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ABSTRACT

The study of graph theory started two hundred years ago. The earliest known

paper was written by Euler(1736)to solve the Konigsberg seven-bridge prob-

lem�Graph coloring has been one of the most important directions of graph

theory since the arose of the well-known Four Color Problem. Graph color-

ing has real-life applications in optimization, computer science and network

design. Here, we study the total coloring, list coloring, neighbor sum distin-

guishing total coloring and linear L-choosable arboricity.

All graphs in this thesis are simple, undirected and finite graphs. Let

G = (V,E) be a graph. For a vertex v ∈ V (G), let NG(v) be the set of

neighbors of v in G and let dG(v) = |NG(v)| be the degree of v in G. The

maximum degree and minimum degree of G is denoted by ∆(G) and δ(G),

respectively. For convenience, throughout this thesis, we set ∆ = ∆(G) and

δ = δ(G).

A k-total-coloring of a graph G is a coloring of V (G) ∪ E(G) using

(1, 2, . . . , k) colors such that no two adjacent or incident elements receive

the same color�The total chromatic number χ′′(G) is the smallest integer

k such that G has a k-total-coloring. As early as 1960s, Vizing and Behzad

independently conjectured that for any graph G, ∆ ≤ χ′′(G) ≤ ∆ + 2. This

iii



Paris South University Doctoral Dissertation

conjecture was known as Total Coloring Conjecture. This conjecture has

been confirmed for general graphs with ∆ ≤ 5. For planar graphs, the only

open case is ∆ = 6. It is interesting to notice that many planar graphs are

proved to be χ′′(G) = ∆ + 1, i.e., the exact result has been obtained�Up

to date, for each planar graph with ∆ ≥ 9, χ′′(G) = ∆ + 1. However, for

planar graphs with 4 ≤ ∆ ≤ 8, no one has found counterexamples that

are not (∆ + 1)-total-colorable. So, Wang Yingqian et al. conjectured that

planar graphs with ∆ ≥ 4 are (∆ + 1)-totally-colorable. In chapter 2, we

study total coloring of planar graphs and obtain three results: (1) Let G be

a planar graph with maximum degree ∆ ≥ 8. If every two chordal 6-cycles

are not adjacent in G or any 6-cycle of G contains at most one chord, then

χ′′(G) = ∆ + 1. (2) Let G be a planar graph G with maximum degree

∆ ≥ 8. If any 7-cycle of G contains at most two chords, then χ′′(G) = ∆+1.

(3) Let G be a planar graph without intersecting chordal 5-cycles, that is,

every vertex is incident with at most one chordal 5-cycle. If ∆ ≥ 7, then

χ′′(G) = ∆ + 1.

A mapping L is said to be an assignment for a graph G if it assigns a

list L(v) of colors to each vertex v ∈ V (G). If it is possible to color G so that

every vertex gets a color from its list and no two adjacent vertices receive the

same color, then we say that G is L-colorable. A graph G is k-choosable if G

is an L-colorable for any assignment L for G satisfying |L(v)| ≥ k for every

vertex v ∈ V (G). We prove that if every 5-cycle of G is not simultaneously

adjacent to 3-cycles and 4-cycles, then G is 4-choosable. A mapping L is

said to be a total assignment for a graph G if it assigns a list L(x) of colors

to each element x ∈ V (G) ∪ E(G). Given a total assignment L of G, an L-

total coloring of G is a proper total coloring such that each element receives

a color from its own list. A graph G is k-total-choosable if G has a proper

iv



Paris South University Doctoral Dissertation

L-total-coloring for every preassigned total assignment L with |L(x)| ≥ k for

every x ∈ V ∪ E. The list total chromatic number or total choosability of

G, denoted χ′′
l (G), is the smallest integer k such that G is k-total-choosable.

The list edge chromatic number (or edge choosability) χ′
l(G) are defined

similarly in terms of coloring only edges. In chapter 3, if every 5-cycles of

G is not adjacent to 4-cycles, we prove that χ′
l(G) = ∆, χ′′

l (G) = ∆ + 1 if

∆(G) ≥ 8, and χ′
l(G) ≤ ∆ + 1, χ′′

l (G) ≤ ∆ + 2 if ∆(G) ≥ 6.

Recently, magic and antimagic labellings and the irregularity strength

and other colorings and labellings related to “sum” of the colors have received

much attention. Among them there are the famous 1−2−3 Conjecture and

1 − 2 Conjecture. In chapter 4, we will give the definition of neighbor sum

distinguishing total coloring. We also list the research progress and the corre-

sponding conjectures of neighbor sum distinguishing total coloring. Let f(v)

denote the sum of the colors of a vertex v and the colors of all incident edges of

v. A total k-neighbor sum distinguishing-coloring of G is a total k-coloring of

G such that for each edge uv ∈ E(G), f(u) 6= f(v). The smallest number k is

called the neighbor sum distinguishing total chromatic number, denoted by

χ′′∑(G). Pilśniak and Woźniak conjectured that for any graph G with maxi-

mum degree ∆(G) holds that χ′′∑(G) ≤ ∆(G) + 3. This conjecture has been

proved for complete graphs, cycles, bipartite graphs, subcubic graphs, sparse

graphs, series parallel graphs and planar graphs with ∆ ≥ 14. We prove for

a graph G with maximum degree ∆(G) which can be embedded in a surface

Σ of Euler characteristic χ(Σ) ≥ 0, then χ
′′

∑(G) ≤ max{∆(G) + 2, 16}.

Lastly, we study the linear L-choosable arboricity of graph. A linear

forest is a graph in which each component is a path. The linear arboricity

la(G) of a graph G as defined by Harary is the minimum number of linear

forests in G, whose union is the set of all edges ofG. Akiyama et al. posed the
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following conjecture: For any regular graph G, la(G) ≤ ⌈∆(G)+1
2

⌉. Clearly,

la(G) ≥ ⌈∆(G)
2

⌉. So for every regular graph G, we have la(G) ≥ ⌈∆(G)+1
2

⌉,

Hence, the conjecture above is equivalent to the linear arboricity conjecture:

For any simple graph G, ⌈∆(G)
2

⌉ ≤ la(G) ≤ ⌈∆(G)+1
2

⌉. A list assignment L

to the edges of G is the assignment of a set L(e) ⊆ N of colors to every

edge e of G, where N is the set of positive integers. If G has a coloring

ϕ(e) such that ϕ(e) ∈ L(e) for every edge e and (V (G), ϕ−1(i)) is a linear

forest for any i ∈ Cϕ, where Cϕ = {ϕ(e)|e ∈ E(G)}, then we say that G is

linear L-colorable and ϕ is a linear L-coloring of G. We say that G is linear

k-choosable if it is linear L-colorable for every list assignment L satisfying

|L(e)| ≥ k for all edges e. The list linear arboricity lalist(G) of a graph G is

the minimum number k for which G is linear k-list colorable. It is obvious

that la(G) ≤ lalist(G). In chapter 5, we prove that if G is a planar graph

such that every 7-cycle of G contains at most two chords, then G is linear
⌈

∆+1
2

⌉

-choosable if ∆(G) ≥ 6, and G is linear
⌈

∆
2

⌉

-choosable if ∆(G) ≥ 11.

Chapter 6 is the conclusion of the thesis. We give some graphs that

can be studied in the future and we show some graph coloring problems for

future works.

Keywords: Total coloring; List coloring; Neighbor sum distinguishing

total coloring, linear L-choosable arboricity.
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Résumé

La théorie des graphes est un domaine de recherche actif depuis 200

ans. Le plus ancien article de théorie des graphes connu a été rédigé par

Euler en 1736, pour résoudre le problème dit des ponts de Konigsberg.

La coloration de graphe est l’une des branches les plus importantes de la

théorie des graphes, depuis l’émergence du fameux problème des 4 couleurs.

La coloration de graphe a des applications pratiques dans l’optimisation,

l’informatique et la conception de réseau. Dans la présente thèse nous allons

étudier le coloriage total, le coloriage par liste, le coloriage total somme-des-

voisins-distinguant et l’arboricité linéaire L-sélectionable.

Tous les graphes abordés dans la thèse sont simples, non-orientés et

finis. Soit G = (V,E) un graphe. Pour une sommet v ∈ V (G), soit NG(v)

l’ensemble des voisins de v dans G and soit dG(v) = |NG(v)| le degré de v dans

G. Le degré maximum et le degré minimum de G sont notés respectivement

∆(G) et δ(G). On simplifiera par la suite ∆ = ∆(G) et δ = δ(G).

Un k-coloriage total d’un graphe G est un coloriage de V (G) ∪ E(G)

utilisant (1, 2, . . . , k) couleurs tel qu’aucune paire d’éléments adjacents ou

incidents ne recoivent la même couleur. Le nombre chromatique total χ′′(G)

est le plus petit entier k tel que G admette un k-coloriage total. Dès les
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années 1960, Vizing et Behzad ont conjecturé indépendamment que pour

tout graphe G, ∆ ≤ χ′′(G) ≤ ∆ + 2. Cette conjecture est connue ous le nom

de Total Coloring Conjecture. Elle a été confirmée pour les graphes quelcon-

ques tels que ∆ ≤ 5. Pour les graphes planaires, le seul cas encore ouvert est

quand ∆ = 6. Il est intéressant de remarquer que pour de nombreux graphes

planaires, χ′′(G) = ∆ + 1, c.-à-d que la relation exacte est connue. Par ex-

emple, pour tout graphe ∆ ≥ 9, χ′′(G) = ∆ + 1. Pour les graphes planaires

tels que 4 ≤ ∆ ≤ 8, personne n’a réussi à trouver de graphe qui ne soient

pas (∆ + 1)-totally-colorable. Wang Yingqian et al. ont donc conjecturé que

les graphes planaires avec ∆ ≥ 4 sont donc (∆ + 1)-totalement-coloriable.

Dans le chapitre 2, nous étudions la coloration totale de graphe planaires et

obtenons 3 résultats : (1) Soit G un graphe planaire avec pour degré maxi-

mum ∆ ≥ 8. Si toutes les paires de 6-cycles cordaux ne sont pas adjacentes

dans G, alors χ′′(G) = ∆ + 1. (2) Soit G un graphe planaire avec pour degré

maximum ∆ ≥ 8. Si tout 7-cycle de G contient au plus deux cordes, alors

χ′′(G) = ∆ + 1. (3) Soit G un graphe planaire sans 5-cycles cordaux qui

s’intersectent, c’est à dire tel que tout sommet ne soit incident qu’à au plus

un seul 5-cycle cordal. Si ∆ ≥ 7, alors χ′′(G) = ∆ + 1.

Une relation L est appelé assignation pour un graphe G s’il met en

relation chaque sommet v ∈ V (G) à une liste de couleur. S’il est possible de

colorier G tel que la couleur de chaque sommet soit présente dans la liste qu’il

lui a été assignée, et qu’aucune paire de sommets adjacents n’aient la même

couleur, alors on dit que G est L-coloriable. Un graphe G est k-selectionable

si G est L-coloriable pour toute assignation L de G qui satisfie |L(v) ≥ k|

pour tout sommet v ∈ V (G). Nous dêmontrons que si chaque 5-cycle de G

n’est pas simultanément adjacent à des 3-cycles et des 4-cycles, alors G est 4-

sélectionable. Une relation L est appelée une assignation totale d’un graphe

viii



Paris South University Doctoral Dissertation

G si elle assigne une liste L(x) de couleurs à chaque élément x ∈ V (G)∪E(G).

Étant donné une assignation totale L pour G, une coloration L-totale de

G est une coloration totale propre tel que la couleur de chaque élément

soit présente dans la liste qui lui a été assignée. Un graphe G est k-total-

sélectionable si G a une coloration propre L-totale pour toute assignation

totale G telle que |L(x)| ≥ k pour tout x ∈ V ∪E. La selectionabilité totale

de G, ou nombre chromatique total de liste de G, noté χ′′
l (G), est le plus

petit nombre entier k tel que G soit k-totalement sélectionable. Le nombre

arête-chromatique χ′(G) et le nombre arête-chromatique de liste (ou arête-

sélectionabilité) χ′
l(G) sont défini de manière similaire en ne coloriant que

les arêtes. Dans le chapitre 3, nous prouvons que si aucun des 5-cycles de G

n’est adjacent à un 4-cycles, alors χ′
l(G) = ∆ et χ′′

l (G) = ∆ + 1 si ∆(G) ≥ 8,

et χ′
l(G) ≤ ∆ + 1 et χ′′

l (G) ≤ ∆ + 2 si ∆(G) ≥ 6.

Récemment, les colorations avec étiquetage magique et antimagique,

avec poids non uniforme, etc, et les colorations liés à la “somme” des couleurs

ont recu beaucoup d’attention. Parmi ces recherches ont trouve la Conjecture

1 − 2 − 3 et Conjecture 1 − 2 . Dans le chapitre 4, nous allons fournir

une définition du coloriage total somme-des-voisins-distinguant, et passer en

revue les progrès et conjecture concernant ce type de coloriage. Soit f(v) la

somme des couleurs d’un sommet v et des toutes les arrêtes incidentes à v.

Un k-coloriage total somme-des-voisins-distinguant de G est un k coloriage

total de G tel que pour chaque arrête uv ∈ E(G), f(u) 6= f(v). Le plus

petit k tel qu’on ai un tel coloriage sur G est appelé le nombre chromatique

total somme-des-voisins-distinguant, noté χ′′∑(G). Pilśniak et Woźniak ont

conjecturé que pour tout grapheG avec degrémaximum ∆(G), on a χ′′∑(G) ≤

∆(G) + 3. Cette conjecture a été prouvée pour les graphes complets, , les

graphes cycles, les graphes bipartis, les graphes subcubiques, les graphes

ix



Paris South University Doctoral Dissertation

creux (sparse graphs), les graphes séries parallèles et les graphes planaires

avec ∆ ≥ 13. Nous avons démontré que si un graphe G avec degré maximum

∆(G) peut être embedded dans une surface Σ de caractéristique eulérienne

χ(Σ) ≥ 0, alors χ
′′

∑(G) ≤ max{∆(G) + 2, 16}.

Pour finir, nous étudions l’arborescence L-sélectable linéaire d’un graphe.

Une forêt linéaire est un graphe pour lequel chaque composante connexe est

une chemin. L’arboricité linéaire la(G) d’un graphe G tel que définie par

Harary est le nombre minimum de forêts linéaires dans G, dont l’union est

égale à V (G). Akiyama et al. ont proposé la conjecture suivante : Pour tout

graphe régulier G, la(G) ≤ ⌈∆(G)+1
2

⌉. Clairement, la(G) ≥ ⌈∆(G)
2

⌉. Donc

pour tout graphe régulier G, on a que la(G) ≥ ⌈∆(G)+1
2

⌉. Ainsi, la conjec-

ture précédente est équivalente à la conjecture de linéarité arborescente, qui

s’énonce ainsi : Pour tout graphe simple G, ⌈∆(G)
2

⌉ ≤ la(G) ≤ ⌈∆(G)+1
2

⌉. Une

assignation par liste L pour les arrêtes de G est l’assignation d’un ensemble

L(e) ⊆ N de couleurs à chaque arête e de G. Si G admet une coloration

ϕ(e) tel que ϕ(e) ∈ L(e) pour toute arête e et (V (G), ϕ−1(i)) est une forêt

linéaire pour tout i ∈ Cϕ, où Cϕ = {ϕ(e)|e ∈ E(G)}, alors on dit que G

est linéairement L-colorable et ϕ est une L-coloration linéaire de G. On dit

que G est linéairement k-sélectionable si il est linéairement L-colorable poru

toute assignation par liste L satisfiant |L(e)| ≥ k pour toutes les arêtes e

de G. L’arborescence linéaire de liste lalist(G) d’un graphe G est le nom-

bre minimum k tel que G soit linéairement k-liste colorable. Il est évident

que la(G) ≤ lalist(G). Dans le chapitre 5, nous prouvons que si G est une

graphe planaire tel que tout 7-cycle de G contienne au plus deux cordes, alors

G est linéairement
⌈

∆+1
2

⌉

-sélectionable si ∆(G) ≥ 6, et G est linéairement
⌈

∆
2

⌉

-sélectionable si ∆(G) ≥ 11.

Le chapitre 6 est la conclusion de cette thèse. Nous fournissons quelques
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problèmes de coloration de graphe pour des travaux futurs.

Mots clefs: Coloration totale; Coloration par liste; Coloriage total

somme-des-voisins-distinguant; Arboricité linéaire L-déterminable.
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Symbol Description

G Graph

Kn Complete graph with n vertices

Km,n Complete bipartite graph with partitions of size |V1| = m and |V2| = n

Pn Path with n vertices

Cn Cycle with n vertices

V (G) The vertex set of graph G

E(G) The edge set of graph G

F (G) The face set of graph G

NG(v) The neighbor vertices of v in G

dG(v) Degree of vertex v in G

dG(f) Degree of face f in G

δ(G) Minimum degree of G

∆(G) Maximum degree of G

nd The number of vertices which have degree d

nd(v) The number of vertices which have degree d and adjacent to v

nd(f) The number of vertices which have degree d and incident with f

fd(v) The number of faces which have degree d and incident with v

|X| The number of X

⌊x⌋ Largest integer not larger than x

⌈x⌉ Least integer not less than x

g(G) The girth of G

mad(G) Maximum average degree of G

µ(G) Multiplicity of G
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χ(G) Vertex chromatic number of G

χ′(G) Edge chromatic number of G

χ′′(G) Total chromatic number of G

χl(G) List vertex chromatic number of G

χ′
l(G) List edge chromatic number of G

χ′′
l (G) List total chromatic number of G

χ′′
a(G) Adjacent vertex distinguishing total chromatic number of G

χ′′∑(G) Neighbor sum distinguish total chromatic number of G

la(G) Linear arboricity of G

lalist(G) List linear arboricity of G
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Chapter 1 Introduction

Graph is a powerful tool to establish mathematical model. Graph theory

is a branch of the research object of graph in mathematics. Four color prob-

lem, Chinese postman problem, Hamilton problem are the classic problems

in graph theory. Graph theory is penetrated into other natural science and

social science in various aspects, including computer science, physics, chem-

istry, biology, genetics, psychology, economics, management science and so

on. At the same time, the graph theory itself has made great progress. It is

closely connected with other mathematical disciplines. In many areas graph

theory formed a cross discipline which plays a role in promoting each other.

The study of graph theory started over two hundreds years ago. The

earliest known paper is due to Euler (1736) about the seven bridges of

Königsberg. Frederick Guthrie(1833-1886) proposed four color map prob-

lem: A planar map is a set of pairwise disjoint subsets of the plane, called

regions. A simple map is one whose regions are connected open sets. Two

regions of a map are adjacent if their respective closures have a common

point that is not a corner of the map. A point is a corner of a map if and

only if it belongs to the closures of at least three regions. Then we get the

theorem: The regions of any simple planar map can be colored with only

four colors, in such a way that any two adjacent regions have different colors.

The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang

Haken. It was the first major theorem to be proved using a computer. Appel

and Haken’s approach started by showing that there is a particular set of

1,936 maps, each of which cannot be part of a smallest-sized counterexample

to the four color theorem. (If they did appear, you could make a smaller

counter-example.) Appel and Haken used a special-purpose computer pro-
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gram to confirm that each of these maps had this property. Additionally,

any map that could potentially be a counterexample must have a portion

that looks like one of these 1,936 maps. Showing this required hundreds of

pages of hand analysis. Appel and Haken concluded that no smallest coun-

terexamples exist because any must contain, yet do not contain, one of these

1,936 maps. This contradiction means there are no counterexamples at all

and that the theorem is therefore true. Initially, their proof was not accepted

by all mathematicians because the computer-assisted proof was infeasible for

a human to check by hand. Since then the proof has gained wider accep-

tance, although doubts remain. Since then more and more scholars began to

pay attention to the coloring problems, graph coloring theory has developed

rapidly and become a classic content of graph theory. The four color prob-

lem is essentially a graph coloring problem, which indicates the direction of

graph coloring theory. The graph coloring theory is an important branch of

graph theory. Moreover, it has important applications in the field of opti-

mization, computer science, network design, including the schedule problem,

storage problem, task arrangement and so on. At the same time, the data

transmission in the network, the problem of Hessians matrix calculation, can

be directly or indirectly into graph coloring problems.

Since 1960s, graph theory has developed very fast and numerous results

on graph theory sprung forth. There are many nice and celebrated problems

in graph theory. As a subfield in discrete mathematics, graph theory has

attracted much attention from all sides. In this thesis, we study the total

coloring, list coloring, neighbor sum distinguish total coloring and list linear

coloring.

In this chapter, we give a short but relatively complete introduction. It

is divided into four sections. Some basic definition and notations are given
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in Section 1.1. We describe some categories of graph in Section 1.2. We

introduce some progress of above four graph coloring in Section 1.3.

§1.1 Basic Definitions and Notations

A graph G is an ordered tuple (V (G), E(G)) and an incidence function

ψG that associates with each edge of G an unordered pair of (not necessarily

distinct) vertices ofG, where V (G) is a nonempty set, E(G) is a set of disjoint

from V (G). If e is an edge, u and v are vertices such that ψ(e) = uv, then

e is said to join u and v, and the vertices u and v are called the ends of e.

A loop is an edge with identical ends. Two edges (which are not loops) are

said to be parallel if they have the same pair of ends. A graph is simple if it

has neither loops nor parallel edges. If the vertex set and edge set of a graph

G are finite set, then it is called a finite graph. If the vertex set and edge set

of a graph G are empty set, then it is called an empty graph.

All graphs considered in this thesis are simple, finite and undirected. If

S is a set, we shall denote by |S| the cardinality of S. For a vertex v ∈ V , let

NG(v) denote the set of vertices adjacent to v and let dG(v) = |N(v)| denote

the degree of v. Set δ(G) = min{dG(v) : v ∈ V (G)}, the minimum degree

of G, and ∆(G) = max{dG(v) : v ∈ V (G)}, the maximum degree of G. A

k-vertex, a k−-vertex or a k+-vertex is a vertex of degree k, at most k or at

least k, respectively. If there is no confusion, we use V , E, d(v), δ, ∆, N(v)

instead of V (G), E(G), dG(v), δ(G), ∆(G), NG(v), respectively.

A graph is connected when there is a path between every pair of vertices.

A subgraph H = (V (H), E(H)) of a graph G is a graph with V (H) ⊆ V (G),

E(H) ⊆ E(G). We write H ⊆ G is a subgraph of G. Given a nonempty

subset V ′ of V (G), the subgraph with vertex set V ′ and edge set {uv ∈

E(G)|u, v ∈ V ′} is called the subgraph of G induced by V ′, denoted G[V ′].
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We say that G[V ′] is an induced subgraph of G. A spanning subgraph of G is

a subgraph H with V (H) = V (G).

§1.2 Some Special graphs

A walk in G is a finite non-null sequence W := v0e1v1e2v2 · · · ekvk, whose

terms are alternately vertices and edges of G(not necessarily distinct), such

that the ends of ei(1 ≤ i ≤ k) are vi−1 and vi. We say that v0 and vk are

connected by W . If the edge e1, e2, · · · , ek of a walk W are distinct, W is

called a trail. In addition, if the vertices v1, v2, · · · , vk are distinct, W is

called a path. If v0 = vk(k ≥ 2) and v1, v2, · · · , vk−1 are distinct, then W

is called a cycle. The length of a path or a cycle is the number of its edges.

A path or a cycle of length k is called a k-path or k-cycle, respectively; the

path or cycle is odd or even according to the parity of its length. The girth

of a graph G is the length of a shortest cycle contained in the graph, denoted

by g(G). Let C = (v1, v2, ..., vk)(k ≥ 4) be a cycle. If there is an edge vivj

with j 6≡ i± 1 (mod k), then the edge vivj is called to be a chord of C. We

say that two cycles are adjacent (or intersecting) if they share at least one

edge (or one vertex, respectively).

A tree is an undirected graph in which any two vertices are connected by

exactly one path; that is to say, a tree has no cycles. A forest is an undirected

graph, all of whose connected components are trees; in other words, the graph

consists of a disjoint union of trees. A linear forest is a graph in which each

component is a path.

A graph in which each pair of distinct vertices is joined by an edge is

called a completegraph. If a complete graph is of order n, we denote it by

Kn.

A graph is bipartite if there exists a partition (X, Y ) of V (G) such that
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each edge of G has one end in X and one end in Y , such a partition (X, Y )

is called a bipartition of graph G. Equivalently, a graph is bipartite if it does

not contain any odd-cycle. A complete bipartite graph is a bipartite graph

with bipartition (X, Y ) in which each vertex of X is joined to each vertex

of Y . Let Km,n denote the complete bipartite graph such that |X| = m and

|Y | = n.

Surfaces in this paper are compact, connected 2-dimensional manifolds

without boundary. All embedded graphs considered in this paper are 2-cell-

embeddings.

The Euler characteristic is a topological invariant, a number that de-

scribes a topological space’s shape. It is commonly denoted by χ. The

Euler characteristic χ was classically defined for the surfaces of polyhedra,

according to the formula χ = |V (G)| − |E(G)|+ |F (G)|, where |V (G)| is the

number of vertices, |E(G)| is the number of edges, |F (G)| is the number of

faces. If G be a graph which can be embedded in a surface of nonnegative

Euler characteristic, then |V (G)| − |E(G)| + |F (G)| ≥ 0.

A planar graph is a graph which can be embedded in a plane in such

a way that no two edges intersect geometrically except at a vertex to which

they are both incident. It can be drawn on the plan such that its edges

intersect only at their ends. Such a drawing is called a planar embedding of

the graph. Give a planar embedding of a planar graph, it divided the plan

into a set of connected regions, including an outer unbounded connected

region. A finite graph is planar if and only if it does not contain a subgraph

that is a subdivision of K5 or K3,3. For a face f of G, the degree d(f) is

the number of edges incident with it, where each cut-edge is counted twice.

A k-face, a k−-face or a k+-face is a face of degree k, at most k or at least

k, respectively. We use (v1, v2, · · · , vd) to denote a face (or a cycle) whose
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boundary vertices are v1, v2, · · · , vd in the clockwise order. For convenience,

we denote by nd(v) the number of d-vertices adjacent to the vertex v, nd(f)

the number of d-vertices incident with the face f , and fd(v) the number of

d-faces incident with v.

Euler’s formula states that if a finite, connected, planar graph is drawn

in the plane without any edge intersections), then

Theorem 1.2.1. (Euler’s formula)

|V | − |E| + |F | = 2

The “discharging method” is used to prove that every graph in a certain

class contains some subgraph from a specified list. The presence of the desired

subgraph is then often used to prove a coloring result. Most commonly,

discharging is applied to planar graphs. Initially, a charge is assigned to

each face and each vertex of V (G) ∪ F (G). The charges are assigned so

that they sum to a small positive number. However, each discharging rule

maintains the sum of the charges. During the discharging the charge at

each face or vertex may be redistributed to nearby faces and vertices, as

required by a set of discharging rules. The rules are designed so that after

the discharging phase each face or vertex with positive charge lies in one of

the desired subgraphs. Since the sum of the charges is positive, some face or

vertex must have a positive charge. Many discharging arguments use one of

a few standard initial charge functions (these are listed below). Successful

application of the discharging method requires creative design of discharging

rules.

In all figures of the thesis, vertices marked • have no edges of G incident

with them other than those shown and vertices marked ◦ are 3+-vertices.

The terminology and notation used but undefined in this paper can be

found in [14].
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§1.3 Some coloring problems of graphs

1. Vertex coloring

A k-vertex-coloring of a graph G is a mapping c: V (G) → {1, 2, · · · , k},

if no two adjacent vertices are assigned a same color. The minimum k for

which a graph G is k-vertex-colorable is called its chromatic number, denoted

by χ := χ(G). Obviously, thinking about the vertex coloring we just need to

consider when G is a simple graph. Vertex coloring of infinite graphs with

a finite number of colors, can always be reduced to finite instances. If the

chromatic number of a simple graph is at most 2, whether the simple graph a

bipartite graph is in polynomial time. When k ≥ 3, Karp [71] proved whether

a simple graph is k-colorable is NP-hard. Brooks observed that every graph

G may be colored by ∆(G) + 1 colors, where ∆(G) is the maximum degree

of G, and he characterized the graphs for which ∆(G) colors are not enough.

Theorem 1.3.1. (Brooks Theorem ) [23]

χ(G) ≤ ∆(G) + 1 holds for every graph G. Moreover, χ(G) = ∆(G) + 1

if and only if either ∆(G) 6= 2 and G has a complete (∆(G) + 1)-graph

K∆(G)+1 as a connected component, or ∆(G) = 2 and G has an odd cycle as

a connected component.

2. Edge coloring

A k-edge-coloring of a graph G is a mapping c: E(G) → {1, 2, · · · , k},

if two adjacent edges are assigned distinct color. The minimum k for which

a graph G is k-edge-colorable is called its chromatic number, denoted by

χ′ := χ′(G). Ensure the exact edge chromatic number of a graph is a very

difficult problem. Holyer [56] proved this problem is a NP-complete problem

for the graph with ∆(G) ≥ 3. Obviously, χ′ ≥ ∆. The breakthrough was

the theorem of Vizing [113] obtained independently by Gupta [51].
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Theorem 1.3.2. (Vizing Theorem, [113], [51])

Let G be a multigraph of multiplicity µ(G), then χ′ ≤ ∆ + µ.

From this result one can prove the theorem of Shannon,

Theorem 1.3.3. (Shannon Theorem, [100])

Let G be a graph, then χ′ ≤ 3∆
2
.

It follows immediately from Vizing’s theorem that χ′(G) is equal to

either ∆(G) or ∆(G) + 1 when G is simple.

3. Total coloring

Vizing and Behazd posed independently the definition of total coloring.

If a mapping φ : V (G) ∪ E(G) → {1, 2, · · · , k} satisfied these three

condition below:

(i)If two vertices v1, v2 ∈ V (G) are adjacent, and φ(v1) 6= φ(v2);

(ii)If two edges e1, e2 ∈ E(G) are adjacent, and φ(e1) 6= φ(e2);

(iii)If vertex v and edge e are incident in G, and φ(v) 6= φ(e)

we see φ is a proper total-k-coloring of a graph G.

A proper total-k-coloring of a graph G is a coloring of V (G) ∪ E(G)

using k colors such that no two adjacent or incident elements receive the

same color. The total chromatic number χ′′(G) is the smallest integer k such

that G has a total-k-coloring.

Obvious, χ′′(G) ≥ ∆ + 1.

Behzad [9] in 1965 and Vizing [114] in 1968 posed independently the

famous conjecture, known as the Total Coloring Conjecture(TCC):

Conjecture 1.3.1. For any graph G, ∆ + 1 ≤ χ′′(G) ≤ ∆ + 2.

(Actually, Vizing posed is a general total coloring conjecture: Let G be

a multigraph of multiplicity µ(G), then χ′′(G) ≤ ∆(G) + µ(G) + 1)
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Clearly, the lower bound is trivial. The upper bound has been unsolved

completely.

1971, Rosenfeld [95] and Vijayaditya [112] use different method to prove

TCC is true for the graph of ∆(G) ≤ 3. If graph G satisfy χ′′(G) = ∆ + 2,

we say G is class one. If graph G satisfy χ′′(G) = ∆ + 1, we say G is class

two. Yap [158] proved that if n is odd, then χ′′(Kn) = n, or χ′′(Kn) = n+ 1.

Chew and Yap [38] , Hoffman and Rodger [55] proved independently that for

any complete r- partite G, where r is odd, is class one. As research continues,

TCC is proved true for interval graphs [11], series-parallel graphs [156], Halin

graphs [163]. For graph of maximum degree ∆ ≤ 2 graph, χ′′(G) ≤ ∆ + 2

is obvious. 1977, Kostochka [72] proved if G is a simple graph of maximum

degree ∆ = 4, then χ′′(G) ≤ 6, that is to say TCC is true. Kostochka [73]

in 1996 proved for any simple graph G with ∆ = 5, χ′′(G) ≤ ∆ + 2. Michael

and Bruce [86] in 1998 proved if the maximum degree ∆ of G is large enough,

then χ′′(G) ≤ ∆ + C, C is a larger constant. This conjecture has not been

solved for graphs G when ∆(G) ≥ 6. But for maximum degree ∆ ≥ 6 of

planar graphs, it has obtained several related results. Borodin [16] in 1989

proved TCC is true for maximum degree ∆(G) ≥ 9 of planar graphs, then

Yap [158] reduce the bound of maximum degree to 8, Sanders and Zhao [98]

in 1999 proved that TCC is true for maximum degree ∆(G) = 7 of planar

graphs. For the planar graph with ∆(G) = 6, (a)if there does not contain

k-cycle with chords, where k ∈ {4, 5, 6}, then TCC holds [57]; (b) if 5−-cycles

are not adjacent, then TCC holds; (c) if v45 + 2(v5+5 + v46) + 3v56 + 4v6+6 < 24,

where vkn represents the number of vertices of degree n which lie on k distinct

triangle [76].

Through the study constantly in recent years, the researchers found

that a lot of classes of G not only meet Total Coloring Conjecture, but
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also their total chromatic number could get the lower bound, that is to say

χ′′(G) = ∆+1�In the process of total coloring, it has been found the examples

of non (∆+1)-total coloralbe when ∆ ≤ 3, such as K2, (3k+2)-cycle (where

k ≥ 1), K4, but it has not been found the examples of non (∆ + 1)-total

colorable when 4 ≤ ∆ ≤ 8. Arroyo [97] proved to determine whether a graph

satisfies χ′′(G) = ∆ + 1 is a NP-C problem. McDiarmid and Arroyo [85]

further point out for any fixed k ≥ 3, determine whether a k-regular bipartite

G satisfies χ′′(G) = ∆ + 1 is a NP-C problem. Li et al. [79] proved that

for Halin graphs of maximum degree is 4, the total chromatic number is 5.

Jianliang Wu [156] proved that for series parallel graphs of minimum degree

at least 3, the total chromatic number is ∆ + 1. In 1987, Borodin [15] proved

that for graph G with maximum degree ∆(G) ≥ 16 holds χ′′(G) = ∆ + 1. In

1989, he himself improved the result to ∆(G) ≥ 14 holds χ′′(G) = ∆+1 [16].

In 1997, he improved to ∆(G) ≥ 12 [18], moreover, ∆(G) = 11 [20]. In 2007,

Weifan Wang [138] improved the result to ∆(G) = 10 holds χ′′(G) = ∆ + 1.

In 2008, Kowalik et al. [74] improved the conclusion to ∆(G) = 9. As so

far, planar graphs with ∆ = 4, 5, 6, 7, 8 have not been proved χ′′(G) = ∆ + 1

completely. Yingqian Wang and Lan Shen [101] posed the Total Coloring

Conjecture for planar graphs, i.e. PTCC:

Conjecture 1.3.2. For any planar graph G with 4 ≤ ∆ ≤ 8, then χ′′(G) =

∆ + 1.

For the total coloring of planar graphs with ∆ = 4, 5, 6, 7, 8, there are

some conclusions as follows in restriction conditions:

Theorem 1.3.4. Let G be a planar graph, the girth of G is g, maximum

degree is ∆, if G satisfy one of the conditions below, then χ′′(G) = ∆ + 1.

