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The study of graph theory started two hundred years ago. The earliest known paper was written by Euler(1736)to solve the Konigsberg seven-bridge prob-lem¡Graph coloring has been one of the most important directions of graph theory since the arose of the well-known Four Color Problem. Graph coloring has real-life applications in optimization, computer science and network design. Here, we study the total coloring, list coloring, neighbor sum distinguishing total coloring and linear L-choosable arboricity.

All graphs in this thesis are simple, undirected and finite graphs. Let 2 ⌉, Hence, the conjecture above is equivalent to the linear arboricity conjecture:

2 ⌉. A list assignment L to the edges of G is the assignment of a set L(e) ⊆ N of colors to every edge e of G, where N is the set of positive integers. If G has a coloring ϕ(e) such that ϕ(e) ∈ L(e) for every edge e and (V (G), ϕ -1 (i)) is a linear forest for any i ∈ C ϕ , where C ϕ = {ϕ(e)|e ∈ E(G)}, then we say that G is linear L-colorable and ϕ is a linear L-coloring of G. We say that G is linear k-choosable if it is linear L-colorable for every list assignment L satisfying |L(e)| ≥ k for all edges e. The list linear arboricity la list (G) of a graph G is the minimum number k for which G is linear k-list colorable. It is obvious that la(G) ≤ la list (G). In chapter 5, we prove that if G is a planar graph such that every 7-cycle of G contains at most two chords, then G is linear ∆+1 2

-choosable if ∆(G) ≥ 6, and G is linear ∆ 2 -choosable if ∆(G) ≥ 11. Chapter 6 is the conclusion of the thesis. We give some graphs that can be studied in the future and we show some graph coloring problems for future works.

A k-total-coloring of a graph G is a coloring of V (G) ∪ E(G) using (3) Let G be a planar graph without intersecting chordal 5-cycles, that is, every vertex is incident with at most one chordal 5-cycle. If ∆ ≥ 7, then

χ ′′ (G) = ∆ + 1.
A mapping L is said to be an assignment for a graph G if it assigns a list L(v) of colors to each vertex v ∈ V (G). If it is possible to color G so that every vertex gets a color from its list and no two adjacent vertices receive the same color, then we say that G is L-colorable. A graph G is k-choosable if G is an L-colorable for any assignment L for G satisfying |L(v)| ≥ k for every vertex v ∈ V (G). We prove that if every 5-cycle of G is not simultaneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable. A mapping L is said to be a total assignment for a graph G if it assigns a list L(x) of colors to each element x ∈ V (G) ∪ E(G). Given a total assignment L of G, an Ltotal coloring of G is a proper total coloring such that each element receives a color from its own list. A graph G is k-total-choosable if G has a proper
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L-total-coloring for every preassigned total assignment L with |L(x)| ≥ k for every x ∈ V ∪ E. The list total chromatic number or total choosability of G, denoted χ ′′ l (G), is the smallest integer k such that G is k-total-choosable. The list edge chromatic number (or edge choosability) χ ′ l (G) are defined similarly in terms of coloring only edges. In chapter 3, if every 5-cycles of G is not adjacent to 4-cycles, we prove that

χ ′ l (G) = ∆, χ ′′ l (G) = ∆ + 1 if ∆(G) ≥ 8, and χ ′ l (G) ≤ ∆ + 1, χ ′′ l (G) ≤ ∆ + 2 if ∆(G) ≥ 6.
Recently, magic and antimagic labellings and the irregularity strength and other colorings and labellings related to "sum" of the colors have received much attention. Among them there are the famous 1 -2 -3 Conjecture and 1 -2 Conjecture. In chapter 4, we will give the definition of neighbor sum distinguishing total coloring. We also list the research progress and the corresponding conjectures of neighbor sum distinguishing total coloring. Let f (v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total k-neighbor sum distinguishing-coloring of G is a total k-coloring of G such that for each edge uv ∈ E(G), f (u) = f (v). The smallest number k is called the neighbor sum distinguishing total chromatic number, denoted by χ ′′ (G). Pilśniak and Woźniak conjectured that for any graph G with maximum degree ∆(G) holds that χ ′′ (G) ≤ ∆(G) + 3. This conjecture has been proved for complete graphs, cycles, bipartite graphs, subcubic graphs, sparse graphs, series parallel graphs and planar graphs with ∆ ≥ 14. We prove for a graph G with maximum degree ∆(G) which can be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0, then χ ′′ (G) ≤ max{∆(G) + 2, 16}.

Lastly, we study the linear L-choosable arboricity of graph. A linear forest is a graph in which each component is a path. La coloration de graphe est l'une des branches les plus importantes de la théorie des graphes, depuis l'émergence du fameux problème des 4 couleurs.

La coloration de graphe a des applications pratiques dans l'optimisation, l'informatique et la conception de réseau. Dans la présente thèse nous allons étudier le coloriage total, le coloriage par liste, le coloriage total somme-desvoisins-distinguant et l'arboricité linéaire L-sélectionable.

Tous les graphes abordés dans la thèse sont simples, non-orientés et 

G est linéairement ∆+1 2 -sélectionable si ∆(G) ≥ 6, et G est linéairement ∆ 2 -sélectionable si ∆(G) ≥ 11.
Le chapitre 6 est la conclusion de cette thèse. 

(v) = |N(v)| denote the degree of v. Set δ(G) = min{d G (v) : v ∈ V (G)}, the minimum degree of G, and ∆(G) = max{d G (v) : v ∈ V (G)}, the maximum degree of G. A k-vertex, a k --vertex or a k + -vertex is a vertex of degree k, at most k or at least k, respectively. If there is no confusion, we use V , E, d(v), δ, ∆, N(v) instead of V (G), E(G), d G (v), δ(G), ∆(G), N G (v), respectively.
A graph is connected when there is a path between every pair of vertices.

A subgraph H = (V (H), E(H)) of a graph G is a graph with V (H) ⊆ V (G), E(H) ⊆ E(G). We write H ⊆ G is a subgraph of G. Given a nonempty subset V ′ of V (G), the subgraph with vertex set V ′ and edge set {uv ∈ E(G)|u, v ∈ V ′ } is called the subgraph of G induced by V ′ , denoted G[V ′ ].
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We say that 

G[V ′ ] is an induced subgraph of G. A spanning subgraph of G is a subgraph H with V (H) = V (G). §1.2 Some Special graphs A walk in G is a finite non-null sequence W := v 0 e 1 v 1 e 2 v 2
, v 2 , • • • , v k are distinct, W is called a path. If v 0 = v k (k ≥ 2) and v 1 , v 2 , • • • , v k-1 are distinct, then W is called a cycle.
The length of a path or a cycle is the number of its edges.

A path or a cycle of length k is called a k-path or k-cycle, respectively; the path or cycle is odd or even according to the parity of its length. The girth of a graph G is the length of a shortest cycle contained in the graph, denoted by g(G). Let C = (v 1 , v 2 , ..., v k )(k ≥ 4) be a cycle. If there is an edge v i v j with j ≡ i ± 1 (mod k), then the edge v i v j is called to be a chord of C. We say that two cycles are adjacent (or intersecting) if they share at least one edge (or one vertex, respectively).

A tree is an undirected graph in which any two vertices are connected by exactly one path; that is to say, a tree has no cycles The Euler characteristic is a topological invariant, a number that describes a topological space's shape. A planar graph is a graph which can be embedded in a plane in such a way that no two edges intersect geometrically except at a vertex to which they are both incident. It can be drawn on the plan such that its edges intersect only at their ends. Such a drawing is called a planar embedding of the graph. Give a planar embedding of a planar graph, it divided the plan into a set of connected regions, including an outer unbounded connected region. A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K 5 or K 3,3 . For a face f of G, the degree d(f ) is the number of edges incident with it, where each cut-edge is counted twice.

A k-face, a k --face or a k + -face is a face of degree k, at most k or at least k, respectively. We use (v 1 , v 

|V | -|E| + |F | = 2
The "discharging method" is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result. Most commonly, discharging is applied to planar graphs. Initially, a charge is assigned to each face and each vertex of V (G) ∪ F (G). The charges are assigned so that they sum to a small positive number. However, each discharging rule maintains the sum of the charges. During the discharging the charge at each face or vertex may be redistributed to nearby faces and vertices, as required by a set of discharging rules. The rules are designed so that after the discharging phase each face or vertex with positive charge lies in one of the desired subgraphs. Since the sum of the charges is positive, some face or vertex must have a positive charge. Many discharging arguments use one of a few standard initial charge functions (these are listed below). Successful application of the discharging method requires creative design of discharging rules.

In all figures of the thesis, vertices marked • have no edges of G incident with them other than those shown and vertices marked • are 3 + -vertices.

The terminology and notation used but undefined in this paper can be found in [START_REF] Bondy | Graph theory[END_REF].
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Edge coloring

A k-edge-coloring of a graph G is a mapping c: E(G) → {1, 2, • • • , k},
if two adjacent edges are assigned distinct color. The minimum k for which a graph G is k-edge-colorable is called its chromatic number, denoted by

χ ′ := χ ′ (G).
Ensure the exact edge chromatic number of a graph is a very difficult problem. Holyer [START_REF] Holyer | The NP-completeness of edge-coloring[END_REF] proved this problem is a NP-complete problem for the graph with ∆(G) ≥ 3. Obviously, χ ′ ≥ ∆. The breakthrough was the theorem of Vizing [START_REF] Vizing | On an estimate of the chromatic class of a p-graph[END_REF] obtained independently by Gupta [START_REF] Gupta | Studies in the Theory of Graphs[END_REF].

Paris South University Doctoral Dissertation Theorem 1.3.2. (Vizing Theorem, [START_REF] Vizing | On an estimate of the chromatic class of a p-graph[END_REF], [START_REF] Gupta | Studies in the Theory of Graphs[END_REF])

Let G be a multigraph of multiplicity µ(G), then χ ′ ≤ ∆ + µ.

From this result one can prove the theorem of Shannon,

Theorem 1.3.3. (Shannon Theorem, [100])
Let G be a graph, then χ ′ ≤ 3∆ 2 .

It follows immediately from Vizing's theorem that χ ′ (G) is equal to either ∆(G) or ∆(G) + 1 when G is simple.

Total coloring

Vizing and Behazd posed independently the definition of total coloring.

If a mapping φ : we see φ is a proper total-k-coloring of a graph G.

V (G) ∪ E(G) → {1, 2, • • • , k} satisfied these three condition below: (i)If two vertices v 1 , v 2 ∈ V (G)
A proper total-k-coloring of a graph G is a coloring of V (G) ∪ E(G)

using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ ′′ (G) is the smallest integer k such that G has a total-k-coloring.

Obvious, χ ′′ (G) ≥ ∆ + 1.

Behzad [9] in 1965 and Vizing [START_REF] Vizing | Some unsolved problems in graph theory[END_REF] in 1968 posed independently the famous conjecture, known as the Total Coloring Conjecture(TCC):

Conjecture 1.3.1. For any graph G, ∆ + 1 ≤ χ ′′ (G) ≤ ∆ + 2.
(Actually, Vizing posed is a general total coloring conjecture: Let G be a multigraph of multiplicity µ(G), then χ ′′ (G) ≤ ∆(G) + µ(G) + 1)
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Clearly, the lower bound is trivial. The upper bound has been unsolved completely.

1971, Rosenfeld [START_REF] Rosenfeld | On the total coloring of certain graphs[END_REF] and Vijayaditya [START_REF] Vijayaditya | On total chromatic number of a graph[END_REF] use different method to prove TCC is true for the graph of ∆(G)

≤ 3. If graph G satisfy χ ′′ (G) = ∆ + 2,
we say G is class one. If graph G satisfy χ ′′ (G) = ∆ + 1, we say G is class two. Yap [START_REF] Yap | Total colourings of graphs[END_REF] proved that if n is odd, then

χ ′′ (K n ) = n, or χ ′′ (K n ) = n + 1.
Chew and Yap [START_REF] Chew | Total chromatic number of complete r-partite graphs[END_REF] , Hoffman and Rodger [START_REF] Hoffman | The chromatic index of complete multipartite graphs[END_REF] proved independently that for any complete r-partite G, where r is odd, is class one. As research continues, TCC is proved true for interval graphs [START_REF] Bojarshinov | Edge and total coloring of interval graphs[END_REF], series-parallel graphs [START_REF] Wu | Total coloring of series-parallel graphs[END_REF], Halin graphs [163]. For graph of maximum degree ∆ ≤ 2 graph, χ ′′ (G) ≤ ∆ + 2 is obvious. 1977, Kostochka [START_REF] Kostochka | The total coloring of a multigraph with maximal degree 4[END_REF] proved if G is a simple graph of maximum degree ∆ = 4, then χ ′′ (G) ≤ 6, that is to say TCC is true. Kostochka [START_REF] Kostochka | The total chromatic number of any multigraph with maximum degree five is at most seven[END_REF] in 1996 proved for any simple graph G with ∆ = 5, χ ′′ (G) ≤ ∆ + 2. Michael and Bruce [START_REF] Michael | A bound on the total chromatic number[END_REF] in 1998 proved if the maximum degree ∆ of G is large enough, then χ ′′ (G) ≤ ∆ + C, C is a larger constant. This conjecture has not been solved for graphs G when ∆(G) ≥ 6. But for maximum degree ∆ ≥ 6 of planar graphs, it has obtained several related results. Borodin [START_REF] Borodin | On the total coloring of planar graphs[END_REF] in 1989 proved TCC is true for maximum degree ∆(G) ≥ 9 of planar graphs, then

Yap [START_REF] Yap | Total colourings of graphs[END_REF] reduce the bound of maximum degree to 8, Sanders and Zhao [START_REF] Sanders | On total 9-coloring planar graphs of maximum degree seven[END_REF] in 1999 proved that TCC is true for maximum degree ∆(G) = 7 of planar graphs. For the planar graph with ∆(G) = 6, (a)if there does not contain k-cycle with chords, where k ∈ {4, 5, 6}, then TCC holds [START_REF] Hou | Total coloring of planar graphs without 6-cycles[END_REF]; (b) if 5 --cycles are not adjacent, then TCC holds; (c) if v 4 5 + 2(v 5+ 5 + v 4 6 ) + 3v 5 6 + 4v 6+ 6 < 24, where v k n represents the number of vertices of degree n which lie on k distinct triangle [START_REF] Leidner | A larger family of planar graphs that satisfy the total coloring conjecture[END_REF].

Through the study constantly in recent years, the researchers found that a lot of classes of G not only meet Total Coloring Conjecture, but Paris South University Doctoral Dissertation also their total chromatic number could get the lower bound, that is to say χ ′′ (G) = ∆+1¡ In the process of total coloring, it has been found the examples of non (∆ + 1)-total coloralbe when ∆ ≤ 3, such as K 2 , (3k + 2)-cycle (where k ≥ 1), K 4 , but it has not been found the examples of non (∆ + 1)-total colorable when 4 ≤ ∆ ≤ 8. Arroyo [START_REF] Sánchez-Arroyo | Determining the total colouring number is NP-hard[END_REF] proved to determine whether a graph satisfies χ ′′ (G) = ∆ + 1 is a NP-C problem. McDiarmid and Arroyo [START_REF] Colin | Total colouring regular bipartite graphs is NP-hard[END_REF] further point out for any fixed k ≥ 3, determine whether a k-regular bipartite G satisfies χ ′′ (G) = ∆ + 1 is a NP-C problem. Li et al. [START_REF] Li | The total chromatic number of halin graphs with lower degree[END_REF] proved that for Halin graphs of maximum degree is 4, the total chromatic number is 5.

Jianliang Wu [START_REF] Wu | Total coloring of series-parallel graphs[END_REF] proved that for series parallel graphs of minimum degree at least 3, the total chromatic number is ∆ + 1. In 1987, Borodin [START_REF] Borodin | Coupled colorings of graphs on a plane[END_REF] proved that for graph G with maximum degree ∆(G) ≥ 16 holds χ ′′ (G) = ∆ + 1. In 1989, he himself improved the result to ∆(G) ≥ 14 holds χ ′′ (G) = ∆ + 1 [START_REF] Borodin | On the total coloring of planar graphs[END_REF].

In 1997, he improved to ∆(G) ≥ 12 [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF], moreover, ∆(G) = 11 [START_REF] Borodin | Total colorings of planar graphs with large maximum degree[END_REF]. In 2007, Weifan Wang [START_REF] Wang | Total chromatic number of planar graphs with maximum degree ten[END_REF] improved the result to ∆(G) = 10 holds χ ′′ (G) = ∆ + 1.

In 2008, Kowalik et al. [START_REF] Kowalik | Totalcoloring of plane graphs with maximum degree nine[END_REF] improved the conclusion to ∆(G) = 9. As so far, planar graphs with ∆ = 4, 5, 6, 7, 8 have not been proved χ ′′ (G) = ∆ + 1 completely. Yingqian Wang and Lan Shen [START_REF] Shen | On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles[END_REF] posed the Total Coloring Conjecture for planar graphs, i.e. PTCC:

Conjecture 1.3.2. For any planar graph G with 4 ≤ ∆ ≤ 8, then χ ′′ (G) = ∆ + 1.
For the total coloring of planar graphs with ∆ = 4, 5, 6, 7, 8, there are some conclusions as follows in restriction conditions: Theorem 1.3.4. Let G be a planar graph, the girth of G is g, maximum degree is ∆, if G satisfy one of the conditions below, then χ ′′ (G) = ∆ + 1.

(1) ∆ ≥ 8 and for every vertex v ∈ V (G), there is an integer k ∈ {3, 4, 5, 6, 7, 8} Paris South University Doctoral Dissertation such that v is incident with at most one cycle of length k [132] ;

(2) ∆ ≥ 8 and for each vertex v ∈ V (G), there are two integers i, j ∈ {3, 4, 5} such that any two cycles of length i and j, which contain v, are not adjacent [START_REF] Wang | Total colorings of planar graphs without chordal 6-cycles[END_REF] ;

(3) ∆ ≥ 8 is an F 5 -free [START_REF] Cai | A sufficient condition for planar graphs with maximum degree 8 to be 9-totally colorable[END_REF] ;

(4) ∆ ≥ 8 contains no 5-cycles with two chords [START_REF] Chang | Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords[END_REF] ;

(5) ∆ ≥ 8 contains no adjacent chordal 5-cycles [START_REF] Tian | Total coloring of planar graphs without adjacent chordal 5-cycles[END_REF] ;

(6) ∆ ≥ 7 and for every vertex v ∈ V (G), there is an integer k ∈ {3, 4, 5, 6, 7, 8} such that v is incident with no cycles of length k [25] ;

(7) ∆ ≥ 7 and no 3-cycle is adjacent to a cycle of length less than 6 [START_REF] Wang | Total coloring of planar graphs with maximum degree 7[END_REF] ;

(8) ∆ ≥ 7 and G contains no intersecting 3-cycles [START_REF] Wang | Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles[END_REF] ;

(9) ∆ ≥ 7 and G contains no adjacent 4-cycles [START_REF] Wang | A note on the total coloring of planar graphs without adjacent 4-cycles[END_REF] ;

(10) ∆ ≥ 7 and G contains no intersecting 5-cycles [START_REF] Wang | Total colorings of planar graphs without intersecting 5-cycles[END_REF] ;

(11) ∆ ≥ 7 and G contains no chordal 5-cycles [START_REF] Wang | Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[END_REF] ;

(12) ∆ ≥ 7 and G contains no chordal 6-cycles [START_REF] Wang | Total colorings of planar graphs without chordal 6-cycles[END_REF] ;

(13) ∆ ≥ 7 and G contains no chordal 7-cycles [START_REF] Cai | Total coloring of planar graphs without chordal 7-cycles[END_REF] ;

(14) ∆ ≥ 6 and G contains no adjacent 5 --cycles [START_REF] Zhang | ∆+1)-total-colorability of plane graphs with maximum degree ∆ at least 6 and without adjacent short cycles[END_REF] ;

(15) ∆ ≥ 6 and G contains no 4-cycles [START_REF] Shen | On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles[END_REF] ;

(16) ∆ ≥ 6 and G contains no chordal 5-cycles and 6-cycles [START_REF] Wu | ∆ + 1)-total-colorability of plane graphs of maximum degree ∆ 6 with neither chordal 5-cycle nor chordal 6-cycle[END_REF] ;

(17) ∆ ≥ 6 and G contains no intersecting 4-cycles and G contains no intersecting 3-cycles, or 5-cycles, or 6-cycles [START_REF] Tan | Total coloring of three types of planar graphs with maximum degree six and without intersecting 4-cycles[END_REF] ;

(18) ∆ ≥ 5 and G contains no 4-cycles and 6-cycles [START_REF] Hou | Total coloring of planar graphs without 6-cycles[END_REF] ;

(19) (∆, g) ∈ {(7, 4), (5,5), (4, 6)} [START_REF] Borodin | Total colourings of planar graphs with large girth[END_REF] ; 
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That is to say, the graphs satisfying the above conditions is the second class.

We will give the relative results of total coloring of planar graphs in Chapter 2.

List coloring

A mapping L is said to be an assignment for a graph G if it assigns a list L(v) of colors to each vertex v ∈ V (G). If it is possible to color G so that every vertex gets a color from its list and no two adjacent vertices receive the same color, then we say that

G is L-colorable. A graph G is k-choosable if G is L-colorable for any assignment L with |L(v)| ≥ k for every vertex v ∈ V (G).
Choosability of planar graphs has been extensively studied. Thomassen [START_REF] Thomassen | Every planar graph is 5-choosable[END_REF] proved that every planar graph is 5-choosable. Voigt [START_REF] Voigt | List colourings of planar graphs[END_REF]and Mirzakhani [START_REF] Mirzakhani | A small non-4-choosable planar graph[END_REF] presented examples of non-4-choosable planar graphs, respectively. Moreover, Gutner [START_REF] Gutner | The complexity of planar graph choosability[END_REF] investigated that determining a planar graph whether 4-choosable is NP-hard. So, finding nice sufficient conditions for a planar graph to be 4-choosable is of interest. It is shown that G is 4-choosable if it is a planar graph without 4-cycles [START_REF] Che | The 4-choosability of plane graphs without 4-cycles[END_REF], 5-cycles [START_REF] Wang | Choosability and edge choosability of planar graphs without five cycles[END_REF], 6-cycles [START_REF] Fijavž | Planar graphs without cycles of specific lengths[END_REF], 7cycles [START_REF] Farzad | Planar graphs without 7-cycles are 4-choosable[END_REF], intersecting triangles [START_REF] Wang | Choosability and edge choosability of planar graphs without intersecting triangles[END_REF]and 4-cycles adjacent to 3-cycles [START_REF] Borodin | Planar graphs without triangular 4-cycles are 4-choosable[END_REF].

Let G be a planar graph, we prove that if every 5-cycle of G is not simultaneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable in chaper 3.

The mapping L is said to be an edge assignment for the graph G if it assigns a list L(x) of possible colors to each element x ∈ E(G). If G has a proper edge coloring ϕ such that ϕ(e) ∈ L(e) for all e ∈ E(G), then we say that G is an edge colorable. We say that G is edge-L-choosable if it is edge-Paris South University Doctoral Dissertation L-colorable for every edge assignment L satisfying |L(e)| ≥ k for all elements

x ∈ E(G). The list edge chromatic number χ ′ l (G) of G is the smallest integer k such that G is edge-L-choosable when |L(e)| ≥ k for all elements e ∈ E(G).
We can obtain:

χ ′ l (G) ≥ χ ′ (G) ≥ ∆.
As a generalization of the classical coloring of graphs, list coloring has been extensively studied, and one of the famous conjectures is the list coloring conjecture.

Conjecture 1.3.3. If G is a multigraph, then χ ′ l (G) = χ ′ (G).
The list edge coloring conjecture was formulated by Vizing, Gupta, Abertson and Collins [START_REF] Jensen | Graph coloring problems[END_REF], Bollobás and Harris [START_REF] Bollabas | List-colorings of graphs[END_REF] , and it is well known as the List Coloring Conjecture. Vizing's theorem give the upper bound ∆(G) + 1 of the edge chromatic number χ ′ (G), so if the list edge coloring conjecture holds, then χ ′ l (G) ≤ ∆(G) + 1 directly. The list edge coloring has been extensively studied and a large number of results have been obtained in the planar graph.

