies to
generalise the comparison with our large scale anatomical hierarchy (and the exhaustive par-
cellation that we have developed in collaboration with David Van Essen and made available
through the 2nd edition of the CoCoMac database at http://cocomac.g-node.org/, Bakker
et al. 2012). Indeed, although it is normal for a primary sensory area to be in "slow mode" when
its modality is not directly involved with the current task, still we expect that identifying those
areas whose hierarchical level varies a lot with the task and task epoch will prove fruitful in the

quest for a comprehensive explanation of cortical processing.
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Appendix A

Connectivity data

Connectivity data used in the model of chapter 6 . For more detail on the dataset, sce

chapter 2. Pathways are listed alphabetically by target area, then source area.

Pathway

FLN

SLN

1 —2
3—2
12 - 2
13 =2
31 = 2
44 — 2
24b — 2
24c — 2
24d — 2
46d — 2
TA — 2
B —2
Top — 2
9/46v — 2
AIP — 2
ENTORHINAL — 2
F1 -2
F3 —2
F4 — 2
F5 — 2
Gu — 2
INSULA — 2
LB — 2
LIP — 2
MB — 2
OPAI — 2
OPRO — 2

9,5378357528578E-03
2,4580966407181E-01
6,6566145358487E-03
1,8117212520747E-04
2,9221310517334E-05
5,6104916193281E-04
95,8442621034668E-05
2,4545900834561E-04
8,1819669448535E-05
1,1688524206934E-05
5,8442621034668E-06
2,0688687846273E-03
2,1097786193515E-03
1,0829417677724E-02
1,8935409215232E-03
1,5253524090048E-03
4,4416391986348E-04
9,9027047245015E-04
1,1424363559857E-01
1,5010402786544E-01
7,9598849849218E-03
3,0267433433855E-02
1,7532786310400E-05
1,6130163405568E-03
9,3508193655469E-05
2,1623769782827E-04
7,7319587628866E-03

167

0,926470588
0,759106039
0,218612818
0,064516129
1
0,270833333
0

0
0,214285714
1

1
0,11299435
0,301939058
0,562331355
0,114197531
0,049808429
0,578947368
0,326732673
0,429506855
0,465581685
0,067547724
0,136319753
0
0,27173913
0,5
0,594594595
0,083900227
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Connectivity data

Pathway

FLN

SLN

PERIRHINAL — 2
ProM — 2

SIT — 2

TEa/ma — 2
TEav — 2
TEMPORAL POLE — 2
VIP — 2

1—=5

25

3—=+5

12 =+ 5

23 =5

31 =5

24a — 5

24b — 5

24d — 5

29/30 = 5

46d — 5

TA —5

B —5

Tm — 5

Top — 5

AIP — 5
ENTORHINAL — 5
F1—=5

F2 =5

F3—5

F5 —5

F6 =5

F7r—5

INSULA — 5

LIP — 5

MB — 5

MIP — 5

MST — 5
PERIRHINAL — 5
STPi — 5

TEa/ma — 5
TEMPORAL POLE — 5
TPt — 5

VIP —» 5

9 — 10

11 — 10

12 - 10

8,2988521869229E-04
4,4188465764313E-02
3,5938705379059E-01
7,5975407345069E-05
1,5195081469014E-04
4,7338523038081E-04
5,8442621034668E-06
2,5109067512005E-03
3,6345375223628E-02
3,2076833746587E-02
1,2554533756003E-04
8,8572235648599E-02
2,0087254009604E-03
6,2772668780013E-05
1,2554533756003E-02
6,0261762028813E-03
2,9503154326606E-03
1,8831800634004E-04
1,5056024606886E-01
1,1393239383572E-02
1,8204073946204E-03
1,0153479175167E-01
1,0043627004802E-03
3,7663601268008E-04
3,3686952700794E-01
1,1757320862496E-01
4,4599981168199E-02
6,8422208970214E-03
3,5152694516807E-03
3,1386334390007E-04
9,2275823106619E-03
2,9503154326606E-03
3,7663601268008E-04
1,6320893882803E-03
3,1386334390007E-04
1,2554533756003E-04
2,0087254009604E-03
2,5109067512005E-04
2,5109067512005E-04
6,2144942092213E-03
1,6823075233044E-02
1,1153485576990E-01
2,8314514511659E-02
6,3900328380751E-02

0
0,314905436
0,466126777
0
0,038461538
0

0

0,575
0,810880829
0,587084149
0
0,384833451
0,0625

1

0,245
0,09375

1

1
0,304982281
0,143250689
0,275862069
0,423493045
0,4375

0
0,540389453
0,208451682
0,18156228
0,036697248
0,071428571
0
0,326530612
0,510638298
0,166666667
0,615384615
0,6

0

0,625

0

0
0,267676768
0,388059701
0,471183421
0,398714378
0,489613152
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Pathway

FLN

SLN

13 — 10

14 — 10

23 = 10

25 — 10

31 — 10

32 —» 10

44 — 10
24a — 10
24b — 10
24c — 10
24d — 10
29/30 — 10
45A — 10
45B — 10
46d — 10
46v — 10
7TA — 10
Top — 10
8B — 10

81 — 10

8m — 10
8r — 10
9/46d — 10
9/46v — 10
CORE — 10
DP — 10
ENTORHINAL — 10
F1 — 10
F2 — 10
F3 — 10
F4 — 10
F5 — 10
F6 — 10
F7— 10
FST — 10
INSULA — 10
IPa — 10
LB — 10
LIP — 10
MB — 10
MIP — 10
MST — 10
OPAI — 10
OPRO — 10

2,6451196813803E-02
2,0970970221437E-01
7,7145474298362E-03
1,6995410784411E-02
7,9941459614097E-04
4,2016910602875E-02
2,2537797271495E-05
6,6345077596112E-04
1,7885651602368E-03
6,4323395770498E-03
1,3496712750603E-04
1,2577204164066E-03
4,2729265291065E-03
8,3637491895447E-04
1,8685112525539E-01
9,6127463982966E-02
1,6783914537329E-04
1,0210280731669E-05
1,8648939227281E-02
4,3848389857641E-04
95,7168830934116E-03
3,0769454383626E-04
1,1234449871600E-02
2,3336486909282E-05
3,5586189475662E-04
1,1238750771815E-04
2,2160593339142E-04
1,5586520776832E-06
6,5099769738437E-05
1,7188273472306E-06
7,1063346992896E-06
1,1230915082877E-05
4,5913244518638E-05
2,0211008424320E-03
1,1299639242753E-04
3,0390679560949E-04
1,7857100873589E-04
1,0624096562648E-03
5,2596476704062E-06
9,0226448336584E-04
2,5525701829172E-06
5,1564820416919E-06
9,2166900148820E-04
2,7791428074764E-02

0,501618363
0,469684457
0,451920246
0,362431021
0,650894982
0,491756499
0
0,148241798
0,21048803
0,340993689
0,057291667
0,309012339
0,330334346
0,41904238
0,505907476
0,466492827
0,739583333
0,75
0,318170783
0,267180736
0,369415002
0,112418831
0,282879737
0,166666667
0,410343555
0,930232558
0,068518519
1
0,111111111
0
0,333333333
0,3
0,110576923
0,221069395
0,589285714
0,054835289
0,476646505
0,401677856
0,333333333
0,274998439
1
0,333333333
0,144312011
0,269966264
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Connectivity data

Pathway

FLN

SLN

Parainsula — 10
PBc — 10
PBr — 10

PERIRHINAL — 10
PGa — 10
PIP — 10

Pro.St. — 10
STPc — 10
STPi — 10
STPr — 10
TEa/ma — 10
TEa/mp — 10
TEad — 10
TEav — 10
TEMPORAL POLE — 10
TEpd — 10
TEpv — 10
TH/TF — 10
V2 — 10

1 — 24c

2 — 24c

3 — 24c

5 — 24c

9 — 24c

10 — 24c

11 — 24c

12 — 24c

23 — 24c¢

31 — 24c¢

32 — 24c

44 — 24c

24a — 24c
24b — 24c
24d — 24c
29/30 — 24c
45B — 24c
46d — 24c
46v — 24c
TA — 24c

B — 24c

Tm — 24c
Top — 24c
8B — 24c¢

81 — 24c

4,4446296152696E-04
2,7900150464521E-03
2,6299937751119E-02
3,6043685703110E-04
1,9709029480038E-03
2,0420561463337E-05
1,8107132855689E-03
4,6569331454718E-03
2,0526960525347E-02
3,4788465527240E-02
2,0835861007825E-04
1,1589249174842E-05
9,6722630051941E-06
5,3993137188329E-05
2,8715177503395E-02
9,1075290327449E-06
1,2963031930040E-05
1,2006743139224E-03
7,2285264159668E-06
2,7691626052282E-05
2,2430217102348E-03
9,2614089499335E-04
2,5573216659282E-02
1,3347363757200E-02
1,5230394328755E-04
4,1537439078423E-05
2,0768719539211E-02
2,3994793974302E-02
3,1845369960124E-04
1,9384138236597E-03
1,6033451484271E-02
4,3614311032344E-03
1,1847862206469E-01
1,0162826761187E-01
4,1537439078423E-05
8,3074878156845E-05
4,8460345591493E-04
2,3122507753655E-03
7,9613424900310E-03
4,3198936641560E-03
1,9522596366859E-02
3,4891448825875E-03
4,2866637128932E-02
8,3074878156845E-05

0,054441434
0,622457851
0,597892043
0,134338871
0,538553966
0,375
0,494741601
0,694722245
0,575341959
0,556717445
0,348511905
0,666666667
0,75
0,435515873
0,441398403
0,833333333
0,083333333
0,126679419
0,666666667
0
0,290123457
0,315789474
0,429344884
0,752074689
0,272727273
0
0,978666667
0,594345066
0,260869565
0,778571429
0,888601036
0,571428571
0,631880332
0,567983651
1

0,5
0,857142857
0,526946108
0,40173913
0,503205128
0,746099291
0,412698413
0,725775194
0,666666667
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Pathway

FLN

SLN

8m — 24c
8r — 24c
9/46d — 24c
9/46v — 24c
CORE — 24c
F1 — 24c
F2 — 24c
F3 — 24c
F4 — 24c
F5 — 24c
F6 — 24c
F7 — 24c
INSULA — 24c
IPa — 24c
LB — 24c
LIP — 24c
MIP — 24c
MST — 24c
OPRO — 24c
ProM — 24c
SII — 24c
STPc — 24c
STPi — 24c
STPr — 24c
TEpv — 24c
V6 — 24c
V6A — 24c
VIP — 24c
2 — 46d

3 — 46d

9 — 46d

10 — 46d

11 — 46d

12 — 46d

13 — 46d

14 — 46d

23 — 46d

31 — 46d
32 — 46d
44 — 46d
24a — 46d
24b — 46d
24c — 46d
24d — 46d

2,7691626052282E-05
2,7691626052282E-05
9,1091050066460E-03
7,4767390341161E-04
2,7691626052282E-05
1,1173571112096E-02
4,9111098803722E-02
1,1504486043420E-01
3,0737704918033E-03
2,2125609215773E-02
2,6207354895879E-01
8,0471865307931E-02
1,7487261852016E-02
2,7691626052282E-05
2,7691626052282E-05
2,2153300841825E-04
8,2382587505538E-03
1,6614975631369E-04
6,3690739920248E-04
2,2014842711564E-03
2,7968542312805E-03
1,5230394328755E-04
4,1537439078423E-05
2,7691626052282E-05
2,7691626052282E-05
1,3845813026141E-04
8,0582631812140E-03
1,3845813026141E-04
1,6735141286430E-05
2,9286497251253E-05
1,1816264883816E-01
7,6521433532203E-02
2,6525198938992E-03
3,4348877490398E-03
3,8490824958790E-04
2,2425089323817E-03
1,2664318168506E-02
1,0208436184722E-03
1,6065735634973E-03
6,6940565145721E-05
1,3388113029144E-04
6,6940565145721E-05
3,0960011379896E-03
1,6735141286430E-05

1
0
0,848238482
0,592592593
0
0,82527881
0,782351283
0,785293056
0,846846847
0,769086358
0,778529163
0,643324157
0,750593824
0

