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La follia, come sai, & come la gravita:

basta solo una piccola spinta.

See, madness, as you know, is like gravity:

all it takes is a little push!

La folie, tu ne l'ignores pas, suit les lois de la gravité.

1l n’y a qu’a donner une légere pichenette.

The Dark Knight (2008),
David S. Goyer
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Résumé de la these

Introduction

L’ objectif de cette these est d’explorer les mécanismes d’émission des neutrons dans le pro-
cessus de fission. En particulier ’existence de ’anisotropie dynamique dans le centre de masse
des fragments de fission et/ou une possible émission de neutrons de scission est investiguée . Dans
ce but, une analyse tres originale, basée sur une nouvelle stratégie concue par la collaboration
CORA, a été développée.

La these débute par une introduction qui situe le sujet de ce travail dans le contexte général de
la fission en introduisant les principales notions théoriques concernant la fission et les mécanismes
d’émission des neutrons. La nécessité de concevoir une méthode d’analyse appropriée est sou-
lignée. En fait, quand un processus trés subtile est étudié, les diverses approximations et/ou les
biais expérimentaux peuvent cacher les phénomenes physiques.

Dans le travail présenté ici, un effort important a été nécessaire pour développer une procédure
Monte Carlo basée sur un modeéle cohérent décrivant la fission spontanée de 2°2Cf. Parallelement &
ce modele théorique, le dispositif utilisé pour la détection des neutrons dans ’expérience CORA3
a Strasbourg a été simulé le plus soigneusement possible.

Comme mentionné, quand des effets tres faibles doivent étre explorés, une connaissance complete
du dispositif expérimental est indispensable. La procédure de simulation semble une stratégie
adéquate pour controler les biais expérimentaux ainsi que pour acquérir une bonne connaissance

des mécanismes d’émission de neutrons.

Contexte

En 1962, Henry R. BowMAN E| publiait un travail dans lequel il étudiait les détails de I’émission
de neutrons dans la fission spontanée du 2°2Cf. Cet article fut le précurseur d’une longue série de

travaux qui contestaient en partie I’hypothese a la base de la théorie de I’évaporation des neutrons

1. H. R. Bowman et al., Phys. Rev., 126, 2120 (1962).
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de Weisskopfﬂ qui déclarait que ’émission était isotrope dans le centre de masse des fragments

de fission (CM). Bowman a mis en évidence une émission qu'’il a attribuée a des neutrons de

scission.
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FiGURE 1: Distributions angulaires des neutrons en fonction de l'angle entre la direction
d’émission du neutron et celle du fragment léger (LF). Les figures illustrent trois effets influengant
ces distributions angulaires : la focalisation cinématique (a), 'effet des neutrons de scission® (b,

rose) et 'anisotropie dynamique? (c, bleu).

BowMAN affirme que la plus grande partie des neutrons prompts est évaporée lors du processus

de fission par les fragments entierement accélérés (FF), en accord avec la théorie de Weisskopf.

Mais il remarque que, losqu’on compare les distributions angulaires expérimentales a celle d’une

évaporation purement isotrope, des contradictions apparaissent, malgré la prise en compte des

effets dus au changement de repere. En effet, BOWMAN montre qu’en raison de la vitesse des frag-

ments de fission (FF), en passant du référentiel du CM & celui du laboratoire, les distributions

2. V. F. Weisskopf, Statistics and Nuclear Reactions, Phys. Rev., 52, 295-303, 1937.
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angulaires de neutrons présentent une augmentation a 0° et 180°, un effet appelé focalisation
cinématique (Figa)). Cependant la prise en compte de cette focalisation ne permet pas de
reproduire compléetement les distributions observées expérimentalement.

Pour comprendre l'origine de ces déviations, il a ajouté une contribution aux distributions angu-
laires de neutrons émis au début du processus de fission (Figb)), au point de scissionﬂ Mais
méme en ajoutant ces neutrons de scission, il observe un exces de neutrons aux petits angles dans
le référentiel du laboratoire autour des fragments lourd et 1éger. Ceci I’a amené a faire I’hypothese
qu’une anisotropie dynamique (Figc)) apparaissait aussi dans le CM des deux fragments ; cet

effet renforce I’anisotropie cinématique dans le systeme du laboratoireﬂ

Il existe des arguments théoriques et des calculs qui établissent que cette anisotropie existe,
mais l'observation expérimentale directe est tres difficile, car la contribution due a l’anisotro-
pie dans le CM est tres faible. De plus les deux effets agissent en sens contraire, ’émission de
scission réduisant la focalisation & 0° et a 180° tandis que ’anisotropie dynamique la rehausse
légerement. Pour montrer 'effet d’anisotropie dynamique, une nouvelle méthode d’analyseﬂﬁ a
été développée, permettant de s’affranchir de I’effet de ’anisotropie cinématique. Elle est basée sur
la mesure de coincidences triples entre un fragment de fission et deux neutrons émis. L’expérience

CORA, présentée dans cette these a été effectuée a cette fin.

Le contexte théorique de la problématique concernant 1’émission des neutrons est présenté dans
un premier chapitre introductif ainsi que la nouvelle approche d’analyse. Cette approche théorique
est suivie par un deuxiéme chapitre présentant 1’expérience CORA, la description et I’étalonnage
du systeme de détection ainsi que les résultats expérimentaux obtenus. Le chapitre 3 décrit
les simulations mises en place pour gérer les biais expérimentaux du dispositif expérimental et
déterminer les parametres caractérisant les effets recherchés : neutrons de scission et anisotropie
dans le CM des FF. L’accord entre simulation et expérience permet de quantifier I'importance
relative des deux effets. Les résultats expérimentaux et ceux obtenus par les simulations sont

comparés les uns aux autres dans le chapitre 4. Suivent les conclusions du travail de these.

Le systeme de détection

L’expérience CORA a mis en oeuvre les détecteurs CODIS et DEMON.
Le systeme de détection CODIS permet de détecter les fragments de fission dans un angle so-
lide de 47. 11 est constitué d’une double chambre & ionisation remplie de CF4 & une pression de
2.64 x 10* Pa. Les deux chambres & ionisation sont assemblées sur une cathode segmentée com-

mune constituée de PCB avec des couches doubles de cuivre sur PF4, matériel époxyde plaqué or

3. C.B. Franklyn et al., Phys. Lett. B, 564 (1978).

4. V. Bunakov et al., Proc. ”Int. Sem. ISINN-13” Dubna, Russia, 2005, p.175.
5. F. Gonnenwein et al., Seminar on Fission 6 (2007) 1 (World Scientific).

6. L. Stuttgé et al., Proc. Seminar on Fission VII, Het Pand, Belgium (2010).
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et d’épaisseur égale & 1.6 mm. La source 2°2Cf est placée au centre de cette cathode. Une grille de
Frisch est insérée pres de chacune des deux anodes de la chambre. La détermination des angles
des fragments de fission est réalisée en mesurant les temps de dérive des électrons d’ionisation
entre la cathode et les grilles de Frisch, mais aussi & partir de la position déduite des signaux
obtenus dans les différents secteurs de la cathode segmentée. Les énergies et les angles polaires,
0 et ¢, des deux fragments de fission peuvent ainsi étre déterminés et les masses des fragments

peuvent en étre déduites.

Le multidétecteur DEMON est composé d’une centaine de cellules cylindriques individuelles
de profondeur L = 20 c¢m et de diametre D = 16 ¢m, chacune contenant 4,4 litres de liquide
organique N E213 riche en hydrogene (1 H/'2C ~ 1,2 en moyenne). Dans les expériences CORA
seuls 60 modules ont été utilisés et la configuration géométrique de DEMON permettait de couvrir
une fraction d’environ 20% de 47, avec une ouverture angulaire des modules individuels comprise
entre 2.2° < Af < 5.8° dans cette configuration. La configuration géométrique de DEMON
a été optimisée dans 'expérience CORA3, configuration quasiment sphérique, ce qui a permis
d’accéder non seulement a ’émission dynamique mais en méme temps a ’émission de scission.
L’énergie des neutrons est déterminée par la technique de temps de vol et la discrimination entre
le rayonnement - et les neutrons est obtenue par ’analyse de la forme des impulsions complétée
par une sélection en temps de vol. Les angles d’émission des neutrons sont donnés par les angles
centraux de chacune des cellules de DEMON touchées.

Le multidétecteur DEMON dispose d’une acquisition indépendante permettant d’associer
I’électronique au standard VXI de DEMON et celle au standard CAMAC et VME de CODIS.
L’utilisation de I’électronique VXI présentait I’avantage de pouvoir utiliser un fonctionnement
asynchrone : dés qu'une cellule DEMON est touchée, sa voie électronique démarre le codage qui
est ensuite validé par un signal venant du trigger principal ou stoppé si aucun signal trigger
n’arrive pendant une durée choisie. Ce mode de fonctionnement permet de minimiser le temps

mort.

Analyse des données expérimentales

Pour exploiter 'ensemble des données enregistrées, il faut traiter les données brutes codées
par le systeme d’acquisition afin d’accéder aux parametres physiques nécessaires a notre étude.

Pour cela un certain nombre d’étapes sont nécessaires :

1. la discrimination neutrons-v, les scintillateurs de DEMON étant sensibles aux neutrons
mais aussi aux rayonnements . Seuls les neutrons nous intéressent.
La séparation neutron-vy se fait en deux étapes. D’abord les spectres bidimensionnels sont
construits a partir de l'intégration des impulsions sur deux portes d’intégration appelées
Qtot €t Qrent. Ensuite, pour améliorer la séparation, une sélection est effectuée sur le spectre

monodimensionnel du temps de vol. Qs représente la charge de I'impulsion intégrée sur la
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porte totale. Dans ce cas, la totalité du signal est prise en compte. Par contre, Qjen: est la
charge intégrée sur la porte lente, retardée de 'ordre de 70 ns par rapport a la porte totale
ce qui permet d’intégrer la composante lente du signal. En effet les composantes lentes des
neutrons et des «y tres différentes, permettent de séparer les deux entités.

A partir de ces spectres bidimensionnels, on détermine par ajustement un polynéme de
quatrieme degré qui délimite la région peuplée par les neutrons de celle peuplée par les ~.
Pour que la particule soit identifiée comme un neutron, elle doit se placer dans la partie

au-dessus de ce polynome, condition donnée par la relation suivante :

Qratio > ag + a1 Qtat + az Qtzot + as Qt30t +ay Q?ot (1)

Pour vérifier que la méthode de séparation permet de sélectionner les neutrons de facon
satisfaisante et optimiser cette séparation, on utilise I’histogramme monodimensionnel du
temps qui fournit le temps de vol de la particule détectée et on vérifie que le pic en temps
de vol correspondant aux rayonnements 7y ait complétement disparu. En effet, les spectres
bidimensionnels ne permettent pas de distinguer les neutrons des v pour les petites valeurs

des Qyot- 1l faut donc introduire cette condition supplémentaire pour rejeter ces +.

En combinant ces deux méthodes, on obtient une discrimination neutrons-vy tout a fait

satisfaisante.

. détermination de I’énergie des neutrons obtenue a partir de leur temps de vol déterminé
par la distance entre la source d’émission et sa détection dans une cellule de DEMON in-
cluant une méthode d’itération pour tenir compte de la distance d’interaction des neutrons
dans le détecteur. La premiere étape consiste & transformer le temps de vol brut (TAC)
exprimé en canaux en grandeur physique, t donné en nanosecondes, pour chaque cellule de
DEMON. Pour cela, il faut déterminer, pour chacune des 60 cellules, les coefficients a; et

b; de la droite d’étalonnage qui s’écrit sous la forme :
t;(ns) = b; — a; T;(canaux) (2)

La valeur négative de la pente de ’équation est due au fonctionnement asynchrone, qui est
utilisé pour réduire le temps mort de ’acquisition.

L’étalonnage des pentes a; de I’équation [2| a été effectué en utilisant un time-calibrator
qui délivre une suite d’impulsions équidistantes en temps. Les coefficients directeurs a; ont

ensuite été déterminés par des régressions linéaires du type :
t;(ns) = a; T;(canauzx). (3)

Les cordonnées a l'origine b; sont déterminées grace aux rayonnements v dont le temps de

vol est connu puisqu’ils se déplacent a la vitesse de la lumiere.
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Comme mentionné plus haut, pour calculer I’énergie des neutrons, il faut un autre ingrédient :
la profondeur d’interaction di™ d’un neutron dans un module DEMON. En considérant
que la distance de vol d’un neutron est d,, = D + di™ ol D est la distance entre la source
et la face d’entrée de la cellule. Pour connaitre cette distance di** qui dépend de 1’énergie
du neutron, nous avons développé un algorithme a ’aide du code MENATE qui permet de

simuler la distance parcourue par un neutron dans un milieu en fonction de son énergie.

1M, (dn\’
£y (%) W

Cette méthode n’est cependant pas parfaite a cause des nombreuses diffusions des neutrons
dans le volume sensible des cellules DEMON.

3. détermination du seuil en énergie des scintillateurs DEMON afin de minimiser le
bruit électronique et de connaitre 'efficacité intrinseque de détection.
Fixer un seuil commun a toutes les cellules permet d’avoir une homogénéité dans ’exploi-
tation de ’ensemble des détecteurs DEMON.
L’énergie seuil a été déterminée a I’aide de sources radioactives v connues. L’énergie déposée
par les différentes sources v est analysée dans les spectres Qot. Les cellules DEMON ne
permettent pas d’accéder au photopic généralement. C’est donc le front Compton qui nous
permet d’effectuer I’étalonnage de 1’énergie déposée. Nous avons choisi des sources 22 Na et

137C's dont les caractéristiques sont données dans la table

Source | E,(keV) | Position du front Compton E.- compion (keVee)
511 341
22
Na 1274 1062
137Cs 662 477

TABLE 1: Sources radioactives utilisées pour 1’étalonnage du seuil de détection des cellules DE-
MON. Pour chacune d’elles sont données I'énergie des raies 7 ainsi que la valeur E.-compron du
front Compton correspondant.

L’expérience nous donne ainsi acces aux masses, énergies et angles des FF ainsi qu’a I’énergie et

aux angles des neutrons associés, événement par événement.

Simulations

Le code de simulation développé dans ce travail est basé sur GEANT4. Il permet de recons-
truire le systeme de détection utilisé dans I'expérience CORA3 et de modéliser la physique des
interactions des neutrons dans les cellules de DEMON en se basant sur le code MENATE. 11
permet aussi d’ajuster les parametres caractérisant les neutrons de scission (ws.;) et anisotropie

dynamique(A,g).
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Le code reproduit un systeme fissionnant de 2°2Cf. Les FF qui définissent ’axe de fission sont
distribués de maniere isotrope dans ’espace 3D. Les parametres physiques nécessaires pour si-

muler I’émission des neutrons & partir des fragments du 2°2Cf sont présentés dans le tableau

Parameters | LF HF
v (cm/ns) 1.355 | 1.022
T (MeV) 0.91 | 0.93

<v> 2.056 | 1.710
oy 0.94 1.07

TABLE 2: Parametres adoptés dans le code de simulation”. LF et HF indiquent respectivement
les fragments léger et lourd.

La multiplicité des neutrons, v, pour chaque fragment est tirée aléatoirement a partir d’une dis-

tribution gaussienne & deux dimensions définie avec les grandeurs physiques également indiquées
dans le tableau et avec une valeur de corrélation de p = —0,2. Afin d’extraire les quantités
cinématiques relatives aux neutrons dans le systeme du CM, les énergies des neutrons sont tirées

au hasard a partir d’une distribution de type Maxwell :
-_n
90(77) ~ \/776 T,

ou T est la température du FF et 7 représente I’énergie du neutron dans le CM du FF corres-
pondant.
La construction du code permet d’introduire les trois effets cités dans I'introduction a partir de

I’émission isotrope de neutrons dans les CM des fragments :

— la focalisation cinématique est obtenue en ajoutant la vitesse des FFs (tableau [2) & la

vitesse de chaque neutron.

— D'anisotropie dynamique est introduite en faisant I’hypothese que les FFs ont un grand
moment angulaire, J ~ SHEL aligné perpendiculairement a I’axe de fission. Les neutrons
évaporés a partir d’'un noyau en rotation seront préférentiellement émis dans le plan per-
pendiculaire a I'axe de fission. Cette anisotropie est paramétrée suivant les prescriptions

de I. Guseva® par :

W(QCMTLJ) ~1+A,s sin? GCMTLJJ (5)
ott A,y #0 est le parametre d’anisotropie* et Ocyy,, Pangle entre le spin du FF et la
direction d’émission du neutron dans le CM.

— la probabilité ps.; d’avoir des neutrons de scission est aussi calculée. Dans le cas d’une

source de 2°2Cf on suppose une certaine probabilité d’avoir au maximum un neutron de

7. N.V. Kornilov et al., IAEA 2, 61 (2001).
8. J.B. Wilhelmy et al., Phys. Rev. C, 5, 2041(1972).
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scission émis par une source de température de Tcr = 1.2 MeVEL avec une distribution
—Bsei

d’énergie de type Weisskopf, ¢(Ege;) ~ Egeie Ter .

Les parametres d’entrée dans la simulation qu’on cherche a déterminer par confrontation entre

les données expérimentales et la simulation sont :
— A,j : le parameétre d’anisotropie;

— Psci : la fraction de neutrons de scission.

Confrontation simulation/expérience et résultats

La stratégie de simuler I'expérience a ainsi permis de comprendre les biais dus au filtre
expérimental et de bien maitriser leur impact sur les observables physiques.
Pour chaque événement de fission, qu’il soit simulé ou expérimental, les observables prises en

compte sont :
— l'angle 0,r entre un neutron et le fragment de fission léger (LF);
— D'angle relatif 6,,,, entre toutes les paires de neutrons émis dans un événement ;

— la différence entre les angles azimutaux entre tous les couples de neutrons d’un événement,
P12 =2 — 915

Une procédure de minimisation du x? pour les distribution ., et f,rr a été utilisée afin de
déterminer le couple (A,j, psci) qui donne le meilleur accord entre simulation et expérience. Les
résultats obtenus sont comparés aux prévisions théoriques d’I. GusevaE avec qui nous collaborons
et qui a effectué des calculs dédiés particulierement au 2°2Cf. La distribution des différences
entre les angles azimutaux ®,,,, permet de déterminer le facteur d’anisotropie dynamique de facon
indépendante. La méthode utilisée pour cette analyse a été présentée en détail dans le chapitre 1.
L’avantage de cette méthode est qu’elle permet de se débarrasser de la focalisation cinématique
ainsi que de l'influence des neutrons de scission, pour ainsi obtenir une meilleure évaluation de
I’anisotropie. La distribution angulaire des neutrons émis par les fragments de fission dans leur
centre de masse a été décrite par I’équation [5| Cette formule mene a la distribution ®,,, exprimée

dans la note de bas de page n® 4 :

W (dnn) = po(1 + az cos®dp,) (6)

Les simulations ont permis de développer une bonne stratégie pour s’affranchir du filtre expérimental
et reconstruire la distribution avant le filtre expérimental. La validation de cette méthode mise en
place & été faite en ajustant la distribution obtenue par les simulations & I'équation [6} A travers
I’ajustement il a été possible de déterminer la grandeur as liée au coefficient d’anisotropie A, ;

suivant la courbe de la fig. Si le coefficient ay trouvé nous permet de remonter au parametre

9. A. M. Gagarski, I. Guseva et al., Bulletin of the Russian Academy of Sciences : Physics, 2008, 72 (6),
TT3-777.

10. I. Guseva, private communication, 2014.

11. I.Guseva, ISINN-23, Dubna 2015.
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FIGURE 2: Le coefficient ay en function du parametre d’anisotropie A, ;.

A, ; utilisé dans la simulation, la technique développée pour s’affranchir du filtre expérimental
peut étre appliquée aux données expérimentales. La fonction [6] est donc utilisée pour ajuster la

distribution expérimentale et estimer le parametre d’anisotropie A, ; expérimental.

Conclusions

L’existence de ’anisotropie des neutrons dans le centre de masse des fragments de fission et
I’émission de neutrons de scission est un probléme irrésolu depuis le travail pionnier de H.R. Bow-
man en 1962. Beaucoup de travaux, théoriques aussi bien qu’expérimentaux, ont été consacrés
a cette question mais ils ont mené a des résultats contradictoires. Toutes les expériences ont été
dédiées soit a I’étude de ’anisotropie dynamique soit a ’émission de neutrons de scission. Per-
sonne n’a réalisé une expérience permettant la mesure des deux processus dans une méme mesure.
L’expérience CORA a été initialement congue par F. Génnenwein pour explorer ’anisotropie dy-
namique d’une nouvelle facon qui permet d’éviter 'influence de la focalisation cinématique et
des neutrons de scission qui, dans les approches habituelles, cachent le faible effet de 1’anisotro-
pie dynamique. L’expérience CORA a été optimisée jusqu’a parvenir a celle de CORA3 qui a
permis de mesurer simultanément, pour la premiere fois, les deux processus. Les distributions
Onny Onrr €t Gny, étudiées par différents auteurs, ont ainsi pu étre mesurées, pour la premiere
fois, simultanément.

Une simulation détaillée a été développée en parallele a I’analyse des données expérimentales afin
d’avoir un bon controle sur les nombreux biais expérimentaux. Ces simulations ont montré aussi
qu’une caractérisation quantitative des deux processus était accessible avec I’expérience CORA3.

Une valeur de A,,;=0.16 pour I'anisotropie dynamique avec une émission de neutrons de scission
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wsei=8 % ont pu étre déduits de notre travail.

Ces quantités sont completement cohérentes avec les prédictions théoriques de 1. Guseva.

Le distributions 6,,,, et 6,,;, 7 montrent clairement ’existence de I’émission de neutrons de scis-
sion.

L’effet d’anisotropie dans la distribution ¢,, a une amplitude trés faible et est de ce fait tres

délicate a extraire.

Quelques améliorations des résultats présents peuvent étre obtenues. En effet, comme a
montré la figure du chapitre 4, une augmentation de la statistique ne change pas signi-
ficativement la valeur du parametre d’anisotropie mais il diminue les barres d’erreur et ’erreur
de l'ajustement. Dans la derniere figure, uniquement la moitié de la statistique expérimentale
disponible a été utilisée, par manque de temps. L’expérience CORA3 a duré cinq mois ce qui a
permis de collecter de I'ordre de 10° coincidences triples FF-n-n. Une nouvelle expérience avec
plus de statistique peut mener & une erreur suffissmment basse pour renforcer la fiabilité de la

valeur d’anisotropie que nous avons obtenue.

En prenant en compte toutes ces considérations, nous pouvons considérer que 'expérience
CORAS3 a fourni des arguments convaincants en faveur de lexistence d’une émission de neu-
trons de scission ainsi que d’une anisotropie dynamique dans les centres de masse des fragments
de fission. De plus, un haut niveau de confiance peut étre attribué aux valeurs estimées des

contributions de ces deux processus déduites dans ce travail.
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Introduction

The aim of this thesis is to explore the neutron emission mechanisms in the fission process. In
particular a long standing open question, the existence of a dynamical anisotropy in the centre
of mass of the fission fragments and/or a possible scission neutron emission is explored. To this
purpose a very original analysis based on a new strategy designed by the CORA collaboration
to disentangle the physical phenomenon from other effects has been developed.

Chapter 1 will start with an overview of the theoretical concepts on the fission process and on
the neutron emission mechanisms. Also the necessity to conceive an appropriate analysis method
is stressed, when a very subtle mechanism is studied as various approximations or/and experi-
mental biases not completely handled can hide the physical phenomenon. In this framework the
CORA collaboration proposed a new analysis method and the experimental set up designed to
explore the neutron emission mechanism during the fission process.

Chapter 2 is devoted to the description of the experimental devices, CODIS for fission fragments
and DEMON for neutrons, and to their working principles.

As mentioned before when very tiny effects have to be explored a careful knowledge of the exper-
imental setup is mandatory. The simulation procedure seems an adequate strategy to investigate
how to control the experimental biases and learn more about the neutron emission mechanisms.
Chapter 3 describes the simulation code especially developed for the CORA3 experiment. The
simulation will allow also to understand the strong points and the weaknesses of the experiment.
Only by this simulation exploratory procedure were we able to conceive an adequate analysis
strategy.

It is interesting to point out that historically the use of simulations emerged in the 1940’s with
the study of the fission process. In fact the first computer simulation was performed by the math-
ematician John Von Neumann to model the process of nuclear detonation during the Manhattan
project [I]. As in our case, to complete the tests and the theoretical predictions, a huge comput-
ing power to complete calculations in a reasonable amount of time was required. To satisfy this
necessity Von Neumann conceived the so called Von Neumann architecture, applied today to the
modern computers. Von Neumann is also known in the nuclear explosion simulation framework
for his contribution in the development of the pseudo-random numbers algorithm employed in
the Monte Carlo method, applied in our simulation code.

In the presented work a huge effort was invested to writing a Monte Carlo procedure based on a
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coherent model for the spontaneous fission of 2°2Cf and to couple it with the devices exploited
in the CORA3 experiment.

In chapter 4 the simulation results will be confronted to the experimental observables. The two
above mentioned neutron emission mechanisms will be highlighted and their quantitative contri-
bution will be extracted.

A final conclusion will state on the validity of many approaches, experimental as well as theo-
retical, against or in favour of these two mechanisms. Weak points of the present analysis and
of the CORA3 experiment will also be underlined and future possibilities to overcome them will

be suggested. Preliminary results have been presented at conferences [2][3].
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Chapter 1

Introduction and motivations

Fission of uranium was discovered in 1939 by O. Hahn and F. Strassmann [4] in the neutron in-
duced reaction. Ten years later Fermi observed the first chain reaction of history and constructed
the first nuclear reactor, the so called Chicago Pile-1. Despite the remarkable achievements re-
alised since then, after more than 70 years from the fission discovery, many questions remain still

open.

1.1 Fission

Historically, the discovery of the neutron in 1932 by J. Chadwick [5] was the starting point
for radioactivity studies: this uncharged nuclear particle could easily penetrate the secrets of the
atomic nucleus. L. Meitner, O. Hahn and their collaborator F. Strassmann were deeply involved
in identifying the products of neutron bombardment of uranium and their decay patterns. It was
generally expected that elements with higher atomic numbers than uranium would be produced.
Fermi hoped to increase in this way the nuclear chart towards unknown heavy elements. But
O. Hahn and F. Strassmann found that they had unexpectedly produced barium, a much lighter
element than uranium, which they identified among other products.

L. Meitner and O.R. Frisch worked on calculations based on N. Bohr’s droplet model of
the nucleus [6] and clearly stated that nuclear fission of uranium had occurred. O.R. Frisch
wrote [7,B]: “there were strong forces that would resist such a process, just as the surface tension
of an ordinary liquid drop resists its division into two smaller ones. But nuclei differ from ordi-
nary drops in one important way: they are electrically charged and this is known to diminish the
effect of the surface tension... . The charge of the uranium nucleus... is indeed large enough to
destroy the effect of the surface tension almost completely; so the uranium nucleus might indeed
be a very wobbly, unstable drop, ready to divide itself at the slightest provocation”, such as the
impact of a neutron. It was quickly recognized that barium was a stable isotope resulting from
the radioactive decay after neutron bombardment of uranium.

Already in 1939, the first model describing theoretically the fission process was developed by
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N. Bohr and J. Wheeler [9]. They claimed that the fissioning nucleus was similar to a deformed
liquid drop.

1.1.1 Liquid Drop Model (LDM) and overview on other fission models

The LDM model treats the nucleus as a drop of a homogeneous incompressible fluid uni-
formly charged. Its justification is founded on the characteristics of the strong interaction: it is
short ranged, so occurs mainly between neighbouring nucleons, leading to the phenomenon of
saturation. Thanks to this force nuclei are bound due to the overall attractive strong interactions
between nucleons with a nearly constant interior nucleon density and a radius proportional to
A'/s. The analogy of this situation with a liquid droplet results in the LDM for the nuclear
binding energies in which the binding energy is expressed by the Weizsacker formula [10] in the

following form:

Z(Z -1) (A—-27)2
Az ATy

Ep(A,Z) = avA—asA?® —ac +apd(A,Z)A™Y? (1.1)

where the five terms are sketched in fig. The four terms on the right-hand side, which

Surface Coulomb Asymmetry Pairing

Figure 1.1: Schematic representation of the different terms in the Weizécker formula.

contributions are presented in fig. are referred to as the volume, surface, Coulomb and
asymmetry energy terms, respectively. The first term represents the nearest neighbour attractive
interaction between nucleons. The second term represents the correction due to the fact that
the nucleons on the surface interact only with those in the interior. The third term is due to
the Coulomb repulsion between protons. The fourth term called the asymmetry energy arises
because protons and neutrons, being distinct types of particles, occupy different quantum states.
One can think of two different “pools” of states, one for protons and one for neutrons. If there
are significantly more neutrons than protons in a nucleus, some of the neutrons will be higher
in energy than the occupied states in the proton pool. The imbalance between the number

of protons and neutrons causes in this case a lowering of the binding energy. The last term
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represents the pairing interaction. This term captures the effect of spin-coupling. It is given by:

+d0 Z,N even (A even)
(A, Z)=10 A odd
—do Z,N odd (A even)

where dp = 47 and ap is the pairing empirical coefficient.

