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Abstract

The optimal exploitation of the information provided by hyperspectral images requires the devel-

opment of advanced image processing tools. Therefore, under the title Hyperspectral image rep-

resentation and Processing with Binary Partition Trees, this PhD thesis proposes the construc-

tion and the processing of a new region-based hierarchical hyperspectral image representation:

the Binary Partition Tree (BPT). This hierarchical region-based representation can be interpreted

as a set of hierarchical regions stored in a tree structure. Hence, the Binary Partition Tree succeeds

in presenting: (i) the decomposition of the image in terms of coherent regions and (ii) the inclusion

relations of the regions in the scene. Based on region-merging techniques, the construction of BPT

is investigated in this work by studying hyperspectral region models and the associated similarity

metrics. As a matter of fact, the very high dimensionality and the complexity of the data require

the definition of specific region models and similarity measures. Once the BPT is constructed,

the fixed tree structure allows implementing efficient and advanced application-dependent tech-

niques on it. The application-dependent processing of BPT is generally implemented through a

specific pruning of the tree. Accordingly, some pruning techniques are proposed and discussed

according to different applications. This Ph.D is focused in particular on segmentation, object de-

tection and classification of hyperspectral imagery. Experimental results on various hyperspectral

data sets demonstrate the interest and the good performances of the BPT representation.
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1
Introduction

Hyperspectral imaging, also known as imaging spectroscopy, corresponds to the acquisition of

a set of images representing the information contained in a large portion of the electromagnetic

spectrum. In contrast to human vision which is restricted to some wavelengths, these spectral

imaging systems have the capability of viewing electromagnetic radiation ranging from ultravi-

olet to infrared. With this additional spectral (or color) information, these images exhibit greatly

improved color differentiation as compared to conventional color imaging. This new source of

information implies an important difference between hyperspectral and traditional imagery. The

main difference is that hyperspectral images are composed by hundreds of bands in the visible

range and other portions of the electromagnetic spectrum. Therefore, hyperspectral imagery al-

lows sensing radiation in a spectral range where human eyes cannot.

Hyperspectral imaging is related to multispectral imaging, however, it exists an important differ-

ence between the number of spectral bands. Multispectral images usually contain a set of up to

ten spectral bands that moreover are typically not contiguous in the electromagnetic spectrum.

Contrarily, hyperspectral images have a large number of narrow spectral bands (usually several

hundreds) being captured by one sensor in a contiguous spectral range. Hence, hyperspectral

imaging often provides results not achievable with multispectral or other types of imagery. The

characterization of images based on their spectral properties has led to the use of this type of im-

ages in a growing number of real-life applications.

In remote sensing, many applications such as mineralogy, biology, defense or environmental mea-

surements have used of the potential of these images. In a different field, some techniques have
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used hyperspectral data in order to study food quality, safety evaluation and inspection. Also,

in medical research, these images are used to analyze reflected and fluorescent light applied to

the human body. In this context, hyperspectral imaging is an emerging technique which serves

as a diagnostic tool as well as a method for evaluating the effectiveness of applied therapies. In

planetary exploration these data are also used to obtain geochemical information from inaccessi-

ble planetary surfaces within the solar system.

The traditional hyperspectral image representation involves an array of spectral measurements

on the natural scene where each of them corresponds to a pixel. This most elementary unit on the

image, provides an extremely local information. Furthermore, besides the scale issue, the pixel-

based representation also suffers from the lack of structure. As a result, hyperspectral image

processing at the pixel level has to face major difficulties in terms of scale: the scale of representa-

tion is most of the time far too low with respect to the interpretation or decision scale.

Hence, the general aim of this thesis is the construction and the exploitation of a new hyperspec-

tral image representation. The goal of this new representation is to describe the image as a set of

connected regions instead of as a set of individual pixels. This abstraction from pixels to regions

is achieved by Binary Partition Trees. These region-based image representations are presented in

this thesis as an attractive and promising solution to handle the low level representation problem.

In this framework, this first chapter is starting by the basic background concerning this Phd re-

search. Firstly, a brief description of the hyperspectral imagery and the Binary Partition Tree

representation is presented in the following. Afterward, the main objectives and the organization

of this thesis are described.

1.1 Hyperspectral imaging

Hyperspectral sensors collect multivariate discrete images in a series of narrow and contiguous

wavelength bands. The resulting datasets contain numerous image bands, each of them depicting

the scene as viewed with a given wavelength λ. This whole set of images can be seen as a three

dimensional data cube where each pixel is characterized by a discrete spectrum related to the light

absorption and/or scattering properties of the spatial region that it represents. Fig. 1.1 shows an

illustration of a hyperspectral image.

Definition 1. (Hyperspectral Image) An hyperspectral image Iλ is a set of Nz discrete 2D images

Iλ = {Iλj
, j = 1, ..., NZ}. Each Iλj

is formed by a set of Np pixels where each pixel p represents the

spatial coordinates in the image. Consequently, given a specific wavelength λj , , Iλj
(p) is the radiance

value of the pixel p on the waveband Iλj
.

The spectrum of a pixel as a function of wavelength λ is called the spectral radiance curve

or spectral signature and it provides insightful characteristics of the material represented by the

pixel.

Definition 2. (Spectral signature) The spectral radiance curve or spectral signature denoted by Iλ(p)

is the vector pixel p containing all the radiance values along the Nz wavelenghts.
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Figure 1.1: Illustration of a hyperspectral image

The price of the wealth of information provided by hyperspectral images is a huge amount of

data that cannot be fully exploited using traditional imagery analysis tools. Hence, given the wide

range of real-life applications, a great deal of research is devoted to the field of hyperspectral data

processing [1]. A hyperspectral image can be considered as a mapping between a 2D spatial space

to a spectral space of dimension Nz . The spectral space is important because it contains much

more information about the surface of target objects than what can be perceived by human vision.

The spatial space is also important because it describes the spatial variations and correlation in

the image and this information is essential to interpret objects in natural scenes. Hyperspectral

analysis tools should take into account both the spatial and the spectral spaces in order to be

robust and efficient. However, the number of wavelengths per pixel and the number of pixels per

image, as well as the complexity of jointly handling spatial and spectral correlation explain why

this approach is still a largely open research issue for effective and efficient hyperspectral data

processing.

Hyperspectral image processing highly desired goals include automatic content extraction and

retrieval. These aims to obtain a complete interpretation of a scene are addressed by supervised

or unsupervised pixel level analysis which still requires a remote sensing analyst to manually

interpret the pixel-based results to find high-level structures. This is because there is still a large

semantic gap between the outputs of commonly used models and high-level user expectations.

The limitations of pixel-based models and their inability in modeling spatial content motivated

the research on developing algorithms for region-based analysis.

1.2 Binary Partition Trees

Binary Partition Tree (BPT)[15] is a hierarchical region-based representation, which can be inter-

preted as a set of hierarchical regions stored in a tree structure. A tree structure is well suited for

representing relationships among data in a hierarchical way.

An easy example of the hierarchical organization is the structure followed by the files and folders
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in a computer. The hierarchy between the folders clearly offers to the user the ability to efficiently

manage filesand the stored information.

In image analysis, tree structures can be used as a hierarchical data organization in a similar

way. An example of such tree representations is the Binary Partition Tree, where the tree nodes

represent image regions and the branches represent the inclusion relationship among the nodes.

Fig. 1.2 is an illustration of a BPT which shows the hierarchical representation offered by this rep-

resentation.

In this tree representation, three types of nodes can be found: Firstly, leaves nodes representing

the original regions of the initial partition; secondly, the root node representing the entire image

support and finally, the remaining tree nodes representing regions formed by the merging of their

two child nodes corresponding to two adjacent regions. Each of these non leaf node has at most

two child nodes, this is why the BPT is defined as binary.

Figure 1.2: Example of hierarchical region-based representation using BPT

The BPT construction is often based on an iterative bottom-up region merging algorithm.

Starting from individual pixels or any other initial partition, the region merging algorithm is an

iterative process in which regions are iteratively merged. Each iteration requires three different

tasks: 1) the pair of most similar neighboring regions is merged, 2) a new region containing the

union of the merged regions is formed, 3) the algorithm updates the distance between the new

created region with its neighboring regions.

Working with hyperspectral data, the definition of a region merging algorithm is not straight-

forward. Theoretically, a pixel in an hyperspectral image is a spectrum representing a certain

ground cover material. Consequently, regions formed by pixels belonging to the same material

are expected to be formed by an unique reflectance curve. Unfortunately, this assumption is not

true since it exists a large spectral variability in a set of spectra formed by one given material.

In the case of remote sensing images, this variability is introduced by several factors such as the

noise resulting from atmospheric conditions, the sensor influence, non direct reflexion or the illu-

mination effects.

Fig.1.3(a) shows an example of variability of 4 adjacent spectra forming a region belonging to the

same material. Some important variability effects are found in this example. The first important

difference between radiance values can be seen in the first wavelengths since they are strongly
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corrupted by some noise. Besides these noisy bands, a non constant variability along the wave-

length dimension is also found in this example. Because of this variability, special care has to be

taken in modeling hyperspectral regions (it cannot be assumed that the spectra of pixels belong-

ing to a given region are strictly homogeneous). Besides the intra-variability, the characteristics

of the image features exhibit a majority of irregular and complex patterns. Thus, a region model

taking into account the analysis of the textured regions, such as vegetation areas, has to be care-

fully designed.

Another important issue is the definition of a spectral similarity measure to establish the merg-

ing order between regions. The main difficulty in defining a spectral similarity measure is that

most of the spectral signatures cannot be discriminated broadly along all the wavebands. The

reason of this difficulty is the redundancy of the spectral information or equivalently the corre-

lation between consecutive values of the spectral signature curve. It should be remembered that

the difference between two consecutive wavelengths is usually very small, therefore, the radiance

values have not important changes in consecutive positions.

Let us consider that the discrimination between the three different spectral signatures plotted in

Fig.1.3(b) wants to be addressed. These three spectral signatures belong to three different classes:

tree, bare soil and meadows. In it, the red curve can be strongly discriminated between the blue

one across all the wavelength domain. Contrarily, this discrimination difference between the red

and the green spectral signatures is only found in the last 30 bands. This fact explains why the

most effective similarity measure between spectral signatures are characterized by taking into ac-

count the overall shape of the spectral signatures instead of local radiance differences.

These last characteristics of the spectral signatures make the definition of a region model and a

similarity metrics, defining a good merging order for the BPT construction, an opened research

problem.
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Figure 1.3: Examples of spectral signatures

On the other hand, it can be noticed that once the BPT representation has been computed,

this tree is a generic representation which can be used for many different purposes. Therefore,
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different processing techniques can be defined in order to process the tree. The processing of BPT,

which is highly application dependent, generally consists in defining a pruning strategy. This is

true for filtering (with connected operators), classification, segmentation, object detection or in

the context of data compression.

Fig.1.4 illustrates an example of image representation by using a BPT structure. The images

shown at the top of Fig.1.4 correspond to the set of regions represented by the BPT example. The

whole image is represented by region R9, whereas tree leaves correspond to R1,R2,R3,R4 and R5,

respectively. The inclusion relationship can be easily corroborated by the tree representation of

Fig.1.4. For instance, R6 corresponds to the union of R3 and R4.

R1

R2

R1

R2

R1

R2

R3 R4

R3

R4

R6

R6

R5

R5 R5

R7R8

R9

R7R8R9

Figure 1.4: Binary Partition Tree example

The tree processing of Fig.1.4 according to a specific application can be done by a pruning.

The pruning of the tree can be seen as a process aiming to remove subtrees composed of nodes

which are considered to be homogeneous with respect to some criterion of interest (homogeneity

criterion, e.g., intensity or texture). This task can be performed by analyzing a pruning criterion

along the tree branches to retrieve the nodes of largest area fulfilling the criterion. Given the

example of Fig.1.4 , a pruning example is shown in Fig.1.5 . The pruning is defined by the green

line which cuts the tree into two parts. In this case, the pruning strategy has removed the green

nodes corresponding to regions R1,R2,R3 and R4. The definition of this pruning gives us the

partition shown on the right of Fig.1.5. This partition has been obtained by selecting the leaf

nodes of the pruned tree. Note that Fig.1.5(b) only corresponds to one possible pruning result

from the BPT shown in Fig.1.4. Thus, different hyperspectral image processing aims can lead to

different pruning results. This can be understood as the BPT pruning is the application dependent

step regarding the BPT hyperspectral image processing framework.

The hyperspectral image processing framework based on BPT then relies on two steps illus-

trated in Fig.1.6. The first one corresponds to the construction of the BPT in the case of hyperspec-

tral data, enabling the exploitation of the spectral/spatial correlation. Accordingly, the second

step is a pruning strategy which is completely linked to a specific application.

The work developed in this thesis deals with the discussion of BPT image processing frame-
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Figure 1.5: BPT pruning example

work for the case of hyperspectral imaging. As Fig.1.6 has shown, this discussion is split in two

parts: the construction and the pruning of the BPT, respectively. The usefulness of this tree rep-

resentations will be demonstrated in particular through the development of efficient tree based

algorithms for some specific applications. In this Phd, the studied applications in hyperspectral

context relies on the classification, the segmentation and the object detection.

Construction Pruning

BPT image processing framework

Tree Representation

Application

Hyperspectral

Image
Classification

Segmentation

Object Detection

Figure 1.6: Diagram of BPT processing framework

1.3 Objectives

Two different objectives have been addressed in this thesis. The first goal consists in developing

the Binary Partition Tree representation for hyperspectral data, thus improving the performances

of the state of the art which relies on a pixel-based representation. The second goal is the definition

of some pruning techniques to process the tree structure for different applications. To achieve both

objectives, this thesis plans to face a wide range of problems, such as:

1. BPT contstruction

The BPT construction is often based on an iterative region merging algorithm. Region merg-

ing techniques are usually based on local decisions, directly based on the region features.

Starting from an initial partition or from the collection of pixels, neighboring regions are
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iteratively merged. Thus, region merging algorithms are specified by: 1) a merging crite-

rion, defining the similarity between pair of neighboring regions; and 2) a region model that

determines how to represent a region and the union of two regions. Working with hyper-

spectral data, the definition of a region model and a merging criterion is not straighforward.

Thus, the study of both notions is going to be the first step in this PhD work.

• Region Model definition

In our case, the Region Model defines how to characterise a set of spectra forming an

hyperspectral region. The simplest solution is to use a first order model: the mean.

Hence, classical spectral distances between the mean of each region can be used as

merging criterion. Unfortunately, some limitations may come from the poor modeling

based on the mean. The first limitation comes from the fact that high intra-class spec-

tral variability can be found in an image region from the same material. The second

important issue is that, with the mean model, regions are assumed to be homogeneous.

This assumption is rarely true in natural scenes where textured regions are often ob-

served. Therefore, this PhD investigates alternative models which provides a general

strategy with less assumptions about the nature of the regions [17].

• Similarity Measure as Merging Criterion

Following the classical literature, the radiance values along all the wavebands should

be taken into account in order to discriminate two spectra. Consequently, the best clas-

sical distances between spectra are based on the overall shape of the reflectance curve

[16]. However, all the bands in the hyperspectral images are not equally important

in terms of discrimination. In particular, some materials can only be discriminated

in some hyperspectral bands of the spectral range. This issue is related to the strong

correlation existing between consecutive bands. Therefore, a good similarity metric

in the hyperspectral space should take into account the following issues: 1) the cor-

relation between bands in order to remove the redundant information and 2) a mul-

tivariate similarity measure taking into account the most important bands should be

established. During this PhD, similarity measures between hyperspectral regions will

be studied in order to define a good merging criterion for BPT construction.

2. BPT Pruning strategies

As mentioned before, the pruning strategy completely depends on the application of in-

terest. Accordingly, some pruning techniques will be proposed and discussed according

to different applications. We will focus in particular on segmentation, object detection and

classification of hyperspectral imagery.

• Classification application

The goal of this pruning is to remove subtrees composed of nodes belonging to the

same class. Thus, the final aim is to use the pruned BPT to construct a classification map

of the whole image. Note that using the pruned tree, the classification map describing
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the pixel class assignment can be easily constructed by selecting the leaf nodes of the

resulting pruned tree. The method proposed here consists of two different steps. First,

some specific region descriptors are computed for each node. Then, the second step

involves a BPT analysis to take the pruning decision.

• Segmentation application

The segmentation pruning consists in extracting from BPT a partition of hyperspectral

image where the most meaningful regions are formed. Thus, the goal of such appli-

cation is to remove subtrees which can be replaced by a single node. All the nodes

inside a subtree can be replaced if they belong to the same region in the image space.

This means that the distance between them is small and the distance between them

and their BPT neighboring nodes is high.

In this context, two different approaches are studied in this thesis. Firstly, the hyper-

spectral segmentation goal is tackled by a global energy minimization strategy. This

approach defines an error associated to each partition contained in the BPT and then,

it extracts the partition having the minimum error. The second approach focused on

hyperspectral image segmentation is based on applying normalized cuts on the BPT

branches. The purpose of this second approach is to study how the classical spectral

graph partitioning technique can be applied on BPT structures.

• Object Detection application

The BPT is studied here as a new scale-space of the image representation in the con-

text of hyperspectral object detection. The recognition of the reference objects in hy-

perspectral images has been mainly focused on detecting isolated pixels with similar

spectral characteristics. In contrast, this thesis presents the BPT hyperspectral image

representation in order to perform a different object detection strategy. To this goal, the

detection of two specific reference objects from an urban scene is investigated. Hence,

the methodology to extract BPT nodes forming these objects is studied.

1.4 Thesis Organization

This thesis proposes the construction and the processing of BPT image representation in the case

of hyperspectral images. The major goals are, on the one hand, to develop the construction of

BPT region-based representation and, on the other hand, to propose some pruning strategies

according to three different applications. To tackle these points, this PhD dissertation is divided

into five major parts:

1. In this first chapter, the context of this thesis is introduced. After briefly presenting hyper-

spectral imagery and, the Binary Partition Tree representation, the objectives and the thesis

organization are described.

2. The second chapter provides the background for hyperspectral image processing and hi-

erarchical tree representations. The basic terms used in this Phd are introduced and the
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techniques proposed in the state of the art are reviewed.

3. In the third chapter, the BPT construction for hyperspectral images is investigated. Different

merging orders are defined by combining different region models and merging criteria. The

different merging orders result in different BPT constructions. Thus, some experiments are

carried out in order to analyze the various constructed BPTs. The quantitative validation of

the BPT construction has been performed based on different manually created ground truth

data. Also in this chapter, a comparison against the classical state of the art technique that

is typically used for hierarchical hyperspectral image segmentation is presented.

4. Different BPT pruning strategies are examined in the fourth chapter. The different appli-

cations and their corresponding pruning strategies are presented in the different sections.

First, a supervised classification of hyperpectral data is described. Afterward, two different

sections tackle the supervised and unsupervised image segmentation goals by perform-

ing two different approaches. A strategy based on energy minimization is firstly proposed

based on a constrained lagrangian function. This approach is supervised because the num-

ber of regions that wants to be obtained at the partition result is previously known. Con-

cerning the unsupervised approach, this chapter presents a pruning strategy based on nor-

malized cut and spectral graph partitioning theory.

Finally, this chapter introduces a hyperspectral object detection procedure using BPT image

representation. Two different examples are described respectively detailing the recognition

of roads and buildings in urban scenes. Each of the aforementioned parts describing the

different application begins with a short introduction to the problems to be addressed. Be-

sides, experimental results are reported on various real data sets according to the distinct

application goals.These results are conducted to assess and validate the interest of the pro-

posed algorithms. Furthermore, each of these sections present the main conclusions of the

approach as well as future perspective.

5. The last chapter summarizes the main points discussed along the thesis and highlights the

major conclusions.

This thesis is concluded by a series of appendices describing different aspects related to the

topics discussed along this work. First, the characteristic of tree performances are discussed.

Then, the acronyms used in this PhD dissertation and a mathematical appendix is presented.

Finally, more results and the list of publications are included.
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This chapter provides the background for hyperspectral image processing and hierarchical

tree region-based representations. The first section details the hyperspectral image analysis state

of the art, stressing the importance of the spectral-spatial hyperspectral information. The second

section explains the interest of studying hierarchical region-based representations, and also the

importance of using tree-based structures. The basic terms and the current state of the art of tree

image representations are detailed, justifying the choice of the Binary Partition Tree. Finally, a

review of the BPT related literature is presented.
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2.1 Hyperspectral image processing

Particular attention has been paid in the literature to hyperspectral image processing in the last

ten years. A large number of techniques have been proposed to process hyperspectral data. As a

matter of fact, the processing of such images not straightforward [72].

The first important drawback is the high dimensionality of the space which contains a lot of re-

dundant information and requires a tremendous computational effort. In order to manage it,

an important number of hyperspectral techniques have focused on transforming the data into

a lower dimensional subspace without losing significant information in terms of separability

among the different materials. In this context, several supervised and unsupervised dimension

reduction techniques have been proposed for hyperspectral imaging.

Based on image statistics, Principal Component Analysis (PCA) and Independent Component

Analysis (ICA) [74] are the two most used unsupervised techniques. Regarding supervised tech-

niques, some examples are the Discriminant Analysis Feature Extraction (DAFE)[75], Decision

Boundary Feature Extraction (DBFE), and Non-parametric Weighted Feature Extraction (NWFE)

[76][77]. These supervised methods reduce the high dimensionality by minimizing a classifica-

tion criterion by using some ground truth data.

The second important challenge in hyperspectral image techniques corresponds to the processing

of the data in a joint spectral-spatial space. Early analysis techniques are traditionally focused on

the spectral properties of the hyperspectral data using only the spectral space. These pixel-based

procedures analyze the spectral properties of each pixel, without taking the spatial or contex-

tual information related to the pixel of interest into account. Thus, these techniques are quite

sensitive to noise and lack of robustness. In this framework, many different supervised and semi-

supervised techniques have been proposed to perform pixelwise classification [2],[3],[4],[5],[6].

Without taking the spatial location of the pixels into consideration (i.e: only studying spectral

proprerties), these techniques assign to each pixel the label corresponding to its predicted class.

In the last few years, the importance of the spatial space and, in particular, of taking into account

the spatial correlation has been demonstrated in different contexts such as classification [10] [?],

image segmentation [11] [12] [13] or unmixing [8]. With this approach, hyperspectral images are

viewed as arrays of ordered pixel spectra which enables to combine the spatial and the spectral

information. For instance, in a classification context, pixels are classified according to the spectral

information and according to the information provided by their spatial neighborhood.

The spatial contextual information in hyperspectral image processing has been introduced in dif-

ferent ways in the literature. This has led to divide hyperspectral techniques using spatial infor-

mation in two important groups as shown on Fig.2.1. The separation between these two families

of techniques has been previously defined in [78].
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Figure 2.1: Spectral-Spatial Hyperspectral processing techniques

1. Classification with spatial constraints: This family of techniques corresponds to all the super-

vised and unsupervised classification methods incorporating spatial constraints.

2. Extension of classical techniques to HSI: This second group of hyperspectral methods is formed

by all the techniques which are the extension of classical image processing techniques to

high dimensional spaces.

According to this classification, the aim of the next subsections is to review some of the tech-

niques related to each category. In 2.1.1, different methodologies introducing the spatial informa-

tion in different stages of the classification process are presented. The other category of techniques

is reviewed in 2.1.2. It deals with methods involving the extension of some classical image pro-

cessing tools to hyperspectral imaging.

2.1.1 Classification techniques incorporating spatial constraints

Classification is one of the most studied applications in hyperspectral imagery. The goal is to

label each pixel with the label corresponding to the class or the object that it belongs to. In the

literature, the best classification results have been obtained by techniques incorporating the spa-

tial information to the spectral space. The incorporation of the spatial or contextual information

improves pixel-wise classification results which usually present an important salt and pepper noise

(misclassification of individual pixels).

Thus, it seems clear that spatial knowledge should be incorporated during the classification

methodology, the main question is then at which stage and how it should be included.

• Is it better to incorporate spatial information as an input data before classifying the data?

• Should the spatial information be included in the classification decision?

• Is the incorporation of the spatial information a post-processing stage of the classification

process?
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The incorporation of the spatial information has been suggested in different manners. This

work reviews three groups of techniques according to these three discussed questions.

Spatial information as an input parameter

Some methods include the use of the spatial domain in an early stage. These techniques are

characterized by computing in a first step some spatial image measurements which are later used

by a classifier. The flowchart describing this approach is shown in Fig.2.2

Hyperspectral

Image

Classification Map
Spatial information

Classification Framework

Classification

Figure 2.2: Spatial information as an input parameter

In some strategies following this scheme, this first step consists in constructing a spectral and

spatial feature vector for each pixel which is later used as an input parameter in a pixel-wise clas-

sication task. An example is found in [79] , where the Gray Level Co-occurrence Matrix (GLCM)

image measurements (Angular Second Moment, Contrast, Entropy and Homogeneity) are com-

puted as a first step. These four texture measurements form a set of images which is decomposed

by a Principal Component Analysis (PCA) to obtain its Principal Components (PCs). This last

information is then used as an input feature for a Maximum Likelihood classifier.

Using another image reduction technique such as the Non-negative Matrix Factorization MNF,

these GLCM texture measurements were also studied in [80]. They are used jointly with some

spectral features to propose a supervised classification using the well-known Support Vector Ma-

chine (SVM) classifier.

Other strategies try to classify hyperspectral data by using a segmentation map as an input pa-

rameter. These approaches start by partitioning the image into homogeneous regions and then

classifying each region as a single object. Most of these methods are based on the work presented

in [81] which is the first standard approach proposed to join spectral and spatial domain in mul-

tispectral imagery. It corresponds to the ECHO (Extraction and Classification of Homogeneous

Objects) classifier. In this method, an image is segmented into statistically homogeneous regions

by the following recursive partitioning algorithm:

• First, an image is divided by a rectangular grid into small regions, each region containing

an initial number of pixels.

• Then, following an iterative algorithm, an homogeneity criterion is tested between adjacent

regions. If the test does not fail, these regions are merged forming a new region which will
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be evaluated in the next iteration. In the other case, the minimal required homogeneity is

not achieved, the region is then classified by using a ML classifier.

A recent work in [87] has extended this algorithm to an unsupervised version, where an image is

also divided into different homogeneous regions according to their spatial-spectral similarities.

The classical ECHO classification methodology has also been followed in [82]. This technique

proposes as a first step the extraction of some image features to reduce the image dimension.

A merging algorithm similar to ECHO is then applied on the reduced image to construct a parti-

tion. Then, a SVM classifier is used to classify each region of the partition map. The SVM classifier

has largely demonstrated its effectiveness in hyperspectral data. Thus, it has been also used in

[83]. This work defines a neighborhood by using a segmentation result before applying a SVM

classifier for every region. The segmentation map is obtained by a region growing segmentation

performed by the eCognition software[84].

In the context of hyperspectral classification, a study of the pixel neighborhood definition to be

used with SVM classifier can be found in [85] , where techniques as watershed [86] and Recursive

hierarchical segmentation software [?] have been studied. In these last techniques, the classifi-

cation map plays a different role in the classification decision. Instead of classifying a partition

region by considering its spectral mean values, a majority voting decision is studied within the

classification map regions.

One of the most critical aspects for the methods using partition maps as an input parameter is that

they are very sensitive to the initial segmentation settings. For instance, the number of regions

and the regions edges from the spatial partition of the image are critical parameters to achieve a

good classification in the later step.

Spatial information inside the classification decision

The second important group of spatial-spectral classification techniques have considered that the

spatial information should be included in the classification decision rule. Fig.2.3 describes the

framework of this methodology.

Hyperspectral
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Figure 2.3: Spatial information inside the classification decision

Following this strategy, some methods have proposed to introduce the spatial constraints in-

side the SVM classifier decision. The approach of such methods proposed by [88] consists in
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introducing the spatial information through the kernel functions. It has been demonstrated in

[88] that any linear combination of kernels actually is a kernel K = K1 + K2: if K1 and K2 are

two kernels functions fulfilling Mercer’s conditions [88]. The interest is then to construct a com-

bination of spatial and spectral kernel as K(x, y) = µKspectral(x, y) + (1 − µ)Kspatial(x, y) where

µ weights the relative importance of the spectral and spatial information.

The work presented in [88] proposes a gaussian kernel as Kspectral by using the euclidean dis-

tance. Concerning the contextual information, Kspatial introduces information about the local

mean and variance for each pixel using a fixed square neighborhood. As mentioned by the

authors, some problems can be found in this spatial kernel because of the fixed neighborhood

window. In order to overcome the phenomena of edge effect (misclassifications in the transi-

tion zones), the method presented in [89] proposes an adaptive spatial neighborhood for Kspatial.

Morphological filters are used to extract the connected components of the image which are as-

signed to each pixel as its adaptive neighborhood. The vector median value is computed for each

connected component and this value is then used as the contextual feature for Kspatial.

Other approaches, not using SVM classifier, also include spatial information in the classification

decision. For instance, in [91] and [90], authors have proposed unsupervised and supervised

classification by estimating the class probability of each pixel through a defined spatial-spectral

similarity function. Concerning the spectral decision, the Spectral Angle Mapper (SAM) is used

as a discriminative measure showing its effectiveness in [92] . Concerning spatial discrimination,

a stochastic watershed algorithm is proposed for segmenting hyperspectral data.

Spatial information as a post-processing stage

The third and last familiy of hyperspectral classification techniques reviewed here performs a

post-processing in order to incorporate the spatial information. This regularization step avoids

possible errors obtained by classification methods using only the spectral information. The fol-

lowed methodology is represented by Fig.2.4.
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Figure 2.4: Spatial information as a post-processing stage

An important number of techniques are characterized by proposing the Markov Random Field

MRF model [93] as the spatial post-processing task. The methodology of such approaches relies

on three different steps. Firstly, hyperspectral data are classified in order to assign to each pixel its

class-conditional PDFs. Secondly, using the classification results, an energy function composed
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by one spectral and one spatial term is defined. For this energy function, the spectral energy term

is usually derived from its class-conditional probability whereas the spatial energy term is com-

puted by evaluating the class-probability of the neighborhood. Finally, the last step consists in

labeling each hypespectral pixel with one class. This is done by the minimization of the energy

function which has been formulated as a maximum a posteriori (MAP) decision rule.

In hyperspectral literature, different classifiers have been used for assigning class-conditional

PDFs before constructing an energy function. In [96] , a DAFE dimension reduction used by a

Bayesian classifier has been proposed. Another class-Pdfs estimation is proposed in [94] where

the pixelwise ML classifier is used. The integration of the SVM technique within a MRF frame-

work has been used in [100] [98] [99]. Also, in [97] class-conditional PDFs are estimated by the

Mean Field-based SVM regression algorithm. Recent works have proposed to estimate the poste-

rior probability distributions by a multinomial logistic regression model[101] [102]. For instance,

the method presented in [101] first proposes a class-PDFs estimation by using a MLR classifica-

tion step and then a MAP classification by minimizing the energy function using the α-Expansion

min-cut algorithm.

Besides of these studies, some other works have been proposed in the literature involving hyper-

spectral image processing by MRF (See [78]).

2.1.2 Traditional imagery techniques extended to HSI

Traditional imagery techniques commonly used to process gray-scale, RGB or multispectral im-

ages are not suited to the dimensionality of the data present in a hyperspectral image. In order

to address the high dimensionality issue, two different approaches have been mainly suggested.

One solution consists in reducing considerably the hyperspectral data dimension in order to work

with classical techniques. The other procedure is based on the extension of certain operations or

image processing fundamentals into this new multi-dimensionality.

Following both approaches, classical techniques such as morphological filters, watershed trans-

formations, hierarchical segmentation, diffusion filtering or scale-space representation, have been

extended for HSI imaging. Within this large group of algorithms, this section will focus on two

groups: the morphological transformations and the hierarchical segmentation techniques (See

Fig.2.5). In order to increase the knowledge about the extension of other classical techniques, a

review of diffusion filtering techniques is presented in [78].

Transformations based on Mathematical Morphology

The first group of techniques reviewed here are the works concerning mathematical morphology

transformations. In traditional imagery, the importance of mathematical morphology has grown

and it has become a popular and solid theory over the past decades [103]. This nonlinear method-

ology has lead to the definition of a wide range of image processing operators. Based on lattice

theory, the morphological operator are based on maxima and minima operations. This implies the

definition of an ordering relation between the image pixels. In the case of hyperspectral image,
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as the pixels are multidimensional variables, the definition of a vector ordering is not straightfor-

ward.

The easiest solution is to use a marginal ordering where each hyperspectral band is processed

individually. This ordering approach has been discussed in the past for RGB images where the

main problem is the appearance of false colors [104]. In hyperspectral domain, this order is not

appropriate given that, in order to preserve the actual spectral information, hyperspectral bands

must not be processed individually. To address these problems, different vector orderings have

been recently proposed for hyperspectral images.

From our knowledge, the first extension of morphological operators to hyperspectral images has

been proposed in [105] for endmember extraction purpose. The suggested operators correspond

to the extension of the most well-known operators, namely dilation and erosion. In order to com-

pute the maxima and the minima between the studied pixel and its neighborhood defined by the

structuring element (SE), two vector orderings are defined by computing min/max cumulated

distance. The first approach proposes to define a D-order which is given by a metric that cal-

culates the cumulative distance between one particular pixel and all the other pixels of the SE.

The second approach is a R-order relying on the calculation of a spectral similarity between every

spectral pixel in the SE and the centroid (mean spectral value) of the SE. The pseudo-distance used

in [105] is the spectral angle distance and the SE corresponds to a square. Besides this distance,

different non linear measures such as SID [7], have been proposed by the same authors in more

recent works [114]. These operators have been proposed in some works leading to interesting

results in classification.

Beside that, recent works [106] have remarked that these morphological operators cannot be used

to define morphological filters since they are not adjunct operators ( the self-dual property does

not hold). For this reason, a supervised reduced ordering is proposed in [106] by defining two

reference vector pixels: a target spectrum and a target background. These two reference pixels,

namely foreground f and background g, are used to define a function h where h(f) is the smallest

(contrarily, h(g) is the largest) element in the complete lattice defined by h. It induces a supervised

h -ordering where h is constructed with a positive kernel function. Different semi-supervised

and supervised kernels and consequently different h functions have been extensively studied in
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[107]. The definition of the h-ordering has allowed authors to define different morphological op-

erators such as the top-hat transformation which extracts contrasted components with respect to

the background.

Other well-known operators of mathematical morphology are morphological profiles MPs [108].

These operators are computed by successively applying classical geodesic opening and closing

operations. At each operation, the structuring element size is increased gradually. These oper-

ators have been studied in HSI in several works mostly focusing on data classification. Most of

these studies have addressed the huge dimensionality issue by first reducing the hyperspectral

image dimension. Hence, hyperspectral dimension reduction techniques are usually proposed as

a first step before constructing MPs.

One of the first work introducing these operators for HSI images can be found in [109] where

PCA is proposed as a first step to reduce the hyperspectral image dimension. The first principal

component band, describing the maximum data variance direction, is then used as a gray scale

image for computing classical MPs.

Following this approach, the work in [110] has also proposed the use of the gray scale first princi-

pal component image for constructing MPs. The resulting MPs are used here to classify the data

by using the fuzzy ARTMAP method.