0

0,375
0,628571429
0,75
0,391304348
0,748427673
0,544554455
0,272727273
0

0

0

0,4
0,778350515
0,3

0

1
0,619480933
0,593712411
0,670347003
0,175395859
0,347826087
0,436567164
0,599273208
0,770491803
0,408854167
0,75

0,5

0,25
0,335135135
0



172

Connectivity data

Pathway

FLN

SLN

29/30 — 46d
45A — 46d
46v — 46d

TA — 46d
Tm — 46d
Top — 46d
8B — 46d

81 — 46d

8m — 46d
8r — 46d
9/46d — 46d
9/46v — 46d
DP — 46d
ENTORHINAL — 46d
F1 — 46d
F2 — 46d
F3 — 46d
F4 — 46d
F5 — 46d
F6 — 46d
F7 — 46d
INSULA — 46d
LIP — 46d
MIP — 46d

MST — 46d

MT — 46d

OPRO — 46d
Parainsula — 46d
PBc — 46d

PBr — 46d
PERIRHINAL — 46d
PGa — 46d

STPc — 46d

STPi — 46d

STPr — 46d

TEMPORAL POLE — 46d

TEO — 46d

TEOm — 46d
TEpd — 46d
TEpv — 46d
TH/TF — 46d
V2 — 46d

V3 — 46d
V6A — 46d

3,4056012517886E-03
1,4894275744923E-03
5,9162908232853E-02
5,1878937987934E-04
7,5308135788936E-04
1,6735141286430E-05
3,8976144056096 E-02
6,6940565145721E-05
3,6633224275996E-02
4,1837853216076E-03
5,9593838120978E-01
1,1714598900501E-04
2,5939468993967E-04
1,6735141286430E-05
6,6940565145721E-05
1,3388113029144E-04
1,6735141286430E-05
3,3470282572861E-05
5,0205423859291E-05
3,3470282572861E-03
7,4304027311751E-03
1,6735141286430E-05
3,3470282572861E-05
1,6735141286430E-05
1,6735141286430E-05
1,6735141286430E-05
3,8490824958790E-04
3,3470282572861E-05
1,8408655415073E-04
4,6858395602005E-04
3,3470282572861E-05
2,9788551489846E-03
4,4724665087985E-03
1,3316988678677E-02
9,8572994502506E-04
1,6735141286430E-05
1,6735141286430E-05
1,6735141286430E-05
6,6940565145721E-05
3,7654067894468E-05
8,3675706432152E-05
2,2592440736681E-03
1,1714598900501E-04
7,5308135788936E-05

0,566339066
0,505617978
0,537939325
0,903225806
0,888888889
0
0,486474882
0
0,502055733
0,256
0,416807077
0,428571429
1

0

0,5

0

1

0

0

0,41
0,418918919
1

0,5

0

1

1
0,043478261
1
0,181818182
0,142857143
0
0,445224719
0,63797942
0,496072887
0,057142857
0

1

1

0
0,444444444
0
0,655555556
0,714285714
0,77777T7778



Appendix

173

Pathway

FLN

SLN

VIP — 46d
2 > T7A
5— TA
9 = TA

12 - 7A

13 —» 7TA

23 = 7A

31 - 7A
24a — TA
24b — TA
29/30 — 7TA
45A — 7TA
45B — TA
46d — TA
46v — TA
B — 7A
Tm — 7TA
8B — TA

8l — TA

8m — TA
9/46d — TA
9/46v — TA
DP — 7A
ENTORHINAL — 7A
F1 - 7A
F2 - 7A
F3 - 7A
F5 — 7A
F7— 7A
FST — 7A
INSULA — 7A
IPa — 7TA
LB — 7A
LIP — 7A
MB — 7A
MIP — 7A
MST — 7A
MT — 7A
PERIRHINAL — 7A
PGa — 7TA
PIP — 7A

STPc — 7TA

STPi — 7A

STPr — 7A

1,6735141286430E-05
1,8277692989591E-05
1,0025314604791E-02
8,2249618453159E-05
6,3971925463568E-05
4,5694232473977E-05
1,1300183690815E-01
6,9775092987763E-02
8,2249618453159E-04
5,0263655721375E-04
2,24'72423530702E-02
1,3616881277245E-03
1,3708269742193E-04
1,4814070168063E-02
1,4622154391673E-04
4,7522001772936E-04
2,1613371960191E-02
7,4481598932583E-03
4,6608117123457E-04
5,3919194319293E-04
2,9518474178189E-03
3,8200378348245E-03
2,0763459236175E-02
4,3775074710070E-03
1,0966615793755E-04
7,1008837264560E-03
5,0263655721375E-04
1,3251327417453E-03
1,5536039041152E-04
8,4260164682014E-03
1,2885773557662E-03
2,1933231587509E-03
1,8277692989591E-05
1,3123383566526E-01
6,3971925463568E-05
3,6555385979182E-05
1,3891960556739E-01
5,4833078968773E-05
3,9205651462672E-03
1,0875227328807E-02
3,1985962731784E-04
1,3635158970235E-02
4,1673140016267E-02
2,5223216325635E-03

0
0
0,387420237
0,222222299
0

0
0,412939749
0,412966601
0,233333333
0,345454545
0,548596991
0,718120805
0,4
0,676742751
0
0,057692308
0,420718816
0,440490798
0,490196078
0,305084746
0,442724458
0,473684211
0,231514085
0,018789144
1
0,725868726
0,563636364
0,965517241
0,235294118
0,455531453
0,375886525
0,125

0
0,581128134
0,714285714
0
0,612130781
1
0,20979021
0,324369748
0,4
0,658847185
0,523464912
0,641304348



174

Connectivity data

Pathway

FLN

SLN

TEa/ma — TA
TEa/mp — 7A
TEav — 7TA
TEMPORAL POLE — 7A
TEO — 7A
TEOm — 7A
TEpd — 7A
TEpv — 7TA
TH/TF — 7A
TPt — 7A
V1 - 7A

V2 = 7A
V3A — 7A
V4 — 7A

V6 — TA
V6A — 7A
VIP — 7A
2—+T7B

5— 7B

12 - 7B

23 — 7B

44 — 7B

24b — 7B

24c — 7B

24d —» 7B
45B — 7B
46v — 7B

7TA — 7B

m — 7B

Top — 7B

8m — 7B
9/46d — 7B
9/46v — 7B
AIP —» 7B

F1 —» 7B

F2 - 7B

F3 —- 7B

F4 — 7B

F5 = 7B
INSULA — 7B
LB - 7B

LIP — 7B
MB — 7B
MIP — 7B

3,9297039927620E-04
4,4232017034810E-03
9,1388464947954E-05
3,2899847381264E-04
2,1384900797821E-03
2,3029893166884E-03
2,7964870274074E-03
7,8356469846376E-02
8,5905157051077E-04
1,6584264734105E-01
1,8277692989591E-05
3,6555385979182E-05
3,6555385979182E-05
3,0432358827669E-03
1,2794385092714E-04
7,9023605640496E-02
8,2249618453159E-05
3,0754954596673E-03
2,1793597136608E-02
1,0074898919600E-03
5,4616557300988E-03
2,7175714191025E-03
1,9089282163452E-03
3,9769337840525E-05
1,6703121893020E-03
3,4466759461788E-04
6,7607874328892E-04
3,9726917213495E-01
1,8625306555313E-02
1,5160071584808E-01
1,8559024325578E-04
2,5187247298999E-04
1,2699675217074E-02
2,6804533704514E-02
9,4120766222576E-04
2,9296745542520E-03
1,1665672433221E-03
1,1917544906211E-02
3,6627560151123E-02
1,4568834095579E-02
1,4449526082057E-03
5,7771591436336E-02
5,0374494597998E-04
7,1399217869689E-02

0
0,462809917
0

0
0,623931624
0,781746032
0,065359477
0,362374621
0,223404255
0,543064969
0

0,5

0,5
0,801801802
0,142857143
0,442003007
0,666666667
0,879310345
0,578467153
0,407894737
0,422330097
0,658536585
0,194444444
0
0,436507937
0,307692308
0,529411765
0,534303257
0,592882562
0,482423924
0,714285714
0,473684211
0,854906054
0,581107814
0,704225352
0,266968326
0,659090909
0,819799778
0,786102063
0,101910828
0,963302752
0,633088573
0,105263158
0,649090234



Appendix

175

Pathway

FLN

SLN

MST — 7B
MT — 7B
PBc — 7B

PERIRHINAL — 7B

PGa — 7B

ProM — 7B

SII — 7B

STPc — 7B

STPi — 7B

STPr — 7B

TEa/ma — 7B
TEpv — 7B
TH/TF — 7B
TPt — 7B

V2 - 7B

V6A — 7B

VIP — 7B
1 — Tm

2 = Tm

3 — Tm

5 — Tm

9 — Tm
11 — Tm
12 — Tm
13 — "Tm
14 — Tm
23 — Tm
25 — Tm
31 = Tm
32 — Tm
44 — Tm
24a — Tm
24b — Tm
24¢ — Tm
24d — Tm
29/30 — Tm
45B — Tm
46d — 7m
46v — Tm
7TA — Tm
7B — Tm
Top — Tm
8B — Tm
8l — Tm

1,2964804136011E-02
1,6968250811957E-03
9,3025783787367E-05
7,9538675681050E-05
5,4351428382051E-04
6,6282229734208E-04
5,3171604692782E-02
9,8893086763439E-03
7,9538675681050E-05
1,56907735136210E-04
3,0489825677736E-04
5,3025783787367E-05
1,5907735136210E-04
1,2805726784649E-02
3,9769337840525E-05
1,3786703784715E-03
6,0555445085173E-02
1,5483471394287E-04
1,1910362610990E-05
2,9775906527474E-05
7,1104864787608E-03
4,8236968574508E-04
2,9775906527474E-05
4,1686269138464E-05
2,3820725221979E-05
2,0843134569232E-05
9,1173825787126E-02
2,3820725221979E-05
2,6768539968199E-02
3,5731087832969E-05
1,6674507655386E-04
1,0957533602111E-03
1,0144651353910E-02
1,6495852216221E-03
9,1322705319763E-03
5,6544446495674E-03
1,1314844480440E-04
4,2936857212618E-03
5,7795034569827E-03
7,8480356834464E-02
5,9551813054948E-06
5,4192149880003E-04
3,8399009057831E-02
5,7765258663300E-04

0,800613497
0,84375

0,5

0
0,756097561
0,5
0,515582149
0,76541555
0,666666667
0

0

0,5
0,166666667
0,341614907
1

1
0,548380035
1

1

1
0,685929648
0,327160494
0

0,5

0,25

0
0,548073155
0,25
0,651167964
0
0,392857143
0,10326087
0,259465806
0,093862816
0,613628953
0,203791469
0,315789474
0,721220527
0,735703246
0,608491103
1
0,703296703
0,496583089
0,546391753



176

Connectivity data

Pathway

FLN

SLN

8m — 7m

8r — Tm
9/46d — Tm
9/46v — Tm
AIP — Tm
DP — Tm
ENTORHINAL — 7m
F1 - Tm

F2 — Tm

F3 — Tm

F5 — Tm

F6 — Tm

F7 — Tm
FST — 7m
INSULA — 7m
IPa — Tm

LB — "m
LIP — 7m
MB — Tm
MIP — 7m
MST — 7m
MT — Tm
PBc — "Tm
PBr — "m
PERIRHINAL — 7m
PGa — Tm
PIP — Tm
Pro.St. — Tm
STPc — Tm
STPi — 7m
STPr — Tm
TEa/mp — 7m
TEpd — "m
TEpv — Tm
TH/TF — "m
TPt — Tm
V1 — 7m