Theorem 1.3.5. Let G be a planar graph, the maximum degree of G is ∆, if G satisfies one of the conditions below, then χ ′ l (G) = ∆ + 1. (1) ∆(G) ≥ 9 [22];
(2) ∆(G) = 8 [START_REF] Bonamy | Planar graphs with ∆ ≥ 8 are (∆ + 1)-edge-choosable[END_REF];

(3) ∆(G) ≥ 7 and G contains no chordal 7-cycles [START_REF] Cai | Edgechoosability of planar graphs without chordal 7-cycles[END_REF];

(4) ∆(G) ≥ 7 and G contains no chordal 6-cycles [START_REF] Ge | Edge-choosability of planar graphs without chordal 6-cycles[END_REF];

(5) ∆(G) ≥ 6 and G contains no adjacent 3-cycles [START_REF] Hou | Edge-choosability of planar graphs without adjacent triangles or without 7-cycles[END_REF]; Borodin et al. proved that if G is a graph which can be embedded in a surface of Euler characteristic and ∆ ≥ 12, then χ ′ l (G) = ∆ [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF]. We have similar conclusions in planar graphs.

Theorem 1.3.6. Let G be a planar graph, the maximum degree of G is ∆, the girth is g, if G satisfies one of the conditions below, then χ ′ l (G) = ∆. ( 1) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 4-cycle [START_REF] Li | Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles[END_REF];

(2) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 5-cycle [START_REF] Lu | Sufficient conditions for a planar graph to be list edge ∆-colorable and list totally (∆ + 1)-colorable[END_REF];

(3) ∆(G) ≥ 8 and G contains no adjacent 4-cycles [START_REF] Wang | A note on the minimum number of choosability of planar graphs[END_REF];

(4) ∆(G) ≥ 8 and G contains no chordal 5-cycles [START_REF] Wang | List edge and list total coloring of planar graphs with maximum degree 8[END_REF];

(5) ∆(G) ≥ 7 and the 4-cycle of G is not adjacent to 4 --cycle [START_REF] Juan | A note on list edge and list total coloring of planar graphs without adjacent short cycles[END_REF]; Similarly, we can give the definition of the list total chromatic number

χ ′′ l (G) of G, identically, the formula below holds: χ ′′ l (G) ≥ χ ′ (G) ≥ ∆ + 1.
For list total coloring, we have a well known conjecture, too.

Conjecture 1.3.4. For any graph G, we have χ ′′ l (G) = χ ′′ (G).
The list total coloring conjecture was formulated independently by Borodin, Kostochka and Woodall [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF], Juvan, Mohar and Sekovski [START_REF] Juvan | List total colourings of graphs[END_REF], and it is well known as the List Total Coloring Conjecture. TCC conjecture that the up-
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per bound of total chromatic number χ ′′ (G) is ∆(G) + 2, so if the list total coloring conjecture holds, we have

χ ′′ l (G) ≤ ∆(G) + 2.
Theorem 1.3.7. Let G be a planar graph, the maximum degree is ∆, if G satisfies one of the condition below, then

χ ′′ l (G) ≤ ∆ + 2. (1) ∆(G) ≥ 9 [60];
(2) ∆(G) ≥ 7 and G contains no chordal 7-cycles [START_REF] Dong | List edge and list total colorings of planar graphs without non-induced 7-cycles[END_REF];

(3) ∆(G) ≥ 7 and G contains no adjacent 3-cycles [START_REF] Liu | List total colorings of planar graphs without triangles at small distance[END_REF];

(4) ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 4-cycles [START_REF] Li | Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles[END_REF];

(5) ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 5-cycles [START_REF] Lu | Sufficient conditions for a planar graph to be list edge ∆-colorable and list totally (∆ + 1)-colorable[END_REF]; (2) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 5-cycles [START_REF] Lu | Sufficient conditions for a planar graph to be list edge ∆-colorable and list totally (∆ + 1)-colorable[END_REF];

(3) ∆(G) ≥ 8 and G contains no adjacent 4-cycles [START_REF] Wang | A note on the minimum number of choosability of planar graphs[END_REF];

(4) ∆(G) ≥ 8 and G contains no chordal 5-cycles [START_REF] Wang | List edge and list total coloring of planar graphs with maximum degree 8[END_REF];

(5) ∆(G) ≥ 7 and the 4-cycle of G is not adjacent to 4 --cycle [START_REF] Juan | A note on list edge and list total coloring of planar graphs without adjacent short cycles[END_REF]; (9) (∆(G), g) ∈ {(7, 4), (6,5), (5,8), (4,[START_REF] Bondy | Graph theory[END_REF]}, where g is the girth of G [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF].
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Let G be a planar graph with maximum degree ∆, if every 5-cycles of G is not adjacent to 3-cycles or is not intersecting to 4-cycles, we prove

that χ ′ l (G) = ∆ and χ ′′ l (G) = ∆ + 1 if ∆(G) ≥ 8, and χ ′ l (G) ≤ ∆ + 1 and χ ′′ l (G) ≤ ∆ + 2 if ∆(G) ≥ 6
, where χ ′ l (G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G, respectively. We will illustrate in Chapter 3.

Neighbor sum distinguishing total coloring

In the study of irregular networks, usually assigned each of the edges of graph G a positive integer, making for each vertices of graph G, its associated edge weights are different. This method effectively promoted the development of the theory of graph coloring, and produced a lot of branches, including "vertices distinguishing edge coloring, adjacent vertex distinguishing edge coloring, adjacent vertex distinguishing total coloring". Recently, colorings and labellings concerning the sums of the colors have received much attention. The family of such problems includes, e.g. vertex-coloringkedge-weighting(Kalkowski et al. [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3-conjecture[END_REF]), total weight choosability(Przyby lo and Woźniak [START_REF] Przyby Lo | Total weight choosability of graphs[END_REF]; Wong and Zhu [START_REF] Tsai | Total weight choosability of graphs[END_REF]), magic and antimagic labellings (Huang et al. ( [65]; Wong and Zhu [START_REF] Tsai | Antimagic labelling of vertex weighted graphs[END_REF]) and the irregulaity strength(Przyby lo [START_REF] Lo | Irregularity strength of regular graphs[END_REF] [91]) .

Given a total-k-coloring φ of G, let C φ (v) denote the set of colors of the edges incident to v and the color of v. This total k-coloring is called adjacent vertex distinguishing, or it is a total-k-avd-coloring for short, if for each edge

uv, C φ (u) is different from C φ (v).
The smallest k is called the adjacent vertex distinguishing total chromatic number, denoted by χ ′′ a (G). Zhang et al. [START_REF] Zhang | On adjacent-vertex-distinguishing total coloring of graphs[END_REF] proposed that the following conjecture. 
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Conjecture 1.3.5 was confirmed for graphs with maximum degree at most three independently by Chen [START_REF] Xiang'en Chen | On the adjacent vertex distinguishing total coloring numbers of graphs with ∆ = 3[END_REF], Wang [START_REF] Wang | On the adjacent vertex-distinguishing total chromatic numbers of the graphs with ∆(G) = 3[END_REF] and Hulgan [START_REF] Hulgan | Concise proofs for adjacent vertex-distinguishing total colorings[END_REF] Wang and Wang [START_REF] Wang | Adjacent vertex distinguishing total colorings of outerplanar graphs[END_REF] proved that this conjecture holds for outerplanar graphs and Wang and Wang [START_REF] Wang | Adjacent vertex-distinguishing edge colorings of K 4 -minor free graphs[END_REF] proved that K 4 -minor free graphs satisfied this conjecture. Recently Huang and Wang proved that Conjecture 1.3.5 holds for planar graphs with maximum degree at least 11 [START_REF] Huang | Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree (in chinese)[END_REF] and they also proved that χ ′′ a (G) ≤ ∆(G) + 2 for planar graphs with maximum degree at least 14 [START_REF] Wang | The adjacent vertex distinguishing total coloring of planar graphs[END_REF]. And Huang et al. [START_REF] Huang | A note on the adjacent vertex distinguishing total chromatic number of graphs[END_REF] also proved for graphs with maximum degree

∆ ≥ 3, we have χ ′′ a (G) ≤ 2∆. An edge k-weighting of G is a function w : E(G) → [k] := {1, 2, • • • , k}.
An edge k-weighting w is a proper vertex coloring by sums if e∋u w(e) = e∋v w(e) for every uv ∈ E(G). Denote by χ e := χ e (G) the smallest value of k such that a graph G has a edge k-weighting which is a proper vertex coloring by sums. In 2004 , Karoński, Luczak and Thomason [START_REF] Karoński | Edge weights and vertex colours[END_REF] introduced the following conjecture:

Conjecture 1.3.6. (1-2-3 Conjecture) If graph G has no connected compo- nent isomorphic to K 2 , then χ e ≤ 3.
Addario-Berry, Dalal, McMiarmid, Reed and Thomason in 2007 [2] showed that every graph without isolated edges admits a vertex-coloring 30-edge-weighting, equivalent, χ e ≤ 30. This bound was improved to 16 by Addario-Berry, Dalal and Reed [3], equivalent, χ e ≤ 16. And later improved to 13 by Tao Wang and Qinglin Yu [START_REF] Wang | On vertex-coloring 13-edge-weighting[END_REF], equivalent, χ e ≤ 13. Recently, Kalkowski, Karoński and Pfender in 2010 [START_REF] Kalkowski | Vertex-coloring edge-weightings: towards the 1-2-3-conjecture[END_REF] showed that every graph without isolated edges admits a vertex-coloring 5-edge-weighting, equivalent,

χ e ≤ 5.
Researchers consider those where addition of edge weights as the coloring method is replaced by another operation. In particular, consider variations
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where colors are obtained by taking a product, set, multiset of weights from edges incident to v for each v ∈ V (G). If such a coloring is proper, then the edge k-weighting of G is a proper vertex coloring by products, sets, multisets, respectively. Denoted by χ e , χ e s and χ e m . For a graph G, χ e ≤ 4, see [START_REF] Skowronek-Kaziów | Multiplicative vertex-colouring weightings of graphs[END_REF]; χ e s = ⌈log 2 χ⌉ + 1, see [START_REF] Győri | A new type of edge-derived vertex coloring[END_REF]; χ e m ≤ 4, see [1]. More information in [START_REF] Ben | The 1-2-3 conjecture and related problems: a survey[END_REF]. A total weighting of a graph G is an assignment of a real number weight to each e ∈ E(G) and each v ∈ V (G). In 2010 , Przyby lo and Woźniak [START_REF] Przyby Lo | On a 1, 2 conjecture[END_REF] proposed the following conjecture:

Conjecture 1.3.7. (1-2 Conjecture) For any graph G, χ t (G) ≤ 2
Given a total k-weighting of G, we consider vertex coloring obtained by taking either the product, set, multiset of weights taken from the edges incident to v and from v itself for each v ∈ V (G). If such a coloring is proper, then the total k-weighting of G is a proper vertex coloring by products, sets, multisets, respectively. The smallest values of k for which a proper coloring of each type exists for a graph G are denoted χ t , χ t s and χ t m . In a total k-coloring of G, let f (v) denote the total sum of colors of the edges incident to v and the color of v. If for each edge uv, f (u) = f (v), we call such total k-coloring a total k neighbor sum distinguishing coloring. The smallest number k is called the neighbor sum distinguishing total chromatic number, denoted by χ ′′ (G).

For neighbor sum distinguishing total colorings, we have the following conjecture due to Przyby lo and Woźniak [START_REF] Pilśniak | On the total-neighbor-distinguishing index by sums[END_REF]. 

u, v ∈ V (G), if C φ (u) = C φ (v) holds, then f (u) = f (v).
(G) ≥ 4, then, χ ′′ (G) ≤ ∆(G) + 2.
By using the famous Combinatorial Nullstellensatz, Ding et al. [START_REF] Ding | Neighbor sum distinguishing total colorings via the combinatorial Nullstellensatz[END_REF] proved

thatχ ′′ (G) ≤ 2∆(G) + col(G) -1, where col(G) is the coloring number of G. Later Ding et al. improved this bound to ∆(G) + 2col(G) -2.
Moreover they proved this assertion in its list version. Cheng et al. [START_REF] Cheng | Neighbor sum distinguishing total colorings of planar graphs with maximum degree ∆[END_REF] proved that

χ ′′ (G) ≤ ∆(G) + 2 for planar graph G with ∆(G) ≥ 14.
In Chapter 4, it is proved that the total neighbor sum distinguishing chromatic number of G is ∆(G) + 2 if ∆(G) ≥ 14, where ∆(G) is the maximum degree of G.

List linear arboricity

A linear f orest is a graph in which each component is a path. A map ϕ form E(G) to {1, 2, • • • , t} is called a t-linear coloring if the induced
subgraph of edges having the same color α is a linear forest for 1 ≤ α ≤ t. The linear arboricity la(G) of a graph G defined by Harary [START_REF] Harary | Covering and packing in graphs[END_REF] is the minimum number t for which G has a t-linear coloring. For a real number x, ⌈x⌉ is the least integer not less than x and ⌊x⌋ is the largest integer not larger than x.

Akiyama et al. [4] conjectured that la(G) = ⌈ ∆(G)+1 2 ⌉ for any simple regular graph G. The conjecture is equivalent to the following conjecture.

Conjecture 1.3.9. (Linear arboricity conjecture) For any graph

G, ⌈ ∆(G) 2 ⌉ ≤ la(G) ≤ ⌈ ∆(G)+1 2 ⌉.
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The linear arboricity has been determined for complete bipartite graphs [4], complete regular multipartite graphs [START_REF] Wu | The linear arboricity of composition graphs[END_REF], Halin graphs [START_REF] Liang | Some path decompositions of Halin graphs[END_REF], seriesparallel graphs [START_REF] Wu | The linear arboricity of series-parallel graphs[END_REF] and regular graphs with ∆ = 3, 4 [5] and 5,6,8 [START_REF] Enomoto | The linear arboricity of some regular graphs[END_REF].

For planar graphs, more results about the linear arboricity are obtained. Conjecture 1.3.10 has already been proved to be true for all planar graphs (see [START_REF] Wu | On the linear arboricity of planar graphs[END_REF] and [START_REF] Wu | The linear arboricity of planar graphs of maximum degree seven is four[END_REF]). Wu [START_REF] Wu | On the linear arboricity of planar graphs[END_REF] proved that for a planar graph G with girth

g and maximum degree ∆, la(G) = ⌈ ∆(G) 2 ⌉ if ∆(G) ≥ 13
, or ∆(G) ≥ 7 and g ≥ 4, or ∆(G) ≥ 5 and g ≥ 5, ∆(G) ≥ 3 and g ≥ 6. Recently, M. Cygan et al. [START_REF] Cygan | A planar linear arboricity conjecture[END_REF] proved that if G is a planar graph with ∆ ≥ 9, then la(G) = ⌈ ∆ 2 ⌉, and then they posed the following conjecture (the conjecture has also been posed in [START_REF] Wu | On the linear arboricity of graphs[END_REF]).: There are more partial results to support the conjecture 1.3.10. The linear arboricity of a planar graph G is ⌈ ∆ 2 ⌉ if it satisfies one of the following conditions: (1) ∆(G) ≥ 7 and G contains no 5-cycles with two chords [START_REF] Chen | The linear arboricity of planar graphs without 5-cycles with two chords[END_REF];

(2) ∆(G) ≥ 7 and G contains no chordal i-cycles for some i ∈ {4, 5, 6, 7} ( [START_REF] Chen | The linear arboricity of planar graphs without 5-cycles with chords[END_REF][START_REF] Chen | The linear arboricity of planar graphs without 5-, 6-cycles with chords[END_REF][START_REF] Wang | The linear arboricity of planar graphs without chordal short cycles[END_REF]); (3) ∆ ≥ 7 and for each vertex v ∈ V (G), there exist two integers i v , j v ∈ {3, 4, 5, 6, 7, 8} such that any two i v , j v -cycles incident with v are not adjacent ( [START_REF] Chen | The linear arboricity of planar graphs with maximum degree at least 7[END_REF][START_REF] Wang | Minimum number of disjoint linear forests covering a planar graph[END_REF]); ( 4 is a linear forest for any i ∈ C ϕ , where C ϕ = {ϕ(e)|e ∈ E(G)}, then we say that G is linear L-colorable and ϕ is a linear L-coloring of G. We say that G is linear k-choosable if it is linear L-colorable for every list assignment L satisfying |L(e)| = k for all edges e. The list linear arboricity la list (G) of a graph G is the minimum number k for which G is linear k-list colorable. It is obvious that la(G) ≤ la list (G). In [7] and [START_REF] Wu | On the linear arboricity of graphs[END_REF], the following conjecture is posed independently. Very few results are known about the conjecture 1.3.11. An and Wu [7] proved by using the results of [START_REF] Wu | On the linear arboricity of planar graphs[END_REF] that la list (G) ≤ ⌈ ∆(G)+1 2 ⌉ for any planar graph having ∆(G) ≥ 9, and for a planar graph G, la list (G) = ⌈ ∆(G) 2 ⌉ if ∆(G) ≥ 13, or ∆(G) ≥ 7 and G contains no i-cycles for some i ∈ {3, 4, 5}.

In [START_REF] Zhang | The list linear arboricity of f 5 -free planar graphs[END_REF],

la list (G) ≤ max{4, ⌈ ∆(G)+1 2 ⌉} and la list (G) = ⌈ ∆ 2 ⌉ if ∆(G) ≥ 11 for a F 5 -free planar graph G.
In Chapter 5, we prove that if G is a planar graph such that every 7-

cycle of G contains at most two chords, then G is linear ∆+1 2 -choosable if ∆(G) ≥ 6, and G is linear ∆ 2 -choosable if ∆(G) ≥ 11. §1.

Main results

In Chapter 2, we use the formula of Euler and discharging method to study the total coloring problems of planar graphs, and prove the following conclusions:
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If every 6-cycle of G contains at most one chord in G, then χ ′′ (G) = ∆ + 1.

Conclusion 2

Let G be a planar graph with maximum degree ∆ ≥ 8.

If chordal 6-cycles are not adjacent in G, then χ ′′ (G) = ∆ + 1.

Conclusion 3

Let G be a planar graph with maximum degree ∆ ≥ 8.

If every 7-cycle of G contains at most two chords, then χ ′′ (G) = ∆ + 1.

Conclusion 4

Let G be a planar graph without intersecting chordal 5-cycles, that is, every vertex is incident with at most one chordal cycle of covers the planar graphs with ∆ ≥ 8 and contain no chordal 6-cycles [START_REF] Shen | Total colorings of planar graphs with maximum degree at least 8[END_REF], or contain no intersecting 6-cycles [START_REF] Wang | Minimum total coloring of planar graph[END_REF], or contain no adjacent 6-cycles [START_REF] Wang | Total colorings of planar graphs without chordal 6-cycles[END_REF], or contain no intersecting chordal 6-cycles [START_REF] Wang | Total coloring of planar graphs with maximum degree 8[END_REF]; Conclusion 3 covers the planar graphs with ∆ ≥ 8 and contain no 7-cycles [START_REF] Roussel | Total coloring of planar graphs of maximum degree eight[END_REF] or contain no chordal 7-cycle [START_REF] Wang | Total coloring of planar graphs without chordal short cycles[END_REF], this conclusion prove every 7-cycle of G contains at most two chords directly, covered every 7-cycle of G contains at most one chords naturally.

Conclusion 4 is directed against planar graphs with ∆ ≥ 7. It covers the planar graphs with ∆ ≥ 7 and contain no 5-cycles [START_REF] Shen | Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable[END_REF], or contain no chordal 5-cycles [START_REF] Wang | Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[END_REF] or contain no intersecting 5-cycles [START_REF] Wang | Total colorings of planar graphs without intersecting 5-cycles[END_REF]. Equivalently promote planar graphs with ∆ ≥ 8 and contain no intersecting chordal 5-cycles.

In Chapter 3, according the properties of planar graphs, we study the list vertex coloring, list edge coloring and list total coloring and get the following conclusions:
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Conclusion 5 is in regard to list vertex coloring. It prove that the planar graph is 4-choosable either if every 3-cycles of G is not adjacent to 5-cycles or if every 4-cycles of G is not adjacent to 5-cycles. The conclusion improved the 4-choosable planar graph if contain no 4-cycles [START_REF] Che | The 4-choosability of plane graphs without 4-cycles[END_REF], or 5-cycles [START_REF] Wang | Choosability and edge choosability of planar graphs without five cycles[END_REF].

Conclusion 6

Let G be a planar graph with ∆ ≥ 8, if every 5-cycles of In Chapter 5, we investigate the list linear arboricity of planar graph, and have the following conclusions:

G is not adjacent to 4-cycles, then χ ′ l (G) = ∆. Conclusion 7 Let G be a planar graph with ∆ ≥ 8, if every 5-cycles of G is not adjacent to 4-cycles, then χ ′′ l (G) = ∆ + 1. Conclusion 8 Let G be a planar graph with ∆ ≥ 6, if every 5-cycles of G is not adjacent to 4-cycles, then χ ′ l (G) ≤ ∆ + 1. Conclusion 9 Let G be a planar graph with ∆ ≥ 6, if every 5-cycles of
Conclusion 13 Let G be a planar graph. If every 7-cycles of G contains at most two chords, then ⌈ ∆(G) 2 ⌉ ≤ la list (G) ≤ max{4, ⌈ ∆(G)+1 2 ⌉}.

Conclusion 14

Let G be a planar graph. If ∆(G) ≥ 6 and every 7- 

cycles of G contains at most two chords, then ⌈ ∆(G) 2 ⌉ ≤ la list (G) ≤ ⌈ ∆(G)+1
A k-total-coloring of a graph G = (V, E) is a coloring of V ∪ E using
k colors such that no two adjacent or incident elements receive the same color. A graph G is total-k-colorable if it admits a k-total-coloring. The total chromatic number χ ′′ (G) of G is the smallest integer k such that G has a k-total-coloring. Clearly, χ ′′ (G) ≥ ∆+1. Since more and more planar graphs have been determined the total chromatic number χ ′′ (G) = ∆ + 1. In this chapter, we mainly study the total coloring of planar graphs. In the first subsection we discuss the total coloring problems of planar graph G with ∆ ≥ 8, and in the second subsection we discuss the total coloring problems of planar graph G with ∆ ≥ 7. §2.2 Planar graph G with maximum degree ∆ ≥ 8 Hou et al. [START_REF] Hou | Total colorings of planar graphs without small cycles[END_REF] proved: Lemma 2.2.1. For planar graph G with ∆ ≥ 8, if it contains no 6-cycles,

then χ ′′ (G) = ∆ + 1.
Shen and Wang [START_REF] Shen | Total colorings of planar graphs with maximum degree at least 8[END_REF] extended this result:

Lemma 2.2.2. For planar graph G with ∆ ≥ 8, if it contains no 6-cycles with chords, then χ ′′ (G) = ∆ + 1.

Roussel and Zhu [96] proved

Lemma 2.2.3. For planar graph G with ∆ ≥ 8, and for each vertex x, there is an integer k x ∈ {3, 4, 5, 6, 7, 8} such that there is no k x -cycle which contains x, then χ ′′ (G) = ∆ + 1.

Paris South University Doctoral Dissertation

Wang et al. [START_REF] Wang | Total coloring of planar graphs with maximum degree 8[END_REF] extended this result: Lemma 2.2.4. Let G be a planar graph with ∆ ≥ 8 and without adjacent cycles of size i and j, for some

3 ≤ i ≤ j ≤ 5, χ ′′ (G) = ∆ + 1.
These results are all about planar graph with (∆ ≥ 8) in order to prove their total chromatic number is (∆ + 1). We extend these result and get the following results: 1. Let G be a planar graph with maximum degree According to [START_REF] Kowalik | Totalcoloring of plane graphs with maximum degree nine[END_REF], the theorem 2.2.1 is true for ∆ ≥ 9. So we assume in the following that ∆ = 8. Let G = (V, E) be a minimal counterexample to the planar graph G with maximum degree ∆ = 8, such that |V | + |E| is minimal and G has been embedded in the plane. Then every proper subgraph of G is total-9-colorable. First we give some lemmas for G. (1)

(3) (4) (5) ( 6)

v (2) Figure 2.1
Proof. The proof of ( 1), ( 2), ( 4) and ( 6) can be found in [START_REF] Wang | Total chromatic number of planar graphs with maximum degree ten[END_REF], (3) can be found in [START_REF] Shen | Total colorings of planar graphs with maximum degree at least 8[END_REF], (5) can be found in [START_REF] Kowalik | Totalcoloring of plane graphs with maximum degree nine[END_REF].

Lemma 2.2.7. Suppose v is a d-vertex of G with d ≥ 5. Let v 1 , • • • , v d be the neighbor of v and f 1 , f 2 , • • • , f d be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , d}. Let d(v 1 ) = 2 and {v, u 1 } = N(v 1
). Then G does not satisfy one of the following conditions (see Figure 2.2).