These two last works have only considered a single band image from PCA to perform Morpho-

logical Profiles. Consequently, the dimensionality reduction applied for these techniques can lead

to a significant loss of information. To manage this issue, Extended Morphological Profiles EMP

have been proposed in [111]. In this work, PCA technique is also proposed to reduce the image

dimensionality. However, more components are taken to form the reduced space. The number of

components is given by comparing the total cumulated variance of the data associated to the PCs

with a threshold usually set to 99%. The resulting PCs are used to build individual morphological

profiles (one for each PC), which are combined together in one extended morphological profile.

In [111], EMPs are then single stacked vectors which are classified with a neural network, with

and without feature extraction.

Another classification works [89] has further investigated the EMP construction for applying SVM

classification. Concerning the image reduction technique, some techniques have considered ICA

instead of PCA for computing the EMP [112]. Instead of the conventional PCA, a Kernel Principal

Component Analysis is proposed in [115] as supervised feature reduction technique for comput-

ing the EMP.

Although most techniques have proposed to reduce the dimensionality of the image, the work

presented in [114] has proposed the MPs construction by using the full spectral information. Us-

ing the morphological operators defined in [105] , the authors proposed in [114] different morpho-

logical profiles without any dimensionality reduction stage. In a SVM classification background,

this new multi-channel MPs are compared with MPs computed in a reduced space.

The extraction of spatial features from hyperspectral images by using MPs or EMPs have shown

their good performances in a large number of applications as classification or unmixing. How-

ever, these transformations cannot fully provide the spatial information of an image scene. This is
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because they are based on morphological geodesic opening and closing filters which only act on

the extrema of the image. Consequently, MPs only provide a partial analysis of the spatial infor-

mation analyzing the interaction of a set of SEs of fixed shape and increasing size with the image

objects. In order to solve these limitations, morphological attribute filters have been proposed in-

stead of the conventional geodesic operators to construct Extended Attribute Profiles EAPs[113].

The application of attribute filters in a multilevel way leads to describe the image by other fea-

tures such as shape, texture or homogeneity. EAPs have been also proposed for hyperspectral

data classification and they have been constructed after applying different dimensionality reduc-

tion techniques such as PCA or ICA[113].

As can be seen, most of the techniques concerning MP, EMP or EAP are focused on hyperspectral

classification. Thus, they could be also included in the first group of classification techniques re-

viewed in Sec.2.1.1. In fact, these morphological operators have been used to estimate in different

manners the spatial information which is lately used in a classification stage.

Going on with morphological operators, another important algorithm extended to hyperspectral

image is the watershed. This transformation is based on considering each frequency band im-

age as a topographic relief, whose elevation depends on the pixel values. In this topographic

relief, the local minima are considered as catchment basins. In the first step, some image minima

are defined as markers which are the sources of the catchment basins. Then, a flooding process

of the catchment basins is performed by a region growing step starting from each marker. The

flooding process finalizes when two different catchment basins meet, hence defining a watershed

line(edge). The resulting image partition of watershed algorithm is obtained by these edges.

In the case of color image, the classical watershed algorithm is computed by interpreting the

height of the image color gradient as the elevation information. Thus, the extension of watershed

algorithm to HSI relies on defining how to extract the gradient in the multidimensional space.

One of the first works involving watershed in HSI data can be found in [116]. In this study, dif-

ferent gradient functions have been proposed to construct a stochastic watershed algorithm. The

aim of stochastic watershed is to define an algorithm that is relatively independent of the markers

by introducing a probability density function of contours. This pdf gives the edge strength which

can be interpreted as the probability of pixels of belonging to the segmentation contour. The pdf

of contours can be estimated by assigning to each pixel the number of times that it appears as

an edge in a series of segmentations. In the hyperspectral case, the construction of such pdf has

been studied taking into account all the hyperspectral bands or only using some of them after a

dimensionality reduction [116]. In this last work, the contour pdf function is used to construct

watershed algorithm in two different manners. The first approach consists in using the contour

pdf function instead of the classical color gradient. The second approach is to used the contour

pdf to construct a new probabilistic gradient based on the sum of the color gradient and the con-

tour pdf.

Following the first strategy, a vector approach has been proposed where the pdf is computed by

a similarity distance taking into account all the bands (with or without reduction). A marginal

approach has also been proposed by computing one marginal pdf for each channel. The resulting
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pdf is then defined by a linear weighted combination of all marginal pdfs (the weights are for

example the inertia axes ).

The second approach consists in performing watershed algorithm by using a probabilistic gra-

dient based on the sum of color gradient and the contour pdf. The strategy of constructing a

probabilistic gradient has been pursued in recent works [91] for hyperpsectral image segmenta-

tion. In this case, the proposed gradient is also a sum between a gradient distance and a pdf

contour function. However, some new pdf contour estimators are proposed using different mul-

tiscale segmentations and introducing spectral information.

Besides stochastic watershed, other color gradient functions (without introducing pdfs of con-

tours) have been proposed for hyperspectral classification. In [85] , robust color morphological

gradient and color morphological gradient have been proposed to perform the watershed algo-

rithm. These gradient functions have been performed after reducing the dimensionality of the

hyperspectral image. The result of the watershed algorithm has been used to define an image

adaptive neighborhood for a SVM classification purpose.

Hierarchical segmentation techniques

Image segmentation is interpreted as an exhaustive partitioning of an image. Each region is con-

sidered to be homogeneous with respect to some criterion of interest. The aim of segmentation is

the extraction of image regions as primary visual components that can be used later to identify

and recognize objects of interest. The main problem is that it is very difficult to directly construct

the best image partition (if there is any) given the huge number of applications potentially con-

sidered for one given image.

Let us consider for instance a high-resolution aerial image which is formed by an urban and a

vegetation areas. Working at coarse scales, some applications can be defined to separate between

fields and cities. However, applications focusing on individual tree or building detection should

work for the same image at a much lower scale.

The interpretation of an image at different scales of analysis has led some authors to deal with

multi-scale image segmentations. A multi-scale image segmentation relies on the construction of

hierarchy of partitions mainly based on an iterative region merging algorithm ( See Def.3). The

result of the hierarchical segmentation technique is then an image partition representing a hierar-

chical level obtained after a region merging procedure.

Fig.2.6 shows an example of multi-scale segmentation where a region merging algorithm has

been performed on the image Iteration 0. The partitions created during the iterative procedure are

shown consecutively from the left to the right. Note that once these five hierarchical partitions

are computed, a criterion related to the addressed application is needed in order to select the ap-

propriate level of the hierarchy. Consequently, the segmentation result obtained for this example

will be one of the following partitions: Iteration 0, Iteration 1, Iteration 2, Iteration 3 or Iteration 4.

Hierarchical segmentation techniques have been also studied for hyperspectral data. Some

of them are mentioned in Section2.1.1. In this framework, ECHO was the first proposed hierar-

chical segmentation technique [81]. As previously explained, ECHO proposes a region merging
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Figure 2.6: Example of multiscale segmentation

algorithm whose merging criterion is based on a likelihood test measuring if two regions are ho-

mogeneous or not. The decision to assess if the homogeneity test is true or false requires to set a

threshold. Thus, the accuracy of segmentation results strongly depends on the selected threshold.

Furthermore, the ECHO method is based on statistical computations and involves estimation of

covariance matrices. The computation of covariance matrices may not be suited for hyperspectral

data because these matrices are highly unstable (negative eigenvalues).

Following the ECHO methodology, the work presented in [82] has proposed a region merging

algorithm to create a hierarchical segmentation. The aim consists in constructing a segmentation

map of the image which is used to perform an object-based classification. The region merging

algorithm is called Fractal Net Evolution Approach FNEA and it is executed after a subspace fea-

ture extraction. The FNEA has been proposed as a bottom-up region merging technique using a

merging criterion defined as h = w ·hspatial+(1−w) ·hspectral where w is a weight controlling two

spectral/spatial distances. Concerning the spectral criterion hspectral, the sum for all the channels

of a dissimilarity homogeneity distance is proposed. This homogeneity measure is the difference

between the standard deviation of two regions before and after the merging. In the case of hspatial

, it has been defined as a measure comparing the compactness and the smoothness of the region

before and after the merging. The smoothness coefficient corresponds to the ratio between the

perimeter of the region and the perimeter of the minimal bounding box containing the region.

As compactness descriptor, the relation between the region perimeter and the square root of the

region area is proposed. Therefore, the h value is used to evaluate the merging of pair of regions

iteratively. Accordingly, the merging is performed if h value is below a given threshold. The result

of the merging process is a segmentation map which is used as an object-based representation to

classify the image. Afterward, the features computed in the first step are used to define a feature

vector for the regions contained in the object-based representation. For each region, the feature

vector is defined as the average of all the pixel features contained in the region.

Also close to ECHO methodology, another supervised hierarchical segmentation approach is pro-

posed in [117] for partitioning the image into homogeneous regions. This methodology is known

as "The Spatial and Spectral Classification method "(SSC). The strategy mainly consists in three

different steps: 1) The extraction of homogeneous regions by computing a similarity distance as

the vector norm between each pixel and its 4-connected neighborhood, 2) the classification of the

homogeneous regions by a supervised classifier 3) The iterative classification of the remaining

(heterogeneous) image parts by introducing a spatial distance information. In this case, the spa-
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tial distance provides information about the class of the neighboring pixels around the studied

pixel.

One of the most well-known hierarchical segmentation methods in hyperspectral data can be

found in [120] . The proposed algorithm is based on the hierarchical sequential optimization al-

gorithm (HSWO for Optimal Hierarchical step-Wise Segmentation) [119] and it has been adapted

to hyperspectral data [22]. It relies on three steps:

1. Using the pixel-based representation of an image, a region label is assigned to each pixel (if

there is no pre-segmentation step).

2. A dissimilarity criterion is computed between all pairs of adjacent regions. The fusion of

two adjacent regions is performed if the distance is below a minimum threshold.

3. The algorithm stops if there is no more possible merging steps, otherwise it returns to step

2.

For the second step, the dissimilarity vector norm, the spectral information divergence SID,

the spectral angle mapper SAM or the normalized vector distance NVD have been proposed.

Recently, in order to mitigate the important computational cost of the initial approach, an algo-

rithm called recursive approximation RHSEG ("Recursive Hierarchical Segmentation") has been

proposed [121]. It has been recently used in a classification context [?].

Another generic hierarchical segmentation is presented in [78] based on an iterative process and a

cross analysis of spectral and spatial information.The hierarchical segmentation algorithm is im-

plemented by using a split and merge strategy. First, the image is over-segmented by a series of

splits based on spectral and spatial features following a strategy called butterfly. Secondly, setting

a stopping criterion, as for instance the number of regions, a region merging procedure based on

split and merge operations is performed until the stopping criterion is fulfilled. The construction

of a split and merge operations is carried out by the diagonalization of the matrices describing

the intra- and inter-region variance,respectively.

The general conclusion of this review on hierarchical segmentation for hyperspectral data is that

these techniques perform an iterative region merging algorithm based on certain similarity cri-

teria, until the predefined termination criterion is achieved. One of the main problems of such

strategy is that they assume that the "best" partition corresponds to one hierarchical segmenta-

tion level. Unfortunately, this assumption is rarely true and it can lead to some issues when the

coherent objects are found at different levels of the hierarchy.

For instance, assume that for the hierarchical segmentation of Fig.2.6 the optimal partition from a

given segmentation goal is formed by R7 and R8. It can be noticed that in this case, the optimal

partition is contained in the hierarchy at level corresponding to iteration 3. However, it should be

also remarked that an application looking for an optimal partition formed by R7, R1 and R2 will

never reach its purposes. This is because a large amount of information is lost in the hierarchical

segmentation techniques. They actually provide a rather limited number of partitions. This also

shows that these multiscale segmentations are not generic representations, in the sense that they
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cannot be further processed according to different applications. The processing of a hierarchical

representation can offer various advantages as compared to the strategy of creating a segmenta-

tion map following a region merging procedure. For this reason, some recent works try to process

results contained in the hierarchy [122], [118] .

The work presented in [118] has proposed an example of processing hierarchical segmentation to

find coherent objects in the image. In order to process the partition hierarchy, segmentation results

are represented by a tree structure. In a first step, this work constructs a hierarchical segmenta-

tion of the image after reducing the dimensionality of the image performing a PCA reduction.

The hierarchical segmentation is performed by constructing an opening and closing profile [108].

It is carried out by applying morphological operators on each individual spectral bands using SE

of increasing sizes. These granulometry series produce a set of connected components forming a

hierarchy of segments in each band. Each pixel can then be assigned to more than one connected

component at each SE scale. The aim of constructing such a hierarchy is to look for connected

components which correspond to objects. To this end, authors have then proposed to structure

the hierarchical segmentation by a tree representation where each connected component is a node.

Concerning the edges of the tree, they represent the link between two consecutive scales of the

hierarchy. Thus, the edges correspond to the inclusion relationship where each node is inher-

ently contained in its parent node. In this case, the processing of a tree representing hyperspectral

data has started showing the advantages of hierarchical representations by using trees. Given the

object detection goal, the tree is used to select homogeneous regions contained in the nodes by

using the standard deviation of the spectral information of each region. The proposed criterion

corresponds to the difference between standard deviation of a node and its descendants.

Besides this last work, in parallel of this thesis, another tree image representation has been stud-

ied for processing hyperspectral images. This representation is the max-min tree [135] which has

been studied in hyperspectral context in [113] (See Fig.Fig.2.11). Working in a reduced PCA hy-

perspectral space, this work shows another important benefit of tree structures: their scalability.

This property allows to compute region descripors on the nodes to perform EAP by using the

inclusion hierarchy of the tree. As mentioned before, these morphological transformations, that

can be easily defined using tree, have corroborated their performances in hyperspectral image

classification.

Both hyperspectral tree image representations proposed in [113] and [118] are based on morpho-

logical construction tools. Therefore, the segmentation results stored in the hierarchy corresponds

to the connected components associated to a merging order performed by granulometry series.

Merging orders constructed by an iterative morphological filtering have some difference with re-

gion merging segmentation algorithms. The work in [123] has shown how the merging order

constructed by iterative morphological filters does not efficiently represent objects as a connected

components.

Given a one-band image, by using region merging segmentation algorithm, objects correspond to

connected components that are homogeneous in their gray level. Thus, the merging criterion of

these techniques consists in a measure evaluating this homogeneity notion. Instead, in the case
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of morphological filters, objects are only assumed to be either bright or dark parts of the image.

Hence, the merging order is based on the succession of gray level values. Thus, the stopping

criterion is generally based on a different notion such as size.

The main drawback of using connected filter to create a hierarchical representation is that they

just deal with the regional maxima and minima of the image ( the extrema).

This can be understood looking at the result obtained after merging two regions by applying a

morphological filter. At this point, the operator assign to the resulting connected component the

lowest (or highest) value of the pixels contained in the region. This gray level assignation strat-

egy means that these filters model a region by only using a local maximal or minimal gray level

value. Thus, this model can be very simple and not very realistic. To address this issue, region

merging segmentation algorithm proposes to model regions by using more realistic descriptors

of the region. For instance, instead of a maximal or minimal gray level, the set of pixels belonging

to a region are modeled by their mean value or by using a probability distribution.

This optimal strategy can be performed by a tree image representation such as Binary Partition

Trees [15]. This explains why this thesis has focused on the construction of these trees represen-

tations in a hyperspectral context.

At this point, this review of techniques leads us to believe that the processing of hypespesctral

images by using hierarchical tree region-based representation can be an interesting topic of re-

search. In the literature, some tree representations have been already studied for the gray-scale

or RGB images. As mentioned above, this thesis is focusing on the BPT. This choice is justified in

the next sections where a review of tree image representations is detailed.

2.2 Hierarchical region-based processing using trees

Regions are aggregations of pixels which play a key role in image and scene analysis. The external

relations of the regions in the image (adjacency, inclusion, similarity of properties..) as their inter-

nal properties (color, texture, shape,..) are extremely important for nearly every image analysis

task. Hence, there is a wide agreement in the literature that describing images with region-based

representations is beneficial to interpret information. These image representations have been pro-

posed as an attractive solution tackling the pixel-based representation issues.

Being a more accurate image representation, the region-based approaches do not operate directly

on individual pixels but on regions consisting of many spatially connected pixels. They can be

represented by graph structures in which nodes are used to represent regions and the links are

used to represent certain relationships between regions. In image analysis, the most well known

region-based representation is the Region Adjacency Graph (RAG) [125]. The nodes of a RAG

represent the connected regions of a partition image space and the links only connect adjacent

regions in the image. An example of an image segmented into 4 regions and its corresponding

RAG, which is highlighted in green, are shown in Fig.2.7.

The processing of the RAG mainly consists in deciding if the links connecting adjacent regions

should be removed according to a cost function. Links having a minimal cost are then iteratively
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Figure 2.7: Example of Region Adjacency Graph

removed, merging adjacent regions[127]. This approach is very idealistic because it argues that

at certain point in the merging process, the extracted regions would be close to the objects of the

scene. This assumption is rarely true and it shows the limitations of the RAG representation.

RAG representation also suffers from another important drawback since it cannot represent the

whole topological information[126]. RAG provides a "simple-connectivity view" of the image

not representing the multiple adjacency nor the inclusion relations. A solution for the inclusion

limitation is the hierarchical region-based representations which manage to encode a hierarchy of

partitions providing a multi-resolution description of the image.

Definition 3. (Partition hierarchy) Let H be a set of partitions {Pi}. We say that H is a partition

hierarchy if it is possible to define an inclusion order between each pair of elements of H, that is, Pi ⊆ Pi+1

A partition P0 is included in a partition P1, P0 ⊆ P1, if any region R1
J ∈ P1 is completely

included in a region R0
J ∈ P0. Fig.2.8 shows a partition hierarchy example containing three

partitions H = {P0 P1,P2}. The inclusion order specified in H is given by P0 ⊆ P1 ⊆ P2. The

bottom layer of the hierarchy including more details than the other two layers is P2.
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R3

R4

R6

R5 R5

R7R8

Partition P0 Partition P1 Partition P2

Figure 2.8: Example of partition hierarchy H

A suitable structure for representing these hierarchical representations relies on trees as they

are inherently hierarchical. In a tree representation, nodes correspond to image regions as in the

RAG. However, trees edges encode the inclusion relationship between the regions: "being part

of" instead of "being neighbor with".

Hierarchical region-based tree structures are attractive representations to perform an analysis of

image contents at several scales simultaneously. Usually, the "best" region-based description of an
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image by regions depends on the application. Therefore, it can be attractive to have a generic hier-

archical image description represented by a tree, which can be processed by different algorithms

typically suited to different applications. The processing of the tree is mainly based on a prun-

ing technique which removes some of the tree branches by an application-dependant analysis

algorithm.

2.2.1 Definition of the tree structure

A tree T is a graph formed by a set of nodes where there is a unique path connecting any pair of

nodes Ni and Nj . Every finite tree structure has a node called root establishing the hierarchical

structure of the nodes. The edges connecting the nodes are called branches and each node Ni has

exactly one entering branch. Each node without any children is called leaf node. Fig.2.9 shows

a tree example, where the different tree notions are highlighted in different colors. For instance,

root corresponds to the highest green node.

N2

N4

N7
N3

N8
N9

N10
N5 N6

N1

Tree branch

Root

Node N3

Leaf node

Figure 2.9: Representation of a tree T

The parent of a node Ni is defined as the node one step higher in the hierarchy (i.e closer to

the root node) and lying on the same branch. Accordingly, a child node is defined as the node one

step lower in the hierarchy. For instance, in the case of Fig.2.9, the node N2 is the parent node of

nodes N5 and N6 whereas these last two nodes are the children of N2. Nodes sharing the same

parent node are called sibling nodes.

From every node to every other node, the set of tree branches connecting them is called path. If

there is a path between two nodes, an ancestor-descendant relation is given when one of the two

nodes is included in the path from the root node to the other node. The upper node of the two

nodes is called an ancestor node and the lower node a descendant node. Considering again Fig.2.9,

the ancestor nodes of N9 are itself, N3 and N1. On the other hand, the descendant nodes of N3 are

N10,N9 and N11.

Given a tree T , a subtree is defined as a subset of nodes of T whose corresponding branches form

a tree. A subtree rooted at node Ni will be indicated with TNi
. Fig.2.10 shows in red one of the
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subtrees contained in T which is rooted at N3.
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Figure 2.10: Subtree example

The work here is focused on using tree structures as hierarchical region-based representation

having the following properties:

1. Each node Ni of T is associated to a region Ri of the image.

2. Two sibling nodes Ni and Nj are two non overlapping regions Ri

⋂
Rj = ∅

3. The region Ri associated to Ni is contained in the region Rk associated to its parent Nk

2.2.2 First hierarchical tree representations

Hierarchical region-based representations allow to define how the different regions in a scene are

organized. This idea has attracted much attention in image analysis and there are many different

tree image representations in the literature. Most of these multiscale image representations are

intuitively constructed by the split-and-merge [128] top-down or bottom-up methods. Starting

with a partition of the image, these algorithms decrease (resp. increase) the number of regions

using successive region merging (resp. splitting) operations.

One of the first hierarchical region-based representations using trees is the quadtree decomposi-

tion introduced by [129]. This multi-scale representation decomposes recursively the image into

square blocks through a split algorithm. Each block corresponds to a tree node and it can be

divided into four smaller blocks. This split decision is taken if a block does not contains pixels

fulfilling a given criterion[130] [131]. Contrarily, if a block contains similar pixels, there’s no rea-

son to further divide it.

The main limitation of quadtrees is that they only allow the efficient representation of square or

rectangular regions. This implies that the contour information is not preserved. In order to solve

this issue, morphological trees have been proposed by studying the images as a set of connected

regions.

In this context, Critical Lake trees were proposed in [132] based on watershed fundamentals [133].
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Considering the image as a topographic surface, the tree nodes correspond to its catchment basins.

Two neighboring catchment basins are merged at the lowest pass-point of the gradient along their

common frontier[134].

Other important morphological trees are the max and min trees which are relatively new image

representations [135]. In the case of max tree, leaves correspond to the maxima of the original im-

age. Similarly, leaves in the min tree correspond to the image minima. The max tree is built by

following an increasing thresholding decomposition. At each iteration, an increasing threshold

evaluates the pixels contained in all the nodes created in the previous iterations. If pixels have

values lower than the studied threshold, they remain in the tree node, however, pixels having

higher values will form new nodes. For the construction of min tree, the previous algorithm has

to be inverted following then a decreasing thresholding decomposition. Fig.2.11 shows an exam-

ple of max tree representation which is obtained in two iterations given two thresholds T1 and

T2. It can be seen how the leaves of the tree correspond to the connected components (regions)

having the highest gray levels. On the other hand, root node represents the region having the

lowest gray level.

{R7}

{R2}

{R6}

{R4}

{R1, R3, R5}

Original Image Threshold T2Threshold T1

R2
R3 R4 R5

R6R7

R1

Figure 2.11: Example of Max Tree Representation

These max- and min-tree representations act separately on maxima and minima which may not

be suitable in some cases because they only act on the extrema of the image. For instance, the

same type of objects may appear brighter than their neighborhood in some parts of the image but

darker in others. Thus, it should be preferable to analyze all the structures in the image, indepen-

dently of their gray-level values Hence, the Inclusion Tree (also known as tree of shapes) [136]

was proposed as a self-dual representation for such cases. This tree structures the family of level

lines of the image by an inclusion relationship. Thus, the image connected components of upper

and lower level sets are represented by a tree.

A weak point of the trees working with the image extrema relies on its construction by using sim-

ple fixed merging orders . For instance, the construction of max-min trees is completely based on
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the absolute gray levels. Thus, they cannot describe easily objects that are not extrema. Therefore,

objects appearing in transition areas between extrema can be lost in the representation.

To address such limitation, the Binary Partition Tree was proposed as a more accurate image tree

representation being constructed by no fixed algorithm. This tree is a structured representation

of a set of hierarchical partitions which is usually obtained through a segmentation algorithm.

2.2.3 BPT Literature

The Binary Partition Tree [15] is a hierarchy of regions representing the image at different reso-

lution levels. The BPT allows the assignment of spatial constraints and the definition of partial

orders of the regions. The hierarchy of partitions contained in BPT gives a much more natural

representation of visual scenes. This addresses the weaknesses of working with the perceptually

meaningless entities offered by the pixel-based representation (the pixel grid).

In the literature, BPTs have been previously studied showing their effectiveness in image filtering

[15], object extraction [39] [43] [45], segmentation [44] [24], motion compensation [38], filtering

[138] or contour detection [46]. Hence, the construction of BPTs has been an area of research in

the last ten years in the context of multimedia images and RGB images. This construction is based

on the definition of an iterative region-merging algorithm.

In image processing, the construction of a region merging order has to deal with the two follow-

ing questions: 1) how to model a region and 2) how to decide if two regions are similar or not.

For the first aspect, most of the region merging algorithms proposed by BPT construction have

used as region model the mean color value of the pixels belonging to the region [15] [40]. This

model used also in [41] corresponds to a zero-order model which assumes color homogeneity in-

side the region. Because this assumption is rarely true, a model for the images formed by textured

regions has been proposed in [42]. Note that this last approach assumes either color homogeneous

or textured regions. In order to propose a more general strategy, a non parametric statistical region

model has been proposed in [17]. This model corresponds to set of non parametric probability

density functions (pdfs) with no assumptions about the nature of the regions nor the shape of the

pdfs. Other important approaches have been proposed to use region models including shape in-

formation. In [47], syntactic properties directly related to the region shape description have been

introduced. The use of syntactic visual features in region merging algorithm has also been used

in [48] dividing the merging process into stages and using a different homogeneity criterion at

each stage. Also, in [39] the perimeter of the regions is considered as a region model descriptor.

The second important aspect for constructing the merging order is how to measure the similar-

ity between regions. The answer to this question is given by the merging criterion definition.

The merging criterion corresponds to a similarity measure between the regions, which are previ-

ously modeled by the chosen region model. Thus, the merging criterion used in a region merging

algorithm is completely linked to the region model definition. Using a zero-order model, merg-

ing criteria are mainly defined by classical distance based on absolute difference between colors.

A complete study can be found in [40], where different measures using the classical Euclidean

distance are compared. In the case of non-parametric statistical models, their use requires the
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definition of a robust distance between probability distributions. In [17], some statistical similar-

ity measures such as the Kullback-Leibler divergence rate, the Bhattacharyya coefficient and the

first order Markov empirical transition matrices are proposed.

As mentioned before, the construction of BPT offers a generic representation of the image. This

is very important and it is the main reason why BPT has been used in various applications. Each

application is associated to a tree processing technique corresponding to the tree pruning[137].

Previous works have presented different tree pruning techniques for different purposes. A first

category of the proposed pruning techniques are based on increasing criteria along the branches.

A criterion C assessed on a region is increasing if: ∀R1 ⊆ R2 =⇒ C(R1) ≤ C(R2). This implies

that if a criterion C(Ni) is associated to a node Ni, the criterion value for the parent node of Ni will

be higher. As a result, if a node should be removed by the pruning technique, all its descendant

should also be removed. Thus, the pruning technique is straightforward by removing the subtree

rooted by a node for which the criterion is below a given threshold. An example can be found

in [49] where a BPT pruning by region evolution [56] is presented in an object extraction context.

Increasing criteria have been frequently used because they directly lead to a pruning strategy.

Non-increasing criteria have been also proposed as the basis of the pruning strategy for some

applications. These strategies are more difficult because the descendants of a node to be removed

have not necessarily to be removed.

Formulating the problem as a dynamic programming issue, a pruning algorithm based on the

Viterbi algorithm was presented for filtering purposes in [15] [135]. In the context of object de-

tection, some pruning techniques are formulated as node detection[39] [43]. Defining a set of

descriptors of the sought objects, these algorithms look for the nodes most likely corresponding

to the sought object. More recently, a pruning technique has been proposed in [138] for filtering

speckle noise. Studying a homogeneity measure along branches, this pruning follows a max rule

which prunes the branches from the leaves up to the first node that has to be preserved.

Another family of pruning relies on a global minimization of a criterion under constraint. This

problem is then formulated as a global energy minimization problem by using a Lagrangian func-

tion. In this approach, the lagrangian parameter λ is balancing the criterion and a smoothing

related to the constraint. Using a gradient descent method, the optimal λ value is computed and

the partition associated to the λ parameter defines the global pruning.

Setting a rate/distortion criterion, a pruning strategy following this approach has been proposed

in [139]. Following this idea, a pruning algorithm by using a dynamic programming principle

has been defined to compute the optimal pruning with respect to any value of λ [140].

2.3 Conclusions

In this chapter we have reviewed the work done so far in the areas of hyperspectral image pro-

cessing and of hierarchical region-based tree representations. Most of the relevant work in hy-

perspectral imaging has been explained detailing how the main drawbacks of HSI processing are

addressed. Some of these issues have been presented as the incorporation of the spatial informa-
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tion to process or classify the data, the dimensionality reduction of the image before processing

the extension of classical techniques to HSI context or the definition of a vector order to define

morphological tools.

A large number of techniques have shown in Sec.2.1.1 how the incorporation of the spatial in-

formation can be introduced as a methodology stage from different manners. All the reviewed

techniques working in the spatial-spectral domain process hyperspectral data by using their pixel-

based representation.

As mentioned before, this low level representation provides extremely local information since the

decisions and processing steps are applied individually to all pixels. Consequently, this low scale

representation is in most cases too far from the semantic interpretation scale. To manage this is-

sue, some of these techniques such as ECHO, have tried to introduce a description of the image,

as region-based partition, as an input parameter in their strategy.

This gap between image representation and semantic interpretation has been also addressed by

hierarchical segmentations described in Sec.2.1.2. In a hyperspectral framework, these techniques

have been suggested to provide a region-based description of the image at different scales. Unfor-

tunately, hierarchical segmentations cannot be considered as a generic region-based image repre-

sentation which can be used to address a large number of applications.

A solution for constructing a generic representation, structuring the different regions in an orga-

nized way, relies on trees. This idea has been reviewed in Sec.2.2. This section has introduced

the main advantages of processing images using tree structures. Some classical tree-based im-

ages representations previously introduced for gray-scale or RGB images have been reviewed.

Morphological trees have been explained in Sec.2.2.2. They offer them a solution for the contour

preservation problem related to Quad-Trees. Concerning morphological trees, some limitations

have also been explained. To address such problems, BPTs have been presented as a powerful

image representation that can be constructed using them by performing a region merging algo-

rithm.

The BPT literature for classical imagery has been presented in Sec.2.2.3 where the different merg-

ing orders proposed for BPT construction have been mentioned. Also in this section, BPT pruning

strategies have been reviewed showing the advantages of tree processing.

As a conclusion, this chapter has presented the framework of this thesis describing the necessity

of the construction of a hierarchical region-based representation as Binary Partition Tree. The fol-

lowing chapters will address the construction of BPT representation for hyperspectral images and

their processing for various specific applications.
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This chapter details the construction of BPT representation for hyperspectral imaging. In this

framework, different region merging algorithms are discussed by studying various region mod-

els and merging criteria. The hierarchical partitions obtained during the BPT construction are

evaluated and compared with other state-of-the-art region merging techniques[22].
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3.1 Introduction

BPT is a tree-based structure representing an image by a set of hierarchical regions [15]. The tree

representation provides the description of the image at different scales of resolution where the

finest level of detail is given by an initial partition. As the tree is binary, each node has either two

children or none (a leaf). Thus, if the initial partition involves n regions, a BPT generates a tree

structure containing 2n-1 nodes.

A possible solution, suitable for a large number of cases, is to create the tree by performing an

iterative region merging algorithm [57] [58]. In a bottom-up strategy starting from the leaves, the

tree construction is then performed by keeping track of the merging steps. At each step, the most

similar adjacent regions are merged. The strategy consists then in storing the sequence of region

fusions in the tree structure. As a result, the tree represents the complete hierarchy of regions.

Fig. 3.1 shows an example of BPT construction created from an initial partition. Starting from the

partition illustrated on the left, the algorithm is merging at the first iteration R3 and R4. After this

first merging, the fusion of R3 and R4 forms region R5. This iterative merging step procedure is

executed until an unique region contains all the pixels of the image. This last region describing all

the image support is the root node which corresponds to the highest node of the tree hierarchy.
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Figure 3.1: Example of BPT construction using a region merging algorithm

In this last figure, tree leaves corresponds to the regions belonging to the initial partition.

However, in order to preserve as much as possible the resolution in this work, the initial partition

will be a partition where each pixel is a region. Consequently, each leaf of the tree corresponds to

individual pixel p of the image, i.e. a spectrum Iλ(p).

As it has been explained in Chapter 1, all the connectivity relationships between the regions of

the initial partition are not represented in the tree branches. Thus, BPT only encodes a subset

of possible merging. Hence, BPT offers a trade-off between the representation accuracy and the

processing efficiency. On the other hand, the lost of this information cannot be an issue if BPT

offers the most “likely” or “useful” merging steps. Then, BPT should be created in such a way

that the most interesting or useful regions of the images are contained in BPT nodes.

The specification of a region merging algorithm to construct the BPT relies on two important
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notions:

1. Region Model MRi: It specifies how regions are represented and how to model the union of

two regions. The model should be an accurate representation of the region. Moreover, to

reduce the computational time of BPT construction, MRi
should be fast to compute and to

update.

2. Merging criterion O(Ri, Rj) : It defines the similarity of two neighboring regions Ri and Rj .

Therefore, it determines the order in which regions are going to be merged.

Both notions are used to define a region merging algorithm previously described in [141] .

An example of iterative region merging procedure is shown in Fig.7.1. The implementation of

this algorithm needs two different structures. The first structure is the RAG which defines the

adjacency of the regions at each iteration. Concerning the second structure, hierarchical priority

queue is used. The idea is that at each step the pair of most similar regions are merged. Thus,

in order to do this process efficiently, a priority queue to handle the similarity values is used to

access efficiently the highest similarity value. (Go to Appendix 7.1 for more details ).

Priority queue

O(R3, R4) O(R1, R2)

O(R2, R5)

O(R1, R5)

O(R5, R6)

O(R1, R2)

O(R4, R2)

O(R1, R4)

O(R1, R3)

RAG

R1

R3

R4

R2

Priority queue

RAG

R1

R2

R5

Priority queue

RAG

R6

R5

Algorithm End

R7

Initial Partition Merging Step 1 Merging Step 2 Merging Step 3

Figure 3.2: Region merging algorithm

At this point, the iterative merging process is going on with

1: i=0;

2: while i=0<Np-1 do

3: Look for the most similar O(Ri, Rj) contained in the first position of the queue

4: Merge the region Ri and Rj associated to this criterion and create a new node containing

the union of the regions Rij .

5: Update the RAG by : 1) removing the edge associated to Ri and Rj and 2) creating the new

edges associated to Rij .

6: Update the queue list by introducing the O(Rij , Rk) between Rij and the k old neighboring

regions of Ri and Rj .

7: i=i+1;
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8: end while

Hence, the challenge related to the construction of BPT are the definition of a region model and

the definition of a merging criterion for hyperspectral data. For these images, the region model MRi

represents the set of spectra contained in region Ri, whereas the merging criterion O(Ri, Rj) is a

similarity measure between two spectrum data sets.