The nuclear force is attractive and of short range. Therefore its contribution to the stability
of nuclei is largest if two nucleons can come as close as possible. Due to the Pauli exclusion
principle the two nucleons should have opposite spins. This is true for protons and neutrons.
Only if both Z and N are even can both protons and neutrons have equal numbers of spin up

and spin down. This is an effect similar to the asymmetry term.
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Figure 1.2: The contributions of the different terms to the binding energy per nucleon according
to the liquid-drop model. The total binding energy per nucleon (blue line) is maximum around
A = 56. Lighter nuclei as well as heavier nuclei are less bound [1].

The empirically deduced values of the liquid-drop constants that reproduce the average trends
in the experimental data are given by ay = 15.85 MeV/c?, ag = 18.34 MeV/c?, ac = 0.71
MeV/c?, as = 92.86 MeV/c? and ap = 11.46 MeV/c? [12].

The stability of nuclei against deformation depends on the competition between Coulomb
repulsion and the surface tension. Since we assume volume conservation in order to reflect the
saturate behaviour of the nuclear density, leading to the incompressibilityﬂ the volume term is
not affected by any deformation of the drop. The surface term takes into account the reduction

of nuclear binding for the nucleons on the surface of the nucleus. Hence this term is negative

1. The incompressibility is required to reflect the saturation of the nuclear force due to the strong repulsion at
very short distances.
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in relation to the volume term. The surface term is the smallest for a sphere; any distortion
away from a sphere results in a larger contribution of the surface term. The Coulomb term
describes the repulsion of the protons; hence if we deform the nucleus this term decreases due
to the larger separation of nucleons compared to a sphere. The asymmetry term, as introduced
in depends only on the nuclear volume and is therefore independent of deformation. The
pairing term is neglected here, although pairing should change with deformation, however on
much smaller scales than the other terms.

This model has the advantage to express in a very simple way the variation of binding energy
as a function of deformation and describes very easily the fission mechanism [9].
To analyze the influence on the energy of the distortion from a spherical shape of the drop
to a deformed one [I3], the drop radius R(€), depending on the polar angle 6 relative to the
symmetry axis of the deformation, is developed for small deformations as a function of the

parameter a; = (ap, @1, ag, @3, (g, ...) fixing the shape of the nuclei as

R(0) = Ro {1 + i ozlPl(cosQ)] (1.2)
1=0

where Ry = 7“0141/ 3, Pj(cosf) are the Legendre polynomials and [ is the multipole parameter.
The multipole parameters define different forms of deformation of the nuclear shape.
Let us consider only small, axially symmetric and reflection symmetricﬂ deformations. Hence

we may approximate the nuclear surface by
R(0) = Ro[l + aa P (cosb)]

The corresponding surface and Coulomb terms for such deformations are given [9, 14, [I5] by

1 4
ED(1--a®> - —a’...
// =7 2| (v, = C( 5% 105 >

2 4
ES(O{) = ESO)S(OZ) = ESO) /dS = Ego) (1 + 5062 - ]-05@3>

with Eg]), Eg)) being the terms for the spherical case. The decrease in the Coulomb term

1 2
AEc = —fa2E(C9) must be smaller than the increase in the surface energy AEg = +fa2EgO)
for the drop in order to be stable against deformation. The drop will become unstable when the

ratio of the changes becomes unity:

|AEG| Eo
~1 e —y~1 1.
AEq 2Bg X7 (1.3)

We may define the latter quantity of eq. as the fissility parameter y (see also [9] 14l [15]).
For values of x below unity, the nucleus will be stable against small deformations; for values

larger than unity there is no potential barrier to inhibit a spontaneous division of the drop. The

2. In axial symmetry, we define reflection symmetry or mirror symmetry as the symmetry related to an axis
perpendicular to the symmetry axis.
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LDM predicts that these nuclei are unstable against spontaneous fission. We may now use the

terms in eq. to estimate the fission probability of a nucleus: the closer its fissibility to unity

the higher the probability to fission. If the fissibility is larger than unity the nucleus cannot

exist in this LDM and it will instantly separate. According to eq. we can write the fissility
parameter as

Z2
X = soutr _ ac 22
2a5A2/3 2ag A

A short handed formula is derived in [14] using experimentally fitted values for ac and ag,

(1.4)

Z2
~ 50.134

2
This corresponds to the fact that all nuclei with — > 50 are unstable against spontaneous

A

X (1.5)

fission in the liquid drop model.

as 4

Fission
Path

along path

Figure 1.3: The potential energy associated with any arbitrary deformation of the nuclear form
may be plotted as a function of the parameters which specify the deformation, thus giving a
contour surface which is represented schematically in the top portion of the figure. The pass or
saddle point corresponds to the critical deformation of unstable equilibrium (from [9]). At the
bottom the fission barrier Ep is plotted.

In their article [9], N. Bohr and J. Wheeler perform the calculation of the deformation en-
ergy by developing eq. up to the fourth multipole order and considering only the axial and
octupolar parameters ay and ay4. They then minimise this energy with respect to a4 for each
value of a. This allows them to find on the Egcf(c2, ) landscape displayed on the top of
ﬁg the equation ay = ay(as) of the bottom of the valley that leads to the nucleus separa-

tion. The Egcf(a2, cu(a)) function represents the deformation energy along the bottom of the
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valley. N. Bohr and J. Wheeler then show that for fissilities x < 1 , the energy of deformation
reaches a maximum at a saddle point in the (s, ay) deformation space. This is illustrated in
fig[T:3] The bottom part of the figure shows the fission potential along the bottom valley which
leads to fission. The potential Ep appears as a neck or a saddle point in the energy landscape
Eqef(c2, aq) plotted on the top of the figure. At this step, the drop is about to be split into two
subdrops. The deformation energy along the fission path therefore presents itself as a potential
barrier. This is the famous fission barrier. The existence of this barrier, demonstrated for the
first time by N. Bohr and J. Wheeler, gives a physical basis to the observation of L. Meitner and
O. Frisch in the case of uranium: in its ground state, the nucleus is stable with respect to the
different types of deformation. When an extra energy is supplied to the nucleus, by the capture
of a neutron for instance, the barrier can be surmounted and nucleus deformation can reach and

cross the point where the nucleus splits irretrievably into two fragments.

In the years that followed N. Bohr and J. Wheeler’s article, the LDM was significantly fur-
ther developed. Their calculation was quickly extended to forms of non-axial and asymmetrical
left-right drops. Thereafter, and even very recently, the model has been refined in different ways
to reflect in particular the diffusivity of the nuclear surface [16] and its curvature [I7]. Another
very powerful approach to describe the nuclear drop possessing a diffuse surface and very gen-
eral deformations is the “Yukawa + exponential model” or “ Finite Range Liquid Drop Model”
(FRLDM) [I8] developed in the late 1970’s in Los Alamos which later became the “Finite Range
Droplet Model” (FRDM) [19] still in use today. However the LDM implies first that the nucleus
has in its fundamental state a spherical shape, while most of the nuclei are deformed in their
ground state, and second that the separation is in two subdrops of identical mass, whereas most
of actinides preferentially fragment into two nuclei of unequal mass. But in fact this shortcom-
ings of the LDM come from the effects related to the shell structure which cannot appear in
this approach. Further developments allowed to correct the behaviour of the deformation energy

given by the liquid drop by adding microscopic contributions.

A fairly precise way to study the deformation dependence on the nuclear binding energy
is to perform self-consistent Hartree-Fock calculations [20] as a function of the deformation.
This method takes into account both the macroscopic contributions to the binding energy that
are contained in the LDM and the microscopic single-particle contributions. A more simple
calculation of the microscopic contribution to the binding energy is to use an independent-
particle model, such as the Nilsson one [2I]. This model describes successfully the systematics of
the nuclear ground state and the shell structure. However, being an independent-particle model,

it does not correctly describe the microscopic contribution to the binding energy.

Thus, even today, many fission barrier calculations begin by determining the deformation
energy with the LDM technique and the influence of shells are taken into account in a second
step. The application of this procedure then requires to have liquid drop type models as realistic

as possible: this is the main reason to this surprising effort to develop other models based on the
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LDM.

V.M. Strutinsky [22] first suggested in 1968 a method to combine the macroscopic liquid drop
contribution to the binding energy with the microscopic contribution of the independent-particle
model. Beginning with an independent particle model the total energy is obtained by summing

over the energies of the occupied single-particle states

where () and £7() are deformation-dependent proton and neutron single-particle energies.
From the proton and the neutron contributions to the total energy, V.M. Strutinsky subtracted
average energies E(3) and EP(j) calculated using occupations, nf and n?, that average over

the proton and neutron shell structure,

zZ N
E}B) =) el (B! ErB) =) et (B (1.6)
i=0 =0

0Ey(Z,8) = Ep(B) — EY(B) 0B, (N,B) = En(8) — E}'(B) (1.7)

In principle, the shell correction energies include only the fluctuating microscopic contribution
to the binding energy. Then V.M. Strutinsky computed the total binding energy as the sum of

the liquid drop energy and the shell correction terms,
The shell correction method provides a substantial improvement in the description of the fission
barrier compared to the liquid drop model :

1. it provides ground state deformations in good agreement with the experimental ones

2. it produces a double-humped barrier in the region of the actinides, which explains the
existence of fission isomers as shape isomers-configurations of single nuclear species with

very different deformations

3. it yields quantitative agreement with experimental fission barrier heights, usually within

1 to 2 MeV (except for light, neutron-poor actinides)

4. it produces an outer barrier that is slightly lower for asymmetric deformation, explaining

the preference for an asymmetric mass division observed experimentally

5. it predicts the existence of stable superheavy elements with a charge between Z=114 and

7=126. Nowadays elements up to Z=118 have been proved to exist with lifetimes of ms.
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Figure 1.4: Historical development of the fission-barrier theory [23].

The V.M. Strutinsky shell correction method thus provides a quantitative description for most
of the characteristics of the fission barrier. A theoretical picture of the history of the fission
potential energy is schematically illustrated in fig[T.4] starting from the first model developed by
N. Bohr and J. Wheeler that, as explained before, expanded the Coulomb and surface energies to
the fourth order in a4 of Legendre polynomials. In 1947 S. Frankel and N. Metropolis [24] calcu-
lated the Coulomb and surface energies of more highly deformed nuclear shapes using numerical
integration. In 1955, W.J. Swiatecki [25] suggested that more realistic fission barriers could be
obtained by adding a “correction energy” to the LDM barrier. This correction was calculated
as the difference between the experimentally observed nuclear ground state mass and the mass
given by the LDM. W.J. Swiatecki obtained improved theoretical results for the calculation of
the spontaneous fission half lives based on these "modified” LDM barriers. The W.J. Swiatecki
observations put the basis for the V.M. Strutinsky [22] shell-correction method. His method and
in parallel new experimental results led to realise that the actinide fission barriers are “double-
humped”: beyond the ground state minimum there are two saddles or maxima in the fission
barrier, separated by a fission-isomeric second minimum. Later, P. Mdller and R.J. Nix [26]
proposed that certain experimental data could best be explained if the outer barrier peak was

split into two peaks separated by a shallow third minimum. To obtain a realistic picture of the
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potential energy, P. Méller [23] calculated the energy for several millions of different shapes and
identified relevant saddle points on the paths from the nuclear ground state to the separated

fission fragments.

1.2 Neutron emission in fission

The first point to be investigated in a nuclear disintegration is the available energy. The
division of a heavy nucleus into two daughter nuclei of comparable masses is a highly exoenergetic
process, thus the sum of the total binding energies of the daughter nuclei is greater than the
mother nucleus one. This means that the final products are more bound than the initial one.
More bound means that the amount of energy released by the mass rearrangement in binary
low energy fission, of the order of 180-240MeV, depending on the fissioning system, is shared
between the total kinetic energy TKE* of the primary fission fragments and their excitation
energy TXE* in the following way: about 75-85% of the total energy is present as kinetic energy
and the remaining one is converted into excitation energy. The latter one is the energy which
will be mainly released by neutron and ~ emission.

In this scenario, attention has to be put on the role played by neutrons to understand the fission
mechanism. Studying low energy fission neutron angular distributions, many features of the
fission process can be shown, including the possible existence of neutrons emitted right at the
scission point in addition to an isotropic evaporation by the fully accelerated fission fragments
following V.F. Weisskopf’s theory [27]. Neutron correlations are also a powerful tool to point out
a possible anisotropy in the evaporation of the prompt neutrons emitted by the fission fragments.
This approach was first developed in 1962 by H.R. Bowman et al. in his pioneering work [28].
The aim of his experiment was to study the neutron emission mechanisms in the spontaneous
fission of 252Cf, involving measurements in coincidence of neutrons and fission fragments. The
main conclusion was that about 90% of neutrons arise from simple isotropic evaporation in the
centre of mass (CM) of each fragment. But in the experiment some discrepancies appeared
in respect with the isotropic emission as shown in fig. In this work the main deviations
were found perpendicularly and also along to the fission axis. The analysis on the nature of
these discrepancies allowed to assert that most of the systematic deviations from the isotropic
emission could be due to a third source at rest in the laboratory, namely the emission of scission
neutrons. Fig. from H.R. Bowman’s cited paper, shows the ratio between the calculated and
the experimental data for the neutron yields, the average neutron energies and velocities as a
function of the angle in the spontaneous fission of 2°2Cf. A surplus of neutrons appears at 90°
as shown on the left part of fig. This feature led H.R. Bowman to assume a scission neutron
emission. On the right part of fig. the same physical quantities are shown after a subtraction
of about 10% applied on the fission neutrons has been performed. After this procedure an
excess of neutron appears at 0° and 180°. For H.R. Bowman these features seemed to be the

mark of an anisotropic evaporation in the CM of the fission fragments. For these neutrons that
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seem to be focused along the fission axis H.R. Bowman ventured the hypothesis of a possible
anisotropy in the emission of neutrons by the fragments. But, carefully, because of the very small
size of the deviations, he also affirmed that such a phenomenon could be due to non identified

inhomogeneities of the detection system.
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Figure 1.5: Left: Ratio of measured to calculated values for a) numbers of neutrons, b) average
velocities and ¢) average energies as a function of the neutron angles in the laboratory system.
The calculated values were obtained by using two sources of neutrons. Right: Same physical
quantities after subtraction of about 10% scission neutrons on the fission neutrons. The calcu-
lated values were here performed adding a third source with a different temperature. From [28].

1.2.1 Scission neutron models
1.2.1.1 Experimental context

The existing results on scission neutrons are very contradictory. Understanding this point is
a central piece to complete the nuclear fission puzzle. Up to now experimental knowledge about
the fraction of scission neutrons and their spectrum is scarce and very contradictory. Thus there
is a clear need for a more precise picture about this mechanism.
The first evidence of scission neutrons was demonstrated in the already cited work of H.R. Bow-

man, issued in 1962 [28], who observed an isotropic neutron surplus of about 10% in the lab-
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oratory frame. C.B. Franklyn et al. [29], in 1978, studied the neutron-fragment (nf) angular
correlations of prompt neutrons emitted in the thermal neutron induced fission of 23°U in order
to see if a similar phenomenon occurred. He performed a simulation with a 20% scission com-
ponent. But also by adding this huge contribution he noticed that the simulation results were
too low in the forward direction and too high at large relative angles between neutrons and the
light fragment compared to the experimental data.

Also A.S. Vorobyev, in a work issued thirty years later [30], focused his attention on neutron-
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Figure 1.6: Neutron yield as a function of the angle between neutrons and the light fission
fragment in the 233U (ny,,f) reaction [30]. The full curve represents a fit obtained with the
assumption of a neutron anisotropy (A,, f=0.06) and a contribution of scission neutrons of about

5%.

fragment angular correlations in the 235U (ny,,f) reaction, as C.B. Franklyn did. In this recent
analysis A.S. Vorobyev assumed also an anisotropic evaporation of the neutrons in the fragment
CM systems. The best fit resulting from this work is obtained with 5% of scission neutrons and
an anisotropy A, f=0.06, as shown in fig.

In other works such as F. Marten’s (1989) [31] or C. Budtz-Jgrgensen’s (1988) [32] exper-
iments, there is no evidence at all for scission neutron emission after the comparison between
experiment and theoretical model calculations. But, in a paper dating back to some fifteen
years ago, W.V. Kornilov [33] has reanalyzed three independent old experiments on 252Cf(sf)
with a more realistic model for the description of the neutron evaporation by the fragments. In
all these experiments, the neutron energies and angular distributions relative to the fragment
direction were measured. W.V. Kornilov showed that a good agreement exists between these
three experiments for a neutron surplus of (30 4 5)% at about 90° relative to the direction of the
moving fragments. These neutrons do not originate from fully accelerated fragments, and would

represent about 10% of the total fission neutron yield.

Complementary to studies of neutron-fragment correlation the correlation between two neu-
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Figure 1.7: Neutron yields as a function of two any neutron relative angles for 252Cf(sf). The
data points are given in red. The green curve represents the assumption of no scission neutrons
but taking into account neutron anisotropy. In purple the effect of a contribution of scission
neutrons of about 8% is shown [34].

trons from a fission event were analyzed.

In 1948 S. DeBenedetti [35] was interested by the investigation of the fission mechanism by means
of angular distributions of neutron-neutron coincidences from a source of 23°U irradiated with
thermal neutrons. Also in this very old work it appeared doubtful that the angular correlations
could be explained entirely with the composition of neutron and fragment velocities, without
assuming an anisotropy in the emission of neutrons in the fragment’s system. In the search for
scission neutron emission, A. Gagarski [34] recently analyzed neutron-neutron correlations in the
252(Cf(sf) disintegration. Taking also the neutron anisotropy from a theoretical model [36] into
account, assuming no scission neutrons at all as shown by the green curve of fig. does not
reproduce the experimental points. The best agreement was reached for an additional scission

neutron contribution of 8% as shown by the purple curve of fig.

1.2.1.2 Sudden approximation model

Models, as presented in references [37],[38], predicting the emission of scission neutrons and/or
ternary particles stress the importance of the temporal scales for nucleon motion during the fission
process. When a cold nucleus undergoes fission, the coupling between the collective evolution
(very slow process) and intrinsic motions (fast process) can be either adiabatic, meaning that the
nucleons remain in the lowest energy levels, or non-adiabatic when the nucleons are promoted
to excited states. In the latter case, the deformation energy accumulated from the saddle to
the scission may be converted into intrinsic excitation energy. These mechanisms are mainly
governed by the velocity of the collective motion relative to the Fermi velocity.

At the beginning of the descent from saddle to scission, the Coulomb repulsion is almost entirely
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compensated by the nuclear attraction. The coupling between the collective and intrinsic motions
is therefore weak (quasi-adiabatic): the collective motion is relatively slow and only a few nucleons
are excited with increasing deformation of the fissioning nucleus.
Close to scission however this quasi-equilibrium breaks down. The neck between the fragments
ruptures and is quickly absorbed by the fragments. The coupling is then non-adiabatic.
In the sudden approximation, an extreme assumption is made: the coupling between the degree of
freedom and the rapidly changing interaction potential with the rest of the nucleus is adiabatic
until the neck ruptures at a finite radius. The rupture is followed by the sudden absorption
of the neck protuberances. At that moment, a transition between two quite different nuclear
configurations occurs.

To have an escaping particle at the scission point it is necessary that it is able to acquire the
available energy that is released between the fragments. This energy must be stored in a readily
convertible form, thus, it is concentrated on very few degrees of freedom.

In the usual picture of fission models most of the energy, appearing as fragment excitation energy,
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Figure 1.8: Snapshots of the non-adiabatic emission process near scission [37] are shown. The
disappearance of the neck results in a rapid change in the potential felt by the neutrons, like
a volcano square-well erupting in the potential created by the rest of the nucleus. Part of the
neutron wave function is reduced due to the reabsorption by the nuclear matter. The surviving
part of the wave function represents a free neutron in the region between the two fragments.

is connected to the distortion energy stored in the collective degrees of freedom at scission (slow
motion). In these models, ejecting a third particle is a very rare phenomenon. On the contrary
when this excitation energy is related to the degrees of freedom connected to the fragment motion,
a third particle can be emitted. The energy transfer to the escaping particle in this elongated
fission configuration probably takes place through the sudden snap of the neck after scission.
In an extremely short time of about 10722 s, the potential felt by the nucleons located at the
scission point suddenly changes as the stubs retract in such a way that those particles can not

follow the changes of the potential when the two main fragments start to recede. In this non-
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adiabatic process the nucleon wave functions remain unchanged as is shown in fig. But soon
after scission, the tails of the wave functions inside the fragments are absorbed by the fragments
and the neutrons are set free. This sudden release was proposed as an emission mechanism by
I. Halpern [37] without a complete mathematical development. A simple schematic mechanism
dating back to 1962 of neutron excitation was proposed by R.W. Fuller [39]. He considered the
problem of the energy transferred to neutrons as an inverted square-well ”volcano” in an infinite

square-well containing a Fermi sea of neutrons.

1.2.1.3 Carjan model

The model proposed by N. Carjan is based on the sudden release approximation. The Halpern
prescription [37] is developed in a two dimensional model to include realistic nuclear shapes and
has been applied to the emission of neutrons during the 235U (ny,,f) reaction. In a first stage,
N. Carjan elaborated his model for the symmetric fission [38], a few years later he upgraded his
calculation for a more realistic asymmetric fission [40] [41].

To study the characteristics of the scission neutron emission, N. Carjan computed the partial

emission probability. This quantity is related to

— the shape evolution of the nuclear surface along the path that leads to fission. A consider-

able change in the nuclear surface involves an increase of the emission probability.

— the initial position of the neutron. In fact neutrons in initial states with a high probability
of presence in the neck are strongly emitted. The probability is very large since they can

only expand on final states in the continuum.

— the projection of the angular momentum along the symmetry axis €2, in the axially symmet-
ric fissioning nucleus case. The deformed potential includes a term expressed as a function
of € recalling a sort of centrifugal force. This force has the effect to push the neutrons

away from the z-axis, far from the neck region.

— bound states near to the fermi level.

Usually it is assumed that the angular distribution of scission neutrons is isotropic. Yet, in
view of their initial position in the fissioning nucleus, only neutrons ejected at right angles to
the fission axis may have a chance to escape. N. Carjan claims that the reabsorption probability
is not negligible. Eigenstates with energies lower than the top of the centrifugal barrier are
quasi-bound states and can therefore be considered as still present in the fragments; thus the
probability of reabsorption becomes large. N. Carjan states also that with a very low probability
also unbound neutrons are present inside the fragments and this component is either reabsorbed
or emitted in the direction of the fission axis.

In this first stage of the development of Carjan’s model, he stated that for a minimum neck
radius of 1.5 fm, 15% of the total amount of neutrons emitted during the symmetric fission of

2361 are scission neutrons.
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Later in 2010 [38], he improved his model by taking into account the ratio :—; between the
mass of the light (L) and heavy (H) fragments. This new approach is based on the idea that
the prompt neutrons contain two components: the scission neutrons and the post-acceleration
neutrons. As a result of the upgrade he obtained that 30% of the neutrons emitted are scission
neutrons and the energy left to the fragments for the post-acceleration emission is about 50% of
the total fragment excitation.

In 2012 [0, [41], N. Carjan computed, in the framework of his sudden approximation model
adding a shell model approach, the partition of the excitation energy between the primary frag-
ments at scission. As a result he extracted the temperature at scission as a function of the
fragment mass A in the limit of zero reabsorption of the scission neutrons. He found that the
ratio Ry = % between the temperature of the light (L) and the heavy (H) fragments is close
to 1 for symmetric fission and increases with mass asymmetry.

In a very recent work [42], he finds that up to 100% of the emitted neutrons can be scission

neutrons.

1.2.2 Anisotropic neutron emission

As already mentioned before, H.R. Bowman showed in 1962 deviations from a pure isotropic
evaporation by the fission fragments in the analysis of spontaneous fission of 2°2Cf. To bring
out the nature of these discrepancies, H.R. Bowman introduced a contribution of 10% of scission
neutrons to his calculation. But this third source of neutrons didn’t explain all discrepancies
observed. The remaining deviations at small angles around the heavy and the light fragments,
in H.R. Bowman’s opinion, were in favour of an anisotropic emission in the centre of mass of the
fission fragments. Because of the weakness of the effect and of the experimental uncertainties
H.R. Bowman didn’t clarify the nature of this deviation.

Other authors studied these departures from the isotropic hypothesis and the main conclusion
was that such deviations originate from the sizable angular momenta J carried by the fission
fragments. On average the angular momentum is about (J) ~ 8k. Intuitively this should lead
to an anisotropic neutron emission in the CMs of the fragments. In this scenario neutrons
evaporated from such a rotating nucleus will preferentially be emitted in the equatorial plane
perpendicular to the angular momentum. For a fixed spin direction, the angular distribution of

neutron emission in the CMs is described by :

W (6.,) < 1+ A,,sin%0,, (1.9)

W (90°)
wW(0°)
and 6,; is the neutron ejection angle with respect to the spin direction J. In fission the spins of

where A, ; = —1 is the anisotropic coefficient with respect to neutron and spin directions

fragments are perpendicular to the fission axis. Averaging over all spin orientations perpendicular

to the fission axis, an anisotropy for neutrons emerges favoring emission along the fission axis.
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This distribution can be written as

W(0,r) o< 1+ A, pcos?0,.p (1.10)
where 6, is the angle between neutrons and the light fragment (LF). The anisotropy is
_ W)
T W(90°)

The theory of anisotropic emission was proposed first by A. Gavron [43] in 1976. He developed
a statistical model in which the probability P, to emit a neutron with a given orbital angular
momentum | and its projection m relative to the fragment spin depends on the fragment’s level
density and on the neutron transmission coefficient. In his model, the evaporation cascade is
computed by means of a Monte-Carlo procedure in which the probability P, is proportional to
the sum over all values of final fragment spins Jy. In his calculation the angular momentum J
and its projection on the fission axis M are calculated at each stage of the neutron cascade. At
the beginning, the initial spin projection on the primary fragment is assumed to be zero (M = 0)
as a consequence of the hypothesis that the initial fragment’s spin is perpendicular to the fission

axis. A more recent model was developed by V. Bunakov and I. Guseva in 2006 [36] following
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Figure 1.9: (a) Dependence of angular anisotropy in the CMs on the orbital momentum 1 of evap-
orated neutrons. (b) Anisotropy coefficient dependence in respect to neutron energy. From [36].

A. Gavron’s prescription. As shown in fig. they demonstrated that the anisotropy de-
pends markedly on the size of the orbital momentum 1 of the evaporated neutron, the anisotropy
increasing with orbital momentum 1. As the orbital momentum 1 is correlated to the neutron
energy 7, the anisotropy increases also with increasing neutron energy as shown in fig.
V. Bunakov and I. Guseva also showed the influence of the CM neutron energy on the anisotropy
A,; (fig. . According to this model the anisotropy gets larger as the CM neutron energy
7 rises. For comparison the n-spectrum is also plotted in fig. One has to notice that, for
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Figure 1.10: (a) Anisotropy coeflicient as a function of the CM neutron energy 7 for the heavy
and the light fragments. In the range of n between [0, 2] MeV where the most probable values
of neutrons energy are located, the anisotropy coefficient grows linearly with energy and reaches
a rather small value of about ~ 0.30 for the heavy fragment. (b) Anisotropy coefficient as a
function of the angle between neutrons and the fragment spin is plotted. The anisotropy grows
with the growth of the value of the spin J. In fact the greater anisotropic value found for the heavy
fragment is accounted to the bigger spin value of the latter one respect to the light fragment.

From [306, [44].

the 7 energies in low energy fission, only rather small anisotropies W (f,.r) are to be expected.
Finally the angular distribution W (fus) of neutrons relative to spin in the CM of light and heavy
fragments is shown in fig. Only the angle dependent term A,;sin?0,, is plotted. The
functional form sin26,; is well reproduced. In fig. and fig. is also shown the
relation between anisotropy A, and the fragment spin J, which is different for light and heavy

fragments. In fact the anisotropy gets larger for bigger values of the fragment spin J.