(1) there exists an integer k (2

≤ k ≤ d -1) such that d(v k+1 ) = 2, d(v i ) = 3 (2 ≤ i ≤ k) and d(f j ) = 4 (1 ≤ j ≤ k).
(2) there exist two integers k and t (2

≤ k < t ≤ d -1) such that d(v k ) = 2, d(v i ) = 3 (k + 1 ≤ i ≤ t), d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
(3) there exist two integers k and t (3

≤ k ≤ t ≤ d -1) such that d(v i ) = 3 (k ≤ i ≤ t), d(f k-1 ) = d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
Proof. Suppose G satisfies all of the conditions ( 1 First we erase the colors on all 3 --vertices adjacent to v. We have φ(v 1 u 1 ) ∈ Paris South University Doctoral Dissertation

(1) (2) 
(3)

1 v v 1 u 2 v 2 u k v u k u ... k +1 v k -1 t +1 v k v k u t v 1 v 1 u ... v k +1 v k +1 u t -1 u v 1 u k v k u t v t u 1 v k v ... 1 1 - - k +1 u k +1 v t +1 v Figure 2.2 C(v)
, for otherwise, the number of the forbidden colors for vv 1 is at most ∆, so vv 1 can be properly colored and by properly recoloring the erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. Without loss of generality, assume that (

C(v) = {1, 2, • • • , d} with φ(vv i ) = i (i ∈ {2, 3, • • • , d}), φ(v 1 u 1 ) = d + 1 and φ(v) = 1. Thus we have d + 1 ∈ C(v i ) for all i ∈ {2, 3, • • • , d},
) Since d + 1 ∈ C(v i ) for all i ∈ {2, 3, • • • , d}, there is a vertex u s (1 ≤ s ≤ k 1 
) such that d + 1 appears at least twice on u s , a contradiction to φ.

(

) Since d+1 ∈ C(v i ) for all i ∈ {2, 3, • • • , d}, φ(v k u k ) = φ(v k+1 u k+1 ) = • • • = φ(v t-1 u t-1 ) = φ(v t v t+1 ) = d + 1. We also have φ(v t u t-1 ) = t + 1. 2 
For otherwise, we can recolor v t v t+1 with t + 1, vv t+1 with d + 1 and color vv 1 with t + 1. By properly recoloring the erased vertices, we get a (∆ + 1)-total-

coloring of G, a contradiction. Similarly, φ(v t-1 u t-2 ) = φ(v t-2 u t-3 ) = • • • = φ(v k+1 u k ) = t + 1. So we can recolor vv t+1 with d + 1, v t v t+1 with t + 1, v t u t-1 with d + 1, v t-1 u t-1 with t + 1,• • • , v k+1 u k+1 with t + 1, v k+1 u k with d + 1,
v k u k with t + 1 and color vv 1 with t + 1. By properly recoloring the erased Paris South University Doctoral Dissertation vertices, we get a (∆ + 1)-total-coloring of G, also a contradiction.

(

) If d + 1 ∈ {φ(v k-1 v k ) ∪ φ(v t v t+1 )}, then there is a vertex u s (k ≤ s ≤ t -1 3 
) such that d + 1 appears at least twice on u s , a contradiction to φ. So without loss of generality, assume

φ(v k-1 v k ) = d + 1. If φ(v k+1 u k ) = d + 1, then φ(v k+2 u k+1 ) = φ(v k+3 u k+2 ) = • • • = φ(v t u t-1 ) = d+1
. By the discussion of (2), we also have

φ(v k u k ) = φ(v k+1 u k+1 ) = • • • = φ(v t-1 u t-1 ) = φ(v t v t+1 ) = k -1. Then we can recolor vv k-1 with d + 1, v k-1 v k with k -1, v k u k with d + 1, v k+1 u k with k -1, • • • , v t-1 u t-1 with d + 1, v t u t-1 with k -1, v t v t+1
with t + 1, vv t+1 with k -1 and color vv 1 with t + 1. By properly recoloring the erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. If

φ(v k+1 u k+1 ) = d + 1, then φ(v k+2 u k+2 ) = φ(v k+3 u k+3 ) = • • • = φ(v t-1 u t-1 ) = φ(v t v t+1 ) = d + 1. Similarly, we have φ(v t u t-1 ) = φ(v t-1 u t-2 ) = • • • = φ(v k+1 u k ) = t + 1. Let φ(v k u k ) = s.
Then we can recolor vv t+1 with d + 1,

v t v t+1 with t+1, v t u t-1 with d+1, v t-1 u t-1 with t+1, • • • , v k+1 u k+1 with t+1,
v k+1 u k with s, v k u k with t+1, and color vv 1 with t+1. By properly recoloring the erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction, too.

We will use the "Discharging method" to complete the proof of Theorem x∈V ∪F ch(x) = -12, which completes our proof. Now we define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. Let f be a 3-face. If f is incident with a 3 --vertex, then it receives 3 2 from each of its two incident 7 + -vertices. If f is incident with a 4-vertex, then it receives 5 4 from each of its two incident 6 + -vertices. If f is not incident with any 4 --vertex, then it receives 1 from each of its two incident 5 + -vertices.

R3. Let f be a 4-face. If f is incident with two 3 --vertices, then it receives 1 from each of its two incident 7 + -vertices. If f is incident with only one 3 --vertex, then it receives 3 4 from each of its two incident 7 + -vertices; and 1 2 from the left incident 4 + -vertex. If f is not incident with any 3 --vertex, then it receives 1 2 from each of its incident 4 + -vertices. R4. Each 5-face receives 1 3 from each of its incident 4 + -vertices. Next, we show that ch ′ (x) ≥ 0 for all x ∈ V ∪ F . It is easy to check that ch ′ (f ) ≥ 0 for all f ∈ F and ch ′ (v) ≥ 0 for all 2-vertices v ∈ V by the (e) G has no configurations depicted in Figure 2.3(6) and Figure 2.3 (7).

above discharging rules. If d(v) = 3, then ch ′ (v) = ch(v) = 0. If d(v) = 4, then ch ′ (v) ≥ ch(v) -1 2 × 4 =
(1) (3) (2) (7) (6) (5) (4) f 2 f 1 f 2 f 1 Figure 2.3 Suppose d(v) = 5. Then f 3 (v) ≤ 4 by Lemma 2.2.8. If f 3 (v) = 4, then f 6 + (v) ≥ 1, so ch ′ (v) ≥ ch(v) -1 × 4 = 0. If f 3 (v) ≤ 3, then ch ′ (v) ≥ ch(v) -1 × f 3 (v) -1 2 × (5 -f 3 (v)) = 3-f 3 (v) 2 ≥ 0. Suppose d(v) = 6. Then f 3 (v) ≤ 4 and ch ′ (v) ≥ ch(v) -5 4 × f 3 (v) -1 2 × (6 -f 3 (v)) = 3(4-f 3 (v)) 4 ≥ 0.
Suppose d(v) = 7. Then f 3 (v) ≤ 5. By Lemma 2.2.6(1), v is incident with at most two 3-faces are incident with a 3 --vertex, that is, v sends 3 2 to each of the two 3-faces and at most 5 4 to each other 3-face. If

f 3 (v) = 5, then f 5 + (v) ≥ 1, and ch ′ (v) ≥ ch(v)-3 2 ×2-5 4 ×3-3 4 ×1-1 3 ×1 = 1 6 > 0. If 2 ≤ f 3 (v) ≤ 4, then ch ′ (v) ≥ ch(v) -3 2 × 2 -5 4 × (f 3 (v) -2) -1 × (5 -f 3 (v)) -3 4 × 2 = 4-f 3 (v) 4 ≥ 0. If f 3 (v) ≤ 2, then ch ′ (v) ≥ ch(v) -3 2 × f 3 (v) -1 × (7 -f 3 (v)) = 2-f 3 (v) 2 > 0. Suppose d(v) = 8. Then ch(v) = 10. Let v 1 , • • • , v 8 be neighbors of v in the clockwise order and f 1 , f 2 , • • • , f 8 be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , 8}, and f 9 = f 1 . Suppose n 2 (v) = 0. Then f 3 (v) ≤ 6. If f 3 (v) = 6, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 10 -3 2 × 6 -1 3 × 2 = 1 3 > 0. If f 3 (v) = 5, then f 5 + (v) ≥ 1,
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so ch ′ (v) ≥ 10 -3 2 × 5 -1 × 2 -1 3 × 1 = 1 6 > 0. If f 3 (v) ≤ 4, then ch ′ (v) ≥ 10 -3 2 × f 3 (v) -1 × (8 -f 3 (v)) ≥ 0. Suppose n 2 (v) = 1. Without loss of generality, assume d(v 1 ) = 2. Suppose v 1 is incident with a 3-cycle f 1 .
By Lemma 2.2.8, f 3 (v) ≤ 6 and all 3-faces incident with no 3 --vertex except f 1 by Lemma 2.2.6 (6).

If f 3 (v) = 6, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 10 -1 -3 2 × 1 -5 4 × 5 -1 3 × 2 = 7 12 > 0. If 4 ≤ f 3 (v) ≤ 5, then ch ′ (v) ≥ 10 - 1-3 2 ×1-5 4 ×(f 3 (v)-1)-1×(6-f 3 (v))-3 4 ×2 = 5-f 3 (v) 4 ≥ 0. If 1 ≤ f 3 (v) ≤ 3, then ch ′ (v) ≥ 10 -1 -3 2 × 1 -5 4 × (f 3 (v) -1) -1 × (8 -f 3 (v)) = 3-f 3 (v) 4 ≥ 0.
Suppose v 1 is not incident with a 3-cycle.

Suppose every 6-cycle of G contains at most one chord. Then

f 3 (v) ≤ 5 by Lemma 2.2.6(2)-(4). If 4 ≤ f 3 (v) ≤ 5, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 10 -1 -3 2 × (f 3 (v) -1) -1 × 1 -1 × (6 -f 3 (v)) -1 3 × 2 = 17-3f 3 (v) 6 > 0. If f 3 (v) = 3, then f 5 + (v) ≥ 1, so ch ′ (v) ≥ 10 -1 -3 2 × 3 -1 × 4 -1 3 × 1 = 1 6 > 0. If f 3 (v) = 2, then ch ′ (v) ≥ 10 -1 -3 2 × 2 -1 × 6 = 0. If f 3 (v) = 1, then without loss of generality, d(f 2 ) = 3, i.e. d(v 3 ) = 3 and d(v 2 ) ≥ 7, so ch ′ (v) ≥ 10 -1 -3 2 × 1 -1 × 6 -3 4 × 1 = 3 4 > 0. If f 3 (v) = 0, then ch ′ (v) ≥ 10 -1 -1 × 8 = 1 > 0.
Suppose any two chordal 6-cycles are not adjacent. Then

f 3 (v) ≤ 5 by Lemma 2.2.6(2)-(4). If f 3 (v) ≥ 4, then ch ′ (v) ≥ 10 -1 -3 2 × 2 -5 4 × (f 3 (v)) - 3 4 ×(8-f 3 (v)) = 5-f 3 (v) 2 ≥ 0. If f 3 (v) = 3, then ch ′ (v) ≥ 10-1-3 2 ×3-3 4 ×5 = 3 4 > 0. If 1 ≤ f 3 (v) ≤ 2, then ch ′ (v) ≥ 10-1-3 2 ×f 3 (v)-1×(6-2f 3 (v))-3 4 × (2 + f 3 (v)) = 6-f 3 (v) 4 > 0. If f 3 (v) = 0, then ch ′ (v) ≥ 10 -1 -1 × 8 = 1 > 0.
Note that next Lemma 2.2.9 is also true for general planar graphs if we just use the above discharging rules. (2)

(3) (1) (4)

v i v i+ 3 f i f i+ 2 v i f i v i+ 4 f i+ 3 v i f i v i+ 5 f i+ 4 v i f i v i+ 2 f i+ 1 ( 5 
) v i f i v i+ 6 f i+ 5 Figure 2.4 By Lemma 2.2.6, d(f i ) ≥ 4 and d(f i+k ) ≥ 4.
Case (a). k = 1 By Lemma 2.2.7(1), we have d(v i+1 ) ≥ 4 or max{d(f i ), (2), and it follows that φ ≤ max{ 3 4

d(f i+1 )} ≥ 5, so φ ≤ max{ 3 4 × 2, 1 + 1 3 } = 3 2 by R3. Case (b). k = 2 If d(f i+1 ) = 3, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+2 )} ≥ 5 by Lemma 2.2.7
+ 5 4 + 3 4 , 1 3 + 3 2 + 3 4 } = 11 4 . Otherwise, d(f i+1 ) ≥ 4, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 )} ≥ 5 by Lemma 2.

2.7(1), and it follows that

φ ≤ max{1 + 3 4 × 2, 1 × 2 + 1 3 } = 5 2 < 11 4 . Case (c). k = 3 Suppose d(f i+1 ) = d(f i+2 ) = 3. Then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(f i ) ≥ 5 and d(f i+3 ) ≥ 5, so φ ≤ 3 2 × 2 + 1 3 × 2 = 11 3 . If min{d(v i+1 ), d(v i+3 )} ≥ 4, then φ ≤ 5 4 × 2 + 3 4 × 2 = 4. Suppose d(f i+1 ) = 3 and d(f i+2 ) ≥ 4. If d(v i+1 ) = 3, then d(v i+2 ) ≥ 7 and d(f i ) ≥ 5, so φ ≤ 1 3 + 3 2 + 3 4 + 1 = 43 12 . If d(v i+2 ) = 3, then d(v i+1 ) ≥ 7 and d(v i+3 ) ≥ 4, so φ ≤ 3 4 + 3 2 + 3 4 + 3 4 = 15 4 . If min{d(v i+1 ), d(v i+2 )} ≥ 4, φ ≤ 3 4 + 5 4 + 3 4 + 1 = 15 4 . It is similar with d(f i+2 ) = 3 and d(f i+1 ) ≥ 4. Suppose min{d(f i+1 ), d(f i+2 )} ≥ 4. Then max{d(v i+1 ), d(v i+2 ), d(v i+3 )} Paris South University Doctoral Dissertation Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = 3, d(f i+4 ) ≥ 4, then min{d(v i+2 ), d(v i+3 )} ≥ 4. If d(v i+1 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and d(v i+5 ) ≥ 4 or max{d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 1 + 3 4 × 2 + 1 3 , 3 2 × 2 + 1 + 1 + 1 3 × 2} = 35 6 . If d(v i+1 ) = 3 and d(v i+4 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 × 2 + 1 + 3 4 + 1 3 = 73 12 . If d(v i+4 ) = 3 and d(v i+1 ) ≥ 4, then φ ≤ 3 2 + 5 4 × 2 + 3 4 × 3 = 25 4 . Otherwise, φ ≤ 5 4 × 3 + 1 + 3 4 × 2 = 25 4 . It is similar with d(f i+2 ) = d(f i+3 ) = d(f i+4 ) = 3, d(f i+1 ) ≥ 4. Suppose d(f i+1 ) = d(f i+2 ) = d(f i+4 ) = 3, d(f i+3 ) ≥ 4, then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and d(f i+4 ) ≥ 5, so φ ≤ 3 2 × 3 + 3 4 × 1 + 1 3 × 2 = 71 12 . It is similar with d(v i+1 ) = d(v i+3 ) = d(v i+5 ) = 3. If d(v i+1 ) = d(v i+4 ) = 3 and d(v i+3 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 × 2 + 5 4 × 1 + 3 4 × 2 + 1 3 × 1 = 73 12 . Otherwise, φ ≤ 3 2 × 1 + 5 4 × 2 + 3 4 × 3 = 25 4 . Suppose d(f i+1 ) = d(f i+2 ) = 3, d(f i+3 ) ≥ 4 and d(f i+4 ) ≥ 4, then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(f i ) ≥ 5 and max{d(v i+4 ), d(v i+5 )} ≥ 4 or max{d(f i+3 ), d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 1 + 3 4 × 2 + 1 3 , 3 2 × 2 + 1 × 2 + 1 3 × 2} = 35 6 . If d(v i+1 ) = 3 and d(v i+3 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 + 1 × 2 + 3 4 + 1 3 = 35 6 . If d(v i+3 ) = 3 and d(v i+1 ) ≥ 4, then max{d(v i+4 ), d(v i+5 ) ≥ 4} or max{d(f i+3 ), d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 + 1 + 3 4 × 3, 3 2 + 5 4 + 1 × 2 + 3 4 + 1 3 } = 6. Otherwise, φ ≤ 5 4 × 2 + 1 × 2 + 3 4 × 2 = 6. It is similar with d(f i+3 ) = d(f i+4 ) = 3, d(f i+1 ) ≥ 4 and d(f i+2 ) ≥ 4. Suppose d(f i+1 ) = d(f i+3 ) = 3, d(f i+2 ) ≥ 4 and d(f i+4 ) ≥ 4, then φ ≤ 3 2 × 2 + 3 4 × 4 = 6. It is similar with d(f i+2 ) = d(f i+4 ) = 3, d(f i+1 ) ≥ 4 and d(f i+3 ) ≥ 4. Suppose d(f i+1 ) = d(f i+4 ) = 3, d(f i+2 ) ≥ 4 and d(f i+3 ) ≥ 4, then φ ≤ 3 2 × 2 + 3 4 × 4 = 6. Suppose d(f i+2 ) = d(f i+3 ) = 3, d(f i+1 ) ≥ 4 and d(f i+4 ) ≥ 4, then φ ≤ 3 2 × 2 + 3 4 × 4 = 6.
Suppose f i+1 , f i+2 , f i+3 and f i+4 has at most one 3-face contains 3 -vertex, then φ ≤ 3 2 + 1 × 3 + 3 4 × 2 = 6.
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Suppose

min{d(f i+1 ), d(f i+2 ), d(f i+3 ), d(f i+4 )} ≥ 4, then max{d(v i+1 ), d(v i+2 ), d(v i+3 ), d(v i+4 ), d(v i+5 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 ), d(f i+3 ), d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{1 × 4 + 3 4 × 2, 1 × 5 + 1 3 } = 11 2 .
In the end, φ ≤ max{ 37 2)-( 4), that is,

f 6 + (v) = 8, so ch ′ (v) = 10 -1 × 8 = 2 > 0. If n 2 (v) = 7, then f 6 + (v) ≥ 6 and f 3 (v) = 0, so ch ′ (v) ≥ 10 -1 × 7 -3 2 = 3 2 > 0 by Claim (a).
Suppose n 2 (v) ≤ 6. The possible distributions of 2-vertices adjacent to v are illustrated in Figure 2.5. For Figure 2.5(1), we have f 6 + (v) ≥ 5 and 

n 2 ( v )=6 n 2 ( v )=5 n 2 ( v )=4 n 2 ( v )=3 n 2 ( v )=2 (1) 6 + 6 + 6 + 6 + (3) 6 + 6 
ch ′ (v) ≥ 10 -1 × 4 -3 2 -4 = 1 2 > 0.
For Figure 2.5(12) and 2.5( 16), we have

f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10 -1 × 4 -11 4 × 2 = 1 2 > 0.
For Figure 2.5( 14) and 2.5 [START_REF] Borodin | Coupled colorings of graphs on a plane[END_REF], we have

f 6 + (v) ≥ 1 and ch ′ (v) ≥ 10 -1 × 4 -3 2 × 2 -11 4 = 1 4 > 0.
For Figure 2.5 [START_REF] Borodin | Planar graphs without triangular 4-cycles are 4-choosable[END_REF], we have ch ′ (v) ≥ 10-1×4- 3 2 ×4 = 0. For Figure 2.5(18), we have f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10-1×3- 13 2 = 1 2 > 0 by Claim (e). For Figure 2.5 [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF], we have Proof. The proof showing that (1) and ( 5) cannot be configurations contained in G can be found in [START_REF] Wang | Total chromatic number of planar graphs with maximum degree ten[END_REF]. Those for (2), ( 3) and ( 4) can be found in [START_REF] Kowalik | Totalcoloring of plane graphs with maximum degree nine[END_REF].

f 6 + (v) ≥ 1 and ch ′ (v) ≥ 10 -1 × 3 -3 2 -21 4 = 1 4 > 0. For Figure 2.5(20), we have f 6 + (v) ≥ 1 and ch ′ (v) ≥ 10 -1 × 3 -11 4 -4 = 1 4 > 0. For
f 6 + (v) ≥ 1. Suppose d(f 2 ) = d(f 3 ) = d(f 4 ) = d(f 5 ) = d(f 6 ) = 3. Then min{d(v 3 ), d(v 4 ), d(v 5 ), d(v 6 )} ≥ 4. If d(v 2 ) = d(v 6 ) = 3, then d(f 1 ) ≥ 5 and d(f 7 ) ≥ 5 by Lemma 2.2.7, so ch ′ (v) ≥ 10 -1 × 2 -3 2 × 2 -5 4 × 2 - 1 × 1 -1 3 × 2 = 5 6 > 0. If f 2 , f 3 , f 4 , f 5 and f 6 are incident with no 3 -- vertex, then ch ′ (v) ≥ 10 -1 × 2 -5 4 × 5 -3 4 × 2 = 1 4 > 0. For Figure 2.5(24), we have ch ′ (v) ≥ 10 -1 × 2 -
Paris South University Doctoral Dissertation Lemma 2.3.3. Suppose v is a d-vertex of G with d ≥ 5. Let v 1 , • • • , v d be the neighbor of v and f 1 , f 2 , • • • , f d be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , d}. Let d(v 1 ) = 2 and {v, u 1 } = N(v 1
). Then G does not satisfy one of the following conditions (see Figure 2.2).

(1) there exists an integer k (2

≤ k ≤ d -1) such that d(v k+1 ) = 2, d(v i ) = 3 (2 ≤ i ≤ k) and d(f j ) = 4 (1 ≤ j ≤ k).
(2) there exist two integers k and t (2

≤ k < t ≤ d -1) such that d(v k ) = 2, d(v i ) = 3 (k + 1 ≤ i ≤ t), d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
(3) there exist two integers k and t (3

≤ k ≤ t ≤ d -1) such that d(v i ) = 3 (k ≤ i ≤ t), d(f k-1 ) = d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
See the proof of Lemma 2.3.3 in Lemma 2.2.7. Now we will use "Discharging method" to complete the proof of Theorem Let ch(v → f ) be the amount that a vertex v sends a face f . We define the discharging rules as follows.

f ∈F d(f ) = 2|E| , we have v∈V (2d(v) -6) + f ∈F (d(f ) -6) = -6(|V | -|E| + |F |) = -12 < 0 For each x ∈ V ∪ F , we define the initial charge ch(x) =    2d(x) -6 if x ∈ V d(x) -6 if x ∈ F So x∈V ∪F ch(x) = -
R1. Each 2-vertex receives 1 from each of its neighbors.

R2. Let f be a 3-face.

R2.1 If f is incident with a 3 --vertex, then it receives 3 2 from each of its two incident 7 + -vertices.

R2.2 If f is incident with a 4-vertex, then it receives 1 2 from the 4-vertex and 5 4 from each of its two incident 6 + -vertices. R2.3 Suppose that all vertices incident with f are 5 + -vertices, and v is a vertex incident with f . If

d(v) = 5, then ch(v → f ) = (4-f 4 (v) 2 -f 5 (v) 3 )/f 3 (v). If d(v) ≥ 6, then ch(v → f ) = 5
4 . R3. Let f be a 4-face and incident with a 4

+ -vertex v. If 4 ≤ d(v) ≤ 5, then f receives 1 2 from v; Otherwise ch(v → f ) =                1 if n 3 -(f ) = 2, 3 4 if n 3 -(f ) = 1 and n 5 -(f ) = 2, 2 3 if n 3 -(f ) = 1 and n 6 + (f ) = 3, 1 2
otherwise.

R4. Each 5-face receives 1 3 from each of its incident 4 + -vertices. Since every 7-cycle contains at most two chords, we have the following lemma. 

(f ) ≥ ch(f ) + 1 3 × 3 = 0 by R4. If d(f ) = 4, then ch ′ (f ) ≥ ch(f ) + min{ 1 2 × 4, 2 3 × 3, 3 4 × 2 + 1 2 , 1 × 2} = 0 by R3. Suppose that d(f ) = 3. Let f = v 1 v 2 v 3 v 1 and assume that d(v 1 ) ≤ d(v 2 ) ≤ d(v 3 ). If d(v 1 ) ≤ 3,
then v 2 and v 3 are 7 + -vertices by Lemma 2.3.1 and it follows that ch ′ (f ) = 3 -6 + 3 2 × 2 = 0. If d(v 1 ) = 4, then v 2 and v 3 are 6 + -vertices and it follows that ch ′ (f ) = 3 -6 + 1 2 + 5 4 × 2 = 0. Suppose that d(v 1 ) ≥ 5. Note that if a 5-vertex x is incident with four 3-faces, then any 5 + -vertex adjacent to x must be incident with two 5 + -faces. So we have ch ′ (f ) = 3 -6 + min{ 4 5 + 2 × 10 9 , 3 × 19 18 } = 0 by R2.3. Hence we prove that ch ′ (f ) ≥ 0 for all faces f . Let v be a vertex of G. 