In the following sections, different region models and similarity metrics to construct a robust

hyperspectral BPT are studied. The study can be broadly split into two important categories de-

pending on the type of region models. The first investigated region model assumes that all pixels

belonging to one region have approximately the same spectrum. This classical approach leads

to the classical first-order parametric model which is used in all the region merging techniques

presented in Chapter 2. The second studied region model removes the homogeneity assumption

on the region. To this end, this second model relies on a non parametric statistical characteriza-

tion of the region. Fig.3.3 summarizes the merging orders studied in the following sections in

relations with these different region models. As shown in this figure, according to the different

region models, different merging criteria have been studied.

Region Model MRi
Merging Criterion

O(Ri,Rj)

Classical Spectral Measures

Distances between histograms

Association measure via MDS

First-order
Parametric Model

Non-parametric
Statistical Model

Merging Orders

Figure 3.3: Studied hyperspectral region models and merging orders

Hence, Section 3.2 and Section 3.3 are devoted to describe in details the region models and the

merging criteria illustrated in Fig.3.3, respectively.
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3.2 Region Model

In hyperspectral image analysis, an image region R is defined as a set of connected NRp
pixels,

corresonding to spectra. In this spectrum data set R = {Iλ(p1), Iλ(p2), .....Iλ(pNRp
)}, each pixel is

described by pj and a spectrum Iλ(pj) formed by Nz radiance values. The model of a region MR

is an approximate description of the NR spectra describing the relevant information about region

R.

Region modeling for hyperspectral data is challenging because the goal is to make full use of the

greater discrimination provided by the high spectral resolution. The main issue is the variations

of the spectral reflectance curve, within the spectra forming a region of the same class material.

The spatial and spectral patterns are characteristic of the material itself, and they introduce a de-

gree of uncertainty arising from inhomogeneities and natural variations within the material. For

example, if the goal is to model a large vegetation region formed by healthy and stressed grass. In

this case, all the spectra forming the region may be in fact almost identical, however, this region

will not have an unimodal behavior.

Past hyperspectral works focusing on spectral classification and hierarchical segmentation have

presented different strategies to model a set of spectra [19] [22][9]. Although these classification

and segmentation algorithms have tried to model spectral data sets, there is an important dif-

ference between them. In hierarchical segmentation methods, each modeled spectrum data set

forms a region, i.e. the spectra are connected in the spatial domain. Contrarily, in the case of

spectral classification techniques, spectrum data sets are sets of unconnected spectra. Therefore,

in this last case, spectrum data sets are only groups of spectra having "similar behaviors" in the

spectral domain.

In the case of hierarchical segmentations [82] [117] [22], the most popular solution to describe a

set of spectra is the first-order parametric model, that is the mean spectrum. As detailed in the

following, the key of this model’s popularity is its simplicity which allows to define merging or-

ders in a simple way. However, this model can have an important drawback because it assumes

spatial homogeneity inside the region. In order to solve this problem, parametric models for hy-

perspectral data have also been studied for some approaches [81]. In this case, the strategy is to

model regions by a gaussian probability density function by estimating its mean and covariance

matrix. This model presents two important drawbacks: 1) the estimation of the covariance matrix

is not easy, in particular for small regions and 2) this model, as in the case of first order model, is

also unimodal.

The unimodality problem has been addressed in several classification (also clustering) techniques.

The most well-known solution consists in modeling a spectrum data set assuming that spectra

belonging to the same group (cluster) are drawn from a multivariate Gaussian probability dis-

tribution. Thus, a group of spectra can be statistically modeled by a parametric probability den-

sity function completely specified by parameters as multivariate means and covariance matrices.

Note that these models are obtained through a training phase, therefore, the performances of this

modeling approach largely rely on the number of training samples for each class. This implies



46 Chapter 3. BPT construction

that a large number of training samples is required for each image in order to obtain a reliable

estimation.

For all these last drawbacks, besides the first-order parametric model, a non parametric statisti-

cal region model is also studied in the following sections. This non parametric statistical region

model is proposed in order to avoid making any assumption as homogeneity or gaussian proba-

bility distribution inside the regions.

3.2.1 First-order parametric model

Given a hyperspectral region R formed by NRp
spectra containing Nz different radiance values,

the first-order parametric model MR is defined as a vector with Nz components which corre-

sponds to the average of the values of all spectra p ∈ R in each band λi.

MR(λi) = ĪR
λi

=
1

NRp

∑

j≤NRp

Iλi
(pj) i ∈ [1, ..., Nz] (3.1)

Fig. 3.4 shows how this region model is interpreted. The grid on the left represents the set of

spectra of R. In this grid, the horizontal dimension corresponds to the labels assigned to the pixels

of the spatial space whereas the vertical dimension corresponds to the spectral domain for each

spectrum. Hence, each cell of the grid Iλi
(pj) represents the radiance value in the wavenlength

λi of the pixel whose spatial coordinates are pj . In this same figure, the green square on the right

illustrates the model MR corresponding to the vector ĪR
λ

which contains in each position ĪR
λi

the

mean radiance values for each wavelength on the region.
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Figure 3.4: First-order parametric model

As explained at the beginning of this chapter, the simplicity of this MR leads to simple merging

orders. This is possible because the resulting MR is also a spectrum. Consequently, classical

spectral similarity measures taking into account the overall shape of the reflectance curves can be

used as O(Ri, Rj) [16].

On the other hand, the simplicity of the model can have some drawbacks since this model offers
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a rather poor representation of the region. An example of limitation can be observed in Fig.3.5

where two different regions R1 and R2 form a gray scale image. In this case, MR1
and MR2

are

the same for both regions, however, it can be noted that they are quite different. Comparing the

obtained region models describing the regions of Fig.3.5, the problem is found in the region model

assigned to R1. This is because the first-order parametric model has assumed the homogeneity of

the values inside the region. To address this issue, a higher order region model is proposed in the

following to characterize complex regions with high intra-variability.

R1

R2

Figure 3.5: Illustrative limitation of the first order model

3.2.2 Non parametric statistical Region Model

In the context of BPT, non parametric statistical region model has been recently proposed by [17]

to represent image regions in the case of gray scale or RGB images. This region model is directly

estimated from the pixels of the region where neither color nor texture homogeneity are assumed.

To formally tackle this idea, this MR supposes that a region formed by a set of connected pixels is

a realization of statistical variables which can be characterized by the corresponding discrete esti-

mated probability distribution. In fact, considering region pixels as a set of independent samples,

their common statistical distribution can be directly estimated. Therefore, the region model is

the probability density function representing the pixels of the region. In other words, this region

model corresponds to the normalized histogram of the pixel values belonging to each region.

In the case of a hyperspectral image region defined in a band λj , the studied variables correspond

to the spectral radiance values contained in the region in the band λj . An optimal solution will in-

volve to define a region model corresponding to the full multidimensional histogram. In this case,

the model would have captured the full correlation between bands. However, this histogram is

difficult to handle. Consequently, the region model is then represented by a set of Nz non para-

metric probability density functions (pdfs), one for each band H
λj

R , with no assumptions about

the nature of the regions nor the shape of the pdfs. Note that although some of the correlation

information is lost, this model is a trade-off between complexity and accuracy.

MR = {Hλ1

R , Hλ2

R , ..., H
λNz

R } (3.2)

Fig.3.6 shows the non parametric statistical model interpretation. It is observed how MR is
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a matrix where each cell represents the probability of the region pixels to have a radiance value

as in a specific band λk. The region model is then formed by the set of the rows Hλk

R , each one

corresponding to the empirical spatial distribution (histogram) of the region R in the band λk. As

Fig.3.6 shows each Hλk

R is coded by NBins bins.
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Figure 3.6: Non parametric statistical model

As explained before, the BPT construction is performed by using the pixel-based represen-

tation of the image as the initial partition. As a result, the BPT leaves are regions formed by

individual pixels. Therefore, in this case, the histogram of each band λi is an unit impulse, as

only one instance of pixel is available, defined as:

Hλi

R (Pak
) =







1 ak = Iλi
(p)

0 otherwise
(3.3)

Note that in the BPT leave case, only one sample is used to estimate the pdf of the region.

Therefore, in order to improve the quality of this estimation, the pdf of individual pixels Iλ(p) can

be more precisely estimated by exploiting the self-similarity present in the image [24][61]. The

key assumption behind the pixel pdf estimation consists in considering that the image is locally

a general stationary random process and that it is possible to find many similar patches in an

image. For instance, Fig.3.7 shows an example where three different patches appear several times

in this image. This image is formed by the combination of three different hyperspectral bands

corresponding to a portion of the ROSIS Pavia Universtiy data set described in Sec.3.4.2. The

yellow and red patches correspond to reasonably homogeneous building and vegetation regions,

respectively. Contrarily, blue patches represent border regions containing a building part and also

a shadow area. The patch is defined as a 2D square of size (2Wx − 1) × (2Wy − 1) where each

pixel has a vector value.

The idea consists in assuming that the probability distribution of Iλ(p) depends only on the

values of the pixels in P (p) and that it is independent of the rest of the image (Markovian model).
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Figure 3.7: Patches redundancy

Hence, the probability distribution Hλ

R of each individual pixel p given its neighborhood P (p),

can be estimated by looking for the similar patches centered at different py pixels. Ideally, if two

patches P (p) and P (py) are similar, their central pixel should be the same. To search for similar

patches, a window space Ωp centered at p is defined. An illustration can be seen in Fig.3.8 where

the aim is to estimate the probability distribution of the orange pixel p. This size of the patch is in

this example 3×3.The search window is represented in green and the green pixel indicates a pixel

under consideration to estimate the pdf of p. The pdf estimation of pixel p is based on computing

weights w(p, py) to measure if there exist any P (py) similar to P (p) on Ω.

Wx-Wx

-Wy

Wy

Pixel p

Pixel py

w(p, py)
Patch neighborhood P (p)

Patch neighborhood P (py)

Figure 3.8: Two-dimensional illustration of the pixel probability distribution estimation. The
probability of pixel value p is formed by the contributions to the histogram which depend on
some weights. The weight w(p, pj) is based on the similarity of the intensities in square neighbor-
hoods P (p) and P (pj) around p and pj .

This window Ω, such as presented in Fig.3.8, is used to look for all the P (py) which are similar

to P (p). Thus, this similarity is interpreted as a weight w(p, py) which is considered as an additive

contribution to the probability of the pixel p of having the value of Iλ(py). Computing all w(p, py)

associated to the pixel p for all the possible pixels py in the search window, the function w(p, py)

can be used to estimate the probability density function for the individual pixel p. As mentioned

before, this is done by considering that each w(p, py) is an additive contribution to the probability

of having the value py in the pdf of pixel p. Algorithm.1 summarizes the pdf estimation procedure
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for pixel p. Note that with pixel py having the the value ak in λi, the contribution w(p, py) to the

histogram of p is affected on the bin related to ak.

Algorithm 1 Algorithm of the pdf estimation for pixel p

for each pixel py in the search window Ω do
Compute w(p, py)
for i=0 until i< Nz do
ak = Iλi

(py)

Hλi

R (Pak
)+=w(p, py)

end for
end for

The computation of the weight w(p, py) associated to all the pixels py in Ω in the hyperspectral

context is proposed in this work as:

w(p, py) =
1

Z(p)(1 + dwin(p, py))
e

−

Nz∑

t=1

d(Pλt
(p), Pλt

(py))

h2
λt (3.4)

where P (py) is one possible similar patch centered in py in the search window Ωp and dwin(p, py)

is the local displacement between p and py in the search window. The Z(p) is the normalizing fac-

tor to assure
∑

∀py∈Ω

w(p, py) = 1. It is given by:

Z(p) =
∑

∀py∈Ω

1

(1 + dwin(p, py))
e

−

Nz∑

t=1

d(Pλt
(p), Pλt

(py))

h2
λt (3.5)

Concernig the similarity between the pixel values of a patch centered at p and a patch centered

at py , it is computed by using the following expression:

d(Pλt
(p), Pλt

(py)) =

Wy∑

by=−Wy

Wx∑

bx=−Wx

((Iλt
(p+ bx + by)− Iλt

((py + bx + by))
2

(2 ∗ dp + 1)2
(3.6)

where dp =
√

b2x + b2y is the local displacement on the patch regarding the central pixel.

The smoothing parameter hλt
, which stands for the typical distance between similar patches,

controls for each λt the decay of the function w. This parameter hλt
depends on the standard

deviation σλt

N of the noise of the image band Iλt
.

The standard deviation for each hyperspectral band can be automatically estimated by calculating

the pseudo-residuals ǫλt
p of each pixel p as described in [23]. The pseudo-residual can be estimated

as described by Fig.3.9.

Finally, the noise variance of the entire band is estimated by averaging the pseudo-residuals

as described by Eq.3.7.
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Pixel pi

Pixel pj of the four-neighborhood F

ǫ
λt
pi

=
√

4

5
(Iλt

(pi)−
1

4

∑

pj∈F

Iλt
(pj))

Iλt

Figure 3.9: Pseudo-residual ǫλt
pi

for the pixel pi by using a four-neighborhood F

(σλt

N )2 =
1

Np

Np∑

i=1

(ǫλt
pi
)2 (3.7)

The patch size (2Wx − 1) × (2Wy − 1) should a priori be related to the scale of objects in the

image. The size of the search window Ω, which has a dramatic impact on the computation time,

has also an influence on the visual quality of the results.

In the following, three different examples of the pdf estimation from three individual pixels is

shown. The three pixel examples are obtained from the ROSIS Pavia University data set and their

search window spaces Ωp1 ,Ωp2 and Ωp3 are shown in Fig.3.10, respectively. The studied pixels

p1, p2 and p3 highlighted in red are centered at the position (0, 0) of their respective search win-

dows. Note that the corresponding 2-dimensional search windows shown in Fig.3.10(a)(b)(c) only

correspond to the projection of each Ω on the image band Iλ80
.

The first pixel p1 belongs to a homogeneous round building, see Fig.3.10(a). Contrarily, p2 of

Fig.3.10(b) is a pixel situated at the transition between two different regions: a building and a

shadow area. Pixel p3 belongs to a meadow region of the complete image and it is shown in

Fig.3.10(c). For these three pixels {p1, p2, p3} their corresponding values {Iλ80(p1), Iλ80(p2), Iλ80(p3)}

on the band λ80 of Fig.3.10 are {50, 38, 82} .

(a) Ω1

p1

(b) Ω2

p2

(c) Ω3

p3

Figure 3.10: Search windows Ωp1 , Ωp2 and Ωp3 in Iλ80

For these examples, the search window has a size of 20 × 20 and the smoothing parameter

hλt
has been set equal to h2

λ50
≈ 10(σλt

N )2 (See Eq.3.7). The estimation σλt

N is performed by com-
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puting the pseudo-residuals as described in Fig.3.9. The estimation of (σλt

N )2 for all the different

hyperspectral bands of Rosis Pavia University ( where Nz=103) is shown in Fig.3.11.
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Figure 3.11: (σλt

N )2 according to the different Nz = 103 bands

The vertical axis of Fig.3.11 can be interpreted as the estimation of the noise standard devi-

ation. This can be corroborated by observing the results of two different hyperspectral bands

such as, for example, λ1 and λ50. Looking at the noise estimation for these two wavelengths in

Fig.3.11, it can be observed that the noise in Iλ1 is much higher than in Iλ50 . As a result, the h

value h2
λ1

= 99, 78 is higher than h2
λ50

= 51, 2. To verify the obtained results, Fig.3.12 shows these

two corresponding hyperspectral bands Iλ1
and Iλ50

. Fig.3.12 corroborates that the presence of

the noise is more important in Iλ1 than in Iλ50 .

(a) Iλ1
(b) Iλ50

Figure 3.12: Two different hyperspectral bands to verify noise estimation

At this point, the algorithm of Fig.1 is performed for the three pixels {p1, p2, p3} of Fig.3.10.

For each pixel p, the first step consists in computing the weights w(p, py) of Eq.3.4 for all the pixels

py belonging to Ωp. The weights obtained for the three different pixels are shown in Fig.3.13.

An important remark is that the weights shown in Fig.3.13 are independent of the all hyper-

spectral bands since Eq.3.6 has averaged the results for all bands. It means that the contribution

w(p, py) of pixel py to the probability distribution of pixel p is the same for all the λk.

Fig.3.13(a) shows how most of the pixels of Ωp1
belonging to the homogeneous round object have

high weight values. In the case of p2, Fig.3.13(b) illustrates how the pixels of the Ωp2
having
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(a) w(p1, py) ∀ py ∈ Ωp1 (b) w(p2, py) ∀ py ∈ Ωp2 (c) w(p3, py) ∀ py ∈ Ωp3

Figure 3.13: Weights associated to pixels p1, p2 and p3

a weight contribution are only the pixels forming the border area. This point is important be-

cause it means that the initial distributions of the object border pixels are going to be the same.

Concerning the last pixel p3, an important number of weights appears with different intensities

in Fig.3.13(c). Looking at Fig.3.10(c), these differences cannot be completely understood since

p3 seems to appear in a large quite homogeneous area on the right. The problem here is that

the weights shown in Fig.3.13(c) are obtained according to all the hyperspectral bands, whereas

Fig.3.10(c) is only the projection of the Ωp3 on the image Iλ80 . Therefore, the weight intensities

differences in all the right area of Fig.3.13(c) can be understood by looking at other bands such as

the bands shown in Fig.3.14. In this figure, it can be seen that some differences appears in another

λ of the hyperspectral image.

(a) Iλ20
(b) Iλ50

(c) Iλ100

Figure 3.14: Ωp3
projection on some hyperspectral bands

Going on with the algorithm of Fig.1, the obtained weights of Fig.3.13 are used to estimate the

probability distributions of the three pixels p1, p2 and p3. In this case, the Hλ80
p1

,Hλ80
p2

and Hλ80
p3

are

estimated only in hyperspectral band Iλ80
by using the weights of Fig.3.15. These distributions

are obtained by adding the weights of Fig.3.13 to the bins associated to the gray levels values of

Fig.3.10.

Fig.3.15(a) shows the probability of the pixel p1 belonging to the homogeneous area. It can be

observed that Hλ80
p1

is quite narrow which can be explained by the homogeneity of the round ob-

ject. Regarding Fig.3.15 (b), the shape of the distribution looks similar to the sum of two gaussian
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distributions centered around two values. This can be interpreted by the border position of this

pixel p2 situated between two different regions. For the last distribution Hλ80
p3

, a maximum of prob-

ability is observed around the value 80. Note that this is explained because the value of p3 in Iλ80

is equal to 82.
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Figure 3.15: Probability distributions associated to weights of Fig.3.13 in Iλ80

At this point, two different region models have been presented for modeling a hyperspectral

region in this section. Thus, different merging criteria are going to be studied in the following

according to these models.
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3.3 Merging Criterion

In a general region merging algorithm, the merging criterion O(Ri, Rj) corresponds to the simi-

larity measure defining the order in which regions are going to merge, i.e. the merging order. In

the case of BPT construction, the merging criterion computes the similarity between two neigh-

boring regions Ri and Rj .

Theoretically, O(Ri, Rj) is computed on the two models MRi
and MRj

. For this reason, the merg-

ing criterion strongly depends on the choice of the region model. In this study, two different

region models have been introduced in Section 3.2. Consequently, different merging criteria ac-

cording to these region models are studied here.

Working in a hyperspectral image context, the merging criterion is thus concentrated on the spec-

tral characteristics of the regions. The interest of the spectral information is its tremendous ca-

pability to discriminate between different materials at very detailed level. The Nz hyperspectral

image bands enable to partition the image into regions which would not be possible to find in

a classical gray or RGB image. The importance of the spectral information is shown in Fig.3.16,

where two different hyperspectral bands from Pavia Center data set are shown. This figure is

used in order to corroborate how different bands lead to different important discriminative infor-

mation. To this end, two different zones of the image : Zone 1 and Zone 2 are analyzed.

(a) Iλ20
(c) Iλ100

Zone 1

Zone 2

Figure 3.16: Importance of the spectral information

The Zone 1 of the image pointed by the green arrow corresponds to a vegetation area that is

quite textured. Comparing the gray level values of the Zone 1 in Fig.3.16(a) with their values on

Fig.3.16(b) some differences can be noted. In the case of Fig.3.16(a), the vegetation area has a low

gray level value according to the low reflectance value of vegetation at λ20. This is because Iλ20

illustrates the radiance values at λ20 which belongs to the visible range of the electromagnetic

spectrum (from 0.4 to 0.7 µm). Thus, at the visible range, it is known that the pigment in plant

leaves, chlorophyll, strongly absorbs the light for use in photosynthesis. This explains then the

low gray level values of Zone 1 in Fig.3.16(a).

Looking this Zone 1 containing the same vegetation area in Fig.3.16(b), the radiance has increased

(light gray levels). The gray level increase of the vegetation zone here is because λ100 belongs to

the range of the near-infrared wavelengths (from 0.7 to 1.1 µm). Therefore, the cell structure of

the leaves at the near infrared, strongly reflects near-infrared light.
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Another remark comparing Zone 1 in both images of Fig.3.16, concerns in the small dark regions

appearing at the borders of the vegetation area in Iλ100
. Observing in detail Fig.3.16(a), it can be

corroborated that these small dark regions cannot be found looking at Iλ20
whereas Iλ100

permits

their discrimination.

The second important difference comparing both images of Fig.3.16 can also be found at the Zone

2 pointed by the orange arrow. This image region has an enormous difference in its gray level val-

ues for this pair of images. In Fig.3.16(a), this region appears strongly contrasted with background

formed by the terrain and matched with the dark building structure. In contrast, in Fig.3.16(b),

it is observed how the same Zone 2 can be considered hidden on the background and separated

from the building structure. Thus, using the spectral information contained in both images, it can

be seen that Zone 2 does not belong to the building nor to the image background. Consequently,

in order to extract the Zone 2 from this hyperspectral image, the spectral information contained

in all the different bands should be taken into account.

This last example shows how the introduction of the spectral information into the merging crite-

rion can be the key to decide if two hyperspectral regions are similar or not. However, the defini-

tion of a merging criterion including all the spectral information is not straightforward. The first

difficulty of defining a spectral similarity measure is the strong spectral correlation throughout

almost all the bands. This correlation is explained by the narrow difference between two consec-

utive wavelengths in which hyperspectral image bands have been captured. Consequently , the

spectral information difference between two adjacent hyperspectral bands is very small. Visually,

it implies that the grayscale values of two consecutive hyperspectral bands appear nearly iden-

tical. One of the main issues of the band correlations is that the spectral discrimination between

materials can only be found in some bands. Hence, much of the hyperspectral data in a scene

would seem to be superfluous.

An example is shown in Fig.3.17 where three different pixel spectra Iλt
(p1), Iλt

(p2) and Iλt
(p3)

are plotted. In this example, Iλt
(p1) and Iλt

(p3) are two spectra belonging to the same material

whereas Iλt
(p2) belongs to a different one. The spectral differences between Iλt

(p1) and Iλt
(p2)

are small and approximately constant along all the wavelengths. Contrarily, in the case of Iλt
(p3),

this spectrum can be only discriminated from the other two spectra, Iλt
(p1) and Iλt

(p2), in the

spectral domain ranging from λ61 to λ85. Note that if this range is small, a similarity measure

evaluating separately the local spectral differences at the bands can have some problems in or-

der to discriminate Iλt
(p3). This problem occurs because it can not be assumed that the sum of

the local differences between Iλt
(p1) and Iλt

(p2) is smaller than the sum of the local differences

between Iλt
(p2) and Iλt

(p3). For this reason, some classical similarity measures between spectra

have taken into account the overall shape of spectra as the key of their discrimination. Following

this approach, it can be seen how the discrimination between Iλt
(p2) and Iλt

(p3) may be more

successful if spectral shapes is considered.

Besides the correlation, the illumination variations of the image scene introduce another impor-

tant issue, which should be taken into account to define a spectra similarity measure. The lack of

illumination, such as for instance in the shadow areas of the image, causes lower radiance values
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which implies dark regions of the image. Consequently, two pixels of the same object having

different illuminations appear in the image having different gray level values intensities.
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Figure 3.17: Three Spectral Signatures

The effects of the illumination variations can be observed in Fig.3.16 where the image illumi-

nation source comes from the north-west orientation. On the figure above, four aligned gable roof

buildings are seen. Each of them is then formed by two sloping planes on each side of the roof

ridge. According to the roof shape and the illumination of the image, each building of Fig.3.16 is

divided into two regions depending whether pixels are in the shadow area or not.

With p1 and p2 two pixels coming from two different roof parts, their spectral signature Iλt
(p1)

and Iλt
(p2) are shown in Fig.3.18. The vertical axis of this last figure shows the gray level values

associated to the radiance values. In this example, Iλt
(p1) is the pixel situated in the shadow area.

Comparing Iλt
(p1) with Iλt

(p2), it is observed that both pixels have the similar overall spectral

curve shape, however, they appear shifted.
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Figure 3.18: Shadow effect

From a first point of view, the shadow effect can be considered as a non-problem during the

merging sequence construction. Pixels belonging to the shadow area of the roof will merge to-

gether forming an unique region whereas the other roof part will form another one. However, the

roof is a single object of the image. Thus, an optimal region merging algorithm should obtain the

entire roof in a single region in its last merging steps. Note that this goal can be achieved only if



58 Chapter 3. BPT construction

the overall shape of the spectra of Fig.3.18 is taken into account in the merging criterion.

Until now, the spectral information issues regarding the definition of a similarity measure be-

tween two spectra have been detailed. Nevertheless, it should be remembered that our purpose

is to define a similarity measure as merging criterion between two hyperspectral regions rep-

resented by their respective MRi
and MRj

. Therefore, being MRj
a set of spectra, the merging

criterion definition cannot always be considered as a single spectrum distance. For instance, the

non parametric statistical region model represents a set of probability distributions instead of a

single average spectrum, as it is done in the first-order parametric model. Hence, in order to

define a general merging criterion between two hyperspectral regions, the spectral information

characteristics summarized in the next three points must be taken into account.

• A priori, all the hyperspectral bands should be taken into account in order to measure the

similarity between two hyperspectral regions.

• Since there is a high interband correlation, the discriminative spectral information cannot

always be found in all the bands.

• The overall shape of the spectral information along the wavelengths is a robust descriptor

of the material that it represents.

Taking into account these last three points, some different merging criteria are proposed ac-

cording to the previous region models presented in Sec.3.2. The scheme illustrating all the stud-

ied merging criteria is shown in Fig.3.19. Two families of merging criteria are separately studied

according to the green and purple rectangle separation. The first category corresponds to the

merging criteria defined for the first order parametrical region model and which are based on

classical spectral distances. Accordingly, the second category is composed of the merging criteria

associated to the the non parametric statistical region model. In this second family, a sub-division

between the presented merging criteria can be organized in two groups: Firstly, the similarity

criteria based on distances between probability distributions which have been previously defined

in the literature. Secondly, a new merging criterion is proposed in this PhD. It measures the simi-

larity between regions taking into account the redundant hyperspectral information.

Fig.3.19 also shows that for some of the categories different similarity distances are studied. For

instance, as classical spectral measures, the Spectral Angle Mapper and the Spectral Information

Divergence are going to be studied for the first region model family. Concerning the category of

distances between histograms, the Battacharyya distance and the diffusion distance are studied

separately.

Sec.3.3.1 and Sec.3.3.2 describe the different merging criteria summarized in Fig.3.19.



3.3 Merging Criterion 59

First order Model Spectral Angle Mapper

Classical Spectral Measures

Spectral Information Divergence

Battacharyya Distance

Diffusion Distance

Distances between histograms

Association measure via MDS

Non-parametric

Statistical Model

Merging Criteria

Figure 3.19: Studied merging criteria

3.3.1 Measures associated to the first-order parametric model

The merging criteria proposed here concern the first-order parametric model presented in Sec.3.3.1.

It is based on the fact that the hyperspectral region has been represented by a single spectrum

containing the average spectral values of each band. Consequently, classical spectral similarity

measures previously introduced in the literature can be used as merging criterion.

The state of the art has defined two groups of spectral similarity measures: the deterministic and

the stochastic measures. Deterministic measures are used to determine the geometric characteris-

tics of spectra by either measuring the angle, or the Euclidean distance, or correlation between

a set of spectra. Concerning the stochastic similarity measures, they evaluate statistical distribu-

tions of the spectral reflectance values. These last measures essentially define spectral variations

by modeling spectral information as a probability distribution. Thus, in the stochastic case, the

spectrum is considered by these measures as a random variable in the λ dimension.

Given the division between these two families of similarity measures between spectra, one dis-

tance of each family has been studied here as merging criterion. As a deterministic measure, Spec-

tral Angle Mapper (SAM) has been chosen, whereas the Spectral Information Divergence (SID)

has been selected for the stochastic family.

Spectral Angle Mapper

The Spectral Angle Mapper between SAM is defined as the existing angle between two spectra.

This measure is based on the fact that two spectra from the same material have the same overall

shape. Therefore, the smaller is the angle, the more similar the two spectra are.
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Given two region models MRi
and MRj

representing two adjacent regions by their mean spectra

ĪR
λ

and ĪR
λ

, the use of SAM as merging criterion is given by

OSAM = argmin
Ri,Rj
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ĪRi

λz
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Ī
Rj

λz











(3.8)

Note that this spectral angle is relatively insensitive to changes in pixel illumination because

increasing or decreasing illumination does not change the direction of the vector, only its magni-

tude (See Fig.3.18). This insensitivity to the illumination variations is also found in the Spectral

Information Divergence which is studied as the second similarity measure.

Spectral Information Divergence

The Spectral Information Divergence computes the probabilistic discrepancy between two spec-

tral signatures modeled by their corresponding probability distributions PRi
(λ) and PRj

(λ). The

use of the SID as merging criterion then implies that the probability distribution PR(λ) associated

to each MR should be computed as a first step. To address the modelling of MR as a random

variable in the λ dimension, the spectrum normalization of Eq. 3.9 is applied at each λi

PR(λi) = ĪR
λi

/

Nz∑

t=1

ĪR
λt

(3.9)

where ĪR
λi

corresponds to the average of the values of all spectra p ∈ R in each band λi.

The estimation of PRi
(λ) and PRj

(λ) enables the computation of a similarity measure between

Ri and Rj by computing the Kullback Leibler divergence D(Ri, Rj) between their probability

distributions as follows:

D(Ri, Rj) =

N∑

k=1

PRi(λk) log
PRi(λk)

PRj(λk)
(3.10)

Note that this measure is not symmetric, therefore, the dual divergence must be computed in

order to use D(Ri, Rj) as merging criterion. Finally, the merging criterion by using the Spectral

Information Divergence is given by

OSID = argmin
Ri,Rj

{ D(Ri, Rj) + D(Rj , Ri) } (3.11)
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3.3.2 Measures associated to the non parametrical statistical region model

In the case of non parametrical statistical region model, a region is represented by a set of spatial

histograms. Each histogram corresponds to the distribution of the radiance intensities at each

wavelength. Given this region model, distances between histograms are studied here.

In image processing, it is well known that the design of a robust histogram distance is a chal-

lenging task because histograms are quite sensitive to changes such as the quantization effects. In

the literature, two families of distances have been defined according to the type of bin correspon-

dence: the classical bin-to-bin and the cross-bin distances. In the first group, distances just compare

each bin in one histogram to the corresponding bin in the other. Some classical examples belong-

ing to this category are the Minkowski distance (such as L1 and L2), the histogram intersection,

the Kullback-Leibler metric, or the Bhattacharyya distance. The second family corresponds to

the cross-bin distances allowing the cross-bin comparison. Consequently, this second family of

distances is more robust to distortions. The Earth Mover’s Distance (EMD)[60] and Diffusion dis-

tance [59] fall into this second category.

In this work, one distance of each family has been studied as merging criterion. Concerning the

bin-to-bin distances, Battacharyya distance has been chosen to be studied. In the same context,

this measure has been previously proposed and tested in [17] its effectiveness has been demon-

strated compared to other distances such as the Kullback-Leibler metric. In the case of cross-bin

distances, diffusion distance has been chosen due to its fast computation time compared to other

measures.

These two classical distances are proposed in this section as merging criteria. Note that these

distances are measured separately for each band. Accordingly, the correlation between the his-

tograms in the spectral domain has not been taken into account by these distances. Hence, another

merging criterion has been defined for the non parametrical statistical region model. The idea of

this third merging criterion is to exploit the properties of the spectral information explained at the

beginning of this section. To this end, it involves two steps for each pair of adjacent regions: 1) the

extraction of the discriminative information contained in each region and 2) the definition of an

association measure measuring the similarity between the information obtained in the first step.

This last merging criterion has been called here as the association measure via Multidimensional

Scaling (MDS). In the following, the three merging criterion are detailed.

Battacharyya Distance

The bin-to-bin Bhattacharyya distance between two statistical discrete distributions measures the

amount of overlap between them. Given two adjacent regions Ri and Rj , modeled by their non

parametrical statistical region models, the Battacharyya distance at band λk between the distribu-

tions Hλk

Ri
and Hλk

Rj
. is defined by

BC(Hλk

Ri
, Hλk

Rj
) = − log(

NBins∑

s=1

Hλk

Ri
(as)

1
2Hλk

Rj
(as)

1
2 ) (3.12)
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where NBins are the number of bins used to quantify the images intensities. Note that if

Hλk

Ri
and Hλk

Rj
perfectly overlap, the Bhattacharyya distance is then 0. Eq-3.12 only defines the

similarity between two regions in a specific hyperspectral image band.

In our case, MRi
and MRj

are formed by a set of Nz distributions. Therefore, the merging criterion

OBAT can be defined by using Eq-3.12 as the sum of the Nz dissimilarity measures obtained for

the different bands:

OBAT = argmin
Ri,Rj

N∑

k=1

BC(Hλk

Ri
, Hλk

Rj
) (3.13)

The Battacharyya distance described above assumes that the histograms are already aligned.

Consequently, the merging criterion of Eq.3.13 is sensitive to distortions, and suffers from the

quantization effect. Fig. 3.20 shows the problems associated to this effect. For a given spectral

band λk, three different histograms concerning three different regions Hλk

Ri
, Hλk

Rj
and Hλk

Rp
are

shown. Looking at the three distributions, it can be observed that the red distribution of the re-

gion Ri is much closer to the green distribution than to the blue one. However, the Battacharyya

distance between the Hλk

Ri
and the other two distributions is the same and is equal to zero. The

problem is that no bin from Hλk

Rj
and Hλk

Rp
overlap the red histogram. Ideally, the similarity mea-

sure in this example should give a lower value between the red and the green than between the

red and the blue.

Pa1 , Pa2 , .........PaNbins

H
λk
Ri

H
λk
Rj

H
λk
Rp

Figure 3.20: Illustration of the insensitivity of Battacharyya distance where distributions do not
overlap. If the histograms do not overlap, they have the same zero distance

To address this weakness, the work in [18] has proposed a solution to avoid to estimate densi-
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ties formed by too many bins with zero probability which, in practice, may decrease the value of

the similarity measure between the densities. The solution consists in convolving the histograms

by a triangular window. Note that this approach introduces some probability values that are

not really existing in the region. Therefore, in order to solve this problem, the work presented

here has proposed the use of a cross-bin measure between probability distributions as a solution.