1.2.3 Importance of the analysis method

The results regarding the scission neutron emission and the anisotropic evaporation are
strongly dependent on how the experiment was performed and on the processing method chosen
to analyze the experimental data. To underline the veracity of this statement an example is
proposed in the following.

I. Guseva [45] investigated the above mentioned work of C. Budtz-Jgrgensen and H. Knit-
ter [32],who deduced the neutron spectrum in the CM system of fission fragments by the deter-
mination of all kinematic parameters of the reaction. I. Guseva stressed the choice of the author

to proceed in analysing the data with a simplification: neutron emission in the fragment CM
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Figure 1.11: (a) Fission neutron angular distribution as a function of the fragment centre of
mass and the fission neutron energy; (b) Fission neutron angular distribution in the same frame
integrated over all neutron energies.

system is symmetric at about 90°. Thus the analysis could be restricted to the case:
0° < Ocn <90° (1.11)

where 0c ) represents the neutron emission angle relative to the fission axis in the fission fragment
CMs. Selecting these events the authors obtained the neutron angular distribution presented in
fig. [[.1I} This figure shows the energy and angular distributions of neutrons in the fragment
CM system using an average fragment mass value. This had to be done because no light and
heavy separation was possible in the experiment. However C. Budtz-Jgrgensen and H. Knitter
came to the conclusion that the major part of the neutrons is emitted isotropically from the fully
accelerated fragments and that the influence of a scission component is negligibly small up to
10 MeV neutron energy in the fragment CM system (see fig. .

Using the C. Budtz-Jorgensen assumption I. Guseva performed a Monte-Carlo calculation to
reproduce the above cited method, considering also the contribution of scission neutrons. The
central questions of her work were: ”What kind of distributions would the authors of this article
get in this case? Could they distinguish with the help of their method the scission neutrons from
the neutrons emitted by the moving fragments?

She states that a sizable part of scission neutrons close to 90° will have an insufficient velocity to
match with eq. and will be ignored as shown in fig.[[.12] Curve 2 of the left figure represents
all scission neutron events lost in view of the condition[[.11} The answers to I. Guseva’s questions
are plotted in fig. Curve 5 reproduces very nicely the C. Budtz-Jgrgensen’s plot of fig.
This result led I. Guseva to assert that the above cited procedure reduces the sensitivity of
the analysis to the scission neutrons because C. Budtz-Jgrgensen eliminated a significant part

of them. Moreover she stated that C. Budtz-Jergensen’s paper underestimates not only the
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Figure 1.12: Left: Neutron angular yields in the laboratory system - scission neutrons overview:
1: scission component satisfying condition 2: scission neutrons which do not match with
the condition 3: all simulated scission neutrons. Right: Neutron angular yields in the
fragment CM: 1,2: neutron emission from forward side of the light and heavy fragments, respec-
tively; 3: sum of the two contributions; 4: scission component satisfying condition [I.11} 5: total
amount.

contribution of the scission, but also the anisotropy of the neutron emission in the fragment CM
system (curves 1, 2 , 3 of fig. , because this effect could somehow compensate the scission
neutron component (curve 4 of fig. b)) .

1.3 A new technique to determine the CM anisotropy

The neutron-neutron and neutron-fragment correlations do not allow to determine unam-
biguously the relative contributions of scission neutrons and anisotropic neutron evaporation.
The CORA collaboration suggested therefore a novel method to determine, in an independent
way, the anisotropy of neutrons evaporated in the fragment CM systems [46], 47, 48] . This new
method is based on the following considerations. Due to the velocity of the fission fragments (FF),
when converting the neutron emission from their CM to the laboratory system, their angular
distributions present an enhancement at 0° and 180°, well known as the kinematical focusing as
appears on fig. (a)) for the 235U(ny,,f) reaction. As shown in fig. c), the CM anisotropy
reinforces the kinematical anisotropy. The difficulty is to disentangle the real anisotropy from
the kinematical focusing as the effect is quite weak. One has to point out that in the calculations
presented in fig. any contribution by scission neutrons was neglected. The novel approach is
based on the measurement of triple or more coincidences between one fission fragment and two
or more neutrons. The principle is best explained for very large anisotropies A, ; — oo. In this

extreme case:
— all neutrons are emitted in a plane perpendicular to the fragment spin J;

— it is further taken into account that the spin J is perpendicular to the fission axis.
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Figure 1.13: Neutron angular distributions as a function of the angle between neutrons and the
light fragment (LF). The kinematical focusing (a), the effect of the scission neutrons [29] (b, solid
curve) and of the dynamical anisotropy [36] (c, dashed curve) are shown.

As sketched on top of fig. for the spin J pointing along the y-axis and projecting the

neutrons on a plane perpendicular to the fission axis (the z-axis):
— all neutrons will be aligned along the x-axis;
— these neutron projections follow the spin orientation.

In the experiment the orientation of the fragment spin cannot be fixed, only the fission axis is
accessible. As the fragment spins are perpendicular to the fission axis, all fragment spins will
lie in a plane perpendicular to the fission axis. In fig. this is the (z,y) plane. For any
inclination of the spin in the (z,y) plane, the neutrons projected on a line will then follow the
inclination of spin. To any spin orientation hence corresponds a neutron projection line. The
fragment spins are distributed isotropically in the (x,y) plane. Their orientation in this plane

can not be determined. Neutrons emitted from both fission fragments participate and as the
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Figure 1.14: Extreme anisotropy in the CMs: all neutrons are emitted in a plane perpendicular
to the spin (top). Projection plane (x,y): the projection lines follows the inclination of the spin
orientations compared to the random distribution in the perfect isotropy case. Azimuthal angle
difference, ¢21, in both extreme cases. The two extreme cases are detailed in the text.

spins of the complementary fragments are antiparallel all neutrons are emitted in the same plane
(z,2).

For each triple (ny,ng, FF) or more event the azimuthal angles ¢; and ¢, relative to the x-axis
are determined. The crucial parameter is the difference of these two angles:

P21 =2 — 1 (1.12)
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Thus in case of extreme anisotropy all the ¢o1 angles between two any neutrons are expected to
be 0°, 180° or 360° depending on the neutron emission side in respect with the x-axis. Since in
252Cf(sf) the spins of complementary fragments are antiparallel, both fragments contribute to
the pattern. In fig. [[.14] this extreme anisotropic case is compared to a perfect isotropic emission
case where the neutrons are randomly spread over the (x,y) plane. This case will lead to a flat
¢91 distribution.

The real distribution will be in between these two extreme cases. Our expectation is that the
effect is important enough to be extractable as sketched in fig. in the very optimistic case 1,
or the more probable case 2 of fig. The bad situation would be case 3. It has to be stressed
that both, the kinematic anisotropy pointed out by H.R. Bowman and the emission pattern of
scission neutrons, which is symmetric around the fission axis, will not give rise to anisotropies
in the projection plane. Any structure in the distribution of ¢9; is hence uniquely due to the

dynamical anisotropy.

1.4 CORA experiment

In the past a great effort has been dedicated to study CM anisotropy for + emission [49].
Indeed the spin dependence of the CM anisotropy is much more pronounced in this case. Neutron
anisotropy is more tricky to determine. Up to now, the existence of scission neutron emission
and/or CM anisotropy were deduced either from angular distributions between fragments and
neutrons or from angular distributions between two emitted neutrons. But, as shown on fig.
the two effects appear at the angular region where they reinforce the kinematical focusing. The
two effects act the opposite way: anisotropy increases slightly the focusing whereas scission
neutron emission decreases it. This renders the identification and the determination of the
relative importance of these two contributions very difficult if not impossible.

The CORA experiment which is the subject of this work was initially undertaken to demonstrate
the existence of the CMs anisotropy applying the new approach presented above. One has to
be aware that the major advantage of this new approach is that it allows to determine the CM
anisotropy independently from the scission emission one. We will see in the following chapter
that in fact the geometry of the neutron multidetector DEMON adopted in the experiment gives
access simultaneously, for the first time, to both the CMs anisotropy and the scission neutron
emission.

In fact to reach this purpose three experimental configurations have been tested as shown in
fig The first experiment was realised with a wall configuration of DEMON. In the second
one the DEMON cells were arranged on two curved walls. The more optimized one was centreed
with the near-spherical DEMON configuration of fig. employed in CORA 3 experiment.
Thus in this work, we will have the opportunity to investigate for the first time, simultaneously

three angular distributions: 0,17, 0, and @21 where

— 0, is the relative angle between the light fragment and any neutron emitted in coincidence
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CORA-1: test experiment (2003)

CORA-3: second experiment (2009-2010)
\ V7 . a0 Al (1

Figure 1.15: The three DEMON configurations are shown. In CORA-1 a wall configuration is
used. This experiment represents a preliminary test to demonstrate the existence of the CMs
anisotropy; CORA-2: two curved wall arrangements of the detector. The detectors appear shifted
respect to each other. This configuration was optimized to avoid the cross talk effect, but the
shifted arrangement could have induced neutron scattering on the mechanical supports. To avoid
scattering for CORA-3 experiment a near-spherical configuration was preferred.

— Oy is the relative angle between any two neutrons emitted in a fission event

— ¢21 (called ¢y, . from now on) is the azimuthal angle difference between any two neutrons

as presented above.

The expected behaviour of the 6, distribution is shown in fig. The expected behaviour is
compared to the pure isotropic case. One can notice that the effects, CM anisotropy and scission
neutron emission, affect this distribution mainly around 0° and 180°. Moreover the two effects
act in the opposite way: slight increase of the yield for the anisotropy, decrease for the scission

emission.
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Figure 1.16: The 0,,;,F distributions are presented. (a) The brown flat line represents the relative
angle between the light fragment (LF) and any scission neutron emitted in coincidence for a
scission neutron contribution of 8%; the red curve includes only neutrons emitted from the
LF; the blue one only neutrons emitted by the HF. The green curve is the sum of all these
contributions. (b) and (c) represent the relative angle between the LF and any neutron emitted
in coincidence. The red line represents the isotropic case. A scission neutron component of about
8% is added (blue curve) and also two different anisotropy values are considered respectively equal
to A,; = 0.08 and A,; = 0.20 (dotted black and green curves). The scission neutron effect is more
important on 6,1, in respect to the one ascribed to the anisotropic emission. These two effects
appear in the same angular region and act in the opposite sense: the scission neutron component
decreases the kinematical focussing whereas the anisotropic emission increases it. From [50].
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Chapter 2

Experimental Set-up

One of the main advantages of neutrons as a material probe is their high penetration power
which is due to their neutral electrical charge. For the same reason they are very difficult to
detect. Mechanisms for detecting neutrons in matter are based on indirect methods. Because
of their neutrality they do not interact directly with electrons or electrical charges of nuclei in
matter, as gammas do. The process of neutron detection begins when neutrons, interacting with
various nuclei, initiate the release of one or more charged particles. The electrical signal produced
by the charged particles can then be processed by the detection system. Moreover, in a nuclear
reaction neutrons are often the first emitted particles and, besides gammas, sometimes the only
ones at low energy. So they reveal the first moments of the history of reactions and offer the best
possibility to understand the mechanisms. To investigate the properties of the emitting process
one not only has to detect neutrons but for timing purposes also devices are needed providing a
fast response. Liquid organic scintillators are generally used in this kind of application because

of their fast response and modest cost.

For nuclear modeling the investigation of prompt fission neutron emission in fission is of par-
ticular importance for understanding the fission process. But the properties of prompt fission
neutrons are not only related to the emission process, they also depend on the properties of the
fission fragments emitting neutrons. In view of the fact that both, neutron and fission fragment
properties are necessary to study the fission mechanisms we have to detect both, neutrons and
fragments.

As a convenient way to study prompt fission neutron emission in spontaneous fission, in the
present CORA experiment 60 DEMON cells for detecting neutrons have been mounted, as shown
in fig. on the surface of a sphere facing a twin back-to-back ionisation chamber at the centre
of the sphere called CODIS. In CODIS, two ionisation chambers sharing a common cathode serve

to detect the two complementary fission fragments.
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Figure 2.1: Experimental set-up: 60 DEMON cells are arranged on the surface of a sphere
intercepting neutrons. The CODIS fission chamber is mounted at the centre of the sphere.

2.1 CODIS

Tonisation chambers offer attractive features for detecting fission fragments. First of all,
gaseous detection media are generally preferred in the measurement of heavy ionising particles
like fission fragments, because of the high ionisation density involved in the slowing down process.
At high charge densities electrons and positive ions may recombine and be lost for detection.
Another attractive characteristic is that they can be constructed in a large variety of geometries.
To allow in the CORA experiment for high fragment-neutron coincidence rates with DEMON, the
ionisation chamber CODIS with its large solid angle aperture was chosen. CODIS is a novel type
of 47 twin ionisation chamber which, in addition to high efficiency, permits measuring fragment
emission angles. With a conventional twin ionisation chamber (IC) only the theta angle between
fission axis and chamber axis can be determined. Hence, measuring angular correlations with

fission neutrons, only fragments emitted in a small cone around the chamber axis can be used.

2.1.1 TIonisation chamber: general features

Tonisation chambers are based on the production of ions by ionisation when a charged particle
passes through a gaseous medium. These devices contain a dedicated gas between two parallel
plate electrodes biased with opposite polarities. Incident charged particles produce ionised gas

molecules and free electrons along their track of deceleration, named electron-ion pairs. Due to
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the presence of an electric field the electrons drift to the positive electrode (anode) while the ions
move to the negative electrode (cathode). Ionisation chambers are operated at relatively low
voltages between anode and cathode, which results in a collection of only the charges produced
in primary ionisations. Compared to proportional chambers with ”gas amplification” due to
secondary ionisations this type of detector produces a relatively small output signal that corre-
sponds to the number of primary ionisation events. It turns out that the number of produced
electrons and ions, to a high degree of accuracy, depends linearly on the energy the particle has
lost in the gas volume of the chamber.

This holds true for a wide range of projectile types and velocities. The linear response of a
gas-filled ionisation chamber means that there is a fixed mean energy, usually denoted as the W
value, required to create one electron-ion pair. The deposited energy E will be proportional to

the number of pairs formed ng , as in the formula:
E =noW (2.1)

The W value amounts to about 30 eV for the commonly used counting gases. According to [51]
only about 60% of E goes into ionisation, the remaining 40% being consumed by excitation
processes and converted into heat. As empirical studies have shown, W is almost independent

of the particle’s species and energy.

2.1.2 Parallel-plate ionisation chamber

The simplest type of ionisation chamber, the parallel-plate ionisation chamber, consists of two
parallel planar electrodes biased with opposite polarities located in the gas atmosphere. Basically

two important parameters of a charged particle can be determined in an ionisation chamber:
— the total kinetic energy E , provided the particle is stopped in the chamber;

— the nuclear charge 7, by measuring besides the energy E the energy AE the particle has
lost on a certain path length Ax.

In an electric field E the positive gas ions and the electrons will move from their point of origin

towards the respective electrodes. Their drift velocity v can be found from formula

E
V= pu— 2.2
'up (2:2)

with v the drift velocity, p the mobility of the particle, E the strength of the electric field and p
the gas pressure.

The mean value of the mobility u of ions in gases lies between 1.0-1.5 10* mi/astm. The
resulting collection time is of the order of 10 ms. For electrons their smaller mass allows for a
higher acceleration between interactions with gas molecules. Therefore their mobility is larger by
a factor of 1000. Accordingly their collection time has the order of magnitude of microseconds

instead of milliseconds. In most cases the drift velocity increases for higher values of £/p.
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In a parallel-plate ionisation chamber the electrons and ions created through ionisation along
the particle track separate by their drift towards the anode and cathode, respectively, where
they finally compensate the charges induced on the electrodes. As already outlined, the number
of collected charges should be proportional to the energy of the incident radiation. Besides of
energy losses in the source material and backing, or in the entrance window in case of external
sources, there are some other processes that are affecting proper collection of the charges giving
rise to the so called pulse-height defect. The defect is assessed by comparing the pulse height
for light and heavy ions of the same energy. The magnitude of the deficit increases with ion
mass. In particular for gases with heavy constituents like Ar, Kr etc. the defect becomes sizable.
Besides columnar recombination of electrons and positive ions along the particle track of heavily
ionising particles, electro-negative gases may trap electrons. In practice, these processes can
be minimised by choosing a high enough electric field strength and an as low as possible gas
pressure. Furthermore non-ionising collisions between incoming ions and atoms of the counting
gas contribute to the electronic pulse height defect.

In a parallel-plate ionisation chamber electronic chains connected to the electrodes see charges
being complementary in sign to the charges induced on the electrodes by the formation and
drift of both, electrons and ionic charges in the active gas volume. By ionistion positive ionic
charges Q% and negative electron charges (J~ are created which compensate each other to nil:
QT + @~ = 0. In practice the fact is exploited that electron drift times are by a factor of
1000 times faster than those of ions. For this reason the charge signals are measured at a time
when all electrons have been collected. This can be achieved by a proper setting of the RC time
constants of the order of us in the electronic amplifier chains connected to the electrodes. For
a chamber with the distance between anode and cathode called d and for a point-like ionisation
event at a distance x from the cathode, the charge signal @4 on the anode when all electrons

have been removed is:

Qu=Q +Q"5=-Q(1-2) (2.3)

with @ = QT = |Q|. On the cathode the charge Q¢ when all electrons have been collected on

the anode is:

Qc =0t (1 — g) =1Q (1 - 2) (2.4)

In figs. 2.2 and 2.3 the pulse formation on the anode and the cathode is visualise as a function of
time between the start of the ionising event and the time of accumulation of all electrons. In this
time window the ions stay virtually stationary. In experiment the point-like charges assumed
may be identified as the centres of gravity of charge density along the ion track in the gas.
Both from egs. 2.3] and [2.4] and figs. 2.2] and 2.3] it is borne out that the charges to be observed
on the electrodes at the time when all electrons have been collected depend on the position x of
the ions still present in the gas volume. The positions x being in general unknown, the electron
signals are not suited for particle spectroscopy. To find the full number ng of ion-electron pairs
in eq. which is proportional to the energy E it lost in the gas, one has to wait until also all

ions ng have arrived at the cathode where x = 0. However, the long times of several ms involved
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Figure 2.2: Charge signal as a function of time on the anode: from the start when the incoming
ion is stopped until all electrons have arrived at the anode. From [52].
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Figure 2.3: Charge signal as a function of time on the cathode: from the start when the incoming
ion is stopped until all electrons have arrived at the anode. From [52].

are not convenient for particle spectroscopy.

2.1.3 The Frisch grid

To avoid the difficulties discussed for particle spectroscopy with ionisation chambers it was
proposed by O.R. Frisch to install in the chamber a third electrode between anode and cathode.
This electrode has to be transparent to charges moving in the chamber. It is in fact a mesh
of thin metallic wires called Frisch grid. The grid is held at an intermediate potential between
anode and cathode. It is in particular shielding the anode from the influence of the cathode
potential. If now the incident radiation is only allowed to enter and produce ionisation in the
cathode-grid volume, the anode will not sense any charges as long as all ion-electron pairs are
inside the cathode-grid volume. Only once the electrons have traversed the grid the charge
influenced on the anode will start to rise. Layout and pulse formation in a gridded ionisation
chamber are sketched in fig. In this way the slow rise contribution due to the drift of the ions
is eliminated and each electron passes through the same grid potential difference and contributes
equally to the signal pulse [53]. As a results the pulse amplitude is independent of the position
of the original particle interaction and it is simply proportional to the total number of pairs ng
formed along the track of the incident particle.

In practice however, the shielding of the anode by the grid is never as perfect as assumed in
fig. Already in 1949 O. Buneman et al. [54] calculated the efficiency of grids as a function
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Figure 2.4: Gridded ionisation chamber. In the layout to the left it is emphasised that ionising
radiation enters only the cathode-grid volume CG. To the right the formation of the anode pulse
is suppressed as long as the electrons are in the CG volume. Only once the electrons traverse
the grid the anode pulse starts to rise and reaches its full height Q 4 = —@Q) corresponding to the
full number ng of electrons created in the ionisation process. From [52].

of the diameters of the wires and the pitch. It was found that typically the inefficiency of grids
o is a few percent. The authors further calculated the bias having to be applied to the grid in
order to ensure that no electrons are trapped by the grid. As visualised in fig. the formation
of the anode pulse taking grid inefficiency o into account is somewhat more complicated than in
the case of an ideal grid with o = 0 as in fig. 2.4}

The anode signal Q4 following electron capture is now:

observed on
l X 0N UQ’-X’g G . electrons 4 anode QA
C I Jboax/g
: o oQ”
[} g N Q- Q_ QA
all electrons removed:
Qa = Q+ 0Q"x/g = -Q (1 - o-x/g) oQ’x/g

Figure 2.5: Gridded ionisation chamber with grid inefficiency being taken into account. From [52].

Q=@ +0Q"t=-q (1 - “Z) (2.5)

The charge on the anode @ 4 still senses the presence of ions in the CG volume but compared to
the ungridded chamber in fig. 2.2 and in eq. 2:3] the perturbation by ions is drastically reduced
due to the inefficiency factor o in eq. amounting only to a few percents.

2.1.4 Twin ionisation chambers

A convenient way to study spontaneous or neutron-induced fission intercepting in coincidence
the two fragments is to use a twin back-to-back ionisation chamber. In a twin ionisation chamber

two gridded chambers facing each other are sharing a common cathode. The cathode is made
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of conductive material serving as a thin backing for fissile material deposited in the centre. The
complementary fragments emitted in spontaneous or neutron induced fission are detected in
coincidence in the two chambers. By detecting both fragment energies and applying mass and
momentum conservation the masses of the emitted fragments are determined. Studies of thermal
neutron induced fission of 235U with twin chambers historically established the proof that in the
majority of cases fission is a binary decay process with emergence of two fission fragments of
comparable mass. The asymmetry of mass distributions was confirmed as well very early by
this technique. An appealing feature of ionisation chambers is their high energy resolution for
heavy ions when operated with pure methane as counting gas. Energy resolutions near 100 keV
for fission fragments have been a prerequisite for the investigation of true cold fission where the
kinetic energy of fragments quantitatively exhausts all available energy. The attractive features
of twin ionisation chambers for studying neutron emission from fragments were investigated in
detail by C. Budtz-Jgrgensen et al. [32]. In particular it was shown that the angle the fragment
track is forming with the chamber symmetry axis can be obtained by observing both the anode
and the grid signals. This angle can similarly be extracted from observing the drift time of
electrons [55]. A more refined method for the determination of fragment angles was proposed
recently [56]. There the anode is split into strips and with an additional grid of parallel wires
installed in front of the anode with the wires perpendicular to the anode strips the angles of
the fragment tracks can be found. The present work is searching for correlations between fission
fragments and fission neutrons. As to the fragments they were detected in a specially developed
twin ionisation chamber called CODIS. In this chamber the measurement of fragment angles is
based on the rather straightforward idea to cut the anode into independent sectors which are

read out separately. The chamber is described in detail in the next paragraphs.

2.1.5 CODIS: double ionisation chamber

The CODIS detection system, sketched in fig. 2.6] is a particular type of Frisch gridded 4w
twin ionisation chamber which, in addition to high efficiency, permits the localisation of any set
of fragment emission angles. The main parameters of its construction and its operation in the
CORA project are summarized in table The chamber was constructed by a group of the
Technical University of Darmstadt and successfully used in a series of ternary fission studies on
spontaneous 2°2Cf and neutron-induced 23°U fission |58 [59]. Localisation of arbitrary fragment
emission angles in a near 47 geometry permitted arriving at outstanding results on various
mutual energy and angular correlations between fission fragments, the rare ternary particles,
prompt fission neutrons and 7 rays. Needless to say that the chamber again discloses ideal
requirements for measuring fragment-neutron correlations in the CORA project with the high
statistical accuracy needed.

In ionisation chambers the charges induced on electrodes by an external charge Q in front of the
electrodes are measured. In more detail the question is how these induced charges are distributed

on the electrodes. It is well known that the distribution of these charges can be found from the
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Figure 2.6: (a) CODIS detection system; (b) DEMON-CORA coupling. The two sides of the
chamber are shown. The DEMON 27 is faced to the source side. The backing side corresponds
to the side 1. (c) Schematic representation of the fission chamber. (d) Determination of the
fission axis from the CODIS cathode signals: the figure shows the first 4 sectors S; [57].
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Figure 2.7: (a) Mounting of the 252Cf source at the centre of the cathode; (b) The CODIS central
rings and 4 of 8 sectors are shown.

electric field generated by the charge Q as a dipole field with charge Q and mirror charge -Q
behind the electrode. The distribution depends on the position of the charge Q in front of the
electrodes. It is by no means uniform. The idea behind CODIS is to measure not simply the total
induced charge but to sense the distribution of the charge on the electrodes. To this purpose the
electrodes have to be segmented. The charges induced on the segments then give the additional
information on the position of external charges Q.

In the CODIS chamber the information on emission angles is derived from pulses induced at a
split-cathode. It does thus not compromise deduction of the fragment energies from the anode
pulses. Both sides of the cathode PCB are subdivided into four electrically isolated quadrants and
the two thin ring contacts around the central source which are shortcut by the conducting source
holder. While the 8 quadrants are read out individually for deducing fragment angles, the central
rings and metallic source get induced signals from both chamber sides for providing the event
trigger and start signal for the neutron time of flight. As seen from the photograph of fig. b),
all quadrants extend to about half the radius of the cathode (38 mm) which corresponds to the
cathode - Frisch grid spacing, being larger than the maximum fragment range at operational gas
pressure. The outer parts of the quadrants were put together and biased at the cathode potential
for attaining electric field homogeneity. Limitation of the active quadrants to the central part of
the cathode has only small effect on the fragment signals but reduces considerably the counting
efficiency for the about 30 times more frequent 2°2Cf « particles and thus a distortion of fragment
angle registration by a-particle pileup. Reading out the anode signals with fast current sensitive
preamplifiers serves the same purpose while for the larger dynamical range of the individual
cathode signals a readout by conventional charge sensitive preamplifiers was preferred as the
signal to noise ratio is better. Both fragment-fragment and fragment-« particle pileups still lead
to a slight distortion of the anode amplitude spectra. In order to clean the experimental data

from the pileup events special pileup counters were used in the electronic set-up. For each anode,
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the number of events above a corresponding discriminator threshold was counted during the time
window needed to integrate the corresponding signal: =~ 1 us for the fragment-fragment pileup
(integration window in the QDC recording the anode signals) and ~ 6 us for the fragment-c«
pileup (corresponds to the shaping time in the main amplifiers used for measuring the sectored
cathode signals). For a most efficient pileup rejection the multiplicity of all pileup counters was

requested to be equal to 1.

Vessel:
Gas-tight Al cylinder, 330 mm @, 170 mm high, with 1 mm thick spherical Al end caps.

IC geometry:
Size of all electrodes: 120 mm )
ionisa Distances: cathode — Frisch grid: 38.0 mm, Frisch grid — anode: 8.0 mm

Electrode material:

Cathode: PCB with double-sided copper layers of PF, epoxy material,
gold-plated: 1.6 mm thick.

Anode: Polished Al - plate, 0.5 mm thick

Frisch grid:

orthogonally woven CrNi 1.4401 wire mesh - 0.025 mm @ wires, 0.50 mm pitch
Gas:

High-purity CF, (tetrafluoromethane) with 2.64 x 10* Pa (200 torr)
operational pressure, flow controlled.

Electrode bias voltages:
Cathode: 1440 V negative, Anode: 960 V positive, Frisch grid: ground.

Electric fields: Cathode — Frisch grid:

378.95 V.emlor 4.54 1072 V em ™! Pa~1(1.89 V em ™! torr 1)
Frisch grid — Anode:

1200 Vem™! or 1.44 1072 V. em™'Pa~! (6.00 V em ™! torr—1)

Preamplifiers:

Anodes 1 and 2:

CSTA2, current sensitive for flash-ADC readout,
non-inverting, 1G bias resistor.

8 Sector Cathodes and Central Cathode :

CSTAZ2, charge sensitive with 1 pF feedback C for readout
with main amplifiers and ADCs, inverting, 1G bias resistor.

Source:

252Cf transfer source of 5 mm @ deposited onto a 0.00025 mm

(222 pg cm=2 ) thick Ni foil, mounted onto a 26 mm @ Al

support ring and fixed at the centre and mid-thickness of the cathode plate.
Activity 0.002 mCi, 2000 fissions/s

Table 2.1: CODIS parameters.