(1) ∆ ≥ 8 and for every vertex v ∈ V (G), there is an integer k ∈ {3, 4, 5, 6, 7, 8}

10



Paris South University Doctoral Dissertation

such that v is incident with at most one cycle of length k [132] ;

(2) ∆ ≥ 8 and for each vertex v ∈ V (G), there are two integers i, j ∈ {3, 4, 5}

such that any two cycles of length i and j, which contain v, are not adjacen-

t [119] ;

(3) ∆ ≥ 8 is an F5-free [26] ;

(4) ∆ ≥ 8 contains no 5-cycles with two chords [29] ;

(5) ∆ ≥ 8 contains no adjacent chordal 5-cycles [111] ;

(6) ∆ ≥ 7 and for every vertex v ∈ V (G), there is an integer k ∈ {3, 4, 5, 6, 7, 8}

such that v is incident with no cycles of length k [25] ;

(7) ∆ ≥ 7 and no 3-cycle is adjacent to a cycle of length less than 6 [116] ;

(8) ∆ ≥ 7 and G contains no intersecting 3-cycles [117] ;

(9) ∆ ≥ 7 and G contains no adjacent 4-cycles [124] ;

(10) ∆ ≥ 7 and G contains no intersecting 5-cycles [118] ;

(11) ∆ ≥ 7 and G contains no chordal 5-cycles [145] ;

(12) ∆ ≥ 7 and G contains no chordal 6-cycles [119] ;

(13) ∆ ≥ 7 and G contains no chordal 7-cycles [24] ;

(14) ∆ ≥ 6 and G contains no adjacent 5−-cycles [159] ;

(15) ∆ ≥ 6 and G contains no 4-cycles [101] ;

(16) ∆ ≥ 6 and G contains no chordal 5-cycles and 6-cycles [157] ;

(17) ∆ ≥ 6 and G contains no intersecting 4-cycles and G contains no in-

tersecting 3-cycles, or 5-cycles, or 6-cycles [109] ;

(18) ∆ ≥ 5 and G contains no 4-cycles and 6-cycles [57] ;

(19) (∆, g) ∈ {(7, 4), (5, 5), (4, 6)} [21] ;

(20) (∆, k) ∈ {(6, 5), (5, 7), (4, 14)}, where G has no cycle of length from 4 to

k [135] ;

(21) (∆, k) ∈ {(5, 5), (4, 11)}, where G contains no intersecting 3-cycles and

G has no cycles of length from 4 to k [107] ;
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That is to say, the graphs satisfying the above conditions is the second

class.

We will give the relative results of total coloring of planar graphs in

Chapter 2.

4. List coloring

A mapping L is said to be an assignment for a graph G if it assigns a

list L(v) of colors to each vertex v ∈ V (G). If it is possible to color G so that

every vertex gets a color from its list and no two adjacent vertices receive

the same color, then we say that G is L-colorable. A graph G is k-choosable

if G is L-colorable for any assignment L with |L(v)| ≥ k for every vertex

v ∈ V (G).

Choosability of planar graphs has been extensively studied. Thomassen

[110] proved that every planar graph is 5-choosable. Voigt [115]and Mirza-

khani [87] presented examples of non-4-choosable planar graphs, respectively.

Moreover, Gutner [52] investigated that determining a planar graph whether

4-choosable is NP-hard. So, finding nice sufficient conditions for a planar

graph to be 4-choosable is of interest. It is shown that G is 4-choosable

if it is a planar graph without 4-cycles [75], 5-cycles [141], 6-cycles [48], 7-

cycles [47], intersecting triangles [137]and 4-cycles adjacent to 3-cycles [17].

Let G be a planar graph, we prove that if every 5-cycle of G is not

simultaneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable in

chaper 3.

The mapping L is said to be an edge assignment for the graph G if it

assigns a list L(x) of possible colors to each element x ∈ E(G). If G has a

proper edge coloring ϕ such that ϕ(e) ∈ L(e) for all e ∈ E(G), then we say

that G is an edge colorable. We say that G is edge-L-choosable if it is edge-
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L-colorable for every edge assignment L satisfying |L(e)| ≥ k for all elements

x ∈ E(G). The list edge chromatic number χ′
l(G) of G is the smallest integer

k such that G is edge-L-choosable when |L(e)| ≥ k for all elements e ∈ E(G).

We can obtain: χ′
l(G) ≥ χ′(G) ≥ ∆.

As a generalization of the classical coloring of graphs, list coloring has

been extensively studied, and one of the famous conjectures is the list coloring

conjecture.

Conjecture 1.3.3. If G is a multigraph, then χ′
l(G) = χ′(G).

The list edge coloring conjecture was formulated by Vizing, Gupta,

Abertson and Collins [67], Bollobás and Harris [12] , and it is well known

as the List Coloring Conjecture. Vizing’s theorem give the upper bound

∆(G) + 1 of the edge chromatic number χ′(G), so if the list edge coloring

conjecture holds, then χ′
l(G) ≤ ∆(G) + 1 directly. The list edge coloring has

been extensively studied and a large number of results have been obtained

in the planar graph.

Theorem 1.3.5. Let G be a planar graph, the maximum degree of G is ∆,

if G satisfies one of the conditions below, then χ′
l(G) = ∆ + 1.

(1) ∆(G) ≥ 9 [22];

(2) ∆(G) = 8 [13];

(3) ∆(G) ≥ 7 and G contains no chordal 7-cycles [27];

(4) ∆(G) ≥ 7 and G contains no chordal 6-cycles [50];

(5) ∆(G) ≥ 6 and G contains no adjacent 3-cycles [59];

(6) ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 5-cycle [84];

(7) ∆(G) ≥ 6 and G contains no chordal 5-cycles [59];

(8) ∆(G) ≥ 6 and G contains no chordal 6-cycles [42];

(9) ∆(G) ≥ 5 and G contains no 3-cycle [160];
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(10) ∆(G) ≥ 5 and G contains no 4-cycles [104];

(11) ∆(G) ≥ 5 and G contains no 5-cycles [142].

Borodin et al. proved that if G is a graph which can be embedded in a

surface of Euler characteristic and ∆ ≥ 12, then χ′
l(G) = ∆ [19]. We have

similar conclusions in planar graphs.

Theorem 1.3.6. Let G be a planar graph, the maximum degree of G is ∆,

the girth is g, if G satisfies one of the conditions below, then χ′
l(G) = ∆.

(1) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 4-cycle [80];

(2) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 5-cycle [84];

(3) ∆(G) ≥ 8 and G contains no adjacent 4-cycles [134];

(4) ∆(G) ≥ 8 and G contains no chordal 5-cycles [130];

(5) ∆(G) ≥ 7 and the 4-cycle of G is not adjacent to 4−-cycle [125];

(6) ∆(G) ≥ 7 and G contains no 4−-cycles [84];

(7) ∆(G) ≥ 7 and G contains no 5-cycles and 6-cycles [82];

(8) ∆(G) ≥ 6 and G contains no 4-cycles and 6-cycles [59];

(9) (∆(G), g) ∈ {(7, 4), (6, 5), (5, 8), (4, 14)}, where g is the girth of G [19];

(10) (∆(G), k) ∈ {(7, 4), (5, 5), (4, 6), (3, 10)}, where k satisfies that G has no

cycle of length from 4 to k [58].

Similarly, we can give the definition of the list total chromatic number

χ′′
l (G) of G, identically, the formula below holds: χ′′

l (G) ≥ χ′(G) ≥ ∆ + 1.

For list total coloring, we have a well known conjecture, too.

Conjecture 1.3.4. For any graph G, we have χ′′
l (G) = χ′′(G).

The list total coloring conjecture was formulated independently by Borodin,

Kostochka and Woodall [19], Juvan, Mohar and S̆ekovski [68], and it is well

known as the List Total Coloring Conjecture. TCC conjecture that the up-
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per bound of total chromatic number χ′′(G) is ∆(G) + 2, so if the list total

coloring conjecture holds, we have χ′′
l (G) ≤ ∆(G) + 2.

Theorem 1.3.7. Let G be a planar graph, the maximum degree is ∆, if G

satisfies one of the condition below, then χ′′
l (G) ≤ ∆ + 2.

(1) ∆(G) ≥ 9 [60];

(2) ∆(G) ≥ 7 and G contains no chordal 7-cycles [43];

(3) ∆(G) ≥ 7 and G contains no adjacent 3-cycles [81];

(4) ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 4-cycles [80];

(5) ∆(G) ≥ 6 and the 3-cycle of G is not adjacent to 5-cycles [84];

(6) ∆(G) ≥ 6 and G contains no chordal 6-cycles [42];

(7) ∆(G) ≥ 5 and G contains no 3-cycles [160];

(8) ∆(G) ≥ 5 and G contains no 4-cycles [104];

(9) ∆(G) ≥ 5 and G contains no 5-cycles [142].

Similarly, Borodin et al. proved that if G is a graph which can be

embedded in a surface of Euler characteristic and ∆ ≥ 12, then χ′′
l (G) = ∆+1

[19]. We have similar conclusions in planar graphs.

Theorem 1.3.8. Let G be a planar graph, the maximum degree is ∆, if G

satisfies one of the condition below, then χ′′
l (G) = ∆ + 1.

(1) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 4-cycles [80];

(2) ∆(G) ≥ 8 and the 3-cycle of G is not adjacent to 5-cycles [84];

(3) ∆(G) ≥ 8 and G contains no adjacent 4-cycles [134];

(4) ∆(G) ≥ 8 and G contains no chordal 5-cycles [130];

(5) ∆(G) ≥ 7 and the 4-cycle of G is not adjacent to 4−-cycle [125];

(6) ∆(G) ≥ 7 and G contains no 4−-cycles [84];

(7) ∆(G) ≥ 7 and G contains no 5-cycles and 6-cycles [82];

(8) ∆(G) ≥ 6 and G contains no 4-cycles and 6-cycles [59];

(9) (∆(G), g) ∈ {(7, 4), (6, 5), (5, 8), (4, 14)}, where g is the girth of G [19].
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Let G be a planar graph with maximum degree ∆, if every 5-cycles

of G is not adjacent to 3-cycles or is not intersecting to 4-cycles, we prove

that χ′
l(G) = ∆ and χ′′

l (G) = ∆ + 1 if ∆(G) ≥ 8, and χ′
l(G) ≤ ∆ + 1 and

χ′′
l (G) ≤ ∆ + 2 if ∆(G) ≥ 6, where χ′

l(G) and χ′′
l (G) denote the list edge

chromatic number and list total chromatic number of G, respectively. We

will illustrate in Chapter 3.

5. Neighbor sum distinguishing total coloring

In the study of irregular networks, usually assigned each of the edges

of graph G a positive integer, making for each vertices of graph G, its as-

sociated edge weights are different. This method effectively promoted the

development of the theory of graph coloring, and produced a lot of branches,

including “vertices distinguishing edge coloring, adjacent vertex distinguish-

ing edge coloring, adjacent vertex distinguishing total coloring”. Recent-

ly, colorings and labellings concerning the sums of the colors have received

much attention. The family of such problems includes, e.g. vertex-coloringk-

edge-weighting(Kalkowski et al. [69]), total weight choosability(Przyby lo and

Woźniak [93]; Wong and Zhu [146]), magic and antimagic labellings(Huang

et al. ( [65]; Wong and Zhu [147]) and the irregulaity strength(Przyby lo [90]

[91]) .

Given a total-k-coloring φ of G, let Cφ(v) denote the set of colors of the

edges incident to v and the color of v. This total k-coloring is called adjacent

vertex distinguishing, or it is a total-k-avd-coloring for short, if for each edge

uv, Cφ(u) is different from Cφ(v). The smallest k is called the adjacent vertex

distinguishing total chromatic number, denoted by χ
′′

a(G). Zhang et al. [164]

proposed that the following conjecture.

Conjecture 1.3.5. (Adjacent vertex distinguishing total coloring conjecture)

For any graph G with at least two vertices, χ
′′

a(G) ≤ ∆(G) + 3.
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Conjecture 1.3.5 was confirmed for graphs with maximum degree at

most three independently by Chen [35], Wang [122] and Hulgan [66] Wang

and Wang [144] proved that this conjecture holds for outerplanar graphs

and Wang and Wang [143] proved that K4-minor free graphs satisfied this

conjecture. Recently Huang and Wang proved that Conjecture 1.3.5 holds

for planar graphs with maximum degree at least 11 [63] and they also proved

that χ
′′

a(G) ≤ ∆(G) + 2 for planar graphs with maximum degree at least

14 [140]. And Huang et al. [64] also proved for graphs with maximum degree

∆ ≥ 3, we have χ′′
a(G) ≤ 2∆.

An edge k-weighting ofG is a function w : E(G) → [k] := {1, 2, · · · , k}.

An edge k-weighting w is a proper vertex coloring by sums if
∑

e∋uw(e) 6=
∑

e∋v w(e) for every uv ∈ E(G). Denote by χe∑ := χe∑(G) the smallest value

of k such that a graph G has a edge k-weighting which is a proper vertex

coloring by sums. In 2004 , Karoński,  Luczak and Thomason [70] introduced

the following conjecture:

Conjecture 1.3.6. (1-2-3 Conjecture) If graph G has no connected compo-

nent isomorphic to K2, then χ
e∑ ≤ 3.

Addario-Berry, Dalal, McMiarmid, Reed and Thomason in 2007 [2]

showed that every graph without isolated edges admits a vertex-coloring

30-edge-weighting, equivalent, χe∑ ≤ 30. This bound was improved to 16 by

Addario-Berry, Dalal and Reed [3], equivalent, χe∑ ≤ 16. And later improved

to 13 by Tao Wang and Qinglin Yu [136], equivalent, χe∑ ≤ 13. Recent-

ly, Kalkowski, Karoński and Pfender in 2010 [69] showed that every graph

without isolated edges admits a vertex-coloring 5-edge-weighting, equivalent,

χe∑ ≤ 5.

Researchers consider those where addition of edge weights as the coloring

method is replaced by another operation. In particular, consider variations
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where colors are obtained by taking a product, set, multiset of weights from

edges incident to v for each v ∈ V (G). If such a coloring is proper, then the

edge k-weighting of G is a proper vertex coloring by products, sets, multisets,

respectively. Denoted by χe∏, χe
s and χe

m. For a graph G, χe∏ ≤ 4, see [105];

χe
s = ⌈log2 χ⌉ + 1, see [53]; χe

m ≤ 4, see [1]. More information in [10].

A total weighting of a graph G is an assignment of a real number weight

to each e ∈ E(G) and each v ∈ V (G). In 2010 , Przyby lo and Woźniak [92]

proposed the following conjecture:

Conjecture 1.3.7. (1-2 Conjecture) For any graph G, χt∑(G) ≤ 2

Given a total k-weighting of G, we consider vertex coloring obtained

by taking either the product, set, multiset of weights taken from the edges

incident to v and from v itself for each v ∈ V (G). If such a coloring is proper,

then the total k-weighting of G is a proper vertex coloring by products, sets,

multisets, respectively. The smallest values of k for which a proper coloring

of each type exists for a graph G are denoted χt∏, χt
s and χt

m.

In a total k-coloring of G, let f(v) denote the total sum of colors of the

edges incident to v and the color of v. If for each edge uv, f(u) 6= f(v), we

call such total k-coloring a total k neighbor sum distinguishing coloring. The

smallest number k is called the neighbor sum distinguishing total chromatic

number, denoted by χ′′∑(G).

For neighbor sum distinguishing total colorings, we have the following

conjecture due to Przyby lo and Woźniak [89].

Conjecture 1.3.8. (Neighbor sum distinguishing total coloring conjecture)

For any graph G with at least two vertices, χ
′′

∑(G) ≤ ∆(G) + 3.

We could see Conjecture 1.3.8 is proposed according to Conjecture 1.3.5,

for a graph G, if it has a k-total coloring φ. For any adjacent vertices
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u, v ∈ V (G), if Cφ(u) = Cφ(v) holds, then f(u) = f(v). Hence, if the k-

total coloring of G is neighbor sum distinguishing, then it must be adjacent

distinguishing. So if Conjecture 1.3.8 can be proved, then Conjecture 1.3.5

will be a corollary. Przyby lo and Woźniak [89] have already proved Conjec-

ture 1.3.8 is true in complete graph, cycles and bipartite graphs. Dong and

Wang [41] proved Conjecture 1.3.8 is true for graphs with bounded maximum

average degree mad ≤ 2
5
. Li et al. [78] proved Conjecture 1.3.8 holds for K4-

minor free graphs G, moreover, if ∆(G) ≥ 4, then, χ′′∑(G) ≤ ∆(G) + 2.

By using the famous Combinatorial Nullstellensatz, Ding et al. [40] proved

thatχ
′′

∑(G) ≤ 2∆(G) + col(G) − 1, where col(G) is the coloring number of

G. Later Ding et al. improved this bound to ∆(G) + 2col(G) − 2. Moreover

they proved this assertion in its list version. Cheng et al. [37] proved that

χ′′∑(G) ≤ ∆(G) + 2 for planar graph G with ∆(G) ≥ 14.

In Chapter 4, it is proved that the total neighbor sum distinguishing

chromatic number of G is ∆(G) + 2 if ∆(G) ≥ 14, where ∆(G) is the maxi-

mum degree of G.

6. List linear arboricity

A linear forest is a graph in which each component is a path. A

map ϕ form E(G) to {1, 2, · · · , t} is called a t-linear coloring if the induced

subgraph of edges having the same color α is a linear forest for 1 ≤ α ≤ t. The

linear arboricity la(G) of a graph G defined by Harary [54] is the minimum

number t for which G has a t-linear coloring. For a real number x, ⌈x⌉ is the

least integer not less than x and ⌊x⌋ is the largest integer not larger than x.

Akiyama et al. [4] conjectured that la(G) = ⌈∆(G)+1
2

⌉ for any simple regular

graph G. The conjecture is equivalent to the following conjecture.

Conjecture 1.3.9. (Linear arboricity conjecture) For any graph G, ⌈∆(G)
2

⌉ ≤

la(G) ≤ ⌈∆(G)+1
2

⌉.
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The linear arboricity has been determined for complete bipartite graphs

[4], complete regular multipartite graphs [154], Halin graphs [148], series-

parallel graphs [153] and regular graphs with ∆ = 3, 4 [5] and 5,6,8 [46].

For planar graphs, more results about the linear arboricity are obtained.

Conjecture 1.3.10 has already been proved to be true for all planar graphs

(see [149] and [152]). Wu [149] proved that for a planar graph G with girth

g and maximum degree ∆, la(G) = ⌈∆(G)
2

⌉ if ∆(G) ≥ 13, or ∆(G) ≥ 7 and

g ≥ 4, or ∆(G) ≥ 5 and g ≥ 5, ∆(G) ≥ 3 and g ≥ 6. Recently, M. Cygan

et al. [39] proved that if G is a planar graph with ∆ ≥ 9, then la(G) = ⌈∆
2
⌉,

and then they posed the following conjecture (the conjecture has also been

posed in [150]).:

Conjecture 1.3.10. (Linear arboricity conjecture for planar graph) For any

planar graph G of maximum degree ∆ ≥ 5, la(G) = ⌈∆
2
⌉.

There are more partial results to support the conjecture 1.3.10. The

linear arboricity of a planar graph G is ⌈∆
2
⌉ if it satisfies one of the following

conditions: (1) ∆(G) ≥ 7 and G contains no 5-cycles with two chords [34];

(2) ∆(G) ≥ 7 and G contains no chordal i-cycles for some i ∈ {4, 5, 6, 7}

( [32, 33, 123]); (3) ∆ ≥ 7 and for each vertex v ∈ V (G), there exist two

integers iv, jv ∈ {3, 4, 5, 6, 7, 8} such that any two iv, jv-cycles incident with

v are not adjacent ( [31,133]); (4) ∆ ≥ 5 and G contains no 4-cycles ( [151]);

(5) ∆ ≥ 5 and G has no intersecting 4-cycles and intersecting 5-cycles ( [30]);

(6) ∆ ≥ 5 and G has no 5-, 6-cycles with chords ( [33]); (7) ∆ ≥ 5 and any 4-

cycle is not adjacent to an i-cycle for any i ∈ {3, 4, 5} or G has no intersecting

4-cycles and intersecting i-cycles for either i = 3 or i = 6 ( [108]); (8) ∆ ≥ 5

and any two 4-cycles are not adjacent, and any 3-cycle is not adjacent to a

5-cycle ( [128]).

A list assignment L to the edges of G is the assignment of a set L(e) ⊆ N
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of colors to every edge e of G, where N is the set of positive integers. If G

has a coloring ϕ(e) such that ϕ(e) ∈ L(e) for every edge e and (V (G), ϕ−1(i))

is a linear forest for any i ∈ Cϕ, where Cϕ = {ϕ(e)|e ∈ E(G)}, then we say

that G is linear L-colorable and ϕ is a linear L-coloring of G. We say that

G is linear k-choosable if it is linear L-colorable for every list assignment L

satisfying |L(e)| = k for all edges e. The list linear arboricity lalist(G) of a

graph G is the minimum number k for which G is linear k-list colorable. It

is obvious that la(G) ≤ lalist(G). In [7] and [150], the following conjecture is

posed independently.

Conjecture 1.3.11. (List linear arboricity conjecture ) For any graph G,

la(G) = lalist(G).

Very few results are known about the conjecture 1.3.11. An and Wu [7]

proved by using the results of [149] that lalist(G) ≤ ⌈∆(G)+1
2

⌉ for any planar

graph having ∆(G) ≥ 9, and for a planar graph G, lalist(G) = ⌈∆(G)
2

⌉ if

∆(G) ≥ 13, or ∆(G) ≥ 7 and G contains no i-cycles for some i ∈ {3, 4, 5}.

In [162], lalist(G) ≤ max{4, ⌈∆(G)+1
2

⌉} and lalist(G) = ⌈∆
2
⌉ if ∆(G) ≥ 11 for

a F5-free planar graph G.

In Chapter 5, we prove that if G is a planar graph such that every 7-

cycle of G contains at most two chords, then G is linear
⌈

∆+1
2

⌉

-choosable if

∆(G) ≥ 6, and G is linear
⌈

∆
2

⌉

-choosable if ∆(G) ≥ 11.

§1.4 Main results

In Chapter 2, we use the formula of Euler and discharging method to

study the total coloring problems of planar graphs, and prove the following

conclusions:
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Conclusion 1 Let G be a planar graph with maximum degree ∆ ≥ 8.

If every 6-cycle of G contains at most one chord in G, then χ′′(G) = ∆ + 1.

Conclusion 2 Let G be a planar graph with maximum degree ∆ ≥ 8.

If chordal 6-cycles are not adjacent in G, then χ′′(G) = ∆ + 1.

Conclusion 3 Let G be a planar graph with maximum degree ∆ ≥ 8.

If every 7-cycle of G contains at most two chords, then χ′′(G) = ∆ + 1.

Conclusion 4 Let G be a planar graph without intersecting chordal

5-cycles, that is, every vertex is incident with at most one chordal cycle of

length 5. If ∆ ≥ 7, then χ′′(G) = ∆ + 1.

Conclusion 1, Conclusion 2, Conclusion 3 and Conclusion 4 are all about

total coloring of planar graphs, these conclusions solve the total coloring of

planar graph conjecture (PTCC) partly. Conclusion 1, Conclusion 2 and

Conclusion 3 are aimed at planar graphs with ∆ ≥ 8. Conclusion 1 covers

the planar graphs with ∆ ≥ 8 and contain no 6-cycles [62]; Conclusion 2

covers the planar graphs with ∆ ≥ 8 and contain no chordal 6-cycles [102], or

contain no intersecting 6-cycles [132], or contain no adjacent 6-cycles [119], or

contain no intersecting chordal 6-cycles [131]; Conclusion 3 covers the planar

graphs with ∆ ≥ 8 and contain no 7-cycles [96] or contain no chordal 7-cycle

[129], this conclusion prove every 7-cycle of G contains at most two chords

directly, covered every 7-cycle of G contains at most one chords naturally.

Conclusion 4 is directed against planar graphs with ∆ ≥ 7. It covers the

planar graphs with ∆ ≥ 7 and contain no 5-cycles [103], or contain no chordal

5-cycles [145] or contain no intersecting 5-cycles [118]. Equivalently promote

planar graphs with ∆ ≥ 8 and contain no intersecting chordal 5-cycles.

In Chapter 3, according the properties of planar graphs, we study the list

vertex coloring, list edge coloring and list total coloring and get the following

conclusions:
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Conclusion 5 Let G be a planar graph. If every 5-cycles of G is not

adjacent simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

Conclusion 5 is in regard to list vertex coloring. It prove that the planar

graph is 4-choosable either if every 3-cycles of G is not adjacent to 5-cycles

or if every 4-cycles of G is not adjacent to 5-cycles. The conclusion improved

the 4-choosable planar graph if contain no 4-cycles [75], or 5-cycles [141].

Conclusion 6 Let G be a planar graph with ∆ ≥ 8, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′
l(G) = ∆.

Conclusion 7 Let G be a planar graph with ∆ ≥ 8, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′′
l (G) = ∆ + 1.

Conclusion 8 Let G be a planar graph with ∆ ≥ 6, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′
l(G) ≤ ∆ + 1.

Conclusion 9 Let G be a planar graph with ∆ ≥ 6, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′′
l (G) ≤ ∆ + 2.

Conclusion 6 and Conclusion 8 are aimed at list edge coloring. They

solve the list edge coloring conjecture of planar graphs to some extent. Con-

clusion 7 and Conclusion 9 concern about list total coloring. They prove the

list total coloring conjecture of planar graphs to a certain degree.

In Chapter 4, we consider the total neighbor sum distinguishing chro-

matic number of embedded in a surface Σ of Euler characteristic, and obtain

two corollaries:

Conclusion 10 Let G be a graph with maximum degree ∆(G) which

can be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0, then

χ
′′

∑(G) ≤ max{∆(G) + 2, 16}.

Conclusion 11 Let G be a graph which can be embedded in a surface

Σ of Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ
′′

∑(G) ≤ ∆(G) + 2.

Conclusion 12 Let G be a graph which can be embedded in a surface
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Σ of Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ
′′

a(G) ≤ ∆(G) + 2.

Conclusion 10 is the first conclusion about total neighbor sum distin-

guishing chromatic number of embedded in a surface non negative Σ of Euler

characteristic. It is the best result of this kind of graph at present. Mean-

while, this conclusion include some results of planar graphs.

In Chapter 5, we investigate the list linear arboricity of planar graph,

and have the following conclusions:

Conclusion 13 Let G be a planar graph. If every 7-cycles of G contains

at most two chords, then ⌈∆(G)
2

⌉ ≤ lalist(G) ≤ max{4, ⌈∆(G)+1
2

⌉}.

Conclusion 14 Let G be a planar graph. If ∆(G) ≥ 6 and every 7-

cycles of G contains at most two chords, then ⌈∆(G)
2

⌉ ≤ lalist(G) ≤ ⌈∆(G)+1
2

⌉.

Conclusion 15 Let G be a planar graph, and every 7-cycles of G

contains at most two chords. Then G is linear k-choosable, where k ≥

max{6, ⌈∆(G)
2

⌉}.

Conclusion 16 Let G be a planar graph. If ∆(G) ≥ 11 and every

7-cycles of G contains at most two chords, then lalist(G) = ⌈∆(G)
2

⌉.

Conclusion 13 and Conclusion 15 are with respect to list linear arboricity

of planar graph. The corollaries of Conclusion 14 and Conclusion 16 solve

the list linear arboricity conjecture of planar graphs partly.
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Chapter 2 Total Coloring

§2.1 Basic definitions and properties

A k-total-coloring of a graph G = (V,E) is a coloring of V ∪ E using

k colors such that no two adjacent or incident elements receive the same

color. A graph G is total-k-colorable if it admits a k-total-coloring. The total

chromatic number χ′′(G) of G is the smallest integer k such that G has a

k-total-coloring. Clearly, χ′′(G) ≥ ∆+1. Since more and more planar graphs

have been determined the total chromatic number χ′′(G) = ∆ + 1. In this

chapter, we mainly study the total coloring of planar graphs. In the first

subsection we discuss the total coloring problems of planar graph G with

∆ ≥ 8, and in the second subsection we discuss the total coloring problems

of planar graph G with ∆ ≥ 7.

§2.2 Planar graph G with maximum degree ∆ ≥ 8

Hou et al. [62] proved:

Lemma 2.2.1. For planar graph G with ∆ ≥ 8, if it contains no 6-cycles,

then χ′′(G) = ∆ + 1.

Shen and Wang [102] extended this result:

Lemma 2.2.2. For planar graph G with ∆ ≥ 8, if it contains no 6-cycles

with chords, then χ′′(G) = ∆ + 1.

Roussel and Zhu [96] proved

Lemma 2.2.3. For planar graph G with ∆ ≥ 8, and for each vertex x,

there is an integer kx ∈ {3, 4, 5, 6, 7, 8} such that there is no kx-cycle which

contains x, then χ′′(G) = ∆ + 1.
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Wang et al. [131] extended this result:

Lemma 2.2.4. Let G be a planar graph with ∆ ≥ 8 and without adjacent

cycles of size i and j, for some 3 ≤ i ≤ j ≤ 5, χ′′(G) = ∆ + 1.

These results are all about planar graph with (∆ ≥ 8) in order to prove

their total chromatic number is (∆ + 1). We extend these result and get

the following results: 1. Let G be a planar graph with maximum degree

∆ ≥ 8. If every 6-cycle of G contains at most one chord or chordal 6-cycles

are not adjacent in G, then χ′′(G) = ∆ + 1. 2. Let G be a planar graph with

maximum degree ∆ ≥ 8. If every 7-cycle of G contains at most two chords,

then χ′′(G) = ∆ + 1.

§2.2.1 If every 6-cycle of G contains at most one chord or chordal

6-cycles are not adjacent in G

Theorem 2.2.1. Let G be a planar graph with maximum degree ∆ ≥ 8. If

every 6-cycle of G contains at most one chord or chordal 6-cycles are not

adjacent in G, then χ′′(G) = ∆ + 1.

According to [74], the theorem 2.2.1 is true for ∆ ≥ 9. So we assume

in the following that ∆ = 8. Let G = (V,E) be a minimal counterexample

to the planar graph G with maximum degree ∆ = 8, such that |V | + |E| is

minimal and G has been embedded in the plane. Then every proper subgraph

of G is total-9-colorable. First we give some lemmas for G.

Lemma 2.2.5. [16] (a) G is 2-connected.

(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆ + 2 = 10.

By Lemma 2.2.5(a): There is no 1-vertex in G. By Lemma 2.2.5(b): any

two neighbors of a 2-vertex are 8-vertices. Any three neighbors of a 3-vertex

are 7+-vertices. Any four neighbors of a 4-vertex are 6+-vertices.
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Lemma 2.2.6. G has no configurations depicted in Figure 2.1, where v de-

notes the vertex of degree of 7.

(1)
 (3)
 (4)
 (5)
 (6)


v


(2)


Figure 2.1

Proof. The proof of (1), (2), (4) and (6) can be found in [139], (3) can be

found in [102], (5) can be found in [74].

Lemma 2.2.7. Suppose v is a d-vertex of G with d ≥ 5. Let v1, · · · , vd

be the neighbor of v and f1, f2, · · · , fd be faces incident with v, such that

fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , d}. Let d(v1) = 2 and

{v, u1} = N(v1). Then G does not satisfy one of the following conditions

(see Figure 2.2).

(1) there exists an integer k (2 ≤ k ≤ d− 1) such that d(vk+1) = 2, d(vi) = 3

(2 ≤ i ≤ k) and d(fj) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d− 1) such that d(vk) = 2,

d(vi) = 3 (k + 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d− 1) such that d(vi) = 3

(k ≤ i ≤ t), d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

Proof. Suppose G satisfies all of the conditions (1)-(3). If d(fi) = 4, then

let ui be adjacent to vi and vi+1. By the minimality of G, G′ = G − vv1

has a (∆ + 1)-total-coloring φ. Let C(x) = {φ(xy) : y ∈ N(x)} ∪ {φ(x)}.

First we erase the colors on all 3−-vertices adjacent to v. We have φ(v1u1) 6∈
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Figure 2.2

C(v), for otherwise, the number of the forbidden colors for vv1 is at most

∆, so vv1 can be properly colored and by properly recoloring the erased

vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. Without

loss of generality, assume that C(v) = {1, 2, · · · , d} with φ(vvi) = i (i ∈

{2, 3, · · · , d}), φ(v1u1) = d+ 1 and φ(v) = 1. Thus we have d+ 1 ∈ C(vi) for

all i ∈ {2, 3, · · · , d}, for otherwise, we can recolor vvi with d + 1 and color

vv1 with i, and by properly recoloring the erased vertices, we get a (∆ + 1)-

total-coloring of G, a contradiction, too. In the following we consider (1)-(3)

one by one.

(1) Since d + 1 ∈ C(vi) for all i ∈ {2, 3, · · · , d}, there is a vertex us

(1 ≤ s ≤ k) such that d + 1 appears at least twice on us, a contradiction to

φ.

(2) Since d+1 ∈ C(vi) for all i ∈ {2, 3, · · · , d}, φ(vkuk) = φ(vk+1uk+1) =

· · · = φ(vt−1ut−1) = φ(vtvt+1) = d + 1. We also have φ(vtut−1) = t + 1. For

otherwise, we can recolor vtvt+1 with t + 1, vvt+1 with d + 1 and color vv1

with t+1. By properly recoloring the erased vertices, we get a (∆+1)-total-

coloring of G, a contradiction. Similarly, φ(vt−1ut−2) = φ(vt−2ut−3) = · · · =

φ(vk+1uk) = t+1. So we can recolor vvt+1 with d+1, vtvt+1 with t+1, vtut−1

with d + 1, vt−1ut−1 with t + 1,· · · , vk+1uk+1 with t + 1, vk+1uk with d + 1,

vkuk with t + 1 and color vv1 with t + 1. By properly recoloring the erased
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vertices, we get a (∆ + 1)-total-coloring of G, also a contradiction.

(3) If d+ 1 6∈ {φ(vk−1vk)∪φ(vtvt+1)}, then there is a vertex us (k ≤ s ≤

t− 1) such that d+ 1 appears at least twice on us, a contradiction to φ. So

without loss of generality, assume φ(vk−1vk) = d + 1. If φ(vk+1uk) = d + 1,

then φ(vk+2uk+1) = φ(vk+3uk+2) = · · · = φ(vtut−1) = d+1. By the discussion

of (2), we also have φ(vkuk) = φ(vk+1uk+1) = · · · = φ(vt−1ut−1) = φ(vtvt+1) =

k − 1. Then we can recolor vvk−1 with d + 1, vk−1vk with k − 1, vkuk with

d + 1, vk+1uk with k − 1, · · · , vt−1ut−1 with d + 1, vtut−1 with k − 1, vtvt+1

with t+ 1, vvt+1 with k− 1 and color vv1 with t+ 1. By properly recoloring

the erased vertices, we get a (∆ + 1)-total-coloring of G, a contradiction. If

φ(vk+1uk+1) = d + 1, then φ(vk+2uk+2) = φ(vk+3uk+3) = · · · = φ(vt−1ut−1) =

φ(vtvt+1) = d + 1. Similarly, we have φ(vtut−1) = φ(vt−1ut−2) = · · · =

φ(vk+1uk) = t + 1. Let φ(vkuk) = s. Then we can recolor vvt+1 with d + 1,

vtvt+1 with t+1, vtut−1 with d+1, vt−1ut−1 with t+1, · · · , vk+1uk+1 with t+1,

vk+1uk with s, vkuk with t+1, and color vv1 with t+1. By properly recoloring

the erased vertices, we get a (∆+1)-total-coloring of G, a contradiction, too.