Thus, the diffusion distance is proposed as a cross-bin similarity measure [59] in the following. It

defines a second merging criterion.

Diffusion Distance

The diffusion distance DK is a cross-bin distance defined to measure the similarity between two

discrete probability distributions, which cannot be overlapped. The main idea of this distance is

to measure the difference between two histograms at various resolution scales through a diffusion

process. Therefore, the goal is to measure at the different scales how the histogram are different.

If the histograms are different, the difference between them will exist in several scales.

The diffusion process is computed by convolving the histogram difference dl(as) with a Gaussian

filter φσG(as) ,where as ∈ R
m is a vector. Thus, each diffusion scale l is computed by a convolution

task and a downsampling step as:

d0(as) = Hλk

Ri
(as)−Hλk

Rj
(as) (3.14)

dl(as) = [dl−1(as) ∗ φσG(as)] ↓2 l ∈ [1, ..., L] (3.15)

The notation ↓2 denotes downsampling by a factor of two. L is the number of pyramid layers

and σG is the constant standard deviation for the Gaussian filter φ. From the Gaussian pyramid

constructed by Eq.3.15, a distance DK between the histograms can be computed summing up the

L1 norms of the various levels:

DK(Hλk

Ri
, Hλk

Rj
) =

L∑

l=0

NB∑

s=1

|dl(as)| (3.16)

Consequently, the proposed merging criterion using the diffusion distance defined in previous

equations is derived as:

ODIF = argmin
Ri,Rj

N∑

k=1

DK(Hλk

Ri
, Hλk

Rj
) (3.17)

Before concluding on merging criteria using classical histogram distances, it should be re-

membered that hyperspectral bands are processed separately by the last two criteria: OBAT and

ODIF . As a result, the correlation between bands is not taken into account in these merging cri-

teria. Moreover, the overall spectral shape of the spectra is another unused information. Note

that in order to include all of these notions, the non parametric statistical region model should be

processed entirely. Ideally, this could be done if the region model was the full multidimensional
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histogram. Unfortunately, the computational complexity of this histogram is not realistic for the

huge hysperspectral data.

Taking this issue into account, a last merging criterion is proposed in Sec.3.3.3. This merging

criterion exploits the inter-distances between the different probabilistic distributions contained in

each individual region model. The goal is then to remove redundant information contained in

each region model. Consequently, the hyperspectral band correlations and the sparsity problem

are eliminated and then, a similarity measure jointly taking into account the overall shape of

the spectral information can be defined. Besides, this last proposed measure based on distances

between observations can be expressed in canonical correlations [33].

3.3.3 Similarity measure via Multidimensional Scaling

The merging criterion presented here for the non parametrical statistical region model is based

on the distances between wavebands and canonical correlations [31]. The merging criterion is

divided in two steps summarized in Fig.3.21.

The first step, pointed by the blue rectangle, corresponds to a local dimensionality reduction by

analyzing the inter-waveband similarity relationships for each data set MR. The purpose of this

stage is to remove the redundant hyperspectral information via multidimensional metric scaling

(MDS). As a result, the principal components of the regions containing the most relevant infor-

mation are obtained.

MRi

Pa1 , Pa2 , .........PaNbins

H
λ2
Ri

H
λNz
Ri

H
λ1
Ri

MRj
Step 1: Dimensionality Reduction
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Figure 3.21: Methodology for similarity measure via Multidimensional Scaling

Afterwards, a similarity measure correlating the principal axis of both data sets obtained via

multidimensional scaling is performed. This similarity measure, which is highlighted in purple in
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Fig.3.21, relies on a statistical test based on the multivariate analysis of variance (MANOVA). The

goal is to test whether there is a dependence (or correlation) between the principal components

of the regions or not.

Step1: Dimensionality Reduction

Multidimensional scaling (MDS) [28] represents a set of objects as a set of points in a map of cho-

sen dimensionality, based on their interpoint distances. The objective is to maximize the agree-

ment between the displayed interpoint distances and the given ones. Thus, MDS attempts to

locate No objects as points in an Euclidean space E where the geometric differences between

pairs of points in E agree, as closely as possible, with the true differences between the No objects.

In our case, the No objects correspond to the Nz probability distributions of each MR. Hence, the

probability distribution similarities (or dissimilarities) of MR can be represented by a Nz x Nz dis-

tance matrix ∆R= (δkl), where δkl = δlk ≥0 is the diffusion distance value computed by Eq. 3.16.

Hence, being A the matrix with entries A = −( 12 )δ
2
kl and the centering matrix H = IN − 1

N
11t ,

the so-called inner product matrix BR associated to ∆R can be computed by BR = HAH for each

MR [28]. BR is also called Gower’s centered matrix which is computed by centering the elements

of A [32].

The inner product matrix BR is an NzxNz symmetric matrix which can be spectrally decomposed

as BR = URΛ
2
RU

t
R. Assuming that the eigenvalues in Λ

2
R are arranged in descending order, the

matrix URΛR and UR contains the principal and the standard coordinates of region R, respec-

tively.

As mentioned above, the aim of MDS is to represent MR in a lower dimensional space, by tak-

ing the first Ds most representative principal or standard coordinates. Therefore, given two

regions defined by MRi
and MRj

, this first step computes the first Ds standard coordinates of

MRi
and MRj

. That is, two distance matrices ∆Ri
and ∆Rj

to find BRi
= URi

Λ
2
Ri
U t
Ri

and

BRj
= URj

Λ
2
Rj

U t
Rj

are computed using the explained procedure.

Selection of the number of dimension Ds

The number of dimensions Ds is an important aspect in most multivariate analysis methods.

Classically, the number of dimensions is based on the percentage of variability accounted for

by the first dimensions. Therefore, a popular criterion consists in selecting the first eigenvectors

corresponding to the highest eigenvalues. In this case, the Ds components represent the maximum

possible proportion of the variance in Ds dimensions. Applying this strategy with Nz possible

eigenvalues arranged in descending order, the dimension Ds is then given by Eq.3.18.

Ds∑

t=1

λtR

Nz∑

t=1

λtR

≈ 1 (3.18)
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where λNzR and λ1R correspond to the smallest and the highest eigenvalues, respectively.

This criterion has been the only criterion used in hyperspectral methods performing dimension-

ality reduction techniques as PCA [10] [36] [116]. Note that PCA corresponds to the special case

of multidimensional scaling metric when the euclidean distance is used as δ. For these works, the

criterion according to Eq.3.18 has allowed to extract the first Ds uncorrelated components.

Unfortunately, this criterion can have some issues in our case. The problem is that the Ds prin-

cipal coordinates representing two different regions can be correlated between themselves. For

example, let us consider that Ds is equal to 5 for two neighboring regions which leads to the result

of 5 different eigenvectors. If these 5 eigenvectors give different information, i.e. are uncorrelated,

the choice of Ds is correct. However, if the first eigenvector of the first region is highly correlated

with the fourth component of the second region, the choice of Ds = 5 is going to introduce a bias.

Therefore, it may be better to choose Ds = 3 in this example.

Here, in order to solve the explained limitation, a criterion which extends a sequence c defined

and studied in [33] is used to set the value of Ds. Firstly, a maximum dimension Ns suggested by

the data should be fixed, which corresponds to the minimum dimension for which

∑Ns

t=1 λ
2
tR

∑Nz

t=1 λ
2
tR

≈ 1

(Such as 3.18). Then, with ui and vi, i = 1, ..., Ns, being the Ns first eigenvectors of URi
and URj

,

a sequence Ck is defined as:

Ck =

∑k

t=1

∑k

p=1 λ
2
tRi

(u′
tvp)

2λ2
tRj

∑Ns

t=1

∑Ns

p=1 λ
2
tRi

(u′
tvp)

2λ2
tRj

k ∈ [1, ..., Ns] (3.19)

where λ2
tRi

λ2
tRj

are the eigenvalues of BRi
and BRj

which are proportional to the variances of

the corresponding principal axes. The term (u′
tvp)

2 is the correlation coefficient between the t-th

and the p-th eigenvectors. Thus, the numerator in ck can be interepreted as a weighted average of

the relationships between principal axes.

Clearly 0 ≤ C1 ≤, ... ≤ CDs
≤, ... ≤ CNs

= 1. Hence, the dimension Ds is then chosen such

that CDs
is high, for instance CDs

= 0.9. In this way, Ds represents the number of uncorrelated

eigenvectors representing the largest proportion of variance.

Step2: Similarity measure between MRi
and MRj

principal axis

The proposed similarity measure relies on measuring the correlation, also called dependency, be-

tween the principal coordinates representing two adjacent regions. This notion of multivariate

dependence test can be easily explained by the next example.

Assume that a study wants to be conducted to evaluate the students’ improvements in math and

physics by trying different textbooks. In that case, improvements in math and physics are the

two dependent variables, and the goal is to test the following hypothesis: Are both topics jointly

affected by the difference in textbooks?

As a result, if the overall multivariate test is significant, it can be concluded that the respective

effect (e.g., textbook) is significant. In our case, changing the textbooks and the improvements by

two different hyperspectral regions, the purpose of the dependence test still remains the same.
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Hence, the goal is to measure if a multivariate test between two regions defined by their principal

coordinates (URi
ΛRi

and URj
ΛRj

) will be significant or not.

It is done by interpreting the Ds columns of URi
ΛRi

and URj
ΛRj

as a predictor X and a response

variable Y of a multivariate linear regression model, respectively. Regression analysis helps to an-

alyze such situations by focusing on the change in a dependent variable associated with changes

in two or more independent variables. The expression of this multivariate linear regression model

is given by:

Y = Xβ + e (3.20)

where β is the matrix of parameters containing the regression coefficients and e is the matrix

of residual errors. Given Eq.3.20, the aim is to use this model to test if Y and X are correlated or,

in other words, if Y is a linear combination of X. It is clearly seen that if there is no relationship

between X and Y, the matrix β is equal to 0.

The goal is therefore to measure if a significant relationship between X and Y exists by testing

the multivariate general linear hypothesis β = 0.

The proposed multivariate statistical test is based on the Multivariate analysis of the variance

(MANOVA) theory. The MANOVA has been largely used to measure the interactions among

dependent and independent multidimensional variables. The primary objective is to assess the

significance of group differences. To estimate it, MANOVA studies the covariances of the vari-

ables as well as their individual variances by the sums of squares and cross-products matrices,

which are the basis for these quantities.

The sums of squares and cross-products matrices evaluates how is the residual error ê = (Y −Xβ̂)

measuring the error of the prediction matrix Ŷ according to Y . The prediction matrix Ŷ = Xβ̂

is defined by the estimation of the regression coefficients β̂. In the case of multivariate data, the

simplest method to estimate the matrix β̂ is the ordinary least-squares method which minimizes

the sum of squares residuals tr(ê′ê) = tr[(Y − Xβ̂)t(Y − Xβ̂)] [30]. The least-squares solution

for β̂ estimation is given by β̂ = (XtX)−1XtY . Accordingly, the prediction matrix is given by

Ŷ = Xβ̂ = PY where P = X(XtX)−1Xt is the known hat matrix [34].

The regression equation allows to find the score of an outcome, and these scores are such that

Y = Ŷ + ê, so the Total Sum of Square and Cross Product SSCP is given as:

Y tY = (Ŷ + ê)t(Ŷ + ê)

= Ŷ tŶ + Ŷ tê+ êtŶ + êtê

= Ŷ tŶ + êtê (3.21)

Eq. 3.21 shows how SSCP is decomposed into Sum of Square and Cross Product of scores of

outcomes Ŷ tŶ and Sum of Square and Cross Product of errors êtê. These two matrices denoted

in the following by H and E summarize the (co)variation of the fitted values and residuals for

a given predictor Ŷ . In MANOVA theory, they have been used to define different multivariate
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dependences test to verify the general linear hypothesis β = 0.

The most common multivariate statistic test to measure if the hypothesis β = 0 is true or false is

known as Wilks’ lambda likelihood ratio test W . Besides this test, it must be remarked that other

multivariate statistics tests as Roy, Lawley-Hotteling or Pillai criteria to test β = 0 have been

studied.(See Appendix 7.3 for further information). Also, association measures without consid-

ering the multivariate regression model have also been taken into account as measures shown in

Appendix 7.3. Comparing all these measures, Wilks’ lambda test has been chosen because the

association measure obtained by Wilks’ lambda test Aw leads to the highest value of association.

It means that the other measures can obtain very small values which could be interpreted as a

null association.(See order relationship in Appendix.7.3).

The Wilks’ lambda test can be interpreted as the proportion of generalized variance in the depen-

dent variables that is accounted for by the predictors. This treatment is performed by finding the

ratio of the determinant (generalized variance) of the error SSCP matrix to the determinant of the

sum of the treatment and error E matrices. Mathematically, the Wilks’ lambda W is expressed by:

W (X,Y ) =
det(E)

det(E +H)
=

det(êtê)

det(Y tY )
(3.22)

where the term êtê is defined by:

êtê = (Y −Xβ̂)t(Y −Xβ̂)

= Y tY − Y tXβ̂ − β̂XtY + β̂tXtY + β̂tXtXβ̂

= Ŷ tŶ − Y tXβ̂ ( where β̂tXtY = β̂tXtXβ̂ )

= Ŷ tŶ − Y tX(XtX)−Y

= Y ′[I −X(XtX)−Xt]Y (3.23)

The Wilks’ lambda test satisfies 0 ≤ W (X,Y ) ≤ 1 . The zero value indicates that the hypothesis

β = 0 is false and then X and Y are highly correlated. Contrarily, if W (X,Y ) = 1, the hypothesis

is true and then X and Y are completely independent. It must be remembered that in our case,

X and Y correspond to the principal coordinates of the region represented by Y = URj
ΛRj

and

X = URi
ΛRi

. The predicted model Ŷ then corresponds to

Ŷ = PY = X(XtX)−1XtY = URi
U ′
Ri
URj

ΛRj
(3.24)

Hence, given Eq. 3.23 and Eq.3.24, the Sum of Square and Cross Product of errors E and the

total Sum of Square and Cross Product E+H are given by:

E = êtê = Y ′[I −X(XtX)−Xt]Y = ΛRj
(I − U t

Rj
URi

U t
Ri
URj

)ΛRj
(3.25)

E +H = Y tY = ΛRj
U t
Rj

URj
ΛRj

= Λ
2
Rj

(3.26)
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These last two expressions re-define the Wilks’ lambda test of Eq.3.22. In this context, X and

Y correspond to region models representing two adjacent regions Ri and Rj . Accordingly, the

Wilks’ lambda test W (Ri, Rj) is expressed by Eq.3.27. This last equation can be used to define an

association measure as Aw = 1−W , which does not depend on ΛRj
neither ΛRi

.

W (Ri, Rj) = det(I − U t
Rj

URi
U t
Ri
URj

) (3.27)

The Wilks’ lambda test of Eq. 3.22, can also be calculated from the point of view of an eigen-

value approach by W (Ri, Rj) = λ1
w × λ2

w.... × λDs
w where λi

w are the eigenvalues corresponding

to:

det(E − λw(E +H)) = 0 (3.28)

with 0 ≤ λi
w ≤ 1. These eigenvalues are directly related to the canonical correlations which

are used as a way of measuring the linear relationship between two multidimensional variables.

In this context, the squared canonical correlation r2i is defined by 1− λi
w. The Wilks’ criterion can

thus be expressed in terms of canonical correlations as:

W (Ri, Rj) =

Ds∏

i=1

(1− r2i ) (3.29)

Hence, the Wilks’ lambda test computed in Eq.3.29 is proposed here as the similarity measure

between Ri and Rj . If W (Ri, Rj) is equal to 0, it means that the hypothesis β = 0 is false and

then Ri and Rj are highly correlated, i.e. very similar. In contrast, W (Ri, Rj) = 1 implies that the

adjacent regions Ri and Rj are very different and no dependency can be found. Hence, this leads

to the definition of the proposed merging criterion:

OMDS = argmin
Ri,Rj

W (Ri, Rj) (3.30)

Before concluding this section, we would like to remark that all the proposed merging criteria

shown in Fig.3.19 are size-independent. In other words, the area of the regions is not included in

any proposed merging order. Thus, depending on the initial partition where the merging process

is started and on the specific characteristics of the image, these approaches may suffer from small

and meaningless regions into the generated partition. This limitation is found especially in the

initial stages of the BPT construction process.

To overcome this issue, the combination of a scale-based merging order with the presented area-

independent merging criteria is used here as it has been previously done in [17]. The benefit of this

approach is that the fusion of large regions is not too penalized compared to classical approaches,

where the area of the region is multiplied by the similarity measure O(Ri, Rj) [40] [141] .

The problem of this approach is that the area constraint and the similarity measure O(Ri, Rj) can

have different magnitude orders. An example can be seen in Eq.3.31 where a weighted merging

criterion has been proposed in [17] by using the Battacharyya distance of Eq.3.13. In this example,
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the merging order obtained by the similarity measure is multiplied by the minimum area of the

pair of regions. In this case, OBAT and the area constraint can really have different magnitude

orders. The term OBAT comes from a logarithmic function , it can therefore be much more smaller

than the first term concerning the area of the regions. Hence, this approach can force to obtain

regions having similar sizes by strongly enforcing the area constraint.

Oweighted
BAT = min(NRip

, NRjp
)OBAT (3.31)

To avoid this limitation, the scale-threshold procedure is included during the construction of

BPT in order to avoid meaningless regions at the different levels of the hierarchy.

Introduction of the scale-threshold in the merging criteria

The idea proposed in [17] is to define a scale threshold TLi

scale at each merging step Li according to

the number of remaining regions in the partition. At each step Li, the TLi

scale is considered as the

minimum area that regions forming the partition of this level should have.

The combination of the scale-threshold constraint with the region merging order described on

Fig.3.1 can be easily performed. The strategy consists in verifying for each Li, whether there are

regions of size lower than TLi

scale.

Regions below this threshold are considered as out-of-scale and the algorithm forces their merg-

ing (following their similarity values). It should be noticed that even if the out-of-scale regions

are forced to merge at a given level, they will merge with their most similar neighboring region

in the partition.

The scale threshold is updated after each merging step and its definition is based on the average

size of regions at a certain iteration Li by:

TLi

scale =
α · Image Area

Number of regions at Li

(3.32)

Note that even if the out-of-scale criterion forces the fusion of the small regions, the constraint

is not too restrictive because it still permits to have small regions different from their neighbor-

hood, at that high levels of the BPT hierarchy. For instance, assuming an image containing 1000

pixels and α = 0.15. After 980 merging steps, the resulting partition at level L980 is formed by

21 different regions can be composed of regions having as few as 8 pixels. Heuristically, a good

trade-off was presented in [17] by using α = 0.15
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3.4 Experimental Evaluation

In this section, a complete evaluation of the BPT-based representations is provided. First experi-

ments have been performed evaluating the different proposed merging criteria and region mod-

els.To this end, some partitions obtained during the construction of the BPT merging sequence are

compared between themselves and also with the state of the art RHSEG technique [22]. The ex-

periments aim at measuring the quality of the hierarchical partitions contained in the constructed

BPT representations. The quality of the obtained results is tested by a quantitative evaluation in

order to assess the accuracy and robustness of the different constructed BPTs.

The main difficulty arises from the classical image segmentation issue: An optimum segmentation

result can be very different depending on the actual application. Hence, to perform a quantitive eval-

uation, a reference image partition, also called ground truth, specifying a segmentation goal is

necessary. As such reference was not available in our case, the manual creation of ground truth

images has been a mandatory step for the BPT evaluation. The idea is to compare these manually

created ground truth partitions with the image partitions contained in BPTs in order to measure

their quality. The quantitative evaluation has been carried out by two different metrics defined in

[51] in the context of image segmentation. These metrics have been previously used in [39] [17].

The description of the two metrics is detailed in Sec.3.4.1.

The evaluation has been carried out on different hyperspectral images. The description of these

data sets is presented in Sec.3.4.2, where the different manually created ground truth partitions

are also shown. Besides the experiments evaluating the different merging orders, a second set of

experiments is also described here in order to evaluate the estimation of Ds in the case of OMDS .

The aim is to show the importance of the intrinsic dimension of the regions Ds in order to com-

pare their similarity.

3.4.1 Quality measures between partitions

The evaluation of BPT assumes a critical role for the selection of an appropriate merging order. A

visual assessment of the partitions obtained following the merging sequence construction is a first

type way to evaluate the construction of the BPT. However, in order to be objective, a quantitative

evaluation measuring the quality with respect to a reference segmentation is compulsory.

In the literature, the most well-known set of quality measures between partitions has been pre-

sented in [54], and more thoroughly in [53]. Most of these measures, such as GCE, LCE and BCE

measures, compute the overall distance between two partitions as the sum of the local incon-

sistency at each pixel. These measures have achieved excellent results in [53]. However, their

behavior is not always reliable, as it has been illustrated in [52]. This is probably due to their

local definition, making it also difficult to predict the performances in the case of more complex

segmentations. Because of these limitations, the asymmetric dasym and symmetric dsym distances

described in [51] have been used here. Two different examples of these metrics and their defini-

tions are presented in the following.
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Asymmetric Distance dasym

The first quality measure between a partition P and a ground truth PGT is the asymmetric parti-

tion distance dasym. This distance measures the minimum number of pixels whose labels should

be changed so that partition P becomes finer than partition PGT . A partition P is said to be re-

finement of another partition Q if each subinterval of P is contained in some subinterval of Q.

This distance is normalized by the total number of pixels of the image minus one 1. As a result,

dasym is ranging between 0 and 1.

Two different quality measures can be computed using dasym, as dasym(P,PGT ) -= dasym(PGT ,P).

dasym(P, PGT ) measures the degree of over-segmentation. Contrarily, changing the order of the

partitions, the under-segmentation of P according to the ground truth partition PGT is measured

by dasym(PGT ,P).

An example showing the computation of the dasym is illustrated in Fig.3.22, where the partition P

of Fig.3.22(a) is evaluated with respect to the ground truth image PGT shown in Fig.3.22(b). For

this example, the under-segmented pixels whose labels should change from P to be finer than

PGT are highligthed in green in Fig.3.22(c). This last figure leads to an under-segmentation error

defined as dasym(PGT ,P) equal to 0.006. Going on with this example, the over-segmented pixels

are shown in Fig.3.22(c) leading to an over-segmentation error dasym(P,PGT ) = 0.42.

Both results dasym(P,PGT ) and dasym(PGT ,P) confirm the visual evaluation that can be done for

this example. The partition P suffers from a negligible under-segmentation whereas the over-

segmentation of P according to PGT is quite significant.

Symmetric distance dsym

Symmetric distance dsym is a global error measure to establish a trade-off between under-and

over-segmentation error. The distance was originally defined in the pattern analysis field, in

terms of data clustering comparison [55] and used in image segmentation in [51]. The distance

is defined as the minimum number of pixels whose labels should be changed in P to achieve a

perfect matching with PGT , where P and PGT are then becoming identical.

Consequently, the distance is measured between a partition P and a ground truth PGT , both hav-

ing the same number of regions. Hence, this distance holds the symmetric property dsym(PGT ,P) =

dsym(P,PGT ). As in the case of dasym, the symmetric distance is also normalized by the total num-

ber of pixels of the image minus one. Therefore, dsym is also ranging between 0 and 1.

Fig.3.23 illustrates an example of dsym evaluation, where two different partitions P1 and P2 are

evaluated according to the PGT shown in Fig.3.22(b). In this example, note that the partitions P1

and P2 have the same number of regions as PGT (NR=2).

The first dsym is computed between P1 and PGT . The pixels which must be changed from P1 to

perfectly match PGT are shown in green in Fig.3.23(c). These green pixels involve a dsym(PGT ,P1)

equal to 0.08. Following the same procedure, dsym(PGT ,P2) = 0.17. The pixels causing this error

are highlighted in Fig.3.23(d). Comparing the obtained dsym values with a visual evaluation, it

1 With the N number of pixels in the image, dasym is normalized by N − 1, which is the maximum number of pixels
whose label may be changed in the worst case, since at least one of the pixels would remain with its own label
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(a) PGT (b) P

(c) Under-segmented pixels (d) Over-segmented pixels

Figure 3.22: Illustrative example of asymmetric partition distance for an image having 10 × 10
pixels. (a) Partition P to be evaluated . (b) Ground truth partition PGT . (c) and (d) are binary
images showing in green the pixels whose labels must be changed in each case to compute the
under- (dasym(PGT ,P)) and the over-segmentation(dasym(P,PGT )) errors, respectively.

can be seen that both distances provide objective results between the evaluated partitions. Both

evaluations result in the same conclusion, the partition P1 is closer to the ground truth segmenta-

tion than the partition P2.

3.4.2 Data Sets Definition

The experimental evaluation is carried out by using five different hyperspectral images captured

by two different sensors. Accordingly, the different data sets have different spectral and spatial

resolutions. The five hyperspectral images can be split in three categories: three images from

Pavia University, an image from Pavia Center both acquired by the ROSIS sensor and finally, an

image acquired by HYDICE sensor. Five different ground truth partitions have been manually

created.

Due to the low resolution of hyperspectral data, the creation of ground truth partitions is not

straightforward. Therefore, as these images present complex structures, the creation of a com-

plete ground truth is an important challenge. A second important issue is related to the scene

intrepretation. This problem is related with the different information contained in the different

hyperspectral bands. In particular, composing two RGB images by using 6 different hyperspec-

tral bands, two completely different ground truths can be created.

In order to minimize this problem, the RGB image composition used to create the ground truth

partitions has been obtained by the first PCA components. Concretely, it corresponds to the three
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(a) P1 (b) P2

(c) dsym(PGT ,P2) = 0.08 (d) dsym(PGT ,P2) = 0.17

Figure 3.23: Illustrative example of symmetric partition distance for an image having 10 × 10
pixels. (a)-(b) Partitions P1 and P2 to be evaluated. (c) and (d) are binary images showing in
green the pixels whose labels must be changed for partition P1 and P2 to perfectly match with
PGT shown in Fig.3.22(b).

components associated to the 3 highest eigenvalues. The generated ground truth partitions and

the characteristics of the five hyperspectral data sets are detailed in the following.

Pavia University

The first studied hyperspectral image is acquired over the city of Pavia (Italy) by the ROSIS− 03

(Reflective Optics Systems Imaging Spectrometer) hyperspectral sensor operated by DLR out of

Oberpfaffenhofen (Germany). The spatial dimension of the image is 610 × 340. The geometrical

resolution is 1.3 m. The original data are composed of 115 spectral bands, ranging from 0.43 to

0.86 µm with a band width of 4 nm. However, typical noisy bands corresponding to the water

absorption were previously discarded leading to 103 channels. A RGB composition of the entire

Pavia University data set is shown in Fig.3.24.

For this image, the experimental results aiming at the BPT evaluation are not performed by using

the complete image. Indeed, the creation of a ground truth image labeling all the pixels is too

complex. Fig.3.24 shows the complexity of the structures forming this image. Thus, in order to

create an accurate ground truth image, three different portions of hyperspectral Pavia University

have been used. The three different portions studied for the Pavia University data set are boxed

by the red, the orange and the yellow rectangles.
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Figure 3.24: RGB composition of ROSIS Pavia University image

The three data sets have been named as Pavia-uni-Z1, Pavia-uni-Z2 and Pavia-uni-Z3 and they

can be seen in more details in Fig.3.25. Fig.3.25(a) corresponding to Pavia-uni-Z1 has a spatial

dimension of 39×95 pixels. The dimension of Fig.3.25(b) and Fig.3.25(c) corresponding to Pavia-

uni-Z2 and Pavia-uni-Z3 are in this case 69×46 and 61×66.

(a) Pavia-Uni-Z1 (b) Pavia-Uni-Z2 (c) Pavia-Uni-Z3

Figure 3.25: RGB composition showing the three different studied zones of ROSIS Pavia Univer-
sity image
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For these last images, three manually ground truth partitions PGT have been created. These

reference partitions are shown in Fig.3.26(a)(b)(c). The corresponding numbers of regions NR are

NR = 33, NR = 11 and NR = 42, respectively.

(a) PGT from
Pavia-Uni-Z1

(b) PGT from Pavia-Uni-Z2 (c) PGT from Pavia-Uni-Z2

Figure 3.26: Manually created PGT partitions of the three different studied zones of ROSIS Pavia
University image

Pavia Center

The second studied hyperspectral data has also been captured by the hyperspectral ROSIS sen-

sor. The entire image has 492 by 1096 pixels, collected over Pavia city centre, Italy. It contains

102 spectral channels after removal of noisy bands. From the same reasons as Pavia University,

a portion of this image has been selected in order to evaluate the BPT construction. The RGB

composition describing the image scene is shown in Fig.3.27(a). The corresponding ground truth

containing NR = 23 regions is shown in Fig.3.27(b).

(a) RGB Composition (b) Manually created PGT

Figure 3.27: Pavia Center Data Set
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Urban Hydice

The third hyperspectral data set is given by a publicly available HYDICE hyperspectral image

from an urban area. Originally, the entire image is 307 × 307 pixels in size and has 210 spectral

channels from ≈ 0.4 to 2.5 µm. After removing water absorption and noisy bands, the data contain

167 spectral bands. The scene is cluttered with a large retail store and parking lot, a residential

neighborhood, and a roadway. Consequently, the majority of this scene is qualitatively complex.

Hence, a portion of this image has been studied. It is 60x60 pixels and has a spatial resolution of

3 meters approximately. The ground truth and the RGB composition for this last data set is found

on Fig.3.28. The corresponding number of regions involves in PGT is 56.

(a) RGB Composition (b) Manually created PGT

Figure 3.28: HYDICE Data Set



78 Chapter 3. BPT construction

3.4.3 Experiment 1: Evaluation of BPT hierarchical levels

The purpose of this experiment is to evaluate the different image partitions created during the

BPT construction by the different merging criteria. Starting from the pixel-based representation

of an image containing Np pixels, partitions having a number of regions equal to NR are studied.

These partitions are obtained by doing the Np - NR merging steps over the initial partition. The

quality of the obtained partitions having NR regions is evaluated in two different ways: Visually

and by using the two different partition distances described in Sec.3.4.1.

This complete evaluation is carried out on the five different images presented in Sec.3.4.2. For

each image, different BPTs according to the different merging orders proposed in Fig.3.3 have

been constructed.

To perform this experiment, some parameters for the different region models and merging crite-

ria should be set. In the case of OSID ad OSAM , no parameter is required. Note that the region

model corresponding to these merging orders is only the average of the spectral values of the

region. Contrarily, in order to construct the non parametric statistical region model presented in

Sec.3.3.2, some parameters should be defined. The first important parameter is the number of bins

Nbins used to construct the histogram of each region at each hyperspectral band. Ideally, Nbins

should be equal to the number of possible radiance values contained on the image. For instance,

if the radiance value is an integer encoded over 8 bits, their range is [0, 255]. Therefore, the ideal

number of bins used to represent the spatial histograms of the region corresponds to Nbins = 256.

The main problem is that having hundred of Nz channels, thousands of Np pixels and 2×Np − 1

merging steps, a high Nbins value can be computationally critical. On the other hand, radiance

values can also be coded with 16 bits ranging from [0, 65535], therefore, the parameter is even

more critical. Consequently, a moderate quantization is used for the computation of the non

parametric statistical model.

Another consideration concerning Nbins is the possible histogram misalignment problem previ-

ously shown in Fig.3.20. This problem is mainly found because OBAT is not robust with regards

to this point. The robustness of Nbins parameters is sought with the merging order ODIF . For

this criterion, different results can be obtained by changing the value of Nbins, however, their

differences are not very significant. The diffusion distance ODIF needs to set two parameters:

the standard deviation for the Gaussian filter σG and the number of layers. In our work, these

parameters have been set according to [59]. Thus, σG is equal to 0.5 and the number of layers is

set to 3.

Another important parameter concerning the non parametric statistical region model is the value

Ds used in OMDS . The procedure to extract Ds has been explained in Sec.3.3.3. Before conclud-

ing, it should be remembered that other parameters for the case of non parametrical statistical

region model have been defined at the beginning of Sec.3.6. These are the parameters described

to estimate the pdf’s of the individual pixels. In the experiments presented in this section, the

pixel pdf estimation has been performed as it has been previously done on the pixels of Fig.3.10.

At this point, the following sub-sections describe the obtained experimental results for the visual

and quantitive evaluation.
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Visual Evaluation of the hierarchical BPT levels

The visual evaluation of the partitions obtained by the different merging criteria is carried out

here. A set of partitions obtained during the BPT construction having different number of regions

are shown.

Starting from the hyperspectral image illustrated in Fig.3.24, five different BPTs have been con-

structed for each of the three zones: Pavia-uni-Z1 ,Pavia-uni-Z2 and Pavia-uni-Z3. Nbins is set to

120 for these three images and Ds is set to 3.

The first results correspond to the BPT construction for Pavia-uni-Z1, whose RGB composition

has been previously shown in Fig.3.25 (a). Fig.3.29 illustrates the different partitions for the five

different merging orders. In this figure, each column corresponds to a different merging order,

and each row shows a partition formed by a specific number of regions NR. From the first to the

third rows, NR values correspond to NR = 15, NR = 35 and NR = 45. The five different merging

criteria are ordered as : OSID, OSAM , OBAT , ODIF , OMDS . The last column of Fig.3.29 shows

the results obtained by the RHSEG algorithm [22], which is widely used in the context of hyper-

spectral image segmentation. The parameters used by RHSEG algorithm are the SAM similarity

criterion with a spectral clustering weight of 0.1 as has been previously done in [20]. The RHSEG

parameters have been kept identical for the five hyperspectral images.

Fig.3.29 shows how the merging criteria using the non parametric statistical region model (OBAT ,

ODIF and OMDS) provide the best results. Comparing the methods processing hyperpsectral

bands jointly or separately, some differences can be noticed. For instance, looking at the last rows

where NR = 45, the brown region on the left of the figure appears entirely for the case of OMDS ,

OSID, OSAM and RHSEG. Contrarily, the merging orders OBAT and ODIF which process sepa-

rately the different channels, have some problems forming this region. As a conclusion of this

first visual evaluation, OMDS seems to perform better than the other used criteria.

The next results in Fig.3.30 correspond to the partitions obtained for the Pavia-uni-Z2 data. In

this case, given the dimension of the image, the configuration of this figure according to Fig.3.29

has been transposed. Thus, a row contains the partitions with different NR for a specific merging

order. Correspondingly, each column shows the partitions associated to the different merging

orders but with the same number of regions. This configuration is going to be kept for the re-

maining hyperspectral data sets. For this data set, the number of regions forming the partitions

correspond to NR = 11, NR = 25 and NR = 44.

Looking at this last figure, the results obtained by OMDS and ODIF lead to the best partitions.

Despite of some meaningless regions, it can be seen how the main structures of the PGT appear in

these results. The difference between jointly or not taking into account all the spectral information

can also be noticed in this data set by comparing Fig.3.30(j) with Fig.3.30(m). In Fig.3.30(j), a tree

located on the left of the figure is split in two regions because of the shadow effect described in

Sec.3.3.

Concerning the pdf estimation of the initial pixels, an interesting behavior can be seen in Fig.3.30(m).

In this case, pixels forming the edge of an object have merged together forming a single region.