If d(v) = 2, then ch ′ (v) = -2+1×2 = 0 by R1. If d(v) = 3, then ch ′ (v) = ch(v) = 0. If d(v) = 4, then ch ′ (v) ≥ ch(v) -1 2 × 4 = 0. If d(v) = 5, then ch ′ (v) ≥ 0 by R2-R4. Suppose that d(v) = 6. Then f 3 (v) ≤ 4. If f 3 (v) = 4, then either f 4 (v) = 1 and f 6 + (v) ≥ 1, or f 5 + (v) ≥ 2. So ch ′ (v) ≥ ch(v)-5 4 ×4-max{1+0, 1 3 ×2} = 0 by Lemma 2.3.4. If f 3 (v) ≤ 3, then ch ′ (v) ≥ ch(v) -5 4 × f 3 (v) -2 3 × (6 -f 3 (v)) = 24-7f 3 (v)
′ (v) ≥ ch(v) -3 2 × 2 -5 4 × 3 -3 4 × 1 -1 3 × 1 = 1 6 > 0. If 2 ≤ f 3 (v) ≤ 4, then ch ′ (v) ≥ ch(v) -3 2 × 2 -5 4 × (f 3 (v) -2) -1 × (5 -f 3 (v)) -3 4 × 2 = 4-f 3 (v) 4 ≥ 0. If f 3 (v) ≤ 1, then ch ′ (v) ≥ ch(v) -3 2 × f 3 (v) -1 × (7 -f 3 (v)) = 2-f 3 (v) 2 > 0.
Finally, we assume that

d(v) = 8. Then ch(v) = 10. Let v 1 , • • • , v 8 be neighbors of v in the clockwise order and f 1 , f 2 , • • • , f 8 be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , 8}, and f 9 = f 1 . Suppose n 2 (v) = 0. Then f 3 (v) ≤ 6. If f 3 (v) = 6, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 10 -3 2 × 6 -1 3 × 2 = 1 3 > 0. If f 3 (v) = 5, then f 5 + (v) ≥ 1, so ch ′ (v) ≥ 10 -3 2 × 5 -1 × 2 -1 3 × 1 = 1 6 > 0. If f 3 (v) ≤ 4, then ch ′ (v) ≥ 10 -3 2 × f 3 (v) -1 × (8 -f 3 (v)) ≥ 0. Suppose n 2 (v) = 1. Without loss of generality, assume d(v 1 ) = 2. Sup- pose that v 1 is incident with a 3-cycle f 1 . By Lemma 2.3.4, f 3 (v) ≤ 5 and all 3-faces incident with no 3 --vertex except f 1 by Lemma 2.3.2(4). If f 3 (v) = 5, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 10 -1 -3 2 × 1 -5 4 × 4 -1 × 1 -1 3 × 2 = 5 6 > 0. If f 3 (v) = 4, then f 5 + (v) ≥ 1, so ch ′ (v) ≥ 10 -1 -3 2 × 1 -5 4 × 3 -1 × 3 -1 3 × 1 = 5 12 > 0. If 1 ≤ f 3 (v) ≤ 3, then ch ′ (v) ≥ 10 -1 -3 2 × 1 -5 4 × (f 3 (v) - 1) -1 × (8 -f 3 (v)) = 3-f 3 (v) 4 ≥ 0. Suppose v 1 is not incident with a 3- cycle. By Lemma 2.3.4, f 3 (v) ≤ 5. If f 3 (v) = 5, then f 5 + (v) ≥ 1, so ch ′ (v) ≥ 10 -1 -3 2 × 2 -5 4 × 3 -1 × 1 -3 4 × 1 -1 3 × 1 = 1 6 > 0 by Lemma 2.3.2(2)-(4). If f 3 (v) ≤ 4, then ch ′ (v) ≥ 10-1-3 2 ×f 3 (v)-1×(8-f 3 (v)) ≥ 0. For 2 ≤ n 2 (v) ≤ 8, we need to prove the following claim firstly. Claim 2.4. Suppose that d(v i ) = d(v i+k+1 ) = 2 and d(v j ) ≥ 3 for i + 1 ≤ j ≤ i + k( see Figure 2.8). Then v sends at most φ (in total) to f i , f i+1 , • • • , f i+k , where φ =    5k+1 4 if k = 1, 3, 4, 5, 6
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(2) (3) (1) (4) v i v i+ 3 f i f i+ 2 v i f i v i+ 4 f i+ 3 v i f i v i+ 5 f i+ 4 v i f i v i+ 2 f i+ 1 (5) v i f i v i+ 6 f i+ 5 ( 6 
)
v i f i v i+7 f i+ 6 Figure 2.8 Proof. By Lemma 2.3.2, d(f i ) ≥ 4 and d(f i+k ) ≥ 4. (a) k = 1 By Lemma 2.3.3(1), we have d(v i+1 ) ≥ 4 or max{d(f i ), d(f i+1 )} ≥ 5, so φ ≤ max{ 3 4 × 2, 1 + 1 3 } = 3 2 by R3. (b) k = 2 If d(f i+1 ) = 3, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+2 )} ≥ 5 by Lemma 2.3.3(
+ 5 4 + 2 3 , 1 3 + 3 2 + 2 3 } = 8 3 . Otherwise, d(f i+1 ) ≥ 4, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 )} ≥ 5 by Lemma 2.3.3
φ ≤ max{1 + 3 4 × 2, 1 × 2 + 1 3 } = 5 2 < 8 3 . (c) k = 3 Suppose d(f i+1 ) = d(f i+2 ) = 3. Then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(f i ) ≥ 5 and d(f i+3 ) ≥ 5, so φ ≤ 3 2 × 2 + 1 3 × 2 = 11 3 . If min{d(v i+1 ), d(v i+3 )} ≥ 4, then φ ≤ 5 4 × 2 + 3 4 × 2 = 4. Suppose d(f i+1 ) = 3 and d(f i+2 ) ≥ 4. If d(v i+1 ) = 3, then d(v i+2 ) ≥ 7 and d(f i ) ≥ 5, so φ ≤ 1 3 + 3 2 + 2 3 + 1 = 7 2 . If d(v i+2 ) = 3, then d(v i+1 ) ≥ 7 and d(v i+3 ) ≥ 4 or max{d(f i+2 ), d(f i+3 )} ≥ 5, so φ ≤ max{ 2 3 + 3 2 + 3 4 + 3 4 , 2 3 + 3 2 + 1 + 1 3 } = 11 3 . If min{d(v i+1 ), d(v i+2 )} ≥ 4, then φ ≤ 3 4 + 5 4 + 2 3 + 1 = 11 3 . It is similar with d(f i+2 ) = 3 and d(f i+1 ) ≥ 4. Suppose min{d(f i+1 ), d(f i+2 )} ≥ 4. Then max{d(v i+1 ), d(v i+2 ), d(v i+3 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 ), d(f i+3 )} ≥ 5, so φ ≤ max{1 × 2 + 3 4 × 2, 1 × 3 + 1 3 } = 7 2 . So φ ≤ max{ 11 3 , 4, 7 2 } = 4. (d) k = 4 Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = 3. Then min{d(v i+2 ), d(v i+3 )} ≥ 4. If d(v i+1 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and d(f i+4 ) ≥ 5,
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so φ ≤ 3 2 × 2 + 1 + 1 3 × 2 = 14 3 . If min{d(v i+1 ), d(v i+4 )} ≥ 4, then φ ≤ max{ 5 4 × 3 + 3 4 + 2 3 , 5 4 × 3 + 3 4 × 2} = 21 4 . Suppose d(f i+1 ) = d(f i+2 ) = 3, d(f i+3 ) ≥ 4. Then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(v i+4 ) ≥ 4 and d(f i ) ≥ 5, so φ ≤ 3 2 × 2 + 3 4 × 2 + 1 3 = 29 6 . If min{d(v i+1 ), d(v i+3 )} ≥ 4, then φ ≤ 5 4 × 2 + 1 + 3 4 × 2 = 5. It is similar with d(f i+2 ) = d(f i+3 ) = 3, d(f i+1 ) ≥ 4. Suppose d(f i+1 ) = d(f i+3 ) = 3, d(f i+2 ) ≥ 4. If d(v i+1 ) = d(v i+4 ) = 3, then d(f i+3 ) ≥ 5 and d(f i+4 ) ≥ 5, so φ ≤ 3 2 × 2 + 2 3 + 1 3 × 2 = 13 3 . If d(v i+2 ) = d(v i+3 ) = 3, then d(f i+3 ) ≥ 5, so φ ≤ 3 2 × 2 + 2 3 × 2 + 1 3 = 14 3 . If d(v i+1 ) = 3 and d(v i+4 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 × 2 + 2 3 × 2 + 1 3 = 14 3 . It is similar with d(v i+3 ) = 3 and d(v i+1 ) ≥ 4. If d(v i+2 ) = 3 and min{d(v i+3 ), d(v i+4 )} ≥ 4, then d(v i+1 ) ≥ 7, so φ ≤ 3 2 + 5 4 + 3 4 + 2 3 × 2 = 29 6 . It is similar with d(v i+3 ) = 3 and min{d(v i+1 ), d(v i+2 )} ≥ 4. Otherwise, φ ≤ 5 4 × 2 + 3 4 × 2 + 2 3 = 14 3 . Suppose d(f i+1 ) = 3, d(f i+2 ) ≥ 4 and d(f i+3 ) ≥ 4. If d(v i+1 ) = 3, then d(v i+2 ) ≥ 7 and d(f i ) ≥ 5, so φ ≤ 3 2 + 1 × 2 + 2 3 + 1 3 = 9 2 . If d(v i+2 ) = 3, then d(v i+1 ) ≥ 7 and max{d(v i+3 ), d(v i+4 )} ≥ 4 or max{d(f i+2 ), d(f i+3 ), d(f i+4 )} ≥ 5, so φ ≤ max{ 3 2 + 1 + 3 4 × 2 + 2 3 , 3 2 + 1 × 2 + 2 3 + 1 3 } = 9 2 . Otherwise, φ ≤ 5 4 + 1 × 2 + 3 4 + 2 3 = 14 3 . It is similar with d(f i+3 ) = 3, d(f i+1 ) ≥ 4 and d(f i+2 ) ≥ 4. Suppose d(f i+2 ) = 3, d(f i+1 ) ≥ 4 and d(f i+3 ) ≥ 4. If d(v i+2 ) = 3, then d(v i+1 ) ≥ 4 or max{d(f i ), d(f i+1 ) ≥ 5}, so φ ≤ max{ 3 2 + 1 + 3 4 × 2 + 2 3 , 3 2 + 1 × 2 + 2 3 + 1 3 } = 14 3 . Otherwise, φ ≤ 5 4 + 1 × 2 + 3 4 + 2 3 = 14 3 . It is similar with d(v i+3 ) = 3. Suppose min{d(f i+1 ), d(f i+2 ), d(f i+3 )} ≥ 4. Then max{d(v i+1 ), d(v i+2 ), d(v i+3 ), d(v i+4 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 ), d(f i+3 ), d(f i+4 )} ≥ 5, so φ ≤ max{1×3+ 3 4 ×2, 1×4+ 1 3 } = 9 2 . So φ ≤ max{
(e 6)-( 7), we

) k = 5 Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = d(f i+4 ) = 3, then min{d(v i+2 ), d(v i+3 ), d(v i+4 )} ≥ 4. If d(v i+1 ) = d(v i+5 ) = 3, then d(f i ) ≥ 5 and d(f i+5 ) ≥ 5, so φ ≤ 3 2 ×2+ 5 4 ×2+ 1 3 ×2 = 37 6 . If min{d(v i+1 ), d(v i+5 )} ≥ 4, then φ ≤ 5 4 × 4 + 3 4 × 2 = 13 2 . Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = 3, d(f i+4 ) ≥ 4, then min{d(v i+2 ), d(v i+3 )} ≥ 4. If d(v i+1 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and d(v i+5 ) ≥ 4 or max{d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 1 + 3 4 × 2 + 1 3 , 3 2 × 2 + 1 + 1 + 1 3 × 2} = 35 6 . If d(v i+1 ) = 3 and d(v i+4 ) = 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 + 1 + 1 + 3 4 + 1 3 = 35 6 . If d(v i+1 ) = 3 and d(v i+4 ) ≥ 5, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 × 2 + 1 + 2 3 + 1 3 = 6. If d(v i+4 ) = 3 and d(v i+1 ) = 4, then d(v i+5 ) ≥ 4 or max{d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 + 1 + 3 4 × 3, 3 2 + 5 4 + 1 + 1 + 3 4 + 1 3 } = 6. If d(v i+4 ) = 3 and d(v i+1 ) ≥ 5, then d(v i+5 ) ≥ 4 or max{d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 × 2 + 3 4 × 2 + 2 3 , 3 2 + 5 4 × 2 + 1 + 2 3 + 1 3 } = 37 6 . Otherwise, φ ≤ 5 4 × 3 + 1 + 3 4 + 2 3 = 37 6 . Suppose d(f i+1 ) = d(f i+2 ) = d(f i+4 ) = 3, d(f i+3 ) ≥ 4, then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and d(f i+3 ) ≥ 5, so φ ≤ 3 2 × 3 + 2 3 + 1 3 × 2 = 35 6 . It is similar with d(v i+1 ) = d(v i+3 ) = d(v i+5 ) = 3. If d(v i+1 ) = d(v i+3 ) = 3 and min{d(v i+4 ), d(v i+5 )} ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 × 2 + 5 4 + 3 4 + 2 3 + 1 3 = 6. It is similar with d(v i+1 ) = d(v i+4 ) = 3 and d(v i+3 ) ≥ 4. If d(v i+1 ) = d(v i+5 ) = 3 and d(v i+3 ) ≥ 4, then d(f i ) ≥ 5 and d(f i+5 ) ≥ 5, so φ ≤ 3 2 × 2 + 5 4 + 1 2 + 1 3 × 2 = 65 12 . Otherwise, φ ≤ 3 2 + 5 4 × 2 + 3 4 × 2 + 2 3 = 37 6 . Suppose d(f i+1 ) = d(f i+2 ) = 3, d(f i+3 ) ≥ 4 and d(f i+4 ) ≥ 4, then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(f i ) ≥ 5 and max{d(v i+4 ), d(v i+5 )} ≥ 4 or max{d(f i+3 ), d(f i+4 ), d(f i+5 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 1 + 3 4 × 2 + 1 3 , 3 2 × 2 + 1 × 2 + 1 3 × 2} = 35 6 . If d(v i+1 ) = 3 and d(v i+3 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 + 1 × 2 + 3 4 + 1 3 = 35 6 . If d(v i+3 ) = 3 and d(v i+1 ) ≥ 4, then max{d(v i+4 ), d(v i+5 )} ≥ 4 or max{d(f i+3 ), d(f i+4 ), d(f i+5 )} ≥ 5, Paris South University Doctoral Dissertation then d(f i ) ≥ 5 and d(f i+6 ) ≥ 5, so φ ≤ 3 2 × 2 + 5 4 × 2 + 1 + 1 3 × 2 = 43 6 . If min{d(v i+1 ), d(v i+6 )} ≥ 4, then φ ≤ 5 4 × 5 + 3 4 + 2 3 = 23 3 . Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = d(f i+4 ) = 3 and d(f i+5 ) ≥ 4, then min{d(v i+2 ), d(v i+3 ), d(v i+4 )} ≥ 4. If d(v i+1 ) = d(v i+5 ) = 3, then d(f i ) ≥ 5 and d(v i+6 ) ≥ 4 or max{d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 5 4 × 2 + 3 4 × 2 + 1 3 , 3 2 × 2 + 5 4 × 2 + 1 + 1 3 × 2} = 22 3 . If d(v i+1 ) = 3 and d(v i+5 ) ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 × 3 + 1 + 3 4 + 1 3 = 19 3 . If d(v i+5 ) = 3 and d(v i+1 ) ≥ 4, then d(v i+6 ) ≥ 4 or max{d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 × 3 + 3 4 × 3, 3 2 + 5 4 × 3 + 1 + 3 4 + 1 3 } = 15 2 . If min{d(v i+1 ), d(v i+5 )} ≥ 4, then φ ≤ 5 4 ×4+1+ 3 4 ×2 = 15 2 . Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = d(f i+5 ) = 3 and d(f i+4 ) ≥ 4, then min{d(v i+2 ), d(v i+3 )} ≥ 4. If d(v i+1 ) = d(v i+4 ) = d(v i+5 ) = 3, then d(f i ) ≥ 5 and d(f i+4 ) ≥ 5, so φ ≤ 3 2 × 3 + 1 + 2 3 + 1 3 × 2 = 41 6 . It is similar with d(v i+1 ) = d(v i+4 ) = d(v i+6 ) = 3. If d(v i+1 ) = d(v i+4 ) = 3 and min{d(v i+5 ), d(v i+6 )} ≥ 4, then d(f i ) ≥ 5, so φ ≤ 3 2 × 2 + 5 4 + 1 + 3 4 + 2 3 + 1 3 = 7. If d(v i+1 ) = d(v i+5 ) = 3 and d(v i+4 ) ≥ 5, then d(f i ) ≥ 5, so 3 2 × 2 + 5 4 × 2 + 2 3 × 2 + 1 3 = 43 6 . It is similar with d(v i+4 ) = d(v i+5 ) = 3 and d(v i+1 ) ≥ 5 or d(v i+4 ) = d(v i+6 ) = 3 and d(v i+1 ) ≥ 5. If d(v i+1 ) = d ( v i+6 ) = 3 and d(v i+4 ) ≥ 4, then φ ≤ 3 2 ×2+ 5 4 ×2+ 2 3 + 1 3 ×2 = 41 6 . If d(v i+1 ) = d(v i+5 ) = 3 and d(v i+4 ) = 4, then d(f i ) ≥ 5, then φ ≤ 3 2 × 2 + 5 4 + 1 + 3 4 + 2 3 + 1 3 = 7. It is similar with d(v i+4 ) = d(v i+5 ) = 3 and d(v i+1 ) = 4 or d(v i+4 ) = d(v i+6 ) = 3 and d(v i+1 ) = 4. If d(v i+1 ) = 3 and min{d(v i+4 ), d(v i+5 ), d(v i+6 ) ≥ 4, then φ ≤ 3 2 + 5 4 × 3 + 3 4 + 2 3 + 1 3 = 7. It is similar with d(v i+6 ) = 3 and min{d(v i+1 ), d(v i+4 ), d(v i+5 ) ≥ 4. Otherwise, φ ≤ 5 4 × 4 + 3 4 × 2 + 2 3 = 43 6 . Suppose d(f i+1 ) = d(f i+2 ) = d(f i+4 ) = d(f i+5 ) = 3 and d(f i+3 ) ≥ 4, then min{d(v i+2 ), d(v i+5 )} ≥ 4. If d(v i+1 ) = d(v i+4 ) = d(v i+5 ) = d(v i+6 ) = 3, then min{d(f i ), d(f i+3 ), d(f i+6 )} ≥ 5, so φ ≤ 3 2 × 4 + 1 3 × 3 = 7. If d(v i+1 ) = d(v i+6 ) = 3, then max{d(v i+3 ), d(v i+4 )} ≥ 4 or d(f i+3 ) ≥ 5, so Paris South University Doctoral Dissertation φ ≤ max{ 3 2 ×3+ 5 4 + 3 4 + 1 3 ×2, 3 2 ×4+ 1 3 ×3} = 7. if min{d(v i+1 ), d(v i+6 )} ≥ 4 and max{d(v i+3 ), d(v i+4 )} ≥ 4, then φ ≤ 3 2 + 5 4 × 3 + 3 4 × 3 = 15 2 . Otherwise, φ ≤ 5 4 × 4 + 3 4 × 2 + 1 2 = 7. Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = 3, and min{d(f i+4 ), d(f i+5 )} ≥ 4, then min{d(v i+2 ), d(v i+3 )} ≥ 4. if d(v i+1 ) = d(v i+4 ) = 3, then d(f i ) ≥ 5 and max{d(v i+5 ), d(v i+6 )} ≥ 4 or max{d(f i+4 ), d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ max{ 3 2 × 2 + 1 + 1 + 3 4 × 2 + 1 3 , 3 2 × 2 + 1 + 1 × 2 + 1 3 × 2} = 41 6 . If d(v i+1 ) = 3 and d(v i+4 ) = 4, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 +1+1×2+ 3 4 + 1 3 = 41 6 . If d(v i+1 ) = 3 and d(v i+4 ) ≥ 5, then d(f i ) ≥ 5, so φ ≤ 3 2 + 5 4 × 2 + 1 × 2 + 2 3 + 1 3 = 7. If d(v i+4 ) = 3 and d(v i+1 ) = 4, then max{d(v i+5 ), d(v i+6 )} ≥ 4 or max{d(f i+4 ), d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 + 1 + 1 + 3 4 × 3, 3 2 + 5 4 + 1 + 1 × 2 + 3 4 + 1 3 } = 7. If d(v i+4 ) = 3 and d(v i+1 ) ≥ 5, then max{d(v i+5 ), d(v i+6 )} ≥ 4 or max{d(f i+4 ), d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 × 2 + 1 + 3 4 × 2 + 2 3 , 3 2 + 5 4 × 2 + 1 × 2 + 2 3 + 1 3 } = 43 6 . Otherwise, φ ≤ 5 4 × 3 + 1 × 2 + 3 4 + 2 3 = 43 6 . Suppose d(f i+2 ) = d(f i+3 ) = d(f i+4 ) = 3 and min{d(f i+1 ), d(f i+5 )} ≥ 4, then min{d(v i+3 ), d(v i+4 )} ≥ 4. If d(v i+1 ) = d(v i+2 ) = d(v i+5 ) = d(v i+6 ) = 3, then max{d(f i ), d(f i+1 )} ≥ 5 and d(f i+5 ), d(f i+6 )} ≥ 5, so φ ≤ 3 2 × 2 + 1 + 1 × 2 + 1 3 × 2 = 20 3 . If d(v i+1 ) = d(v i+2 ) = d(v i+5 ) = 3 and d(v i+6 ) ≥ 4, then max{d(f i ), d(f i+1 )} ≥ 5, so φ ≤ 3 2 × 2 + 1 + 1 + 3 4 × 2 + 1 3 = 41 6 . It is similar with d(v i+2 ) = d(v i+5 ) = d(v i+6 ) = 3 and d(v v+1 ) ≥ 4. If d(v i+2 ) = 3 and d(v i+5 ) = 4, then d(v i+1 ) ≥ 4 or max{d(f i ), d(f i+1 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 +1+1+ 3 4 ×3, 3 2 + 5 4 +1+1×2+ 3 4 + 1 3 } = 7. It is similar with d(v i+5 ) = 3 and d(v i+2 ) = 4. If d(v i+2 ) = 3 and d(v i+5 ) ≥ 5, then d(v i+1 ) ≥ 4 or max{d(f i ), d(f i+1 )} ≥ 5, so φ ≤ max{ 3 2 + 5 4 ×2+1+ 3 4 ×2+ 2 3 , 3 2 + 5 4 ×2+1×2+ 2 3 + 1 3 } = 43 6 . It is similar with d(v i+5 ) = 3 and d(v i+2 ) ≥ 5. If d(v i+2 ) = d(v i+5 ) = 4, then φ ≤ 5 4 × 2 + 1 + 3 4 × 4 = 13 2 . If d(v i+2 ) = 4 and d(v i+5 ) ≥ 5, then φ ≤ 5 4 × 2 + 1 × 2 + 3 4 + 2 3 = 43 6 . It is similar Paris South University Doctoral Dissertation n 2 ( v )=6 n 2 ( v )=5 n 2 ( v )=4 n 2 ( v )=3 n 2 ( v )=2 (1) 6 + 6 + 6 + 6 + (3) 6 + 6 
+ 6 + 6 + 6 + (2) (5) (7) (8) (6) (9) (10) 6 + 6 + (12) 6 + (13) 6 + 6 + 6 + 6 + 6 + (11) (14) 6 + 6 + (16) (17) 6 + 6 + (15) 6 + 6 
have f 6 + (v) ≥ 3 and ch ′ (v) ≥ 10 -1 × 5 -3 2 -8 3 = 5 6 > 0. For Figure 2.5(8)-(9), we have f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10 -1 × 5 -3 2 × 3 = 1 2 > 0.
For Figure 2.5 [START_REF] Ben | The 1-2-3 conjecture and related problems: a survey[END_REF], we have f 6 + (v) ≥ 3 and ch ′ (v) ≥ 10 -1 × 4 -31 6 = 5 6 > 0 by claim (d). For Figure 2.5 [START_REF] Bojarshinov | Edge and total coloring of interval graphs[END_REF] and Figure 2.5(13), we have 12) and Figure 2.5( 16), we have f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10-1×4- 8 3 ×2 = 2 3 > 0. For Figure 2.5( 14) and Figure 2.5 [START_REF] Borodin | Coupled colorings of graphs on a plane[END_REF], we have [START_REF] Borodin | Planar graphs without triangular 4-cycles are 4-choosable[END_REF], we have ch ′ (v) ≥ 10-1×4- 3 2 ×4 = 0. For Figure 2.5(18), we have f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10 -1 × 3 -13 2 = 1 2 > 0 by claim (e). For Figure 2.5 [START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF], we have

f 6 + (v) ≥ 2 and ch ′ (v) ≥ 10-1×4-3 2 -4 = 1 2 > 0. For Figure 2.5(
f 6 + (v) ≥ 1 and ch ′ (v) ≥ 10-1×4-3 2 ×2-8 3 = 1 3 > 0. For Figure 2.5
f 6 + (v) ≥ 1 and ch ′ (v) ≥ 10 -1 × 3 -3 2 -21 4 = 1 4 > 0.
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Proof. The proof of (1), ( 3) and ( 5) can be found in [START_REF] Wang | Total chromatic number of planar graphs with maximum degree ten[END_REF], (2) can be found in [START_REF] Shen | Total colorings of planar graphs with maximum degree at least 8[END_REF], ( 4) and ( 6) can be found in [START_REF] Kowalik | Totalcoloring of plane graphs with maximum degree nine[END_REF].