V2 — Tm

V3 — "Tm
V3A — Tm
V4 — Tm

V6 — 7Tm
V6A — Tm
VIP — "Tm

1,8574210491838E-02
3,6803020467958E-03
2,1581577051113E-02
1,2386777115429E-03
3,1264701853848E-04
1,3428933843891E-02
4,1686269138464E-05
3,0669183723298E-04
3,1693474907844E-02
1,6734059468441E-03
2,9775906527474E-05
1,8997028364529E-03
1,3414045890627E-02
95,3596631749454E-05
1,5483471394287E-04
1,3696917002638E-04
3,3349015310771E-04
3,1068180870767E-02
3,0966942788573E-04
2,7361080508096E-02
7,9915555529088E-02
9,1412033039346E-04
9,7069455279566 E-04
5,9551813054948E-06
1,7865543916485E-04
6,2529403707696E-04
4,7671226350486E-03
1,6078989524836E-04
1,1675132949423E-02
8,9327719582423E-05
5,9551813054948E-05
1,7865543916485E-05
5,9551813054948E-06
5,8063017728575E-04
9,8360776793849E-04
3,6981675907123E-03
2,6798315874727E-05
1,4500866478880E-03
1,7865543916485E-05
1,7270025785935E-04
3,6624365028793E-04
2,3225207091430E-03
4,3377838388290E-01
8,3819176874840E-03

0,500160308
0,656957929
0,645419426
0,764423077
0,733333333
0,689135255
0,142857143
0,72815534
0,505824878
0,790035587
0
0,147335423
0,555604883
0,222222222
0,5
0,47826087
0,5
0,692064405
0,673076923
0,605180107
0,51227691
0,921824104
0,564417178
0
0,266666667
0,266666667
0,785758901
0,814814815
0,360112216
0,133333333
0
0,666666667
1
0,138461538
0,142857143
0,495169082
0,666666667
0,718685832
1
0,931034483
0,918699187
0,938461538
0,588319685
0,685612789



Appendix

177

Pathway

FLN

SLN

9 — 8B

10 — 8B

11 — 8B

12 — 8B

13 — 8B

14 — 8B

23 — 8B

25 — 8B

31 — 8B

32 — 8B

44 — 8B
24a — 8B
24b — 8B
24c — 8B
24d — 8B
29/30 — 8B
45A — 8B
45B — 8B
46d — 8B
46v — 8B
7TA — 8B
Tm — 8B

8l — 8B

8m — 8B
8r — 8B
9/46d — 8B
9/46v — 8B
CORE — 8B
DP — 8B
ENTORHINAL — 8B
F1 — 8B
F2 — 8B
F4 — 8B
F5 — 8B
F6 — 8B
F7 — 8B
FST — 8B
INSULA — 8B
IPa — 8B
LB — 8B
LIP — 8B
MB — 8B
OPAI — 8B
OPRO — 8B

1,7650127723052E-01
1,3197018120829E-01
1,2706607977184E-02
2,2445249127580E-02
1,1238082724346E-02
9,5456150995312E-03
6,5349373751270E-03
1,5458160556185E-04
7,0721084544545E-04
3,3992495063050E-02
5,4103561946646E-05
2,5390028713533E-03
8,1425860729702E-03
9,3707369291591E-02
1,3912344500566E-04
9,3717107932742E-04
2,7824689001132E-04
4,7920297724172E-04
3,9959345037737E-02
3,9170978849372E-02
8,8884423198062E-04
2,6510745353857E-03
9,3521871364917E-04
4,9095117926442E-02
9,8354556099597E-04
8,6998527610207E-02
1,4685252528375E-04
1,5458160556185E-05
1,0434258375425E-04
1,5458160556185E-04
7,7290802780923E-06
8,5019883059015E-05
3,0916321112369E-05
7,7290802780923E-06
6,56488497196276E-02
1,5122718472115E-01
2,2027878792563E-04
1,0047804361520E-04
7,1107538558449E-04
2,7051780973323E-05
5,7195194057883E-04
3,8645401390462E-05
2,6278872945514E-04
5,4103561946646E-03

0,620599054
0,572930393
0,682481752
0,679063361
0,68088033
0,512195122
0,620342992
0,15
0,803278689
0,659845384
0,571428571
0,476407915
0,50450878
0,632299571
0,444444444
0,143884892
0,166666667
0,459677419
0,477369439
0,480739542
0,72173913
0,711370262
0,727272727
0,559508816
0,304635762
0,616915423
0,684210526
0,5
0,925925926
0

0
0,090909091
0

0
0,618198985
0,576714709
0,894736842
0
0,597826087
0,285714286
0,878378378
0
0,941176471
0,542857143



178

Connectivity data

Pathway

FLN

SLN

Parainsula — 8B
PBr — 8B
PERIRHINAL — 8B
PGa — 8B

SII — 8B
STPc — 8B
STPi — 8B
STPr — 8B
TEa/ma — 8B
TEa/mp — 8B
TEad — 8B
TEMPORAL POLE — 8B
TH/TF — 8B
V4 — 8B

2 — 8l

3 — 8l

5 — 8l

9 — 8l

10 — 81

11 — 81

12 — 81

13 — 8l

14 — 81

23 — 81

25 — 8l

31 — 81

32 — 81

44 — 8l

24a — 81

24b — 8l

24c — 81

24d — 81
29/30 — 8l
45A — 81

45B — 8l

46d — 81

46v — 8l

TA — 8l

7B — 8l

Tm — 81

Top — 8l

8B — 81

8m — 81

8r — 8l

6,1832642224738E-05
3,5167315265320E-04
3,4780861251415E-05
3,9688827228004E-03
7,7290802780923E-06
5,4103561946646E-05
1,4376089317252E-02
1,9137202768557E-02
9,2748963337108E-05
3,0916321112369E-05
1,5458160556185E-05
8,9966494436994E-03
2,9756959070655E-04
7,7290802780923E-06
2,0417121798340E-04
2,4500546158008E-04
6,1251365395020E-05
2,5725573465909E-03
5,3084516675684E-04
5,4105372765601E-04
2,1376726522862E-02
3,6648733628020E-03
6,1251365395020E-05
5,6147084945435E-04
5,1042804495850E-05
7,1459926294190E-05
1,0208560899170E-04
1,9253345855835E-02
4,1753014077605E-03
2,3071347632124E-03
2,4296374940025E-03
1,0514817726145E-03
2,4500546158008E-04
1,2454444296987E-02
6,8397358024439E-02
3,8966076952132E-02
1,1055871453801E-02
1,7558724746572E-03
3,0625682697510E-05
1,2250273079004E-04
1,1229416989087E-04
2,0611084455424E-02
4,1541696866993E-01
1,2335004134467E-01

0
0,714285714
0
0,632911392
1
0,714285714
0,673924731
0,541195477
0,75

0,75

1
0,193728522
0,090909091
1

0,45
0,583333333
0,166666667
0,174603175
0,076923077
0,264150943
0,291786055
0,077994429
0,666666667
0,545454545
0,4
0,285714236
0,5
0,365853659
0,562347188
0,331858407
0,390756303
0,436893204
0,5

0,3
0,381492537
0,272727273
0,167128347
0,255813953
0,666666667
0,083333333
0,545454545
0,251609708
0,498709852
0,59985103



Appendix

179

Pathway

FLN

SLN

9/46d — 81
9/46v — 81
AIP — 81
CORE — 8l
DP — 8l
ENTORHINAL — 81
F1 — 8l

F2 — 81

F3 — 81

F4 — 81

F5 — 8l

F6 — 81

F7 — 8l

FST — 8l

Gu — 8l
INSULA — 8l
[Pa — 81

LB — 8l

LIP — 81

MB — 81
MIP — 81
MST — 81
MT — 81
OPAI — 81
OPRO — 8l
Parainsula — 8l
PBc — 81
PBr — 81
PERIRHINAL — 81
PGa — 81
PIP — 8l
ProM — 81
SII — 81
STPc — 81
STPi — 81
STPr — 81
TEa/ma — 81
TEa/mp — 8l
TEad — 81
TEav — 81
TEMPORAL POLE — 81
TEO — 8l
TEOm — 8l
TEpd — 81

1,0147309533775E-02
2,4745551619588E-02
1,0208560899170E-04
6,5334789754688E-04
6,0230509305103E-04
2,8583970517676E-04
1,4087814040855E-03
1,8987923272456E-02
2,2458833978174E-04
5,4207458374593E-03
1,2658615514971E-02
2,3275518850108E-03
2,6072664536480E-02
3,2769480486336E-03
1,3169043559929E-03
9,3102075400431E-03
1,9906693753382E-03
3,8792531416846E-04
2,9186275610727E-02
1,9192094490440E-03
8,1668487193360E-05
9,6963769817369E-03
2,1346100840165E-02
5,8188797125269E-04
4,3998897475423E-03
3,2667394877344E-04
2,0008779362373E-03
8,3710199373194E-04
1,0208560899170E-04
4,8694835489041E-03
3,4300764621211E-03
1,7456639137581E-03
1,2046101861021E-03
1,1535673816062E-02
9,8699225170228E-03
1,1229416989087E-03
1,1229416989087E-04
1,0208560899170E-04
3,0625682697510E-05
1,3271129168921E-04
4,0834243596680E-04
1,4700327694805E-03
2,6236001510867E-03
1,5312841348755E-04

0,211267606
0,206617162
0,4
0,109375
0,779661017
0,25
0,195652174
0,195698925
0,090909091
0,224105461
0,318548387
0,350877193
0,258026625
0,563862928
0,046511628
0,101973684
0,307692308
0,315789474
0,504372158
0,106382979
0,375
0,422939068
0,487804878
0,157894737
0,085846368
0,15625
0,428571429
0,146341463
0,8
0,406708595
0,755952381
0,070175439
0,177966102
0,324778761
0,151304348
0,109090909
0,090909091
0,8

1
0,384615385
0,2
0,833333333
0,883268482
0,533333333



180

Connectivity data

Pathway

FLN

SLN

TEpv — 8l
TH/TF — 81
TPt — 81
V1 — 8l

V2 — 8l

V3 — 81
V3A — 8l
V4 — 81
Vit — 81
V6A — 8l
VIP — 81

2 — 8m

3 — 8m

5 — 8m

9 — 8m

10 — 8m

11 — 8m

12 — 8m

13 — 8m

14 — 8m

23 — 8m

31 — 8m

32 — 8m

44 — 8m
24a — 8m
24b — 8m
24c — 8m
24d — 8m
29/30 — 8m
45A — 8m
45B — 8m
46d — 8m
46v — 8m
7TA — 8m
B — 8m
7m — 8m
Top — 8m
8B — 8m

8l — 8m

8r — 8m
9/46d — 8m
9/46v — 8m
AIP — 8m
CORE — 8m

1,2658615514971E-03
1,2658615514971E-03
4,2875955776514E-04
8,1668487193360E-05
3,5729963147095E-03
4,9103177925008E-03
4,9001092316016E-04
1,2781118245761E-02
2,9604826607593E-04
2,1437977888257TE-04
1,7048296701614E-03
4,8548992001554E-05
2,4274496000777E-05
8,4960736002719E-05
2,0390576640652E-03
2,0876066560668E-03
1,8205872000583E-04
7,1245645762280E-03
3,4712529281111E-03
9,7097984003107E-05
2,6701945600854E-04
3,6411744001165E-05
2,9129395200932E-04
1,5414304960493E-02
7,0396038402253E-04
1,0073915840322E-03
2,3667633600757TE-03
3,6411744001165E-04
1,2137248000388E-04
2,5949436224830E-02
1,2403053731597E-01
1,1071597625954E-01
3,3438118241070E-02
1,6021167360513E-03
7,2823488002330E-04
5,4617616001748E-04
5,7045065601825E-04
1,7210617664551E-02
1,8360015050188E-01
6,9825587746234E-02
3,7406998337197E-02
9,1684771394934E-02
9,1029360002913E-04
6,9182313602214E-04

0,612903226
0,548387097
0,404761905
0,75
0,928571429
0,925155925
0,8125
0,95686901
0,689655172
0,047619048
0,305389222
0

0,5
0,571428571
0,220238095
0,011627907
0,133333333
0,2879046
0,213286713
0,375
0,272727273
0,333333333
0,083333333
0,393700787
0,206896552
0,120481928
0,205128205
0,366666667
0
0,536014967
0,55553381
0,305634729
0,401451906
0,303030303
0,666666667
0,511111111
0,468085106
0,157263752
0,577047663
0,487919346
0,369565217
0,473391581
0,413333333
0,228070175