Apart from the sectored cathode, CODIS is designed as a normal twin-IC. The Frisch grid was
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made of a orthogonally woven CrNi 1.4401 wire mesh, with 0.025 mm ) wires and 0.50 mm pitch.
According to [51] the grid inefficieny is estimated to be 2%, although available calculations are
strictly valid only for a one-dimensional grid and not for a mesh type one as ours. For a best trans-
parency of the grid, the reduced electric field between anode and grid (4.54 1072 V cm™! Pa™1)
was chosen larger than 3 times the field between grid and cathode (1.44 1072 V cm~! Pa~1). As
for the gas, CF, at the low working pressure of 2.64 x 10* Pa and the high electric fields minimise
trapping and recombination effects and provide fast electron drift velocities of 1 c¢m/us before
the grid and 14 cm/us after it [60]. With CF, the pulse-height defect for fission fragments was
found to be in the order of 5 MeV, for both the light and the heavy groups.

2.1.5.1 Energy and mass measurement

In a gridded ionisation chamber, the anode signals (total collected charges) are basically
proportional to the number of electrons produced during deceleration of the fragments and are,
thus, only roughly representing their kinetic energies. As already discussed above, there are
several effects which make the dependence of the anode signals on fragment kinetic energies
more complicated, such as the pulse-height defect and Frisch grid inefficiency. In a twin chamber
with an internal source, there is moreover a serious energy loss of the fragments in the source
and the backing material. The latter effect leads to a significant decrease of the anode ht for
very flat emission angles (signals with long drift times) — see fig.

To convert the measured anode charges to real fragment energies from fission the following
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Figure 2.8: Two-dimensional distributions of the anode drift time vs the anode charge. The
black points are the mean values of the LF and HF charges for a given drift time slice. The red
lines are the fits of the mean charges obtained with formula [2.6]

procedure was applied, based on the known mean fragment post-neutron kinetic energies for
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220t : (Egp)=T78.7 MeV, (ELr)=102.5 MeV [61], following the sequence of steps:

1. The groups of light and heavy fragments were separated from each other in the 2D plot of

the anode signals measured in both halves of the chamber, such as shown in fig. 2.9
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Figure 2.9: Two-dimensional distributions of the anode signals. Contours correspond to the
groups of light (LF) or heavy (HF) fragments on the side 1 of the chamber. Data have not yet
been corrected for the energy losses in the backing of the source.

2. For each side of the chamber, the anode signals were related to the correlated drift time T,

separately for the light and heavy fragment groups.

3. Then, mean values were determined for both, light and heavy fragments, as a function
of T, plotted as black dots in fig.

4. For each side, the dependence of the mean amplitudes (QLr(T)) and (Qur(T)) on the
drift time was fitted by the formula:
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B,
T-C

(Qur(T)) = A2 + TBiQC (2.7)

(Qrr(T)) = A1 +

(2.6)

where the drift time T is in channels, A;, By are individual parameters for the light frag-
ment, Ag, Bs individual parameters for the heavy fragment and C is a common parameter
for both fragments. The parameter C stands for the maximal drift time, when fragments
are emitted at a very flat angle to the cathode plane. Note that both curves, for the light

and heavy fragment were fitted simultaneously with one common parameter C.

5. Thus, the mean anode charge of the light or heavy fission fragment on each side was
parametrized as a function of the drift time by eq. with corresponding coefficients
derived from the experimental data.

6. The energy of the fission fragment for each event was derived from the measured anode
charge Q and the drift time T of the anode signal by linear interpolation between two
drift time dependent mean anode charges (Qrr(T)) and (Qur(T)) using the known mean

energies of the light and heavy fission fragments as calibration points:

E=K(T)Q+ B(T) (2.8)
_ (Bur)—(Bur) _ (Bur)(Qur(T)~(Brr)(Qur(T)
where K(T') = o iy =@uemy: B = 50 —@ar )
and  (Egp) = 78.7MeV, (2.9)
(Erp) =102.5MeV (2.10)

The above procedure of the energy calibration with taking into account the drift time dependence
of the anode charge signal simultaneously corrects, on average, for all minor effects influencing
the linear relation between the initial fragment energy and the measured anode charge. Although
this correction is not perfect, it is quite sufficient for the determination of the fragment energies
and masses, where no optimisation of energy and mass resolution was required. Fig. [2.10] shows
analogous two-dimensional plots with anode energies calibrated and corrected for the drift time
dependence according to egs. and By measuring the fragment energies and knowing the
mass of the parent nucleus it is possible to deduce the mass of the fragments using the mass and
the linear momentum conservation. For a fissioning system the momentum of the parent nucleus
is zero and the daughters, of masses Apr, Agp and linear momenta prp, pyr of the light (LF)
and the heavy (HF), are emitted on collinear trajectories thus the momentum conservation law

is applied as

PLF = —PHF (2.11)

ApLrvLr = —AHFVHF (2.12)
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Figure 2.10: Two-dimensional distributions of the anode drift time vs the anode (calibrated)
energy.

Knowing that the relationship between the kinetic energy and the velocity is /2 Av? and solving

eq. in function of the energy of each fragment the following relation is obtained:

Appy /=== A —_— 2.13
LF ALF HF AHF ( )

From equation it follows that the ratio of the provisional fragment massesEl is inversely

proportional to the ratio of the kinetic energies as shown in the following formula:

Err _ Abr
Euxr Arp

(2.14)

Since the sum of the masses of the two daughter nuclei is equal to the parent one, Acy =

Arr + Agr where Acy = 252 is the mass value of 252, it is possible to obtain the following

relations:
A ActEnr
LF

= =7 2.15

Erp +EEHF ( )

A — _CFZLE 216
T ELr + Enr (2.16)

Such twin-IC allows to measure simultaneously the masses of both fragments. The resulting
energy and mass distributions are shown in figs. [2.11], 2.12] and 2.13]

1. “Provisional masses” are calculated under the assumption that no neutrons at all are evaporated form
fragments. The raw data have to be corrected for neutron emission by fragments to obtain pre- or post-neutron-
emission mass distributions. This correction is a rather complicated procedure that depends on the experimental
arrangements and requires assumptions concerning the neutron multiplicity distribution as a function of fragment

mass [62].
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Figure 2.11: In the figure are plotted the mass distributions obtained for the anode 1 signal in
green and in red the one computed from the anode 2.
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Figure 2.12: The two dimensional histogram represents the energy of the HF versus the energy
of the LF. At the right is shown the mass distribution of the HF computed following eq. [2:15] in
the bottom part the distribution, calculated as eq. of the LF mass.
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Figure 2.13: The figure shows the resulting masses obtained for the HF and the LF(bottom) and
their correlation (top).
2.1.5.2 Determination of the fragment emission angles

The polar angle can be computed from the drift time measurement and by taking into account

the distance d between the anode and the cathode following equations:

where  vgpift = 10" (2.17)
Vdrift us

d=d—UE,A)*cosbrp (2.18)

tarift =

where 1(E,A) is the range of fragments in the CFy gas at 2.64 x 10* Pa operational pressure.
The drift time is measured as the time between the start signal coming from the centre of the
cathode and the stop given from the anode.

From equation the polar angle can be computed as follows:

d — tarift Varift

15 ) (2.19)

cosOpp =
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In practice, the polar angle is not calculated using the drift time velocity, distance and fragment
track length but is determined from the drift time by calibrating the end-points of the measured
drift time spectra (see fig. [2.14). Formula can be written as follows:

Tmam - tdrift
A2 2.20
Tmaw - Tmzn ( )

where T4, and T),;, are the maximal and minimal drift times for a given fragment; T}, 4z

cosOpp =

Tmin Tmmt Tr Trrmt
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Figure 2.14: Drift time spectra and their 1% derivatives for the most probable provisional masses
Mpr=110 and My r=142, side 1 of the chamber. The T,,;, parameter is defined as the position
of the maximum in the 1% derivative spectrum.

corresponds to the flat angles (6 = 90°) while T,,;, corresponds to the steep angles (6 = 0°).
Obviously, Ty is the same for all fission fragments, but 75,;, depends on the length of the
fragment track, which, in turn, depends on the fragment mass and energy. The T},,, parameter
was determined for each side of the chamber during the anode energy calibration (it’s the param-
eter C in eq. . The T,,;n parameter was parameterised as a linear function of the fragment
mass only. For simplicity reasons, we didn’t consider explicitly the energy dependence of this
parameter. However, there is a strong implicit dependence on the fragment energy since the
fragment masses and energies are strongly correlated.

The position of the minimum of the drift time was determined from the maximum of the
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Figure 2.15: The dependence of the T,,;, parameter on the fragment mass for side 1 of the
chamber (left) and side 2 (right).

1% derivative spectrum for each fragment mass in steps of 1 amu and then fitted by a linear
function. The examples of the drift time spectra and their 15¢ derivatives for masses 110 and 142
are shown in fig. The dependence of the T,,;, parameter on the fragment mass is shown
in fig. Fig. shows the §pp distribution for each side of the chamber.

For very flat fragment angles the experimentally determined fragment parameters become too
much distorted due to scattering and absorption of the fragments in the target and in the back-
ing. So a condition |cosfpp| > 0.4 was imposed on all analysed events. This corresponds to
an angular coverage of 0.6 - 4. The azimuthal angle of the fragment emission ¢pp could be
determined using the unique feature of the CODIS chamber sectored cathode. The principle of
the angle determination with the cathode is sketched in fig. The output signals of each
sector S; (i=1, ...,8) depend on the orientation of the fission axis, i.e. 8 and ¢ angles, and on the
fragment kinetic energy. In order to determine the azimuthal angle we define variables g¢; ;

Si

Si +5;

for sectors i and j lying on the same side of the cathode, but opposite to each other. To demon-
strate the method of the determination of the ¢ angle the distributions of events on a two-
dimensional plot q; 3 vs qo 4 for several cuts in 6 (determined from the drift time) are shown in
fig. (left). We define the polar coordinate system for these plots with the centre at qq 3= 0.5,
d2,4 = 0.5 (see fig. . The coordinate R in this coordinate system is related with the polar
emission angle 6 of the fragment, while the coordinate ¢ with the azimuthal angle . The distri-
butions of the ¢ angle for the same cuts in 6 are plotted in fig. (centre). They demonstrate
characteristic oscillations with a period of m/2 which amplitude increases for larger 6 angles and

which are related with the geometry of the sectors and the process of the charge collection. To
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Figure 2.16: In the figures are shown the 6 distributions corresponding to side 1 and side 2. In
the upper part the distribution by taking into account all events is shown. In the bottom part
a selection |cosfpp| > 0.4, called good events, is made and also the correction on |cosOpp| > 1
is applied. Since the polar angle is computed from eq. also a correction on events that have
|cosOpr| > 1, shown in the top figure, is needed. These events are simply spread on allowed
value of cosine respectively around -1 and 1.

find the relation between the angle ¢ and the real azimuthal angle ¢ we use the fact that the
fission fragments are emitted isotropically, so the distributions of events as a function of the az-
imuthal angle ¢ should be flat. If the distribution of the ¢ angle is approximated with a function

F(¢), then the relation between the ¢ and ¢ angles can be derived from equation:
1-dp = F(¢)do (2.22)

Solving this equation gives:
0(6) = [ Foo (2.23)

Considering the 7/2 symmetry of the sectored cathode, F(¢), can be chosen in a form
F(¢) = a(l + bcosdo) (2.24)
where a is just a normalisation coefficient and b is the amplitude of the oscillations due to the

4-sector structure of the cathode. In this case the ¢ angle is defined from as

p(9) =9+ Zsinélgb + o (2.25)
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Figure 2.17: Schematic representation of the upper part of the segmented cathode. An interaction
in sector S1 is shown. The signals obtained from this interaction are sketched with the relative
proportions in the left part. In the right part is represented a typical matrix for the parameters
qi1,3 and qz.4. Each fission event is a point in such a plane. The projection of the trace is

R =/(¢i,j — 0.5)% + (gi11,j+1 — 0.5)% and the angle is ¢ = arctan ( Lo

qi+1,5+1 )"

The constant g is determined from the orientation of the cathode plane (in which the ¢ angle
is defined) relative to the laboratory coordinate system (in which the ¢ angle is defined). In our
case g = 135° as the zero ¢ angle was in the middle of sector 1 of the cathode, and the zero
o angle (direction of the x axis, see fig. is between sectors 3 and 4. The coefficient b
in and depends mainly on the polar emission angle €, but also slightly on the length
of the track of the fragment, thus, on the fragment mass and energy. For simplicity reasons,
the coeflicient b was determined separately for the light and heavy fragment groups by fitting
the distributions of the ¢ angle for different values of cosf in steps of 0.05. The dependence
on the cosf was then interpolated by a 3"¢ order polynomial (see fig. [2.19). Only events with
|cosOpr| < 0.4 were used.

Having determined the polar and azimuthal emission angles (from eqs. and respec-
tively) we can construct the two fission fragment emission vectors separately for each side of the

chamber, light and heavy fragments being determined from the condition Mpp <Mpp:

sinfppcosprp sinfgrcosprp
Vir = |sinfppsinprp Vurp = |sinBgrsinpgp
costrr cosOyr
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Figure 2.18: Determination of the azimuthal angle ¢. Left: two-dimensional plots q; 3 vs g2 4 for
different cuts in cosf. Centre: fit of the angle using formula [2:24] Right: the resulting ¢ angle,
determined using formula
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Figure 2.19: Dependence of the fitting parameter b in eqs. and on cosfpp (cosh in the
figure) for the two sides of the chamber and for LF and HF fragment groups.

The fission axis is then determined as a unit vector, average between the two independent frag-
ment vectors using the relation (see fig. c)):

Veaxis = Vir — Var (2.26)

Fig. shows the distribution of angles between two fission fragments from the same event, as
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Figure 2.20: (a) Distribution of relative polar angles between two fission fragments from the
same event (black curve) and between one fission fragment and the fission axis (red curve).
(b) Ag distribution between LF and HF from the same event. (c¢) Scheme of the determination

of the fission axis.
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Figure 2.21: In the upper part of the figure correlation matrices respectively in the planes cosfy g
vs cosfpr and ¢y p vs ¢y are shown. The left figure shows that 8y and 01, are anticorrelated.
From the second matrix of correlation on the right it is easy to deduce that the difference between
the angles ¢ and ¢ F is spread around 180° as expected. The bottom part shows that LF (left)
and HF (right) are emitted isotropically in the 47 space. The uncovered region is due to the
source position.

well as the relative polar angles between the fission axis and one of the fragments, all plots made
with a condition |cosfpp| > 0.4. The width of the latter distribution is about 10°, which gives
us an estimation of the overall angular resolution of the CODIS chamber with the simplified
data analysis procedure, described above. This angular resolution is smaller than the minimal
opening angle of the DEMON detectors, estimated for the most distant ones as 12°.

The resulting spatial distribution of the fission fragments are presented in fig. 2.21] The non
uniform spots which appear in the bottom spectra are due to the remaining 7/2 oscillations
discussed in fig. These oscillations are also visible in the ¢ r — ¢y correlation (top-right).

In this work, for the ¢, correlations, we select only those events for which the fission fragments
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are emitted along the chamber axis, the z-axis. Thus for neutron-fragment correlations only
fission fragments with 64 x75 < 5° are taken into account.
The CODIS calibration has been performed by members of the CORA collaboration.

2.1.6 Sources

The 2°2Cf source used in the CORA experiment was produced by the Federal Atomic
Energy Agency of Russian Federation V.G KHLOPIN RADIUM INSTITUTE. The
source characteristics are specified in tables and Californium, the sixth transuranium
element to be discovered, was produced by Thompson, Street, Ghioirso, and Seaborg in 1950 by
bombarding microgram quantities of ?42Cm with 35 MeV helium ions in the Berkeley 60-inch

cyclotron.

Californium-252 source

Activity 0.002 mCi, 2000 f/s

Dimensions: diameter 25 mm
thickness of the Ni film 0.00025 mm
active spot diameter 5mm

Mass 0.0037 pg

Table 2.2: Californium source characteristics given by the supplier.

The radioisotope Californium-252 which has a half-life of 2.645 years is routinely encapsulated
into compact, portable, intense neutron sources. It is a very strong neutron emitter, which makes
it extremely radioactive. It undergoes alpha decay 96.9% of the time to form curium-248 while
the remaining 3.1 % of decays are spontaneous fission. One microgram (ug) of californium-252
emits 2.3 million neutrons per second, an average of 3.7 neutrons per spontaneous fission. Most
of the other isotopes of californium decay to isotopes of curium (atomic number 96) via alpha

decay. The neutron energy spectrum is similar to a fission reactor, with a most probable energy

Isotopes Abundance

2490 15.03%
250¢f 15.80%
2810f 15.03%
252¢f 61.21%

Table 2.3: The californium isotopic composition at 18/12/2003.

of 0.7 MeV and an average energy of 2.1 MeV. Portable 2°2Cf neutron sources can provide an
ideal non-reactor source of neutrons for lower-flux applications.
The positioning of the source in the CODIS chamber is shown in fig]2.7]
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2.2 DEMON

DEMON is the acronym for MOdular Neutron DEtector (DEtecteur MOdulaire de Neu-
trons). The multidetector DEMON, issued from a french-belgian collaboration and operational
since 1994, constitutes an ideal tool to study nuclear reactions in a wide domain of energies
ranging from 0.7 MeV up to 1 GeV. It has been used at many nuclear facilities around the world
(CYCLONE-LNL, GANIL, VIVTRON, U400/U400M-Dubna, SATURNE-Saclay, TSL-Uppsala,
KVI-Groningen, SARA-Grenoble, TAM, JYFL, LNS-Catania, etc...), using a part or the com-
plete set of detectors, to investigate various fields of nuclear physics. Contrary to neutron walls
which usually give access only to the multiplicity of the emitted neutrons, DEMON has been
conceived to measure angular and energy distributions of the neutrons with a high efficiency and
a good energy resolution deduced from the time of flight as well as a large geometrical accep-
tance. It gives thus access also to the neutron multiplicity. Its modularity allows to adapt the
geometrical configuration to the specific needs of the experiments as shown on fig. Also
the flight distance can be adapted to optimise the geometrical acceptance whilst preserving the

required energy resolution. This device includes 100 cylindrical units containing NE213 liquid

Figure 2.22: Different geometrical configurations used for various experiments performed with
the neutron multidetector DEMON.

organic scintillator of diameter 16 cm and 20 cm deep.
DEMON is sensitive to y-rays and light charged particles as well as to neutrons as shown in

fig. To reject y-rays a pulse shape discrimination is applied. This method is based on the
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Figure 2.23: Total charge versus time of flight obtained with a DEMON cell which detects ~,

neutrons as well light charged particles. From J. Pluta et al., Interferometry experiment E286,
GANIL 1998 [63].

time dependence of the scintillator light decay which makes possible to identify particles that
have different energy losses but produce the same amount of light in the scintillator.
Also light charged particles can either be measured as in the experiment of fig. or rejected.

To disentangle an incident neutron from a charged particle, often a proton, DEMON disposes

Figure 2.24: SYREP detectors: thin plastic scintillators placed in front of the DEMON cells and
designed to reject light charged particles at high energy.

on 45 additional detectors designated by the acronym “SYREP” for ”SYsteme de REjection des
Protons” (proton rejection system). These detectors, shown in fig. are thin NE102 plastic
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scintillators of octagonal shape with a thickness of 3 mm. These detectors were not needed in
the low energy CORA experiments. The mean intrinsic efficiency of each cell is of the order of
70% at 5 MeV and approximates 30% at 50 MeV for an energy threshold of 200 keVee [64]. The
time resolution determined with the v peak, is about 1.3 ns. Neutron-vy discrimination remains

excellent for low detection thresholds. It is optimised by a time of flight separation.

2.2.1 Detection principle

Fast neutrons interact in scintillators mainly through elastic scattering with the nuclei present,
mostly hydrogen and carbon. Most of the useful scintillator light comes from recoiling hydrogen
nuclei (protons). This occurs because a neutron can transfer 100% of its energy in an elastic
scattering interaction to a recoiling proton but only 28% to a recoiling '2C nucleus. The kinetic
energy of the recoiling protons is absorbed by the scintillator and is ultimately converted into
visible blue light. The light is collected in a photomultiplier tube optically coupled to the
scintillator and converted to an electronic pulse which magnitude is related to the kinetic energy
of the recoiling protons.

Fig. shows the different interaction processes which occur in a NE213 liquid scintillator
as a function of the neutron incident energy. In the energy range our work is dealing with,
E,, <10 MeV, one can see that almost exclusively elastic scattering on 'H and '2C takes places.
At about 5 MeV, inelastic scattering on 2C appears which leads to a y-ray emission. These v’s
appear as 7’s in the discrimination spectrum but they have the time of flight of the corresponding

neutron. These ~’s are rejected in our analysis. The 7-rays can interact in the detector and

| D H@)
2) C(n,n)
43) C(n,n'y)
4) C(n, )
15 Cnn3)
6) C(n,2n)
7) C(n,p)
18) C(n,pn)
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1) Cm, 3He)
X 12) Ginel.

Figure 2.25: Cross sections of the reactions induced by neutrons between 1 and 100 MeV on
hydrogen and carbon. From [65].

transfer energy to the scintillator electrons by Compton scattering or by photoelectric effect at

very low energy. Compton scattering can take place in the detector yielding to a high energy
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electron that in turn produces a column of ionisations as it traverses the volume of the cell.

2.2.1.1 Mechanisms for fast neutron detection: kinematic approach

The reference systems in which a reaction can be studied is the laboratory frame or that of
the centre of mass. In the latter system, the centre of mass (CM) of the particles which interact

is at rest and the total momentum is zero. Fig. [2.20] schematises the two reference systems and

shows the coordinates of the neutron and the nucleus, a proton or a carbon, in each system. The
neutron

m

.

Centre of
mass

origin of
coordinates in &
the laboratory R
! nucleus
Figure 2.26: Coordinate systems
different coordinates are expressed as follows:
L mr+ Mﬁl . mu; + MV} . m 1
= Uy = Uy = Uy & U
A T Tm+ M Ty M T 1A
=7 b= - 0 ane —s= g
c 1= P c 1 0 c 177 TA 1= 7 TA l
L I . . 1
R.=R;—p Ve=V, -1 Vc:—Uoz—l_’_AUl
If the nucleus is at rest in the laboratory frame (Vl = 0), the total kinetic energy in the laboratory
and in the CM will respectively be:
1 1 mM M
“MV2 =~ — 07 = E
¢ 2m+ MU' T m T

1
oM E. = §mvf+ 5

Laby E, = §mvl2
The kinetic energy in the CM is lower than that in the laboratory. In an elastic collision,

in addition to the conservation of total energy, there is also the kinetic energy conservation.

Therefore we apply simultaneously:
1. the conservation of kinetic energy;
2. the conservation of linear momentum.

In fig. we see the scheme of the impact seen from the laboratory and the centre of mass (CM).
In the CM system the magnitude of the neutron and the nucleus velocities before and after the
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Figure 2.27: Kinematic representation in the laboratory system and in the CM.

collision remain unchanged, only their directions change, i.e:

/
Ve = U,

V.=V

The relation between the scattering angles of the neutron in the CM and in the laboratory, drawn

in fig starting from the diagram of the velocity vectors after the collision, is computed:

— —

v) = U, + Uo v sinf; = v sin 6,
!/
(&

v cos b, = vl cos b, + vy

The ratio gives:

;.
v’ sin 6,
tan 0, = Cfc
vp + vl cos B,

In the case of the nucleus at rest in the laboratory, this formula is simplified by taking into

v

Incident direction

Figure 2.28: Diagram of the velocities after the collision: the neutron scattering angles in the
CM and in the laboratory frame are sketched.
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account the relations valid in the elastic scattering that allow to express vy and 17'; in terms of v;:

A 1
Uy Vo = v 2.2
T 70 and Vo=7 T AV (2.27)

— —
Uc:Uc:

The following relation between the angles in the two system references, independent of the

velocity, is obtained:

sin 6
tan @, = 761
cosf. + %

and from further geometrical considerations this formula is computed as

cosf), = L+ Asind (2.28)
l_\/A2+2Acos96+1 '

The relation in the laboratory frame between the kinetic energies E; and E] of the neutron before
and after the collision is computed starting from the cosine rule in the triangle v/vyv; applied to
the corner v/vg:

T = 02 + U5 4 201, cos b, (2.29)
Taking into account the relations and the energy Ej is computed as

o oA+ 2Acosf.+1

B A? +2Acosf.+1 E}  A?4+2Acosf.+1
= (1+ Asiné,)?

(14 Asiné,)? :>E_ (1+ Asiné,)?

— B = E, (2.30)

2
471 ) related to the mass A of the nucleus target, the
neutron kinetic energy in the laboratory after the collision is given by

and introducing the parameter a = (A L

E = %El[(l +a)+ (1 —a)cosb,] (2.31)

from which one can derive the maximum and minimum energy. Thus the neutron after the

collision appears in the CM with an energy range between [aEj; Ej]. «E; corresponds to the

minimum neutron energy and occurs when 6. = 7, i.e when the neutron is scattered backwards.

Otherwise the emerging neutron energy equal to E; occurs for ahead scattering, when 6. = 0.

In this case the neutron emerges with the same energy as the incident one. The o parameter is

actually the ratio between the neutron minimum energy after the impact and its incident energy:
E/

= —min 2.32
a=—p (2.32)

The energy of the scattered neutron depends on the emission angle in the CM. If the emission
is isotropic in the CM it can be easily obtained. If we denote by P(E — E’) the probability that

a neutron of incident energy E leads to an energy E’, it can be written as:
1
E(l-a)
P(E—E)=0 if E' <aF

P(E— FE')= if aFE<E <E
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p(E~ E)

(1-a)E,

[el= E, E,

Figure 2.29: Probability of a neutron to have a given energy F, between the minimum «FE; and
the maximum FEj.

Thus, in the elastic and isotropic scattering in the CM after a single impact, the neutron can
be scattered with equal probability at any energy E, in the range aF < E’ < E, as shown in
fig[2:29] Therefore, the average energy of the scattered neutron is:

aFE
E = / E'P(E — E')dE' = ! 1[E? —’E?| = %E(l + a) (2.33)
E

El—-a)2

From this formula we can calculate the average energy lost by the neutron as the difference

between the energy of the incident neutron and the scattered one:
- - 1 1
Eloss :E_E/:E_iE(l‘f'Oé) = §E(1—OZ) (234)

As we see the neutron looses its maximum energy on light nuclei and fewer and fewer as the mass
of the target nucleus increases as shown in table . On hydrogen neutrons lose an average
of half of their energy in a single impact, while only 11% on oxygen and even less on uranium
(approximatively 1%). This is the reason why the slowing down of neutrons is entrusted to
hydrogenated materials (water, paraffin, polyethylene, ...) and in general materials with low
mass number A as boron and carbon (graphite). Starting from expression that binds the

nuclei A « FEioss

H 1 0 0.5E

D 2 0.111 0.445E
C 12 0.716  0.143E
O 16 0779 0.111E
Fe 56 0.931 0.0345E
U 238 0.981 0.0095E

Table 2.4: Neutron energy losses on different nuclei of mass A together with the o parameter.

scattering angles in the laboratory and in the CM we can calculate the average scattering angle

89



Experimental Set-up DEMON

in the laboratory. In the case of an isotropic scattering in the CM , the laboratory scattering

angle is simply:

1 .
1 / 1+ Asiné,. 2 (2.35)

(cos i) = 2 1 E\/AQ +2Acosf,. +1 d(cos b) = 34
Thus, the average value of the cos6; in the laboratory is simply connected to the mass of the
target nucleus. The smaller the mass of the nucleus A, the smaller the scattering angle: for
A=1,(0;) =48 and if A = 238, (0;) = 89.8°. When A — oo, (¢;) — 5.
As a special case of neutron-nucleus scattering, we can consider the neutron-proton scattering.
In this case the same relations obtained previously for a neutron-nucleus impact are valid with

now A = 1. The previous relations become:

lab m 1 1.
vy = U] & U] = =0
O M T 1A 2
OM, oG- — = A gl
T AT T AT o
. 1 1
V.= —ip ~ — b A — =
c 0 1+Avl 2'Ul

Regarding the relation between the scattering angles in the CM and in laboratory they become

the following:

sin 6., sin 6, O
tand; = T = = tan —
cosf, + i cosf,.+1 2
Thus:
0
o ="%

0. varies between 0 and 7 whereas 6, varies between 0 and 7: there is no backscattering
of the neutron in the laboratory in the case of elastic scattering with a proton. Thus neutrons

always go forward in respect with the incidence direction.

All the kinematic relations developed above intervene in the simulation code presented in
chapter 3. In particular they were useful to test the output of GEANT 4 and to understand in

detail the behaviour of the simulation and experimental observables.