We will use the “Discharging method” to complete the proof of Theorem

2.2.1.

We know, by
∑

v∈V d(v) = 2|E|,
∑

f∈F d(f) = 2|E| the Euler’s formula

|V | − |E| + |F | = 2, we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

We define ch the initial charge that ch(x) = 2d(x) − 6 for each x ∈ V and

ch(x) = d(x) − 6 for each x ∈ F . So
∑

x∈V ∪F ch(x) = −12 < 0. In the
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following, we will reassign a new charge denoted by ch
′

(x) to each x ∈ V ∪F

according to the discharging rules. If we can show that ch
′

(x) ≥ 0 for each

x ∈ V ∪ F , then we get an obvious contradiction to 0 ≤
∑

x∈V ∪F ch
′

(x) =
∑

x∈V ∪F ch(x) = −12, which completes our proof. Now we define the dis-

charging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. Let f be a 3-face. If f is incident with a 3−-vertex, then it receives 3
2

from each of its two incident 7+-vertices. If f is incident with a 4-vertex, then

it receives 5
4

from each of its two incident 6+-vertices. If f is not incident with

any 4−-vertex, then it receives 1 from each of its two incident 5+-vertices.

R3. Let f be a 4-face. If f is incident with two 3−-vertices, then it

receives 1 from each of its two incident 7+-vertices. If f is incident with only

one 3−-vertex, then it receives 3
4

from each of its two incident 7+-vertices; and

1
2

from the left incident 4+-vertex. If f is not incident with any 3−-vertex,

then it receives 1
2

from each of its incident 4+-vertices.

R4. Each 5-face receives 1
3

from each of its incident 4+-vertices.

Next, we show that ch
′

(x) ≥ 0 for all x ∈ V ∪ F . It is easy to check

that ch
′

(f) ≥ 0 for all f ∈ F and ch
′

(v) ≥ 0 for all 2-vertices v ∈ V by the

above discharging rules. If d(v) = 3, then ch
′

(v) = ch(v) = 0. If d(v) = 4,

then ch
′

(v) ≥ ch(v) − 1
2
× 4 = 0 by R2 and R3. For d(v) ≥ 5, we need the

following structural lemma.

Lemma 2.2.8. (1) Suppose that every 6-cycle of G contains at most one

chord. Then we have the following results.

(a) G has no configurations depicted in Figure 2.3(1), Figure 2.3(2) and

Figure 2.3(3);

(b) Suppose G has a subgraph isomorphic to Figure 2.3(4). Then d(f1) ≥ 4

and d(f2) 6= 4. More over if d(f1) = 4, then d(f2) ≥ 5;
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(c) If G has a subgraph isomorphic to Figure 2.3(5), then d(f1) ≥ 5 and

d(f2) ≥ 5.

(2) Suppose that all chordal 6-cycles are not adjacent. Then we have

the following results.

(d) IfG has a subgraph isomorphic to Figure 2.3(5), then max{d(f1), d(f2)} ≥

4;

(e) G has no configurations depicted in Figure 2.3(6) and Figure 2.3(7).

(1)
 (3)
(2)
 (7)
(6)
(5)
(4)


f

2


f

1


f

2


f

1


Figure 2.3

Suppose d(v) = 5. Then f3(v) ≤ 4 by Lemma 2.2.8. If f3(v) = 4, then

f6+(v) ≥ 1, so ch
′

(v) ≥ ch(v) − 1 × 4 = 0. If f3(v) ≤ 3, then ch′(v) ≥

ch(v) − 1 × f3(v) − 1
2
× (5 − f3(v)) = 3−f3(v)

2
≥ 0. Suppose d(v) = 6. Then

f3(v) ≤ 4 and ch
′

(v) ≥ ch(v) − 5
4
× f3(v) − 1

2
× (6 − f3(v)) = 3(4−f3(v))

4
≥ 0.

Suppose d(v) = 7. Then f3(v) ≤ 5. By Lemma 2.2.6(1), v is incident with at

most two 3-faces are incident with a 3−-vertex, that is, v sends 3
2

to each of the

two 3-faces and at most 5
4

to each other 3-face. If f3(v) = 5, then f5+(v) ≥ 1,

and ch′(v) ≥ ch(v)− 3
2
×2− 5

4
×3− 3

4
×1− 1

3
×1 = 1

6
> 0. If 2 ≤ f3(v) ≤ 4, then

ch′(v) ≥ ch(v)− 3
2
×2− 5

4
× (f3(v)−2)−1× (5−f3(v))− 3

4
×2 = 4−f3(v)

4
≥ 0.

If f3(v) ≤ 2, then ch
′

(v) ≥ ch(v) − 3
2
× f3(v) − 1 × (7 − f3(v)) = 2−f3(v)

2
> 0.

Suppose d(v) = 8. Then ch(v) = 10. Let v1, · · · , v8 be neighbors of v in

the clockwise order and f1, f2, · · · , f8 be faces incident with v, such that fi

is incident with vi and vi+1, for i ∈ {1, 2, · · · , 8}, and f9 = f1.

Suppose n2(v) = 0. Then f3(v) ≤ 6. If f3(v) = 6, then f5+(v) ≥ 2,

so ch′(v) ≥ 10 − 3
2
× 6 − 1

3
× 2 = 1

3
> 0. If f3(v) = 5, then f5+(v) ≥ 1,
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so ch′(v) ≥ 10 − 3
2
× 5 − 1 × 2 − 1

3
× 1 = 1

6
> 0. If f3(v) ≤ 4, then

ch′(v) ≥ 10 − 3
2
× f3(v) − 1 × (8 − f3(v)) ≥ 0.

Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2.

Suppose v1 is incident with a 3-cycle f1.

By Lemma 2.2.8, f3(v) ≤ 6 and all 3-faces incident with no 3−-vertex

except f1 by Lemma 2.2.6(6). If f3(v) = 6, then f5+(v) ≥ 2, so ch′(v) ≥

10− 1− 3
2
× 1− 5

4
× 5− 1

3
× 2 = 7

12
> 0. If 4 ≤ f3(v) ≤ 5, then ch′(v) ≥ 10−

1− 3
2
×1− 5

4
×(f3(v)−1)−1×(6−f3(v))− 3

4
×2 = 5−f3(v)

4
≥ 0. If 1 ≤ f3(v) ≤ 3,

then ch′(v) ≥ 10− 1− 3
2
× 1− 5

4
× (f3(v)− 1)− 1× (8− f3(v)) = 3−f3(v)

4
≥ 0.

Suppose v1 is not incident with a 3-cycle.

Suppose every 6-cycle of G contains at most one chord. Then f3(v) ≤ 5

by Lemma 2.2.6(2)-(4). If 4 ≤ f3(v) ≤ 5, then f5+(v) ≥ 2, so ch′(v) ≥

10 − 1 − 3
2
× (f3(v) − 1) − 1 × 1 − 1 × (6 − f3(v)) − 1

3
× 2 = 17−3f3(v)

6
> 0. If

f3(v) = 3, then f5+(v) ≥ 1, so ch′(v) ≥ 10−1− 3
2
×3−1×4− 1

3
×1 = 1

6
> 0.

If f3(v) = 2, then ch′(v) ≥ 10 − 1 − 3
2
× 2 − 1 × 6 = 0. If f3(v) = 1,

then without loss of generality, d(f2) = 3, i.e. d(v3) = 3 and d(v2) ≥ 7,

so ch′(v) ≥ 10 − 1 − 3
2
× 1 − 1 × 6 − 3

4
× 1 = 3

4
> 0. If f3(v) = 0, then

ch′(v) ≥ 10 − 1 − 1 × 8 = 1 > 0.

Suppose any two chordal 6-cycles are not adjacent. Then f3(v) ≤ 5 by

Lemma 2.2.6(2)-(4). If f3(v) ≥ 4, then ch′(v) ≥ 10−1− 3
2
×2− 5

4
× (f3(v))−

3
4
×(8−f3(v)) = 5−f3(v)

2
≥ 0. If f3(v) = 3, then ch′(v) ≥ 10−1− 3

2
×3− 3

4
×5 =

3
4
> 0. If 1 ≤ f3(v) ≤ 2, then ch′(v) ≥ 10−1− 3

2
×f3(v)−1×(6−2f3(v))− 3

4
×

(2 + f3(v)) = 6−f3(v)
4

> 0. If f3(v) = 0, then ch′(v) ≥ 10 − 1 − 1 × 8 = 1 > 0.

Note that next Lemma 2.2.9 is also true for general planar graphs if we

just use the above discharging rules.

Lemma 2.2.9. Suppose d(v) = 8 and 2 ≤ n2(v) ≤ 8. Then ch′(v) ≥ 0.

Proof. Since d(v) = 8, then ch(v) = 10. First we give a Claim for conve-
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nience.

Claim 2.3. Suppose that d(vi) = d(vi+k+1) = 2 and d(vj) ≥ 3 for i + 1 ≤

j ≤ i + k. Then v sends at most φ (in total) to fi and fi+1, fi+2, · · · , fi+k,

where φ = 5k+1
4

(k = 1, 2, 3, 4, 5), see Figure 2.4.
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Figure 2.4

By Lemma 2.2.6, d(fi) ≥ 4 and d(fi+k) ≥ 4.

Case (a). k = 1 By Lemma 2.2.7(1), we have d(vi+1) ≥ 4 or max{d(fi),

d(fi+1)} ≥ 5, so φ ≤ max{3
4
× 2, 1 + 1

3
} = 3

2
by R3.

Case (b). k = 2 If d(fi+1) = 3, then min{d(vi+1), d(vi+2)} ≥ 4 or

max{d(fi), d(fi+2)} ≥ 5 by Lemma 2.2.7(2), and it follows that φ ≤ max{3
4
+

5
4
+ 3

4
, 1

3
+ 3

2
+ 3

4
} = 11

4
. Otherwise, d(fi+1) ≥ 4, then min{d(vi+1), d(vi+2)} ≥ 4

or max{d(fi), d(fi+1), d(fi+2)} ≥ 5 by Lemma 2.2.7(1), and it follows that

φ ≤ max{1 + 3
4
× 2, 1 × 2 + 1

3
} = 5

2
< 11

4
.

Case (c). k = 3 Suppose d(fi+1) = d(fi+2) = 3. Then d(vi+2) ≥ 4. If

d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5 and d(fi+3) ≥ 5, so φ ≤ 3
2
×2 + 1

3
×2 =

11
3

. If min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 5
4
× 2 + 3

4
× 2 = 4. Suppose

d(fi+1) = 3 and d(fi+2) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 7 and d(fi) ≥ 5,

so φ ≤ 1
3

+ 3
2

+ 3
4

+1 = 43
12

. If d(vi+2) = 3, then d(vi+1) ≥ 7 and d(vi+3) ≥ 4, so

φ ≤ 3
4

+ 3
2

+ 3
4

+ 3
4

= 15
4

. If min{d(vi+1), d(vi+2)} ≥ 4, φ ≤ 3
4

+ 5
4

+ 3
4

+ 1 = 15
4

.

It is similar with d(fi+2) = 3 and d(fi+1) ≥ 4.

Suppose min{d(fi+1), d(fi+2)} ≥ 4. Then max{d(vi+1), d(vi+2), d(vi+3)}
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≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3)} ≥ 5, so φ ≤ max{1 × 2 + 3
4
×

2, 1 × 3 + 1
3
} = 7

2
. So φ ≤ max{11

3
, 4, 43

12
, 15

4
, 7

2
} = 4.

Case (d). k = 4 Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3. Then

min{d(vi+2), d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5 and

d(fi+4) ≥ 5, so φ ≤ 3
2
× 2 + 1 × 1 + 1

3
× 2 = 14

3
. If min{d(vi+1), d(vi+4)} ≥ 4,

then φ ≤ 5
4
× 3 + 3

4
× 2 = 21

4
.

Suppose d(fi+1) = d(fi+2) = 3, d(fi+3) ≥ 4. Then d(vi+2) ≥ 4. If

d(vi+1) = d(vi+3) = 3, then d(vi+4) ≥ 4 and d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 3

4
× 2 +

1
3
× 1 = 29

6
. If min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 5

4
× 2 + 1× 1 + 3

4
× 2 = 5.

Similar with d(fi+2) = d(fi+3) = 3, d(fi+1) ≥ 4. Suppose d(fi+1) = d(fi+3) =

3, d(fi+2) ≥ 4. Then max{d(vi+2), d(vi+3)} ≥ 4 by Lemma 2.2.7(3), so

φ ≤ 3
2
× 1 + 5

4
× 1 + 3

4
× 3 = 5.

Suppose d(fi+1) = 3, d(fi+2) ≥ 4 and d(fi+3) ≥ 4. If d(vi+1) = 3,

then d(vi+2) ≥ 7 and d(fi) ≥ 5, so φ ≤ 3
2

+ 1 × 2 + 3
4
× 1 + 1

3
× 1 =

55
12

. If d(vi+2) = 3, then d(vi+1) ≥ 7 and max{d(vi+3), d(vi+4)} ≥ 4, so

φ ≤ 3
2
× 1 + 1 × 1 + 3

4
× 3 = 19

4
. Otherwise, φ ≤ 5

4
× 1 + 1 × 2 + 3

4
×

2 = 19
4

. It is similar with d(fi+3) = 3, d(fi+1) ≥ 4 and d(fi+2) ≥ 4.

Suppose d(fi+2) = 3, d(fi+1) ≥ 4 and d(fi+3) ≥ 4. If d(vi+2) = 3 or

d(vi+3) = 3, then φ ≤ 3
2
× 1 + 1 × 1 + 3

4
× 3 = 19

4
. Otherwise, φ ≤

5
4
×1+1×2+ 3

4
×2 = 19

4
. Suppose min{d(fi+1), d(fi+2), d(fi+3)} ≥ 4. Then

max{d(vi+1), d(vi+2), d(vi+3), d(vi+4)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2),

d(fi+3), d(fi+4)} ≥ 5, so φ ≤ max{1 × 3 + 3
4
× 2, 1 × 4 + 1

3
} = 9

2
. So

φ ≤ max{14
3
, 21

4
, 29

6
, 5, 55

12
, 19

4
, 9

2
} = 21

4
.

Case (e). k = 5 If d(fi+1) = d(fi+2) = d(fi+3) = d(fi+4) = 3, then

min{d(vi+2), d(vi+3), d(vi+4)} ≥ 4. If d(vi+1) = d(vi+5) = 3, then d(fi) ≥ 5

and d(fi+5) ≥ 5, so φ ≤ 3
2
×2+ 5

4
×2+ 1

3
×2 = 37

6
. If min{d(vi+1), d(vi+5)} ≥ 4,

then φ ≤ 5
4
× 4 + 3

4
× 2 = 13

2
.
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Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3, d(fi+4) ≥ 4, then min{d(vi+2),

d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5 and d(vi+5) ≥ 4 or

max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 + 3

4
× 2 + 1

3
, 3

2
× 2 +

1 + 1 + 1
3
× 2} = 35

6
. If d(vi+1) = 3 and d(vi+4) ≥ 4, then d(fi) ≥ 5, so

φ ≤ 3
2

+ 5
4
× 2 + 1 + 3

4
+ 1

3
= 73

12
. If d(vi+4) = 3 and d(vi+1) ≥ 4, then

φ ≤ 3
2

+ 5
4
× 2 + 3

4
× 3 = 25

4
. Otherwise, φ ≤ 5

4
× 3 + 1 + 3

4
× 2 = 25

4
. It is

similar with d(fi+2) = d(fi+3) = d(fi+4) = 3, d(fi+1) ≥ 4. Suppose d(fi+1) =

d(fi+2) = d(fi+4) = 3, d(fi+3) ≥ 4, then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) =

d(vi+4) = 3, then d(fi) ≥ 5 and d(fi+4) ≥ 5, so φ ≤ 3
2
×3+ 3

4
×1+ 1

3
×2 = 71

12
.

It is similar with d(vi+1) = d(vi+3) = d(vi+5) = 3. If d(vi+1) = d(vi+4) = 3

and d(vi+3) ≥ 4, then d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
× 1 + 3

4
× 2 + 1

3
× 1 = 73

12
.

Otherwise, φ ≤ 3
2
× 1 + 5

4
× 2 + 3

4
× 3 = 25

4
.

Suppose d(fi+1) = d(fi+2) = 3, d(fi+3) ≥ 4 and d(fi+4) ≥ 4, then

d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5 and max{d(vi+4),

d(vi+5)} ≥ 4 or max{d(fi+3), d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 +

3
4
× 2 + 1

3
, 3

2
× 2 + 1 × 2 + 1

3
× 2} = 35

6
. If d(vi+1) = 3 and d(vi+3) ≥ 4, then

d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4

+ 1 × 2 + 3
4

+ 1
3

= 35
6

. If d(vi+3) = 3 and d(vi+1) ≥ 4,

then max{d(vi+4), d(vi+5) ≥ 4} or max{d(fi+3), d(fi+4), d(fi+5)} ≥ 5, so

φ ≤ max{3
2

+ 5
4

+ 1 + 3
4
× 3, 3

2
+ 5

4
+ 1 × 2 + 3

4
+ 1

3
} = 6. Otherwise,

φ ≤ 5
4
× 2 + 1 × 2 + 3

4
× 2 = 6. It is similar with d(fi+3) = d(fi+4) = 3,

d(fi+1) ≥ 4 and d(fi+2) ≥ 4. Suppose d(fi+1) = d(fi+3) = 3, d(fi+2) ≥ 4 and

d(fi+4) ≥ 4, then φ ≤ 3
2
×2+ 3

4
×4 = 6. It is similar with d(fi+2) = d(fi+4) =

3, d(fi+1) ≥ 4 and d(fi+3) ≥ 4. Suppose d(fi+1) = d(fi+4) = 3, d(fi+2) ≥ 4

and d(fi+3) ≥ 4, then φ ≤ 3
2
× 2 + 3

4
× 4 = 6. Suppose d(fi+2) = d(fi+3) = 3,

d(fi+1) ≥ 4 and d(fi+4) ≥ 4, then φ ≤ 3
2
× 2 + 3

4
× 4 = 6.

Suppose fi+1, fi+2, fi+3 and fi+4 has at most one 3-face contains 3−-

vertex, then φ ≤ 3
2

+ 1 × 3 + 3
4
× 2 = 6.
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Suppose min{d(fi+1), d(fi+2), d(fi+3), d(fi+4)} ≥ 4, then max{d(vi+1),

d(vi+2), d(vi+3), d(vi+4), d(vi+5)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2),

d(fi+3), d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{1 × 4 + 3
4
× 2, 1 × 5 + 1

3
} = 11

2
.

In the end, φ ≤ max{37
6
, 13

2
, 35

6
, 73

12
, 25

4
, 71

12
, 6, 11

2
} = 13

2
.

Next, we prove the Lemma 2.2.9.

If n2(v) = 8, then all faces incident with v are 6+-faces by Lemma

2.2.6(2)-(4), that is, f6+(v) = 8, so ch
′

(v) = 10−1×8 = 2 > 0. If n2(v) = 7,

then f6+(v) ≥ 6 and f3(v) = 0, so ch
′

(v) ≥ 10 − 1 × 7 − 3
2

= 3
2
> 0 by Claim

(a).

Suppose n2(v) ≤ 6. The possible distributions of 2-vertices adjacent to

v are illustrated in Figure 2.5. For Figure 2.5(1), we have f6+(v) ≥ 5 and

n
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ch′(v) ≥ 10−1×6− 11
4

= 5
4
> 0 by Claim (b). For Figure 2.5(2)-(4), we have

f6+(v) ≥ 4 and ch′(v) ≥ 10 − 1 × 6 − 3
2
× 2 = 1 > 0. For Figure 2.5(5), we

have f6+(v) ≥ 4 and ch′(v) ≥ 10−1×5−4 = 1 > 0 by Claim (c). For Figure

2.5(6)-(7), we have f6+(v) ≥ 3 and ch′(v) ≥ 10− 1× 5− 3
2
− 11

4
= 3

4
> 0. For

Figure 2.5(8)-(9), we have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×5− 3
2
×3 = 1

2
> 0.

For Figure 2.5(10), we have f6+(v) ≥ 3 and ch′(v) ≥ 10− 1× 4− 21
4

= 3
4
> 0

by Claim (d). For Figure 2.5(11) and 2.5(13), we have f6+(v) ≥ 2 and

ch′(v) ≥ 10− 1× 4− 3
2
− 4 = 1

2
> 0. For Figure 2.5(12) and 2.5(16), we have

f6+(v) ≥ 2 and ch′(v) ≥ 10− 1× 4− 11
4
× 2 = 1

2
> 0. For Figure 2.5(14) and

2.5(15), we have f6+(v) ≥ 1 and ch′(v) ≥ 10−1×4− 3
2
×2− 11

4
= 1

4
> 0. For

Figure 2.5(17), we have ch′(v) ≥ 10−1×4− 3
2
×4 = 0. For Figure 2.5(18), we

have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×3− 13
2

= 1
2
> 0 by Claim (e). For Figure

2.5(19), we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 3
2
− 21

4
= 1

4
> 0. For

Figure 2.5(20), we have f6+(v) ≥ 1 and ch′(v) ≥ 10− 1× 3− 11
4
− 4 = 1

4
> 0.

For Figure 2.5(21), we have ch′(v) ≥ 10 − 1 × 3 − 3
2
× 2 − 4 = 0. For Figure

2.5(22), we have ch′(v) ≥ 10− 1× 3− 3
2
− 11

4
× 2 = 0. For Figure 2.5(23), we

have f6+(v) ≥ 1. Suppose d(f2) = d(f3) = d(f4) = d(f5) = d(f6) = 3. Then

min{d(v3), d(v4), d(v5), d(v6)} ≥ 4. If d(v2) = d(v6) = 3, then d(f1) ≥ 5

and d(f7) ≥ 5 by Lemma 2.2.7, so ch′(v) ≥ 10 − 1 × 2 − 3
2
× 2 − 5

4
× 2 −

1 × 1 − 1
3
× 2 = 5

6
> 0. If f2, f3, f4, f5 and f6 are incident with no 3−-

vertex, then ch′(v) ≥ 10 − 1 × 2 − 5
4
× 5 − 3

4
× 2 = 1

4
> 0. For Figure

2.5(24), we have ch′(v) ≥ 10 − 1 × 2 − 3
2
− 13

2
= 0. For Figure 2.5(25),

we have ch′(v) ≥ 10 − 1 × 2 − 11
4
− 21

4
= 0. For Figure 2.5(26), we have

ch′(v) ≥ 10 − 1 × 2 − 4 × 2 = 0.

Hence we complete the proof of the theorem 2.2.1: Let G be a planar

graph with maximum degree ∆ ≥ 8. If every 6-cycle of G contains at most

one chord or chordal 6-cycles are not adjacent in G, then χ′′(G) = ∆ + 1.
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§2.3.1 7-cycles containing at most two chords

Theorem 2.3.1. Let G be a planar graph with maximum degree ∆ ≥ 8. If

every 7-cycle of G contains at most two chords, then χ′′(G) = ∆ + 1.

Proof. According to [74], Theorem 2.3.1 holds for planar graphs with ∆ ≥ 9.

So we have ∆ = 8. Arguing by contradiction, let G = (V,E) be a minimal

counterexample to the planar graph G with maximum degree ∆ = 8, such

that |V |+ |E| is minimal and G has been embedded in the plane. Then every

proper subgraph of G is total-9-colorable. First we give some lemmas for G.

Lemma 2.3.1. [16] (a) G is 2-connected.

(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆ + 2 = 10.

(c) The subgraph induced by all edges joining 2-vertices to 8-vertices in G is

a forest.

By Lemma 2.3.1(a): There is no 1-vertex in G. By Lemma 2.3.1(b): any

two neighbors of a 2-vertex are 8-vertices. Any three neighbors of a 3-vertex

are 7+-vertices. Any four neighbors of a 4-vertex are 6+-vertices.

Lemma 2.3.2. G has no configurations depicted in Figure 2.6, where v de-

notes the vertex of degree of 7.

(1)
 (2)
 (3)
 (4)


v


Figure 2.6

Proof. The proof showing that (1) and (5) cannot be configurations contained

in G can be found in [139]. Those for (2), (3) and (4) can be found in [74].
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Lemma 2.3.3. Suppose v is a d-vertex of G with d ≥ 5. Let v1, · · · , vd

be the neighbor of v and f1, f2, · · · , fd be faces incident with v, such that

fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , d}. Let d(v1) = 2 and

{v, u1} = N(v1). Then G does not satisfy one of the following conditions

(see Figure 2.2).

(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2,

d(vi) = 3 (2 ≤ i ≤ k) and d(fj) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that

d(vk) = 2, d(vi) = 3 (k+ 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t−1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that

d(vi) = 3 (k ≤ i ≤ t), d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

See the proof of Lemma 2.3.3 in Lemma 2.2.7.

Now we will use “Discharging method” to complete the proof of Theorem

2.3.1.

By the Euler’s formula |V | − |E| + |F | = 2 and
∑

v∈V d(v) = 2|E|,
∑

f∈F d(f) = 2|E| , we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

For each x ∈ V ∪ F , we define the initial charge

ch(x) =







2d(x) − 6 if x ∈ V

d(x) − 6 if x ∈ F

So
∑

x∈V ∪F ch(x) = −12 < 0. In the following, we will reassign a new charge
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denoted by ch
′

(x) to each x ∈ V ∪ F according to the discharging rules. If

we can show that ch
′

(x) ≥ 0 for each x ∈ V ∪F , then we get an obvious con-

tradiction to 0 ≤
∑

x∈V ∪F ch
′

(x) =
∑

x∈V ∪F ch(x) = −12, which completes

our proof.

Let ch(v → f) be the amount that a vertex v sends a face f . We define

the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. Let f be a 3-face.

R2.1 If f is incident with a 3−-vertex, then it receives 3
2

from each of

its two incident 7+-vertices.

R2.2 If f is incident with a 4-vertex, then it receives 1
2

from the 4-vertex

and 5
4

from each of its two incident 6+-vertices.

R2.3 Suppose that all vertices incident with f are 5+-vertices, and v is a

vertex incident with f . If d(v) = 5, then ch(v → f) = (4− f4(v)
2

− f5(v)
3

)/f3(v).

If d(v) ≥ 6, then ch(v → f) = 5
4
.

R3. Let f be a 4-face and incident with a 4+-vertex v. If 4 ≤ d(v) ≤ 5,

then f receives 1
2

from v; Otherwise

ch(v → f) =































1 if n3−(f) = 2,

3
4

if n3−(f) = 1 and n5−(f) = 2,

2
3

if n3−(f) = 1 and n6+(f) = 3,

1
2

otherwise.

R4. Each 5-face receives 1
3

from each of its incident 4+-vertices.

Since every 7-cycle contains at most two chords, we have the following

lemma.

Lemma 2.3.4. G has no configurations depicted in Figure 2.7, where all the
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vertices showing in Figure 2.7 are different.

(1)
 (3)
(2)


Figure 2.7

Next, it suffices to show that ch
′

(x) ≥ 0 for all x ∈ V ∪ F . Let f be

a face of G. If d(f) ≥ 6, then f does not send out any charge and hence

ch′(f) = ch(f) ≥ 0. If d(f) = 5, then f is incident with at least three 4+-

vertices by Lemma 2.3.1(b), and it follows that ch′(f) ≥ ch(f)+ 1
3
×3 = 0 by

R4. If d(f) = 4, then ch′(f) ≥ ch(f) + min{1
2
× 4, 2

3
× 3, 3

4
× 2 + 1

2
, 1× 2} = 0

by R3. Suppose that d(f) = 3. Let f = v1v2v3v1 and assume that d(v1) ≤

d(v2) ≤ d(v3). If d(v1) ≤ 3, then v2 and v3 are 7+-vertices by Lemma 2.3.1

and it follows that ch′(f) = 3 − 6 + 3
2
× 2 = 0. If d(v1) = 4, then v2 and v3

are 6+-vertices and it follows that ch′(f) = 3 − 6 + 1
2

+ 5
4
× 2 = 0. Suppose

that d(v1) ≥ 5. Note that if a 5-vertex x is incident with four 3-faces, then

any 5+-vertex adjacent to x must be incident with two 5+-faces. So we have

ch′(f) = 3 − 6 + min{4
5

+ 2 × 10
9
, 3 × 19

18
} = 0 by R2.3. Hence we prove that

ch′(f) ≥ 0 for all faces f .

Let v be a vertex of G. If d(v) = 2, then ch
′

(v) = −2+1×2 = 0 by R1. If

d(v) = 3, then ch
′

(v) = ch(v) = 0. If d(v) = 4, then ch
′

(v) ≥ ch(v)− 1
2
×4 =

0. If d(v) = 5, then ch′(v) ≥ 0 by R2-R4. Suppose that d(v) = 6. Then

f3(v) ≤ 4. If f3(v) = 4, then either f4(v) = 1 and f6+(v) ≥ 1, or f5+(v) ≥ 2.

So ch′(v) ≥ ch(v)− 5
4
×4−max{1+0, 1

3
×2} = 0 by Lemma 2.3.4. If f3(v) ≤ 3,

then ch′(v) ≥ ch(v) − 5
4
× f3(v) − 2

3
× (6 − f3(v)) = 24−7f3(v)

12
≥ 0. Suppose

d(v) = 7. Then f3(v) ≤ 5. By Lemma 2.3.2(1), v is incident with at most

two 3-faces are incident with a 3−-vertex, that is, v sends 3
2

to each of the two
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3-faces and at most 5
4

to each other 3-face. If f3(v) = 5, then f5+(v) ≥ 1, and

ch′(v) ≥ ch(v)− 3
2
×2− 5

4
×3− 3

4
×1− 1

3
×1 = 1

6
> 0. If 2 ≤ f3(v) ≤ 4, then

ch′(v) ≥ ch(v)− 3
2
×2− 5

4
× (f3(v)−2)−1× (5−f3(v))− 3

4
×2 = 4−f3(v)

4
≥ 0.

If f3(v) ≤ 1, then ch
′

(v) ≥ ch(v) − 3
2
× f3(v) − 1 × (7 − f3(v)) = 2−f3(v)

2
> 0.

Finally, we assume that d(v) = 8. Then ch(v) = 10. Let v1, · · · , v8 be

neighbors of v in the clockwise order and f1, f2, · · · , f8 be faces incident with

v, such that fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , 8}, and f9 = f1.

Suppose n2(v) = 0. Then f3(v) ≤ 6. If f3(v) = 6, then f5+(v) ≥ 2,

so ch′(v) ≥ 10 − 3
2
× 6 − 1

3
× 2 = 1

3
> 0. If f3(v) = 5, then f5+(v) ≥ 1,

so ch′(v) ≥ 10 − 3
2
× 5 − 1 × 2 − 1

3
× 1 = 1

6
> 0. If f3(v) ≤ 4, then

ch′(v) ≥ 10 − 3
2
× f3(v) − 1 × (8 − f3(v)) ≥ 0.

Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2. Sup-

pose that v1 is incident with a 3-cycle f1. By Lemma 2.3.4, f3(v) ≤ 5 and all

3-faces incident with no 3−-vertex except f1 by Lemma 2.3.2(4). If f3(v) = 5,

then f5+(v) ≥ 2, so ch′(v) ≥ 10−1− 3
2
×1− 5

4
×4−1×1− 1

3
×2 = 5

6
> 0. If

f3(v) = 4, then f5+(v) ≥ 1, so ch′(v) ≥ 10−1− 3
2
×1− 5

4
×3−1×3− 1

3
×1 =

5
12

> 0. If 1 ≤ f3(v) ≤ 3, then ch′(v) ≥ 10 − 1 − 3
2
× 1 − 5

4
× (f3(v) −

1) − 1 × (8 − f3(v)) = 3−f3(v)
4

≥ 0. Suppose v1 is not incident with a 3-

cycle. By Lemma 2.3.4, f3(v) ≤ 5. If f3(v) = 5, then f5+(v) ≥ 1, so

ch′(v) ≥ 10 − 1 − 3
2
× 2 − 5

4
× 3 − 1 × 1 − 3

4
× 1 − 1

3
× 1 = 1

6
> 0 by Lemma

2.3.2(2)-(4). If f3(v) ≤ 4, then ch′(v) ≥ 10−1− 3
2
×f3(v)−1×(8−f3(v)) ≥ 0.

For 2 ≤ n2(v) ≤ 8, we need to prove the following claim firstly.

Claim 2.4. Suppose that d(vi) = d(vi+k+1) = 2 and d(vj) ≥ 3 for i + 1 ≤

j ≤ i+ k( see Figure 2.8). Then v sends at most φ (in total) to fi, fi+1, · · · ,

fi+k, where

φ =







5k+1
4

if k = 1, 3, 4, 5, 6

8
3

if k = 2.
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(2)
 (3)
(1)
 (4)
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v
i+
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i+
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v
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f
i
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i+
5


f
i+
4


v
i


f
i


v
i+
2


f
i+
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(5)


v
i


f
i


v
i+
6


f
i+
5


(6)


v
i


f
i
v
i+7


f
i+
6


Figure 2.8

Proof. By Lemma 2.3.2, d(fi) ≥ 4 and d(fi+k) ≥ 4.

(a) k = 1 By Lemma 2.3.3(1), we have d(vi+1) ≥ 4 or max{d(fi), d(fi+1)}

≥ 5, so φ ≤ max{3
4
× 2, 1 + 1

3
} = 3

2
by R3.

(b) k = 2 If d(fi+1) = 3, then min{d(vi+1), d(vi+2)} ≥ 4 or max{d(fi),

d(fi+2)} ≥ 5 by Lemma 2.3.3(2), and it follows that φ ≤ max{3
4

+ 5
4

+ 2
3
, 1

3
+

3
2

+ 2
3
} = 8

3
. Otherwise, d(fi+1) ≥ 4, then min{d(vi+1), d(vi+2)} ≥ 4 or

max{d(fi), d(fi+1), d(fi+2)} ≥ 5 by Lemma 2.3.3(1), and it follows that

φ ≤ max{1 + 3
4
× 2, 1 × 2 + 1

3
} = 5

2
< 8

3
.

(c) k = 3 Suppose d(fi+1) = d(fi+2) = 3. Then d(vi+2) ≥ 4. If d(vi+1) =

d(vi+3) = 3, then d(fi) ≥ 5 and d(fi+3) ≥ 5, so φ ≤ 3
2
× 2 + 1

3
× 2 = 11

3
. If

min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 5
4
× 2 + 3

4
× 2 = 4. Suppose d(fi+1) = 3

and d(fi+2) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 7 and d(fi) ≥ 5, so φ ≤

1
3

+ 3
2

+ 2
3

+ 1 = 7
2
. If d(vi+2) = 3, then d(vi+1) ≥ 7 and d(vi+3) ≥ 4 or

max{d(fi+2), d(fi+3)} ≥ 5, so φ ≤ max{2
3

+ 3
2

+ 3
4

+ 3
4
, 2

3
+ 3

2
+ 1 + 1

3
} = 11

3
.

If min{d(vi+1), d(vi+2)} ≥ 4, then φ ≤ 3
4

+ 5
4

+ 2
3

+ 1 = 11
3

. It is similar with

d(fi+2) = 3 and d(fi+1) ≥ 4.

Suppose min{d(fi+1), d(fi+2)} ≥ 4. Then max{d(vi+1), d(vi+2), d(vi+3)}

≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3)} ≥ 5, so φ ≤ max{1 × 2 + 3
4
×

2, 1 × 3 + 1
3
} = 7

2
. So φ ≤ max{11

3
, 4, 7

2
} = 4.