The brown region at the figure bottom is an example of this effect. This fact is very interesting
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since it allows the segmentation to achieve clean borders.

Partition results achieved on the third data set Pavia-uni-Z3 are illustrated in Fig.3.31, where the

number of regions is given by NR = 22, NR = 43 and NR = 64. The results obtained from this hy-

perspectral portion are not easily interpretable. This third data set seems to be more complicated

than Fig.3.25. For instance, it can be found that this portion of hyperspectral data appears in very

different ways in proposed classifications published in [21] [10]. In these papers, the reported

classification maps have high classification accuracies but look very different.

In our case, comparing the different images of Fig.3.31, OMDS and ODIF seem to provide the

best results. Results obtained with the first order region model are quite poor, as presented on

Fig.3.31(a)(b)(c) and (d)(e)(f). The main problem is the formation of the large blue region on the

top-right part of the figure. In order to avoid this formation, a solution could be to increase the α

parameter of Eq.3.32. Thus, small regions will be firstly merged and the large blue region could

be formed later. The problem is that the different merging criteria should be evaluated under the

same conditions in this experimental evaluation. Therefore, it can be concluded that the need of

a high α value for a merging criterion is a weakness.

The partitions obtained during the BPT construction of Pavia Center hyperspectral images are

shown in Fig.3.32. Here, Nbins is set to 100 whereas the value of Ds has been estimated as Ds = 2.

The number of regions forming the partitions of this figure are NR = 13, NR = 25 and NR = 39.

The first two rows show the results obtained by the first order region model. In these results,

it is seen that the background of the image is entirely formed at level NR = 39. Unfortunately,

this background region (appearing in light purple) is too large in cases of OSID where the row

of buildings at the top of the image has completely disappeared. An important remark about the

merging orders related to the non parametric statistical region model is that OMDS , ODIF and

OBAT also obtain in this data set clear border definition in their results. As mentioned above, this

is because the non parametrical statistical region model gives a more accurate region representa-

tion, which leads to the formation of regions defining the object borders.

The effect of shadow can also be noticed in results shown in Fig.3.27. Looking at the central

building of the image, it has been split in two regions in the case of OBAT and ODIF whereas the

other merging orders obtain the entire object in a single region. Comparing all the results, OMDS

is achieving the best result for Pavia center hyperspectral data. For instance, Fig.3.27(o) shows

how OMDS having NR = 39 has found a small square red region in the right part of the central

building. Looking at Fig.3.27(a), it is seen that this small square actually corresponds to a small

object which is not found by the other merging criteria.

The last visual evaluation is performed on the hyperspectral data captured by HYDICE sensor

(See Fig.3.28). In this case, 256 bins are used to quantify this image. The local dimensionality

reduction performed by OMDS has taken into account 3 dimensions. For this data set, results can

be seen in Fig.3.33, where the shown partitions contain NR = 27, NR = 37 and NR = 56 regions.

It can be observed that OMDS obtains clearly the best results. This differences between OMDS

and the other merging criteria is not so clear in the case of ROSIS sensor. This is because the dis-

crimination between different materials is less difficult in the case of ROSIS sensor. The problem
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is that there is a lower discrimination along all the spectral range in the Hydice image.

Also for this image, it can be seen that the merging orders OSID and OSAM have some problems.

For these two merging orders, buildings appear connected with roads. This can be observed at

the two first rows of Fig.3.33.

Comparing all the different results shown in Fig.3.29, Fig.3.30, Fig.3.31,Fig.3.32 and Fig.3.33, it is

not evident to perform an accurate classification of the merging orders according to their perfor-

mances. ODIF and OMDS seem to obtain the best results followed by OBC . However, in order to

evaluate more precisely the merging orders a quantitive evaluation should be done. This evalua-

tion is carried out in the following.
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(a) OSID

NR = 15
(b) OSAM

NR = 15
(c) OBAT

NR = 15
(d) ODIF

NR = 15
(e) OMDS

NR = 15
(f) RHSEG

NR = 15

(g) OSID

NR = 35
(h) OSAM

NR = 35
(i) OBAT

NR = 35
(j) ODIF

NR = 35
(k) OMDS

NR = 35
(l) RHSEG

NR = 35

(m) OSID

NR = 45
(n) OSAM

NR = 45
(o) OBAT

NR = 45
(p) ODIF

NR = 45
(q) OMDS

NR = 45
(r) RHSEG

NR = 45

Figure 3.29: Visual Evaluation of the results over the Pavia-uni-Z1 data set
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(a) OSID , NR = 11 (b) OSID , NR = 25 (c) OSID , NR = 44

(d) OSAM , NR = 11 (e) OSAM , NR = 25 (f) OSAM , NR = 44

(g) OBAT , NR = 11 (h) OBAT , NR = 25 (i) OBAT , NR = 44

(j) ODIF , NR = 11 (k) ODIF , NR = 25 (l) ODIF , NR = 44

(m) OMDS , NR = 11 (n) OMDS , NR = 25 (o) OMDS , NR = 44

(p) RHSEG, NR = 11 (q) RHSEG, NR = 25 (r) RHSEG„ NR = 44

Figure 3.30: Visual Evaluation of the results over the Pavia-uni-Z2 data set
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(a) OSID , NR = 22 (b) OSID , NR = 43 (c) OSID , NR = 64

(d) OSAM , NR = 22 (e) OSAM , NR = 43 (f) OSAM , NR = 64

(g) OBAT , NR = 22 (h) OBAT , NR = 43 (i) OBAT , NR = 64

(j) ODIF , NR = 11 (k) ODIF „ NR = 43 (l) ODIF , NR = 64

(m) OMDS , NR = 11 (n) OMDS , NR = 43 (o) OMDS , NR = 64

(p) RHSEG, NR = 11 (q) RHSEG, NR = 43 (r) RHSEG, NR = 64

Figure 3.31: Visual Evaluation of the results over the Pavia-uni-Z3 data set
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(a) OSID ,NR = 13 (b) OSID , NR = 25 (c) OSID , NR = 39

(d) OSAM , NR = 13 (e) OSAM , NR = 25 (f) OSAM ,NR = 39

(g) OBAT , NR = 13 (h) OBAT , NR = 25 (i) OBAT , NR = 39

(j) ODIF , NR = 13 (k) ODIF , NR = 25 (l) ODIF , NR = 39

(m) OMDS , NR = 13 (n) OMDS , NR = 25 (o) OMDS , NR = 39

(p) RHSEG, NR = 13 (q) RHSEG, NR = 25 (r) RHSEG, NR = 39

Figure 3.32: Visual Evaluation of the results over the Pavia Center data set
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(a) OSID , NR = 27 (b) OSID , NR = 37 (c) OSID , NR = 56

(d) OSAM , NR = 27 (e) OSAM , NR = 37 (f) OSAM , NR = 56

(g) OBAT , NR = 27 (h) OBAT , NR = 37 (i) OBAT , NR = 56

(j) ODIF , NR = 27 (k) ODIF , NR = 37 (l) ODIF , NR = 56

(m) OMDS , NR = 27 (n) OMDS , NR = 37 (o) OMDS , NR = 56

(p) RHSEG, NR = 27 (q) RHSEG, NR = 37 (r) RHSEG, NR = 56

Figure 3.33: Visual Evaluation of the results over the HYDICE data set
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Hierarchical BPT evaluation by using Symmetric Distance

To quantitatively evaluate the partitions obtained during the BPT construction, the merging se-

quence is stopped when the resulting partition has the same number of regions NRo
as the ground

truth partition. Then, the symmetric distance described in Sec.3.4.1 is computed. Thus, perform-

ing Np−NRo
merging steps over the image pixel-based representation, the partition P having the

same number of regions than PGT is obtained and evaluated for all the merging orders.

The different BPT constructions have been carried out with the same parameter adjustment as

described in the previous section. The dsym obtained for the five hyperpsectral data presented in

Sec.3.4.2 are shown in the Tab.3.1, Tab.3.2, Tab.3.3, Tab.3.4 and Tab.3.5. In these tables, the differ-

ent merging criteria and their corresponding dsym are shown.

Tab.3.1 reports the results obtained for the Pavia-Uni-Z1 image. In this case, the number of re-

gions NRo
forming the PGT is equal to 33. This first table shows how OMDS clearly obtains the

best results. Also, it is seen how the merging criteria using non parametrical statistical region

model achieved dsym values smaller than OSID and OSAM . These two merging orders obtain the

worst results jointly with RHSEG. Comparing the stochastic OSID and the deterministic OSAM

merging criteria, the best result is given by OSID. Regarding ODIF and OBAT , dsym is not very

different. This implies that the partition obtained by ODIF is better for only a few pixels.

Table 3.1: Symmetric distance for Pavia-Uni-Z1

Merging Criterion dsym
OSID 0.383
OSAM 0.425
OBAT 0.279
ODIF 0.274
OMDS 0.138

RHSEG [22] 0.48

The results obtained for the Pavia-Uni-Z2 image are displayed in Tab.3.2 where NRo
= 11.

The high dsym values obtained by OSAM and RHSEG can be corroborated by looking at Fig.3.30.

In both cases, the light blue background region is not found as a single region. Thus, the over-

segmentation of the background region leads to this high dsym value. The table also shows how

OMDS and ODIF obtain low values as the corresponding partitions are very similar to PGT . Note

that even if these partitions suffer from small irrelevent regions, the dsym value is not strongly

affected. This is explained by the fact that dsym is related to the number of wrong pixels. Thus, it

penalizes more in this case the over-segmentation problem.

Tab.3.3 shows the results obtained for the Pavia-Uni-Z3 image. The number of regions eval-

uated here is equal to NRo
= 43. In contrast to the other tables, ODIF criterion obtains the best

results. As previously mentioned, it is not evident to interpret the results of this image. In this

case, the merging criteria ODIF , OMDS and RHSEG obtain similar results. Concerning the other

merging orders, the stochastic OSID is also better than OSAM in this case. This table also corrob-

orates that non parametrical statistical region model outperforms the classical first order model.
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Table 3.2: Symmetric distance for Pavia-Uni-Z2

Merging Criterion dsym
OSID 0.175
OSAM 0.303
OBAT 0.186
ODIF 0.132
OMDS 0.108

RHSEG [22] 0.202

The robustness of ODIF to Nbins lead to better results as compared to the OBAT criterion.

Table 3.3: Symmetric distance for Pavia-uni-Z3

Merging Criterion dsym
OSID 0.427
OSAM 0.434
OBAT 0.303
ODIF 0.239
OMDS 0.269

RHSEG [22] 0.272

Results obtained for the Pavia Center image are presented in Tab.3.4. The number of regions

contained in PGT are in this case equal to 23. As in the first two tables, OMDS achieves also here

the best result. However, the second best result is achieved by OSAM in this case. It is observed

how the partition of Fig.3.32 (e) is close to the PGT of Fig.3.27(b). For this example, one of the main

problems of OBAT and ODIF is the division of the central building of the image. Concerning the

background region, the over-segmentation error is also important in OMDS , OBAT , ODIF and

RHSEG. Thus, these merging orders increase their dsym value.

Table 3.4: Symmetric distance for Pavia Center

Merging Criterion dsym
OSID 0.336
OSAM 0.225
OBAT 0.286
ODIF 0.274
OMDS 0.227

RHSEG [22] 0.48

Finally, the dsym evaluation by Hydice image is reported in Tab.3.5. The obtained results

evaluate partitions containing 56 regions with the PGT partition shown in Fig.3.28(b). The table

corroborates the visual results illustrated on Fig.3.33.

OMDS is also here the best merging criterion which can also be seen in Fig.3.33(m)(n)(o). For this

criterion, the different zones of the images as building, roads and background are correctly sep-

arated. As in the previous data sets, merging orders which rely on the non-parametric statistical

region model obviously outperforms the OSID and OSAM criteria. Comparing ODIF and OBAT ,
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the first one achieves a better partition in this case, however, the difference is not very high.

Table 3.5: Symmetric distance for Hydice

Merging Criterion dsym
OSID 0.54
OSAM 0.474
OBAT 0.35
ODIF 0.33
OMDS 0.236

RHSEG [22] 0.65

The evaluation based on dsym leads to the same conclusions as the one provided by the visual

evaluation. Taking into account all experiments, OMDS is the best merging order. The results

obtained by the non parametrical statistical region model (OMDS , ODIF and OBAT ) outperform

the results achieved by the simple first order region model (OSAM and OSID). Finally, comparing

with the state of the art, it can be concluded that the partitions contained in the different BPTs are

most similar to the different PGT than the classical RHSEG.

In order to confirm this first quantitative evaluation, another evaluation is performed on the same

five hyperspectral images by using dasym.

Hierarchical BPT evaluation by using Asymmetric Distance

A quantitative evaluation of the different BPTs constructed in Sec.3.4.3 is carried out here. The

asymmetric distance described in Sec.3.4.1 is used as a measure to perform an evaluation similar

to the dsym assessment. The main difference is that the number of regions NR is not adjusted here

to an unique value.

Thereore, the aim is to evaluate the BPT construction by observing the different partitions con-

structed in a specific range [NRmin, NRmax]. Note that in the case of the dasym distance, it is not

mandatory that P and PGT have the same number of regions. Another difference with respect

to dsym is that dasym can determine two different quality measures concerning over- and under-

segmentation issues. Hence, the different merging orders have been evaluated in three different

ways:

1. dasym(PGT ,PNR
) measures the under-segmentation of a partition P having NR regions ac-

cording to PGT

2. dasym(PNR
,PGT ) measures the over-segmentation of a partition P having NR regions ac-

cording to PGT

3. dTasym =
dasym(PNR

,PGT )+dasym(PGT ,PNR
)

2 measures the trade-off between the under- and the

over-segmentation

Fig.3.34 shows the experimental results obtained on the Pavia-uni-Z1 data set. The num-

ber of regions is ranging from NRmin = 6 to NRmax = 50 approximately. These figures show
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the evolution of the dasym distances as a function of the number of regions. Fig.3.34(a) shows

the over-segmenation, whereas Fig.3.34(b) illustrates the under-segmentation and Fig.3.34(c) the

mean dTasym error. In each figure, various merging orders are identified by different colors.

In Fig.3.34, the various curves present a slope break around NR ≈ 25. This is because the parti-

tions at these levels are formed by too few regions in order to be similar to PGT . Note that PGT has

been defined with 33 regions. Thus, the smallest dTasym for all the merging orders must be around

this value. For instance, the ODIF curve shows a minimum range of dTasym around NR > 23 and

NR < 38

Comparing the curves, it is observed how the minimum dTasym evolution is given by OMDS .

Fig.3.34(c) can be easily related with Tab.3.1. Both evaluations, lead to classify the merging or-

ders according to their performances as OMDS , ODIF , OBAT , OSID and OSAM . This ordering can

be interpreted in Fig.3.34(c) as the elevation of the curves concerning dTasym value. Comparing

the merging orders with RHSEG, it is seen how its yellow dTasym curve obtains the highest values

when NR is close to the number of regions of the ground truth.

This dTasym curves can be also related to the visual evaluation. For instance, the high dTasym value

obtained by OBAT is given because the main building of Fig.3.25(a) has disappeared in Fig.3.29(c).
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Figure 3.34: Asymmetric distances for Pavia-uni-Z1

The asymmetric distance results achieved on the Pavia-Uni-Z2 data set can be seen in Fig.3.35.

In this case, the merging orders leading to the best results are OMDS , ODIF and OSID. The results

corroborate the dsym evaluation of Tab.3.2. It is seen how the high values of dTasym comes from the

over-segmentation error. This can be observed in the visual evaluation since the main structures

of the image have been formed in the high hierarchy levels (where is NR ≈ 40) for these three best

criteria. Only some small irrelevant regions are found in the partitions ranging from NRmin = 6

to NRmax = 50. This explains the low dTasym values obtained by OMDS , ODIF and OSID in

Fig.3.35(a). Note that for these curves, a minimum dTasymvalue is found when NR is similar to the

number of regions forming the ground truth.
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Figure 3.35: Asymmetric distances for Pavia-uni-Z2

The results on Pavia-uni-Z3 data set are shown in Fig.3.36. In this case, OMDS and ODIF

outperform the other criteria. However, it must be remarked that RHSEG obtains similar results

to these criteria when NR is close to the optimal number of regions NR ≈ 43. This example shows

how the merging orders OSID and OSAM obtain the worst results. This comes from the under-

segmentation error obtained in Fig.3.31(a)(b)(c) and (d)(e)(f). Note that OBAT and ODIF have

similar behavior, however, ODIF provides better results.
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Figure 3.36: Asymmetric distances for Pavia-uni-Z3

Going on with the evaluation, Fig.3.37 shows the results of Pavia Center. In this case, OMDS

is also the best criterion. However, OSAM and OSID obtain similar good dTasym values. It is

explained by the fact that the background of the image is found in a single region in an early

stage for these merging criteria. Thus, the other merging criteria suffer from over-segmentation.

The curves in this example show how the dasym leads to a minimum range of values when NR is

similar to NRo
.

Finally, HYDICE image is evaluated by using dasym in Fig.3.38. The best results are obtained by

the merging criteria using the non parametrical statistical region model OMDS , ODIF and OBAT .
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Comparing these three criteria in Fig.3.38(c), it is observed that OMDS outperforms the other

criteria. Fig.3.38(a) corroborates the over-segmentation problem appearing in Fig.3.33(p)(q)(r).
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Figure 3.37: Asymmetric distances for Pavia Center
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Figure 3.38: Asymmetric distances for Hydice

At this point, the three different evaluations have lead to the same conclusions about the merg-

ing orders which are completely detailed in Sec.3.5. Now, the idea is to evaluate the estimation of

Ds parameter used in the OMDS criterion.
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3.4.4 Experiment 2: Evaluation of Ds selection

A study to evaluate the selection of Ds is detailed here. The goal is to analyze the effect of Ds con-

cerning the obtained results for Pavia-uni-Z1 and Pavia-uni-Z2 examples. The presented analysis

is based on the same quantitative evaluation performed by using dasym. For both images, setting

Nbins = 120, the idea is to construct different BPTs by using OMDS criterion with different Ds.

For both images, their intrinsic dimension Ds has been estimated to 3 as described in Sec.3.4.3.

Thus, the interest is to study how increasing or decreasing Ds value impacts the values of dasym

shown in Fig.3.34 and Fig.3.35. Hence, dasym curve is plotted for each data set by using different

Ds values.

In the case of Pavia-uni-Z1, the results of this test are shown in Fig.3.39. It is observed how the

estimated Ds = 3 value obtains the best results. The figure reveals that if only one component

after the dimensionality reduction (Ds = 1) is used, the results are the worst ones. In fact, too

much information is included in hyperspectral data to be reduced to only one component, even

if this dimensionality reduction is done locally between pairs of regions. The other important

point to see is how increasing Ds leads to worse results.This is expected given that increasing Ds,

the similarity measure between regions is each time less discriminative. Thus, a trade-off in the

choice of Ds has to be found.
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Figure 3.39: Asymmetric distances for Pavia-Uni-Z1 with different Ds

Another example of Ds evaluation is observed in Fig.3.40 concerning Pavia-uni-Z2. In this

case, Ds = 3 and Ds = 6 provide the best results. In this example, the correlation effect explained

in Sec 3.3.3 can be seen. For instance, larger Ds value ( Ds = 4 or Ds = 5) correspond to higher

dTasym values. However, in the case of Ds = 6, dTasym decreases again. This behavior results from

the correlation between the sixth and the third component. As a matter of fact, this is why the Ds

value has been estimated to be equal to 3 in Sec.3.4.3.
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Figure 3.40: Asymmetric distances for Pavia-Uni-Z2 with different Ds

This evaluation of the Ds estimation has shown the effectiveness of the proposed solution.

Besides, it has been seen how the correlation effect between the principal coordinates representing

each region is taken into account in our case.

3.5 Conclusions

In this chapter, the construction of Binary Partition Tree as a new region-based representation for

hyperspectral imagery has been described. The creation of this hierarchical image description has

been based on the definition of a hyperspectral region-merging algorithm.

From a conceptual point of view, an algorithm based on region adjacency graph has been detailed

in order to construct BPT. Thus, the notions of region model and merging criterion have been in-

troduced to define the merging sequence. The definition of these two notions in hyperspectral

imagery context has been addressed to study different region merging orders. The proposed

merging orders have been mainly categorized in two families according to their underlying re-

gion models. In this framework, first order parametric model and non parametric statistical one

have been explained. The first region model has been previously used to model spectrum data

sets. The extension of the non parametrical region model to the case of hyperspectral imagery is

one of the major contribution of this PhD. Furthermore, using the notion of image self-similarity

as in [24], a strategy to estimate the pdf of initial pixels corresponding to the BPT leaves has been

described. To perform this estimation, a noise assessment in the different hyperspectral channels

has also been detailed.

Various merging criteria corresponding to the two region models have been investigated in this

chapter. While some criteria such as the Spectral Angle Mapper, the Spectral Information Diver-

gence, the Battacharrya and the Diffusion distances have already been considered in the literature,

a new measure has been proposed to determine the similarity between two hyperspectral regions.

By extracting the first principal components of the regions, an original dependence test based on
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MANOVA theory has been proposed to measure the correlation between two spectrum data sets.

To our knowledge, the MDS dimensionality reduction technique proposed here introduces a nov-

elty regarding the state of the art and is another contribution of our work. In the literature, au-

thors have focused on the reduction of the dimensionality of hyperspectral data by studying the

global image statistics. Contrarily, this Phd has proposed to extract local principal components

by studying the local statistics of the regions. This local dimensionality reduction has lead to a

more accurate representation of the regions.

Furthermore, a new method to extract the intrinsic dimensionality of the hyperspectral regions

has also been described. The idea of correlation between the extracted principal components have

been presented here.

A sensitivity study has been carried out to determine the performances of the proposed merging

orders. The construction of different BPTs using the different region models and merging criteria

has been investigated. Five different hyperspectral images have been selected for this study. Be-

sides comparing the different merging orders, the partitions obtained by BPT are also compared

with the state-of-the-art.

The analysis of the partitions contained in the BPT hierarchical levels has been addressed by

three different evaluations. Firstly, a visual assessment of the partitions formed during the merg-

ing construction has been analyzed. Secondly, a quantitative evaluation by using different quality

measures (dsym and dasym) has been performed. These measures have led to determine over-and

under-segmentations errors committed during the BPT construction.

The results obtained by the three different evaluations lead to the same conclusions. The non-

parametric statistical model clearly outperforms the simple first-order model. Given the com-

plexity of the scene, the first-order model has shown its limitation in order to represent spectrum

data sets. Contrarily, non parametrical statistical region model has shown its effectiveness in

order to model the spectral variability. In particular, the obtained results have shown a high ac-

curacy and robustness with respect to borders.

Comparing the stochastic and deterministic merging criteria used with first-order region model,

SID has obtained better result than SAM.

An evaluation between the different merging criteria proposed to be used with the non para-

metric statistical region model has also been done. For the three presented similarity measures,

Battacharyya distance obtains the worst results which is explained by its lack of robustness in

case of histogram misalignment. Thus, an improvement on the results has been introduced by

the cross-bin Diffusion distance. Note that this distance gives more precise information taking

into account cross-bin contributions. However, the problem of Battacharrya and Diffusion dis-

tance is that the spectral information is not jointly studied. Thus, the correlation of the channels

and the importance of the relevant information is not taken into account by these merging criteria.

Contrarily, the similarity measure proposed via multidimensionality scaling metric has dealt with

all these problems. For this reason, the merging order interpreted as the canonical correlation has

achieved the best results. In all the cases, the merging criterion based on MDS and the MANOVA

dependence test has constructed the best BPT image representation.



96 Chapter 3. BPT construction

Besides the experiments aiming at the evaluation of the partitions obtained during the BPT con-

struction, another experiment has shown the importance of the Ds choice. The number of dimen-

sions used to measure the similarity between hyperspectral regions is an important parameter

and an algorithm estimating its value has been proposed.
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The aim of this chapter is to demonstrate how the Binary Partition Tree representation is suited

for a large number of applications. Taking benefit of the fixed hierarchical region-based tree struc-

ture, efficient analysis techniques to process HSI images are studied as pruning strategies.

The different approaches to analyze and prune the tree are successively focused on classification,

segmentation and object detection. The particularities associated to each pruning strategy are de-

scribed in the different sections of this chapter. Experimental results from the different application

goals demonstrate the potential of the hierarchical representation for various purposes.

4.1 Introduction

The Binary Partition Tree representation contains a set of partitions represented by a tree structure.

Theoretically, the BPT nodes have been constructed in order to represent hierarchically the set

of the best coherent regions. In image analysis, coherent regions play an important role in the

description of the image. For instance, looking at an image describing a human face, an observer

will probably remark : "There are two eyes, a nose, a mouth...." . Naturally, this description is mainly

due to the semantic content of objects which correspond to coherent regions.

Besides, it is important to note that, in an image, a natural hierarchy seems to exist, that is a

structure in its description. For example, the teeth are obviously part of the mouth, therefore in the

description they are “inside” the mouth object, which is itself inside the face. BPT hyperspectral

image representation meets both issues: 1) the decomposition of the image in terms of regions

representing objects and 2) the inclusion relations of the regions in the scene.

The hierarchical description is important since it allows to study regions at different scales. The

tree scalability can answer thus to the scale-space image analysis dilemma, where a given image

has to be studied at different scales depending on the processing purpose. This highlights the

major difference between BPT and classical hierarchical segmentation techniques. BPT is not an

application-dependent tree structure, but it is an image representation which can be processed by

several application-dependent strategies.

The processing of BPT representation can be understood as the extraction of the non-overlapping

regions coded in BPT nodes according to a specific criterion. This analysis of the tree can be

performed by a pruning strategy aiming at removing redundant subtrees from the original tree.

A subtree is considered redundant if all its nodes can be considered homogeneous with respect

to some criterion of interest (homogeneity criterion, e.g., intensity or texture).

Fig.4.1 shows an example of BPT representation for the case of a simple RGB image and assuming

that the initial partition is made of regions with a constant color value. This BPT representation

can be processed to achieve various application goals, leading to different pruning strategies.
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Figure 4.1: Example of Binary Partition Tree representation for RGB image

For instance, in segmentation or classification context, the main pruning goal is the spatial

partition of the image by extracting a set of closed, connected (segmentation) or non necessarily

connected (classification), and non-overlapping regions with respect to a criterion.

In the case of a supervised classification, the objective is to label each pixel of the image by a

previously known class label. Thus, a pruning criterion could be related to the reliability of the

induced classification. Concerning the goal of unsupervised segmentation, the criterion to prune

the tree nodes could be different. For example, it could be the variance of the pixels forming the

region. In both cases, the strategy of each of these criteria is the definition of a pruning function

F which evaluates whether a node should be removed or not.

Fig.4.2 features a segmentation or classification pruning result of the BPT presented in Fig.4.1. In

this figure, the green BPT nodes correspond to the nodes that are removed by the pruning func-

tion F . Note that given a pruned BPT, the selection of its NR leaves can be used to obtain an

image partition P composed of NR regions.

On Fig. 4.2, the leaves of the pruned tree correspond to nodes N6 , N8 and N5, respectively. Thus,

each BPT node Ni representing an image region Ri, the partition result P = {R5} ∪ {R6} ∪ {R8}

is formed by the 3 regions encoded in the set S = {N5,N6,N8}.

N6
N5

F

N7

N8

N9

R5

Partition P

R6

R8

Figure 4.2: BPT pruning example concerning segmentation or classification purposes
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Another application of BPT is object detection. An object is an abstract entity generally rep-

resented by a region and characterized by a set of features such as color, texture, shape, size, etc.

Consequently, it is expected that objects of interest appear as individual nodes inside the BPT.

This is an important advantage compared to the object detection techniques that uses pixel-based

representation.

In the context of object detection with BPT, the pruning strategy consists in detecting the BPT

nodes which are the most likely to be the object. Accordingly, the criterion to process the tree

should be based on the specific set of features characterizing the object of interest. An example

of object detection purpose is illustrated on Fig.4.1, assuming that a BPT pruning objective can be

the extraction of the object formed by the largest green image region. The result of such a pruning

is illustrated on Fig.4.3 where the green node corresponds to the BPT node which is detected as

the sought object.

Pruned BPT Detected Object

Figure 4.3: BPT pruning example for object detection

Besides segmentation, classification or object detection, other pruning strategies can be speci-

fied to process BPT. Filtering and compression are such examples. For these applications, different

pruning strategies can be defined in order to minimize the error committed by the filtered or com-

pressed image according to the original one. An example showing this purpose is illustrated on

Fig.4.4 where a BPT is used to filter an image. In this example, the filtered image has been ob-

tained by assigning the mean value of the original image to each region contained at the pruned

BPT leaves. In this case, the function F aiming at image filtering is defined in order to minimize

the inaccuracy of the filtered image with respect to the original one, by using the minimum num-

ber of regions.

The shown pruning examples reveal how different criteria studied on BPT nodes lead to different

BPT analysis performed using a corresponding function F . The objective of such a function is to

take a set of decisions (remove or preserve) on the BPT nodes checking whether they satisfy some

properties or not. Thus, in order to take these decisions, some measures should be computed first

on BPT nodes before evaluating them. These measures are directly associated to the application

goal describing the node characteristics and properties.
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Original RGB image

Filtered image result

F

Pruned BPT

Partition result

Figure 4.4: BPT pruning example given a filtering task

The BPT pruning strategy can be divided in two steps as illustrated on Fig.4.5 . Given a BPT

image representation and a specific application goal, the first stage consists in populating a BPT.

The purpose is to assign to each node of the BPT some measures M computed on the correspond-

ing region. The measure M is completely defined by the application goal. This step can be done

efficiently in terms of computation if the measure can be computed in a recursive manner. This

means that the measure associated to a node can be computed from the criterion measured on

the children nodes. An example of a recursive measure is the area of the region, i.e the number

of pixels contained in a node. With non-recursive measures M a higher computational cost is

implied.

Partition
Result

Pruning strategy

Pruning decisionPopulating the BPT

M(N8)

M(N2)M(N1)

M(N9)

M(N7)

M(N6) M(N5)

M(N4)

M(N3)

F

Application Goal

BPT representation

Figure 4.5: Pruning Strategy Scheme
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According to this first step, the second pruning stage is the definition of a function F which

analyzes the node measures in order to take the decision to preserve or to remove it. In the case

of an increasing function F , the pruning decision can be easily taken. An increasing function F

assessed on a region represented by a BPT node is increasing if: ∀R1 ⊆ R2 =⇒ F(R1) ≤ F(R2).

Consequently, if a node has to be removed, their corresponding descendant have to be removed

as well. Contrarily, in the case of non-increasing F function, the pruning decision may be more

complex. In this case, two simple strategies are known as the minimum and the maximum deci-

sion. In the minimum decision, a node is preserved if and only if all its ancestors also have to be

preserved. Contrarily, the maximum decision corresponds to the dual behavior. Thus, a node is

removed if and only if all its descendant nodes also have to be removed. The choice is also related

to the tree analysis which can follow a bottom-up or a top-down strategy.

Following the strategy described in Fig.4.5, different pruning strategies are presented in the next

Sections. Firstly, a supervised pruning strategy aiming at hyperspectral image classification is

proposed. According to the classification goal, a specific populating of the BPT node and the

corresponding pruning decision is detailed. For this application, some experimental results are

shown in order to illustrate the advantage of using a region-based representation for classifica-

tion.

Besides classification goal, a second purpose involving the unsupervised segmentation of hyper-

spectral images is proposed in Sec.4.3 and Sec.4.4. In this context, two different pruning strategies

are discussed. The first approach consists in minimizing an energy function on the BPT structure

to reach a global minimum of the cost associated to a partition. The second approach involves a

local pruning decision on the BPT branches.These pruning decisions are computed by interpret-

ing the BPT branch cut as a spectral graph partitioning problem.

Finally, an object detection pruning strategy is presented in Sec.4.5. In this last section, two exam-

ples of object recognition are proposed in an urban scene. Specifically, the roads and the building

of the HYDICE urban scene are detected by the proposed technique.
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4.2 Supervised Hyperspectral Classification

In this section, an example of tree processing aiming at classifying hyperspectral images is dis-

cussed. Hyperspectral image classification is the process of labeling a pixel or group of pixels on

the basis of their spectral and spatial similarities. In the past, the classification of hyperspectral

data has been tackled using various approaches (See Chapter 2). In the case of supervised tech-

niques, representative samples, called training samples, are used to specify the spectral attributes

of the different classes composing the scene. These class spectral features are then used by the

algorithm to perform the pixel labeling. To this end, the classification algorithm compares the

pixels of the image with the training samples features. Accordingly, a pixel is then labeled given

its spectral characteristics by the most likely class of the training samples. The complete labeled

image is known as a classification map.

According to the supervised classification objective, the goal of the pruning strategy described

here aims at constructing a classification map for hyperspectral data. Note that using the pruned

tree, a partition describing the pixel class assignment can be easily constructed by selecting the

leaf nodes of the resulting pruned tree (See Fig.4.2). The pruning strategy discussed in this sec-

tion corresponds to a bottom-up analysis of the BPT. The particular criterion used here directly

depends on our classification goal.

As it has been explained at the beginning of this chapter, the analysis of the tree consists of two

important steps. The first one computes and assigns specific region descriptors to each BPT node

N . The second step is the pruning decision whose task is to evaluate a cost associated to the

region descriptors and eventually to decide where to prune the tree. In this classification context,

both steps are explained in the following sections.

4.2.1 Populating the BPT

Given the classification aim, the main information, or node descriptor, to define our pruning in-

volves the class probability distribution PN . This probability distribution is a vector containing

the probabilities that the node belongs to each class Ci. The reliable estimation of these probabil-

ities is a very challenging task [3]. This is due to the small number of training samples and the

high number of features.

To address this issue, class probabilities are estimated in a supervised way by using a multi-class

classifier. From our knowledge, the most popular discriminative classifier in the hyperspectral

image community is the support vector machines classifier (SVM), which is characterized by its

ability to effectively deal with large input spaces (and to produce sparse solutions) using limited

training samples. This classifier has proved to be well suited for the classification of hyperspectral

data [1] [4][5] [6].

As SVMs is a supervised algorithm [68], the kernel parameters should be computed first using

a training step. Here, the SVM training is done by using some leaf nodes which correspond to

single spectra. The selection of these nodes directly depends on the available ground truth. The

kernel function constructed during the training process enables to map an input spectrum to a



104 Chapter 4. BPT Pruning Strategies

high-dimensional feature space, in which a SVM is used to give the classification result.

Once the kernel function is constructed, it is used to classify all the BPT nodes by assigning to

each of them their PN . Fig.4.6 shows the process of populating BPT. On the left, the orange leaves

are used to train the SVM classifier. Therefore, the SVM classifier uses the constructed kernel

function to populate all the BPT nodes with their class probability distribution.

Support Vector Machine

Training Samples Populated BPT

N8

N2
N1

N9

N7

N6
N5

N4N3

PN8

PN2
PN1

PN9

PN7

PN6
PN5

PN4PN3

Figure 4.6: How BPT is populated using SVM Classifier

In order to classify the data, the kernel function usually uses a spectrum as input parameter.

However, note that in our case, each BPT node represents a region formed by a set of spectra,

not by a single spectrum. For this reason, instead of using the spectrum of the pixel itself, each

BPT node N should be modeled by its mean spectrum before applying the kernel function on the

node.