2.2.1.2 Pulse shape discrimination

The mechanism by which a fraction of the kinetic energy of the recoiling particles is trans-
formed into visible light in an organic scintillator is very complex. However, a few features can
be simply stated. The major components of the scintillator light decay in times of the order of
a few nanoseconds. This means that in principle, organic scintillators can operate at very high
counting rates. However, there is a weaker component of the radiation for many scintillators
that corresponds to delayed fluorescence. Consequently, the total light output can be repre-
sented as the sum of the two exponential decays referred to as the fast and slow components
of the scintillation. The slow component has a characteristic decay time in the range of a few

hundred nanoseconds. The fraction of the total light observed in this weaker slow component is
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a function of the type of particle inducing the radiation.
This mechanism will be presented more in detail in Appendix [A] dedicated to a R&D on a new

material for neutron detection carried out in parallel with the CORA experiment.

2.2.2 Electronics and data acquisition

DEMON’s electronics is based on the VXI standard. This electronics, novel and very powerful
when DEMON was built, allowed to tune in a very convenient way by computing at once the
different parameters of all the sixty individual electronic channels. As this electronics has now
become obsolete with the advent of the digital systems, there is no need to detail its operation
mode which can be found in reference [66]. Instead a digital FASTER module developed at the
LPC of Caen and used for the above mentioned R&D will be presented in Appendix [B}
DEMON has an independent acquisition system which allowed to combine the VXI electronics of
DEMON and the CAMAC and VME one of CODIS. To avoid the registration of v background,
the usual operation of DEMON needs a master trigger. The trigger module specially designed
for DEMON allows to select simultaneously different kind of events which will be registered. In

the CORA experiment, four trigger conditions were used:

— a coincidence of at least one CODIS signal validated outside and two DEMON signals;
a DEMON signal can come from a neutron or a . This condition constituted the main
trigger of the experiment

— a coincidence of two CODIS signals corresponding to the two fission fragments, sampled
by an important reduction factor (down scaling)

— any DEMON channel. This trigger was used for the DEMON calibration and switched of
during the real runs

— a pulse generator to check the stability of the CODIS electronics, operated with a low
counting rate not to increase the dead time.

To minimise the dead time DEMON works in an asynchronous mode. This means that any
individual DEMON signal starts its own time encoder. If the trigger validates the event, the
encoding of the corresponding DEMON parameters is pursued; otherwise the electronics is reset.

A common stop is delivered by the trigger signal after a given delay.realis

2.2.2.1 Electronics and data acquisition
Each VXI channel of DEMON encodes three quantities related to an outcoming anode signal
of an individual DEMON cell:

— TAC: a TDC (time-to-digital converter) allows to encode on 8K channels a time range of
about 800 ns

— Qto: the anode signal of a DEMON cell is integrated over its entire length by a QDC

(charge-to-digital converter) on a tunable gate set to about 350 ns and encoded on 8K
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— Qsiow: the slow component of the anode signal is also integrated with a delay of about
70 ns after the total charge. The gate is stopped at the same time as the Qy;’s one. It is

also encoded on 8K.

The integration principle and the parameters adopted are presented on the left part of fig. [2.30]
As the slow component of a neutron is very different from a -y one, for a similar total charge, the

Qtot-Qsiow correlation allows to discriminate the ’s from the neutrons as shown on the right

part of fig.

neutron neutron

slow charge

R ——
slow gate
—l 5 total gate -
¢~ 70ns; | total charge
: ~ 350 ns

- >

Figure 2.30: Diagram of the outcoming signals of a discriminating scintillator which indicates
the different slow components of a y-ray and a neutron together with the integration gates of
the signals (left part) and the resulting correlation between the two integrated charges, Qsow VS
Q+ot, which exhibits the neutron-v discrimination (right part).
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Figure 2.31: Qg0 versus Qo two-dimensional spectrum of an individual DEMON cell in the
CORA3 experiment.
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Figure 2.32: TAC signal: raw time of flight spectrum of a DEMON cell. The asynchronous mode
implies that the «s have higher TAC values than the neutrons.

Fig. shows a measured Q0w - Qtor Spectra of an individual detector in the CORA experi-
ment.
Fig. shows a raw TDC spectrum of an individual DEMON cell. As DEMON works in an

asynchronous way, the vs have a higher TAC value than the neutrons.

2.2.2.2 DEMON calibration

To exploit all the registered data, a number of calibrations are required in order to transform

the raw encoded data into physical parameters. The different stages of this operation are:

1. neutron-vy discrimination. As mentioned the scintillators made of organic liquid are
sensitive not only to the charged particles and neutrons but also to ~ radiation. For
the purpose of this thesis only the information carried by neutrons are important. The
DEMON detectors are placed in the air and the charged particles, possibly issued from
the fission reaction, have a low energy and do not reach the DEMON detectors in the
geometrical configuration used. Conversely, v radiation is detected and must be separated
from neutrons.

Instead of using the Qgow - Qior correlation to discriminate the neutrons from the 7’s, we
preferred to use the correlation Qo-Qratio, Where Qrqti0 is the ratio between Qg0 and

Q1ot after substraction of the pedestal of each charge:

Qslow - Qslowwdcsml

Qtot - Qtatpedestal

The left part of fig. [2:33] shows a typical spectrum of this correlation. One can observe two

Qratio =

(2.36)

well separated branches: the top one corresponds to the neutrons and the bottom one to
the ~s. For each of the sixty channels, a fourth degree polynomial is adjusted as shown by
the red curve from graphically chosen (Qtot - Qratio) couples. This polynomial defines the

region populated by neutrons. The particles identified as neutrons are plotted in the right

part of fig.
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The polynomial is obtained starting from the coordinates (Qot, Qratio) shown in fig.

1 3 107
25
10 2 10
=] =]
— - 1.5
o o
1 1 1
05
-1 -1
| Q 10
) 2000 4000 000 £000) Q 2000 4000 BOCO 2000
Q (cx) Q. (cx)

Figure 2.33: Left: Two dimensional plots showing the ratio between the slow and the total
components subtracted each by its pedestal versus the total charge Q. for a typical DEMON
cell. In red the polynomial obtained with the Vandermonde technique [67]. Right: Selection of
the neutrons in this representation.

in the following way:

— suppose that the interpolation polynomial is of the form:
p(x) = ana” + ap 12" + -+ ag2” + a1z + ao. (2.37)

— p(z) interpolates the data points p(x;) = y; for all i € {0,1,...,n}. If we substitute
these coordinates in eq. we get a system of linear equations in function of the
coefficients a;. The system in a matrix-vector form reads:

n—1 n—2 1

n

o T ) x( o Zo G, Yo
L n— n—

LA x] coooxp 1 {ap—1 Y1
n n—1 n—2

Ty xy xpy Ty 1 ag Yn

where (x;, ;) corresponds to the coordinates (Qiot;, Qratio;) chosen on fig. We
have to solve this system for aj to construct the interpolant p(z). The matrix on the

left is commonly referred to as a Vandermonde matrix. The obtained polynomial is:
Qratio = a0 + a1 Qrot + a2 Q7oy + a3 Q7y + a4 Qi (2.38)

To verify that the separation method adopted to select the neutrons works well and to

optimise this separation, especially for small charges where it is not possible to distinguish
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between neutrons and v’s and corresponding mainly to low energy neutrons, an additional
cut is applied on the TAC spectrum. Fig. shows the TAC histogram, in black and
blue respectively, before and after the charge discrimination is performed. The remaining
~’s of the blue curve are taken off by a cut in the TAC spectrum as shown by the red line.
The final neutron spectrum is shown in red. Combining these two methods, a satisfying

discrimination between neutrons and s is obtained.
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Figure 2.34: TAC spectra of an individual cell for all events (black), after the charge discrimi-
nation (blue) and after the TAC separation indicated by the red line (red).

2. Time calibration.
The TAC parameter provides also the time of flight of the neutrons from which the neutron
energy is deduced. For each cell, we must transform the raw time, the TAC ”'T” parameter
expressed in channels, in a physical quantity ”t” given in nanoseconds. The calibration

curve is written in the following form:
t;(ns) = b; — a; T;(channels) (2.39)

where the calibration parameters a; and b; of the curve are computed for each of the
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sixty cells. The negative value of the slope in the equation is due to the asynchronous
acquisition mode. This procedure reverses the time scale. The adjustment of the time
of flight is performed in two steps. First the TDC slope calibration is evaluated. The
slopes a; were calibrated with a time calibrator and determined with linear regressions as
t;(ns) = a; T;(channels). The linearity over the entire range of the TDC has been verified.
After, the intercepts b; were evaluated using the v peaks. The « times of flight are known
as they move at the light velocity and the flight distances have been deduced from a precise

measurement of the coordinates of each cell relative to the 252Cf source central point.

3. Neutron energy determination.
The energy of the neutrons is obtained by their time of flight. To calculate the neutron
energy, we need another ingredient. The interaction depth di** of a neutron in a DEMON
module has to be considered as the DEMON cells have a depth of 20 cm and the flight
distances are quite short, ranging from 60 to 95 cm. Thus we have to consider that the
flight distance of a neutron is d,, = D+d‘™ where D is the distance between the source and

int
n b

the input face of the cell. To computed the interaction distance d we have developed
an iterative algorithm based on MENATE [68]. The MENATE simulation calculates the
neutron interaction distance in a DEMON cell as a function of its energy:

1M, (dn\

The fundamental steps of the algorithm are:
— at the beginning of the procedure an interaction distance d‘"* is defined arbitrary;
— knowing the neutron time of flight ¢,,, the energy EY is computed from eq.

— a new interaction distance d‘"*1 # d"*0 is evaluated as the distance matching with

the Menate simulation energy EQ;

— starting from di"*! E! is computed. This new value is compared to the energy E
assigned to the previous distance di"*° predicted by MENATE.

The iterative process stops when the energies Ef*! and E* are close enough (5 < 1%).
When the convergence is realised, the estimated neutron energy is E, = E and the
interaction distance d* = dint:k. Fig shows the neutron energy spectra for the sixty
DEMON cells. They have been grouped following the vertical columns of the geometrical
mounting indicated on the top of the figure. One can notice that the different groups of six
detectors corresponding to each column have coherent behaviours: a maximum counting
rate for the central row and equivalent ones for symmetric layers, except for detector 12
which has been removed from the analysis. However, the method used for the neutron
energy determination is an approximation because of the scattering of the neutrons inside
the sensitive volume of the DEMON cells. Therefore, the distance d** does not correspond
to the real distance traveled by the neutron during the time t,,. Therefore we investigated

the possibility to adapt the backtracing method developed by P. Désesquelles [69, [70], still

96



DEMON

Experimental Set-up

#
ST

Efm#.ﬂﬁ__;%ﬁ_c:ff ._____iw_uﬁ

ey

e T, :
.Jlrvr_._uan_|rJ.r_._l

A2W 001

2| I3 o | o T
(NI | e e e T
L8l & & (o (o
(=1 (<) 0 = = P (= B ]
] (<] I | OO | IR [
58] ] [ ] 0 (=] 6D =] BRI+
50 o o [ e

T —

EDBIBIE@

—

common limits of the neutron energies taken into account: a threshold of 0.9 MeV and an upper

top of the figure. Similar columns are presented in the two figures. The vertical lines show the
limit of 10 MeV.

Figure 2.35: Energy spectra of the sixty DEMON cells grouped by columns as indicated on the
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based on the MENATE code, to compute in a more accurate way the neutron energy

spectrum.

Neutron energy determination with the backtracing method: The kinetic energy
of a neutron is determined experimentally by measuring its time of flight and flight
distance from the source to the detector. However, this determination is vitiated by
errors since the exact location of the interaction of the neutron within the detector is
unknown. Moreover, more than one interaction may be necessary for the deposited
energy to reach the detector threshold. As mentioned before one method consists
to determine the interaction distance di**. A more precise estimator of the neutron
energy is given by the backtracing [69] [70] procedures.

Very generally the backtracing approach searches for a solution to a problem among
all available options. It does so by assuming that the solutions are represented by the
vectors (v1, ..., v;) where every element must be selected in an ordered set of possible
candidates for the position i. When invoked, the algorithm starts with an arbitrary
vector. At each stage it extends the partial vector with a new value. When reaching
a partial vector (v1,...,v;) which can’t represent a partial solution, the algorithm
backtracks by removing the trailing value from the vector and then proceeds by trying
to extend the vector with alternative values.

The backtracking builds a tree of solutions where every vertex is a partial solution
and the branch goes from a vertex x to another vertex y. The vertex y is created
extending the partial solution of the vertex x. The leaves of the tree are the solutions.
In our particular case it consists in the determination of the energy distribution of
the neutrons emitted by a source, knowing the detected time of flight distribution
Pyet(t) and the response function of the detector Py, (¢|F). The method is based on

the inverse problem and is given by equation:

Paet(t) = Y _ Piim(t|E) Paou(E) (2.41)
E

where Piou(F) is the source distribution.

The estimator of the neutron energy E(t) is obtained by inversion of the simulated

detector response function Py, (t|E), and it reads:

oy _ S E Pan(tE) Paou(E)

E(t) = (2.42)
ZE Psim(t|E) Psou(E)
To compute E(t) an iterative method is applied. If k is the iteration number:
Pe(t) = Z-Psim(t‘E) Pe(E) (2.43)
E
Poni(E) = > Pu(Elt) Pac(t) (2.44)
t

B Piim(t|E) Py(E) Paes (t)
o Z szzt) :

t
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where Py (t|F) and Pyet(t) are given by the simulation and the experiment respec-

tively. Their normalisations are the following:
> Pim(t|E)
t
D Paei(t) = Y £(E)Piou(E) (2.46)
t

Il
()
—
S|
~

(2.45)

where e(F) is the detection efficiency and Py, (E) is the energy distribution of the

source we want to determine and which normalisation is:
Y Pou(E) =1 (2.47)
E

The initial distribution of the backtracing Py(E) can be chosen arbitrarily as men-
tioned before. Usually, the iterations start with a flat distribution. One has to check
that the Py (t) distribution converges towards Pyt (t) using, for example, the Kullback-

Leibler coefficient:

KLy = Pue(t) log ( ]ﬁz "“f&) (2.48)

which must tend towards zero.

The iterative procedure is stopped when AKL(k) = K Ly — K L1 is less than a limit
fixed by the user.

The details of this approach and its influence on the neutron energy spectra have given
rise to a publication which has been submitted and accepted by Nuclear Instruments
and Methods [71].

It has been shown that this method is more precise, especially for high neutron en-
ergies. But in our case, to optimise the algorithm development and computing times
and given that the energy of the neutrons were not really used in our analysis, we

decided to apply the more simpler method presented previously.

4. Common energy threshold determination.
The energy threshold of each individual DEMON cell has to be determined in order to set
a common neutron threshold. This is necessary to take into account the intrinsic efficiency
of DEMON. The experimental threshold has to be known also for the simulations presented
in chapter 3. The threshold energy is determined by using known radioactive ~ sources:
22Na and '37Cs. DEMON detectors do not provide distinctive photopeaks of the type that
are normally used for 7 spectroscopy, but only the Compton edge is recognized for these
sources. The emitted light depends on the energy of the detected particle and on its charge
Z. The light output produced in an organic scintillator is greater for an electron F._ than
for a recoiling proton E,. The energy required to have 1 MeVee of light is by definition

generated by an electron of energy equal to 1 MeVEl The empirical relation between the

2. Because of the dependence of the light yield of the organic scintillators on the particle type, a specific
nomenclature is used to describe the absolute light yield. The term MeV equivalent electron or Me Vee is introduced
to place the light yield on the electron absolute basis. From [53].
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Figure 2.36: The deposited energy calibration fit for the 60 DEMON cells is shown.

or incident neutron) and a Compton electron (or incident )

energy of the recoiling proton (

is given by

(2.49)

0.73267

e—

0.14505 4 0.017068.E

E, =

The energies of the Compton edges of those sources, given in tab. allowed to obtain the
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Figure 2.37: Energy thresholds of the sixty individual cells given by the total charge Q:,: in
keVee (top) and transformed into neutron energy (bottom).

energy calibration in keVee of the total charge Q¢ for each cell. They were taken at 60%
of the maximum of the Compton bump. A linear fit is applied on the three v values and

gives the relation between Q¢ (channels) and Qo (keVee).

Fig shows the calibration curves obtained for the different cells. One can notice that

the responses of the sixty cells are very different.

The common threshold is then determined as shown in fig. It is given by detector 14
which has a threshold of 179.2 keVee corresponding, as shown on the bottom figure, to a
neutron energy threshold of 0.9 MeV. Detector 10 which had a very high threshold was

excluded from the analysis.

The energy threshold set on the total charges Q,; and corresponding to the interaction
threshold inside the DEMON cells is completed by an energy threshold set on the neutron
energy deduced from the time of flight and set to the same value, 0.9 MeV. To consider

the same energy range for each cell an upper common limit has also been set at 10 MeV.
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Source | E,(keV) | Compton edge E.-cympion(keVee)
511 341
22
Na 1274 1062
137Cs 662 47T

Table 2.5: Radioactive v sources used for the calibration of the detection threshold of DEMON.
For each of them are given the energy of the v photopeak and the energy E.-compton corre-
sponding to the Compton edge.

These two limits are indicated by the red lines on fig

5. Neutron angle determination.
The neutron angles are given by the central angles of each DEMON cell. The central posi-
tion of each DEMON cell has been measured with a high precision. The central distances
and the 6 and ¢ angles have been deduced from the (x,y,z) measured coordinates relative
to the central point of the 252Cf source. Fig. shows the neutron angles in a fcos¢ -
fsing plot which gives a pseudo-projection of the DEMON sphere on a vertical plane.
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Figure 2.38: DEMON angular coverage in the fcos¢ - 0sing plane. From this representation
emerges the coverage edge of each DEMON cell. The z-axis presents the experimental neutron
yield hitting a cell. The number of the VXI identifying each DEMON cell is indicated.



Chapter 3

Simulations

As the CORA experiment is a multiple parameter experiment, considering DEMON as well

as CODIS, it is very complex. Moreover the physical effects we are looking for are very weak.
Thus careful and detailed simulations are mandatory.
To study the neutron emission a general-purpose and extensible software to accurately simulate
neutron distributions emitted in the spontaneous fission of 2°2Cf has been developed. The Monte
Carlo simulation is based on a simple evaporation model with the possibility to introduce the two
mechanisms we are interested in, namely scission neutron emission and/or dynamical anisotropy
in the CM of the two FFs.

These simulations have the purpose to study all the effects of the experimental filter:
— geometrical acceptance
— pileup

DEMON detection threshold

— intrinsic detection efficiency of the DEMON detectors

— neutron cross talk

central DEMON angles influence

Taking into account all these effects, the different distributions 6,,,,, ¢nn and 0, are simulated
with the possibility to play with the parameters which quantify the contribution of scission

emission and/or dynamical anisotropy. In this way it is possible to simulate different cases:

— pure isotropy

— introducing scission and/or anisotropy as predicted by theory [36] but also with various

relative importance, including unrealistic high values.

This will allow to get a good feeling of the behaviour of these two mechanisms. The results of
these simulations will then be confronted in the next chapter with the experimental distributions

presented in chapter 2.
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3.1 Introduction

The development of a simulation toolkit based on GEANT4 [72,[73], ROOT [74] and MENATEr
has been adopted as a strategy to investigate the emission of the neutrons by the fission fragments.
The GEANT4 code allows to define the CORA neutron detector configuration and to trace the
neutrons. Once the neutrons emission along the fission process has been defined, GEANT4 pro-
duces complete further kinematical and dynamical information on the emitted neutrons, such
as time, position, energy, momentum, etc. To track then the neutrons inside the detectors, the
MENATER code has been integrated into GEANT4. MENATEg is based on MENATE, a code
initially developed by P. Désesquelles [68] in FORTRAN language and adapted for C++ by
B. Roeder [75]. This code is especially well adapted to describe the neutron interactions in the
DEMON detectors as it considers with high precision all the reaction cross sections in NE213 ma-

terial. It allows to estimate with a high accuracy the intrinsic efficiency of the DEMON detectors.

All these ingredients are interlinked within the GEANT4 libraries and used in conjunction
with a specific Monte Carlo transport code and provides an event-by-event list of neutrons for
the 2°2Cf fission process.

This code is data-driven as it incorporates also experimentally measured parameters at low

energy fission obtained from literature and which were necessary to develop the simulation.

3.2 General features of the simulation toolkit

In each simulation a number of events were generated constituted of a fission axis, defined
by the polar and azimuthal angles isotropically distributed and covering a 47 solid angle, two
fission fragments, labeled as light (LF) and heavy (HF) and a number of emitted neutrons having

specific angular distributions with respect to the fission axis.

Fission axis

To define the fission axis a random point on the surface of a unit sphere is picked. To that
purpose two random variables u and v are chosen in the (0,1) interval. Then the fission axis

plane is defined following the equations:

¢ =2um [0, 27) (3.1)
cost = (2v —1) [-1,1] (3.2)

Since the area element df) is defined as:

dQ = sinfdfde
= d(cos0)do,
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where () is the solid angle, these two quantities have to be used instead of simply 6 and ¢. By
selecting the spherical coordinates 8 and ¢ from uniform distributions ¢ in [0, 27) and 6 in [0, 7,

points picked will be “bunched” near the poles.

Fission fragments

Following the standard convention, the light fragment has the fission axis direction and con-

sequently the heavy one has the same orientation but with the opposite sign. With these pre-
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Figure 3.1: In the upper part of the figure the simulated correlation matrixes respectively in
the cosOyp vs cosOpr and ¢y r vs ¢ planes are shown. The histograms show the correctness
of the simulations. The left figure shows that 6y r and 05 are perfectly anticorrelated. From
the second matrix of correlation on the right it is easy to deduce that the difference between
the angles ¢gp and ¢pp is equal to 180° as expected. The bottom part shows that both the
simulated LF (left) and HF (right) are emitted isotropically in the 47 space. One can notice also
that these matrixes are coherent with the corresponding experimental ones presented in fig.
of chapter 2.
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scriptions, the fragment velocity vectors are set with the magnitude obtained from literature
averaged values. All the parameters characterizing the two fission fragments of 252Cf are given

in table[3:] The simulated spatial fragment distributions and their main features are sketched

Parameter LF HF

v (cm/ns)  1.355 1.022
T (MeV) 091 0.93
<v> 2.056 1.710
o 0.94 1.07

Table 3.1: In the table are shown the fission fragment parameters adopted in the simulation
code.

in fig.

In the simulation code, fission fragments are virtual particles, they were not traced by GEANT4,
they are only used to set the initial conditions for the neutron emission. The FF's velocity vectors
are necessary to compute the neutron angular distributions transformation from the FFs CM to
the laboratory frame and also to study the neutron-fragment correlation.

Another necessary quantity is the fission fragment spin. It is assumed that each FF has a spin J,
which is strictly perpendicular to the fragment flight direction and isotropically distributed in

the perpendicular plane to the fission axis.

Neutron emission

The neutron multiplicity for each fission event is randomly taken from a gaussian distribution.
The mean values of the multiplicity for each fragment and their standard deviation is given in
table To respect the realistic total multiplicity of 252Cf these two distributions have to be
correlated as will be described later. In this way a total number of neutrons per fission event is

computed by adding the multiplicity randomly sampled of each FF.

Initial corrected final
A v A, Ve Vee

LF 1 206 0975 200 2.05
HF 1 171 0935 160 1.72

<;§2tglf) 3.76 3.61  3.76

Table 3.2: The table indicates the initial areas A and the mean values of the multiplicity gaussian
distributions, the corrected ones as explained in the text for both the light and the heavy frag-
ments. The final mean multiplicities are also indicated as well as the resulting total multiplicity
at the different steps of the procedure.
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Figure 3.2: Flowchart representation of the algorithm adopted to simulate the neutron cascade
emission. The emitting FF, LF or HF, is assigned to every prompt neutron.

After that the cascade emission is simulated. This procedure is sketched in fig. [3:2] The first step
consists to define an emitting fragment; as a consequence its complementary fragment is set to
a‘“non-emitting” status. This design allows to store together with each neutron, the properties of
its source such as the position, the type, etc... . The emitting fragment evaporates neutrons until
its assigned multiplicity is reached. When this happens the remaining neutrons are issued from
the complementary fragment, which changes its status to the“emitting” label. The evaporation
process stops when the total multiplicity is reached. Each neutron is emitted according to a
specific polar angular distribution with respect to the FF spin J in the CM system as expressed
by formula [I.9] The coefficient A,,; of formula can be set to zero in the case one wants to

consider an isotropic emission. The azimuthal ¢,, angle is generated randomly in the [0°, 360°]
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range in the fragment CM frame also with respect to the spin axis.
The transformation from the CM to the laboratory system requires also to set the neutron ve-
locities which are defined by the neutron energies generated according to a Maxwell distribution.

This procedure will be discussed in more details later.

Up to now we considered only neutrons evaporated by the fully accelerated FFs. The pos-
sibility to emit scission neutrons has now to be introduced. In the simulation code a certain
fraction wge; of the total multiplicity is set. Unlike prompt neutrons, this component is emitted
isotropically in the laboratory and no coordinate system transformation is needed. In the simu-
lation the scission neutron source is set to the 252Cf source which is placed at the origin of the

laboratory coordinate system.

All these ingredients characterize the neutron emission and constitute the primary vertexes
required by GEANT4 to trace the neutrons and by MENATER to take into account the inter-
action in the detectors. Each DEMON detector is represented by a cylinder 16 cm in diameter,
20 c¢m in length and constituted exclusively of NE213 liquid scintillator. The sixty detectors are
placed according to the real experimental geometry. Vacuum is considered instead of air. This
approximation has little influence on the results. No other materials constituting the detectors

as glass and steel were considered. Neither were the structures supporting the detectors.

3.3 Simulation details

3.3.1 Neutron multiplicity distributions

As already mentioned the number of neutrons per fission event is randomly sampled for each
fission fragment. Based on the J. Terrell’s [76] assumptions, the probability P(v) to observe
v neutrons emitted by a fission fragment can be approximated by a Gaussian-like distribution.

Thus the probability density integral is:

- 1 v=rtgtb V-
Z P(v) = —%/ e~ 7 dt where t= . (3.3)
n=0 2 -0 g

where 7 is the average number of emitted neutrons, ¢ the width of the distribution and b a
small correction factor (b < 0.01) which ensures that the discrete probability distribution has
the correct average.

Following this prescription in the simulation the number of emitted neutrons per fission is ran-
domly chosen by a two-dimensional gaussian distribution P(v), as presented in fig. knowing

the individual mean multiplicity of each FF and the empirically defined covariance as follows:

Plv) = —L 325 ) (3.4)

21/ ||
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where 7 is the two-dimensional vector of the mean values 7, and Pyp of the random variables

Ve and Vygp:

and ¥ is the covariance matrix:

2
OLF HF Our

2 2 . . .
where o7, and o;, are the variances of the random variables v r and vgy and opp g is the

covariance of v and vy defined by the following equation:
20 p up = 0'(2:;- - OEF - 012{F (35)

where o2, is the 252Cf multiplicity distribution variance.The correlation coefficient of the variables

Ve and vye is defined as
o= OLF HF (3.6)

OLF Onur

Experimentally an appreciable anticorrelation has been highlighted in various works: when the
light fragment neutron multiplicity increases the heavy one decreases. Vorobyev [77, [78] mea-
sured a covariance value of about —0.21 in the spontaneous fission of 2°2Cf. J. R. Nix and
W. J. Swiatecki [79] pointed out that this anticorrelation comes from the asymmetric distribu-
tion of the excitation energy between the two fragments.

The simulation code generates the multiplicities v and vy for the light and heavy fragments
as shown in fig.

To generate randomly the latter quantities, the “‘NORMCO” procedure was coded. NORMCO [80]
is a method to transform two random variables into a pair of bivariate normal numbers with a

prescribed covariance matrix.

As the mean multiplicities 7, and Dy for 2°2Cf are quite low, the probability to sample
negative numbers of neutrons is not negligible. This situation would even be worse in the case
of 235U for which the total multiplicity is smaller. To generate neutrons, the simulation code
requires only positive values. A rough solution would be to truncate negative values. But this
would lead to a bad total multiplicity with a too high mean value.