Appendix

181

Pathway

FLN

SLN

DP — 8m
ENTORHINAL — 8m
F1 — 8m

F2 — 8m

F3 — 8m

F4 — 8m

F5 — 8m

F6 — 8m

F7 — 8m

FST — 8m

Gu — 8m
INSULA — 8m
IPa — 8m

LB — 8m

LIP — 8m

MB — 8m
MIP — 8m
MST — 8m
MT — 8m
OPAI — 8m
OPRO — 8m
Parainsula — 8m
PBc — 8m
PBr — 8m
PERIRHINAL — 8m
PGa — 8m
PIP — 8m
ProM — 8m
SIT — 8m
STPc — 8m
STPi — 8m
STPr — 8m
TEa/ma — 8m
TEa/mp — 8m
TEMPORAL POLE — 8m
TEOm — 8m
TEpd — 8m
TEpv — 8m
TH/TF — 8m
TPt — 8m

V2 — 8m

V3 — 8m

V3A — 8m

V4 — 8m

2,0633321600660E-04
6,0686240001942E-05
8,2533286402641E-04
2,1580026944691E-02
2,3060771200738E-04
3,8924154337246E-02
1,4686070080470E-02
1,2622737920404E-03
1,0638297872340E-01
2,8765277760920E-03
1,3350972800427E-04
2,8643905280917E-03
9,7097984003107E-05
1,1530385600369E-03
6,2142709761989E-03
1,7113519680548E-03
1,2137248000388E-05
1,9419596800621E-03
6,9182313602214E-04
6,0686240001942E-05
1,6992147200544E-04
1,2137248000388E-04
5,1340559041643E-03
1,1773130560377E-03
2,4274496000777E-05
4,1266643201321E-03
3,6411744001165E-05
5,8258790401864E-04
7,5250937602408E-04
3,3668725953077E-02
1,3994246944448E-02
1,4321952640458E-03
3,6411744001165E-05
1,5778422400505E-04
1,3350972800427E-04
2,4274496000777E-05
3,6411744001165E-05
1,2137248000388E-05
1,2137248000388E-05
8,4960736002719E-05
1,2137248000388E-04
4,8548992001554E-05
1,2137248000388E-05
1,0923523200350E-04

0,705882353
0
0,204117647
0,20303712
0,263157895
0,304957905
0,353719008
0,125
0,282373075
0,270042194
0,363636364
0,283898305
0,125
0,336842105
0,24609375
0,163120567
1

0,44375
0,596491228
0
0,142857143
0,1
0,250591017
0,18556701
0
0,297058824
0
0,395833333
0,370967742
0,26964672
0,209019948
0,050847458
0,666666667
0,153846154
0,181818182
0,5
0,333333333
0

0
0,142857143
0,2

0,25

0

1



182

Connectivity data

Pathway

FLN

SLN

V4t — 8m
V6A — 8m
VIP — 8m

2 — 9/46d

5 — 9/46d

9 — 9/46d
10 — 9/46d
11 — 9/46d
12 — 9/46d
13 — 9/46d
14 — 9/46d
23 — 9/46d
31 — 9/46d
32 — 9/46d
44 — 9/46d
24a — 9/46d
24b — 9/46d
24¢ — 9/46d
24d — 9/46d

29/30 — 9/46d
45A — 9/46d
45B — 9/46d

46d — 9/46d
46v — 9/46d
TA — 9/46d
7B — 9/46d
7m — 9/46d
Top — 9/46d
8B — 9/46d

81 — 9/46d
8m — 9/46d

8r — 9/46d

9/46v — 9/46d
CORE — 9/46d

DP — 9/46d
F1 — 9/46d
F2 — 9/46d
F3 — 9/46d
F4 — 9/46d
F5 — 9/46d
F6 — 9/46d
F7 — 9/46d

FST — 9/46d

Gu — 9/46d

1,4564697600466E-04
5,8258790401864E-04
7,0396038402253E-04
4,6591809159950E-05
9,7066269083229E-04
2,4289863175387E-02
7,8856637003215E-03
2,5625495037972E-04
7,1984345152122E-03
6,9887713739925E-04
5,4357110686608E-05
8,2156890152045E-03
2,7287269564677E-02
3,1061206106633E-05
9,4620199102331E-03
6,2898942365932E-04
5,1639255152278E-04
3,0362328969234E-03
5,5133640839274E-04
5,4395937194241E-03
2,0050008541832E-02
4,2398546335554E-03
1,9572442497942E-01
9,6806131482085E-02
7,2993834350588E-04
1,1104381183121E-03
3,4695367221109E-02
8,3865256487909E-04
7,0974855953657E-02
1,4703598440727E-02
2,2153240460327E-01
9,8682383636957TE-02
1,6835173709795E-02
1,5530603053317E-05
4,6591809159950E-05
5,4357110686608E-05
2,1863206448306E-02
3,5720387022628E-04
9,3688362919132E-03
6,3675472518598E-04
9,6483871468729E-03
5,5929584245756E-02
2,8731615648636E-04
2,3295904579975E-05

0,583333333
0,4375
0,344827536
0,833333333
0,824
0,588075448
0,574101428
0,545454545
0,292880259
0,138888889
0,285714286
0,491493384
0,515936255
0
0,405826836
0,172839506
0,248120301
0,413043478
0,338028169
0,309778729
0,522269558
0,518315018
0,559769887
0,434805278
0,723404255
0,573426573
0,698075201
0,555555556
0,596389497
0,53340375
0,581418581
0,623064708
0,528597786
0
0,666666667
0,285714286
0,507369917
0,391304348
0,614173228
0,5
0,605633803
0,633877126
0,554054054
0



Appendix

183

Pathway

FLN

SLN

INSULA — 9/46d
LB — 9/46d

LIP — 9/46d

MB — 9/46d
MIP — 9/46d
MST — 9/46d
MT — 9/46d
OPAI — 9/46d
OPRO — 9/46d
Parainsula — 9/46d
PBc — 9/46d
PBr — 9/46d
PERIRHINAL — 9/46d
PGa — 9/46d
PIP — 9/46d
Pro.St. — 9/46d
ProM — 9/46d
SIT — 9/46d
STPc — 9/46d
STPi — 9/46d
STPr — 9/46d
TEa/ma — 9/46d
TEa/mp — 9/46d
TEad — 9/46d
TEav — 9/46d
TEMPORAL POLE — 9/46d
TEO — 9/46d
TPt — 9/46d

V2 — 9/46d

V3 - 9/46d

V4 — 9/46d

V6 — 9/46d

V6A — 9/46d
VIP — 9/46d

2 5 9/46v

3 — 9/46v

5 — 9/46v

9 — 9/46v

10 — 9/46v

11 — 9/46v

12 — 9/46v

13 — 9/46v

14 — 9/46v

23— 9/46v

1,9801518892979E-03
6,9887713739925E-05
2,4305393778440E-03
2,2519374427309E-04
1,6307133205982E-04
1,9568559847179E-03
2,2519374427309E-04
3,1061206106633E-05
1,2968053549519E-03
1,3201012595319E-04
2,0150957461678E-03
5,3580580533942E-04
7,7653015266583E-06
4,5815279007284E-04
1,5530603053317E-05
2,0966314121977E-04
3,3002531488298E-04
1,2036217366320E-04
2,5621612387209E-02
6,4917920762863E-03
1,5142337976984E-04
1,1647952289987E-05
7,7653015266583E-06
1,5530603053317E-05
7,7653015266583E-06
1,1647952289987E-04
7,7653015266583E-06
8,3865256487909E-04
1,8131979064747E-03
4,6591809159950E-05
8,5418316793241E-05
1,0638463091522E-03
1,9032754041839E-02
7,6099954961251E-04
1,7825877520645E-03
3,4613354409020E-05
6,9226708818040E-05
4,3555137631350E-04
2,3652458846164E-04
5,4668908842847E-02
1,2869822058514E-01
1,3579972713139E-02
4,6151139212027E-04
1,2858861162951E-02

0,215686275
0,333333333
0,453674121
0,137931034
0,857142857
0,373015873
0,413793103
0
0,140718563
0,147058824
0,531791908
0,231884058
1
0,406779661
1
0,851851852
0,094117647
0,548387007
0,609031671
0,522129187
0,153846154
0

0

0

0
0,333333333
0
0,546296296
0,687366167
0,833333333
0,818181818
0,562043796
0,793961648
0,612244898
0,77184466
0,666666667
0,5
0,238410596
0,37804878
0,569250251
0,491752208
0,502973662
0,525
0,517048004



184

Connectivity data

Pathway

FLN

SLN

31 — 9/46v

32 — 9/46v

44 — 9/46v

24a — 9/46v
24b — 9/46v
24c — 9/46v
24d — 9/46v
20/30 — 9/46v
45A — 9/46v
45B — 9/46v
46d — 9/46v
46v — 9/46v
7A — 9/46v

7B — 9/46v

Tm — 9/46v
Top — 9/46v
8B — 9/46v

81 — 9/46v

8m — 9/46v

8t — 9/46v
9/46d — 9/46v
AIP — 9/46v
ENTORHINAL — 9/46v
F1 — 9/46v

F2 — 9/46v

F3 — 9/46v

F4 — 9/46v

F5 — 9/46v

F6 — 9/46v

F7 — 9/46v
FST — 9/46v
Gu — 9/46v
INSULA — 9/46v
IPa — 9/46v
LIP — 9/46v
MB — 9/46v
MST — 9/46v
OPAI — 9/46v
OPRO — 9/46v
Parainsula — 9/46v
PBc — 9/46v
PBr — 9/46v
PERIRHINAL — 9/46v
PGa — 9/46v

3,4613354409020E-05
8,9417832223302E-05
7,9933773115231E-02
1,2864630055353E-02
5,8381191103214E-03
6,5996129073199E-03
1,1999296195127E-03
5,5064077972350E-03
5,9431129520288E-02
7,4649467675454E-03
3,7324733837727E-02
2,8408333741963E-01
2,1973711157326E-02
1,9669038642926E-02
7,6726268939995E-04
4,5574249971877E-04
1,6395192205073E-02
2,9998240487818E-03
3,3955700675249E-02
1,8691211380871E-03
1,4254933124115E-02
1,9729612013142E-03
2,3075569606013E-05
5,7688924015034E-05
5,0997008829290E-03
1,2201207429180E-03
1,4468382142970E-02
1,7283601634904E-02
7,9726092988777E-03
9,2648411968144E-03
2,3075569606013E-05
8,0764493621047E-05
1,0109983933635E-02
8,7629475578836E-03
1,5875991888937E-02
2,3075569606013E-05
5,6535145534733E-04
1,6152898724209E-04
4,7766429084448E-03
4,3266693011275E-05
2,0191123405262E-05
1,1537784803007E-05
2,1575657581623E-03
5,2352698543643E-03

0,333333333
0
0,523094688
0,461883408
0,403162055
0,38986014
0,620192308
0,299109481
0,462046205
0,420401855
0,659659969
0,587269515
0,616959832
0,642616219
0,398496241
0,525316456
0,506685433
0,257692308
0,597349643
0,401234568
0,60946985
0,584795322
0

0,4
0,450226244
0,472813239
0,442583732
0,453271028
0,460202605
0,424657534
0
0,285714286
0,562910128
0,45885451
0,551598837
0
0,428571429
0,071428571
0,417874396
0

0

0
0,181818182
0,436363636



Appendix

185

Pathway

FLN

SLN

ProM — 9/46v
SIT — 9/46v
STPc — 9/46v
STPi — 9/46v
STPr — 9/46v
TEa/ma — 9/46v
TEa/mp — 9/46v
TEad — 9/46v
TEav — 9/46v
TEMPORAL POLE — 9/46v
TEOm — 9/46v
TEpd — 9/46v
TEpv — 9/46v
TH/TF — 9/46v
TPt — 9/46v
V3 — 9/46v
V6A — 9/46v
VIP — 9/46v