(d) k = 4 Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3. Then min{d(vi+2),

d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5 and d(fi+4) ≥ 5,
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so φ ≤ 3
2
× 2 + 1 + 1

3
× 2 = 14

3
. If min{d(vi+1), d(vi+4)} ≥ 4, then φ ≤

max{5
4
× 3 + 3

4
+ 2

3
, 5
4
× 3 + 3

4
× 2} = 21

4
.

Suppose d(fi+1) = d(fi+2) = 3, d(fi+3) ≥ 4. Then d(vi+2) ≥ 4. If

d(vi+1) = d(vi+3) = 3, then d(vi+4) ≥ 4 and d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 3

4
×

2 + 1
3

= 29
6

. If min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 5
4
× 2 + 1 + 3

4
× 2 = 5.

It is similar with d(fi+2) = d(fi+3) = 3, d(fi+1) ≥ 4. Suppose d(fi+1) =

d(fi+3) = 3, d(fi+2) ≥ 4. If d(vi+1) = d(vi+4) = 3, then d(fi+3) ≥ 5 and

d(fi+4) ≥ 5, so φ ≤ 3
2
× 2 + 2

3
+ 1

3
× 2 = 13

3
. If d(vi+2) = d(vi+3) = 3,

then d(fi+3) ≥ 5, so φ ≤ 3
2
× 2 + 2

3
× 2 + 1

3
= 14

3
. If d(vi+1) = 3 and

d(vi+4) ≥ 4, then d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 2

3
× 2 + 1

3
= 14

3
. It is similar with

d(vi+3) = 3 and d(vi+1) ≥ 4. If d(vi+2) = 3 and min{d(vi+3), d(vi+4)} ≥ 4,

then d(vi+1) ≥ 7, so φ ≤ 3
2

+ 5
4

+ 3
4

+ 2
3
×2 = 29

6
. It is similar with d(vi+3) = 3

and min{d(vi+1), d(vi+2)} ≥ 4. Otherwise, φ ≤ 5
4
× 2 + 3

4
× 2 + 2

3
= 14

3
.

Suppose d(fi+1) = 3, d(fi+2) ≥ 4 and d(fi+3) ≥ 4. If d(vi+1) = 3, then

d(vi+2) ≥ 7 and d(fi) ≥ 5, so φ ≤ 3
2

+ 1 × 2 + 2
3

+ 1
3

= 9
2
. If d(vi+2) = 3, then

d(vi+1) ≥ 7 and max{d(vi+3), d(vi+4)} ≥ 4 or max{d(fi+2), d(fi+3), d(fi+4)}

≥ 5, so φ ≤ max{3
2

+ 1 + 3
4
× 2 + 2

3
, 3

2
+ 1 × 2 + 2

3
+ 1

3
} = 9

2
. Otherwise,

φ ≤ 5
4

+ 1 × 2 + 3
4

+ 2
3

= 14
3

. It is similar with d(fi+3) = 3, d(fi+1) ≥ 4

and d(fi+2) ≥ 4. Suppose d(fi+2) = 3, d(fi+1) ≥ 4 and d(fi+3) ≥ 4. If

d(vi+2) = 3, then d(vi+1) ≥ 4 or max{d(fi), d(fi+1) ≥ 5}, so φ ≤ max{3
2

+

1 + 3
4
×2 + 2

3
, 3

2
+ 1×2 + 2

3
+ 1

3
} = 14

3
. Otherwise, φ ≤ 5

4
+ 1×2 + 3

4
+ 2

3
= 14

3
.

It is similar with d(vi+3) = 3.

Suppose min{d(fi+1), d(fi+2), d(fi+3)} ≥ 4. Then max{d(vi+1), d(vi+2),

d(vi+3), d(vi+4)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3), d(fi+4)} ≥ 5,

so φ ≤ max{1×3+3
4
×2, 1×4+1

3
} = 9

2
. So φ ≤ max{14

3
, 21

4
, 29

6
, 5, 13

3
, 19

4
, 9

2
} =

31
6

.

(e) k = 5 Suppose d(fi+1) = d(fi+2) = d(fi+3) = d(fi+4) = 3, then
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min{d(vi+2), d(vi+3), d(vi+4)} ≥ 4. If d(vi+1) = d(vi+5) = 3, then d(fi) ≥ 5

and d(fi+5) ≥ 5, so φ ≤ 3
2
×2+ 5

4
×2+ 1

3
×2 = 37

6
. If min{d(vi+1), d(vi+5)} ≥ 4,

then φ ≤ 5
4
× 4 + 3

4
× 2 = 13

2
.

Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3, d(fi+4) ≥ 4, then min{d(vi+2),

d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5 and d(vi+5) ≥ 4 or

max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 + 3

4
× 2 + 1

3
, 3

2
× 2 +

1 + 1 + 1
3
× 2} = 35

6
. If d(vi+1) = 3 and d(vi+4) = 4, then d(fi) ≥ 5, so

φ ≤ 3
2

+ 5
4

+ 1 + 1 + 3
4

+ 1
3

= 35
6

. If d(vi+1) = 3 and d(vi+4) ≥ 5, then

d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4
× 2 + 1 + 2

3
+ 1

3
= 6. If d(vi+4) = 3 and d(vi+1) = 4,

then d(vi+5) ≥ 4 or max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2

+ 5
4

+ 1 +

3
4
× 3, 3

2
+ 5

4
+ 1 + 1 + 3

4
+ 1

3
} = 6. If d(vi+4) = 3 and d(vi+1) ≥ 5, then

d(vi+5) ≥ 4 or max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2

+ 5
4
× 2 + 3

4
× 2 +

2
3
, 3

2
+ 5

4
× 2 + 1 + 2

3
+ 1

3
} = 37

6
. Otherwise, φ ≤ 5

4
× 3 + 1 + 3

4
+ 2

3
= 37

6
.

Suppose d(fi+1) = d(fi+2) = d(fi+4) = 3, d(fi+3) ≥ 4, then d(vi+2) ≥ 4.

If d(vi+1) = d(vi+3) = d(vi+4) = 3, then d(fi) ≥ 5 and d(fi+3) ≥ 5, so

φ ≤ 3
2
×3 + 2

3
+ 1

3
×2 = 35

6
. It is similar with d(vi+1) = d(vi+3) = d(vi+5) = 3.

If d(vi+1) = d(vi+3) = 3 and min{d(vi+4), d(vi+5)} ≥ 4, then d(fi) ≥ 5, so

φ ≤ 3
2
× 2 + 5

4
+ 3

4
+ 2

3
+ 1

3
= 6. It is similar with d(vi+1) = d(vi+4) = 3

and d(vi+3) ≥ 4. If d(vi+1) = d(vi+5) = 3 and d(vi+3) ≥ 4, then d(fi) ≥ 5

and d(fi+5) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
+ 1

2
+ 1

3
× 2 = 65

12
. Otherwise, φ ≤

3
2

+ 5
4
× 2 + 3

4
× 2 + 2

3
= 37

6
.

Suppose d(fi+1) = d(fi+2) = 3, d(fi+3) ≥ 4 and d(fi+4) ≥ 4, then

d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5 and max{d(vi+4), d(vi+5)}

≥ 4 or max{d(fi+3), d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 + 3

4
× 2 +

1
3
, 3

2
×2 + 1×2 + 1

3
×2} = 35

6
. If d(vi+1) = 3 and d(vi+3) ≥ 4, then d(fi) ≥ 5,

so φ ≤ 3
2

+ 5
4

+ 1 × 2 + 3
4

+ 1
3

= 35
6

. If d(vi+3) = 3 and d(vi+1) ≥ 4,

then max{d(vi+4), d(vi+5)} ≥ 4 or max{d(fi+3), d(fi+4), d(fi+5)} ≥ 5,
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so φ ≤ max{3
2

+ 5
4

+ 1 + 3
4
× 3, 3

2
+ 5

4
+ 1 × 2 + 3

4
+ 1

3
} = 6. Other-

wise, φ ≤ 5
4
× 2 + 1 × 2 + 3

4
× 2 = 6. Suppose d(fi+1) = d(fi+3) = 3,

d(fi+2) ≥ 4 and d(fi+4) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5, so

φ ≤ 3
2
× 2 + 1 + 2

3
× 2 + 1

3
= 17

3
. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5

and d(vi+5) ≥ 4 or max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 3

4
×

2 + 2
3

+ 1
3
, 3

2
× 2 + 1 + 2

3
+ 1

3
} = 11

2
. If d(vi+2) = d(vi+3) = 3, then

d(fi+2) ≥ 5, so φ ≤ 3
2
× 2 + 1 + 2

3
× 2 + 1

3
= 17

3
. If d(vi+2) = d(vi+4) = 3,

then d(vi+5) ≥ 4 or max{d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
× 2 + 3

4
×

2 + 2
3
× 2, 3

2
× 2 + 1 + 2

3
× 2 + 1

3
} = 35

6
. It is similar with d(fi+1) =

d(fi+4) = 3, d(fi+2) ≥ 4 and d(fi+3) ≥ 4. Suppose d(fi+2) = d(fi+3) = 3,

d(fi+1) ≥ 4 and d(fi+4) ≥ 4, then d(vi+3) ≥ 4. If d(vi+2) = d(vi+4) = 3, then

max{d(vi+1), d(vi+5)} ≥ 4 or max{d(fi), d(fi+1), d(fi+4), d(fi+5)} ≥ 5, so

φ ≤ max{3
2
× 2 + 3

4
× 4, 3

2
× 2 + 1 + 3

4
× 1 + 1

3
, 3

2
× 2 + 1 × 2 + 1

3
× 2} = 6.

If d(vi+2) = 3 and d(vi+4) ≥ 4, then d(vi+1) ≥ 4 or max{d(fi), d(fi+1)} ≥ 5,

so φ ≤ max{3
2

+ 5
4

+ 1 + 3
4
× 3, 3

2
+ 5

4
+ 1 × 2 + 3

4
+ 1

3
} = 6. It is similar with

d(vi+4) = 3 and d(vi+2) ≥ 4 . Otherwise, φ ≤ 5
4
× 2 + 1 × 2 + 3

4
× 2 = 6.

Suppose only one of fi+1, fi+2, fi+3 and fi+4 is 3-face, assume that

d(fi+1) = 3. If d(vi+1) = 3, then d(fi) ≥ 5, so φ ≤ 3
2

+ 1 × 3 + 2
3

+ 1
3

= 11
2

. If

d(vi+2) = 3, then max{(.vi+3), d(vi+4), d(vi+5)} ≥ 4 or max{d(fi+2), d(fi+3),

d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{3
2
+1×2+ 3

4
×2+ 2

3
, 3

2
+1×3+ 2

3
+ 1

3
} = 17

3
.

Otherwise, φ ≤ 5
4

+1×3+ 3
4

+ 2
3

= 17
3

. Suppose min{d(fi+1), d(fi+2), d(fi+3),

d(fi+4)} ≥ 4, then max{d(vi+1), d(vi+2), d(vi+3), d(vi+4), d(vi+5)} ≥ 4 or

max{d(fi), d(fi+1), d(fi+2), d(fi+3), d(fi+4), d(fi+5)} ≥ 5, so φ ≤ max{1×

4 + 3
4
× 2, 1 × 5 + 1

3
} = 11

2
.

At last, φ ≤ max{37
6
, 13

2
, 35

6
, 6, 65

12
, 17

3
, 11

2
} = 13

2
.

(f) k = 6 Suppose d(fi+1) = d(fi+2) = d(fi+3) = d(fi+4) = d(fi+5) = 3,

then min{d(vi+2), d(vi+3), d(vi+4), d(vi+5)} ≥ 4. If d(vi+1) = d(vi+6) = 3,
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then d(fi) ≥ 5 and d(fi+6) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
× 2 + 1 + 1

3
× 2 = 43

6
. If

min{d(vi+1), d(vi+6)} ≥ 4, then φ ≤ 5
4
× 5 + 3

4
+ 2

3
= 23

3
.

Suppose d(fi+1) = d(fi+2) = d(fi+3) = d(fi+4) = 3 and d(fi+5) ≥ 4, then

min{d(vi+2), d(vi+3), d(vi+4)} ≥ 4. If d(vi+1) = d(vi+5) = 3, then d(fi) ≥ 5

and d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2
× 2 + 5

4
× 2 +

3
4
× 2 + 1

3
, 3

2
× 2 + 5

4
× 2 + 1 + 1

3
× 2} = 22

3
. If d(vi+1) = 3 and d(vi+5) ≥ 4,

then d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4
× 3 + 1 + 3

4
+ 1

3
= 19

3
. If d(vi+5) = 3 and

d(vi+1) ≥ 4, then d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2

+

5
4
×3 + 3

4
×3, 3

2
+ 5

4
×3 + 1 + 3

4
+ 1

3
} = 15

2
. If min{d(vi+1), d(vi+5)} ≥ 4, then

φ ≤ 5
4
×4+1+ 3

4
×2 = 15

2
. Suppose d(fi+1) = d(fi+2) = d(fi+3) = d(fi+5) = 3

and d(fi+4) ≥ 4, then min{d(vi+2), d(vi+3)} ≥ 4. If d(vi+1) = d(vi+4) =

d(vi+5) = 3, then d(fi) ≥ 5 and d(fi+4) ≥ 5, so φ ≤ 3
2
×3+1+ 2

3
+ 1

3
×2 = 41

6
.

It is similar with d(vi+1) = d(vi+4) = d(vi+6) = 3. If d(vi+1) = d(vi+4) = 3

and min{d(vi+5), d(vi+6)} ≥ 4, then d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
+ 1 + 3

4
+

2
3

+ 1
3

= 7. If d(vi+1) = d(vi+5) = 3 and d(vi+4) ≥ 5, then d(fi) ≥ 5, so

3
2
× 2 + 5

4
× 2 + 2

3
× 2 + 1

3
= 43

6
. It is similar with d(vi+4) = d(vi+5) = 3 and

d(vi+1) ≥ 5 or d(vi+4) = d(vi+6) = 3 and d(vi+1) ≥ 5. If d(vi+1) = d(vi+6) = 3

and d(vi+4) ≥ 4, then φ ≤ 3
2
×2+ 5

4
×2+ 2

3
+ 1

3
×2 = 41

6
. If d(vi+1) = d(vi+5) = 3

and d(vi+4) = 4, then d(fi) ≥ 5, then φ ≤ 3
2
× 2 + 5

4
+ 1 + 3

4
+ 2

3
+ 1

3
= 7. It is

similar with d(vi+4) = d(vi+5) = 3 and d(vi+1) = 4 or d(vi+4) = d(vi+6) = 3

and d(vi+1) = 4. If d(vi+1) = 3 and min{d(vi+4), d(vi+5), d(vi+6) ≥ 4,

then φ ≤ 3
2

+ 5
4
× 3 + 3

4
+ 2

3
+ 1

3
= 7. It is similar with d(vi+6) = 3 and

min{d(vi+1), d(vi+4), d(vi+5) ≥ 4. Otherwise, φ ≤ 5
4
× 4 + 3

4
× 2 + 2

3
= 43

6
.

Suppose d(fi+1) = d(fi+2) = d(fi+4) = d(fi+5) = 3 and d(fi+3) ≥ 4, then

min{d(vi+2), d(vi+5)} ≥ 4. If d(vi+1) = d(vi+4) = d(vi+5) = d(vi+6) =

3, then min{d(fi), d(fi+3), d(fi+6)} ≥ 5, so φ ≤ 3
2
× 4 + 1

3
× 3 = 7. If

d(vi+1) = d(vi+6) = 3, then max{d(vi+3), d(vi+4)} ≥ 4 or d(fi+3) ≥ 5, so
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φ ≤ max{3
2
×3+ 5

4
+ 3

4
+ 1

3
×2, 3

2
×4+ 1

3
×3} = 7. if min{d(vi+1), d(vi+6)} ≥ 4

and max{d(vi+3), d(vi+4)} ≥ 4, then φ ≤ 3
2

+ 5
4
× 3 + 3

4
× 3 = 15

2
. Otherwise,

φ ≤ 5
4
× 4 + 3

4
× 2 + 1

2
= 7.

Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3, and min{d(fi+4), d(fi+5)} ≥

4, then min{d(vi+2), d(vi+3)} ≥ 4. if d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5

and max{d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so

φ ≤ max{3
2
× 2 + 1 + 1 + 3

4
× 2 + 1

3
, 3

2
× 2 + 1 + 1 × 2 + 1

3
× 2} = 41

6
. If

d(vi+1) = 3 and d(vi+4) = 4, then d(fi) ≥ 5, so φ ≤ 3
2
+ 5

4
+1+1×2+ 3

4
+ 1

3
= 41

6
.

If d(vi+1) = 3 and d(vi+4) ≥ 5, then d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4
× 2 + 1 × 2 +

2
3

+ 1
3

= 7. If d(vi+4) = 3 and d(vi+1) = 4, then max{d(vi+5), d(vi+6)} ≥

4 or max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2

+ 5
4

+ 1 + 1 +

3
4
× 3, 3

2
+ 5

4
+ 1 + 1 × 2 + 3

4
+ 1

3
} = 7. If d(vi+4) = 3 and d(vi+1) ≥ 5,

then max{d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so

φ ≤ max{3
2

+ 5
4
× 2 + 1 + 3

4
× 2 + 2

3
, 3

2
+ 5

4
× 2 + 1 × 2 + 2

3
+ 1

3
} = 43

6
.

Otherwise, φ ≤ 5
4
× 3 + 1 × 2 + 3

4
+ 2

3
= 43

6
. Suppose d(fi+2) = d(fi+3) =

d(fi+4) = 3 and min{d(fi+1), d(fi+5)} ≥ 4, then min{d(vi+3), d(vi+4)} ≥ 4.

If d(vi+1) = d(vi+2) = d(vi+5) = d(vi+6) = 3, then max{d(fi), d(fi+1)} ≥ 5

and d(fi+5), d(fi+6)} ≥ 5, so φ ≤ 3
2
× 2 + 1 + 1× 2 + 1

3
× 2 = 20

3
. If d(vi+1) =

d(vi+2) = d(vi+5) = 3 and d(vi+6) ≥ 4, then max{d(fi), d(fi+1)} ≥ 5, so

φ ≤ 3
2
× 2 + 1 + 1 + 3

4
× 2 + 1

3
= 41

6
. It is similar with d(vi+2) = d(vi+5) =

d(vi+6) = 3 and d(vv+1) ≥ 4. If d(vi+2) = 3 and d(vi+5) = 4, then d(vi+1) ≥ 4

or max{d(fi), d(fi+1)} ≥ 5, so φ ≤ max{3
2
+ 5

4
+1+1+ 3

4
×3, 3

2
+ 5

4
+1+1×2+

3
4

+ 1
3
} = 7. It is similar with d(vi+5) = 3 and d(vi+2) = 4. If d(vi+2) = 3 and

d(vi+5) ≥ 5, then d(vi+1) ≥ 4 or max{d(fi), d(fi+1)} ≥ 5, so φ ≤ max{3
2

+

5
4
×2+1+ 3

4
×2+ 2

3
, 3

2
+ 5

4
×2+1×2+ 2

3
+ 1

3
} = 43

6
. It is similar with d(vi+5) = 3

and d(vi+2) ≥ 5. If d(vi+2) = d(vi+5) = 4, then φ ≤ 5
4
× 2 + 1 + 3

4
× 4 = 13

2
. If

d(vi+2) = 4 and d(vi+5) ≥ 5, then φ ≤ 5
4
×2 + 1×2 + 3

4
+ 2

3
= 43

6
. It is similar
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with d(vi+5) = 3 and d(vi+2) ≥ 5. Suppose d(fi+1) = d(fi+2) = d(fi+4) = 3

and min{d(fi+3), d(fi+5)} ≥ 4, then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) =

d(vi+4) = 3, then min{d(fi), d(fi+3)} ≥ 5, so φ ≤ 3
2
× 3 + 1 + 2

3
+ 1

3
× 2 = 41

6
.

If d(vi+1) = d(vi+3) = d(vi+5) = 3, then d(fi) ≥ 5 and d(vi+6) ≥ 4 or

max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2
× 3 + 3

4
× 2 + 2

3
+ 1

3
, 3

2
× 3 + 1 +

2
3

+ 1
3
× 2} = 7. If d(vi+1) = d(vi+3) = 3 and min{d(vi+4), d(vi+5)} ≥ 4,

then d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
+ 1 + 3

4
+ 2

3
+ 1

3
= 7. It is similar

with d(vi+1) = d(vi+4) = 3 and d(vi+3) ≥ 4. If d(vi+1) = d(vi+5) = 3 and

d(vi+3) ≥ 4 , then d(fi) ≥ 5 and d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5,

so φ ≤ max{3
2
× 2 + 5

4
+ 3

4
× 2 + 1

2
+ 1

3
, 3

2
× 2 + 5

4
+ 1

2
+ 1

3
× 2} = 79

12
. If

d(vi+1) = d(vi+5) = 3 and d(vi+3) ≥ 5, then d(fi) ≥ 5 and d(vi+6) ≥ 4 or

max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 + 3

4
× 2 + 2

3
+ 1

3
, 3

2
× 2 +

1 + 1 + 1
2

+ 1
3
× 2} = 13

2
. If d(vi+3) = d(vi+4) = 3 and d(vi+1) ≥ 4, then

d(fi+3) ≥ 5, so φ ≤ 3
2
× 2 + 5

4
+ 1 + 3

4
+ 2

3
+ 1

3
= 7. If d(vi+3) = d(vi+5) = 3

and d(vi+1) ≥ 4, then d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤

max{3
2
×2 + 5

4
+ 3

4
×3 + 2

3
, 3

2
×2 + 5

4
+ 1 + 3

4
+ 2

3
+ 1

3
} = 43

6
. If d(vi+1) = 3 and

d(vi+3) = d(vi+5) = 4, then d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4
×2+1+ 3

4
+ 1

2
+ 1

3
= 79

12
. If

d(vi+1) = 3, d(vi+5) = 4 and d(vi+3) ≥ 5, then d(fi) ≥ 5, so φ ≤ 3
2
+ 5

4
+1+1+

3
4
+ 2

3
+ 1

3
= 13

2
. If d(vi+3) = 3, d(vi+1) = 4 and min{d(vi+4), d(vi+5)} ≥ 4, then

φ ≤ 3
2
+ 5

4
×2+1+ 3

4
×2+ 2

3
= 43

6
. If d(vi+4) = 3 and min{d(vi+1), d(vi+3)} ≥ 4,

then φ ≤ 3
2

+ 5
4
× 2 + 1 + 3

4
× 2 + 2

3
= 43

6
. If d(vi+5) = 3, d(vi+1) ≥ 4

and d(vi+3) = 4, then d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5, so φ ≤

max{3
2

+ 5
4
× 2 + 3

4
× 2 + 1

2
, 3

2
+ 5

4
× 2 + 1 + 3

4
+ 1

2
+ 1

3
} = 27

4
. If d(vi+5) = 3,

d(vi+1) ≥ 4 and d(vi+3) ≥ 5, then d(vi+6) ≥ 4 or max{d(fi+5), d(fi+6)} ≥ 5,

so φ ≤ max{3
2

+ 5
4

+ 1 + 3
4
×3 + 2

3
, 3

2
+ 5

4
+ 1 + 1 + 3

4
+ 2

3
+ 1

3
} = 40

3
. Otherwise,

φ ≤ 5
4
× 3 + 3

4
× 3 + 1

2
= 13

2
. It is similar with d(fi+1) = d(fi+2) = d(fi+5) = 3

or d(fi+2) = d(fi+3) = d(fi+5) = 3.
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Suppose d(fi+1) = d(fi+2) = 3 and min{d(fi+3), d(fi+4), d(fi+5)} ≥ 4,

then d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5 and max{d(vi+4),

d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+3), d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so

φ ≤ max{3
2
×2 + 1×2 + 3

4
×2 + 1

3
, 3

2
×2 + 1×3 + 1

3
×2} = 41

6
. If d(vi+1) = 3

and d(vi+3) ≥ 4, then d(fi) ≥ 5, so φ ≤ 3
2

+ 5
4

+ 1 × 3 + 3
4

+ 1
3

= 41
6

. If

d(vi+3) = 3 and d(vi+1) ≥ 4, then max{d(vi+4), d(vi+5), d(vi+6)} ≥ 4 or

max{d(fi+3), d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2

+ 5
4

+ 1× 2 + 3
4
×

3, 3
2

+ 5
4
+1×3+ 3

4
+ 1

3
} = 7. Otherwise, φ ≤ 5

4
×2+1×3+ 3

4
×2 = 7. Suppose

d(fi+2) = d(fi+3) = 3 and min{d(fi+1), d(fi+4), d(fi+5)} ≥ 4, then d(vi+3) ≥

4. If d(vi+1) = d(vi+2) = d(vi+4) = d(vi+5) = 3, then max{d(fi), d(fi+1)} ≥ 5

and max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so φ ≤ 3
2
× 2 + 1 × 3 + 1

3
× 2 = 20

3
.

If d(vi+2) = d(vi+4) = 3 and d(vi+1) ≥ 4, then max{d(vi+5), d(vi+6)} ≥ 4

or max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2
× 2 + 1 + 3

4
× 4, 3

2
×

2 + 1 × 2 + 3
4
× 1 + 1

3
} = 7. It is similar with d(vi+2) = d(vi+4) = 3 and

max{d(vi+5), d(vi+6)} ≥ 4. If d(vi+2) = 3 and d(vi+4) ≥ 4, then d(vi+1) ≥

4 or max{d(fi), d(fi+1)} ≥ 5, so φ ≤ max{3
2

+ 5
4

+ 1 × 2 + 3
4
× 3, 3

2
+

5
4

+ 1 × 3 + 3
4

+ 1
3
} = 7. It is similar with d(vi+4) = 3 and d(vi+2) ≥ 4.

Otherwise, φ ≤ 5
4
× 2 + 1× 3 + 3

4
× 2 = 7. Suppose d(fi+1) = d(fi+3) = 3 and

min{d(fi+2), d(fi+4), d(fi+5)} ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5,

so φ ≤ 3
2
×2 + 1×2 + 2

3
×2 + 1

3
= 20

3
. If d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5

and max{d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+4), d(fi+5), d(fi+6} ≥ 5, so φ ≤

max{3
2
×2+1+ 3

4
×2+ 2

3
+ 1

3
, 3

2
×2+1×2+ 2

3
+ 1

3
} = 13

2
. If d(vi+2) = d(vi+3) = 3,

then d(fi+2) ≥ 5, so φ ≤ 3
2
×2+1×2+ 2

3
×2+ 1

3
= 20

3
. If d(vi+2) = d(vi+4) = 3,

then max{d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so

φ ≤ max{3
2
×2+1+ 3

4
×2+ 2

3
×2, 3

2
×2+1×2+ 2

3
×2+ 1

3
} = 41

6
. If d(vi+2) = 3

and min{d(vi+3), d(vi+4)} ≥ 4, then φ ≤ 3
2

+ 5
4

+ 1 × 2 + 3
4

+ 2
3
× 2 = 41

6
.

It is similar with d(fi+1) = d(fi+5) = 3 and min{d(fi+2), d(fi+3)} ≥ 4.
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Suppose d(fi+1) = d(fi+4) = 3 and min{d(fi+2), d(fi+3), d(fi+5)} ≥ 4. If

d(vi+1) = d(vi+4) = 3, then d(fi) ≥ 5, so φ ≤ 3
2
× 2 + 1 × 2 + 2

3
× 2 + 1

3
= 20

3
.

If d(vi+2) = d(vi+4) = 3, then d(vi+3) ≥ 4 or max{d(fi+2), d(fi+3)} ≥ 5, so

φ ≤ max{3
2
× 2 + 1 + 3

4
× 2 + 2

3
× 2, 3

2
× 2 + 1 × 2 + 2

3
× 2 + 1

3
} = 41

6
. It is

similar with d(vi+2) = d(vi+5) = 3. If d(vi+1) = d(vi+5) = 3, then d(vi+6) ≥ 4

or max{d(fi+5), d(fi+6)} ≥ 5, then φ ≤ max{3
2
× 2 + 3

4
× 2 + 2

3
× 2 + 1

3
, 3

2
×

2 + 1 + 2
3
× 2 + 1

3
× 2} = 37

6
. It is similar with d(fi+2) = d(fi+4) = 3 and

min{d(fi+1), d(fi+3), d(fi+5)} ≥ 4.

Suppose only one of fi+1, fi+2, fi+3 and fi+4 is 3-face, assume d(fi+1) =

3. If d(vi+1) = 3, then d(fi) ≥ 5, so φ ≤ 3
2

+1×4+ 2
3

+ 1
3

= 13
2

. If d(vi+2) = 3,

then max{(.vi+3), d(vi+4), d(vi+5), d(vi+6)} ≥ 4 or max{d(fi+2), d(fi+3),

d(fi+4), d(fi+5), d(fi+6)} ≥ 5, so φ ≤ max{3
2

+ 1 × 3 + 3
4
× 2 + 2

3
, 3

2
+

1 × 4 + 2
3

+ 1
3
} = 20

3
. Otherwise, φ ≤ 5

4
+ 1 × 4 + 3

4
+ 2

3
= 20

3
. Suppose

min{d(fi+1), d(fi+2), d(fi+3), d(fi+4)} ≥ 4, then max{d(vi+1), d(vi+2), d(vi+3),

d(vi+4), d(vi+5)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3), d(fi+4), d(fi+5)} ≥

5, so φ ≤ max{1 × 5 + 3
4
× 2, 1 × 6 + 1

3
} = 13

2
.

At last, φ ≤ max{43
6
, 23

3
, 22

3
, 19

3
, 15

2
, 41

6
, 7, 20

3
, 13

2
, 79

12
, 27

4
, 40

3
, 37

6
} = 23

3
.

Proof of Theorem 2.3.1(continued). If n2(v) = 8, then all faces incident

with v are 6+-faces by Lemma 2.3.2(2)-(4), that is, f6+(v) = 8, so ch
′

(v) =

10 − 1 × 8 = 2 > 0. If n2(v) = 7, then f6+(v) ≥ 6 and f3(v) = 0, so

ch
′

(v) ≥ 10 − 1 × 7 − 3
2

= 3
2
> 0 by claim (a).

Suppose n2(v) ≤ 6. The possible distributions of 2-vertices adjacent to

v are illustrated in Figure 2.5.

For Figure 2.5(1), we have f6+(v) ≥ 5 and ch′(v) ≥ 10 − 1 × 6 − 8
3

=

4
3
> 0 by claim (b). For Figure 2.5(2)-(4), we have f6+(v) ≥ 4 and ch′(v) ≥

10 − 1 × 6 − 3
2
× 2 = 1 > 0. For Figure 2.5(5), we have f6+(v) ≥ 4 and
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Figure 2.5

ch′(v) ≥ 10 − 1 × 5 − 4 = 1 > 0 by claim (c). For Figure 2.5(6)-(7), we

have f6+(v) ≥ 3 and ch′(v) ≥ 10 − 1 × 5 − 3
2
− 8

3
= 5

6
> 0. For Figure

2.5(8)-(9), we have f6+(v) ≥ 2 and ch′(v) ≥ 10 − 1 × 5 − 3
2
× 3 = 1

2
> 0. For

Figure 2.5(10), we have f6+(v) ≥ 3 and ch′(v) ≥ 10 − 1 × 4 − 31
6

= 5
6
> 0

by claim (d). For Figure 2.5(11) and Figure 2.5(13), we have f6+(v) ≥ 2 and

ch′(v) ≥ 10−1×4− 3
2
−4 = 1

2
> 0. For Figure 2.5(12) and Figure 2.5(16), we

have f6+(v) ≥ 2 and ch′(v) ≥ 10−1×4− 8
3
×2 = 2

3
> 0. For Figure 2.5(14) and

Figure 2.5(15), we have f6+(v) ≥ 1 and ch′(v) ≥ 10−1×4− 3
2
×2− 8

3
= 1

3
> 0.

For Figure 2.5(17), we have ch′(v) ≥ 10−1×4− 3
2
×4 = 0. For Figure 2.5(18),

we have f6+(v) ≥ 2 and ch′(v) ≥ 10 − 1 × 3 − 13
2

= 1
2
> 0 by claim (e). For

Figure 2.5(19), we have f6+(v) ≥ 1 and ch′(v) ≥ 10− 1× 3− 3
2
− 21

4
= 1

4
> 0.
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For Figure 2.5(20), we have f6+(v) ≥ 1 and ch′(v) ≥ 10 − 1 × 3 − 8
3
− 4 =

1
3
> 0. For Figure 2.5(21), we have ch′(v) ≥ 10 − 1 × 3 − 3

2
× 2 − 4 = 0.

For Figure 2.5(22), we have ch′(v) ≥ 10 − 1 × 3 − 3
2
− 8

3
× 2 = 1

6
. For

Figure 2.5(23), we have ch′(v) ≥ 10 − 1 × 2 − 31
4

= 1
4
> 0. For Figure

2.5(24), we have ch′(v) ≥ 10 − 1 × 2 − 3
2
− 13

2
= 0. For Figure 2.5(25), we

have ch′(v) ≥ 10 − 1 × 2 − 8
3
− 21

4
= 1

12
> 0. For Figure 2.5(26), we have

ch′(v) ≥ 10 − 1 × 2 − 4 × 2 = 0.

Hence we complete the proof of the theorem 2.3.1.

§2.5 Planar graph with ∆ ≥ 7

Shen and Wang [103] proved

Lemma 2.5.1. Let G be a planar graph without 5-cycles. If ∆ ≥ 7, then

χ′′(G) = ∆ + 1.

Wang et al. [145] proved

Lemma 2.5.2. Let G be a planar graph without chordal 5-cycles. If ∆ ≥ 7,

then χ′′(G) = ∆ + 1.

Wang and Wu [118] proved

Lemma 2.5.3. Let G be a planar graph without intersecting 5-cycles. If

∆ ≥ 7, then χ′′(G) = ∆ + 1.

These results are all about planar graph with (∆ ≥ 7) in order to prove

their total chromatic number is (∆ + 1). We extend these result and get

the following result: Let G be a planar graph without intersecting chordal

5-cycles. If ∆ ≥ 7, then χ′′(G) = ∆ + 1.
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Theorem 2.5.1. Let G be a planar graph without intersecting chordal 5-

cycles, that is, every vertex is incident with at most one chordal cycle of

length 5. If ∆ ≥ 7, then χ′′(G) = ∆ + 1.

According to [127], the theorem 2.5.1 is true for planar graph with ∆ ≥ 8

and satisfy that every vertex is incident with at most one chordal cycle of

length 5. So we assume in the following that ∆ = 8.

Let G = (V,E) be a minimal counterexample to the planar graph G

with maximum degree ∆ = 7, such that |V |+ |E| is minimal and G has been

embedded in the plane. Then every proper subgraph of G is total-8-colorable.

First we give some lemmas for G.

Lemma 2.5.4. [16] (a) G is 2-connected.

(b) If uv is an edge of G with d(u) ≤ 4, then d(u) + d(v) ≥ ∆ + 2.

(c) The subgraph induced by all edges joining 2-vertices to 7-vertices in G is

a forest.

By Lemma 2.5.4(a): There is no 1-vertex in G. By Lemma 2.5.4(b): any

two neighbors of a 2-vertex are 7-vertices. Any three neighbors of a 3-vertex

are 6+-vertices. Any four neighbors of a 4-vertex are 5+-vertices.

Lemma 2.5.5. G has no configurations depicted in Figure 2.9, where w

denotes the vertex of degree of 6.