To accurately reproduce the 2°2Cf neutron multiplicity distribution minor modifications have
been applied to the gaussian of formula[3.4 First, to avoid negative multiplicities, the negative

tail of the gaussians is truncated. After, a new corrected gaussian area A. is computed as

vV —v

A, = / Te%at wh )
e = — e 2 dt where t= 3.7
V21 Jo (

The corrected centroid 7. is computed in the following manner:
727
R 3.8
iy (3.8)
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Figure 3.3: The upper left figure shows the matrix correlation between v, and vyr. The projec-
tions are obtained applying the NORMCO procedure with the corrected average multiplicity as
illustrated in formula[3:8] The projections are still normal distributed and the average multiplic-
ities and their standard deviations are respectively for the light and heavy fragments: [Dpr =2.05,
orp = 1.02] and [Dyp =1.72 ,o4r = 1.01], whereas the correlation factor is equal to p = —2.14.
The pink distributions shows the resulting distribution before and after the corrections explained
in the text.

where A is the the integral of the probability density pr(t):

+oo
A= / pr(t)dt =1 where pr(t)= \/]5_677. (3.9)
oo T

This procedure leads to new values . for both fragments, which are given in table [3.2] Fig.[3.3]
shows the correlations between these corrected quantities. One can notice in table that the
corrected mean values are lower than the true multiplicities. Also, as can be seen on the projec-
tions of fig. [3.3] the distributions still present some negative values. But thanks to this procedure,
cutting now the negative values, the resulting mean values of the remaining distributions, 7.,

will be close to the true mean multiplicities as shown in table
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Figure 3.4: Flowchart including scission neutron emission. In the upper part 7 r and Uy are
recomputed to be proportionally reduced by the frequency of scission neutron emission wsgc;.
After, the NORMCO method is applied to the reduced multiplicities 7/, and 7},,.. In the bottom
part, the workflow describing the scission neutron emission shows the probability psc; to emit a
scission neutron. The decision is sketched in the diamond, representing the parametrization of
the random generator with pgc;.

Scission neutron emission

Up to this step only prompt neutrons emitted by the FF's have been considered. As mentioned
previously, in the simulation code scission neutron emission is also implemented. This is done
in the following way. If we consider a certain occurrence wge to have a scission emission, this

means that the scission neutron multiplicity 7., is expressed as
Vsei = Vot Wsci (310)

The latter formula means that the average fission neutron multiplicity #,,, = D¢ should be pro-
portionally reduced by wge;. Thus after adding 7,.; scission neutrons the total mean multiplicity,
Uer ~3.76 n/fission, will be:

Vyor = Uy + Vg + Vs (3.11)
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To fulfill this constraint the reduction will be propagated on each fragment proportionally as it
is presented in the upper part of the flowchart of fig.

For example if we take wy; = 0.08, as considered in different works, 92% neutrons will be
fission neutrons and 8% will be scission neutrons. In the simulation only integer number of scis-
sion neutrons can be generated. In this example this number can be 0 or at maximum 1. Thus
a scission neutron will not be emitted at each event. In the 252Cf fission, 3.76 neutrons/fission
at average are emitted. Among them pge; = 3.76 - 0.08 = 0.30 neutrons/fission, will be scission
neutrons. Thus about every third event will contain a scission neutron. The ps.; parameter is
used to parametrise a random sampling on a uniform distribution ranging from 0 to 1. In other
words following the flowchart of fig. if this random number is smaller than pgj, one scission
neutron will be emitted and v,;=1; otherwise v,;=0. The workflow adopted in the simulation

code in case of scission neutron emission is sketched in fig.

This small probability ps; =0.30% in the case of wy; = 0.08 is justified by the fact that the emis-
sion of neutrons from the neck before fission is a quite improbable process. The main argument
that supports this assertion is based on the time scales. For an excitation energy of a system of
about ~ 10 MeV the evaporation of a neutron takes ~ 10~'8s. This time is much longer than

the time involved in the descent from the saddle to scission which is about ~ 10~29s.

In chapter 4 different values wg; will be introduced in the simulation and confronted with

the experimental results.

3.3.2 Neutron energy distributions

The CM neutron distribution is represented, following K. J. Lecouteur and D. W. Lang’s

prescription [82] by:
"
() ~ g e, (3.12)
Teff

where Teg =~ Trr and Tyr is the daughter nucleus temperature and 7 the neutron energy in the
fragment CM. In the specific case of one neutron emission in the CM of the moving fragment
A =1 as was derived by V. F. Weisskopf [27] in 1937. For a cascade emission K. J. Lecouteur
and D. W. Lang in 1959 established that A ~ /5.

In this work the cascade emission of fission neutrons is simulated in this way. Thus the neutron
CM energy of the cascade emitted by a fully accelerated fragment at a given temperature Tgp

is sampled over a Maxwell distribution as

p(n) ~ e (3.13)

Fission neutrons are emitted in the frames of the fully accelerated fission fragments thus the

transformation of the CM spectrum to the laboratory frame is done by taking into account the
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Figure 3.5: Neutron energy distributions in the CM of FFs and in the laboratory system are
shown. a) presents the Maxwell energy distribution of fission neutrons in the CM. The maximum
yield energy nma. =~ 0.4 MeV. b) Schematic description of the coordinate system transformation.
The transformation from the FF CMs to the laboratory system by adding the velocity of the
fission fragments to the velocity of each neutron will lead to a kinematical focusing along the
fission axis as well as to an enlargement of the energy spectrum. ¢) The plot shows the neutron
energy distribution transformed in the laboratory frame. The distribution appears larger then
the CM one and the maximum yield energy EZ% shifted to ~ 0.74 MeV, which is very close to
the value usually assigned to the maximum yield energy in literature is E/% = 0.71 MeV [81].
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average velocity vpp of FFs as follows

2 2 2 2 2
VER = Vip + Von + 2Viap Ve €osOlab, (3.14)

1
as sketched in fig. [3.5(b)l The energy n = §mvgm

and velocity Ve of fig. [3.5(a)|is transformed into the laboratory spectrum of fig. [3.5(c)|

To move from the CM system to the laboratory frame the assumption that the fission fragments

spectrum in the CM of a neutron of mass m

average velocities vpp are unchanged by the neutron emission is used. This approximation is
reasonable as was pointed out first by W. E. Stein [83] and after by J. Terrel [84]. J. Terrel
computed the velocity vi% obtained by adding to the initial fragment velocity vpg the recoil
velocity % Vem due to the neutron emission with a CM velocity vy, at angle 6., by a fragment
of mass M*: )

Vi = Vip + (%ch) — (2%ch VFF) coSBem (3.15)

Averaging along the neutron cascade the latter equation, the following expressions are obtained:

() = Ve (o) (V2 (3.16)
and
2
(Vip) = vrp |1+ % <M*H\1/FF> (Vi) — ] (3.17)

Since vip and v2,, are of the same order of magnitude, (v}.) differs only of about 0.01% from

the average initial fragment velocity vgg.
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Figure 3.6: Scission neutron energy distribution.
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To add the scission neutron component it is assumed [28] that they are emitted by a stationary
source in the laboratory frame. As mentioned in section [3.3.1] simulation provides at maximum
one scission neutron with a certain fraction wg,. Thus scission neutron energies are sampled
from a Weisskopf evaporation [85] distribution as already mentioned above, of the form:

E

—“sci

QD(ESCi) ~ Egej e Tsei (318)

where Ty is the temperature of the nucleus at the scission point. Figl3.6] shows the obtained

scission neutron energy distribution.

3.3.3 Parameters used in the simulation

The inputs used to simulate the fission neutrons from the spontaneous fission of 2°2Cf are,
as already mentioned, the FF average velocity vpp and temperature Tgg, the average neutron
multiplicity 7 and its standard deviation o of each fragment, sketched in table

Neutron multiplicity features of fission fragments
We have used the average number of emitted neutrons, the standard deviation and the
correlation values to infer the number of neutrons emitted per fission event. These data
are defined experimentally in Vorobyev’s work [78] on fission neutron emission in the spon-

taneous fission of 2°2Cf. The correlation value used is p = —0.21.

Average fragments velocities

The average fragment velocities weighted with the real neutron multiplicity ver [86], are
used to assess the neutron emission in the laboratory frame. The fragment velocity gener-
ally found in literature vp,p=1.367(6) cm/ns and vgr=1.034(4) cm/ns as given in [61] are
deduced from < Epp/Mpp > where Erpp and Mpp are the final kinetic energy and mass
of the final FFs after evaporation. These values are averaged over all possible neutron
multiplicities, including zero. The trigger used in the CORA experiment considers only
events with neutron multiplicities higher or equal to one.

The velocities in table proposed by Vorobyev, take into account these considerations.

Fragment and fissioning system temperatures
The fission fragment temperatures are taken from N. V. Kornilov who measured mean
neutron energies of fission fragments. The mean neutron energy according to formula |3.12)
is:

) =1+ NT (3.19)

Thus it is easy to deduce the temperature T for each fragment.

In our simulation the temperature of the two fission fragments are slightly different in con-
trast with those of most of fission models which assume that the total excitation energy
TXE is shared between the two fragments according to equal final temperatures. However

only the intrinsic excitation energy available at scission is shared between the fragments
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according to statistical equilibrium. The other form of energy such as deformation and
collective energies is dissipated into intrinsic excitation energy after scission, when the
fragments are no longer in contact [87].

The temperature Ty; = (1.2+£0.1) MeV used to compute the scission neutron energy distri-
bution is a fit result on neutron-neutron correlations with seven different energy thresholds
performed by Gagarsky et al [34]. This temperature is close to that employed in Pringle’s

work [88], Tse; = 1.3 MeV to obtain neutron-neutron correlations.

3.3.4 Anisotropy function

Up to this point only scission emission has been introduced in the simulation. Let’s now
consider the dynamical anisotropy in the CM of FFs.
The anisotropy is well parameterized by formula Starting from this equation the following

function is obtained expressing the cosine dependence:
W(z) =14 A,, (1 —2?), with z= cosf,, (3.20)

where 6,; is the neutron polar angle relative to the spin axis. Setting A,, to a non-zero value
the anisotropy emission is obtained.

Following formula [3.20] a random number between -1 and +1 is attributed to cosf,;. The
isotropic case is easily reproduced by setting A,, = 0. The formula[3.20]is reduced to equation[3.2]

of the isotropic emission.

.transformation ©; > 8

random:
- W(cos(©,)) = rndm(1 + A, ; (1-cos?(©,;))
- b, = rndm(2x)

Yo A
1
' cos(@,1)
Ga O
1 /

Figure 3.7: Transformation of neutron CM angles relative to the FF spin J into the angles relative
to the fission axis FF.
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The azimuthal ¢,, angle is simply generated randomly in the [0°,360°] range. These emission
angles are expressed relative to the spin axis and have to be transformed into the fragment CM
frames where the z-axis coincides with the fission axis. This transformation is sketched in fig. [3.7}
As shown in the figure, a first rotation of 6, ; is performed around the fission axis, followed by
another one of ¢,; around the spin J. These rotations will lead to the spherical coordinates 6, g
and ¢,pp relative to the CM frame.

To complete the simulation the anisotropy is added to the code according to formula [I.9] as
shown in fig.[T.16] The anisotropy effect appears to be very weak, in the neutron-neutron relative
angular distribution, as one can observe in fig.[[.16] This observable is thus not the most suitable

to investigate the dynamical anisotropy.

3.3.5 Some computing features

To run GEANT4 the user must provide three classes: the PrimaryGeneratorAction, the
PhysicsList and the DetectorConstruction as sketched in fig. [3-8]

PrimaryGeneratorAction

For spontaneous fission a special PrimaryGeneratorAction is coded. When GEANT4 needs
to generate particles, it calls the method PrimaryGeneratorAction::GeneratePrimaries.
The latter method calls in turn the SpontFiss::GeneratePrimaryVertex method. The class
SpontFiss generates spontaneous fission neutrons. The latter class sets the primary vertex
to the 252Cf position, putting it at the origin of the coordinate system in the laboratory
frame. In this method, also the neutrons are added to the stack of primary particles. They
are defined as G4DynamicParticle, setting in the prototype class the definition of the parti-
cles (neutrons), their emission momentum and their energy. If a scission neutron is emitted
its trackID is by default equal to 1 and its source is set to 2°2Cf. In this case for fission
neutrons the trackID will start with a value greater than 1 and their information stored
together with the emitting fragment properties. The SpontFiss class is a class derived
from SingleSource to construct the process used to generate the emitted particles and their
emission features.

In the standard operation of GEANT4 an event corresponds to an individual emitted par-
ticle. In our case an event corresponds to the spontaneous fission with several emitted
neutrons. Thus the SingleParticle class is designed to extend the G4ParticleGun class to
that functionality. It is used by the General Particle source class and it is derived from

G4VPrimaryGenerator. Its class establishes the primary vertex.

DetectorConstruction
The DEMON geometry is set with simple placements (G4PVPlacement) and a rotation
matrix. The detectors are defined as sensitive. The hit is filled with the track information
such as position, momentum, energy, particle type of the track, etc... . In this way every
hit is stored in a hits collection. They are also defined as touchable. This functionality for

a given volume provides a unique identification of each DEMON cell. Each detector, which
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is recognized by its experimental VXI ID, is defined as a geometrical entity which has a

unique placement in the detector description.
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Figure 3.8: Workflow representation of the computing algorithm.

To have information about neutrons that don’t interact inside the DEMON cells also the stepping

action is coded, which allows to follow step by step the complete track induced by the neutron.

3.4 Simulated distributions

As presented in the previous chapters we are interested mainly in three distributions: 6,,,,
Onpr and ¢,,. Before, all the simulated primary observables, neutron energy and angles, pre-
sented in fig. have been compared to the experimental ones of figs. and to check
the coherence of our simulation.

The cos#,,, distribution where 6, is the relative angle between two any neutrons and it is
computed as the scalar product of their unitary velocity vector by applying the ROOT function
Angle().

In the same way the cosf,rr is computed as the relative angle between each emitted neutron
and the LF fragment. Also in this case the ROOT function Angle() is applied.

The innovative point we are looking for in our work is the distribution of the ¢, angle between

two neutrons in the plane perpendicular to the fission axis as presented in chapter 1 and above.
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Figure 3.9: Left: The simulated energy spectra of the first 6 DEMON cells placed on the column
placed at 6 = 144° for illustration. The red line stands for the common energy threshold. Right:
DEMON angular coverage in the 8sing vs fcos¢ plane. The z-axis represents the neutron yield
hitting a cell. Also the number of the VXI identifying a DEMON cell is indicated.

Figure 3.10: The two rotations of the neutron vector v, are sketched. These rotations are
necessary to project all the fission axes with the associated neutrons on a single axis, the Z-axis

in the laboratory.

For each fission event the fission axis is rotated in order to coincide with the fixed laboratory

Z-axis. For that two rotations are necessary. First, we define the vector O perpendicular to

the (fission axis, Z-axis) plane as sketched in fig [3.10] Then a first rotation of the angle Opp is

performed around this axis. A second rotation of the azimuthal angle ¢ of the resulting vector

is performed around the Z-axis. The same operations are applied to all coincident neutrons.
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After that, the ROOT function DeltaPhi() calculates the

neutrons.

These three distributions are presented in fig. [3.11]
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Figure 3.11: Initial simulated distributions without any scission nor anisotropy.

120



Simulations Effect of the experimental set-up

3.5 Effect of the experimental set-up

The effect of the experimental biases on the cosf,,, ¢n, and cos#,r simulated neutron

distributions are studied.

Geometrical acceptance

Figure 3.12: Simulated DEMON geometrical configuration adopted in the CORA experiment.

First the impact of the DEMON geometrical acceptance on the three distributions is analysed.
Fig. compares the distributions before (black curves) and after(yellow curves) taking into
account the geometrical acceptance. Testing the geometrical acceptance means that a neutron
is able to reach a detector. The DEMON configuration adopted in the CORA experiment covers
a solid angle of about 16,4% of 47w as presented in fig At this stage, for the cosf,r
distribution where only coincidences between one neutron and the light fragment are computed,
the count loss is about 15.9%. A more significant loss of counts is observed for the cosf,,, and
@nrn distributions, due to two neutron coincidences. Only about 2.7% of the initially simulated
counts remain. It is also observed that passing through the DEMON geometrical configuration,

the filtered neutron angular distributions are transformed in shape by the geometrical acceptance
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effect (yellow filled curves) as appears well on the right part of fig. Only the cosf,,rr curve
remains practically unchanged. This is due to the fact that at this point CODIS is assumed to

have a 471 acceptance.

Pileup

In the experiment pileup events have to be taken into account especially as the DEMON dis-
tances are quite small this effect may be not negligible. In the experiment two different neutrons
interacting in the same DEMON cell are treated as one. In the simulation analysis the same
procedure is followed. The simulation code allows to identify pileup events. Thus the analysis of
the simulated data can be performed in the same way. The blue filled curves of fig. [3.14] represent
the (a) cosbpn, (b) cosb,rr and (c) ¢, filtered distributions after the pileup treatment, and
they are compared with the previous distributions (yellow curves) where only the geometrical
acceptance was considered. As expected in the cosf,,,, and ¢, distributions the pileup is mainly
concentrated at 6, and ¢,, close to zero. The widths correspond to the angular apertures of
the DEMON cells. For the cosf,,r distribution the pileup is sprinkled along the full range.

The number of counts after the pileup treatment is 99.2% for cos,rr and 97.6% for the two
others. These differences are mainly due to the following reason. In the cosf,rr distribution
only one correlation is added for each pileup event whereas in the two other distributions the
situation is more complicated and more correlations are added for one pileup event. These ad-

ditional correlations can be analytically estimated.

In statistics the number of neutron pair correlations are called simple combinations. Combina-
torics look at the number of possibilities to pick k& objects from a set of v in which the order
of the components doesn’t matter and without repetition. In neutron-neutron correlations the
number of picked objects is k=2 and the combination of 2 elements on 2 neutron strings picked

from a set of v emitted neutrons is formulated in the following manner:

V!

Cok = W =R (3.21)
If a pileup neutron is “added” to the set of v neutrons the combination becomes:
V'
Cypj= W —h) where V' =v+1 (3.22)
Rewriting the latter equation as a function of v and taking k=2 the formula becomes:
Cory, = M (3.23)

The number of pairs added by taking into account one neutron more to the neutron-neutron

correlation distributions is:

np=-rtl Ty (3.24)

122



Simulations Effect of the experimental set-up

45010 e
-a) soco
400
— simulated distribution 5000
350 [ geometrical acceptance

| 08 06 04 02 0 02 04 06 OB 1
300

250 /

200
150

-08 -06 04 02 0 02 04 06 08 1
cosh,,

Yield (a.u.)

100
50

HI‘HH‘IHI‘I\H'IHI'H\ ‘II\I‘HI\‘IHI

T T[T [TT T[T TT T [ IATT [T

=]
-

3
400°10

— simulated distribution
300 [ geometrical acceptance

Yield (a.u.)

08 -06-04-02 0 02 04 06 OB |

R —— —~ﬂ--li
-1 -08 -06 -04 -02 0 02 04 06 08 1

cosb, ¢
-150 -100 50 0 50 100 150

4, (deg)

w
o
o
T X
O =
-~ Q,

LA L B L B
— simulated distribution
[ geometrical acceptance

Yield (a.u.)
N
(4]
7

J;l_LIJl\JlJ{JLILIIIIJJJlJ‘

I\Illl\l\l\l\l‘\flfllll

0 -150 -100 -50 0 50 100 150

0,.(deg)
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(¢) ¢nyp initial neutron distributions (black curves). The filtered neutron angular distribution are
represented in yellow filled curves. Shape differences induced by the geometrical filter appear in
the inserts.
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Figure 3.14: The simulation code allows to recognize the pileup effect.The blue filled curves
represent the cosf,, (a), cosb,rr (b) dnn (c) filtered distributions after the pileup treatment
and are compared with the previous distributions (yellow curves) where only the geometrical
acceptance was considered. As expected in the cosf,,,, and ¢, distributions, the pileup is mainly
concentrated at 60,,,, and ¢, close to zero, the widths corresponding to the angular apertures of
the DEMON cells. For the cosf,,;r distribution, the pileup is sprinkled along the full range.
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Figure 3.15: In the experiment the neutron energy threshold is fixed at £, = 0.9 MeV. In the
simulation analysis the same threshold value is taken thus all incoming neutrons with an energy
smaller then this cut off are erased. A significant loss of counts is observed (red filled curves)

along the range for all (a) cosfy,, (b) cosf,rr and (¢) ¢y, distributions. The cut off has almost
no influence on the distribution shapes.
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The detection of a neutron is performed in two steps. First a neutron transfers all or part of
its kinetic energy to the charged particles in the detector material which produce the detection
signal. The neutron must have an incoming energy high enough so that its energy loss during
these interactions reaches at least the energy threshold. In order to avoid the generation of useless
neutrons we set the cut off of the incoming neutron energies at 0.9 MeV which corresponds to
the experimental threshold. Applying this condition the number of events remaining is about
73.8% in the cosb,, and ¢,, distributions and 76.5% in the cosf,rr one as shown in fig. [3.15
These values are in agreement with the neutron energy spectrum of figure fig. In fact the
mean energy value of the distribution in fig. is El%= 2.13 MeV and the cut off energy
value E"= 0.9 MeV represents =~ 30% of the counts of the neutron energy spectrum.

As for the geometrical acceptance effect, the difference between the neutron-neutron (n-n) and
neutron-light fragment (n-LF) correlations, which is here of about 2.7%, is due to the greater

probability to detect one neutron compared to two in the same fission event.

Intrinsic efficiency

The previous condition on the incoming energy of the neutron, E,, >0.9 MeV, is not enough
to insure its detection. It has in addition to transfer enough energy to the detection material.

At this point the simulation has to take into account the interaction processes of the neutrons
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Figure 3.16: Simulated intrinsic efficiency of a DEMON cell.

in a liquid scintillator containing xylene as DEMON is consisted of, which is performed by
MENATEg. Fig. [3.16] shows the resulting intrinsic efficiency of a DEMON cell.

The effect of the intrinsic efficiency is shown in fig. [3.17] By taking into account this condition

a significant loss of counts is observed: about 57% for cosé,, 1., in agreement with the DEMON
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efficiency presented in fig. and 20% for the neutron-neutron correlations cosf,, and ¢.,,.
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Figure 3.17: The influence of the energy threshold on the incoming neutrons (red curves) and
the efficiency effect (pink filled curves) are compared. Including the detectors efficiency, the
counting rates decrease considerably, mostly for the neutron-neutron distributions (a) cosf,
and (¢) ¢ny,. For the (b) cosf,rr distribution the loss of counts is of about 57% in agreement
with the DEMON efficiency.
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Cross talk

Another important experimental bias that affects the cosf,,,, cosf,rr and ¢, distributions

is the cross talk: instead of one neutron signal the detection system detects two or even more

neutrons. It occurs when a neutron interacts in a DEMON volume and is scattered into another
cell, most probably in a neighbouring one as sketched in fig.

detector2

detector1

Figure 3.18: Schematic representation of the cross talk. A neutron entering a first detector is
scattered into another detector: an additional fake signal is obtained.

detectar2

detectorl

simulation

def. 1: -E, - AE,, At,

> t,(E,, d})
- T,=t, + At, (good n)

= detection cdt: E;>0.9 MeV & AE, >0.9 MeV

def. 2: -generatect — t,+At,

L+ AE,
- T,=t, + At +t,, +At, (bad n=ct)

2> Ey(d,T,)
- detection cdt: E,>0.9 MeV & AE, >0.9 MeV

Figure 3.19: Schematic overview of the cross talk treatment procedure
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Figure 3.20: The simulation allows to estimate the effect of cross talk on the studied distributions
(a) cosbpn, (b) cosb,rr and (¢) ¢n,. The main influence of the cross talk in (a) cosOnn, (¢) Gnn
distributions is at small angles, as seen for pileup. For the cosf,,r distribution the cross talk is
rather sprinkled along the full range.
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It may happen that the energy loss of the neutron in the first detector is not high enough to
induce a signal and only the second detector delivers a signal. In this case only one neutron will
be detected but with wrong angular and time of flight informations.

To estimate the cross talk two conditions are applied:

— a condition on the deposited energy by the scattered neutron in the cross talk detector
AF5 >0.9 MeV as sketched in fig. is applied.

— the total time Ty deduced from the different times of flight at each interaction step are
evaluated in order to define the corresponding energy Es, with the condition E; >0.9 MeV

to be in agreement with the experimental analysis.

The cross talk effect involves generally neighbouring detectors because a neutron scattering on
hydrogenate material produces small deviation angles. For this reason the neutron-neutron an-
gular distributions cosf,,, and ¢,, are mainly affected by this effect at small relative angles as
shown in fig.

As can be seen in fig. the cross talk increases artificially the number of counts contrarily to
the previews effects: an increase of about 24% for neutron-neutron correlations and only 0.5% for
neutron-fragment correlations. The cross talk doesn’t impact the shape of the neutron-fragment
correlation.

The same arguments stressed out for the pileup effect explain the differences in percentages be-
tween neutron-neutron and neutron-fragment correlations. The cross talk as the pileup has no
great influence on the neutron-fragment correlation because it induces just one additional entry

in case of a cross talk event.

DEMON central angles

The neutron angles are identified by the central angles of the DEMON cells. The structures
generated taking into account the DEMON central angles are sketched in fig which shows
the distributions when this condition is applied. In the cosf,,, distribution the broad structures
observed when real angles are considered (green curve) become narrow structures when they are
reduced to the central angles. The ¢, distribution is less affected from this central angles effect,
same wide structures appear with an increase around 0°. In the experiment each detected neutron
is identified as the detector central position that it reaches. From the geometrical configuration
A0 between two neighbouring detectors are between 4.5° < Af < 12°. This renders the cosf,,,
distribution (purple filled curve) quite discontinuous with a lot of narrow structures. Conversely
the (b) cosb,,r distribution shape seems very slightly affected by taking the central DEMON

angles.
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distribution shape seems slightly affected by
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3.6 Final remarks

The simulation allows to have the total mastery of the possible effects that can disguise
the characteristics of the emission of neutrons in the process of fission. Only armed with the
knowledge of each element of the experimental filter it is possible to elaborate a strategy for the
study of such weak mechanisms.

After having acquired such knowledge on each part of the experiment and, as far as possible,
employed the same analysis procedure as that adopted in the experiment for the simulated data,
we can validate the model presented in this chapter by comparing the obtained simulated results

with the experimental ones.
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Chapter 4

Simulation results and
confrontation with the
experiment

Computer simulations allow to understand the response of the studied distributions for dif-
ferent pairs (A, j, wse;) introduced as input in the code. Fig. presents the studied distribu-
tions for different sets of (A, s, wse;) couples. The different simulations are performed with the
same number of fission events for different cases. An unrealistically high anisotropy parameter,
A,,7=0.8 and no scission leads to the the red curves. On the opposite an unrealistically high
scission neutron occurrence, ws;=20% and no anisotropy gives the black curves. The purpose
is to identify where the scission neutron emission and the dynamical anisotropy affect the distri-
butions and to estimate their relative importance in respect with the pure isotropic case shown
in green curves. As we observe in the figure, the black curves with a large percentage of scission
neutrons are lowered compared to the other cases. This occurs because every time that a scission
neutron is emitted there is less excitation energy (TXE) to emit fission neutrons from fragments.
The anisotropy affects slightly the cosf,,,, and cosé,,rr distributions compared to the effect given
by the scission neutron emission. By contrast, in the ¢,,,|, . distribution, the anisotropy induces
clear oscillations that the other curves don’t exhibit.

The experimental filter, which takes into account the DEMON geometrical acceptance, the
pileup treatment, the threshold energy, the intrinsic efficiency, the cross talk and the DEMON
central angles, is applied and the simulations are confronted to the experiment. The confronta-
tion is performed separately for each of the three distributions and a different adapted strategy

is designed to analyze each case.
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Figure 4.1: Simulated distributions before the experimental filter effect. The scission neutron
has a huge influence on the cosf,,, distribution, whereas the anisotropy effect remarkably affects
the ¢pp|, - distribution as the oscillations shown in the last plot reveal by the red curve.

4.1 cosb,,, distribution

For the cosf,, distribution, a x? probability distribution test is used to determine the pair
(AnJ, wsei) which gives the best agreement between simulation and experiment. The following

lines describe the mathematical procedure employed for the experiment-simulation confrontation.

4.1.1 Using x? to test hypotheses regarding statistical distributions

The x? test is used most commonly to test the nature of a statistical distribution from which
some random sample is drawn. Contrarily to the classical case where the observed experimental
data are compared to a known analytically behaviour, in our case, the observables correspond
to the simulated data and the experimental distribution represents the expected values. Thus
the experiment becomes the“theory” and the simulations play the role of the “measurement”.
The purpose is thus to find the set of parameters which leads to the best agreement between the

simulated and the experimental distributions.
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Simulation results and confrontation with the experiment cost,,,, distribution

This kind of application has been described by R. D. Evans in reference [89], where this >
test was first formulated. The data can be classified into k classes or bins, with probabilities
P1, P2, ---, Pk of falling into each class. If all the data are accounted for, Zle p; = 1.