9 — DP

12 — DP

23 — DP

31 — DP

24b — DP

24¢ — DP

29/30 — DP
45A — DP

45B — DP

46d — DP

46v — DP

7TA — DP

m — DP

8B — DP

8m — DP

8r — DP

9/46d — DP
ENTORHINAL — DP
F2 — DP

F4 — DP

F5 — DP

F7 — DP

FST — DP
INSULA — DP
IPa — DP

LIP — DP

8,9879343615423E-03
2,2198697960985E-02
9,7494281585407E-04
7,0380487298341E-04
2,6248460426840E-04
1,1180113474114E-02
2,0072861111031E-02
2,3075569606013E-04
7,8456936660446E-04
6,9226708818040E-04
2,3075569606013E-05
1,0384006322706E-04
6,9226708818040E-04
6,0573370215785E-05
2,1575657581623E-03
1,1537784803007E-05
8,0764493621047E-05
3,4613354409020E-05
1,56899578263687E-05
3,9748945659216E-06
2,0311711231860E-03
2,1861920112569E-03
9,0627596103013E-04
2,7824261961451E-05
3,9748945659216E-04
1,5899578263687E-05
6,7573207620668E-04
7,5522996752511E-04
1,3117152067541E-04
1,1797487071655E-01
2,3451877938938E-04
1,1248951621558E-03
1,9317987590379E-03
4,4121329681730E-04
7,8305422948656E-04
4,6108776964691E-04
1,5382841970117E-03
1,5899578263687E-05
1,5899578263687E-05
6,4790781424523E-04
1,0370499922490E-02
3,9748945659216E-06
7,7907933492064E-04
2,0204389078580E-02

0,568677792
0,674116424
0,556213018
0,209180328
0,340659341
0,468524252
0,557551372
0,05
0,058823529
0,083333333
1
0,444444444
0,220833333
0
0,486631016
1
0,714285714
0,666666667
1

0
0,189823875
0,327272727
0,342105263
0

0,63

0,75
0,788235294
0,480473684
0,090909091
0,344642857
0
0,360424028
0,516460905
0,423423423
0,365482234
0,051724138
0,330749354
0

0
0,085889571
0,266385538
1
0,234693878
0,368089711



186

Connectivity data

Pathway

FLN

SLN

MIP — DP
MST — DP
MT — DP
PBc — DP
PERIRHINAL — DP
PGa — DP
PIP — DP
Pro.St. — DP
STPc — DP
STPi — DP
STPr — DP
TEa/ma — DP
TEa/mp — DP
TEad — DP
TEav — DP
TEO — DP
TEOm — DP
TEpd — DP
TEpv — DP
TH/TF — DP
TPt — DP
V1 — DP

V2 — DP

V3 — DP
V3A — DP
V4 — DP
V4t — DP
V6 — DP
V6A — DP
VIP — DP

1 —F1

2 - F1
3—-F1
5—=Fl1

9 —F1

23 — F1

44 — F1

24b — F1

24c — F1

24d — F1
29/30 — F1
7TA - F1

Top — F1

8B — F1

6,4870279315841E-03
5,1840574928750E-02
1,6242214175269E-01
1,4309620437318E-04
3,9748945659216E-05
8,9832617189829E-04
3,7105640772879E-02
2,6631793591675E-04
3,3786603810334E-04
4,7698734791060E-05
7,9497891318433E-06
3,6966519463071E-04
2,1464430655977E-04
3,1799156527373E-05
4,7698734791060E-05
3,3786603810334E-04
7,8702912405248E-03
1,2163177371720E-03
2,6957734946081E-02
1,7998322594493E-02
9,5397469582119E-05
1,1924683697765E-05
7,9024878865088E-02
5,0401663095886E-03
3,2053549779592E-02
3,3760766995655E-01
7,9060652916181E-03
2,0204389078580E-02
3,8826770119923E-02
9,1422575016198E-04
1,2154907543921E-03
1,2546565675892E-01
9,9265078275354E-03
1,0897774976647E-01
4,5018176088596E-05
3,2052941375080E-02
4,0516358479736E-04
4,2429630963502E-03
4,3217449045052E-03
2,0764633720865E-02
4,5018176088596E-05
3,6014540870877E-04
6,5951627969793E-03
3,6014540870877E-04

0,251838235
0,302100905
0,481229504
0

0,2
0,092920354
0,437279057
0,208955224
0

0

1
0,086021505
0,037037037
0

0
0,152941176
0,349494949
0,166666667
0,434974934
0,204946996
0,083333333
0
0,914994216
0,924290221
0,718998016
0,501371637
0,219205631
0,6791265
0,582207207
0,060869565
0,888888889
0,61966272
0,517006803
0,558917691
0
0,54494382
0,333333333
0,037135279
0,114583333
0,412466125
0

0,375
0,233788396
0,5



Appendix

187

Pathway

FLN

SLN

8m — F1
F2 - F1
F3 = F1
F4 = F1
F5 - F1
F6 — F1
F7r — F1

INSULA — F1

MB — F1
MST — F1
ProM — F1
STPc — F1

3 —+F2

5 — F2
12 — F2
13 — F2
23 — F2
31 - F2
44 — F2
24a — F2
24b — F2
24c — F2
24d — F2
45B — F2
46v — F2

TA — F2

B — F2
Tm — F2
Top — F2
8B — F2

81 — F2

8m — F2
& — F2
9/46d — F2
9/46v — F2

ATP — F2

Fl1 — F2
F3 — F2
F4 — F2
F5 — F2
F6 — F2
F7 — F2

INSULA — F2

IPa — F2

4,5018176088596E-05
4,0204607610323E-01
2,2994158891653E-01
2,9430632617919E-02
9,0036352177192E-03
7,7993990073492E-03
3,3425995745782E-03
2,6560723892272E-03
3,1512723262017E-04
1,9132724837653E-04
3,6014540870877E-04
9,0036352177192E-05
5,8108498367886E-03
1,8762744051318E-02
1,2251791824554E-04
8,7512798746817E-05
8,3557220243461E-02
1,0501535849618E-04
6,3884343085176E-04
3,1504607548854E-04
2,1178097296730E-02
3,1242069152614E-02
1,3522477662358E-01
4,3756399373408E-05
4,5506655348345E-04
8,3399697205716E-03
9,2507679248090E-05
7,4735930129781E-03
1,2435568701923E-02
1,4002047799491E-04
1,7502559749363E-05
2,3628455661641E-04
2,6253839624045E-05
1,6627431761895E-04
2,6378711636577E-04
5,2507679248090E-05
1,6275630310933E-01
3,3982970009364E-01
4,1918630599725E-03
4,1542325565114E-02
7,5698570915996E-02
2,4512334928983E-02
6,4759471072644E-03
5,2507679248090E-05

0
0,433306273
0,476824433
0,407265774
0,3
0,122655123
0,38047138
0,610169492
0,285714286
0,470588235
0

0,5
0,71686747
0,734141791
0

0,1
0,643485547
1
0,698630137
0,277777778
0,194628099
0,392997199
0,542583484
1
0,326923077
0,389296957
0,333333333
0,791569087
0,622800844
0,25

0
0,592592593
1
0,578947368
0,344827536
0,5
0,674588665
0,595951792
0,75782881
0,743206236
0,477109827
0,397001071
0,433783784
0



188

Connectivity data

Pathway

FLN

SLN

LIP — F2

MB — F2

MIP — F2

MST — F2

MT — F2
OPRO — F2
Parainsula — F2
PBr — F2
PERIRHINAL — F2
PGa — F2
ProM — F2

SIT — F2

STPc — F2
STPi — F2
STPr — F2
TEa/ma — F2

TEMPORAL POLE — F2

TPt — F2
VIP — F2
1—F5

2 —F5

3 —Fb
5= Fb

9 — F5
10 — F5
11 — F5
12 — F5
13 — F5
14 — F5
23 — F5
25 — F5
32 — F5
44 — F5
24a — F5
24b — F5
24¢c — F5
24d — F5
29/30 — F5
45A — F5
45B — F5
46d — F5
46v — F5
7TA — F5
B — F5

7,0010238997453E-05
3,0629479561386E-04
2,2053225284198E-03
4,0255887423536E-04
8,7512798746817E-06
2,1003071699236E-04
9,6264078621498E-05
6,1258959122772E-05
3,5005119498727E-05
1,2251791824554E-04
7,8761518872135E-05
5,2507679248090E-05
3,7630503461131E-04
4,4631527360877E-04
4,3756399373408E-05
9,2507679248090E-05
2,6253839624045E-05
1,3529478686258E-02
7,8761518872135E-05
2,3988722433278E-03
1,9870976990897E-01
1,0016008410389E-02
9,5572599335770E-05
4,7786299667885E-05
9,0793969368982E-05
1,4813752897044E-04
1,1870116837503E-02
1,1468711920292E-04
1,4335889900366E-05
1,2424437913650E-04
4,7786299667885E-06
3,8229039734308E-05
2,2746278641913E-03
7,4068764485222E-04
1,2902300910329E-04
8,2813657324445E-03
4,8742025661243E-04
1,4335889900366E-05
2,8671779800731E-05
1,0512985926935E-04
9,5572599335770E-05
1,0990848923614E-04
7,1679449501828E-05
7,5636155114329E-02

0,875
0,342857143
0,773809524
0,608695652
0
0,083333333
0

1

0
0,642857143
0

0
0,88372093
0,882352941
0,6

0,5

0
0,528460543
1

0,6812749
0,634610297
0,603053435
0,4

0,4
0,842105263
0,193548387
0,526972625
0

1
0,384615385
1

0,75
0,581932773
0,206451613
0,074074074
0,502019619
0,490196078
0

0
0,272727273
0,6
0,391304348
0,2
0,667108921



Appendix

189

Pathway

FLN

SLN

Tm — F5

Top — F5

8B — F5h

81 =+ Fb5

8m — Fb

8r — F5H
9/46d — F5
9/46v — F5
AIP — F5
CORE — F5
ENTORHINAL — F5
F1 — F5

F2 — F5

F3 — F5

F4 — F5

F6 — Fb5

Fr — Fb5

Gu — F5
INSULA — F5
LB — F5

LIP — F5

MB — F5
MIP — F5
OPAI — F5
OPRO — F5
Parainsula — F5
PBr — F5
PERIRHINAL — F5
ProM — F5
SIT — F5
STPc — F5
STPi — F5
STPr — F5
TEa/ma — F5
TEa/mp — F5
TEav — F5
TEMPORAL POLE — F5
TEOm — F5
TEpd — F5
TEpv — F5
TH/TF — F5
V1 = F5

V2 — F5

V3 = F5

4,7786299667885E-06
3,3450409767520E-05
4,3007669701097E-05
8,2192435428763E-04
2,8671779800731E-05
2,5326738823979E-04
3,3450409767520E-05
2,7954985305713E-03
3,2685828972833E-03
5,2564929634674E-05
1,1468711920292E-04
4,1669653310396E-03
1,1038635223281E-03
3,1104102453826E-02
5,150120660406 7TE-01
3,3450409767520E-05
3,8229039734308E-05
8,3100375122452E-03
6,0067378682532E-03
4,7786299667885E-05
6,4989367548324E-03
2,8671779800731E-05
4,7786299667885E-06
2,8671779800731E-04
5,5766611712422E-03
2,3893149833943E-05
3,8229039734308E-05
7,1679449501828E-05
4,4369579241631E-02
5,7654170549304E-02
4,7786299667885E-06
1,9114519867154E-05
3,8229039734308E-05
6,6900819535039E-05
1,9114519867154E-05
1,1468711920292E-04
4,7786299667885E-05
1,4335889900366E-05
2,8671779800731E-05
4,7786299667885E-05
9,5572599335770E-06
9,2564929634674E-05
3,3450409767520E-05
4,7786299667885E-06

1
0,142857143
0,666666667
0,581395349
1
0,566037736
0,285714286
0,256410256
0,576023392
0,363636364
0,25
0,79587156
0,445887446
0,69549854
0,569320987
0,428571429
1
0,199539965
0,23150358
0,8
0,473529412
0,666666667
0
0,233333333
0,316195373
1