At this point, the goal is to use PN in order to evaluate the misclassification rate RN of the nodes.

Misclassification rate can be understood as the error of assigning a wrong class to a node. The use

of misclassification rates has been previously studied in classification based on decision trees[50].

In these decision trees, the misclassification RN is totally linked to the class probability distribu-

tion PN . Therefore, a reliable classification result of N implies a likely minimum misclassification

rate. Thus, the misclassification rate for a node N , having an area composed of AN pixels, can be

expressed as:

R(N ) = AN (1−max
i

PN (Ci)) (4.1)

The misclassification rate of Eq. 4.1 can have two important problems in our context. The first

problem comes when a node is formed by merging a very large region with a small one. Assume

the node N is formed by two sibling nodes NL and NR having an area relation such that ANL
>>

ANR
. If NL belongs to class Ci and NR to class Cj , the union of both regions will belong to Ci since

the region contained in NL is much larger than NR. Thus, the reliability of the SVM classifier for

the node N will not significantly change even if both regions belong to two different classes.

The second important problem of Eq. 4.1 is the presence of mixed pixels in the image forming

mixed regions. The mixed pixels in hyperspectral context are spectra which are formed with

some materials involving different ground truth classes. Consequently, pixels belonging to these

regions do not have a high probability of belonging to any given class. As a result, an important
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misclassification rate can appear for this type of regions. In order to solve these problems, the

misclassification rate of Eq. 4.1 for non-leave nodes has been modified as follows:

R(N ) = AN (1−BC(PNR
,PNL

)) (4.2)

where BC(PNR
,PNL

) is the Battacharryya coefficient between the probability class distribu-

tions of the left and the right children of N . With Nc different ground truth classes, the Battachar-

rya coefficient in this classification context is described by

BC(PNR
,PNL

) =

Nc∑

i=1

PNR
(Ci)PNL

(Ci) (4.3)

Of course, this expression cannot be used for leaf nodes as they have no children. Hence, two

types of misclassification rates are used : 1) Eq. 4.1 is the misclassification rate used for BPT leaves

and 2) Eq.4.3 is the one used for non-leaf nodes. The modification of Eq. 4.3 solves the weak area

relation problem allowing to detect if two reliable but different regions are going to be merged

in an unique node. However, as this last equation is sensitive to small regions, a node formed

by a very small wrongly classified region (for instance 1 pixel) can give a high R(N ). Thus, this

weakness should be solved setting that if a node has a very small area (for instance smaller than

3), its parent will have a very small R(N ). In other words, very small regions cannot cut BPT

branches since they are not considered as reliable.

4.2.2 Pruning Decision

The pruning analysis discussed in this section corresponds to a bottom-up analysis of the BPT

evaluating the miss-classification rates computed in Sec.4.2.1. This evaluation is addressed in

order to decide if a sub-tree Ts hanging from a node N can be pruned. The decision is taken by

a maximum decision rule which considers that a node is removed if and only if all its descendant

nodes can be removed.

This pruning decision compares the misclassification rate at node N with the misclassification rate

corresponding to the set of leaf nodes of the sub-tree Ts. Fig. 4.7 illustrates the concepts presented

in the evaluation of a non-leaf node N . The sub-tree Ts rooted at the node N is highlighted in

red. The idea is to verify whether the three leaves l1, l2 and l3 can be replaced by N . To this goal,

the misclassification rate associated to the node N is compared with the error associated to the 3

leaves in Ts.

Mathematically, the function defining the pruning criterion Fc(N ) is given by

Fc(N ) =

R(N )−
∑

li∈Ts

R(li)

AN
(4.4)

It should be noticed that this function is not increasing and this is the reason why a maximum

decision rule is used.

Given the definition of Fc(N ), the aim is to detect when Fc(N ) leads to low values implying that



106 Chapter 4. BPT Pruning Strategies

Sub-Tree rooted by NBPT representation

Ts

N

l1

l2l3

Figure 4.7: Sub-tree definition

a sub-tree can be pruned. To this end, the function Fc(N ) along the BPT branches is evaluated

by a bottom-up analysis. Starting from the BPT leaves, the purpose is to identify when Fc(N ) is

higher than an allowed threshold αC . An example is shown in Fig.4.8.

Arising from the green BPT leaf, the Fc(N ) values of its ancestor nodes situated in the blue branch

are evaluated. The four obtained Fc(N ) values are shown on the right. In this example, the αC

value is the maximum misclassification rate that can be committed at a BPT node. Considering

this, Fig.4.8 shows how the Fc(N ) value of the third node is higher than the allowed threshold.

Consequently, according to the maximum decision rule, this node cannot be pruned and neither

can its ancestors. As a result, the green nodes of Fig.4.8 will be pruned whereas the remaining

blue nodes will form the pruned BPT.

F(N )

αC

Nodes to remove Nodes to preserve

Figure 4.8: Example of maximum decision rule pruning decision

Note that the αC value determines the size of the pruned BPT. When α is small, the penalty

term is small, so the size of the pruned tree will be large. Contrarily, as αC increases, the pruned

BPT has fewer and fewer nodes. The pruning strategy described here has lead to the BPT sim-

plification by removing sub-tree composed by the same class. Therefore, using the pruned BPT,

a classification map of the hyperspectral image can be constructed. The idea is to use the parti-

tion formed by the leaves of the pruned BPT. Therefore, the classification map is constructed by

assigning to each region of the resulting partition, the class Cj which has the highest probability

PN (Cj) determined by the SVM classifier.
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4.2.3 Experimental results

Some experimental results of the classification pruning technique described above are presented

in this section. The pruning evaluation is carried out on two well-known remote sensing hyper-

spectral images. The purpose is to perform a supervised classification of these images and to

evaluate the obtained results by using their available ground truth. The assessment of the results

is addressed quantitatively by evaluating the specific class accuracy and the number of nodes re-

moved by the pruning strategy. Furthermore, a visual evaluation is carried out by analyzing the

classification maps obtained by different data sets.

Indian Pines

In the first pruning experiment, Indian Pines AVIRIS hyperspectral data containing 200 spectral

bands having a spatial dimension of 145 X 145 pixels is used. Fig. 4.9(a) shows a RGB composition

of this data set. In this image, it can be seen how a simple RGB composition of the hyperspectral

data does not allow to discriminate between the different materials. The whole image is formed

by 16 different classes having an available ground truth as illustrated on Fig. 4.9(b). For this im-

age, three different BPT are constructed using the following merging criteria OSID, ODIF and

OMDS ,respectively.

In the case of non parametric statistical region model, the histogram quantification is set to Nbins =

150. Concerning the merging criterion OMDS , the estimated Ds value defining the number of

principal components is equal to 3.

(a) (b)

Figure 4.9: (a) RGB Indian Pines Composition. (b) Available Ground Truth image

Once the three different BPT have been created, the populating BPT strategy described in

Sec.4.2.1 is performed. The SVM classifier is trained by selecting randomly 20% of samples for

each class from the reference data described in Fig. 4.9(b). Using the constructed SVM model and

the BPT representation, the PN probability distributions are assigned to all BPT nodes in order to

compute their misclassification rates.

In this example, different αC threshold values are used to compare the different classification
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maps obtained by the three BPTs. Two different evaluations are carried out for different αC values

ranging from 0 to approximately 0.4. It has been considered that αC higher than 0.4 means a high

misclassification error. The first evaluation corresponds to the number of BPT leaves obtained

after the pruning. This measure gives information about the BPT construction. For a given class

accuracy, if a pruning strategy removes more BPT nodes from a tree, this means that the BPT has

been better constructed. The second evaluation corresponds to the overall class accuracy obtained

by the classification maps achieved by the BPT pruning. Both experiments are shown in Fig.4.10.
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Figure 4.10: Indian Pines Pruning Evaluation

Fig.4.10(b) shows how the highest accuracies are obtained with αC ≈ 0.30 where the results

obtained by OMDS outperforms the other results for all the αC values. However, it should be no-

ticed that in some cases, OSID can lead to similar classification accuracies than OMDS . Contrarily,

the merging criterion ODIF achieves the worst results. These results can be explained by the fact

that the criterion processes separately the different bands and this turns out to be a serious draw-

back for classification.

Comparing the curves of OSID and OMDS in Eq.4.4, it could be said that both criteria have sim-

ilar performances in a given αC interval. However, comparing the results on the curves of the

Fig.4.10(a), it can be remarked how OMDS removes more BPT nodes in its pruning. Note that the

number of regions corresponding to the pruned BPT leaves, is much lower for OMDS than for the

other two merging criteria.

Following this evaluation, the classification maps corresponding to the highest overall accuracy

of Eq.4.4(b) are shown on Fig. 4.11. The obtained results are compared with the classical SVM

pixel-wise classification of Fig. 4.11(a). The same training samples are used for all the classifica-

tion results.
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(a) Pixel-wise Classification (b) Pruned BPT, OSID , αC = 0.34

(c) Pruned BPT, ODIF , αC = 0.27 (d) Pruned BPT, OMDS , αC = 0.29

Figure 4.11: Obtained Classification map using 20% of training samples

Looking at the BPT pruning results, it can be observed that the classification maps are formed

by quite homogeneous regions. In particular, the BPT nodes selection according to the proposed

pruning criterion provides a less noisy classification. This can be noticed in the case of Fig. 4.11(d)

corresponding to the OMDS merging criterion. The obtained results also corroborate the BPT per-

formances since extracted nodes reflect semantic real-world objects of the image. It should be

remarked that Indian Pines has a high spectral variability due to its low spatial resolution.

According to Fig. 4.11, Table 4.1 illustrates the corresponding class-specific and the global clas-

sification accuracies. The best class accuracies are highlighted in red. Observing these results,

the proposed BPT pruning classification improves the classification accuracies for almost all the

classes compared to pixel-wise classification. Studying the different merging criteria, OMDS leads

to the best results.
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Table 4.1: Class Specific Accuracy using 20% of training samples

Class Simple SVM Pruned BPT OSID Pruned BPT ODIF Pruned BPT OMDS

1 75.61 82.93 82.93 80.49
2 83.46 92.75 92.19 92.75
3 84.35 95.21 96.81 96.01
4 76.14 96.59 92.05 91.48
5 94.37 95.44 95.17 95.71
6 97.15 97.65 98.40 97.50
7 92.31 88.89 88.89 88.89
8 98.09 99.73 99.18 99.73
9 90 100 85.71 100
10 83.06 88.02 89.94 88.57
11 91.52 97.24 96.06 99.73
12 86.55 92.62 91.76 94.36
13 96.22 97.48 98.11 98.76
14 95.57 97.53 97.89 97.94
15 67.72 84.21 80.35 97.89
16 91.67 95.83 93.06 97.22

Overall 87.74 93.89 92.40 94.69

In order to study the influence of the number of training samples, a second experiment has

been carried out by selecting now randomly 35% of samples for each class. In this second experi-

ment, the BPT constructed by OMDS is also evaluated against the pixel-wise classification. In this

case, Fig.4.12 shows the classification maps obtained for this second training data set for αC = 0.2.

The results according to the last classification map can be seen in Tab.4.2. Looking the obtained

results for this second experiment, it is observed how increasing the number of training samples

improves the accuracy of both schemes. In the case of the pixel-wise classification, the results

have improved by around 2 percentage points as compared to Tab.4.1. Concerning the results

obtained by BPT pruning, the accuracy has increased by more or less the same percentage.

(a) (b)(a) Piwe-wise classification (b) Pruned BPT with αC = 0.20

Figure 4.12: Obtained Classification map using 35% of training samples
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Table 4.2: Class Specific Accuracy using 35% of training samples

Class Simple SVM Pruned BPT

1 78.05 90.24
2 87.08 97.03
3 87.06 97.28
4 78.98 98.86
5 94.37 95.17
6 96.97 98.93
7 92.31 92.41
8 98.64 99.46
9 92.41 90
10 85.95 90.22
11 93.41 98.65
12 89.37 93.06
13 98.11 98.74
14 97.01 99.49
15 72.28 97.89
16 90.28 98.61

Overall 89.52 96.00

ROSIS Pavia University

The second data set used to evaluate the classification pruning corresponds to Pavia University

from the ROSIS sensor. This image has been previously presented and used in Sec.3.4.2. A RGB

composition for the whole image is shown in Fig.4.13. For this data set, also three different BPTs

have been constructed as it has been done in the previous experiment. Accordingly, the different

merging criteria OSID , ODIF and OMDS are used for the BPT construction step. The parameters

concerning the BPT construction are the same as in Sec 3.4.3 (NBins = 100 and Ds = 3). Some

hierarchical levels concerning these BPT constructions can be seen in Appendix.7.4. As previously

done, the purpose of this experiment is to classify this hyperspectral data by using the pruning

strategy presented in Sec4.2
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(a)
Figure 4.13: Pavia University RGB Composition

The pruning strategy is performed on the three different BPTs to compare the obtained results

which can be used as a measure of BPT quality. Also, in order to show the BPT advantage, the

different classification results obtained by the different constructed BPTs are compared with a

pixel-wise classification. Firstly, a SVM classifier is trained with a training set which is further

detailed in [89]. Afterward, the different BPT nodes are classified according to Fig.4.6.

After this step, the bottom-up analysis of the tree evaluating the pruning decision function Fc is

carried out. In this experiment , the same range of αC values is studied in order to evaluate the

different results. These results are shown in Fig.4.14.
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Figure 4.14: Pavia University Pruning Evaluation
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First, Fig.4.14(a) shows the number of regions contained in the pruned tree versus parameter

αC . As can be seen, the number of regions decreases when αC increases. Comparing the different

merging criteria in Fig.4.14(b), it can be observed that OMDS and ODIF outperform the results ob-

tained by OSID. Comparing OMDS and ODIF , it can be noticed that the maximum of both curves

is similar. In contrast, Fig.4.14(b) shows that OMDS seems to achieve better results since, given a

specific accuracy, the pruned tree contains much less regions. The classification maps associated

to the maximum accuracy of each merging criteria are illustrated in Fig.4.15. The classification

map obtained with a pixel-wise classification is also shown.

For the different constructed BPTs, Fig.4.15 shows how the results obtained by BPT pruning out-

perform the classical pixel-wise classification. By reducing the classification noise, BPT pruning

improves the classification accuracy preserving most of the edges and shapes. Regarding the

class specific accuracy of the classification maps of Fig.4.15, results can be observed in Tab.4.3. It

can be observed how the hyperspectral classification by using a BPT pruning strategy improves

by around 4 percentage points the results obtained by the pixel-based image representation (first

column of Tab.4.3).

Table 4.3: Class Specific Accuracy by Pavia University

Class Simple SVM Pruned BPT OSID Pruned BPT ODIF Pruned BPT OMDS

1 85.93 88.43 89.97 88.84
2 76.66 73.45 75.55 71.69
3 70.46 85.28 87.52 91.95
4 97.55 94.84 93.96 95.14
5 99.55 98.81 98.96 98.81
6 91.99 96.06 97.43 97.08
7 92.48 98.65 99.02 99.02
8 92.31 96.82 96.80 98.13
9 99.26 97.25 97.57 95.99

Overall 88.58 92.18 92.98 92.96

The classification results shown in Tab.4.3 provide the differences in terms of class accuracies

but do not highlight the differences in terms of region shape and contour preservation.

Conclusions

The experimental results shown for both hyperspectral images have corroborated how a classi-

fication pruning strategy can outperform a pixel-wise classification. The two experiments have

shown that OMDS is the best merging order in this case. This merging criterion has achieved the

best accuracy results and reduced the number of regions.

In this pruning, the maximum rule decision has led to a valid pruning strategy providing good

results. Indeed, in the future, it may be useful to investigate alternative strategies to deal more

robustly with the non increasingness of the pruning criterion.
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(a) Pixel-wise Classification (b) Pruned BPT, OSID , αC = 0.26

(c) Pruned BPT,ODIF ,αC = 0.37 (d) Pruned BPT,OMDS ,αC = 0.34

Figure 4.15: Obtained Classification maps
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4.3 Segmentation by Energy Minimization Strategy

The segmentation of hyperspectral image using BPT representation is studied in this section. As

in the case of classical hierarchical segmentation techniques, the most easy way to obtain a seg-

mentation result from BPT representation consists in choosing a partition obtained during the

merging sequence construction. In this supervised classical approach, the result is related to the

desired number NR of regions. This approach can suffer some drawbacks since depending on the

value of NR, more different or interesting regions cannot always be found during the construc-

tion of the merging sequence . This issue can be solved by the BPT scalability since regions can

be obtained from the different scale levels.

Hence, the purpose of this section is to describe a supervised segmentation technique which ex-

tracts the NR most different regions from the BPT structure. The main interest is to show that the

intelligent selection of NR BPT nodes can improve the results obtained by the Np − NR merging

steps on the initial partition (where Np is the number of pixels in the image). To this end, a prun-

ing strategy based on an energy minimization strategy is described in the following.

Energy minimization is an essential issue in computer vision. In the last few years, this increas-

ing popularity has been the result of the successes of graph cut based minimization algorithms

in solving many different vision problems [62] [63] [64] [65]. In computer vision the term en-

ergy minimization is popularly used to describe approaches in which the solution to the problem

is determined by minimizing a function called the “energy”. The solution of the minimization

problem can be solved efficiently in the case of convex as well as concave functions.

The pruning is defined through the minimization of a convex function namely the pruning cost EP .

Fig.4.16 shows an example of EP minimization where the partition result P̃ = {R5}∪{R6}∪{R8}

is formed by the three regions encoded in the set S = {N5,N6,N8}.

N6
N5

EP̃

N7

N8

N9

R5

Partition P̃

R6

R8

Figure 4.16: Example of pruning through EP minimization

In mathematical optimization, the method of Lagrangian multipliers provides a strategy for

finding the minima of a function subject to constraints. Following this approach, given a partition

P , formed by the set of BPT nodes S , the pruning cost EP is then formulated as follows:
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EP =
∑

∀Ni∈S

D(Ni)

︸ ︷︷ ︸

DP

+λ
∑

∀Ni∈S

C(Ni)

︸ ︷︷ ︸

CP

subject to CP ≈ C0 (4.5)

where λ is the so-called Lagrange parameter and CP represents the constraints.

The first term DP is the sum of all the errors D(Ni) committed at the nodes contained in S . The

error D(N ) to what has been lost if all pixels contained in the sub-tree rooted at N are replaced

by N . This term will be explained in details in Sec.4.3.1. The restriction parameter CP has been

defined here as the number of nodes contained in S . According to the CP definition, the value of

the constraint on a node is given by C(Ni) = 1. The restriction parameter is completely necessary

since the algorithm is looking for an optimal partition P̃ having a number of regions close to C0

(optimally, the number of regions of PGT .). Note that without any restriction, the optimal parti-

tion would involve only regions made of one pixel.

Under this framework, the BPT pruning strategy aims at obtaining the partition P̃ which mini-

mizes EP̃ by setting a priori a number of regions equal to C0. The EP̃ notion can be easily under-

stood by looking at the pruning example shown in Fig.4.16. In this case, setting λ to 1, the error

EP̃ associated to the BPT pruning highlighted in green is then EP̃ = D(N6)+D(N8)+D(N5)+3.

Note that the pruning cost EP is defined as a convex function whose minimization converges to

an unique solution when the parameter CP is equal (or very close) to C0. Therefore, being EBPT

the set of all the possible partitions P contained in the BPT, the BPT pruning problem consists in

finding the partition P̃ in EBPT such that:

P̃ = argmin
P∈EBPT

∑

∀Ni∈S

D(Ni) + λ∗CP , with λ∗ such that CP ≈ C0 (4.6)

Assuming that the optimal λ∗ is previously known, the pruning strategy looking for the best

partition is done by a bottom-up analysis of the BPT. The analysis consists in evaluating the BPT

nodes from the leaves to the root.

To perform this analysis, each BPT node N is evaluated against its children nodes Nr and Nl. The

purpose is to check if an ancestor node can replace the area represented by its children nodes with

a minimal error. This evaluation is addressed by evaluating the D(N )+λ∗C(N ) value against the

sum of the values of D(Nr) + λ∗C(Nr) and D(Nl) + λ∗C(Nl). According to the result of this

comparison, the pruning strategy is defined by

if D(N ) + λ∗C(N ) ≤ D(Nr) + λ∗C(Nr) +D(Nl) + λ∗C(Nl) (4.7)

(4.8)

then, N is considered as a single region (4.9)

else, Nr and Nl should be considered as two independent regions (4.10)
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Note that the bottom-up analysis of the BPT described in Eq.4.10 is addressed when the opti-

mal parameter λ∗ is a priori known. However, the optimal parameter λ∗ is not known in practice.

Therefore, the previous bottom-up BPT analysis has to be embedded in a loop searching for λ∗.

The computation of the λ∗ parameter can be done with a dichotomic search. The algorithm starts

with a very high value λh = 1020 and a very low value λl = 0 and seeks the λ∗ value by following

the algorithm described in Algorithm.2.

Note that the minimization of the function of Eq.4.6 can have different solutions. These solutions

directly depend on the choice of CP and DP . In our case, it has been previously stated that CP

corresponds to the number. of regions DP is directly related to the pruning objective. A DP

function aiming at segmenting hyperspectral images is proposed in the following section.

Algorithm 2 Calculation of λ∗ given a C0 constraint

λlow = 0;

BottomUpAnalysis(Input :λlow , Output : Dλlow
, Cλlow

)

if Cλlow
> C0 then

Exit no solution
end if

λhigh = 120;

BottomUpAnalysis(Input :λhigh , Output : Dλhigh
, Cλhigh

)

if Cλhigh
< C0 then

Exit no solution
end if

λM =
λhigh + λlow

2
;

BottomUpAnalysis(Input :λM , Output : DλM
, CλM

)

while |CλM
− C0| > ǫ do

if CλM
− C0 > C0 then

λhigh = λM

else
λlow = λM

end if

λM =
λhigh + λlow

2
;

BottomUpAnalysis(Input :λM , Output : DλM
, CλM

)

end while
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4.3.1 The D(N ) definition

The D(N ) value corresponds to the error committed at node N when it is replaced by its two

children nodes Nr and Nl. Accordingly, a representative D(N ) must contain information about

how is the region contained in N but also information about its direct descendant nodes. In

general terms, the error D(N ) must be defined in order to respect the convexity of the function

EP . Consequently, the D(N ) computed on a BPT node N whose child nodes are Nr and Nl

should respect the following condition: D(N ) ≥ D(Nr) +D(Nl).

4.3.2 Homogeneity measure

The homogeneity measure assesses whether two sibling nodes can be substituted by their com-

mon ancestor and result in a spectrally homogeneous region. The notion of homogeneity in a

hyperspectral context is not straightforward. To measure the variance of a hyperspectral region,

some works have proposed to compute the variance of each band and then to sum the band con-

tributions [19] [69]. However, these measures are not optimal since the bands of the images are

individually processed.

Mathematically, the variability of a multivariate data set can be computed by the trace or the

determinant of the covariance matrix representing the relations between the components of the

set. In our case, the number of pixels in a region is usually not much larger than the spectral

dimension of the image. Thus, the estimation of the covariance matrix is especially challenging.

Consequently, in this work, in order to measure differences between the pixels values and the

mean value of the region, the spectral homogeneity of the hyperspectral image region is defined

by Eq.4.11. This equation corresponds to the sum of the errors committed by all the spectra of the

pixels contained in the node N . Given a spectrum, its committed error is defined as the Spectral

Information Divergence measure of Sec.3.3.1 according to the average spectrum of the region ĪR
λ

.

D(N ) =
∑

∀pj ∈N

SID( Iλ(pj), ĪR
λ
) (4.11)

The error defined in Eq.4.11 is not normalized by the number of pixels of the region contained

in N . This property assures the increase of the attribute required by D(N ). Unfortunately, the

problem of this expression is that the pruning result will be mainly formed by some large ho-

mogeneous regions. This occurs because the D(N) is simply adding the contribution of each

individual pixel. As a result, if one of the sibling is much larger than the other, the influence of

the small sibling will be negligible in the overall D(N) value.

To solve this drawback, new terms are added to Eq.4.11 as shown in Eq.4.12. Note that the pur-

pose of the new terms of Eq.4.12 are to detect whether an ancestor node is formed by two different

children regions. In these second term, ĪRr

λ
and Ī

Rl

λ
are the mean spectrum of the sibling nodes Nr

and Nl. From Eq.4.12, it can be observed how each new term corresponds to the error committed

by a node Ni when all its pixels are replaced by the mean spectrum of its sibling node.
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D(N ) =
∑

∀pj ∈N

SID( Iλ(pj), ĪR
λ
)+

∑

∀pk ∈Nr

SID( Iλ(pk), Ī
Rl

λ
)+

∑

∀pg ∈Nl

SID( Iλ(pg), Ī
Rr

λ
) (4.12)

In practice, this estimation may not be reliable for very small regions. As a result, Eq.4.12

is modified to assure that only regions having a minimal area are used in the last two terms.

In practice, Amin has been set to 3 pixels. Hence, the final expression of D(N ) is given by the

following expression:

D(N ) =
∑

∀pj ∈N

SID( Iλ(pj), ĪR
λ
)+







0 if (ANr
and ANl

) < Amin

∑

∀pk ∈Nr

SID( Iλ(pk), Ī
Rl

λ
) +

∑

∀pg ∈Nl

SID( Iλ(pg), Ī
Rr

λ
) else

(4.13)

4.3.3 Experimental Results

Experiments are carried out here in order to test the pruning strategy defined by Eq.4.13. The

BPTs constructed with OMDS on the five images of Sec.3.4 are used here. For the five data sets,

the NBins and Ds parameters concerning the BPT construction have been specified in Sec.3.4.3.

Firstly, the D(N ) values are computed for all nodes. The minimization procedure is performed

by the bottom-up analysis of the tree following the criterion presented in Eq.4.10. The value λ∗ is

computed according to the Algorithm 2.

The first results are shown in Fig.4.17 where the partitions are obtained from the different zones

of Pavia University. The constraints CO are set to 33 for Pavia Uni 1, CO = 11 for Pavia Uni 2 and

CO = 43 for the last image. The first column contains the RGB composition of the different im-

ages whereas the second column shows the BPT hierarchical levels obtained during the merging

sequence construction. The last column shows the results obtained by the pruning minimizing

the EP function. In order to perform a fair comparison, the partitions of the second and the third

column contain the same number of regions.

For the first data set, some differences can be seen comparing Fig.4.17 (b) and (c). The pruning

result does not seem to improve a lot the performance of the hierarchical BPT level, however, the

results are coherent. For instance, Fig.4.17(c) has the background region divided in three regions

instead of two as in the case of Fig.4.17(b). Ideally, the manually created ground truth image

shown in Fig.3.26(a) has defined this background area with only two regions. However, looking

at Fig.4.17(a), the green region appearing in Fig.4.17(c) and not included in the yellow background

region can be discriminated in the RGB composition. Moreover, the pixel borders that appear in-

dividually instead of being merged with the large brown background region. If we look carefully

these border pixels at Fig.4.17(a), it can be seen that they belong to the green building. In contrast,

during the BPT construction they have been merged with the brown region. Consequently, the
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pruning detects these pixels separately because it considers that they cannot be merged with the

background since they are a part of the building. Comparing Fig.4.17(c) and Fig.4.17(b), another

interesting difference can be noticed concerning the image illumination. In the case of Fig.4.17(c),

some shadow areas are not detected as single regions. This is easily explained by the charac-

teristics of the SID measure, which considers that pixels formed by the same material but with

different illumination are identical.

(a) RGB (b) NR = 29 (c) NR = 29

(d) RGB (e) NR = 10 (f) NR = 10

(g) RGB (h) NR = 32 (i) NR = 32

Figure 4.17: Comparison of Hierarchical BPT level and Pruning BPT obtained Partition

The results of the second data set Pavia Uni 2 illustrate also some differences comparing

Fig.4.17(e) and Fig.4.17(c). The pruning result seems to be over-segmented as compared to the

hierarchical BPT level. This can be observed on the background region since the two orange re-

gions and the brown one are detected independently in the pruning result. The problem of these

three regions is that they are in the same BPT branch. During the construction of the hierarchical

levels, the small orange object situated on the top has initially merged with the large background

area. After this step, the resulting background is merged with the second orange region and later,
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it is merged with the brown region situated close to the building shadow. Therefore, as the small

orange object has been detected separately in the pruning result, the consequence is that the other

regions have not merged with the background region. This can seem an error of the pruning,

however, the detection of the small orange object is not wrong since this object really exists in

Fig.4.17(a). Hence, optimally, this small orange object should not be merged with the background

region before the other two background regions. On the other hand, it should be noticed that

the first merging concerning this small orange region during the BPT construction is explained

because of the scale threshold step of Sec.3.3.3. The area of this object is too small with respect

to the mean area of the regions forming its hierarchical level, then the merging of this object has

been forced.

In Fig.4.17(c), a problem can be detected on the pruning results since the large metallic object sit-

uated on the building roof has disappeared in the complete gray building region. This effect is

due to the definition of D(N ) that uses the Spectral Information Divergence (SID). Theoretically,

the complete region of the image formed by the roof building and the large metallic object must

have a large D(N ) value and consequently, these two regions should not merge. As the two re-

gions have a strong dissimilarity, the high value of D(N ) should come from the second term of

the Eq.4.13. However, after modeling the two regions by a mean spectrum, the SID between the

metallic region and the roof is not very high. Note that the first term concerning the parent ho-

mogeneity is not very high because most of the pixels form the building region. Accordingly, the

SID and the mean first order region model show some limitations in order to define an optimal

D(N ) descriptor at this example.

Going on with Fig.4.17 evaluation, the third data set also shows how the pruning technique ex-

tracts some small regions which have been merged previously with the background at the BPT

hierarchical levels. This can be observed on the right part of the figure, where some small regions

appear in the background area. At the same time, the pruning result shows how the main build-

ing is formed by less regions. Visually, the pruning result seems to achieve better results for this

third data set.

The same experiment is performed on the Pavia Center and HYDICE hyperspectral images. Set-

ting the constraint equal to CO = 25 for Pavia center and CO = 56 for HYDICE, the obtained re-

sults are shown in Fig.4.18. Looking at the first data set, it can be noticed how the background of

Pavia Center is formed by a single region in the pruning result. Besides, the pruning result shows

that the small blue region on the top-right corner has been retrieved by the pruning whereas

the same region does not appear in the hierarchical BPT level. The shadow effects can also be

remarked for this data set and also an over-segmentation issue concerning the vegetation area.

The problem of this over-segmented vegetation area is due to the fact that this region is strongly

textured. In the case of hierarchical levels, the statistical region model has taken into account

this texture characteristics. However, the pruning strategy is simply carried out by analyzing the

mean spectrum of the region. In addition, it can also be observed in the pruning result how some

small regions have cut the BPT branches because they are considered as not belonging to the large

vegetation area which is reasonable.
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The results obtained by HYDICE also corroborates that the use of SID it is not optimal in our

strategy. For instance, this can be observed on the top left corner of the figure where only a region

is detected in the pruning result. Note that because of this, the road has completely disappeared

in the pruning partition result. The results shown in the first row of Fig.3.33 concerning the BPT

construction by using OSID help to understand the obtained pruning result. This is because OSID

cannot find a strong discrimination at this area on the top left corner of HYDICE data set. Accord-

ingly, D(N ) is formed by a low value and it leads only to one large single region on the top left

corner.

(a) RGB (b) NR = 24 (c) NR = 24

(d) RGB (e) NR = 51 (f) NR = 51

Figure 4.18: Comparison of Hierarchical BPT level and Pruning BPT obtained Partitions

In order to evaluate quantitatively the results of Fig.4.17 and Fig.4.18, the asymmetric distance

is used here. The partitions from the hierarchical BPT levels and the pruning results are evaluated

in comparison with the manually created ground truth presented in Chapter 2. The obtained

results are shown in Tab.4.4. The last column of this table corresponds to the results obtained by

the classical technique RHSEG[22]. Observing the average distance, it can be seen how the results

are better in the case of the pruning strategy. However, it must be remarked that the results are

similar, which proves that the quality of MDS is very high. Moreover, the obtained results largely

outperform the state of the art.
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Table 4.4: Asymmetric distance

Data Set BPT Hierarchical Level dTasym Pruned Partition dTasym RHSEG[22] dTasym
Pavia Uni 1 0.182 0.178 0.310
Pavia Uni 2 0.085 0.087 0.108
Pavia Uni 3 0.182 0.156 0.204

Pavia Center 0.257 0.178 0.336
Hydice 0.232 0.237 0.4276

Average 0.1876 0.1672 0.277

Conclusions

The pruning strategy aiming at minimizing a cost function has been presented in this section. The

goal of this strategy is to avoid the definition of a pruning threshold as has been previously done

in the classification strategy.

Setting the number of regions as a constraint, a pruning strategy has been defined in order to

extract the partition having this number of regions. The visual results obtained by the pruning

strategy seem to be coherent with the RGB composition. The pruned strategy has obtained better

or similar results compared to partitions generated by the merging sequence. A region descriptor

measuring the spectral homogeneity has been defined in this work. This descriptor has allowed

to define a promising pruning strategy which has proved its robustness compared to the merging

sequence. However, although the obtained results are interesting, the error criterion measuring

the spectral homogeneity of the regions has some limitations. For instance, D(N) assumes the

homogeneity of the region by modeling the set of a spectra or each region by their mean. More-

over, the SID similarity measure may have its limitations in order to discriminate a set of spectra.

Besides, D(N) is the addition of the error committed on the node and the error committed on

their children replacement. This work has assumed that the importance of both terms is linearly

weighted. However, the children information can be more important in some cases. Therefore,

the pruning based on Lagrangian optimization gives promising results but improvements can

certainly be made in the definition of the functional.

The most important drawback of the pruning strategy presented here is that it is still supervised.

Indeed, the constraint describing the number of regions at the partition result must be known a

priori. This is not a practical solution because the approximate number of regions is most of the

time unknown. Furthermore, the constraint cannot be set as a constant parameter since different

images can be formed by different number of regions. As a result, solutions that would require

to set a priori the number of regions, as following the merging sequence or using the Lagrangian

pruning technique presented here have only a limited range of applications.

For all these reasons, the main goal now is to define a completely unsupervised pruning strat-

egy aiming at hyperspectral image segmentation. To this end, the following section discusses a

pruning technique based on the spectral graph partitioning theory.
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4.4 Segmentation by recursive spectral graph partitioning

The goal of this segmentation pruning is to develop an unsupervised pruning strategy to seg-

ment hyperspectral images. As previously discussed, setting a priori the number of regions and

following the merging sequence is seldom a practical solution. Therefore, this section addresses

the definition of an unsupervised algorithm which moreover aims at achieving better asymmet-

ric distances than the previous solutions. To this end, the different BPT branches are separately

studied to populate the BPT nodes with a weight WN which describes how likely is the pruning

of a node.

The pruning strategy described in this section is presented in the following sub-sections. Firstly,

Sec.4.4.1 is devoted to describe the interpretation of WN and its use to lead to the pruning deci-

sion. In a second step, the estimation of WN is addressed by treating the BPT branches as a graph

bi-partitioning problem. The work is thus based on the well- known approach presented in [66]

where a normalized cut is used to segment a graph. The complete analysis of BTP branches is

described in Sec.4.4.2.