Lemma 2.5.6.

[83] G contains no 3-face incident with more than one 4vertex.

Lemma 2.5.7. Let v be a vertex of G, and

d(v) = d ≥ 5. Let v 1 , • • • , v d be the neighbor of v and f 1 , f 2 , • • • , f d be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , d}. Let d(v 1 ) = 2 and {v, u 1 } = N(v 1
). Then G does not satisfy one of the following conditions

(see Figure 2.2).
(1) there exists an integer k

(2 ≤ k ≤ d -1) such that d(v k+1 ) = 2, d(v i ) = 3 (2 ≤ i ≤ k) and d(f j ) = 4 (1 ≤ j ≤ k).
(2) there exist two integers k and t (2

≤ k < t ≤ d -1) such that d(v k ) = 2, d(v i ) = 3 (k + 1 ≤ i ≤ t), d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
(3) there exist two integers k and t (3

≤ k ≤ t ≤ d -1) such that d(v i ) = 3 (k ≤ i ≤ t), d(f k-1 ) = d(f t ) = 3 and d(f j ) = 4 (k ≤ j ≤ t -1).
See the proof of Lemma 2.5.7 in Lemma 2.2.7. Now we will use "Discharging method" to complete the proof of Theorem 2.5.1.

By the Euler's formula |V | -|E|

+ |F | = 2 and v∈V d(v) = 2|E|, f ∈F d(f ) = 2|E| , we have v∈V (2d(v) -6) + f ∈F (d(f ) -6) = -6(|V | -|E| + |F |) = -12 < 0
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f i f i +4 (6) 
f i f i +3 (3) 
f i +1 (4) 
f i f i+ 2
(1) 

f i +1 (5) f i (2) 
f i+ 1 f i+ 1 f i+ 2 f i +3 f i+ 1 f i+ 2 f i+ 1 f i+ 2 f i f i+ 2 f i f i+ 2 v v v v v v
(3) 2), and it follows that φ ≤ max{ 3 4 

v i v i+ 3 f i f i+ 2 v i f i v i+ 4 f i+ 3 v i f i v i+ 2 f i+ 1 (4) v i f i v i+ 5 f i+ 4 v v v v
(v i+1 ) ≥ 4 or max{d(f i ), d(f i+1 )} ≥ 5, so φ ≤ max{2 × 3 4 , 1 + 0} = 3 2 . Case 2. k = 2. If d(f i+1 ) = 3, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+2 )} ≥ 5 by Lemma 2.5.7(
+ 5 4 + 1 2 , 1 2 + 3 2 +0} = 5 2 . Otherwise, d(f i+1 ) ≥ 4, then min{d(v i+1 ), d(v i+2 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 )} ≥ 5, and it follows that φ ≤ max{1 + 2 × 3 4 , 2 × 1 + 0} = 5 2 . Case 3. k = 3. Suppose d(f i+1 ) = d(f i+2 ) = 3. Then d(v i+2 ) ≥ 4. If d(v i+1 ) = d(v i+3 ) = 3, then d(f i ) ≥ 5, d(f i+3 ) ≥ 5 and v sends 0 to f i and f i+3 , so φ ≤ 3 2 × 2 = 3. If min{d(v i+1 ), d(v i+3 )} ≥ 4, then max{d(f i ), d(f i+3 )} ≥ 5, so φ ≤ 2 × 5 4 + 3 4 + 1 4 = 7 2 . Suppose d(f i+1 ) = 3 and d(f i+2 ) ≥ 4. If d(v i+1 ) = 3, then d(v i+2 ) ≥ 6 and d(f i ) ≥ 5, so φ ≤ 3 2 + 1 2 + 1 = 3. If d(v i+2 ) = 3, then d(v i+1 ) ≥ 6, d(v i+3 ) ≥ 4 and max{d(f i ), d(f i+2 )} ≥ 5, so φ ≤ 1 2 + 3 2 + 2 × 3 4 = 7 2 . If min{d(v i+1 ), d(v i+2 )} ≥ 4, then max{d(f i ), d(f i+2 )} ≥ 5, so φ ≤ 1 2 + 5 4 + 3 4 + 1 = 7 2 . It is similar with d(f i+2 ) = 3 and d(f i+1 ) ≥ 4. Suppose min{d(f i+1 ), d(f i+2 )} ≥ 4. Then max{d(v i+1 ), d(v i+2 ), d(v i+3 )} ≥ 4 or max{d(f i ), d(f i+1 ), d(f i+2 ), d(f i+3 )} ≥ 5, so φ ≤ max{2 × 1 + 2 × 3 4 , 3 × 1 + 0} = 7 2 . So φ ≤ max{3, 7 2 } = 7 2 . Case 4. k = 4. Suppose d(f i+1 ) = d(f i+2 ) = d(f i+3 ) = 3. Then Paris South University Doctoral Dissertation n 2 ( v )=5 n 2 ( v )=4 n 2 ( v )=3 n 2 ( v )=2 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 6 + 6 
f 1 f 6 f 5 f 4 f 3 f 2 v 2 v 3 v 5 v 4 v 7 v 6 Figure 2.12
For Figure 2.12(1), we have f 6 + (v) ≥ 4 and ch ′ (v) ≥ 8-5×1-5 2 = 1 2 > 0 by Lemma 2.5.9. For Figure 2.12(2), we have

f 6 + (v) ≥ 3 and ch ′ (v) ≥ 8 -5 × 1 -2 × 3 2 = 0. For Figure 2.12(3), we have f 6 + (v) ≥ 3 and ch ′ (v) ≥ 8 -4 × 1 -7 2 = 1 2 > 0.
For Figure 2.12(4), we have

f 6 + (v) ≥ 2 and ch ′ (v) ≥ 8 -4 × 1 -3 2 -5 2 = 0.
For Figure 2.12(5), we have

f 6 + (v) ≥ 2 and ch ′ (v) ≥ 8 -4 × 1 -3 2 -5 2 = 0.
For Figure 2.12(6), as v is incident at least one 6 +vertex [START_REF] Wang | Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[END_REF], then ch

′ (v) ≥ 8 -4 × 1 -2 × 3 2 -2 × 1 2 = 0.
For Figure 2.12(7), we have

f 6 + (v) ≥ 2 and ch ′ (v) ≥ 8 -3 × 1 -9 2 = 1 2 > 0.
For Figure 2.12(8), we have

f 6 + (v) ≥ 1 and ch ′ (v) ≥ 8 -3 × 1 -3 2 -7 2 = 0.
For Figure 2.12(9), we Paris South University Doctoral Dissertation

ch ′ (v) ≥ 8 -5 × 2 3 -1 2 = 0. If 3 ≤ f 3 (v) ≤ 4, then f 5 + (v) ≥ 2, so ch ′ (v) ≥ 8-f 3 (v)× 3 2 -(5-f 3 (v))×1-(f 3 (v)-2)× 1 2 = f 3 (v)-4 ≥ 0. If 1 ≤ f 3 (v) ≤ 2, then f 5 + (v) ≥ 1, so ch ′ (v) ≥ 8-f 3 (v)× 3 2 -(6-f 3 (v))×1-1× 1 2 = 3-f 3 (v) 2 > 0. If f 3 (v) = 0, then ch ′ (v) ≥ 8 -7 × 1 = 1 > 0.
Hence we complete the proof of the theorem 2.5.1

Chapter 3

List Coloring §3.1 List vertex coloring

In this section, we mainly proved the theorem below:

Theorem 3.1.1.
Let G be a planar graph. If every 5-cycles of G is not adjacent simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

Proof Arguing by contradiction, we assume that G = (V, E) is a counterexample to Theorem 3.1.1 having the fewest vertices. Embed G into the plane, then

δ(G) ≥ 4 (see [START_REF] Che | The 4-choosability of plane graphs without 4-cycles[END_REF]).

(

) G does not contain a 5-cycle (v 1 , v 2 , • • • , v 5 ) adjacent to a 3-cycle (v 1 , v 2 , u) such that d(u) = 4 and d(v i ) = 4 for every i ∈ {1, 2, • • • , 5} 2 
(see [START_REF] Che | The 4-choosability of plane graphs without 4-cycles[END_REF]).

(

) G does not contain a 5-cycle (v 1 , v 2 , • • • , v 5 ) such that v i v j ∈ E(G)(1 ≤ i < j -1 ≤ 4) 3 
, that is, any 5-cycle has no chord. 

(d(v) -4) + f ∈F (d(f ) -4) = -4(|V | -|E| + |F |) = -8 < 0 For each x ∈ V ∪ F , we define the initial charge ch(x) =    d(x) -4 if x ∈ V d(x) -4 if x ∈ F
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So x∈V ∪F ch(x) = -8 < 0. If we can define suitable discharging rules such that, for every x ∈ V ∪ F , the final charge of x, denoted ch ′ (x), is nonnegative, then we get an obvious contradiction to 0

≤ x∈V ∪F ch ′ (x) =
x∈V ∪F ch(x) = -8, which completes our proof. Let w(x → y) be the charge transferred from x to y for all x, y ∈ V ∪ F .

We define the discharging rules as follows:

R1. Let f be a 3-face (u, v, w) of G. R1.1. If f is not adjacent to a 3-face, then w(f ′ → f ) = 1 3 for any 5 + -face f ′ adjacent to f . R1.2. Suppose that uv is incident with two 3-faces and d(u) ≤ d(v). If d(u) = d(v) = 4, then w(f ′ → f ) = 1 2 for each 6 + -face f ′ adjacent to f ; Otherwise, w(v → f ) = 1 3 and w(f ′ → f ) = 1 3 for each 6 + -face f ′ adjacent to f . R2. Let f be a 5-face (v 1 , v 2 , • • • , v 5 ) of G and f i be the other face incident with v i v i+1 for i ∈ {1, 2, • • • , 5}
, where all the subscripts are taken modulo 5.

R2.1. Suppose that all f

i (1 ≤ i ≤ 5) are 3-faces (v i , v i+1 , u i ). If n 4 (f ) = 5, that is, f is a (4, 4, 4, 4, 4)-face, then w(u i → f ) = 1 6 (1 ≤ i ≤ 5); Otherwise, f receives 2/(3n 5 + (f )) from each of 5 + -vertices incident with f .
R2.2. Suppose that f is adjacent to four 3-faces, without loss of generality,

f i is a 3-face (v i , v i+1 , u i ) of G, where i = 1, 2, 3, 4. If n 4 (f ) = 5, then w(u i → f ) = 1 6 (2 ≤ i ≤ 4); Otherwise, f receives 1/(3n 5 + (f )) from each of 5 + -vertices incident with f .
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∆-choosable, we suppose that L is an edge assignment of G with |L(e)| = ∆ for every edge e ∈ E such that G is not edge-L-colorable. If G is not total-(∆ + 1)-choosable, we suppose that L is a total assignment of G with We call y the 3-master of x if xy ∈ M and x ∈ X. Therefore, each vertex of degree at most 3 has a 3-master, and each vertex of degree at least ∆ -1 can be the 3-master of at most two vertices. Now, we consider two cases depending upon the maximum degree ∆ of G.

|L(x)| = ∆ + 1 for every x ∈ V ∪ E such that G is not total-L-colorable.
In the following, we will consider two cases of different maximum degree in order to prove the Theorem 3.2.1. 

f 6 + (v) = 3, so c ′ (v) ≥ c(v) -2 × 1 -4 × 3 2 = 0 by R8. If f 3 (v) = 3, then f 4 (v) ≤ 1, so c ′ (v) ≥ c(v) -2 × 1 -3 × 3 2 -max{ 3 4 , 4 × 1 3 } = 1 6 > 0. If f 3 (v) ≤ 2, then c ′ (v) ≥ c(v) -2 × 1 -f 3 (v) × 3 2 -(7 -f 3 (v)) × 3 4 = 3-f 3 (v)
then f 7 + (v) ≥ 1, so c ′ (v) ≥ c(v) -3 × 1 -5 × 3 2 + 1 2 ≥ 0. Otherwise, c ′ (v) ≥ c(v) -3 × 1 -5 × 4 3 = 1 3 > 0.
(1)

f 3 ( v )=4
(2)

v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 1 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 (3) 
(4)

f 3 ( v )=3 (5) (6) (7) 
(8) R1 Each 2-vertex receives 1 from its 2-master.

f 3 ( v )=2 (9) (10) (11) 
R2 Each k-vertex (2 ≤ k ≤ 3) receives 1 from each of its 3-masters.

R3 Each 3-face f 0 receives (k-4)l k from each of its adjacent k-faces f for k ≥ 5, where l denotes the number of edges shared by f 0 with f .

R4 Let v be a vertex of G, f be a 3-face of G, then w(v → f ) =          d(v)-4 ⌊ d(v) 2 ⌋+1 if 5 ≤ d(v) ≤ 7; 2 5 if d(v) = 8; 1 3 if d(v) ≥ 9.
In the following, we will check that c ′ (x) ≥ 0 for each x ∈ V ∪ F . By

Lemmas above, we know that each 2-vertex is adjacent to two ∆-vertices, each 3-vertex is adjacent to three (∆ -1) + -vertices and each 4-vertex is adjacent to four (∆ -2) + -vertices. Suppose d(f

) = 3. Then c(f ) = -1. If n 2 (f ) = 1, then f = (2, ∆, ∆
) and f is incident with at least one 6 + -face, so c ′ (f ) ≥ c(f ) + 2 × 1 3 + 1 3 = 0 by R3. Otherwise, n 2 (f ) = 0, then f is adjacent to at most one 3-face and f is adjacent to no 4-face, so c

′ (f ) ≥ c(f ) + 2 × 1 3 + 2 × 1 5 = 1 15 > 0. If d(f ) = 4, then c ′ (f ) = c(f ) = 0. If d(f ) ≥ 5, then c ′ (f ) ≥ c(f ) -(d(f )-4)d(f ) d(f ) = 0.
Let v be a vertex of G. Note that ∆-vertex can be the 2-master of some vertices, and (∆ -1)-vertex can be the 3-master of some vertices. If 

(v) ≤ ⌊ d(v) 2 ⌋+1, so c ′ (v) ≥ c(v)-(⌊ d(v) 2 ⌋+1)× d(v)-4 ⌊ d(v) 2 ⌋+1 = 0. If d(v) = 8
, then v can be the 3-master of at most two 3-vertices and

f 3 (v) ≤ 5, so c ′ (v) ≥ c(v) -2 × 1 -5 × 2 5 = 0. If d(v) ≥ 9
, then v can be the 2-master of a 2-vertex as well as be the 3-master of up to two 2-or 3-vertices, and so v can send a total of at most 3 to the 2-vertices and 3-vertices adjacent to it, so c

′ (v) ≥ c(v) -3 -(⌊ d(v) 2 ⌋ + 1) × 1 3 = 5d(v)-44 6 > 0.
Hence, we complete the proof of Theorem 3. Paris South University Doctoral Dissertation

f 3 (v) = ⌊ d(v) 2 ⌋. If f 4 (v) > 0, then f 4 (v) = f 6 + (v)
, this can be equivalent to say that f sends 1 2 to each 4-face and 6 + -face, otherwise 

f 5 + (v) = d(v)-f 3 (v), so c ′ (v) ≥ c(v) -f 3 (v) × 3 2 -(d(v) -f 3 (v)) × 1 2 = 0. Otherwise, c ′ (v) ≥ c(v) -f 3 (v) × 3 2 -(d(v) -f 3 (v)) × 1 = 0. Let f be a face of G. Suppose d(f ) = 3, let f = (v 1 , v 2 , v 3 ) and assume that d(v 3 ) ≥ d(v 2 ) ≥ d(v 1 ). If d(v 1 ) = 3, then d(v 3 ) ≥ d(v 2 ) ≥ 6, so c ′ (f ) ≥ c(f ) + 2 × 3 2 = 0 by R2. If d(v 1 ) = 4, then d(v 3 ) ≥ d(v 2 ) ≥ 5, so c ′ (f ) ≥ c(f ) + 1 2 + 2 × 5 4 = 0 by R3. If d(v 1 ) ≥ 5, then c ′ (f ) ≥ c(f ) + 3 × 5 4 > 0. Suppose d(f ) = 4, let f = (v 1 , v 2 , v 3 , v 4 ) and satisfying that d(v 1 ) = min{d(v i )|1 ≤ i ≤ 4}. If d(v 1 ) = 3, then d(v 2 ) ≥ 6 and d(v 4 ) ≥ 6, so c ′ (f ) ≥ c(f ) + 2 × 1 = 0. If d(v 1 ) ≥ 4, then d(v 2 ) ≥ 5 and d(v 4 ) ≥ 5, so c ′ (f ) ≥ c(f ) + 1 2 + 2 × 1 > 0. Suppose d(f ) = 5, let f = (v 1 , v 2 , v 3 , v 4 , v 5 ) and satisfying that d(v 1 ) = min{d(v i )|1 ≤ i ≤ 5}. If d(v 1 ) = 3, then d(v 2 ) ≥ 6 and d(v 5 ) ≥ 6, so c ′ (f ) ≥ c(f ) + 3 × 1 2 > 0. If d(v 1 ) ≥ 4, then c ′ (f ) ≥ c(f ) + 5 × 1 2 > 0. If d(f ) ≥ 6, then c ′ (f ) = c(f ) =
G ℓ (x), d G ℓ + (x), d G ℓ -(x), d G ℓb (x) as d ℓ (x), d ℓ + (x), d ℓ -(x), d ℓb (x), respectively.
The following lemma will be used in our proof. 

B 2 = { m i=1 x i |x i ∈ B 1 , m < n, x i = x j (i = j)}, then |B 2 | ≥ mn -m 2 + 1. §4.

Neighbor sum distinguishing total coloring

We mainly proved the neighbor sum distinguishing total coloring of a graph which can be embedded in a surface Σ of Euler characteristic. The following is a direct consequence of Theorem 4. 

(v) ≥ 1, then d 2 -(v) = d H 2 (v) + d 1 (v) ≥ 2. Since d 6 + (v) ≥ d 3 -(v) + 1 by Lemma 4.2.6, so d H 6 + (v) = d 6 + (v) ≥ d 3 -(v) + 1 = d H 3 -(v) + d 1 (v) + 1 > d H 3 -(v) + 1. By Euler's formula |V | -|E| + |F | = χ(Σ), we have v∈V (H) (d H (v) -6) + f ∈F (H) (2d H (f ) -6) = -6χ(Σ) ≤ 0.
In order to complete the proof, we use the "Discharging method". First, we give an initial charge function w(v) = d H (v) -6 for every v ∈ V (H), and

w(f ) = 2d H (f ) -6 for every f ∈ F (H). So x∈V (H)∪F (H) w(x) = -6χ(Σ) ≤ 0.
Next, we design a discharging rule and redistribute weights accordingly.

Let w ′ be the new charge after the discharging. We will show that w ′ (x) ≥ 0 for each x ∈ V (H) ∪ F (H) and x∈V (H)∪F (H) w ′ (x) > 0. This leads to the following obvious contradiction:

0 < x∈V (H)∪F (H) w ′ (x) = x∈V (H)∪F (H) w(x) = -6χ(Σ) ≤ 0.
Hence demonstrates that no such a counterexample can exist. The discharging rules are defined as follows:

R1. Each 5 + -face sends 2 to each of its incident small vertices (counting multiplicity).

R2. Let f be a 4-face of H. If f is incident with exactly one 2-vertex, then f sends 2 to the 2-vertex. Otherwise, f sends 1 to each of its incident small vertices.

R3. Let u be a 5 --vertex, denote by β(u) the total sum of charges transferred into u after (R1) and (R2) were carried out. Each 8 + -vertex

sends 6-d H (u)-β(u) d H (u)
to each of its adjacent small vertices u.
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Let τ (x → y) be the charge transferred from x to y. The following three observations can be easily deduced by Claim 4.3 and R1-R3. (1) Suppose that d

H (u) = 2. If u is a special vertex, then τ (v → u) ≤ 3 2 . Otherwise, τ (v → u) ≤ 1. Moreover, if τ (v → u) = 3 2 , then there exists a 2-vertex u ′ such that τ (v → u ′ ) ≤ 1 2 . (2) Suppose that d H (u) = 3. If u is a bad vertex, then τ (v → u) ≤ 1. If u is adjacent to only one 4 + -face that is not a bad 4-face, then τ (v → u) ≤ 2 3 . Otherwise, τ (v → u) ≤ 1 3 . (3) Suppose that d H (u) = 4. If u is a bad vertex, then τ (v → u) ≤ 1 2 . Otherwise, τ (v → u) ≤ 1 4 . (4) Suppose that d H (u) = 5. Then τ (v → u) ≤ 1 5 .
Proof.

(1) d H (u) = 2. Suppose that u is a special vertex, i.e. u is incident to a special 4-face (v, u, x, y) and d H (y) = 2. If u is incident to a 3-face, i.e.

3-face

(v, u, x), then τ (v → u) = 6-2-1 2 = 3 2 . Let v 1 , • • • , v ℓ be neighbors of v in the clockwise order such that u = v 1 , y = v 2 and x = v ℓ , where ℓ = d H (v). By Claim 4.3, d H 6 + (v) ≥ 2. Let i be the minimum index such that d H (v i ) ≥ 3. Then 3 ≤ i ≤ ℓ and d H (v 1 ) = • • • = d H (v i-1 ) = 2
. Let f j be the face incident with vv j and vv j+1 , for j ∈ {1, 2, . . . , i-1}. Then d H (f 1 ) = 4 and d H (f j ) ≥ 4 for j = 2, . . . , i -1. Suppose that there exists some j(2

≤ j ≤ i -1) such that d H (f j ) ≥ 5. Let p be the minimum index such that d H (f p ) ≥ 5 for 2 ≤ p ≤ i -1. By R1 and R2, τ (f p-1 → v p ) ≥ 1 and τ (f p → v p ) ≥ 2. Therefore, τ (v → v p ) ≤ 1 2 . Suppose that d H (f 2 ) = • • • = d H (f i-1 ) = 4. Then d H (f i ) ≥ 4. By R1 and R2, τ (f i-1 → v i ) ≥ 1 and τ (f i → v i ) ≥ 2. Therefore, τ (v → v i ) ≤ 1 2 .
Chapter 5 List linear arboricity §5. 

, ⌈ ∆(G) 2 ⌉ ≤ la(G) ≤ ⌈ ∆(G)+1 2 ⌉.
This has been proved in complete bipartite graphs [4], complete regular multipartite graphs [START_REF] Wu | The linear arboricity of composition graphs[END_REF], planar graphs [START_REF] Wu | On the linear arboricity of planar graphs[END_REF][START_REF] Wu | The linear arboricity of planar graphs of maximum degree seven is four[END_REF] and regular graphs with ∆ = 3, 4 [5] and ∆ = 5, 6, 8 [START_REF] Enomoto | The linear arboricity of some regular graphs[END_REF]. Recently, M. Cygan et al. [START_REF] Cygan | A planar linear arboricity conjecture[END_REF] proved that if G is a planar graph with ∆ ≥ 9, then la(G) = ⌈ ∆ 2 ⌉, and then they posed the following conjecture 1.3.10 (the conjecture has also been posed in [START_REF] Wu | On the linear arboricity of graphs[END_REF]).