0,75
0,333333333
0,312008616
0,545296312
0

0,5

0

0

1

0,25

0,4

1
0,333333333
0,2

0

1
0,571428571
0



190

Connectivity data

Pathway

FLN

SLN

V6 — F5
V6A — F5
1= F7
3= F7
5—=F7

9 = F7

10 — F7
11 — F7
12 —» k7
13 - F7
14 — F7
23 — F7
31 - F7
32 — F7
44 — F7
24a — F7
24b — F7
24c — F7
24d — F7
45A — F7
45B — F'7
46d — F7
46v — F7
TA — F7
B — F7
Tm — F7
Top — F7
8B — F7
81 = F7
8m — F7
8r — F7
9/46d — F7
9/46v — F7
F1 = F7
F2 — F7
F3 — F7
F4 — F7
F5 — F7
F6 — F7
FST — F7

INSULA — F7

IPa — F7
LIP — F7
MB — F7

9,5572599335770E-06
1,4335889900366E-05
1,1283879849247E-05
1,2412267834172E-04
4,5135519396989E-05
1,1576132337343E-01
1,4894721401007E-03
2,7081311638194E-04
1,2096319198393E-02
2,5840084854776E-03
2,2567759698495E-05
3,0387488434023E-02
4,8295005754779E-03
2,5952923653269E-04
1,0166775744172E-02
1,0787389135880E-02
6,4792038094378E-02
9,3543363950261E-02
1,8031639999097E-02
3,4348130261109E-02
6,3866759946740E-03
9,0271038793979E-04
1,4804450362213E-02
2,1890726907540E-03
5,6419399246237E-05
5,6193721649252E-03
3,8365191487441E-04
1,0376655909368E-01
3,1256347182415E-03
3,6909570986888E-02
2,2567759698495E-03
2,5072781025028E-02
3,7800997494979E-03
3,1594863577893E-04
9,8959626277899E-02
1,0087788585227E-02
2,7194150436686E-03
2,0310983728645E-03
2,4237773916183E-01
7,8987158944732E-05
2,0875177721108E-03
2,9789442802013E-03
4,4007131412065E-04
1,5797431788946E-03

0
1

0
0,545454545
0,25
0,619066186
0,121212121
0,5
0,398320896
0,445414847
1
0,680282213
0,91588785
0,217391304
0,705882353
0,302301255
0,203974225
0,411580217
0,590738423
0,671813403
0,704946996
0
0,493140244
0,5

0,6
0,925702811
0,735294118
0,379186603
0,693140794
0,555181902
0,51
0,451845185
0,537313433
0,357142857
0,491220068
0,589485459
0,560165975
0,605555556
0,468482309
0,857142857
0,643243243
0,715909091
0,487179487
0,442857143



Appendix

191

Pathway

FLN

SLN

MST — F7
OPRO — F7
Parainsula — F7
PBc — F7
PBr — F7
PERIRHINAL — F7
PGa — F7
ProM — F7
SII — F7
STPc — F7
STPi — F7
STPr — F7
TEa/ma — F7
TEa/mp — F7
TEav — F7
TEMPORAL POLE — F7
TEO — F7
TH/TF — F7
TPt — F7

V2 — F7

VIP — F7

1 — MT

2 - MT

23 - MT

32 - MT

24a — MT
24b — MT
29/30 — MT
45A — MT
45B — MT
7TA — MT

8l — MT

8m — MT

8&r — MT
9/46d — MT
9/46v — MT
DP - MT

F1 - MT

F2 - MT

F4 — MT

F5 - MT
FST — MT
INSULA — MT
[Pa — MT

6,3189727155785E-04
1,0832524655277E-03
9,6419399246237E-04
2,2567759698495E-05
2,5501568459299E-03
9,6419399246237E-05
2,8322538421611E-03
1,8054207758796E-04
4,5135519396989E-05
1,8392724154273E-03
1,1633680124574E-02
6,5672180722620E-03
9,1399426778904E-04
2,2567759698495E-05
6,7703279095484E-05
9,9804563201011E-04
4,5135519396989E-05
4,5135519396989E-05
1,7377174967841E-03
9,0271038793979E-05
1,1283879849247E-05
2,9779009967035E-06
2,3823207973628E-05
1,1316023787473E-04
2,9779009967035E-06
1,0422653488462E-05
4,4668514950552E-06
1,7867405980221E-05
2,9779009967035E-06
5,0028736744618E-04
4,5264095149893E-04
2,2751163614814E-03
6,2833711030443E-04
8,0403326910994E-05
9,9558019934069E-06
3,8712712957145E-05
1,4645317101788E-02
2,9779009967035E-06
5,9558019934069E-06
2,0845306976924E-05
2,9779009967035E-06
6,1856959503524E-02
4,4668514950552E-05
1,3326106960248E-03

0,75
0,239583333
0,12

1
0,716814159
0
0,812749004
0,375

0,5
0,82208589
0,762366634
0,716494845
0,925925926
0
0,333333333
0,547169811
0,5

1
0,74025974
0,625

1

1

0
0,026315789
0

0

0
0,166666667
0
0,452380952
0,661184211
0,672774869
0,407582938
0,703703704
1
0,846153846
0,837738918
0

0,5
0,142857143
0
0,285865538
0,066666667
0,055865922



192

Connectivity data

Pathway

FLN

SLN

LB - MT

LIP — MT
MB — MT
MIP — MT
MST — MT
OPRO — MT
PBr — MT
PERIRHINAL — MT
PGa —» MT
PIP — MT
Pro.St. —» MT
ProM — MT
SIT — MT
STPc — MT
STPi — MT
STPr — MT
TEa/ma — MT
TEa/mp — MT
TEad — MT
TEav — MT
TEMPORAL POLE — MT
TEO — MT
TEOm — MT
TEpd — MT
TEpv — MT
TH/TF — MT
TPt — MT
V1 - MT

V2 — MT

V3 - MT
V3A — MT
V4 — MT

V4t — MT
V6A — MT
VIP — MT

9 — PBr

10 — PBr

11 — PBr

12 — PBr

13 — PBr

14 — PBr

23 — PBr

25 — PBr

31 — PBr

2,9779009967035E-06
2,2867301753686E-02
8,0403326910994E-05
1,1911603986814E-05
5,7428820721426E-03
2,9779009967035E-06
1,7867405980221E-05
8,8741449701763E-04
6,0659843302850E-03
9,3223190701802E-03
8,9337029901104E-06
2,9779009967035E-06
2,9779009967035E-06
1,7807847960287E-03
2,1738677275935E-04
2,4269893123133E-04
2,2661826584913E-03
1,5056267439333E-02
1,0601327548264E-03
1,1584034877176E-03
2,3823207973628E-05
3,8200513985712E-02
8,8449615404086E-02
1,3552427435997E-02
1,8906693428070E-02
9,4131450505796E-03
2,6801108970331E-05
1,8994541507473E-02
1,1946296533425E-01
5,1044200984494E-02
3,3516275717897E-02
3,8092713969631E-01
7,7112746309636E-02
2,9779009967035E-06
1,4949063003451E-03
1,2528188423954E-03
8,8722352566001E-03
6,9474499441926 E-04
7,9383157559053E-03
2,3347987517369E-03
1,3667114644313E-04
1,2821461925696E-02
1,0278809138744E-03
1,8592970547368E-03

1
0,529105352
0,074074074
0
0,186932849
1

0
0,003355705
0,039273441
0,614758026
0,333333333
0

0
0,050167224
0,02739726
0,012269939
0,05781866
0,324367089
0,016853933
0,005141388
0
0,332709698
0,362130496
0,207866403
0,234682627
0,165137615
0,444444444
0,890491495
0,94168235
0,896388775
0,863349622
0,615316062
0,470747249
1
0,513944223
0,281818182
0,596277279
0,245901639
0,665710187
0,309756098
0
0,278481013
0,12465374
0,355283308



Appendix

193

Pathway

FLN

SLN

32 — PBr
24a — PBr
24b — PBr
24c¢ — PBr
24d — PBr

29/30 — PBr
45A — PBr
45B — PBr
46d — PBr
46v — PBr

7A — PBr

Tm — PBr
8B — PBr

81 — PBr
8m — PBr

8r — PBr

9/46d — PBr

CORE — PBr

DP — PBr
ENTORHINAL — PBr

F6 — PBr

F7 — PBr

FST — PBr
INSULA — PBr
IPa — PBr

LB — PBr

LIP — PBr

MB — PBr

MST — PBr
OPAI — PBr
OPRO — PBr
Parainsula — PDBr
PBc — PBr
PERIRHINAL — PBr
PGa — PBr
Pro.St. — PBr

ProM — PBr

STPc — PBr

STPi — PBr

STPr — PBr

TEMPORAL POLE — PBr
TH/TF — PBr

TPt — PBr

V2 — PBr

2,6508507778866E-03
1,3126124689643E-03
1,0563540693834E-03
1,1104530648505E-04
2,2778524407189E-05
8,0664449556958E-03
3,7584565271862E-04
5,6946311017972E-05
4,1969431220246E-03
8,6843124302408E-04
2,2778524407189E-05
2,1639598186829E-04
9,2537755404205E-04
2,8473155508986E-06
4,4418122594018E-04
2,8473155508986E-06
4,1229129177012E-03
8,3671214778707E-02
9,6946311017972E-05
8,0436664312886E-03
2,2778524407189E-05
1,3382383089223E-04
1,0250335983235E-04
1,3296963622697E-03
5,4098995467074E-05
5,0596797339468E-02
8,5419466526958E-06
9,2295733582379E-02
1,1673993758684E-04
2,5455001025034E-03
2,6536980934375E-03
7,6564315163664E-03
1,0483531126854E-01
1,1360789048085E-03
2,4657752670782E-03
6,3381244163003E-03
8,5419466526958E-06
5,2894580989044E-02
2,8422758023735E-01
6,7800277897998E-02
1,4329684973007E-01
2,5537573176010E-02
7,4314935878454E-04
1,1389262203594E-05

0,297529538
0,292841649
0,35309973
0,41025641
0
0,208965761
0,439393939
0,8
0,485074627
0,373770492
0,5
0,157894737
0,353846154
0
0,583333333
0
0,55801105
0,532804737
1
0,01380531
1
0,680851064
0,555555556
0,310492505
0
0,615700619
1
0,533981182
0,634146341
0,454138702
0,03111588
0,309408702
0,587386947
0,037593985
0,184757506
0,163971249
0
0,701458793
0,565771415
0,454308752
0,399964234
0,242390456
0,601532567
1



194

Connectivity data

Pathway

FLN

SLN

V4 — PBr

1 — ProM

2 — ProM

3 — ProM

9 — ProM
11 — ProM
12 = ProM
13 — ProM
44 — ProM
24a — ProM
24b — ProM
24c¢ — ProM
24d — ProM
46d — ProM
46v — ProM
7TA — ProM
7B — ProM
7op — ProM

9/46v — ProM
AIP — ProM
ENTORHINAL — ProM

F1 — ProM
F2 — ProM
F3 — ProM
F4 — ProM
F5 — ProM
Gu — ProM

INSULA — ProM

LIP — ProM
MB — ProM

OPAI — ProM

OPRO — ProM
PERIRHINAL — ProM
PGa — ProM

SII — ProM

TEa/ma — ProM
TEav — ProM

TEMPORAL POLE — ProM

2 — STPc
5 — STPc
9 — STPc
10 — STPc
12 — STPc
13 — STPc

2,2778524407189E-05
2,2093466409646E-05
2,7517412413214E-02
1,1046733204823E-04
2,2093466409646E-05
5,5233666024115E-05
1,3129042413932E-01
1,6238697811090E-03
1,1068826671233E-02
2,0215521764826E-03
1,0494396544582E-04
2,4634215046755E-03
1,1599069865064E-04
1,1046733204823E-05
3,1483189633746E-04
1,6570099807235E-05
1,1101966870847E-03
7,1803765831350E-05
1,8077978889693E-02
4,2253754508448E-03
2,2259167407718E-03
6,6280399228938E-05
1,1046733204823E-05
1,5354959154704E-03
3,1925058961938E-03
3,1432374661003E-01
1,7508519792984E-01
2,4092925119719E-02
5,9652359306044E-04
2,2093466409646E-05
3,8039734547001E-03
2,7511889046612E-02
1,2261873857354E-03
2,2093466409646E-05
2,4255312097830E-01
1,1930471861209E-03
3,0930852973504E-04
1,8945147446271E-03
7,0964765993684E-05
2,8385906397474E-05
2,8385906397474E-05
1,4476812262712E-03
4,1301493808324E-03
2,1786183160061E-03