Now suppose we take the data by classifying them: we count the number of observations falling
into each of the k classes: n in the first class, ny in the second and so on up to n in the kth
class. We suppose there are a total of N observations, so Zle n; = N. It can be shown by

non-trivial methods that the quantity:

k
(nl - Np1)2 + (le - NP2)2 (nk - Npk Z sz

+ ...+
Np: Np

(4.1)

i=1

corresponds approximately to the x2 distribution with d = k — r degrees of freedom, where 7
is the number of constraints or relations used to estimate the p; from the data. The constraint
number r will always be at least 1, since at least Y25, n; = S2F  Np; = N.

If 1; = Np; is the mean or expected value of n;, the form of x? given by equation corresponds
to sum, over all classes, the squares of the deviations of the observed n; from their mean values

divided by their mean values.

The x? is an indicator of the accord between the observed n,; and their averages u;. If the
model coincides perfectly with the observation, y? = 0. This happens very rarely. But to get
a good agreement each single term of the sum presented in equation [f.I] has to be not greater
than 1, thus for n terms y? < k where k is the total number of classes. If x2 < k we don’t have a
reason to doubt that the simulated data are in agreement with the experiment. But if 2 > k we
must suspect that the simulations aren’t governed by the same distribution as the experimental

one.

At first glance, x? < k gives us a feeling about the correctness of our hypothesis. For a more

quantitative measure of the agreement let’s introduce the y? probability distribution.

The x? distribution and the x? probability distribution

The quantity x? defined in equation has a probability distribution given by

1

2Y2T (4/5) ¢ () (4.2)

) =
This is known as the x2 distribution with d, degrees of freedom, which is a positive integerﬂ
f(x?)d(x?) is the probability that a particular value of x? falls between x? and x? + d(x?). The
x? distributions computed for different degrees of freedom d is shown in the left part of fig.

We expect that a single measured value of x? will have a probability a to be greater than X?i, >

1. I(p) is the ”Gamma function” defined by I'(p + 1) = [ zPe~® dz. It is a generalization of the factorial
function to non-integer values of p. If p is an integer, I'(p+1) = pl. In general I'(p+1) = pI'(p) and T (Y/2) = /7
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Figure 4.2: x? distributions for d = 2, 4, ... , 10. In the blue frame is sketched the probability
of x?2, for a specific value of d, to be greater than a certain Xi’a critical value.

where X7 , is defined by

o0

P(X3 > Xda) = o3 =« (4.3)

X0
This definition is illustrated by the inset in fig.
The x? test works in the following way

1. We hypothesize that our simulated data are appropriately described by our experimental
data or set of p; = Np;. In other words, we are going to test if the simulated data are a

representative sample of the experimental data distribution.

2. From our data sample we calculate a sample value of X?i)o, along with d number of degrees
of freedom and so determine 5(370, the tho normalized to d for our data sample, defined
by:

>22 — Xio
d,o d

3. Assuming that the simulation data follow the experimental distribution with the ROOT

(4.4)

function ChiZtest(), we compute the corresponding value of P(x7 > X3,) to have a X
value greater or at least equal to the observed )237 - 1f this probability is close to one the

i?l,o is admissible and we have no reason to reject the hypothesis.

4. To give strictness to the test, we set a limit to define what is unreasonable and what is not,

thus we choose a value of the significance level « (a common value is 0.05%, or 5%...). We
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then compare P()Z?i > >~<§, ,) with our significance level a computed as formula and we

may conclude:

— that the model represented by the p; = Np; is a valid one if P(x% > 23’0) >a A
statistically improbable excursion of x? may occur if the simulated data are drawn
from the experimental ones. This will happen with a probability equal to «, thus we

will have 100-(1-a))% confident in rejecting our model;

— contrarily if P(X7 > X3,) < @ our model is so poorly chosen that an unacceptably

large value of x? has resulted.

This procedure is used to establish a quantitative measure of the agreement between simulation
and experiment. To estimate if the f(fl’o is enough bigger than 1 to reject the initial hypothesis

it is necessary to establish the limit between agreement and disagreement.

Note that this reasoning breaks down if there is a possibility that the data are not normally
distributed. The probability P(y3 > 230) estimation relies on the assumption that the observed
numbers n; are continuous variables that are normally distributed around their mean values
t; = Np;. In our case n; is a discrete variable, distributed according to a Poisson distribution.
Assuming that the numbers involved in our problem are big enough, the discrete character isn’t
important since the Poisson distribution is well approximated by a gaussian function. For this
reason the number of the k classes is chosen to have at least y; = 5 counts per binﬂ
For these reasons equation [4.I] presents mean values y; = Np; according to Poisson distributions.
This approach makes sense in situations, as ours, involving counting rates where the counted
numbers are distributed according to a Poisson distribution, for which the mean value is equal
to the variance: p; = o?. To employ the probabilities P(y?3 > )Zfl,o) computed by ROOT [92]
these conditions have to be fulfilled.

4.1.2 Application of the x? test to cosf,, distribution

Considering the DEMON central angles, as already explained in chapter 3, very narrow struc-
tures appear. This feature prevents from using the y? test for the model-experiment comparison
because the model is hidden in the angular resolution details: any small discrepancy of cosf,,
between the simulated structures (blue curve) of fig. and the experimental ones (cyan curve)
has a very important contribution to the y? summation of formula even if the simulation
reproduces very well the experimental bumps. To make use of the x? test one has to get rid of

the effect of the experimental filter. This is performed in two steps:

1. smear the neutron coordinates over the entrance surface of each DEMON cell instead of

taking the central angle.

2. The exact value of the Poisson P, (n), applying the condition for the continuity, is approximated to the area
over the curve Gx,,(n) in the range [n-1/2, n+1/2]. It is demonstrated that this approximation is satisfactory for
wi > 5 [90, 91].
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Figure 4.3: Comparison between the experimental cosf,,, in cyan and the simulated one in blue,
for a pair of parameters A,, ;=0.16 and w,.;=8%. The simulated bumps coincide very well with
the experimental structures as appears on the right figure.

The smear function, written in the insert below, returns the smeared neutron vector IN
on the entrance side of a DEMON cell. The prototype of the function has in input the
coordinate vector DEMON identifying a cell:

TVector3 smear (TVector3 DEMON)

{
TVector3 uDEMON = DEMON.Unit();
float mR = gRandom->Uniform (0, 80);
// DEMON Radii = 80 mm
uR = uDEMON.Orthogonal () .Unit ();
TVector3 R = uR *mR;

float thetaND = TMath::ATan2(R.Mag(), DEMON.Mag());

// thetaND <s the angle between the new neutron wvector N and DEMON
float phiN = gRandom->Uniform() * TMath::TwoPi();

float mN= TMath::Sqrt (DEMON.Mag() * DEMON.Mag() + R.Mag() * R.Mag());

TVector3 N = mN*xuDEMON;

// at the beginning N is set toward the DEMON wvector
N.Rotate (thetaND, uR);

N.Rotate (phiN, uDEMON) ;

return N;

Fig [4:4) shows the cosb,,, distributions after this procedure is applied both on the experi-

mental and simulated data. The narrow structures have disappeared but broad structures

138




Simulation results and confrontation with the experiment cost,,,, distribution

”:‘35000 Frrrrr T T T T T T T —TT ]
= C experimental data ]
L30000F — o,,=8%A ,=0.16 =
ke, : ]
<L 25000

20000
15000
10000

5000

-0.8 -06 -04 02 0 02 04 06 08
coso,

Figure 4.4: Smeared filtered cosf,,, distributions: the experimental one, Fi;,(cosby,), is the
cyan filled curve and the simulated one, Fy;,(cosf,,), for a pair of parameters A, ;=0.16 and
wsi=8%, is in blue. The experimental bumps coincide very well with the simulated structures.

remain.

2. determine the correlation distribution I(cosf,,) as if the neutrons were detected from a
perfect 47 detector. To avoid the structures induced by the detectors configuration a sim-

ple idea is applied:

if the efficiency (intrinsic and geometrical) is the ratio between the observed correlations and
the theoretical ones expected in the spontaneous fission, the initial distribution without the
effect of the filter is simply obtained by dividing the observed counting rate by the efficiency,
as explained mathematically by the following equation:

F(cosbpn)

I(Cosenn) = W

(4.5)

where I(cosf,,,) is the initial distribution, F'(cosf,,,) the smeared filtered distribution and
R(cosby,,) the smeared detector response distribution.This procedure implies to divide the
distribution of the detected neutron coincidences by the detector response. As these two
distributions represent experimental counting rates, the Poisson statistics can be applied
to the individual distributions. But what about the ratio I(cos#,,)? Are its bin contents
still distributed like Poisson distributions?

In principle the ratio between two Poisson distributions isn’t a Poisson distribution and

the bin contents of the ratio are distributed in a more complicated way; for example a ratio
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distribution could be a Cauchy distribution. Often the ratio distributions are heavy-tailed
and it may be difficult to work with such distributions and develop an associated statistical

test. So the prerequisites to apply the chi square method, mentioned before, may not be
totally fulfilled.

Nevertheless we can choose a specific interval of the detector response distribution charac-
terized by small oscillation amplitudes, as shown in the inserts of fig. In this way the
poissonian nature of the smeared neutron-neutron distribution remains unchanged when
divided by a distribution roughly constant.

In addition we can arrange our distributions to fulfil the “at least 5 counts per bin” criterion

by adapting the binning of the distribution.
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Figure 4.5: Left: detector response determined by an uncorrelated cosf,, distribution between
different fission events. Right: detector response to a pure isotropic emission. In the inserts
the range of the detector response is restricted to [-0.9,40.9] to avoid big oscillations of the
distribution.

Now we need to determine the detector response distribution R(cosf,,). For this purpose two

different strategies are followed:

simulated isotropy in the laboratory frame R;(cosf,,): the detector response is simulated
as the correlation distribution resulting from a pure isotropic emission in the laboratory
system, as is shown in the right side (purple curves) of fig. In this case the simulation is
performed with the parameter pair A, ;=0 and w,.,;=0% without the kinematical focusing
effect. Thus to reproduce a perfect isotropy in the laboratory frame the velocity of the

fission fragments vpp is set to zero, in order to use the same simulation code.

uncorrelated events: this method consists in building up the R, (cosb,,,) distribition by taking
the two neutrons randomly from different fission events. The obtained distribution is shown
on the left side of fig. [4.5 (orange curves).
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4.1.2.1 Simulated isotropy in the laboratory frame R;(cosf,,) strategy

The initial I;(cosf,,) shown in fig. is evaluated applying equation using as denom-
inator R;(cosf,,) simulated assuming a neutron isotropic emission in the laboratory frame, as

mentioned above. The i index refers to isotropy. The left side of fig. presents two data sets:

Chi2 test
400 ————————————————— Chi2 = 1043 R T -
5 I —e experimental data NDf = 19 3 F .
® r e 0,=8%A =0.16 Pvalue = 094 & g2 =
5 350 4 7 E
ke B ] =
— L B 0_17
g f . 3% L] ]
300 - 0 T [ =
C ] 01 =
250 j+ + ++{ P: E
C 4 4 F L e
200 4__*%# 4t ++ . 03 08 06 04 02 0 02 04 06 08
- + . 7 L’—’ €088,
r 444 = —u Linear Minimizer
o) T AN RPN AN EUVUI IR RPN P B Chi2 = 3.18
-0.8 -06 -04 -02 0 02 04 06 0.8 NDf =14
cos6,, p0 = 0.03=0.01

Figure 4.6: Left: I; ¢yp(cosbyy,) in cyan and I; gm (cosf,,,)in blue are compared. A very good
agreement between the simulation and the experimental distributions can be observed in the
interval cosf,, € [-0.9, 0.4]. For cosf,, > 0.4 some discrepancies appear. Also the dispersion
I'““"‘(C(}jGCZ’;)(;OZéZZP)(COSG""), presented on the right side, shows that the simulation doesn’t

reproduce very well the experimental points at small angles.

r =

— the blue dots represent the simulation results. I; sim (cosfy,) of formula is obtained di-
viding the smeared filtered distribution F;,,(cos,,,) extracted by a calculation considering

the couple A,,;=0.16 and w.;=8% by the isotropic response function R;(cosf,):

Faim(costpy,)

Ii sim enn = < 4.6

sim (0807 Ry (cosfn) (4.6)

— the cyan dots represent the initial experimental distribution I; eqp(cosfy,,) estimated by
formula [ Foo (costin)

cos
. Onn) = _exprmmrnng 4.7
s p(COS ) Ri(COSHnn) ( )

Now we can apply the x? test to confront I; sim (c0SOnp) and I; eqp(cosbyy,). In chapter 3 we
saw that, due to the DEMON angular spacings, 20 bins were a good choice; this value fulfils
also the "minimum 5-counts” criterion. This leads to d=19 degrees of freedom. The parameter
couple A,,;=0.16 and w,.;=8% was used. The resulting x? is Xg = 10.43, as shown in the left
part of fig. leading to X2 ~ 0.6. This latter value is less than one, so we can conclude that
the agreement ”simulation with A, ;=0.16 and w.;=8% - experiment” is satisfactory. However,

this value doesn’t give stronger confidence than a value Y2 = 1 would give. It means only that
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X2 is just the result of a large chance fluctuation away from the expected value y2 [91]. In no

way it gives extra weight to conclude that our simulation follows the experiment.

To get a more quantitative estimation of the x? test a p-value is computed by ROOT and
leads to P(x? > 0.6) = 0.94. This means that, supposing that the simulation is governed by
the experimental distribution, the probability to obtain a value y2 larger than ours is of about
94%. Setting the confidence a—level to 5% as boundary, our P(x? > 0.6) = 0.94 > 5% . This
means that the model chosen to simulate the data set, with A,, ;=0.16 and w.;=8% and taking
into account all the approximations discussed before for the y? test, is valid to represent the
experimental measurement at 2.

The right side of the fig[4.6] shows the dispersion 7 of the simulated data set in respect with the
experimental data. A linear minimisation has been performed in the [-0.9, 0.4] range. In this
range the values associated to the linear fit are shown in the inset of fig. [4.6] A constant value
po = 0.034+0.01 is obtained. The constant hypothesis seems to work very well but for cosf,,,, > 0.4
discrepancies appear. The simulated set presents a significant overestimation compared to the
experimental one. As explained in chapter 3 and underlined by Y. Kopach [93] and shown in
fig. the [0.4; 1] interval is the range of major influence of the cross talk effect on the cosf,,,
distribution. As explained in chapter 3, in the simulation cross talk has been taken into account
in the same way as it happens in experiment. But considering the result of fig. it seems
that the simulated cross talk has been overestimated. This could be explained by the absence of
any DEMON cell container or maybe to the arrangement of the DEMON cells in the vacuum,
both considered in simulation. Indeed additional materials will for sure decrease the cross talk
probability. To illustrate this assertion, only a percentage of 85% of the simulated cross talk
events are taken. As a result, fig. [£.8 shows that the simulation-experiment agreement increases

by decreasing randomly the simulated cross talk by 15%.

Arb. units

-
N
T[T T[T T T[T T T[T TTT7TT

PSP S BRI S
-1 -0.5 0 0.5 1

cos(8,,)

Figure 4.7: Simulated cosf,,, distribution which shows the importance of cross talk. From [93].
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Figure 4.8: Left: I; ¢yp(cosfyy,) in cyan and I; g (cosb,y,) in blue are presented taking into
account only 85% of the simulated cross talk. Also the dispersion 7 is shown on the right side
in this case. Subtracting 15% of the cross talk events, the agreement between the two data sets
increases at small 6, angles and flatter for cosf,,, 0.4 then in the previous case (fig. .

4.1.2.2 Uncorrelated events strategy

The algorithm to uncorrelate fission neutrons is as follows:

for a given event with v neutrons
— take 1% neutron from the considered event

— take (v -1) other neutrons each one randomly among the neutrons from the (n-1) previous

events

>> example:

nevt: n =3 — nl n2 n3 — N1 = ni
nevt-1: n = 0 — -
nevt-2: n =1 — nl - N2 = n
nevt-3: n = 2 — nl n2 — N3 = random(nl, n2)
//correlated meutrons: nl n2 n3

problem: it may happen that 1 or more uncorrelated neutrons are now in the
same detector
— pile up
These uncorrelated events are suppressed

Applying this procedure, the detector responses Ry, eqzp(c0s8yy) for the uncorrelated exper-
imental data and R, sim(cosfy,) for the uncorrelated simulated ones are obtained. Using the

same colour code as before:
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— the simulated Iy, sim (c0S0py ), in blue of formula is the ratio between the smeared fil-
tered distribution F, gim (cosny,) with A, ;=0.16 and ws;=8% and R, sim (cosbyy) is its

uncorrelated distribution:

Fiim(cosOpnn)

Ru,sim(cosonn) (48)

Iu,sim(cosenn) =
— the initial distribution I, eqp(cosfyy), in cyan, is computed as formula taking into

account the experimental uncorrelated distribution Ry, eqp(cosfpy):

Fegp(costyy)

_— 4.
Ry eap(cosfyy,) (4.9)

Iu,exp (C030n7L) =

Linear Minimizer
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Figure 4.9: Left: I, ¢yp(costyy,) in cyan and Iy, sim (cosfy,,) in blue are compared. The simulation
obtained for the couple A, ;=0.16 and ws;;=8% and R, sim (cosb,y) reproduces very well the
experimental points in the interval cosf,,, € [-0.9, 0.4]. Also here for cosf,, > 0.4 the cross talk
overestimation appears. The dispersion r, presented at the right side, seems to be flatter then
in the previous case of fig/L.6]

The conclusions, about this strategy, when the 2 test is applied, are more or less the same as
in the previous case as shown in ﬁg The I ezp(c0s0yy) and I, gim(cosb,,) distributions seem
smoother than before (fig. . It seams that the uncorrelated detector responses R, (cosb,,,,) fill
the empty areas of the filtered distribution slightly better than the simulated detector response
R;(cosb,y,). Also the dispersion r presented on the right side of ﬁg is flatter than in the
previous case and the constant value pg = 0.004 £ 0.001 is one order of magnitude smaller. But
although it is less important, an overestimation of the cross talk also appears at small angles in

this case.
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4.1.3 Influence of A, ; and w,, on cosf,,,

The cosf,,,, distributions are simulated with different sets of A,,; and ws.; parameters which
quantify the dynamical anisotropy and the contribution of scission emission. It is possible to

simulate different cases:
— pure isotropy

— introducing scission and/or anisotropy as predicted by theory [36] as we have seen previ-

ously
— unrealistic (A, wse;) combinations.

In table are summarised the different simulations performed and the Y2 obtained.

As mentioned in chapter 1, the two effects appear in the same angular region where they

simulation n®  A,; wsi(%) X2 fig.
1 0 0 7.86 4.10
2 0.16 0 1.51 4.11
3 0 8 0.95 4.12
4 0.16 8 0.60 (4.9 and 4.4
5 1 20 2.80 4.13

Table 4.1: Resulting x? obtained by comparing five different sets of parameters with the experi-
ment.

reinforce the kinematical focusing and they act in the opposite way. But the anisotropy increases
slightly the focusing whereas the scission neutron emission decreases it in a very significative way
in respect with the anisotropy.

The analysis shows that, surprisingly the worse 2 is obtained for the isotropy rather then
for the very unrealistic simulation (case 5). This is due to the opposite effect of the cross
talk overestimation and the strong scission neutron presence wge;. In fact a value of w,.;=20%
importantly lowers the curve at small angle where a cross talk overestimation survives. To
confirm this argument and to avoid the aberration due to the cross talk overestimation, the 2
are recomputed in the range cosf,, € [-0.9, 0.4] and presented in table

Now we obtain very realistic results:

— the worse x? is obtained for the most unrealistic set (Ans=1, wse; = 20%) parameter with
x? = 3.24. This combination has to be excluded. The other four cases give all x? values
x? < 1. None of these combinations has to be excluded to reproduce the experiment.
Nevertheless the smallest value, x> = 0.24, is obtained for the combination (A,,;=0.16,
wsei = 8%) which is the one predicted by I. Guseva at al. and already used above. Table
confirms also that the scission emission effect is more important than the anisotropy.

What about the validity of the two methods used? In fact the filtered distribution R; sim, (COSOnp)

obtained for the simulated isotropy method takes into account all the biases of the filter, included
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Figure 4.10: Left: Simulated ratio I, sim (cosfny,) (green dots) for A, ;=0 and w..,=0%

- simulated ratio I, sim(cosfy,) (blue dots) for A, ;=0.16 and ws.;=8%

- experimental ratio I, ezp(costy,y) (cyan dots).

Right: in the upper part Fl, sim(cost,,) computed with the same set of parameters mentioned
as above and Fy czp(cosby,) the experimental filtered distribution.

In the bottom part the dispersion r is presented.
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Restriction to cosf,, € [-0.9, 0.4]

simulation n® A,y wsei(%) X2 fig.
1 0 0 0.87 4.10
2 0.16 0 0.59 4.11
3 0 8 0.35 4.12
4 0.16 8 0.24 Iﬁl and Iﬁl
5 1 20 3.24 4.13

Table 4.2: Resulting x? obtained by comparing the same sets of parameters with the experiment,
restricted to cosf,, € [-0.9, 0.4].

the cross talk. The cross talk overestimation appears also in Fy;y, (cosf,,). Does one This effect
may disappear by dividing the curves. But it seems, regarding the disagreement at small angles
in figs. 4.6 and 4.8, that this overestimation doesnf intervene in the same way in the numerator
and in the denominator. Moreover the curves of fig.4.6 present some irregularities. This can be
due to the fact that the simulated filter R; i (costy,,) does not reproduce exactly the real one.
The uncorrelated method doesn’t present this drawback. As shown in the left part of fig. the
uncorrelated distribution presents a very symmetric feature in respect with the other method.
But the random correlations don’t reproduce the bias due to the cross talk. As appears clearly in
the left part of fig. 4.9, the yield at small angles is even higher at cosf = -1 which is the opposite

of the expected behaviour.

4.2 cosl,r distribution

In the experimental analysis the CODIS potentiality is exploited to infer the FF positions,
thus the cosf,;r distribution is obtained. However, as mentioned in chapter 2, a cut on
|cosOpp| > 0.4 is applied. This procedure induces two discontinuities at cosf,r,r ~ —0.4
and at cosf,r ~ 0.4 in the experimental data pointed by the arrows in fig. a). Since our
intent is to analyse the simulated data in the same way as the experimental ones, the same cut
is applied, thus the simulated distribution of fig b) presents a similar feature. To simulate

the data, two smear algorithms are applied:
— one to the DEMON central angles as before;

— to reproduce the experimental CODIS resolution, another one to the FF angles. The FF's

smearing code is the following:
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Figure 4.14: (a) experimental filtered distribution Feyp(cosf,rr) and (b) the simulated
F;(cosb,r) one after the smearing treatment.

TVector3 SmearCodis (TVector3 FFvec)

{
float theta_ff =TMath::Abs(gRandom->Gaus (0,9*TMath::DegToRad()));
float phi_ff = gRandom->Uniform() * TMath::TwoPi();
TVector3 uR = FFvec.Orthogonal().Unit();

TVector3 newFFvec=FFvec;
newFFvec.Rotate (theta_ff, uR);
newFFvec.Rotate(phi_ff , FFvec);

return newFFvec;

The simulated FF vectors, F'Fvec, are the input of the function and the smeared fragment
vector is newF Fvec. Opp, in the code, is smeared following a gaussian distribution of

centroid equal to zero and with a o = 9°, corresponding to the mean angular resolution of
CODIS.

Fig. shows the simulation results obtained for the five pairs of parameters (A, s, wsei)
chosen before. These simulations are compared to the experimental data presented by the cyan
dot curve.

As observed the simulations with the same scission neutron occurrence wg.; are very close to
each other. Likewise the cosf,, distribution, the dynamical anisotropy only slightly affects
the cosf,,pr distribution, but the difference is enough to estimate the best agreement with the
experimental data as we will see in the following lines.

As we can observe, the curves that best reproduce the experimental points are the simulation
n® 3 (red points) and n2 4 (blue points). For these curves the dispersion r is computed and
shown in fig. £.16] A linear fit is performed. The results of this fit are presented in table [£.3]

As observed in fig. a disagreement appears at small 6, angles. This can not be due

to the cross talk which is spread over the whole 6, distribution. A possible reason for this
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cosO,, -

experimental data

Figure 4.15: Confrontation between the cosf,;r experimental distribution and the simulated
ones. The parameters (A, j,wsc;) pairs are the ones of table
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full range Restricted

simulation n2 A,y Weei (%) 2 d X2 d P2 >X2)

3 0.00 8 5.07 299 | 1.70 211 <0.00001
4 0.16 8 2.06 299 | 1.01 211 0.45

Table 4.3: Resulting x2-test obtained by a linear minimisation of the dispersion of fig.
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Figure 4.16: Dispersion r computed only for the simulation n® 3 and n2 4 that best reproduce
the experimental cosf,, rr distribution.

discrepancy could be the fact that in the simulation only mean values of the FF velocities have
been used whereas in the experiment the measured ones have ben taken. Another possibility
could be related to the neutron energy threshold. Indeed the disagreement is most likely related
to energy, either of the fragment or of the neutrons.

The x? results are presented in the right part of tablewhen the angular range is restricted to
cosl,rr € [-0.9, 0.4]. In this case, for simulation n° 3, the x? is high enough to reject this couple
of parameters even at a boundary level of 1% as the p-value is very small. On the other hand
the simulation n° 4 leads to a x> ~ 1 with a p-value P(x? > x2)=0.45 which allows to accept
this parameter configuration at a boundary level of 32% (1¢). Thus the predicted configuration

A, ;=0.16 and w,.;=8% gives the best agreement between simulation and experiment.

The analysis of cosf,,;r reinforces the results obtained with the cosf,,,, distribution, although

the relative effects between the different set of parameters are less marked.
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4.3 ¢y, distribution

Let’s finish with the aspect the CORA experiment was designed for: the ¢,,,|, . distribution.
The method used for this analysis has been presented in detail in chapter 1. The advantage of
this method is that it is an independent approach of the anisotropy estimation as we get rid of
the kinematic focusing as well as of the scission emission.

Before confronting the simulation results to the experimental ones, the procedures to build
the detector responses with the two strategies seen before are tested. The projection of the
neutron-neutron angular distribution ¢,,,|, . onto the (x,y) plane (see ﬁg) has to be sim-
ulated. As the effect of A, ; on the ¢, . distribution is expected to be very weak it will be
tricky to extract. Thus in a first step, to check the different ingredients, an unrealistic anisotropy
coefficient A, y=1, which is about a factor 10 larger than expected the model [36], will be used.
Our attention will focus on each step of the experimental filter (the DEMON geometrical accep-
tance, the pileup treatment, the threshold energy, the intrinsic efficiency, the cross talk and the
DEMON central angles), because it may distort the resulting distribution.

The cross talk will have to be taken carefully into account. In this purpose we apply the condition

cosby,, > 0.4 which was determined previously to minimize its effect.

In the same way as for the cos#,,, distribution, two methods to take into account the detector
response will have be considered. In the uncorrelated method, neutrons from different fission
events have to be coherent: the corresponding uncorrelated emitting fragment vector has to be
the same or at least very close to the correlated one. For this reason in a first step we select only
those events, for which the fission fragments are emitted along the chamber axis, the z-axis. In

a further step the procedure can be extended to the full angular range of CODIS.

431 A,;=1

In chapter 1 the angular distribution of the neutrons emitted by the FF CMs was described as
W (0ns) o (14 Apg sin*6y,) (1.9)

This formula leads to the ¢,,,,, distribution [36] expressed as

W(¢n7t\LF) :p0(1 + az COS2¢nn|LF) (410)

The projection of the relative angular distribution of two emitted neutrons onto the plane perpen-
dicular to the fission axis in the CM system for A, ;=1 is shown in fig. This distribution
is identical in the laboratory and in the CM systems. As expected a huge effect for neutron

anisotropy appears. The anisotropy parameter A, ; = 1 leads to a2=0.04 in agreement with the
calculation of I. Guseva [45] and shown in fig.
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Figure 4.17: Simulated ¢,,,|,, distribution for A,;=1. Regular sinusoidal structures appear.
The curve is fitted by formula The fit parameters are presented in the insert.