4.4.1 The BPT node weight WN

We assume a BPT has been constructed in order to represent through 2Np − 1 nodes a hyper-

spectral image formed by Np pixels. Consequently, the BPT is composed of Np leaf nodes and

Np−1 non leaf nodes. In the following, a leaf node is denoted by l whereas the non leaf nodes are

designated by N . As it has been observed in Fig.4.7, each BPT node N roots a sub-tree Ts which

is formed by LN leaves nodes. Note that LN clearly corresponds in our case to the area of the

region represented by the node N . In this context, the BPT branches starting from the LN leaves

of the sub-tree rooted by N are analyzed to define the WN value.

The weight WN is a value assessing how likely is the pruning of a node N . This value is com-

puted by studying all the BPT branches starting from a different leaf li ∈ LN , which passes

through the node N until the root. For each of these branches starting from a different leaf li, the

idea is to assign a pruning decision PN
d (li) to the node N . Fig.4.19 shows an example where this

analysis is carried out on the blue node N . The sub-tree rooted by this node is composed by 4

leaves (LN = 4) which results in the study of 4 different branches which are drawn in orange in

Fig.4.19(a)(b)(c)(d).

The analysis of each branch gives a pruning decision PN
d (li) indicating whether the leaf li consid-

ers that the node N must be removed (1) or preserved (0). Therefore, starting from a specific leaf

li, the branch analysis is going to assign the pruning decision PNk

d (li) to the Nk ancestors nodes

of the leaf li.

Given a node N , the result of its branch analysis corresponds to a set of LN pruning decisions.

These local decisions describe whether the majority of the leaves wants to prune the tree or, in

other words, if they want to be represented by their ancestor node. Considering this, the weight

WN can be defined as follows:
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(a)

N

l1 (b)

N

l2

(c)

N

l3

(d)

N

l4

Figure 4.19: BPT branch analysis for node N

WN =

LN∑

i=0

PN
d (li) (4.14)

Eq.4.14 leads to define a simple greedy algorithm by pruning the subtrees rooted by the high-

est BPT nodes whose condition WN > LN

2 is true. An example of this pruning decision is shown

in Fig.4.20 where a bottom-up algorithm evaluates the ratio
WN

LN
on the BPT nodes. In this case,

the BPT node N1 is respecting the pruning condition, therefore, the subtree rooted by the node N1

can be pruned. In contrast, the condition in N2 is not respected and then, N1 must be preserved.

WN2

LN2

≈ 0.45

WN1

LN1

≈ 0.75
N1

N2

Figure 4.20: Example of Pruning decision

Another example is shown in Fig. 4.21 where a BPT is formed by four non leaf nodes and five

leaf nodes. In this case, the pruned tree does not contain the branches hanging from N1 nor the

branches hanging from N3. Note that these nodes are the last nodes fulfilling the criterion in their

respective branches.

At that point, the branch study illustrated in Fig.4.19 must be described in order to assign the

PNk

d values to compute the pruning weights WN involved in Eq.4.14. In this work, the study of a

branch has been interpreted as the bi-partition of the branch in two disjoint sets: 1) the nodes that

can be pruned according to the studied leaf and 2) the rest of the nodes of the branch. Thus, the

next objective is to achieve an optimal cut in the branch dividing these two groups of nodes. The

procedure is described in the following Sec.4.4.2.
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Figure 4.21: Example of BPT pruning

4.4.2 Local Branch partitioning

Let PB be the set of leaf and non leaf BPT nodes forming the branch B. Given a leaf li, a local

pruning of B regarding li consists in deciding which nodes belonging to PB should be removed

with li. Fig.4.22 illustrates two examples of branch bi-partition starting from a leaf li.

In the case of Fig.4.22 (a), the node has been considered as not to be pruned. Contrarily, in the sit-

uation of Fig.4.22(b), the node N is preserved in the same group than li. An important difference

can be remarked at this point between the branch partition technique presented in this section

and the BPT pruning philosophy. For instance, as shown on Fig.4.22 (a), the result of a branch

partition does not imply that two sibling nodes should belong to the same group. In contrast, the

global pruning philosophy assumes that a node and its sibling are either preserved or removed

(See Sec.4.4.1).

(a) B removing N

N

li

(b) B preserving N

N

li

Figure 4.22: Example of branch partition

Looking at Fig.4.22, it can be observed how according to the branch partition two disjoint non-

empty sets (U ,V) can be simply detected. The first set U is composed by the green node (where

li ⊂ U ), whereas V is formed by the rest of the nodes. This interpretation is illustrated in Fig.4.23

where the resulting sets correspond to the branch partitions of Fig.4.22.

Hence, the goal of branch partitioning is to study the similarities/dissimilarities between the BPT

nodes on the branch to assure a cut or bi-partitioning of the set PB where the similarity among

nodes in U is high and the similarity across U and V is low. To this end, the PB space can be
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represented as an undirected weighted graph G. Theoretically, a weighted graph G can be repre-

sented by its affinity matrix W . The advantage of these matrices is that their spectral properties

(the eigenvalues and eigenvectors) provide useful information about the structure of the graph.

For instance, they give practical information about how to partition the graph in different clusters

in the case of (almost) regular graphs. However, the BPT branch is clearly a non regular graph,

therefore, in order to define a regular graph G, the structure of a BPT branch has been slightly

modified. These modifications are illustrated in Fig.4.24.

(a) Partition result

V

U
(b) Partition result

V

U

Figure 4.23: Example of branch partition

The graph G representing the branch of Fig.4.24(a) is given by Fig.4.24(b). This graph contains

NN nodes which correspond to the BPT nodes. The edges of G include BPT branches between

parent and children nodes. However, to regularize the graph, the connection between sibling

nodes has been introduced in G.

The affinity matrix is computed by all the G edges by the set of measures wij describing the

similarity of each edge linking a pair of nodes Ni and Nj . Note that if the edge between two

nodes does not exist, wij values must be zero. Therefore, each component wij of the affinity

matrix W , representing the graph G, is computed by

wij =







e−d(Ni,Nj) if i -= j,

0 otherwise
(4.15)

The parameter d(Ni,Nj) is the distance between regions contained in the BPT nodes Ni and

Nj (if the connection exists). This distance should be low if nodes are similar and high if they are

dissimilar. In order to partition the graph, the distance must be low between the nodes forming

U . the distance should theoretically also be small for nodes forming V . In contrast, a high distance

must be found on the edges separating both groups.

In our case, the definition of d(Ni,Nj) is a challenge because the nodes forming V on the upper

part of the branch can be very different between them. However, the set of nodes forming V have

the property of being very different from l0. Defining P (Ni == lo) as the probability that a node

Ni is equal to the studied leaf l0. A distance between the nodes can be defined as follows:
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N4 N5

N2 N3

N6

N1 lo

(a) Partition result

N4 N5

N2
N3

N6

N1 lo

(b) Partition result

Figure 4.24: Representation of G of the branch

d(Ni,Nj) = 1−

(√

P (Ni == lo)P (Nj == lo) +
√

P (Ni -= lo)P (Nj -= lo)

)

(4.16)

The P (Ni == lo) is a value between 0 and 1, and it can for example correspond to the similar-

ity measure computed in the OMDS(Ni, lo) criterion. Note that d(Ni,Nj) will be low if two nodes

are similar to l0 (then forming U ). Besides, two nodes of V will also have a low distance value

since both P (Ni == lo) values will be low. In graph theoretic language, the optimal partition of a

graph G has been defined as the one that minimizes the cut cost separating the two sets U and V .

The cut cost is defined as follows:

cut(U ,V) =
∑

i∈U, j∈V

wij (4.17)

The minimization of Eq.4.17 to partition a graph into k-subgraphs such that the maximal cut

across the subgroups is minimized, was proposed in [67]. In this work, authors noticed that the

minimal criterion of Eq.4.17 favors cutting small sets of isolated nodes in the graph. Therefore,

instead of looking at the value of the total edge weight connecting U and V , a normalized cut

cost Ncut(U ,V) was defined in [66] with the same purpose. The idea of this last approach is

to compute the cut cost as a fraction of the total edge weights to all nodes in the graph. The

expression of Ncut(U ,V) has been then defined as

Ncut(U ,V) =
cut(U ,V)

assoc(U ,NN )
+

cut(U ,V)

assoc(V,NN )
(4.18)

where assoc(U ,NN ) =
∑

i∈U ,j∈NN
wij . It should be remembered that NN is the number of

nodes in G ( also in our case in PB). In practice, the optimal bi-partitioning of the graph mini-

mizing Eq.4.18 has been presented in [66] as a spectral graph partitioning problem. Hence, the

optimal cut can be found by solving the following generalized eigenvalue system:

D− 1
2 (D −W )D− 1

2 y = λy (4.19)
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where W is the affinity matrix defined at Eq.4.15 and D is the diagonal matrix whose values

in the diagonal are the total connections from each node i to all its neighbor nodes di =
∑

∀j wij .

In our context, for each BPT non leaf node this value is the sum of the similarity between their

children, the direct ancestor and the sibling node. In Eq.4.19, the term L = D− 1
2 (D − W )D− 1

2

is known as the symmetric positive semidefinite Laplacian matrix. In [66] , it has been demon-

strated how the second smallest eigenvalue of the generalized eigensystem of Eq.4.19 can be used

as the solution to graph partitioning problem minimizing the normalized min-cut of Eq.4.18. The

strategy consists in partitioning the graph into two pieces using the eigenvector E of L associated

to its second smallest eigenvalue. In an ideal case, the sign of the eigenvector values can tell us

exactly how to partition the graph.

An example can be seen in Fig.4.25. The affinity matrix has a size of 7 × 7 and it is used to com-

pute the Laplacian matrix L of Eq.4.19. Decomposing this matrix, the sign of the eigenvector

associated to the second smallest eigenvalue is situated on the left. In this example, it can be seen

how the eigenvector E partitions the graph into two pieces by the green line as: {l0,N1,N2} and

{N3,N4,N5,N6}.

N4 N5

N2 N3

N6

N1 lo

E = {lo,N1,N2,N3,N4,N5,N6}

E = {+1,+1,+1,−1,−1,−1,−1}

Figure 4.25: Cut according to E

For this last example, according to the explanation of Sec.4.4.1 , the pruning decisions asso-

ciated to the leaf lo, will be PN2

d (lo) = 1, PN4

d (lo) = 0 and PN6

d (lo) = 0. Note that the pruning

decisions of the studied branch are only taken by the ancestors of the studied leaf. Accordingly,

the leaf BPT nodes have always W' = 1.

In practice, it can not be assumed that the best cut in the branch will be performed in a first cut.

Let us consider for instance a root node that is very different from the rest of the tree. In this case,

it can be understood that a first cut is only going to separate the root of the tree from the rest of

the branch.

For this reason, instead of a single cut, a recursive spectral graph partitioning algorithm is per-

formed at each studied branch to detect its best cut. Given a leaf li, this recursive methodology is

described in Algorithm 3. The main idea of the recursive strategy is that the procedure detailed in

Fig.4.25 is going to be repeated iteratively. At each iteration, the set of nodes U containing the leaf

li is preserved and the graph partitioning algorithm is applied on U . At each iteration, the parti-
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tion of the branch has an associated Ncut value coming from the Eq.4.18. Therefore, the purpose

is to perform this recursive algorithm until the Ncut value is higher than a set threshold TNcut.

Algorithm 3 Computation of recursive spectral graph partitioning of the BPT branch

NN = nodes forming the branch B

while NN > 2 and the end is not true do

Compute the Laplacian matrix relating li with all the NN nodes of the branch

Compute the graph cut at level k according to the closer BPT nodes on the branch having the
same sign as E(li).

Compute Ncut between the first nodes arriving to level k and the remaining NN

if Ncut < maximum allowed TNcut then

LCut is equal to k

else
the end is true

end if
Next Laplacian matrix to study is given by the hanging nodes until level k, then NN = 2k−1

end while

At the end of the algorithm, the optimal cut on the branch will be retained in LCut. Thus, this

information is used to populate the BPT nodes on the studied branch. Starting from a leaf li, all its

ancestor nodes Nk formed in its branch until the level LCut, will have a positive pruning decision

PNk

d (li) = 1 (See Fig. 4.21). Contrarily, ancestor nodes formed in level higher than LCut will have

a zero value in their decision PNk

d (li) = 0.

Note that once the BPT is populated, the pruning decision according to the WN is applied to

prune the tree. Finally, as it has been previously done, the segmentation result is obtained by

selecting the leaf nodes of the pruned BPT.

4.4.3 Experimental Results

Some experiments are presented here concerning the evaluation of the pruning following the

spectral graph partitioning strategy. As previously done in Sec.4.3.3, the five different constructed

BPTs on Sec.3.4.3 with OMDS are used here to address this evaluation. Each of these BPTs has been

populated by the weights WN described at the beginning of Sec.4.4.1. To this end, the different

BPT branches have been analyzed by their corresponding G interpretation. Given the represen-

tation of the BPT branches as a regular weigthed graphs, the recursive spectral graph partition

algorithm described in Algorithm.3 is applied to each of them. Thus, the solution of the graph

partition technique is used to assign the weights to all the BPT nodes. Finally, once all the WN of

Eq.4.14 have been computed, a bottom-up evaluation on the BPT nodes is carried out. The goal

of the bottom-up analysis is to verify whether the majority of the leaves forming a nodes want to

prune it.



4.4 Segmentation by recursive spectral graph partitioning 131

First experiments are performed on the three different zones of Pavia University Data set. The

obtained results are shown in Fig.4.26 where the TNcut value has been set to 0.3. The first column

shows the different RGB compositions of the images whereas the second column corresponds

to the hierarchical BPT levels having a specific number of regions NR. Finally, the last column

shows the results obtained by the pruning strategy. The partitions shown in the second and the

third columns contain the same number of regions.

Comparing the results of the third and the second column, it can be seen that the obtained results

are very similar to the partitions obtained during the BPT construction and that, moreover, the

number of regions is not far from the optimal region number defined in the ground truth parti-

tions. Therefore, these results are very promising taking into account that the approach is now

unsupervised. Note that the results shown in the second column are obtained by setting a priori

a number of regions which is different at each image. In contrast, the pruning results have been

obtained in unsupervised way by using the same parameters for all the images.

Some differences can be found as for example at the bottom right corner of Fig.4.26(c) and (d). In

it, it is observed how a small structure has been detected in Fig.4.26(d) whereas it does not exist

in Fig.4.26(c). Looking at the RGB composition of Fig.4.26(c), it is seen how the small structure

really exists. Therefore, the pruning strategy has performed well in this case.

Another example is found in the roof of the gray building where a blue region is divided in two

in Fig.4.26(c) and in contrast, it appears as one single region in Fig.4.26(c). In the same part of

the image, another difference is seen with the appearance of the orange region in Fig.4.26(d). This

region has been retrieved by our pruning, whereas in the BPT hierarchy level it appears inside the

building object. If this orange region is explored in details, it is seen that it doesn’t belong to the

object. Therefore, it is normal that the pruning technique has decided to represent it as a single

region.

Observing the pruning results, it can be thought that the obtained partitions are over-segmented.

For instance, if they are compared with the partitions shown in Fig.4.18. However, it should be

remarked that the appearance of the small regions seems coherent with the RGB composition

and it shows some limitations regarding the BPT construction. For instance, the pink region in

Fig.4.26(c) has been retrieved by the pruning strategy because it corresponds to the small white

region of the Fig.4.26(a).
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(a) RGB (b) NR = 29 (c) NR = 29

(d) RGB (e) NR = 22 (f) NR = 22

(g) RGB (h) NR = 34 (i) NR = 34

Figure 4.26: Comparison of Hierarchical BPT level(center) and pruned BPT(right) partitions

A second set of experiments is carried out on the Pavia Center and Hydice images. For both

images, the same pruning strategy is carried out leading to the results of Fig.4.27. In the case of

Pavia Center, the pruning results clearly outperform the hierarchical level since the background

is only formed by a single region. An interesting phenomenon is observed in Fig.4.27(c) where

4 regions on the left part of the image have been detected individually. In all the other results

obtained during this PhD on this data set, these four regions appear as a single purple region.

However, looking at the RGB composition of Fig.4.27, it can be corroborated how this part of the

image is formed by more than one region.

Concerning HYDICE results, both images present very similar results. A small difference can be

seen as for example on the top right part of the image. The pruning results show an orange region

separated from the road whereas the same region has been merged with the road in Fig.4.27(e).

Looking at the RGB composition Fig.4.27(d), it seems that the pruning result is the wrong one.
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(a) RGB (b) NR = 30 (c) NR = 30

(d) RGB (e) NR = 31 (f) NR = 31

Figure 4.27: Comparison of Hierarchical BPT level(center) and pruned BPT(right) partitions

To validate our visual evaluation, the average asymmetric dTasym is computed for all the parti-

tions shown in Fig.4.27 and Fig.4.26. The corresponding results are shown in Tab.4.5. The results

assess that the obtained partitions are similar or better than the BPT hierarchical levels. This is

an important achievement since, without any a priori knowledge, the results lead to partitions

having a similar number of regions than the ground truth.

The pruning results achieved better results which is clearly seen in the case of Pavia Center. The

large improvement comes from the background region which has been detected as one single re-

gion. Thus, the normalized asymmetric distance is much lower in this case. Besides, the results

are compared with the state of the art [22]. In this case, the pruning results clearly outperform the

results obtained by the classical RHSEG technique.

Table 4.5: Asymmetric distance

Data Set BPT Hierarchical Level dTasym Pruned Partition dTasym RHSEG[22] dTasym
Pavia Uni 1 0.126 0.1208 0.310
Pavia Uni 2 0.096 0.091 0.249
Pavia Uni 3 0.1902 0.1907 0.1934

Pavia Center 0.255 0.1672 0.345
Hydice 0.211 0.211 0.3744

Average 0.175 0.156 0.294
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Conclusions

In an unsupervised segmentation framework, the BPT pruning has been considered here as a

graph cut problem. The study of the BPT branches to decide the best branch cut has been carried

out by a classical technique proposed in [66]. The proposed approach has allowed to compute the

affinity matrices describing the image relations by using different regions of an image. This in-

troduces a novelty regarding the state of the art where the graph cut techniques is applied on the

RAG pixel representation. Hence, classical works have computed the affinity matrix representing

a region simply by studying the pixel similarities. Here, the construction of the affinity matrices

using regions has been proposed. In this work, a similarity function relying on the spectrum in-

formation has been applied to weight the edges of the graph. However, note that having regions,

the affinity matrix could use more information as such the shape of regions.

Looking at all the obtained results, it can be observed how the pruning strategy has lead to in-

teresting results. The obtained partitions are coherent with the realistic RGB composition. The

asymmetric distance computed on the different results has shown the improvement achieved by

the BPT pruning strategy. Indeed, the obtained partitions have been obtained without any priori

knowledge (such as a given number of regions). Comparing our asymmetric distance results with

the results obtained in Sec.3.4.3 , it can be noticed that the pruning strategy has achieved parti-

tions situated close to the minimum of the dasym curves.

In this section as well as in Sec.4.3, it has been seen that because of the complexity of the scenes,

it is sometimes difficult to define the ground truth partitions. A detailed analysis of the results

reveals that some of the observed differences are subject to interpretation. On the other hand, the

results have also shown that some mistakes were generated during the BPT construction. As the

pruning results directly depend on the BPT construction, if a region is not perfectly represented

by BPT nodes, the pruning strategy cannot retrieve it.
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4.5 Object detection

In the context of many current applications, hyperspectral research is trying to develop machine

vision approaches that get closer to the abilities of the human visual system. The objective is

to build systems that can recognize previously seen (learnt) objects with high accuracy under

varying environmental conditions. The main difficulty is that the world is rich in variability. As a

result, the same object can appear with an extremely high number of different visual appearances.

For this reason, object recognition needs prior knowledge about the object to be detected.

Hyperspectral object detection has been mainly developed in the context of pixel-wise spectral

classification. This approach is seen as the individual detection of the spectra having a high sim-

ilarity with the material describing the reference object Oref . The main problem of this strategy

is that the objects usually cannot be only characterized by their spectral signature. Consequently,

spatial features such as shape, area, orientation, etc., can also contribute significantly to the detec-

tion. Accordingly, in order to integrate the spatial and spectral information, BPT is proposed as a

search space for constructing a robust object identification scheme.

The proposed strategy consists in analyzing a set of descriptors computed for each BPT node.

Thus, studying these descriptors, the purpose is to recognize the possible object as one or more

BPT nodes. Fig.4.28 describes the followed approach.

Sought Object Oref

Spatial-Spectral
Descriptors?

BPT representation

Evaluated N

Figure 4.28: Illustration of object detection procedure

The work presented here proposes the analysis of spectral as well as spatial descriptors for

each node. Spatial descriptors describe information as the shape or the area corresponding to

the specific object of interest. Concerning spectral descriptors, they describe the spectra of the

regions. For instance, if the material of the object Oref is known, the spectral signature is an

important spectral descriptor of the material.
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Accordingly, the proposed scheme relies on the three different descriptors for the BPT nodes

O = {Dshape, Dspectral, Darea} (4.20)

The computation of the set of descriptors for the nodes populates the BPT in this application.

Thus, once the proposed descriptors D are computed, they are studied from the leaves to the root.

The approach consists in removing all nodes that significantly differ from the characterization

proposed by the reference Oref . Hence, the idea consists in considering that the sought objects

are defined by the closest nodes to the root node that have a set descriptors close to the Oref

model. In order to illustrate the generality of the approach, two detection examples are presented

here: road and building detection in urban scenes, respectively.

4.5.1 Detection of roads

Roads appear as elongated structures having fairly homogeneous radiance values usually cor-

responding to asphalt. In a classical pixel-wise classification, the detection of the roads clearly

consists in detecting the possible pixels of the image that belong to the asphalt class. The main

drawback is that other structures of the image can also be formed by asphalt. To solve this issue,

an information is that roads appear as stretched objects. Thus, given their characteristic shape, the

region elongation is used here as the shape descriptor Dshape. In order to compute it, the smallest

oriented rectangular bounding box must be computed for each region contained in a BPT node.

The oriented bounding box of the region containing N is the smallest rectangle including the region

that is aligned with its orientation φ. Knowing this value, the rotation of coordinates x, y is given

by

α = xcosφ+ ysinφ (4.21)

β = xsinφ+ ycosφ (4.22)

The last transformation defines new coordinates α and β which are used to describe the points

P1, P2, P3 and P4 characterizing the oriented bounding box (See Fig.4.29). Once the oriented

bounding box of a region is computed, the elongation of the region, corresponding to the Dshape,

can be easily computed as the ratio between the width and the height of the bounding box.

The second spatial descriptor computed at BPT nodes is the area of the region Darea. The idea is

that a road should have at least a given number of pixels. This minimum required area should be

set according to the spatial resolution of the image.

Concerning the spectral descriptor Dspectral, it must contained the information concerning whether

the region on the BPT node is formed by asphalt. Thus, given a reference spectrum of the road

material, the correlation coefficient between the mean spectrum of the BPT node and a reference

spectrum of the road material is used as Dspectral. This coefficient can be computed by Eq.4.23

where ĪN
λ

is the average spectrum contained in N .
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At this point, computing the set of three descriptors forming O for all BPT nodes, the idea is

to select the closest nodes to the root which have a low elongation, a high correlation with asphalt

material and an area higher than a given threshold.

Figure 4.29: Oriented Bounding Box definition

4.5.2 Detection of buildings

The detection of buildings follows the same strategy presented above for the roads. Thus, three

descriptors are also defined. Concerning Dspectral, this coefficient also corresponds to the correla-

tion coefficient measured between the mean spectrum of the BPT node and a reference spectrum

of the building material. In the case of the area, the descriptor Darea is also compared with a

required area to consider that a region can be a building.

The main difference with the road detection example is that the elongation of the region as Dshape

is not appropriate in the case of buildings. Consequently, another spatial descriptor is used. The

idea is to use the rectangularity of a region as an important characteristic. Then, a rectangularity

descriptor is used as Dshape. The computation of this spatial descriptor can be easily performed

with the oriented bounding box definition. Thus, Dshape is computed as the ratio of the area of the

BPT node and the area of the smallest oriented bounding box including the region. Theoretically,

a rectangular region is going to have a value Dshape=1 for perfectly rectangular regions.

The procedure of the building detection follows the same strategy as for the road case. A bottom-

up analysis of the tree searches for the highest BPT nodes close to Oref .
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4.5.3 Experimental Results

This section addresses the evaluation of the BPT object detection strategy proposed for the road

and building detection. The goal of the experiments is to compare the results of the BPT object

recognition strategy with a classical unsupervised pixel-wise classification. The experiments have

been performed using the portion of HYDICE hyperspectral image of Sec.3.4.2. Fig. 4.30(a) shows

a RGB combination of the image portion. The BPT has been computed with the OMDS . The

ground truth partition of this image illustrating the roads and buildings of the scene are shown

in Fig. 4.30(b) and Fig. 4.30(c).

(a) RGB Composition (b) Roads PGT (c) Buildings PGT

Figure 4.30: Hydice Data Set

The pixel-wise classification consists in detecting pixels in the image having a correlation

higher than 0.9 with the reference spectrum.

To detect Oref some reference parameters should be set. For instance, in the case of roads, the

pruning strategy is looking for regions having an elongation lower than 0.3, with a correlation co-

efficient with asphalt higher than 0.9 and an area larger than 15 pixels. Regarding the buildings,

the BPT analysis is focused on detecting regions having a rectangularity higher than 0.4, a corre-

lation coefficient between building material higher than 0.9 and an area smaller than 15 pixels.

The first row of Fig. 4.31 shows the results of the pixel-wise classification road and building hav-

ing a high correlation coefficient. The second row of Fig. 4.31 illustrates the detected BPT nodes

using the two different Dref . The results obtained with the BPT corroborate the advantage of

using this image representation. The use of spectral as well as spatial descriptors of BPT nodes

outperforms the classical pixel-wise detection using only spectral information.
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(a) (b)

(c) (d)

Figure 4.31: First row: Road (a) and Building (b) detection using pixel-wise classification. Second
row: Road (c) and Building (d) detection based on BPT representation

Conclusions

The hyperspectral object detection methodology by using BPT image representation has been de-

tailed in this section. To address it, the road and building detection examples have been proposed.

Some descriptors associated to the specific application have been used according to the specific

goals. In order to define another object detection application, the appropriate descriptors must be

detailed.

The obtained results show the interest of studying the objects of the scene by a region-based image

representation. They have shown how may be possible to detect the reference object by detecting

single BPT nodes. Note that in the case of Fig. 4.31 each detected component corresponds to one

single BPT node. Another important remark is that in the examples shown in this section, the dif-

ferent descriptors have the same importance. This consideration cannot always be appropriate.

Thus, in some applications, it maybe be better to give more information to the spectral descriptor.
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4.6 Conclusions

This chapter has discussed different BPT processing techniques. The main purpose has been to

demonstrate how different pruning strategies can be defined on the BPT structure according to

specific applications. Three different applications have been studied in order to prune the tree.

Firstly, a supervised hyperspectral image classification has been proposed using the SVM clas-

sifier. Then, the hyperspectral image segmentation challenge has been studied by a supervised

and an unsupervised pruning strategy. Finally, the hyperspectral object detection using the BPT

image representation has been explained with two different examples.

In each case, the processing of the BPT has been done in two steps. Firstly, BPT nodes are popu-

lated by computing some descriptors or features. Secondly, the analysis of the node descriptors

along the BPT branches decides whether nodes should be removed or preserved.

Concerning the first step, different descriptors have been presented according to the applications.

For instance, in the classification case, a descriptor related to the misclassification rate has been

proposed. The goal of this descriptor is the evaluation of the error committed by removing nodes

having a class different from their direct descendants. The computation of this rate has been

performed by using the SVM supervised classifier. In the case of segmentation, two different ap-

proaches have been discussed. In the first approach, a supervised pruning based on an energy

minimization strategy has been presented. In this context, BPT nodes have been populated by

a spectral homogeneity descriptor. In this case, the idea has been to describe if the regions are

spectrally homogeneous with respect to their mean spectrum. The second approach involving

segmentation has been presented as an unsupervised BPT pruning technique. In this case, the

BPT nodes have been populated by weights representing local pruning decisions. Studying sep-

arately each branch, the proposed methodology analyses if the ancestor nodes can replace their

leaves. Finally, in the case of object detection, nodes have been populated with spatial and spec-

tral descriptors. The descriptor choice is directly related with the road and building detection

application. The elongation and the rectangularity of the regions have been proposed as spatial

descriptors. Regarding the spectral descriptor, the correlation coefficient with the reference mate-

rial has been used.

Once the BPT nodes have been populated, different strategies have been proposed in order to

decide the pruning of the nodes. In all cases, a bottom-up analysis of the tree from the leaves to

the root has been performed. Therefore, some pruning rules have been defined for the different

BPT pruning strategies. In the first pruning strategy involving the hyperspectral image classifi-

cation, the maximum decision rule has been used. In this context, the classification results have

shown the benefit of using the BPT image representation. Classification accuracies have clearly

outperformed the classical results obtained by the standard pixel-wise classification. Besides the

quantitative results, the obtained classification maps have shown homogeneous regions without

involving the classical impulsive classification noise.
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For segmentation, a supervised pruning technique performing a global analysis has been pro-

posed. This technique has been presented as an energy minimization problem subject to a con-

straint. The constraint corresponds to the desired number of regions. Note that because of this

constraint this pruning is supervised. In this case, promising results have been obtained. How-

ever, the main drawback of this technique is that the number of regions forming the partition

should be known a priori. Hence, this approach does not seem to be appropriate for most prac-

tical solutions. Therefore, an unsupervised pruning strategy has been proposed based on the

spectral graph partitioning theory.

This last pruning technique have provided the best performances. The partition results have been

compared with the partitions obtained during the merging sequence construction and with the

state of the art. The quantitative evaluations have corroborated the robustness of the pruning.

In the case of object detection, two different pruning examples have been presented for two object

detection examples. Setting the detection of roads and building as main goals, very interesting

and promising results have been obtained.

The four pruning strategies have shown how the BPT representation can be used in different con-

texts. Moreover, the obtained results have corroborated the interest of studying hyperspectral

images by using a region-based representation like the BPT.
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5
Conclusions

In this thesis, the BPT region-based representation for hyperspectral imagery has been presented

as a very promising area of research [70]. The construction and the processing of the BPT rep-

resentation in a hyperspectral context have been discussed. This tree-based structure has been

preferred in to other graph structures since BPT succeeds in representing : 1) the decomposition

of the image in terms of regions representing objects and 2) the inclusion relations of the regions

in the scene. Furthermore, given its fixed structure, BPT allows implementing efficient and ad-

vanced application-dependent techniques on it. In this framework, the work addressed in this

thesis is mainly divided in two parts: the BPT construction and the BPT processing.

The BPT construction for hyperspectral imaging has been investigated in Chapter 3. Conse-

quently, the first main challenge in this Phd has been the definition of a region merging algo-

rithm. This task has not been straightforward. This has been explained by the complexity of the

data given the variability of the spectra and the high correlation between bands. To address these

issues, several regions models and merging criteria have been studied [69]. Concerning the region

models, the popular region model described here as the first-order model has been compared with

the non parametric statistical region model previously defined in [17] for classical imagery. The

use of non parametric statistical region model has been proposed as a solution for representing

a set of spectra. This region model has shown its performances to solve the spectral variability

issue. Furthermore, it has proved its capabilities to represent complex or textured regions. In

order to compute this model for the individual spectra of the image, robust algorithm to estimate

the pdf of initial pixels based on self-similarity ideas has been proposed in Sec.3.2.2. To be able to
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estimate the pdf of individual spectra, a noise estimation in the case of the hyperspectral image

bands has been detailed in the same section. This noise estimation can be used in future works to

define a noise reduction strategy in hyperspectral image based on a non-local mean procedure.

According to the non parametric statistical region model, different merging criteria have been

proposed. The problem associated to the Battacharyya distance described in [17] has been solved

by using the cross-bin Diffusion distance. The use of a cross-bin distance has corroborated its ad-

vantage showing in particular its robustness to the Nbins parameter. Although this distance may

be less accurate than other cross-bin histogram distances known in the literature such as Earth

Mover Distance L1, it has been chosen because of its trade-off between complexity and accuracy.

Despite of the interesting results provided by the metrics comparing histograms, the correlation

issue was not addressed in this case.

Hence, a new merging criterion taking into account the correlation between hyperspectral bands

has been proposed as one of the main contributions of the PhD in Sec.3.3.3. The idea has been

to locally reduce the dimension of the region model via multidimensional scaling. Studying the

similarities between the histograms of the region, the local principal coordinates of each region

has been extracted. Then, a statistical test based on MANOVA theory has been proposed to mea-

sure the similarity between two adjacent regions. This test has also been directly related with the

canonical correlations. In this context, an estimation of the best dimension to compare the princi-

pal coordinates of two regions has been presented in this work. In order to compare two principal

components data sets representing two hyperspectral regions, a trade-off between the principal

coordinates of each data set has been proposed.

To compare the different merging orders, an evaluation has been carried out by evaluating the

partitions obtained during the merging sequence construction. In order to evaluate the results,

a visual and a quantitative evaluation have been carried out. The quantitative assessment has

been performed wiht the symmetric and the asymmetric distances presented in Sec.3.4.1. To our

knowledge, this Phd has introduced the first quantitative evaluation to validate the hyperspec-

tral image partitions concerning the whole image. Experimental results have shown the good

performances of the BPT construction in comparison with the most used state of the art tech-

nique: RHSEG [22]. The obtained results have also shown the limitations of the first order region

model. In contrast, the merging criterion via MDS has obtained the best results in our study. Thus,

this merging criterion can be considered as a promising measure to establish similarities between

spectral data sets in future works.

The second main important contribution shown in this thesis is the different BPT processing tech-

niques which have been targeted for different applications. Four different strategies have been

presented in the context of supervised hyperspectral image classification, supervised and unsu-

pervised hyperspectral image segmentation and finally, object detection. The processing of BPT

has been presented in Chapter 4 as a pruning strategy based on performing an analysis of the

nodes of the tree by measuring a specific criterion . The different strategies have corroborated

how the BPT is not an application-dependent tree structure, but it is an image representation

which can be processed by several application-dependent strategies.
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As a first example of pruning, the supervised classification of hyperspectral image has been ad-

dressed. The SVM classifier has been used to populate the BPT nodes with the probability class

distribution. Then, a bottom-up analysis of the tree branches has removed the BPT nodes fol-

lowing a maximum rule decision. Experimental results have shown that the proposed method

improves the classification accuracies of a standard SVM, providing classification maps with a

reduced amount of noise.

The second pruning strategy was targeting a supervised segmentation. This pruning technique

has been presented as a global energy minimization problem on the BPT structure. Under this

framework, a constrained Lagrangian function has been proposed by using a spectral homogene-

ity descriptor. The constraint parameter has been set as the desired number of regions. The main

goal of this pruning has been to show that if the desired number of regions is known, the partition

involving this number of regions obtained following the merging sequence construction is not op-

timal. In other words, the pruning technique aims at extracting the same number of regions but

with higher homogeneity. Experiments have been conduced to compare the partitions obtained

from the merging sequence with those obtained through the pruning. The pruning results have

shown some improvements in their accuracies. However, it must be remarked that the OMDS

criterion has constructed a quite good BPT representation, therefore, to achieve a large improve-

ment is a challenging task. The formulation of the BPT pruning as global minimization problem

offers a very promising line of work for the future leading to robust strategies.