(1)


w


(2)
 (3)
 (4)
 (5)
 (6)


Figure 2.9
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Proof. The proof of (1), (3) and (5) can be found in [139], (2) can be found

in [102], (4) and (6) can be found in [74].

Lemma 2.5.6. [83] G contains no 3-face incident with more than one 4-

vertex.

Lemma 2.5.7. Let v be a vertex of G, and d(v) = d ≥ 5. Let v1, · · · , vd

be the neighbor of v and f1, f2, · · · , fd be faces incident with v, such that

fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , d}. Let d(v1) = 2 and

{v, u1} = N(v1). Then G does not satisfy one of the following conditions

(see Figure 2.2).

(1) there exists an integer k (2 ≤ k ≤ d− 1) such that d(vk+1) = 2, d(vi) = 3

(2 ≤ i ≤ k) and d(fj) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d− 1) such that d(vk) = 2,

d(vi) = 3 (k + 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi) = 3

(k ≤ i ≤ t), d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t− 1).

See the proof of Lemma 2.5.7 in Lemma 2.2.7.

Now we will use “Discharging method” to complete the proof of Theorem

2.5.1.

By the Euler’s formula |V | − |E| + |F | = 2 and
∑

v∈V d(v) = 2|E|,
∑

f∈F d(f) = 2|E| , we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0
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For each x ∈ V ∪ F , we define the initial charge

ch(x) =







2d(x) − 6 if x ∈ V

d(x) − 6 if x ∈ F

So
∑

x∈V ∪F ch(x) = −12 < 0. In the following, we will reassign a new charge

denoted by ch
′

(x) to each x ∈ V ∪ F according to the discharging rules. If

we can show that ch
′

(x) ≥ 0 for each x ∈ V ∪F , then we get an obvious con-

tradiction to 0 ≤
∑

x∈V ∪F ch
′

(x) =
∑

x∈V ∪F ch(x) = −12, which completes

our proof.

We use (d(v1), d(v2), · · · , d(vk)) → (c1, c2, · · · , ck) to denote that the

vertex vi sends the face the amount of charge ci for i = 1, 2, · · · , k. Now we

define the discharging rules as follows:

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3-face (v1, v2, v3), let

(3−, 6+, 6+) →
(

0, 3
2
, 3
2

)

,

(4, 5+, 5+) →
(

1
2
, 5
4
, 5
4

)

,

(5+, 5+, 5+) →
(

1, 1, 1
)

.

R3. For a 4-face (v1, v2, v3, v4), let

(3−, 6+, 3−, 6+) →
(

0, 1, 0, 1
)

,

(3−, 6+, 4, 6+) →
(

0, 3
4
, 1
2
, 3
4

)

,

(3−, 6+, 5, 6+) →
(

0, 11
16
, 5
8
, 11
16

)

,

(3−, 6+, 6+, 6+) →
(

0, 1
2
, 1, 1

2

)

,

(4+, 4+, 4+, 4+) →
(

1
2
, 1
2
, 1
2
, 1
2

)

.

R4. For a 5-face (v1, v2, v3, v4, v5),

R4.1 let

(3−, 6+, 3−, 6+, 6+) →
(

0, 0, 0, 1
2
, 1
2

)

,

(3−, 6+, 4, 4, 6+) →
(

0, 0, 1
2
, 1
2
, 0
)

,
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(3−, 6+, 4, 5, 6+) →
(

0, 1
4
, 1
2
, 0, 1

4

)

,

(3−, 6+, 5, 5+, 6+) →
(

0, 1
4
, 1
4
, 1
4
, 1
4

)

,

(3−, 6, 6, 6, 6) →
(

0, 1
2
, 0, 0, 1

2

)

,

(3−, 6+, 6, 7+, 6+) →
(

0, 1
3
, 0, 1

3
, 1
3

)

,

(3−, 7+, 7+, 7+, 7+) →
(

0, 1
4
, 1
4
, 1
4
, 1
4

)

,

R4.2 If 5-face f is not incident with any 3−-vertices, then it receives x

from each of its incident 4-vertices; and y from each of the other 5+-vertices

indicates u. Let the number of 4-vertices is p (p is an integer and p ≥ 0).

R4.2(a) If p = 0, then x = 0 and y = 1
5
;

R4.2(b) If p = 1, then x = 1
2

and y = 0 while u is adjacent with the

4-vertex, or y = 1
4

while u is not adjacent with the 4-vertex;

R4.2(c) If 2 ≤ p ≤ 5, then x = 1
p
, y = 0;

Next, we show that ch
′

(x) ≥ 0 for all x ∈ V ∪F . It is easy to check that

ch
′

(f) ≥ 0 for all f ∈ F and ch
′

(v) ≥ 0 for all 2-vertices v ∈ V by the above

discharging rules. If d(v) = 3, then ch
′

(v) = ch(v) = 0. If d(v) = 4, then

ch
′

(v) ≥ ch(v) − 1
2
× 4 = 0. For d(v) ≥ 5, we need the following structural

lemma. Let v1, · · · , vd be the neighbor of v and f1, f2, · · · , fd be faces incident

with v, such that fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , d}.

Lemma 2.5.8. Since G contains no intersecting chordal 5-cycles, we have

the following results. Suppose G has a subgraph isomorphic to Figure 2.10.

Then

(1) If d(fi) ≥ 4 and d(fi+2) ≥ 4, then max{d(fi), d(fi+2)} ≥ 5;

(2) If d(fi) ≥ 4, then d(fi) ≥ 5.

(3) If d(fi) ≥ 4 and d(fi+3) ≥ 4, then max{d(fi), d(fi+3)} ≥ 5;

(4) If d(fi+1) ≥ 4, then d(fi+1) ≥ 5;

(5) If d(fi+1) ≥ 4, then d(fi+1) ≥ 5;

(6) If d(fi) ≥ 4 and d(fi+4) ≥ 4, then d(fi) ≥ 5 and d(fi+4) ≥ 5.
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Figure 2.10

We also use (v1, v2, · · · , vd) to denote a face whose boundary vertices are

v1, v2, · · · , vd in the clockwise order.

Suppose d(v) = 5. Then f3(v) ≤ 3. Suppose f3(v) = 3. Then f5+(v) ≥ 2

by Lemma 2.5.8. If all the 3-faces are (5, 5+, 4)-faces, then v is incident with

a 4-vertex of 5+-face, so ch
′

(v) ≥ ch(v)− 3× 5
4
− 1× 1

4
= 0. If at least one of

the 3-faces are (5, 5+, 5+)-faces, then ch
′

(v) ≥ ch(v)−2× 5
4
−1×1−2× 1

4
= 0.

If 1 ≤ f3(v) ≤ 2, then f5+(v) ≥ 1, so ch
′

(v) ≥ ch(v)−f3(v)× 5
4
−(4−f3(v))×

5
8
− 1 × 1

4
= 6−3f3(v)

4
≥ 0. If f3(v) = 0, then ch′(v) ≥ ch(v) − 5 × 5

8
= 7

8
> 0.

Suppose d(v) = 6. Then f3(v) ≤ 4. By Lemma 2.5.5(1), v is incident

with at most two 3-faces are incident with a 3−-vertex, that is, v sends 3
2

to

each of the two 3-faces and at most 5
4

to each other 3-face. If 3 ≤ f3(v) ≤ 4,

then f5+(v) ≥ 2, so ch′(v) ≥ ch(v) − 2 × 3
2
− (f3(v) − 2) × 5

4
− (4 − f3(v)) ×

1 − 2 × 1
4

= 4−f3(v)
4

≥ 0. If 1 ≤ f3(v) ≤ 2, then f5+(v) ≥ 1, so ch
′

(v) ≥

ch(v) − f3(v) × 3
2
− (5 − f3(v)) × 1 − (2 − f3(v)) × 1

2
= 0. If f3(v) = 0, then

ch′(v) ≥ ch(v) − 6 × 1 = 0.

Suppose d(v) = 7. Then ch(v) = 8. Let v1, · · · , v7 be neighbors of v in

the clockwise order and f1, f2, · · · , f7 be faces incident with v, such that fi

is incident with vi and vi+1, for i ∈ {1, 2, · · · , 7}, and f8 = f1. First we give

Lemma 2.5.9 for convenience.

Lemma 2.5.9. Suppose that d(vi) = d(vi+k+1) = 2 and d(vj) ≥ 3 for i+ 1 ≤

j ≤ i + k. Then v sends at most φ (in total) to fi and fi+1, fi+2, · · · , fi+k,

where φ = 2k+1
2

(k = 1, 2, 3, 4), (see Figure 2.11).
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Figure 2.11

By Lemma 2.5.7, d(fi) ≥ 4 and d(fi+k) ≥ 4.

Case 1. k = 1. By Lemma 2.5.7(1), we have d(vi+1) ≥ 4 or max{d(fi),

d(fi+1)} ≥ 5, so φ ≤ max{2 × 3
4
, 1 + 0} = 3

2
.

Case 2. k = 2. If d(fi+1) = 3, then min{d(vi+1), d(vi+2)} ≥ 4 or

max{d(fi), d(fi+2)} ≥ 5 by Lemma 2.5.7(2), and it follows that φ ≤ max{3
4
+

5
4
+ 1

2
, 1

2
+ 3

2
+0} = 5

2
. Otherwise, d(fi+1) ≥ 4, then min{d(vi+1), d(vi+2)} ≥ 4

or max{d(fi), d(fi+1), d(fi+2)} ≥ 5, and it follows that φ ≤ max{1 + 2 ×

3
4
, 2 × 1 + 0} = 5

2
.

Case 3. k = 3. Suppose d(fi+1) = d(fi+2) = 3. Then d(vi+2) ≥

4. If d(vi+1) = d(vi+3) = 3, then d(fi) ≥ 5, d(fi+3) ≥ 5 and v sends 0

to fi and fi+3, so φ ≤ 3
2
× 2 = 3. If min{d(vi+1), d(vi+3)} ≥ 4, then

max{d(fi), d(fi+3)} ≥ 5, so φ ≤ 2 × 5
4

+ 3
4

+ 1
4

= 7
2
.

Suppose d(fi+1) = 3 and d(fi+2) ≥ 4. If d(vi+1) = 3, then d(vi+2) ≥ 6

and d(fi) ≥ 5, so φ ≤ 3
2

+ 1
2

+ 1 = 3. If d(vi+2) = 3, then d(vi+1) ≥ 6,

d(vi+3) ≥ 4 and max{d(fi), d(fi+2)} ≥ 5, so φ ≤ 1
2

+ 3
2

+ 2 × 3
4

= 7
2
. If

min{d(vi+1), d(vi+2)} ≥ 4, then max{d(fi), d(fi+2)} ≥ 5, so φ ≤ 1
2

+ 5
4

+ 3
4

+

1 = 7
2
. It is similar with d(fi+2) = 3 and d(fi+1) ≥ 4.

Suppose min{d(fi+1), d(fi+2)} ≥ 4. Then max{d(vi+1), d(vi+2), d(vi+3)}

≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3)} ≥ 5, so φ ≤ max{2 × 1 + 2 ×

3
4
, 3 × 1 + 0} = 7

2
. So φ ≤ max{3, 7

2
} = 7

2
.

Case 4. k = 4. Suppose d(fi+1) = d(fi+2) = d(fi+3) = 3. Then
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min{d(vi+2), d(vi+3)} ≥ 4, d(fi) ≥ 5 and d(fi+4) ≥ 5. If d(vi+1) = d(vi+4) =

3, then v sends 0 to fi and fi+4, so φ ≤ 2×3
2
+1 = 4. If min{d(vi+1), d(vi+4)} ≥

4, then φ ≤ 3 × 5
4

+ 1
2

+ 1
4

= 9
2
.

Suppose d(fi+1) = d(fi+2) = 3 and max{d(fi), d(fi+3)} ≥ 5. Then

d(vi+2) ≥ 4. If d(vi+1) = d(vi+3) = 3, then d(vi+4) ≥ 4 and v sends 0 to 5+-

faces, so φ ≤ 2× 3
2

+2× 3
4

= 9
2
. If min{d(vi+1), d(vi+3)} ≥ 4, then φ ≤ 2× 5

4
+

1+3
4
+1

4
= 9

2
. Similar with d(fi+2) = d(fi+3) = 3 and max{d(fi+1), d(fi+4)} ≥

5. Suppose d(fi+1) = d(fi+3) = 3 and max{d(fi), d(fi+4)} ≥ 5. Then

d(fi+2) ≥ 5 and max{d(vi+2), d(vi+3)} ≥ 4 by Lemma 2.5.7(3), so φ ≤

2 × 3
2

+ 3
4

+ 1
2

= 17
4

.

Suppose d(fi+1) = 3 and max{d(fi), d(fi+2)} ≥ 5. If d(vi+1) = 3, then

d(vi+2) ≥ 6 and d(fi) ≥ 5, so φ ≤ 3
2

+ 2 × 1 + 3
4

= 17
4

. If d(vi+2) = 3,

then d(vi+1) ≥ 6 and max{d(vi+3), d(vi+4)} ≥ 4, so φ ≤ 3
2

+ 1 + 2 ×

3
4

+ 1
2

= 9
2
. Otherwise, φ ≤ 5

4
+ 2 × 1 + 3

4
+ 1

2
= 9

2
. It is similar with

d(fi+3) = 3 and max{d(fi+2), d(fi+4)} ≥ 5. Suppose d(fi+2) = 3 and

max{d(fi+1), d(fi+3)} ≥ 5. If d(vi+2) = 3 or d(vi+3) = 3, then φ ≤

3
2

+ 1 + 2 × 3
4

+ 1
2

= 9
2
. Otherwise, φ ≤ 5

4
+ 2 × 1 + 3

4
+ 1

2
= 9

2
.

Suppose min{d(fi+1), d(fi+2), d(fi+3)} ≥ 4. Then max{d(vi+1), d(vi+2),

d(vi+3), d(vi+4)} ≥ 4 or max{d(fi), d(fi+1), d(fi+2), d(fi+3), d(fi+4)} ≥ 5,

so φ ≤ max{3 × 1 + 2 × 3
4
, 4 × 1 + 0} = 9

2
. So φ ≤ max{4, 9

2
, 17

4
} = 9

2
.

Next, we prove d(v) = 7.

If n2(v) = 7, then all faces incident with v are 6+-faces by Lemma 2.5.4-

2.5.5, that is, f6+(v) = 7, so ch
′

(v) = 8 − 7 × 1 = 1 > 0. If n2(v) = 6, then

f6+(v) ≥ 5 and f3(v) = 0, so ch
′

(v) ≥ 8−6×1− 3
2

= 1
2
> 0 by Lemma 2.5.9.

Suppose 2 ≤ n2(v) ≤ 5. The possible distributions of 2-vertices adjacent

to v are illustrated in Figure 2.12.
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Figure 2.12

For Figure 2.12(1), we have f6+(v) ≥ 4 and ch′(v) ≥ 8−5×1− 5
2

= 1
2
> 0

by Lemma 2.5.9. For Figure 2.12(2), we have f6+(v) ≥ 3 and ch′(v) ≥

8 − 5 × 1 − 2 × 3
2

= 0. For Figure 2.12(3), we have f6+(v) ≥ 3 and ch′(v) ≥

8 − 4 × 1 − 7
2

= 1
2
> 0. For Figure 2.12(4), we have f6+(v) ≥ 2 and ch′(v) ≥

8 − 4 × 1 − 3
2
− 5

2
= 0. For Figure 2.12(5), we have f6+(v) ≥ 2 and ch′(v) ≥

8 − 4 × 1 − 3
2
− 5

2
= 0. For Figure 2.12(6), as v is incident at least one 6+-

vertex [145], then ch′(v) ≥ 8− 4× 1− 2× 3
2
− 2× 1

2
= 0. For Figure 2.12(7),

we have f6+(v) ≥ 2 and ch′(v) ≥ 8 − 3 × 1 − 9
2

= 1
2
> 0. For Figure 2.12(8),

we have f6+(v) ≥ 1 and ch′(v) ≥ 8−3×1− 3
2
− 7

2
= 0. For Figure 2.12(9), we
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have f6+(v) ≥ 1 and ch′(v) ≥ 8−3×1− 5
2
×2 = 0. For Figure 2.12(10), as v is

incident at least one 6+-vertex [145], then ch′(v) ≥ 8−3×1− 5
2
− 3

2
−2× 1

2
= 0.

For Figure 2.12(11), we have f6+(v) ≥ 1. Suppose d(f2) = d(f3) = d(f4) = 3.

Then min{d(v3), d(v4)} ≥ 4, d(f1) ≥ 5 and d(f5) ≥ 5. If d(v2) = d(v5) = 3,

then v sends 0 to f1 and f5, so ch′(v) ≥ 8− 2 × 1− 2× 3
2
− 1 − 1 = 1 > 0. If

min{d(v2), d(v5)} ≥ 4, then ch′(v) ≥ 8 − 2 × 1 − 3 × 5
4
− 1 − 1

2
− 1

4
= 1

2
> 0.

Suppose d(f2) = d(f3) = d(f5) = 3. Then d(v3) ≥ 4, max{d(v4), d(v4)} ≥ 4,

d(f4) ≥ 5 and max{d(f1), d(f6)} ≥ 5. If d(v2) = d(v4) = 3, then d(f1) ≥ 5

and v sends 0 to f1 and f4, so ch′(v) ≥ 8 − 2 × 1 − 3 × 3
2
− 1

2
= 1 > 0. If

min{d(v2), d(v4)} ≥ 4, then ch′(v) ≥ 8−2×1− 3
2
−2× 5

4
− 3

4
− 1

2
− 1

4
= 1

2
> 0.

If 1 ≤ f3(v) ≤ 2, then f5+(v) ≥ 1, so ch′(v) ≥ 8 − 2 × 1 − f3(v) × 5
4
− (4 −

f3(v))×1− 3
4
− 1

2
= 3−f3(v)

4
> 0. If f3(v) = 0, then ch′(v) ≥ 8−2×1−6×1 = 0.

For Figure 2.12(12), we have ch′(v) ≥ 8 − 2 × 1 − 3
2
− 9

2
= 0. For Figure

2.12(13), we have ch′(v) ≥ 8 − 2 × 1 − 5
2
− 7

2
= 0.

Suppose n2(v) = 1. Without loss of generality, assume d(v1) = 2.

Suppose v1 is incident with a 3-cycle f1. Then f3(v) ≤ 5 and all 3-faces

incident with no 3−-vertex except f1 by Lemma 2.5.5(5). If f3(v) = 5, then

f6+(v) ≥ 1, so ch′(v) ≥ 8 − 1 − 3
2
− 4 × 5

4
− 1

2
= 0. If 3 ≤ f3(v) ≤ 4, then

f5+(v) ≥ 2, so ch′(v) ≥ 8−1− 3
2
−(f3(v)−1)× 5

4
−1−(4−f3(v))× 3

4
− 1

2
− 1

4
=

4−f3(v)
4

≥ 0. If 1 ≤ f3(v) ≤ 2, then f5+(v) ≥ 1, so ch′(v) ≥ 8−1− 3
2
−(f3(v)−

1) × 5
4
− (6 − f3(v)) × 1 = 3−f3(v)

4
> 0.

Suppose v1 is not incident with a 3-cycle. Then f3(v) ≤ 4. If f3(v) = 4,

then f5+(v) ≥ 3, so ch′(v) ≥ 8−1− 3
2
−3× 5

4
−3× 1

2
= 1

4
> 0. If f3(v) = 3, then

f5+(v) ≥ 2, so ch′(v) ≥ 8−1−3× 5
4
−2×1−2× 1

2
= 1

4
. If 1 ≤ f3(v) ≤ 2, then

f5+(v) ≥ 1, so ch′(v) ≥ 8−1−f3(v)× 5
4
−(5−f3(v))×1− 3

4
− 1

2
= 3−f3(v)

4
> 0.

If f3(v) = 0, then ch′(v) ≥ 8 − 1 − 7 × 1 = 0.

Suppose n2(v) = 0. Then f3(v) ≤ 5. If f3(v) = 5, then f5+(v) ≥ 2, so
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ch′(v) ≥ 8 − 5 × 2
3
− 1

2
= 0. If 3 ≤ f3(v) ≤ 4, then f5+(v) ≥ 2, so ch′(v) ≥

8−f3(v)× 3
2
−(5−f3(v))×1−(f3(v)−2)× 1

2
= f3(v)−4 ≥ 0. If 1 ≤ f3(v) ≤ 2,

then f5+(v) ≥ 1, so ch′(v) ≥ 8−f3(v)× 3
2
−(6−f3(v))×1−1× 1

2
= 3−f3(v)

2
> 0.

If f3(v) = 0, then ch′(v) ≥ 8 − 7 × 1 = 1 > 0.

Hence we complete the proof of the theorem 2.5.1
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Chapter 3 List Coloring

§3.1 List vertex coloring

In this section, we mainly proved the theorem below:

Theorem 3.1.1. Let G be a planar graph. If every 5-cycles of G is not

adjacent simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

Proof Arguing by contradiction, we assume that G = (V,E) is a coun-

terexample to Theorem 3.1.1 having the fewest vertices. Embed G into the

plane, then

(1) δ(G) ≥ 4 (see [75]).

(2) G does not contain a 5-cycle (v1, v2, · · · , v5) adjacent to a 3-cycle

(v1, v2, u) such that d(u) = 4 and d(vi) = 4 for every i ∈ {1, 2, · · · , 5}

(see [75]).

(3)G does not contain a 5-cycle (v1, v2, · · · , v5) such that vivj ∈ E(G)(1 ≤

i < j − 1 ≤ 4), that is, any 5-cycle has no chord.

(4) If two 3-faces are adjacent, then each of the other faces adjacent to

one of the two 3-faces is a 6+-face.

By Euler’s formula |V | − |E| + |F | = 2, we have

∑

v∈V

(d(v) − 4) +
∑

f∈F

(d(f) − 4) = −4(|V | − |E| + |F |) = −8 < 0

For each x ∈ V ∪ F , we define the initial charge

ch(x) =







d(x) − 4 if x ∈ V

d(x) − 4 if x ∈ F
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So
∑

x∈V ∪F ch(x) = −8 < 0. If we can define suitable discharging rules such

that, for every x ∈ V ∪ F , the final charge of x, denoted ch
′

(x), is non-

negative, then we get an obvious contradiction to 0 ≤
∑

x∈V ∪F ch
′

(x) =
∑

x∈V ∪F ch(x) = −8, which completes our proof.

Let w(x→ y) be the charge transferred from x to y for all x, y ∈ V ∪F .

We define the discharging rules as follows:

R1. Let f be a 3-face (u, v, w) of G.

R1.1. If f is not adjacent to a 3-face, then w(f ′ → f) = 1
3
for any 5+-face

f ′ adjacent to f .

R1.2. Suppose that uv is incident with two 3-faces and d(u) ≤ d(v). If

d(u) = d(v) = 4, then w(f ′ → f) = 1
2
for each 6+-face f ′ adjacent to

f ; Otherwise, w(v → f) = 1
3
and w(f ′ → f) = 1

3
for each 6+-face f ′

adjacent to f .

R2. Let f be a 5-face (v1, v2, · · · , v5) of G and fi be the other face incident

with vivi+1 for i ∈ {1, 2, · · · , 5}, where all the subscripts are taken modulo

5.

R2.1. Suppose that all fi (1 ≤ i ≤ 5) are 3-faces (vi, vi+1, ui). If n4(f) = 5,

that is, f is a (4, 4, 4, 4, 4)-face, then w(ui → f) = 1
6

(1 ≤ i ≤ 5);

Otherwise, f receives 2/(3n5+(f)) from each of 5+-vertices incident with

f .

R2.2. Suppose that f is adjacent to four 3-faces, without loss of generality,

fi is a 3-face (vi, vi+1, ui) of G, where i = 1, 2, 3, 4. If n4(f) = 5, then

w(ui → f) = 1
6

(2 ≤ i ≤ 4); Otherwise, f receives 1/(3n5+(f)) from each

of 5+-vertices incident with f .
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In the following, we will check that ch
′

(x) ≥ 0 for each x ∈ V ∪ F .

Let f ∈ F . If d(f) = 3, then ch′(f) ≥ ch(f) + max{1
2
× 2, 1

3
× 3} = 0 by

(3), (4) and R1. If d(f) = 4, then ch′(f) = ch(f) = 0. Suppose d(f) = 5.

Note that if f is adjacent to a 3-face f ′, then f is not adjacent to any 4-

cycle and it follows that all faces incident with f ′ must be 5+-faces. If f

is adjacent to at most three 3-faces, then ch′(f) ≥ ch(f) − 1
3
× 3 = 0 by

R1; Otherwise, ch′(f) ≥ ch(f) + min{1
6
× 5 − 1

3
× 5, 2

3n5+ (f)
× n5+(f) − 1

3
×

5, 1
6
× 3 − 1

3
× 4, 1

3n5+ (f)
× n5+(f) − 1

3
× 4} = 0 by R2. Suppose that f is a

k-face (v1, v2, · · · , vk), where k ≥ 6. We denote by fi the face adjacent to

f and incident with vivi+1 where all the subscripts are taken modulo k. If

w(f → fi) = 1
2
, then d(vi) = 4 or d(vi+1) = 4 and fi−1( or fi+1) must be

a 6+-face since every 5-cycle of G is not simultaneously adjacent to 3-cycles

or 4-cycles, and this can be equivalent to say that f sends 1
3

to fi and 1
6

to

fi−1(or fi+1, respectively). According to this averaging, every fi receives at

most 1
3

from f . So ch′(f) ≥ ch(f) − 1
3
× d(f) ≥ 0.

Let v ∈ V (G). If d(v) = 4, then ch′(v) = ch(v) = 0 by R1 and R2.

Suppose d(v) = k ≥ 5. Let N(v) = {v1, · · · , vk} and f1, f2, · · · , fk be faces

incident with v such that fi is incident with vi and vi+1, fi(i+1) be the face

adjacent to (v, vi, vi+1) for i ∈ {1, 2, · · · , k} where the subscripts are taken

modulo k.

Suppose that k = 5. Then f3(v) ≤ 3, that is, v is incident with at most

three 3-faces. If f3(v) = 3, then v is incident with two 6+-faces, and it follows

from R1 and R2 that ch′(v) ≥ ch(v) − 1
3
× 2 − 1

6
> 0. If f3(v) ≤ 1, then we

also have ch′(v) ≥ ch(v) − 1
3
× 2 − 1

6
> 0 by R1 and R2.2. So we assume

that f3(v) = 2. If fi and fi+1 are two 3-faces for some i ∈ {1, 2, · · · , 5}, then

ch′(v) ≥ ch(v) − 1
3
× 2 > 0 by R1; Otherwise, without loss of generality,

assume that f1 and f3 are the two 3-faces. We denote a 5-face f by 5t-face

67



Paris South University Doctoral Dissertation

if f is a (5, 4, 4, 4, 4)-face and adjacent to t 3-faces, where t ≥ 4. If f2 is

a 55-face or f5 is a 54-face, then the 5+-face f12 incident with v1v2 can not

be a (4, 4, 4, 4, 4)-face for k ∈ {4, 5} by statement (2). This means that if

w(v → f2) = 2
3

or w(v → f5) = 1
3
, then w(v → f12) = 0. Similarly, if f2

is a 55-face or f4 is a 54-face, then the 5+-face incident with v3v4 must not

be a (4, 4, 4, 4, 4)-face. Meanwhile, at most one in {f4, f5} is a 54-face. So

ch′(v) ≥ ch(v) − max{2
3

+ 1
3
, 1
3
× 2 + 1

6
× 2} = 0.

Suppose k ≥ 6. By R2.1, if w(v → fi) = 2
3

for some i(1 ≤ i ≤ k),

then fi−1, fi+1 are 3-faces and w(v → fi−1) = w(v → fi+1) = 0, that can

be equivalent to say that v sends 1
3

to fi,
1
6

to fi−1 and 1
6

to fi+1. Every

charge of 1
6

by v to a 5+-face incident with vivi+1 can be looked at as giving

1
6

to fi. According to this averaging, every face receive at most 1
3

from v. So

ch′(v) ≥ ch(v) − d(v) × 1
3
≥ 0.

Hence we complete the proof of Theorem 3.1.1.

§3.2 List edge coloring and List total coloring

In the section above, we discuss the 4-choosable of a planar graph G,

that is, vertex list coloring. In this section, we mainly discuss the list edge

coloring and list total coloring of planar graph G. Let G be a planar graph

with maximum degree ∆, if every 5-cycles of G is not adjacent to 4-cycles,

we prove that χ′
l(G) = ∆ and χ′′

l (G) = ∆+1 if ∆(G) ≥ 8, and χ′
l(G) ≤ ∆+1

and χ′′
l (G) ≤ ∆ + 2 if ∆(G) ≥ 6, where χ′

l(G) and χ′′
l (G) denote the list edge

chromatic number and list total chromatic number of G, respectively.

First, we introduce three lemmas used in our proofs.

A critical edge k-choosable graph G is that G is not edge k-choosable

and G − x is edge k-choosable for any element x ∈ V ∪ E, where k is a

positive integer. Similarly, one can define critical total k-choosable graphs.
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A critical total k-choosable graph G is that G is not total k-choosable and

G− x is total k-choosable for any element x ∈ V ∪ E, where k is a positive

integer.

Lemma 3.2.1. [58] The following hold for any critical edge k-choosable

graph G with maximum degree ∆ ≤ k.

(a) G is connected.

(b) If e = uv is an edge in G, then d(u) + d(v) ≥ k + 2.

(c) G has no even cycle (v1, v2, · · · , v2t) with d(v1) = d(v3) = · · · =

d(v2t−1) = 2.

Lemma 3.2.2. [28] The following hold for any critical total k-choosable

graph G with maximum degree ∆ ≤ k − 1.

(a) G is connected.

(b) If e = uv is an edge in G with d(u) ≤ k−1
2
, then d(u) + d(v) ≥ k+ 1.

In particular, δ(G) ≥ k + 1 − ∆ and so G has no 1-vertex.

(c) G has no even cycle (v1, v2, · · · , v2t) with d(vi) ≤ min{k−1
2
, k+1−∆}

for each odd i.

Lemma 3.2.3. [155] Let G be a critical edge ∆-choosable graph or a critical

total ∆ + 1-choosable graph. For any integer 2 ≤ k ≤ ⌊∆
2
⌋, let Xk = {x ∈

V (G)|d(x) ≤ k} and Yk = ∪x∈Xk
N(x)}. If Xk 6= ∅, then there exists a

bipartite subgraph Mk of G with partite sets Xk and Yk such that dMk
(x) = 1

for each x ∈ Xk and dMk
(y) ≤ k − 1 for each y ∈ Yk.

§3.2.1 Planar graph G with maximum degree ∆ ≥ 8

Theorem 3.2.1. Let G be a planar graph with ∆ ≥ 8, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′
l(G) = ∆ and χ′′

l (G) = ∆ + 1.

Proof Arguing by contradiction, we assume that G = (V,E, F ) is a

counterexample to Theorem 3.2.1 having the fewest vertices. If G is not edge-
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∆-choosable, we suppose that L is an edge assignment of G with |L(e)| =

∆ for every edge e ∈ E such that G is not edge-L-colorable. If G is not

total-(∆ + 1)-choosable, we suppose that L is a total assignment of G with

|L(x)| = ∆ + 1 for every x ∈ V ∪ E such that G is not total-L-colorable.

From Lemmas 3.2.1(b) and 3.2.2(b), we claim that δ(G) ≥ 2 and every

2-vertex is adjacent to two ∆-vertices.

Let G2 be the subgraph induced by the edges incident with the 2-vertices

of G. It follows from Lemma 3.2.3 that G2 contains a matching M that

saturates all 2-vertices. If uv ∈ M and d(u) = 2, then v is called the 2-

master of u and u is called the dependent of v. It is easy to see that each

2-vertex has a 2-master and each vertex of maximum degree can be the 2-

master of at most one 2-vertex. Let X be the set of vertices of degree at most

3 and Y = ∪x∈XN(x). By Lemma 3.2.3, G contains a bipartite subgraph

M = (X, Y ) such that dM(x) = 1 and dM(y) = 2 for all x ∈ X and y ∈ Y .

We call y the 3-master of x if xy ∈ M and x ∈ X . Therefore, each vertex

of degree at most 3 has a 3-master, and each vertex of degree at least ∆ − 1

can be the 3-master of at most two vertices. Now, we consider two cases

depending upon the maximum degree ∆ of G.

In the following, we will consider two cases of different maximum degree

in order to prove the Theorem 3.2.1.

Case 3.2.1. ∆ = 8

By the Euler’s formula |V | − |E| + |F | = 2, we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

For each x ∈ V ∪F , we define c(x) the initial charge. Let c(v) = 2d(v)−6
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for each v ∈ V and c(f) = d(f) − 6 for each f ∈ F . So
∑

x∈V ∪F c(x) =

−12 < 0. In the following, we will reassign a new charge denoted by c
′

(x)

to each x ∈ V ∪ F according to the discharging rules. If we can show that

c
′

(x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious contradiction to

0 ≤
∑

x∈V ∪F c
′

(x) =
∑

x∈V ∪F c(x) = −12 ≤ 0, which completes our proof.

Let w(v → f) be the amount that a vertex v sends to its incident face

f . We define the discharging rules as follows.

R1. Each 7+-face f sends 1 to each incident 2-vertex v, if f is adjacent

to a 4-face and v is incident with a 3-face.

R2. Each 2-vertex v receives 1 from its 2-master, moreover, if v is

incident with 7+-face f and 3-face, where f is adjacent to a 4-face, then v

sends 1
2

to its neighbor.

R3. Each k-vertex (2 ≤ k ≤ 3) receives 1 from each of its 3-masters.

R4. Let v be a 3-vertex, then w(v → f) =






























1
3

if d(f) = 3 and v is incident with three 3-faces;

1
2

if d(f) = 3 and v is incident with two 3-faces;

3
4

if d(f) = 3 and v is incident with one 3-faces;

1
3

if d(f) = 4.

R5. Let v be a 4-vertex, then w(v → f) =



















3
4

if d(f) = 3;

1
2

if d(f) = 4;

1
4

if d(f) = 5.

R6. Let v be a 5-vertex, then w(v → f) =







1 if d(f) = 3;

1
2

if 4 ≤ d(f) ≤ 5.

R7. Let v be a 6-vertex, then w(v → f) =







3
2

if d(f) = 3;

1
2

if 4 ≤ d(f) ≤ 5.
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R8. Let v be a 7-vertex, then w(v → f) =



















3
2

if d(f) = 3;

3
4

if d(f) = 4;

1
3

if d(f) = 5.

R9. Let v be a 8+-vertex, then w(v → f) =


































































3
2

if f = (2, 8+, 8+);

4
3

if f = (3, 7+, 8+) and 3-vertex is incident with three 3 -faces;

5
4

if f = (3, 7+, 8+) and 3-vertex is incident with two 3 -faces;

9
8

if f = (3, 7+, 8+) and 3-vertex is incident with one 3 -faces;

9
8

if f = (4+, 6+, 8+);

3
4

if d(f) = 4;

1
3

if d(f) = 5.

In the following, we will check that c
′

(x) ≥ 0 for each x ∈ V ∪ F .