Applying then the experimental filter to the distribution of relative ¢y, ., the regular sinusoidal

structures of fig. [1.17] disappear and many irregular structures appear as shown by the pink curve
of the left part of fig.
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Figure 4.18: The as coefficient as a function of the anisotropy parameter A, ;. From [44].
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As explained in section 4.1.2 concerning the cosf,, distribution, in order to get rid of the
DEMON filter effects, one can normalise this distribution F'(¢y,y|, ) using the adapted detector
response distribution R(y,|, ). To simulate such a distribution one can use either an isotropic
emission in the FF CMs which gives R; sim, (qu| ) or the uncorrelated coincidences leading to
Ry(¢nn|, ), as mentioned before.

As this latter method seems to reproduce in a more appropriate way the detector response
concerning the cosf,,, distribution, we will go across the different steps of the experimental filter

for this case whereas, for the first methodology, we directly show the final obtained results.

4.3.1.1 Simulated isotropy in the laboratory frame R; sin(¢nn|, ) strategy

The initial I; sim(Pnn|, ) is evaluated applying equationusing as denominator R; sim (dnn|, )

simulated assuming an isotropic neutron emission in the FF CMs frame this time:

Fszm(¢nn|LF)
Ri,sim((bnn\Lp)

As a result of this first method, fig. presents on the left the filtered Fyi, (¢nn|, ) distribution

Li sim(nn|pr) = (4.11)
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Figure 4.19: ¢,,p,|, , simulated distribution for A, ;=1. When the experimental filter intervenes
more structures appear. The left part of the figure shows the filtered distribution Fyip (¢, )
(pink filled curve) and the isotropic detector response R; sim(¢nn|, ) (Purple curve). The ratio
I sim(dnn|, ) is presented on the right side together with the fit. With this method some
structures appear in the ratio distribution even if the fit result is not far from the predicted one.

(filled pink curve) and the detector response to the isotropic emission R; sim(¢nn|,.) (purple
curve). On the right side, the resulting initial distribution I; sim(@nn|, ), Which takes into
account all the experimental biases is shown. In red is drawn the fit following eq. and
in the insert are given the fit parameters. The resulting coefficient a; = 0.037 £ 0.004 is not
far from the predicted one as = 0.04 of fig. [£17 The red curve agrees quite well with the
I sim(Pnn| ) distribution although some unexpected structures appear. As already mentioned

the R; sim(¢nn|, ) response function may be not well adapted.
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4.3.1.2 TUncorrelated events strategy
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Figure 4.20: The Fiim(dnn|pr)s Bu,sim(Pnn|pr) a0d Ly sim(Pnn|, ) simulated distributions for

A, ;=1 are shown for the different steps of the geometrical filter.

Together with the initial

Ly sim(®nn|, ) distributions the fits are presented. Even if the filter distorts the fit parameter as
the results are yet in good agreement with the theoretical prediction.

The uncorrelated algorithm is developed by taking neutrons from different events.

The

Ru’sim(qﬁnn‘ . ») distribution should simulate the isotropic neutron distribution with respect to
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the fission fragment spin. Since the spins of two different fragments are not correlated, the two
neutrons shouldn’t exhibit any correlation in the (z,y) plane perpendicular to the fission axis.
The Ry sim(¢nn|, ) distribution should be almost flat which is not the case as shown by the or-
ange curve of fig. The very marked observed structures are due to the fact that we choose

the fission fragments only along the z-axis. Thus the effect of the experimental filter is enhanced.

Fsim(¢nn|LF)
Ru(¢nn|LF)

Fig. presents the different distributions at the different steps of the experimental filter
applied. More specifically:

Iu,sim(¢nn|LF) = (412)

— in the orange box, the figure shows at the left the filtered distribution Fyip(épn|, ) (brown
filled curve) and its uncorrelated distribution R, (¢py, ) (orange curve) after the DEMON
geometrical acceptance and the pileup treatment. On the right their ratio is plotted to-

gether with the best fit. The insert presents the fit parameters.

— in the red box the incoming neutron energy cut and the intrinsic DEMON efliciency is

applied.

— the pink box is addressed to the cross talk effect. As mentioned before, when the cross
talk neutrons are considered in addition a selection on the relative angles between two
neutrons larger than 66° (cosf,, < 0.4) is applied on the Fyim(¢nn|, ) and Ry(dnn|, )
distributions in order to get rid of them. This cut is necessary because the uncorrelated

procedure doesn’t retrace the cross talk.

One can see that the structures due to the experimental filter have disappeared, the anisotropy
is clearly visible, although the as coeflicient in the fit is somehow smaller than in the original
distribution of fig. Thus, one can conclude that the method works in a sense that it allows to
observe the deviation of the distribution from the isotropic one, which is completely flat. Armed

with this method we can try to simulate now the realistic case with A,, ;=0.16 and ws.;=8%.

4.3.2 A,;=0.16

Applying the uncorrelated method tested before to the realistic case A, ;=0.16 and w,.;=8%,
a coefficient as = 0.0044 is obtained which has to be compared with the expected value a; = 0.005
shown in fig. Except some fluctuations the distribution I, sim(®nn|, ) shown in fig. is
rather in good agreement with the fit prediction (red curve).

Undesired structures may have different origins:

— low statistics: among the 60 million fission events generated, 600000 entries remain in the
spectrum of fig. Given the weak value of as, a higher statistics is required.

— the condition to reject the cross talk, cosf,, < 0.4, may be too rough and still overesti-

mated.
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— the DEMON configuration, although it has been optimised in CORA3, may still not be

completely appropriate to reach the high accuracy necessary to estimate this very low

anisotropy parameter.

Nevertheless in spite of these structures, the general trend follows eq.

The as = 0.0044 value corresponding to A, ; = 0.16 justifies the use of this value for the previous

simulations of cosf,,,, and cosf,,r.r.
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Figure 4.21: Left side: Fijm(¢nn|, ) (blue) and uncorrelated Ry sim(¢nn|,,) (orange) distribu-
tions. Right side: Iy sim(@nn|, ) distribution and the best fit (red curve) obtained for A, ;=0.16.

4.3.3 Experimental Results
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Figure 4.22: The uncorrelated Ry cop(@nn|, ) distribution is presented in orange, the
Fezp(dnn|. ) one in cyan.

The experimental distribution Fepp(@ny|, ) is shown as the cyan curve in fig. Also
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its uncorrelated Ry czp(@nn|, ) distribution is plotted as the orange curve. On the right side
the ratio distribution Iy csp(@nn|, ) is shown together with a fit by the formula W(¢p,, ) =
po(1 + az,co8*(¢pn|, ). The obtained parameter a; = 3.3107° corresponds approximately to
the parameter A,; = 0.16. The results of fig. have been obtained with only about the
fifth of the available experimental statistics. By increasing the experimental statistics, one can
note, as shown in ﬁg that the ay value becomes closer to the predicted one, a4**° = 0.005
and that its uncertainty decreases. Because of lack of time the complete statistics couldn’t be

extracted.
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Figure 4.23: Same as fig. The results presented have been obtained with a higher statistics
although only about the half part of the available experimental statistics has been analysed.

4.4 Conclusions

In this work different approaches and strategies have been developed to determine the CM
anisotropy and the scission neutron emission. For each distribution cos6,,,, cosf,r and ¢nn| Lr
an ad hoc technique has been provided to characterise these two effects. The analysis of an

experiment such as CORA3 required not to leave out of consideration:

— the study of the experimental filter and on how it affects the distributions, hiding the

physical phenomenons

quite imaginative efforts had to be done to retrace the best detector response.

a statistical approach through a detailed x? analysis was mandatory to accede to quanti-

tative results.

— a good knowledge of various ingredients of the theoretical model implanted in the simulation

had to be acquired.

The analysis of the data as well as the Monte Carlo simulations indicate that the two searched

effects should exist and that their magnitude is not far from the ones predicted by the calculations
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of I. Guseva and those of other authors. Further improvement of the simulations and the analysis,
by taking into account fission events with all emission angles and by dealing in a more appropriate
way the cross talk may bring a better validation of both the dynamical anisotropy and the scission
emission. Up to now the CORA experiment is the only one which gives access simultaneously
and independently to the scission neutrons and to the CM dynamical anisotropy in the 252Cf

fission process.
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Conclusion

The possible existence of both a neutron anisotropy emission in the centre of mass of the
fission fragments and scission neutron emission is a puzzling problem since the pioneering work
of H.R. Bowman in 1962. Many works, theoretical as well as experimental, have been dedicated
to this question since then and led to contradictory results. All the performed experiments have
been addressed either to the dynamical anisotropy or to the scission neutron emission. Nobody
realised any experiment allowing the measurement of the two processes in the same time. The
CORA experiment was initially conceived by F. Gonnenwein to explore the dynamical anisotropy
in a novel way which allowed to avoid the influence of the kinematic focusing and of scission neu-
trons which, in the usual approaches, hide the tiny effect of the dynamical anisotropy. The
CORA configuration was optimised up to that of CORAS3 experiment which gave the oppor-
tunity to measure simultaneously, for the first time, both processes. The 0,,, 0, and ¢,
distributions, usually studied by different authors, could thus be extracted, for the first time,
from a simultaneous measurement.

A detailed simulation has been undertaken in parallel with the experimental data analysis in or-
der to get a good control on the many experimental biases. These simulations showed also that
a quantitative characterization of the two processes was accessible with the CORA3 experiment.
A value of A,;=0.16 for the dynamical anisotropy together with a scission neutron emission
wsi=8% could be deduced from our work. These quantities are completely coherent with the
predictions of I. Guseva. The 6,,,, and 0, distributions show clearly the existence of a scission
emission. Unfortunately the anisotropy effect in the ¢,,,, distribution has a very weak amplitude

and is thus very tricky to extract.

Some improvements of the present results may be obtained within the CORA3 data. Indeed,
as has been shown on fig. in chapter 4, an increase of the statistics does not change signif-
icantly the value of the anisotropy parameter but it decreases its error bar an the error on the
fit. In the last figure only half of the available experimental statistics has been used, because of
lack of time. The CORA3 experiment has been run for about five months and allowed to collect
10 triple coincidences (FF-2n). A new experiment with even more statistics may lead to an er-
ror bar low enough to strengthen the anisotropy value we obtained. Complementary simulations

with a systematic scan of the (A, s, wse;) couples could also be performed to quantify the uncer-
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tainty of these quantities but they require a huge computing time. Concerning the experimental
biases, a specific experiment dedicated to the cross talk determination has been performed after
the CORAS3 experiment, using the same DEMON configuration but triggered with a BaFy scin-
tillator and using an AmBe source. This source emits in coincidence one neutron and a ~y-ray.
Selecting the events triggered by the s, the cross talk rate will be given by the ratio between
two or more detected neutrons and one detected neutron. A lack of time didn’t allow to finalise
the analysis of this experiment. Also the DEMON configuration of the CORA2 experiment was
adapted to be able to reject the cross talk events: mounting two adjacent detectors at different
distances as shown on fig. [[.15] allows, by kinematic considerations, to reject in a clean way all
the cross talk events of course with the compromise of loosing a consequent part of the statistics.
For the ¢,,, distribution, only the fragments around 0° have been considered. This angular range
can be enlarged to a wider range of CODIS, although at large polar angles 6, the resolution
and the azimuthal angle o g of the fragments are getting worse. As already mentioned a future
CORA4 experiment could be considered with higher statistics. In this case DEMON should be
mounted at bigger distances to decrease the pile up. A special care should be dedicated also to
the cross talk effect including the multi layer configuration used in the CORA2 experiment. To
keep a reasonable counting rate, a greater amount of DEMON detectors should in this case be

used.

The evolution with the neutron energy will also be investigated as I. Guseva’s calculations
predict a dependence of the two effects on energy. This procedure requires of course a statistics

as high as possible.

Taking into account all these considerations, we can consider that the CORA3 experiment
has provided convincing arguments in favour of the existence of a scission neutron emission
together with a dynamical anisotropy. Moreover a high confidence level can be attributed to the

proportions of the two processes deduced from this work.
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Appendix A

R&D: development of a new
material for the neutron detection

A R&D project, NEUTROMANIA, has been initiated by the Strasbourg group in 2005. Its
initial goal was to develop a new material, which had to be solid, for the detection and the
identification of fast neutrons (E > 100 keV). Indeed, no development had been undertaken in
this field since about 50 years. The development of a solid detector allowing a good neutron-y
discrimination turned out to be necessary in order to replace the scintillating organic liquids
which present all major drawbacks: they are toxic, corrosive, flammable, explosive, carcinogenic
and dangerous for the environment and of course cannot be operated under vacuum due to high
partial vapour pressure. They are thus more and more difficult to operate at nuclear facilities
where the security rules become more and more drastic. Solid detectors exist but they are either
very expensive in the case of crystals as anthracene or stilbene which present also some hazard
or they don’t allow any neutron-y discrimination in the case of the cheap polymer detectors.

The detection of particles by scintillators involves two steps:
— transfer of the incident particle energy to charged particles of the medium

— conversion of these products into scintillation light which is collected by a photodetector

and converted into an electrical signal.

The pulse shape difference between neutron and ~ ray interactions in a medium is interpreted
as follows: charged particles passing through the scintillator (electrons, protons, « particles, etc.
produced either outside or inside the scintillator by the interaction of the incoming v rays and
neutrons) transfer their energy to the 7 electrons of the scintillator. These electrons will either
populate singlet states or ionise the molecules of the material and populate triplet states. The
deexcitation of the singlet states leads to the fast fluorescence (fast component of the signal).
Under certain conditions of high ionisation densities, the annihilation of two triplet states leads
to a delayed fluorescence (slow component). These processes are illustrated in the Jablonski

diagram shown in figlA.1]'l Neutron-y ray discrimination is then obtained by a pulse shape

1. F. Borne, PhD thesis, Université de Bordeaux I, 1998, n°1899
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Figure A.1: Jablonski energy diagram illustrating the different processes intervening in the flu-

orescence mechanisml .

analysis of the outcoming signal as the behaviour of the slow component depends on the nature
of the particle. The ~ rays produce a very weak slow component compared to that of neutrons
or charged particles. Thus one can integrate the outcoming signal over two different gates as
presented on the left part of fig[A.2] already shown in chapter 2: the total gate which covers the
entire area of the signal and a slow gate with some delay during which the slow component is
integrated. The correlation of these two areas, total vs slow charges, indicated on the right part
of fig. [A-2] and presenting two well separated branches, shows then the neutron-y discrimination
which is obtained.

The NEUTROMANTA development is based on a strong collaboration between physicists and
chemists. The IPHC group collaborates since 2005 with L. Douce et al. from IPCMS Strasbourg.
They are specialised in the synthesis of organic ionic compounds. These materials present major
advantages as shown on fig.

— they offer an excellent thermal and chemical stability up to about 100°C
— they are non flammable, non volatile; they are thus useable under vacuum

— it is possible to act on the properties of the ionic compound by changing either the anion
or/and the length of the alkyl chain. This latter characteristic allows to increase the

hydrogen density.

This new approach allowed to obtain very quickly components which discriminate neutrons from
s as shown in fig. [A74] which led to the deposit of a first patent. But it was not possible to

synthesize transparent materials: the compounds were either transparent but didn’t discriminate
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Figure A.2: Diagram of the outcoming signals of a discriminating scintillator which indicates the
different slow components of a y ray and a neutron together with integration gates of the signals
(left part) and the resulting correlation between the two integrated charges, slow vs total, which
exhibits the neutron-y discrimination (right part).
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Figure A.3: Example of an ionic material able to discriminate neutron and v radiations containing
three species: 1) luminescent oxazole for blue emission, 2) alkyl tails for a maximum interaction
with neutrons and 3) imidazolium/anion to drive unusual properties as thermal stability, non-
flammability...

or they discriminated but were not transparent. This limited drastically the size, in particular the
thickness, of the synthesized samples and thus the characterization of the physical properties was
not easy. This limitation would also compromise the interest of this new component. Indeed, the
detection efficiency on a wide neutron energy range depends on the thickness of the scintillator
which has to be transparent to its own light. Different crystallisation techniques have been
applied to overcome this lock without success.

One has to point out that the origin of the discrimination of a material, the fluorescence, is
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o characterisation of new neutron detectors: charge discrimination

slow charge

total (fast) charge

B

- =

.inm b
new componants DEMON

» all materials scintillate
but

» all materials don't discriminate !

new componants

> up to now,
the only materials wich discrimante are opaque !l!

Figure A.4: - left: comparison of the neutron- discrimination obtained with a DEMON detec-
tor (top) and a sample belonging to the first series of ionic components (first patent)
- right: size comparison between a DEMON cell (L = 20 cm, ¢ = 16 c¢m) and new components.

not clearly understood and very little theoretical support is available. Moreover, many materials
scintillate but very few present a discriminating luminescence property. Thus countless open

possibilities exist.

Nevertheless coincidence measurements with a BaFs or a DEMON detector irradiated by
an AmBe source which emits simultaneously a vy and a neutron were possible as presented on
fig. The measurement of the time of flight associated to the charge discrimination allowed
to confirm the discriminating power of these new components and a first indication of their
efficiency as a function of the neutron energy could be extracted. These measurements show
that with a material transparent only on 500 pm it is possible to detect neutron energies up to
about 5 MeV as shown on fig]/A’5] The progress achieved by the technique and filed in a second
patent appears clearly in fig. which presents the Qiot — Qsi0w correlations obtained in the
same conditions for components of the two patents. The luminescence is much higher in the right
figure. This appears clearly on the bottom figure which compares the two total charges. The new

components have gained also in transparency although a complete and satisfactory transparency
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Figure A.5: Coincidence measurement between a BaFy scintillator and a new component irradi-
ated by an AmBe source which emits simultaneously a v and a neutron. This allows to access to
the time of flight of the vs and the neutrons and thus deduce the energy of the neutrons (right).
The spectra obtained with this new component are compared to those obtained with a DEMON
scintillator (bottom left).

has not yet been obtained.

Fig. [A.7] shows the spectra of the same ionic liquid based component irradiated by an AmBe
source at two different dates. One can notice that no ageing can be observed after one year.
An attempt has been performed to determine the figure of merit (FOM) of the new components
in order to compare it to existing materials. This is not easy as this parameter is usually
given as a function of the light deposited in the scintillator. But this quantity is calibrated
with the photopeak or the Compton edge of different v sources as 2?>Na, 37Cs and %°Co. Due
to the very weak thickness of our components, these quantities are not accessible. Indeed to
detect a v, a reasonable quantity of matter with a high Z value is required, which is not our
case. Fig. [A-8] shows the discrimination power of a new component irradiated with an AmBe
source. The left part shows a two dimensional spectrum of the ratio of the slow over the total
charge, R = % as a function of the total charge. Four slices, indicated on left-top of fig.
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patent FROBS54740,11.07.2008 aw;
WO/2010/1004228 A2 |

2019....

9 1000 2000

Figure A.6: Total versus slow charges of the neutron-y signals for two new ionic liquid based
components developed in the first (left) and in the second (right) patents, irradiated by an AmBe
source. The bottom figure shows the total charge for the two components. One can note the

progress achieved in luminescence.

Qslaw
000 [ N

10.11.2011
7000
6000
5000
4000
3000

2000

1000

168 hours
o 1000 2000 3000 4000 5000 6000

1}

Qfﬂ

Qslow

z
oo 1o

09.01.2013
7000
6000
5000
4000
3000

2000

1000

o o

) 1000 2000 3000 4000 5000 6000

Qfﬂ

Figure A.7: Total versus slow charges of the neutron-vy signals for a new ionic liquid based
component irradiated by an AmBe source at one year interval. The background of the left figure
is due to a high statistics and may be to a closer source-detector distance which could explain

the pile-up line on the left.
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were selected for the projections of R which are shown on the right part of the figure. The
left-bottom figure shows the evolution of the FOM which defines the quality of the separation
between the v and the neutron peaks, with increasing deposited energy. The obtained values are
comparable with those obtained with the plastic scintillator developed by W. Zaitseva et al.E|
and commercialised by ELJEN/SCIONIX (EJ299). The FOM has to be greater than 1 to get an
acceptable discrimination. Our FOM which is presently of about 1.1 will probably significantly

improve once we get a fully transparent material. A major breakthrough has been achieved
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Figure A.8: Figure of merit:

- top figure: Total charge versus the ratio R of the slow charge over the total one (left-top) and
projections on the R axis for four selections of the total charge indicated on the left-top figure
(right). The evolution of the FOM with Q. is on the left-bottom figure.

- bottom figure: comparison with FOM of various commercial scintillators.

recently: for the first time, a transparent material which discriminates could be synthesized as
shown on fig. which compares previous opaque materials and the new transparent ones. Also
a Qtor — Qsiow correlation is shown for these new components which show a very nice neutron-v
discrimination. An important work has to be addressed now to obtain thicknesses of the order

of the centimetre in order to cover a reasonable neutron energy range. One has to point out that

2. N. Zaitseva et al., Nucl. Instr. and Meth. A668 (2012) 88-93
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Figure A.9: Progress achieved during the last year:
- top: up to now the discriminating samples were opaque (first generation compounds)
- bottom: recently, we achieved to produce transparent samples which discrimininate.

our components are a 100% active compared to the NE213 material for example which contains
only a few percentages of chromophore. This may allow a miniaturisation of the future detectors.
A further optimisation of the crystallisation is necessary which implies a systematic investigation
of the different parameters intervening. On the physics side, a detailed study of the outcoming
signals, possible with the FASTER digitised electronics presented in Appendix [B] will allow to

optimise the discrimination between neutrons and ~s.

An important point has to be studied also: the possibility to detect slow neutrons with these
new components. Indeed the possibility to change the anion in our materials allows to introduce
boron for example which is one of the materials used presently in the slow neutron detection
together with He and ®Li as indicated in fig. This additional property would constitute
another breakthrough as up to now the detection principles of slow neutrons is different and
detectors of different nature are used for their detection. Moreover the shortage of *He which
is a byproduct of the decay of tritium drives the industrials to find an alternative detection

technology, which has to be operative within the next five years. Thus our components could be
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n+°He = “H+'H Q=0.764 MeV = E,,=0.191 MeV | g(n,, )= 5330barns | gas
E, =0.573 MeV

n+°Li = *H+'He Q=4.78MeV = E,,=2.73MeV | o(n, )= 940 barns solid
E, =2.05 MeV

n+ B = 'Li+ He (6%) Q= 2.792MeV
‘Li*+°He (94%) | Q=2.310MeV = E,=0.84MeV | o(n,)= 3840barns | gas
Ly E, = 1.47 MeV

Figure A.10: Characteristics of the reactions induced by slow neutrons and used for their detec-
tion. The advantages of each reaction is stressed by bold characters: >He leads to a high reaction
cross section whereas SLi produces energetic outcoming particles. B offers a compromise be-
tween these two characteristics.

good candidates to replace the existing >He gas detectors, mainly used.

This project could start in 2005 thanks to an ANR (Agence Nationale de la Recherche)
support in the frame of a program lasting 24 months in collaboration with two other french
laboratories, ENSICAEN and CEA-Saclay. Since then different supports (own funds of IPHC,
CNRS-Région, 2 contracts with Saint Gobain Recherche, etc..) allowed to continue this re-
search. After two prematuration contracts of a few months supplied by the SATT (Société
d’Accélération du Transfert de Technologie) Conectus Alsace, they attributed us a maturing
fund of 306.5 k€ during 18 months. This support should allow to finalise the development in
order to obtain a marketable product within the next year and a half. Two patents have been

filed. The second one may lead either to a valorisation or to the creation of a start up.
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Appendix B

FASTER digital electronics

FASTER is a modular digital acquisition system, developed at LPC at CaenE] and designed
to handle from one to some hundred detectors and to treat a huge flux of data, up to 700000
events per second.
All the data are timestamped, allowing nodes to perform online correlations between measure-
ments over a user-defined time window.
FASTER is built to use standard hardware and software components easy to customize. It is
based on FPGA circuit boards that users can exploit to program their own signal treatment
algorithm and build an acquisition system especially studied for their needs. FASTER is com-
posed, as shown in fig. of mother boards called SYROCO, connected to daughter cards split

in three modules. The main ones are:

— the QDC-TDC module which is a signal processing module designed for the charge and
time measurements. The signals are digitized by a 12-BIT sampling using a CARAS board.
This board is characterised by a 500 MHz analogic-to-digital converter. This means that
the module receives a 12 BIT-sample every 2 ns and is able to timestamp its output data
with an accuracy of 2 ns. The event date in nanoseconds is obtained multiplying by 2 ns

each event timestamp.

— the ADC module is a signal processing module able to perform the signal pulse shape
and to compute its amplitude. It has been designed for signals digitalized by a 14-BIT
sampling, 125 MHz analogic-to-digital converter. This means that the module receives a
14-BIT-sample every 8 ns and is able to timestamp its output data with an accuracy of

8 ns.

The data flux got from the different FASTER modules are connected on a tree model architecture

where main decision levels are set.

FASTER allows to optimise the neutron-vy discrimination based on the charge comparison

computed on different integration windows. This is due to the fact that the on-line FASTER

1. http://faster.in2p3.fr/index.php/introduction
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Figure B.1: Overview of a FASTER module with 4 standard NIM channels. This case contains
a mother board on which two secondary cards are connected. We distinguish 3 FGPA circuits
connected with the mother card.

digital electronics allows to refine the row signals. For example, if a time-fluctuating base line is
added to the physical signal, the charge computed after the signal integration will also contain
this contribution. FASTER allows to follow the base line and to subtract it from the physical
signal. The base line is measured instantaneously when a given threshold is reached. Moreover,
thanks to some tools associated to the FASTER software and developed by LPC-Caen, a better
neutron-vy discrimination in comparison with that produced with an analogical electronics as the
VME type is reached. With these tools we can, in an off-line analysis, exactly individuate where
the contribution of each signal is located in a [Qtor, @siow] matrix.

Moreover for the on-line data visualisation a software based on ROOT is employed to visu-

alise directly the signals in the oscilloscope mode, the integrated charges histograms and the

[Qtoh Qslow] matrix.

Thanks to these feature, FASTER represents a perfect tool for the R&D that we are under-
taking.
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Corrélations angulaires entre les fragments et les neutrons dans la
fission spontanée du 2?Cf

Mots-clefs: Réactions de fission, fission spontanée, émission des neutrons, anisotropie dynamique, neutrons
de scission, détection des neutrons.

L’objectif de cette these est d’explorer les mécanismes d’émission des neutrons émis lors du processus de
fission. En particulier, la question ouverte de l’existence d’une anisotropie dynamique dans le centre de
masse des fragments de fission et/ou de la possibilité d’une émission de neutrons de scission est explorée.
Dans ce but, une analyse originale a été congue dans le cadre de la collaboration CORA; elle est basée sur
une nouvelle stratégie visant a déconvoluer ces phénomenes physiques des autres effets parasites.

La these débute par une introduction aux concepts théoriques permettant de décrire les processus de fission
et les mécanismes d’émission de neutrons. La nécessité de concevoir une méthode d’analyse appropriée
permettant de caractériser des mécanismes tres subtiles est ensuite discutée, en insistant notamment sur
limportance de maitriser les diverses approximations ou/et les biais expérimentaux pouvant cacher les
phénomenes physiques étudiés.

Le travail effectué dans le cadre de cette these a exigé un effort important de simulation, a travers le
développement d'une procédure Monte Carlo basée sur un modele cohérent de fission spontanée du 2°2Cf,
ainsi qu'une modélisation précise du dispositif expérimental de I'expérience CORAS3.

Dans ce travail nous proposons pour la premiere fois une approche simultanée et indépendante des deux
mécanismes, émission de scission et anisotropie dynamique, ainsi que des valeurs quantitatives d’anisotropie
et d’émission de scission mesurées expérimentalement.

Angular correlations between fragments and neutrons in the
spontaneous fission of 2°2Cf

Keywords : Fission reactions, spontaneous fission, neutron emission, dynamic anisotropy, scission neutrons,
neutron detection.

The subject of this thesis is to explore the neutron emission mechanisms in the fission process. In particular
a long standing open question, the existence of a dynamical anisotropy in the centre of mass of the fission
fragments and/or a possible scission neutron emission is explored. For this purpose a very original analysis
based on a new strategy designed by the CORA collaboration to disentangle these two physical phenomena
from other effects has been developed.

The thesis starts with an overview of the theoretical concepts on the fission process and on the neutron
emission mechanisms. Also the necessity to conceive an appropriate analysis method is stressed when a very
subtle mechanism is studied as various approximations and/or experimental biases not completely handled
can hide the physical phenomena. In the presented work a huge effort was required to write a Monte Carlo
procedure based on a coherent model for the spontaneous fission of 2°2Cf and to couple it with the devices
exploited in the CORA3 experiment.

In this work we propose for the first time a simultaneous approach of the two processes, dynamical
anisotropy and scission neutron emission, as well as quantitative values of the neutron anisotropy and
scission emission measured experimentally.
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