0
1
0,551987154
0

0

0
0,643247791
0,159863946
0,52994012
0,459016393
0,421052632
0,35426009
0,619047619
1
0,596491228
0,666666667
0,611940299
0,230769231
0,650779102
0,678431373
0,23325062
0

0,5
0,791366906
0,242214533
0,760560905
0,62213319
0,366345713
0,611111111
0
0,239716312
0,304758081
0,018018018
0
0,608370907
0,407407407
0,232142857
0,221574344
0,2

1

0,5
0,411764706
0,329896907
0,185667752



Appendix

195

Pathway

FLN

SLN

23 — STPc

31 — STPc

24b — STPc

24c — STPc
29/30 — STPc
45A — STPc
45B — STPc

46d — STPc

46v — STPc

7TA — STPc

7B — STPc

Tm — STPc

Top — STPc

8B — STPc

81 — STPc

8m — STPc

8r — STPc
9/46d — STPc
CORE — STPc
DP — STPc
ENTORHINAL — STPc
F5 — STPc

F6 — STPc

F7 — STPc

FST — STPc
INSULA — STPc
IPa — STPc

LB — STPc

LIP — STPc¢

MB — STPc
MST — STPc
MT — STPc
Parainsula — STPc
PBc — STPc
PBr — STPc
PERIRHINAL — STPc
PGa — STPc
PIP — STPc
Pro.St. — STPc
STPi — STPc¢
STPr — STPc
TEa/ma — STPc
TEa/mp — STPc
TEad — STPc

3,1508356101196E-03
1,7883121030408E-03
4,6836745555832E-04
1,4192953198737E-05
3,4063087676968E-04
2,8385906397474E-05
7,6641947273179E-04
7,1674413653621E-03
3,0656778909272E-03
1,4476812262712E-03
2,2708725117979E-04
4,2578859596210E-05
8,2319128552674E-04
7,9480537912926E-04
5,1094631515453E-04
7,2525990845545E-03
4,9675336195579E-04
2,2992584181954E-03
1,3298797147216E-02
1,9870134478232E-04
9,9610403434695E-04
1,0360855835078E-03
1,4192953198737E-05
7,2384061313558E-04
6,2448994074442E-03
2,0260440691197E-02
6,1881275946493E-03
5,7197601390909E-02
2,8641379555051E-02
2,2417769577405E-02
1,8561544193308E-01
7,3803356633431E-04
2,1999077458042E-04
9,2232906361991E-02
2,0153993542206E-02
6,6706880034063E-04
1,2028527835929E-02
4,9107618067629E-03
1,9870134478232E-04
4,0955185750275E-01
1,2397544619097E-02
9,2513926835326E-04
3,8320973636589E-04
7,6641947273179E-04

0,193693694
0,103174603
0,424242424
0

0

0
0,462962963
0,63960396
0,583333333
0,441176471
0,375

0
0,689655172
0,5
0,805555556
0,553816047
0,514285714
0,314814815
0,779082177
0,785714286
0
0,602739726
1
0,274509804
0,468181818
0,66619965
0,338302752
0,660421836
0,670961348
0,643241532
0,582199113
0,423076923
0,129032258
0,532199738
0,210915493
0,042553191
0,466076696
0,705202312
0
0,611415304
0,155981683
0,135135135
0,296296296
0,018518519



196

Connectivity data

Pathway

FLN

SLN

TEav — STPc
TEMPORAL POLE — STPc
TEO — STPc
TEOm — STPc
TEpd — STPc¢
TEpv — STPc
TH/TF — STPc
TPt — STPc
V2 — STPc
V3A — STPc
V4 — STPc
V6A — STPc
VIP — STPc

9 — STPi

10 — STPi

11 — STPi

12 — STPi

13 — STPi

14 — STPi

23 — STPi

25 — STPi

32 — STPi

24c — STPi
24d — STPi
29/30 — STPi
45A — STPi
46d — STPi
46v — STPi

8B — STPi

8m — STPi
9/46d — STPi
CORE — STPi
F6 — STPi

F7 — STPi

Gu — STPi
INSULA — STPi
IPa — STPi
LB — STPi
LIP — STPi
MB — STPi
MST — STPi
MT — STPi
OPRO — STPi
Parainsula — STPi

3,9740268956463E-04
3,8604832700564E-03
1,7031543838484E-04
3,1224497037221E-04
8,0899833232800E-04
1,4334882730724E-03
9,3673491111663E-03
4,5985168363907E-02
3,9740268956463E-04
2,8385906397474E-05
1,3909094134762E-03
1,4192953198737E-05
5,6771812794947E-05
4,5710961280738E-04
2,3260645978994E-02
3,1166564509594E-04
5,7865921439480E-03
2,0777709673063E-04
1,3141901368212E-02
4,4672075797085E-04
2,6179914188059E-03
3,3244335476900E-04
1,3505511287491E-04
4,1555419346125E-05
4,1555419346125E-05
3,7399877411513E-04
3,5010440799111E-03
2,5141028704406E-03
2,0777709673063E-04
4,1555419346125E-05
1,9738824189410E-04
1,8159718254257E-02
8,3110838692251E-05
8,3110838692251E-05
4,1555419346125E-05
6,0255358051882E-04
1,1219963223454E-03
7,0020881598221E-02
4,1555419346125E-05
1,0762853610646E-02
6,8545664211434E-02
4,1555419346125E-05
5,8177587084576E-04
8,5188609659557E-04

0,035714286
0,033088235
0,5
0,159090909
0,280701754
0,108910891
0,045454545
0,607407407
0,214285714
1
0,520408163
0

0
0,136363636
0,778472532
0,1
0,337522442
0,2
0,682213439
0,069767442
0,571428571
0,375

0

0

0

0
0,43620178
0,483471074
0,4

0
0,368421053
0,870709382
1

1

0
0,896551724
0,407407407
0,809198813
0,5
0,787644788
0,71354956
1

0,5
0,146341463



Appendix

197

Pathway

FLN

SLN

PBc — STPi
PBr — STPi
PERIRHINAL — STPi
PGa — STPi
Pro.St. — STPi
STPc — STPi
STPr — STPi
TEa/ma — STPi
TEa/mp — STPi
TEav — STPi
TEMPORAL POLE — STPi
TEpd — STPi
TH/TF — STPi
TPt — STPi
V4t — STPi

9 — STPr

10 — STPr

11 — STPr

12 — STPr

13 — STPr

14 — STPr

23 — STPr

25 — STPr

32 — STPr

44 — STPr

24a — STPr

24b — STPr

24c — STPr
29/30 — STPr
45A — STPr
45B — STPr
46d — STPr

46v — STPr

TA — STPr

8B — STPr

81 — STPr

8m — STPr

8r — STPr
9/46d — STPr
9/46v — STPr
CORE — STPr
DP — STPr
ENTORHINAL — STPr
F1 — STPr

5,6369926343019E-02
3,3477045825239E-01
4,1555419346125E-05
4,1555419346125E-03
7,2721983855720E-05
2,2799380824252E-01
2,4954029317348E-02
8,3110838692251E-05
2,7011022574982E-04
1,6622167738450E-04
1,2568436581236E-01
1,4544396771144E-04
6,2333129019188E-04
8,3110838692251E-05
3,1166564509594E-05
1,7132396871428E-03
3,2955311179435E-02
4,5995575040171E-03
1,6844583516343E-02
1,4567993518061E-03
1,3000706574967E-02
6,4792106002614E-04
6,9948193596085E-03
1,6177565835600E-03
1,1457972429936 E-04
8,7298837561416E-04
1,3340353614854E-03
2,7280886737943E-04
1,3776847802661E-04
2,1824709390354E-03
8,0751424744310E-04
1,0104840447734E-02
8,9890521801521E-03
1,9369429583939E-04
6,0017950823474E-04
4,9105596128297E-05
3,5465152759325E-04
6,0017950823474E-05
1,0230332526728E-04
9,3879751307436E-04
1,0066647206301E-03
3,8193241433120E-05
3,9448162223065E-03
1,0912354695177E-05

0,805012901
0,549962761
1

0,375

0
0,806433974
0,302248127
0
0,461538462
0,25
0,752851711
0,428571429
0,766666667
0,5

0
0,746019108
0,655049669
0,40717675
0,597700219
0,344569288
0,488091491
0,334736842
0,366614665
0,52613828
0,238095238
0,4625
0,625766871
0,85
0,099009901
0,625
0,804054054
0,555615551
0,535204856
0,85915493
0,836363636
0,333333333
0,738461538
0,727272727
0,48
0,708860759
0,319783198
0,714285714
0,060857538

0,5



198

Connectivity data

Pathway

FLN

SLN

F2 — STPr

F4 — STPr

F7 — STPr

FST — STPr

Gu — STPr
INSULA — STPr
[Pa — STPr

LB — STPr

LIP — STPr

MB — STPr
MST — STPr
MT — STPr
OPAI — STPr
OPRO — STPr
Parainsula — STPr
PBc — STPr
PBr — STPr
PERIRHINAL — STPr
PGa — STPr
Pro.St. — STPr
STPc — STPr
STPi — STPr
TEa/ma — STPr
TEa/mp — STPr
TEad — STPr
TEav — STPr
TEMPORAL POLE — STPr
TEO — STPr
TEOm — STPr
TEpd — STPr
TEpv — STPr
TH/TF — STPr
TPt — STPr

V2 — STPr

V4 — STPr

1 — TEO

2 =+ TEO

3 — TEO

5 — TEO

11 — TEO

12 — TEO

23 — TEO

44 — TEO

24a — TEO

1,6368532042766E-05
5,4561773475885E-06
5,1833684802091E-05
2,3270596387465E-03
5,4561773475885E-06
9,8484001123973E-04
2,0981729990152E-02
7,3112776457686E-03
1,2412803465764E-04
1,6856859915375E-02
1,8851092735918E-02
1,6368532042766E-05
2,9736166544357E-04
6,1982174668605E-03
6,3237095458551E-03
8,9208499633072E-03
1,9855847794477E-01
9,7992945162690E-03
3,3195382982728E-02
1,2685612333143E-04
3,0261323614063E-02
2,4014000551074E-01
2,3892600605090E-02
4,0239307938465E-03
6,2473230629888E-04
1,3798672512051E-02
2,2652957111718E-01
5,4561773475885E-06
2,1279091655595E-04
9,5755912450178E-04
1,6614060023407E-03
1,5371415632494E-02
1,3640443368971E-05
5,4561773475885E-06
2,7280886737943E-06
2,5647601949218E-05
3,8471402923827E-05
1,2182610925878E-04
2,5647601949218E-05
1,2823800974609E-05
2,3724031803026E-04
1,2823800974609E-05
1,2823800974609E-05
7,6942805847653E-05

0,666666667
1
0,789473684
0,723329426
0
0,318559557
0,42894292
0,452985075
0,901098901
0,496034957
0,645730825
0,833333333
0,394495413
0,320862676
0,541846419
0,528746177
0,457098498
0,356069042
0,53377712
0,086021505
0,880279468
0,606429991
0,401918246
0,341694915
0,515283843
0,511269276
0,500108387
0
0,666666667
0,287749288
0,500821018
0,366758364
0,4

1

1

0

0
0,210526316
1

0
0,378378378
1

0,5

0



Appendix

199

Pathway

FLN

SLN

24b — TEO

24d — TEO

45A — TEO

45B — TEO

46d — TEO

46v — TEO

7A — TEO

7B — TEO

Tm — TEO

8B — TEO

81 — TEO

8&r — TEO

9/46d — TEO
9/46v — TEO
DP — TEO
ENTORHINAL — TEO
F2 — TEO

F5 — TEO

F7 — TEO

FST — TEO
INSULA — TEO
IPa — TEO

LB — TEO

LIP — TEO

MB — TEO
MIP — TEO
MST — TEO
MT — TEO
Parainsula — TEO
PBc — TEO
PBr — TEO
PERIRHINAL — TEO
PGa — TEO
PIP — TEO
ProM — TEO
STPc — TEO
STPi — TEO
STPr — TEO
TEa/ma — TEO
TEa/mp — TEO
TEad — TEO
TEav — TEO
TEMPORAL POLE — TEO
TEOm — TEO