By Lemma 3.2.1 and 3.2.2, each 2-vertex is adjacent to two 8-vertices, each

3-vertex is adjacent to three 7+-vertices and each 4-vertex is adjacent to

four 6+-vertices. Suppose d(f) = 3. Then c(f) = −3. If n2(f) = 1, then

f = (2, 8+, 8+), so c′(f) ≥ c(f) + 2 × 3
2

= 0 by R9. Suppose n3(f) =

1. Then f = (3, 7+, 7+). If 3-vertex is incident with three 3-faces, then

c′(f) ≥ c(f) + 1
3

+ 2 × 4
3

= 0. If 3-vertex is incident with two 3-faces, then

c′(f) ≥ c(f) + 1
2

+ 2 × 5
4

= 0. If 3-vertex is incident with one 3-face, then

c′(f) ≥ c(f) + 3
4

+ 2 × 9
8

= 0. If n4(f) = 1, then f = (4, 6+, 6+), so c′(f) ≥

c(f)+ 3
4

+2× 9
8

= 0. Otherwise, f = (5+, 5+, 5+), so c′(f) ≥ c(f)+3×1 = 0.

Suppose d(f) = 4. Then c(f) = −2. Note that if n2(f) = 2, that is

f = (2, 8, 2, 8), then this contradict to Lemma 3.2.2(b), so n2(f) ≤ 1. If

n2(f) = 1, then f = (2, 8, 3+, 8), so c′(f) ≥ c(f)+ 1
3

+2× 5
6

= 0. If n3(f) = 2,

then f = (3, 7+, 3, 7+), c′(f) ≥ c(f) + 2 × 1
3

+ 2 × 3
4

= 1
6
> 0. Otherwise,

n3−(f) = 0, then c′(f) ≥ c(f) + 4 × 1
2

= 0. Suppose d(f) = 5. Then c(f) =

−1. If n3−(f) = 2, then f = (3−, 7+, 3−, 7+, 7+), so c′(f) ≥ c(f)+3× 1
3

= 0. If

n3−(f) = 1, then f = (3−, 7+, 4+, 5+, 7+), so c′(f) ≥ c(f)+ 1
4

+3× 1
3

= 1
4
> 0.
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Otherwise, n3−(f) = 0, then c′(f) ≥ c(f)+5× 1
4

= 1
4
> 0. Suppose d(f) = 6.

Then c′(f) = c(f) = 0. Suppose d(f) = 7. Then f is incident with at

most two 2-vertices. If all the two 2-vertices is incident with 3-face and f

is adjacent to a 4-face, then there will appear 5-cycle adjacent to 4-cycle, so

c′(f) ≥ c(f) − 1 = 0. Suppose d(f) ≥ 8. Then f is incident with at most

⌊d(f)
3
⌋ 2-vertices, so c′(f) ≥ c(f) − ⌊d(f)

3
⌋ × 1 ≥ 0.

Let v be a vertex of G. Suppose d(v) = 2. Then c(v) = −2 and v

receives 1 from its 2-master and receives 1 from its 3-master by R2 and R3

(the 2-master and 3-master of v may be a single vertex). If v is incident

with 7+-face f and 3-face, where f is adjacent to a 4-face, then v sends

1
2

to its neighbor, so c′(v) ≥ c(v) + 1 + 1 + 1 − 1
2
× 2 = 0. Otherwise,

c′(v) ≥ c(v) + 1 + 1 = 0.

Suppose d(v) = 3. Then v receives 1 from its 3-master by R3. If v is

incident with three 3-faces, then c′(v) ≥ c(v) + 1− 3× 1
3

= 0. If v is incident

with two 3-faces, then f6+(v) ≥ 1, so c′(v) ≥ c(v) + 1 − 2 × 1
3

= 1
3
> 0. If

3-vertex is incident with one 3-face, then f4(v) = 0, so c′(v) ≥ c(v) + 1− 3
4

=

1
4
> 0.

Suppose d(v) = 4. Then f3(v) ≤ 2. If f3(v) = 2, since every 5-cycles of

G is not adjacent to 4-cycles, then f5+(v) = 2, so c
′

(v) ≥ c(v)−2× 3
4
−2× 1

4
= 0

by R5. If f3(v) = 1, then f5+(v) ≥ 2, so c
′

(v) ≥ c(v)− 3
4
− 1

2
−2× 1

4
= 1

4
> 0.

Otherwise, f3(v) = 0, then c
′

(v) ≥ c(v) − 4 × 1
2

= 0.

Suppose d(v) = 5. Then f3(v) ≤ 3. If f3(v) = 3, then f6+(v) = 2, so

c
′

(v) ≥ c(v)− 3 × 1 = 1 > 0 by R5. If f3(v) ≤ 2, then c
′

(v) ≥ c(v)− f3(v)−

(5 − f3(v)) × 1
2

= 3−f3(v)
2

≥ 0.

Suppose d(v) = 6. Then f3(v) ≤ 4. If f3(v) = 4, then f6+(v) = 2, so

c
′

(v) ≥ c(v) − 4 × 3
2

= 0 by R6. If f3(v) ≤ 3, then c
′

(v) ≥ c(v)− f3(v)× 3
2
−

(6 − f3(v)) × 1
2

= 3 − f3(v) ≥ 0.
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Suppose d(v) = 7. Then f3(v) ≤ 4. Since each 2-vertex is only adjacent

to 8-vertices, v can be 3-masters of at most two 3-vertices. If f3(v) = 4, then

f6+(v) = 3, so c
′

(v) ≥ c(v) − 2 × 1 − 4 × 3
2

= 0 by R8. If f3(v) = 3, then

f4(v) ≤ 1, so c
′

(v) ≥ c(v) − 2 × 1 − 3 × 3
2
− max{3

4
, 4 × 1

3
} = 1

6
> 0. If

f3(v) ≤ 2, then c
′

(v) ≥ c(v)−2×1−f3(v)× 3
2
−(7−f3(v))× 3

4
= 3−f3(v)

4
≥ 0.

Suppose d(v) = 8. Then f3(v) ≤ 5. v can be the 2-master of a 2-

vertex as well as being the 3-masters of up to two 2- or 3-vertices. Thus, v

sends totally at most 3 to the 3−-vertices adjacent to it by R2 and R3. Let

v1, · · · , v8 be the neighbor of v and f1, f2, · · · , f8 be faces incident with v,

such that fi is incident with vi and vi+1, for i ∈ {1, 2, · · · , 7}.

Suppose f3(v) = 5. Then f6+(v) ≥ 3 and all the 6+-faces are adjacent

to 4-face. If there is at least one 3-faces incident with v is (2, 8, 8)-face,

then f7+(v) ≥ 1, so c
′

(v) ≥ c(v) − 3 × 1 − 5 × 3
2

+ 1
2
≥ 0. Otherwise,

c
′

(v) ≥ c(v) − 3 × 1 − 5 × 4
3

= 1
3
> 0.
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Figure 3.1

Suppose f3(v) = 4. Then f4(v) ≤ 2 and f6+(v) ≥ 2. There are three

possibilities in which 3-faces are located. They are shown as configurations
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in Figure 3.1(1)-(3).

For Figure 3.1(1), suppose all the four 3-faces incident with v are (2, 8, 8)-

faces, then d(f3) ≥ 8, if d(f6) = d(f8) = 4, then d(f7) ≥ 6, since f3 is adjacent

to 4-face, so c
′

(v) ≥ c(v)−3×1−4× 3
2
−2× 3

4
+ 1

2
= 1

3
> 0. Otherwise, d(f6) ≥ 7

or d(f8) ≥ 7, then c
′

(v) ≥ c(v)−3×1−4× 3
2
− 3

4
= 3

4
> 0. Suppose there are

three 3-faces incident with v are (2, 8, 8)-faces. If d(v1) = d(v3) = d(v4) = 2,

then d(f3) ≥ 8 and d(f6) ≥ 6, so c
′

(v) ≥ c(v)−3×1−3× 3
2
− 4

3
−2× 3

4
+ 1

2
=

1
6
> 0. If d(v1) = d(v3) = d(v6) = 2, then d(f3) ≥ 7 and d(f7) ≥ 6, so

c
′

(v) ≥ c(v)−3×1−3× 3
2
− 4

3
−2× 3

4
+ 1

2
= 1

6
> 0. Suppose there are two 3-faces

incident with v are (2, 8, 8)-faces. If d(v1) = d(v3) = 2, then d(f3) ≥ 7 and

d(f6) ≥ 6, so c
′

(v) ≥ c(v)−3×1−2× 3
2
−2× 4

3
−2× 3

4
+ 1

2
= 1

3
> 0. It is similar

with d(v1) = d(v4) = 2. Suppose d(v1) = d(v6) = 2, since every 5-cycles of G

is not adjacent to 4-cycles, then d(f3) ≥ 6. Assume d(v3) = 3 or d(v4) = 3,

then v3 or v4 is incident with only one 3-face each. If d(f6) = d(f8) = 4, then

d(f7) ≥ 6, so c
′

(v) ≥ c(v)− 3× 1− 2× 3
2
− 2× 9

8
− 2× 3

4
= 1

4
> 0. Otherwise,

d(f6) ≥ 7 or d(f8) ≥ 7, then c
′

(v) ≥ c(v) − 3 × 1 − 2 × 3
2
− 2 × 9

8
− 3

4
+ 1

2
=

3
2
> 0. Suppose there is one 3-faces incident with v is (2, 8, 8)-faces. If

d(v1) = 2, then d(f3) ≥ 6 and d(f6) ≥ 6. If d(f8) = 4, then d(f7) ≥ 6, so

c
′

(v) ≥ c(v) − 3 × 1 − 3
2
− 3 × 4

3
− 3

4
= 3

4
> 0. Otherwise, d(f8) ≥ 7, then

c
′

(v) ≥ c(v)−3×1− 3
2
−3× 4

3
− 3

4
+ 1

2
= 5

4
> 0. If d(v3) = 2, then d(f3) ≥ 7,

d(f6) ≥ 6 and d(f8) ≥ 6, so c
′

(v) ≥ c(v)− 3× 1− 3
2
− 3× 4

3
− 3

4
+ 1

2
= 5

4
> 0.

Suppose there is no 3-faces incident with v are (2, 8, 8)-faces. Then d(f3) ≥ 6,

d(f6) ≥ 6 and d(f8) ≥ 6, so c
′

(v) ≥ c(v) − 3 × 1 − 4 × 4
3
− 3

4
= 11

12
> 0. For

Figure 3.1(2), suppose all the four 3-faces incident with v are (2, 8, 8)-faces. If

d(f3) = d(f7) = 4, then d(f4) ≥ 7 and d(f8) ≥ 7, since f3 and f7 are adjacent

to 4-face, so c
′

(v) ≥ c(v)− 3× 1− 4× 3
2
− 2× 5

6
+ 2× 1

2
= 2

3
> 0. Otherwise,

d(f3) ≥ 7 or d(f7) ≥ 7, then c
′

(v) ≥ c(v)−3×1−4× 3
2
− 5

6
+2× 1

2
= 3

2
> 0. It is
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similar with d(f3) = d(f8) = 4. Suppose there are three 3-faces incident with

v are (2, 8, 8)-faces. If d(v1) = d(v3) = d(v5) = 2, then d(f7) ≥ 6. If d(f3) =

d(f8) = 4, then d(f4) ≥ 7, so c
′

(v) ≥ c(v)−3×1−3× 3
2
− 4

3
−2× 5

6
+ 1

2
= 0. It

is similar with d(f4) = d(f8) = 4. If d(f3) = 4, then d(f4) ≥ 7 and d(f8) ≥ 7,

then c
′

(v) ≥ c(v) − 3 × 1 − 3 × 3
2
− 4

3
− 5

6
+ 2 × 1

2
= 1

2
> 0. Otherwise,

d(f3) ≥ 7, d(f4) ≥ 7 and d(f8) ≥ 7, then c
′

(v) ≥ c(v) − 3 × 1 − 3 × 3
2
−

4
3

+ 3 × 1
2

= 4
3
> 0. It is similar with d(v1) = d(v3) = d(v7) = 2. Suppose

there are two 3-faces incident with v are (2, 8, 8)-faces. If d(v1) = d(v3) = 2,

then d(f4) ≥ 6 and d(f7) ≥ 6. Assume d(v5) = 3 or d(v7) = 3, then v5

or v7 is incident with only one 3-face each. If d(f3) = d(f8) = 4, then

c
′

(v) ≥ c(v) − 3 × 1 − 2 × 3
2
− 2 × 9

8
− 2 × 5

6
= 1

12
> 0. Otherwise, d(f3) ≥ 7

or d(f8) ≥ 7, then c
′

(v) ≥ c(v) − 3 × 1 − 2 × 3
2
− 2 × 9

8
− 5

6
+ 1

2
= 17

12
> 0. It

is similar with d(v1) = d(v5) = 2. Suppose there is one 3-faces incident with

v is (2, 8, 8)-faces. If d(v1) = 2, then d(f3) ≥ 6, d(f4) ≥ 6 and d(f7) ≥ 6, so

c
′

(v) ≥ c(v) − 3 × 1 − 3
2
− 3 × 4

3
− 5

6
= 2

3
> 0. Suppose there is no 3-faces

incident with v are (2, 8, 8)-faces. Then d(f3) ≥ 6, d(f4) ≥ 6, d(f7) ≥ 6 and

d(f8) ≥ 6, so c
′

(v) ≥ c(v) − 3 × 1 − 4 × 4
3

= 5
3
> 0.

For Figure 3.1(3), then d(f3) ≥ 6, d(f5) ≥ 6 and if min{d(f7), d(f8)} = 4,

then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v) − 3 × 1 − 4 × 3
2
− 3

4
= 1

4
> 0.

Suppose f3(v) = 3. There are four possibilities in which 3-faces are locat-

ed. They are shown as configurations in Figure 3.1(4)-(7). For Figure 3.1(4),

then d(f3) ≥ 6, if min{d(f5), d(f6)} = 4, then max{d(f5), d(f6)} ≥ 6 and if

min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v) − 3 × 1 −

3× 3
2
−2× 3

4
= 11

12
> 0. For Figure 3.1(5), then if min{d(f3), d(f4)} = 4, then

max{d(f3), d(f4)} ≥ 6, if min{d(f6), d(f7)} = 4, then max{d(f6), d(f7)} ≥ 6

and if min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥ 6, that is, there are

at most three 4-faces, so c
′

(v) ≥ c(v) − 3 × 1 − 3 × 3
2
− 3 × 3

4
= 1

4
> 0.
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For Figure 3.1(6), then d(f2) ≥ 6, d(f4) ≥ 6, if min{d(f6), d(f7)} = 4, then

max{d(f6), d(f7)} ≥ 6 and if min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥

6, that is, there are at most two 4-faces, so c
′

(v) ≥ c(v)−3×1−3× 3
2
−2× 3

4
=

1 > 0. For Figure 3.1(7), then d(f2) ≥ 6, if min{d(f4), d(f5)} = 4, then

max{d(f4), d(f5)} ≥ 6 and if min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥

6, so c
′

(v) ≥ c(v) − 3 × 1 − 3 × 3
2
− 2 × 3

4
= 1 > 0.

Suppose f3(v) = 2. There are four possibilities in which 3-faces are

located. They are shown as configurations in Figure 3.1(8)-(11). For Fig-

ure 3.1(8), then if min{d(f3), d(f4)} = 4, then max{d(f3), d(f4)} ≥ 6 and

if min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v) −

3 × 1 − 2 × 3
2
− 4 × 3

4
= 1 > 0. For Figure 3.1(9), then d(f2) ≥ 6, if

min{d(f4), d(f5)} = 4, then max{d(f4), d(f5)} ≥ 6 and if min{d(f7), d(f8)} =

4, then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v)−3×1−2× 3
2
−3× 3

4
= 7

4
> 0.

For Figure 3.1(10), then if min{d(f2), d(f3)} = 4, then max{d(f2), d(f3)} ≥ 6,

if min{d(f5), d(f6)} = 4, then max{d(f5), d(f6)} ≥ 6 and if min{d(f7), d(f8)} =

4, then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v)−3×1−2× 3
2
−3× 3

4
= 7

4
> 0.

For Figure 3.1(11), then if min{d(f2), d(f3)} = 4, then max{d(f2), d(f3)} ≥ 6,

if min{d(f3), d(f4)} = 4, then max{d(f3), d(f4)} ≥ 6, if min{d(f6), d(f7)} =

4, then max{d(f6), d(f7)} ≥ 6 and if min{d(f7), d(f8)} = 4, then max{d(f7), d(f8)} ≥

6, so c
′

(v) ≥ c(v) − 3 × 1 − 2 × 3
2
− 4 × 3

4
= 7

6
> 0.

Suppose f3(v) = 1. Without loss of generality, assume d(f1) = 3, then if

min{d(f2), d(f3)} = 4, then max{d(f2), d(f3)} ≥ 6 and if min{d(f7), d(f8)} =

4, then max{d(f7), d(f8)} ≥ 6, so c
′

(v) ≥ c(v) − 3 × 1 − 3
2
− 6 × 3

4
= 1 > 0.

Suppose f3(v) = 0. Then c
′

(v) ≥ c(v) − 3 × 1 − 8 × 3
4

= 1 > 0.

Case 3.2.2. ∆ ≥ 9.

In this case, the initial charge of each element x ∈ V ∪F of G is defined
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as c(x) = d(x) − 4. Euler’s formula implies that

∑

x∈V ∪F

c(x) =
∑

v∈V

(d(v) − 4) +
∑

f∈F

(d(f) − 4) = −4(|V | − |E| + |F |) = −8 < 0

. We apply the rules below to transfer the charges and get a new charge

c′(x).

R1 Each 2-vertex receives 1 from its 2-master.

R2 Each k-vertex (2 ≤ k ≤ 3) receives 1 from each of its 3-masters.

R3 Each 3-face f0 receives (k−4)l
k

from each of its adjacent k-faces f for

k ≥ 5, where l denotes the number of edges shared by f0 with f .

R4 Let v be a vertex of G, f be a 3-face of G, then w(v → f) =


















d(v)−4

⌊
d(v)
2

⌋+1
if 5 ≤ d(v) ≤ 7;

2
5

if d(v) = 8;

1
3

if d(v) ≥ 9.

In the following, we will check that c
′

(x) ≥ 0 for each x ∈ V ∪ F . By

Lemmas above, we know that each 2-vertex is adjacent to two ∆-vertices,

each 3-vertex is adjacent to three (∆ − 1)+-vertices and each 4-vertex is

adjacent to four (∆ − 2)+-vertices. Suppose d(f) = 3. Then c(f) = −1. If

n2(f) = 1, then f = (2,∆,∆) and f is incident with at least one 6+-face,

so c′(f) ≥ c(f) + 2 × 1
3

+ 1
3

= 0 by R3. Otherwise, n2(f) = 0, then f is

adjacent to at most one 3-face and f is adjacent to no 4-face, so c′(f) ≥

c(f)+2× 1
3

+2× 1
5

= 1
15
> 0. If d(f) = 4, then c′(f) = c(f) = 0. If d(f) ≥ 5,

then c′(f) ≥ c(f) − (d(f)−4)d(f)
d(f)

= 0.

Let v be a vertex of G. Note that ∆-vertex can be the 2-master of

some vertices, and (∆ − 1)-vertex can be the 3-master of some vertices. If

d(v) = 2, then c(v) = −2 and v receives 1 from its 2-master and receives 1

from its 3-master by R1 and R2 (the 2-master and 3-master of v may be a
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single vertex), so c′(v) ≥ c(v) + 1 + 1 = 0. If d(v) = 3, then v receives 1

from its 3-master by R2, so c′(v) ≥ c(v) + 1 = 0 by R2. If d(v) = 4, then

c′(v) = c(v) = 0. If 5 ≤ d(v) ≤ 7, since every 5-cycles of G is not adjacent to

4-cycles, then f3(v) ≤ ⌊d(v)
2
⌋+1, so c′(v) ≥ c(v)−(⌊d(v)

2
⌋+1)× d(v)−4

⌊
d(v)
2

⌋+1
= 0. If

d(v) = 8, then v can be the 3-master of at most two 3-vertices and f3(v) ≤ 5,

so c′(v) ≥ c(v) − 2 × 1 − 5 × 2
5

= 0. If d(v) ≥ 9, then v can be the 2-master

of a 2-vertex as well as be the 3-master of up to two 2- or 3-vertices, and so

v can send a total of at most 3 to the 2-vertices and 3-vertices adjacent to

it, so c′(v) ≥ c(v) − 3 − (⌊d(v)
2
⌋ + 1) × 1

3
= 5d(v)−44

6
> 0.

Hence, we complete the proof of Theorem 3.2.1

§3.2.2 Planar graph G with maximum degree ∆ ≥ 6

Theorem 3.2.2. Let G be a planar graph with ∆ ≥ 6, if every 5-cycles of

G is not adjacent to 4-cycles, then χ′
l(G) ≤ ∆ + 1 and χ′′

l (G) ≤ ∆ + 2.

Proof By Theorem 3.2.1, it suffices to consider two cases, ∆ = 6 and

∆ = 7. Suppose the conclusion does not hold. Again, let G = (V,E, F ) be

a plane embedding of a minimal counterexample. If G is not edge-∆ + 1-

choosable, we suppose that L is an edge assignment of G with |L(e)| = ∆+1

for every edge e ∈ E such that G is not edge-L-colorable. If G is not total-

(∆+2)-choosable, we suppose that L is a total assignment of G with |L(x)| =

∆ + 2 for every x ∈ V ∪ E such that G is not total-L-colorable. We prove

the edge-∆ + 1-choosable and total-(∆ + 2)-choosable of G separate.

First, we investigate edge-(∆(G)+1)-choosable of planar graphs without

adjacent 4-cycles to 5-cycles.

Claim 3.3. If a planar graph G without adjacent 4-cycles to 5-cycles, and

δ(G) ≥ 3, then there exists an edge xy ∈ E(G) such that d(x) + d(y) ≤ 8.
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Proof. Suppose that the Claim 3.3 is false for some connected planar graph

G without adjacent 4-cycles to 5-cycles and δ(G) ≥ 3. Then d(x) + d(y) ≥ 9

for every edge xy of G.

We rewrite the Euler’s formula |V | − |E| + |F | = 2 into the following

equivalent form:

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

For each x ∈ V ∪ F , we define the initial charge

c(x) =







2d(x) − 6 if x ∈ V

d(x) − 6 if x ∈ F

So
∑

x∈V ∪F c(x) = −12 < 0.

Let v be a vertex of G, f be a face of G, W (x → y) be the charge

transferred from x to y for all x, y ∈ V ∪ F . We define the discharging rules

as follows.

R1 If d(v) = 4, then W (v → f) = 1
2
.

R2 If d(f) = 3, then W (v → f) =







5
4

if d(v) = 5;

3
2

if d(v) ≥ 6.

R3 If d(v) ≥ 5, then W (v → f) =







1 if d(f) = 4;

1
2

if d(f) = 5.

In the following, we will check that c
′

(x) ≥ 0 for each x ∈ V ∪ F .

If d(v) = 3, then c
′

(v) = c(v) = 0 by R1-R3. If d(v) = 4, then c
′

(v) =

c(v) − 4 × 1
2

= 0. If d(v) = 5, then f3(v) ≤ 3 and it follows that c′(v) ≥

c(v) − max{3 × 5
4
, 2 × 5

4
+ 3 × 1

2
, 5
4

+ 4 × 1
2
, 5
4

+ 2 × 1} = 0 by R2-R3.

Suppose d(v) ≥ 6. Then f3(v) ≤ ⌊d(v)
2
⌋ + 1. If f3(v) = ⌊d(v)

2
⌋ + 1,

then f6+(v) = d(v) − f3(v), so c′(v) ≥ c(v) − f3(v) × 3
2

= 0. Suppose
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f3(v) = ⌊d(v)
2
⌋. If f4(v) > 0, then f4(v) = f6+(v), this can be equivalent to

say that f sends 1
2

to each 4-face and 6+-face, otherwise f5+(v) = d(v)−f3(v),

so c′(v) ≥ c(v) − f3(v) × 3
2
− (d(v) − f3(v)) × 1

2
= 0. Otherwise, c′(v) ≥

c(v) − f3(v) × 3
2
− (d(v) − f3(v)) × 1 = 0.

Let f be a face of G.

Suppose d(f) = 3, let f = (v1, v2, v3) and assume that d(v3) ≥ d(v2) ≥

d(v1). If d(v1) = 3, then d(v3) ≥ d(v2) ≥ 6, so c′(f) ≥ c(f) + 2 × 3
2

= 0 by

R2. If d(v1) = 4, then d(v3) ≥ d(v2) ≥ 5, so c′(f) ≥ c(f) + 1
2

+ 2 × 5
4

= 0 by

R3. If d(v1) ≥ 5, then c′(f) ≥ c(f) + 3 × 5
4
> 0.

Suppose d(f) = 4, let f = (v1, v2, v3, v4) and satisfying that d(v1) =

min{d(vi)|1 ≤ i ≤ 4}. If d(v1) = 3, then d(v2) ≥ 6 and d(v4) ≥ 6, so

c′(f) ≥ c(f) + 2 × 1 = 0. If d(v1) ≥ 4, then d(v2) ≥ 5 and d(v4) ≥ 5, so

c′(f) ≥ c(f) + 1
2

+ 2 × 1 > 0.

Suppose d(f) = 5, let f = (v1, v2, v3, v4, v5) and satisfying that d(v1) =

min{d(vi)|1 ≤ i ≤ 5}. If d(v1) = 3, then d(v2) ≥ 6 and d(v5) ≥ 6, so

c′(f) ≥ c(f) + 3 × 1
2
> 0. If d(v1) ≥ 4, then c′(f) ≥ c(f) + 5 × 1

2
> 0.

If d(f) ≥ 6, then c
′

(f) = c(f) = 0 by R1-R3.

The proof of edge-(∆(G) + 1)-choosable is carried out by induction on

|V (G)| + |E(G)|. It holds trivially when |V (G)| + |E(G)| ≤ 6. Let G be a

planar graph without adjacent 4-cycles to 5-cycles, and ∆(G) ≥ 6, such that

|V (G)| + |E(G)| ≥ 7. By the induction hypothesis, G − e has an edge-L-

coloring φ. It is straightforward to extend φ to the edge e because there are

at most ∆(G) forbidden colors for e, whereas the number of available colors

is at least ∆(G) + 1. Suppose that δ(G) ≥ 3, G exists an edge xy such that

d(x) + d(y) ≤ 8 by Claim 3.3. The induction hypothesis implies that G− xy

has an edge-L-coloring φ. We can color xy with some color from L(xy) that

was not used by φ on the edges adjacent to xy. Since there exist at most six
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such edges and L(xy) = k ≥ 7, the required color is available.

Combining Theorem 3.2.1, let G be a planar graph with ∆ ≥ 6, if every

5-cycles of G is not adjacent to 4-cycles, then χ′
l(G) ≤ ∆ + 1.

Second, we investigate total-(∆(G)+2)-choosable of planar graphs with-

out adjacent 4-cycles to 5-cycles.

Case 3.3.1. ∆ = 6 First, note that by Lemma 3.2.2(b), δ(G) ≥ 3, each

3-vertex is adjacent to three 6-vertices, and hence each 4-vertex is adjacent

to four 4+-vertices.

Claim 3.4. [81] G has no (4, 4, 5−)-face.

The initial charge c(v) = 2d(v) − 6 for each v ∈ V and c(f) = d(f) − 6

for each f ∈ F . By the Euler’s formula |V | − |E| + |F | = 2, we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

.

In the following, we will reassign a new charge c
′

(x) to each x ∈ V ∪ F

according to the discharging rules.

R1. Let v be a 4-vertex, then w(v → f) =



















3
4

if d(f) = 3;

1
2

if d(f) = 4;

1
4

if d(f) = 5.

R2. Let v be a 5-vertex, then w(v → f) =



















5
4

if d(f) = 3;

1
2

if d(f) = 4;

1
4

if d(f) = 5.

R3. Let v be a 6-vertex, then w(v → f) =



















3
2

if d(f) = 3;

3
4

if d(f) = 4;

1
3

if d(f) = 5.
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Let f be a face of G. Suppose d(f) = 3. Then c(f) = −3. If n3(f) = 1,

then f = (3, 6, 6), so c′(f) ≥ c(f) + 2 × 3
2

= 0 by R3. If n4(f) = 2,

then f = (4, 4, 6), so c′(f) ≥ c(f) + 2 × 3
4

+ 3
2

= 0 by R1. Otherwise,

n4(f) ≤ 1, then f = (4+, 5+, 5+), so c′(f) ≥ c(f) + 3
4

+ 2 × 5
4

= 1
4
> 0 by R2.

Suppose d(f) = 4. Then c(f) = −2. By Lemma 3.2.2(b), if n3(f) = 1, then

f = (3, 6, 4+, 6), so c′(f) ≥ c(f) + 2 × 3
4

+ 1
2

= 0. Otherwise, n3(f) = 0, then

c′(f) ≥ c(f) + 4 × 1
2

= 0. Suppose d(f) = 5. Then c(f) = −1. If n3(f) = 2,

then f = (3, 6, 3, 6, 6), so c′(f) ≥ c(f) + 3 × 1
3

= 0. Otherwise, n3(f) ≤ 1,

then c′(f) ≥ c(f) + 4 × 1
4

= 0. Suppose d(f) ≥ 6. Then c′(f) = c(f) ≥ 0.

Let v be a vertex of G. If d(v) = 3, then c′(v) = c(v) = 0. Suppose

d(v) = 4. Then f3(v) ≤ 2. If f3(v) = 2, then f5+(v) = 2, so c′(v) ≥ c(v)−2×

3
4
− 2× 1

4
= 0. If f3(v) = 1, then f4(v) ≤ 1, so c′(v) ≥ c(v)− 3

4
− 1

2
− 2× 1

4
=

1
4
> 0. Otherwise, c′(v) ≥ c(v) − 4 × 1

2
= 0. Suppose d(v) = 5. Then

f3(v) ≤ 3. If f3(v) = 3, then f6+(v) = 2, so c′(v) ≥ c(v) − 3 × 5
4

= 1
4
> 0.

Otherwise, c′(v) ≥ c(v) − 2 × 5
4
− 3 × 1

2
= 0. Suppose d(v) = 6. Then

f3(v) ≤ 4. If f3(v) = 4, then f6+(v) = 2, so c′(v) ≥ c(v) − 4 × 3
2

= 0. If

f3(v) = 3, then f4(v) = 0, so c′(v) ≥ c(v)−3× 3
2
−3× 1

3
= 1

2
> 0. Otherwise,

c′(v) ≥ c(v) − 2 × 3
2
− 4 × 3

4
= 0.

Case 3.4.1. ∆ = 7

By Lemma 3.2.2(b), δ(G) ≥ 3, each 3-vertex is adjacent to three 7-

vertices, each 4-vertex is adjacent to three 6-vertices, and hence each 5-vertex

is adjacent to four 5+-vertices.

The initial charge c(x) = d(x) − 4 for each x ∈ V ∪ F . By the Euler’s

formula, we have

∑

x∈V ∪F

c(x) =
∑

v∈V

(d(v) − 4) +
∑

f∈F

(d(f) − 4) = −8 < 0
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.

The discharging rules are as below.

R1. Each 3-vertex receives 1
3

from each of its adjacent 7-vertices.

R2. Each 3-face receives 1
3

from each of its incident 5+-vertices.

R3 Each 3-face f0 receives (k−4)l
k

from each of its adjacent k-faces f for

k ≥ 5, where l denotes the number of edges shared by f0 with f .

Let f be a face of G. Suppose d(f) = 3. Then c(f) = −1. Note that

each 5−-vertex is adjacent to 5+-vertex, 4−-vertex is adjacent to 6+-vertex,

since 3-face is adjacent to at most one 3-face, if 3-face is adjacent to a 3-

face, then 3-face is adjacent to two 6+-faces, otherwise, 3-face is adjacent

to three 5-faces, so c′(f) ≥ c(f) + 2 × 1
3

+ min{2 × 1
3
, 3 × 1

5
} = 4

15
> 0

by R2 and R3. If d(f) = 4, then c′(f) = c(f) = 0. If d(f) ≥ 5, then

c′(f) ≥ c(f) − (d(f)−4)d(f)
d(f)

= 0.

Let v be a vertex of G. If d(v) = 3, then v receives 1
3

from each of its

adjacent ∆-vertices, so c′(v) ≥ c(v) + 3 × 1
3

= 0. If d(v) = 4, then c′(v) =

c(v) = 0. If d(v) = 5, then f3(v) ≤ 3, so c′(v) ≥ c(v)−3× 1
3

= 0. If d(v) = 6,

then f3(v) ≤ 4, so c′(v) ≥ c(v) − 4 × 1
3

= 2
3
> 0. If d(v) = 7, then f3(v) ≤ 4,

since n3(v) ≤ 7−⌊f3(v)
2

⌋, so c′(v) ≥ c(v)−f3(v)× 1
3
−n3(v)× 1

3
= 4−f3(v)

6
≥ 0.

In all cases, we have c′(x) ≥ 0 for each x ∈ V ∪F , and 0 ≤
∑

x∈V ∪F c
′(x) =

∑

x∈V ∪F c(x) = −8, a contradiction. This completes the proof of Theorem

3.2.2.

84



Chapter 4 Neighbor sum distinguish total

coloring

§4.1 Basic definitions and properties

Recently, colorings and labellings concerning the sums of the colors

have received much attention. The family of such problems includes, e.g.

vertex-coloring k-edge-weightings [69], neighbor sum distinguishing edge k-

coloring [44] [45] [49] [120] [121], total weight choosability [93] [146], magic

and antimagic labellings [65] [147] and the irregulaity strength [90] [91]. A-

mong them there are the 1-2-3 Conjecture [70] and 1-2 Conjecture [92].

A k total coloring of a graph G is a mapping φ : V ∪E → {1, 2, · · · , k}

such that no two adjacent or incident elements receive the same color. A

graph G is total k colorable if it admits a k total coloring. The total chromatic

number χ′′(G) of G is the smallest integer k such that G has a k-total-

coloring. In a total k-coloring of G, let f(v) denote the total sum of colors of

the edges incident to v and the color of v. If for each edge uv, f(u) 6= f(v), we

call such total k-coloring a total k neighbor sum distinguishing coloring. The

smallest number k is called the neighbor sum distinguishing total chromatic

number, denoted by χ′′∑(G).

Surfaces in this paper are compact, connected 2-dimensional manifolds

without boundary. All embedded graphs considered in this paper are 2-

cell-embeddings. Let G = (V,E, F ) be an embedded graph. A ℓ-vertex,

a ℓ−-vertex or a ℓ+-vertex is a vertex of degree ℓ, at most ℓ or at least ℓ,

respectively. For a face f of G, the degree d(f) is the number of edges incident

with it, where each cut-edge is counted twice. A l-face, a l−-face or a l+-face

is a face of degree l, at most l or at least l, respectively. Suppose that H is a
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subgraph of a given plane graph G. For x ∈ V (H)∪F (H), let dH(x) denote

the degree of x in H . We use NH
ℓ (x) to denote the set of ℓ-vertices adjacent

to x in H , and dHℓ (x) = |NH
ℓ (x)|. Similarly, we can define dH

ℓ+
(x) and dH

ℓ−
(x).

A vertex x is small if 2 ≤ dH(x) ≤ 5, otherwise it is big. A 4-face is bad if

it is incident with at least one 2-vertex, and is special if it incident with two

2-vertices, the 2-vertex is called special. A 3-face is special if it is incident

to a 2-vertex. A ℓ-vertex u, with ℓ ≥ 3, is bad if each of the faces incident

to it is either a 3-face, or a bad 4-face. We use dHℓb(x) to denote the number

of bad ℓ-vertices adjacent to x. If there is no confusion in the context, we

usually write dGℓ (x), dG
ℓ+

(x), dG
ℓ−

(x), dGℓb(x) as dℓ(x), dℓ+(x), dℓ−(x), dℓb(x),

respectively.