Nevertheless, supervised segmentation cannot be widely used in practice. Indeed, the number

of regions is most of the time unknown and moreover, it is strongly image-dependant. Hence,

in order to tackle this problem, the segmentation of hyperspectral images with an unsupervised

pruning strategy has been studied. To this end, a pruning strategy based on normalized cut has

been proposed.

The analysis of BPT branches to decide the best cut has been addressed by interpreting the BPT

branches as regular graphs by including the sibling node connections. Then, the spectral graph

partitioning theory has been applied to obtain normalized cut. The aim of the cut has been to par-

tition the branch in two disjoint data sets. As a result, the cut on the branch must be considered as

a local pruning . Therefore, the solution of the branch cut has been used here to populate the BPT

nodes using weights describing how likely is the pruning of a node. These weights have been

used later to perform a bottom-up analysis of the tree according to a maximum decision rule. This

rule has been defined as a majority vote comparing the weight of a node with its area.

The results obtained by this pruning are very positive since using the same parameters, it has

been possible to extract partitions with similar number of regions as the ground truth partitions

and with the highest quality compared to the remaining segmentation strategies discussed in this

PhD. The results have shown how a hyperspectral image is partitioned in coherent regions com-

pared to the ground truth. One of the possible limitations of this pruning is that the study of

the branches is done locally. Thus, the application of the spectral graph theory to the complete

tree structure could be envisaged as future research work. Futhermore, the computation of the

affinity matrices by using BPT image representation seems to be an encouraging line of research.
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Indeed, the computation of this matrices has been mainly done in the literature for classical RAG

structures. Therefore, the idea of using a hierarchical image representation could lead to better

results.

The last pruning example has been presented in the framework of object detection. Two examples

have been proposed in order to illustrate how BPT can be a powerful representation for the object

recognition applications. To this end, the road and the building examples have been shown. Such

examples have described how the spectral and the spatial information can be incorporated in the

search of a reference object. This work can be seen as a contribution in the hyperspectral field.

Indeed, in most of the work reported in the literature, object detection has been only based on a

pixel-wise classification algorithm by selecting pixels spectrally similar to a pre-defined class.
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Résumé en français

L’Arbre Binaire de Partitions: Un nouvel outil pour la représentation hiérarchique et l’analyse

des images hyperspectrales

L’imagerie hyperspectrale correspond à l’acquisition d’un ensemble d’images représentant les

informations contenues dans une grande partie du spectre électromagnétique. Contrairement à

la vision humaine, qui est limitée à certaines longueurs d’onde, les systèmes d’imagerie hyper-

spectrales ont la capacité de mesurer le rayonnement électromagnétique dans le visible et dans

d’autres longueurs d’onde. Cette couche d’information spectrale (ou couleur) supplémentaire

représente l’avantage principal de l’imagerie hyperspectrale par rapport à l’imagerie couleur tra-

ditionnelle. L’intérêt de cette nouvelle source d’information est la possibilité d’une caractérisation

fine des objets imagés.

L’imagerie hyperspectrale est liée à l’imagerie multispectrale, cependant, il existe une différence

importante entre le nombre de bandes spectrales. Les images multispectrales correspondent un

ensemble d’au plus de dix bandes spectrales qui de plus ne sont pas contigues dans le spectre

électromagnétique. Au contraire, les images hyperspectrales ont un grand nombre de bandes

spectrales (habituellement centaines) capturées dans des longueurs d’ondes contigues. La figure

6.1 illustre un exemple d’image hyperspectrale. On peut constater qu’une image hyperspectrale

peut être considérée comme une correspondance entre un espace 2D spatial et un espace spectral

λi dont la dimension est N . Pour ces images, le spectre d’un pixel en fonction de longueur d’onde

λ est appelé courbe radiance spectrale ou signature spectrale. Pour chaque pixel, la signature
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spectrale fournit donc une information détaillée des propriétés spectrales du matériel et permet

une identification et une discrimination précise des objets.

X

y

Figure 6.1: Example d’image hyperspectrale

Ainsi, l’imagerie hyperspectrale fournit souvent des résultats qui ne peuvent pas être obtenus

avec des images multispectrales ou couleurs. En conséquence, la caractérisation des images à par-

tir de leurs propriétés spectrales a conduit à l’utilisation de ce type d’image dans un nombre crois-

sant d’applications réelles. Parmi les plus importantes, on peut citer l’identification des minéraux,

l’agriculture de précision, d’études forestières (état sanitaire, identification d’espèces. . . ) ou la

gestion des milieux aquatiques.

Néanmoins, la grande dimension de ces données (typiquement chaque pixel est représenté par

plusieurs centaines de valeurs, correspondant aux centaines de longueurs d’onde utilisées) con-

duit à l’échec des méthodes traditionnelles de traitement. Ainsi, le développement d’algorithmes

avancés afin de révéler le réel potentiel de l’imagerie hyperspectrale est nécessaire.

Comme énoncé précédemment, pour ces images, l’information spectrale décrit des propriétés des

objets qui ne peuvent pas être perçues par la vision humaine. Parallèlement à cela, l’information

spatiale qui décrit les variations spatiales et les différents corrélations dans l’image est égale-

ment importante. Dans ce cadre, cette dernière information est essentielle afin d’interpréter les

objets dans les scènes naturelles. Ceci justifie la nécessité de tenir en compte à la fois les in-

formations spatiale et spectrale dans le traitement des images hyperspectrales. Cependant, le

nombre de longueurs d’onde par pixel et le nombre de pixels par image, ainsi que la complexité

de l’exploitation conjointe de la corrélation spatiale et spectrale explique pourquoi le traitement

des images hyperspectrales est encore un sujet de recherche largement ouvert.

L’un des principaux objectifs du traitement d’image hyperspectrale comprend la délimitation des

régions cohérentes dans l’image afin d’obtenir une interprétation complète de la scène. Ceci

est envisagé avec des techniques d’analyse supervisés et non supervisées qui travaillent avec

la représentation traditionnelle au niveau pixel. L’analyse individuelle des spectres formant une

image hyperspectrale fournit un traitement qui n’est pas optimal. En effet, les représentations

plus structurées permettent, de manière générale, une analyse plus fine des objets présents dans
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l’image. Dans ce cadre, il est nécessaire d’établir des connexions entre les pixels de l’image hy-

perspectrale afin de distinguer des formes et des objets dans l’image qui caractérisent le contenu

de l’image. Les représentations à base de régions fournissent un moyen d’obtenir un premier

niveau d’abstraction permettant une réduction du nombre d’éléments à traiter et une obtention

des informations sémantiques du contenu de l’image. Ce type de représentations fournit une

nette amélioration par rapport à la représentation classique qui repose sur les pixels individuels.

En conséquence, sous le titre "L’arbre binaire de partitions: Un nouvel outil pour la représenta-

tion hiérarchique et l’analyse des images hyperspectrales", cette thèse est consacrée à la construc-

tion d’une nouvelle représentation hiérarchique d’images hyperspectrales basée sur des régions:

l’Arbre Binaire de Partitions ABP (ou BPT, pour Binary Partition Tree).

Cette nouvelle représentation peut être interprétée comme un ensemble de régions de l’image

structurées en arbre. L’arbre binaire de partitions peut être utilisé pour représenter : (i) la décom-

position d’une image en régions pertinentes et (ii) les différentes relations d’inclusion des régions

dans la scène. Une telle représentation est illustrée à la figure 6.2. Cette figure montre comment

les nœuds de l’arbre représentent des zones de l’image et les branches représentent la relation

d’inclusion entre les nœuds.

Figure 6.2: Example d’Arbre Binaire de Partitions

L’ABP est obtenu à partir d’une partition initiale de l’image dont les régions peuvent corre-

spondre auxpixels individuels. Si la partition initiale implique n régions, l’ABP correspond à une

structure contenant 2n-1 noeuds. L’ABP doit être créé de telle manière que les régions plus intéres-

santes ou utiles de l’image soient représentées par des noeuds. Une solution possible, adapté à

un grand nombre d’applications consiste à créer l’arbre par l’exécution d’un algorithme de fusion

de régions. La figure 6.3 montre un exemple de construction.

Dans cette thèse, la construction de l’ABP a été envisagé avec l’étude de différents algorithmes

itératifs de fusion de régions. Cette étude de différents algorithmes a été nécessaire pour gérer la

grande dimensionnalité et complexité des données hyperspectrales. Pour définir complètement

l’algorithme de fusion, deux questions doivent être analysées:

1. Modèle de région MR : il décrit les attributs nécessaires pour représenter une région et pour

caractériser l’union de deux régions.
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Figure 6.3: Exemple de construction d’Arbre Binaire de Partitions

2. Critère de fusion O(Ri, Rj) : il spécifie la distance à utiliser entre les attributs de deux régions

voisines Ri et Rj . Le choix de cette distance détermine l’ordre de fusion des régions et donc

la structure de l’arbre.

Afin de répondre à ces deux points, différents modèles de représentation d’une région hy-

perspectrale et différentes distances entre deux régions hyperspectrales ont été étudiés dans ce

travail.

En ce qui concerne la définition du modèle région, le problème principal est la caractérisation d’un

ensemble de spectres formant une région hyperspectrale. Dans ce cadre, la solution la plus sim-

ple est d’utiliser un modèle de premier ordre: la moyenne. Dans ce cas, les distances classiques

entre spectres peuvent être utilisés comme critères de fusion entre deux spectre moyens représen-

tant deux régions voisines. Malheureusement, certaines limitations existent dans la modélisation

des régions par la moyenne. La première limitation est liée au fait qu’il existe une forte vari-

abilité spectrale pour les régions formées à partir du même matériau. Une deuxième limitation

de ce modèle de région est la supposition que les régions sont homogènes. Cette hypothèse est

rarement vraie dans les scènes naturelles où les régions observées sont souvent texturés. En con-

séquence, des modèles alternatifs pour modéliser des régions hyperspectrales ont été proposés

dans cette thèse.

En ce qui concerne le critère de fusion des régions hyperspectrales, suivant la littérature classique,

l’ensemble des valeurs du spectre doit être pris en compte. Pour cela, les distances spectrales clas-

siques les plus efficaces sont celles qui utilisent la forme générale de la courbe des signatures spec-

trales. D’autre part, tous les canaux dans les images hyperspectrales ne sont pas aussi important

en terme de discrimination. Par exemple, dans certains cas, les matériaux permettent leurs dis-

crimination dans des canaux spécifiques de l’image hyperspectrale. Cette problématique est liée

à la forte corrélation existant entre bandes consécutives. En fin de compte, une bonne similitude

métrique dans l’espace hyperspectral doit tenir compte des questions suivantes: 1) la corréla-

tion entre les canaux afin d’éliminer les informations redondantes et 2) une mesure de similarité

globale tenant en compte les valeurs de tous les canaux de l’image. Dans ce travail, différentes

mesures de similarité entre régions hypersepctrales sont étudiées afin de définir un bon critère de

fusion pour la construction de l’ABP.
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Grâce à la structure en forme d’arbre, l’ABP permet la définition d’un grand nombre de tech-

niques pour un traitement avancé des images hyperspectrales. Ces techniques sont typiquement

basées sur l’élagage de l’arbre grâce auquel les régions les plus intéressantes pour une application

donnée sont extraites. La figure 6.4(b) montre un exemple d’élagage de l’ABP de la figure 6.4(a).

(a) Example d’Arbre Binaire de Partitions (b) Résultat de l’élagage

Figure 6.4: Example d’élagage de l’Arbre Binaire de Partitions

L’élagage de l’arbre peut être vu comme l’extraction des sous-arbres composés de noeuds con-

sidérés comme homogènes au sens d’un certain critère (homogénéité spectrale, intensité, forme,

texture,etc.). Cette tâche peut être effectuée en analysant un critère d’élagage le long des branches

de l’arbre afin de trouver les noeuds de taille maximale satisfaisant le critère. Alors que la con-

struction de l’arbre est une opération générique, le choix du critère d’élagage est défini en fonction

de l’application. Dans ce cadre, cette thèse se concentre sur trois applications particulières : la seg-

mentation, la classification et la détection d’objets dans les images hyperspectrales.

La classification supervisée des images hyperspectrales en utilisant l’ABP consiste à supprimer les

sous-arbres composés de nœuds appartenant à la même classe. Ainsi, l’objectif final est d’utiliser

l’ABP élagué pour construire une carte de classification complète de l’image. Cela est possible

en sélectionnant les feuilles de l’ABP élagué. La méthode proposée dans cette thèse se compose

de deux étapes différentes. Tout d’abord, certains descripteurs spécifiques à chaque région sont

calculés pour chaque nœud de l’ABP. Puis, la deuxième étape implique une analyse des branches

de l’ABP afin de prendre une décision sur l’élagage.

La deuxième application étudiée dans cette thèse est la segmentation des images hyperspectrales.

Cela consiste à extraire de l’ABP une partition de l’image formée par les régions les plus signi-

ficatives. Cette tâche consiste à supprimer les sous-arbres qui peuvent être remplacés par un seul

nœud. Cela est possible si tous les noeuds à l’intérieur d’un sous-arbre appartiennent à la même

région dans l’image. Cela signifie que la distance entre eux est faible et la distance entre eux et

leurs noeuds voisins est élevé. Dans ce contexte, deux approches différentes sont étudiées dans

cette thèse. Tout d’abord, la segmentation d’images hyperspectrales est abordée par une stratégie

de minimisation d’énergie globale. Pour cette approche, on définit une erreur associée à chaque

partition contenue dans le BPT et puis, une technique d’élagage est définie afin d’extraire la par-

tition ayant l’erreur minimale.
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La seconde approche dans l’application de segmentation d’images hyperspectrales est fondée sur

l’application des coupes normalisées sur les branches de l’ABP. Cette deuxième approche con-

siste à étudier comment des techniques classiques de partitionnement de graphes peuvent être

appliquées sur la structure de l’ABP.

La dernière application abordée dans ce travail est l’élagage de l’ABP visant à effectuer la détec-

tion de certains objets en télédétection. Afin d’intégrer l’information spatiale et spectrale, l’ABP

est proposé comme un espace de recherche pour construire une identification robuste d’objets. La

stratégie consiste à analyser l’ABP en utilisant un ensemble de descripteurs calculés pour chaque

noeud. Nous proposons d’utiliser conjointement trois descripteurs: un descripteur de forme, un

descripteur spectral, ainsi que la taille de chaque noeud. Ces trois descripteurs sont calculés pour

tous les noeuds. Ensuite, les noeuds les plus proches de la racine (i.e. ceux qui sont de taille

maximale pour une branche donnée), et qui respectent le prédicat défini, sont retenus pour la

détection. Deux exemples de détection ont été testés dans cette thèse: la détection de routes et la

détection de bâtiments.

Les résultats expérimentaux obtenus sur différents jeux de données pour les différentes applica-

tions montrent les qualités de la représentation ABP. Les résultats des trois applications améliorent

clairement les résultats obtenus en utilisant la représentation de l’image hyperspectral au niveau

de pixel. L’étude des différentes applications démontre la généricité de la représentation offerte

par l’ABP.



7
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7.1 Tree complexity

The construction of the BPT for an image containing Np pixels is performed by keeping track

of the sequence created by a region-merging algorithm. Accordingly the performances of the

BPT construction are directly related to those of the creation of the region-merging algorithm.

In this work the implementation of the BPT follows the strategy presented in [141] where the

BPT is constructed for classical imagery. Consequently the implementation of the region merging

algorithm is based on hierarchical queues. A hierarchical queue is a queue where each element

is related to a given priority. An arbitrary element can be introduced in a hierarchical queue in

any order. The extraction is, however, done in descending order of priority (i.e. the elements with

higher priority are extracted first). Elements having the same priority follow a First-In-First-Out

(FIFO) rule. In this context the queue is used to efficiently store, update and access to the merging

order distances associated to pairs of neighboring regions.

In the implementation of the region merging algorithm, two structures need to be allocated in

memory, the current RAG structure and the priority queue. Both notions are illustrated in Fig.

7.1. The RAG structure (see Sec.2.2) is plotted in orange representing the adjacency of the regions

forming the partition at each iteration.

Priority queue

O(R3, R4) O(R1, R2)

O(R2, R5)

O(R1, R5)

O(R5, R6)

O(R1, R2)

O(R4, R2)

O(R1, R4)

O(R1, R3)

RAG

R1

R3

R4

R2

Priority queue

RAG

R1

R2

R5

Priority queue

RAG

R6

R5

Algorithm End

R7

Initial Partition Merging Step 1 Merging Step 2 Merging Step 3

Figure 7.1: Region merging algorithm

At each step the RAG represents the regions and the four corresponding adjacencies. The pri-

ority queue is used to index and process the links according to their merging order. As shown in

Fig. 7.1, this order of priority queue corresponds to the merging order. The first position of the

queue therefore contains the edge of the RAG associated to the minimum O(Ri, Rj) value. In the

case of Fig. 7.1 it can be observed that the first position corresponds to O(R3, R4). Accordingly

this pair of regions is merged in the first iteration while O(R3, R1) appears contrarily in the last

position. This implies that the similarity of these regions is very low.

In order to initialize the RAG and the priority queue the MRi
is computed for all the initial

nodes of the RAG before computing the O(Ri, Rj) for each pair of neighboring nodes. This

distance information is introduced in the queue in a position according to its value. As a con-
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sequence, whether the initial partition is made of single-pixel regions and the neighborhood is

four-connected, the queue is initially formed by Np multiplied by the all pair of regions according

to the four-connectivity.

After each merging the queue is updated in two sequential steps, (i) by removing the old links

concerning the merged nodes, and (ii) by updating the new links representing the adjacency of

the new regions with its neighbors. The algorithm used to insert, to delete and to search the nodes

relies on a balanced tree binary search. The number of steps required for searching, inserting and

deleting nodes in the queue can be therefore done in O(log2N) where N is the number of nodes

in the tree [142] [141].

In order to construct the BPT Np − 1 merging iterations are performed after which the queue is

empty. Accordingly the number of operations Ototal required by this implementation is given by

Ototal = Oinitial + (Np − 1) ∗Oupdate (7.1)

where Oinitial is the number of operations at the initialization step and Oupdate is the number

of operations required for updating the new links. The former task consists of two different sub-

tasks as shown in Eq.7.2. First, the Np region models are computed where Oini node represents

the number of operations required by the construction of a BPT leaf. Second, the corresponding

distance Omerging between its four neighboring pixels is computed for each leaf node.

Oinitial = Np ∗Oini node +Np ∗ 4 ∗Omerging (7.2)

The second term of Eq.7.1 corresponds to the Np − 1 iterations that have to be performed.

Note that the term Np ∗ 4 can be lower if a neighboring pixel has been previously initialized. The

term Oupdated is the number of required operations after a region merging step corresponding to

the update of the queue, which are described by Eq.7.3. At each iteration, a new node is formed

and the corresponding region model is computed. The second term of Eq.7.3 corresponds to the

update of distances between the old neighbors of the removed regions and the newly formed

region. It must be noted that the number of distances to be computed at this step depends on a

factor K. This factor corresponds to the number of links to be updated and it depends on the tree

construction (if it is more or less balanced).

Oupdate = Onode +K ∗Omerging (7.3)

This last equation shows the strong dependence of the complexity of the BPT construction on

three factors, (i) the number of pixels of the image Np, (ii) the operations required for the creation

of a node after a merging Onode, and (iii) the complexity of the merging criteria Omerging between

each pair of adjacent regions.

In order to minimize the computational load the previous bottlenecks of the tree must be studied.

As for parameter Np, it is evident that the number of pixels of the image cannot be modified.

However, in order to reduce the computational load in some applications it might be interesting

to start where pixels are not single individual regions as it is done in Fig. 7.1. For instance, an



156 Chapter 7. Appendix

initial partition can be defined with regions containing three pixels. Although some accuracy will

be lost in this case, the complexity of the BPT construction will strongly decrease.

Concerning the term Onode, the computation of the region model plays an important role. In this

context the strategy of constructing a region model in a recursive manner means that the model

of the union of two regions can be computed from the models of these regions. Non-recursive

strategies requiring to go back to the original pixels to compute the model should be avoided.

Concerning the region models described in this dissertation the first order and the non-parametric

statistical region model can be recursively computed. In the case of the first order model, this can

be easily done by saving only two parameters, (i) the number of pixels of the region NRp
and

(ii) the accumulative sum for all the spectra for each band
∑

j∈NRp
Iλi

(pj). Regarding the non-

parametric statistical region model, the model of a parent node can be also computed recursively

since:

Hλi

Ri∪j
(Pak

) =
NRip

∗Hλi

Ri
(Pak

) +NRjp
∗Hλi

Rj
(Pak

)

NRjp
+NRip

(7.4)

where Hλi

Ri
(Pak

) and Hλi

Rj
(Pak

) are the probability of the children nodes representing the prob-

ability of having a specific radiance value at ak histogram bin.

Hence a recursive region model Onode is mandatory in order to obtain better performances. How-

ever, the information concerning each model must be saved in order to get a recursive algorithm.

Therefore, the allocation of the memory for each node has an increasing cost increasing the mem-

ory cost of the BPT construction.

An important remark must be done concerning the non-parametric statistical model presented in

Sec. 3.2.2. For this region model, an algorithm estimating the probability distribution of a single

pixel has been described. As a consequence the number of steps Onode required at Eq.7.2 does

not correspond to the same number of operations Oininode needed for Eq. 7.3. In the first case the

number of operations is related to the pdf estimation for each individual pixel. In the second case

this region model is computed recursively as it is described by Eq. 7.4.

In a large hyperspectral image, the estimation of the pdf of individual pixels can become a bot-

tleneck during the initialization step. Note that for each pixel the algorithm described in Fig.1 is

computed by analyzing a local window. In this thesis, we have made no attempt to actually opti-

mize the processing time. However, if this issue of pixel pdf estimation turns out to be important

in the context of specific applications, simplification of the estimation algorithm will be studied.

Comparing the two proposed region models in this thesis, it can be seen that the complexity and

the memory requirements are quite different. The first order model only requires the allocation of

1) a vector of Nz values where each component contains the sum of all the spectra in the region

and 2) a variable describing the number of pixels of the region. In the case of non-parametric

statistical region model the set of histograms per bands containing NBins must be allocated in

memory for each region. In the case of OMDS criterion the principal coordinates of the region

must be also allocated in memory in order to avoid redundant operations. In conclusion, the

memory requirements are high for the non-parametric statistical region model.
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The number of operations concerning the second important term Omerging has been also studied

in this thesis. In the case of the merging criteria involving the first region model the necessary

operations are quite fast. In contrast the other merging criteria require a higher computational

time. The parameter NBins plays here an important role. Parameter Ds is also critical because

the computation of Wilks’ test involves a higher computational time in front of more principal

coordinates.

Another remark concerns the number of bands in the hyperspectral images Nz , which is an impor-

tant factor in terms of computational time and memory usage. In order to assess the complexity

of BPT construction several tests have been performed. The BPT construction algorithm has been

tested using an Intel Xeon processor running under Linux with a clock speed of 2.40GHz and 20

Gbytes of RAM. We remark that this thesis mades no attempt to minimize the computational load

nor the memory requirements of our algorithms. Thus, this area can be further improved.

The first test corresponds to the first zone of Pavia university image presented in Fig.3.25. This

image is formed by 3705 pixels and a spectral dimension is Nz = 102. The CPU time and the

required memory for BPT construction is shown in Tab.7.1 comparing the different merging cri-

teria. In the case of non-parametrical statistical region model Nbins is equal to 150. The OMDS

criterion uses an intrinsic dimension of the image Ds = 3.

The criteria OSID and OSAM , which rely on the first order region model, are much faster and

requires low memory. On the other hand, the other merging criteria are based on the non-

parametric statistical region model. In the case of O1
BAT , the initialization of the individual pixels

is made by the method proposed in [18]. Contrarily, O2
BAT uses the pdf estimation explained in

Chapter 3. These two different initialization steps concerning the BPT construction lead to some

differences in Tab. 7.1. As it can be seen, the computational time is similar in both cases. This

result is explained because, in the early stage of the BPT construction using O1
BAT , the drawback

concerning the histogram misalignment happens. The construction of the BPT is therefore less

balanced implying more comparisons between adjacent regions. Contrarily, consuming a similar

time O2
BAT leads to a better initialization. Indeed, one second from the total 2.15 minutes is com-

pletely dedicated to the pdf estimation.

The differences between the initialization can also be seen in ODIF and OMDS . As expected, the

pdf estimation used in this thesis is more time consuming. However, the BPT is better constructed

in the case of pdf estimation by Alg. 1 as in the case of Battacharyya distance. Tab. 7.1 shows the

price to pay for it. The merging criterion OMDS is clearly the most time consuming. This is

completely explained by the computation of the matrix distance used to compute the principal

coordinates. In this case, almost 6 out of the 9 minutes are used to compute the principal coordi-

nates of the individual pixels.

In terms in memory, it can be observed the difference between the two presented region models.

The allocation of memory of the set of Nz histograms shows its implication in this case.

Another complexity test is shown in next Tab.7.2. This test corresponds to the second zone of

Pavia University of Fig.3.25 .This second table corroborates the same conclusions as the last Table.

In order to show another example with a larger image, the next example shows the complexity
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Table 7.1: Performances Pavia Uni 1: 3705 pixels

Merging Criterion Time (minutes) Memory (Mbytes)

OSID 0.072 10.24
OSAM 0.047 10.21
O1

BAT 1.56 307.2
O2

BAT 2.15 311.2
O1

DIF 1.01 309.24
O2

DIF 2.56 310.27
O1

MDS 9.24 337.92
O2

MDS 11.02 335.8

Table 7.2: Performances Pavia Uni 2: 3174 pixels

Merging Criterion Time (minutes) Memory(Mbytes)

OSID 0.054 10.21
OSAM 0.0532 9.82
O1

BAT 1.58 247.80
O2

BAT 1.53 251.90
O1

DIF 0.58 290.81
O2

DIF 2.29 299
O1

MDS 7.50 327.68
O2

MDS 10.06 317.44

in time of the BPT constructed at Fig.7.2. As in the other two examples, the number of bands is

equal to Nz = 102 for this image. The computation times shown in Tab.7.3 shows how increasing

the number of pixels, the requirements in terms of complexity and memory allocation are higher.

Table 7.3: Performances Pavia Uni: 16000 pixels

Merging Criterion Time (minutes) Memory (Mbytes)

OSID 0.29 71.68
ODIF 3.57 757.76
OMDS 32.40 790.72

It must be noticed that the BPT is viewed in this work as an image representation that has to be

constructed only once and that opens the door to a wide range of applications. As demonstrated

in Chapter 4, different pruning strategies handle different applications. Moreover, operations

such as modifying the parameters for an SVM classification, or training the classifier, or optimiz-

ing the segmentation or searching for different objects can all be performed on the constructed

BP. The complexity of the pruning strategy mainly depends on the number of BPT nodes. In this

thesis, the proposed pruning strategies are faster. For instance, in the case of classification, energy

minimization or object detection, algorithms turn in less than one minute for a BPT containing

7409 nodes.
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7.2 Acronyms

BPT Binary Partition Tree

λ Wavenlength

Iλ Hyperspectral image

Nz Number of hyperspectral bands

Np Number of pixels of hyperspectral image

Iλj
Hyperspectral image band given a specific wavelength λj

Iλj
(p) the radiance value of the pixel p on the hyperspectral image band λj

Iλ(p) is the vector pixel p containing all the radiance values along the Nz wavelenghts

R Image region

P Image partition

NR Number of region containing in an image partition

RAG Region Adjacency Graph

N Tree node

TN Subtree rooted by BPT node N

MR Region Model

O(Ri, Rj) Merging criterion between region Ri and Rj

NRp
Number of spectra containing in region

ĪR
λi

The average spectral value of a region R at the image band λi

Ī
R
λ

Vector containing the average spectral values of a region R for all Nz bands

PR(λ) The probability distribution according to λ by applying the ĪR
λ

spectrum normalization

H
λk

R Empirical spatial distribution (histogram) of the region R in the band λk

NBins Number of bins

Hλi

R (Pak) Probability of the region R of having the radiance value ak in the band λi

P (p) Patch neighborhood centered at pixel p

Wx, Wy Horizontal and vertical dimension of patch neighborhood

Ωp Search window centered at p given its individual pixel distribution initialization

w(p, py) The additive contribution to the probability of the pixel p of having the value of Iλ(py).

dwin(p, py) The local displacement between pixels p and py according to the search window space Ωp

Z(p) Normalizing factor

dp The local displacement on the patch regarding the central pixel

hλi
Smoothing parameter for λi

σ
λi

N Standard deviation of the noise in the λi

PR(λ) Probability distribution of a spectrum concerning λ dimension

SAM Spectral Angle Mapper

SID Spectral Information Divergence

D(Ri, Rj) Kullback-Leibler Divergence between Ri and Rj

BAT Battacharyya Distance

DIF Diffusion Distance

MDS Multidimensional Scaling Metric
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P Image Partition

PGT Ground truth Partition

dasym Asymmetric distance between partitions

dsym Symmetric distance between partitions

Nc Number of classes of ground truth

AN Area of region contained on the node N

PN Class probability distribution of node N

LNi
Number of leaves forming the sub-tree TNi

rooted by the node Ni

EP̃ Minimum Pruning cost of the partition P̃

C0 Equaltity constraint of the Lagrangia multiplier

EBPT the set of all the possible partitions P contained in the BPT

D(N ) Error commtited at node N

C(N ) Constraint at node N

λ
∗ Optimal Lagrangian parameter

Nr and Nl Right and left children nodes sharing the same N father node

l Leaf node

WN Pruning decision weight for a node N

PN
d (li) Local Pruning decision from a leaf li to its ancestor node on the branch N

B BPT branch

PB The set containing the nodes forming the BPT branch B

G Weighted graph

W Affinity matrix

d(Ni,Nj Similarity distance between node Ni andNj

L Laplacian matrix

E Second smallest eigenvalues of Laplacian matrix

NN Number of nodes forming a BPT branch
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7.3 Mathematical Appendix: Association measures

Roy, Lawley-Hotelling and Pillai Criteria

For testing β = 0, another criteria as the Roy R, Lawley-Hotelling U and Pilllai’s criterion V can

be employed as

R =
λ1

(1 + λ1)
(7.5)

U = tr(E−1H) =

Ds∑

i=1

λi (7.6)

V = tr((E +H)−1H) =

Ds∑

i=1

λi

(1 + λi)
(7.7)

where λ are the eigenvalues associated to E−1H . These criteria can be described in terms of

canonical correlations as

R = r21 (7.8)

U =

Ds∑

i=1

r2i
1− r2i

(7.9)

V =

Ds∑

i=1

r2i (7.10)

The three different tests can be used to define three new association measures AR, ALH and

AP by

AR =
λ1

(1 + λ1)
(7.11)

ALH =
U

Ds

(1 +
U

Ds

) (7.12)

AP =
V

Ds

(7.13)

Other symmetric measures to measure multivariate dependence between two

data sets

Vector Correlations

Given two data sets X and Y whose covariance matrices are defined by Sxx = XtX , Syy = Y Y t

and SX,y = XtY , the RV coefficient [25] is given by
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RV (X,Y ) =
tr(SxySyx)

√

tr(S2
xx)tr(S

2
yy)

(7.14)

In our case, being URi
and URj

the standard coordinates of two regions having NzxDs di-

mensions, Sxx = Syy = IDs
where IDs

is a diagonal matrix of Ds columns and rows. Thus, the

association measure ARV given by the vectorial correlation between two regions Ri and Rj is

ARV (Ri, Rj) =
tr(U t

Ri
URj

U t
Rj

URi
)

√

D2
s

(7.15)

which is expressed in terms of canonical correlations ri as

ARV (Ri, Rj) =

Ds∑

i=1

r2i

Ds

(7.16)

Note that being in our case tr(S2
xx) = tr(S2

yy), the association measure ARV is equal to AP

Generalized multiple Correlation

Another measure of multiple correlation coefficient [31] between X and Y has been defined as

R2(X,Y ) =
det(SyxS

−1
xx Sxy)

det(Syy)
(7.17)

Simplifying this last equation when X and Y correspond to the standard coordinates URi
and

URj
, the association measure AR by the multiple correlation coefficient is defined as

AHC(Ri, Rj) = det(U t
Rj

URi
U t
Ri
URj

) =

Ds∏

i=1

r2i (7.18)

where notation HC refers to Hotelling and Cramer[31]

Procrustes statistics

According to [28], Procrustes analysis is a technique which matches a configuration to another,

where there is a one-to-one correspondence from one set to the other set of points, and obtains a

measure of the match. If both configurations are represented by two centered matrices X and Y,

the Procrustes statistic PR is

PR2(X,Y ) =
[tr(XtY Y tX)

1
2 ]2

tr(XtX)tr(Y tY )
(7.19)

This test can be expressed as the association measure APR by considering Y = URj
ΛRj

and

X = URi
ΛRi

as
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APR(Ri, Rj) =
[tr(ΛRi

Ut
Ri

URj
Λ

2
Rj

Ut
Rj

URi
ΛRi

)
1
2 ]2

tr(Λ2
Ri

)tr(Λ2
Rj

)

=
[tr(Ut

Ri
URj

Ut
Rj

URi
)
1
2 ]2

D2
s

=

(

Ds∑

i=1

ri)
2

Ds
(7.20)

Order relationship

The association measures can be ordered as

AHC ≤ APR ≤ AP ≤ ALH ≤ AR ≤ Aw (7.21)

because, clearly,

Ds∏

i=1

r2i ≤

Ds∏

i=1

(r2i )
1
s ≤

Ds∑

i=1

r2i

Ds

(7.22)
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7.4 Hierarchical levels obtained by Pavia University data set

(a) OSID , NR = 102 (b) OSID , NR = 186 (c) OSID , NR = 242

(d) ODIF , NR = 102 (e) ODIF , NR = 186 (f) ODIF , NR = 242

(g) OMDS , NR = 102 (h) OMDS , NR = 186 (i) OMDS , NR = 242

Figure 7.2: Hierarchical Levels of Pavia University
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• A. Alonso-Gonzalez, S. Valero, J. Chanussot, C. Lopez-Martinez and P. Salembier,

Processing multidimensional SAR and hyperspectral images with Binary Partition Trees,

In reviewing process in IEEE Transactions on Geoscience and Remote Sensing, 2012

• S. Valero, P. Salembier and J. Chanussot,

Hyperspectral image representation and processing with Binary Partition Trees,

In reviewing process in IEEE Transactions on Image Processing, 2011

• C.M. Cuadras, S. Valero, D. Cuadras, P. Salembier and J. Chanussot,

Distance-based measure of association with applications in relating hyperspectral images,

Communications in Statistics: Theory and Methods,vol.41, pp. 2342–2355, 2012.

International Conferences

• S. Valero, P. Salembier and J. Chanussot,

Hyperspectral image segmentation using Binary Partition Trees,
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