3,8471402923827E-05
1,9235701461913E-05
1,9235701461913E-05
4,1677353167479E-04
1,2823800974609E-05
3,8471402923827E-05
4,6165683508592E-04
2,5647601949218E-05
9,1295203898435E-05
1,2823800974609E-05
6,0848935624519E-03
95,3859964093357E-04
2,5647601949218E-05
3,9112592972557E-04
1,1669658886894E-03
2,5647601949218E-05
6,4119004873044E-06
3,8471402923827E-05
4,4883303411131E-05
6,9748653500898E-02
1,2823800974609E-04
9,5847653244422E-03
1,2823800974609E-05
7,8994614003591E-03
3,8471402923827E-05
1,9235701461913E-05
9,8348294434470E-04
2,4397281354193E-02
4,4883303411131E-05
7,6942805847653E-05
95,1295203898435E-05
1,7510900230828E-02
4,5460374454988E-03
1,7119774301103E-03
1,2823800974609E-05
1,9235701461913E-05
1,2823800974609E-04
1,3144395998974E-03
1,5689920492434E-02
2,9488330341113E-02
8,8035393690690E-03
1,5632213388048E-02
3,1418312387792E-04
4,0337265965632E-02

0
0,333333333
0,666666667
0,507692308
0,5

0,5

0

1

0,375

0
0,749209694
0,797619048
1
0,672131148
0,263736264
1

1
0,833333333
0,857142857
0,371943372
0,3
0,117106774
1
0,308441558
0

0

0
0,424178712
0,714285714
1

0,25
0,037715123
0,039492243
0,483146067
1

0

0
0,073170732
0,474049857
0,307675582
0,23379461
0,30680886
0,183673469
0,482753139



200

Connectivity data

Pathway

FLN

SLN

TEpd — TEO
TEpv — TEO
TH/TF — TEO
V2 - TEO

V3 — TEO
V3A — TEO
V4 — TEO

V4t — TEO

3 — TEpd

11 — TEpd

12 — TEpd

13 — TEpd

23 — TEpd

44 — TEpd

24a — TEpd
24b — TEpd
45A — TEpd
45B — TEpd
46d — TEpd
46v — TEpd
7TA — TEpd

81 — TEpd

8m — TEpd

8r — TEpd
9/46v — TEpd
CORE — TEpd
DP — TEpd
ENTORHINAL — TEpd
F5 — TEpd

F6 — TEpd
FST — TEpd
INSULA — TEpd
[Pa — TEpd
LB — TEpd
LIP — TEpd
MB — TEpd
MST — TEpd
MT — TEpd
OPAI — TEpd
OPRO — TEpd
Parainsula — TEpd
PBr — TEpd
PERIRHINAL — TEpd
PGa — TEpd

2,3132213388048E-01
9,0760451397794E-02
1,4593485509105E-02
2,4615285970762E-02
1,2239676840215E-01
4,9371633752244E-04
2,5587330084637E-01
5,8668889458836E-03
5,0127072127844E-06
3,5088950489491E-05
1,8221190718471E-03
3,4086409046934E-04
7,5190608191766E-06
2,7569889670314E-05
2,7068618949036E-04
3,5088950489491E-05
9,4238895600347E-04
6,4864431333430E-03
1,5038121638353E-05
4,0853563784193E-04
2,0201210067521E-03
4,5941461605169E-03
2,5063536063922E-05
1,9198668624964E-03
1,4185961412180E-03
7,5190608191766E-06
8,0203315404551E-05
3,4337044407573E-04
7,5190608191766E-06
1,5038121638353E-05
1,0451494538655E-03
7,7696961798158E-05
6,3460873313851E-03
1,5038121638353E-05
2,8271668680104E-03
5,0127072127844E-06
1,0025414425569E-05
1,5038121638353E-05
1,0025414425569E-05
8,0203315404551E-05
5,0127072127844E-06
6,0152486553413E-05
3,5068899660640E-02
4,4362458833142E-04

0,349668764
0,304415401
0,023725835
0,936962751
0,84252711
0,337662338
0,664085601
0,520218579
1
0,142857143
0,504814305
0,566176471
0
0,272727273
0,203703704
0,142857143
0,712765957
0,675425039
0
0,429447853
0,503722084
0,725040917
0,2
0,596605744
0,485865724
0

0,6875
0,102189781
0
0,666666667
0,225419664
0
0,178909953
0
0,721631206
0

1
0,333333333
1

0,125

0

0
0,075471698
0,11299435



Appendix

201

Pathway

FLN

SLN

PIP — TEpd
Pro.St. — TEpd
SIT — TEpd
STPc — TEpd
STPi — TEpd
STPr — TEpd
TEa/ma — TEpd
TEa/mp — TEpd
TEad — TEpd
TEav — TEpd
TEMPORAL POLE — TEpd
TEO — TEpd
TEOm — TEpd
TEpv — TEpd
TH/TF — TEpd
V2 — TEpd

V3 — TEpd
V3A — TEpd
V4 — TEpd

V4t — TEpd
Top — V1

81 — V1

8&r — V1

CORE — V1
DP — V1

FST — V1

IPa — V1

LB = V1

LIP - V1

MB — V1

MST — V1

MT — V1

PBec — V1
PERIRHINAL — V1
PGa — V1

PIP — V1

STPc — V1
STPi — V1
STPr — V1
TEa/ma — V1
TEa/mp — V1
TEad — V1
TEav — V1
TEO — V1

1,1027955868126E-04
5,0127072127844E-05
4,9375166045926E-04
5,0127072127844E-06
2,5063536063922E-05
4,2858646669307E-04
6,5162687412591E-02
2,4381557247623E-01
2,6857834610738E-01
1,1495641451078E-01
1,1704671341852E-03
1,3762638288060E-01
1,7424170271639E-02
3,8961266811367E-02
1,6191044297294E-02
1,7544475244745E-04
1,9048287408581E-04
3,5088950489491E-04
2,7389432210654E-02
5,7646132947021E-05
6,5905096660808E-05
2,1468411852533E-04
1,7786631567714E-06
4,2051754745834E-05
4,9063704109749E-04
7,5312297246041E-03
1,2313857972380E-03
6,3448131080336E-05
1,2873673033355E-03
3,7817339456986E-05
6,5738150991430E-03
9,8852547353403E-02
1,1382275378941E-04
1,7577714727171E-03
7,3423435952682E-04
8,4924526827224E-04
1,6535203572885E-03
4,3213348360514E-04
1,9369771090702E-05
7,0890811167129E-04
2,2680874902888E-03
8,7616177276813E-04
1,0588882801376E-03
2,7034555509039E-02

0,863636364
0,1
0,223350254
0

0,2
0,204678363
0,363206277
0,46513636
0,516456854
0,448960014
0,00856531
0,679736301
0,70972382
0,280411708
0,035913313
0,971428571
0,921052632
0,914285714
0,952964861
0,913043478
0,333333333
0,104211794
0

0
0,003960396
0,020929381
0,017511521
0,0625
0,009089382
0
0,008804324
0,17323749
0,277631579
0,007245872
0,003809524
0
0,036214364
0,081729544
0,047619048
0,029216301
0,021262233
0,005889244
0
0,096027815



202

Connectivity data

Pathway

FLN

SLN

TEOm — V1
TEpd — V1
TEpv — V1

TH/TF — V1

TPt — V1

V2 - V1
V3= V1

V3A —» V1

V4 — V1

V4t — V1

8l — V2

8m — V2

DP — V2
FST — V2
IPa — V2

LIP — V2

MB — V2
MST — V2
MT — V2
PBc — V2
PERIRHINAL — V2
PGa — V2
PIP — V2
STPc — V2
STPi — V2
STPr — V2
TEa/ma — V2
TEa/mp — V2
TEad — V2
TEav — V2
TEO — V2

TEOm — V2
TEpd — V2
TEpv — V2

TH/TF — V2

TPt — V2
V1l — V2
V3 — V2

V3A —- V2
V4 — V2

Vit — V2
V6 — V2

V6A — V2

VIP — V2

1,9236562760412E-03
3,6308239967448E-03
5,4083853413761E-03
3,9719946601775E-03
2,1968365553603E-05
7,3215720618642E-01
6,9065028226676E-03
2,1819683414529E-03
1,2773034369581E-01
2,1677842611126E-03
1,0890779817564E-04
2,4677286850678E-05
4,2114875688123E-04
2,0717555878459E-03
6,3458251791680E-05
9,6378575411145E-04
9,4957803621252E-06
7,4575573857483E-04
3,5730857719322E-02
1,7797236089235E-06
2,0439906879239E-04
1,4951055262873E-04
4,3631948303666 E-04
8,7402312540106E-05
6,946700653056 7TE-05
8,8986180446177E-06
5,7997652992224E-05
1,0611583615540E-04
1,6961219731446E-04
2,3769102964272E-04
3,2741902063531E-03
1,6854781025118E-03
1,0526816058894E-03
1,1481025595005E-03
1,7930916128961E-03
9,3097907345239E-07
7,6356223730682E-01
3,1238140647928E-02
1,9312040198189E-03
1,56133149948425E-01
1,1582296044833E-03
5,3391708267706E-06
2,6970963039015E-05
1,3286758140691E-04

0,009896034
0,020500658
0,001887834
0,005872348
0,5
0,420794741
0,067021339
0,004350808
0,296524615
0,0226497
0,242494824
0
0,07456427
0,070467797
0,37037037
0,049165866
0
0,018827292
0,268649674
0

0,035
0,023290986
0,006312959
0
0,074074074
0,4

0
0,052631579
0,016666667
0,014245014
0,091031056
0,051366601
0,032376273
0,019217983
0,010029093
0
0,735960125
0,321376461
0,027455598
0,254470985
0,237627106
0
0,380952381
0,007575758



Appendix

203

Pathway

FLN

SLN

45B — V4

TA - V4

8l — V4

8&r — V4
9/46d — V4
9/46v — V4
DP — V4
ENTORHINAL — V4
FST — V4
INSULA — V4
IPa — V4

LB — V4

LIP — V4
MST — V4
MT — V4
PERIRHINAL — V4
PGa — V4
PIP — V4
STPc — V4
STPi — V4
STPr — V4
TEa/ma — V4
TEa/mp — V4
TEad — V4
TEav — V4
TEO — V4
TEOm — V4
TEpd — V4
TEpv — V4
TH/TF — V4
V1 — V4

V2 - V4

V3 = V4

V3A — V4
V4t — V4

3,5867334152066E-05
1,0464810449669E-04
2,4207994713175E-03
6,8780770344628E-05
3,6200405444541E-06
1,6040378980687E-05
9,7408023407786E-05
6,4661122861462E-05
1,2539858073290E-02
7,0174451501261E-05
1,2701261851198E-03
1,0693585987125E-05
2,6625532532375E-03
1,2603527647094E-04
8,4679357732758E-02
7,4835716107707E-03
6,0217152820374E-04
6,4856591269670E-04
1,0793507374867E-04
2,3230499375724E-04
2,5658466770426E-04
9,4547180798177E-03
2,2449284298079E-02
3,1292583691215E-03
7,5662884184574E-03
2,3781716795119E-01
1,6305260468223E-02
7,4878781327724E-02
2,7308084801295E-02
1,4223869160405E-02
1,3046690615096 E-02
3,9084645762747E-01
2,9448962316775E-02
1,0019538572105E-04
4,3923223589269E-02

0,25
0,043478261
0,604238306
0,473684211
0

0

0

0
0,16589374
0,483333333
0,062091503
1
0,215392934
0,043478261
0,460765636
0,000433651
0,025
0,148770492
0

0
0,074074074
0,035564776
0,155161842
0,01296461
0,024386682
0,4303798
0,24841461
0,274665301
0,039024191
0,012066079
0,98172206
0,926048751
0,659411144
0
0,439250155