Conjecture 1.3.10 For any planar graph G of maximum degree ∆ ≥ 5, Paris South University Doctoral Dissertation la(G) = ⌈ ∆ 2 ⌉. Some related results about the conjecture refer to [START_REF] Chen | The linear arboricity of planar graphs without 5-cycles with two chords[END_REF]. For the list linear arboricity, the following conjecture is posed in [START_REF] Wu | On the linear arboricity of graphs[END_REF] and [7], independently. The list linear arboricity of a planar graph G is at most

⌈ ∆(G)+1 2 ⌉ if ∆(G) ≥ 8 [7]; or ∆(G) ≥ 6 and G is F 5 -free [162]. la list (G) = ⌈ ∆(G)
2 ⌉ if ∆(G) ≥ 13, or ∆(G) ≥ 7 and G contains no i-cycles for some i ∈ {3, 4, 5} [7];

or ∆(G) ≥ 11 and G is F 5 -free [START_REF] Zhang | The list linear arboricity of f 5 -free planar graphs[END_REF]. Though few results have been reported, the investigation is far from satisfactory. In this chapter, we prove that for a planar graph G with 7-cycles containing at most two chords, For each x ∈ V ∪ F , we define the initial charge

la list (G) ≤ max{4, ⌈ ∆(G)+1 2 ⌉} and la list (G) = ⌈ ∆ 2 ⌉ if ∆(G) ≥ 11.
2) G has an even cycle c = v 1 v 2 • • • v 2n v 1 with d(v 1 ) = d(v 3 ) = • • • = d(v 2n-1 ) = 3. ( 
ch(x) =    d(x) -4 if x ∈ V d(x) -4 if x ∈ F So x∈V ∪F ch(x) = -8 < 0.
In the following, we will reassign a new charge denoted by ch ′ (x) to each x ∈ V ∪ F according to the discharging rules. If we can show that ch ′ (x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious contradiction to 0 ≤ x∈V ∪F ch ′ (x) = x∈V ∪F ch(x) = -8, which completes our proof.

R1: Every 3-vertex receives 1 2 from each of its 3-masters.
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If L ′ (v 0 v 1 ) = L ′ (v 1 v 2 ) = • • • = L ′ (v 2n-2 v 2n-1 ) = L ′ (v 2n-1 v 0 ), then we col- or C such that σ(v 2i v 2i+1 ) ∈ L ′ (v 0 v 1 ) and σ(v 2i+1 v 2i+2 ) ∈ L ′ (v 0 v 1 )\σ(v 2i v 2i+1 ), i = 0, 1, ..., n -1; Otherwise, there is an i(0 ≤ i ≤ 2n -1) such that L ′ (v i v i+1 )\L ′ (v i+1 v i+2 ) = ∅ or L ′ (v i+1 v i+2 )\L ′ (v i v i+1 ) = ∅,
where the subscripts are taken modulo 2n. Without loss of generality, assume that there is

a color β ∈ L ′ (v 0 v 1 )\L ′ (v 2n-1 v 0 ). First we color v 0 v 1 such that σ(v 0 v 1 ) = β.
Then we assume that

v 0 v 1 , v 1 v 2 , • • • , v i-1 v i (1 ≤ i ≤ 2n -1) has been colored, color v i v i+1 satisfying σ(v i v i+1 ) ∈    L ′ (v i v i+1 ) if |L ′ (v i v i+1 )| = 1, L ′ (v i v i+1 )\σ(v i-1 v i ) otherwise.
Finally, the uncolored edges of G are colored the same colors as in φ of G ′ .

Thus σ is a linear L-coloring of G, a contradiction.

This completes the proof.

According to the Theorem 5.2.1, it is easy to obtain the following corollary. 2 ⌉}, such that G is not linear L-colorable, but any proper subgraph of G is linear-L-colorable. By a similar proof as Theorem 2.4 in [7], G has the following properties.

(1) For every edge uv of G, d(u) R1: Each 2-vertex receives 2 from its 2-master;

+ d(v) ≥ max{14, ∆(G) + 2}; Paris South University Doctoral Dissertation (2) G has no even cycle C = v 1 v 2 • • • v 2n v 1 with d(v 1 ) = d(v 3 ) = • • • = d(v 2n-1 ) = 2
R2: Let f be a 3-face. If d(v) = 4, then c(v → f ) = 1 2 . If d(v) = 5, then
Chapter 6 Future research

The coloring problem has been the development of hot spots in the study of graph theory, which has a wide application, and according to the different objects and rules, there are lots of coloring problems, such as acyclic vertex coloring, acyclic edge coloring, acyclic total coloring, edge face coloring, vertex edge face coloring, equitable coloring, circular coloring and so on.It has very important theoretical and practical significance to solve these problems. §6.1 Some graphs

In this paper, we mainly study the coloring problems in planar graphs.

In graph theory, a planar graph is a graph that can be embedded in the plane. It can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. The Polish mathematician Kazimierz • Kuratowski provided a characterization of planar graphs in terms of forbidden graphs, now known as Kuratowski's theorem: A finite graph is planar if and only if it does not contain a subgraph that is a subdivision of K 5 (the complete graph on five vertices) or K 3,3 . The Euler characteristic was originally defined 
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For every v of G, we have d G (v) = d G × (v).

There has been some studies in 1-planar graph.

For a simple graph G, by Vizing Theorem, the edge chromatic number of G is ∆ (i.e. G is in class one) or ∆ + 1 (i.e. G is in class two). We can also study other coloring problems in 1-planar graphs.

There are many other graphs which are deserved to study, such as interval graphs, unicyclic graphs, chordal graphs, split graphs, claw-free graphs, hypergraphs, signed graphs and so on. §6.2 Future research in planar graphs Case 6.2.1. Total coloring For any planar graph G with ∆ ≥ 8, we can discuss the following conditions if it is satisfied χ ′′ (G) = ∆ + 1.
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(4) ∆(G) ≥ 7 and 3-cycles of G is not adjacent to 5-cycles;

(5) ∆(G) ≥ 7 and G contains no chordal 6-cycles;

(6) ∆(G) ≥ 6 and 3-cycles of G is not adjacent to 5-cycles.

Case 6.2.

Distinguishing total coloring

There are some relative deformation of 1-2-3 conjecture which we have already introduced in Chapter 1. We can use Combinatorial Nullstellensatz [6] and discharging method to prove. We can extend neighbor sum distinguish total coloring to neighbor product distinguish total coloring. For We can also study the neighbor set distinguishing total coloring problems and neighbor multiset distinguishing total coloring problems. If it is possible to color G so that every vertex gets a color from its list and no two adjacent vertices receive the same color, then we say that G is Lcolorable. A graph G is k-choosable if G is an Lcolorable for any assignment L for G satisfying |L(v)|≥k for every vertex v∈V(G). A graph G is k-total-choosable if G has a proper L-totalcoloring for every preassigned total assignment L with |L(x)|≥k for every x∈V∪E. Let f(v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total k-neighbor sum distinguishing-coloring of G is a total k-coloring of G such that for each edge uv∈E(G), f(u)≠f(v). A linear forest is a graph in which each component is a path. The linear arboricity la(G) of a graph G is the minimum number of linear forests in G, whose union is the set of all edges of G.
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( 1 , 2 ,

 12 . . . , k) colors such that no two adjacent or incident elements receive the same color¡The total chromatic number χ ′′ (G) is the smallest integer k such that G has a k-total-coloring. As early as 1960s, Vizing and Behzad independently conjectured that for any graph G, ∆ ≤ χ ′′ (G) ≤ ∆ + 2. This iii Paris South University Doctoral Dissertation conjecture was known as Total Coloring Conjecture. This conjecture has been confirmed for general graphs with ∆ ≤ 5. For planar graphs, the only open case is ∆ = 6. It is interesting to notice that many planar graphs are proved to be χ ′′ (G) = ∆ + 1, i.e., the exact result has been obtained¡Up to date, for each planar graph with ∆ ≥ 9, χ ′′ (G) = ∆ + 1. However, for planar graphs with 4 ≤ ∆ ≤ 8, no one has found counterexamples that are not (∆ + 1)-total-colorable. So, Wang Yingqian et al. conjectured that planar graphs with ∆ ≥ 4 are (∆ + 1)-totally-colorable. In chapter 2, we study total coloring of planar graphs and obtain three results: (1) Let G be a planar graph with maximum degree ∆ ≥ 8. If every two chordal 6-cycles are not adjacent in G or any 6-cycle of G contains at most one chord, then χ ′′ (G) = ∆ + 1. (2) Let G be a planar graph G with maximum degree ∆ ≥ 8. If any 7-cycle of G contains at most two chords, then χ ′′ (G) = ∆ + 1.

2 ⌉

 2 The linear arboricity la(G) of a graph G as defined by Harary is the minimum number of linear forests in G, whose union is the set of all edges of G. Akiyama et al. posed the v Paris South University Doctoral Dissertation following conjecture: For any regular graph G, la(G) ≤ ⌈ ∆(G)+1 . Clearly, la(G) ≥ ⌈ ∆(G) 2 ⌉. So for every regular graph G, we have la(G) ≥ ⌈ ∆(G)+1 Paris South University Doctoral Dissertation Quelques problèmes de coloration du graphe Renyu Xu ( L.R.I., L'Université Paris-Saclay, Orsay 91405, France ) Directeur de thèse: Professeur Jianliang Wu Co-Directeur de thèse: Professeur Yannis Manoussakis Résumé La théorie des graphes est un domaine de recherche actif depuis 200 ans. Le plus ancien article de théorie des graphes connu a été rédigé par Euler en 1736, pour résoudre le problème dit des ponts de Konigsberg.

2 ⌉

 2 finis. Soit G = (V, E) un graphe. Pour une sommet v ∈ V (G), soit N G (v) l'ensemble des voisins de v dans G and soit d G (v) = |N G (v)| le degré de v dans G. Le degré maximum et le degré minimum de G sont notés respectivement ∆(G) et δ(G). On simplifiera par la suite ∆ = ∆(G) et δ = δ(G). Un k-coloriage total d'un graphe G est un coloriage de V (G) ∪ E(G) utilisant (1, 2, . . . , k) couleurs tel qu'aucune paire d'éléments adjacents ou incidents ne recoivent la même couleur. Le nombre chromatique total χ ′′ (G) est le plus petit entier k tel que G admette un k-coloriage total. Dès les vii Paris South University Doctoral Dissertation années 1960, Vizing et Behzad ont conjecturé indépendamment que pour tout graphe G, ∆ ≤ χ ′′ (G) ≤ ∆ + 2. Cette conjecture est connue ous le nom de Total Coloring Conjecture. Elle a été confirmée pour les graphes quelconques tels que ∆ ≤ 5. Pour les graphes planaires, le seul cas encore ouvert est quand ∆ = 6. Il est intéressant de remarquer que pour de nombreux graphes planaires, χ ′′ (G) = ∆ + 1, c.-à-d que la relation exacte est connue. Par exemple, pour tout graphe ∆ ≥ 9, χ ′′ (G) = ∆ + 1. Pour les graphes planaires tels que 4 ≤ ∆ ≤ 8, personne n'a réussi à trouver de graphe qui ne soient pas (∆ + 1)-totally-colorable. Wang Yingqian et al. ont donc conjecturé que les graphes planaires avec ∆ ≥ 4 sont donc (∆ + 1)-totalement-coloriable. Dans le chapitre 2, nous étudions la coloration totale de graphe planaires et obtenons 3 résultats : (1) Soit G un graphe planaire avec pour degré maximum ∆ ≥ 8. Si toutes les paires de 6-cycles cordaux ne sont pas adjacentes dans G, alors χ ′′ (G) = ∆ + 1. (2) Soit G un graphe planaire avec pour degré maximum ∆ ≥ 8. Si tout 7-cycle de G contient au plus deux cordes, alors χ ′′ (G) = ∆ + 1. (3) Soit G un graphe planaire sans 5-cycles cordaux qui s'intersectent, c'est à dire tel que tout sommet ne soit incident qu'à au plus un seul 5-cycle cordal. Si ∆ ≥ 7, alors χ ′′ (G) = ∆ + 1. Une relation L est appelé assignation pour un graphe G s'il met en relation chaque sommet v ∈ V (G) à une liste de couleur. S'il est possible de colorier G tel que la couleur de chaque sommet soit présente dans la liste qu'il lui a été assignée, et qu'aucune paire de sommets adjacents n'aient la même couleur, alors on dit que G est L-coloriable. Un graphe G est k-selectionable si G est L-coloriable pour toute assignation L de G qui satisfie |L(v) ≥ k| pour tout sommet v ∈ V (G). Nous dêmontrons que si chaque 5-cycle de G n'est pas simultanément adjacent à des 3-cycles et des 4-cycles, alors G est 4sélectionable. Une relation L est appelée une assignation totale d'un graphe viii Paris South University Doctoral Dissertation G si elle assigne une liste L(x) de couleurs à chaque élément x ∈ V (G)∪E(G). Étant donné une assignation totale L pour G, une coloration L-totale de G est une coloration totale propre tel que la couleur de chaque élément soit présente dans la liste qui lui a été assignée. Un graphe G est k-totalsélectionable si G a une coloration propre L-totale pour toute assignation totale G telle que |L(x)| ≥ k pour tout x ∈ V ∪ E. La selectionabilité totale de G, ou nombre chromatique total de liste de G, noté χ ′′ l (G), est le plus petit nombre entier k tel que G soit k-totalement sélectionable. Le nombre arête-chromatique χ ′ (G) et le nombre arête-chromatique de liste (ou arêtesélectionabilité) χ ′ l (G) sont défini de manière similaire en ne coloriant que les arêtes. Dans le chapitre 3, nous prouvons que si aucun des 5-cycles de G n'est adjacent à un 4-cycles, alors χ ′ l(G) = ∆ et χ ′′ l (G) = ∆ + 1 si ∆(G) ≥ 8, et χ ′ l (G) ≤ ∆ + 1 et χ ′′ l (G) ≤ ∆ + 2 si ∆(G) ≥ 6.Récemment, les colorations avec étiquetage magique et antimagique, avec poids non uniforme, etc, et les colorations liés à la "somme" des couleurs ont recu beaucoup d'attention. Parmi ces recherches ont trouve la Conjecture 1 -2 -3 et Conjecture 1 -2 . Dans le chapitre 4, nous allons fournir une définition du coloriage total somme-des-voisins-distinguant, et passer en revue les progrès et conjecture concernant ce type de coloriage. Soit f (v) la somme des couleurs d'un sommet v et des toutes les arrêtes incidentes à v. Un k-coloriage total somme-des-voisins-distinguant de G est un k coloriage total de G tel que pour chaque arrête uv ∈ E(G), f (u) = f (v). Le plus petit k tel qu'on ai un tel coloriage sur G est appelé le nombre chromatique total somme-des-voisins-distinguant, noté χ ′′ (G). Pilśniak et Woźniak ont conjecturé que pour tout graphe G avec degré maximum ∆(G), on a χ ′′ (G) ≤ ∆(G) + 3. Cette conjecture a été prouvée pour les graphes complets, , les graphes cycles, les graphes bipartis, les graphes subcubiques, les graphes ix Paris South University Doctoral Dissertation creux (sparse graphs), les graphes séries parallèles et les graphes planaires avec ∆ ≥ 13. Nous avons démontré que si un graphe G avec degré maximum ∆(G) peut être embedded dans une surface Σ de caractéristique eulérienne χ(Σ) ≥ 0, alors χ ′′ (G) ≤ max{∆(G) + 2, 16}. Pour finir, nous étudions l'arborescence L-sélectable linéaire d'un graphe. Une forêt linéaire est un graphe pour lequel chaque composante connexe est une chemin. L'arboricité linéaire la(G) d'un graphe G tel que définie par Harary est le nombre minimum de forêts linéaires dans G, dont l'union est égale à V (G). Akiyama et al. ont proposé la conjecture suivante : Pour tout graphe régulier G, la(G) ≤ ⌈ ∆(G)+1 2 ⌉. Clairement, la(G) ≥ ⌈ ∆(G) 2 ⌉. Donc pour tout graphe régulier G, on a que la(G) ≥ ⌈ ∆(G)+1 . Ainsi, la conjecture précédente est équivalente à la conjecture de linéarité arborescente, qui s'énonce ainsi : Pour tout graphe simple G, ⌈ ∆(G) 2 ⌉ ≤ la(G) ≤ ⌈ ∆(G)+1 2 ⌉. Une assignation par liste L pour les arrêtes de G est l'assignation d'un ensemble L(e) ⊆ N de couleurs à chaque arête e de G. Si G admet une coloration ϕ(e) tel que ϕ(e) ∈ L(e) pour toute arête e et (V (G), ϕ -1 (i)) est une forêt linéaire pour tout i ∈ C ϕ , où C ϕ = {ϕ(e)|e ∈ E(G)}, alors on dit que G est linéairement L-colorable et ϕ est une L-coloration linéaire de G. On dit que G est linéairement k-sélectionable si il est linéairement L-colorable poru toute assignation par liste L satisfiant |L(e)| ≥ k pour toutes les arêtes e de G. L'arborescence linéaire de liste la list (G) d'un graphe G est le nombre minimum k tel que G soit linéairement k-liste colorable. Il est évident que la(G) ≤ la list (G). Dans le chapitre 5, nous prouvons que si G est une graphe planaire tel que tout 7-cycle de G contienne au plus deux cordes, alors

  It is commonly denoted by χ. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula χ = |V (G)| -|E(G)| + |F (G)|, where |V (G)| is the number of vertices, |E(G)| is the number of edges, |F (G)| is the number of faces. If G be a graph which can be embedded in a surface of nonnegative Euler characteristic, then |V (G)| -|E(G)| + |F (G)| ≥ 0.

G

  may be colored by ∆(G) + 1 colors, where ∆(G) is the maximum degree of G, and he characterized the graphs for which ∆(G) colors are not enough. Theorem 1.3.1. (Brooks Theorem ) [23] χ(G) ≤ ∆(G) + 1 holds for every graph G. Moreover, χ(G) = ∆(G) + 1 if and only if either ∆(G) = 2 and G has a complete (∆(G) + 1)-graph K ∆(G)+1 as a connected component, or ∆(G) = 2 and G has an odd cycle as a connected component.

  are adjacent, and φ(v 1 ) = φ(v 2 ); (ii)If two edges e 1 , e 2 ∈ E(G) are adjacent, and φ(e 1 ) = φ(e 2 ); (iii)If vertex v and edge e are incident in G, and φ(v) = φ(e)

( 20 )

 20 (∆, k) ∈ {(6, 5), (5, 7), (4, 14)}, where G has no cycle of length from 4 to k [135] ;

( 21 )

 21 (∆, k) ∈ {(5, 5), (4, 11)}, where G contains no intersecting 3-cycles and G has no cycles of length from 4 to k [107] ;

( 6 )

 6 ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 5-cycle[START_REF] Lu | Sufficient conditions for a planar graph to be list edge ∆-colorable and list totally (∆ + 1)-colorable[END_REF]; (7) ∆(G) ≥ 6 and G contains no chordal 5-cycles [59]; (8) ∆(G) ≥ 6 and G contains no chordal 6-cycles [42]; (9) ∆(G) ≥ 5 and G contains no 3-cycle [160]; Paris South University Doctoral Dissertation (10) ∆(G) ≥ 5 and G contains no 4-cycles [104];(11) ∆(G) ≥ 5 and G contains no 5-cycles[START_REF] Wang | Choosability and edge choosability of planar graphs without five cycles[END_REF].

( 6 )

 6 ∆(G) ≥ 7 and G contains no 4 --cycles [84]; (7) ∆(G) ≥ 7 and G contains no 5-cycles and 6-cycles [82]; (8) ∆(G) ≥ 6 and G contains no 4-cycles and 6-cycles [59]; (9) (∆(G), g) ∈ {(7, 4), (6, 5), (5, 8), (4, 14)}, where g is the girth of G [19]; (10) (∆(G), k) ∈ {(7, 4), (5, 5), (4, 6), (3, 10)}, where k satisfies that G has no cycle of length from 4 to k [58].

( 6 )

 6 ∆(G) ≥ 6 and G contains no chordal 6-cycles[START_REF] Dong | List edge and list total colorings of planar graphs without 6-cycles with chord[END_REF];(7) ∆(G) ≥ 5 and G contains no 3-cycles[START_REF] Zhang | Edge choosability of planar graphs without small cycles[END_REF];(8) ∆(G) ≥ 5 and G contains no 4-cycles[START_REF] Shen | Structural properties and edge choosability of planar graphs without 4-cycles[END_REF];(9) ∆(G) ≥ 5 and G contains no 5-cycles[START_REF] Wang | Choosability and edge choosability of planar graphs without five cycles[END_REF].Similarly, Borodin et al. proved that if G is a graph which can be embedded in a surface of Euler characteristic and ∆ ≥ 12, then χ ′′ l (G) = ∆+1[START_REF] Borodin | List edge and list total colourings of multigraphs[END_REF]. We have similar conclusions in planar graphs.Theorem 1.3.8. Let G be a planar graph, the maximum degree is ∆, if G satisfies one of the condition below, then χ ′′ l (G) = ∆ + 1. (1) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 4-cycles[START_REF] Li | Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles[END_REF];

( 6 )

 6 ∆(G) ≥ 7 and G contains no 4 --cycles [84];(7) ∆(G) ≥ 7 and G contains no 5-cycles and 6-cycles[START_REF] Liu | List edge and list total colorings of planar graphs without short cycles[END_REF];(8) ∆(G) ≥ 6 and G contains no 4-cycles and 6-cycles[START_REF] Hou | Edge-choosability of planar graphs without adjacent triangles or without 7-cycles[END_REF];

Conjecture 1 . 3 . 5 .

 135 (Adjacent vertex distinguishing total coloring conjecture) For any graph G with at least two vertices, χ ′′ a (G) ≤ ∆(G) + 3.

Conjecture 1 . 3 . 8 .

 138 (Neighbor sum distinguishing total coloring conjecture) For any graph G with at least two vertices, χ ′′ (G) ≤ ∆(G) + 3. We could see Conjecture 1.3.8 is proposed according to Conjecture 1.3.5, for a graph G, if it has a k-total coloring φ. For any adjacent vertices Paris South University Doctoral Dissertation

Conjecture 1 .

 1 3.10. (Linear arboricity conjecture for planar graph) For any planar graph G of maximum degree ∆ ≥ 5, la(G) = ⌈ ∆ 2 ⌉.

  ) ∆ ≥ 5 and G contains no 4-cycles ( [151]); (5) ∆ ≥ 5 and G has no intersecting 4-cycles and intersecting 5-cycles ( [30]); (6) ∆ ≥ 5 and G has no 5-, 6-cycles with chords ( [33]); (7) ∆ ≥ 5 and any 4cycle is not adjacent to an i-cycle for any i ∈ {3, 4, 5} or G has no intersecting 4-cycles and intersecting i-cycles for either i = 3 or i = 6 ( [108]); (8) ∆ ≥ 5 and any two 4-cycles are not adjacent, and any 3-cycle is not adjacent to a 5-cycle ( [128]). A list assignment L to the edges of G is the assignment of a set L(e) ⊆ N Paris South University Doctoral Dissertation of colors to every edge e of G, where N is the set of positive integers. If G has a coloring ϕ(e) such that ϕ(e) ∈ L(e) for every edge e and (V (G), ϕ -1 (i))

  Conjecture 1.3.11. (List linear arboricity conjecture ) For any graph G, la(G) = la list (G).

length 5 .

 5 If ∆ ≥ 7, then χ ′′ (G) = ∆ + 1. Conclusion 1, Conclusion 2, Conclusion 3 and Conclusion 4 are all about total coloring of planar graphs, these conclusions solve the total coloring of planar graph conjecture (PTCC) partly. Conclusion 1, Conclusion 2 and Conclusion 3 are aimed at planar graphs with ∆ ≥ 8. Conclusion 1 covers the planar graphs with ∆ ≥ 8 and contain no 6-cycles [62]; Conclusion 2

G

  is not adjacent to 4-cycles, then χ ′′ l (G) ≤ ∆ + 2. Conclusion 6 and Conclusion 8 are aimed at list edge coloring. They solve the list edge coloring conjecture of planar graphs to some extent. Conclusion 7 and Conclusion 9 concern about list total coloring. They prove the list total coloring conjecture of planar graphs to a certain degree. In Chapter 4, we consider the total neighbor sum distinguishing chromatic number of embedded in a surface Σ of Euler characteristic, and obtain two corollaries: Conclusion 10 Let G be a graph with maximum degree ∆(G) which can be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0, then χ ′′ (G) ≤ max{∆(G) + 2, 16}. Conclusion 11 Let G be a graph which can be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ ′′ (G) ≤ ∆(G) + 2. Conclusion 12 Let G be a graph which can be embedded in a surface Paris South University Doctoral Dissertation Σ of Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ ′′ a (G) ≤ ∆(G) + 2. Conclusion 10 is the first conclusion about total neighbor sum distinguishing chromatic number of embedded in a surface non negative Σ of Euler characteristic. It is the best result of this kind of graph at present. Meanwhile, this conclusion include some results of planar graphs.