The following lemma will be used in our proof.

Lemma 4.1.1. [77] Suppose B1 is a set of integers and |B1| = n. Let

B2 = {
m
∑

i=1

xi|xi ∈ B1, m < n, xi 6= xj(i 6= j)}, then |B2| ≥ mn−m2 + 1.

§4.2 Neighbor sum distinguishing total coloring

We mainly proved the neighbor sum distinguishing total coloring of a

graph which can be embedded in a surface Σ of Euler characteristic.

Theorem 4.2.1. Let G be a graph with maximum degree ∆(G) which can

be embedded in a surface Σ of Euler characteristic χ(Σ) ≥ 0, then χ
′′

∑(G) ≤

max{∆(G) + 2, 16}.

The following is a direct consequence of Theorem 4.2.1.

Corollary 4.2.2. Let G be a graph which can be embedded in a surface Σ of

Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ
′′

∑(G) ≤ ∆(G) + 2.
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Obviously, if G contains two adjacent vertices of maximum degree, then

χ
′′

∑(G) ≥ ∆(G)+2. So the bound ∆(G)+2 is sharp. Since χ
′′

a(G) ≤ χ
′′

∑(G),

we have the following corollary.

Corollary 4.2.3. Let G be a graph which can be embedded in a surface Σ of

Euler characteristic χ(Σ) ≥ 0. If ∆(G) ≥ 14, then χ
′′

a(G) ≤ ∆(G) + 2.

Proof Let k = max{∆(G) + 2, 16}. For simplicity, we use “total

k-nsd-coloring” to denote “total k neighbor sum distinguishing coloring”.

Suppose that φ is a total k-nsd-coloring of a graph G using the color set

C = {1, 2, · · · , k}, where k ≥ 16. Assume that v ∈ V (G) with d(v) ≤ 5. It

is obvious that v has at most five adjacent vertices and five incident edges,

so v has at most 15 conflicting colors. Since |C| ≥ 16, we may first erase the

color of v and finally recolor it after arguing. In other words, we will omit

the coloring for such vertices in the following discussion.

Our proof proceeds by reductio ad absurdum. Assume thatG = (V,E, F )

is a minimal counterexample to Theorem4.2.1 which is embedded in a surface

Σ of Euler characteristic χ(Σ) ≥ 0, such that |V (G)| + |E(G)| is as small

as possible. Obviously, G is connected. Let H be a proper subgraph of G.

By the minimality of G, H has a total k-nsd-coloring using the color set

C = {1, 2, · · · , k}. We use f(v) to denote the total sum of colors assigned to

a vertex v and those edges incident to v in G. For two adjacent vertices u

and v, if f(u) = f(v), then we call these two vertices conflict on φ. Let Cφ(v)

denote the set of colors assigned to a vertex v and those edges incident to v

in H and mφ(v) denote the sum of colors assigned to a vertex v and those

edges incident to v in H . Now we introduce some lemmas first.

Lemma 4.2.1. [77] Let v1, v2 be two neighbors of v in G, d(v1) ≤ 5, d(v2) ≤

5, d(v)+d(v1) ≤ 16 and d(v)+d(v2) ≤ 16. Then d6+(v) ≥ 33−2d(v)−d(v1)−

d(v2). Moreover, if d(v1) 6= d(v2), then d6+(v) ≥ 34 − 2d(v) − d(v1) − d(v2).
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Lemma 4.2.2. [77] There is no edge uv ∈ E(G) such that d(v) ≤ 7 and

d(u) ≤ 5.

Lemma 4.2.3. [77] If v is an 8-vertex of G, then d1(v) = 0 and d5−(v) ≤ 1.

Lemma 4.2.4. [77] Let v be a 9-vertex of G.

(1) If d3−(v) ≥ 1, then d5−(v) ≤ 1.

(2) If d4−(v) ≥ 1, then d5−(v) ≤ 2.

Lemma 4.2.5. [77] Let v be a 10-vertex of G.

(1) If d1(v) 6= 0, then d5−(v) ≤ 2 and d3−(v) ≤ 1.

(2) If d2(v) 6= 0, then d5−(v) ≤ 3 and d3−(v) ≤ 1.

(3) If d3(v) 6= 0, then d5−(v) ≤ 4 and d3−(v) ≤ 2.

(4) If d4(v) 6= 0, then d5−(v) ≤ 5.

Lemma 4.2.6. Let v be an ℓ-vertex of G with ℓ ≥ 11, if d1(v) ≥ 1 and

d2−(v) ≥ 2, then d3−(v) ≤ ⌈ ℓ
2
⌉ − 1 and d6+(v) ≥ d3−(v) + 1.

Proof. Let v1, v2, · · · vi, i ≥ 11 be the neighbors of v with d(v1) ≤ d(v2) ≤

· · · ≤ d(vi). Then d(v1) = 1. Let t = d3−(v). Suppose to the contrary that

t ≥ ⌈ ℓ
2
⌉ or d6+(v) ≤ t. Note that as t ≥ ⌈ ℓ

2
⌉, we can obtain d6+(v) ≤ t, so

we consider d6+(v) ≤ t following. Let H = G − v1v. Then there is a total

[k]-nsd-coloring φ of H . Obviously, d(v2) ≤ 2, and d(v3) ≤ · · · ≤ d(vt) ≤ 3.

We delete all the colors of vi and vvi for 1 ≤ i ≤ t, and denote this coloring

by φ′. Then v has at most t conflicting neighbors. Since ∆ ≥ d(v) =

ℓ, |C\Cφ′(v)| ≥ ∆ + 2− (ℓ+ 1− t) ≥ t+ 1. Thus we can choose t colors from

at least t + 1 colors to color v1v, · · · , vtv. Since d6+(v) ≤ t, we can conclude

that d6+(v) + 1 ≤ t+ 1. By Lemma 4.1.1, we can find at least t + 1 ways to

color v1v, · · · , vtv which result at least t + 1 different f(v)s. Hence, we can

find at least one color set C ′ ⊆ C\Cφ′(v) to color v1v, · · · , vtv, such that v
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does not conflict with its neighbors. Now we color vtv, · · · , v1v one-by-one

with colors in C ′ as follows. Since d(vi) ≤ 3 for 3 ≤ i ≤ t, we color vvi with

color ai in (C ′\{at, · · · , ai+1})\Cφ′(vi). Since d(v2) ≤ 2, we color vv2 with

color a2 in (C ′\{at, · · · , a3})\Cφ′(v2). Since d(v1) = 1, we color vv1 with

color in C ′\{at, · · · , a2}. Thus we get a total k-nsd-coloring of G, which is a

contradiction.

Lemma 4.2.7. [37] Let v be an 11-vertex of G.

(1) Suppose d1(v) ≥ 1. Then d3−(v) ≤ 3 and d5−(v) ≤ 5, moreover, if

d2−(v) ≥ 2, then d5−(v) = 2.

(2) If d3−(v) ≥ 1, then d6+(v) ≥ d3−(v) + 1.

Lemma 4.2.8. [37] Let v be a 12-vertex of G.

(1) Suppose d1(v) ≥ 1. If d3−(v) ≥ 2, then d5−(v) ≤ 6. If d1(v) ≥ 2,

then d3−(v) ≤ 2 and d5−(v) ≤ 5.

(2) If d3−(v) ≥ 1, then d6+(v) ≥ d3−(v) + 1.

Lemma 4.2.9. [37] Let v be a 13-vertex of G, if d1(v) ≥ 4, then d5−(v) ≤ 4.

Lemma 4.2.10. [37] Let v be an ℓ(≥ 13)-vertex of G with d2(v) ≥ 1. Then

d6+(v) ≥ 1. Further,

(1) If v is incident to a special 4-face, then d3−(v) ≤ ⌈ ℓ
2
⌉−1 and d6+(v) ≥

d3−(v) + 1.

(2) If v is incident to at least 2 special 3-faces, then d3−(v) ≤ ⌈ ℓ
2
⌉ − 1

and d6+(v) ≥ d3−(v) + 1.

We shall complete the proof of Theorem 4.2.1 by using the ”Discharging

ethod. Let G = (V,E, F ) be a graph which is embedded in a surface of

nonnegative Euler characteristic. Let H be the graph obtained by removing

all 1-vertices of G. Then H is a connected planar graph with δ(H) ≥ 2. By
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Lemma 4.2.1-4.2.9, we display the relation between d(v) and dH(v) in Table

4.1.

d(v) ≤ 7 8 9 10 11 12 13 14 15 16 · · ·
dH(v) = d(v) 8 ≥ 8 ≥ 9 ≥ 9 ≥ 10 ≥ 9 ≥ 8 ≥ 8 ≥ 9 · · ·

Table 4.1: The relation between d(v) and dH(v)

We list other properties of H which are collected in the following Claim

4.3.

Claim 4.3. Let v be a vertex of H. Then the followings hold.

(1) If dH(v) ≤ 7, then dH(v) = d(v) and dH5−(v) = 0.

(2) If dH(v) = 8, then dH5−(v) ≤ 1.

(3) If dH(v) = 9 with dH4−(v) ≥ 1, then dH5−(v) ≤ 3.

(4) If dH(v) = 10 with dH3−(v) ≥ 1, then dH6+(v) ≥ dH3−(v) + 2.

(5) If dH(v) = 11 with dH3−(v) ≥ 1, then dH6+(v) ≥ dH3−(v) + 1.

(6) If dH(v) = 12 with dH2−(v) ≥ 1, then dH6+(v) ≥ dH3−(v) + 1.

(7) If dH(v) ≥ 13 with dH2−(v) ≥ 1, then dH6+(v) ≥ 1. Moreover, we have

the following:

(a) If v is incident to a special 4-face, then d3−(v) ≤ ⌈ ℓ
2
⌉−1 and d6+(v) ≥

d3−(v) + 1.

(b) If v is incident to at least 2 special 3-faces, then d3−(v) ≤ ⌈ ℓ
2
⌉ − 1

and d6+(v) ≥ d3−(v) + 1.

Proof. (1) It is trivial by Table 4.1 and Lemma 4.2.2.

(2) By Table 4.1, we only need to prove the cases d(v) = 8, 9, 14, 15.

When d(v) = 8. It is trivial for d(v) = 8 by Lemma 4.2.3. If d(v) = 9, then

d1(v) = 1. Since d5−(v) ≤ 1 by Lemma 4.2.4, so dH5−(v) = d5−(v)− d1(v) = 0

by (1). If d(v) = 14, then d1(v) = 6. Since d6+(v) ≥ 7 by Lemma 4.2.6, so
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dH5−(v) = d(v) − d6+(v) − d1(v) ≤ 1. If d(v) = 15, then d1(v) = 7. Since

d6+(v) ≥ 8 by Lemma 4.2.6, so dH5−(v) = d(v) − d6+(v) − d1(v) = 0.

(3) By Table 4.1, we only prove the cases d(v) = 9, 10, 11 and d(v) ≥ 13.

If d(v) = 9, then d5−(v) ≤ 2 by Lemma 4.2.4. If d(v) = 10, then d1(v) = 1.

Since d5−(v) ≤ 2 by Lemma 4.2.5, so dH5−(v) = d5−(v) − d1(v) ≤ 1 by (1).

If d(v) = 11, then d1(v) = 2. Since d5−(v) = 2 by Lemma 4.2.7(1), so

dH5−(v) = d5−(v) − d1(v) = 0. If d(v) = 13, then d1(v) = 4. Since d5−(v) ≤ 4

by Lemma 4.2.9, so dH5−(v) = d5−(v)−d1(v) = 0. If d(v) ≥ 14, then d1(v) ≥ 5.

Since d6+(v) ≥ 6 by Lemma 4.2.6, so dH5−(v) = d(v) − d6+(v) − d1(v) ≤ 3.

(4) By Table 4.1, we only prove the cases d(v) ≥ 10. If d(v) = 10, then

d5−(v) ≤ 4 and d3−(v) ≤ 2 by Lemma 4.2.5(3), so dH6+(v) = d(v) − d5−(v) ≥

6 > dH3−(v) + 2. If d(v) = 11, then d1(v) = 1. Since d3−(v) ≤ 3 and

d5−(v) ≤ 5 by Lemma 4.2.7(1), so dH6+(v) = d(v) − d5−(v) ≥ 6 > dH3−(v) + 2.

If d(v) = 12, then d1(v) = 2. Since d6+(v) ≥ d3−(v) + 1 by Lemma 4.2.8(2),

so dH6+(v) = d6+(v) ≥ d3−(v) + 1 = dH3−(v) + d1(v) + 1 > dH3−(v) + 2. If

d(v) ≥ 13, then d1(v) ≥ 3. Since d6+(v) ≥ d3−(v) + 1 by Lemma 4.2.6, so

dH6+(v) = d6+(v) ≥ d3−(v) + 1 = dH3−(v) + d1(v) + 1 > dH3−(v) + 2.

(5) By Table 4.1, we only prove the cases d(v) ≥ 11. If d(v) = 11, it

is trivial by Lemma 4.2.7(2). If d(v) = 12, then d1(v) = 1. Since d6+(v) ≥

d3−(v) + 1 by Lemma 4.2.8(2), so dH6+(v) = d6+(v) ≥ d3−(v) + 1 = dH3−(v) +

d1(v)+1 > dH3−(v)+1. If d(v) ≥ 13, then d1(v) ≥ 2. Since d6+(v) ≥ d3−(v)+1

by Lemma 4.2.6, so dH6+(v) = d6+(v) ≥ d3−(v) + 1 = dH3−(v) + d1(v) + 1 >

dH3−(v) + 1.

(6) By Table 4.1, we only prove the cases d(v) ≥ 12. If d(v) = 12, it

is trivial by Lemma 4.2.8(2). If d(v) ≥ 13, then d1(v) ≥ 1 and d2−(v) ≥ 2.

Since d6+(v) ≥ d3−(v)+1 by Lemma 4.2.6, so dH6+(v) = d6+(v) ≥ d3−(v)+1 =

dH3− + d1(v) + 1 > dH3−(v) + 1.
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(7) If d(v) = dH(v), it is trivial by Lemma 4.2.10. Otherwise d1(v) ≥ 1,

then d2−(v) = dH2 (v) +d1(v) ≥ 2. Since d6+(v) ≥ d3−(v) + 1 by Lemma 4.2.6,

so dH6+(v) = d6+(v) ≥ d3−(v) + 1 = dH3−(v) + d1(v) + 1 > dH3−(v) + 1.

By Euler’s formula |V | − |E| + |F | = χ(Σ), we have

∑

v∈V (H)

(dH(v) − 6) +
∑

f∈F (H)

(2dH(f) − 6) = −6χ(Σ) ≤ 0.

In order to complete the proof, we use the ”Discharging method”. First,

we give an initial charge function w(v) = dH(v)− 6 for every v ∈ V (H), and

w(f) = 2dH(f)− 6 for every f ∈ F (H). So
∑

x∈V (H)∪F (H) w(x) = −6χ(Σ) ≤

0. Next, we design a discharging rule and redistribute weights accordingly.

Let w′ be the new charge after the discharging. We will show that w′(x) ≥ 0

for each x ∈ V (H) ∪ F (H) and
∑

x∈V (H)∪F (H) w
′(x) > 0. This leads to the

following obvious contradiction:

0 <
∑

x∈V (H)∪F (H)

w′(x) =
∑

x∈V (H)∪F (H)

w(x) = −6χ(Σ) ≤ 0.

Hence demonstrates that no such a counterexample can exist. The discharg-

ing rules are defined as follows:

R1. Each 5+-face sends 2 to each of its incident small vertices (counting

multiplicity).

R2. Let f be a 4-face of H . If f is incident with exactly one 2-vertex,

then f sends 2 to the 2-vertex. Otherwise, f sends 1 to each of its incident

small vertices.

R3. Let u be a 5−-vertex, denote by β(u) the total sum of charges

transferred into u after (R1) and (R2) were carried out. Each 8+-vertex

sends 6−dH (u)−β(u)
dH (u)

to each of its adjacent small vertices u.
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Let τ(x→ y) be the charge transferred from x to y. The following three

observations can be easily deduced by Claim 4.3 and R1-R3.

Observation 4.3.1. Every face f is incident to at most ⌊dH (f)
2

⌋ 5−-vertices

(counting multiplicity).

Observation 4.3.2. Let dH(v) ≥ 8, and u be a 5−-vertex adjacent to v.

(1) Suppose that dH(u) = 2. If u is a special vertex, then τ(v → u) ≤ 3
2
.

Otherwise, τ(v → u) ≤ 1. Moreover, if τ(v → u) = 3
2
, then there exists a

2-vertex u′ such that τ(v → u′) ≤ 1
2
.

(2) Suppose that dH(u) = 3. If u is a bad vertex, then τ(v → u) ≤ 1. If

u is adjacent to only one 4+-face that is not a bad 4-face, then τ(v → u) ≤ 2
3
.

Otherwise, τ(v → u) ≤ 1
3
.

(3) Suppose that dH(u) = 4. If u is a bad vertex, then τ(v → u) ≤ 1
2
.

Otherwise, τ(v → u) ≤ 1
4
.

(4) Suppose that dH(u) = 5. Then τ(v → u) ≤ 1
5
.

Proof. (1) dH(u) = 2. Suppose that u is a special vertex, i.e. u is incident

to a special 4-face (v, u, x, y) and dH(y) = 2. If u is incident to a 3-face, i.e.

3-face (v, u, x), then τ(v → u) = 6−2−1
2

= 3
2
. Let v1, · · · , vℓ be neighbors of v

in the clockwise order such that u = v1, y = v2 and x = vℓ, where ℓ = dH(v).

By Claim 4.3, dH6+(v) ≥ 2. Let i be the minimum index such that dH(vi) ≥ 3.

Then 3 ≤ i ≤ ℓ and dH(v1) = · · · = dH(vi−1) = 2. Let fj be the face incident

with vvj and vvj+1, for j ∈ {1, 2, . . . , i−1}. Then dH(f1) = 4 and dH(fj) ≥ 4

for j = 2, . . . , i − 1. Suppose that there exists some j(2 ≤ j ≤ i − 1) such

that dH(fj) ≥ 5. Let p be the minimum index such that dH(fp) ≥ 5 for

2 ≤ p ≤ i − 1. By R1 and R2, τ(fp−1 → vp) ≥ 1 and τ(fp → vp) ≥ 2.

Therefore, τ(v → vp) ≤
1
2
. Suppose that dH(f2) = · · · = dH(fi−1) = 4. Then

dH(fi) ≥ 4. By R1 and R2, τ(fi−1 → vi) ≥ 1 and τ(fi → vi) ≥ 2. Therefore,

τ(v → vi) ≤
1
2
.
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Suppose that u is not a special vertex, then τ(v → u) ≤ 6−2−2
2

= 1.

(2) dH(u) = 3. If u is a bad vertex, then τ(v → u) ≤ 6−3
3

= 1. If u

is adjacent to only one 4+-face that is not a bad 4-face, then τ(v → u) ≤

6−3−1
3

= 2
3
. Otherwise, τ(v → u) ≤ 6−3−2

3
= 1

3
.

(3) Suppose that dH(u) = 4. If u is a bad vertex, then τ(v → u) ≤

6−4
4

= 1
2
. Otherwise, τ(v → u) ≤ 6−4−1

4
= 1

4
.

(4) Suppose that dH(u) = 5. Then τ(v → u) ≤ 6−5
5

= 1
5
.

Observation 4.3.3. Let dH(v) ≥ 8, and u be a 2-vertex adjacent to v, then

∑

u∈NH

2 (v)

τ(v → u) ≤ dH2 (v).

Proof. By observation 4.3.2(1), if τ(v → u) = 3
2
, then there exist a neighbor

u′ of v such that τ(v → u′) ≤ 1
2
. Otherwise, τ(v → u) ≤ 1. Hence, we have

the following:
∑

u∈NH

2 (v) τ(v → u) ≤ dH2 (v).

In the following, we will check that w′(x) ≥ 0 for each x ∈ V (H)∪F (H)

and
∑

x∈V (H)∪F (H) w
′(x) > 0. Let f ∈ F (H). If dH(f) = 3, then w′(f) =

w(f) = 0. If dH(f) = 4, then f is incident with at most two small vertices

by Observation 4.3.1. By R2, f sends at most 2 to all adjacent 5−-vertices.

Thus w′(f) ≥ w(f) − 2 = 2 × 4 − 6 − 2 = 0. If dH(f) ≥ 5, then by R1 and

Observation 4.3.1, w′(f) ≥ w(f)−2×⌊dH (f)
2

⌋ = 2dH(f)−6−2×⌊dH (f)
2

⌋ ≥ 0.

Let v ∈ V (H) and dH(v) = ℓ. Then ℓ ≥ 2. Let v1, · · · , vℓ be neighbors

of v in the clockwise order. We use fi be the face incident with vvi and vvi+1

as boundary edges, for 1 ≤ i ≤ ℓ, where all the subscripts here are taken

modulo ℓ. We say that some vertices are consecutive if they have consecutive

indices on taken modulo ℓ, i.e. v1 and v2 are consecutive vertices, · · · , vℓ and

v1 are consecutive vertices.
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If 2 ≤ ℓ ≤ 5, then v is incident with ℓ 8+-vertices by Claim 4.3(1), so

w′(v) ≥ ℓ− 6 + β(v) + ℓ× 6−ℓ−β(v)
ℓ

= 0 by R1-R3.

If ℓ = 6, then w′(v) = w(v) = 6 − 6 = 0.

If ℓ = 7, then w′(v) = w(v) = 7 − 6 > 0.

If ℓ = 8, then w(v) = 2 and dH5−(v) ≤ 1 by Claim 4.3(2), so w′(v) ≥

2 − 3
2
> 0 by Observation 4.3.2.

Suppose ℓ = 9. Then w(v) = 3. If dH4−(v) ≥ 1, then dH5−(v) ≤ 3 by Claim

4.3(3), so w′(v) ≥ 3− dH5−(v) ≥ 0 by Observation 4.3.2 and 4.3.3. Otherwise,

w′(v) ≥ 3 − 1
5
× 9 > 0.

Suppose ℓ = 10. Then w(v) = 4. If dH3−(v) ≥ 1, then dH6+(v) ≥ dH3−(v)+2

by Claim 4.3(4), so w′(v) ≥ 4 − dH3−(v) − 1
2
× (10 − dH3−(v) − dH6+(v)) = 0 by

Observation 4.3.2 and 4.3.3. If dH3−(v) = 0 and dH6+(v) ≥ 2, then w′(v) ≥

4 − 1
2
× (10 − 2) = 0 by Observation 4.3.2. If dH3−(v) = 0 and dH6+(v) ≤ 1,

w′(v) ≥ 4 − 1
2
× 5 > 0.

Suppose ℓ = 11. Then w(v) = 5. If dH3−(v) ≥ 1, then dH6+(v) ≥ dH3−(v)+1

by Claim 4.3(5), so w′(v) ≥ 5 − dH3−(v) − 1
2
× (11 − dH3−(v) − dH6+(v)) = 0 by

Observation 4.3.2 and 4.3.3. If dH3−(v) = 0 and dH6+(v) ≥ 2, then w′(v) ≥

5 − 1
2
× (11 − 2) > 0 by Observation 4.3.2. If dH3−(v) = 0 and dH6+(v) ≤ 1,

w′(v) ≥ 5 − 1
2
× 5 > 0.

Suppose ℓ = 12. Then w(v) = 6. If dH3−(v) = 0, then w′(v) ≥ 6− 1
2
×ℓ = 0

Observation 4.3.2. If dH2 (v) ≥ 1, then dH6+(v) ≥ dH3−(v) + 1 by Claim 4.3(6),

so w′(v) ≥ 6 − dH3−(v) − 1
2
× (12 − dH3−(v) − dH6+(v)) > 0 by Observation 4.3.2

and 4.3.3. Thus we assume dH3 (v) ≥ 1 and dH2 (v) = 0.

Note that if u is a bad vertex adjacent to v, then the faces incident to

the edge uv is 3-faces, so dH3b(v) ≤ 6 by Claim 4.3(1).

(1) If dH3b(v) = 6, then dH6+(v) = 6, so w′(v) ≥ 6 − dH3b(v) = 0.

(2) If dH3b(v) = 5, then dH6+(v) ≥ dH3b(v)+1 since that each bad 3-vertex in
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NH
3b (v) must be adjacent to two 6+-vertices in NH(v), so w′(v) ≥ 6−dH3b(v)−

2
3
× (12 − dH3b(v) − dH6+(v)) > 0.

(3) If dH3b(v) = 4, then dH6+(v) ≥ dH3b(v) + 1, so w′(v) ≥ 6 − dH3b(v) − 2
3
×

(12 − dH3b(v) − dH6+(v)) ≥ 0.

(4) Suppose dH3b(v) = 3. Then dH6+(v) ≥ dH3b(v) + 1. If dH6+(v) ≥ 5, then

w′(v) ≥ 6 − dH3b(v) − 2
3
× (12 − dH3b(v) − dH6+(v)) > 0. Otherwise, dH6+(v) = 4,

then there are five consecutive 5−-vertices vi, vi+1, · · · , vi+4 in NH(v). So

fi, fi+1, fi+2, fi+3 are 4+-faces, hence τ(v → vi+j) ≤ 1
3

for j = 1, 2, 3 by

Observation 4.3.2. Therefore, w′(v) ≥ 6−dH3b(v)− 2
3
× (12−dH3b(v)−dH6+(v)−

3) − 1
3
× 3 > 0.

(5) Suppose dH3b(v) = 2. Then dH6+(v) ≥ dH3b(v) + 1. If dH6+(v) ≥ 4, then

w′(v) ≥ 6 − dH3b(v) − 2
3
× (12 − dH3b(v) − dH6+(v)) ≥ 0. Otherwise, dH6+(v) = 3,

then there are seven consecutive 5−-vertices vi, vi+1, · · · , vi+6 in NH(v). So

fi, fi+1, · · · , fi+5 are 4+-faces, hence τ(v → vi+j) ≤ 1
3

for j = 1, 2, · · · , 5 by

Observation 4.3.2. Therefore, w′(v) ≥ 6−dH3b(v)− 2
3
× (12−dH3b(v)−dH6+(v)−

5) − 1
3
× 5 > 0.

(6) Suppose dH3b(v) = 1. Then dH6+(v) ≥ dH3b(v) + 1. If dH6+(v) ≥ 4, then

w′(v) ≥ 6 − dH3b(v) − 2
3
× (12 − dH3b(v) − dH6+(v)) > 0. Otherwise, dH6+(v) = 2,

then there are four consecutive 5−-vertices vi, vi+1, vi+2, vi+3 in NH(v). So

fi, fi+1, fi+2 are 4+-faces, hence τ(v → vi+1) ≤ 1
3

and τ(v → vi+2) ≤ 1
3

by

Observation 4.3.2. Therefore, w′(v) ≥ 6−dH3b(v)− 2
3
× (12−dH3b(v)−dH6+(v)−

2) − 1
3
× 2 > 0.

(7) Suppose dH3b(v) = 0. If dH6+(v) ≥ 3, then w′(v) ≥ 6 − 2
3
× (12 −

dH6+(v)) ≥ 0. Otherwise, dH6+(v) ≤ 2. Since if vi+1 is a 6+-vertex in NH(v),

then the two consecutive 5−vertices vi, vi+2 in NH(v) satisfy τ(v → vi) = 2
3

and τ(v → vi+2) = 2
3
. So w′(v) ≥ 6 − 2

3
× (2dH6+(v)) − 1

3
× (12 − dH6+(v)) > 0.

Suppose ℓ ≥ 13. If dH3−(v) = 0, then w′(v) ≥ 7 − 1
2
× ℓ > 0 Observation
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4.3.2. Thus we assume dH3−(v) ≥ 1. Let s be the number of special 3-faces

incident to v, NH
3,4,5(v) = NH

3 (v) ∪NH
4 (v) ∪NH

5 (v).

Case 4.3.1. dH2 (v) ≥ 1.

By Claim 4.3(7), dH6+(v) ≥ 1.

Subcase 4.3.1.1. v is incident with a special 4-face, or s ≥ 2.

Then dH6+(v) ≥ dH3−(v) + 1 by Claim 4.3(7), so w′(v) ≥ ℓ− 6 − dH3−(v) −

1
2
× (ℓ− dH3−(v) − dH6+(v)) = 1

2
ℓ− 11

2
> 0 by Observation 4.3.2 and 4.3.3.

Subcase 4.3.1.2. v is not incident with any special 4-face, or s ≤ 1.

Then dH6+(v) + (dH2 (v)− s) ≥ 1. Note that if vi is incident to a 3-face for

vi ∈ NH
2 (v), then τ(v → vi) ≤ 1. Otherwise, τ(v → vi) = 0 by R1 and R2.

Hence, we have the following:

∑

u∈NH

2 (v)

τ(v → u) ≤ s.

(1) If dH6+(v)+(dH2 (v)−s) ≥ 6, then w′(v) ≥ ℓ−6− (s+dH3 (v)+dH4 (v)+

dH5 (v)) ≥ ℓ− 6 − (ℓ− dH6+(v) − (dH2 (v) − s)) ≥ 0.

(2) Suppose dH6+(v) + (dH2 (v) − s) = 5. If there are three consecutive

vertices vi, vi+1, vi+2 ∈ NH
3,4,5(v), then fi and fi+1 are 4+-faces, hence vi and

vi+2 can not be bad 3-vertices. So τ(v → vi) ≤ 2
3
, τ(v → vi+1) ≤ 1

3
and

τ(v → vi+2) ≤
2
3

by Observation 4.3.2. Thus, w′(v) ≥ ℓ − 6 − (s + dH3 (v) +

dH4 (v) + dH5 (v)) ≥ ℓ− 6− 2
3
× 2− 1

3
− (ℓ− dH6+(v)− (dH2 (v)− s)− 3) = 1

3
> 0.

Otherwise, there must be two vertex-disjoint subsets {vi, vi+1}, {vj, vj+1} ∈

NH
3,4,5(v), then τ(v → vi)+τ(v → vi+1)+τ(v → vj)+τ(v → vj+1) ≤

2
3
×4 = 8

3
,

so w′(v) ≥ ℓ− 6 − (s+ dH3 (v) + dH4 (v) + dH5 (v)) ≥ ℓ− 6 − 8
3
− (ℓ− dH6+(v) −

(dH2 (v) − s) − 4) = 1
3
> 0.
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(3) Suppose dH6+(v) + (dH2 (v)− s) = 4. If there are four consecutive ver-

tices vi, vi+1, vi+2, vi+3 ∈ NH
3,4,5(v), then

∑i+3
j=i τ(v → vj) ≤

2
3
× 2 + 1

3
× 2 = 2

by Observation 4.3.2, so w′(v) ≥ ℓ − 6 − (s + dH3 (v) + dH4 (v) + dH5 (v)) ≥

ℓ − 6 − 2 − (ℓ − dH6+(v) − (dH2 (v) − s) − 4) = 0. If there are two vertex-

disjoint subsets {vi, vi+1, vi+2}, {vp, vp+1} ∈ NH
3,4,5(v), then

∑i+2
j=i τ(v → vj) ≤

2
3
× 2 + 1

3
= 5

3
and τ(v → vp) + τ(v → vp+1) ≤ 2

3
× 2 = 4

3
, so w′(v) ≥

ℓ − 6 − (s + dH3 (v) + dH4 (v) + dH5 (v)) ≥ ℓ − 6 − 5
3
− 4

3
− (ℓ − dH6+(v) −

(dH2 (v) − s) − 5) = 0. Otherwise, there must be four vertex-disjoint subsets

{vi, vi+1}, {vj, vj+1}, {vp, vp+1}, {vq, vq+1} ∈ NH
3,4,5(v), then w′(v) ≥ ℓ−6−(s+

dH3 (v)+dH4 (v)+dH5 (v)) ≥ ℓ−6− 2
3
×8−(ℓ−dH6+(v)−(dH2 (v)−s)−8) = 2

3
> 0.

(4) Suppose dH6+(v) + (dH2 (v) − s) = 3. If there are six consecutive

vertices vi, vi+1, · · · , vi+5 ∈ NH
3,4,5(v), then

∑i+5
j=i τ(v → vj) ≤ 2

3
× 2 + 1

3
×

4 = 8
3

by Observation 4.3.2, so w′(v) ≥ ℓ − 6 − (s + dH3 (v) + dH4 (v) +

dH5 (v)) ≥ ℓ − 6 − 8
3
− (ℓ − dH6+(v) − (dH2 (v) − s) − 6) = 1

3
> 0. If there

are two vertex-disjoint subsets {vi, vi+1, · · · , vi+4}, {vp, vp+1} ∈ NH
3,4,5(v) or

{vi, vi+1, vi+2, vi+3}, {vp, vp+1, vp+2} ∈ NH
3,4,5(v), then w′(v) ≥ ℓ − 6 − (s +

dH3 (v) + dH4 (v) + dH5 (v)) ≥ ℓ − 6 − 2
3
× 4 − 1

3
× 3 − (ℓ − dH6+(v) − (dH2 (v) −

s) − 7) = 1
3
> 0. Otherwise, there must be three vertex-disjoint subset-

s {vi, vi+1, vi+2}, {vj, vj+1, , vj+2}, {vp, vp+1, vp+2} ∈ NH
3,4,5(v), then w′(v) ≥

ℓ− 6 − (s+ dH3 (v) + dH4 (v) + dH5 (v)) ≥ ℓ− 6 − 2
3
× 6 − 1

3
× 3 − (ℓ− dH6+(v) −

(dH2 (v) − s) − 9) = 1 > 0.

(5) Suppose dH6+(v) + (dH2 (v) − s) = 2. If there are seven consecutive

vertices vi, vi+1, · · · , vi+6 ∈ NH
3,4,5(v), then

∑i+6
j=i τ(v → vj) ≤

2
3
×2+ 1

3
×5 = 3

by Observation 4.3.2, so w′(v) ≥ ℓ−6−(s+dH3 (v)+dH4 (v)+dH5 (v)) ≥ ℓ−6−

3−(ℓ−dH6+ (v)−(dH2 (v)−s)−7) = 0. Otherwise, there are two vertex-disjoint

subsets {vi, vi+1, · · · , vi+4}, {vj, vj+1, vj+2, vj+3} ∈ NH
3,4,5(v), then w′(v) ≥ ℓ−

6 − (s + dH3 (v) + dH4 (v) + dH5 (v)) ≥ ℓ − 6 − 2
3
× 4 − 1

3
× 5 − (ℓ − dH6+(v) −
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(dH2 (v) − s) − 9) = 2
3
> 0.

(6) Suppose dH6+(v) + (dH2 (v) − s) = 1. Then s = 1. So dH2 (v) = 1,

dH6+(v) = 1 and they are consecutive vertices. Therefore, w′(v) ≥ ℓ−6− (s+

dH3 (v)+dH4 (v)+dH5 (v)) ≥ ℓ−6−1− 2
3
×2− 1

3
×(ℓ−dH6+(v)−(dH2 (v)−s)−3) =

2
3
ℓ− 7 > 0.

Case 4.3.2. dH2 (v) = 0 and dH3−(v) ≥ 1.

Note that if u is a bad vertex adjacent to v, then the faces incident to

the edge uv are 3-faces, so dH3b(v) ≤ ⌊ ℓ
2
⌋ by Claim 4.3(1).

(1) If dH3b(v) = ⌊ ℓ
2
⌋, then dH6+(v) = ⌈ ℓ

2
⌉, so w′(v) ≥ ℓ− 6 − dH3b(v) ≥ 0.

(2) Suppose dH3b(v) ≥ 3. Since each bad 3-vertex in NH
3b (v) must be

adjacent to two 6+-vertices in NH(v), then dH6+(v) ≥ dH3b(v) + 1, so w′(v) ≥

ℓ− 6 − dH3b(v) − 2
3
× (ℓ− dH3b(v) − dH6+(v)) = 1

3
ℓ− 6 − 1

3
dH3b(v) + 2

3
dH6+(v) ≥ 0.

(3) Suppose dH3b(v) = 2. Then dH6+(v) ≥ dH3b(v) + 1. If dH6+(v) ≥ 4, then

w′(v) ≥ ℓ − 6 − dH3b(v) − 2
3
× (ℓ − dH3b(v) − dH6+(v)) = 1

3
ℓ − 6 − 1

3
dH3b(v) +

2
3
dH6+(v) ≥ 0. Otherwise, dH6+(v) = 3, then there are five consecutive 5−-

vertices vi, vi+1, · · · , vi+4 in NH(v). So fi, fi+1, fi+2, fi+3 are 4+-faces, hence

τ(v → vi+j) ≤ 1
3

for j = 1, 2, 3 by Observation 4.3.2. Therefore, w′(v) ≥

ℓ− 6− dH3b(v)− 2
3
× (ℓ− dH3b(v)− dH6+(v)− 3)− 1

3
× 3 = 1

3
(ℓ+ dH3b(v)− 13) > 0.

(3) Suppose dH3b(v) = 1. Then dH6+(v) ≥ dH3b(v) + 1. If dH6+(v) ≥ 3, then

w′(v) ≥ ℓ − 6 − dH3b(v) − 2
3
× (ℓ − dH3b(v) − dH6+(v)) = 1

3
ℓ − 6 − 1

3
dH3b(v) +

2
3
dH6+(v) ≥ 0. Otherwise, dH6+(v) = 2, then there are five consecutive 5−-

vertices vi, vi+1, · · · , vi+4 in NH(v). So w′(v) ≥ ℓ − 6 − dH3b(v) − 2
3
× (ℓ −

dH3b(v) − dH6+(v) − 3) − 1
3
× 3 = 1

3
(ℓ+ dH3b(v) − 13) > 0.

(4) Suppose dH3b(v) = 0. If dH6+(v) ≥ 3, then w′(v) ≥ ℓ − 6 − dH3b(v) −

2
3
× (ℓ − dH3b(v) − dH6+(v)) = 1

3
ℓ − 6 − 1

3
dH3b(v) + 2

3
dH6+(v) ≥ 0. Otherwise,

dH6+(v) ≤ 2. Since if vi+1 is a 6+-vertex in NH(v), then the two consecutive
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5−vertices vi, vi+2 in NH(v) satisfy τ(v → vi) = 2
3

and τ(v → vi+2) = 2
3
. So

w′(v) ≥ ℓ− 6 − 2
3
× (2dH6+(v)) − 1

3
× (ℓ− dH6+(v)) = 2

3
ℓ− dH6+(v) − 6 > 0.

Hence,
∑

x∈V (H)∪F (H) w
′(x) > 0, this contradiction completes the proof

of Theorem 4.2.1.
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Chapter 5 List linear arboricity

§5.1 Basic definitions and properties

A linear forest is a graph in which each component is a path. A mapping

L is said to be an edge assignment for a graph G if it assigns a list L(e) of

possible colors to every edge e ∈ G. If G has a coloring ϕ(e) such that

ϕ(e) ∈ L(e) for every edge e and the induced subgraph of edges having the

same color α is a linear forest for any i ∈ {ϕ(e)|e ∈ E(G), then we say

that G is linear L-colorable or ϕ is a linear L-coloring of G. We say that

G is linear k-choosable if it is linear L-colorable for every list assignment L

satisfying |L(e)| ≥ k for all edges e. The list linear arboricity lalist(G) of

a graph G is the minimum number k for which G is linear k-list colorable.

If L(e) = {1, 2, · · · , t} for any e ∈ E(G), then the linear L-coloring of G is

called a t-linear coloring. The linear arboricity la(G) of a graph G defined

by Harary [54] is the minimum number t for which G has a t-linear coloring.

It is obvious that la(G) ≤ lalist(G).

In 1980, Akiyama et al. [4] conjectured that la(G) = ⌈∆(G)+1
2

⌉ for any

simple regular graph G. The conjecture is equivalent to the following con-

jecture 1.3.10.

Conjecture 1.3.10. For any graph G, ⌈∆(G)
2

⌉ ≤ la(G) ≤ ⌈∆(G)+1
2

⌉.

This has been proved in complete bipartite graphs [4], complete regular

multipartite graphs [154], planar graphs [149, 152] and regular graphs with

∆ = 3, 4 [5] and ∆ = 5, 6, 8 [46]. Recently, M. Cygan et al. [39] proved that

if G is a planar graph with ∆ ≥ 9, then la(G) = ⌈∆
2
⌉, and then they posed

the following conjecture 1.3.10 (the conjecture has also been posed in [150]).

Conjecture 1.3.10 For any planar graph G of maximum degree ∆ ≥ 5,
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la(G) = ⌈∆
2
⌉.

Some related results about the conjecture refer to [34]. For the list linear

arboricity, the following conjecture is posed in [150] and [7], independently.

Conjecture 1.3.11 For any graph G, la(G) = lalist(G).

The list linear arboricity of a planar graph G is at most ⌈∆(G)+1
2

⌉ if

∆(G) ≥ 8 [7]; or ∆(G) ≥ 6 and G is F5-free [162]. lalist(G) = ⌈∆(G)
2

⌉ if

∆(G) ≥ 13, or ∆(G) ≥ 7 and G contains no i-cycles for some i ∈ {3, 4, 5} [7];

or ∆(G) ≥ 11 and G is F5-free [162]. Though few results have been reported,

the investigation is far from satisfactory. In this chapter, we prove that for

a planar graph G with 7-cycles containing at most two chords, lalist(G) ≤

max{4, ⌈∆(G)+1
2

⌉} and lalist(G) = ⌈∆
2
⌉ if ∆(G) ≥ 11.

§5.2 List linear arboricity of planar graph

Lemma 5.2.1. Let G be a planar graph. If every 7-cycles of G contains at

most two chords, then

(1) G has an edge uv with d(u) + d(v) ≤ max{9,∆(G) + 2}, or

(2) G has an even cycle c = v1v2 · · · v2nv1 with d(v1) = d(v3) = · · · =

d(v2n−1) = 3.

Proof. The proof is carried out by contradiction. Let G be a minimal coun-

terexample to the lemma with |V | + |E| minimized. It is obvious that G

is a connected planar graph. By the choice of G, we have the following

observations.
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(a) For any edge uv, d(u) +d(v) ≥ max{10,∆(G) + 3} by (1). Then δ(G) ≥ 3

and all neighbors of an i-vertex must be (10 − i)+-vertices, where i = 3, 4

or 5;

(b) Let V1 be the set of 3-vertices of G and G3 the subgraph induced by the

edges incident with 3-vertices of G. Then G3 is a forest.

By (a) or (1), every two 3-vertices are not adjacent, and it follows that

G3 does not contain odd cycles. By (2), G3 contains no even cycles. So G3

is a forest and (b) holds.

Thus for any component of G3, we select a vertex u 6∈ V1 as a root of the

tree. Then every 3-vertex has exactly two children. If uv ∈ E(G3), u ∈ V1

and v is a child of u, then v is called a 3-master of u. Note that each 3-vertex

has exactly two 3-masters and each vertex of degree at least 7 can be the

3-master of at most two 3-vertices.

By the Euler’s formula |V | − |E| + |F | = 2, we have

∑

v∈V (G)

(d(v)−4)+
∑

f∈F (G)

(d(f)−4) = −4(|V (G)|−|E(G)|+|F (G)|) = −8 < 0.

For each x ∈ V ∪ F , we define the initial charge

ch(x) =







d(x) − 4 if x ∈ V

d(x) − 4 if x ∈ F

So
∑

x∈V ∪F ch(x) = −8 < 0. In the following, we will reassign a new charge

denoted by ch
′

(x) to each x ∈ V ∪ F according to the discharging rules. If

we can show that ch
′

(x) ≥ 0 for each x ∈ V ∪ F , then we get an obvious

contradiction to 0 ≤
∑

x∈V ∪F ch
′

(x) =
∑

x∈V ∪F ch(x) = −8, which completes

our proof.

R1: Every 3-vertex receives 1
2

from each of its 3-masters.
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R2: Let f be a 3-face uvw with d(u) ≤ d(v) ≤ d(w).

R2.1: If d(u) = 3 or d(u) = 4, then f receives 1
2

from each of v and

w, respectively.

R2.2: If d(u) = 5, then f receives 1
f3(v)

from each of u, v and w,

respectively.

R2.3: If d(u) ≥ 6, then f receives 1
3

from each of u, v and w,

respectively.

R3: Each 3+-face receives 1
5

from each adjacent 5+-face.

First, we consider the final charge of any face f . If d(f) = 3, note that

if a 5-vertex x is incident with four 3-faces, then any 5+-vertex adjacent to

x must be incident with two 5+-faces. Then ch′(f) = ch(f) + min{1
2
× 2, 1

5
+

1
3
×2 + 1

5
, 1
3
×3} = −1 + 1 = 0 by (a), R2 and R3. If d(f) = 4, then ch′(f) =

ch(f) = d(f) − 4 = 0. If d(f) ≥ 5, then ch′(f) = ch(f) − 1
5
× d(f) ≥ 0.

Second, suppose that v is any vertex of G. If d(v) = 3, then v has

exactly two 3-masters and it follows by R1 that ch′(v) ≥ ch(v) + 1
2
× 2 = 0.

According to the rules, every 4-vertex retain its initial charge. So ch′(v) =

ch(v) = 4 − 4 = 0 if d(v) = 4. If d(v) = 5, all neighbors of 5-vertex should

be 5+-vertices, then ch′(v) ≥ ch(v) + 1
f3(v)

× f3(v) = 0. If d(v) = 6, then

f3(v) ≤ 4, so ch′(v) ≥ ch(v) − max{1
3
, 1
2
} × 4 = 2 − 1

2
× 4 = 0. If d(v) = 7,

then f3(v) ≤ 5, v can be the 3-master of a 3-vertex, and it follows from

R1 and R2 that ch′(v) ≥ ch(v) − 1
2
× 1 − 1

2
× 5} = 0. If d(v) = 8, then

f3(v) ≤ 6, so ch′(v) ≥ ch(v) − 1
2
× 1 − 1

2
× 6} = 1

2
> 0. If d(v) ≥ 9, then

ch′(v) ≥ ch(v) − 1
2
× 1 − 1

2
× d(v)} ≥ 0.

Hence, this completes the proof of Lemma 5.2.1.

Given a t-linear coloring ϕ and v ∈ V (G), we denote by C i
ϕ(v) the set of

colors appear i times at v, where i = 0, 1, 2. Then |C0
ϕ(v)|+|C1

ϕ(v)|+|C2
ϕ(v)| =
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t and d(v) = |C1
ϕ(v)| + 2|C2

ϕ(v)|. Let Cϕ(u, v) = C2
ϕ(u) ∪ C2

ϕ(v) ∪ (C1
ϕ(u) ∩

C1
ϕ(v)) for two vertices u and v.

Theorem 5.2.1. Let G be a planar graph. If every 7-cycles of G contains

at most two chords, then ⌈∆(G)
2

⌉ ≤ lalist(G) ≤ max{4, ⌈∆(G)+1
2

⌉}.

Proof. Let G be a minimal counterexample to the theorem, that is, there

is an edge assignment L with |L(e)| ≥ k for all e ∈ E(G), where k =

max{4, ⌈∆(G)+1
2

⌉}, such that G is not linear-L-colorable, but all proper sub-

graphs of G are linear-L-colorable. By Lemma 5.2.1, we consider two cases

as follows.

Case 5.2.1. G contains an edge uv with d(u) + d(v) ≤ max{9,∆(G) + 2}.

By minimality of G, G′ = G − uv has a linear-L-coloring φ. Since

d(u) + d(v) ≤ max{9,∆(G) + 2}, |Cφ(u, v)| < k, we may extend φ to a linear

L-coloring of G by setting φ(uv) ∈ L(uv) \ Cφ(u, v), a contradiction.

Case 5.2.2. G has an even cycle C = v0v1 · · · v2n−1v0 with d(v1) = d(v3) =

· · · = d(v2n−1) = 3.

Let G′ be the subgraph of G obtained by deleting the edges of C. Then

G′ has a linear L-coloring φ. In the following, we will construct a linear

L-coloring σ.

Let S = L(v2n−1v0)\Cφ(v2n−1, v0) and NG(v2n−1) = {u, v0, v2n−2}. Since

|L(v2n−1v0)| ≥ k, |S| ≥ 1. If |S| ≥ 2, then let L′(v2n−1v0) = S; Otherwise we

must have φ(v2n−1u) = α ∈ C1
φ(v0). Let L′(v2n−1v0) = S ∪ {α} and at the

same time, if there exists a monochromatic path of color α between v2n−1

and v0 passing u, then α ∈ C2
φ(u), and we need to recolor v2n−1u such that

σ(v2n−1u) ∈ L(v2n−1u)\C2
φ(u). So |L′(v2n−1v0)| ≥ 2. We define the assign-

ment L′ of other edges of C such that L′(vivi+1) = L(vivi+1)\Cφ(vi, vi+1)(0 ≤

i ≤ 2n− 2).
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If L′(v0v1) = L′(v1v2) = · · · = L′(v2n−2v2n−1) = L′(v2n−1v0), then we col-

or C such that σ(v2iv2i+1) ∈ L′(v0v1) and σ(v2i+1v2i+2) ∈ L′(v0v1)\σ(v2iv2i+1),

i = 0, 1, ..., n − 1; Otherwise, there is an i(0 ≤ i ≤ 2n − 1) such that

L′(vivi+1)\L
′(vi+1vi+2) 6= ∅ or L′(vi+1vi+2)\L

′(vivi+1) 6= ∅, where the sub-

scripts are taken modulo 2n. Without loss of generality, assume that there is

a color β ∈ L′(v0v1)\L
′(v2n−1v0). First we color v0v1 such that σ(v0v1) = β.

Then we assume that v0v1, v1v2, · · · , vi−1vi(1 ≤ i ≤ 2n−1) has been colored,

color vivi+1 satisfying

σ(vivi+1) ∈







L′(vivi+1) if |L′(vivi+1)| = 1,

L′(vivi+1)\σ(vi−1vi) otherwise.

Finally, the uncolored edges of G are colored the same colors as in φ of G′.

Thus σ is a linear L-coloring of G, a contradiction.

This completes the proof.

According to the Theorem 5.2.1, it is easy to obtain the following corol-

lary.

Corollary 5.2.2. Let G be a planar graph. If ∆(G) ≥ 6 and every 7-cycles

of G contains at most two chords, then ⌈∆(G)
2

⌉ ≤ lalist(G) ≤ ⌈∆(G)+1
2

⌉.

Theorem 5.2.3. Let G be a planar graph, and every 7-cycles of G contains

at most two chords. Then G is linear k-choosable, where k ≥ max{6, ⌈∆(G)
2

⌉}.

Proof. Let G be a minimal counterexample to Theorem 5.2.3. Then there

is an edge assignment L with |L(e)| ≥ k for all e ∈ E(G), where k =

max{6, ⌈∆(G)
2

⌉}, such that G is not linear L-colorable, but any proper sub-

graph of G is linear-L-colorable. By a similar proof as Theorem 2.4 in [7], G

has the following properties.

(1) For every edge uv of G, d(u) + d(v) ≥ max{14,∆(G) + 2};
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(2) G has no even cycle C = v1v2 · · · v2nv1 with d(v1) = d(v3) = · · · =

d(v2n−1) = 2 and max1≤i≤n |n2(v2i−1)| ≥ 3, where n2(v) is the number of

2-vertices adjacent to v.

By (1), δ(G) ≥ 2 and any two 2-vertices are not adjacent. Let G2 be

the subgraph induced by the edges incident with the 2-vertices of G. Then

G2 contains no odd cycle. So it follows from (2) that any component of G2

is either an even cycle or a tree, and then we can find a matching M in G

saturating all 2-vertices (M contains alternate edges of every even cycle of

G2, and if some component of G2 is a tree T then we repeatedly add to M

a pendant edge e of T and delete the end-vertices of e from T ). If uv ∈ M

and d(u) = 2, v is called a 2-master of u. Note that every 2-vertex has a

2-master, which is necessarily a vertex of maximum degree and each vertex

of the maximum degree can be the 2-master of at most one 2-vertex.

We define a weight function c on V (G)∪F (G) by letting c(v) = 2d(v)−6

for each v ∈ V (G) and c(f) = d(f) − 6 for each f ∈ F (G). Applying Euler’s

formula |V (G)| − |E(G)| + |F (G)| = 2, we have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

In the following, we will reassign a new charge denoted by c
′

(x) to each

x ∈ V ∪F according to the discharging rules. If we can show that c
′

(x) ≥ 0 for

each x ∈ V ∪F , then we get an obvious contradiction to 0 ≤
∑

x∈V ∪F c
′

(x) =
∑

x∈V ∪F c(x) = −12, which completes our proof.

Let c(v → f) be the amount that a vertex v sends a face f . The rules

for redistribution of charge are as follows:

R1: Each 2-vertex receives 2 from its 2-master;

R2: Let f be a 3-face. If d(v) = 4, then c(v → f) = 1
2
. If d(v) = 5, then
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c(v → f) = 4
5
. If 6 ≤ d(v) ≤ 8, then c(v → f) = 1. If d(v) = 9, then

c(v → f) = 11
10

. If d(v) ≥ 10, then c(v → f) = 3
2
.

R3: Let f be a 4-face. If 4 ≤ d(v) ≤ 10, then c(v → f) = 1
2
. If d(v) ≥ 11,

then c(v → f) = 1.

R4: Let f be a 5-face. If d(v) ≥ 4, then c(v → f) = 1
3
.

Let c′(x) be the resulting charge on x. In the following, we will check that

c′(x) ≥ 0 for all x ∈ V (G) ∪ F (G).

Let f be a face of G. If d(f) = 3, then c′(f) = c(f)+min{3
2
×2, 3

2
+ 1

2
, 3
2
+

4
5
, 1 × 3} = 0 by R2. If d(f) = 4, then c′(f) = c(f) + min{1

2
× 4, 1 × 2} = 0

by R3. If d(f) = 5, then c′(f) = c(f) + min{1
5
× 5, 1

3
× 3} = 0 by R4. If

d(f) ≥ 6, then c′(f) = c(f) ≥ 0.

Let v be a vertex of G. If d(v) = 2, then c′(v) = c(v) + 2 = 0 by R1. If

d(v) = 3, then c′(v) = c(v) = 0. If d(v) = 4, then c′(v) = c(v) − max{1
2
×

4, 1
3
× 4} = 0. If d(v) = 5, then c′(v) = c(v) − max{4

5
× 5, 1

2
× 5, 1

3
× 5} = 0.

If 6 ≤ d(v) ≤ 8, then c′(v) = c(v) − max{1 × d(v), 1
2
× d(v), 1

3
× d(v)} ≥ 0.

Suppose that d(v) ≥ 9. Since every 7-cycles of G contains at most two

chords, f3(v) ≤ d(v) − 2. If d(v) = 9, then c′(v) ≥ c(v) − 11
10

× 7 − 1 × 2 ≥ 0.

If 10 ≤ d(v) ≤ 11, then c′(v) ≥ c(v) − 3
2
× (d(v) − 2) − 1 × 2 ≥ 0. Suppose

d(v) ≥ 12. If f3(v) = d(v) − 2, then f5+(v) = 2, so c′(v) ≥ c(v) − 2 −

3
2
× (d(v) − 2) − 1

3
× 2 ≥ 0. If f3(v) = d(v) − 3, then f5+(v) = 3, so

c′(v) ≥ c(v) − 2 − 3
2
× (d(v) − 3) − 1

3
× 3 ≥ 0. If f3(v) ≤ d(v) − 4, then

c′(v) ≥ c(v) − 2 − 3
2
× (d(v) − 4) − 1 × 4 ≥ 0.

We have checked that c′(x) ≥ 0 for all x ∈ V (G) ∪ F (G). Hence, this

completes the proof of Theorem 5.2.3.

Based on the above Theorem 5.2.3, we can obtain the following corollary

easily.
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Corollary 5.2.4. Let G be a planar graph. If ∆(G) ≥ 11 and every 7-cycles

of G contains at most two chords, then lalist(G) = ⌈∆(G)
2

⌉.
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Chapter 6 Future research

The coloring problem has been the development of hot spots in the study

of graph theory, which has a wide application, and according to the different

objects and rules, there are lots of coloring problems, such as acyclic vertex

coloring, acyclic edge coloring, acyclic total coloring, edge face coloring, ver-

tex edge face coloring, equitable coloring, circular coloring and so on.It has

very important theoretical and practical significance to solve these problems.

§6.1 Some graphs

In this paper, we mainly study the coloring problems in planar graphs.

In graph theory, a planar graph is a graph that can be embedded in the

plane. It can be drawn on the plane in such a way that its edges intersect

only at their endpoints. In other words, it can be drawn in such a way that

no edges cross each other. The Polish mathematician Kazimierz · Kuratowski

provided a characterization of planar graphs in terms of forbidden graphs,

now known as Kuratowski’s theorem: A finite graph is planar if and only

if it does not contain a subgraph that is a subdivision of K5 (the complete

graph on five vertices) or K3,3. The Euler characteristic was originally defined

for polyhedra and used to prove various theorems about them by using the

formula of Euler: χ = |V (G)|− |E(G)|+ |F (G)|, where |V (G)| is the number

of vertices of G, |E(G) is the number of edges of G, |F (G) is the number of

faces of G, including the exterior face. For planar graphs, we have |V (G)| −

|E(G)|+ |F (G)| = 2. We can also use discharging method to get some results

of χ ≥ 0.

In the other hand, series-parallel graphs are characterised by having no
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subgraph homeomorphic to K4. A graph is an series-parallel graph, if it may

be turned into K2 by a sequence of the following operations: Replacement

of a pair of parallel edges with a single edge that connects their common

endpoints. Replacement of a pair of edges incident to a vertex of degree 2

other than s or t with a single edge. Every series-parallel graph has treewidth

at most 2 and branchwidth at most 2. An outerplanar graph is a graph that

has a planar drawing for which all vertices belong to the outer face of the

drawing. Outerplanar graphs may be characterized by the two forbidden

minors K4 and K2,3. After studying the structure of the planar graph, we

can study these two classes of graphs. We try to extend the results of various

kinds of coloring on these graphs, and we can find the relationship between

the boundary and the maximum degree.

Moreover, we know for planar graphs, we have |E(G)| ≤ 3|V (G)| − 6.

Ringel’s [94] motivation was in trying to solve a variation of total coloring

for planar graphs, in which one simultaneously colors the vertices and faces

of a planar graph, mentioned 1-planar graphs. A 1-planar graph is a graph

G that can be drawn in the Euclidean plane in such a way that each edge has

at most one crossing point, where it crosses a single additional edge. Pach

and Tóth [88] proved every 1-planar graph with n vertices has at most 4n−8

edges. More strongly, each 1-planar drawing has at most n − 2 crossings;

removing one edge from each crossing pair of edges leaves a planar graph,

which can have at most 3n − 6 edges, from which the 4n− 8 bound on the

number of edges in the original 1-planar graph immediately follows. The

associated plane graph G× of a 1-plane graph G is the plane graph that is

obtained from G by turning all crossings of G into new 4-vertices. A vertex

v ∈ V (G×) \ V (G) in G× is called false if it is not a vertex of G and true

otherwise. For any two false vertices u and v in G×, uv ∈ E(G) \ E(G×).
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For every v of G, we have dG(v) = dG×(v).

There has been some studies in 1-planar graph.

For a simple graph G, by Vizing Theorem, the edge chromatic number

of G is ∆ (i.e. G is in class one) or ∆ + 1 (i.e. G is in class two).

Conjecture 6.1.1. [161] For any 1-planar graph G with ∆ ≥ 8, G is in

class one.

We can conjecture:

Conjecture 6.1.2. For any 1-planar graph G with ∆ ≥ 8, the total chro-

matic number χ′′(G) = ∆ + 1.

Conjecture 6.1.3. For any 1-planar graph G with ∆ ≥ 8, the list edge

chromatic number χ′
l(G) = ∆, the list total chromatic number χ′′

l (G) = ∆+1.

Conjecture 6.1.4. For any 1-planar graph G with ∆ ≥ 10, the neighbor

sum distinguish number χ′′∑(G) = ∆ + 3.

Conjecture 6.1.5. For any 1-planar graph G with ∆ ≥ 13, the list linear

arboricity lalist(G) ≥ ⌈∆(G)
2

⌉.

We can also study other coloring problems in 1-planar graphs.

There are many other graphs which are deserved to study, such as inter-

val graphs, unicyclic graphs, chordal graphs, split graphs, claw-free graphs,

hypergraphs, signed graphs and so on.

§6.2 Future research in planar graphs

Case 6.2.1. Total coloring

For any planar graph G with ∆ ≥ 8, we can discuss the following con-

ditions if it is satisfied χ′′(G) = ∆ + 1.
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(1) 3-cycle is adjacent with two 3-cycles;

(2) chordal 7-cycles are not adjacent;

(3) chordal 8-cycles are not adjacent.

For any planar graph G with ∆ ≥ 7, we can discuss the following con-

ditions if it is satisfied χ′′(G) = ∆ + 1.

(1) two 3-cycles are not adjacent;

(2) two chordal 5-cycles are not adjacent;

(3) chordal 6-cycles are not intersecting or not adjacent;

(4) chordal 7-cycles are not intersecting or not adjacent.

For any planar graph G with ∆ ≥ 6, we can discuss the following con-

ditions if it is satisfied χ′′(G) = ∆ + 1.

(1) contains no 5-cycle;

(2) two 3-cycles are not adjacent;

(3) two 4-cycles are not adjacent;.

Case 6.2.2. List coloring

For list vertex coloring, study of 4-choosable proposes the mathematical

proof of Four color theorem. We can study the following conditions if it is

satisfied 4-choosable.

(1) contains no 4-cycle;

(2) contains no adjacent 5-cycles;

(3) 3-cycle is not adjacent to 6-cycle.

For list edge coloring and list total coloring, we can prove at the same

time. We can also use discharge method to prove. For any planar graph G,

we can discuss the following conditions if it is satisfied χ′′(G) = ∆ + 1.

(1) ∆(G) ≥ 8 and G contains no chordal 5-cycles;

(2) ∆(G) ≥ 8 and 6-cycles of G contains at most one chord;

(3) ∆(G) ≥ 8 and 7-cycles of G contains at most two chords;
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(4) ∆(G) ≥ 7 and 3-cycles of G is not adjacent to 5-cycles;

(5) ∆(G) ≥ 7 and G contains no chordal 6-cycles;

(6) ∆(G) ≥ 6 and 3-cycles of G is not adjacent to 5-cycles.

Case 6.2.3. Distinguishing total coloring

There are some relative deformation of 1-2-3 conjecture which we have

already introduced in Chapter 1. We can use Combinatorial Nullstellen-

satz [6] and discharging method to prove. We can extend neighbor sum

distinguish total coloring to neighbor product distinguish total coloring. For

each edge uv E(G), if the vertex u is colored by φ(u) and the edges incident

to u are colored by c, a1, a2, · · · , an, then f(u) = cφ(u)a1a2 · · · an. Similar-

ly, f(v) = cφ(v)b1b2 · · · bm. Then we call the adjacent vertices u and v can

be distinguished by products if f(u) 6= f(v). The smallest number k such

that G admits a total neighbor product distinguishing coloring is called the

neighbor product distinguishing total chromatic number, denoted by χ′′∏(G).

Conjecture 6.2.1. For any graph G, the neighbor product distinguishing

total chromatic number χ′′∏ ≤ ∆ + 3.

We can also study the neighbor set distinguishing total coloring problems

and neighbor multiset distinguishing total coloring problems.

Case 6.2.4. List linear arboricity

A graph G is said to be edge k-choosable if, whenever we give lists Ae

of k colors to each edge e ∈ E(G), there exists a proper edge coloring of

G where each edge is colored with a color from its own list. The list edge

chromatic number χ′
list(G) is the smallest integer k such that G is edge k-

choosable. For the list edge chromatic number of a planar graph G, we have

the following theorem.
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Theorem 6.2.1. Let G be a planar graph. Then χ′
list ≤ ∆(G) + 1 if one of

the following conditions holds.

(1) ∆(G) ≥ 7 and G contains no chordal 7-cycles;

(2) ∆(G) ≥ 7 and G contains no chordal 6-cycles;

(3) ∆(G) ≥ 6 and G contains no adjacent triangles;

(4) ∆(G) ≥ 6 and any 3-cycles is not adjacent to 5-cycles;

(5) ∆(G) ≥ 6 and G contains no chordal 5-cycles;

(6) ∆(G) ≥ 5 and G contains no chordal 4-cycles and chordal 5-cycles;

(7) ∆(G) ≥ 5 and G contains no chordal 5-cycles and chordal 6-cycles;

(8) ∆(G) ≥ 5 and G contains no i-cycles for some i ∈ {3, 4, 5};

In fact, to prove these results, it is also to prove a similar structural

lemma as Lemma 5.2.1. So according to the proof of Theorem 5.2.1, we can

prove the following result.

Theorem 6.2.2. Let G be a planar graph. Then lalist ≤ ⌈∆(G)+1
2

⌉ if one of

the following conditions holds.

(1) ∆(G) ≥ 6 and G contains no chordal 6-cycles, or G contains no adjacent

triangles, or any 3-cycles is not adjacent to 5-cycles, or G contains no

chordal 5-cycles;

(2) ∆(G) ≥ 4 and G contains no chordal 4-cycles and chordal 5-cycles, or

G contains no chordal 5-cycles and chordal 6-cycles, or G contains no

i-cycles for some i ∈ {3, 4, 5}.
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In the proof of Theorem 5.2.3, the mainly properties of G are d(u) +

d(v) ≥ ∆(G)+2 andG contains no 2-alternating cycle with max1≤i≤n |n2(v2i−1)| ≥

3, where n2(v) is the number of 2-vertices adjacent to v. Using d(u)+d(v) ≥

∆(G)+2 and G contains no 2-alternating cycle, the list linear arboricity edge

chromatic number of planar graph G is ⌈∆(G)
2

⌉ if it satisfies below conditions:

(1) (∆, k) ∈ {(7, 4), (6, 5), (5, 8), (4, 14)}, where k satisfies that G has no

cycle of length from 4 to k, where k ≥ 4;

(2) ∆(G) ≥ 8 and G is without cycles of length 3 adjacent to cycles of

length 5, or ∆(G) ≥ 8 and G contains no adjacent 4-cycles; or ∆(G) ≥ 8 and

G contains no chordal 5-cycles.

(3) ∆(G) ≥ 7 if any 4-cycle is not adjacent to an i-cycle for any i ∈

{3, 4}; or ∆(G) ≥ 7 and without adjacent cycles of length at most 4; or

∆(G) ≥ 7 and g ≥ 4.
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[70] M. Karoński, T.  Luczak, and A. Thomason. Edge weights and vertex colours.

J. Combin. Theory Ser. B, 91(1):151–157, 2004.

[71] Richard M. Karp. Reducibility among combinatorial problems. Plenum, New

York, 1972.

[72] A. V. Kostochka. The total coloring of a multigraph with maximal degree

4. Discrete Math., 17(2):161–163, 1977.

[73] A. V. Kostochka. The total chromatic number of any multigraph with max-

imum degree five is at most seven. Discrete Math., 162(1-3):199–214, 1996.
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Résumé : La théorie des graphes est un domaine de 
recherche actif depuis 200 ans. Le plus ancien 
article de théorie des graphes connu a été rédigé par 
Euler en 1736, pour résoudre le problème dit des 
ponts de Konigsberg. La coloration de graphe est 
l’une des branches les plus importantes de la 
théorie des graphes, depuis l’émergence du fameux 
problème des 4 couleurs. La coloration de graphe a 
des applications pratiques dans l’optimisation, 
l’informatique et la conception de réseau. Dans la 
présente thèse nous allons étudier le coloriage total, 
le coloriage par liste, le coloriage total somme-des-
voisins-distinguant et l’arboricité linéaire L-
sélectionable. 
Un k-coloriage total dun graphe G est un coloriage 
de V(G)∪E(G) utilisant (1, 2, ..., k) couleurs tel 
qu’aucune paire d’éléments adjacents ou incidents  

 
 

 
 
 
ne recoivent la même co-uleur. Le nombre 
chromatique total χ’’(G) est le plus petit entier k tel 
que G admette un k-coloriage total. Un graphe G 
est k-selectionable si G est L-coloriable pour toute 
assignation L de G qui satisfie |L(v) ≥ k| pour tout 
sommet v∈V(G). Une relation L est appelée une 
assignation totale d’un graphe G si elle assigne une 
liste L(x) de couleurs à chaque élément x∈ V(G)∪
E(G). Soit f(v) la somme des couleurs d’un sommet 
v et des toutes les arrêtes incidentes à v. Un k-
coloriage total somme-des-voisins-distinguant de G 
est un k coloriage total de G tel que pour chaque 
arrête uv∈E(G), f(u)≠f(v). Une forêt linéaire est un 
graphe pour lequel chaque composante connexe est 
une chemin. L’arboricité linéaire la(G) d’un graphe 
G est le nombre minimum de forêts linéaires dans 
G, dont l’union est égale à V (G). 

 
 
 
 
 
Abstract : The study of graph theory started two 
hundred years ago. The earliest known paper was 
written by Euler (1736) to solve the Konigsberg 
seven-bridge problem Graph coloring has been one 
of the most important directions of graph theory 
since the arose of the well-known Four Color 
Problem. Graph color-ing has real-life applications 
in optimization, computer science and network 
design. Here, we study the total coloring, list 
coloring, neighbor sum distinguishing total 
coloring and linear L-choosable arboricity. 
A k-total-coloring of a graph G is a coloring of 
V(G)∪E(G) using  (1, 2, ..., k) colors such that no 
two adjacent or incident elements receive the same 
color The total chromatic number χ′′(G) is the 
smallest integer k such that G has a k-total-
coloring. A mapping L is said to be an assignment 
for a graph G assignment for a graph G if it assigns 
a list L(v) of colors to each vertex v∈V(G). 

 
 
 
 
 
If it is possible to color G so that every vertex gets 
a color from its list and no two adjacent vertices 
receive the same color, then we say that G is L-
colorable. A graph G is k-choosable if G is an L-
colorable for any assignment L for G satisfying 
|L(v)|≥k for every vertex v∈V(G). A graph G is 
k-total-choosable if G has a proper L-total-
coloring for every preassigned total assignment L 
with |L(x)|≥k for every x∈V∪E. Let f(v) denote 
the sum of the colors of a vertex v and the colors 
of all incident edges of v. A total k-neighbor sum 
distinguishing-coloring of G is a total k-coloring 
of G such that for each edge uv∈E(G), f(u)≠f(v). 
A linear forest is a graph in which each 
component is a path. The linear arboricity la(G) 
of a graph G is the minimum number of linear 
forests in G, whose union is the set of all edges of 
G. 
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