2 ⌉.

 2 Conclusion 15 Let G be a planar graph, and every 7-cycles of G contains at most two chords. Then G is linear k-choosable, where k ≥ max{6, ⌈ ∆(G) 2 ⌉}. Conclusion 16 Let G be a planar graph. If ∆(G) ≥ 11 and every 7-cycles of G contains at most two chords, then la list (G) = ⌈ ∆(G) 2 ⌉. Conclusion 13 and Conclusion 15 are with respect to list linear arboricity of planar graph. The corollaries of Conclusion 14 and Conclusion 16 solve the list linear arboricity conjecture of planar graphs partly. Chapter 2 Total Coloring §2.1 Basic definitions and properties

∆ ≥ 8 .

 8 If every 6-cycle of G contains at most one chord or chordal 6-cycles are not adjacent in G, then χ ′′ (G) = ∆ + 1. 2. Let G be a planar graph with maximum degree ∆ ≥ 8. If every 7-cycle of G contains at most two chords, then χ ′′ (G) = ∆ + 1. §2.2.1 If every 6-cycle of G contains at most one chord or chordal 6-cycles are not adjacent in G Theorem 2.2.1. Let G be a planar graph with maximum degree ∆ ≥ 8. If every 6-cycle of G contains at most one chord or chordal 6-cycles are not adjacent in G, then χ ′′ (G) = ∆ + 1.

Lemma 2 . 2 . 5 .

 225 [START_REF] Borodin | On the total coloring of planar graphs[END_REF] (a) G is 2-connected. (b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆ + 2 = 10. By Lemma 2.2.5(a): There is no 1-vertex in G. By Lemma 2.2.5(b): any two neighbors of a 2-vertex are 8-vertices. Any three neighbors of a 3-vertex are 7 + -vertices. Any four neighbors of a 4-vertex are 6 + -vertices. Paris South University Doctoral Dissertation Lemma 2.2.6. G has no configurations depicted in Figure 2.1, where v denotes the vertex of degree of 7.

  )-(3). If d(f i ) = 4, then let u i be adjacent to v i and v i+1 . By the minimality of G, G ′ = Gvv 1 has a (∆ + 1)-total-coloring φ. Let C(x) = {φ(xy) : y ∈ N(x)} ∪ {φ(x)}.

  for otherwise, we can recolor vv i with d + 1 and color vv 1 with i, and by properly recoloring the erased vertices, we get a (∆ + 1)total-coloring of G, a contradiction, too. In the following we consider (1)-(3) one by one.

2. 2 . 1 .

 21 We know, by v∈V d(v) = 2|E|, f ∈F d(f ) = 2|E| the Euler's formula|V | -|E| + |F | = 2, we have v∈V (2d(v) -6) + f ∈F (d(f ) -6) = -6(|V | -|E| + |F |) = -12 < 0We define ch the initial charge that ch(x) = 2d(x) -6 for each x ∈ V and ch(x) = d(x) -6 for each x ∈ F . So x∈V ∪F ch(x) = -12 < 0. In the Paris South University Doctoral Dissertation following, we will reassign a new charge denoted by ch ′ (x) to each x ∈ V ∪ F according to the discharging rules. If we can show that ch ′ (x) ≥ 0 for eachx ∈ V ∪ F , then we get an obvious contradiction to 0 ≤ x∈V ∪F ch ′ (x) =

  0 by R2 and R3. For d(v) ≥ 5, we need the following structural lemma. Lemma 2.2.8. (1) Suppose that every 6-cycle of G contains at most one chord. Then we have the following results.

  (a) G has no configurations depicted in Figure 2.3(1), Figure 2.3(2) and

Figure 2 ( 2 )

 22 Figure 2.3(3); (b) Suppose G has a subgraph isomorphic to Figure 2.3(4). Then d(f 1 ) ≥ 4 and d(f 2 ) = 4. More over if d(f 1 ) = 4, then d(f 2 ) ≥ 5;

Lemma 2 . 2 . 9 .Claim 2 . 3 .

 22923 Suppose d(v) = 8 and 2 ≤ n 2 (v) ≤ 8. Then ch ′ (v) ≥ 0. Proof. Since d(v) = 8, then ch(v) = 10. First we give a Claim for conve-Paris South University Doctoral Dissertation nience. Suppose that d(v i ) = d(v i+k+1 ) = 2 and d(v j ) ≥ 3 for i + 1 ≤ j ≤ i + k. Then v sends at most φ (in total) to f i and f i+1 , f i+2 , • • • , f i+k , where φ = 5k+1 4 (k = 1, 2, 3, 4, 5), see Figure 2.4.

Figure 2 . 5 Paris

 25 Figure 2.5

Figure 2 . 5 (

 25 21), we have ch ′ (v) ≥ 10 -1 × 3 -3 2 × 2 -4 = 0. For Figure 2.5(22), we have ch ′ (v) ≥ 10 -1 × 3 -3 2 -11 4 × 2 = 0. For Figure 2.5(23), we have

3 2 -13 2

 2 = 0. For Figure 2.5(25), we have ch ′ (v) ≥ 10 -1 × 2 -11 4 -21 4 = 0. For Figure 2.5(26), we have ch ′ (v) ≥ 10 -1 × 2 -4 × 2 = 0. Hence we complete the proof of the theorem 2.2.1: Let G be a planar graph with maximum degree ∆ ≥ 8. If every 6-cycle of G contains at most one chord or chordal 6-cycles are not adjacent in G, then χ ′′ (G) = ∆ + 1. Paris South University Doctoral Dissertation §2.3.1 7-cycles containing at most two chords Theorem 2.3.1. Let G be a planar graph with maximum degree ∆ ≥ 8. If every 7-cycle of G contains at most two chords, then χ ′′ (G) = ∆ + 1. Proof. According to [74], Theorem 2.3.1 holds for planar graphs with ∆ ≥ 9. So we have ∆ = 8. Arguing by contradiction, let G = (V, E) be a minimal counterexample to the planar graph G with maximum degree ∆ = 8, such that |V | + |E| is minimal and G has been embedded in the plane. Then every proper subgraph of G is total-9-colorable. First we give some lemmas for G. Lemma 2.3.1. [16] (a) G is 2-connected. (b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆ + 2 = 10. (c) The subgraph induced by all edges joining 2-vertices to 8-vertices in G is a forest. By Lemma 2.3.1(a): There is no 1-vertex in G. By Lemma 2.3.1(b): any two neighbors of a 2-vertex are 8-vertices. Any three neighbors of a 3-vertex are 7 + -vertices. Any four neighbors of a 4-vertex are 6 + -vertices. Lemma 2.3.2. G has no configurations depicted in Figure 2.6, where v denotes the vertex of degree of 7.

  Figure 2.6

2. 3 . 1 .

 31 By the Euler's formula |V | -|E| + |F | = 2 and v∈V d(v) = 2|E|,

  12 < 0. In the following, we will reassign a new charge Paris South University Doctoral Dissertation denoted by ch ′ (x) to each x ∈ V ∪ F according to the discharging rules. If we can show that ch ′ (x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious contradiction to 0 ≤ x∈V ∪F ch ′ (x) = x∈V ∪F ch(x) = -12, which completes our proof.

Lemma 2 . 3 . 4 .Figure 2 . 7 Next

 23427 Figure 2.7

12 ≥ 0

 120 . Suppose d(v) = 7. Then f 3 (v) ≤ 5. By Lemma 2.3.2(1), v is incident with at most two 3-faces are incident with a 3 --vertex, that is, v sends 3 2 to each of the two Paris South University Doctoral Dissertation 3-faces and at most 5 4 to each other 3-face. If f 3 (v) = 5, then f 5 + (v) ≥ 1, and ch

Figure 2 . 5 ch

 25 Figure 2.5

Figure 2 . 10 We
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 211 Figure 2.11

( 4 )

 4 If two 3-faces are adjacent, then each of the other faces adjacent to one of the two 3-faces is a 6 + -face. By Euler's formula |V | -|E| + |F | = 2, we have v∈V

From Lemmas 3

 3 .2.1(b) and 3.2.2(b), we claim that δ(G) ≥ 2 and every 2-vertex is adjacent to two ∆-vertices. Let G 2 be the subgraph induced by the edges incident with the 2-vertices of G. It follows from Lemma 3.2.3 that G 2 contains a matching M that saturates all 2-vertices. If uv ∈ M and d(u) = 2, then v is called the 2master of u and u is called the dependent of v. It is easy to see that each 2-vertex has a 2-master and each vertex of maximum degree can be the 2master of at most one 2-vertex. Let X be the set of vertices of degree at most 3 and Y = ∪ x∈X N(x). By Lemma 3.2.3, G contains a bipartite subgraph M = (X, Y ) such that d M (x) = 1 and d M (y) = 2 for all x ∈ X and y ∈ Y .

Case 3 . 2 . 1 .

 321 ∆ = 8 By the Euler's formula |V | -|E| + |F | = 2, we have v∈V (2d(v) -6) + f ∈F (d(f ) -6) = -6(|V | -|E| + |F |) = -12 < 0 For each x ∈ V ∪F , we define c(x) the initial charge. Let c(v) = 2d(v)-6 Paris South University Doctoral Dissertation Suppose d(v) = 7. Then f 3 (v) ≤ 4. Since each 2-vertex is only adjacent to 8-vertices, v can be 3-masters of at most two 3-vertices. If f 3 (v) = 4, then

4 ≥ 0 .

 40 Suppose d(v) = 8. Then f 3 (v) ≤ 5. v can be the 2-master of a 2vertex as well as being the 3-masters of up to two 2-or 3-vertices. Thus, v sends totally at most 3 to the 3 --vertices adjacent to it by R2 and R3. Letv 1 , • • • , v 8 be the neighbor of v and f 1 , f 2 , • • • , f 8 be faces incident with v, such that f i is incident with v i and v i+1 , for i ∈ {1, 2, • • • , 7}.Suppose f 3 (v) = 5. Then f 6 + (v) ≥ 3 and all the 6 + -faces are adjacent to 4-face. If there is at least one 3-faces incident with v is (2, 8, 8)-face,

Figure 3 . 1 Suppose f 3
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  d(v) = 2, then c(v) = -2 and v receives 1 from its 2-master and receives 1 from its 3-master by R1 and R2 (the 2-master and 3-master of v may be a Paris South University Doctoral Dissertation single vertex), so c ′ (v) ≥ c(v) + 1 + 1 = 0. If d(v) = 3, then v receives 1 from its 3-master by R2, so c ′ (v) ≥ c(v) + 1 = 0 by R2. If d(v) = 4, then c ′ (v) = c(v) = 0. If 5 ≤ d(v) ≤ 7, since every 5-cycles of G is not adjacent to 4-cycles, then f 3

2 . 1 §3. 2 . 2 6 Theorem 3 . 2 . 2 .Claim 3 . 3 .

 2122632233 Planar graph G with maximum degree ∆ ≥ Let G be a planar graph with ∆ ≥ 6, if every 5-cycles ofG is not adjacent to 4-cycles, then χ ′ l (G) ≤ ∆ + 1 and χ ′′ l (G) ≤ ∆ + 2.Proof By Theorem 3.2.1, it suffices to consider two cases, ∆ = 6 and ∆ = 7. Suppose the conclusion does not hold. Again, let G = (V, E, F ) be a plane embedding of a minimal counterexample. If G is not edge-∆ + 1choosable, we suppose that L is an edge assignment of G with |L(e)| = ∆ + 1for every edge e ∈ E such that G is not edge-L-colorable. If G is not total-(∆+2)-choosable, we suppose that L is a total assignment of G with |L(x)| = ∆ + 2 for every x ∈ V ∪ E such that G is not total-L-colorable. We prove the edge-∆ + 1-choosable and total-(∆ + 2)-choosable of G separate. First, we investigate edge-(∆(G)+1)-choosable of planar graphs without adjacent 4-cycles to 5-cycles. If a planar graph G without adjacent 4-cycles to 5-cycles, and δ(G) ≥ 3, then there exists an edge xy ∈ E(G) such that d(x) + d(y) ≤ 8.

4 Neighbor sum distinguish total coloring §4. 1

 41 0 by R1-R3. The proof of edge-(∆(G) + 1)-choosable is carried out by induction on |V (G)| + |E(G)|. It holds trivially when |V (G)| + |E(G)| ≤ 6. Let G be a planar graph without adjacent 4-cycles to 5-cycles, and ∆(G) ≥ 6, such that |V (G)| + |E(G)| ≥ 7. By the induction hypothesis, Ge has an edge-Lcoloring φ. It is straightforward to extend φ to the edge e because there are at most ∆(G) forbidden colors for e, whereas the number of available colors is at least ∆(G) + 1. Suppose that δ(G) ≥ 3, G exists an edge xy such that d(x) + d(y) ≤ 8 by Claim 3.3. The induction hypothesis implies that Gxy has an edge-L-coloring φ. We can color xy with some color from L(xy) that was not used by φ on the edges adjacent to xy. Since there exist at most six Chapter Basic definitions and properties Recently, colorings and labellings concerning the sums of the colors have received much attention. The family of such problems includes, e.g. vertex-coloring k-edge-weightings [69], neighbor sum distinguishing edge kcoloring [44] [45] [49] [120] [121], total weight choosability [93] [146], magic and antimagic labellings [65] [147] and the irregulaity strength [90] [91]. Among them there are the 1-2-3 Conjecture [70] and 1-2 Conjecture [92]. A k total coloring of a graph G is a mapping φ : V ∪ E → {1, 2, • • • , k} such that no two adjacent or incident elements receive the same color. A graph G is total k colorable if it admits a k total coloring. The total chromatic number χ ′′ (G) of G is the smallest integer k such that G has a k-totalcoloring. In a total k-coloring of G, let f (v) denote the total sum of colors of the edges incident to v and the color of v. If for each edge uv, f (u) = f (v), we call such total k-coloring a total k neighbor sum distinguishing coloring. The smallest number k is called the neighbor sum distinguishing total chromatic number, denoted by χ ′′ (G).Surf aces in this paper are compact, connected 2-dimensional manifolds without boundary. All embedded graphs considered in this paper are 2cell-embeddings. Let G = (V, E, F ) be an embedded graph. A ℓ-vertex, a ℓ --vertex or a ℓ + -vertex is a vertex of degree ℓ, at most ℓ or at least ℓ, respectively. For a face f of G, the degree d(f ) is the number of edges incident with it, where each cut-edge is counted twice. A l-face, a l --face or a l + -face is a face of degree l, at most l or at least l, respectively.

Lemma 4 . 1 . 1 .

 411 [START_REF] Li | Neighbor sum distinguishing total colorings of planar graphs[END_REF] Suppose B 1 is a set of integers and|B 1 | = n. Let

Theorem 4 . 2 . 1 .

 421 Let G be a graph with maximum degree ∆(G) which can be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0, then χ ′′ (G) ≤ max{∆(G) + 2, 16}.

Observation 4 . 3 . 1 .

 431 Every face f is incident to at most ⌊ d H (f ) 2 ⌋ 5 --vertices (counting multiplicity). Observation 4.3.2. Let d H (v) ≥ 8, and u be a 5 --vertex adjacent to v.

Conjecture 1 . 3 . 11

 1311 For any graph G, la(G) = la list (G).

§5. 2

 2 List linear arboricity of planar graph Lemma 5.2.1. Let G be a planar graph. If every 7-cycles of G contains at most two chords, then (1) G has an edge uv with d(u) + d(v) ≤ max{9, ∆(G) + 2}, or

Proof.

  The proof is carried out by contradiction. Let G be a minimal counterexample to the lemma with |V | + |E| minimized. It is obvious that G is a connected planar graph. By the choice of G, we have the following observations. Paris South University Doctoral Dissertation (a) For any edge uv, d(u) + d(v) ≥ max{10, ∆(G) + 3} by (1). Then δ(G) ≥ 3 and all neighbors of an i-vertex must be (10i) + -vertices, where i = 3, 4 or 5; (b) Let V 1 be the set of 3-vertices of G and G 3 the subgraph induced by the edges incident with 3-vertices of G. Then G 3 is a forest. By (a) or (1), every two 3-vertices are not adjacent, and it follows that G 3 does not contain odd cycles. By (2), G 3 contains no even cycles. So G 3 is a forest and (b) holds.Thus for any component of G 3 , we select a vertex u ∈ V 1 as a root of the tree. Then every 3-vertex has exactly two children.If uv ∈ E(G 3 ), u ∈ V 1and v is a child of u, then v is called a 3-master of u. Note that each 3-vertex has exactly two 3-masters and each vertex of degree at least 7 can be the 3-master of at most two 3-vertices. By the Euler's formula |V | -|E| + |F | = 2, we have v∈V (G) (d(v)-4)+ f ∈F (G) (d(f )-4) = -4(|V (G)|-|E(G)|+|F (G)|) = -8 < 0.

Corollary 5 . 2 . 2 . 2 ⌉. Theorem 5 . 2 . 3 .

 5222523 Let G be a planar graph. If ∆(G) ≥ 6 and every 7-cycles of G contains at most two chords, then ⌈ ∆(G) 2 ⌉ ≤ la list (G) ≤ ⌈ ∆(G)+1 Let G be a planar graph, and every 7-cycles of G contains at most two chords. Then G is linear k-choosable, where k ≥ max{6, ⌈ ∆(G) 2 ⌉}. Proof. Let G be a minimal counterexample to Theorem 5.2.3. Then there is an edge assignment L with |L(e)| ≥ k for all e ∈ E(G), where k = max{6, ⌈ ∆(G)

  and max 1≤i≤n |n 2 (v 2i-1 )| ≥ 3, where n 2 (v) is the number of 2-vertices adjacent to v. By (1), δ(G) ≥ 2 and any two 2-vertices are not adjacent. Let G 2 be the subgraph induced by the edges incident with the 2-vertices of G. Then G 2 contains no odd cycle. So it follows from (2) that any component of G 2 is either an even cycle or a tree, and then we can find a matching M in G saturating all 2-vertices (M contains alternate edges of every even cycle of G 2 , and if some component of G 2 is a tree T then we repeatedly add to M a pendant edge e of T and delete the end-vertices of e from T ). If uv ∈ M and d(u) = 2, v is called a 2-master of u. Note that every 2-vertex has a 2-master, which is necessarily a vertex of maximum degree and each vertex of the maximum degree can be the 2-master of at most one 2-vertex. We define a weight function c on V (G)∪F (G) by letting c(v) = 2d(v)-6 for each v ∈ V (G) and c(f ) = d(f ) -6 for each f ∈ F (G). Applying Euler's formula |V (G)| -|E(G)| + |F (G)| = 2, we have v∈V(2d(v) -6) + f ∈F (d(f ) -6) = -6(|V | -|E| + |F |) = -12 < 0In the following, we will reassign a new charge denoted by c ′ (x) to eachx ∈ V ∪F according to the discharging rules. If we can show that c ′ (x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious contradiction to 0≤ x∈V ∪F c ′ (x) =x∈V ∪F c(x) = -12, which completes our proof. Let c(v → f ) be the amount that a vertex v sends a face f . The rules for redistribution of charge are as follows:

  for polyhedra and used to prove various theorems about them by using the formula of Euler: χ = |V (G)| -|E(G)| + |F (G)|, where |V (G)| is the number of vertices of G, |E(G) is the number of edges of G, |F (G) is the number of faces of G, including the exterior face. For planar graphs, we have |V (G)| -|E(G)|+|F (G)| = 2. We can also use discharging method to get some results of χ ≥ 0.In the other hand, series-parallel graphs are characterised by having no Paris South University Doctoral Dissertation subgraph homeomorphic to K 4 . A graph is an series-parallel graph, if it may be turned into K 2 by a sequence of the following operations: Replacement of a pair of parallel edges with a single edge that connects their common endpoints. Replacement of a pair of edges incident to a vertex of degree 2 other than s or t with a single edge. Every series-parallel graph has treewidth at most 2 and branchwidth at most 2. An outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing. Outerplanar graphs may be characterized by the two forbidden minors K 4 and K 2,3 . After studying the structure of the planar graph, we can study these two classes of graphs. We try to extend the results of various kinds of coloring on these graphs, and we can find the relationship between the boundary and the maximum degree. Moreover, we know for planar graphs, we have|E(G)| ≤ 3|V (G)| -6.Ringel's[START_REF] Ringel | Ein Sechsfarbenproblem auf der Kugel[END_REF] motivation was in trying to solve a variation of total coloring for planar graphs, in which one simultaneously colors the vertices and faces of a planar graph, mentioned 1-planar graphs. A 1-planar graph is a graph G that can be drawn in the Euclidean plane in such a way that each edge has at most one crossing point, where it crosses a single additional edge. Pach and Tóth[START_REF] Pach | Graphs drawn with few crossings per edge[END_REF] proved every 1-planar graph with n vertices has at most 4n -8 edges. More strongly, each 1-planar drawing has at most n -2 crossings; removing one edge from each crossing pair of edges leaves a planar graph, which can have at most 3n -6 edges, from which the 4n -8 bound on the number of edges in the original 1-planar graph immediately follows. The associated plane graph G × of a 1-plane graph G is the plane graph that is obtained from G by turning all crossings of G into new 4-vertices. A vertex v ∈ V (G × ) \ V (G) in G × is called false if it is not a vertex of G and true otherwise. For any two false vertices u and v in G × , uv ∈ E(G) \ E(G × ).

Conjecture 6 . 1 . 1 . [ 161 ]Conjecture 6 . 1 . 3 .Conjecture 6 . 1 . 4 . 3 . 6 . 1 . 5 .

 6111616136143615 For any 1-planar graph G with ∆ ≥ 8, G is in class one. We can conjecture: Conjecture 6.1.2. For any 1-planar graph G with ∆ ≥ 8, the total chromatic number χ ′′ (G) = ∆ + 1. For any 1-planar graph G with ∆ ≥ 8, the list edge chromatic number χ ′ l (G) = ∆, the list total chromatic number χ ′′ l (G) = ∆+1. For any 1-planar graph G with ∆ ≥ 10, the neighbor sum distinguish number χ ′′ (G) = ∆ + Conjecture For any 1-planar graph G with ∆ ≥ 13, the list linear arboricity la list (G) ≥ ⌈ ∆(G) 2 ⌉.

Conjecture 6 . 2 . 1 .

 621 each edge uv E(G), if the vertex u is colored by φ(u) and the edges incidentto u are colored by c, a 1 , a 2 , • • • , a n , then f (u) = cφ(u)a 1 a 2 • • • a n . Similarly, f (v) = cφ(v)b 1 b 2 • • • b m .Then we call the adjacent vertices u and v can be distinguished by products if f (u) = f (v). The smallest number k such that G admits a total neighbor product distinguishing coloring is called the neighbor product distinguishing total chromatic number, denoted by χ ′′ (G). For any graph G, the neighbor product distinguishing total chromatic number χ ′′ ≤ ∆ + 3.

Case 6 . 2 . 4 .

 624 List linear arboricityA graph G is said to be edge k-choosable if, whenever we give lists A e of k colors to each edge e ∈ E(G), there exists a proper edge coloring of G where each edge is colored with a color from its own list. The list edge chromatic number χ ′ list (G) is the smallest integer k such that G is edge kchoosable. For the list edge chromatic number of a planar graph G, we have the following theorem. Time flies. During my graduation study, I have received a lot of knowledge and friendship from several people. These years of accumulated precipitation is coming out of the campus to support, is a warm power once again set sail. The thesis work is nearing completion, I would like to give to all the teachers and students who give me guidance and meticulous care to extend my most sincere thanks. First of foremost, I would like to thank my supervisor, Prof. Jianliang Wu and Prof. Yannis Manoussakis, For their excellent guidance and patience throughout the course and study of my research. All the progress I have made con not do without the hard word of Prof. Jianliang Wu and Prof. Yannis Manoussakis. Their advices, guidance and insights have been invaluable. I benefit from their profound knowledge and philosophy. They joint trining period patient enthusiasm to guide me to carry out academic research, give positive guidance and encouragement of the confusion in my life. Here, I would like to extend my high respect and heartfelt thanks to my teachers. I would also like to thank Prof. Guizhen Liu. Prof. Liu not only academically, give me a careful guidance, and gave me the kind of care in life. She is a serious working attitude, high work enthusiasm and selfless dedication to everyone who knows her deep impression. I would like to express my sincere gratitude and gratitude to Prof. Liu. In particular, I would like to thank Professor Guanghui Wang for his help in my life and study, and Prof. Wang's keen insight into the frontiers of the discipline is the direction of my continued academic research on the future. I am grateful to Shandong University and Shandong University for pro-Paris South University Doctoral Dissertation viding a good learning atmosphere, rich resources and many opportunities for learning and communication.I also thank all the faculty in Laboratoire de Recherche en Informatique (Université Paris-Saclay, France), for their hospitality and offering me some convenience.I would like to express my appreciation to all teachers in school of mathematic at Shandong University. I wish to thank my family. They have been my most solid backing, thanks to their encouragement and support, so that I continue to progress and successfully complete my studies.

  Finally, I would like to express my sincere thanks to the experts and professors review and participate in the my thesis. Because of your hard work, made this paper a successful conclusion. There are many people who helped me in this heartfelt thanks, thank you care about and help you close to my PhD study. Thank you! Résumé : La théorie des graphes est un domaine de recherche actif depuis 200 ans. Le plus ancien article de théorie des graphes connu a été rédigé par Euler en 1736, pour résoudre le problème dit des ponts de Konigsberg. La coloration de graphe est l'une des branches les plus importantes de la théorie des graphes, depuis l'émergence du fameux problème des 4 couleurs. La coloration de graphe a des applications pratiques dans l'optimisation, l'informatique et la conception de réseau. Dans la présente thèse nous allons étudier le coloriage total, le coloriage par liste, le coloriage total somme-desvoisins-distinguant et l'arboricité linéaire Lsélectionable. Un k-coloriage total dun graphe G est un coloriage de V(G)∪E(G) utilisant (1, 2, ..., k) couleurs tel qu'aucune paire d'éléments adjacents ou incidents ne recoivent la même co-uleur. Le nombre chromatique total χ''(G) est le plus petit entier k tel que G admette un k-coloriage total. Un graphe G est k-selectionable si G est L-coloriable pour toute assignation L de G qui satisfie |L(v) ≥ k| pour tout sommet v∈V(G). Une relation L est appelée une assignation totale d'un graphe G si elle assigne une liste L(x) de couleurs à chaque élément x∈ V(G)∪ E(G). Soit f(v) la somme des couleurs d'un sommet v et des toutes les arrêtes incidentes à v. Un kcoloriage total somme-des-voisins-distinguant de G est un k coloriage total de G tel que pour chaque arrête uv∈E(G), f(u)≠f(v). Une forêt linéaire est un graphe pour lequel chaque composante connexe est une chemin. L'arboricité linéaire la(G) d'un graphe G est le nombre minimum de forêts linéaires dans G, dont l'union est égale à V (G).Abstract :The study of graph theory started two hundred years ago. The earliest known paper was written by Euler (1736) to solve the Konigsberg seven-bridge problem Graph coloring has been one of the most important directions of graph theory since the arose of the well-known Four Color Problem. Graph color-ing has real-life applications in optimization, computer science and network design. Here, we study the total coloring, list coloring, neighbor sum distinguishing total coloring and linear L-choosable arboricity. A k-total-coloring of a graph G is a coloring of V(G)∪E(G) using (1, 2, ..., k) colors such that no two adjacent or incident elements receive the same color The total chromatic number χ′′(G) is the smallest integer k such that G has a k-totalcoloring. A mapping L is said to be an assignment for a graph G assignment for a graph G if it assigns a list L(v) of colors to each vertex v∈V(G).

  2 

  Hence, if the ktotal coloring of G is neighbor sum distinguishing, then it must be adjacent distinguishing. So if Conjecture 1.3.8 can be proved, then Conjecture 1.3.5 will be a corollary. Przyby lo and Woźniak [89] have already proved Conjecture 1.3.8 is true in complete graph, cycles and bipartite graphs. Dong and Wang [41] proved Conjecture 1.3.8 is true for graphs with bounded maximum average degree mad ≤ 2 5 . Li et al. [78] proved Conjecture 1.3.8 holds for K 4minor free graphs G, moreover, if ∆

  Suppose that H is a Paris South University Doctoral Dissertation subgraph of a given plane graph G. For x ∈ V (H) ∪ F (H), let d H (x) denote the degree of x in H. We use N H ℓ (x) to denote the set of ℓ-vertices adjacent to x in H, and d H ℓ (x) = |N H ℓ (x)|. Similarly, we can define d H ℓ + (x) and d H ℓ -(x). A vertex x is small if 2 ≤ d H (x) ≤ 5, otherwise it is big. A 4-face is bad if it is incident with at least one 2-vertex, and is special if it incident with two 2-vertices, the 2-vertex is called special. A 3-face is special if it is incident to a 2-vertex. A ℓ-vertex u, with ℓ ≥ 3, is bad if each of the faces incident to it is either a 3-face, or a bad 4-face. We use d H ℓb (x) to denote the number of bad ℓ-vertices adjacent to x. If there is no confusion in the context, we usually write d

  2.1. If d(v) = d H (v), it is trivial by Lemma 4.2.10. Otherwise d 1
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	(7)
	Corollary 4.2.2. Let G be a graph which can be embedded in a surface Σ of
	Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ ′′ (G) ≤ ∆(G) + 2.

1

  Basic definitions and propertiesA linear forest is a graph in which each component is a path. A mapping L is said to be an edge assignment for a graph G if it assigns a list L(e) of possible colors to every edge e ∈ G. If G has a coloring ϕ(e) such that

ϕ(e) ∈ L(e) for every edge e and the induced subgraph of edges having the same color α is a linear forest for any i ∈ {ϕ(e)|e ∈ E(G), then we say that G is linear L-colorable or ϕ is a linear L-coloring of G. We say that

G is linear k-choosable if it is linear L-colorable

for every list assignment L satisfying |L(e)| ≥ k for all edges e. The list linear arboricity la list (G) of a graph G is the minimum number k for which G is linear k-list colorable. If L(e) = {1, 2, • • • , t} for any e ∈ E(G), then the linear L-coloring of G is called a t-linear coloring. The linear arboricity la(G) of a graph G defined by Harary [54] is the minimum number t for which G has a t-linear coloring. It is obvious that la(G) ≤ la list (G). In 1980, Akiyama et al. [4] conjectured that la(G) = ⌈ ∆(G)+1 2 ⌉ for any simple regular graph G. The conjecture is equivalent to the following conjecture 1.3.10. Conjecture 1.3.10. For any graph G

3 if k = 2.
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. So φ ≤ max{ 14 3 , 21 4 , 29 6 , 5, 55 12 , 19 4 , 9 2 } = 21 4 .

Case (e). k

and d(f i+5 ) ≥ 5, so φ ≤ 3 2 ×2+ 5 4 ×2+ 1 3 ×2 = 37 6 . If min{d(v i+1 ), d(v i+5 )} ≥ 4, then φ ≤ 5 4 × 4 + 3 4 × 2 = 13 2 .

Paris South University Doctoral Dissertation so φ ≤ max{ 3 2 + 5 4 + 1 + 3 4 × 3, 3 2 + 5 4 + 1 × 2 + 3 4 + 1 3 } = 6. Otherwise, φ ≤ 5 4 × 2 + 1 × 2 + 3 4 × 2 = 6. Suppose Suppose only one of f i+1 , f i+2 , f i+3 and f i+4 is 3-face, assume that

At last, φ ≤ max{ 37 6 , 13 2 , 35 6 , 6, 65 12 , 17 3 , 11 2 } = 13 2 .

(f
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Hence we complete the proof of the theorem 2. Wang and Wu [START_REF] Wang | Total colorings of planar graphs without intersecting 5-cycles[END_REF] proved Lemma 2.5.3. Let G be a planar graph without intersecting 5-cycles.

These results are all about planar graph with (∆ ≥ 7) in order to prove their total chromatic number is (∆ + 1). We extend these result and get the following result: Let G be a planar graph without intersecting chordal 5-cycles. If ∆ ≥ 7, then χ ′′ (G) = ∆ + 1.

Paris South University Doctoral Dissertation

Theorem 2.5.1. Let G be a planar graph without intersecting chordal 5cycles, that is, every vertex is incident with at most one chordal cycle of length 5. If ∆ ≥ 7, then χ ′′ (G) = ∆ + 1.

According to [START_REF] Wang | Total coloring of planar graphs without adjacent short cycles[END_REF], the theorem 2.5.1 is true for planar graph with ∆ ≥ 8 and satisfy that every vertex is incident with at most one chordal cycle of length 5. So we assume in the following that ∆ = 8.

Let G = (V, E) be a minimal counterexample to the planar graph G with maximum degree ∆ = 7, such that |V | + |E| is minimal and G has been embedded in the plane. Then every proper subgraph of G is total-8-colorable.

First we give some lemmas for G. 

Figure 2.9
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For each x ∈ V ∪ F , we define the initial charge

In the following, we will reassign a new charge denoted by ch ′ (x) to each x ∈ V ∪ F according to the discharging rules. If we can show that ch ′ (x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious con-

define the discharging rules as follows:

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3-face (v 1 , v 2 , v 3 ), let

Paris South University Doctoral Dissertation

, R4.2 If 5-face f is not incident with any 3 --vertices, then it receives x from each of its incident 4-vertices; and y from each of the other 5 + -vertices indicates u. Let the number of 4-vertices is p (p is an integer and p ≥ 0).

R4.2(a)

If p = 0, then x = 0 and y = 1 5 ; R4.2(b) If p = 1, then x = 1 2 and y = 0 while u is adjacent with the 4-vertex, or y = 1 4 while u is not adjacent with the 4-vertex;

Lemma 2.5.8. Since G contains no intersecting chordal 5-cycles, we have the following results. Suppose G has a subgraph isomorphic to Figure 2.10.

by Lemma 2.5.8. If all the 3-faces are (5, 5 + , 4)-faces, then v is incident with a 4-vertex of 5 + -face, so ch

If at least one of the 3-faces are (5, 5 + , 5 + )-faces, then ch

. By Lemma 2.5.5 (1), v is incident with at most two 3-faces are incident with a 3 --vertex, that is, v sends 3 2 to each of the two 3-faces and at most 5 4 to each other 3-face.

, and f 8 = f 1 . First we give Lemma 2.5.9 for convenience. Lemma 2.5.9. Suppose that d(

Next, we prove d(v) = 7.

If n 2 (v) = 7, then all faces incident with v are 6 + -faces by Lemma 2.5.4-2.5.5, that is,

The possible distributions of 2-vertices adjacent to v are illustrated in Figure 2.12.

Paris South University Doctoral Dissertation

2 ×2 = 0. For Figure 2.12(10), as v is incident at least one 6 + -vertex [START_REF] Wang | Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[END_REF], then ch ′ (v) ≥ 8-3×1- 5 2 -3 2 -2× 1 2 = 0. For Figure 2.12(11), we have

For Figure 2.12(12), we have ch

Suppose v 1 is incident with a 3-cycle f 1 . Then f 3 (v) ≤ 5 and all 3-faces incident with no 3 --vertex except f 1 by Lemma 2.5.5 (5). If f 3 (v) = 5, then

Paris South University Doctoral Dissertation

In the following, we will check that ch

Note that if f is adjacent to a 3-face f ′ , then f is not adjacent to any 4cycle and it follows that all faces incident with f ′ must be 5

where k ≥ 6. We denote by f i the face adjacent to f and incident with v i v i+1 where all the subscripts are taken modulo k. If

) must be a 6 + -face since every 5-cycle of G is not simultaneously adjacent to 3-cycles or 4-cycles, and this can be equivalent to say that f sends 1 3 to f i and 1 6 to f i-1 (or f i+1 , respectively). According to this averaging, every f i receives at

where the subscripts are taken modulo k.

, then v is incident with two 6 + -faces, and it follows from R1 and R2 that ch

3 × 2 > 0 by R1; Otherwise, without loss of generality, assume that f 1 and f 3 are the two 3-faces. We denote a 5-face f by 5 t -f ace Paris South University Doctoral Dissertation if f is a (5,4,4,4,4)-face and adjacent to t 3-faces, where t ≥ 4. If f 2 is a 5 5 -face or f 5 is a 5 4 -face, then the 5 + -face f 12 incident with v 1 v 2 can not be a (4, 4, 4, 4, 4)-face for k ∈ {4, 5} by statement (2). This means that if

that can be equivalent to say that v sends 1 3 to f i , 1 6 to f i-1 and 1 6 to f i+1 . Every charge of 1 6 by v to a 5 + -face incident with v i v i+1 can be looked at as giving 1 6 to f i . According to this averaging, every face receive at most

3 ≥ 0. Hence we complete the proof of Theorem 3.1.1. §3.2 List edge coloring and List total coloring In the section above, we discuss the 4-choosable of a planar graph G, that is, vertex list coloring. In this section, we mainly discuss the list edge coloring and list total coloring of planar graph G. Let G be a planar graph with maximum degree ∆, if every 5-cycles of G is not adjacent to 4-cycles,

, where χ ′ l (G) and χ ′′ l (G) denote the list edge chromatic number and list total chromatic number of G, respectively. First, we introduce three lemmas used in our proofs.

where k is a positive integer. Similarly, one can define critical total k-choosable graphs.
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where k is a positive integer.

Lemma 3.2.1. [START_REF] Hou | List edge and list total colorings of planar graphs without 4-cycles[END_REF] The following hold for any critical edge k-choosable

Lemma 3.2.2. [START_REF] Jennhwa | On the total choosability of planar graphs and of sparse graphs[END_REF] The following hold for any critical total k-choosable

Proof Arguing by contradiction, we assume that G = (V, E, F ) is a counterexample to Theorem 3. Let w(v → f ) be the amount that a vertex v sends to its incident face f . We define the discharging rules as follows.

R1. Each 7 + -face f sends 1 to each incident 2-vertex v, if f is adjacent to a 4-face and v is incident with a 3-face.

R2. Each 2-vertex v receives 1 from its 2-master, moreover, if v is incident with 7 + -face f and 3-face, where f is adjacent to a 4-face, then v sends 1 2 to its neighbor.

R3. Each k-vertex (2 ≤ k ≤ 3) receives 1 from each of its 3-masters.

if d(f ) = 3 and v is incident with three 3-faces; if d(f ) = 3 and v is incident with one 3-faces;

Paris South University Doctoral Dissertation R8. Let v be a 7-vertex, then if f = (3, 7 + , 8 + ) and 3-vertex is incident with one 3 -faces;

In the following, we will check that c ′ (x) ≥ 0 for each x ∈ V ∪ F . By Lemma 3.2.1 and 3.2.2, each 2-vertex is adjacent to two 8-vertices, each 3-vertex is adjacent to three 7 + -vertices and each 4-vertex is adjacent to
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Then f is incident with at most two 2-vertices. If all the two 2-vertices is incident with 3-face and f is adjacent to a 4-face, then there will appear 5-cycle adjacent to 4-cycle, so

receives 1 from its 2-master and receives 1 from its 3-master by R2 and R3 (the 2-master and 3-master of v may be a single vertex). If v is incident with 7 + -face f and 3-face, where f is adjacent to a 4-face, then v sends

Paris South University Doctoral Dissertation in Figure 3.1(1)-(3).

For Figure 3.1 (1), suppose all the four 3-faces incident with v are (2, 8, 8)-

Suppose there are three 3-faces incident with v are (2, 8, 8 

Suppose there is no 3-faces incident with v are (2, 8, 8)-faces. Then d(f 3 ) ≥ 6, d(f 4 ) ≥ 6, d(f 7 ) ≥ 6 and

Suppose f 3 (v) = 3. There are four possibilities in which 3-faces are located. They are shown as configurations in Figure 3.1(4)- (7). For Figure 3.1(4),

and if min{d(f 7 ), d(f 8 )} = 4, then max{d(f 7 ), d(f 8 )} ≥ 6, that is, there are at most three 4-faces, so c
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6, that is, there are at most two 4-faces, so c

There are four possibilities in which 3-faces are located. They are shown as configurations in Figure 3.1( 8)- [START_REF] Bojarshinov | Edge and total coloring of interval graphs[END_REF]. For Fig-

In this case, the initial charge of each element x ∈ V ∪ F of G is defined
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Proof. Suppose that the Claim 3.3 is false for some connected planar graph 

For each x ∈ V ∪ F , we define the initial charge

Let v be a vertex of G, f be a face of G, W (x → y) be the charge transferred from x to y for all x, y ∈ V ∪ F . We define the discharging rules as follows.

In the following, we will check that c In the following, we will reassign a new charge c ′ (x) to each x ∈ V ∪ F according to the discharging rules.
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Let f be a face of G. Suppose d(f R1. Each 3-vertex receives 1 3 from each of its adjacent 7-vertices. R2. Each 3-face receives 1 3 from each of its incident 5 + -vertices. R3 Each 3-face f 0 receives (k-4)l k from each of its adjacent k-faces f for k ≥ 5, where l denotes the number of edges shared by f 0 with f . Let f be a face of G. Suppose d(f ) = 3. Then c(f ) = -1. Note that each 5 --vertex is adjacent to 5 + -vertex, 4 --vertex is adjacent to 6 + -vertex, since 3-face is adjacent to at most one 3-face, if 3-face is adjacent to a 3face, then 3-face is adjacent to two 6 + -faces, otherwise, 3-face is adjacent to three 5-faces, so c

In all cases, we have c ′ (x) ≥ 0 for each x ∈ V ∪F , and 0

x∈V ∪F c(x) = -8, a contradiction. This completes the proof of Theorem 3.2.2.
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Obviously, if G contains two adjacent vertices of maximum degree, then

we have the following corollary.

Corollary 4.2.3. Let G be a graph which can be embedded in a surface Σ of

Proof Let k = max{∆(G) + 2, 16}. For simplicity, we use "total k-nsd-coloring" to denote "total k neighbor sum distinguishing coloring".

Suppose that φ is a total k-nsd-coloring of a graph G using the color set 

Paris South University Doctoral Dissertation Lemma 4.2.2. [77]

There is no edge uv ∈ E(G) such that d(v) ≤ 7 and

Lemma 4.2.4. [START_REF] Li | Neighbor sum distinguishing total colorings of planar graphs[END_REF] Let v be a 9-vertex of G.

(

(

Lemma 4.2.5. [START_REF] Li | Neighbor sum distinguishing total colorings of planar graphs[END_REF] Let v be a 10-vertex of G.

(

(

(

We delete all the colors of v i and vv i for 1 ≤ i ≤ t, and denote this coloring by φ ′ . Then v has at most t conflicting neighbors. Since ∆
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does not conflict with its neighbors. Now we color v t v, • • • , v 1 v one-by-one with colors in C ′ as follows. Since d(v i ) ≤ 3 for 3 ≤ i ≤ t, we color vv i with

Thus we get a total k-nsd-coloring of G, which is a contradiction. Lemma 4.2.7. [START_REF] Cheng | Neighbor sum distinguishing total colorings of planar graphs with maximum degree ∆[END_REF] Let v be an 11-vertex of G.

Lemma 4.2.10. [START_REF] Cheng | Neighbor sum distinguishing total colorings of planar graphs with maximum degree ∆[END_REF] Let v be an ℓ(≥ 13)-vertex of G with d 2 (v) ≥ 1. Then

We shall complete the proof of Theorem 4.2.1 by using the "Discharging ethod. Let G = (V, E, F ) be a graph which is embedded in a surface of nonnegative Euler characteristic. Let H be the graph obtained by removing all 1-vertices of G. Then H is a connected planar graph with δ(H) ≥ 2. By Paris South University Doctoral Dissertation Lemma 4.2.1-4.2.9, we display the relation between d(v) and d H (v) in Table 4 

We list other properties of H which are collected in the following Claim 4.3.

Claim 4.3. Let v be a vertex of H. Then the followings hold.

Moreover, we have the following:

Proof. (1) It is trivial by Table 4.1 and Lemma 4.2.2.

(2) By Table 4.1, we only need to prove the cases d(v) = 8, 9, 14, 15.

(3) By Table 4.1, we only prove the cases d(v) = 9, 10, 11 and d(v) ≥ 13.

If

(4) By Table 4.1, we only prove the cases d(v) ≥ 10. If d(v) = 10, then

(5) By Table 4.1, we only prove the cases

(6) By Table 4.1, we only prove the cases
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Suppose that u is not a special vertex, then τ

(

and u be a 2-vertex adjacent to v, then

In the following, we will check that w ′ (x) ≥ 0 for each x ∈ V (H) ∪ F (H)

, then f is incident with at most two small vertices by Observation 4.3.1. By R2, f sends at most 2 to all adjacent 5 --vertices.

of v in the clockwise order. We use f i be the face incident with vv i and vv i+1 as boundary edges, for 1 ≤ i ≤ ℓ, where all the subscripts here are taken modulo ℓ. We say that some vertices are consecutive if they have consecutive indices on taken modulo ℓ, i.e. v 1 and v 2 are consecutive vertices, • • • , v ℓ and v 1 are consecutive vertices.
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If 2 ≤ ℓ ≤ 5, then v is incident with ℓ 8 + -vertices by Claim 4.3(1), so Then Then

Otherwise, τ (v → v i ) = 0 by R1 and R2. Hence, we have the following:

(

If there are three consecutive vertices v i , v i+1 , v i+2 ∈ N H 3,4,5 (v), then f i and f i+1 are 4 + -faces, hence v i and v i+2 can not be bad 3-vertices. So τ
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Otherwise, there must be four vertex-disjoint subsets

Otherwise, there must be three vertex-disjoint subset-

(

Note that if u is a bad vertex adjacent to v, then the faces incident to the edge uv are 3-faces, so

Paris South University Doctoral Dissertation R3: Each 3 + -face receives 1 5 from each adjacent 5 + -face.

First, we consider the final charge of any face f . If d(f ) = 3, note that if a 5-vertex x is incident with four 3-faces, then any 5 + -vertex adjacent to

x must be incident with two 5 + -faces. Then ch

, then v has exactly two 3-masters and it follows by R1 that ch ′ (v) ≥ ch(v) + 1 2 × 2 = 0. According to the rules, every 4-vertex retain its initial charge. So ch

can be the 3-master of a 3-vertex, and it follows from R1 and R2 that ch

Hence, this completes the proof of Lemma 5.2.1. Given a t-linear coloring ϕ and v ∈ V (G), we denote by C i ϕ (v) the set of colors appear i times at v, where i = 0, 1, 2. Then |C 0 

Let G ′ be the subgraph of G obtained by deleting the edges of C. Then G ′ has a linear L-coloring φ. In the following, we will construct a linear L-coloring σ.

{α} and at the same time, if there exists a monochromatic path of color α between v 2n-1 and v 0 passing u, then α ∈ C 2 φ (u), and we need to recolor v 2n-1 u such that σ

We define the assignment L ′ of other edges of C such that (1) 3-cycle is adjacent with two 3-cycles;

(2) chordal 7-cycles are not adjacent;

(3) chordal 8-cycles are not adjacent.

For any planar graph G with ∆ ≥ 7, we can discuss the following conditions if it is satisfied χ ′′ (G) = ∆ + 1.

(1) two 3-cycles are not adjacent;

(2) two chordal 5-cycles are not adjacent;

(3) chordal 6-cycles are not intersecting or not adjacent;

(4) chordal 7-cycles are not intersecting or not adjacent.

For any planar graph G with ∆ ≥ 6, we can discuss the following conditions if it is satisfied χ ′′ (G) = ∆ + 1.

(1) contains no 5-cycle;

(2) two 3-cycles are not adjacent;

(3) two 4-cycles are not adjacent;.

Case 6.2.2. List coloring

For list vertex coloring, study of 4-choosable proposes the mathematical proof of Four color theorem. We can study the following conditions if it is satisfied 4-choosable.

(1) contains no 4-cycle;

(2) contains no adjacent 5-cycles;

(3) 3-cycle is not adjacent to 6-cycle.

For list edge coloring and list total coloring, we can prove at the same time. We can also use discharge method to prove. For any planar graph G, we can discuss the following conditions if it is satisfied χ ′′ (G) = ∆ + 1.

(1) ∆(G) ≥ 8 and G contains no chordal 5-cycles;

(2) ∆(G) ≥ 8 and 6-cycles of G contains at most one chord;

(3) ∆(G) ≥ 8 and 7-cycles of G contains at most two chords;

Paris South University Doctoral Dissertation Theorem 6.2.1. Let G be a planar graph. Then χ ′ list ≤ ∆(G) + 1 if one of the following conditions holds.

(1) ∆(G) ≥ 7 and G contains no chordal 7-cycles;

(2) ∆(G) ≥ 7 and G contains no chordal 6-cycles;

(3) ∆(G) ≥ 6 and G contains no adjacent triangles;

(4) ∆(G) ≥ 6 and any 3-cycles is not adjacent to 5-cycles;

(5) ∆(G) ≥ 6 and G contains no chordal 5-cycles;